
Dynamical Aspects of Ion-Acoustic
Solitary Waves in a Magnetically
Confined Plasma in the Presence
of Nonthermal Components

Jintu Ozah and P. N. Deka

Abstract The characteristics of three-dimensional ion-acoustic solitary waves
(IASWs) have been investigated in a magnetized plasma including ions, nonther-
maly dispersed electrons and positrons. The reductive perturbation technique (RPT)
is used to develop the Zakharov–Kuznetsov (ZK) equation for observing ion-acoustic
wave structure, and a soliton solution is obtained by using the tangent hyperbolic
(tanh) method. The influence of various parameters on the soliton profile, such as
nonthermal parameters for electrons andpositrons, density ratios of positron–electron
and ion–electron, and temperature ratio of electron–positron, is presentedgraphically.

Keywords Solitary waves · Reductive perturbation technique · Magnetized
plasma · Nonthermal electrons · Positrons

1 Introduction

Investigation of ion-acoustic solitary waves is an interesting research problem in the
field of plasma physics that has been extensively studied by numerous authors [1–4].
For the first time, Washimi and Taniuti [5] observed the distinctive behaviour of ion-
acoustic solitary waves in plasma, which can be investigated using the Korteweg-de
Vries (K-dV) equation.After that, ion-acoustic solitarywaves in bothmagnetized and
unmagnetized plasmas have been studied by a large number of researchers in different
theoretical and experimental circumstances during the past few decades. There has
been a lot of interest in the investigation of different types of nonlinear solitary waves
in plasmas, like magneto-acoustic solitary waves, spherical and cylindrical-acoustic
solitary waves, and lower-hybrid solitary waves [6–9]. A study of ion-acoustic soli-
tary waves in magnetized negative ion plasma consisting of nonthermal electrons
was carried out by Labany et al. [10]. They observed that the solitary waves are
substantially influenced by the positive-to-negative ionmass ratio, the corresponding
negative-to-positive ion density ratio, and the parameters of nonthermal electrons.
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For analysing ion-acoustic waves in a magnetized plasma, Zakharov and Kuznetsov
developed the nonlinear equation known as the ZK equation. This ZK equation
may be found in many branches of physics, such as fluid mechanics, astrophysics,
solid state physics, and so on [11, 12]. It is most apparent in the subject of plasma
physics. Using the extended tanh approach and the direct assumptionmethod, Li et al.
derived the ZK equation and got an exact travelling wave solution [13]. Taibany
et al. [14] developed the ZK equation to investigate the IASWs in a magnetized
multicomponent dusty plasma with negative ions. Recently, many researchers have
been showing an interest in studying the impact of nonextensive electron distribution
on IASWs in magnetized plasma. Mandi et al. [15] have investigated the effect of
the q-nonextensivity of electrons on the characteristics of IASWs. Furthermore, the
propagation of solitons in nonthermal plasma has generated much interest among
researchers. Because of their practical significance, they continue to pique people’s
curiosity. Many studies in plasma physics, as well as complex plasma, have focused
on ion-acoustic solitary waves and their properties in the field of nonthermal plasma.
Pakzad [16] studied the behaviour of soliton structures in a three-component unmag-
netized plasma containing cold ions, nonthermal electrons, and positrons. Dev et al.
[17] studied the dust IASWs in a magnetized plasma in the presence of nonthermal
electrons, positrons and relativistic thermal ions. They discovered that in the absence
of nonthermal electron and positron populations, the plasma system behaves in the
least nonlinear manner, but the system behaves in the most nonlinear manner when
the populations of nonthermal electrons and positrons have the maximal value. In
their investigation into three-dimensional ion-acoustic soliton structures, including
warm ions, positrons, and nonthermal electrons, Chawla et al. [18] reveal that the
presence of nonthermal electrons considerably impacts the amplitude and width of
soliton pulses.

In this paper, the effects of nonthermal electrons, nonthermal positrons, and
the influence of magnetic fields on the structure of three-dimensional nonlinear
IASWs are investigated. We anticipate that the presence of nonthermal electrons and
positrons will alter the characteristics of solitons as well as their existence regime.

2 Basic Model Equations

We consider a plasma model with constituent ions, nonthermal electrons and
nonthermal positrons, where the magnetic field B0 is along the z-axis. The following
normalized sets of ion continuity equations, momentum equations, and Poisson
equations serve as the governing equations for the current plasma model:

∂ni
∂t

+ ∂(niu)

∂x
+ ∂(niv)

∂y
+ ∂(niw)

∂z
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂φ

∂x
+ �i

ωpi
v (2)



Dynamical Aspects of Ion-Acoustic Solitary Waves … 247

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂φ

∂y
− �i

ωpi
u (3)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂φ

∂z
(4)

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= ne − μpn p − μi ni (5)

The Boltzmann distributions [17] for nonthermal electrons and positrons are
defined as

ne = (
1 − βeφ + βeφ

2) exp(φ) (6)

np = (
1 + σpeβpφ + σ 2

peβpφ
2) exp

(−σpeφ
)

(7)

In the above expressions.
Also μp = np0

ne0
, μi = ni0

ne0
and σpe = Te

Tp
.

βe = 4αe

1 + 3αe
, βp = 4αp

1 + 3αp

here,αe is the nonthermal parameter for electrons andαp is the nonthermal param-
eter for positrons, which represent the population of energetic nonthermal electrons
and positrons, respectively. Te and Tp are the temperatures of electrons and positrons.
In the above equations, the ion number densities ni are normalized by ni0 and veloc-
ities (u, v,w) by the ion-acoustic speed Cs = (Te/mi )

1/ 2, where mi is the ion mass.
Space coordinates (x, y, z) and time t are normalized in terms of Debye length

λD = (
ε0Te/n0i e

2
)1/ 2 and the inverse of plasma frequency ωpi = (

4πe2n0i
/
mi

)1/ 2

respectively. The electric potential φ is normalized by Te
/
e, where e is the electronic

charge. �i and ωpi are the ion-cyclotron frequency and plasma frequency.

3 Reductive Perturbation Method

Toderive theZKequation from the above basic set of equations,we used the reductive
perturbation technique. The stretching coordinates [10, 19] are assume as

ξ = ε1/ 2x, η = ε1/ 2y, ζ = ε1/ 2(z − λ0t) and τ = ε3/ 2t (8)

where the symbol ε is the expansion parameter that measures the strength of nonlin-
earity and λ0 is the phase velocity of IASWs. We express the physical parameters in
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the power series expansion of ε in the following way:

ni = 1 + ε1n1 + ε2n2 + ε3n3 + ....

u = ε3/ 2u1 + ε2u2 + ε5/ 2u3 + ....

v = ε3/ 2v1 + ε2v2 + ε5/ 2v3 + ....

w = 0 + ε1w1 + ε2w2 + ε3w3 + ....

φ = 0 + ε1φ1 + ε2φ2 + ε3φ3 + ....

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(9)

We transform x and t by using the stretch coordinates as

∂

∂x
≡ ε1/ 2

∂

∂ξ
,

∂

∂y
≡ ε1/ 2

∂

∂η
,

∂

∂z
≡ ε1/ 2

∂

∂ζ
,

∂

∂t
≡ −λ0ε

1/ 2 ∂

∂ζ
+ ε3/ 2

∂

∂τ

∂2

∂x2
≡ ε

∂2

∂ξ 2
,

∂2

∂y2
≡ ε

∂2

∂η2
,

∂2

∂z2
≡ ε

∂2

∂ζ 2

⎫
⎪⎪⎬

⎪⎪⎭

(10)

Using (10), the transformation equations of (1)–(5) may be obtained as

−λ0ε
1/ 2 ∂ni

∂ζ
+ ε3/ 2

∂ni
∂τ

+ ε1/ 2
∂(niu)

∂ξ
+ ε1/ 2

∂(niv)

∂n
+ ε1/ 2

∂(niw)

∂ζ
= 0 (11)

−λoε
1/ 2 ∂u

∂ζ
+ ε3/ 2

∂u

∂τ
+ uε1/ 2

∂u
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∂u
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+ wε1/ 2

∂u

∂ζ
= −ε1/ 2

∂φ
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+ �i

ωpi
v

(12)
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1/ 2 ∂v
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+ ε3/ 2
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∂ζ
= −ε1/ 2

∂φ
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u

(13)

−λoε
1/ 2 ∂w

∂ζ
+ ε3/ 2

∂w

∂τ
+ uε1/ 2

∂w

∂ξ
+ vε1/ 2

∂w

∂η
+ wε1/ 2

∂w

∂ζ
= −ε1/ 2

∂φ

∂ζ
(14)

ε
∂2φ

∂ξ 2
+ ε

∂2φ

∂η2
+ ε

∂2φ

∂ζ 2
= ne − μpn p − μi ni (15)

Now using (9) in the above equations and then collecting the lowest order terms.
in ε, we get

n1 = w1

λ0
, w1 = φ1

λ0
,

u1 = −ωpi

�i

∂φ1

∂η
, φ1 = μi n1

(1−βe+μpσpe−βpμpσpe)

v1 = ωpi

�i

∂φ1

∂ξ
,

⎫
⎪⎪⎬

⎪⎪⎭
(16)



Dynamical Aspects of Ion-Acoustic Solitary Waves … 249

After solving for the first order perturbation terms, the dispersion relation of
nonlinear IASWs is obtained as

λ0 =
√

μi

1 − βe + μpσpe − βpμpσpe
(17)

Equation (17) represents the phase velocity of nonlinear IASWs.
The next higher order of ε gives

u2 = ωpiλ0

�i

∂v1

∂ζ
, (18)

v2 = −ωpiλ0

�i

∂u1

∂ζ
, (19)

∂n1i
∂τ

− λ0
∂n2i
∂ζ

+ ∂u2

∂ξ
+ ∂v2

∂η
+ ∂w2

∂ζ
+ ∂(n1i w

1)

∂ζ
= 0, (20)

∂w1

∂τ
− λ0

∂w2

∂ζ
+ w1 ∂w1

∂ζ
+ ∂φ2

∂ζ
= 0, (21)

∂2φ1

∂ξ 2
+ ∂2φ1

∂η2
+ ∂2φ1

∂ζ 2
− (

1 − βe + μpσpe − βpμpσpe
)
φ2

− 1

2

(
1 − σ 2

peμp
)(

φ1
)2 + μi n

2 = 0, (22)

Now, differentiating equation (22) w.r.t ζ , we get

∂

∂ζ

(
∂2φ1

∂ξ 2
+ ∂2φ1

∂η2

)
+ ∂3φ1

∂ζ 3
− (

1 − βe + μpσpe − βpμpσpe
)∂φ2

∂ζ

− (
1 − σ 2

peμp
)
φ1 ∂φ1

∂ζ
+ μi

∂n2

∂ζ
= 0. (23)

Now, using the lowest order terms, the Eq. (23) can be written as

∂

∂ζ

(
∂2φ1

∂ξ 2
+ ∂2φ1

∂η2

)
+ ∂3φ1

∂ζ 3
− μi

λ2
0

∂φ2

∂ζ
− (

1 − σ 2
peμp

)
φ1 ∂φ1

∂ζ
+ μi

∂n2

∂ζ
= 0.

(24)

Now, eliminating the second order quantities from (20), (21) and (24), we obtain
the ZK equation in terms of φ1 as

∂φ1

∂τ
+ Aφ1 ∂φ1

∂ζ
+ B

∂3φ1

∂ζ 3
+ C

∂

∂ζ

(
∂2φ1

∂ξ 2
+ ∂2φ1

∂η2

)
= 0, (25)
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where the non-linear coefficient A is given by

A = 2

λ0
− λ3

0

2μi

(
1 − σ 2

peμp
)
.

B and C are the dispersive and higher order coefficients, expressed as

B = λ3
0

2μi
, andC = λ3

0

2μi
+ λ3

0

2

ω2
pi

�2
i

.

4 Solution of ZK Equation

To analyse the Eq. (25), we use the tanh method. We consider the transformation
χ = γ (lξ + mη + nζ −Uτ), whereφ(ξ, η, ζ, τ ) = ψ(χ), we can use the following
changes:

∂

∂τ
≡ −Uγ

d

dχ
,

∂

∂ξ
≡ lγ

d

dχ
,

∂

∂η
≡ γm

d

dχ
,

∂

∂ζ
≡ γ n

d

dχ
,

∂2

∂ξ 2
≡ γ 2l2

d2

dχ2
,

∂2

∂η2
≡ γ 2m2 d2

dχ2
,

∂3

∂ζ 3
≡ γ 3n3

d3

dχ3

Now the Eq. (25) becomes a reduced ordinary differential equation as

−Uγ
dψ

dχ
+ Aγ n

2

dψ2

dχ
+ Bγ 3n3

d3ψ

dχ3
+ Cγ n

d

dχ

[
γ 2(l2 + m2)d

2ψ

dχ2

]
= 0. (26)

Integrating the above equation, we get

−Uψ + 1

2
Anψ2 + γ 2n

[
Bn2 + C

(
l2 + m2

)]d2ψ

dχ2
= 0 (27)

To solve the above equation, we use the tanhmethod. Consider a new independent
variable as:

z = tan(χ), where ψ(χ) = w(z).

and we get.

d2

dχ2 = (
1 − z2

)2 d2

dz2 − 2z
(
1 − z2

)
d
dz .

Now the Eq. (27) becomes

−Uw + 1

2
Anw2 + γ 2n

(
Bn2 + C

(
l2 + m2

))(
1 − z2

)2 d2w

dz2
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− 2γ 2n
(
Bn2 + C

(
l2 + m2

))
z
(
1 − z2

)dw
dz

= 0. (28)

In the tanh method the series solution of the Eq. (28) can be written as:

w(z) =
m∑

i=1

ai z
i (29)

In Eq. (29), the value of m can be obtained by balancing the highest order linear
term with the nonlinear terms. On substitution of Eq. (29) into Eq. (28), we get
m = 2.

As a result, the solution w(z) =
m∑

i=1
ai zi is of the form

w(z) = a0 + a1z + a2z
2. (30)

Now substitutingw, dwdz , d
2w
dz2 from (30) into (28), then equating different coefficient

of z, we get.
a0 = −a2 and a1 = 0.
Hence Eq. (30) reduce as

w(z) = a0
(
1 − z2

)
. (31)

Using (31) into (28) and equating the coefficients of z2, we get

a0 = 12γ 2
[
Bn2 + C

(
l2 + m2

)]

A
.

And hence γ =
√

U
4n(Bn2+C(l2+m2))

.

Using the values of the parameters, Eq. (31) provides a solution as

φ = φmsech
2
( χ

W

)
. (32)

Here, (32) represents the solution of the Eq. (25), where φm and W are the
amplitude and width of the soliton.

Whereφm = 3U

An
(33)

and

W =
√

U

4n
(
Bn2 + C

(
l2 + m2

)) . (34)
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5 Results and Discussion

For the study of soliton structures due to the existence of nonthermal components of
electrons and positrons, we have plotted the variation of nonlinear coefficient A with
electron-to-positron temperature ratio

(
σpe

)
, positron-to-electron density ratio

(
μp

)

and ion-to-electron density ratio (μi ) for different parameters of nonthermal electrons
and positrons. The polarity (positive or negative) of the soliton structure completely
depends on the sign of the nonlinear coefficient A. The positive polarity (compressive
soliton) structure exists for the positive value of the nonlinear coefficient and the
negative polarity (rarefactive soliton) structure exists for the negative value of the
nonlinear coefficient. Figure 1 shows that the nonlinearity of plasma increases with
the electron-to-positron temperature ratio

(
σpe

)
. The same result has been observed

in Fig. 2, where the nonlinearity changes with the positron-to-electron density ratio(
μp

)
. The variation of nonlinearity with ion-to-electron density ratio (μi ) in Fig. 3

shows the existence of rarefactive soliton structures. It can be seen from this graph
that the sign of nonlinearity becomes negative after a certain value of μi . Therefore,
the parameter μi is very crucial to obtaining rarefactive soliton structures. The range
of the parameterμi for the existence of negative polarity can be obtained fromFig. 3b.
Further, it is observed that, in all cases, the nonlinearity of plasma decreases as the
parameters of nonthermal electrons and positrons are increased.

Figure 4 shows the change of the compressive soliton structurewithχ for different
values of nonthermal parameters of electrons (αe) and positrons

(
αp

)
. As in equation

(34), it shows that the amplitude is the inverse of the nonlinear coefficient A. As a
result, as nonthermal parameters are increased, plasma nonlinearity decreases, and
hence the amplitude of the soliton structure rises.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.8

3

3.2

3.4

3.6

3.8

4

σpe

A

Fig. 1 Variation of nonlinear coefficient against electron-to-positron temperature ratio
(
σpe

)
with

μi = 0.3 and μp = 0.2. Blue line corresponds to αe = 0.01, αp = 0.02; black line corresponds to
αe = 0.03, αp = 0.04; red line corresponds to αe = 0.05, αp = 0.06
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.8

3

3.2

3.4

3.6

3.8

4

μp

A

Fig. 2 Variation of nonlinear coefficient against positron-to-electron density ratio
(
μp

)
with σpe =

0.1 and μi = 0.3. Blue line corresponds to αe = 0.01, αp = 0.02; black line corresponds to
αe = 0.03, αp = 0.04; red line corresponds to αe = 0.05, αp = 0.06

We have also shown the rarefactive soliton structure in Fig. 5 for different values
of nonthermal parameters while keeping all other parameters fixed. The amplitude
(width) of the solitons decreases (increases) with an increase in the values of αe and
αp.

A similar kind of variation in the soliton structure is observed in Fig. 6, when we
change the positron-to-electron density ratio

(
μp

)
. This observation also provides

an information about the change in amplitude and width when the value of
(
μp

)

changes. Increase in the density ratio, enhances the amplitude of the soliton.

6 Conclusion

In the present work, we have studied the characteristics (amplitude and width) of
nonlinear ion-acoustic solitary waves in a magnetically confined plasma under the
influence of nonthermal electrons and positrons. We have determined the range of
the parameters for the existence of both the positive and negative polarity soliton.
We have noticed the following main results in our present study:

1. In our investigation, both the positive and negative polarity of soliton exist,
whereas in the earlier study, this aspect was not covered by Chawla et al. [18].

2. The parameter ion-to-electron density ratio (μi ) is very crucial to getting two
kinds of soliton structure. A very small change in this parameter, changes the
polarity of the soliton structure.

3. We can obtained the parameter range for the existence of a negative polarity
soliton from Fig. 3b.
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Fig. 3 Variation of nonlinear coefficient against ion-to-electron density ratio (μi ) with σpe = 0.1
andμp = 0.2. Blue line corresponds to αe = 0.01, αp = 0.02; black line corresponds to αe = 0.03,
αp = 0.04; red line corresponds to αe = 0.05, αp = 0.06
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χ
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0.3

0.4

0.5

0.6

-2.5 -2  -1.5 -1  -0.5 0.5 1   1.5 2   2.5 

φ

Fig. 4 Variation of compressive soliton wave structure for different values of αe and αp , with μi
= 0.3, σpe = 0.1, μp = 0.2, n = 0.6, U = 0.9, �i = 0.5 and ωpi = 1.4. Blue (dotted) curve
corresponds to αe = 0.01 and αp = 0.03; black (solid) curve corresponds to αe = 0.04 and αp =
0.06; red (solid) curve corresponds to αe = 0.07 and αp = 0.09

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-8 -6 -4 -2 2 4 6 8 

χ

φ

Fig. 5 Variation of rarefactive soliton structure for different values of αe and αp , with μi = 1.8,
μp = 0.2, σpe = 0.1, n = 0.6,U = 0.9,�i = 0.5 and ωpi = 1.4. Blue (dotted) curve corresponds to
αe = 0.01 and αp = 0.03; black (solid) curve corresponds to αe = 0.04 and αp = 0.06; red (solid)
curve corresponds to αe = 0.07 and αp = 0.09
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Fig. 6 Variation of rarefactive soliton structure for different values ofμp , withμi = 1.8, σpe = 0.1,
n=0.6,U =0.9,�i =0.5 andωpi =1.4,αe = 0.05 andαp = 0.06.Blue (dotted) curve corresponds
to μp = 0.1; black (solid) curve corresponds to μp = 0.5 and; red (solid) curve corresponds to
μp = 0.9

We hope these results will be incredibly helpful in both space and laboratory
plasmas, where solitary wave propagation is quite useful.
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