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Offset Bipolar Pulses in Magnetospheric
Plasma Systems

Steffy Sara Varghese and S. S. Ghosh

Abstract The satellite borne electric field instruments have been observed the signa-
tures of Electrostatic SolitaryWaves (ESWs) throughout the Earth’s magnetospheric
boundary layers and have been recorded as localized monopolar, bipolar or tripolar
pulses in the electric field (E data). There are also reports of various kinds of elec-
tric field structures by the satellites which are different from conventional bipolar
pulses. There was no generic theory for them so far. In this work, we are intended to
introduce offset bipolar pulses, a possible kinds of non-conventional pulses which
can be supported by different kinds of space plasma system. In this regard, we have
analyzed a warm multi-ions and two electron temperature plasma model which is
quite signifying in magnetospheric studies by adopting the Sagdeev pseudopotential
technique. Through rigorous numerical analysis, we have identified and delineated
the conditions for the existence of flat top solitary wave, and correlate them with the
non-conventional electrostatic solitary wave structures in space plasma observations.
It is expected that it will provide a new way of understanding the non-conventional
localized pulses in the E-field data recorded during satellite expeditions which are
known to be important in determining themicrophysics of theEarth’smagnetospheric
plasma system.

Keywords Flat top solitary waves · Electrostatic solitary waves · Offset bipolar
pulses

1 Introduction

The theory of coherent and organized nonlinear dynamical structures are often found
to be relevant in interpretingElectrostatic SolitaryWaves (ESWs)which are observed
ubiquitously in the Earth’s magnetosphere. The large gradient in particle properties

S. S. Varghese (B)
Space and Planetrary Science Center, Khalifa University, Abu Dhabi 127788, UAE
e-mail: steffystephan28@gmail.com

S. S. Ghosh
Indian Institute of Geomagnetism, Mumbai, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Banerjee and A. Saha (eds.), Nonlinear Dynamics and Applications,
Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-99792-2_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99792-2_1&domain=pdf
mailto:steffystephan28@gmail.com
https://doi.org/10.1007/978-3-030-99792-2_1


4 S. S. Varghese and S. S. Ghosh

at the magnetospheric boundary layers initiates the perturbations which lead to the
generation of stable localized solitary structures. The satellite borne electrical instru-
ments recorded the signatures of localized bipolar and monopolar pulses in the Elec-
tric Field (E) data, moving parallel to the backgroundmagnetic field. The fast moving
positive amplitude bipolar structures are often interpreted as BGK phase space holes
for electrons, or, alternatively, as an electron acoustic solitary wave while the low
frequency, slowly moving E-field bipolar pulses in the auroral regions are generally
interpreted as ion acoustic solitary waves. The monopolar structures, on the other
hand, are interpreted as double layers, or shocks, governed by either electron or ion
dynamics, and they influence the particle acceleration processes along the field lines.

Advent of high resolution satellite borne instruments, however, identified more
kinds of composite and complex organized structures which yet to have a proper
theoretical understanding. One such relatively lesser reported structures are the offset
bipolar pulses (ofbp) and monopole pairs (mpp) which are the main focus for the
present work. The first observational evidence of ESWs was reported in the auroral
region by Temerin et al. [1] using S3-3 satellite data. Apart from the conventional
bipolar and monopolar structures, they also bore the signatures of ofbp and mpp [2].
For an ofbp, the distance between the bipolar peaks is relatively large compared to the
characteristic width of the each peak. Because of their “stretched” look, an ofbp has
also been termed as a “stretchedbipolar” or a “dispersed bipolar” in the literature.Witt
and Lotko [3] theoretically modelled them as paired ion acoustic shocks and showed
that they are associated with a square shaped potential well which is different from
the conventional bell shaped solitary structures. Their unique theoretical finding,
however, didn’t seem to have any subsequent follow ups. Later, fast moving offset
bipolar pulses were observed in the day side Polar Cap Boundary Layer (PCBL)
[4], the downward current regions of the auroral zone [5, 6], the diffusion region of
reconnection [7], and in the magnetosheath [8] by POLAR, FAST, GEOTAIL, and
CLUSTER satellites. It was Tsurutani et al. [4] who identified them as unique kinds
of coherent localized structures. Following their idea, and incorporating a Bernstein,
Greene and Kruskal (BGK) model [5] and Particle In Cell (PIC) simulation [6], ofbp
were interpreted as flat shaped electron phase space holes, emerging due to trapping
of electrons. Such a theory, however, remain inadequate to explain slow moving ion
mode ofbp.

During our theoretical analysis, we have indeed obtained such Flat Top Solitary
Wave (FTSW) solutions with square shaped potential profiles [9]. The nomenclature
not only describes the unique morphology of the potential profile but also rightly
connects it to a more analytical and ideal set of solutions called Flat Top Solitons
(FTS). Analogous to a solitary wave vis á vis a soliton solution, an FTSW is the
realistic counter part of the FTS which is obtained by using Sagdeev pseudopotential
technique. The technique is widely used to predict the existence and characteristics
of any nonlinear coherent structure by studying the trajectory of the pseudoparticle
in the pseudopotential well without the rigorous solution of any particular NLPDE,
as is essential for a soliton, or FTS solution.

Here, for the first time, we have extended the same idea to space plasma for
interpreting the ofbp. Rather than being event based, the theory proposes a more
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generic approach which correlates the observed ofbp with a more fundamental non-
linear dynamical structure called FTS through FTSW where the latter retains all the
physical characteristics and the boundary conditions of FTS.

The article is organized as follows. Assuming a simple plasma model, in Sect.
2 we have found an ion acoustic ofbp which we have further validated with the
corresponding satellite observations. In Sect. 3 we have explored the generic charac-
teristics of the associated FTSW which is the steady state generalization of an FTS.
The concluding remarks are given in Sect. 4

2 Analytical Concept

Slow moving ESWs, moving with ion acoustic speed, have been observed in the low
altitude auroral region by several spacecraft expeditions. S3-3 recorded slowmoving
ofbp at an altitude between 6000 and 8000 km [2]. At this altitude, the plasma has
been found to have a significant contribution of O+ ions along with its usual proton
(H+) population. Moreover, there is an admixing of hot magnetospheric electrons
with a cooler component originated from the ionosphere. Satellite observations have
recorded cooler electron temperature Tec ≈ 0.5−5 eV. The recorded ambient plasma
density of this region is of the order of n0 ≈ 5−10 cm3. The tenuous plasma condition
and the absence of any physical boundary allow us to assume the plasma to be
collisionless, homogeneous, and infinite. FollowingTemerin et al. [1]we have further
assumed that the wave is moving along the ambient magnetic field, making the
plasma isotropic and unmagnetized. It is observed that the speed of the ESW in this
region is of the order of the ion acoustic speed of the medium, with the wave speed
V ≈ 50km/s, which indicates that they are governed by the ion dynamics. To sustain
any such wave, the electron temperature should be higher than the corresponding ion
temperatures. Besides, they have negligible inertia compared to ions. Theoretically it
is well known that a secondary component of electrons is necessary to sustain an ion
acoustic DL. The same condition was found to hold true for a Super Solitary Wave
(SSW) [10], or an FTSW [9] as well. Hence we have assumed that the plasma has
two electron temperatures, both obeying Boltzmann distributions and are separately
in thermal equilibrium. The overall plasma is a four component one with warm
multi-ion fluids comprising H+ and O+ ions so that the corresponding mass ratio
Q = 1/16.

Following Temerin et al. [1], we have chosen an ambient plasma density n0 =
10 cm3, giving rise to an overall proton plasma frequency for n0 asωpi = 4.163 kHz.
We have assumed a very low concentration of cooler electrons (viz., 0.12%of n0) and
sufficiently small presence ofO+ ions (10%of n0), leading to the normalized ambient
densities μ = 0.0012 for cooler electrons and αh = 0.1 for O+ ions, respectively.
All the number densities were normalized by the ambient plasma density n0. For
our convenience, we have chosen Tec = 0.5 eV, and the electron temperature ratio
τ = 0.0485 so that Tew = 10.3 eV. Since both the electrons are taking part in the
Debye shielding,we have estimated the effective temperature Te f f = TecTew

μTew+(1−μ)Tec
=
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10.0722 eV which further gives us the estimated effective Debye length λdef f =
7.4606m and the effective ion acoustic speed for protons cisl = 31.06 km/s. These
three parameters, togetherwithωpi , determine the overall scale of our plasma system.
This is consistent with the observations of Temerin et al. [1] who have reported a
Debye length of λd ≈ 5m for the said region. For our theoretical analysis, we have
normalized all the space variables by λdef f , time by ω−1

pi , temperatures by Tef f , and
the electrostatic potential φ by Tef f /e. All the speeds, along with the wave Mach
number M , are normalized by cisl .

In the literature, there was a mention of the hotter ion temperature of the order
of KeV. Such a high ion temperature would not sustain an ion acoustic wave and
it may not be appropriate for the current region. Since ions are necessarily cooler
than electrons, we have chosen the lighter ion temperature Til = 0.33 eV which is
cooler than the cooler electron temperature. Theoretically we have found that the
ion temperature plays a marginal role in determining an FTSW solution compared
to the corresponding electronic parameters, such as μ and τ . Besides, the effect of
O+ ions is expected to be even smaller because of its apparently low concentration.
In the absence of any clear mention of the type the ion species for the hotter one, and
for our analytical convenience, we have assumed that both the H+ and O+ ions have
equal temperatures, giving rise to an overall normalized ion temperature σ = 0.033.

To ensure a steady state condition, or a wave frame, we have further assumed η

to be the generalized coordinate where

η = x − Mt (1)

The corresponding Sagdeev pseudopotential 	(
) for the chosen plasma model is
[10].

ψ(
) = −
[{

μ + (1 − μ)τ
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τ
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which satisfies the following ‘energy equation’

1

2

(d


dη

)2 + 	 (
) = 0 (3)

Equation (3) is a modified form of the Poisson’s equation where the slope of the
pseudopotential is defined as the associated charge separation, i.e., ∂	(φ)

∂

= n(φ)
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for any φ, n being the charge separation. A 	 versus 
 curve determines the
existence of the localized nonlinear coherent structures, like SWs, SSW, or FTSW,
provided following boundary conditions are satisfied

	(
 = 0) = ∂	

∂


∣∣∣
0

= 0; ∂2	(0)

∂
2
< 0 (4a)

	(
0) = 0; ∂	(
0)

∂

�= 0; 	(
) < 0 for 0 ≥ 
 ≥ 
0. (4b)

where 
0 is the amplitude of the wave structure.
The last condition in (4a, 4b) ensures the recurrence of the initial state for a soliton,

or SW. For a DL, this condition modifies as

∂	(
0)

∂

= nd = 0 (5)

where nd is the charge separation at the maximum amplitude for DL. Studying the
trajectory of the “pseudoparticle” in the said pseudopotential well, and implementing
the above mentioned ‘boundary conditions’ for the pseudoparticle, viz., (4a, 4b),
the Sagdeev pseudopotential technique enables one to predict the presence of the
corresponding steady state nonlinear structure.

For M = 1.05663685, and for the chosen set of parameters as mentioned above,
in Fig. 1 we have plotted the corresponding Sagdeev pseudopotential profile. Since it
satisfies (4a, 4b), it represents a SW which is a steady state analog of a soliton. For a
FTSW, similar to a regular solitary wave profile the pseudopotential curve shows two
extrema and two roots even though, near amplitude the pseudopotential curve meets
the zero axis with almost a “grazing incidence”. In order to under the significance
of such solitary wave structures, we have analysed the corresponding electric field
profile and density profile as mentioned below.

To find the corresponding electric field profile, we have deduced the generalized
electric field E = − d


dη
from (3). The time durationt (non-normalized) is estimated

Fig. 1 Sagdeev
pseudopotential profile
corresponding to an FTSW
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from from the half-widthW assuming x = 0 in (1). The half-widthW is defined from
(3) as

W = 2η1/2 = 2
∫ 
0

2


0

(
1√

(−2	(
))

)
d
 ; t =

(
W

M

)′
for x = 0 (6)

The normalized half-width W = 422.55m and the prime (′) in (6) denotes the cor-
responding non-normalized parameters. Figure 2 shows the associated electric field
profile in non-normalized parameters. In X-axis we have plotted the time and Y-
axis the non-normalized electric field. Comparing the electric field profile with
that of observed non-conventional bipolar pulses clearly revels an offset bipolar

pulses (ofbp) [4]. We have further estimated the average
(
Eavg = (


0
W

)′)
and the

maximum
(
Emax = −(

d

dη

)′∣∣
	=	min

)
electric fields analytically, where
0 = 0.2448

is the normalized potential amplitude and 	min is the minimum value of ψ for
0 ≤ φ ≤ φ0, both of them are marked by the respective arrows in Fig. 1. The
estimated average electric field across the structure Eavg = 5.8387mV/m, and the
estimated time duration t = 12.8746ms (Fig. 2). The S3-3 satellite observations
have revealed an E ≤ 15mV/m and t = 2−20ms which are a close match to our
analytical estimations. The analytically estimated peak to peak E-field amplitude
Ep−p = 2 |Emax | ≈ 37.02mV/m, have higher amplitude than the observed E-field.
This still remain consistentwith the qualitative agreement since a fluid approximation
is known to overestimate the amplitude. We have further estimated the speed of the
wave structure V = 32.83 km/s from our chosen Mach number M(= 1.05663685)
which is in accordance with the satellite observations, i.e.,V ≈ 50 km/s, as men-
tioned earlier. Table 1 compares shape, size, and speed of an ESW in the auroral
region with those estimated analytically for a possible ofbp. The latter shows a com-

Fig. 2 Non-normalized
electric field (E) profile
corresponding to an FTSW
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Table 1 Wave parameters

Theoretical Observational

Eavg = 5.8387 mV/m E ≤ 15 mV/m

t = 12.8746 ms t = 2−20 ms

V = 32.82 km/s V ≈ 50 km/s

paratively wider t , as expected from its stretched structure. Our results indicates
that the ofbp obtained analytically here using Sagdeev pseudopotential is a feasible
candidate to interpret the corresponding satellite observations.

3 Physical Properties of FTSW and ofbp

To explore the physical characteristics of an ofbp, we have plotted the corresponding
potential (solid line) and charge separation (dotted line) profiles in in Fig. 3. As
shown in Fig. 3 the potential profile corresponds to an FTSW confirms a flat top
profile. Conceptually, an FTSW can be visualized as an amalgamation of a SW
and a DL. It is well evident form the charge separation profile (dotted line). Its
charge separation near themaximum amplitude turns vanishingly small (dotted line),
approaching the condition of a DL (5), although it always remain finite and non-zero,
eventually satisfying (4a, 4b) and the solution bounces back to its initial state like
any conventional soliton. The modified condition for an FTSW can thus be written
as

	(
0) = 0 ; ∂	

∂


∣∣∣

0

= ε,
∂2	

∂
2

∣∣∣

0

= δ ; ε, δ �= 0 ; (7)

where ε, δ are two arbitrarily small, but finite numbers. The grazing incidence (i.e.,
low slope) of the curve to the 
 axis at 
0 satisfies (6) for an FTSW while its finite
slope at
0 satisfies (4a, 4b) aswell. This implies that the ‘pseudoparticle’, associated
with the solution, leaves 
 = 0 at rest and reaches its reflection point at 
0 after a
prolonged time, as ascertained by the grazing incidence of 	, and then it oscillates
back to 
 = 0 giving rise to an wider, but well localized, coherent structure similar
to a conventional SW. The morphology of the structure, however, is different from
that of a conventional one as is evident from the associated electric field and potential
profiles.

Previously Roth et al. [6] achieved an ofbp by assuming flat top potential profile
for their PIC simulation. In the present case, the FTSW and the associated ofbp have
been obtained analytically from a simple plasmamodel without any prior assumption
of the potential profile. It was previously indicated that the trapping of electrons in
BGK phase space hole may cause an ofbp. Such an assumption will not be valid
for an ion mode, positive amplitude ofbp. However, in spite of the differences in the
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Fig. 3 Potential profile (solid line) and charge separation profile (dotted line) corresponding to an
FTSW

respective plasma models and associated techniques, the charge separation profiles
remain the same for both the cases.We have previously observed that, when aRegular
Solitary Wave (RSW) transits to a DL in the parameter space, its charge separation
at its maximum amplitude drops, becoming ideally zero for a DL. We can here
visualize an FTSW as an ‘incomplete DL’ where the solution goes very close to a
DL solution but stops short of it and bounces back retaining the characteristics of
a SW along with a strong imprint of a DL-like solution as well. This is manifested
in the long sustentation of the vanishingly small charge separation which eventually
causes the flat top profile. It is the same characteristic which causes the stretching in
the localized E-field making it offset bipolar.

It is now evident that the ofbp, and the FTSW, both indicate the same localized
coherent structure. The concept now can be extended further to the more ideal solu-
tions called FTSwhich, as we have discussed earlier, is the mathematical counterpart
of an FTSW, in the same way as a soliton is correlated with a more general class
of solutions we call as solitary waves. It is well known that the integrable NLPDEs,
like Korteweg-de Vries (KdV), govern soliton solutions. Analogously, a modified,
or extended form of KdV (eKdV), popularly often known as the Gardner equation,
governs FTS solutions depending on its specific boundary conditions [11]. Like
eKdV, there are other such modified NLPDEs which also have FTS as one of their
possible solutions. As per previous literature, an ofbp has often been described as a
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b ca

Fig. 4 Schematic diagram of a bipolar E-field pulse b offset bipolar E-field pulse and c paired
monopolar E-field pulse

‘stretched’ or ‘dispersed’ bipolar pulse where it was conjectured that the stretching
has been happened due to an extra dispersion in the medium. The solution obtained
from an e-KdV or Gardner equation describes the significance of an extra cubic
nonlinearity term which results in a secondary insurgence in the nonlinearity” that
balances the excessive dispersion maintaining the solitary structure.

To complement our understanding on ofbp, here we recall a schematic diagram in
Fig. 4 which explains the characteristics of an ofbp (Fig. 4b) vis á vis a conventional
bipolar and and a monopole pair (mpp) in Fig. 4a and c respectively. For both an
ofbp and an mpp, the distances between the two peaks are relatively large compared
to the characteristic width of the each peak. The fine difference between an ofbp and
mpp lies in the finite slope of the E-field connecting the two lobes for the former
which categorizes it as a solitary wave in general. An mpp, on the other hand, is a
pair of two simple monopoles with opposite polarities (Fig. 4c) while the slope of the
electric field connecting the two poles goes ideally to zero. The significance of the
finite slope in E reflects the low, but non zero slope of the Sagdeev pseudopotential
at its maximum amplitude which in turn defines the respective boundary conditions
of different nonlinear structures, viz., SW (4a, 4b), DL (5), and FTSW (7). Besides
providing a physical explanation for the morphology of an ofbp, it further enhances
the candidature of the FTSW to interpret the observed structures.

Recently Qureshi et al. [2] generalized the concept of ofbp beyond the acoustic
mode as they predicted both ion acoustic and ion cyclotron ofbp for their theoretical
model. Though their results are yet to be validated by the observational data, it
indicates that the structure ismore generic than it was thought so far. According to the
present understanding, the offset bipolars are appearing like a sporadic “deformation”
of the conventional bipolar electric field, resulting due to certain arbitrary local
conditions at the spot. The proposed theory of FTSW, on the other hand, generalizes
an ofbp beyond its local conditions correlating it to an FTS which is, like soliton,
is known to exist across different physical situations, even beyond the realm of
the plasma physics. Apart from its unique morphology, one common characteristic
of an FTS is that they often define a boundary between two phases or nonlinear
dynamical processes. Similar characteristic has also been reported for an FTSW as
well. During our theoretical analysis, we have found that the FTSW is occurring at
the boundary between two types of SSWs, viz. Type I and Type II, where an SSW
is characterized by the extra wiggles in their otherwise bipolar electric field [9]. A
Type I SSW associates it with a preceding DL/monopole while a Type II emerges
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due to a continuous deformation of the bipolar electric field. We here conjecture that,
analogous to an FTSW or FTS, an ofbp, too, may define a boundary between two
phases, or nonlinear dynamical processes in the space. Amore rigorousmathematical
derivation of an ofbp from the preliminary FTS solution is beyond the scope of the
current paper and may be presented elsewhere.

4 Conclusion

Using a simple plasma model, we have analytically estimated the shape, size, and
speed of an FTSW which was found to be consistent with the slow moving ofbp
observed in the Earth’s auroral region. It manifests that ofbps are eventually FTSWs,
or even may be FTS where the latter is the more mathematical and ideal counterpart
of FTSW. Following the theory of the FTSW and FTS, we have interpreted the ofbp
as an amalgamation of SW and DL which determines the boundary of two distinct
phases of nonlinear dynamical processes. The proposed theory not only explains the
unique morphology of the E-field data but also provide a more generic interpretation
for the ofbpwhich is eventually correlating themathematical description of a coherent
nonlinear dynamical structurewith the satellite observations. It is expected to provide
a new way of understanding the non conventional localized pulses in the E-field data
recorded during satellite expeditions which are known to be important in determining
the microphysics of the Earth’s magnetospheric boundary layers.
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Forced KdV Equation in Degenerate
Relativistic Quantum Plasma

Geetika Slathia , Rajneet Kaur , Kuldeep Singh ,
and Nareshpal Singh Saini

Abstract The study of heavy ion acoustic solitary waves (HIASWs) in a relativistic
degenerate dense plasma (RDDP) having relativistic degenerate lighter ions aswell as
electrons and inertial heavy ions fluid has been illustrated. By adopting the reductive
perturbation method, the forced Korteweg-de Vries (fKdV) equation is obtained to
examine the HIASWs. The solution for HIASWs is determined analytically in the
presence of external periodic force. It has been observed that the impact of various
plasma parameters viz., speed of the wave, frequency and strength of the periodic
force significantly alter the basic characteristics of different HIASWs. The findings
of this work may be convenient to understand the behaviour of HIASWs in white
dwarfs.

Keywords Heavy ions acoustic waves · Quantum plasma · Forced KdV equation

1 Introduction

Quantum plasma has incited great deal of interest and has attracted many physicists
for the comprehensive study to explore different nonlinear waves in white dwarfs,
neutron stars and black holes [1–3] owing to its low temperature and extremely large
density in dense astrophysical region [4–6]. The various onboard satellite obser-
vations [1] have reported that the average particles density per unit volume of the
white dwarfs is 106 to 108 gcm−3 with average interparticle distance of 10−10 to
10−13 cm [7]. The prestellar is mainly having heavy nuclei which was compressed
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into ultra high densities. It is remarkable that the white dwarfs are having number
density of heavy nuclei is 1029 cm−3 while the average distance between particle
is 10−10 cm [1]. The estimation of degeneracy of different species is followed by
Heisenberg’s uncertainty principle where the uncertainty in momenta is extremely
large and fast moving degenerate elements yields high pressure, (i.e., degenerate
pressure). In quantum regime, as the interspecies distance is comparable to the de
Broglie wavelength of species then relativistic effects become important. The char-
acteristics and propagation of nonlinear HIAWs have been explored in different the
unmagnetized RDDP models [8–14]. Islam et al. [11] reported the investigation of
extremelyHIA shockwaves in aDRQPsystembyobtainingBurgers’ equation. Singh
et al. [12] have examined the characteristics of HIA oscillatory as well as monotonic
shocks in dense magnetoplasma. Saini et al. [13] have investigated the dynamics
of cnoidal and solitons in a three component magnetised plasma. By incorporating
Sagdeev pseudopotential technique, the energy balance equation has been obtained.
Kaur et al. [14] have studied the heavy and lighter ions acoustic higher order shock
waves in quantum plasma. They have examined that the inclusion of higher order
corrections yield dressed shocks.

With the induction of the external periodic force, different kinds of nonlinear
waves excite in the plasma system and they characterise completely different which
has been investigated by numerous researchers [15–18]. The characteristics of HNA
solitary structures in an unmagnetized dense plasma containing of degenerate elec-
trons and lighter ions in a heavy ions fluid along with the source term obtained from
various experiments and simulations have been studied [15–18]. A lot of different
investigations have been reported which describe about the underlying phenomena
of various nonlinear excitations in astrophysical environments [19–21]. Sen et al.
[19] illustrated the characteristics of nonlinear waves in the Lower Orbital region of
the Earth by derving fKdV equation under influence of external periodic perturba-
tion. Ali et al. [20] explored the analytical solution and the effect of various plasma
parameters on the electron acoustic solitons by obtaining the fKdV equation. Mir
et al. [21] illustrated the nonlinear wave mixing obtained from the exact analytical
solution of the fKdV equation in the dusty plasma.

In this investigation, themain aim is to explore the dynamics ofHIASWs inRDDP
comprising of inertial heavy ions with degenerate lighter ions and electrons. To the
best of our knowledge, the study of various kinds of nonlinear coherent structures in
a RDDP obtained from the fKdV equation in white dwarfs have not been reported
so far. The layout of the manuscript is presented as follows: The basic fluid model
is provided in Sect. 2. The derivation and analytical solution of fKdV is discussed
in Sect. 3. Different kinds of nonlinear structures have been examined and their
parametric analysis is given in Sect. 4. The last Sect. 5 presents the conclusions.
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2 Basic Fluid Equations

We assume unmagnetised RDDP containing relativistic degenerate electrons and
lighter ions and inertial heavy ions as fluid. Thus, we have Ne0 = ZhNh0 + Zl Nl0,
where Ne0, Nl0, Nh0 are the unperturbed number density of electrons, lighter and
heavy ions, respectively. The dynamics of HIAWs is described by the following
normalized equations as [12]:

∂Nh

∂t
+ ∂(NhUh)

∂x
= 0, (1)

∂Uh

∂t
+Uh

∂Uh

∂x
= −∂φ

∂x
, (2)

∂2φ

∂x2
= (1 + βα)Ne − βαNl − Nh + Θ(x, t), (3)

where Ni (for i = h, l, e) is normalised by its equilibrium density Ni0. Here, source
termΘ(x, t) is an external periodic perturbationwhich appears in different laboratory
experiments. The solitary wave structures or solitons experience external forces such
as the resistive wall modes of the plasma when subjected to external magnetic force
which may be constant or periodic. The evolution of HIASWs, whose key attributes
change with time when subjected to an external perturbations are termed as forced
KdV solitary wave structures [20, 22]. The φ is normalised by φ0 = mec2/e and
Uh by C0 = (Zhmec2/mh)

1/2. The time and space coordinates are normalised by
ωph = (4πNh0Z2

he
2/mh)

1/2 and λs = (mec2/4π ZhNh0e2)1/2, respectively. Where,
η1 = ηl N

ρl−1
l0 /Zlmec2 and η2 = ηeN

ρe−1
e0 /Zemec2, α = Zl/Zh and β = Nl0/Nh0.

The expression for lighter ions and electrons in RDDP is given as [12]:

Nl =
(
1 − ρl − 1

ρlη1
φ

) 1
ρl−1

= 1 − a1φ + a2φ
2 + ... (4)

Ne =
(
1 + ρe − 1

ρeη2
φ

) 1
ρe−1

= 1 + b1φ + b2φ
2 + ... (5)

Now, by putting the (4)–(5) into (3), we get;

∂2φ

∂X2
= 1 − Nh + c1φ + c2φ

2 + Θ(x, t), (6)

where c1 = b1 + a1 and c2 = b2 − a2. Here, a1 = βα

ρlη1
, b1 = 1+βα

ρeη2
, a2 = βα(2−ρl )

2ρ2
l η2

1

and b2 = (1+βα)(2ρe)

2ρ2
e η

2
2

.
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3 Forced KdV Equation and Its Solution

The stretching of variables is given as:

X = ε
1
2 (x − λt) (7)

T = ε
3
2 t (8)

The expansion of dependent variables is illustrated as

Nh = 1 + εNh1 + ε2Nh2 + ... (9)

U = εU1 + ε2U2 + ... (10)

φ = εφ1 + ε2φ2 + ... (11)

Θ(x, t) = ε2Θ2(x, t) + ... (12)

Substituting (7)–(12) into (1)–(2) and (6) and equating the coefficients of smaller
powers of ε, we get the following equations:

Nh1 = 1

λ2
φ1 and U1 = 1

λ
φ1, (13)

λ = 1√
c1

(14)

Equation (14) represents the dispersion relation of HIASWs. In limiting case, the
phase speed matches with Singh et al. [12]. From the next higher order, we get:

∂Nh1

∂T
− λ

∂Nh2

∂X
+ ∂U2

∂X
+ ∂Nh1U1

∂X
= 0, (15)

∂U1

∂T
− λ

∂U2

∂X
+U1

∂U1

∂X
+ ∂φ2

∂X
= 0, (16)

∂2φ1

∂X2
= c1φ2 + c2φ

2
1 − Nh2 + Θ(X, T ) (17)

Equating second order coefficients of ε and after some algebraic manipulations, we
get the following forced KdV (fKdV) equation,

∂φ1

∂T
+ Aφ1

∂φ1

∂X
+ B

∂3φ1

∂X3
= B

∂Θ2(X, T )

∂X
(18)
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where nonlinear coefficient A = ( 3
2λ − λc2

c1
) and dispersion coefficient B = λ3

2 .
Jun-Xiao and Bo-Ling [23] determined the solutions of the fKdV equation by

adopting Hirota bilinear technique. Let us consider Θ2 = f0
B X cos(ωT ), where f0

represents the strength andω is the frequency of the source. Therefore, (18) becomes;

∂φ1

∂T
+ Aφ1

∂φ1

∂X
+ B

∂3φ1

∂X3
= f0 cos(ωT ). (19)

This type of source term is deduced from the experimental results. Equation (19) is
called fKdV equation. If f0 = 0, then (19) reduces the usual KdV equation;

φ1 = φm sec h2
(
X − ΛT

W

)
, (20)

where φm = 3Λ
A is the maximum amplitude and W = 2

√
B
Λ

is width and Λ is the
velocity of the HIASWs. The influence of periodic term f0 cos(ωT ) on the HIASWs
we have also determined the momentum conservation law. For small forcing term
f0 cos(ωT ), we obtain;

I =
∫ ∞

−∞
φ2
1dX, (21)

I = 24
√
B

A2
Λ

3
2 (T ), (22)

and ∫ ∞

−∞
φ1dX = 12

√
BΛ(T )

A
, (23)

where Λ(T ) is the speed of the HIASWs of the fKdV equation. Now differentiate
(21) w.r.t T , we get;

d I

dT
= 2 f0 cos(ωT ) (24)

Putting (22) and (23) into (24) along with Λ(0) = Λ, we get;

Λ(T ) = Λ + 2A f0
3ω

sin(ωT ). (25)

Then, the solution of fKdV equation can be written as;

φ2 = φm(T ) sec h2
(
X − Λ(T )T

W (T )

)
, (26)

where the maximum amplitude and width of HIASWs are time dependent i.e., φm =
3Λ(T )

A and W (T ) = 2
√

B
Λ(T )

, respectively.
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Fig. 1 The phase speed (λ)
of HIASWs versus
β(=Nl0/Nh0) for different
values of α(=Zl/Zh)

4 Parametric Analysis

Here, the parametric analysis has been performed to examine the characteristics
of HIASWs in RDDP. We have assumed three species RDDP having relativistic
degenerate lighter ions/electrons (viz., 1

1H or 4
2He or 12

6 C or 16
8 O) and heavy ions

(viz., 5626Fe or
87
37Rd or 96

42Mo), and the data is taken from the region of white dwarfs
[10, 12, 24].

Figure 1 shows the plot for phase speed (λ) of HIASWs versus β (=Nl0/Nh0)

for different values of α (=Zl/Zh). The phase speed of HIASWs enervates with rise
in β and α which means that phase speed gets reduced as the charge and number
densities of heavy ions are flourished.

Figure 2 illustrates the plot of nonlinear coefficient A of HIASWs versus β for
different values of α. The A is increased with an increment in β and α. It is remarked
that only positive potential (compressive) HIASWs are evolved for A > 0.

Figure 3 illustrates the plot of the compressiveHIASWsprofile for different values
of α and β. The amplitude of the HIASWs decreases with the rise in α and β. It is
emphasized that this shrink in the HIASWs amplitude is because of rise in the value
of A.

In Fig. 4, profile of compressive HIASWs for various values of strength ( f0) and
frequency ω of periodic force. It is found that as f0 increases, the amplitude of the
HIASWs is increased and is decreased with increment in ω. In Fig. 5, the 3D plot
of compressive HIASWs profile of the fKdV equation for different values of α is
given. It is found that as the values of α is increased, the amplitude of the HIASWs
is decreased. Similarly, Fig. 6 shows the 3D plot of compressive HIASWs profile
of the fKdV equation versus β. It is noticed that as the values of β is increased, the
maximum amplitude of the HIASWs is shrinked.

In Fig. 7, the plot of compressive HIASWs profile versus f0 for different α and β

is shown. It is noticed that the maximum amplitude of HIASWs decreases with rise
in the values of α and β but increases as the values of f0 increases.

In Fig. 8, the plot of compressive HIASWs profile us ω for different values of
α and β is shown. It is found that the width of HIASWs decreased with rise in the
values of α and β but enhanced with rise in the values of ω.
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Fig. 2 The nonlinear
coefficient (A) of HIASWs
versus β(=Nl0/Nh0) for
different values of
α(=Zl/Zh)

Fig. 3 The compressive
HIASWs profile for different
values of α = Zl/Zh and
β = Nl0/Nh0

Fig. 4 The HIASWs profile
of the fKdV equation for
different values of f0 and
frequency ω with fixed
values of Λ = 0.1, α = 0.08,
and β = 5

It is stressed that the various plasma parameters have significantly influenced
the nonlinear and dispersion effects to modify the characteristics of HIASWs in the
RDDP environment.
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Fig. 5 The 3D plot of HIASWs profile of the fKdV equation vs α for Λ = 0.1, f0 = 0.1, ω = 1.5,
T = 1.5

Fig. 6 The 3D plot of HIASWs profile versus β with Λ = 0.1, f0 = 0.1, ω = 1.5, and T = 1.5

Fig. 7 The maximum
amplitude of HIASWs
versus f0 for different α and
β, other parameters Λ = 0.1,
ω = 1.2, T = 1 are fixed
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Fig. 8 The width of
HIASWs wrt ω of the fKdV
equation for different values
of α and β, where other
parameters Λ = 0.1,
f0 = 0.7, T = 1.1 are fixed

5 Conclusions

In this investigation, we have examined the salient features of HIASWs in RDDP
having degenerate lighter ions/electrons and inertial heavy ion fluid. By adopting
the reductive perturbation method, the forced Korteweg-de Vries (fKdV) equation
is obtained for HIASWs. The solution of fKdV equation is determined to explore
the behaviour of HIASWs under the influence of periodic force. Only compressive
HIASWs are observed. It is shown that the impact of various plasma parameters like
speed and strength of the periodic force significantly modify the basic properties of
different HIASWs. The amplitude of HIASWs enervates with the rise in the density
ratio while the amplitude of the HIASWs excels with rise in the value of periodic
force. The findings of this investigation may highlight the basic features of HIASWs
in RDDP in white dwarfs [10, 12, 24].

References

1. Shapiro, S.-L., Teukolsky, S.-A.: Black Holes, White Dwarfs, and Neutron Stars: The Physics
of Compact Objects. Wiley-VCH Verlag, Weinheim (2004)

2. Koester, D., Chanmugam, G.: Physics of white dwarf stars. Rep. Prog. Phys. 53(7), 837–915
(1990)

3. Koester, D.: White dwarfs: recent developments. Astron. Astrophys. Rev. 11(1), 33–66 (2002)
4. Drake, R.-P.: High-energy-density physics. Phys. Today 63(6), 28–33 (2010)
5. Killian, T.-C.: Plasma physics: cool vibes. Newly observed electron-density waves could

become useful probes of how electrons behave in this exotic regime. Nature 441(5), 297–298
(2006)

6. Glenzer, S.-H., Redmer, R.: X-ray Thomson scattering in high energy density plasmas. Rev.
Mod. Phys. 81(4), 1625–1663 (2009)

7. Azam, M., Sami, M.: Many-body treatment of white dwarf and neutron stars on the brane.
Phys. Rev. D 72(7), 024024(1–11) (2005)

8. Mamun, A.-A., Amina, M., Schlickeiser, R.: Nucleus-acoustic shock structures in a strongly
coupled self-gravitating degenerate quantumplasma. Phys. Plasmas 23(9), 094503(1–4) (2016)

9. Mamun, A.-A., Amina, M., Schlickeiser, R.: Heavy nucleus-acoustic spherical solitons in self-
gravitating super-dense plasmas. Phys. Plasmas 24(4), 042307(1–7) (2017)



24 G. Slathia et al.

10. Sultana, S., Islam, S., Mamun, A.-A., Schlickeiser, R.: Modulated heavy nucleus-acoustic
waves and associated rogue waves in a degenerate relativistic quantum plasma system. Phys.
Plasmas 25(1), 012113(1–9) (2018)

11. Islam, S., Sultana, S., Mamun, A.-A.: Ultra-low frequency shock dynamics in degenerate
relativistic plasmas. Phys. Plasmas 24(9), 092308(1–5) (2017)

12. Singh, K., Sethi, P., Saini, N.-S.: Nonlinear excitations in a degenerate relativistic magneto-
rotating quantum plasma. Phys. Plasmas 26(9), 092104(1–10) (2019)

13. Saini, N.-S., Kaur, M., Singh, K.: Heavy nucleus acoustic periodic waves in a degenerate
relativisticmagneto-rotating quantumplasma.WavesRandomComplexMedia 30, 1–12 (2020)

14. Kaur, R., Singh, K., Saini, N.-S.: Heavy-and light-nuclei acoustic dressed shock waves in white
dwarfs. Chin. J. Phys. 72(8), 286–298 (2021)

15. Saha, A., Pal, N., Chatterjee, P.: Dynamic behavior of ion acoustic waves in electron-
positron-ionmagnetoplasmaswith superthermal electrons and positrons. Phys. Plasmas 21(10),
102101(1–10) (2014)

16. Saha, A., Pal, N., Chatterjee, P.: Bifurcation and quasiperiodic behaviors of ion acoustic waves
in magnetoplasmas with nonthermal electrons featuring Tsallis distribution. Braz. J. Phys.
45(4), 325–333 (2015)

17. Zhen, H., Tian, B., Wang, Y., Sun, W., Liu, L.: Soliton solutions and chaotic motion of the
extended Zakharov-Kuznetsov equations in a magnetized two-ion-temperature dusty plasma.
Phys. Plasmas 21(7), 073709(1–7) (2014)

18. Sadiq, S., Mahmood, S., Haque, Q., Ali, M.-Z.: Ion acoustic solitons in dense magnetised
plasmaswith nonrelativistic and ultrarelativistic degenerate electrons and positrons. Astrophys.
J. 793(9), 27(1–12) (2014)

19. Sen, A., Tiwari, S., Mishra, S., Kaw, P.: Nonlinear wave excitations by orbiting charged space
debris objects. Adv. Space Res. 56(3), 429–435 (2015)

20. Ali, R., Saha, A., Chatterjee, P.: Analytical electron acoustic solitary wave solution for the
forced KdV equation in superthermal plasmas. Phys. Plasmas 24(12), 122106(1–9) (2017)

21. Mir, A.-A., Tiwari, S.-K., Goree, J., Sen, A., Crabtree, C., Ganguli, G.: A forced Korteweg-de
Vries model for nonlinear mixing of oscillations in a dusty plasma. Phys. Plasmas 27(11),
113701(1–6) (2020)

22. Chandra, S.: Analytical and simulation studies of forced KdV solitary structures in a two-
component plasma. J. Korean Phys. Soc. 76(6), 469–478 (2020)

23. Xiao, Z.-J., Ling, G.-B.: Commun. Theor. Phys. 52(2), 279–283 (2009)
24. Tout, C.-A., Wickramasinghe, D.-T., Ferrario, L.: Magnetic fields in white dwarfs and stellar

evolution. Mon. Not. R. Astron. Soc. 355(3), L13–L16 (2004)



Heliospheric Two Stream Instability
with Degenerate Electron Plasma

Jit Sarkar , Swarniv Chandra , Jyotirmoy Goswami ,
and Basudev Ghosh

Abstract In this paper, we have studied the effect of relativistic degeneracy, electron
spin exchange potential and quantum diffraction effect on the electron two-stream
instability in a dense stellar body like our Sun. The effect of streaming motion has
been studied along with other parameters. We have observed regions of stability
and instability in this case considering two oppositely flowing electron jets. Under
constrained environments, our findings adjust to traditional results. The results of
other researchers in this field also correspond to our findings. We have made use
of the Quantum Hydrodynamic Model and also incorporated the one-dimensional
thermal anisotropy that slightly modifies the model. Our findings will be helpful
in the study of various instabilities and associated phenomena in solar flares, solar
storms and similar other indicates in the stellar and nebular environments.

Keywords Two stream instability · Electron spin exchange potential · Quantum
hydrodynamic model

1 Introduction

Over the past few years quantum plasma has attracted much attention in the plasma
community.With the growthof study in dense plasmaand the ability of experimenting
with high power laser beams, the study of quantum tunneling in plasma phenomena
has gained utmost importance. Initially pioneering works were carried out by Haas
[17], Manfredi [21], Shukla [29], Eliasson [13], Sarkar [26–28], Goswami [15, 16],
Brodin [5], Chandra [6–10] on quantum plasmas. Later there were more works with
applicability of quantum phenomenon in such dense plasmas. Various types of insta-
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bilities and other non-linear effects were observed in them. Quantum hydrodynamic
model (QHD) model has been often used to address problem like this.

In plasma physics, the two-stream instability is a very common type of phe-
nomenon which can be induced by an energetic stream of particles injected into
the plasma. It can be also obtained by setting a current along with the plasma so
that different species (electron & ions; positron and negative ions; etc.) can have
different drift velocities depending on their inertia as well as response to the field.
Such instability appears immediate when the beams comprise cold particle species
with none of the particles being resonant with the wave. Conversely, they can be
found from two hot beams in which particles from one or both the streams are reso-
nant with the wave. This kind of instability under various limiting cases evolve into
beam plasma instability, beam instability or bump on tail instability. The dispersion
relation of the wave showing two-stream instability has two parts, a real and other
imaginary. With totally real roots there can be no type of damping. On the other hand
with the non-zero imaginary segment of the frequency, there may be either damping
or instability(growing). Electron two stream Instability (ETSI) which is driven by
oppositely streaming beams was first represented by Bohm and Gross [3] since then
various space plasma and experimental instances have reported the existence of ETSI.
Such instability produces strong electron heating and coherent plasma emissions at
ωpe (electron plasma frequency) or its harmonics. As the plasma density varies along
the path of the electron beams, the emission frequency drifts. Solar emissions being
in the radio band emit ‘U ’ and ‘J ’ type of radio bursts which correspond to various
origin of the electrons and contain information about them.

In this paper, we will try to investigate the two-stream instability, its nature and
evaluation in a plasma containing streams of electrons moving in the opposite direc-
tion in dense quantum plasma. We consider an anisotropy in the direction of propa-
gation of the wave [14] which is more meaningful due to such temperature. The ions
are homogenously distributed to form a neutralising background.

Weorganised the article in the followingway. InSect. 2we startwith the dynamical
equations governing our model plasma. In Sect. 3 we derive the linear dispersion
relation. In the next section, we analyzed the result and finally conclude with some
remarks concerning recent findings and possible application.

2 Finite Temperature Quantum Hydrodynamic Model

Our mathematical model is based on the three dimensional equilibrium Fermi-Dirac
distribution for electrons. Due to adiabatic compression, temperature anisotropy
occurs in distribution with the motion of a longitudinal electrostatic wave propa-
gating in collision-less plasma. The Fermi-Dirac equilibrium state for Fermions is
given by Bransden and Joachain [4] in the following form
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wherem is the electron mass, � is the reduced Plank’s constant, n0 is the equilibrium
number density, β = 1/kBTe0, T0E is the background temperature of electron, μ is
the chemical potential and Liν(x) is the poly-logarithmic function in x of order (ν).
When β → ∞ i.e, cold temperature of electron, we have μ → εF , where εF is the
fermi energy, and Eq. (1) becomes
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3π2
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)3/2
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3/2
F (2)

or in other way the Fermi energy is

εF = (3π2n0)
2/3 �

2

2m
(3)

Here, we can obtain the Vlasov equations with df/dt = 0 as the fluid is incompress-
ible in phase space. But the incompressibility is compromised by quantum tunneling
according toWigner equation [14], so a non-equilibriumparticle distribution function
can be represented as

f(x, u, t) = α

exp[(βm/2){(ux − uex )2η + u2y + u2x } − βμ] + 1
(4)

where uex (x, t) is mean velocity of the particles and η is the temperature anisotropy

given by η(x, t) = [n0/ne(x, t)]2 and α = − n0
Li3/2(−eβμ)

(
βm
2π

)(3/2)
(normalization

constant). With a constant chemical potential and normalizing f over velocity space
equals n0; when η = 1 and uex = 0, we get fmax = α/[exp(−βμ) + 1].

In the present problem, we consider the dynamics of electrons in positive (+) and
negative (−) x axis. We also considered that the streaming of particles attain such
values so as to incorporate relativistic factor (γ) in the dynamical equations [20].
Now, usingEq. 4,we calculate the zeroth, first and secondmoments of the distribution
function ( f ). So from the zeroth and first moments of the Fermi-Dirac distribution
function, we obtain the continuity and momentum equation in the following form:
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2m2
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[
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(∇2√n±√

n±

)]

(6)
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Here, � is the total pressure due to relativistic degeneracy, spin exchange inter-
action and finite temperature effects (� = PG + Pex + Pdegeneracy), where γ± =
1/
√
1 − u20/c

2, n± and u± denote the relativistic factor, electron number density and
speeds along ±x directions respectively. And φE , ni0 refer to the electric potential
and ion equilibrium number density. The last term in the momentum equation (6)
corresponds to the Bohm potential.

The Relativistic degeneracy potential φch originates from the degeneracy pressure
in dense stellar bodies [11] is given by

Pdegeneracy = πm4
ec

5

3h3
[R(2R2 − 3)

√
1 + R2 + 3 sinh−1 R] (7)

Here, R = (n/n0)1/3 and n0 is the equilibrium number density of electrons in the
plasma. We obtained effective potentials corresponding to relativistic degeneracy as
(φch)[ch → Chandrasekhar pressure [11]. The effective potential contribution due
to relativistic degeneracy can be simplified as [1]

φch =
√
1 + R2

0n
2/3 Classical case

φch =
√
1 + R6

0
n2
β

Quantum case

⎫⎪⎬
⎪⎭ (8)

Here,β = B0
Bd

with B0 is the axialmagnetic field strength and Bd ≈ 4.4 × 109 Tesla is
the criticalmagnetic field intensity of typical stronglymagnetised stars. The condition
for quantum regime is R2 << 2β whereas R2 >> 2β corresponds to classical case.

R = (
ncle
n0

)
R3
0

β
(9)

corresponds to classical case and

R = (
nQ
e

n0
)1/3R0 (10)

correspond to quantum regime.
Such a correlation can be incorporated by eliminating the exchange potential term

(φex ) and replacing � by R0/

√
β2 + βR6

0 . This transformation was also checked by
Akbari-Moghanjoughi and Ghorbanalilu [2].

The electron spin exchange interaction [φex ], though small can have significant
effects on the electron wave at such high densities. The electron spin exchange
potential [25] in generalised terms is given as
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(11)
where η = R + √

1 + R2, φ0 = 2αm4
ec

5

h3 and α = e2/�c is the fine structure constant.
This system is bounded by the Poisson’s equation

∇2φE = 4πe
(n+
2

+ n−
2

− ni0
)

(12)

The value of degeneracy parameters for different kinds of plasma is given below [6]:

Degeneracy parameter for different kinds of plasma
Types of plasma Density (m−3) Temperature (K) G
Tokamak 1020 1018 1
Inertial confinement fusion 1032 108 1
Metal and metal clusters 1028 104 1.4
Jupiter 1032 104 1.4
White dwarf 1035 108 4

3 Linear Dispersion Relation and Instability Criteria

In order to investigate the linear and non-linear behavior of electron acoustic wave
in this three component electron-ion plasma we make the following perturbation
expansion for the field quantities n±, u± and φE about their equilibrium values:

⎡
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⎤
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⎣ 1
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E

⎤
⎦+ · · · (13)

and normalization of the relativity parameter is carried out as R → R̄R0 with R0 =
(n±/n0)1/3. Now we express A(η) andB(η) in Eq. 11 in terms of n0 & n± in the
following manner
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√
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)1/3 +
⎡
⎣1 +

(
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)1/3(
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)1/3
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⎦
1/2

(14)
The different orders of η (omitting ± sign for brevity) can be obtained as,
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Putting all values from Eq. 15 omitting± sign corresponding to streaming directions
in Eq. 11, we get

A(η) = R1 + εS1n(1)

B(η) = V1 + εW1n(1)
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(17)

where R1 = 1
32

(
P4 + P−4

)+ 1
4

(
P2 + P−2

)− 3
4� − 9

16 + 6
(
1 − 4P + P

2
)
;

� = 2
(
P−2 + P2

)
(1 − P)2;

S1 = { Q
8

(
P3 − P−5

)+ Q
2

(
P − P−3

)+ 3
4β − 24Q + 12QP

}
;

V1 =
{

1
24 P

4(P − 1)2 − 1
24 P

−4(P − 1)2 − P2

12 (P − 1)2
(
P − P−3

)
+P

(
P + P−3

)
(P − 1)4 − 2P(P − 1)2

(
P − 2 + 1

p

)
}

W1 =

⎧⎪⎪⎨
⎪⎪⎩

1
8 P

3(P − 1)2Q + 5
24 P

−5(P − 1)2Q − 1
12 P(P − 1)2Q

+P
(
1 − 3P−4

)
(P − 1)4Q − 2P(P − 1)2

(
P + P−3

) (
1 − p2

)
Q

− 1
3 P(P − 1)2

(
2
P − 1 + 1

P2

)
Q + P3

8 T1 − P−5

8 T1 − P
4 (P − P−3)T1

+3T1(P + P−3)(P − 1)2 − 6T1
(
P−1 + 2 + P

)

⎫⎪⎪⎬
⎪⎪⎭

T1 = {
1
3 (P − 1)2Q + 4

3 (P
4 − P2)Q

}
;

β = {
2P2

(
4QP − 6Q + 2 Q

P

)− 2P−2
(
4QP + 2Q − 2 Q

P

)}
Using linear perturbations of field quantities like n± = 1 + n(1)

± exp(ikx − ωt);
u± = u0 + u(1)

± exp(ikx − ωt) and φE = φ(1)
E exp(ikx − ωt), the first order terms

are obtained as
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where
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Now the linear dielectric function can be written as F(ω, k) = 1 + χe+ + χe− where
χ± are the dielectric susceptibilities of counter streaming electron fluids. The dis-
persion relation is obtained as

2

R3
0

+ 1

[k2� − γ3ω(ω + 2kv)] + 1

[k2� − γ3ω(ω − 2kv)] = 0 (20)

where � = (H 2k2 − u20γ
3 + �)

For non-relativistic or weakly relativistic case (R0 	 1) with non-relativistic
streaming (γ → 1) the Eq. 20 boils down into

ω2 = R3
0 + �k2 (21)

Here we have ignored the finite temperature statistical pressure term. It is justified
that if in the classical limitwhenβμ → (−∞), so thatG → 0, the dispersion relation
(20) corresponds to the Bohm-Gross [3] dispersion relation for hot plasma i.e.;

ω2 = ω2
pc + 3V 2

T ek
2 + �

2k4

4m2
(22)

Now in the ultra cold limit we have to consider the finite temperature effect as

βμ → ∞ i.e.; G → 2
5βμ & μ → εF , [≡ mV 2

Fe
2 is the electron Fermi energy]. In this

case the dispersion relation takes the form

ω2 = ω2
pe + 3
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Fek
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− e2VFek2
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where the second term of on the right hand side of Eq. 23 corresponds to the finite
temperature contribution due to anisotropy, the third term corresponds to the quantum
diffraction effect and the forth one is related to the electron exchange pressure. The
resultmay be comparable to high frequencyLangmuir oscillations [12]. These results
correspond to the previous findings of von Roos and Zmuidzinas [24], Nozieres and
Pines [23], Karazawa et al. [19] as well as recent works by Akbari-Moghanjoughi
and Ghorbanalilu [2]. The terms in our dispersion relation have the same nature as
previous researchers except with certain additional multiplicative terms on the RHS.
The expansion of Lindhard dielectric function [18] for phase velocities (Vph ≤ VFe)

has similar term like the second term in Eq. 23. The quantum diffraction term third
on RHS of (23) correspond with the finding of Eliasson and Shukla [14]. The forth
term too is relatable with Ekman and others [12] only with 3

5π co-factor distinct from
Mohammadnejad and Akbari-Moghanjoughi [22]
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Before Solving the linear dispersion relation (20), from the survey of the available
literature we came to know that there is no well constructed model accounting for
relativistic quantum hydrodynamics of finite temperature Fermi plasma. To some
extent, we have knowledge on relativistic extension of (QHD) equations incorpo-
rating Bohm term fromWigner-Poisson’s formulation. However, exchange pressure
(Salpeter’s [25]) gives a correct density dependence in this relativistic case. Consid-
ering all the factors the dispersion relation (20) is solvable and its solution gives four
modes (or branches) as,

ω = ±

√√√√ [R3
0 + (4u20γ

3 + 2�2)k2] ±
√

[(R2
0 + 4u20γ

3k)2 + 16u20γ
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2γ3
(24)

or

ω = ±
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where J (k)=[R3
0 + (4u20γ

3 + 2�2)k2] & L(k)=
√
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0 + 4u20γ

3k)2 + 16u20γ
3�k4]

The term written within the inner square root can amount to imaginary frequency
and hencemay be set to zero to find possible real roots. From this above consideration
we get a sixth order algebraic equation as

16u20γ
3H 2k6 + 4�k4 + 8R3

0u
2
0γ

3k2 + R6
0 = 0 (25)

This can be rewritten as

A1k
6 + B1k

4 + C1k
2 + D1 = 0 (26)

Equation 25 has no real positive root. Under these algebraic considerations the total
term under the square root in Eq. 24 is obviously real for all possible wave-numbers.
This does not mean it will be non-negative. Such a negative value of the expres-
sion [i.e;J (k) ± L(k) < 0] will correspond to imaginary values of frequency ω and
determine the range of stable modes.

In order to obtain the wavenumber domain at which the frequency is imaginary,
we set the term [J (k) ± L(k)] equal to zero and further constraining ourselves within

the positive sign of ω in Eq. 24, we get the upper mode frequency ω =
√

R3
0

γ3 to be
always stable. The instability aries when we consider the negative sign in Eq. 24 i.e.;
for J (k) ± L(k) quantity.

With these considerations and imposing stability criteria for possible frequency
ranges we obtain from Eq. 20 after expanding the squared terms and with some
algebraic simplifications.

�k2[R3
0 + 8u20γ

3
0k

2 + 1] = 0 (27)
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which on further simplification provides

k2(H 2k2 − u20γ
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3
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This can be rewritten as,
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k = 0 is a root
another roots are obtained by taking k2 = κ

or A2κ
2 + B2κ + C2 = 0 (32)
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We have taken positive values of the square root of the discriminant because
otherwisewewould have obtained imaginary values. Nowusing standard techniques,
the roots are obtained as κ2 and κ3 where (κ1 = 0) < k <

√
κ2 and

√
κ3 < k are the

range for unstable states whereas
√

κ2 < k <
√

κ3 is the stable region in k-space. A
classical correspondence can be drawn for the region of instability for wave number
values

0 < k <

√
− �
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(
� − u20γ

3
0

)
8u20γ

3
0

(35)

4 Analytic Results and It’s Physical Interpretations

In Fig. 1, we plot theω versus k corresponding to Eq. 20 inwhichwe get four different
modes in the classical case, in Fig. 2 we plot the dispersion relation corresponding
to the quantum range. In both cases, we find a loop kind of structure along the
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Fig. 1 Linear dispersion relation for two stream instability in classical regime

Fig. 2 Linear dispersion relation for two stream instability in quantum regime
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Fig. 3 Unstable modes with growth rate variation in classical regime

wavenumber axis which corresponds to unstablemode. Just where the unstablemode
ceases to exist, we get corresponding curves for the stablemodes. This reflects the fact
that coupling is exact. In the quantum range, we also get similar behaviours but here
the fast modes and the slowmodes are not widely separated which means their phase
velocity is close by. An electromagnetic wave in such a dispersive medium in which
there is a beam of particles with streaming velocity (u0), there can be an exchange
of energy from the beam to the wave and vice-versa. When the phase velocity of the
wave is slightly smaller than the velocity of the beam, there can be an energy transfer
from the beam to thewave resulting in instability of thewave. The fast and slowmode
(Figs. 1 and 2) in both cases immediately take up the energy of the beam at higher
wavenumber valueswhichmeans energy is easily dispersed preventing any unwanted
instability. Here the perturbation is considered infinitesimally small. However, for
a larger value of perturbation bounded solution may be absent. The application of
the hydrodynamic model is mere meaningful in such a case where quasi-neutrality,
spatial periodicity and stationary stable states can be studied extensively. In such a
quantum plasma the instability originates from the free energy source and associated
mode coupling resulting in stable and unstable regimes in thewavenumber. It deviates
from the classical picture since the quantum effect causes changes in the dielectric
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Fig. 4 Two interacting unstable mode in the quantum regime

function of the plasma. The positive energy modes correspond to the energy being
given from the wave to the beam, whereas the negative energy modes are related to
the fact the energy is given by the beam to wave. In Fig. 3, two separated loops have
been shown corresponding to unstable modes with higher growth of instability at
smaller wavenumbers. A small zone of instability appears isolatedly existent. This
corresponds to the quick dissipation of energy acquired from the beam to the wave.

Figure 4, shows a semi-classical situation inwhich twounstablemodes are coupled
in such a way to exchange between them and give rise to a hybrid model of varying
instability growth. Next in Figs. 5 and 6 we show that the quantum regime of all
the four modes is stable. Two of them are fast whereas the other two are slow. Here,
the wave phase speed is compared with the beam speed. In Figs. 7 and 8, we plot
the imaginary roots of dispersion relation i.e; the unstable mode corresponding to
parametric variation of quantum diffraction (H ), relativistic degeneracy factor (R0)
and streaming motion (u0). From Fig. 7, it is clear that an increase in the value
of R0 (represented by outward moving curve) increases the instability growth rate
in such case the instability ceases to die out with increasing wavenumber. Quantum
diffraction negatively affects instability. From the fourth plot of Fig. 7 ,we can say that
‘H’ and ‘R0’ have ceratin correlation at higher density in which it fails to contain the



Heliospheric Two Stream Instability with Degenerate Electron Plasma 37

Fig. 5 Dispersion curve when value of relativistic degeneracy parameter (R0) = 0.8 and quantum
diffraction parameter (H ) = 2

instability at higher wavenumber. FromFig. 8, we conclude, by increasing relativistic
streaming velocity, the instability is enhanced but the wave number corresponding
to unstable modes are independent of the streaming motion. In Fig. 9, we plot the
classical and quantum variation of contour plot in the (k − R0) plane. The zone of
instability is less in the classical case and is extended in the quantum regime. In
Fig. 10, we plot the contour variations in (k − R0) plane corresponding to different
beam velocities. The curves are almost similar about the wavenumber axis and it
is clear from the figure that with the increase in beam velocity the instability zone
shrinks. In Fig. 11 we plot the R0 dependence in the (k − u0) plane and conclude
that with increasing value of ‘R0’ the zone stability slightly get decreased. All this
instability is dominant in the lower wavenumber values which is relatable with Figs.
1, 2 and 3. Our results will find application in interpreting various electrostatic two-
stream instability phenomena and associated wave modes that are found to exist in
stellar and solar flares. The resulting close correlation with the findings of Akbari,
Haas and Eliasson.



38 J. Sarkar et al.

Fig. 6 Unstable modes with growth rate variation in classical regime

Fig. 7 Two interacting unstable mode in the quantum regime
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Fig. 8 Dispersion curve when value of relativistic degeneracy parameter (R0) = 0.8 and quantum
diffraction parameter (H ) = 2

Fig. 9 Contour plot (k − R0) plane in classical and quantum limit

5 Conclusion

In this study, we investigated analytically the properties encountered in counter-
propagating plasma streams that contribute to two-stream instability. We designed
the governing equations in a certainway that both classical and quantum regimesmay
be examined. For this reason, we have employed quantum hydrodynamic model and
obtained dispersion characteristics. The physical situation of the problem is related
to solar wind and heliospheric plasma. The effects of degeneracy factor, quantum
diffraction and streaming motion have been studied with great detail. The stability
criterion was encountered to be dependent on the wavenumber’s range along with
the parameter values. Interacting modes and their domain of interaction have been
identified. In a nutshell, this work gives us a better view of the counter streaming
instability in a dense plasma.
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Fig. 10 Contour plot for different value of u0 [0.8c (a), 0.6c (b), 0.4c (c), 0.2c (d)], in (k − R0)

plane

Fig. 11 Contour plot for different value of R0 in (k − u0) plane
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Bifurcation of Nucleus-Acoustic
Superperiodic and Supersolitary Waves
in a Quantum Plasma
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Abstract The main motivation of this work is to investigate the existence of
arbitrary-amplitude nucleus-acoustic (NA) supernonlinear waves in a degenerate
plasma system consisting of light and heavy nuclei and non-relativistic degener-
ate electrons. To achieve this objective, we plot phase portraits of the dynamical
system and their corresponding Sagdeev’s pseudopotential curves for different val-
ues of Mach number. Distinct topology of phase portraits along with two minima
separated by a maxima in Sagdeev’s pseudopotential curve ensure existence of NA
supernonlinear waves. Further, we discuss influence of Mach number on periodic,
superperiodic, solitary and supersolitary wave solutions.
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1 Introduction

Compact astrophysical bodies have high density (of order 1036 cm−3 in neutron stars
and 1029 cm−3 in white dwarf) such that the deBroglie wavelength of particles is
comparable to the inter-particle distance [1, 2]. Therefore, roles of quantum effects
and degeneracy pressure in such objects become vital. White dwarf mainly contains
degenerate electrons, immobile heavy nuclei (e.g., 56

26Fe and/or 85
37Rd and/or 96

42Mo,
etc.,) [3–5] and light nuclei (e.g., 11H and/or 126 C and/or 168 O, etc.) [1, 2, 5]. In his work,
Chandrasekhar [6, 7] reported that the outward pressure in compact astrophysical
objects produced by degenerate electrons balances the inward pull due to gravity. The
degenerate electrons follow the equation of state Pe = Ken

γ
e with γ = 5

3 , Ke = 3
5

π�
2

me

for non-relativistic (NR) limit and γ = 4
3 , Ke = 3

4�c for ultra-relativistic (UR) limit
[5–8]. Hence, we can employ either of the two limits for degenerate electrons.

Mammun et al. [9] studied NAwaves in which inertia is supplied by nucleus mass
density and restoring force is supplied by inertialess degenerate electron pressure
which depends solely on electron number density. It is remarkable to note that NA
waves exist in cold plasma limit unlike other modes (ion or electron or positron
acoustic) which do no exist in cold plasma limits. Nonlinear features such as NA
shocks [5, 9, 10] and NA solitons [8, 11] were extensively investigated in the recent
years due to its potential implications in dense astrophysical objects. Jannat and
Mammun [5] have briefly discussed the application of their results in white dwarfs.

Investigation of nonlinear waves in quantum plasmas by employing the concept of
planar dynamical system (PDS) is gaining immense popularity [12–15]. In plasma,
Dubinov and Kolotkov [16] developed a new category of nonlinear waves, publi-
cized as supernonlinear waves (SNWs) that are marked by their distinct nonlinear
topology of phase plots. Dubinov and Kolotkov [17] initiated the term “supersoli-
tons” in plasmas by taking a model consisting of five components. Afterwards, Ver-
heest et al. [18] verified that three-component in a plasma were sufficient to support
supersolitons. Saha and Tamang [19] discussed SNWs using bifurcation theory of
planar dynamical system. Since then, arbitrary amplitude SNWs [20, 21] as well
as small-amplitude SNWs [15] were investigated in different plasmas using bifur-
cation theory. Very recently, Saha et al. [22] showed the existence of SNWs in
a two-component Maxwellian plasma. But, there is no study of arbitrary ampli-
tude nucleus-acoustic supernonlinear waves in quantum plasmas to the best of our
knowledge. In thiswork,we have employed bifurcation theory to investigate arbitrary
amplitude nucleus-acoustic superperiodic and supersolitary waves in a degenerate
plasma system consisting of light and heavy nuclei and non-relativistic degenerate
electrons.

The layout of this article is as follows: Normalised basic equations are presented
in Sect. 2. Formation of planar dynamical system is briefly discussed in Sect. 3. Phase
plots of the system are shown in Sect. 4. Section 5 gives the conclusion.
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2 Normalised Basic Equations

A three-component quantum plasma is considered comprising of stationary heavy
nuclei (mass = mh and charge = Zhe), non-degenerate mobile, cold, light inertial
nuclei (mass = mi and charge = Zie) together with NR degenerate electrons. The
mass of stationary heavy nuclei that conserves background neutrality is much greater
than the mass of inertial light nuclei that supplies inertia. Charge of light nuclei is
greater or equal to unity. On the other hand, non-relativistic inertialess degenerate
electrons supplies degenerate pressure that act as a restoring force. The normalized
basic equations [8] that describe the dynamics of light nuclei are as follows:

∂ni
∂t

+ ∂(niui)

∂x
= 0, (1)

∂ui
∂t

+ ui
∂ui
∂x

+ ∂φ

∂x
= 0, (2)

K
∂nγ

e

∂x
− ne

∂φ

∂x
= 0, (3)

∂2φ

∂x2
− μe(ne − 1) + ni − 1 = 0. (4)

Here number density ns (where indices s = h, i, e designate heavy nuclei, light nuclei
and electron), electrostatic potential φ and velocity ui are respectively normalized by
equilibrium value ns0, (mec2/e), where e is magnitude of protonic charge and C0 =
(Zimec2/mi)

2. Light nuclei plasma period ω−1
pi = (4πe2Z2

i ni0/mi)
− 1

2 and modified

Debye length λm = (mec2/4πe2Zini0)
1
2 are used to scale time and space variables

respectively. Here μe = (ne0/Zini0) and K = (Ken
γ−1
e0 /mec2), where Ke obeys the

equation of state Pe = Ken
γ
e with γ = 5

3 , Ke = 3
5

π�
2

me
for NR limit.

Here, we have set Zhnh0
Zini0

=μe − 1 following the quasi-neutrality condition Zhnh0 +
Zini0 = ne0 in (4). Subsequently, the model equations (1)–(4) absorb the charge state
of heavy nuclei Zh as a result of normalization.

3 Planar Dynamical System (PDS)

Normalized basic equations (1)–(4) are transformed to a PDSby employing travelling
wave transformation

ξ = x − Mt, (5)

where travelling wave velocity M is taken in positive direction of x-axis. Applying
this transformation to (1)–(3) with boundary conditions φ → 0, ni → 1, ui → 0 and
ne → 1 as ξ → ±∞, we acquire
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ni =
(
1 − 2φ

M 2

)− 1
2

, (6)

ne =
[
1 +

(
γ − 1

kγ

)
φ

] 1
γ−1

. (7)

Applying transformation (5) to (4) with boundary conditions and substituting (6) and
(7), we get

d2φ

dξ 2
= aφ + bφ2 + cφ3 + dφ4, (8)

with a = − 1
M 2 + μe

γK , b = − 3
2M 4 + μe(2−γ )

2γ 2K2 , c = − 5
2M 6 + μe(2−γ )(3−2γ )

6γ 3K3 and d = −
35
8M 8 + μe(2−γ )(3−2γ )(4−3γ )

24γ 4K4 .

The system (8) can be expressed as following PDS:

{
dφ

dξ
= z,

dz
dξ

= aφ + bφ2 + cφ3 + dφ4.
(9)

The corresponding Hamiltonian function is:

H (φ, z) = z2

2
−

(
a

2
φ2 + b

3
φ3 + c

4
φ4 + d

5
φ5

)
= h, (10)

say. We consider Sagdeev’s equation corresponding to the PDS (9) as

d2φ

dξ 2
= −dψ

dφ
, (11)

where ψ is the Sagdeev’s pseudopotential. Therefore, from (8) and (11) we get

ψ(φ) = −
(
a

2
φ2 + b

3
φ3 + c

4
φ4 + d

5
φ5

)
. (12)

4 Phase Plots

To find all equilibrium points the PDS (9), we have dφ

dξ
= 0 and dz

dξ
= 0, which give

z = 0, φ(dφ3 + cφ2 + bφ + a) = 0, (13)

⇒ z = 0, φ(φ3 + pφ2 + qφ + r) = 0, (14)

where p = c
d , q = b

d and r = a
d .
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(i) If h2

4 + g3

27 > 0, then there are two equilibrium points of the PDS (9) at P0(φ0, 0)

and P1(φ1, 0), where φ0 = 0, φ1 = A + B with A = 3

√
− h

2 +
√

h2
4 + g3

27 , B =
3

√
− h

2 −
√

h2
4 + g3

27 , g = 1
3 (3q − p2) and h = 1

27 (2p
3 − 9pq + 27r).

(ii) If h2

4 + g3

27 < 0, then there are four equilibrium points of the PDS (9) at P0(φ0, 0),

P1(φ1, 0), P2(φ2, 0) and P3(φ3, 0), where φ0 = 0, φ2,3,4 = − p
3 + 2

√
− g

3 cos(
ψ

3 +
2kπ
3 ), k = 0, 1, 2, with

cosψ = −
√

h2/4
−g3/27 , if h > 0;√

h2/4
−g3/27 , if h < 0.

We denote Jacobian matrix of the system (9) corresponding to the critical point
Pi(φi, 0) by J (φi, 0). The critical point Pi(φi, 0) is a saddle point if |J (φi, 0)| < 0
and a center when |J (φi, 0)| > 0 [23].

Phase plots of a system can differ relying on the number of surrounding separatrix
layers [17] and the total number of equilibrium points. For a particular dynamical
system, awave solution can be obtained for a trajectory contained in the phase plot. In
this article, we denote nonlinear periodic trajectory byNPTm,n, nonlinear homoclinic
trajectory by NHTm,n, supernonlinear periodic trajectory by SNPTm,n and supernon-
linear homoclinic trajectory by SNHTm,n, where m designates the total number of
stable critical points (centres) and n designates the total number of enveloping sepa-
ratrix layers. Corresponding toNPTm,n andNHTm,n, we can obtain NA periodic wave
solution andNAsolitarywave solution, respectively,while corresponding to SNPTm,n

and SNHTm,n, we can obtain NA superperiodic wave solution and NA supersolitary
wave solution, respectively.

For our computation we will use the values of dense plasmas [1, 2, 4, 5] consist-
ing of degenerate NR electrons, non-degenerate light nuclei (126 C) and heavy nuclei
(8537Rd): ne0 ∼ 1035 m−3, ni0 ∼ 1.666 × 1034 m−3, � = 1.054 × 10−34 Js, me =
9.10938356 × 10−31 kg, Zi = 6, c = 3 × 108 m/s and γ = 5

3 (NR limit). The cal-
culated values ofμe and K are 1.0004 and 0.06040810205, respectively. We will use
these values of γ,K and μe in this present work.

Figure 1a exhibits phase plot of PDS (9) forM = 0.51. Here, the critical pointsP0

and P1 are saddle and centre, respectively. A family of periodic trajectories surround
P1 while there is a homoclinic trajectory at P0. The plasma system has a family of
periodic wave profile given by H (φ, z) = h, h ∈ (0, h1) and a compressive solitary
wave profile given by H (φ, z) = 0. In Fig. 1b, we present effect of Mach number
M on NA periodic wave solution. One can see from Fig. 1b that only amplitude of
NA periodic wave elevates on enhancing M . The Sagdeev’s pseudopotential curve
corresponding to Fig. 1a is displayed in Fig. 1c. One can clearly observe a minima
at P1 and a maxima at P0.

In Fig. 2a, we present a phase plot of the PDS (9) for M = 0.7. There exist four
equilibrium points P0,P1,P2 and P3 of the PDS (9), of which P2 and P3 are centres
and P0 and P1 are saddles. There are two families of periodic trajectories enclosing
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Fig. 1 a Phase portrait of the PDS (9) forM = 0.51, b effect ofM on NA periodic wave solution
and c Sagdeev pseudopotential ψ versus φ for M = 0.51

P2 and P3, respectively, a pair of homoclinic trajectories at P0, a family of superpe-
riodic trajectories enclosing these two homoclinic trajectories and a supernonlinear
homoclinic trajectory at P1. Effect of Mach number M on NA periodic, superperi-
odic, compressive solitary, rarefactive solitary and compressive supersolitary wave
profiles are shown in Fig. 2b–f, respectively. Heights of NA periodic and rarefac-
tive solitary wave profiles decrease while heights of NA superperiodic, compressive
solitary and compressive supersolitary wave profiles increase on enhancing M . On
the other hand, widths of superperiodic and compressive supersolitary wave profiles
diminish on enhancingM . It has been numerically observed that such type of phase
plot (Fig. 2a) is possible for this plasma system if M varies from M = 0.666 to
M = 0.747 (approximately). The Sagdeev’s pseudopotential curve corresponding
to Fig. 2a is depicted in Fig. 2g. Clearly, one can observe two minima at P2 and P3

separated by a maxima at P0, which is the criteria for SNWs [22].
We showaphase plot of the PDS (9) forM = 0.77 in Fig. 3a that contains four crit-

ical points P0,P1,P2 and P3, out of which P0 and P2 are saddles while P1 and P3 are
centres. There are two families of periodic trajectories about P1 and P2, respectively,
a pair of homoclinic trajectories at P0, a family of superperiodic trajectories about
these two homoclinic trajectories and a rarefactive supersolitary trajectory at P3. We
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show influence ofMach numberM onNA periodic, superperiodic, compressive soli-
tary, rarefactive solitary and compressive supersolitary wave structures in Fig. 3b–f,
respectively. Clearly, one can see that enhancement ofM results in increase in heights
of NA periodic, superperiodic and compressive solitary wave structures and decrease
in heights of NA rarefactive solitary and rarefactive supersolitary wave structures.
Simultaneously, enhancement of M brings about expansion in widths of periodic,
superperiodic, compressive solitary and rarefactive supersolitary wave structures and
a slight decrease in width of rarefactive solitary wave. In fact, compressive solitary
wave is seen to flourish on enhancingM . It has been numerically observed that such
type of phase plot (Fig. 3a) is possible if M varies from M = 0.748 to M = 0.776
(approximately). CorrespondingSagdeev’s pseudopotential is given in Fig. 3b,which
presents two minima at P1 and P2 with a maxima at P0 in between.

Figure 4a displays phase portrait of PDS (9) for the sonic case, i.e.,M = 1.Clearly,
there exist two critical points P0 and P1. The origin P0 is a saddle while P1 is a center.
A family of periodic trajectories surround P1 while a homoclinic trajectory begins
and terminates at P0. This plasma system has a family of periodic wave structures
given by H (φ, z) = h, h ∈ (h2, 0) and a rarefactive solitary wave structure given by
H (φ, z) = 0. Impact of M on NA periodic wave solution is shown Fig. 4b. Vividly,

−0.4 −0.2 0 0.2 0.4

−1.5

−1

−0.5

0

0.5

1

1.5

φ

z

0 1 2 3 4 5

−0.4

−0.35

−0.3

−0.25

−0.2

φ

ξ

M=1

M=1.1

(a)

NPT
1,0

NHT
1,0

P
1

P
0

(b)

(c)

Fig. 4 a Phase portrait of the PDS (9) for M = 1, b impact of M on NA periodic wave solution
and c Sagdeev pseudopotential ψ versus φ for M = 1
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one can notice that amplitude as well as width of NA periodic wave decrease on
enhancing the value of M . Corresponding Sagdeev’s pseudopotential is depicted in
Fig. 4c. Similar phase portrait can be observed for the supersonic case, i.e.,M > 1.

5 Conclusion

We have shown the existence of arbitrary amplitude nucleus-acoustic superperiodic
and supersolitary waves in a three component degenerate plasma system. Four qual-
itatively different phase plots of the system have been obtained for four distinct
values of Mach number. Thus, we can say that bifurcation occurred and Mach num-
ber acted as a bifurcation parameter. For two different ranges of Mach number, two
qualitatively different phase profiles distinguished by compressive and rarefactive
type supernonlinear homoclinic trajectories have been obtained. It has been numer-
ically observed that NA compressive supersoliton was possible if M varied from
0.666 to 0.747 (approximately) while NA rarefactive supersoliton was possible if
M varied from 0.748 to 0.776 (approximately). In both the cases, pseudopotential
curve formed a double well with two minima separated by a maxima satisfying
the necessary condition for the existence of supernonlinear wave. Mach number
M has significant influence on superperiodic and supersolitary wave solutions. An
increase inM increased amplitudes of superperiodic and compressive supersolitary
wave solutions and decreased amplitude of rarefactive supersolitary wave solution.
The parameter values are taken in such a way that the results of this work find its
application in examining NA supernonlinear waves in dense astrophysical objects.
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Effect of q Parameter and Critical Beam
Radius on Propagation Dynamics of q
Gaussian Beam in Cold Quantum Plasma
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T. U. Urunkar, S. D. Patil , and M. V. Takale

Abstract The qGaussian intensity distribution is very interesting as in the limitq →
∞, it reduces to the Gaussian intensity profile. Naturally, the freedom of exploring
the q exponent enables us to study a wide range of propagation dynamics. The
quantum plasma offers wide possibilities of its existence right from astrophysical
situations to laboratory plasmas. Keeping in mind the wide applicability domain of
cold quantum plasma, we have theoretically investigated the propagation behavior of
q Gaussian laser beam in cold quantum plasma. The ordinary nonlinear differential
equation is set up by followingAkhmanov’s parabolic equation approach underWKB
and paraxial approximations. The effect of the q parameter on the critical curve is
explored graphically. The variation in the beam width parameter f over normalized
distance ζ due to variation in the q-parameter is graphically depicted and discussed
at the end. It is observed that the supercritical region and self focusing length are
affected by the q parameter significantly.
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1 Introduction

Interaction of intense laser beam with plasma has received great attention due
to its various application such as laser induced fusion [1–3], particle accelerators
[4–7], high harmonic generations [8], compact X-ray sources [9–11]. It necessitates
studying propagation behaviour of the laser beams through plasma. In all the above
applications, the requirement of propagation of laser beam over several Rayleigh
lengths is very essential. However, it is impossible to self trap the given laser beam
due to diffraction. Due to the nonlinear interaction of the laser and plasma, plasma
behaves as a converging lens. Laser beam alters dielectric behaviour of plasma. Inten-
sity pattern of beam along wavefront causes change in refractive index. Eventually
beam gets focused.

Quantum plasma has promising applications in cosmological and astrophysical
situations, fusion science, laser solid interaction, andnanotechnology.Various studies
have been done on cold quantum plasma. Patil et al. [12] have reported the propaga-
tion behaviour of beam in quantal-medium. They have found that quantum effects
plays important role in laser plasma interaction. Habibi et al. [13] have investigated
time independent self focusing in cold quantum plasma using ramp density profile.
They have studied the effect on behavior of oscillatory beam width parameter due to
quantum effects and inhomogeneity of plasma such as upward ramp density profile.
Apart from these few studies, dynamical aspects of propagation of elliptical laser
beams, Hermite Cosine Gaussian laser beams, cosh Gaussian laser beams in cold
quantum plasma are also studied [14–16].

The study of Valcan Petawatt laser proposes that the intensity distribution deviates
from theGaussian distribution [17].Nakatsutsumi et al. [18] on further study suggests
that intensity distribution is in q-Gaussian which in function form can be written as

I (r) = I0(r)

(
1 + r2

q2r20

)−q

(1)

Here real parameters q and r0 are based on experimental data. The q parameter rep-
resents the departure from the Gaussian beam’s field distribution. Variation from the
Gaussian beam may be due to unexpected inclusion in the gain medium or small
obstacles. The investigation of this intensity distribution could be more practical.
Sharma and Kourakis [19] have studied relativistic propagation of q Gaussian laser
beam analytically and numerically. Using higher order corrections, Kaur et al. [20]
have explored the propagation in relativistic anisotropic medium for our plasma.
Using the variational technique, Wang et al. [21] have reported the propagation
behavior of q-Gaussian laser beam in a systematized plasma channel. Valkunde et al.
[22] have studied self focusing in inhomogeneous plasma of exponential profile for
varied q values. Vhanmore et al. [23] have investigated the influence of q parameter
on the propagation of beam considering relativistic nonlinearity. Kashyap et al. [24]
have studied self focusing of q Gaussian laser beam in relativistic plasma considering
the effect of light absorption. Gupta and Kumar [25] and Gupta et al. [26] have also
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studied q Gaussian laser beam. We have explored the effect q and critical radius on
propagation characteristics of laser beam in quantum medium by using parabolic
equation. The dielectric function of cold quantum plasma and the intensity distri-
bution of a q Gaussian laser beam are reported in Sect. 2. Second order nonlinear
differential equation is obtained. Section 3 is dedicated to the result and discussion.
Brief some important conclusions are given in Sect. 4.

2 Basic Formulation

Consider q-Gaussian laser beam propagating through relativistic cold quantum
plasma along ẑ direction. The electric field of beam is given as

E(r, z) = A(r, z)Exp[i(kz − ωt)] (2)

where A(r, z) is complex amplitude of electric field. k = ω
√

ε0
c is propagation constant

and ω is frequency of laser beam. A following z dependent intensity of q-Gaussian
laser beam can be given as [18]

A2 = E2
0

f

(
1 + r2

qr20 f
2

)−q

(3)

where E0 is the amplitude at r = z = 0, r0 is the initial spot size and q parameter
alters beam intensity profile from that of Gaussian profile. Intensity distribution
which becomes Gaussian when q → ∞ i.e

lim
q→∞ EE∗ = E2

0

f
exp

(
− r2

r20 f
2

)
(4)

Propagation of laser in plasma having effecting dielectric constant ε is governed by
following equation

∇2E + ω2

c2
εE = 0 (5)

The effective dielectric constant in general is given as [12]

ε = ε0 + φ(EE∗) (6)

where ε0 and φ(EE∗) are linear and nonlinear terms of dielectric constant. Here

ε0 = 1 − (ωp

ω

)2
and ωp =

√
4πn0e2

m where e, m, n0 are electrons charge, mass of
electron and electron density respectively. In case of cold quantum plasma, intensity
dependent dielectric constant is given as [12]
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φ(EE∗) =
(ωp

ω

)2
[
1 − 1

γ

(
1 − δ

γ

)−1
]

(7)

where γ = √
1 + αEE∗, δ = 4π4h2

m2
0ω

2λ4 , h is Planck’s constant, λ is wavelength of laser
source.

Following Akhmanov’s parabolic approach et al. [27] and its extension by Sodha
et al. [28], differential equation of beam width parameter ( f ) for q Gaussian beam
in cold quantum plasma can be obtained as

∂2 f

∂ζ2
= 4 + q

q f 3
−

αE2
0

√
1 + αE2

0
f

( r0ωp

c

)2

2 ∗
(

δ −
√
1 + αE2

0
f

)2

f 2
(
αE2

0 + f
) (8)

where ζ = z
kr20

is dimensionless distance of propagation. Using boundary conditions

f = 1, ∂ f
∂z = 0 corresponding to initial wave front at ζ = 0, (8) is solved numerically.

3 Result and Discussion

Equation (8) is a non integrable that governs the propagation behavior of laser
beam in plasma. It is observed that as q → ∞ (8) reduces to similar differential
equation which is obtained earlier [12]. On right hand side in (8), the first term
is responsible for diffraction divergence and the second term is responsible for the
convergence of beam. Equation (8) is solved numerically using the following numer-
ical parameters ω = 1.77800 × 1020 rad

s , m0 = 9.10938 × 10−28 g, h = 6.62618 ×
10−27 erg.sec, c = 2.99792 × 1010 cm/sec. Under critical conditions, ∂2 f

∂z2 = 0, ∂ f
∂z =

0, f = 1,αE2
0 = p0,

r0ωp

c = ρ0, (8) reduces to

ρ0 =
√
(4 + q) 2

(
δ − √

1 + p0
)2 (√

1 + p0
)

qp0
(9)

It is noted that as q → ∞, one can obtain the critical curve equation for Gaussian
beam in quantum-medium. Figure 1 gives the critical curve for varied values of q.
It is a graphical representation of the relation between critical beam radius (ρ0) and
initial intensity parameter (p0). Critical curve divides the graph into self focusing
and defocusing regions. In Fig. 1, arbitrary choice of point (p0, ρ0) in a region above
the critical curve (supercritical region) promises focusing of beam and point (p0, ρ0)
below the critical curve (subcritical region) leads to defocusing of beam. Any point
on the critical curve leads to self trapping of the laser beam. In Fig. 1, it is observed
that, initially ρ0 decreases rapidly within the short range of p0 and attains minimum
value. Then ρ0 increases slowly with a further increase in p0. It is observed that the
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Fig. 1 Variations of ρ0 versus p0 (critical curves) for varied values of q i.e. (q = 1, 2, 3, 4,∞)

critical curve shifts downward asq increases. For theGaussian beam, the supercritical
region is relatively the largest.

Figure 2, reveals propagation behavior of q Gaussian laser beam i.e. variation of f
against ζ. Self focusing of beam in oscillatorymode is observed for q = 1, 2, 3, 4,∞
(for p0 = 2, ρ0 = 6 i.e. in supercritical region). Also in Fig. 2, it is observed that
as the value of parameter q increases, the beam width parameter and self focusing
length decrease which indicates enhanced self focusing. At q → ∞ i.e. Gaussian
beam, self-focusing length is minimum. In Fig. 2, steady defocusing is observed
(for p0 = 2, ρ0 = 1.5 i.e. in subcritical region). Also, it is observed that the rate of
defocusing of f decreases as q increases.

4 Conclusion

In present paper, the study of propagation behavior of q-Gaussian beam in cold
quantum plasma has been done. Using Akhmanov’s approach et al. [27], nonlinear
ordinary differential equation of beam width parameter has been obtained. Propaga-
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Fig. 2 Variation of f along ζ with p0 = 2, ρ0 = 6 (thin lines) and p0 = 2, ρ0 = 1.5 (thick lines)
(Color Online)

tion behavior of q Gaussian laser beam can be effectively explored by varying the
limits of q from extremely low value to infinity. The significant change in f and self
focusing length takes place in the limit q → ∞ as compared to lower values of q.
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Abstract One dimensional Quantum Hydrodynamic (QHD) model is used to study
linear and non-linear effects of Quantum Electron Acoustic waves. We have derived
the KdV equations using Reductive Perturbation Technique and obtained solitary
wave solutions for Quantum Electron acoustic waves. The mutual interaction of
such stationary formations and the breakdown mechanism are studied. We have used
a newly designed code to study the time evolution of wave-wave interaction and
the breakdown mechanism. In order to discover the stability regime and chaotic
scenario in quantum electron-acoustic waves, bifurcation analysis and dynamical
system research are used. A dynamical system is investigated further to determine
the stability factors and the parametric range for such stability. The chaotic behaviour
of the system is studied through Largest Lyapunov exponent. This work will find
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1 Introduction

The fourth state of matter is Plasma which is a hot ionizing gas created from roughly
equal numbers of charged ions and charged electrons. The charged particles in plasma
travel at random. They interact with each other via their own electromotive force and
also respond to exterior disturbances [1]. The perturbations forces can be pressure
force, microwave, or laser injection. Due to the coherent motion of plasma particles
various collective wave phenomena arise. Since plasma is strongly influenced by
electric and magnetic fields hence a possibility of a wide range of longitudinal and
transverse waves. plasma acoustic wave is a longitudinal wave that propagates due
to compression and rarefaction of plasma particles.

Plasma waves can be in electron acoustic, ion-acoustic, or dust acoustic mode.
The present paper will stick to the Electrostatic modes in plasma. Electrostatic modes
rely on the mass of the electrons whereas ions are supposed to be infinitely heavy
i.e. stationary. Electron acoustic waves (EAWs) is one of the longitudinal waves in
plasma. EAWs are created by two groups of electrons with differing temperatures,
called cold and hot electrons [2–11]. The distinction between two electron groups
comes from their energy. The thermal energy of warm electrons is higher than cold
electrons. The corresponding pressure perturbations from fast and slow particles are
hugely different; cool electrons, as they are immobile, are in-charge of providing
the inertial effects [12–19] whereas extremely heated electrons can move freely and
their pressure provides restoring force. EAWs are high frequency (as compared to
ion plasma frequency) modes of electrostatic waves. For frequencies greater than
ion plasma frequencies as in the case of EAWs, ions do not take part in dynamics,
they play the role of maintaining the charge neutrality. Plasma with two temperature
electrons exist in space plasma [20–23] and also occur in laboratory plasma [24–34].
EAWs are thrust areas of research as various phenomenons are explained by them
like wave emission in different regions of Earth’s magnetosphere (region of space
around the earth in which charged particles are affected by Earth’s magnetic field),
hiss in the polar cusp region (where the particles from the sun have direct access to
Earth’s atmosphere) and the source of broadband electrostatic noise. The research on
the nonlinear evolution of EAWs has increased in recent years [12, 35–44]. Initially,
the research was carried out using classical non-relativistic less dense plasma in
which thermal de-Brogliewavelengthwasmuch less than inter-Fermiondistance.But
for high-density plasma, as in space plasma, where thermal de-Broglie wavelength
becomes comparable to or more than the inter-Fermion distance, quantum effects
become important [45–48]. So an additional quantum diffraction term or Bohm
potential term is added in the momentum equations of hot and cold electrons. Since
ions do not take part in dynamics, no such equations are defined for them. Theoretical
researchwas done on linear and nonlinear propagation of various electrostaticsmodes
in quantum plasmas using QHD [49–63]. The Quantum hydrodynamic QHD model
is the most widely used formula for describing the behavior of plasma particles at
quantum sizes. Studies show that quantum effects can considerably alter the linear
and non-linear properties of plasma.
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We have studied various mechanism for soliton breakdown [64, 65] and soliton-
soliton interaction [66, 67]. Solitons are linear flaws that bend randomly at a finite
temperature. This causes solitons to collide, changing the nature of the soliton-soliton
interaction [68–72]. The solitons may be decelerated/accelerated through the inter-
actions of soliton with background waves which may be utilized to study tsunami
waves and fiber soliton communications [73]. Dynamical systems theory was used
to report bifurcations of nonlinear travelling wave solutions in such plasmas [74].
Various solitonic and quasiperiodic wave characteristics for ion-acoustic waves have
been investigated by reducing the nonlinear equation to a Hamiltonian system with
electrostatic potential and applying the bifurcation theory of dynamical systems
[75–79]. The paper is organized in the following way. In the Sect. 2, the basic equa-
tions and it’s normalized forms are presented and in Sect. 3, Linear Dispersion Rela-
tion is derived. Further, the Derivation of KdV Equation is there in Sect. 4, in which
soliton-soliton interaction and breakdown of solitons is discussed under Sects. 5.1
and 5.2. Then, the Dynamical study of Electron Acoustic KdV Solitons is carried
out in Sect. 6.

2 Basic Equations

We consider the plasma consisting of of two separate groups of electrons namely
cold electron fluid, hot electron fluid [13, 18, 80–91] and ions forming uniform
neutralizing background, this allows the generation of quantum electron acoustic
modes in plasma. To study the linear and non-linear behavior we obtain normalized
(dimensionless) fluid continuity, momentum, and Poisson’s equations through some
appropriate transformations. The unnormalized equations are as following.

2.1 Continuity Equations for Hot and Cold Electrons

∂nh
∂t

+ ∂ (nhuh)

∂x
= 0 (1)

where nh is hot electron density in plasma and uh is the velocity of hot electrons.

∂nc
∂t

+ ∂ (ncuc)

∂x
= 0 (2)

where nc is cold electron density in plasma and uc is the velocity of cold electrons.
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2.2 Momentum Equations

0 = e
∂φ

∂x
− 1

nh

∂Ph
∂x

+ �
2

2me

∂

∂x

{
1√
nh

∂2√nh
∂x2

}
(3)

This is the momentum equation of hot electrons where φ is electrostatic wave poten-
tial, e is the electric charge, and ph is the pressure of hot electrons which provides
restoring force to the EAW’s. The left-hand side of this equation i.e the inertial term
is zero because of the very high mobility of hot electrons.

(
∂

∂t
+ uc

∂

∂x

)
uc = 1

me

[
e
∂φ

∂x
+ �

2

2me

∂

∂x

{
1√
nc

∂2√nc
∂x2

}]
(4)

This is the momentum equation for cold electrons. Here inertial term is non-zero
because of the very low mobility of cold electrons. cool electrons are providing
restoring force for electron acoustic oscillations.

2.3 Poisson’s Equation

The Poisson’s equation closes the system of equations as

∂2φ

∂x2
= 4πe (nc + nh − Zini ) (5)

where � is the reduced Planck’s constant (h/2π) and Zie is the charge on ion.

2.4 The Pressure Law

Here we assume that plasma particles behave as 1-D Fermi gas and therefore taking
the Fermi pressure Pj as [92–95]:

Pj = m jc2s j
3n2j0

n3j (6)

Normalized Fermi pressure term for hot electrons is given as-:

Ph = mec2sh
3n2h0

n3hn
3
h0 = mec2sh

3
n3hnh0 (7)
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Using the normalization scheme as x → xω j/cs j , t → tω j ,φ → eφ/2kBTF j , u j →
u j/cs j , n j → n j/n j0, ηc → ηcω j/mec2s j , Eqs. (1–5) can be written as:

∂nh
∂t

+ ∂ (nhuh)

∂x
= 0 (8)

∂nc
∂t

+ ∂ (ncuc)

∂x
= 0 (9)

0 = ∂φ

∂x
− nh

∂nh
∂t

+ H 2

2

∂

∂x

[
1√
nh

∂2√nh
∂x2

]
(10)

(
∂

∂t
+ uc

∂

∂x

)
uc = ∂φ

∂x
+ H 2

2

∂

∂x

[
1√
nh

∂2√nh
∂x2

]
(11)

∂2φ

∂x2
= nc + nh

δ
− δi

δ
ni (12)

where H = �ω j/2kBTF j is a non-dimensional quantum diffraction parameter, δ =
nc0/nh0 and δi = Zni0/nh0.

3 Linear Dispersion Relation

To investigate the nonlinear behavior of electron acoustic waves, we consider the
following perturbation expansion for the field quantities:

⎡
⎢⎢⎢⎢⎣

nh
nc
uh
uc
φ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
1
u0
u0
φ0

⎤
⎥⎥⎥⎥⎦ + ε

⎡
⎢⎢⎢⎢⎣

n(1)
h

n(1)
c

u(1)
h

u(1)
c

φ(1)

⎤
⎥⎥⎥⎥⎦ + ε2

⎡
⎢⎢⎢⎢⎣

n(2)
h

n(2)
c

u(2)
h

u(2)
c

φ(2)

⎤
⎥⎥⎥⎥⎦ + · · · (13)

where j = h, c is the subscript which is for both hot and cold electrons, n j is the
number density of hot and cold electrons, u j is the velocity of hot and cold electrons
in plasma, φ is electro-static wave potential and ε is the smallness parameter, powers
of ε represents the order of perturbation. By assuming that all field quantities vary
as ei(kx−ωt) such that eigenvalues of ∂

∂t and ∂
∂x are −iω and ik respectively. Now

in order to obtain linear dispersion relation substituting perturbation expansion of
field quantities in governing equations and keeping only first-order terms in ε we
get the following linear dispersion relation for normalized wave frequency (ω) and
wavenumber (k):
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1 = 1

(ω − kuo)
2 − H 2k4

4

− 1

δk2
{
1 + H 2k2

4

} (14)

Equation (14) represents the linear dispersion relation for EAW’s in Fermi plasma,
the form of wave frequency ω is given as follows:

ω =
[

δk2(1 + H 2k2

4 )

1 + δk2(1 + H 2k2
4 )

+ H 2k4

4

]1/2

+ ku0 (15)

4 Derivation of KDV Equation

To study the nonlinear behavior of electron acoustic waves we consider inertialess
warm electrons, inertial cool electrons and stationary ions. The pressure effect is only
due to hot electrons which provide restoring force. We explore the collision of two
solitary waves using an expanded PLK perturbation approach. The following are the
perturbed quantities:

Y = Y0 +
∞∑
r=1

εr+1Yr , � =
∞∑
r=1

εr+2�r (16)

where Y = (nd, udz,ψ) , Y0 = (1, 0, 0), and � = (
udx , udy

)
The scaling variables

x and t are stretched by the new coordinate system ξ, η and τ in many scale variables:

ξ = ε
(
lx x + ly y + lz z − V0t

) + ε2M0(η, τ ) + · · · (17)

η = ε
(
lx x + ly y + lz z + V0t

) + ε2N0(ξ, τ ) + · · · (18)

τ = ε3t (19)

where ξ and η denote the opposite side trajectories of solitary waves and ε is a
parameter that determines the strength of nonlinearity. lx , ly , and lz are direction
cosines along the x, y, and z directions, and hence l2x + l2y + l2z = 1. Using (17)–(19)
into (8)–(12) and comparing lowest order ε and taking direction cosines as (1, 0, 0)
as wave propagation is along x-axes only, we get the normalized phase velocity for
magnetized plasma as:

V0 = ω

k
=

[
δ(1 + H 2k2

4 )

1 + δk2(1 + H 2k2
4 )

+ H 2k2

4

]1/2

+ u0 (20)
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Next taking higher order of ε, we get the following equations:

∂φ(1)

∂τ
+ A1φ

(1) ∂φ(1)

∂ξ
+ B1

∂3φ(1)

∂ξ3
= 0 (21)

∂φ(1)

∂τ
− A2φ

(1) ∂φ(1)

∂η
− B2

∂3φ(1)

∂η3
= 0 (22)

where

A1 =
p22(V0−u0)

2

δ
− p21 − 2p1 p2

p1 + (V0 − u0) p2
(23)

A2 =
p22(V0−u0)

2

δ
− p21 − 2p1 p2

p1 + (u0 − V0) p2
(24)

B1 = (Vo − uo)
2 − H 2

4 p2 (Vo − uo)
2

p1 + (Vo − uo) p2
(25)

B2 = (Vo − uo)
2 − H 2

4 p2 (Vo − uo)
2

p1 + (uo − Vo) p2
(26)

Equations (21) and (22) are theKdVequations of two solitarywavesmove towards
one another in the reference frame of ξ and η.

5 Simulation Results

Soliton-soliton collision and decomposition of stationary structures into the sec-
ondary formation are the two mechanisms which explains the result of this analytic
study. We start with the KdV equation and use our choice of initial and boundary
conditions which show many intermittent phenomena that are crucial in understand-
ing of these mechanisms. The simulation carried out here had been designed by
Chinmay Das and Swarniv Chandra in the summer of 2021 at the computational
faculty of Institute of Natural Sciences and Applied Technology, Kolkata. It explains
Fourier transform coupled with Runge Kutta technique. The code has been named
as INSAT-FORK code and is referred to in literature [41].
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5.1 Interaction of Solitary Structures

Herewewould study the time evolution of the stationary structures when two of them
collide with each other. The interacting solitons can either be of the same or opposite
structures. Density structures can be either solitary wavelets or of opposite polarity
(expressed as a hyperbolic secant function) depending upon whether the solitons
have similar structures or different ones at the beginning. These structures will give
us different mechanisms if we let them propagate in space. The mechanisms we get
from these are that the propagations are dependent on the scaling scheme i.e the order
of scheme which we want to study. Here the scale of interaction is normalization.
From figures, we get the information of soliton-soliton collision and their evolution
with time. Figure 1 shows that initially two Gaussian pulses are separated by some
distance and they are moving towards each other. The perturbation caused by their
interaction stays a bit longer even though the interaction is over. Perturbation stays
after the interaction of two hyperbolic secant squared waves too, but in this case,
perturbation caused is more frequent and of sharp and high altitudes (Fig. 2). The
cause behind this can be the higher peaks and sharpness of bothwaves. The interaction
of two sinusoidal waves in Fig. 3 causes equal and opposite disturbance in opposite
polarity regions of the wave at time τ = 3, which immediately disappears.

Figure 4 shows the interaction of twoGaussian pulses caused by an external force.
Even in this interaction too, the disturbance remains even after the interaction has
finished. Next, in Fig. 5, the interaction of secant hyperbolic squared pulses after the
external force is applied. As can be seen, the peaks of perturbation caused at time τ=4
and 10 are higher than when no external force was applied. Even in the interaction
of two sinusoidal waves (Fig. 6, the external force caused to have a little disturbance
after the interaction, which was not there without external force.

Fig. 1 (i) Variation in soliton-soliton collisions for two Gaussian pulses. (ii) Counter plots of
variation in soliton-soliton collisions for two Gaussian pulses
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Fig. 2 (i) Variation in soliton-soliton collisions for two hyperbolic secant squared type pulses. (ii)
Counter plots of variation in soliton-soliton collisions for two hyperbolic secant squared type pulses

Fig. 3 (i) Variation in soliton-soliton collisions for two sinusoidal propagating pulses. (ii) Counter
plots of variation in soliton-soliton collisions for two sinusoidal propagating pulses

Fig. 4 (i) Interaction of two Gaussian pulses from both extremities towards a single point under the
action of an external force. (ii) Counter plots of two Gaussian pulses from both extremities towards
a single point under the action of an external force
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Fig. 5 (i) Time evolution of the potential profile formed by the collision of two secant hyperbolic
squared type pulses under the action of an external force. (ii) Counter plots of the time evolution of
the potential profile formed by the collision of two secant hyperbolic squared type pulses under the
action of an external force

Fig. 6 (i) Time evolution of the potential profile formed by the collision of two sinusoidal pulses
under the action of an external force. (ii) Counter plots of the time evolution of the potential profile
formed by the collision of two sinusoidal pulses under the action of an external force

5.2 Breakdown of Stationary Structures

Here, we would study the decomposition mechanism of stationary structures for
different initial conditions. An initial Gaussian function is seen to break into multiple
fluctuations of potential (Fig. 7), which eventually take on distinct values at the
boundary. This mechanism can be explained as follows: dispersion forces tear down
the Gaussian profile, whereas nonlinear forces seek to strengthen it. Similar is the
case of hyperbolic secant squared pulse in Fig. 8 but the fluctuations, in this case,
are of lower amplitude. The effect of a sinusoidal waveform is spatially extended but
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Fig. 7 (i) Breakdown of initial Gaussian pulse. (ii) Counter plots of breakdown of Gaussian pulses

Fig. 8 (i) Breakdown of Initial hyperbolic secant squared hyperbolic function. (ii) Counter plots
of Breakdown of secant hyperbolic squared function

temporally localized, implying that when the energy of the disturbance dissipates,
the sinusoidal profile is effective at exciting the entire medium into small scale short-
lived perturbations that occupy otherwise homogenous media (Fig. 9).

6 Dynamical Study of Electron Acoustic KdV Solitons

In this part, we would determine how EAWs propagates and evolves, how it behaves
when the small perturbation is given to the system, its stability and its chaotic behavior
i.e. when very small changes are made in the initial conditions how the systemwould
respond to them. Dynamics of both perturbed and unperturbed would be discussed.
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Fig. 9 (i) Breakdown of sinusoidal propagating pulses. (ii) Counter plots of breakdown of initial
sinusoidal propagating pulses

6.1 Unperturbed System

In order to investigate the dynamical systems (DS) behavior of the system which is
not perturbed corresponding to the KdV-equation (21), a one-dimensional traveling
wave transformation η = ξ − Mτ has been considered with boundary conditions
ψ → 0, ∂ψ

∂ξ
→ 0 as η → ±∞, where M is the velocity of the wave frame. By using

this transformation in the KdV equation (21) and after integrating w.r.t η, we get

∂2ψ

∂ξ2
= Rψ − Tψ2 (27)

where R = M
Bl3 , T = A

2Bl2

By assuming
∂ψ

∂η
= z1 (28)

The equation (27) transformed into the dynamical system of the form

∂z

∂η
= Rψ − Tψ2 (29)

The two nonlinear differential equations (27) and (28) represent the dynamics of the
unperturbed KdV equation (21). The system will be conservative if the divergence
of field is zero (∇ · F = 0) i.e the field is Solenoidal, where F(z, R�(1) − Tψ(1)3 ).
Hence the Hamiltonian of the planar system is given by:
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H(ψ, z) = z2

4
− Rψ2

2
+ Tψ4

4
(30)

The term Bifurcation is used for the mathematical investigation of dynamical sys-
tems. Bifurcation is the study of unforeseen changes in the qualitative or topological
structure of a given family, such as the integral curves of a family of vector fields,
and the solutions of a family of differential equations when a small smooth change is
made to the bifurcation parameters [96–100]. Hence we also analyze the Bifurcation
as the phase plots describe all equations of EAWs with different initial conditions.

6.2 Perturbed System

The system is said to be perturbed when there is some external source of disturbance
and the effects of these small external disturbances/forces/perturbations on the system
are of great importance. Different types of forces affect the system differently. For
our case, the provided external force is f0cos(ωη). Under such an external force the
modeled equation will result in the forced KdV. Hence, we obtain

∂�

∂η
= z (31)

∂z

∂η
= Rψ(1) − Tψ2 + f0cos(ωη) (32)

These twoDS equations represent the dynamics of forced KdV. Here η is the external
perturbation, f0 is the strength of the perturbation and ω is the compound frequency.

Figure10 shows super nonlinear wave solution with variation of ψ for different
values of δ, H and u0. There is an increase in the amplitude and wavelength with
every greater value of δ and so is the case of increase in value of H and u0 but

Fig. 10 Supernonlinear wave solution with variation of ψ corresponding to dynamical system for
forced KdV equation with different values of (i) δ = 0.1 (Sky Blue), 0.2 (yellow), 0.3 (Brown), 0.4
(purple), (ii) H = 1.6 (Sky Blue), 1.8 (yellow), 2 (Brown) 2.2 (Purple), (iii) u0= 0.8 (Sky blue), 0.9
(Brown), 1 (Yellow)
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Fig. 11 Super nonlinear wave solution with variation of z corresponding to dynamical system for
forced KdV equation with different values of (i) δ = 0.1 (Sky Blue), 0.2 (yellow), 0.3 (Brown), 0.4
(purple), (ii) H = 1.6 (Sky Blue), 1.8 (yellow), 2 (Brown) 2.2 (Purple), (iii) u0 = 0.8 (Sky blue), 0.9
(Brown), 1 (Yellow)

Fig. 12 Phase portrait of forced KdV for different values of (i) δ = 0.3, (ii) δ = 0.5, (iii) δ = 0.7

Fig. 13 Phase portrait of forced KdV for different values of (i) H = 1.8, (ii) H = 2, (iii) H = 2.2

Fig. 14 Phase portrait of forced KdV for different values of (i) u0 = 0.8, (ii) u0 = 0.9, (iii) u0 = 1
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Fig. 15 Bifurcation plots for forced Kdv

Fig. 16 Largest Lyapunov exponent for Forced KdV for variation of (i) δ, (ii) H and (iii) η
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the increase in wavelength is much more dominating in case of higher value of H
whereas in case of u0 it is the increase in amplitude that dominates.

In Fig. 11, super nonlinear wave solution with variation of z for different values
of δ, H and u0 are shown. In all the three cases here, it is only the wavelength that
increases with rise in any of the three parameters. The phase portrait plot, different
initial conditions have closed loops. In Figs. 12 and 13, the loop is unsymmetrical
along z and tend to elongate itself even more in the direction of z with rise in δ. In
Fig. 14, the loop is initially symmetrical but with rise in u0 becomes elongated and
unsymmetrical.

Figure 15, the bifurcation plots for forcedKdV are presented for different parame-
ters. With variation in δ, the position varies exponentially whereas there is no change
in momentum. And further, as H varies, the position varies linearly but momentum
has no effect of H also. As Lyapunov exponent represents chaos, Chaotic behaviour
for different parameters is shown in Fig. 16. For δ, the chaotic peaks lie between
0.1 and 0.3 and for H lies near 2. The chaotic behaviour is kind of perturbes and
exponential in case of η.

7 Conclusion

We have studied two temperature plasma with Quantum-Hydrodynamic (QHD)
Model, deriving its dispersion relation and further studied the decomposition of
soliton and interaction of two solitons. The solution to the Forced-KdV equation
demonstrates how the behaviour of these perturbed solitons is affected by the param-
eters used. The unperturbed plasma system is investigated first, followed by how the
perturbation impacts the system.

The dynamical system is also investigated. The significance of researching
Dynamical systems is demonstrated through phase pictures. The qualitative shift
in this system’s dynamics with changes in parameters is explained by bifurcation,
which uses the Lyapunov exponent to characterise the rate of separation of infinites-
imally close paths. The system’s chaotic behaviour is investigated using the Largest
Lyapunov exponent. This research can be used to a variety of astrophysical phenom-
ena, such as stellar media, magnetospheres, and polar caps.
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Motion of Adiabatic or Isothermal Flow
Headed by a Magnetogasdynamic
Cylindrical Shock Through Rotating
Dusty Gas

P. K. Sahu

Abstract Expansion of cylindrical shocks pushed out through a dynamic piston via
rotating perfect dust-pervade gas in the presence of spatially diminishing magnetic
field is inquired. The velocity and magnetic field are presumed to comply with power
rules. The gas should be conducting electrically. The shockwave proceeds bymutable
velocity as well as the total energy being non-stationary. Numerical calculations are
accomplished to access the flow variable’s profiles. It is also assessed as to how the
magnetic field affects the behaviour of the flow parameters. Further, it’s far exciting
to word that in attendance of an azimuthal magnetic field the density and pressure
evanesce at expansive region and therefore void is constituted at the symmetry’s axis,
that’s in great accordance with laboratory situations to generate shock-wave.

Keywords Magnetic field · Perfect dust-pervade gas · Rotating medium ·
Adiabatic and isothermal flows · Mechanics of fluids

1 Introduction

“When the energy of the electric field is much smaller than that of the magnetic field,
then all the electromagnetic quantities can be expressed in terms of the magnetic
field, then only the interaction between gas-dynamic field and magnetic field can
be considered. Such analysis is known as Magnetogasdynamics.” Prime persuasive
for considering magnetogasdynamics is it has several implementations in the area
of astrophysics, aerodynamics, as well as atmospheric sciences. The comprehensive
investigation of magnetogasdynamics shock is offered by several researchers (see
Hartmann [1], Balick and Frank [2], Nath [3], Nath and Sahu [4], Nath et al. [5,
6], Sahu [7–9] and the references cited therein). For evaluation of improvements
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of the statistical approach in MHD (Magnetohydrodynamics) turbulence, refer to
Verma [10].

The topic of magneto-gas-dynamic shock wave expansion in a rotating interstel-
lar environment is of special relevance in the investigation of astronomical events.
The external atmospheres of the planets spin as a result of the planets’ spinning,
according to experimental research and astrophysical observations. In an interstellar
environment with spin, macroscopic motion at supersonic speeds occurs, and shock
waves are created. Furthermore, because the intergalactic magnetic field is linked
to the rotating sun, a wide-scale magnetic field may arise in quickly rotating stars.
Thus, the spin of planets or stars has a substantial impact on the processes occurring
in their outermost parts. As a result, topics concerning detonation in spinning gas
atmospheres are of great astronomical importance. Many academics have researched
these issues in recent years (see, Levin and Skopina [11], Nath [12], Nath et al. [13],
Nath and Sahu [14–16], Sahu [17–19]).

Recently, the perusal of fluid flow in a dust-pervade gas is a topic of high involve-
ment because it has extensive implementations in environmental as well as indus-
trial fields like lunar-ash flowing, nozzle flowing, volcanic explosions, under-ground
explosion, cosmic explosion, the formation of polluted crystals, formation of the
stars, supersonic flights and various others real-life problems of engineering and sci-
ence. Several research articles based on the screening of the shock waves expansion
in a dust-pervade gas (see Refs. Pai et al. [20], Higashino [21], Miura and Glass [22],
Popel and Gisko [23], Pai [24], Nath and Sahu [25, 26], Sahu [27, 28] as well as the
sources listed throughout).

Notwithstanding, in a dust-pervade gas, similarity approaches have been men-
tioned very drastically within the literature, but they have hardly been investigated
taking magnetic field into account. In this article, a system of non-linear PDEs that
describes the cylindrically symmetric flow is considered through a perfect dust-
pervade gas in the existence of a magnetic field for both isothermal and adiabatic
flows. When radiative transfer effects are included, the isothermal flow hypothesis is
physically plausible. This supposition about the flow’s nature correlates to the start of
a highly powerful explosion (for instance, subterranean, volcano, and cosmological
blasts; or coal-mine bursts) when the temperature of the gas is exceptionally high
(Sedov [29], Laumbach and Probstein [30]). The extant work is the enhancement
of Vishwakarma and Pandey’s [31] work by recognising the consequences of the
rotating medium as well magnetic fields in cylindrical coordinate. The extant work
is also the enhancement of Nath’s [3, 12] works by recognising the consequences of
dust particles or magnetic fields respectively in perfect dust-pervade gas.

2 Governing Equations—Adiabatic Flow

The executive equations describing 1D adiabatic, non-stationary, cylindrical, per-
fect dust-pervade rotating gas flow together with an azimuthal or axial magnetic
field can be compiled like (c.f. Nath [3, 12], Sahu [7, 17], Levin and Skopina [11],
Pai et al. [20])
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in which r and t are unattached space as well as time coordinates; u, v, w designate
dust-pervade gas’s velocity components; p, ρ, and Em designate dust-pervade gas’s
pressure, density, and internal energy; h = μH 2

2 designates magnetic pressure, H
designates the intensity of the magnetic field, it might be alternatively axial (i = 0)
or azimuthal (i = 1); μ designates magnetic permeability. D

Dt = (
∂
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) + u
(

∂
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)
being

material derivative.
The governing Eqs. (1–6) ought to be enclosed by an equation of state (see, Sahu

[18], Nath and Sahu [25], Vishwakarma and Pandey [31]).

p = (1 − χp)

(1 − Z)
ρR∗T, Em = p (1 − Z)

(� − 1) ρ
. (7)

We assumed that the medium rotated around a symmetry axis. For details of that
readers are referred to see, Levin and Skopina [11], Sahu [17–19]. Flow factors forth-
with preceding the shock are considered as (see, Sahu [7, 17])

H = H1 = H0r
−δ
s , ρ = ρ1 = constant,

u = u1 = 0, v = v1 = v0r
α
s , w = w1 = w0r

λ
s ,

p = p1 =
(
i − δ

2δ

)
μ H 2

0 r
−2δ
s + ρ1v

2
0

2α
r2αs , δ �= 0,α �= 0 (8)
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in which v0, w0, H0, α, λ and δ designate dimensional constants; rs designates
shock-radius and relator 1 designates circumstances forthwith preceding shock.

The Rankine-Hugoniot stipulations are (c.f. Sahu [18], Vishwakarma and Pandey
[31]) namely,

ρ2 = ρr=rs = ρ1

β
, u2 = ur=rs = (1 − β)Us, v2 = vr=rs = v1

p2 = pr=rs =
[
(1 − β) + Ca

(
1 − 1

β2

)
+ 1

γM2

]
ρ1U

2
s , (9)

w2 = wr=rs = w1, h2 = hr=rs = h1
β2

, Z2 = Z1

β

Relator 2 designates situations forthwith back of the shock, Us
(= drs

dt

)
desig-

nates shock front velocity, M
(
= ρ1U 2

s
γ p1

) 1
2
and Ca =

(
h1

ρ1U 2
s

)
designate shock-Mach

and Cowling number. Following interrelation is used to specify the density ratio β
throughout the shock (see, Sahu [17, 18])

β3(� + 1) − β2
[

2�

γ M2 + � (1 + 2Ca) + 2Z1 − 1

]
+ 2β Ca (Z1 + � − 2) + 2Ca Z1 = 0.

(10)

3 Self-similarity Transformations

Behind the shock, the interior extent of flow is avowed to be an expansive region.
Following Sedov [29], in the formation of self-similarity, the expansive region’s
velocity is putative to adhere to a power-law that reads (see, Sahu [9, 28], Steiner
and Hirschler [32], Zel’Dovich and Raizer [33])

u p = drp
dt

= U0

(
t

t0

)n

, (11)

where rp designates expansive region’s radius, t0 designates reference-time, n des-
ignates constant and U0 designates expansive region velocity at reference-time.

In terms of extent stipulation, similarity solution asserts that the shock velocity is
proportional to expansive region velocity, as shown below
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Us = drs
dt

= CU0

(
t

t0

)n

, (12)

in which C designates dimensionless constant. Also,


(sel f − similari t y variable) = r

rs
=

[
(n + 1)tn0
CU0

] ( r

tn+1

)
. (13)

Certainly, onto the shock 
 = 1 and 
 = 
p

(
= rp

rs

)
upon the expansive region.

The unknown variables are note downed in the under-mentioned form to obtain
the similarity solutions, (Sahu [7, 9, 28], Steiner and Hirschler [32])

u = r

t
V (
), v = r

t
φ(
), w = r

t
ψ(
), p = ρ1

r2

t2
P(
),

ρ = ρ1D(
), h = ρ1
r2

t2
B(
), Z = Z1D(
), (14)

where V , φ, ψ, P , D and B are functions of 
 only.
Furthermore, the total energy of the shock is

E = 2 π

∫ rs

rp

ρ

[
Em + 1

2

(
u2 + v2 + w2

) + h

ρ

]
rdr. (15)

Using (7) and (14), Eq. (15) becomes

E = 2πρ1

[
CU0

(n + 1)tn0

] 2
n+1

r
4n+2
n+1
s

∫ 1


p

[
P(1 − Z1D)

(� − 1)
+ D

2

(
U 2 + ψ2 + φ2) + B

]

3d
.

(16)

Therefore, the total energy of the shock wave is non-stationary and varies as r
4n+2
n+1
s

(see, Freeman [34], Sahu [35–37]).
Given the similarity of the results, entitiesM andCa are intended to be unchanging

in this case
α = −δ = n

n + 1
. (17)

We now obtain α < 1 (see, Levin and Skopina [11], Sahu [17–19]). As a result
of Eq. (17), we obtain n

n+1 < 1. Thus

M2 = δ

γ Ca

[
(i − δ) − ρ1 v20

μH 2
0

] . (18)
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Equation (18) demonstrates that the solutions to the identified issue may be limited
to the situation when the ambient media is non-rotating (i.e. v0 = 0 and w0 = 0).

Employing the Eq. (14), the governing apparatus of Eqs. (1)–(6) metamorphose
into the consecutive apparatus of ODEs:

dD

d

= 1

L

[
{V − (n + 1)} 2 V D − D V (V − 1) − 2P − 2B(i + 1) + 2 P (V − 1) − 2B − (i − 1) 2 B V

{V − (n + 1)} + D φ2
]
,

(19)
dV

d

= − [V − (n + 1)]

D

dD

d

− 2 V



, (20)

dP

d

= � P

D (1 − Z1 D)

dD

d

− 2 P (V − 1)


 [V − (n + 1)]
, (21)

dB

d

= 2 B + (i − 1) 2 B V


 [V − (n + 1)]
+ 2 B

D

dD

d

, (22)

dφ

d

= (1 − 2 V )φ


 [V − (n + 1)]
, (23)

dψ

d

= (1 − V )ψ


 [V − (n + 1)]
, (24)

where

L = L(
) = 


D (1 − Z1 D)

[
� P + 2 B (1 − Z1 D) − (1 − Z1 D) D {V − (n + 1)}2

]
.

(25)

Employing Eq. (14), the transformed shock circumstances be

B(1) = Ca

β2
(n + 1)2D(1) = 1

β
, V (1) = (1 − β) (n + 1),

P(1) =
[
(1 − β) + Ca

(
1 − 1

β2

)
+ 1

γM2

]
(n + 1)2. (26)

φ(1) = v0

[
C U0

tn0 (n + 1)

] −1
(n+1)

,ψ(1) = w0

[
C U0

tn0 (n + 1)

] −1
(n+1)

,

where α = λ = −δ was required to get the similarity solutions.

4 Isothermal Flow

In this part, we show the solution in respect of isothermal, cylindrically symmet-
ric, perfect dust-pervade rotating gas flow having a magnetic field that might be
alternatively axial or azimuthal. The issue’s boundary circumstances are the shock
circumstances (9), i.e. same as the scenario of adiabatic flow.
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In respect of isothermal flow, Eq. (6) is rewritten as (see, Sahu [7, 17])

∂T

∂r
= 0. (27)

Equation (27), when combined using Eq. (14), yields

p

p2
= ρ (1 − Z2)

ρ2 (1 − Z)
. (28)

Equation (27), when combined using Eqs. (14) and (26), presents a kind of a
relationship connecting P and D

P(
) =
[
(1 − β) + Ca(β

2 − 1)

β2
+ 1

γM2

]
(β − Z1) D (n + 1)2


2 [1 − Z1) D] . (29)

Employing the Eq. (14), the governing apparatus of equations and (27) metamor-
phose into the consecutive apparatus of ODE :

dD

d

= 1

N

[
{V − (n + 1)} 2 V D − DV (V − 1) − 2B(i + 1) − 2B + (i − 1) 2 BV

{V − (n + 1)} + D φ2
]
,

(30)
where

N = N (
) = 


D (1 − Z1 D)

[
P + 2 B (1 − Z1 D) − (1 − Z1 D) D {V − (n + 1)}2

]
.

(31)

For obtaining numerical results, it’s suitable to compose variables u, v, w, p, ρ
and h in the under-mentioned form (non-dimensional)

u

u2
= 


V (
)

V (1)
,

v

v2
= 


φ(
)

φ(1)
,

w

w2
= 


ψ(
)

ψ(1)
,

p

p2
= 
2 P(
)

P(1)
,

ρ

ρ2
= Z

Z2
= D(
)

D(1)
,
h

h2
= 
2 B(
)

B(1)
. (32)

Also, we have
V (
p) = n + 1. (33)

5 Results and Discussion

The flow parameters distribution between
 = 1 and
 = 
p are decided by means
of numerically integrating Eqs. (19)– (24) in respect of adiabatic flow as well as
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Fig. 1 Variability of dust-pervade gas parameters at the back of the shock: a radial component of
fluid velocity u

u2
, b azimuthal component of fluid velocity v

v2
, c axial component of fluid velocity

w
w2

, d density ρ
ρ2
, e pressure p

p2
, f magnetic field h

h2
, g azimuthal component of vorticity vector

lθ , h axial component of vorticity vector lz , i compressibility : adiabatic (Cadi ) p1, and isothermal
(τiso) p1 (Reference Table 1 for further information on input variables)
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Table 1 Taking into account different aspects of i and Ca with γ = 5
3 ; β′ = 1; χp = 0.1;G1 =

10; n = −0.1


p

i Ca β Adiabatic flow
(Case No. in Fig.
1)

Isothermal flow
(Case No. in Fig.
1)

0 0.0 0.300699 0.842824 (1) 0.847369 (7)

0.01 0.309486 0.837828 (–) 0.841335 (–)

0.02 0.317855 0.833051 (2) 0.835803 (8)

0.03 0.325860 0.828462 (3) 0.830629 (9)

1 0.0 0.300699 0.842824 (4) 0.847369 (10)

0.01 0.357026 0.755073 (–) 0.761960 (–)

0.02 0.471998 0.669336 (5) 0.684021 (11)

0.03 0.585440 0.586502 (6) 0.617276 (12)

by means of Eqs. (20), (22)–(24), (30) in respect of isothermal flow with (26, 33)
using fourth-order Runge-Kutta method. The extant work is also the enhancement
of Nath’s [3, 12] works recognising the consequences of dust particles or magnetic
fields respectively in perfect dust-pervade gas. Figure 1 shows that the procured
solution is in nice concurrence with the established solutions of Nath [3, 12].

5.1 Efficacy of the Existence of the Magnetic Field Is as
Adhere

By enhancing the value of Ca; the extent between expansive region and shock as
well as β enhances (see Table 1). Physically it approaches that the gas at the back
of the shock contracted lower, i.e. the shock strength reduces in the existence of
both azimuthal or axial magnetic fields. u

u2
enhances while moving inside towards

expansive region through shock, though, it reduces in the existence of axial magnetic
field for an isothermal flow. v

v2
enhances, but to reduce h

h2
and lz∗ while moving inside

towards expansive region through shock. w
w2

and lθ enhance, but to reduce ρ
ρ2
, p

p2
,

(Cadi ) p1, and (τiso) p1 in the existence of axial magnetic field; though, inverted
conduct is executed in the existence of azimuthal magnetic field (see Fig. 1).

5.2 The Differences of Adiabatic and Isothermal Motions

It is obvious through Table 1 that
p in isothermal flow is bigger than
p in adiabatic
flow. Physically, it indicates that the gas is condensed further in isothermal flow than
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in adiabatic flow. As a result, the shock strength is greater for isothermal flow than
in the adiabatic flow.

6 Conclusions

On the ground of the aforementioned work, the succeeding conclusions could be
sketched:

(i) Investigation of shock expansion in the existence of the magnetic field in an
ideal dust-pervade gas through adiabatic and isothermal flows for cylindrical
shock, has not been made previously.

(ii) The supposition of a constant temperature difference eliminates the disconti-
nuities that occur in the scenario of adiabatic flow.

(iii) The azimuthal magnetic field contemplation produces outstanding distinction
in the flow variables distribution.

(iv) In the attendance of magnetic field the density and pressure evanesce at the
expansive region and therefore void is constituted at the symmetry’s centre.
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Structural Variations of Ion-Acoustic
Solitons

Hirak Jyoti Dehingia and P. N. Deka

Abstract In this paper, we have presented our investigation on the variation in the
structure of ion-acoustic solitons due to variation of densities in the presence of
isothermal electrons in the plasma. We have considered the standard ion density
profile and its variations and studied the effects of density variation on solitons. We
have considered the governing fluid equations of plasma and derived the modified
Kadomtsev–Petviashvili (KP) equation using the reductive perturbation technique
(RPT). The solution of the KP equation indicates the variation in soliton structures.

Keywords Ion-acoustic solitons · Inhomogeneous plasma · Isothermal electrons

1 Introduction

Solitons or solitary waves are special wave packets or self-reinforcing waves that
maintain their shape during their propagation at a constant speed. Solitons are formed
by canceling the nonlinear and dispersive effects in the respective medium. Washimi
and Taniuti [1] started extensively exploring the Korteweg de-Vries equation (KdV)
for describing ion-acoustic solitons. Then, Nishikawa and Kaw [2] considered the
inhomogeneous plasmas for studying ion-acoustic soliton propagation for the first
time. Kuehl [3] has investigated the reflection of ion-acoustic solitons theoretically.
He concluded that there were some changes in the amplitudes of both reflected and
incident solitons. Later, Kuehl and Imen [4] studied soliton propagations in inhomo-
geneous plasmas considering the set of fluid equations. Nejoh [5] has investigated
the various effects of ion temperature on the characteristics of soliton propagation
in collisionless, inhomogeneous relativistic plasmas. Singh and Dahiya [6] extended
the theory of theKdV equation by using the Reductive Perturbation Technique (RPT)
in inhomogeneous plasmas. A Large member of the plasma physics community has
studied soliton and their other characteristics in various physical situations. Some of
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the authors have studied soliton propagation in inhomogeneous plasma in the pres-
ence of finite ion temperature [7, 8], negative ions [9–12], dust effect [13], etc. Singh
andMalik investigated the energy of solitons at both the critical and noncritical densi-
ties for negative ions under the influence of magnetized warm plasmas [14]. Hellberg
and Verheest studied ion-acoustic solitary waves in inhomogeneous plasmas in the
presence of two-temperature ions [15]. Baluku et al. studied dust ion-acoustic soli-
tary waves in inhomogeneous plasmas under the influence of κ-distributed electrons
[16]. Later, Kakad et al. [17] investigated experimentally the chain formation and
validation of nonlinear fluid theory on ion-acoustic solitarywaves inmagnetized elec-
tron–ion plasmas. Gogoi and Deka [18] have studied the solitary waves for weakly
inhomogeneous plasmas in the presence of nonthermal electrons. Mukherjee et al.
[19] studied soliton bending for weak and slowly varying inhomogeneous unmagne-
tized plasmas. Again, Gogoi and Deka [20] studied the dust acoustic solitary wave’s
propagation in inhomogeneous plasmas in the presence of dust charge fluctuations.
Zhou and Hutchinson investigated the motion of slow electron holes associated with
one-dimensional ion-acoustic solitary waves [21]. Wang et al. studied the numerical
simulation of dark envelope solitary waves in electron–ion plasmas. They concluded
that the plasma waves are not described in the linear superposition of modes. They
are described in the mode of nonlinear dynamical waves [22]. Later, Shi et al. studied
the nonlocal Kundu-nonlinear Schrödinger equation (Kundu-NLS) for investigating
the dynamics of solitary wave solutions which is obtained from coupled Kundu-NLS
system [23]. Song et al. studied the various recent progress of solitons or solitary
waves in optical fiber lasers [24]. Rani and Yadav studied the nonlinear propaga-
tion of electron acoustic solitary waves in the presence of dense magnetized plasma
under the effect of degenerate quantum electrons [25]. Chen et al. investigated the
dynamics of solitary waves in quantum plasmas with nonlinear effects and higher-
order dispersion [26]. Prayitno andBudi studied the energy solution of solitarywaves
numerically in the KdV equation [27]. Lu and Liu investigated some ion-acoustic
solitary waves having small amplitude with regularized κ-distributed electrons [28].
Then by using the inverse scattering method, Wu studied Kadomtsev–Petviashvili
(KP) perturbedmulti-line solitons [29]. Recently, the dust ion-acoustic solitarywaves
and double layers were studied [30] in the presence of adiabatic positive dust grains,
ion species, and Cairns-distributed electrons. Thus, understanding the present impor-
tance of soliton study in different astrophysical situations, we have considered our
investigation on the structural variations of ion-acoustic solitons due to variation of
densities in the presence of isothermal electrons plasmas.

2 Governing Equations and Derivations

Let us consider two-dimensional, unmagnetized, collisionless inhomogeneous
plasma consisting of cold and hot isothermal electrons. The dimensionless ion conti-
nuity equation and momentum equation, along with Poisson’s equation and the
equation for electron Boltzmann distribution, is taken as follows:
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∂n
∂t + ∂(nux )

∂x + ∂(nuy)

∂y = 0
∂ux
∂t + ux

∂ux
∂x + uy

∂ux
∂y + ∂∅

∂x = 0
∂uy

∂t + ux
∂uy

∂x + uy
∂uy

∂y + ∂∅

∂y = 0
∂2

∅

∂x2 = ne − n
ne = e∅

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

To study ion-acoustic solitary waves and their propagation in inhomogeneous
plasmas, we have considered the following two dimensional stretched coordinates
[19]:

η = ε3/2x, λ = εy, ξ = ε
1
2 (x − V t) (2)

where V is a constant or the phase velocity of the normalized wave, normalized by
ion-acoustic speed Cs , ε is an expansion parameter.

We consider the plasma model [19] in which unperturbed number density for
ions of the form ñ0(η) = 1 + δ f0(η), where δ is a very small parameter. To use the
Reductive Perturbation Technique (RPT) method for the small expansion parameter
ε we use some expanded variables are follows

n = 1 + ε{ f0(η) + n1(η, γ, ξ)} + ε2n2(η, γ, ξ) + . . .

φ = ε
{
f0(η)2c12 + φ1(η, γ, ξ)

} + ε2φ2(η, γ, ξ) + . . .

ux = c1 + ε{u1(η, γ, ξ) − c1 f0(η)} + ε2u2(η, γ, ξ) + . . .

uy = ε
3
2 v1(η, γ, ξ) + ε

5
2 v2(η, γ, ξ) + . . .

⎫
⎪⎪⎬

⎪⎪⎭

(3)

After using the set of stretched coordinates referred by Eq. (2) and expanded
variables referred by Eq. (3) in the governing Eq. (1) we get some sets of equations.
Then the coefficients of various powers of ε are compared. After evaluating and
combining the new set of equations, will generate an equation is of the form

∂

∂ξ

[

A
∂n1
∂η

+ 2n1
∂n1
∂ξ

+ ∂3n1
∂ξ 3

]

+ ∂2n1
∂λ2

− 2c1 f0
∂2n1
∂ξ 2

= 0 (4)

Here A is a constant, c1 = 1√
2
and Eq. (4) is a modified KP equation. But the last

extra term arises in Eq. (4) due to inhomogeneity.
Now, let us consider a new frame of reference X = ξ + p(η),Y = λ, T = η

where p(η) = 1√
2+1

∫
f0(η)dη. Using this new frame of reference Eq. to (4) we get

the modified form of KP equation is

∂

∂X

[
∂S

∂τ
+ 6S + ∂S

∂X
+ ∂3S

∂X3

]

+ ∂2S

∂Y 2
= 0 (5)
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The solution of the above modified KP equation i.e., Eq. (5) will give the soliton
solutions. In the new co-ordinate X, the structural variations of the soliton solutions
can be seen due to the presence of p(η) which is related to f0(η).

3 Results

The one soliton solution of (5) is given by [31]

S = k1
2

2
sech2

[
1

2

(

k1X + m1Y − k1
4 + m1

2

k1

)]

⇒ n1 = 3k12

2
sech2

⎡

⎣
1

2

⎛

⎝k1ξ + k1 p(η) + m1λ − k14 + m1
2

k1
√
2
(√

2 + 1
)η

⎞

⎠

⎤

⎦ (6)

where k1 and m1 are arbitrary constants.
Similarly, two soliton solution of Eq. (4) is given by [31]

S = 2
∂2

∂ξ 2
(lnC)

⇒ n1 = 6
∂2

∂ξ 2
(lnC) (7)

where

C = 1 + eη1 + eη1 + Beη1+η2 , B = (K1 − K2)
2 − (M1 − M2)

2

(K1 + K2)
2 − (M1 − M2)

2

η1 = K1

⎡

⎣ξ + p(η) + √
3M1λ −

(
K1

2 + 3M1
2
)

(
2 + √

2
) η

⎤

⎦,

η
2

= K2

⎡

⎣ξ + p(η) + √
3M2λ −

(
K2

2 + 3M2
2
)

(
2 + √

2
) η

⎤

⎦

where K1, K2, M1, and M2 are arbitrary constants. The structural variations of a
soliton will take place due to the presence of inhomogeneous ion number density
and the term p(η), which is related to f0(η). The inhomogeneities will be different
based on the various choices of f0(η). So, for the trivial choice of f0, i.e., f 0 = 0,
the inhomogeneous ion number density profile will reproduce the homogenous line
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Fig. 1 Picture of one soliton
solution given by Eq. (6) at
f0 = 0, representing a
homogeneous line soliton
solution reproduced from the
chosen Inhomogeneous
plasmas or ion number
density

soliton, shown in Fig. 1. Similarly, the structural variations of one soliton solution
will also be seen based on the various choices of f0(η), which are shown in Fig. 2.
The different structural variations for two soliton solutions can also be observed by
considering f0 = 0 and based on the various choices of f0(η). Here, the graphical
interpretations of the two soliton solutions are not presented in this work.

Now to investigate how many structural variations of a soliton will occur or what
condition the structural variations will be seen.

In the case of one soliton solution given by Eq. (6), for the static case, i.e., ξ = 0,
the locus of maximum amplitude is of from

k1 p(η) + m1λ − k1
4 + m1

2

k1
√
2
(√

2 + 1
)η = 0

Then for some chosen k1,m1, we have

du

dη
= d f0

dη
(8)

where u = dλ
dη

is the slope for the locus of themaximum amplitude. The above Eq. (8)
implies the larger variation of soliton structures in the larger rate of slope variation.
Hence for the larger variation of soliton structures, RHS of Eq. (8) must be larger,
i.e., the first-order derivative of f0 w.r.t. η also must be immense. So we can choose
some functional forms of f0 to show the variations of various soliton structures.

In Fig. 2a,we have seen that ifwe increase the amplitude of f0, then the structure of
the solitonwill bemore deformed andwill cause larger bending.Again, ifwedecrease
the amplitude of f0, then the structural variations of the solitonswill be seen relatively
less. Similarly, we can also observe similar things in Fig. 2b, where the sum of sine
and cosine functions goes more rapidly. Also, based on the increasing/decreasing
wave vector of f0, the soliton will cause mores/less deformed. Thus based on both
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Fig. 2 For some chosen
k1,m1, K 1, K 2, and ξ = 0,
various functional forms of
f0(η) are considered above
to show the structural
variations of solitons by
changing the phase of the
solitary waves

(b) One soliton for

(a) One soliton for

amplitude andwavevector of f0, thefirst-order derivative of f0 will increase/decrease
andwill case the structural variations of soliton in themore/less amount. Hence, some
similar conclusions can also be given for various choices of f0(η).

Thus in this work, the structural variations of solitons are presented analytically.
The structural variations are shown based on the dependency of f0, is related to
the ion number density for inhomogeneous plasmas. For the above investigations,
here exactly the KP Eq. (5) is solved for the propagation of ion-acoustic soliton
in two-dimensional inhomogeneous plasmas. As we have transformed the derived
Eq. (4) into a standard, modified KP Eq. (6) with constant coefficient, we have
seen that the phase modifications for each and every solution was controlled by the
function f0, which causes the structural modifications of the soliton solutions in the
two-dimensional plane. Here the amplitude of the soliton solution is unchanged.
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4 Conclusion

We have studied the ion-acoustic solitary waves in inhomogeneous unmagnetized
plasmas in the presence of cold and hot isothermal electrons. During these investiga-
tions,we have solved themodifiedKP equation to understand the structural variations
of soliton in the presence of the above-considered model. In solving the modified
KP equation, we have seen the phase of the solitary wave solution gets modified by
the function f0(η). Under the above considerations and constant amplitude, some
structural variations of the soliton are seen accordingly. The study on the structural
variation of soliton inhomogeneous plasmas is a very important feature like the other
important features propagation, transmission, reflection, etc. In our future work, we
wish to study the structural variations of soliton in inhomogeneous plasmas in the
presence of magnetic field and dust effect.
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Effect of Kappa Parameters on the
Modulational Instability in a Polarized
Dusty Plasma

A. Abdikian

Abstract In this paper, we have studied the propagation of dust-acoustic modu-
lated waves in the polarized dusty plasmas. The distributions of electrons and ions
are Boltzmann and Kappa, respectively. We have used the reductive perturbation
method (RPM) to find out the nonlinear amplitudemodulation of dust-acousticwaves
in an unmagnetized collisionless polarized dusty plasma and a modified nonlinear
Schrodinger equation governing the evolution of the dust-acoustic envelope waves
has been derived. The effects of the Kappa parameter on the modulational instability
(MI)was discussed by using the numerical values. It is found that increasing the value
of κ causes to increase the value of the dispersion relation and the group velocity. It
was shown that the MI maximum growth rate firstly increases and then decreases as
the mentioned plasma parameter increases.

Keywords Polarized dusty plasmas · Modulational instability · Nonlinear
Schrodinger equation

1 Introduction

Over the last decade, the study of dusty plasma was an important issue among
researchers because of its applications in variety environments from interstellar space
to laboratory plasma systems [1]. A dusty plasma defined as a common plasma with
massive dust grains in it. The presence of these additional charged particles can
remarkably change the characteristics and behaviors of a plasma [2, 3] and new low
frequency dust mode so-called “dust-acoustic wave” (DAW) give rise. DAW would
be due to the restoring force provided by the plasma thermal pressure while the iner-
tia is due to the dust mass [4].
The polarization force is one of the important forces that change the linear and non-
linear dust dynamics and studies on it are increasing [5]. Physically, the polarization
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force comes from the deformation of the spherical Debye screening of the dusty
grains and it is defined as [6, 7]

Fp = − q2
d

2λ2
D

∇λD, (1)

where qd is the grain charge and λD = λDi/
√
1 + neT i/ni T e is the linearized Debye

radius with the ion Debye radius λDi = ε0kBTi/(e2ni ), and Ti(e) is the ion (electron)
temperature and ni(e) is the ion (electron) number density. It has been shown that
the linear dispersions and nonlinear peculiarities of the DAWs have been modified
by polarization force [8, 9]. Khrapak et al. [8] found that the wave phase velocity
would be decreased in the presence of the polarization effect. Recently, considering
a system of dusty plasma including the negatively charged dust, Maxwellian and
superthermally distributed for electrons and ions respectively, [10], Singh et al. have
reported the impact of polarization force on dust-acoustic cnoidal waves. They found
that an increase in superthermality index of ions leads to a decrease in polarization
parameter. Very recently, the importance of the consideration of nonthermally polar-
ization force onmodulational instability (MI) of dust acousticwaveswas investigated
theoretically by Singh and Saini [11]. By supposing a dusty plasma system with neg-
atively charged dust, Maxwellian and Cairns’ nonthermal distributed for electrons
and ions respectively, they have studied the evolution of DA breathers, namely rogue
waves. The standard reductive perturbation method (RPM) is generally applied to
obtain a nonlinear Schrodinger (NLS) equation. the Peregrine soliton is the analyt-
ical solution of the NLS equation [13]. The Peregrine solitary wave is a significant
collective behavior in plasma, since it can be described as an rogue waves [14, 15].
The modulational instability (MI) of several plasma modes is amount of interest in
studying because the wave propagation stability depend on its relevance [12, 16, 17].
The kappa distribution function, which represents superthermal particles, was first
proposed by Vasyliunas [18]. This distribution function with spectral index κ, which
determines the particle velocity distribution, is suitable for the behavior of particles
in space and interplanetary environment and has attracted a lot of interest. This dis-
tribution function in the limit κ → ∞ includes the Maxwellian distribution function
[19]. Since electrons have less inertia than ions their thermal energy is higher than
ions. Hence, in this paper, we have considered the Maxwellian distribution for elec-
trons and the kappa distribution has been suggested for the ion particles. Also, since
the ratio masses of the electron and ion to the dust particles are so small, these parti-
cles can be considered as non- inertial particles [20]. The aims of the present paper
using of the hydrodynamic (HD) model are to peruse the effects Kappa parameters
on the dust-acoustic modulational instability and the propagation of pulse waves in
a polarized dusty plasma. The paper is organized as follows. In Sect. 2, the model
equations that include the effects of polarization force and the superthermal ions
are presented, and then using the standard reductive perturbation method, the NLS
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equation is derived. In Sect. 3, using the plasma parameter values, the numerical
discussion is presented and the effects of the Kappa parameters on the modulational
instability are also searched. Finally, in Sect. 4 the conclusion is reported.

2 Mathematical Formulation

Considering a dusty plasma media including electrons, ions and charged dust parti-
cles. The normalized dynamic of the DAWs is governed by the following equations
including the polarization force [5, 21]

∂n

∂t
+ ∂ (nu)

∂x
= 0, (2)

∂u

∂t
+ u

∂u

∂x
= χ

∂�

∂x
, (3)

∂2�

∂x2
= μene − μi ni + n, (4)

where � is the electrostatic potential normalized by (kBTi/e), n j is densities of j th
species normalized by its unperturbed densities (n j0), u is dust fluid velocity nor-
malized by DA speed Cd = √

ZdkBTi/md , x normalized by the dust Debye length
λD0 = ε0kBTi/Z2

dnd0, t normalized by ω−1
pd = ε0md/e2Z2

dnd0, μe = ne0/Zdnd0,
μi = ni0/Zdnd0, χ = 1 − R and R ≈ qde/16π ε0λDkBTi [5]. Here, we assume that
the ions obey the Kappa distribution function given by

ni =
(
1 + �

κ − 3/2

)−κ+1/2

, (5)

while the electrons satisfy the Boltzmann relation routinely in the DAWs slow time
regime,

ne = exp (σi�) , (6)

where σi = Ti/Te.
we have applied the standard reductive perturbation method (RPM) to obtain a non-
linear Schrodinger (NLS) equation and then to study the modulation of the DAWs in
the mentioned media [4, 22, 23].We employ the following stretching of independent
variables

ξ = ε(x − vgt), τ = ε2t, (7)



108 A. Abdikian

in which ε is the nonlinearity strength and also is a small value (0 < ε � 1) and vg
is the group velocity of the wave propagating.

n = 1 +
∞∑

m=1

εm
m∑

�=−m

n(m)
� (ξ, τ )exp[il(kx − ωt)], (8)

u =
∞∑

m=1

εm
m∑

�=−m

u(m)
� (ξ, τ )exp[il(kx − ωt)], (9)

� =
∞∑

m=1

εm
m∑

�=−m

�
(m)
� (ξ, τ )exp[il(kx − ωt)], (10)

One can substitute the Expression (7) into the Eqs. (2)–(4) and then collect terms in
the different powers of ε, by this method there are some mth-order equations. One
can obtain the following equation for the first-order m = 1 and � = 1

(
n(1)
1

u(1)
1

)
=

(
C1 − k2

−k χ/ω

)
�

(1)
1 , (11)

and the dispersion relation

ω = k
√

χ√
k2 − C1

, (12)

and group velocity

vg = C1ω
2

ω2 − χ
≡ ∂ω

∂k
, (13)

And then one can get the following relations between second harmonic modes and
terms of �

(1)
1 . For m = 2 and � = 0

⎛
⎝n(2)

0

u(2)
0

�
(2)
0

⎞
⎠ =

⎛
⎜⎜⎜⎝

− 2χ(C2
1 kvgω+C2ω

2−C1k2(χ+kvgω))
(C1v2g−χ)ω2

2χ(C1kχ(kvg−ω)+ω(k3χ−C2vgω))
(C1v2g−χ)ω2

2 (−k2χ2+C1kvgχω−k3vgχ ω+C2v
2
gω

2)
(C1v2g−χ)ω2

⎞
⎟⎟⎟⎠

∣∣∣�(1)
1

∣∣∣2 , (14)

for m = 2, � = 1, we have

(
n(2)
1

u(2)
1

)
= −

(
C1 + k2

(k2 − C1)k/ω

)
�

(2)
1 + 2 i(k2 − C1)

(
1/kω
1/k2

) (
kvg − ω

) ∂�
(1)
1

∂ξ
, (15)
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and for m = 2 and � = 2:

⎛
⎝n(2)

2

u(2)
2

�
(2)
2

⎞
⎠ =

⎛
⎜⎜⎝

− k2χ(C1k2χ+4k4χ−2C2
1ω

2−2C2ω
2−6C1k2ω2+8k4ω2)

2ω2(k2χ−C1ω2−4k2ω2)

− kχ(−C1k2χ+6k4χ−2C2ω
2)

2ω(k2χ−C1ω2−4k2ω2)
−k4χ2+2C1k2χω2−2k4χω2+2C2ω

4

2ω2(−k2χ+C1ω2+4k2ω2)

⎞
⎟⎟⎠

(
�

(1)
1

)2
, (16)

By continuing the same method for the third order and simultaneously considering
the above equations, one can derive the NLS equation as follow

i
∂�

∂τ
+ P

2

∂2�

∂ξ2
+ Q |�|2 � = 0, (17)

where � = �
(1)
1 . The dispersion coefficient relation (P) is

P = 3C1ω
5

k4χ2
, (18)

while the nonlinear coefficient relation (Q) defines as

Q = − ω

4
(
C1 − k2

) (
2C1 + 3k2

) (
2C3

1 − 3C2
1k

2 + 3C1k4 − k6
)[

18C7
1 + 23C6

1k
2

+C5
1

(
80C2 − 274k4

)
+ 2k6

(
2C2

2 + 9C3k
2 + 12C2k

4
)

−3C4
1

(
8C3 + 64C2k

2 − 177k6
)

+ C3
1

(
−24C2

2 + 84C2k
4 − 449k8

)

−3C1k
4
(
4C2

2 + 14C3k
2 + 36C2k

4 + 9k8
)

+2C2
1k

2
(
−6C2

2 + 9C3k
2 + 56C2k

4 + 89k8
) ]

, (19)

3 Results and Discussion

In this section, we want to study the stability/instability of the modulated envelope
waves on the basis of the NLS Eq. (14) of the DAWs in polarized dusty plasma. For
this purpose, we have chosen the parameters in dusty plasmas in which the grain
radius rd = 1µm, ni0 = 1.65 × 108cm−3, Te = 3 ev and σi = 0.01 are applied. It is
proved that [24] the unstable of the modulated wave packets (bright solitary wave)
occurs when the product PQ is positive and the stable of the modulated wave packets
(dark envelope soliton) exists when the product PQ < 0 in the modulation wave
number region k2 > 2Q |�0|2 /P , where �0 is the amplitude of the carrier waves.
Besides, one can choose the wavenumber as k = |�0| √Q/P and then attain the
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maximum growth rate as Q |�0|2. It is proposed the following breather solution in
the unstable regions for the NLS Eq. (14) [15, 25]

� =
√

P

Q

[
−1 + 4(1 + 2 i Pτ )

1 + 4ξ2 + 4P2τ 2

]
exp(i Pτ ), (20)

We numerically investigate the effect of the polarization force on the nature and
behavior of the solution by identification the sign of the product PQ. The critical
wave number is defined as the value of k = kc = |�0| √Q/P for the onset of the
modulational instability. It should be noted that choosingQ=0 leads to P/Q → ±∞.
Figure 1 depicts the dispersion relation (ω) and the group velocity (vg) versus wave
number (k) for the different values of the Kappa parameters (κ). It is seen from Fig.
1a that although ω boosts as the value of k enhances, it shifts towards lower values as
κ increases. This means that the wave energy would be decrease when the value of
the κ parameter increases. The schematic of the group velocity of the solitary wave
for three values of the Kappa parameters (κ) is illustrated in Figure 1b. For plotting,
the Kappa parameters (κ) are chosen as κ = 3, 5 and 10 for blue, orange and green
lines, respectively. The group velocity (vg) would be decreased when the values of
the Kappa parameters (κ) increase.

Figure 2 show the MI region as a blue area for relevant physical parameters.
The stable modulational pulses are depicted by the white regions (where PQ < 0)
and the dark solitary waves can propagate. While the blue area corresponds to the
unstable modulational pulses where the bright solitary waves can exist. It should be
notified that the solid blue line in this figure represents the critical wave number kc.
The behavior of the value kc is depending to the Kappa parameter and increasing the
value of κ causes to a shift of kc towards higher values.

Figure 3a, b demonstrate the absolute of the DA rogue pulse |�| against ξ for
several plasma values such as (a) the Kappa parameters (κ), (b) σi , (c) μe and R.

Fig. 1 The carrier frequency ω and the group velocity vg are plotted against the wave number k
for different values of κ. Here, κ = 3 (blue line), κ = 5 (orange line) and κ = 10 (green line)
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Fig. 2 The contour of PQ is plotted versus the wave number k and the κ parameter

Fig. 3 a The absolute of the rogue wave against ξ for different plasma values a κ b σi , c μe and R
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Although, as can be observed that from Fig. 3a, d that the amplitude of the DA
rogue pulse would be increased when the values of the superthermal ions (κ) and the
magnitude of the polarization force (R) enhanced, its amplitude decreased when the
ratio of ion temperature σi and the density of electrons μe increased.

4 Conclusion

In the presentwork, using aBoltzmann electrons andKappa iondistributions,wehave
studied the nonlinear amplitude modulation of dust-acoustic waves in an unmagne-
tized collisionless dusty polarized plasma.Using the reductive perturbationmethod, a
modifiednonlinear Schrodinger equation governing the evolution of the dust-acoustic
envelope waves has been derived. The effects of the κ parameter on the modulational
instability (MI) were investigated by changing the numerical values. It is found that
increasing the value of κ causes to increase the value of the dispersion relation and
the group velocity. It was shown that by increasing the superthermal ions (κ) and the
magnitude of the polarization force (R), the amplitude of DA rogue waves decreased
while by enhancing the ratio of ion temperature σi and the density of electrons μe

caused to increased its amplitude.
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Nonlinear Wave Structures in
Six-Component Cometary Ion-Pair
Dusty Plasma

Punam Kumari Prasad , Jharna Tamang ,
and Nur Aisyah Binti Abdul Fataf

Abstract The dust-ion-acoustic waves (DIAWs) in a six-component plasma consti-
tuting of ion-pair, negatively charged fluid dusts, superthermal light hydrogen ion,
solar electrons and cometary tail electrons are studied. Employing the technique of
reductive perturbation, the Korteweg-de Vries (KdV) equation is formulated and
the corresponding phase plane is analyzed. The analytical wave solutions and elec-
tric field under the effect of plasma parameters are examined. The findings of the
present work can be useful to understand nonlinear wave features in the region of
the cometary tail where plasma particles are superthermal in nature.

Keywords Superthermal plasma · Electric field · Solitary wave

1 Introduction

A study of nonlinear wave features in dusty plasma enables us to understand the
behavior and physical processes that occur in various space and astrophysical sur-
roundings like interplanetary space, interstellar medium, planetary rings, cometary
tails, asteroid zones, astroclouds, etc. The embedded charged dust particles in an
electron-ion plasma modify the collective behavior of a plasma and also lead to
the excitation of wave modes such as dust-acoustic waves (DAWs) [1], dust ion-
acoustic waves (DIAWs) [2], and dust lattice waves [3]. Very recently, authors [4],
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[5] investigated the existence of nonlinear arbitrary amplitude solitary waves in a
six-component cometary dusty plasmas. Venugopal and Neethu [6] investigated the
influence of variable dusts on dust acoustic shockwaves in a six-component cometary
dusty plasma with pair of oppositely charged heavy ions.

A vaporized gas of cloud at the tail region of comets formed due to the solar
wind-comet interaction. In addition to the dust species, the plasma environment of a
comet is essentially dominated by the newly generated multi-ion species that include
water group ions (OH+, H2O+ and H3O+) with solar wind protons and electrons [7].
The dissociation of molecules of water group leads to the formation of positively
charged oxygen (O+) and hydrogen (H+) ions with photo-electrons [8]. Along with
these positive ions, the Giotto spacecraft also identified negative ions in the plasma
environment of the comet with energies ranging from 0.03 to 3.0 keV. Among all
ionic species, negatively charged ions (O−) are clearly identified [9].

The Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko, has observed
the signature of highly energetic superthermal electrons that deviate significantly
from the Maxwellian distribution [10]. The source for the formation of energetic
cometary plasma particles are the production of photo-electrons by photo-ionization
of the cometary coma and inward movement of solar wind electrons into the coma
region [11]. Thus, light hydrogen ions, solar and cometary electrons are charac-
terized by superthermal κ−distributions having distinct temperatures and spectral
indices (κ). Low values of κ signify the distributions with relatively large compo-
nents of superthermal particles than thermal particles [12]. Moreover, superthermal
κ−distribution tends to Maxwellian distribution for higher values of κ. Recently,
authors [13, 14] investigated the influence of κ-distributed particles on small-
amplitude nonlinear waves in multi-component plasma system.

The phase plane analysis is an effective concept to investigate the dynamical
features for any nonlinear system. Implementing this concept, Samanta et al. [15]
studied bifurcation behavior of the nonlinear DIAWs in a magneto-dusty plasma.
Selim et al. [16] explored bifurcations behavior of nonlinear waves in a magnetized
multi-component plasma with superthermal electrons. Recently, Monier and Atteya
[17] explored the properties of the KdVB equation in a dusty plasma. Rahim et al.
[18] investigated the dynamical behaviors of DA solitary structures in Thomas Fermi
dusty plasma. Tamang et al. [19] explored the existence of localized structures which
are featured by the nontrivial topology of their phase portraits under the framework of
higher order Korteweg-deVries (KdV) equations. Very recently, the method of phase
plane analysis is adopted to analyze small-amplitude nonlinear waves in various
three-component plasma systems [20, 21]. This paper investigates the propagation
of small-amplitude nonlinear DIAWs in six-component plasma constituting of ion-
pair, negatively charged fluid dusts, superthermal light hydrogen ion, solar electrons
and cometary tail electrons.

The paper is organized as: in Sect. 2, the basic equations which describe the
dynamics of DIAWs in cometary plasma system are considered. Section 3 deals
with the derivation of the nonlinear KdV equation and phase plane analysis with the
analytical wave solution corresponding to the KdV equation are done in Sect. 4. The
concluding remarks are presented in Sect. 5.
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2 Basic Equations

One can consider a six-component dusty plasma system consisting of ion pair (neg-
atively and positively charged oxygen ions indicated, respectively, by subscripts ‘−’
and ‘+’), negatively charged dust particles (indicated by subscript ‘d’), kappa dis-
tributed light hydrogen ions (indicated by subscript ‘H ’), hot solar electrons and
cold cometary tail electrons (indicated respectively by subscripts ‘se and ‘ce’). The
dynamics of DIAWs can be studied by considering the normalized fluid equations
given as [4]:

∂n−
∂t

+ ∂

∂x
(n−v−) = 0, (1)

∂v−
∂t

+ v−
∂v−
∂x

= z−α−
zd

∂φ

∂x
− 3α−σ−

zd
n−

∂n−
∂x

, (2)

∂n+
∂t

+ ∂

∂x
(n+v+) = 0, (3)

∂v+
∂t

+ v+
∂v+
∂x

= − z+α+
zd

∂φ

∂x
− 3α+σ+

zd
n+

∂n+
∂x

, (4)

∂nd
∂t

+ ∂

∂x
(ndvd) = 0, (5)

∂vd

∂t
+ vd

∂vd

∂x
= ∂φ

∂x
, (6)

∂2φ

∂x2
= nd + μ−n− − μ+n+ − μHnH + μsense + μcence, (7)

where, μ− = z−n−0

zdnd0
, μ+ = z+n+0

zdnd0
, μH = nH0

zdnd0
, μse = nse0

zdnd0
, μce = nce0

zdnd0
, σ− = T−

Td
,

σ+ = T+
Td
, α− = md

m− and α+ = md
m+ . Here, n j is the number densities of j th plasma

particles, where j = −,+, H, d, se, and ce, with ‘0’ denoting the unperturbed state
of plasma particles. φ denotes the electrostatic wave potential. Furthermore, v−,+,d ,
m−,+,d and z−,+,d represent velocity, mass and charge number of negative oxygen
ions, positive oxygen ions, and negative dust particles, respectively. The normalized
variables are as follows: v j → v j/Cd , n j → n j/n j0 (where, j = −,+, H, d, se and
ce), φ → φe/kBTd , t → ωpd t and x → x/λDd , where the DA wave speed Cd =
(zd0kBTd/md)

1/2, dust frequency ω−1
pd = (md/4πz2d0e

2nd0)1/2 and Debye length for
the dust plasma λDd = (kBTd/4πz2d0nd0e

2)1/2. Here kB represents the Boltzmann
constant, e denotes the electronic charge. The equation of state is p−,+,d = cnν

−,+,d ,
where ν = ( f + 2)/ f with f as the degree of freedom. For one-dimensional adia-
batic state, f = 1 and hence ν = 3.

The normalized number densities of light hydrogen ions (nH ), hot solar electrons
(nse) and cold cometary tail electrons (nce) are given as follows:
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nH =
(
1 + φ

σH (κH − 3/2)

)−κH+1/2

, (8)

nse,ce =
(
1 − φ

σse,ce(κse,ce − 3/2)

)−κse,ce+ 1
2

, (9)

where, σH = TH
Td
, σse = Tse

Td
, and σce = Tce

Td
. The spectral indices κH,se,ce represents

the superthermality of hydrogen ions, solar and cometary tail electrons, respectively.
Evidently, one requiresκH,se,ce > 3/2 and ifκH,se,ce → ∞ then distributions (8)–(9)
reduce to Maxwell–Boltzmann distribution.

3 Formulation of Korteweg-DeVries (KdV) Equation

To study DIAWs in the considered cometary plasma system, one can employ the
technique of reductive perturbation to formulate the KdV equation. For this purpose,
dependent variables are expanded as:

n j = 1 + εn(1)j + ε2n(2)j + · · ·
v j = 0 + εv(1)j + ε2v(2)j + · · ·
φ = 0 + εφ(1) + ε2φ(2) + · · · (10)

where, j = −,+, d and ε is an indicative of the magnitude of perturbation. Further-
more, stretching of the independent variables are introduced as:

τ = ε3/2t ξ = ε1/2(x − v0t), (11)

where, the v0 denotes phase velocity of DIAWs.
Substituting expressions (10) and (11) in system of normalized Eqs. (1)–(7) and

equating the coefficients of various powers of ε to zero, one can get
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where, T1 = μce
1
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1
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Using above set of relations (12)–(19), one can formulate the following KdV
equation

∂φ(1)

∂τ
+ Aφ(1) ∂φ(1)

∂ξ
+ B

∂3φ(1)

∂ξ3
= 0, (20)

where, A = −N/D, and B = 1/D with N = 3

v40
− 3μ−α2−z2−(v20zd + α−σ−)

(3α−σ− − v20zd)
3

+
3μ+α2+z2+(v20zd + α+σ+)

(3α+σ+ − v20zd)
3

− 2T2, and D= 2

v30
+ 2v0zdμ−α−z−
(3α−σ− − v20zd )

2
+ 2v0zdμ+α+z+
(3α+σ+ − v20zd )

2
.

4 Phase Plane Analysis

To analyze the phase plane of dynamical function corresponding to the KdV Eq.
(20), one can take a traveling wave transformation χ = ξ − V τ , where V is DIAW
velocity. Thus, the following dynamical systems is obtained on using transformation
χ into the Eq. (20):
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{
dφ(1)

dχ
= y,

dy
dχ

= V
B φ(1) − A

2B (φ
(1))2,

(21)

The above dynamical system depends on superthermal parameters (κH,se,ce),
charge numbers (z−,+,d ), number densities (n−,+,H,d,se,ce), temperatures
(n−,+,H,d,se,ce), mass ratios (α−,α+), and DIAW velocity (V ). To investigate the
influence of equilibrium plasma parameters associated with cometary plasma sys-
tem, one can consider the typical range of parameters observed in the surroundings
of various comets. In this work, the following values of parameters relevant to comet
Halley [5, 8, 22, 23] are considered: hydrogen ionswith temperatureTH = 8 × 104 K
and number density nH = 4.95 cm−3, solar electron with temperature Tse = 2 × 105

K and number density same as that of hydrogen ions. Cometary electron with
temperature Tce = 2 × 104 K and the negatively charged dust particles with tem-
perature Td = 2 × 103 K, number density nd0 = 10−5 cm−3, and charge number
Zd0 = 103. The temperatures of the negative and positive Oxygen ions are taken as
T− = T+ = 1.16 × 104 K with number densities n−0 = 0.05 cm−3, n+0 = 0.5 cm−3

and charges z− = 1, and z+ = 2, respectively. The masses of dust particles, ion-pair
of Oxygen are considered such that α− = α+ = 103.

The phase plane of any dynamical system determines the instantaneous behavior
of its trajectories for a set of initial conditions. The stability or instability of the
equilibrium points predicts the nature of nearby trajectories. Using the concept of
phase plane analysis [24, 25], one can investigate the phase portraits of any nonlinear
dynamical system which may vary consequentially on numbers of fixed points and
separatrix layers [26]. To distinguish trajectories in the phase portrait, following rep-
resentations are used: N PTm,n , and NHTm,n for nonlinear periodic, and homoclinic
trajectories, respectively, where m indicates number of stable center points and n
denotes number of separatrix layers. Every trajectory in phase portrait corresponds
to a traveling wave solution for the considered plasma system. For example, periodic,
and homoclinic trajectories of the dynamical system correspond to periodic and soli-
tonicwave solutions of the plasma system, respectively. In addition to the trajectories,
one can also check the conservative nature from phase plane of a dynamical system
[27]. Figure 1 shows the plots of potential energy function, and phase plane corre-
sponding to Eq. (20) for κse = κce = κH = 2, n−0 = 0.05 cm−3, n+0 = 0.5 cm−3,
nH = nse0 = 4.95, nd0 = 10−5 cm−3, T− = T+ = 1.16 × 104 K, TH = 8 × 104 K,
Tse = 2 × 105 K, Tce = 2 × 104 K, Td = 2 × 103 K, α− = α+ = 103, z− = 1,
z+ = 2, Zd0 = 103, and V = 0.1. Figure 1a illustrates the graph of potential function
ψ against φ(1). Here, local minima in potential plots signify the existence of solitary
solutions and the potential dip at φ(1) > 0 corresponds to a compressive solitonic
solution whereas the potential dip at φ(1) < 0 signify a rarefactive solitonic solu-
tion. Therefore, for the condition A > 0, one can obtain only compressive DIAW
solution of Eq. (20). Figure 1b displays the phase portrait of the system (21) for
the specified set of parameters and shows the existence of two fixed points, namely,
saddle point at E0(0, 0) and center at E1(

2V
A , 0). There also exist two distinct types

of phase trajectories, i.e., homoclinic trajectory (NHT1,0) and a family of nonlin-
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Fig. 1 a Potential graph, b Phase portrait, and c Periodic wave solution of system (21) for κse =
κce = κH = 2, n−0 = 0.05 cm−3, n+0 = 0.5 cm−3, nH = nse0 = 4.95 cm−3, nd0 = 10−5 cm−3,
T− = T+ = 1.16 × 104 K, TH = 8 × 104 K, Tse = 2 × 105 K, Tce = 2 × 104 K, Td = 2 × 103 K,
α− = α+ = 103, z− = 1, z+ = 2, Zd0 = 103, and V = 0.1

ear periodic trajectories (N PT1,0). The periodic wave solution for initial condition
(0.13, 0), corresponding to a periodic trajectory presented in Fig. 1b is displayed in
Fig. 1c.

4.1 Solitary Wave Solutions

Considering the transformation χ = ξ − V τ and using boundary conditions φ(1) →
0 and dφ(1)

dχ
→ 0 as χ → ±∞, one can derive compressive solitonic wave solution of

equation (20) analogous to the homoclinic trajectory at fixed point E0 and enclosing
point E1 as

φ(1) = 3V

A
sech2

(√
V

4B
χ

)
, (22)

with the electric field E = −∇φ(1), i.e.,

E = 3V

A

√
V

B
sech2

(√
V

4B
χ

)
tanh

(√
V

4B
χ

)
. (23)

The effects of plasma parameters on the basic properties (amplitude and width)
of compressive solitary wave solution of system (20) and its associated electric
field are depicted in Figs. 2 and 3, respectively. Both the figures are obtained by
varying the mentioned parameters and keeping the other parameter fixed as κse =
κce = κH = 2, n−0 = 0.05 cm−3, n+0 = 0.5 cm−3, nH = nse0 = 4.95, nd0 = 10−5

cm−3, T− = T+ = 1.16 × 104 K, TH = 8 × 104 K, Tse = 2 × 105 K, Tce = 2 × 104
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(a) (b)

(d) (e)

(c)

Fig. 2 Dependency of DIA solitary wave solution of equation (3) on mentioned plasma parameters

K, Td = 2 × 103 K, α− = α+ = 103, z− = 1, z+ = 2, Zd0 = 103, and V = 0.1. It
can be inferred from Fig. 2 that when superthermal plasma particles move far away
from the Maxwellian then both amplitude and width of DIA compressive solitary
wave also deplete. Now, growing value of dust charge number (zd ) amplifies and
broadens the solitarywave. Furthermore, theDIA solitarywaves amplify and become
narrow as thewavemoves towards supersonic region. FromFig. 3, it can be noted that
κce influences electric field differently as compared to κse and κH . Both amplitude
and width of electric field associated with solitary wave solution of the KdV equation
(20) enhance with an increase in the value of κce i.e., decrease in superthermality
of cometary electrons whereas superthermality of solar electrons and hydrogen ions
are responsible in the reduction of the amplitude of electric field. The influence of
dust charge number and wave velocity (V ) is similar to that of the DIA compressive
solitary wave.
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(a) (b) (c)

(d) (e)

Fig. 3 Effect of plasma parameters on electric field associated with compressive solitary wave
solution of Eq. (3)

5 Conclusion

The DIAWs are studied in a six-component cometary tail plasma constituting Oxy-
gen ion-pair, negatively charged dusts with superthermal light hydrogen ions, solar
electrons, and cometary electrons. Phase plane analysis of DIAWs in the framework
of the KdV equation is carried out. Typical set of plasma parameters observed in the
tail region of comet Halley [5, 8, 22, 23] are considered for numerical simulation.
The main results of our work are mentioned below:

1. Phase plane corresponding to KdVEq. (20) only defines a homoclinic orbit on the
positive phase of wave potential, which signifies the existence of a compressive
solitary wave in the tail region of comet Halley.

2. On analysis of analytical wave solutions of Eq. (20), it is predicted that the DIA
solitary wave amplifies when plasma particles tends towards the Maxwellian. On
the contrary, electric field enhances with decrease in superthermality of cometary
electrons whereas it grows with increase in superthermality of hydrogen ions and
solar electrons.

3. The increasing values of dust charge number amplify theDIA solitarywave and its
associated electric field. Also, the soliton and its associated electric field amplify
and become narrow as the velocity of traveling wave increases.
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Cylindrical and Spherical Ion-Acoustic
Shock and Solitary Waves in a Nonplanar
Hybrid q-nonextensive Nonthermal
Plasma

Subrata Roy , Santanu Raut , and Rishi Raj Kairi

Abstract In this article we investigate the propagating properties of ion-acoustic
wave (IAW) in a plasma comprising positively charged ions and electrons abiding
by hybrid q-non-extensive non-thermal velocity distribution equation. The nonpla-
nar KdV-Burger (NKDVB) equation is derived from the basic governing equation.
Considering the impact from the ion streaming velocity, inter-particle collisions, and
viscosity, a Burgers term is introduced in the present system and using Weighted
Residual Method (WRM) and Simplified Hirota bilinear method (SHBM) progres-
sive solitary wave solution and shock wave are derived. Finally, the effect of different
physical parameters on solitary and shock wave on the propagation of IAW in the
present plasma environment is noticed.

Keywords Ion-acoustic wave · Hybrid q-nonextensive non-thermal distribution ·
Nonplanar kdV-Burgers equation · Solitary and shock wave

1 Introduction

Investigation on plasma environment becomes an interesting topic in recent times
as it is ubiquitously found in space environments as well as laboratory experiments.
Sagdeev [1] observed theoretically these types of waves by considering a mechanical
analogy whereas, Ikezi [2] in the year 1970 studied the same with an experimental
set-up. Subsequently, several authors paid their attention to observe the various types
of plasma models. Shukla and Silin [3] investigated theoretically dust ion acoustic
wave (DIAW) in a dust plasma and Barkan et al. observe the same experimentally
in [4]. Angelo [5] observed high-frequency and low-frequency acoustic waves in a
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plasma environment in an experimental setup. Dubuloz et al. [6] observed the soli-
tary IAW as well as DIAW in a plasma medium utilizing the KdV model as well
as modified KdV model. It is unfortunate that most of the observation on IAW in
plasma systems are considered in linear space only. But, in many cases, the reality in
the laboratory, as well as the space environment, is totally different. Sometimes, the
physical plasma environment becomes finite and the waves are confined to move in
a bounded state. Such type of nonplanar geometrical space arises in Capsule implo-
sions, Supernova explosions, Saturn’s magnetosphere, etc. In the year 1974, Maxon
andViecelli [7] investigated the characteristic of IAW in nonplanar geometrical space
and found that the nonplanar wave moves faster than the planar counterparts. Gao et
al. [8] observed the propagating behaviors of nonplanarDIAWin unmagnetized dusty
plasma through the KdV-Burgers model. Further, several authors performed various
theoretical and experimental works to observe the behaviors of IAW in different
nonplanar plasma systems [9, 10]. Recently, Demiray [11] observed the IAW prop-
agating in a nonplanar plasma system comprising positively charged cold ions and
electrons satisfying hybrid q-nonextensive nonthermal velocity distribution. Some
experimental on plasma circumstances indicates that the characteristic of wave prop-
agation in a dissipative system significantly depends on interparticle collisions and
viscosity etc. [12]. To consider the impact from viscosity a Burgers term is added
to Demiray’s observation [11] which may produce solitary (in case of the negligi-
ble effect of dissipation) as well as shock (in case of strong dissipation) type wave
features. The SHBM is employed to find an approximate analytical solution that
produces a shock wave. In the present observation, we analyze the significant impact
of different physical parameters as well as time parameter (τ ) on shock and solitary
IAW through the NKDVB framework. The work of this manuscript is formulated as
follows: In Sect. 2, the governing equations for the system are stated and the NKDVB
equation is derived employing RPM. In Sect. 3 NKDVB model is derived by using
RPM. Sect. 4 presents an approximate analytical solitary wave solution for the said
equation. In Sect. 5, a shock solution is generated by employing Hirota’s bi-linear
approach. In Sect. 6, analyzes the numerical structure of the solutions. Section 7
concludes the investigation.

2 Problem Formulation

We consider here a unmagnetized viscous plasma comprising positively charged
cold ions along with q-nonextensive nonthermal velocity distributed electrons. The
dynamics of the system is described by the normalized basic governing equations:

∂n

∂t
+ ∇.(nu) = 0 (1)

∂u
∂t

+ (u.∇)u = −∇ψ + δ∇2u (2)

∇2ψ = ne − n (3)
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where n and ne denote normalized number densities of cold ion and electron, u
represents velocity of the ion fluid whereas, the electrostatic potential is noted by ψ

and δ is the viscocity coefficient. Density of normalized q-nonextensive nonthermal
electron is given by

ne = [1 + (q − 1)ψ] q+1
2(q−1) (1 + L1ψ + L2ψ

2) (4)

The coefficients L1 and L2 are as

L1 = − 16qα

(3 − 14q + 15q2 + 12α)
, L2 = −(2q − 1)L1. (5)

where the parameter α determines nonthermal electrons numbers in the system. The
parametric zones of (q, α) and their validity for solitary wave solutions are described
by Williams et al. [13]. In the extensive limiting case (q → 1) and α = 0, reduces
the distribution to the Maxwell-Boltzmann velocity distribution whereas, it reduces
to Cairn distribution [14] for the case (q → 1) and α �= 0. We consider the field Eqs.
(1)–(3) in the following form,

∂n

∂t
+ 1

Rμ

∂(Rμnu)

∂R
= 0, (6a)

∂u

∂t
+ u

∂u

∂R
= −∂ψ

∂R
+ δ

[
1

Rμ

∂

∂R

(
Rμ ∂u

∂R

)
− μu

R2

]
, (6b)

1

Rμ

∂

∂R

(
Rμ ∂ψ

∂R

)
= ne + n (6c)

Here the parameterμ = 1, 2 signify the motion of cylindrical and spherical IAWs
whereas, the dynamics of planar IAW is represented by μ = 0. For small values of
ψ , the electron number density ne expressed in Eq. (4) can be presented in a power
series as,

ne = 1 + p1ψ + p2ψ
2 + p3ψ

3 + · · · (7)

Here the coefficients p1, p2 and p3, are taken as

p1 = L1 + q + 1

2
, p2 = L2 + L1

(
q + 1

2

)
+ (q + 1)(3 − q)

2
(8)

p3 = (q + 1)(3 − q)(5 − 3q)

48
+ L1

(q + 1)(3 − q)

8
+ L2

(q + 1)

2
(9)
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3 Formation of Nonplaner KdV Burgers Equation

To derive the NKDVB equations the standard RPM [15] will be utilized. In order to
derive the depending variables n, u, and ψ are stretched in a series of ε as [16],

n = 1 + εn1 + ε2n2 + ε3n3 + · · ·
u = 0 + εu1 + ε2u2 + ε3u3 + · · · (10)

ψ = 0 + εψ1 + ε2ψ2 + ε3ψ3 + · · ·

Now, the new stretched coordinates are taken as,

ξ = ε1/2(R − vpt), τ = ε3/2t. (11)

We assume a weak damping in the viscous plasma and write

δ ≈ ε
1
2 δ0 (12)

Substituting the expression in Eq. (10) along with the coordinates (11) into the
(6a)–(6c) and equating the coefficients of different order of ε we obtain,

n1vp = u1 (13)

∂n1
∂τ

− vp
∂n2
∂ξ

+ μu1
vpτ

− ∂

∂τ
(n1u1 + u2) = 0 (14)

vpu1 = ψ1 (15)

∂u1
∂τ

− vp
∂u2
∂ξ

− u1
∂u1
∂ξ

+ ∂ψ1

∂ξ
− δ0

∂2u1
∂ξ 2

= 0 (16)

n1 = p1ψ1 (17)

∂2ψ1

∂ξ 2
− p1ψ2 − p2ψ

2
1 − n2 = 0 (18)

Using the results (13), (15) and (17), we find vp = 1
p1/21

which signifies the phase

velocity of the perturbationmode and the parameter ε measures the weakness and the
dispersion of the perturbation. Using the results (13)–(18) stated above and setting
ψ1 = ψ we obtain the NKDVB equation as

∂ψ

∂τ
+ Pψ

∂ψ

∂ξ
+ Q

∂3ψ

∂ξ 3
+ R

∂2ψ

∂ξ 2
+ Sψ = 0, (19)
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where P = 3
2 p

1/2
1 − p2

p3/21

, Q = 1
2p3/21

, R = − δ0
2 , S = μ/2τ . Here, the nonlinear

coefficient P is a function of the parameters α and q. The solitary type wave becomes
compressive when P > 0, whereas, it becomes rarefactive for P < 0.

4 Progressive Wave Solution for Nonplanar KdV-Burgers
(NKDVB) Equation

Here, we apply the WRM to obtain an approximate analytical solution for the
NKDVB equation. In order to employ WRM [10, 11] we utilize the solution of
the standard KdV equation. In consideration of negligible small values of δ0 and
large time τ the nonplanar KdV-Bugers Eq. (19) is written as

∂ψ

∂τ
+ Pψ

∂ψ

∂ξ
+ Q

∂3ψ

∂ξ 3
= 0 (20)

which permits the solution

ψ = λ0sech
2η0, η0 = w(ξ − V0τ) (21)

with

w2 = Pλ0

12Q
, V0 = Pλ0

3
(22)

Here λ0 presents the constant amplitude of the soliton. Now we assume that
amplitude and width of the soliton will be time dependent due to the application of
Burgers term and geometric term. Thus, the progressive wave solution of Eq. (21) is
proposed as

ψ = λ(τ)sech2η, η = w(ξ − V (τ )) (23)

with

w2(τ ) = Pλ(τ)

12Q
, V ′(τ ) = Pλ(τ)

3
(24)

Here the prime stands for presenting differentiation of V (τ ) against τ . Actually,
the solution presented in (23) is the same as the solution appeared in (22) except
the presence of λ(τ) in (24). However, λ(τ) is to be determined for the later. It is
found that though the solution (23) satisfies the Eq. (19) rather a residue termR(η, τ )

presents there as,

R(η, τ ) =
[
λ′ + 4RλQ2 + Sλ − 2λw′η

w
tanhη

]
sech2η − 6Rw2λsech4η. (25)
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Here, the termR(η, τ ) is an even function of η. To obtain a differential equation
for finding λ(τ), a strong restriction on λ(τ) is imposed by introducing a weighted
function. Here, we choose sech2η as a weighted function. We multiply Eq. (25) by
sech2η, and integrate it from η = −∞ to η = ∞ and lastly put the result to zero,

λ′ + Sλ − w′λ
2w

− 4Rw2λ

5
= 0. (26)

We eliminate w between the Eqs. (24) and (26) and get,

λ′ + 4

3
Sλ = 4PR

45Q
λ2. (27)

The solution of Eq. (27) becomes

λ(τ) =
(
Mτ

2μ
3 + 4PRτ

(
2μ
3 − 1)45Q

)−1

, (28)

where M is a simple integration constant and λ0 (τ → τ0, λ(τ) → λ0) is the initial
amplitude satisfying Eq. (22). Thus, λ(τ) is written as

λ(τ) = λ0

(τ0

τ

) 2μ
3

(
1 + 4PRλ0τ0

(
2μ
3 − 1)45Q

[(τ0

τ

) 2μ
3 −1 − 1

])−1

. (29)

Using (29) in the expression V ′(τ ) and integrating we get

V (τ ) = Pλ0

3
− 45Q

4R
ln

[(τ0

τ

) 2μ
3

(
λ0

λ

)]
, (30)

Using the result (24) we find

w(τ) =
√

Pλ0

12Q

(τ0

τ

) μ

3

(
1 + 4PRλ0τ0

(
2μ
3 − 1)45Q

[(τ0

τ

) 2μ
3 −1 − 1

])− 1
2

. (31)

Thus, the final solution of equation is

ψ(ξ, τ ) = λ(τ)sech2[w(τ)(ξ − V (τ ))], (32)

where the results (29)–(31) provide the values of λ(τ), V (τ ) and w(τ) respectively.
This analytical solution (32) can be reduced to the planar solution of Eq. (19) for

μ = 0 whereas, the cylindrical and spherical wave solution are given by (μ = 1) and
(μ = 2) respectively.
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5 Shock Type Wave Solution for Nonplanar KdV-Burgers
(NKDVB) Equation

The strong anomalous dissipationmay cause to form shock type wave solution. Now,
to explore shock type wave solution, we utilize SHBM [17] and rewrite Eq. (19) in
the following form:

∂ψ

∂τ
+ P(τ )ψ

∂ψ

∂ξ
+ Q(τ )

∂3ψ

∂ξ 3
+ R(τ )

∂2ψ

∂ξ 2
+ S(τ )ψ = 0. (33)

To find a single kink solution, We first use the transformation

ψ(ξ, τ ) = eθ , where θ = kξ − ω(τ). (34)

We derive the dispersion relation as

ω(τ) =
∫ τ

τ0

(Q(τ )k3 + R(τ )k2 + S(τ ))dτ, (35)

The shock solution of Eq. (33) is taken as ψ = A(ln( f ))ξ where f (ξ, τ ), is
determined as

f (ξ, τ ) = 1 + eθ = 1 + ekξ−ω(τ), (36)

Utilizing Eqs. (35) and (36) we find,

ψ = A
keθ

1 + eθ
. (37)

SubstitutingEq. (37) intoEq. (33)weobtain a polynomial equation for enθ . Putting
the coefficient of enθ , to zero, a system of algebraic equation is obtained. Solving
these algebraic equation we get

A = 2k3R(τ ) − S(τ )

P(τ )k2
. (38)

Combining Eqs. (37) and (38) we find the singleton shock solution as,

ψ(θ) = 2k3R(τ ) − S(τ )

2P(τ )k

(
1 + tanh

(
θ

2

))
(39)

where θ = kξ −
∫ τ

τ0

(Q(τ )k3 + R(τ )k2 + S(τ ))dτ.
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Putting the expression as P(τ ) = P , Q(τ ) = Q, R(τ ) = R, and S(τ ) = μ

2τ in Eq.
(33), we find the standard non planer KdV-Burgers equation and the shock solution
of Eq. (19) can be written as,

ψ(ξ, τ ) = 4k3R − μ

τ

4Pk

(
1 + tanh

(
θ

2

))
, (40)

where θ = kξ −
[
(Qk3 + Rk2)(τ − τ0) + μ

2
ln

(
τ

τ0

)]
.

6 Results and Discussion

To detect a suitable parametric domain, the variation of the nonlinear coefficient P
and the dispersion coefficient Q due to the change in the parameter α and q are shown
in Figs. 1a–d. Figure2a exhibits the variation of amplitude in planar and nonplanar
wave profiles and it is found that the planar wavemoves over the cylindrical wave and
the spherical wave. Figures2b, c show the evolution of cylindrical and spherical wave
respectively for different time intervals. The significant impact of the Burgers term
follows fromFig. 2d. Enhancing δ0 causes for losing of potential energy of the system
and naturally the soliton have negligible backward shifting with declining amplitude.
The impacts of the nonextensive parameters q on wave propagation depicted in
Fig. 2e. It is found that the wave gets steepened with enhancing α and gets flattened
due to the rise in nonthermal electron numbers (see Fig. 2f). For a clear vision of
wave propagation, the three-dimensional profiles of the cylindrical and the spherical
wave are drawn in Fig. 3a, b. The significant impact of Burgers term in diminishing
amplitude is also understood from Fig. 3c. Figures4a and 5a exhibit the evolution
of kink type soliton for different times in cylindrical geometry. Figures4b and 5b
shows that the increasing δ0 leads the soliton to move dipper. The significant effect
of the nonextensive parameter q is shown in Figs. 4c and 5c. It is important to note
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Fig. 1 a Variation of nonlinearity coefficient P with q for various values of α, b Variation of
dispersion coefficient Q with q for various values of α. c 3D Variation of nonlinearity coefficient P
with q and α, d 3D Variation of dispersion coefficient Q with q and α
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Fig. 2 Profiles of ψ(ξ, τ ) versus ξ of Solution (32), a when q = 0.9, α = 0.01, τ0 = 5, δ0 =
0.01, τ = 8, λ0 = 0.8,bwhen q = 0.95, α = 0.01, τ0 = 5, δ0 = 0.02, μ = 1, λ0 = 0.9, cwhen
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Fig. 3 3D Profiles of Solution (32), a when μ = 1, , q = 0.9, α = 0.01, τ0 = 5, δ0 = 0.01, τ =
8, λ0 = 0.8, b when μ = 2, q = 0.9, α = 0.01, τ0 = 5, δ0 = 0.01, τ = 8, λ0 = 0.8, c when
μ = 1, q = 0.9, α = 0.01, τ0 = 5, τ = 8, λ0 = 0.8

that there is a critical point of the parameter q for which anti-kink type shocks are
found below the values of critical point and oppositely kink type shocks exist for the
higher values of q.
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Fig. 5 3D Profiles of Solution (40), awhen q = 0.8, α = 0.05, τ0 = 4, k = 0.5, δ0 = 0.05, μ =
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7 Conclusion

Using the basic governing equation the propagation of cylindrical and spherical
IAW in unmagnetized plasma comprising positively charge cold ions and elec-
trons describing hybrid q-nonextensive nonthermal velocity distribution are analyzed
through the NKDVB model. The WRM and SHBM are employed to obtain a new
class of the solitary and shock wave solution for the present system. The significant
effects of different physical parameters such as α, q, δ0 and time parameter τ are
observed from a numerical standpoint. Finally, it can be concluded that the results
of our investigation may be helpful to observe the propagating behavior of solitary
and shock waves in laboratory plasma as well as space plasma environments.
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Formation of Shocks in Ionospheric
Plasma with Positron Beam

Sunidhi Singla , Manveet Kaur , and Nareshpal Singh Saini

Abstract The nonlinear dynamics of ion acoustic shocks (IAShs) in electron-ion
plasma has been studied in the presence of relativistic positron beam as a result of
the vital importance in astrophysical environments mainly ionospheric region. The
Korteweg-de Vries-Burgers (KdVB) equation and its oscillatory solution is derived
by employing reductive perturbation method. From the solution of KdVB equation,
existence of oscillatory IAShs and their characteristics are studied under the influ-
ence of various plasma parameters such as temperature of ions as well as positron,
relativistic factor, viscosity of ions and different parameters of beam. The behaviour
of IAShs propagating in a relativistic plasma model is strongly dependent on the ion
and positron temperatures, the mass ratio and the relativistic effects. The kinematic
viscosity and the equilibrium ion number density play very important roles in the
basic features of the produced IAShs.

Keywords Shocks · Ion acoustic · Positron beam · Reductive perturbation

1 Introduction

During the past two decades, many authors have studied the electron-ion plasma
in different space and laboratory environments. Electron-ion plasma evokes great
interest for many researches due to its existence in pulsar environments, earth’s
ionosphere, polar regions of neutron stars, white dwarfs [1, 2], pulsar magnetosphere
[3–5] etc. It is noteworthy that introduction of positron beam immensely affects the
physical properties of plasma. Misra et al. [6] studied the nonlinear propagation
and interaction of electron–positron plasma that shows distinctive behavior feature
from the usual linear mode. With the increase in the superthermality of electrons
and positron beam speed, amplitude and width of the solitons get modified signifi-
cantly as reported by Shan et al. [7]. Numerous studies has confirmed the influence
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and importance of interaction of ion/electron/positron beam in space and laboratory
plasmas [8–11]. Sarma et al. studied the propagation properties of ion acoustic non-
linear structures (IANSs) in a relativistic plasma containing ion fluid, positron and
relativistic electrons. It was reported that different plasma parameters have immense
impact on the characteristics of IANSs [12].

For the formation of KdV-Burgers equation reductive perturbation approach was
used, and the influence of various plasma physical parameters on IA shockwaveswas
depicted.ManyKdV-Burgers equations solutions were examined and in the presence
of electron orbital motion excitation fromKdV oscillations to the shock solution was
described [13]. Very recently, Singh et al. [14] studied the effect of anisotropic term
on electron-acoustic shocks by deriving the KdV-Burgers equation in superthermal
plasma. To the best of our knowledge, study of oscillatory shocks in a electron-ion
plasma in the presence of relativistic positron beam has not been reported yet. In
this investigation, main focus of the study is to illustrate the influence of positron
beam on ion acoustic shocks by deriving KdV-Burgers equation and its oscillatory
solution. Themanuscript is organized as follows: in Sect. 2, three fluids beam-plasma
model is described. The derivation of KdV-Burgers equation are presented in Sect.
3. Oscillatory solution of KdV-Burgers equation is illustrated in Sect. 4. Parametric
analysis is presented in Sect. 5 and conclusions are summarized in Sect. 6.

2 Three-Fluid Beam-Plasma Model

An unmagnetized plasma involving three components specifically cold inertial ions,
hot inertial electrons with injection of relativistic positron beam is considered to
study the characteristics of IA shock waves. The normalized equations for three flu-
ids model (continuity, momentum, pressure and Poisson equations) are described as
follows:

For ions:
∂ni
∂t

+ ∂

∂x
(nivi ) = 0, (1)

∂vi

∂t
+ vi

∂vi

∂x
+ σ

ni

∂ pi
∂x

= −∂φ

∂x
+ ηi

∂2vi

∂x2
, (2)

∂ pi
∂t

+ vi
∂ pi
∂x

+ 3pi
∂vi

∂x
= 0, (3)

For electrons:
∂ne
∂t

+ ∂

∂x
(neve) = 0, (4)

β1ne

(
∂ve

∂t
+ ve

∂ve

∂x

)
+ ∂ pe

∂x
= ne

∂φ

∂x
+ ηe

∂2ve

∂x2
, (5)
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∂ pe
∂t

+ ve
∂ pe
∂x

+ 3pe
∂ve

∂x
= 0, (6)

For positron beam:
∂nb
∂t

+ ∂

∂x
(nbvb) = 0, (7)

β2nb

(
∂v′

b

∂t
+ vb

∂v′
b

∂x

)
+ α

∂ pb
∂x

= −nb
∂φ

∂x
, (8)

∂ pb
∂t

+ vb
∂ pb
∂x

+ 3pb
∂v′

b

∂x
= 0, (9)

∂2φ

∂x2
= ne(1 + μb) − nbμb − ni . (10)

where, l = i, e, b, σ = Ti
Te
, β1 = me

mi
, μb = nbo

nio
, v′

b = vb

(
1 + v2b

2c21

)
, β2 = mb

mi
and

α = Tb
Tc

, c1 = c
cs
, Normalisation of the physical quantities are done as follows to

make them dimensionless. t = T ′/ωpi , x = X ′/λDi , vl = V ′
l/cs , nl = N ′

l/N ′
lo,

φ = eΦ ′/kBTe, pl = P ′
l/nlokBTl and the kinematic viscosity ηl is normalized

by λ2
DlnloMlωpl , where ωpi = √

4πNioe2/(kBTe) is the ion-plasma oscillation fre-
quency, cs = √

kBTe/mi is the ion acoustic speed, λDl represents Debye length, Nlo

is the unperturbed number density. The temperature of the l-th charged particle is Tl .

3 Derivation of KdV-Burgers Equation and Its Solution

To study the nonlinear propagation of ion acoustic shock waves in a plasma with
relativistic positron beam, we introduce the following stretching coordinates [13]:

ζ = ε
1
2 (x − vpt), τ = ε

3
2 t. (11)

where vp denotes the phase velocity of the IAShs. The weakness of the perturbation
is measured by ε, which is small in the range (0 < ε < 1). Expansions of the state
variables in power series of ε is illustrated as;

ni,e,b = 1 + εni,e,b1 + ε2ni,e,b2 + ε3ni,e,b3 + ...

pi,e,b = 1 + εpi,e,b1 + ε2 pi,e,b2 + ε3 pi,e,b3 + ...

vi,e = εvi,e1 + ε2vi,e2 + ε3vi,e3 + ...

vb = vbo + εvb1 + ε2vb2 + ε3vb3 + ...

φ = εφ1 + ε2φ2 + ε3φ3 + ...
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We consider ηe,i = ε
1
2 ηe0(ηi0), where ηe0(ηi0) is the equilibrium fluid viscosity of

electron(ion). Also, scaling of η is taken into account is such a manner that only
dissipative term is getting affected and not affecting other terms namely nonlinear and
dispersive terms. After using stretching coordinates and expansion of state variable
perturbation in Eqs. (1–10) and collecting the coefficients of lowest power of ε we
get:

ni1 = Rφ1, vi1 = Rvpφ1, pi1 = 3Rφ1 (12)

ne1 = Sφ1, ve1 = Svpφ1, pe1 = 3 Sφ1 (13)

nb1 = 2c21PQφ1, vb1 = 2c21PQ(vp − vbo)φ1, pb1 = 3Qφ1 (14)

where R = 1
(V 2

p−3σ)
, S = 1

(3−β1v2p)
, P = 1

(1+3v2bo)
, Q = 1

(β2(vp−vbo)2−3α)
;

and Poisson equation leads to the dispersion relation,

(1 + μb)S − μb2c
2
1PQ − R = 0 (15)

The next higher order equations from the perturbation theory are as follows:

∂ni1
∂τ

− vp
∂ni2
∂ζ

+ ∂vi2

∂ζ
+ ∂

∂ζ
(ni1vi1) = 0, (16)
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∂ζ
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∂ζ
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∂ζ

+ ∂ve2
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∂ζ
(ne1ve1) = 0, (19)

β1
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∂ pe1
∂τ

− vp
∂ pe2
∂ζ

+ ve1
∂ pe1
∂ζ

+ 3
∂ve2

∂ζ
+ 3pe1

∂ve1

∂ζ
= 0, (21)
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∂τ
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(
∂vb2

∂ζ
+ pb1

∂vb1

∂ζ

)
+ 6

2c21
vbovb1

∂vb1

∂ζ
= 0,

(1 + μb)ne2 − μbnb2 − ni1 = 0. (25)

By differentiating Eq. (25) w.r.t. ζ, we have;

(1 + μb)
∂ne2
∂ζ

− μb
∂nb2
∂ζ

− ∂ni2
∂ζ

= 0 (26)

Eliminating the second order perturbed quantities from Eqs. (16–25), we obtain the
following KdV-Burgers Equation:

∂φ1

∂τ
+ Aφ1

∂φ1

∂ζ
+ B

∂3φ

∂ζ3
= C

∂2φ1

∂ζ2
(27)

where, nonlinear coefficient, A = B ′
A′ ,

dispersion coefficient, B = 1
A′

and dissipation coefficient, C = C ′
A′

and

A′ = −(1 + μb)2β1vpS
2 − μb2β22c

2
1(vp − vbo)PQ2 − 2vp R

2 (28)
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B ′ = −μb2c
2
1PQ2(2c21P(1 − 2vbo(vp − vbo)P) + 9Q) (29)

− 3(1 + μb)(4S − 1)S2 − 3(1 + 4σR)R2

C ′ = (1 + μb)ηevpS
2 + ηivp R

2 (30)

Solution ofEq. (27) represents the formation of shockwaveswith different coefficient
A, B and C. In the limiting case, i.e. in the absence of dissipation term, (C = 0) Eq.
(27) transforms to KdV equation and it agrees with the results obtained in [12].
Furthermore, we have studied the formation of shocks whereas in authors in ref. [12]
have studied the formation of solitons.

4 Solution of KdV-Burgers Equation

By introducing single variable transformation in Eq. (27), we have examined its
analytical solution. The solution of Eq. (27) is determined by using the Tanh-method
[14],

φ1(ξ, τ ) = φmax

(
1 − 1

4

[
1 + tanh

(
ξ − uτ

W

)]2
)

(31)

where, φmax = 12C2

25AB , W = ∇−1 = 10B
C and u = 6C2

25B

4.1 Oscillatory Shocks Solution

After dealing with different asymptotic boundary conditions, different type of solu-
tion for Eq. (27) is obtained. Using transformation ξ = ζ −Uτ in the Eq. (27) and
assuming φ = φ0 + Φ with φ0 = 2U/A and after linearising with respect to φ, we
obtain,

d2Φ

dξ2
− C

B

dΦ

dξ
− U

B
Φ = 0. (32)

The solution of above equation represents damped harmonic oscillator. Thus, the
oscillatory shock wave solutions of Eq. (27 ) is given as [13]

φosc = 2U

A
+ Θexp(−Ωξ) cos(�1ξ) (33)

where,Θ is arbitrary constant, Ω = −C/2B is the damping factor and �1 =√
U
B (1 − C2

4UB ), also U
B represents the natural frequency of the plasma system.
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5 Parametric Analysis

The propagation properties of ion acoustic shocks by changing the values of different
physical parameters are analyzed numerically. We have considered positron beam
density (μb) of the range0.2–0.8, electron to ion temperature ratio(σ) of the range0.1–
0.5 and kinematic viscosity ranges from 0.2–0.8. The considered plasma parameters
are from the Earth’s upper atmosphere (ionosphere region) [8]. It is numerically
that with different plasma parameters, A shows negative value, which implies only
negative potential IAShs.

The solution of oscillatory shock waves is plotted against ξ for different plasma
parameters. Figure 1 represents the variation of oscillatory shocks with different
values of positron beam density ratio (μb). It is seen that increase in the value of μb

leads to the decrease in amplitude of shocks. Thus, with the introduction of positron
beam, shocks of smaller amplitude are formed and with increase in the value of μb

oscillatory behavior of the shocks tends to diminish. Figure 2 depicts the influence of
electron to ion temperature ratio (σ), it is remarked that the with increase in the value
of σ, amplitude of shocks decreases. Figure 3 represents the variation of profile
of oscillatory with viscosity of electrons (ηe), it is depicted that the amplitude is
decreased with change in the value of ηe. Furthermore, lesser viscous medium tends
to have stronger oscillatory shock waves. Similar behavior is seen for kinematic
viscosity of ions ηi . Finally, it is highlighted that the important findings may be
useful in describing clearly the propagation properties of IAShs in multi-component
plasma with positron beam which is found in Earth’s ionospheric region.

Fig. 1 The variation of ion acoustic oscillatory shocks for different values of positron beam density
ratio (μb) a μb = 0.3 b μb = 0.8, with fixed values of σ = 0.1 and ηe = 0.2
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Fig. 2 The variation of ion acoustic oscillatory shocks for different values of σ = 0.1 and σ = 0.2
respectively, where μb = 0.5 and ηe = 0.2

Fig. 3 The variation of ion acoustic oscillatory shocks for different values of ηe = 0.2 and ηe = 0.5
respectively, where σ = 0.1 and μb = 0.5

6 Conclusions

In this manuscript, the propagation properties of IAShs in a electron-ion plasma in
the presence of beam of relativistic positrons. After the implication of reductive per-
turbation method, KdV-Burgers equation and its solution are derived. Only negative
potential shocks are obtained. Positron beam and other physical parameters play an
important role in the formation of different types of oscillatory shocks and their char-
acteristics. The amplitude of oscillatory shocks decreases with the increase in μb and
ηe. This investigation may be useful to understand the nonlinear phenomena leading
to the formation of ion acoustic shocks in astrophysical dense plasma environments,
especially in Earth’s ionospheric region [8, 12].
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Nonlinear Propagation of Gaussian
Laser Beam in an Axially Magnetized
Cold Quantum Plasma

P. P. Nikam, V. S. Pawar, S. D. Patil, and M. V. Takale

Abstract The evolution of self-focusing of Gaussian laser beam in underdense
magnetized cold quantum plasma has been studied under parabolic equation
approach. We have established beam-width parameter differential equation of Gaus-
sian laser beam using WKB and paraxial approximations. This equation is solved
numerically. The results are presented graphically by considering applied magnetic
field along (forward) aswell as opposite (reverse) to the axis of propagation of laser. It
is seen that, the forward magnetization increase the self-focusing effect as compared
to the reverse magnetization. In addition, quantum effects enhance the self-focusing
behaviour of laser.

Keywords Gaussian beam · Self-focusing · Plasma · Magnetized · Quantum

1 Introduction

Manyapplications likes fusion by lasers [1], generation of higher order harmonics [2],
laser having wavelength in the X-ray region [3] and other applications [4, 5] based
on laser-plasma experiments. For such applications, laser should propagate more
distance than the Rayleigh length. In plasmas, different nonlinear optical effects are
present. Self-focusing (SF) of laser beam is one of them [6, 7]. SF in plasmas is
mainly contributed due to three mechanisms such as; relativistic, ponderomotive
and thermal. Recently, laser-matter (plasma) interaction in quantum regime has been
investigated considerably [8]. Patil et al. [9] highlighted the SF of Gaussian beam in
quantum plasma and extended the same to thermal quantum plasma [9]. Aggarwal
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et al. [10] studied Gaussian beam propagation in density ramped magnetized cold
plasma. Also, collective consequence of relativistic and ponderomotive mechanisms
on SF of Gaussian beam was studied by Aggarwal et al. [11–13] in magnetized
RCQP. Recently, Pawar et al. [14] explored effect of laser (aperture coefficient) and
plasma (density) parameters on SF of finite AiG beams in RCQP.

In this present paper SF of Gaussian beams in underdense, magnetized RCQP is
studied. An external magnetic field is parallel (forward) or antiparallel (reverse) to
the propagation vector of beam. In Sect. 2, nonlinear ordinary second order beam-
width parameter (BWP) differential equation has been achieved under WKB and
paraxial approximations. Sections 3 and 4 contains graphical results and conclusions
respectively.

2 Theoretical Formulation

Consider the wave vector of cylindrically distributed Gaussian beam propagating on
the z-axis in magnetized RCQP. The total dielectric function ε of plasma is written
as,

ε = ε0 + ε2
(
EE∗) (1)

Here, ε0 and ε2 are intensity independent and dependent parts of ε. The ε2 has
various forms under different physical conditions. The effective plasma electron
density ne for relativistic, magnetized plasma can be given as [12]

ne = n0
γ (1 − (ωc/γω))

here, ωc and ω are the electron cyclotron frequency and frequency of laser used, γ
is the relativistic factor written as;

γ =
[
1 + A2 + 2A2(σ�c)

(
1√

1 + A2

)
+ 3A2(σ�c)

2

(
1

1 + A2

)] 1
2

where, A2 = e2|E0|2
m2c2ω2 with c is velocity of light in free space, e and m are elec-

tronic charge and electrons rest mass respectively. For collisionless, magnetized
cold quantum plasma ε0 and ε2 can be written as [12]

ε0 = 1 − �2
p

1 − σ�c
(2)
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ε2
(
EE∗) = �2

p

(

1 − ne
n0

(
1 − β

γ

)−1
)

(3)

where, �p = ωp/ω,�c = ωc/ω, β = 4π4h2/m2ω2λ4, ωp = (
4πn0e2/m

)1/2
and

ωc = eB0/mc. Here, ωp is frequency of plasma electron, h is Planck’s constant, λ
is the wavelength of laser beam, B0 is an external magnetic field, σ is magnetization
parameter, which decides type of magnetization. For the case of forward (reverse)
magnetization σ = +1(σ = −1). The unmagnetized case of reference corresponds
to σ = 0.

The wave equation for laser beam in plasmas with ε assumed to be as,

∇2E − ε

c2
∂2E

∂t2
+ ∇

(
E · ∇ε

ε

)
= 0 (4)

By employing WKB approximation, (c2/ω2)
∣∣( 1

ε

)∇2lnε
∣∣ � 1. Therefore,

∇(
E·∇ε

ε

)
can be ignored. By assuming electric field E = A(x, y, z)ei(ωt−kz), the

evolution of E in magnetized plasma is governing by following nonlinear differential
equation,

∂2E

∂z2
− 2ik

∂E

∂z
+ δ

(
∂2E

∂r2
+ 1

r

∂E

∂r

)
+ ω2

c2
(ε − ε0)E = 0 (5)

where, δ = [
1 + (ε0/ε0zz)

]
/2 with ε0zz = 1 − �2

p. By substituting E =
A0 exp(−ikS(r, z)), where k and S are the wave vector and eikonal of beam. One
can write for initially Gaussian beam as,

A2
0 = E2

0

f 2
exp

(
− r2

r20 f
2

)
(6)

S = r2

2 f

d f

dz
+ ϕ(z) (7)

where, E0 is electric field at the central position r = z = 0, r0 is initial beam radius
and f is dimensionless BWP.

In subsequent stages, by succeeding proposal developed by Akhmanov et al. [6]
and its modification lead by Sodha et al. [7]. An expression for f under paraxial
approximation as

d2 f

dξ 2
= 4δ2

f 3
− ρ2 pχ(−ψ + δσ�c)δ

f 3(β − √
ψ)

2√
ψ(

√
ψ − σ�c)

2 (8)

where,
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χ = 1− pσ�c

f 2
(
1+ p

f 2

) 3
2

+ 2σ�c√
1+ p

f 2

− 3pσ 2�2
c

f 2
(
1+ p

f 2

)2 + 3σ 2�2
c(

1+ p
f 2

) andψ = 1+ p
f 2 + 2pσ�c

f 2
√
1+ p

f 2

+
3pσ 2�2

c

f 2
(
1+ p

f 2

) .

Here, ξ = z/kr20 is non-dimensional distance travelled by laser in plasma and
p = αE2

0 is initial intensity parameter of beam.

3 Results and Discussion

Equation (8) is an ordinary nonlinear beam width parameter differential equation
in magnetized RCQP. The Eq. (8) is solved by considering following laser-plasma
parameters as: ω = 1.778× 1020rad/s, r0 = 20μm, �p = 0.1, �c = 0.2, p = 1 and
σ = 0,±1.

Figure 1 shows, the effect of σ on f (ξ). The behaviour of f with ξ is accordance
with density gradient which is further responsible for changes in ε of plasma. It is
observed that, the SF is more (less) dominant in forward (reverse) magnetization
in comparison with unmagnetized case of reference. Figure 2 shows effect of σ on
ε(ξ). From Fig. 2, it is observed that variation of ε is also oscillatory with ξ . The
oscillatory peaks of ε in Fig. 2 matches to the oscillatory valleys of f in Fig. 1.

Figure 3, illustrates the effect of plasma density on f (ξ). From this it is clear that,
as density parameter �p increases, enhanced SF of beam occurs with decrease in SF
length. However, oscillatory behaviour of f with ξ for different σ values is same as
in Fig. 1. As usual, SF in plasma is enhanced by addition of quantum effects.

Effect of different values of �c on f (ξ) is plotted in Fig. 4. From this it is clear
that, as magnetic field parameter �c increases, SF length decreases. The effect of σ

on behavior of f with ξ is same as observed in Fig. 1.

Fig. 1 Effect of σ on f (ξ)
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Fig. 2 Effect of σ on ε(ξ)

Fig. 3 Effect of �p on
f (ξ). Solid curves (σ = 0),
Dashed curves σ = +1,
Dotted curves σ = −1

Fig. 4 Effect of �c on f (ξ).
Solid curves (σ = 0),
Dashed curves σ = +1,
Dotted curves σ = −1
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4 Conclusions

In this paper, second order nonlinear BWP differential equation of Gaussian beam
in magnetized RCQP is obtained. It is found that, strength and direction of external
magnetic field affects the SF of the Gaussian beam in plasma. In addition, quantum
mechanical effects add the SF behaviour of laser in plasma.
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Inelastic Soliton Collision in Multispecies
Inhomogeneous Plasma

K. Raghavi, L. Kavitha, and C. Lavanya

Abstract In the present study, the multispecies in homogeneous dusty plasma with
three constituents electrons, positrons and ions are observed. The Non linear Schr
odinger Equation (NLSE) is obtained along the lines of commonly using reductive
perturbation technique. We explore the collision of inelastic solitons upon employ-
ing the Hirota’s bilinearization procedure. The results show that the properties of
soliton collision are significantly influenced by the positron embedded in the three
component plasma.

Keywords Inhomogeneous plasma · Reductive perturbation technique · Hirota
bilinearization

1 Introduction

At present wave phenomena in dusty plasmas have much importance by reason of
its part in the analysis of space and astrophysical background which includes tail of
comets, ring of planets, interstellar space, asteroid zones etc. [1–3]. In a similar dusty
plasma system, the grains of dust are immersed in the surrounding plasma and disper-
sion background. They interact with plasma particles owing to the charge associated
with them. The dust, gain charge because of some conditions such as Collisional
charging, Photo electric emisssion etc., and the state of unchanged charged dust
grains modify the wave spectra whereas dynamics of dust charge supports the new
eigen modes in dusty plasma [4–8]. In early stages, Zabusky and Kruskal observed
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the influence of solitons in the plasma system which is collisionless and found the
recurrence of beginning states [9]. S. Gardner et al. derived a technique for solving
the Korteweg-de Vries equation which can be applied to forecast exactly the soli-
tary waves that emerges from random initial conditions [10]. The Ion waves in a
massively charged dusty plasma was examined by Angelis et al. and they derived an
equation explaining low-frequency electrostatic perturbations on a non homogeneous
background. The model is used for interpreting noise enhancement in low frequency
range in the regions of dust inHalley’s comet [5]. T. E. Sheridan investigated the char-
acteristics of large amplitude negative potential solitary wave in multi-component
dusty plasma particularly consisting of three components [11]. T. S. Gill and H. Kaur
used the Sagdeev Pseudopotential method to study the solitary waves in unmagne-
tised dusty plasma [12]. Xue investigated the collision between dust acoustic solitary
waves in an unmagnetised dusty plasma and established the phase shift modification
by varying dust charge [13]. One dimensionally solitary waves in plasma systemwas
reported by many investigators. Sayed and Mamum investigated the solitary waves
in dusty plasma system consisting of four components using the reductive pertur-
bation method [14]. Lin and Duan studied DASWs using multi-component dusty
plasma consisting of non thermal ions, electrons that obey Boltzmann distribution
law and negatively charged dust fluid [15]. Dusty plasma consisting of positive dust
grains were investigated by T. K. Baluku et al. and tracked down the results that the
DIA solitons are restricted to the positive potential whereas in case of negative dust
grains either positive or negative potential may exist [16]. Harvey et al. observed
the interaction of two counterpropagating solitons of identical amplitude and found
that during collision, the sum of the initial soliton amplitudes was greater than the
overlapped soliton amplitude [17]. T. Suji and Oikawa investigated the influence of
solitons in a two layer fluid two dimensionally and finally generated a new wave
called stem [18]. The collisional properties of dust acoustic solitary waves is inves-
tigated by Ghosh et al. using Poincare Lightthill Kuo method [19]. Alfven waves in
space and astrophysical regions are studied by V. Jatenco-Pereira et al. and resulted
that the existence of superthermal ions and dust modifies the dispersion of Alfven
waves [3]. S. K.Sharma et al. investigated the collision and propagation of DASW in
a strongly coupled dusty plasma [20]. L. Kavitha et al. investigated the excitations
of solitons in low frequency Alfven waves in magnetized dusty plasmas [21]. Najah
Kabalan et al. recorded the DAmultisolton interactions using numerical simulations
in the system of dusty plasma which is strongly coupled [22]. Krishan Kumar et al.
reported the reflection aspects of DA solitary waves in dusty plasma in an experimen-
tal view [23]. The manuscript is organized as follows. Sect. 1 gives an introduction
to the work with related literature. In Sect. 2 we establish the nonlinear equations for
ion acoustic solitary waves. We use the reductive perturbation approach and arrive
the nonlinear Schrödinger equation in Sect. 3 elucidate the collisional attributes of
dust acoustic solitary waves. Sect. 4 contains a breif summary of our investigation.
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2 Theoretical Model and Equation of Motion

An inhomogeneous plasma which exhibits less collision is considered. The con-
stituents of such plasma are positrons, electrons and ions [24]. The dynamics of the
ions are represented in normalized form by the below equations.

∂ni
∂t

+ ∂(nivi )

∂x
= 0, (1)

∂vi

∂t
+ vi

∂vi

∂x
= −∂φ

∂x
, (2)

and
∂2φ

∂x2
= (ne − ni − np). (3)

The densities of positron, electron and ion are expressed in terms of np, ne ni respec-
tively. The velocity of ion fluid (vi ) and electrostatic potential (φ) are the variables of

the equation. The debye length λDd=
√

Te
4πe2n0

, normalizes the space coordinate and

ion inverse plasma frequency ω−1
pi =

√
mi

4πe2n0
, normalizes the time coordintes. Further,

the electrostatic potentials is normalized by Te
e and velocity by csi =

√
Te
mi
.Tp and

Te represents the temperature of positron and electron respectively. Moreover, mi is
the ion mass and e designates the magnitude of the electron charge. The evolution
equation we arrived is the Nonlinear Schrödinger equation, by involving the standard
reductive perturbation technique [25, 26] and the nonlinear Schrödinger equation we
obtained is:

i
∂φ

∂τ
+ P

∂2φ

∂ξ2
+ Q|φ|2φ = 0, (4)

In Eq. (4), P is the nonlinearity coefficient and Q is the dispersion coefficient. They
are given as

P = 1

k
[

− k2 − ne0
( e
Te

) − n p0(
e
Tp

)
]
[

− vgk A1 J + 2vgk
2 + A2 Jkni0 − 2kω

+2k2vi0 − vg A1 + ni0A2 + vi0A1 + vi0k A1 J − 2vi0k
2
]
,

Q = −1

2ni0T
2
e T

2
p

[
− k2 − ne0

( e
Te

) − n p0(
e
Tp

)]
[ − 6k A21A2T

2
e T

2
p + 8A1ωBT 2

e T
2
p k

2

+2A1ωBTeT
2
p ne0e + 2A1ωBT 2

e Tpne0e + A1ωne0e
2T 2

p − A1ωn p0e
2T 2

e − A1ω

×n p0T
2
e T

2
p − 8A1k

3vi0BT
2
e T

2
p − 2A1kvi0BTeT

2
p ne0e − 2A1kvi0BT

2
e Tpn p0e − 3

×A1kvi0ne0e
2T 2

p + 3A1kvi0n p0T
2
e e

2 + A1kvi0n p0T
2
e T

2
p + 8k3A2ni0BT

2
e T

2
p + 2k A2

×ni0BTeT
2
p ne0e + 2k A2ni0BT

2
e Tpn p0e + 3k A2ni0ne0Be

2T 2
p − 3k A2ni0n p0T

2
e e

2
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−k A2ni0n p0T
2
e T

2
p − 2k A1evi0CTeT

2
p ne0 − 2k A1evi0CT 2

e Tpn p0 + 2k A1evgCTe

×T 2
p n p0 + 2k A1evgCT 2

e Tpn p0 + 2k A1vgne0e
2T 2

p − 2k A1vgn p0T
2
e e

2 + 2A2keni0C

×TeT
2
p ne0 + 2A2keni0CT 2

e Tpn p0
]
,

where

J = 1

−kni0(A2ω − A2kvi0 − k)

[
− 2kω2 + 4ωk2vi0 − ωvg A1 + ωni0A2 + ωvi0A1

−2k3v2i0 + kvi0vg A1 − kv2i0A1 − vg A2kni0 + kni0

]
,

B =
(−ω + kvi0)−8ikni0

[
(ω − kvi0)

(
ne0e2

2T 2
e

− np0e2

2T 2
p

+ 1
2

)
− k A1A2

]
− ik A1A2

−ω+kvi0
kni0

[
(4k2 + ne0e

Te
+ np0e

Tp
)

]
+ 2ik

,

C =
2A1A2 + (vi0−vg)

2

ni0

[
ne0e2

T 2
e

− np0e2

T 2
p

]
− A2A2

−(vi0−vg)2

ni0

[
ne0e
Te

+ np0e
Tp

]
+ 1

,

A1 = k2 + ne0
ne0e

Te
+ np0e

Tp
,

and

A2 =
iωk2 + ne0

ne0e
Te

+ np0e
Tp

− ikvi0k2 + ne0
np0e
Tp

ikni0
.

3 Hirota Bilinearization and Plasmic Solitons

The solution for Nonlinear Wave Equations (NWEs) or Partial Differential Equa-
tions (PDEs) became a major challenge in solving NonLinear problems. Though
many influential techniques like Inverse scattering transform, Bäcklund transforma-
tion, etc., exist, Hirota Direct method [27–31] is one of the capable technique for
the construction of Multi-soliton solutions. The above technique not only helps in
constructing the multi solitonic solution but also helps in obtaining the solutions of
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integrable nonlinear evolution equations. We apply rational transformation,to find
the solution for Eq. (4).

φ = g(ξ, τ )

f (ξ, τ )
. (5)

Here g(ξ, τ ) and f (ξ, τ ) are complex and real function which is to be determined.
Further, using Eq. (5) in place of Eq. (4), we gain the following Hirota’s bilinear
form

[i Dτ + PD2
ξ ]g · f = 0

PD2
ξ ( f · f ) − Qgg∗ = 0, (6)

where ∗ is the symbol of asymmetricity and Bilinear operators introduced by Hirota,
Dξ and Dτ are given by

Dm
ξ Dn

τ (g. f ) =
(

∂

∂ξ
− ∂

∂ξ′

)m(
∂

∂τ
− ∂

∂τ ′

)n

g(ξ, τ ) f (ξ′, τ ′)|ξ′=ξ,τ ′=τ . (7)

using a small expansion parameter ε, g and f are expanded, Then we obtain

g = εg1 + ε3g3 + ε5g5 + ....,

f = 1 + ε2 f2 + ε4 f4 + ε6 f6 + .... (8)

on substituting the above Eq. (8) into Eq. (8), and solving we get the recursion
relations.

3.1 One Soliton Solution

For the construction of one soliton solution, we assume;

g = εg1,

f = 1 + ε2 f2. (9)

The one-soliton solution is obtained explicitly by substitution of Eq. (9) into Eq. (6)
and finally solving the resulting equation. The solution is

φ = eη1

1 + f2
, (10)

where
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f2 = Q

2P(k1 + k∗
1)

2
eη1+η∗

1 ,

η1 = k1ξ − ω1τ + η10,

ω1 = −ik21P,

Here, ω1 and k1 are complex parameters whereas η10 is a constant.

3.2 Two-Soliton Solution

In order to find solutions of two-soliton, we introduce the following series:

g = εg1 + ε3g3,

f = 1 + ε2 f2 + ε4 f4. (11)

and replacing in Eq. (6) and working out the developed group of PDE, the definite
two soliton solutions is arrived as follows:

φ = εg1 + ε3g3

1 + ε2 f2 + ε4 f4
. (12)

g3 = ea1eη1+η∗
1+η2 + eb1eη1+η2+η∗

2 ,

f2 = Q

2P

[
eR1eη1+η∗

1 + eR2eη1+η∗
2 + eR3eη2+η∗

1 + eR4eη2+η∗
2

]
,

f4 = eη1+η∗
1+η2+η∗

2+δ,

where

ea1 = Q(k1 − k2)2

2P(k2 + k∗
1)

2(k1 + k∗
1)

2
,

eb1 = Q(k1 − k2)2

2P(k2 + k∗
2)

2(k1 + k∗
2)

2
,

eR1 = 1

(k1 + k∗
1)

2
,
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eR2 = 1

(k1 + k∗
2)

2
,

eR3 = 1

(k2 + k∗
1)

2
,

eR4 = 1

(k2 + k∗
2)

2
,

eδ = Q2

2P

[
(k1 − k2)2(k∗

1 − k∗
2)

2

(k1 + k∗
1)

2(k2 + k∗
2)

2(k1 + k2)2(k∗
1 − k∗

2)
2

]
.

4 Results and Discussion

We investigated the effects of positron concentration on the plasmic soliton collision
in electron positron ion plasma. We discuss graphically the interactions of solitary
waves through the solution Eq. (12). Figure 1 indicates the interaction between the
two soliton solutions Eq. (12) for arbitrary choices of parameters ni0, Te, Tp and for
different values of density of positron np0. When np0 = 0.008 units, the amplitude
of soliton s1 and s2 is observed at 45 and 40 units respectively. Similarly by setting
np0 = 0.09, 0.21 and 3 units, the solitons s1 and s2 suffers a fall in amplitude as shown
in Fig. 1. The Fig. 2 shows the cumulative intensity plot before collision (t = −10)
and after collision (t = 10). The graphical representation of Fig. 2 clearly indicates
that the two solitons s1 and s2 undergo a significant inelastic collision in which the
amplitude of plasmic soliton decreases with the enhancement of positron density
np0.

5 Conclusions

We have explored the collisional dynamics of solitary waves in an unmagnetized
plasma consisting of positrons along with electrons and ions. The dynamics of such
wave is described by the celebrated nonlinear Schrödinger equation. By applying the
technique ofHirota bilinearization, the interaction between the two soliton solution is
presented. It is observed that an increase in the positron density generates the inelastic
soliton collision. The results manifested that the presence of positrons display a
significant play role on the amplitude of the profile of the plasmic solitons.
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Fig. 1 Snapshots of collision between two soliton to the solution 4.27 with the various choices
of parameters Te = 1.0, ni0 = 6.7, ne0 = 0.85, e = −1.6 × 10−19C , ω = 9, vg = 0.79, vi0 = 0.7,
k = 0.7, Tp = 6.0eV , a n p0 = 0.008, b n p0 = 0.09, c n p0 = 0.21 and d n p0 = 3

http://dx.doi.org/10.1007/978-3-030-99792-2_4
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Fig. 2 The cumulative plot showing the intensity profile of two soliton collision for various values
of n p0 a before (t = −10) and after b (t = 10) collision
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Propagation of Rarefactive Dust Acoustic
Solitary and Shock Waves
in Unmagnetized Viscous Dusty Plasma
Through the Damped
Kadomstev-Petviashvili Burgers
Equation

Tanay Sarkar , Santanu Raut , and Prakash Chandra Mali

Abstract The non-linear propagation of dust acoustic waves (DAWs) in collisional,
unmagnetized, viscous dusty plasma systems containing two temperature ions, elec-
trons, high negatively charged dust grains are investigated. By using the reductive
perturbation method (RPM) the damped Kadomtsev-Petviashvili Burgers (dKPB)
equation that governs the DAWs is derived. Generally, the impact of viscosity is
ignored during the studies of wave dynamics in a plasma medium. In the present
investigation, a Burgers term is introduced in order to express the dissipation effect
in the viscous plasma circumstance. The strong dissipation due to the presence of
Burgers term may cause for rising of a shock solution. However, in a very weak dis-
sipative system, the solitary-like wave solution may arise due to the balance between
the dispersion and nonlinearity. Assuming conservation law in the present system,
solitary type wave solution is explored, and shock type wave solution is determined
by means of Simplified Hirota bilinear method (SHBM). Finally, the effect of the
kinematic viscosity, collisional frequency, etc. on wave propagation is demonstrated
from numerical understanding.

Keywords Dust acoustic waves · Reductive Perturbation method · Damped
KP-Burgers equation · Burgers term · Shock solution · Solitary like wave solution

1 Introduction

Dusty plasma plays a vital role in understanding different nonlinear phenomena
appearing in space and astrophysical studies [1, 2]. Due to the presence of different
kinds of dust particles of different sizes and masses, dusty plasma gave birth to
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various wave modes such as dust acoustic mode [3], dust ion-acoustic mode [4], etc.
Over the past few decades, DAW of dusty plasma has come up as a hot research topic
and research on this topic is still ongoing. In 1990, Rao et al. [3] first theoretically
brought the DAWs to everyone and after five years Barkan et al. [5] confirm the
earlier prediction through laboratory experiments.

DAW is the most fundamental content of dusty plasma. DAWs are largely found
in the rings of the various planets, mesosphere of the Earth, tails of comets, etc. [6].
A lot of research has been done on dust acoustic waves [7–10].

Among the various nonlinear structures of DAWs, dust acoustic solitary waves
(DASWs) and dust acoustic shock waves (DAShWs) are the vastly growing area
of research nowadays. Presently DASWs and DAShWs acquired a special place
in space plasma research, laboratory plasma research, etc. Solitary waves are pro-
duced when there is a balance between nonlinearity and dispersive effects wheres
the reason behind the production of shock waves is the dominance of dissipation
over the dispersion in nonlinear media [11, 12]. Several researchers have worked for
the development of DASWs [13, 14] and DAShWs [15]. Both DASW and DAShW
structures may contain in a plasma system where both dispersion and dissipation are
present [16].

In the present paper, we analyzed the propagation of DAWs in a collisional,
unmagnetized, viscous dusty plasma system comprising of electrons, two tempera-
ture ions, and dust particles with a high negative charge. Applying reductive pertur-
bation method, dKPB equation is derived, and using momentum conservation law
solitary waves solutions are derived. Shock solution is also obtained for this equation
by the SHBM technique. The remaining portion of this paper is arranged as follows:
The basic governing equations are considered in Sect. 2. The damped KP-Burgers
equation is originated by using RPM in Sect. 3. Solutions of the dKPB equation are
given in Sect. 4. The parametric discussion of the solution with diagrams is delivered
in Sect. 5 and the conclusions are given in Sect. 6.

2 Basic Model Equations

We consider here an unmagnetized viscous dusty plasma containing of high neg-
atively charged dust grains, electrons and two different temperature ions. For the
neutrality of net charge at equilibrium satisfies

Ne0 + Nd0Zd0 − Nil0 − Nih0 = 0, (1)

where Ne0, Nd0, Nil0 and Nih0 are the values of the number densities of electrons,
dust, lower temperature ions and higher temperature ions at equilibrium respectively.
Zd0 is the unperturbed number of charges on the dust particles. Then the dynamics of
DAWs for variable dust charge can be described by the following continuity, motion
for the dust and Poisson’s equations as
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∂Nd

∂t
+ ∂

∂x
(NdUd) + ∂

∂y
(NdVd) = 0, (2)

∂Ud

∂t
+Ud

∂Ud

∂x
+ Vd

∂Ud

∂y
= Zd

∂φ

∂x
− ζ

(
∂2

∂x2
+ ∂2

∂y2

)
Ud − μidU, (3)

∂Vd

∂t
+Ud

∂Vd

∂x
+ Vd

∂Vd

∂y
= Zd

∂φ

∂y
− ζ

(
∂2

∂x2
+ ∂2

∂y2

)
Vd − μidV, (4)

∂2φ

∂x2
+ ∂2φ

∂y2
= Zd Nd + Ne − Nil − Nih, (5)

where Nd denotes the dust number density, Zd denotes the number of charges on
dust particles. The effective temperature Tef f satisfies

Tef f = Nd0Zd0

(
Ne0

Te
+ Nil0

Til
+ Nih0

Tih

)−1

, (6)

where Te, Tih and Til are temperature of electrons, higher temperature ions and lower
temperature ions respectively.Ud and Vd are the velocities of the dust flow along the
direction of x-axis and y-axis respectively and normalized by the dust acoustic speed
cd = (

KBTef f Zd0

md
)
1
2 in which KB is the Boltzmann constant andmd represents the dust

particles mass. The electrostatic potential φ is normalized as φ = KBTef f
e . Space and

time variables are scaled over the effective Debye length, λd = (
KBTef f

4πNd0Zd0e2
)
1
2 and the

inverse of dust plasma frequency, ω−1
pd = ( md

4πNd0Z2
d0e

2 )
1
2 . ζ = ζ0

ωpdλ
2
d
, here ζ0 denotes

the kinematic viscosity of dust. μid represents the collisional frequency.
Ne, Nil and Nih are respectively the number densities for electrons, lower tem-

perature ions, higher temperature ions and which are given by

Ne = Ne0

Nd0Zd0
exp(β2sφ), (7)

Nil = Nil0

Nd0Zd0
exp(−sφ), (8)

Nih = Ne0

Nd0Zd0
exp(−β1sφ), (9)

where β1 = Til
Tih

,β2 = Til
Te

,β3 = Tih
Te

, s = Tef f
Til

, ρ1 = Nil0

Ne0
, ρ2 = Nih0

Ne0
. (10)

From (1) and (10) it follows
ρ1 + ρ2 − 1 = 0, (11)
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s = ρ1 + ρ2 − 1

ρ1 + ρ2β1 + β2
. (12)

The variable Qd of dust charge can be calculated from the equation [17]

(
∂

∂t
+ −→

V .
−→∇

)
Qd = Je + Jil + Jih, (13)

where
−→
V = (Ud , Vd) and Je, Jil and Jih are the electron, lower temperature ions and

higher temperature ions currents respectively. We assume that the thermal velocities
of electrons and ions are much greater than the streaming velocities, thus dQd

dt <<

Je, Jil , Jih and the equation (13) looks [1]

Je + Jil + Jih ≈ 0. (14)

The electron and ion currents are satisfied the relation [1]

Je = −eπr2
(
8Te
πme

) 1
2

Ne exp

(
e�

Te

)
, (15)

Jil = eπr2
(
8Til
πmi

) 1
2

Nil

(
1 − e�

Til

)
, (16)

Jih = eπr2
(
8Tih
πmi

) 1
2

Nih

(
1 − e�

Tih

)
, (17)

where � is the potential of dust particles surface related to the plasma potential φ.
We gain the dust charge Zd in normal condition, from Zd = ψ

ψ0
, where ψ = exp�

Tef f
,

and ψ0 = ψ(φ = 0). Expressing Zd in terms of φ we get [18]

Zd = 1 + γ1φ + γ2φ
2 + · · · , (18)

where γ1 = 1
ψ0

(
dψ(φ)

dφ
)φ=0 and γ2 = 1

2ψ0
(
d2ψ(φ)

dφ2 )φ=0.

3 Derivation of Damped KP-Burgers Equation

In this section we derive the damped KP-Burgers equation and for this purpose we
have employed the RPM [19]. The stretching co-ordinates are given as

ξ = ε(x − λpt), τ = ε3t, η = ε2y, (19)
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where the small parameter ε characterizes the strength of the non-linearity of the
system and λp stands for presenting the phase velocity of the wave. To get the
damped KP-Burgers equation, we expand the perturbation quantities Nd ,Ud , Vd , Zd

and φ in power series of ε as

Nd = Nd0 + ε2Nd1 + ε4Nd2 + · · · , (20)

Ud = Ud0 + ε2Ud1 + ε4Ud2 + · · · , (21)

Vd = Vd0 + ε3Vd1 + ε5Vd2 + · · · , (22)

Zd = Zd0 + ε2Zd1 + ε4Zd2 + · · · , (23)

φ = φ0 + ε2φ1 + ε4φ2 + · · · , (24)

ζ = εζ0, μid = ε3μid0. (25)

By using the RPM fromEqs. (2)–(5) and using stretching coordinates (19) alongwith
state variables from Eqs. (20)–(25), we gain a evolution equations set. Calculating
and considering φ1 = φ, we obtain the damped KP-Burgers equation as

∂

∂ξ

(
∂φ

∂τ
+ Aφ

∂φ

∂ξ
+ B

∂3φ

∂ξ3
+ C

∂2φ

∂ξ2
+ Dφ

)
+ E

∂2φ

∂η2
= 0, (26)

where A = λ3
p

2

[
(ρ1 + ρ2β

2
1 − β2

2)
(ρ1+ρ2−1)

(ρ1+ρ2β1+β2)2
− 2γ2

]
+ 3

2γ1λp − 3
2λp

, B = λ3
p

2 ,

C = ζ0
2 , D = μid0

2 , E = λp

2 , and λp = (1 + γ1)
− 1

2 .

4 Solution of Damped KP-Burgers Equation

4.1 Solitary Wave Solutions

In this part we will solve damped KP-Burgers equation (26) using momentum con-
servation law. Integrating (26) with respect to ξ we have

∂φ

∂τ
+ Aφ

∂φ

∂ξ
+ B

∂3φ

∂ξ3
+ C

∂2φ

∂ξ2
+ Dφ + E

∫
∂2φ

∂η2
dξ = 0. (27)

Let z = ξ + η, then (27) reduces to

∂φ

∂τ
+ Aφ

∂φ

∂z
+ B

∂3φ

∂z3
+ C

∂2φ

∂z2
+ Dφ + E

∂φ

∂z
= 0. (28)
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removing burgers and damping term from the above equation by putting C = 0,
D = 0 then Eq. (28) changes to the equation

∂φ

∂τ
+ E

∂φ

∂z
+ Aφ

∂φ

∂z
+ B

∂3φ

∂z3
= 0, (29)

which is the KdV type equation and solitary wave solution is of the form

φ(z, τ ) = φmsech
2

(
z − Mτ

W

)
, (30)

where φm = 3(M−E)

A indicates the amplitude, W = 2
√

B
M−E indicates the width and

M indicates the speed of DASW. To find solitary wave solutions of dKPB Eq. (26)
we use (30) as a seed solution and so for small values of C (Burgers coefficient)
and D (damping coefficient), we assume that the DASW solutions of Eq. (26) with
considering amplitude φm , width W and velocity M are time τ dependent as

φ(z, τ ) = φm(τ )sech2
(
z − M(τ )τ

W (τ )

)
. (31)

Now conserved quantity for KdV type equation (29) is [20]

I =
∞∫

−∞
φ2 dz, (32)

gives

I = 24

√
B

A2
(M(τ ) − E)

3
2 . (33)

Differentiating (32) w.r.to τ

d I

dτ
= −2DI + 32

15
C

φ2
0(τ )

W (τ )
. (34)

Again differentiating (33) w.r.to τ

d I

dτ
= 36

√
B

A2
(M(τ ) − E)

1
2
dM(τ )

dτ
. (35)

From (34) and (35)

d

dτ
(M(τ ) − E) + 4D

3
(M(τ ) − E) = 4C

15B
(M(τ ) − E)2. (36)
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Solving we get

M(τ ) = E + 1
C

5BD +
(

1
M0−E − C

5BD

)
e

4
3 Dτ

, (37)

where M0 represent the value of M(τ ) at τ = 0. Thus the solution of dKPB equation
is

φ(ξ, τ ) = φm(τ )sech2
(

ξ + η − M(τ )τ

W (τ )

)
, (38)

where φm(τ ) = 3(M(τ )−E)

A , W (τ ) = 2
√

B
M(τ )−E and (37) provides M(τ ).

4.2 Shock Wave Solutions

Burger’s medium produces solitary wave solutions when there is week dissipation.
However, the powerful dissipation can result in shock waves. We have already derive
solitary solution using conservation law. Now, to investigate shock wave solution,
we operate SHBM [21] on dKPB equation

∂φ

∂τ
+ Aφ

∂φ

∂ξ
+ B

∂3φ

∂ξ3
+ C

∂2φ

∂ξ2
+ Dφ + E

∫
∂2φ

∂η2
dξ = 0. (39)

Introducing the potential w, defined by

φ = wξ, (40)

we may write the Eq.(39) as

wτξ + Aw2
ξξ + Bwξξξξ + Cwξξξ + Duξ + +Ewηη = 0. (41)

Using the transformation below

w = eθ, where θ = kξ + nη − ωτ . (42)

We get the dispersion relation as

ω = Bk4 + Ck3 + En2 + Dk

k
. (43)

Assumed that the solution of Eq. (41) in the form of shock as

w = R(ln( f )), (44)
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where the function f (ξ, η, τ ) is defined as

f (ξ, η, τ ) = 1 + eθ = 1 + ekξ+nη−ωτ , (45)

Substituting Eqs. (44) and (45) into Eq. (41) we obtain a polynomial equation for enθ.
By setting the coefficient of enθ to zero, we obtain a system of algebraic equation.
Solving we get

R = 2(Ck2 − D)

Ak2
. (46)

Combining Eqs. (40), (44) and (46) we find the shock solution of dKPB Eq. (39) as,

φ(ξ, η, τ ) = (Ck2 − D)

Ak2

(
1 + tanh

(
kξ + nη − Bk4+Ck3+En2+Dk

k τ

2

))
. (47)

5 Parametric Discussion

In this part, we will discuss the influence of various physical parameters on solitary
and shock wave solutions of the dKPB equation. For the present study, the coefficient
B of dispersion is always positive. Thus, the compressive soliton is found for positive
values of the nonlinear coefficient A, whereas, the soliton remains rarefactive for
negative nonlinear coefficient. From Fig. 1a and b it is obvious that A is negarive and
thus, only the rarefactive soliton exists in the present system.

(a) (b) (c) (d)

Fig. 1 Variation A vs various parameter, a when ρ2 = 0.6, ρ1 = 2,β2 = 0.4, γ1 = 0.3, γ2 =
0.3. b When β2 = 0.4, ρ2 = 0.6,β1 = 0.2, γ1 = 0.3, γ2 = 0.3. c 3D profile of φ(τ ) is
plotted against ξ and η with the parameters γ1 = 0.7, γ2 = 0.2, β1 = 0.4, ρ2 = 4, ρ1 =
3, β2 = 0.4, τ = 2, M0 = 0.5, τ = 2, ζ0 = 0.04. d 3D profile of φ(τ ) is plotted against ξ
and η with the parameters γ1 = 0.7, γ2 = 0.3, β1 = 0.3, ρ2 = 3, μid0 = 0.04, β2 = 0.7, k =
0.15, n = 0.1, ζ0 = 0.04, τ = 2
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Fig. 2 2D profiles of φ(ξ, η, τ ) for solution (38) is plotted against ξ, a when γ1 =
0.7, γ2 = 0.2, ζ0 = 0.04, ρ2 = 4, ρ1 = 3, β1 = 0.4,β2 = 0.4, τ = 2, M0 = 0.5, η = 0.5,
b when γ1 = 0.7, γ2 = 0.2, ρ1 = 3, ρ2 = 4, μid0 = 0.02, β1 = 0.4,β2 = 0.4, τ = 2, M0 =
0.5, η = 0.5, c when γ1 = 0.7, γ2 = 0.2, ζ0 = 0.04, ρ2 = 4, μid0 = 0.02, β1 = 0.4,β2 = 0.4,
τ = 2, M0 = 0.5, η = 0.5, d when γ1 = 0.7, γ2 = 0.2, ζ0 = 0.04, ρ2 = 4, μid0 = 0.02, ρ1 =
3, β2 = 0.4, τ = 2, M0 = 0.5, η = 0.5

Fig. 3 2D profiles of φ(ξ, η, τ ) for solution is plotted against ξ, a when γ1 = 0.7, γ2 =
0.3, β1 = 0.3, ρ2 = 3, ρ1 = 3, β2 = 0.7, k = 0.15, n = 0.1, η = 0.5, ζ0 = 0.04, τ = 2,
b when γ1 = 0.7, γ2 = 0.3, β1 = 0.3, ρ2 = 3, ρ1 = 3, β2 = 0.7, k = 0.15, n = 0.1, η =
0.5, μid0 = 0.04, τ = 2, c when γ1 = 0.7, γ2 = 0.3, β1 = 0.3, ρ2 = 3, μid0 = 0.04, β2 =
0.7, k = 0.15, n = 0.1, η = 0.5, ζ0 = 0.04, τ = 2, d when γ1 = 0.7, γ2 = 0.3, ρ1 = 3, ρ2 =
3, μid0 = 0.04, β2 = 0.7, k = 0.15, n = 0.1, η = 0.5, ζ0 = 0.04, τ = 2

The effect of the collision frequency (μid0) and kinematic viscosity (ζ0) on the
solitary wave solutions are displayed in respectively Fig. 2a, b. It is clear from Fig. 2a
that the rarefactive soliton goes deeper for higher μid0. The occurrence of this type of
nonlinear phenomenon can be predicted as: As μid0 enhances the value of negative
potential energy of the system decrease and naturally, the soliton rises. In respect to
Fig. 2a, totally opposite result is seen in Fig. 2b where the rarefactive soliton goes
deeper for increment of ζ0. It is expected because enhancing ζ0 causes the increase of
dissipation in amedium and the soliton becomeswider and deeper. The characteristic
of shock waves under the variations of physical parameters μid0 and ζ0 are depicted
respectively in Fig. 3a and b. In Fig. 3a find enhances of μid0 causes rising of the
amplitude of shock wave, where as the Fig. 3b demonstrates that the diminishing
effect of the amplitude of shock wave due to the increase of ζ0. Figures2c and d, 3c
and d are depicted to exhibit the effect of the parameters ρ1 (the ratio of equilibrium
values of the number densities of lower temperature ions to the unperturbed number
of electrons) and β1 (ratio of two type of temperature ions) on solitary and shock
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propagation. For a clear vision of wave propagation in the plasma medium, the
three-dimensional profiles of the solitary and shock wave are depicted in Fig. 1a and
c respectively.

6 Conclusion

This article demonstrates the propagating behaviors of DASWs and DAShWs in
an unmagnetized collisional dusty plasma containing two temperature ion and
Maxwellian electrons. The solitary and shock solution are explored employing con-
servation law and SHBM respectively. Further the solutions are studied from numer-
ical understanding. It is found that the solitary wave rises above due to the enhance
in damping coefficient μid0 as damping minimizes the system’s negative potential
energy. On the other hand, the depth of the shock enhances with the enhance in μid0.
During the evolution of solitary wave, it is also found that soliton goes dipper as vis-
cosity enhances whereas, the shock declines for enhancing ζ0. Significant impacts
from other physical parameters on wave propagation are observed.
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Stability of the Dust-Acoustic Solitons
in the Thomas-Fermi Dense
Magnetoplasma

A. Atteya

Abstract An investigation is presented theoretically for the multi- dimensional
instability of dust-acoustic solitary waves in the dense Thomas-Fermi magneto-
plasma. The plasma system contains classical negatively charged dust grains with
degenerate electrons and ions particles.Based on the reductive perturbation approach,
the Zakharov-Kuznetsov (ZK) equation has been formulated. This nonlinear ZK
equation is analyzed for its solitary wave solutions. Only rarefactive solitary waves
are obtained, those are influenced by the parameters such as the dust temperature and
number density, the electrons, and ions Fermi temperatures, and densities. The waves
growth rate of the is computed. The previous parameters’ effects on the instability are
also discussed. The present results are beneficial in understanding the propagation
and the instability of nonlinear aspects in dense plasma systems likewhite dwarfs and
high-intensity laser-solid matter interaction experiments where the Thomas-Fermi
dense magnetoplasma state may occur.

Keywords Quantum semiconductor plasma · Degenerate holes · Plasma waves ·
Exchange-correlation forces · Zakharov-Kuznetsov equation · Bright soliton ·
Dark soliton

1 Introduction

Quantumplasma physics is important for understanding the superdense astrophysical
bodies performance [1] (such as, the white dwarfs, neutron stars, and Jupiter inte-
rior), ultrasmall electronic devices [2], microplasmas [3], and ultracold plasmas [4],
laser-based plasma compression [5], etc. Manfredi investigated the quantum plasma
through different approaches [6].

A quintessential plasma contains the electrons and ions, while dusty plasmas are
extended by containing massive negative or positive dust grains. The dusty plasmas
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have attracted significant interest in the recent past, and it is associated with indus-
trial applications, and also in astrophysical environments [7–10]. As a result of the
charge, size, and mass of the massive dust component, the dynamical profile which
characterizes dusty plasmas is complex on comparing to electron-ion plasmas. Fur-
thermore, the electrostatic waves phase speed is affected by the dust-modified charge
balance in the case of dust-ion-acoustic (DIA) waves [11], as also confirmed exper-
imentally [12, 13]. On the other side, the dust components take the dust-acoustic
(DA) waves aspect, where they are low-frequency oscillations [14–16].

In opposite to classical plasmas, low temperature and the high number density of
the particles characterize dense quantum plasmas, and the Wigner-Poisson or the
Schrödinger-Poisson treatment are used to model it [6]. Due to quantum corrections,
they host various nonlinear structures, and instabilities [6]. Accordingly, fluid trans-
port models have been used in various frameworks of condensed matter physics,
such as semiconductors [17], nanoparticles, superfluidity [18], and superconductiv-
ity [19]. Fluid transport models with no effects of the quantum diffraction are termed
as Thomas-Fermi non-stationary models.

In the Maxwell-Boltzmann statistics, as the temperature and density increase, the
ideal quasi-neutral classical gas pressure increases, thus confirm thermodynamical
equilibrium at the high temperature case. However, for the very dense plasma, new
laws are associated with the distribution of the Fermi-Dirac, at high Fermi temper-
ature. At an absolute zero temperature, the pressure remains nonzero and becomes
only a function of the density. The chemical potential μ for such a completely degen-
erate plasma comes near to the value of the Fermi energy, so we can neglect the
quantum diffraction effects. This is applicable only if number density of plasma
particle is high degeneracy state, with slightly weak interactions. Hence, the den-
sity of plasma is important in the dynamics of collective modes in degenerate dusty
plasma, comprising of mobile dust grains and degenerate inertialess ions and elec-
trons [20–24]. Abdelsalam et al. investigated the properties of the dust excitations
in the Thomas-Fermi plasma. Later, the extended study [25] derived the magnetized
Korteweg-de Vries (KdV), KdV- Burger, Zakharov-Kuznetsov (ZK) and ZK-Burger
equations and concluded that DA shock and solitary waves are changed due to the
variation of temperatures, concentrations, and viscosity of the dust. The solitary and
rogue DA waves formation and propagation are examined in a degenerate thermal
Thomas-Fermi dusty plasma through the incorporation of transverse velocity per-
turbation effects [26]. The Thomas-Fermi density distribution is taken for ions and
electrons, whereas the dust is considered as classical and dynamic. Obliquely prop-
agating waves nonlinear properties are studied by Irfan et al. [27] in a dense degen-
erate cold Thomas–Fermi magnetoplasma, comprising of contains non-degenerate
negatively-charged dust species. They derived and analyzed numerically the dust-
cyclotron dispersion relation. They also formulated an equation of energy-balance
by employing the Sagdeev pseudopotential theory. It was concluded that the soliton
existence domain and the wave characteristics depend upon the system parameters.
Unidirectional DAwaves Overtaking collision in the Thomas-Fermi magnetoplasma
has been analyzed [28].
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The ZK equation has been derivedwhen nonthermal ions are present in an external
magnetic field to analyze the DA solitary waves characteristics [29]. The dispersion
of linear DAwaves in a dusty plasma have been examined [30, 31], where twistedDA
vortex beam creation was reported. The instability of DA waves in a magneto-dusty
plasma was checked by the small-k expansion technique [32–36]. The instability of
DA waves in a magnetized dusty plasma was checked by Mamun [32]. Unstable
DA wave structures were found due to the presence of the external magnetic field.
The finite-amplitude DAwaves’ instabilities in a magnetized three-component dusty
plasma with nonthermal particles were also discussed by Mamun et al. [33]. They
illustrated that the features of the produced DA waves is modified by temperature
of dusts and the nonthermal ions, while the DA wave stability is not affected by the
nonthermal parameter variation.

The DIA waves three-dimensional stability have been also studied in a mag-
netized multicomponent dustyplasma by El-Taibany et al. [34] through using the
small-k expansion technique. They showed that the higher growth rate associated
with the larger wave amplitude and results in unstable solitary waves that are formed
in the presence of negatively-charged ions. Akhter et al. [35] investigated the sta-
bility of DA waves in a magnetized dusty plasma. They found that the presence
of an external magnetic field and the opposite polarity dust particles modified the
DA wave instability-criterion. The obliquely propagating DA waves stability in a
magnet0- multicomponent dusty plasma was derived by El-Labany et al. [36]. Saini
et al. [37] derived the Zakharov-Kuznetsov (ZK) nonlinear equation for ion-acoustic
solitary waves in a magnetized plasma. They also studied the stability analysis and
checked the parametric range for the presence of stable and unstable solitons. The
ZK equation was derived to study the DA solitary waves propagation in a magne-
tized dusty plasma containing massive, positive, and negative dust [38]. The wave’s
growth rate was derived and is affected by the polarization force. It is found also that,
the instability is affected by the physical parameters. El-Taibany et al. [39] investi-
gated the multi-dimensional instability in strongly coupled dusty plasma comprising
ions and electrons in superthermal distribution. The produced waves growth rate
is obtained, which is affected by the weakly and strongly coupling cases and the
superthermal distribution of both the ions and electrons. The effects of polarization
and trapping on multi-dimensional instability of ion-acoustic solitary waves in a
multi-ion plasma system were theoretically investigated by Zedan et al. [40]. The
instability and growth rate were found to be dependent on the density ratio between
ions and dust, obliqueness, the dust cyclotron frequency, and other system param-
eters [41]. This manuscript is organized as follows. The governing equations and
the derivation of the magnetized ZK equation is provided in Sect. 2. The solitary
wave solution is in Sect. 3. The stability analysis for the DA waves is examined in
Sect. 4. The numerical investigations and discussion are made in Sect. 5. At last, the
conclusions are presented in Sect. 6.
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2 Derivation of the ZK Equation

We consider quantum Thomas-Fermi dense magnetized plasma comprising of
negatively-charged dust particles with degenerate ions and electrons obeying the
Fermi-Dirac distributions. The externalmagnetic fieldB0 confined the plasma system
and it is in the z-direction, i.e.,B0 = ẑ B0 where B0 is themagnetic field strength and ẑ
is the unit vector along z-axis. The quasineutrality condition is Ne0 = Ni0 − Nd0Zd0

at equilibrium,where Zd0 is the dust charge at equilibrium, Ns0 is the sth species equi-
librium density (s = e, i , and d for electrons, ions, and negatively charged dust grains
respectively). The propagation of the DA for the Thomas-Fermi magnetoplasma is
governed by [28]

∂Nd
∂t + ∇.(NdUd) = 0,

∂Ud
∂t + Ud .∇Ud = ∇ψ − ΩUd × ẑ − σd Nd∇Nd ,

∇2ψ = μeNe − μi Ni + Nd ,

Ne = (1 + σiψ)3/2 ,

Ni = (1 − ψ)3/2 ,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1)

where Ns is the normalized number density, Ud dust fluid velocity that normal-
ized by the DA speed Cd = (2Zd0kBTFi/md)

1/2 , ψ is the wave potential that
normalized by 2kBTFi/e. Ω = ωcd/ωpd is the normalized dust gyro-frequency

with ωcd = eZd0B/md and ωpd = (
4πZ2

d0nd0e
2/md

)1/2
. Also, σd = Td/TFi Zd0,

μi = ni0/Zdnd0, and μe = ne0/Zdnd0, are the dust temperature-to-ion Fermi tem-
perature ratio, the ion concentration, and electron concentration, divided by nd0Zd0,
respectively, with e is the electronic charge, kB is the Boltzmann constant. σi =
TFi/TFe is the ion-to-electron Fermi temperature ratio. The charge-neutrality
condition at equilibrium becomes μi=μe+1. The space variable is normalized by
λ0 = (

2kBTFi/4πZdnd0e2
)1/2

, and the time variable t is normalized by ω−1
pd .

The ZK equation is formulated by employing the stretching of the independent
variables x, y, and t to be defined as [24]

X = ε1/2x,Y = ε1/2y, Z = ε1/2(z − v0t), T = ε3/2t, (2)

where ε is a formal small expansion parameter which indicates strength of the system
nonlinearity, v0 is the phase velocity. The dependent variables can be considered as:

Nd = 1 + εN (1)
d + ε2N (2)

d + ε3N (3)
d + . . . ,

Udx,y = ε
3
2U (1)

dx,y + ε2U (2)
dx,y + ε

5
2U (3)

dx,y + ...,

Udz = εU (1)
dz + ε2U (2)

dz + ε3U (3)
dz + . . . ,

ψ = εψ(1) + ε2ψ(2) + ε3ψ(3) + . . .

⎫
⎪⎪⎬

⎪⎪⎭

(3)

Putting Eqs. (2) and (3) into Eqs. (1), and the lowest orders perturbed quantities
by collecting lowest order of ε, we get
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N (1)
d = −ψ(1)

v2
0 − σd

,U (1)
dz = v0ψ

(1)

v2
0 − σd

. (4)

The propagation phase velocity of the DA waves in the magnetized dusty plasma is

v0 =
√
2 + 3μiσd + 3μeσdσi

3μi + 3μeσi
. (5)

Combining the next higher-orders contributions lead to

U (1)
dx = −v20

Ω(v20−σd)
∂ψ(1)

∂Y ,

U (1)
dy = v20

Ω(v20−σd)
∂ψ(1)

∂X ,

U (2)
dx = −v30

Ω(v20−σd)
∂2ψ(1)

∂X∂Z ,

U (2)
dy = −v30

Ω(v20−σd)
∂2ψ(1)

∂Y∂Z .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(6)

Now, the next higher order of ε gives

∂N (2)
d

∂Z = − 2v0
(v20−σd)

2
∂ψ(1)

∂T + (3v20+σd)

(v20−σd)
3 ψ

(1) ∂ψ(1)

∂Z − 1
(v20−σd)

∂ψ(2)

∂Z

− v40

Ω2(v20−σd)
2

∂3ψ(1)

∂Y 2∂Z − v40

Ω2(v20−σd)
2

∂3ψ(1)

∂X2∂Z .

⎫
⎬

⎭
(7)

Substituting in the Poisson’s equations, we derive the following equation

∂ψ(1)

∂T
+ Aψ(1) ∂ψ(1)

∂Z
+ B

∂3ψ(1)

∂Z3
+ C

(
∂3ψ(1)

∂X2∂Z
+ ∂3ψ(1)

∂Y 2∂Z

)

= 0. (8)

This equation is the ZK equation with the following nonlinearity coefficient A, and
the dispersive terms B, and C :

A =
(

3v20+σd− 3
4 (v

2
0−σd)

3
(μi−μeσ

2
i )

2v0σd−2v30

)

,

B = (v20−σd)
2

2v0
,

C = 1
2v0

((
v2
0 − σd

)2 + v40
Ω2

)
.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9)

3 Solitary Wave Analysis

To obtain the solitary wave solution of Eq. (8), we shall follow the transformation of
the independent variables [32, 42, 43] rotating by an angle θ about the coordinate
axes (X , Z ) as
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ξ = X sin θ + Z cos θ,
ζ = X cos θ − Z sin θ,

η = Y, and τ = T .

⎫
⎬

⎭
(10)

Using transformations (10) to the ZK Eq. (8), we get

∂ψ(1)

∂τ
+ S1ψ(1) ∂ψ(1)

∂ξ
+ S2

∂3ψ(1)

∂ξ3
+ S3ψ(1) ∂ψ(1)

∂ζ
+ S4

∂3ψ(1)

∂ζ3

+S5
∂3ψ(1)

∂ξ2∂ζ
+ S6

∂3ψ(1)

∂ξ∂ζ2
+ S7

∂3ψ(1)

∂ξ∂η2 + S8
∂3ψ(1)

∂ζ∂η2 = 0,

}

(11)

where
S1 = A cos θ, S2 = B cos3 θ + C sin2 θ cos θ,

S3 = −A sin θ, S4 = −B sin3 θ − C cos2 θ sin θ,
S5 = 2C(sin θ cos2 θ − 1

2 sin
3 θ) − 3B cos2 θ sin θ,

S6 = −2C(sin2 θ cos θ − 1
2 cos

3 θ) + 3B sin2 θ cos θ,
S7 = C cos θ, S8 = −C sin θ.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(12)

The solution of ZK equation in the steady-state takes the form

ψ(1) = ψ0(ρ),

where ρ = ξ − Mτ , and Mach number (M) is normalized by DA speed Cd . Thus,
Eq. (11) can be written as [44]

− M
dψ0

dρ
+ S1ψ0

dψ0

dρ
+ S2

d3ψ0

dρ3
= 0. (13)

integrating and applying appropriate boundary conditions, we obtain the DA pulse
solution as

φ0(ρ) = φm sech2
( ρ

W

)
, (14)

where W and ϕm are the width and amplitude of the solitary wave, respectively;
these are expressed as

φm = 3M/S1 and W = 2
√
S2/M .

The associated electric field is obtained as

E0(ρ) = − � φ1 = 2φm

W
sech2

( ρ

W

)
tanh

( ρ

W

)
. (15)
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4 Stability Analysis

The small-k expansion perturbation technique [42, 43] is adopted to examine the
stability of the DA structures. We consider [32, 36]

φ(1) = φ0(ρ) + Φ(ρ, ζ, η, τ ), (16)

where Φ represents an obliquely propagating long-wavelength plane-wave that is
given by

Φ(ρ, ζ, η, τ ) = ψ(ρ) exp i[k(lξρ + lζζ + lηη) − γτ ], (17)

in which l2ξ + l2ζ + l2η = 1, ψ(ρ) and γ can be expanded by considering small values
of k to the form

ψ(ρ) = ψo + kψ1 + k2ψ2 + . . . ,

γ = kγ1 + k2γ2 + . . .

}

(18)

Putting Eq. (16) into Eq. (11) to obtain the linearized ZK equation as

∂Φ
∂τ

− M ∂Φ
∂ρ

+ S1φ0
∂Φ
∂ρ

+ S2
∂3Φ
∂ρ3

+S3φ0
∂Φ
∂ζ

+ S4
∂3Φ
∂ζ3

+ S5
∂3Φ

∂ρ2∂ζ
+ S6

∂3Φ
∂ρ∂ζ2

+ S7
∂3Φ

∂ρ∂η2 + S8
∂3Φ

∂ζ∂η2 = 0.

}

(19)

Substituting Eqs. (17) and (18) into Eq. (19) and we get for the zeroth-order of k

(−M + S1φ0)ψo + S2
d2ψo

dρ2
= C

′
, (20)

where C
′
is the integral constant. Two linearly independent solutions for the homo-

geneous part of Eq. (20), namely [32],

f = dψ0

dρ
, g = f

∫ ρ dρ

f 2
. (21)

Thus, the general solution can be given as

ψ0 = C1 f + C2g − C
′
f
∫ ρ g

S2
dρ + C

′
g

∫ ρ f

S2
dρ, (22)

where C1 and C2 are the integral constants. The Wronskian (Ŵ ) is defined by

Ŵ = f (dg/dρ) − g(d f/dρ).

The general solution of zeroth-order equation is simplified as

ψ0 = C1 f. (23)
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The first and second-order equation from Eqs. (17)–(19) can be obtained, where
their solutions lead to the following dispersion relation:

γ1 = Δ − Mlξ +
√

Δ2 − Γ , (24)

where

Δ = 2
3 (μ1φm − 2μ2/W 2),

Γ = 16
45 (μ

2
1φ

2
m − 3μ1μ2φm/W 2 − 3μ2

2/W
4 + 12S2μ3/W 4),

μ1 = (S1lξ + S3lζ), μ2 = (3S2lξ + S5lζ),
and μ3 = (3S2l2ξ + 2S5lξlζ + S6l2ζ + S7l2η).

⎫
⎪⎪⎬

⎪⎪⎭

(25)

Therefore, from Eq. (24), we observe that if the condition Γ − Δ2 > 0 is satisfied
then instability occurs. We obtain the instability growth rate, gr , to be represented as

gr =
√

Γ − Δ2. (26)

This instability growth rate depends on the system parameters.

5 Numerical Investigations and Discussion

Wehave formulated theZKequationbyapplying the reductive perturbation approach.
The small-k perturbation expansion technique examines themulti-dimensional insta-
bility of DAWs that is governed by this ZK equation [8, 40]. The results of this study
can be summarized as follows:

The basic properties of the DA waves (polarity, amplitude, width, and speed) are
found to be slightly modified by the dust temperature and density beside electron
and ions densities and also their Fermi temperatures have a considerable effect.

The impact of slight fluctuation in dust temperature via σd on the phase speed v0
for distinct values of ion-to-electron Fermi temperature ratio,σi is presented in Fig. 1.
The phase speed enhances with the increase of σd , while it shrinks with the increase
of σi , i.e. the DA wave propagates faster if the dust temperature becomes higher or
the ions Fermi temperature becomes lower. The wave steepening is determined by
the nonlinear term A. This term determine also the polarity of the DA waves (Fig. 1).
Figure2a illustrates the dependence of the nonlinear coefficient of A on σi and σd .
It is depicted that, A is negative for all values of σi and σd and its absolute value
increases as σi and σd increase. The effects of σi and σd on the longitudinal, B, and
the transverse, C , dispersion coefficients properties are manifested in Fig. 2b and
c, respectively. Both coefficients are positive and decrease as σi increases, while B
(C) attains lower (higher) values with increasing σd . The soliton solution Eq. (14)
occurs due to the balance between nonlinearity and dispersion effects, maintains its
profile. The electrostatic solitary wave amplitude, ψm depends on parameters σi , σd ,
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Fig. 1 The phase speed v0 variation against σd at different values of σi at μi= 0.6

Fig. 2 a The variation of the nonlinear term A, b the dispersive term B, c the dispersive term C
represented by Eq. (9) against σd for distinct values of σi at μi = 0.6 and Ω = 0.5

the electron to dust equilibrium densities ratio via μe, and obliquity angle θ as shown
in Fig. 3. Since the amplitude depends on the nonlinear term, A, the amplitude is
negative for all parameters values as depicted in Fig. 2a. The amplitude (in absolute
value) becomes larger for smaller values of dust temperature, ion Fermi temperature,
and electron equilibrium density or larger values of electron Fermi temperature and
obliquity angle. Moreover, width W of the wave is suppressed by increasing values
of both σi , below a critical value of σd and the magnetic field through Ω , as seen in
Fig. 4. The angle θ and σd larger than the critical value increase lead to increasing
W . The results obtained from Figs. 3 and 4 are confirmed through the solitary wave
profiles and associated electric field as shown in Figs. 5 and 6, respectively. The
variation of the growth rate, gr , against σi , σd , μe, Ω , θ, and frame velocity, M is
depicted in Fig. 7, it is obvious that gr goes to zero as σd , μe, and θ increase. The
reduction of gr becomes sharp as σi and M increase or as Ω decreases.
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Fig. 3 The effects on the rarefactive DA soliton amplitude ψm a against σd for distinct values of
σi at μe = 0.6 with θ = 10, b against θ for different values of μe with σd = 0.5 and σi = 0.5

Fig. 4 The effects on the rarefactive DA soliton width W, at μe = 0.6 a against σd for distinct
values of σi for Ω = 0.5 with θ = 10, b against θfor distinct values of Ω with σd = 0.5 and
σi = 0.5

Fig. 5 The evolution of ψ0 of DA waves that represented by equation (14) with ρ at σi = 0.5
M = 0.4 and Ω = 0.5 for distinct values of a σd with μe = 0.6, and θ = 10, b μe with σd = 0.3,
and θ = 13, and c θ = 13 with σd = 0.3, and μ = 0.6
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Fig. 6 The evolution of the associated electric field, E0 of DA waves that represented by Eq. (5)
with ρ for the potentials those represented by Fig. 5

Fig. 7 (Color online) The effects on the growth rate, gr, that represented by Eq. (26) at lξ = 0.7,
lη = 0.4 a against σd for distinct values of σi at μe = 0.6, θ = 10, M = 0.4 andΩ = 0.5, b against
θ for distinct values ofΩ at μ = 0.6, σd = 0.3, σi = 0.5 and M = 0.4, and c against μe for distinct
values of M at θ = 13, σd = 0.3, σi = 0.5 and Ω = 0.5

6 Conclusions

The hydrodynamic model has been employed to study a quantum Thomas-Fermi
dense plasma consisting of negative dust particles with degenerate ions and electrons
obeying the Fermi-Dirac distributions, embedded in a uniform magnetic field. The
ZK equation has been formulated by employing the reductive perturbation approach.
The solution of ZK equation has been used to explore the characteristics of the
solitary wave. Interesting, the soliton amplitude is negative for all values of the ions
and electrons densities and Fermi temperatures. This negative polarity structures
may occur, depending on the negatively charged dust. The dependence of the soliton
width on the electrons densities and Fermi temperatures, on the obliqueness, and the
magnetic field (strength) was investigated.

The stability investigation and analysis of the solitary wave solution of ZK equa-
tion have been carried out. The influences of various physical parameters on the
instability growth rate have been examined. It has been shown that an increase in the
dust temperature, magnetic field strength and obliqueness can lessen the instability
growth rate. The reduction of the growth rate also obtained by the decrease of the
dust equilibrium density.
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Our present results can be applied to discern the dynamics of nonlinear localized
structures in laboratory and space manners where Thomas-Fermi dense magneto-
plasma occurs, e.g. in the high-intensity laser-solid matter interaction experiments,
and also in the white dwarfs [26, 27, 40, 45–48].
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Existence and Stability
of Dust-Ion-Acoustic Double Layers
Described by the Combined SKP-KP
Equation

Sankirtan Sardar and Anup Bandyopadhyay

Abstract Sardar et al. [Phys Plasmas 24:063705 (2017)] have investigated dust-ion-
acoustic (DIA) solitons of a combined Schamel’s modified Kadomtsev Petviashvili-
Kadomtsev Petviashvili (SKP-KP) equation in a dusty plasma consisting of nonther-
mal electrons which obeys vortex-like velocity distribution. In this paper, we have
investigated the existence of double layer solutions and its stability by considering
the same combined SKP-KP equation. We have seen that this double layer solution
exists when L = 0, where L is a function of the parameters. We have analytically
discussed the stability of the double layer solutions.

Keywords Stability · Double layers · Combined SKdV-KdV equation ·
Combined SKP-KP equation

1 Introduction

For the first time, Kadomtsev and Petviashvili [1] attempted to model a soliton in
two dimensions known as KP equation. KP equation is generally used to discuss the
stability of the Korteweg-de Vries (KdV) solitons. In an unmagnetized plasma, Kako
and Rowlands [2] obtained KP equation to discuss the stability of ion acoustic (IA)
solitons. Using this KP equation, Infeld et al. [3] investigated the stability of the KdV
solitons. They have found that KdV solitons are stable with respect to the transverse
perturbation. Employing small-k perturbation expansion method [4–7], Chakraborty
andDas [8] derived amodifiedKP (MKP) equation to study the stability of IA soliton
of the MKP equation. Employing multiple-scale perturbation expansion method [9,
10], Chakraborty and Das [11] also studied the higher stability of the same MKP
equation in an another paper. Several authors [12–29] have derived the KP equation
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or different modified KP (MKP) equations and used this KP equation to study the
dynamics of IA/dust-acoustic (DA)/DIA waves in different plasmas.

Sardar et al. [30] have investigated dust-ion-acoustic (DIA) solitons of a combined
SKP-KP equation in a dusty plasma consisting of warm adiabatic ions, isothermal
positrons, immobile dust grains and nonthermal electrons. The electron species obeys
vortex-like velocity distribution, where the background distribution is Cairns non-
thermal distribution [31]. They have investigated that the alternative soliton of the
combined SKP-KP equation exists if and only if L > 0, where L is a function of the
parameters. They have observed that the alternative soliton cannot define the nonlin-
ear dynamics of DIA waves for L = 0 or L ≈ O(ε), where ε is a small parameter.
In this situation, they have reported that further development is required.

In this paper, our aim is to investigate the existence of double layer solutions
and its stability by considering the same combined SKP-KP equation. We have seen
that this double layer solution exists when L = 0. We have analytically discussed
the stability of the double layer solutions. Here we have extended previous work of
Sardar et al. [30] by cosidering L = 0.

2 Evolution Equation

Considering continuity equation, motion equation, pressure equation for ions, Pois-
son equation, the equations for the velocity distribution functions for positrons and
electrons, and the unperturbed charged neutrality condition, Sardar et al. [30] have
derived the following equation:

∂

∂ξ

[
φ(1)

τ + AB
√

φ(1)φ(1)
ξ + AB1φ

(1)φ(1)
ξ + 1

2
ACφ(1)

ξξξ

]

+1

2
AD

(
φ(1)

ηη + φ(1)
ζζ

)
= 0. (1)

This equation explains the dynamics of alternative DIA solitons in the present plasma
system considered by Sardar et al. [30] when L > 0. Here ξ, η, ζ are the stretched
spatial coordinates and τ is the stretched time coordinate. The equations of (28),
(29), (30), (18) and (34) of Sardar et al. [30] give the expressions of A, B, D, C and
B1 respectively.

In this problem, using the same evolution Eq. (1), we have analyzed DL solution
and its stability when L = 0.
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3 DL Solutions of Combined SKP-KP Equation

For DL solutions of (1), we have considered the following transformations:

η′ = η, ζ ′ = ζ, X = ξ −Uτ , τ ′ = τ . (2)

Here, U is a constant normalized velocity. Under transformation (2), (1) reduces to
the following equation:

∂

∂X

[
−Uφ(1)

X + φ(1)
τ + AB

√
φ(1)φ(1)

X + AB1φ
(1)φ(1)

X + 1

2
ACφ(1)

XXX

]

+1

2
AD

(
φ(1)

ηη + φ(1)
ζζ

)
= 0. (3)

We consider the following equation for travelling waves of (3):

φ(1) = φ0(X). (4)

Employing (4) in (3), we obtain

d2

dX2

[
−Uφ0 + 2

3
AB(φ0)

3
2 + 1

2
AB1(φ0)

2 + 1

2
AC

d2φ0

dX2

]
= 0.

(5)

Now, we use the following boundary condition

φ0,
dnφ0

dXn
→ 0 as X → ∞ for all n = 1, 2, 3, . . . (6)

or

φ0,
dnφ0

dXn
→ 0 as X → −∞ for all n = 1, 2, 3, . . . (7)

With the help of (6) or (7), the Eq. (5) can be written as follows:

−Uφ0 + 2

3
AB(φ0)

3
2 + 1

2
AB1(φ0)

2 + 1

2
AC

d2φ0

dX2
= 0.

(8)

Following Das et al. [32], the DL solution of (8) is given as follows:

φ0 = a2
(
1 − λ tanh

X

W1

)2

, where a = − 2B

5B1
, (9)
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Fig. 1 For different values
of βe, L is drawn with
respect to μ for γ = 3,
σie = 0.9, p = 0.01,
σpe = 0.9 and B = 0.0001
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Here λ = ±1 and these two values of λ give two different DL solutions of (1) for
the DIA waves corresponding to the boundary conditions (6) and (7) respectively.
It is impossible to get alternative soliton of the combined SKP-KP equation by
considering only one of the following two conditions:

φ0,
dnφ0

dXn
→ 0 as X → ∞ for n = 1, 2, 3, . . . (11)

φ0,
dnφ0

dXn
→ 0 as X → −∞ for n = 1, 2, 3, . . . (12)

Specifically, using the condition (11), we get a Z-type DL solution whereas con-
sidering condition (12), we get a S-type DL solution. But both the conditions are
necessary to get an alternative soliton of (1).

Now, we can consider B = 0.0001 because B �= 0 but B → 0. Figures1(a)–1(f)
show the variation of L againstμ for different values of βe when values of p(= 0.01),
σpe(= 0.9), γ and σie are fixed. Each Fig. 1(a)–1(f) has two critical values of μwhere
L = 0.

The solution (9) is the steady state DL solution of (1) along the x-axis. This
solution is same as the DL solution of the Schamel’s modified Korteweg-de Vries-
Korteweg-de Vries (SKdV-KdV) equation, i.e., the steady state DL solution of the
equation
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φ(1)
τ + AB

√
φ(1)φ(1)

ξ + AB1φ
(1)φ(1)

ξ + 1

2
ACφ(1)

ξξξ = 0 (13)

is exactly same as the Eq. (9). In the next section, we have considered the stability
analysis of DL solution (9) of Eq. (1).

4 Stability Analysis

In the previous section, we have seen that the Eq. (9) gives two different DL solutions
for λ = +1 and λ = −1. Here, we have analyzed the stability of DL solutions (9)
for λ = +1. Following the same procedure, one can easily analyse the stability of
the DL solution (9) for λ = −1.

To use the multiple-scale perturbation expansion method of Allen and Rowlands
[9, 10], we write

φ(1) = φ0(X) + q(X, η, ζ, τ ). (14)

Here φ0(X) is the DL solution (9) of the equation (3) and q(X, η, ζ, τ ) is perturbed
component of φ(1). Substituting (14) into (3) and linearizing the equation, we obtain

qXτ + (Mq)XX + 1

2
AD(qηη + qζζ) = 0, (15)

where

M = −U + AB
√

φ0 + AB1φ0 + 1

2
AC

∂2

∂X2
. (16)

For long-wavelength plane-wave perturbation along a direction having direction
cosines ( l, m, n), we consider

q(X, η, ζ, τ ) = q(X)ei{k(l X+mη+nζ)−ωτ }. (17)

Here k is small and direction cosines follow the relation l2 + m2 + n2 = 1. Substi-
tuting (17) into (15), we get the following equation:

(Mq)XX − iωqX + kl
{
ωq + 2i(Mq)X + i ACqXXX

}

−k2l2
{
Mq + 5

2
ACqXX + AD

m2 + n2

2l2
q
}

−k3l3
{
2i ACqX

}
+ k4l4

{1
2
ACq

}
= 0, (18)
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Following themultiple-scale perturbation expansionmethod [9, 10],we expandq(X)
and ω as

q(X) =
∞∑
j=0

k jq( j)(X, X1, X2, X3, . . .), ω =
∞∑
j=0

k jω( j), (19)

where ω(0) = 0, X j = k j X , j = 0, 1, 2, . . . , and each q( j)(= q( j)(X, X1, X2,

X3, . . .)) is a function of X, X1, X2, X3, . . .. It is important to note that X0 = X .
Finally, substituting first and second equation of (19) into (18) and comparing the

coefficients of different powers of k, we obtain the following equations:

∂

∂X
(Mq( j)) = Q( j), where Q( j) =

X∫

∞
R( j)dX, (20)

and the expressions of R(0) and R(1) are given as follows:

R(0) = 0 (21)

R(1) = iω(1)q(0)
0 − i AClq(0)

000 − ACq(0)
0001 − 2il[Mq(0)]0 − 2[Mq(0)]01, (22)

and we have used the notations: q( j)
r = ∂q( j)

∂Xr
, q( j)

rs = ∂2q( j)

∂Xr∂Xs
, q( j)

rst = ∂3q( j)

∂Xr∂Xs∂Xt
,

q( j)
rsty = ∂4q( j)

∂Xr∂Xs∂Xt∂Xy
and [Mq( j)]rs = ∂2(Mq( j))

∂Xr∂Xs
.

Considering that q( j) and its first order, second order, and third order derivatives
vanish as X → ∞ and from the Eq. (20), we obtain the following general solution:

q( j) = A( j)
1 f + A( j)

2 f
∫

1

f 2
dX + A( j)

3 f
∫

φ0

f 2
dX

+ 2

AC
f
∫ ∫

( f
∫
Q( j)dX)dX

f 2
dX, (23)

where f = dφ0

dX , φ0 is given by (9) for λ = 1 and A( j)
1 , A( j)

2 , A( j)
3 are all arbitrary

functions of X1, X2, X3, . . ..
Using MATHEMATICA [33], the solution (23) for λ = +1 can be written as

follows:
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q( j) = A( j)
1 f + 3W 2

1

256a4

(
5A( j)

2 + 8a2A( j)
3

)
f X − W 2

1

128a2

(
5A( j)

2 + 8a2A( j)
3

)

+ 3W 2
1

128a2

(
5A( j)

2 + 8a2A( j)
3

)
(1 − R) + W 2

1

128a2

(
5A( j)

2 + 8a2A( j)
3

)
e− 2X

W1

− W 2
1

1024a2

(
85A( j)

2 + 192a2A( j)
3 + 35A( j)

2 R
)
S2 − W 2

1

16a2
A( j)
2

1

S2

− W 2
1

16a2
A( j)
2 (1 − R)

1

S4
+ 2

AC
f
∫ ∫

( f
∫
Q( j)dX)dX

f 2
dX, (24)

where S = sech X
W1

and R = tanh X
W1

.

4.1 Zeroth Order Equation

For j = 0, using (21), one can write (24) as

q(0) = A(0)
1 f + 3W 2

1

256a4

(
5A(0)

2 + 8a2A(0)
3

)
f X − W 2

1

128a2

(
5A(0)

2 + 8a2A(0)
3

)

+ 3W 2
1

128a2

(
5A(0)

2 + 8a2A(0)
3

)
(1 − R) + W 2

1

128a2

(
5A(0)

2 + 8a2A(0)
3

)
e− 2X

W1

− W 2
1

1024a2

(
85A(0)

2 + 192a2A(0)
3 + 35A(0)

2 R
)
S2 − W 2

1

16a2
A(0)
2

1

S2

− W 2
1

16a2
A(0)
2 (1 − R)

1

S4
, (25)

To make q(0) bounded and consistent at X = +∞, we obtain the following two
equations:

− W 2
1

16a2
A(0)
2 = 0 and − W 2

1

128a2

(
5A(0)

2 + 8a2A(0)
3

)
= 0. (26)

From the Eq. (26), we get A(0)
2 = A(0)

3 = 0. So the expression of q(0) assumed as
follows:

q(0) = A(0)
1 f = A(0)

1

dφ0

dX
. (27)
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4.2 First Order Equation

Using the Eqs. (22), (27) and MATHEMATICA [33], one can write (24) for j = 1
as

q(1) = A(1)
1 f +

{
3W 2

1

256a4

(
5A(1)

2 + 8a2A(1)
3

)
+ i A(0)

1

ω(1) − 2lU

2U
− ∂A(0)

1

∂X1

}
f X

− W 2
1

128a2

(
5A(1)

2 + 8a2A(1)
3

)
−

{ 3W 2
1

128a2

(
5A(1)

2 + 8a2A(1)
3

)
+ i A(0)

1

a2ω(1)

U

}

×(1 − R) −
{

W 2
1

128a2

(
5A(1)

2 + 8a2A(1)
3

)
+ i A(0)

1

2a2ω(1)

U

}
e− 2X

W1

−
{

W 2
1

1024a2

(
85A(1)

2 + 192a2A(1)
3 + 35A(1)

2 R
)

+ i A(0)
1

a2ω(1)

4U
(7 − 3R)

}
S2

− W 2
1

16a2
A(1)
2

1

S2
− W 2

1

16a2
A(1)
2 (1 − R)

1

S4
, (28)

To make q(1) bounded and consistent at X = +∞, we get A(1)
2 = A(1)

3 = 0. So the
expression of q(1) assumed as follows:

q(1) = A(1)
1 f +

(
i A(0)

1

ω(1) − 2lU

2U
− ∂A(0)

1

∂X1

)
f X + i A(0)

1

2a2ω(1)

U
e− 2X

W1

+i A(0)
1

a2ω(1)

U
(1 − R) − i A(0)

1

a2ω(1)

4U
(7 − 3R)S2. (29)

Now, as the first term of q(1) has already been included in q(0), one can remove this
term from q(1). One can also remove the ghost secular term of q(1) by choosing

∂A(0)
1

∂X1
= i A(0)

1

ω(1) − 2lU

2U
. (30)

Therefore, from the Eq. (29), we obtain

q(1) = i A(0)
1

2a2ω(1)

U
e− 2X

W1 + i A(0)
1

a2ω(1)

U
(1 − R) − i A(0)

1

a2ω(1)

4U
(7 − 3R)S2. (31)

Now we see that second and third term of q(1) is bounded at X = ±∞ but the first

term of q(1) is not bounded at X = −∞ because of the presence of the term e− 2X
W1 .

To make q(1) bounded at X = −∞, We must have i A(0)
1

2a2ω(1)

2U = 0 and consequently
we get

ω(1) = 0. (32)
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From (32),we see that there is no imaginary part ofω(1) and consequentlyDL solution
for λ = 1 is stable at the lowest order of k. The same analysis is true for λ = −1.

5 Conclusions

In this paper, we have considered the DL solution and its stability described by the
combined SKP-KP equation. The form of the DL solution as given by the Eq. (9)
suggests that corresponding to a given set of values of the parameters there are two
types of DL solutions for λ = +1 and for λ = −1. Finally, we have found that DLs
are stable at the lowest order of the wave number.

Acknowledgements The authors have used the constructive comments of the reviewer to prepare
the manuscript of this paper.
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Dust-ion Collisional and Periodic Forcing
Effects on Solitary Wave in a Plasma
with Cairns-Gurevich Electron
Distribution

Anindya Paul , Niranjan Paul , Kajal Kumar Mondal ,
and Prasanta Chatterjee

Abstract In this work, our aim is to investigate the effects of dust-ion collision and
external periodic force on the ion-acoustic solitary wave (IASW) in the framework of
damped forced Korteweg de-Vries (KdV) like Schamel equation. Collisional dusty
plasma with Cairns-Gurevich electron distribution has been taken into account to
study the propagation of IASW.Reductive perturbation technique (RPT) is employed
to derive the damped forced KdV like Schamel equation and its approximate analyt-
ical solitary wave solution is determined considering momentum conservation law
of KdV like Schamel equation. It also has been shown that, how the other plasma
parameters viz.non-thermal parameter and ratio of free and trapped electron tem-
perature influence the solitary wave solution in presence of damping and external
periodic force. The approximate analytical results of this manuscript may be helpful
to understand the basic features of solitary structures in astrophysical plasma where
non-thermal and trapped electron distributions are present.

Keywords Damped forced KdV like Schamel equation · Cairns-Gurevich
electron distribution · Dust-ion collisional frequency · Non-thermal parameter ·
RPT · External periodic force

1 Introduction

Analysis of solitary wave structures has become very interesting topic of research
to the physicists and mathematicians since last few decades for its versatile applica-
tion in laboratory and astrophysical plasma [1–3]. Berstein [4] introduced the idea of
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trapped electronswhichwas observed in space and laboratory plasma. Plasma species
are named as trapped when they move in a finite domain through closed path. Gure-
vich [5] introduced trapping as a microscopic process where electrons are trapped
by potential wells. He showed the effect of trapped electrons in IASWs. To explain
characteristic of non-linear electrostatic structures in upper ionosphere observed by
Viking and Freja satellites, Cairns et al. [6] considered non-thermal electron distri-
bution and showed that nature of ion-acoustic solitary wave changes significantly
in presence of non-thermal electrons. Later Tang [7] and Mamun [18] also worked
to show the effect of non-thermal electrons on the IASWs. Abdikian [9] explored
dust-ion-acoustic solitary waves in dusty plasma with presence of non-thermal and
trapped electrons considering modified Zarakov Kuznetsov equation. Annou et al.
[10] investigated the combine effect of trapped and non-thermal electrons on soli-
tons in plasma expansion into vacuum. El-Taibany et al. [11] studied modulated
ion-acoustic wave in plasma with electrons obeying Cairns-Gurevich distribution.

Collisions among different plasma constituents occur continuously [12–15]. Due
to collisional effects of plasma constituents, damping force is created in plasma
mediumwhich influences nonlinear structures in plasma [16–20]. Severalworks have
been studied to investigate the effects of various types of external forces on IASWs.
Mainly two kinds of forces have been taken into consideration viz. periodic type
source and sech(ξ, τ ) type [21, 22] source that arises from experimental condition or
space debris. The results of [23–27] show that the presence of external periodic force
brings behavioural changes in IASWs. In [25–27] the effect of frequency & strength
of periodic force on solitary wave solution was studied in collisional plasma. The
studies [23–27] were done taking external periodic force in the form of cos(ξ, τ ).
Chowdhury et al. [24] studied the forced KdV like Schamel equation in a super
thermal plasma consisting trapped electron and Paul et al. [20] investigated damped
KdV like Schamel equation in a collisional plasma where electrons follow Cairns-
Gurevich distribution. To best of our knowledge no work till now has been reported
that investigates both dust-ion collisional effect and external periodic forcing effects
on solitary wave in plasma where electrons follow Cairns-Gurevich distribution.

The rest of this paper is organized as follows: in Sect. 2, the basic equations and
electron which follows the Cairns-Gurevich distribution has been presented. The
formation of damped forced KdV like Schamel equation and its time dependent
approximate analytical solution has been determined in Sect. 3. In Sect. 4, the effects
of different physical parameters on the nonlinear waves have been discussed in detail.
Section5 contains conclusions.
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2 Basic Set of Equations and Cairns-Gurevich Electron
Distribution

In this work, we consider an unmagnatized, collinsional plasma consisting of cold
fluid ions, static dust granules with negative charge, electrons following Cairns-
Gurevich distribution. Normalized continuity equation, momentum equation and
Poisson’s equation are respectively given by,

∂ni
∂t

+ ∂(niu)

∂x
= 0, (1)

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
− νidu, (2)

∂2φ

∂x2
= ne − ni + S(x, t). (3)

Here, ni is the ion number density and it is normalized by the unperturbed equi-
libriam plasma density n0. u is the ion velocity, normalized to the ion-acoustic speed
Cs = ( Te

mi
)1/2. φ is the electrostatic wave potential which is normalized to Te/e. The

time and space variables are in units of the ion plasma frequency (ωpi )
−1 and the

electron Debye radius λD = ( Te
4πn0e2

)1/2. Te is defined as the temperature of electron.
The dust-ion collisional frequency is νid and S(x, t) is a source term that arises from
experimental conditions.

In small amplitude limit ofφ < 1, the normalized density of non-thermal electrons
obeys the following Cairns-Gurevich distribution [11],

ne = (1 − bφ + 2bφ2)

(
1 + φ − 4(1 − β)

3
√

π
φ3/2 + 1

2
φ2

)
, (4)

where b is the non-thermal parameter which depends on α and the relation between
them is b = 4α

1+3α . Here, α represents the population of non-thermal electrons and β,
the trapping parameter, is the ratio of free electron temperature (T f e) and trapped elec-
tron temperature(Tet ). If β = 0 then the electron distribution (4) represents plateau
like electron distribution and if β = 1, it becomes Maxwellian.

3 Derivation of Damped Forced KdV Like Schamel
Equation and Its Time Dependent Approximate
Analytical Solution

To derive the damped forced KdV like Schamel equation, we wish to use Reductive
Perturbation Technique (RPT) in a collisional dusty plasma in presence of non-
thermal and trapped electrons. The stretched coordinates are taken [20] as follows,
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{
ξ = ε1/4(x − v0t),

τ = ε3/4t,
(5)

where ε and v0 are the strength of nonlinearity and phase velocity of IASW respec-
tively. The expansion of the dependent variables [20, 24] are given by :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ni = 1 + εn(1)
i + ε3/2n(2)

i + . . . ,

u = 0 + εu1 + ε3/2u2 + . . . ,

φ = 0 + εφ1 + ε3/2φ2 + . . . ,

νid ∼ ε3/4νid0,

S ∼ ε3/2S2.

(6)

Then, using chain rule, we have,

∂

∂x
≡ ∂

∂ξ

∂ξ

∂x
+ ∂

∂τ

∂τ

∂x
= ε1/4

∂

∂ξ
,

∂2

∂x2
≡ ε1/2

∂2

∂ξ 2
,

and

∂

∂t
≡ ∂

∂ξ

∂ξ

∂t
+ ∂

∂τ

∂τ

∂t
= −v0ε

1/4 ∂

∂ξ
+ ε3/4

∂

∂τ
.

Using the expansion (6) and (5) into Eqs. (1)–(3) and taking the lowest order
coefficient of ε, we obtain the following three equations,

ε5/4 : −v0
∂n(1)

i

∂ξ
+ ∂u1

∂ξ
= 0, (7)

ε5/4 : −v0
∂u1
∂ξ

+ ∂φ1

∂ξ
= 0, (8)

ε1 : −(1 − b)φ1 + n(1)
i = 0. (9)

Now, from the Eqs. (7), (8) and (9), we obtain the following dispersion relation,

v0 = 1√
1 − b

. (10)

Equating the next higher order coefficient of ε, we get the following equations
from (1), (2) and (3) respectively as,



Dust-ion Collisional and Periodic Forcing Effects on Solitary Wave … 207

ε7/4 : ∂n(1)
i

∂τ
− v0

∂n(2)
i

∂ξ
+ ∂u2

∂ξ
= 0, (11)

ε7/4 : ∂u1
∂τ

− v0
∂u2
∂ξ

+ ∂φ2

∂ξ
+ νid0u1 = 0, (12)

ε3/2 : ∂2φ1

∂ξ 2
= (1 − b)φ2 − 4(1 − β)

3
√

π
φ
3/2
1 − n(2)

i + S2. (13)

Differentiating Eq. (13) partially with respect to ξ , and eliminating the terms
n(2)
i , u2 and φ2 from the Eqs. (7)–(13) with the help of dispersion relation, the fol-

lowing nonlinear evolution equation is obtained,

∂φ1

∂τ
+ A

√
φ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ 3
+ Cφ1 = B

∂S2
∂ξ

, (14)

where A = v30 (1−β)√
π

, B = v30
2 and C = νid0

2 .

The external periodic force S2 can be taken as S2 = f0ξcos(ωτ), where f0 and
ω stands for the strength and frequency of the source respectively. Using the above
source term in the Eq. (14) we get the following equation,

∂φ1

∂τ
+ A

√
φ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ 3
+ Cφ1 = B f0cos(ωτ), (15)

which is the desired damped forced KdV like Schamel equation.
If C = f0 = 0, the Eq. (15) becomes the KdV like Schamel equation,

∂φ1

∂τ
+ A

√
φ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ 3
= 0, (16)

and its solution is given by,

φ1 = φmsech
4

(
ξ −Uτ

W

)
, (17)

where φm = ( 15U8A )2 and W =
√

16B
U , represent amplitude and width of the solitary

wave respectively. Here, U is the speed of the wave.
For small values of f0 and C , we assume the solution of damped forced KdV like

Schamel equation (15) as,

φ1 = φm(τ )sech4
(

ξ −U (τ )τ

W (τ )

)
, (18)

where U (τ ) is an unknown function of τ , φm(τ ) = ( 15U (τ )

8A )2 and W (τ ) =
√

16B
U (τ )

.
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It is well known that

I =
∞∫

−∞
φ2
1 dξ, (19)

is a conserved quantity for a KdV like Schamel equation [20]. Using the momentum
conservation law (19) and and with the help of [20] and [24], we get the following
differential equation for the unknown function U (τ ),

U (τ )
dU (τ )

dτ
+ 4

7
CU (τ )2 = 224

995
A2B f0cos(ωτ). (20)

Solving the differential equation (20) with an initial condition U (0) = U0, we
get,

U (τ ) =
√

448 A2B f0
135(64C2 + 49ω2)

(8C cos(ωτ) + 7ω sin(ωτ)) + Ke− 8C
7 τ , (21)

where K is given by

K = U 2
0 − 3584 AA2BC f0

135(64C2 + 49ω2)
. (22)

Using the value ofU (τ ), we subsequently deduce the values ofW (τ ) and φm(τ ).
Putting these values in Eq. (18), one can obtain the solution of damped forced KdV
like Schamel equation (15).

4 Effects of Various Parameters

In this section, the effects of various parameters such as b, β, νid0, ω and f0 on
solution of Eq. (15) is demonstrated. Figure1a represents the variation of amplitude
in solitons for three distinct values of b = 0.1, 0.3, 0.5 when the other parameters
areU0 = 0.2, τ = 1, β = 0.2, νid0 = 0.09, f0 = 0.01, ω = 0.5. It is noticed that the
amplitude of the solitary waves decreases as b increases and width of the solitary
wave increases a little with the increment of b. Figure1b shows the variation of
solitons for different values of trapping parameter (β). When b = 0.1 and the other
parameters are same as shown in the caption of Fig. 1a. As the value of trapping
parameter increases, the amplitude of the solitary wave increase significantly. The
width of the solitarywaves also increaseswith the increment ofβ. In Fig. 1c, the value
of νid0 is taken in the interval (0.01, 0.13) and the other parameters are same as in
the caption of the figure. From this figure it is clearly observed that as νid0 increases
the amplitude of solitary waves increases significantly whereas it is hard to draw
conclusion about change in the width of waves from that same figure. Therefore,
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Fig. 1 Graphical presentations of approximate analytical solitary wave solution with variation of
amplitude and width w.r.t to different parameters
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Fig. 1d is plotted between W (τ ) versus νid0 for different values of b to understand
the variation of the width of solitary waves. It is clear from the graph that the width
of the solitary wave increases as the dust-ion collisional frequency grows. Figure1e
represents the variation of solitary wave against ξ where other parameters are same
as in the caption. It shows that solitary wave become more and more spiky as the
strength of the periodic force f0 grows. From this figure, it is hard to draw conclusion
on the variation of width. Thus, a graph of W (τ ) versus f0 is plotted in Fig. 1f
for three distinct values of ω = 0.5, 1.0, 1.5 when the other parameters are U0 =
0.2, τ = 1, β = 0.2, νid0 = 0.09, f0 = 0.01, b = 0.1. It shows that as the strength
of the periodic force f0 increases the width of the solitary waves decrease. From
Fig. 1f represents the profile for φ1 against ξ , keeping all other parameters same
as the caption. It is noticed that the height of the solitary wave decreases with the
enhancement ω. To understand the effect of the frequency of the force on the width
of the solitary wave, a graph is plotted between W (τ ) versus ω in Fig. 1h. a small
increment in the width of the solitary wave is observed as ω of the external periodic
force grows.

Figure2a and b show the variance of width and amplitude of solitary wave respec-
tively against τ at different strength of the periodic force when other parameters are
same as in the caption. Figure2a interprets that width of solitary wave decreases as
τ increases. Figure2b explicates that amplitude of solitary wave rises as τ grows.
Figure2c is plotted for W (τ ) against τ for three values of νid0 = 0.2, 0.3, 0.4 when
U0 = 0.2, β = 0.2, b = 0.1, f0 = 0.05, ω = 0.5. The plot elucidates that width of
the solitary wave surges as τ enhances. Figure2d depicts a graph between φm(τ ) ver-
sus τ at different values of νid0 whenU0 = 0.2, β = 0.2, b = 0.1, f0 = 0.05&ω =
0.5. The graph shows that the amplitude of the IASW reduces with the increment
of τ .

5 Conclusions

UsingRPT, a damped forcedKdV like Schamel equation is derived and the behaviour
of its wave propagation has been discussed in a collisional plasma consisting dust
granules, trapped and non-thermal electrons which follows Cairns-Gurevich distri-
bution. The study shows that non-thermal parameter (b), trapping parameter (β)
strength ( f0) and frequency (ω) of external force, dust-ion collisional frequency
(νid0) have significant effects on the amplitude and the width of solitary waves. It is
seen that the amplitude of the solitary waves decreases as the non-thermal parameter
(b) increases. This is because, as the value of b increases, the external periodic force
helps to decrease the positive potential energy in the solitary wave. It is observed
that with the increment of trapping parameter (β), the positive potential energy in the
solitary wave increases that helps in the increment of both amplitude and width of
the solitary wave. As the dust-ion collisional frequency parameter (νid0) increases,
the collision between the dust granules and ions grows in a more narrow region of
the plasma space that results in decay of the internal potential energy of the solitary
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Fig. 2 Variation of amplitude and width of approximate analytical solitary wave solution w.r.t
different parameters

wave causing decrease in the amplitude with almost unaltered width. The increase
in strength of the external force ( f0) causes the rise in the positive potential energy
of IASW. As a result the peak of the amplitude of the solitary wave increases sig-
nificantly. The increase in frequency of the external periodic force (ω) causes the
insignificant decrement in amplitude of the solitary waves. These results may help
in further study of IASWs.
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Electron-Acoustic Solitons
in a Multicomponent Superthermal
Magnetoplasma

Rajneet Kaur , Geetika Slathia , Kuldeep Singh ,
and Nareshpal Singh Saini

Abstract In this paper, electron-acoustic solitons (EASs) in magnetized multicom-
ponent plasma having fluid of cold electrons, positrons, superthermal electrons, and
positive ions are examined. The nonlinear Zakharov-Kuznetsov (ZK) equation is
derived by applying the reductive perturbation method (RPM). The effect of var-
ious plasma parameters (concentration of electrons, superthermality of hot elec-
trons/positrons and magnetic field strength) on the characteristic properties of EASs
is analysed.

Keywords EA solitons · Superthermal distribution · Zakharov-Kuznetsov
equation

1 Introduction

From the past many years, the study of electron-acoustic (EA) has become very fas-
cinating among plasma physicists because of their pivotal role in different plasma
environments e.g. astrophysical, laboratory and space plasmas [1]. These waves
are evolved due to the existence of two temperature electrons. Due to two distinct
temperatures, pressure of hot electrons provide the required restoring force and cold
electrons become inertial. Further, due to large mass of ions as compared to that
of electrons, ions are considered to form a stationary background. Numerous inves-
tigation have already been done to examine the propagation properties of linear
and nonlinear EASs. Yu and Shukla [2] reported the characteristics of EASs in a
magnetoplasma with multi-temperature electrons. Mace and Hellberg [3] studied
the EASs in a fluid model composed of two temperature electrons with magnetized
and unmagnetized fluid ions. They discussed the propagation properties of KdV-
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ZK equation with plane and multidimensional solitary wave solutions. Danehkar et
al. [4] developed a general plasma fluid model to describe the large amplitude EASs
in superthermal plasma using pseudopotential method. They showed that only nega-
tive potential EASs are formed in a plasma. Devanandhan et al. [5] studied the EASs
in amagnetized and plasma composed of hot ions and cold electrons obeying a kappa
distribution. They observed that the magnetic field and other plasma parameters have
strongly modified the characteristics of EASs. Various researchers have reported the
properties of EASs in electron-positron-ion (e-p-i) plasmas. The characteristic prop-
erties of positron acoustic solitons in a multicomponent plasma have been examined
by Alam et al. [6]. They studied the basic features of Double layer, Gardner solitons
with solitary wave solution of mKdV equation. Adnan et al. [7] analysed the ion
acoustic waves in a superthermal e-p-i plasma under the influence of magnetic field.
They found that the effect of positron concentration and superthermality hasmodified
the ion acoustic solitary waves. Ferdousi et al. [8] studied the ion acoustic solitons
in a magnetized plasma composed of nonextensive positrons and electrons. It was
observed that nonextensive parameter has altered the propagation properties of ion
acoustic solitons. Saha and Tamang [9] analysed the behaviour of positron acous-
tic waves in a multicomponent plasma containing inertial positrons and Kaniadakis
distributed positrons and hot electrons. They observed that the effect of different
parameters have modified the nonlinear structures. Bansal et al. [10] examined the
characteristic properties of EASs in a magnetoplasma composed of superthermal
distributed two temperature electrons, positrons and uniform stationary background
ions. The results showed that the nonplanar EASs are significantly modified due to
the effect of positron densities as well as positron temperature and other components.
The dissipative effects of ion acoustic solitons in a multicomponent collisional e-p-i
plasma with non-thermal electrons and isothermal positrons were studied by Gul and
Ahmed [11].

Electron-acoustic waves gain more importance when high energy particles in
plasmas come into picture. The occurrence of these high energy particles are well
explained by kappa distribution function. The superthermal distribution function was
first well explained by Vasyliunas [12]. Various researchers have examined the role
of high energy superthermal particles in nonlinear dynamics. The characteristic prop-
erties of ion acoustic waves with two fluid ions in superthermal plasma were studied
by Shahmansouri and Tribeche [13]. The nonlinearity and dispersion properties
of ion acoustic solitons are significantly enhanced with change in superthermality
parameter. Singh and Sethi [14] studied the characteristic properties of mKdV equa-
tion in a collisionless plasma composed of negatively charged dust, two temperature
kappa distributed electrons and hot ions. Singh and Saini [15] investigated the EA
shock waves in a magnetized multicomponent plasma consists of cold electrons as
a fluid, hot positrons and superathermal electrons. They analysed that the strength
of EA shocks is increased with increase in superthermality of electrons. The aim of
our present work is to study nonlinear dynamics of EASs in an e-p-i superthermal
magnetoplasma. The paper is arranged as follows: Sect. 2 presents the basic fluid
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model equations. The derivation of ZK equation and its solution are illustrated in
Sect. 3. Numerical analysis is illustrated in Sect. 4. Conclusions are mentioned in the
Sect. 5.

2 Basic Fluid Equations

The dimensionless expressions of densities of superthermal positrons and hot elec-
trons are given as [15]

np = 1 − γb1φ + γ2b2
φ2

2
+ ... (1)

nh = 1 + a1φ + a2
φ2

2
+ .. (2)

Here, a1 =
(

κe− 1
2

κe− 3
2

)
, a2 =

(
κ2
e− 1

4

(κe− 3
2 )2

)
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(
κp− 1

2

κp− 3
2

)
, b2 =
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κ2
p− 1

4

(κp− 3
2 )2

)
. Here, κe,p are

the superthermality spectral indices of electrons and positrons. TheMaxwellian case
can be obtained as κe,p → ∞.

At equilibrium noh + noc = noi + nop, where noj (for j = c, p, i, h) are undis-
turbed number density of cold electrons, hot positrons, stationary ions and hot elec-
trons respectively. The wave is propagating in the x-z plane. We consider the dimen-
sionless equations as [15]:

∂nc
∂t

+ ∂(ncucx )

∂x
+ ∂(ncucz)

∂z
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∂ucx
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− �ucy, (4)

∂ucy
∂t

+ ucx
∂ucy
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∂ucy
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∂ucz
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+φ2

2

(
a2 − αγ2b2

)
, (7)

The fluid velocity uc, and electrostatic potential φ, are normalized with respect to EA
speed, Ce = ( Th

me
)
1
2 , and Th

e , respectively. The space coordinate (x) is normalized by
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electron Debye length λD = ( Th
4πnohe2

)
1
2 and time coordinate (t) is scaled by inverse

of plasma frequency of electrons, ωph = ( 4πnohe
2

me
)
1
2 . The gyrofrequency of electron,

ωc = eB
mec

is scaled with respect to ωph , � = ωc
ωph

. α = nop
noh

, σ = noc
noh

, δ = noi
noh

and

γ = Th
Tp
.

3 Derivation of ZK Equation and Its Solution

To study the dynamics of EASs with weak dispersion and of weak nonlinearity,
we assume ω (or k) << 1. All physical quantities vary slowly in space and vary
more slowly in time. We have used the RPM to find the ZK equation. The stretched
coordinates are given as [16, 17]:

ξ = ε
1
2 (z − V t) , ζ = ε

1
2 x, and ø = 3

2 t (8)

The expansions used are given as:

nc = 1 + εnc1 + ε2nc2 + ε3nc3 + ..., (9)

ucx = ε
3
2 ucx1 + ε2ucx2 + ε

5
2 ucx3 + ..., (10)

ucy = ε
3
2 ucy1 + ε2ucy2 + ε

5
2 ucy3 + ..., (11)

ucz = εucz1 + ε2ucz2 + ε3ucz3 + ..., (12)

φ = εφ1 + ε2φ2 + ε3φ3 + ..., (13)

using Eqs. ( 8)–( 13) in Eqs. (3)–(7) neutrality condition is obtained as: (δ + α) =
(1 + σ). After simplifying, we get the first order equations as:

nc1 = −φ1Q, (14)

ucy1 = 1

σ

∂φ1

∂ζ
, (15)

ucz1 = −Vφ1, (16)

V = 1√
Q

, (17)

where, V is the phase velocity of EASs and Q = (a1+αγb1)
σ

. By equating the quantities
for higher orders of ε and doing rigorous calculations, we have obtained the following
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ZK equation as:

∂φ

∂τ
+ Aφ

∂φ

∂ξ
+ B

∂3φ

∂ξ3
+ C

∂
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(
∂2φ
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where, φ1 = φ and nonlinear coefficient A = B
(−3σQ2 − (a2 − αγ2b2)

)
, disper-

sion coefficient B = 1
2V Q2σ

, and transverse dispersion coefficient C = B
(
1 + σ

�2

)
.

We consider a transformation Y = lxζ + lzξ − �τ , (lx , lz are the direction
cosines), to evaluate the solution of Eq. (18). � denotes the velocity of solitons
w.r.t. moving frame scaled with Ce. The solution of ZK equation is obtained as [18]:

φ = φ0sech
2

(
Y

�

)
, (19)

where φ0 = 3�
Alz

is maximum amplitude and � =
(
4Flz
�

) 1
2
is the width of EASs.

Here, F = Bl2z + C
(
1 − l2z

)
.

4 Numerical Analysis

To carry out numerical analysis, the range of various physical parameters in lab-
oratory and astrophysical/space plasmas [19] is chosen as: nop ∼(1.5–3) cm−3,
noc ∼(0.1–0.4) cm−3, Th ∼(200–1,000) eV, noh ∼(1.5–3) cm−3, and Tp ∼ (200–
1,000) eV. The propagation properties of EASs are strongly influenced by the change
in the value of any parameter.

Figure1, describes the behaviour of phase velocity (V ) with superthermality
index of positrons (via κp) and superthermality index of hot electrons (via κe).

Fig. 1 Plot for the phase
velocity (V ) with
superthermality of positrons
(κp) and with electrons (κe)
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Fig. 2 Plot for the nonlinear
coefficient (A) with
superthermality index of
positrons (via κp) and with
superthermality index of
electrons (κe)

Fig. 3 Plot for EASs profile
(φ) with superthermality
index of electrons (κe), here
γ = 4, δ = 0.1, κp = 4,
σ = 0.2, lz = 0.6, ω = 0.2,
� = 0.3

It is found that with increment in κp and κe (i.e., decrease in the superthermal-
ity of positrons/electrons), the phase velocity of EASs is enhanced. It is clear that
superthermality effects have significantlymodified the dispersion properties of EASs
and makes the wave to propagate slowly in case of more superthermal charged
particles.

Figure2, describes the nature of coefficient (A) with superthermality index of
positrons(κp) and superthermal index of hot electrons (via κe). It is seen that with
increase in κp and κe, magnitude of A increases. It is found that A is negative, so
only negative potential EASs are reported in the considered plasma model.

In Fig. 3, we have analysed the characteristics of EASs profile (φ) with superther-
mality of electrons (via κe). It is noticed that with increase in the value of κe, the
amplitude and width of EASs are increased along negative axis. This variation in the
properties of EASs occurs due to the change in nonlinearity and dispersion effects.

In Fig. 4, depicts the nature of EASs profile (φ) with number density ratio of
positron to hot electron α(= nop/noh) and shows that amplitude(width) of EASs is
increased (decreased) with increase in α. It is noteworthy to mention that any change
in number density ratios makes variation in the nonlinear coefficient A that further
modifies the profile of solitons.
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Fig. 4 Plot for EASs profile
(φ) with number density
ratio α(= nop/noh)

Fig. 5 Plot for EASs profile
(φ) with magnetic field
strength (�)

Figure5, describes the profile of EASs (φ) with magnetic field strength (via �).
The width of EASs increases with the increase in the value of magnetic field strength,
whereas the amplitude remains same. It is clear that the dispersion effects are more
pronounced with the variation of magnetic field strength.

Figure6, describes the variation of profile of EASs (φ) for multiple values of
(κp). It is analysed that with rise in superthermality index of positrons (via κp),
the magnitude of EASs decreases. This emphasizes that superthermality index
has strongly influenced the properties of EASs with change in different nonlinear
effects.

Figure7, depicts the variation of EASs profile (φ) for multiple values of tem-
perature ratio of hot electrons to positrons γ(= Th

Tp
) and highlights that width and

amplitude of EASs are decreased with increase in the value of γ(= Th
Tp
). This highly

change in width and amplitude of EA solitons is noticed due to the effect of temper-
ature ratio on the nonlinear coefficient A.

Figures8 and 9, represent the 3D profiles of EASswithmagnetic field strength (�)
and superthermality of positrons (κp) respectively. These figures further confirm the
modification in the profile of EA solitons with the variation of different parameters
simultaneously.
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Fig. 6 Plot for EASs profile
(φ) with superthermality
index of positrons (κp)

Fig. 7 Plot for EASs profile
(φ) with temperature ratio of
hot electrons to positrons
γ(= Th

Tp
)

Fig. 8 Plot for 3D EASs
profile (φ) with magnetic
field strength (�)
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Fig. 9 Plot for 3D EASs
profile (φ) with
superthermality index of
positrons (κp)

5 Conclusion

Wehave studied the salient features of EASs in amagnetizedmulticomponent plasma
having inertial cold electrons, inertialess ions and superthermal positrons as well as
electrons. The RPM is adopted to develop the nonlinear ZK equation and its solution
to describe the dynamics ofEASs.OnlyEASswith negative polarity exist. The effects
of various plasma parameters such as κp, κe, α, γ and � have significantly influence
the characteristic properties of EASs. The phase velocity of solitons is enhanced with
increase in κp and κe. Nonlinear coefficient (A) flourishes with increase in κp and
κe. The width and amplitude of EASs are increased with increase in κe and α. The
width of EASs increases with increase in the value of strength of magnetic field (�).
With the increase in the value of ratio of temperature of hot electrons to positrons
γ(= Th

Tp
), the width and amplitude of EASs are decreased. Negative potential EASs

are significantly influenced with the change in dispersion and nonlinearity effects.
The outcome of present study can be beneficial for the indepth understanding of

EASs with superthermal positrons and electrons in Van Allen radiation belts, auroral
zone, planetary magnetospheres [20–23].
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Non-linear Fluctuating Parts
of the Particle Distribution Function
in the Presence of Drift Wave Turbulence
in Vlasov Plasma

Banashree Saikia and P. N. Deka

Abstract We have considered a Vlasov plasma with both the resonant and non-
resonant mode waves. The non-resonant mode is considered as a perturbation to
plasmawhere a turbulent field is presentwhich is in resonantmode. The interaction of
these waves is characterized by the Vlasov Maxwell set of equations. The evaluation
process of the fluctuating parts of the distribution function owing to the presence of
resonant mode wave, due to the modulation field, and the nonlinear fluctuating parts
of distribution function due to the non-resonant wave is presented in this work.

Keywords Nonlinear wave-particle interaction · Density and temperature
gradients · Drift wave turbulence

1 Introduction

In this paper, we have considered electromagnetic Ordinary (O) mode as high-
frequency wave and ion cyclotron drift wave as the low-frequency resonant mode
wave. In high beta plasmas, Davidson and Wu [1] first discussed the O-mode wave
instability, which is exclusively increasing mode. A group of experts studied the
formation of unstable ordinary mode waves in the Earth’s magnetospheric Auroral
region [2, 3]. Increased electromagnetic radiation in the top ionospheric regions has
been thoroughly investigated, and this radiation has been labelled as Auroral Kilo-
metric Radiation(AKR) [3]. The Auroral Kilometric Radiation is made up of X and
O-mode radiations according to later research [3]. In a series of investigations, Ibscher
and Schlickeiser [4–7] investigated the Ordinary mode instability expanding it to the
small beta plasma region by using a counter-streaming bi-Maxwellian model [9].
On the other hand, the Ordinary mode instability has mostly been studied in terms
of marginal instability criterion rather than numerical dispersion relation solution.
In a magnetized non relativistic bi-Maxwellian plasma, [8] temperature anisotropic
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effects on O-mode and its instability were examined. Deka and Borgohain [3] inves-
tigated the amplification of O-mode in inhomogeneous plasma using plasma maser
theory. In this study, they have investigated that the amplification of electromagnetic
wave is achievable in space plasma at the expense of drift wave turbulence. The
amplification process and wave energy exchange are also possible at some energy
level since the plasma maser effect doesn’t require a frequency matching condition.
Deka and Deka [10] investigated the amplification of ion-acoustic waves in Burning
plasma in presence of drift wave turbulence. Here, they have discussed ion acous-
tic instabilities while considering the ion distribution function that is consistent in
burning plasma. Recently, Senapati and Deka [11] studied the instability of elec-
tron Bernstein mode in the presence of drift wave turbulence caused by density and
temperature gradients. In their research, they have studied the growth rate of high
frequency electron Bernstein mode in Tokamak plasmas as a function of density and
temperature gradients. In this paper, we have investigated the formation of O-mode
waves in non-uniform plasma media through non-linear wave particle interaction in
the context of ion cyclotron drift wave turbulence.

2 Formulation of the Problem

In our problem, we have considered an inhomogeneous plasma which supports drift
motion and turbulence. To describe this system, we consider a particle distribution
function [12] which involve gradient parameters for temperature and density associ-
ated with external force. The density and temperature gradients are taken along the
positive y-direction (Fig. 1).

f j (Tj , y, v) =
(

m

2πT0 j

) 3
2
[
1 + μ

(
y + vx

Ω j

)]
exp

[
−

(
mv2

2T0 j
− Fy

T0 j

)]
(1)

where Ω j = eB0
mc denotes the cyclotron frequency of the ion, μ denotes the density

and gradient smallness parameter which can be derived using equation (1) at y=0 as

μ =
[(

∂
∂Tj

dTj

dy

)
+

(
1
f0

d f j
dy

)]
y=0

− F
T0 j

The particle drift motion owing to the pressure gradient is caused by the force
field F and the equation of the motion is given by:

m
dv
dt

= F − e

c
v × B0
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Fig. 1 Geometry of the model: K = (K⊥, 0, 0) represents the propagation vector of the Ordinary
mode wave k = (0, 0, k‖) represents the propagation vector of the ion-cyclotron drift wave B0
represents the magnetic field along the positive z-axes

dv
dt

= F
m
ŷ − Ω j (v × ẑ)

The interaction of the high frequency Ordinary mode with ion-cyclotron drift wave
is governed by Vlassov–Maxwell set of equations

[
∂

∂t
+ v · ∂

∂r
−

{
e
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(
E + v × B0

c

)
− F

m

}
· ∂
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F0 j (r, v, t) = 0 (2)

∇ × E = −1

c

∂B
∂t

(3)

∇ × B = 1

c

∂E
∂t

+ 4π

c
J (4)

J = −en j

∫
v f0 j (r, v, t)dv (5)

∇ · E = −4en jπ

∫
f j (r, v, t)dv (6)
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The unperturbed particle distribution function and fields are described by the linear
response theory [13] of a turbulent plasma.

F0 j = f0 j + ε f1 j + ε2 f2 j (7)

and
E0l = εEl + ε2E2 (8)

Here, ε denotes a smallness parameter related to ion-cyclotron drift wave tur-
bulent field El = (0, 0, El‖) having propagation vector k = (0, 0, k‖), f0 j denotes
the spatial and time averaged components of the distribution function, f1 j and f2 j
denotes the fluctuating parts of the particle distribution function and E2 denotes the
electric field of second order.

To the order of ε, from Eq. (2), we get:
[

∂

∂t
+ v · ∂

∂ r
−

{
e

m

(
v × B0

c

)
− F

m

}
· ∂

∂v

]
f1 j (r, v, t) = e

m

(
El · ∂

∂v
f0 j

)

(9)
Now to obtain f1 j , we apply Fourier transform,

A(r, v, t) = �k,ωA(k, ω, v) exp[i(k · r − ωt)] (10)

The fluctuating parts f1 j of the low frequency turbulence field is determined from
Eq. (9) by integrating along the unperturbed orbit.

f1 j (k, ω) = ie

m

El|| · ∂
∂v|| f0 j

ω − k||v|| + i · 0+ (11)

We next apply a perturbation δEh of a high frequency ordinary mode with an elec-
tric field δEh = (0, 0, δEh) having propagation vector K = (K⊥, 0, 0), a magnetic
field δBh = (0, δBh , and frequency Ω .

We calculate the total perturbed electric field, the magnetic field and the particle
distribution function as:

δE = μ
′
δEh + μ

′
εδElh + μ

′
ε2ΔE

δB = μ
′
δBh + μ

′
εδBlh + μ

′
ε2ΔB

δ f = μ
′
δ fh + μ

′
εδ flh + μ

′
ε2Δ f

where δElh ,ΔE, δBlh ,ΔB denotes the modulation fields, δ fh denotes the fluctuating
part owing to a high frequency Ordinary mode, δ flh and Δ f denotes the particle
distribution function corresponding to the modulation field and μ

′ � ε where μ
′

denotes the smallness parameter for perturbed field. To the order of μ, με and με2,
we now have

Pδ fh = e

m

(
δEh + v × δBh

c

)
· ∂ f0 j

∂v
(12)
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Pδ flh = e
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where P = [
∂
∂t + v · ∂

∂r − {
e
m ( v×B0

c ) − F
m

} · ∂
∂v

]
.

3 Nonlinear Dispersion Relation of Electromagnetic
O-Mode Wave

Considering the linear response theory of plasma turbulence, we obtain δ fh , δ flh and
Δ f by integrating along the unperturbed orbits, using cylindrical co-ordinate system
to the velocity space [13, 14].

From equation (12), we have

δ fh = − ie
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Jb(α

′
)exp[i(b−a)θ]

aΩ j−Ω+K⊥vF
, α = K⊥v⊥

Ω j

From equation (13), we have

δ flh = I 1lh + I 2lh + I 3lh (16)

where
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From equation (14), we have
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The Maxwell’s equation gives the modulated field as

∇ × δBlh = 1
c

∂
∂t δElh + 4π

c J

J = −ene
∫
vδ flhdv

∇ × δElh = − 1
c

∂
∂t δBlh

Therefore, we have

∇ × δBlh = 1
c

∂
∂t δElh − 4πene

c

∫
vδ flhdv

This can be written in the simplified form as:

δEh = 4π iene(Ω−ω)

c2K 2⊥−Ω2

∫
v‖(δ fh + Δ f )dv

This equation may be expressed as follows after simplification:

δEhεh(K,Ω) = 0 (21)

Here εh(K,Ω) indicates the non-linear dispersion relation of O-mode wave which
is described by

εh(K,Ω) = ε0(K,Ω) + εd(K,Ω) + εp(K,Ω). (22)

4 Discussions

In our present study, we have been calculating the nonlinear dispersion relation of
electromagnetic Ordinary mode waves in context of ion cyclotron drift wave turbu-
lence, that is a frequent characteristics in an inhomogeneous plasma. The fluctuating
parts f1 j , δ fh , δ flh and Δ f which are provided in Eqs. (11) , (15) , (16) and (20)
respectively have been obtained. Here, f1 j denotes the fluctuating part due to ion-
cyclotron turbulent field which is linear in nature. Further, δ fh denotes the fluctuating
part of particle distribution function due to perturbed electromagnetic ordinary mode
whereas δ flh and Δ f denotes the nonlinear fluctuating parts of distribution function.
We are focussing on nonlinear fluctuating part Δ f for estimating growth rate of
O-mode. The expressions of Δ f contains polarisation coupling and direct coupling
terms. The turbulent field parameters El , k| |, v|| are involved besides the parameter
associated with O-mode phenomena. Nonlinear dispersion relation will be given by

εh(K,Ω) = ε0(K,Ω) + εd(K,Ω) + εp(K,Ω)

containing the linear part ε0(K,Ω), the direct coupling part εd(K,Ω) and the polar-
isation coupling part εp(K,Ω).
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5 Conclusions

In previous research [3], Ordinary mode was examined in the context of drift wave
turbulence in absence of external force causing particle drift. Only density gradient
parameters were to emerge in the nonlinear dispersion relation in those circum-
stances. However, drift motion of particles owing to pressure gradient must exist in
practical instances in space and tokamak plasmas, and is connected with F × B drift.
As a result, we’ve incorporated the external force F in our current research, which
ties drift motion to particles.
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Effect of Superthermal Charge
Fluctuation on Bifurcation
of Dust-Ion-Acoustic Waves Under
the Burgers Equation in a Magnetized
Plasma

Jharna Tamang

Abstract Bifurcation of dust-ion-acoustic waves (DIAWs) in dusty plasmas com-
posed of fluid ions, immobile dust grains, and superthermal charge fluctuations of
electrons and ions is examined. The study is done under the framework of the Burg-
ers equation obtained through the reductive perturbation technique. The effect of
charge fluctuations holds the responsibility for formation of the shock solution of the
Burgers equation. The changes on periodic and shock wave solutions of the Burgers
equation are shown varying system parameters. The results of this study, shock and
periodic wave solutions of the Burgers equation in plasmas with dust charge fluctu-
ation in magnetized plasmas, are shown for the first time implementing the notion
of nonlinear dynamical systems.

Keywords Phase plane profile · Periodic wave · Kink and anti-kink waves ·
Dynamical system

1 Introduction

Dusty plasmas have wide applications in astrophysics, plasma, biophysics, fusion
devices, space science [1, 2]. The charged dust grains produces wave modes, named
as dust-ion-acoustic wave (DIAW) and dust-acoustic wave (DAW). Experimentally
Barkan et al. [3] discovered DIAWs for the first time. Theoretically, Shukla and
Silin [4] were the first to report a observation of low frequency DIAW in a dusty
plasma. Many researchers [4–7] studied propagation of DIAW both theoretically
and experimentally in various plasma systemswhile, some researchers [8–11] studied
impacts of external magnetic force on the electrostatic waves. Under magnetic effect,
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Anowar andMamun [12] studied the same under the KdV equation in dusty plasmas.
In magnetic dusty plasma, El-Labany et al. [13] investigated solitary DIAWs with
isothermal electrons. Shalaby et al. [14] reportedDIAW inmagnetized dusty plasmas
under the ZK equation. Very recently, Samanta et al. [15] discussed the formation of
rogue waves and examined DIAWs in multicomponent degenerate plasmas.

Many particles of plasmas follow Maxwellian distributions. However, space
plasma is usually noticed to follownon-Maxwellian distributions. These distributions
can be structured by kappa distribution [16]. In magnetized plasmas, superthermal
parameter affects the nature of electrostatic waves [17, 18]. Alinejad et al. [19] exam-
ined shock DIAWs in dusty plasmas with effect of superthermal electrons. Recently,
Shahmansouri andAlinejad [10] reported the impacts of direction of propagation and
superthermal electrons under magnetic field on large amplitude DIAW. The charge
on dust grains in dusty plasmas is not definite because of ion and electron currents
passing through the grain surface. While, the dissipation may occur due to charge
fluctuations of dust in dusty plasmas [20, 21] and is responsible generation of shock
structures.

The concept of dynamical systems [22–24] has discoveredmany characteristics of
nonlinear waves in plasmas through phase portrait and time series analysis. Recently,
many researchers [25–28] reported the propagation of nonlinear acoustic waves in
plasmas. In 2018, Tamang et al. [5] studied DIAWs in collisional dusty plasma under
the ionization effect implementing the notion of planar dynamical systems.Chatterjee
et al. [29] reported solitary wave solution of DIAWs in superthermal plasmas. Very
recently, Sharma et al. [30] studied dynamical features of DIAWs in nonextensive
dusty plasma applying the same theory. Using this notion of dynamical systems, the
dynamical feature of DIAWs based on the Burgers equation under the magnetic and
charge fluctuation is not reported as yet.

The manuscript is organized as: in Sect. 2, the model equations are considered.
In Sect. 3, we derive the Burgers equation. In Sect. 4, the dynamical system of the
Burgers equation is formed. The potential energy function plot is also displayed. In
Subsections of 4, analytical wave solutions are presented. Lastly, conclusions are
given in Sect. 5.

2 Model Equations

The traveling of DIAWs in an electron-ion plasma system under magnetic field is
represented by the following model equations [11]

∂n

∂t
+ −→∇ · (n−→u ) = 0, (1)

∂
−→u
∂t

+ (
−→u · −→∇ )

−→u = −−→∇ φ + ωci
−→u × ẑ, (2)

−→∇ 2φ = μne − n + (1 − μ)Zd . (3)
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where n and ne represent ion and electron number densities. Here, velocity compo-
nent is given by

−→
B0 = B0 ẑ,

−→u = (u, v, w) and ∇ = (∂x, ∂y, ∂z). Electromagnetic
wave potential is given by φ. Temperature ratio is given by σ = Ti

Te
, where Ti (Te) is

temperature of ions (electrons). Dust-acoustic speed is given by Cs = √
T e/mi and

ion-cyclotron frequency is given byωpi =
√
4πni0e2/mi . The Debye length is given

by λD = Cs/ωpi , where kB refers to the Boltzmann constant and mh is hot electron

mass. Here, μ = ne0/ni0 = 1 − Zd0nd0
ni0

.

ne = 1 + C1φ + C2φ
2, (4)

where C1 = −−κ − 1/2

κ − 3/2
and C2 = 1

2

(−κ − 1/2)(−κ + 1/2)

(κ − 3/2)2
.

The electron and ion charging currents are considered as:

Ie = −eπr2d ne0

√
8Te
πme

√
κ − 3/2

κ4

κ

κ − 1

	(κ + 1)

	(κ − 1/2)

(
1 + αZd − φ

κ − 3/2

)1−κ

, (5)

Ii = eπr2d ni0

√
8Ti
πmi

(
1 + αZd

σ

)
. (6)

where rd is the radius of dust, σ = Ti
Te

and α = Zd0e2/rdTe.

The normalized dust charging fluctuation is described by the succeeding equation

ν

(
∂Zd

∂t
+ ud

∂Zd

∂x

)
= γ

(
1 + αZd − φ

κ − 3/2

)1−κ

− χni

(
1 + αZd

σ

)
, (7)

where ν = √
αme(1 − μ)/2mi , χ = (

rd

n−1/2
d0

)3/2
√
meTi/Temi and

γ = μ

(
rd

n−1/2
d0

)3/2 √
κ − 3/2	(κ + 1)/	(κ − 1/2)κ(κ − 1).

The normalized dust charging frequency follows as:

νch = 1

e

∂

∂Zd
(Ie + Ii )|φ=0,Zd=1 =

√
Z2
d0r

2
d

2πσ

ωpi

λD

(ακ + κ − 3/2) + σ(κ − 1)

σ + κ − 3/2
. (8)
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3 Derivation of the Burgers Equation

We obtain the Burger equation using the stretching of independent variables as

ξ = ε(lx x + ly y + lz z − V t), τ = ε2t, (9)

where ε is small parameter (0 < ε << 1) and V is phase velocity of the wave. Next,
the dependent variables expanded as,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n = 1 + εn1 + ε2n2 + · · · ,

u = εu1 + ε2u2 + · · · ,

v = εv1 + ε2v2 + · · · ,

w = εw1 + ε2w2 + · · · ,

Zd = 1 + εZd1 + ε2Zd2 + · · · ,

φ = εφ1 + ε2φ2 + · · · .

(10)

By collecting terms of lowest order ε
3
2 , we get the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1 = lz
V

w1,

u1 = − ly
ωci

∂φ1

∂ξ
,

v1 = lx
ωci

∂φ1

∂ξ
,

w1 = lz
V

φ1,

μC1φ1 − n1 + (1 − μ)Zd1 = 0,
−Zd1 + d1φ1 − d2n1 = 0,

(11)

where d1 = ν
1 − κ

κ − 3/2

1

γα 1−κ
κ−3/2 − χ α

σ

and d2 = χ(1 + α/σ)

χ α
σ

− γα 1−κ
κ−3/2

.

Due to E × B0 drift in magnetized plasma, u1 and v1 show up. We obtain the
dispersion relation of the DIAW as follows

V = lz

√
1 + (1 − μ)d2

μC1 + (1 − μ)d1
. (12)

Collecting terms of the next higher order of ε, we get
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂n1
∂τ

− V
∂n2
∂ξ

+ lz
∂

∂ξ
(n1w1) + lx

∂u1
∂ξ

+ ly
∂v1

∂ξ
+ lz

∂w2

∂ξ
= 0,

∂w1

∂τ
− V

∂w2

∂ξ
+ lzw1

∂w1

∂ξ
= −lz

∂φ2

∂ξ
,

μC1φ2 + μC2φ
2
1 − n2 + (1 − μ)Zd2 = 0

Zd2 = d1φ2 + d4φ
2
1 − d2n2 + d3

∂φ1

∂ξ
,

(13)

where d3 = V ν

( −d1 + d2
l2z
V 2

γα 1−κ
κ−3/2 − χ α

σ

)

and d4 = χαl2z
σV 2

(
d1 − d2

l2z
V 2

γα 1−κ
κ−3/2 − χ α

σ

)

.

The following relation is obtained by comparing the terms of order ε2

μC1φ2 + μC2φ
2
1 − n2 + (1 − μ)Zd2 = 0. (14)

Differentiating equation (14) and eliminating higher order perturbed terms using
equations (11)–(13), we finally acquire the Burgers equation as

∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
= B

∂2φ1

∂ξ 2
, (15)

where A and B are the nonlinear and dispersion coefficients given respectively as

A = l2z
2V

+ lz
V

− V [μC2 + (1 − μ)d4]
2[μC1 + (1 − μ)d1] and B = V (1 − μ)d3

2[μC1 + (1 − μ)d1] .

4 Dynamical System

The Burgers equation (15) is converted into dynamical system (DS) using the trans-
figuration

η = ξ −Uτ, (16)

with U as the wave speed. Thus, we obtain the following DS as

⎧
⎪⎪⎨

⎪⎪⎩

dφ1

dη
= y,

dy

dη
= A2

2B2
φ1

(
φ1 − U

A

)(
φ1 − 2U

A

)
.

(17)

In Fig. 1, fixed points (P0 and P2) are connected by nonlinear heteroclinic trajec-
tories (NHeT1,0) enclosing center at fixed point (P1). A trajectory that starts from
one fixed point and ends in another fixed point is said to form heteroclinic struc-
ture [24, 31, 32]. Such trajectories are associated with shock waves, such as kink
and anti-kink waves. A trajectory that encloses one fixed point and has zero separa-
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Fig. 1 Phase portrait of equation (17) for κ = 2, lz = 0.1, σ = 0.1, μ = 0.3, ωci = 0.5, rd = 2
μm, Zd0 = 104, nd0 = 1m−3 and U = 0.2

trix is said to form nonlinear periodic trajectory. Here, nonlinear periodic trajectory
(NPT1,0) encloses one fixed point (P1) that corresponds to periodic wave solution
[33]. The nonlinear wave trajectories portrayed in Fig. 1 describe nonlinear wave
solutions of the Burgers equation through phase plane plots. The nonlinear peri-
odic wave solution shown here are different from supernonlinear periodic wave as
supernonlinear periodic waves are characterized by nontrivial topology of their phase
portraits. Supernonlinear periodic trajectory encloses more than one fixed points and
are separated by at least one separatrix layer [33].

Next, we analyze the occurrence of wave forms by examining potential energy
function. Let ψ be the potential energy function such that

d2φ1

dη2
= − dψ

dφ1
, (18)

which gives

ψ = − A2

2B2

(
1

4
φ4
1 − U

A
φ3
1 + U 2

A2
φ2
1

)
. (19)

Now, we plot the curve of the potential energy function corresponding to Fig. 1.
From Fig. 2 it is evident that there exist one maximum point and two local minima

in the potential energy function graph. The region enclosed by the trajectory from
fixed points (P0 and P2) are region of the shock wave solution while, the region about
maximum point at P1 describes the periodic wave solution. In Fig. 2, potential dip
at P1 denotes stable fixed point and maxima at points PO and P2 represent unstable
points [24]. Stable fixed point indicates periodic trajectory and from the other two
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Fig. 2 Potential energy
function of equation (19) for
same parametric values as
Fig. 1

fixed points (P0 and P2) the shock wave feature is interpreted from the potential
profile that represents dissipation. Here, dissipation leads to the formation of shock
structures [20].

4.1 Periodic Wave Solution

The analytical periodic solution of the Burgers equation (15) can be obtained from
equation (17) considering the Hamiltonian function H(φ1, y) as

H(φ1, y) = y2

2
− A2

B2

(
φ4
1

4
− Uφ3

1

A
+ U 2φ2

1

A2

)
= h, (20)

from which one can obtain

dy

dη
= A

2B

√
(r1 − ψ)(ψ − r2)(ψ − r3)(ψ − r4), (21)

where r1, r2, r3 and r4 are roots of hi + A2

4B2

(
φ4
1 − 4Uφ3

1

A
+ 4U 2φ2

1

A2

)
= 0. Substi-

tuting Eq. (21) in Eq. (20), one can obtain the nonlinear periodic dust-ion-acoustic
wave (NPDIAW) solution given by

φ1 =
r1 + r4

{
r1−r2
r2−r4

sn2
(

A
2Bgη, z

)}

1 + r1−r2
r2−r4

sn2
(

A
2Bgη, z

) , (22)
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with sn being the Jacobi elliptic function, g = 2√
(r1 − r3)(r2 − r4)

and

z =
√

(r1 − r2)(r3 − r4)

(r1 − r3)(r2 − r4)
.

In Fig. 3, we show the variation of nonlinear periodic dust-ion-acoustic wave
(NPDIAW) solution varying parameters κ , lz and μ. It is clear from the Fig. 3 that
NPDIAW becomes spiky as the values of parameter κ rise, while the NPDIAW
becomes smooth for higher values of lz and μ as the height of NPDIAW diminishes.
It is also observed fromFig. 3 that thewidth ofNPDIAWnarrows down as parameters
κ , lz and μ are increased.

4.2 Dust-Ion-Acoustic Kink Wave (DIAKW)
and Dust-Ion-Acoustic Anti-kink Wave (DIAAKW)

In order to acquire DIAKW and DIAAKW solutions analytically, we introduce a
new variable ζ as

ζ = c(ξ − λτ), (23)

with wave speed given by λ and c > 0.

Solving with tanh method, the DIAKW and DIAAKW solutions of equation (15)
are obtained as

φ1(ξ, τ ) = ± λ

A

[
1 − tanh

{
λ

2B
(ξ − λτ)

}]
. (24)

With the help of numerical simulations, the DIAKW and DIAAKW solutions
are presented in Fig. 4 varying κ, lz and μ by keeping τ = 1 with other physical
parameters same as Fig. 1. It is noticed that as we increase the values of superthermal

Fig. 3 NPDIAW variations changing parameters κ, lz and μ with other parameters are same as in
Fig. 1
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Fig. 4 DIAAKW and DIAKW variations changing parameters κ, lz and μ with other parameters
same as in Fig. 1
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parameter (κ), the height of thewave increases.Whereas, the height diminisheswhile
the smoothness of DIAAKW and DIAKW increases when the values of direction
cosine (lz) and number density ratio of electrons and ions (μ).

5 Conclusions

The DIAWs in a superthermal dust charge fluctuation plasma system under the Burg-
ers equation are studied. Using the traveling wave transformations, the Burgers equa-
tion is converted into dynamical systems. Through phase plane plot and potential
energy function, the shock wave and periodic wave solutions are made evident. Ana-
lytical wave solutions of DIAWs are derived using Hamiltonian function. Effects
of superthermal charge fluctuation parameters on shock wave and periodic wave
solutions of DIAWs are shown. Superthermal parameter (κ), number density ratio
(μ) and direction cosine (lz) have huge impacts on DIAWs. The existence of shock
and periodic wave solutions of the Burgers equation for DIAW is shown for the first
time in superthermal charge fluctuation in magnetized plasma systems employing
the notion of planar dynamical systems. Dusty plasmas are observed in astrophysical
environments, namely solar and planetary nebulae and usually with an involvement
of magnetic fields [34–36]. Our study may be helpful to understand behaviors of
DIAWs existing in magnetized plasma systems where superthermal charge fluctua-
tion occurs, such as in solar wind, mercury, Saturn and Earth’s magnetosphere [31].
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Dynamical Aspects of Ion-Acoustic
Solitary Waves in a Magnetically
Confined Plasma in the Presence
of Nonthermal Components

Jintu Ozah and P. N. Deka

Abstract The characteristics of three-dimensional ion-acoustic solitary waves
(IASWs) have been investigated in a magnetized plasma including ions, nonther-
maly dispersed electrons and positrons. The reductive perturbation technique (RPT)
is used to develop the Zakharov–Kuznetsov (ZK) equation for observing ion-acoustic
wave structure, and a soliton solution is obtained by using the tangent hyperbolic
(tanh) method. The influence of various parameters on the soliton profile, such as
nonthermal parameters for electrons andpositrons, density ratios of positron–electron
and ion–electron, and temperature ratio of electron–positron, is presentedgraphically.

Keywords Solitary waves · Reductive perturbation technique · Magnetized
plasma · Nonthermal electrons · Positrons

1 Introduction

Investigation of ion-acoustic solitary waves is an interesting research problem in the
field of plasma physics that has been extensively studied by numerous authors [1–4].
For the first time, Washimi and Taniuti [5] observed the distinctive behaviour of ion-
acoustic solitary waves in plasma, which can be investigated using the Korteweg-de
Vries (K-dV) equation.After that, ion-acoustic solitarywaves in bothmagnetized and
unmagnetized plasmas have been studied by a large number of researchers in different
theoretical and experimental circumstances during the past few decades. There has
been a lot of interest in the investigation of different types of nonlinear solitary waves
in plasmas, like magneto-acoustic solitary waves, spherical and cylindrical-acoustic
solitary waves, and lower-hybrid solitary waves [6–9]. A study of ion-acoustic soli-
tary waves in magnetized negative ion plasma consisting of nonthermal electrons
was carried out by Labany et al. [10]. They observed that the solitary waves are
substantially influenced by the positive-to-negative ionmass ratio, the corresponding
negative-to-positive ion density ratio, and the parameters of nonthermal electrons.
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For analysing ion-acoustic waves in a magnetized plasma, Zakharov and Kuznetsov
developed the nonlinear equation known as the ZK equation. This ZK equation
may be found in many branches of physics, such as fluid mechanics, astrophysics,
solid state physics, and so on [11, 12]. It is most apparent in the subject of plasma
physics. Using the extended tanh approach and the direct assumptionmethod, Li et al.
derived the ZK equation and got an exact travelling wave solution [13]. Taibany
et al. [14] developed the ZK equation to investigate the IASWs in a magnetized
multicomponent dusty plasma with negative ions. Recently, many researchers have
been showing an interest in studying the impact of nonextensive electron distribution
on IASWs in magnetized plasma. Mandi et al. [15] have investigated the effect of
the q-nonextensivity of electrons on the characteristics of IASWs. Furthermore, the
propagation of solitons in nonthermal plasma has generated much interest among
researchers. Because of their practical significance, they continue to pique people’s
curiosity. Many studies in plasma physics, as well as complex plasma, have focused
on ion-acoustic solitary waves and their properties in the field of nonthermal plasma.
Pakzad [16] studied the behaviour of soliton structures in a three-component unmag-
netized plasma containing cold ions, nonthermal electrons, and positrons. Dev et al.
[17] studied the dust IASWs in a magnetized plasma in the presence of nonthermal
electrons, positrons and relativistic thermal ions. They discovered that in the absence
of nonthermal electron and positron populations, the plasma system behaves in the
least nonlinear manner, but the system behaves in the most nonlinear manner when
the populations of nonthermal electrons and positrons have the maximal value. In
their investigation into three-dimensional ion-acoustic soliton structures, including
warm ions, positrons, and nonthermal electrons, Chawla et al. [18] reveal that the
presence of nonthermal electrons considerably impacts the amplitude and width of
soliton pulses.

In this paper, the effects of nonthermal electrons, nonthermal positrons, and
the influence of magnetic fields on the structure of three-dimensional nonlinear
IASWs are investigated. We anticipate that the presence of nonthermal electrons and
positrons will alter the characteristics of solitons as well as their existence regime.

2 Basic Model Equations

We consider a plasma model with constituent ions, nonthermal electrons and
nonthermal positrons, where the magnetic field B0 is along the z-axis. The following
normalized sets of ion continuity equations, momentum equations, and Poisson
equations serve as the governing equations for the current plasma model:

∂ni
∂t

+ ∂(niu)

∂x
+ ∂(niv)

∂y
+ ∂(niw)

∂z
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂φ

∂x
+ �i

ωpi
v (2)



Dynamical Aspects of Ion-Acoustic Solitary Waves … 247

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂φ

∂y
− �i

ωpi
u (3)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂φ

∂z
(4)

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= ne − μpn p − μi ni (5)

The Boltzmann distributions [17] for nonthermal electrons and positrons are
defined as

ne = (
1 − βeφ + βeφ

2) exp(φ) (6)

np = (
1 + σpeβpφ + σ 2

peβpφ
2) exp

(−σpeφ
)

(7)

In the above expressions.
Also μp = np0

ne0
, μi = ni0

ne0
and σpe = Te

Tp
.

βe = 4αe

1 + 3αe
, βp = 4αp

1 + 3αp

here,αe is the nonthermal parameter for electrons andαp is the nonthermal param-
eter for positrons, which represent the population of energetic nonthermal electrons
and positrons, respectively. Te and Tp are the temperatures of electrons and positrons.
In the above equations, the ion number densities ni are normalized by ni0 and veloc-
ities (u, v,w) by the ion-acoustic speed Cs = (Te/mi )

1/ 2, where mi is the ion mass.
Space coordinates (x, y, z) and time t are normalized in terms of Debye length

λD = (
ε0Te/n0i e

2
)1/ 2 and the inverse of plasma frequency ωpi = (

4πe2n0i
/
mi

)1/ 2

respectively. The electric potential φ is normalized by Te
/
e, where e is the electronic

charge. �i and ωpi are the ion-cyclotron frequency and plasma frequency.

3 Reductive Perturbation Method

Toderive theZKequation from the above basic set of equations,we used the reductive
perturbation technique. The stretching coordinates [10, 19] are assume as

ξ = ε1/ 2x, η = ε1/ 2y, ζ = ε1/ 2(z − λ0t) and τ = ε3/ 2t (8)

where the symbol ε is the expansion parameter that measures the strength of nonlin-
earity and λ0 is the phase velocity of IASWs. We express the physical parameters in
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the power series expansion of ε in the following way:

ni = 1 + ε1n1 + ε2n2 + ε3n3 + ....

u = ε3/ 2u1 + ε2u2 + ε5/ 2u3 + ....

v = ε3/ 2v1 + ε2v2 + ε5/ 2v3 + ....

w = 0 + ε1w1 + ε2w2 + ε3w3 + ....

φ = 0 + ε1φ1 + ε2φ2 + ε3φ3 + ....

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(9)

We transform x and t by using the stretch coordinates as

∂

∂x
≡ ε1/ 2

∂

∂ξ
,

∂

∂y
≡ ε1/ 2

∂

∂η
,

∂

∂z
≡ ε1/ 2

∂

∂ζ
,

∂

∂t
≡ −λ0ε

1/ 2 ∂

∂ζ
+ ε3/ 2

∂

∂τ

∂2

∂x2
≡ ε

∂2

∂ξ 2
,

∂2

∂y2
≡ ε

∂2

∂η2
,

∂2

∂z2
≡ ε

∂2

∂ζ 2

⎫
⎪⎪⎬

⎪⎪⎭

(10)

Using (10), the transformation equations of (1)–(5) may be obtained as

−λ0ε
1/ 2 ∂ni

∂ζ
+ ε3/ 2

∂ni
∂τ

+ ε1/ 2
∂(niu)

∂ξ
+ ε1/ 2

∂(niv)

∂n
+ ε1/ 2

∂(niw)

∂ζ
= 0 (11)

−λoε
1/ 2 ∂u

∂ζ
+ ε3/ 2

∂u

∂τ
+ uε1/ 2

∂u

∂ξ
+ vε1/ 2

∂u

∂η
+ wε1/ 2

∂u

∂ζ
= −ε1/ 2

∂φ

∂ξ
+ �i

ωpi
v

(12)

−λoε
1/ 2 ∂v

∂ζ
+ ε3/ 2

∂v

∂τ
+ uε1/ 2

∂v

∂ξ
+ vε1/ 2

∂v

∂η
+ wε1/ 2

∂v

∂ζ
= −ε1/ 2

∂φ

∂η
+ �i

ωpi
u

(13)

−λoε
1/ 2 ∂w

∂ζ
+ ε3/ 2

∂w

∂τ
+ uε1/ 2

∂w

∂ξ
+ vε1/ 2

∂w

∂η
+ wε1/ 2

∂w

∂ζ
= −ε1/ 2

∂φ

∂ζ
(14)

ε
∂2φ

∂ξ 2
+ ε

∂2φ

∂η2
+ ε

∂2φ

∂ζ 2
= ne − μpn p − μi ni (15)

Now using (9) in the above equations and then collecting the lowest order terms.
in ε, we get

n1 = w1

λ0
, w1 = φ1

λ0
,

u1 = −ωpi

�i

∂φ1

∂η
, φ1 = μi n1

(1−βe+μpσpe−βpμpσpe)

v1 = ωpi

�i

∂φ1

∂ξ
,

⎫
⎪⎪⎬

⎪⎪⎭
(16)
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After solving for the first order perturbation terms, the dispersion relation of
nonlinear IASWs is obtained as

λ0 =
√

μi

1 − βe + μpσpe − βpμpσpe
(17)

Equation (17) represents the phase velocity of nonlinear IASWs.
The next higher order of ε gives

u2 = ωpiλ0

�i

∂v1

∂ζ
, (18)

v2 = −ωpiλ0

�i

∂u1

∂ζ
, (19)

∂n1i
∂τ

− λ0
∂n2i
∂ζ

+ ∂u2

∂ξ
+ ∂v2

∂η
+ ∂w2

∂ζ
+ ∂(n1i w

1)

∂ζ
= 0, (20)

∂w1

∂τ
− λ0

∂w2

∂ζ
+ w1 ∂w1

∂ζ
+ ∂φ2

∂ζ
= 0, (21)

∂2φ1

∂ξ 2
+ ∂2φ1

∂η2
+ ∂2φ1

∂ζ 2
− (

1 − βe + μpσpe − βpμpσpe
)
φ2

− 1

2

(
1 − σ 2

peμp
)(

φ1
)2 + μi n

2 = 0, (22)

Now, differentiating equation (22) w.r.t ζ , we get

∂

∂ζ

(
∂2φ1

∂ξ 2
+ ∂2φ1

∂η2

)
+ ∂3φ1

∂ζ 3
− (

1 − βe + μpσpe − βpμpσpe
)∂φ2

∂ζ

− (
1 − σ 2

peμp
)
φ1 ∂φ1

∂ζ
+ μi

∂n2

∂ζ
= 0. (23)

Now, using the lowest order terms, the Eq. (23) can be written as

∂

∂ζ

(
∂2φ1

∂ξ 2
+ ∂2φ1

∂η2

)
+ ∂3φ1

∂ζ 3
− μi

λ2
0

∂φ2

∂ζ
− (

1 − σ 2
peμp

)
φ1 ∂φ1

∂ζ
+ μi

∂n2

∂ζ
= 0.

(24)

Now, eliminating the second order quantities from (20), (21) and (24), we obtain
the ZK equation in terms of φ1 as

∂φ1

∂τ
+ Aφ1 ∂φ1

∂ζ
+ B

∂3φ1

∂ζ 3
+ C

∂

∂ζ

(
∂2φ1

∂ξ 2
+ ∂2φ1

∂η2

)
= 0, (25)
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where the non-linear coefficient A is given by

A = 2

λ0
− λ3

0

2μi

(
1 − σ 2

peμp
)
.

B and C are the dispersive and higher order coefficients, expressed as

B = λ3
0

2μi
, andC = λ3

0

2μi
+ λ3

0

2

ω2
pi

�2
i

.

4 Solution of ZK Equation

To analyse the Eq. (25), we use the tanh method. We consider the transformation
χ = γ (lξ + mη + nζ −Uτ), whereφ(ξ, η, ζ, τ ) = ψ(χ), we can use the following
changes:

∂

∂τ
≡ −Uγ

d

dχ
,

∂

∂ξ
≡ lγ

d

dχ
,

∂

∂η
≡ γm

d

dχ
,

∂

∂ζ
≡ γ n

d

dχ
,

∂2

∂ξ 2
≡ γ 2l2

d2

dχ2
,

∂2

∂η2
≡ γ 2m2 d2

dχ2
,

∂3

∂ζ 3
≡ γ 3n3

d3

dχ3

Now the Eq. (25) becomes a reduced ordinary differential equation as

−Uγ
dψ

dχ
+ Aγ n

2

dψ2

dχ
+ Bγ 3n3

d3ψ

dχ3
+ Cγ n

d

dχ

[
γ 2(l2 + m2)d

2ψ

dχ2

]
= 0. (26)

Integrating the above equation, we get

−Uψ + 1

2
Anψ2 + γ 2n

[
Bn2 + C

(
l2 + m2

)]d2ψ

dχ2
= 0 (27)

To solve the above equation, we use the tanhmethod. Consider a new independent
variable as:

z = tan(χ), where ψ(χ) = w(z).

and we get.

d2

dχ2 = (
1 − z2

)2 d2

dz2 − 2z
(
1 − z2

)
d
dz .

Now the Eq. (27) becomes

−Uw + 1

2
Anw2 + γ 2n

(
Bn2 + C

(
l2 + m2

))(
1 − z2

)2 d2w

dz2
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− 2γ 2n
(
Bn2 + C

(
l2 + m2

))
z
(
1 − z2

)dw
dz

= 0. (28)

In the tanh method the series solution of the Eq. (28) can be written as:

w(z) =
m∑

i=1

ai z
i (29)

In Eq. (29), the value of m can be obtained by balancing the highest order linear
term with the nonlinear terms. On substitution of Eq. (29) into Eq. (28), we get
m = 2.

As a result, the solution w(z) =
m∑

i=1
ai zi is of the form

w(z) = a0 + a1z + a2z
2. (30)

Now substitutingw, dwdz , d
2w
dz2 from (30) into (28), then equating different coefficient

of z, we get.
a0 = −a2 and a1 = 0.
Hence Eq. (30) reduce as

w(z) = a0
(
1 − z2

)
. (31)

Using (31) into (28) and equating the coefficients of z2, we get

a0 = 12γ 2
[
Bn2 + C

(
l2 + m2

)]

A
.

And hence γ =
√

U
4n(Bn2+C(l2+m2))

.

Using the values of the parameters, Eq. (31) provides a solution as

φ = φmsech
2
( χ

W

)
. (32)

Here, (32) represents the solution of the Eq. (25), where φm and W are the
amplitude and width of the soliton.

Whereφm = 3U

An
(33)

and

W =
√

U

4n
(
Bn2 + C

(
l2 + m2

)) . (34)
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5 Results and Discussion

For the study of soliton structures due to the existence of nonthermal components of
electrons and positrons, we have plotted the variation of nonlinear coefficient A with
electron-to-positron temperature ratio

(
σpe

)
, positron-to-electron density ratio

(
μp

)

and ion-to-electron density ratio (μi ) for different parameters of nonthermal electrons
and positrons. The polarity (positive or negative) of the soliton structure completely
depends on the sign of the nonlinear coefficient A. The positive polarity (compressive
soliton) structure exists for the positive value of the nonlinear coefficient and the
negative polarity (rarefactive soliton) structure exists for the negative value of the
nonlinear coefficient. Figure 1 shows that the nonlinearity of plasma increases with
the electron-to-positron temperature ratio

(
σpe

)
. The same result has been observed

in Fig. 2, where the nonlinearity changes with the positron-to-electron density ratio(
μp

)
. The variation of nonlinearity with ion-to-electron density ratio (μi ) in Fig. 3

shows the existence of rarefactive soliton structures. It can be seen from this graph
that the sign of nonlinearity becomes negative after a certain value of μi . Therefore,
the parameter μi is very crucial to obtaining rarefactive soliton structures. The range
of the parameterμi for the existence of negative polarity can be obtained fromFig. 3b.
Further, it is observed that, in all cases, the nonlinearity of plasma decreases as the
parameters of nonthermal electrons and positrons are increased.

Figure 4 shows the change of the compressive soliton structurewithχ for different
values of nonthermal parameters of electrons (αe) and positrons

(
αp

)
. As in equation

(34), it shows that the amplitude is the inverse of the nonlinear coefficient A. As a
result, as nonthermal parameters are increased, plasma nonlinearity decreases, and
hence the amplitude of the soliton structure rises.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.8

3

3.2

3.4

3.6

3.8

4

σpe

A

Fig. 1 Variation of nonlinear coefficient against electron-to-positron temperature ratio
(
σpe

)
with

μi = 0.3 and μp = 0.2. Blue line corresponds to αe = 0.01, αp = 0.02; black line corresponds to
αe = 0.03, αp = 0.04; red line corresponds to αe = 0.05, αp = 0.06
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μp

A

Fig. 2 Variation of nonlinear coefficient against positron-to-electron density ratio
(
μp

)
with σpe =

0.1 and μi = 0.3. Blue line corresponds to αe = 0.01, αp = 0.02; black line corresponds to
αe = 0.03, αp = 0.04; red line corresponds to αe = 0.05, αp = 0.06

We have also shown the rarefactive soliton structure in Fig. 5 for different values
of nonthermal parameters while keeping all other parameters fixed. The amplitude
(width) of the solitons decreases (increases) with an increase in the values of αe and
αp.

A similar kind of variation in the soliton structure is observed in Fig. 6, when we
change the positron-to-electron density ratio

(
μp

)
. This observation also provides

an information about the change in amplitude and width when the value of
(
μp

)

changes. Increase in the density ratio, enhances the amplitude of the soliton.

6 Conclusion

In the present work, we have studied the characteristics (amplitude and width) of
nonlinear ion-acoustic solitary waves in a magnetically confined plasma under the
influence of nonthermal electrons and positrons. We have determined the range of
the parameters for the existence of both the positive and negative polarity soliton.
We have noticed the following main results in our present study:

1. In our investigation, both the positive and negative polarity of soliton exist,
whereas in the earlier study, this aspect was not covered by Chawla et al. [18].

2. The parameter ion-to-electron density ratio (μi ) is very crucial to getting two
kinds of soliton structure. A very small change in this parameter, changes the
polarity of the soliton structure.

3. We can obtained the parameter range for the existence of a negative polarity
soliton from Fig. 3b.
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Fig. 3 Variation of nonlinear coefficient against ion-to-electron density ratio (μi ) with σpe = 0.1
andμp = 0.2. Blue line corresponds to αe = 0.01, αp = 0.02; black line corresponds to αe = 0.03,
αp = 0.04; red line corresponds to αe = 0.05, αp = 0.06
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Fig. 4 Variation of compressive soliton wave structure for different values of αe and αp , with μi
= 0.3, σpe = 0.1, μp = 0.2, n = 0.6, U = 0.9, �i = 0.5 and ωpi = 1.4. Blue (dotted) curve
corresponds to αe = 0.01 and αp = 0.03; black (solid) curve corresponds to αe = 0.04 and αp =
0.06; red (solid) curve corresponds to αe = 0.07 and αp = 0.09
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Fig. 5 Variation of rarefactive soliton structure for different values of αe and αp , with μi = 1.8,
μp = 0.2, σpe = 0.1, n = 0.6,U = 0.9,�i = 0.5 and ωpi = 1.4. Blue (dotted) curve corresponds to
αe = 0.01 and αp = 0.03; black (solid) curve corresponds to αe = 0.04 and αp = 0.06; red (solid)
curve corresponds to αe = 0.07 and αp = 0.09
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Fig. 6 Variation of rarefactive soliton structure for different values ofμp , withμi = 1.8, σpe = 0.1,
n=0.6,U =0.9,�i =0.5 andωpi =1.4,αe = 0.05 andαp = 0.06.Blue (dotted) curve corresponds
to μp = 0.1; black (solid) curve corresponds to μp = 0.5 and; red (solid) curve corresponds to
μp = 0.9

We hope these results will be incredibly helpful in both space and laboratory
plasmas, where solitary wave propagation is quite useful.
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Maxwellian Multicomponent
Dusty-Plasma with Fluctuating Dust
Charges

Ridip Sarma

Abstract By employing a method known as
(
G ′
G

)
expansion method, we rekindle

our study on the existences of soliton propagation in a complex plasma consisting of
Maxwellian electrons, negative ions, positive ions and positrons, in the presence of
dust charge fluctuation. The study involves the augmentation of KdV Equation and
then Burger Equation derivable by usual reductive perturbation technique. In this
paper we expect to evaluate some important observations which could be of interest
in the scientific community. We have investigated our observations in the context of
Auroral region, radial spokes of Saturn’s ring system and Solar F Corona region.

Keywords Maxwellian multicomponent plasma · Dust charge variation ·
Nonlinear waves · Soliton and shock dynamics · G′/G method · Space plasmas

1 Introduction

The presence of negative ions in a plasma has been studied in a number of papers.
We mention here some of these papers. Tagare and Reddy [1] investigated the ionic
temperature effect on ion-acoustic solitons in a warm plasma consisting of positive
ions and negative ions and non-isothermal electrons on the basis of a modified KdV
equation derived by using the reductive perturbation method. Nakamura et al. [2]
experimentally investigated Ion–Acoustic waves in a multicomponent plasma with
negative ions. Earlier D’Angelo et al. [3] studied theoretically ion-acoustic waves in
a multicomponent plasma with negative ions.

Mamun and Shukla [4] studied the role of negative ions on the charging of dust
grains. They have considered two models for negative ions: streaming negative ions
and Boltzmannian negative ion distribution. They have found that the effects of
negative ion number density, negative ion charge and negative ion streaming speed,
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significantly impact the dust grain charge. Oohura and Hatakeyama [5] have exper-
imentally studied in the laboratory certain aspects of pair-ion (C+

60 and C
−
60) plasma.

Adhikary et al. [6] experimentally studied in a dusty plasma, the propagation char-
acteristics of rarefactive ion- acoustic solitary waves containing negative ions. They
compared their experimental resultswith the theoretical results ofKdV-Burgers equa-
tion. In a later paper, Adhikary [7] studied a dusty plasma composed of Boltzman-
nian distributed singly charged positive ions, singly charged negative ions, electrons,
positrons and cold static negatively charged dust particles. He took into account
viscous effect and found that viscosity plays an important role in dissipation of
the Dust Ion Acoustic (DIA) shock wave propagating through it. In another paper,
Adhikary et al. [8] presented an investigation of the properties of Dust Acoustic
(DA) solitary wave propagation under the effect of non-thermal ions and trapped
electrons in an adiabatic dusty plasma. The plasma is composed of electrons, singly
charged positive and negative ions and charged dust particles. They derived a modi-
fied KdV equation and obtained a stationary analytical solution. From the study of
the solution they observed that both the ions in the dusty plasma play a key role for
the formation of both rarefactive and compressive DA solitary waves and that the
ion concentration impacts the transformation of negative to positive potentials of the
waves. Haider and Nahar [9] studied the nonlinear dynamics of Dust Ion Acoustic
(DIA) solitary and shock waves in a plasma composed of positive and negative ions,
oppositely charged stationary dust particles and superthermal electrons. There are
many researchers [10–12], who studied four component dusty plasma.

We consider in this work a four-component plasmamodel with negatively charged
dust. The constituents are negatively charged dust particles under the influence
of Maxwellian distributed positive and negative ions, electrons and positrons. The
manuscript is ordered as follows: Sect. 2 illustrates the basic equations governing the
plasma dynamics. Sect. 3 describes the derivation of nonlinear equations. To study the

existence and propagation of solitons and shocks, a
(
G ′
G

)
method [13] has been used.

The speciality of the method is it is concise and straightforward and can be used to
solve evolutionary equations directly without any requirement for initial/boundary
conditions or initial trial function at the outset. Graphical representation includes
specific choice of typical parameters of various astrophysical regions playing a vital
role in different domains of cosmic dust-laden plasmas. Results and Discussions are
in Sect. 4 analysing a comparative study of the different waves in various plasma
spaces, followed by Conclusions in Sect. 5.

2 Basic Model Equations Governing Plasma Dynamics

The basic equations governing our plasma dynamics are written as [13, 14]

Equation of continuity
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∂nd
∂t

+ ∇.(ndud) = 0 (1)

Equation of motion

∂nd
∂t

+ ∇.(ndud) = 0 (2)

along with the Poisson equation

∇2ϕ = −4π
∑

qβnβ zβ (3)

where β = i, n, e, p, d represents positive ions, negative ions, electrons, positrons
and dust particles respectively. qβ represents+e for positive ion, positron and−e for
an electron, negative ion and a dust particle. Here, dust particle’s mass is represented
by md , velocity by ud and the charge density by nd . Here, ud is normalised by

ci = ( kBTe0mi
)
1
2 (kB represents Boltzmannian constant) and nβ represents the density

of charge number, normalized with the equilibrium value nβ0, where the equilibrium
state is represented by suffix 0. The positive ion, negative ion, positron and the
dust charge numbers are represented as zi,n,p,d , where zd is the number of electrons
residing on a dust particle. ϕ is the electrostatic potential normalised by ( kBTe0e ).
The time variable t and space variable x are normalised respectively by ω−1

pi =
( mi
4πe2ni0

) and D = ( kBTe0
4πe2ni0

)
1
2 , known as inverse of plasma frequency and Debye

length respectively.

We perturb the parameters as fβ = fβ0+
∼
fβ ( f = u, n, z), where the corre-

sponding equilibrium value is fβ0 and the perturbed value is
∼
fβ . We assume that

electrons and ions are Maxwellian, and therefore we can write the Eq. (3) as

∇2ϕ = αϕ + α
′
ϕ2 + 4πe(zd0ñd+ ∼

zd nd0+ ∼
zd

∼
nd) (4)

where

α = 4πe2

KB

(
ne0
Te

+ ni0z2i
Ti

+ np0

Tp
+ nn0z2n

Tn

)
=

(
1/

λ2
D

)

and α
′ = 2πe3

KB
2

(
ne0
Te2

− ni0z3i
Ti 2

+ nn0z3n
Tn2

− np0

Tp
2

)

where Ti,e,n,p represents the temperatures of positive ions, electrons, negative ions
and positrons respectively.

When we immerse the dust particles in a plasma, the basic charging equation is
written as
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dQd

dt
=

∑
Iγ , γ = i, e, n, p (5)

where Iγ is the current [15–17] generated on the dust grains by charged particle γ

given by

Ii = πa2e

√
8Ti
πmi

ni (1 − eqd
aTi

)

In = −πa2e

√
8Tn
πmn

nn

(
1 + eqd

aTn

)

Ie = −πa2e

√
8Te
πme

neexp(
eqd
aTe

)

and

Ip = πa2e

√
8Tp

πmp
npexp(− eqd

aTp
)

Now following Jana et al. [15], and applying on our current model, we obtain

dQd

dt
+ ∼

Qd= |Ie0|(
∼
ni
ni0

+
∼
np

n p0
−

∼
nn
nn0

−
∼
ne
ne0

) (6)

where

Qd = Qd0+
∼
Qd (7)

with Qd0 and
∼
Qd considered at equilibrium to be the dust charges and perturbed

states respectively. Also, we have.

η =
(|eIe0|/C

)(
1

kBTe
+ 1

kBTp
+ 1

ωi0
+ 1

ωn0

)
, (8)

where C is the capacitance of the dust grains, ωi0 = kBTi − eϕ f 0 and ωp0 =
kBTp − eϕ f 0 where ϕ f 0 is the floating potential.

Substituting in Eq. (6) the values of Eqs. (7) and (8), we get

∂
∼
zd

∂t
+ ∼

zd = P1ϕ + P2ϕ
2 (9)
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with

P1 = |Ie0|/kB(
zi
Ti

+ zn
Tn

+ 1

Te
+ 1

Tp
) (10)

P2 = |Ie0|e/k2B(
1

Te
2 + z2n

T 2
n

− 1

Tp
2 − z2i

T 2
i

) (11)

3 Nonlinear Wave Equations: Derivation and Solution

3.1 Korteweg De Vries Equation

Following Washimi and Tanuiti [18], we apply the reductive perturbation method to
the basic equations for studying soliton dynamics. The stretching coordinates of the
model are:

ζ = √∈(x − v0t), τ = 3
√ ∈ t (12)

where, ∈ measures the small expansion parameter.
We use the perturbed expansion:

(S = ud, nd, ϕ) =
∑∞

N=0
∈N S(N ), (13)

having S(0) = 0 for ϕ and ud .
For the first order in ∈, we use reductive perturbation scheme and stretching

coordinates in the basic equations to get the following relations.

u(1)
d,x = − (ezd0)

(mdv0)
ϕ(1), (14)

n(1)
d = −

(
α + p

η

)

4πezd0
ϕ(1), (15)

z(1)
d = P1

ϕ(1) (16)

Now, the result for phase velocity comes out to be

v2
0 = ω2

pd

(
α + P

)−1

(17)
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where ωpd is the dust charge frequency defined as

ωpd = (
4πe2z2d0nd0/md

) 1
2 (18)

P = 4πend0P1 (19)

The subsequent higher order term in ∈ gives the following equations

∂n(1)
d

∂τ
− v0

∂n(2)
d

∂ζ
+ nd0

∂ud,x
(2)

∂ζ
+ ∂(n(1)

d u(1)
d,x )

∂ζ
= 0 (20)

∂
−→u (1)

d

∂τ
− v0

∂
−→u (2)

d

∂ζ
+ u(1)

d,x

∂
−→u (1)

d,x

∂ζ
= e

md
(zd0

∂ϕ(2)

∂ζ
x
∧ + z(1)

d

∂ϕ(1)

∂ζ
x
∧

) (21)

where along x-direction, the unit vector is x
∧

.

∂2ϕ(1)

∂ζ 2
= αϕ(2) + α′(1)2 + 4πe

(
zd0n

(2)
d + z(2)

d nd0 + z(1)
d n(1)

d

)
(22)

z(2)
d = P1

ϕ(2) + P2 (
ϕ(1)

)2
(23)

Applying the results of the order ε from Eqs. (14) to (17) in Eqs. (20) to (23)
along with some mathematical simplifications, the K-dV equation is obtained as

∂ϕ(1)

∂τ
+ Aϕ(1) ∂ϕ(1)

∂ζ
+ B

∂3ϕ(1)

∂ζ 3
= 0 (24)

where the coefficients A and B are

A = 3v0
8πezd0nd0

P −
(

α
′ + P

′ )
v3
0

ω2
pd

− 3ezd0
2mdv0

(25)

B = v3
0

2ω2
pd

(26)

where

P
′ = 4πend0P2

Applying the (G
′

G ) method, and the transformation ϕ(1)(ζ, τ ) = ψ(ξ), with ξ =
ζ − V τ where the frame is moving with the velocity V having boundary conditions
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(i) ϕ(1) → 0, (i i)
dϕ(1)

dξ
→ 0, (i i i)

d2ϕ(1)

dξ 2
→ 0 as |ξ | → ∞ (27)

enabling us to obtain the solution of the KdV equation as.
ψ(ξ) = 3V

A sech2(
√
V

2
√
B
ξ), where ξ = ζ − V τ

Or ψ(ξ) = ψmsech
2

(
ξ

ψw

)
, whereψm = 3V

A
andψw = 2

√
B

V
(28)

We leave out two other solutions yielded by the (G
′

G ) method as they are not
relevant to the soliton character.

The coefficients A and B of the solution (Eq. 28) are functions of plasma param-
eters. Now to study the nature of the soliton, we consider some values of plasma
parameters [19] as reported in Auroral region, Saturn’s radial spokes and Solar F
Corona astrophysical region.

It has to be noted that the following expressions are considered while writing the
relation Eq. (25):

P = 4πrdnd0

[
(T i + Te + Tn + Tp)Tef f

(T i + Tn)
(
Te + Tp + Tef f

)
]

P
′

= 4πrdnd0
kB

[
Tef f ((T i + Tn)

2 − (
Te + Tp

)2
)(

Te + Tp
)
(T i + Tn)

2((Te + Tp
) + Tef f

)
]

Tef f = (T i + Tn) − e2Zd

KBrd

where the values of v0, α&α
′
have been used.

3.2 Burgers Equation

To study the propagation of shock waves, we take the help of pair of stretching
coordinates, ζ =∈ (x − v0t) and = ∈2t , to the same set of governing Eqs. (1) to (3)
and equating first order in∈, we obtain:

u(1)
d,x = − (ezd0)

(mdv0)
ϕ(1), (29)

n(1)
d = −

(
α + p

η

)

4πezd0
ϕ(1), (30)
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z(1)
d = P1

ϕ(1) (31)

Now, the result for phase velocity comes out to be

v2
0 = ω2

pd

(
α + P

)−1

(32)

with the dust plasma frequency defined as

ωpd = (
4πe2z2d0nd0/md

) 1
2 (33)

and

P = 4πend0P1 (34)

However, for the next higher order of ∈, we get-

∂n(1)
d

∂τ
− v0

∂n(2)
d

∂ζ
+ nd0

∂u(2)
d,x

∂ζ
+ ∂(n(1)

d u(1)
d,x )

∂ζ
= 0 (35)

∂ 	u(1)
d

∂τ
− v0

∂ 	u(2)
d

∂ζ
+ u(1)

d,x

∂ 	u(1)
d,x

∂ζ
= e

md

(
zd0

∂ϕ(2)

∂ζ
x̂ + z(1)

d

∂ϕ(1)

∂ζ
x̂

)
(36)

where along x-direction, x̂ is the unit vector.

∂2ϕ(1)

∂ζ 2
= αϕ(2) + α′(ϕ(1)

)2 + 4πe
(
zd0n

(2)
d + z(2)

d nd0 + z(1)
d n(1)

d

)
(37)

z(2)
d = P1

ϕ(2) + P2 (
ϕ(1)

)2 + v0 ∂z(1)
d

∂ζ
(38)

Applying the perturbed relations, with some mathematical simplifications, we
derive the Burgers equation

∂ϕ(1)

∂τ
+ Aϕ(1) ∂ϕ(1)

∂ζ
− C

∂2ϕ(1)

∂ζ 2
= 0 (39)

where

A = 3v0
8πezd0nd0

P −
(

α′ + P ′ ) v3
0

w2
pd

− 3ezd0
2mdv0

(40)
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C = v4
0

2w2
pd

P
2

(41)

where P ′ = 4πend0P2.
Considering the transformation ϕ(ζ, τ ) = ϕ(ξ), where = ζ − V τ and applying

the
(
G ′
G

)
method, we obtain the shock wave solution

ϕ(ξ) = −ϕm(1 − tanh(
ξ

ϕw

)) (42)

Here,ϕm = V
A , ϕw = 2C

V represents the amplitude andwidth of the shock structure
respectively.

Now to study the nature of the soliton, we consider some values of plasma param-
eters [19] as reported in Auroral region, Saturn’s radial spokes and Solar F Corona
astrophysical region.

We use the following expressions to write the Eq. (40),

P = 4πrdnd0

[
(Ti + Te + Tn + Tp)Tef f

(Ti + Tn)
(
Te + Tp + Tef f

)
]

P ′
= 4πrdnd0

kB

⎡
⎣ Tef f

(
(Ti + Tn)2 − (

Te + Tp
)2)

(
Te + Tp

)
(Ti + Tn)2

((
Te + Tp

) + Tef f
)
⎤
⎦

Tef f = (Ti + Tn) − e2Zd
KBrd

have been used.

4 Results and Discussions

Figure 1 exhibits plotting of the Auroral region of Ionosphere where the ion (positive
and negative) temperature is taken as (I) Ti,n = 2× 103K , (II) Ti,n = 4× 103K and
(III) Ti,n = 5 × 103K . We consider the temperature of electron and positron to be
fixed at Te,p = 104K . Figure 1a exhibits nonlinear coefficient A with varying dust
density nd0. We find that at lower density nd0, there is fast increase in A, then at
higher density slows down. Secondly, the rate of slowing down of curve (III) is more
than curves (I) and (II) so that curve (III) intersects curve (II) at P and gradually
comes closer to curve (I) and may intersect it at a very high density. Thirdly, the
rarefactive and compressive regions show up at all the temperatures.

Figure 1b exhibits shock waves, showing that nonlinear term A drops fastly at
lower density and then at higher density slows down. However, the curve (I) goes
farthest down intersecting the curve (II) at Q and the curve (III) at R. Secondly, the
curve (II) slows down more than the curve (III) and meets it. Thirdly, in the density
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Fig. 1 a Plotting of coefficient of nonlinearity Awith varying density of dust nd0 for solitons found
in the Auroral region of Ionosphere where the positive and negative ions temperature is taken as (I)
Ti,n = 3×103K , (II) Ti,n = 5×103K and (III) Ti,n = 7×103K .We have considered Te,p = 104K
as the value for electron and positron temperature. b Plotting of coefficient of nonlinearity A
with varying density of dust nd0 for shocks found in the Auroral region of Ionosphere where the
positive and negative ions temperature is taken as (I) Ti,n = 3 × 103K , (II) Ti,n = 5 × 103K and
(III) Ti,n = 7 × 103K .We have considered Te,p = 104K as the value for electron and positron
temperature.

range under consideration, remembering the comment after Eq. (42), (II) and (III)
are in the rarefactive region but (I) is mostly in the rarefactive region but just dips
into the compressive region at the higher density end.

If we compare Fig. 1a, b we first observe that with increase in nd0, A rises for
solitons and on the other hand A drops with nd0 in case of shock waves. We also
observe that there is some similar character like at lower density value, A varies fast
but at higher values of density, slows down. In Fig. 1a, all the curves are partly in
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the compressive region and partly in the rarefactive region, in Fig. 1b, according to
the comment after Eq. (42), the curve (II) and curve (III) are in the rarefactive region
but the curve (I) is mostly in the rarefactive region and just dips in the compressive
region at the higher density end. Finally, intersections of curves occur for both types
of waves.

Figure 2 exhibits the Saturn’s radial spokes where the pair of ion (positive and
negative) temperature is taken as (I) Ti,n = 1 × 103K , (II) Ti,n = 2 × 103K , and
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Fig. 2 a Plotting of coefficient of nonlinearity A with varying density of dust nd0 for solitons
found in the Saturn’s radial spokes where the positive and negative ions temperature is taken as
(I) Ti,n = 1 × 103K , (II)Ti,n = 2 × 103K and (III) Ti,n = 4 × 103K We have considered
Te,p = 2∗104K as the value for electron and positron temperature. b Plotting of coefficient of
nonlinearity A with varying density of dust nd0 for shocks found in the Saturn’s radial spokes where
the positive and negative ions temperature is taken as (I) Ti,n = 1×103K , (II)Ti,n = 2×103K and
(III) Ti,n = 4 × 103K . We have considered Te,p = 2∗104K as the value for electron and positron
temperature.
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(III) Ti,n = 4× 103K . We have considered 2 × 104K as fixed electron and positron
temperature. We can observe for Fig. 2a that for lower density A rise fast and and
slows down at higher values of density. However, the curve (I) rises higher than the
curve (II) and curve (III) so that the curve (I) intersects the curve (II) at X and the
curve (III) at Y. Secondly, the curve (I) has both rarefactive and compressive regions.
But the curve (II) and curve (III) have only the rarefactive region.

In Fig. 2b for shock waves, at lower density A falls fast and at higher density
slows down. However, the curve (I) falls faster than the curve (II) and curve (III) and
then curve (I) remains unchanged with change of density. Secondly, the curve (II)
falls faster than curve (III) so that curve (II) intersects curve (III) at Z. Thirdly, as per
the comment after Eq. (42), the curve (II) and curve (III) have only the rarefactive
region but the curve (I) lies first in the rarefactive region and then in the borderline
between compressiveness and rarefactivity.

If we compare Fig. 2a, b we first observe that with increase in nd0, A rises for
solitons and on the other hand A drops with nd0 in case of shock waves. We also
observe that there is some similar character like at lower density value, A varies fast
but at higher values of density, slows down. Both the curve (II) and (III) are in the
rarefactive region (vide comment after Eq. (42)) in both figures. But whereas the
curve (I) has both compressive and rarefactive regions in Fig. 2a. the curve (I) is in
the rarefactive region at lower density and then lies at the borderline between the
rarefactiveness and compressiveness.

In Fig. 3a, we choose the Solar F Corona region having the ion (positive and
negative) temperature as (I) Ti,n = 2 × 104K , (II) Ti,n = 4 × 104K , (III) Ti,n =
8×104K . We consider the electron temperature and positron temperature to be fixed
at Te,p = 8 × 105K . For solitons all the curves (I), (II) and (III) slowly and steadily
rise with no tendency to intersect. Secondly, corresponding to any dust density, (I) <
(II) < (III). Thirdly, all the curves are in the rarefactive region.

Figure 3b exhibits shock waveform in the Solar F Corona region, the positive and
negative ions temperature is taken as (I) Ti,n = 2 × 104K , (II) Ti,n = 4 × 104K ,
(III) Ti,n = 8 × 104K . We have fixed the electron and positron temperature as
Te,p = 8 × 105K . For shock waves, we note first that all the curves for (I), (II), and
(III) at lower density falls fast and then at higher density slows down. Secondly, at
higher density they show a tendency to come closer to one another and may intersect
one another at still higher density. Thirdly, at any density, (II) > (I) > (III). Finally,
according to the comment after Eq. (42), all the curves are in the rarefactive region.

We conclude with a comment on the points of intersection P, Q, R, X, Y, and Z
in Figs. 1a, b and 2a, b. At such a point, say at P, corresponding to the same dust
density which we call a “critical dust density”, we have (II) = (III) corresponding
to two different temperatures. In other words, at this dust density, the electrostatic
potential is the same. This seems to be an interesting role played by the charged dust
density!
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Fig. 3 a Plotting of coefficient of nonlinearity Awith varying density of dust nd0 for solitons found
in the Solar Coronawhere the positive and negative ions temperature is taken as (I) Ti,n = 2×104K ,
(II)Ti,n = 4×104K and (III) Ti,n = 8×104K . We have considered Te,p = 8∗105K as the value for
electron and positron temperature. b Plotting of coefficient of nonlinearity A with varying density
of dust nd0 for shocks found in the Solar Corona where the positive and negative ions temperature is
taken as (I) Ti,n = 2× 104K , (II)Ti,n = 4× 104K and (III) Ti,n = 8× 104K . We have considered
Te,p = 8∗105K as the value for electron and positron temperature.

5 Conclusion

In the present paper, we have conducted a systematic study of the effects of nonlinear
wave dynamics and dust density in multicomponent plasma on the formation of soli-
tons and shockwaves along with consideration of dusty plasma in different regions
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andBoltzmanndistributed electrons and ions. It is seen that compared to earlier obser-
vations, the presence ofMaxwellian charges presents different natures of soliton. The
present literature exhibited a plasma model to know the effect of Maxwellian force
on nonlinear waves with the expectation of new findings. Here, in this paper, by

employing reductive perturbation method and the unified method of
(
G ′
G

)
expansion

method we have derived the salient features of solitons and shockwaves. It is shown
that for any dusty plasma model, there exists a critical dust density,ndc at which it
is not possible to obtain soliton like structures and at which the nonlinear coeffi-
cient becomes zero. It has been observed that at the neighbourhood of the critical
dust density both compressive and rarefactive solitons grow in amplitude under the
action of Maxwellian force exhibiting generation of high energy which in turn finds
the phenomena of soliton radiation.
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Effect of Polarization Force on
Dust-Acoustic Solitary and Rogue Waves
in (r, q) Distributed Plasma

Manveet Kaur , Sunidhi Singla , and Nareshpal Singh Saini

Abstract In this investigation, dust-acoustic solitary and rogue waves are analysed
by including the role of polarization force in a dusty plasma in the presence of ions
obeying (r, q) distribution velocity. The (r, q) distributed ions lead to change in the
expression of polarization force which subsequently modifies the nonlinear struc-
tures. Using reductive perturbation technique, the Kadomstev–Petviashvili equation
and nonlinear Schrödinger equation (NLSE) are formulated. From the solution of
KP equation, we have studied the characteristics of small amplitude dust-acoustic
structures under transverse perturbations. We have also presented the stability of the
solitary wave solutions of KP equation. Further, from the rational solutions of NLSE,
we have analysed the characteristics of dust-acoustic rogue waves by varying differ-
ent plasma parameters. It is emphasized that all different physical parameters have
great influence on the characteristics of dust-acoustic solitary waves and different
order rogue waves.

Keywords KP equation · NLSE · Polarization force · (r, q) distribution

1 Introduction

Over the last five decades, researchers have focused on the study of various nonlin-
ear structures (such as solitons, rogue, shocks waves, double layers, and so on) and
instabilities in various types of plasmas utilising Maxwellian and non-Maxwellian
velocity distributions. Numerous nonlinear equations and energy balance equations
have been constructed in the framework of perturbative and non-perturbativemethod-
ologies respectively to explore such nonlinear structures (with small or high ampli-
tudes) in space/astrophysical plasmas. These nonlinear equations’ solutions have
been utilised to explain nonlinear solitary formations in 1-D, 2-D, and 3-D under
the influence of different plasma parameters. The Kadomstev–Petviashvili (KP) [1]
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equation is one of the nonlinear equations used to describe nonlinear systems in two
dimensions. It is an extension of the Korteweg-de Vries (KdV) equation. Numerous
researchers have studied the characteristics of nonlinear structures by employing KP
equation in different type of plasma environments [2–9].

Numerous research articles published over the last three decades have reported
the various physical aspects that due to their existence in dusty plasma, the nonlinear
structures viz., dust-acoustic waves (DAWs) and dust-ion acoustic waves (DIAWs)
are modified. In an unmagnetized plasma, one of such aspect is the forces on charged
particles such as electrostatic force, ion drag force, the net plasma pressure force and
most importantly polarization force [10]. Although the polarization force is small in
comparison to other forces of system but its effects are prominent for low frequency
DAWs and incur in a dusty plasma due to deformation of Debye sheath around the
particles. It is directed opposite to electric field, direction in which Debye length
increases and alters with variation in dust size but independent of charge on the
dust particles [11]. Several authors have investigated the role of polarization force
on various nonlinear solitary structures utilising different distributions (Maxwellian
and non-Maxwellian) in the context of the reductive perturbation methodology and
the Sagdeev method [12–22]. In a highly coupled dusty plasma, the influence of
polarization force and temperature of dust on DA solitary and shock waves was
studied by Mamun and Ashrafi [12]. They observed that the properties of nonlinear
structures are highly modified. In an inhomogeneous unmagnetized dusty plasma,
Asaduzzaman and Mamun [14] analysed the effect of polarization force owing to
dust density inhomogeneity on linear DA waves and reported that the dust grain
charge inhomogeneity and grain size distribution along with density inhomogeneity
altered the propagation properties of linear and nonlinear waves. Ashrafi et al. [15]
investigated the polarization force for non-thermal and trapped ions, adiabaticity of
electrons and ions. They explored that magnitude of the polarization force is signifi-
cantly influenced in different dusty plasma situations. The effect of the polarization
force on the dust-acoustic soliton energy was examined by Mayout et al. [16]. They
explored that when net force acting on the grains decreases then DA soliton energy
shows depletion.

The effect of polarization force and Cairns distributed ions on different DA non-
linear structures was illustrated by Singh and Saini [20]. They reported the influence
of polarization parameter for existence domain of such kind of nonlinear structures.
Further, the influence of nonextensively modified polarization force on interaction
of DA shock waves in a magnetized dusty plasma was illustrated by Saini et al.
[22]. They observed that change in values of parameters influence significantly the
propagation properties of DA shocks and phase shifts evolved because of interaction
of DA shocks.

Satellite data has revealed that particle distributions in different regions of space
diverge significantly from Maxwellian distributions. The well-known nonthermal
property of space plasmas reveals the presence of superthermal tails and flat tops at
low energies. According to observation and theory, some space plasmas can be more
successfully described by a generalized (r, q) distribution function. Themajor aspect
of the (r, q) distribution function in space plasmas is that it depicts distributions
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ranging from flat-topped to kappa distributions in the limiting situation [23]. In
general, (r, q) distribution function is written as follows [23, 24]:

fr,q(v) = a1
πb13/2vth3/2

[
1 + 1

q − 1

(
v2 − 2eφ/me

b1(2Te/me)r+1

)]−q

, (1)

where a1 = 3Γ [q](q − 1)3/(2+2r)

4Γ [q − 3
2+2r ]Γ [1 + 3

2+2r ]
,

and b1 = 3(q − 1)
−1

(1+r) Γ [q − 3
2+2r ]Γ [ 3

2+2r ]
Γ [q − 5

2+2r ]Γ [ 5
2+2r ]

,

where the electrostatic potential is represented by φ, the electron temperature and
mass are denoted as Te and me respectively. The distribution contains two spectral
indices, r and q, which regulate the flatness at lower energies and the tail at higher
energies [23]. It must establish the q > 1 and (r + 1) > 5/2 as requirement [23].
The distribution reduces to a Maxwellian distribution when r = 0 and q → (κ +
1), and this becomes a generalized Lorentzian distribution, when r = 0 and q →
(κ + 1) [23]. The generalized (r, q) distribution is suggested by Qureshi et al. [24],
which has been studied extensively for various types of plasmas [23–26]. Shah et
al. [23] explained the density depletions reported by the Freja and Viking satellites
with a generalized (r, q) distribution, formerly illustrated with Cairns distribution
function. Ali et al. [25] determined theoretically the potential on the surface of
spherical dust in a multi-ion (r, q) distributed dusty plasma. Nasir et al. [26] studied
the instability of currentless ion acoustic waves using Boltzmann-Vlasov kinetic
model with generalized (r, q) distribution in electrons and ions plasma.

Due to importance of polarization force in dusty plasma and the concept of gen-
eralized (r, q) distribution, we have investigated the solitary and rogue waves under
the effect of polarization force in a dusty plasma composed of Boltzmann distributed
electrons and generalized (r, q) distributed ions. The manuscript is described as
follows: The fluid model is presented in Sect. 2. The derivation of Kadomstev–
Petviashvili (KP) equation and its solution has been described in Sect. 2.1. The
derivation of NLSE and its solution are presented in Sect. 2.2. Parametric analysis is
described in Sect. 2.3. Section2.4 illustrates conclusions.

2 Fluid Model

Wehave considered a plasma havingMaxwell Boltzmann distributed electrons, (r, q)
distributed ions, polarization force and negatively charged dust particles as fluid. The
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expression for polarization force is [20]

Fp = −ZdeFRCr0

[
1 − Cr1

(
eφ

KBTi

)
+ Cr2

(
eφ

KBTi

)2
] 1

2

(2)

where FR = Zde2

4KBTiλDi0
, λDi0 = (

εKBTi/nie2Cr1
) 1

2 , Cr0 = (Cr1 − 2Cr2φ),

Cr1 =
(q − 1)

−1
(r+1) Γ

[
1

2(r+1)

]
Γ

[
q − 1

2(r+1)

]

2b1Γ
[

3
2(r+1)

]
Γ

[
q − 3

2(r+1)

] ,

Cr2 =
−(q − 1)

−2
1+r (1 + 4r)Γ

[
−1

2(1+r)

]
Γ

[
q + 1

2(r+1)

]

8b12Γ
[

3
2(r+1)

]
Γ

[
q − 3

2(r+1)

] ,

Equation (2) illustrates that polarization force expression is dependent upon (r, q)

distributed ions and independent of role of electrons. It approaches to Maxwellian
limit when r = 0 and q → ∞ and if r = 0, q → (κ + 1), then the (r, q) distribution
becomes kappa distribution. The normalized fluid equations are written as [20]:

∂nd ′

∂t
+ ∂(nd ′ud ′)

∂x
+ ∂(nd ′vd ′)

∂y
= 0 (3)

∂ud ′

∂t
+ ud

′ ∂ud
′

∂x
+ vd

′ ∂ud
′

∂y
= Fp

∂φ′

∂x
(4)

∂vd
′

∂t
+ ud

′ ∂vd
′

∂x
+ vd

′ ∂vd
′

∂y
= Fp

∂φ′

∂y
(5)

∂2φ′

∂x2
+ ∂2φ′

∂y2
= nd

′ + ne
′ − ni

′ (6)

The expressions for number density of (r, q) distributed ions and Maxwellian elec-
trons in dimensionless form are written as [20, 23]:

ni
′ = μi (1 − Cr1φ

′ + Cr2φ
′2 − Cr3φ

′3 + ...), (7)

ne
′ = μe

(
1 + θieφ

′ + θie
2φ′2

2
+ θie

3φ′3

6

)
. (8)

Also Fp in governing equations is expressed as
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Fp =
[
1 − FR(Cr1 − 2Cr2φ

′ + 1

2
Cr1

2φ′ − ...)

]
(9)

where FR is the polarization force parameter that describes the impact of negatively
charged dust particles on (r, q) distributed ions. The number density of ions ni ′,
electrons ne ′ and electric potential φ′ are normalized as ne ′ = ne/(Zd0nd0), ni ′ =
ni /(Zd0nd0) and φ′ = (eφ)/(KBTi ). By applying these normalized values and using
θie = Ti /Te, μe = ne0′/(Zd0nd0′) = 1/(μie-1), μi = ni0′/(Zd0nd0′) = μie/(μie-1) and
μie = ni0′/ne0′ is the ratio of number density of ions to electrons in equilibrium such
that μe-μi = −1. After substituting the values of ion and electron number density in
equation (6), Poisson equation become as a function of potential,

∂2φ′
∂x2

+ ∂2φ′
∂y2

= nd
′ − μi

[
1 − Cr1φ

′ + Cr2φ
′2 − Cr3φ

′3 + ...
]

+ μe

[
1 + θieφ

′ + θie
2φ′2
2

+ θie
3φ′3
6

+ ...

]
,

(10)
For further analysis, we have dropped prime sign from the variables and other
quantities for mathematical simplicity.

2.1 Derivation of Kadomstev Petviashvili (KP) Equation

For present fluid model having nonthermal ions under polarization force effect, we
have used following stretching co-ordinates [7]:

ξ = ε(x − V t), τ = ε3t and η = ε2y (11)

to deriveKPequation,where ε is dimensionless quantitywhichdescribes role ofweak
nonlinearity, V represents the phase velocity of solitons. In this investigation, waves
having weak dispersion as well as nonlinearity are considered with ω (or k) << 1.
Different physical quantities are varying slowly in space and very slowly in time.
The stretching coordinates defined in Eq.11 are essential components of reductive
perturbationmethod for deriving KP equation. The expansion for depended variables
is written as:

S = Sd0 +
∞∑
j=1

ε2 j Sd j , vd =
∞∑
j=1

ε2 j+1vd j . (12)

The system variables nd , ud and φ are represented by S at a given position and
time. The small deviation of these variables from equilibrium state is represented by
Sd0, the values of system of variables nd0, ud0 and φ0 are 1, 0 and 0 respectively.
Thus, applying these stretching co-ordinates and expansions in the set of modified
dust model equations (3–5) and (10), yields different kinds of equations. Then, by
collecting the lower order quantities of ε, we obtain the following:
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nd1 = −1 − FRCr1

V 2
φ1, ud1 = −1 − FRCr1

V
φ1,

∂vd1

∂ξ
= 1 − FRCr1

V

∂φ1

∂η
and V =

√
1 − FRCr1

C3
. (13)

where C3 = μiCr1 + μeθie. Similarly by collecting coefficients of higher power of
ε, we obtain

∂nd1
∂τ

− V
∂nd2
∂ξ

+ ∂(nd1ud1)

∂ξ
+ ∂ud2

∂ξ
+ ∂vd1

∂η
= 0, (14)

∂ud1
∂τ

− V
∂ud2
∂ξ

+ ud1
∂ud1
∂ξ

= 2FRCr2φ1
∂φ1

∂ξ
− FRCr1

2

2
φ1

∂φ1

∂ξ

+3FR

2
Cr1Cr2φ1

2 ∂φ1

∂ξ
+ (1 − FRCr1)

∂φ2

∂ξ
, (15)

∂vd1

∂τ
− V

∂vd2

∂ξ
+ ud1

∂vd1

∂ξ
= 2FRCr2φ1

∂φ1

∂η
− FRCr1

2

2
φ1

∂φ1

∂η

+3FR

2
Cr1Cr2φ1

2 ∂φ1

∂η
+ (1 − FRCr1)

∂φ2

∂η
, (16)

∂2φ1

∂ξ 2
= nd2 + μiCr1φ2 − μiCr2φ1

2 + μeθieφ2 + μeθie
2

2
φ1

2 (17)

After long mathematical calculations in above different equations, we have obtained
the KP equation as [7]

∂

∂ξ

[
∂φ

∂τ
+ Aφ

∂φ

∂ξ
+ B

∂3φ

∂ξ 3

]
+ C

∂2φ

∂η2
= 0 (18)

where

A = −V 3

2(1 − FRCr1)

[
3(1 − FRCr1)

2

V 4
− 2FRC2

V 2
+ FRCr1

2

2V 2
+ 3C4

]
, (19)

B = V 3

2(1 − FRCr1)
,C = V

2
and C4 = −μiCr2 + μe

θie
2

2
(20)

The nonlinear coefficient is represented by A, B represents the dispersion coefficient
and C is higher order coefficient.
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To find the steady solution of KP equation (18), we have transformed this equa-
tion with � = ξ − η − uτ as an appropriate transformation, where u represents the
velocity of frame. By substituting this single variable transformation, we get KP
equation in ordinary differential form. Thus, by integration with proper boundary
conditions (φ(�), φ′(�) → 0 as | � |→ ∞), we obtain

φ = φmsech
2

(
�

w

)
, (21)

where φm = 3
(
u−C
A

)
represents peak amplitude and w = 2

√
B

u−C is width of the KP
solitons.

2.2 The Derivation of NLSE and Its Solution

To explore the characteristics of dust-acoustic waves in the (r, q) distributed plasma
under the impact of polarization force, we find the solutions of Eq. (18) by incorporat-
ing the following new variables as φ(ξ, η, τ ) = φ(�, τ) and � = Fξ + Gη − mτ .
Here, F and G are direction cosines, so that F2 + G2 = 1. m is a which may be
considered like the Mach number. Now, by substituting new variable in (18), we get:

∂

∂τ
φ(�, τ ) + FAφ(�, τ)

∂

∂�
φ(�, τ ) + F3B

∂3

∂�3
φ(�, τ) = 0, (22)

m = G2C
F = (1−F2)C

F . The solution of this equation is assumed as [27, 28]:

φ(�, τ) =
∞∑
n=1

εn
∞∑

l=−∞
φl

n(�, τ )exp
[
il(k� − ωτ)

]
, (23)

we consider ξ = ε(� − ugτ) and t = ε2τ as stretching coordinates,where ug denotes
the group velocity.

Now, consider that all perturbed states rely solely upon rapid scales (through the
phase (k� − ωτ)). Whereas, the prolonged scale (ξ, t) enter the argument of the lth
harmonic amplitude φl

n . If the condition φ−l
n = φl

n∗ (* defines complex conjugate)
is satisfied only then φ(�, τ) will be real. The derivative operator are written as
[27, 28]:

∂

∂�
≡ ∂

∂�
+ ε

∂

∂ξ
, (24)

∂

∂τ
≡ ∂

∂τ
− ugε

∂

∂ξ
+ ε2

∂

∂t
. (25)
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For l = 1, n = 1, the different expressions yields as ω = −F3k3B, and from l = 1,
n = 2, we find the group velocity is ug = −3F3k2B. The zeroth harmonic with
l = 0, n = 2 gives

φ
(0)
2 =

(
A

ug

)
| φ

(1)
1 |2. (26)

From second harmonic, we get

φ
(2)
2 =

(
A

6F2k2B

)
| φ

(1)
1 |2. (27)

From n = 3, l = 1, and doing rigorous analytical calculations, we get the NLSE as
[29]

i
∂φ

∂t
+ P

2

∂2φ

∂ξ 2
+ Q | φ |2 φ = 0, (28)

for simplicity φ
(1)
1 = φ.Q = A2F2

P represents nonlinear coefficient and P = 6F3Bk
denoted as dispersion coefficient. The different solutions of Eq. (28) are determined
respectively as [30]

| φ1(ξ, t) |=
(

4(1 + 2i t)

1 + 4t2 + 4 ξ 2

P
− 1

)
eit√Q , (29)

| φ2(ξ, t) |=
√P
Q

(
1 + m1 + im2

m3

)
e(iP t), (30)

where, m1 =
[
3
8 − ξ 4

2 − 3ξ 2

2 − 6(Pξ t)2 − 10(Pt)4 − 9(Pt)2
]
,

m2 = −Pt
(− 15

4 + ξ 4 − 3ξ 2 + 4(Pξ t)2 + 4(Pt)4 + 2(Pt)2
)
and

m3 = 3
32 + ξ6

12 + ξ4

8 + 1
2 ξ4(Pt)2 + 9ξ2

16 + ξ2(Pt)4 − 3(Pξ t)2

2 + 2(P t)6

3 + 9(P t)4

2 + 33(P t)2

8 .
| φ1(ξ, t) | (| φ2(ξ, t) |) describes the characteristics of first (second) order rogue

waves.

2.3 Parametric Analysis

The role of variety of physical parameters such as polarization parameter (via FR),
ratio of number density of ions to electrons (via μie), ratio of temperature of ions
to electrons (via θie), spectral indices r , and q on properties of DA solitary and
rogue waves. For numerical analysis, we have considered the data from the planetary
rings [31]. The parametric ranges are ne0 = 4 × 107, nd = 107, ni0 = 5 × 107, Zd =
3 × 103, FR = 0 − 0.14.
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Fig. 1 The polarization force parameter (FR) versus spectral indices (a) r ; (b) q

Fig. 2 The phase velocity (V ) versus index r for different values of (a) index q , polarization force
parameter (FR); (b) ratio of number density of ions to electrons (μie) and ratio of temperature of
ions to electrons (θie)

The Fig. 1 shows the polarization force parameter (FR) versus indices r and q. It
is shown that when the values of r and q are increased, FR decreases. In other words,
when the indices r and q decrease, the polarization parameter increases. This means
that indices r and q have a big influence on the polarization parameter.

The variation of phase velocity (V ) with index r for different values of index
q, polarization force parameter (FR), ratio of number density of ions to electrons
(μie) and ratio of temperature of ions to electrons (θie) is portrayed in Fig. 2. It is
depicted that with increase in r , q, ratio of number density of ions to electrons and
without polarization force parameter (FR), the phase velocity is increased and it is
reduced with enhancement in ratio of temperature of ions to electrons. This implies
that polarization force suppresses the phase velocity of solitary waves.

Figure3a, b elucidate the solitary profile (φ) with � for the change in values of r
and q, polarization force parameter (FR), ratio of number density of ions to electrons
(μie) and ratio of temperature of ions to electrons (θie). It is described that with
increase in r , q indices, ratio of number density of ions to electrons and without
polarization force parameter (FR), the nonlinearity effect decreases and dispersion
effect increases, so the amplitude of solitary waves is decreased on negative axis and
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Fig. 3 The soliton profile (φ) for different values of (a) r , q indices, polarization force parameter
(FR); (b) ratio of number density of ions to electrons (μie) and ratio of temperature of ions to
electrons (θie)

Fig. 4 Thevariation of first order roguewaveprofilewith (a) r ,q indices; (b) ratio of number density
of ions to electrons (μie) and ratio of temperature of ions to electrons (θie); (c) 3-D representation

width is increased. The amplitude of solitary wave is enhanced and width is reduced
with change in the value of ratio of temperature of ions to electrons, this occurs due
to increase in nonlinearity and decrease in dispersion effects. This also implies that
contribution of polarization force enhances, the amplitude of solitary waves along
negative axis.

The variation of first order profile (| φ1 |) and second order profile (| φ2 |) of rogue
waves with ξ for change in r , q indices, μie and θie is presented in Figs. 4 and 5. It is
noticed that with increase in r , q indices andμie (i.e., ratio of number density of ions
to electrons) the nonlinearity increases so the amplitude of both orders rogue waves
is increased. The amplitude is reduced with increase in θie (i.e., ratio of temperature
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Fig. 5 The second order rogue wave profile with (a) r , q indices; (b) ratio of number density of
ions to electrons (μie) and ratio of temperature of ions to electrons (θie); (c) 3-D representation

of ions to electrons) due to decrease in nonlinearity. Its 3-dimensional presentation
is described in Figs. 4c and 5c.

From the whole numerical analysis we can conclude that all physical parameters
such as r , q indices, polarization force parameter (FR), ratio of number density of
ions to electrons (μie) and ratio of temperature of ions to electrons (θie) have great
influence on propagation properties of dust-acoustic solitary and rogue waves.

2.4 Conclusion

The influence of polarization force on characteristics of dust-acoustic (DA) soli-
tary and rogue waves in negatively charged dusty plasma containing Maxwellian
electrons and ions with generalized (r, q) distribution is studied. The KP and NLS
equations have been derived. From their respective solutions characteristics of soli-
tary and rogue waves have also been examined. We observe negative polarity DAKP
solitons. The polarization parameter (FR) is suppressed with increase r , q indices.
The propagation properties of DA solitary and rogue waves are highly affected by
variation in r , q indices, ratio of number density of ions to electrons, ratio of tem-
perature of ions to electrons, and with polarization force parameter. It is emphasized
that the implication of this work may be of great importance to analyse the nonlinear
phenomena from physics point of view in planetary rings [31].
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Dust-Ion-Acoustic Multisoliton
Interactions in the Presence
of Superthermal Particles

Dharitree Dutta and K. S. Goswami

Abstract The propagation and interaction of dust-ion-acoustic solitons in the
plasma composed of superthermal electrons and positrons, positively charged iner-
tial ion, and static dust particles is examined in this work. The reductive perturbation
method for small amplitude is adopted to derive the KdV equation. Hirota’s bilin-
ear method has been employed to calculate the multisoliton solutions of the KdV
equation. The role of various plasma parameters on the soliton has been studied. It
has been observed that the superthermality of the electrons and positrons and their
concentration can alter the nature of the solitons. The presence of dust particles also
influence the solitary structures. These results can be used to understand the nonlin-
ear structures in different space and atmospheric environment, e.g. in the Van Allen
radiation belt.

Keywords DIA soliton · Reductive perturbation method · Hirota’s bilinear
method

1 Introduction

In recent years, there is plenty of research [1–8] in the fascinating field of nonlinear
structures because of their occurrence in different space and atmospheric environ-
ment. Soliton is one of those nonlinear structures which receive a huge amount of
interests from the researcher worked in different fields of plasma physics. The dis-
tinguishing feature of a soliton is that it can maintain the size and shape even after its
interaction with another soliton or solitons. These nonlinear structures are generated
because of the balance between nonlinearity and dispersion. Initially it was stud-
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ied in electron -ion plasma. However, dust being omnipresent at different space and
ionospheric plasma, it has been later observed that the presence of dust particles in a
plasma introduces various low frequency waves and nonlinear structures [9]. Dust-
ion-acoustic wave is one of the distinct normal modes observed in unmagnetized
dusty plasma. Shukla and Silin had introduced this dust-ion-acoustic wave through
their theoretical work, later which was proved experimentally by Barkan et al. [9].
Since then, this nonlinear structure has attained considerable amount of interests
from the researchers.

Recently, the plasmaphysicists haveproclaimed the presence of electron-positron-
ion plasma in various space and atmospheric environment. In addition, in some
other environment e.g., the interior region of accretion disks near neutron stars
and magnetars, in the Milky Way, in the Saturn’s and Jupiter’s magnetosphere, the
electron-positron-ion-dust (e-p-i-d) plasma have been observed [10]. The presence of
positron in the e-i-d plasma brings significant changes in the nature of the nonlinear
waves. This is because the intrinsic symmetry between the electron (e−) and positron
(e+) within the plasma brings a dynamical change from that of an electron-ion-dust
plasma. The symmetry in the mass of the electron and positron originates different
fluid and kinetic instabilities in the plasma, and controls the possibility of the gener-
ation of nonlinear acoustic waves [11]. In view of the vital role of electron-positron-
ion-dust plasma in space and atmospheric plasma environment, in this work, the
formation of a DIA soliton in an unmagnetized dusty plasma comprise of superther-
mal electrons and positrons, cold fluid ions and static dust grains have been studied.
TheKdVequation is derived using the reductive perturbationmethod.Another salient
feature of this work is to incorporate the soliton interactions. Different space-based
observations proved the existence of a series of solitons and double layers in different
space and atmospheric environment. NASA’s Van Allen Probe spacecraft had shown
recently the existence of a series of low frequency electrostatic solitons in the Earth’s
magnetosphere [12, 13]. The interaction of multiple solitons can be studied with the
help of Hirota’s bilinear method [14]. This method was first published in 1971 by
Hirota. The multi soliton solutions of the KdV equation have been derived using this
method. The effect of different plasma parameters on the soliton interactions have
also been discussed. The manuscript is organized as: the Sect. 2 contains theoretical
formulation. In Sect. 3, the Hirota’s bilinear method has been employed. In Sect. 4,
the results have been discussed. Finally it has been concluded with a brief summery
in Sect. 5.

2 Theoretical Formulation

Ahomogeneous, collisionless, unmagnetized plasma comprise of superthermal elec-
trons and positrons, cold fluid ions along with stationary dust particles in the back-
ground have been considered here. The set of normalized equations [15] describing
the plasma model have been given bellow.
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∂Ni

∂t
+ ∂(NiUi )

∂x
, (1)

∂Ui

∂t
+Ui

∂Ui

∂x
+ 3σNi

∂Ni

∂x
= −∂φ

∂x
, (2)

∂2φ

∂x2
= μeNe + μd − μpNp − Ni . (3)

Here, Ni and Ui are the number densities and velocities of ions normalized by equi-
librium ion density (ni0) and ion-acoustic velocity (ci = √

kBTe/mi ), respectively,
where Te is the electron temperature andmi is the ionmass.φ is the normalized poten-
tial (normalized by kBTe/e, e being the electric charge). σ is the ratio of ion and elec-
tronmass.μe,μd , andμp are the normalized equilibrium densities of electrons, dust,
and positrons, respectively, i.e., μe = ne0/ni0, μd = Zdnd0/ni0, and μp = np0/ni0.
The equilibrium condition states: μe = 1 − μd + μp. The time variable is normal-
ized by the inverse of ion plasma frequency (ωi = √

4πni0e2/mi ), whereas the
space variable is normalized by the ion Debye length (λDi = √

kBTe/4πni0e2). The
superthermal electrons and positrons can be described with the κ− distribution and
the expression for their respective normalized number densities are,

Ne =
(
1 − φ

κe − 3/2

)−κe+1/2

, Np =
(
1 + φ

β(κp − 3/2)

)−κp+1/2

. (4)

Here, κe and κp are superthermality index of electrons and positrons respectively. β
is the positron to electron temperature ratio (β = Tp/Te).

The KdV equation is derived using equations 1– 4 and the stretched coordinates
[16] used here are ξ = ε1/2(x − Mt), and τ = ε3/2t , where ε is the smallness param-
eter that measures the weakness of the amplitude and M is the Mach number. The
variable Ni , Ui and φ can be expanded about the unperturbed states in the power
series of ε as,

Ni = N (0)
i + εN (1)

i + ε2N (2)
i + ε3N (3)

i + . . .

Ui = εU (1)
i + ε2U (2)

i + ε3U (3)
i + . . .

φ = εφ(1) + ε2φ(2) + ε3φ(3) + . . .

(5)

After following the reductive perturbationmethod, and solving the set of equations of
of first order perturbed quantities the dispersion relation for linear dust-ion-acoustic
waves has been calculated.

M =
[
1 + 3σ(μe P1 + μpQ1)

μe P1 + μpQ1

]1/2

. (6)

Here, P1 = (2κe − 1)/(2κe − 3), and Q1 = (2κp − 1)/β(2κp − 3). Further manip-
ulation of the the second order perturbed quantities finally results the KdV equation,
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∂ψ

∂τ
+ Aψ

∂ψ

∂ξ
+ B

∂3ψ

∂ξ 3
= 0, (7)

where, ψ = φ(1). A, and B represents the nonlinearity and dispersion coefficients,
and their expression are,

A = (μp Q2−μe P2)(M2−3σ)2

M + 3(M2+σ)

2M(M2−3σ)
, B = (M2−3σ)2

2M . (8)

Here, P2 = (
4κ2

e − 1
)
/2(2κe − 3)2, and Q2 = (

4κ2
p − 1

)
/2β2(2κp − 3)2.

3 Multisoliton Solution of the KdV Equation

To employ Hirota’s bilinear method, the dependent variable ψ of the KdV equation
has been transformed to a new form which is a logarithmic transformation of an
auxiliary function f (ξ, τ ) [14],

ψ(ξ, τ ) = 12B

A

∂2[ln f (ξ, τ )]
∂ξ 2

. (9)

Substituting this transformation for Eq.7 and integrating once with respect to ξ ,

(
fξ,τ

f
− fξ fτ

)
+ 3B

(
fξ,ξ

f

)2

− 4B
fξ fξ,ξ,ξ

f 2
+ B

fξ,ξ,ξ,ξ

f
= 0. (10)

Multiplying Eq.10 with f 2 results in the bilinear form as,

f fξ,τ − f fξ fτ + 3B( fξ,ξ )
2 − 4B fξ fξ,ξ,ξ + B f fξ,ξ,ξ,ξ = 0. (11)

From Eq.11, it has been observed that the transformation leads to the disappearance
of the nonlinearity coefficient (A) from the bilinear form of the KdV equation. The
bilinear equation can be simplified and converted to an ODE in terms of Hirota
derivative as

Dξ (Dτ + BD3
ξ )( f (ξ, τ ) · f (ξ, τ )) = 0. (12)

Here, Dξ , Dτ are binary operators and on a paired function it can be expressed as,

Dm
ξ Dn

τ ( f. f ) =
(

∂

∂ξ
− ∂

∂ξ
′

)m (
∂

∂τ
− ∂

∂τ
′

)n

( f (ξ, τ ) · f (ξ
′
, τ

′
))|ξ=ξ

′
,τ=τ

′ (13)

The function f (ξ, τ ) can be expanded in the power series of ι as

f (ξ, τ ) = 1 + ι f1 + ι2 f2 + ι3 f3 + . . . (14)
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If the original equation (KdV equation in this case) admits a N-soliton solution, then
Eq.14 will truncate at the n = N term provided f is the sum of precisely N simple
exponential terms.

3.1 One and Two Soliton Solutions

For the one soliton solution of Eq.7, it has been considered that f1 = eη, where
η = kξ + ωτ . For ι = 1,

f (ξ, τ ) = 1 + eη (15)

Substituting Eqs. 13–15 the dispersion relation for the DIA wave can be derived and
is, ω = −Bk3.
Therefore, the known form of a single soliton has been recovered as,

ψ(ξ, τ ) = 12B

A

∂2[ln(1 − exp(kξ − Bk3τ))]
∂ξ 2

= 3B

A
k2sech2

(
kξ − Bk3τ

2

)
.

(16)
Here, k is the propagation vector, and 3Bk2/A represents the amplitude of the soliton.

For two soliton solutions of Eq.7, the function f (ξ, τ ) can be expressed as,

f (ξ, τ ) = 1 + eη1 + eη2 + a12e
η1+η2 , (17)

where ηi = kiξ + ωiτ + γi , ki are the propagation vectors, γi are the phase shifts,
ωi = −Bk3i and i = 1,2 for the first and second soliton respectively. a12 is an inter-
action parameter of the two solitons and it depends upon the propagation vectors k1,
and k2 and can be expressed as, a12 = (k1 − k2/k1 + k2)

2 .

The two soliton solution can be derived using the transformation (9) to the function
f (ξ, τ ).

ψ(ξ, τ ) = 12B

A

k21e
η1(1 + a12e2η2) + k22e

η2(1 + a12e2η1) + 2(k1 − k2)2eη1+η2

(1 + eη1 + eη2 + a12eη1+η2)2
.

(18)
Equation18 represents the two solitons solution which indicates the interaction of
two solitons. If initially τ → −∞, the larger soliton is behind the smaller one, then
the phase shifts [17] after interaction of the two solitons are

γ1 = 2B1/3

k1
ln

k1 + k2
k1 − k2

, γ2 = −2B1/3

k2
ln

k1 + k2
k1 − k2

, (19)

for larger and smaller solitons respectively. The phenomenon can easily be under-
stood from Fig. 3, and is explained in the next section.
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4 Results and Discussions

Figure1 shows how the plasma parameters alter the nonlinearity and dispersion of
the solitary wave. In Fig. 1a, b, the variation of ‘A’, and ‘B’ with the superthermality
of the electrons and positrons have been shown. From the figure, it has been observed
that both the nonlinearity and dispersion of the soliton are strongly influenced by
the superthermality of the electrons and positrons. The nonlinearity coefficients are
higher for higher superthermality (i.e. lower values of κe, and κp), whereas the dis-
persion coefficients are lower for higher superthermality. The electron and positron
densities also have impact on the nonlinearity and dispersion of the soliton. The non-
linearity decrease with increasing electron density and after reaching the minimum
value, it increases with increasing electron density, as shown in Fig. 1c. On the other
hand, the nonlinearity increases with increasing positron density (Fig. 1d). However,
the dispersion is higher for lower electron and positron densities. From Fig. 1, it has
been observed that for all values of κe, κp, μe, and μp only compressive soliton will
generate.
The change in the potential of the single compressive soliton at τ = 0 for different
values of the plasma parameters have been shown in Fig. 2. The potential of the
soliton is maximum for Maxwellian electrons and positrons (κe = κp → ∞), and is
minimum for highly superthermal electrons and positrons (κe = κp = 2), as shown in
Fig. 2a. This result can be elucidated as the increasing spectral indices cause increase
in the electron and positron pressure. The increased pressure enhance the restoring
force, due to which the potential of the soliton is higher for larger values of κe and
κp. The potential of the soliton also depends upon the densities of the component.
In Fig. 2b, the amplitude of the soliton for different dust densities has been shown.
It is observed that the amplitude of the soliton is minimum for ion-acoustic mode
(μd = 0) and it increases on increase of the dust density (μd ). The increase in dust
density indicates a decrease in electron density, which leads to the increase of the

Fig. 1 The nonlinear (A) and dispersion coefficient (B) of the KdV equation for the variation of
(a) the superthermal index of electron (κe) with κp = 2, σ = 0.01, μe = 1.27, μp = 0.3, β = 1,
(b) the superthermal index of positron (κp) with κe = 2, σ = 0.01, μe = 1.27, μp = 0.3, β = 1,
(c) the electron density (μe) with κp = κe = 2, σ = 0.01, μp = 0.3, β = 1, and (d) the positron
density (μp) with κp = κe = 3, σ = 0.01, μe = 1.27, β = 1
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Fig. 2 Variation of ψ versus ξ with (a) σ = 0.01, k = 1, μe = 1.27, μp = 0.3, β = 1, and (b)
σ = 0.01, k = 1, μp = 0.3, κe = κp = 2, and β = 1

Fig. 3 (LHS) Surface plot of the electrostatic potential (ψ) of two interacting solitary waves with
σ = 0.01, k1 = 1, k2 = 2, μe = 1.27, μp = 0.3, κe = κp = 2, and β = 1, (RHS) Variation of the
electrostatic potential (ψ) of two interacting solitary waves versus ξ

dispersion as well as nonlinearity of the solitary waves. Therefore, the width and
amplitude of the soliton increase with increased dust density.

The time evolution of the compressiveDIA soliton in the plasmahas been shown in
Fig. 3. Two compressive DIA solitons, one with larger amplitude and narrower width
than the second one, travelling in the same direction, undergone an interaction. At the
interaction region, a single soliton is formedwhose amplitude andwidth liewithin the
intermediate range of their respective amplitudes and widths. Then the single soliton
breaks into two solitary structures and return to their initial amplitudes and widths to
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Fig. 4 Surface plot of the electrostatic potential (ψ) of two interacting solitarywaveswithσ = 0.01,
k1 = 1, k2 = 2 μe = 1.27, μp = 0.3, β = 1 for three different set of values of κe and κp: a κe =
κp = 2 (highly suprathermal electrons and positrons), b κe = κp = 10 (moderately suprathermal
electrons and positrons), and c κe = κp → ∞ (Maxwellian electrons and positrons)

regain their shape at a later time. The surface plot for the interaction of two solitons
has been shown in Fig. 3a. The trajectories of the solitons and the phase shifts induced
in the trajectories of the solitons after collision can be observed from the figure. The
propagation of the solitons at different time (τ ), and their interaction has been shown
in Fig. 3b. The parameters used are σ = 0.01, k1 = 1, k2 = 2 μe = 1.27, μp = 0.3,
κe = κp = 2, and β = 1. From the figure, it has been observed that at τ = −20, the
soliton with large amplitude is behind the one with smaller amplitude. At τ = −10,
the larger one starts to interact with the smaller one and become a single soliton at
τ = 0. At τ = 10, the single soliton decompose to two solitons and the larger soliton
overtake the smaller one. Finally at τ = 20, each soliton appears as seperate soliton
acquiring their initial size and shape. The phase shifts of the two solitons can also be
clearly observable from the figure (RHS). Both of the solitons have positive phase
shifts. However, the larger soliton has a higher phase shift than the smaller soliton.

Figure4 depicts the surface plots of the interacting DIA solions for three cases
of superthermality (κ): (a) highly superthermal electrons and positrons (κe = κp =
2), (b) moderately superthermal electrons and positrons (κe = κp = 10), and (c)
Maxwellian electrons and positrons (κe = κp → ∞). The figure shows that the
amplitude of the two solitons increase with the increased values of spectral indices.
The influence of the superthermal particles on the phase shift of the solitons after
collision can be observed from the figure. The phase shift, i.e., the temporal change
of the position of the two solitons is minimum for highly superthermal electrons
and positrons, and is maximum for Maxwellian electrons and positrons. It can be
explained with the help of the results shown in Fig. 3. From that figure we have
observed that the larger soliton moves with a faster speed. Moreover, the increase
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Fig. 5 Surface plot of the electrostatic potential (ψ) of two interacting solitarywaveswithσ = 0.01,
k1 = 1, k2 = 2, μp = 0.3, β = 1, κe = κp = 2 for three different set of values of μd : a μd = 0.5,
b μd = 0.25, and c μd = 0

in spectral index leads to the soliton with higher amplitude. So, on increase of the
spectral index, the speeds of the solitons increase. This cause a faster change in the
position of the two solitons and hence an increased phase shift. On the other hand,
with a decrease in the superthermality, the temporal scale of interaction is reduced.
This is because the solitary waves with Maxwellian particles have higher ampli-
tudes as compared to superthermal particles. The larger amplitude solitons move
with higher speed than the smaller amplitude solitons and, therefore, interact in a
less time interval. The interaction of the solitons in presence of different dust con-
centrations have been shown in Fig. 5. In Fig. 5a, b the normalized dust densities are
0.5, and 0.25 respectively. In the absence of dust (i.e. μd = 0), the interaction of the
ion-acoustic solitons are shown in Fig. 5c. From the figure, it has been observed that
the increased dust density enhances the phase shift. Similarly, the time of interaction
of the solitons is reduced with reduced dust density.

5 Conclusion

Here the generation and interaction of two DIA solitons in the plasma containing
superthermal electrons and positrons, inertial positive ions and negatively charged
static dust have been studied. It has been observed that the superthermal particles
play a vital role on the nature of the solitons. The superthermalility of electrons
and positrons, and dust concentrations also play a crucial role on the nature of DIA
solitons, and on the interaction of two dust-ion-acoustic solitons. The outcome of this
work would helped to understand the collision of solitons in different laboratory and
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space plasma such as, Earth’s magnetosphere, Van Allen radiation belt etc., where a
large number of low frequency electrostatic solitary waves have been detected.
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Numerical Study of Shear Flow Past Two
Flat Inclined Plates at Reynolds Numbers
100, 200 Using Higher Order Compact
Scheme

Rajendra K. Ray and Ashwani

Abstract In this study, an incompressible two-dimensional flow across two flat
inclined plates is investigated numerically using aHigher-order compact (HOC)finite
difference scheme. The shear parameter values P = 0.0, 0.1 are used to simulate
simulations for two Reynolds numbers (Re), 100 and 200. Each plate is of length
“d” and the shortest distance between the plates is exactly half of the plate’s length
(i.e., 0.5d). Plate-1 and Plate-2 are inclined with angles of attack (i.e., with x-axis),
α = (π − 45◦) and−α, respectively. The impact of the Reynolds numbers and shear
rate on the process of vortex shedding is investigated from the perspective of stream
function, vorticity contours, center-line velocity fluctuation, and phase diagrams.
The numerical findings show not only the influence of vortex shedding from two flat
inclined plates in shear flow but also several important flow generating properties
with P and Re. This is the first time, to our knowledge, a numerical investigation has
been performed to study the vortex shedding phenomena for two flat inclined plates
with angles of attacks, α = (π − 45◦) and −α respectively.

Keywords Shear flow · Flat inclined plates · HOC Scheme · Streamlines ·
Vorticity contours · Phase diagram

1 Introduction

The flow around bluff bodies has attracted much interest for for well over a century
because of its engineering utility as well as its scientific significance in fluid dynam-
ics. Flow through offshore platforms, heat exchangers and around bridge piers are
just a few examples of mechanical, civil, and marine engineering applications. As a
result, over the preceding century, a number of successful numerical, experimental,
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and analytical research were carried out. In a uniform flow, the majority of study
on flow through flat plates, square and circular cylinders has already been published
in the literature [1–11]. At a Reynolds number of 250, Najjar and Balachandar [19]
conducted a 3D numerical study of the flow behind a standard flat plate. It was
noticed that the wake had small unsteadiness, which affected the flow field while
also global integral characteristics like the drag coefficient and Strouhal number.
Fage and Johansen [20] demonstrated that the Strouhal number had an almost con-
stant value of 0.148 at angles of attack α ranging from 30◦ to 90◦ in their early
experiments using a plate at 18 distinct angles of incidence. Vortex shedding takes
place at the two corners of a plate that is slanted, resulting in uneven mean velocity
profile in the recirculation region’s very nearby wake. According to Lam [21], The
wake is regulated by a sequence of counterclockwise vortices shed from the top edge
of the plate at an impact angle of 30◦. Breuer and Jovicic [22] and Breuer et al. [23]
studied the flow across an inclined plate at an angle of 18◦ with a Reynolds number
of 20000, and their large-eddy simulation (LES) findings clearly revealed that the
trailing edge vortices were significantly dominated by the wake. There’s also no fre-
quent vortex shedding right at the front edge, according to them. Turki [24] presented
a numerical analysis of the control of vortex shedding behind a square cylinder in
a laminar channel flow with a plate in the 110 <= Re <= 200 range. At the plate
with a critical length (LC ), the author presented that the vortex shedding completely
stopped. When the inlet flow is sheared instead than uniform, wake exhibits a differ-
ent flow behavior, as demonstrated from both numerical and experimental analysis
by Ayukawa et al. [15], Kiya et al. [13], Hayashi and Yoshino [27], Adachi and Kato
[12], Cheng et al. [17], Kwon et al. [14], Cao et al. [16], Kumar and Ray [18].

Kalita et al. [25]worked on higher-order compact schemes (HOC) for the unsteady
2D convection-diffusion equation with variable convection coefficients in 2002 and
they demonstrated that in an area with a greater level of complexity, HOC scheme
can produce extremely precise results with a small selection of grid points. The
HOC approach for incompressible viscous flows in the polar coordinate system
(r, θ ) was further developed by Ray and Kalita [26] in 2009. As a result, the Higher
OrderCompact (HOC)finite differencemethods for the calculation of incompressible
viscous flows have been slowly gaining traction in recent years because of their
excellent precision and advantages over compact difference stencils.

The flow behaviour of laminar shear flow over two flat inclined plates is investi-
gated in this work. The angle positions of the flat plate with respect to the x-axis are
α = (π − 45◦) and−α. The problem is solved numerically by using the higher-order
compact (HOC) finite difference technique. In time variable, it’s second-order accu-
rate, while in space variables, it’s fourth-order accurate. Figure1 shows a graphic
representation of the problem.

The rest of the work is structured in the following manner. The mathematical
description of the physical problem as well as the discretization technique of gov-
erning equations is described in Sect. 2. Section3 i.e Results and Discussion section
dealswith numerical investigation of the flow through twoflat inclined plates. Finally,
we explain our findings in Sect. 4 (conclusion section), which is followed by refer-
ences.
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2 Mathematical Modelling

An incompressible, unsteady shear flow past two flat inclined plates is considered
here. The length of both plates is exactly d and the shortest distance between two
plates is exactly half of the length of the plate as depicted in the problem’s schematic
diagram Fig. 1. The incompressible, two-dimensional (2D) Navier–Stokes equations
govern the flow. In Cartesian coordinate (x, y), the stream-function vorticity (� - ϑ)
formulation of the 2D, incompressible Navier–Stokes equation in non-dimensional
form is as follows:

∂2ϑ

∂x2
+ ∂2ϑ

∂y2
= Re

(
∂ϑ

∂t
+ u

∂ϑ

∂x
+ v

∂ϑ

∂y

)
(1)

∂2
�

∂y2
+ ∂2

�

∂x2
= −ϑ (2)

where vorticity and stream-function are represented by ϑ and �, respectively.
v = component of velocity in the y-direction, u = component of velocity in the

x-direction
In terms of stream function ( �), the velocity component u, v may be represented

as follows:

v = −∂�

∂x
, u = ∂�

∂y
(3)

so vorticity,

Fig. 1 Schematic Diagram of flow across two flat inclined plates
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ϑ = ∂v

∂x
− ∂u

∂y
(4)

Although the physical domain is infinite, we consider a finite domain for computa-
tional purposes, where downstream boundaries, as well as the boundaries at top and
bottom of the domain, are maintained far enough away from the plates so that the
near wake instability should not be influenced by these boundaries of the computa-
tional domain. At the top and bottom boundaries, we use slip boundary conditions,
and at the downstream border, we use convective boundary conditions [9, 18, 18].
On the surface of the flat inclined plate, the no-slip boundary condition is utilized.
The linear shear flow is considered at the inlet boundary, i.e.,

u = Uc + Py, v = 0 (5)

where, Uc = Inflow velocity at the center-line, P = Shear rate

2.1 Numerical Discretization

Higher order compact (HOC) finite difference technique on uniform Cartesian grid
[9, 18, 25] is used to discretize the governing equations. HOC scheme has already
shown the ability to reproduce complex flow phenomena very efficiently and very
accurately [9, 18, 26, 28, 29]. The governing equations (1) are discretized using
HOC scheme at the (i, j)th node as follows:

[Re + Pi jδx
2 + Qi jδy

2 + Ri jδx + Si jδy + Ti jδxδy +
Ui jδxδy

2 + Vi jδx
2δy + Wi jδx

2δy
2]ϑn+1

i j

= [Re + Pi jδx
2 + Qi jδy

2 + Ri jδx + Si jδy + Ti jδxδy +
Ui jδxδy

2 + Vi jδx
2δy + Wi jδx

2δy
2]ϑn

i j (6)

Likewise, (2) has the following HOC discretization:

[δ2x + δ2y − (K1 + L1)δ2xδ
2
y]�i, j = [−1 + K1δ2x + L1δ2y]ϑi, j (7)

where,
Pi, j = −M2Re − 0.5�t X1i, j
Qi, j = −N2Re − 0.5�t X2i, j
Ri, j = −M1Re − H12ui, j (Re)2 − 0.5�t X3i, j
Si, j = −N1Re − K12vi, j (Re)2 − 0.5�t X4i, j
Ti, j = −0.5�t X5i, j
Ui, j = −0.5�t X6i, j
Vi, j = −0.5�t X7i, j
Wi, j = −0.5�t X8i, j
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and,
X1i, j = 1 + M1Reui, j + M2(Re)2u2i, j + 2M2Re(ux )i, j

X2i, j = 1 + N1Revi, j + N2(Re)2v2
i, j + 2N2Re(vy)i, j

X3i, j = −Reui, j + M1Re(ux )i, j + N1Re(uy)i, j + M2Re2ui, j (ux )i, j
+M2Re(uxx )i, j + N2Re(uyy)i, j + N2Re2vi, j (uy)i, j
X4i, j = −Revi, j + M1Re(vx )i, j + N1Re(vy)i, j + M2Re2ui, j (vx )i, j
+M2Re(vxx )i, j + N2Re(vyy)i, j + N2Re2v(vy)i, j
X5i, j = M1Revi, j + N1Reui, j + M2Re2ui, jvi, j +2M2Re(vx )i, j + 2N2Re(uy)i, j +
N2Re2ui, jvi, j
X6i, j = −M1 − M2Reui, j + N2Reui, j
X7i, j = − N1 + M2Revi, j − N2Revi, j
X8i, j = − M2 − N2
K1 = − h2/12, L1 = −H 2/12,
M1 = N1 = Reui, j h2/6,
M2 = N2 = −h2/12,

Where, The grid spacings in space variables and time variables are h and k,
respectively. δx and δy are the first order central difference operators and δ2x and δ2y
are the seconder central difference operators in x and y direction, respectively. More
information on the HOC discretization may be found in [9, 25].

3 Results and Discussion

3.1 Grid and Time Independence Test

Uniform grids are used to discretize the computing domain. For three distinct grid
sizes (400 × 137), (800 × 275) and (1600 × 550), a grid independence test was
performed with a constant time increment of 0.01, and the results are presented in
Table1 for a representative point (0.8,−0.5). Table1 indicates that a grid size of
(800 × 275) is sufficient to generate acceptable results. For the grid sizes (800 ×
275) and (1600 × 550), the relative error is only 0.394%. Table2 presents the time
independence test at a representative location (0.80, −0.50) behind the two inclined
plates for 3 time increments 0.002, 0.006, and 0.01 values, on a grid of size (800 ×
275). One can easily see that the variable’s values are not changingmuch. So, the grid
(800 × 275) with a time increment of 0.01 is adequate to depict the flow phenomena
properly, based on the previous findings. We used a grid of size (800 × 275) and �t
= 0.01 in our computations.
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Table 1 Velocities, Stream function, vorticity readings at (0.80,−0.5) behind the two inclined
plates with �t = 0.01 at P = 0.1, Re = 100 at various grid sizes

t (L × B) u v � ϑ Max.
relative
error (%)

12.0 (400 × 137) −0.20132 0.03171 −051582 −1.83485 8.433%

(800 × 275) −0.27180 0.08238 −0.61532 −2.00384 0.394%

(1600 ×
550)

−0.27150 0.08218 −0.61588 −2.01175 −

Table 2 The influence of time increment on the outputs for Re = 100, P = 0.1, t = 5.0 at point
(0.80,−0.5)

�t u v � ϑ

0.002 −0.41745 0.05158 −0.56567 0.13175

0.006 −0.41723 0.05234 −0.56602 0.12851

0.01 −0.41710 0.05268 −0.56622 0.13413

3.2 Numerical Study

The influence of shear rate (P) on the vortex shedding phenomena of flow across
two flat inclined plates is investigated here for Reynolds numbers Re = 100, 200 and
shear parameters P = 0.0, 0.1. Figure2a and b plot the streamline pattern for P =
0.0 and P = 0.1 respectively at Reynold number (Re)= 100 for fully developed flow.
The uniform flow is represented by P = 0.0. Fluid particles have distinct relative
velocities on both the upper and lower surface of the Plates for positive P values.

Fig. 2 Streamline flow at Re = 100, a P = 0.0, b P = 0.1
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Fig. 3 Contours of vorticity for Re = 100: a P = 0.0, b P = 0.1

This causes an asymmetric shear gradient at the plate’s surface in the boundary layer.
Asymmetrical vortices are created from the plate surface because the initial vortex
is always generated from the surface with the greater relative velocity. The strengths
of these asymmetrical vortices vary, resulting in uneven transverse and longitudinal
vortex spacing. As a result, shear flows passing between two inclined plates display
more intricate vortex shedding than uniform flows. For P = 0.0, the flow behind
the two plates ultimately becomes fully steady, while for P = 0.1, the flow becomes
unsteady from the start. The wake is symmetric along the centerline when P = 0.0
and does not change with time. Figure3a and b show the shear influence on vortex
sheddingmore clearly for Re = 100. It is clear fromFig. 3a that flowhas stabilised for
P = 0.0. Because of the asymmetry in the entering freestream, the vortex shedding
phenomena behind the two plates is different when P = 0.1 than when P = 0.0.
The Kármán vortex street is maintained by the periodic vortex shedding occurrence,
although the positive and negative vortices are varied in size and intensity for P =
0.1. The vortices that emerge from the lower side of the top plate are larger than
those that emerge from the top side of the lower plate.

The flow phenomena are next investigated for Re = 200 with P = 0.0 and 0.1.
The streamlines contours for P = 0.0 and 0.1 are plotted in Figs. 4a and b, respec-
tively. The streamline pattern for the uniform flow (P = 0.0) is different from the
preceding (Re = 100). The flow behind the two plates does not become stable at
Re = 200 for uniform flow. As demonstrated in Fig. 4a, the flow pattern behind the
plates is symmetric. Because of the shear impact, the streamlines pattern differs
from P = 0.0 to P = 0.1 (Fig. 4b). Figure5a and b shows the vorticity contours for
P = 0.0 and P = 0.1 for Re = 200. Our findings in Fig. 4a and b are confirmed
in these graphs. For Re = 200, the vortex shedding phenomenon is observed to be
different for Re = 100 and P = 0.0. Here, The flow-pattern is symmetric and peri-
odic behind the two plates. The periodic vortex shedding phenomena still exists for
P = 0.1, but the positive and negative vortices are distinct in size, shape, and inten-
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Fig. 4 Streamline flow at Re = 200, a P = 0.0, b P = 0.1

Fig. 5 Contours of vorticity for Re = 200: a P = 0.0, b P = 0.1

sity. The vortices on the bottom side of the Plate-1 are larger than the vortices on the
top side of the Plate-2 (P = 0.1). The frequency of vortex shedding is significantly
greater for Re = 200 and P = 0.1, but the vortex size and intensity are lower than
for Re = 100 and P = 0.1.

We plot the axial velocity profiles of v versus x at y = 0 in Fig. 6a and u over y
at x = 0 in Fig. 6b for Re = 100 after the flow has fully developed into its periodic
condition. These figures show that there is no fluctuation in v velocity for P = 0.0
as the flow accelerates equally from both surface of the two inclined plates and v

velocity decrease along the x-axis for P = 0.1. whereas the amount of v variation is
greater in the nearbywake region for P = 0.1. Figure6a shows that as P rises, u rises
in the upper part of the plates while falling in the lower part. Centeral-line velocity
fluctuation also plotted for different values of P at Re = 200 as shown in Fig. 7a
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Fig. 6 Centerline velocity variation at Re = 100 and various P values: a u along the y-axis, b v
along the x-axis, c (u-v) phase diagram

and b. We can observe that the u velocity profile behaves similarly to the previous
Re = 100 value, but v-velocity varies with the increased height of oscillations along
the x-axis only in the nearwake.When theflowhas reached a stable periodic condition
phase diagram (Figs. 6c, 7c) are also drawn between u versus v at a measuring point
(0.80,−0.5) behind the both flat inclined plates for Re = 100, 200 at various values
of P . A periodic solution is depicted from these graphs.
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Fig. 7 Centerline velocity variation at Re = 200 and various P values: a u along the y-axis, b v
along the x-axis, c (u-v) phase diagram

4 Conclusion

The HOC finite difference simulation of incompressible, linear shear flow across two
flat inclined plates at Re = 100, 200 and various P values is presented in this paper.
The current simulation yields some new and useful details on flow near the two flat
inclined plates at various shear parameter values (P = 0.0, P = 0.1). The devel-
opment of the wake behind inclined plates and the vortex shedding phenomena are
substantially influenced by shear rate and Reynolds number, according to our find-
ings. For all parameter values examined here, the flow that is completely developed is
investigated in terms of streamline flow, vorticity contours, centerline velocity fluc-
tuation, and phase diagrams. For different Reynolds numbers, certain intriguing flow
phenomena have been observed. At Re = 200, the vorticity contours are symmetric
about y = 0 for uniform flow (P = 0.0), whereas at Re = 100, the flow becomes
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almost steady-state for uniform flow (P = 0.0). The variations in the size and inten-
sity of the alternatively shedding vortices become much more noticeable with shear
flow. The frequency of vortex shedding is significantly greater for Re = 200 and
P = 0.1, but the vortex size and intensity are lower than for Re = 100 and P = 0.1.
Although the positive vortices have a narrow form and Over the positive vortices, the
negative vortices are rounded for both Re = 100 and Re = 200 at P = 0.1. We can
observe that for Re = 200, u-velocity behaves similarly to the preceding Re. But,
On the other hand, the v-velocity profile has a periodic characteristic. For both P
values, the amplitudes are bigger than those of Re = 100.
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On Transport Phenomena of Solute
Through a Channel with an Inclined
Magnetic Field

Susmita Das and Kajal Kumar Mondal

Abstract Under the effect of an angled magnetic field and the constant gradi-
ent of pressure, the present study investigates the solute dispersion in a Magneto-
Hydrodynamics (MHD)flowbetween two infinite parallel plates,with the upper plate
moving at a constant speed while the lower plate remains stationary. The unsteady
advection-diffusion equation is solved byAris’smomentsmethodwith aid of a finite-
difference scheme. It is shown that with the enhancement of absorption parameter,
inclination angle ofmagnetic field andHartmann number, the dispersion of the solute
decreases. It is observed that after a certain critical time, the coefficient of dispersion
asymptotically comes to a stationary circumstance for all cases. The present result
may be applied for separation of matter from the fluids. The reaction parameter (β),
inclination of an angle of the magnetic field (α), the Hartmann number (M), and the
dispersion time (t) all have a significant impact on the solute’s mean concentration
profiles.

Keywords Inclined magnetic field · Dispersion · Method of moments · Channel ·
Absorption · Dispersion · Distribution of mean Concentration

1 Introduction

The study of the behavior of electrically conducting fluids and their magnetic proper-
ties is known as magneto-hydrodynamics. Due to its several applications in a variety
of fields, including MHD power generation, oil reservoir engineering, separation of
matter from fluids, aerodynamics, astrophysics and environmental mechanics, the
study of dispersion phenomena in MHD fluids flows is highly important. Taylor [1]
first studied the basic mechanism of dispersion of tracers in a laminar Poiseuille
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flow through a pipe. Aris [2] developed Taylor’s work by removing some restrictions
using his method of moments.

Gupta and Chatterjee [3] explained the solute transport in a MHD flow which
is flowing through a channel with the aid of a transverse magnetic field analyti-
cally. They revealed that the coefficient of dispersion reduces as the magnetic field
enhances. Annapurna and Gupta [4] extended the work and showed that the fluc-
tuations in the dispersion coefficient reduces with enhancement of the Hartmann
number. Many researchers [5–9] explores this area successfully.

Mazumder and Das [10] investigated that the first order boundary absorption on
the dispersion process when the fluid is moving through a tube. They showed that the
coefficient of dispersion reaches to its stationary circumstance after a certain critical
time. Using a semi analytical approach, Sebastian and Nagarani [11] analyzed the
dispersion of the contaminant through an annulus with an reaction parameter at the
outer wall.

The dispersion of solute has been studied by many researchers over the last two
decades in different flow geometry. But till now, no work has been discussed to study
the mass transport phenomena of solute through a channel with absorption boundary
consisting of an inclinedmagnetic field. The primary objective of the present research
work is to present the effects of Hartmann number, the angle of inclination of the
magnetic field and absorption parameter on the dispersion process of tracers through
a channel of electrically conducting fluid. The inclined magnetic field is a magnetic
field with nonzero inclination and it is the angle between the direction of the vector−→
B with the perpendicular to the flow direction. Since, it significantly effects the
velocity profile and consequently, on the dispersion process of the solute, the recent
study is highly important for investigation of the basic mechanism of the tracers in
a MHD flow. The time-dependent advection-diffusion equation with recommended
initial and boundary conditions is solved usingAris’ method ofmoments followed by
a finite difference implicit scheme. The coefficient of dispersion and the distribution
of the mean concentration of the contaminant are presented for all time period.

2 Formulation of the Problem

Consider a steady, laminar, fully developed, incompressible, viscous, two dimen-
sional electrically conducting fluid, flowing through a infinite parallel plates caused
by a constant gradient of pressure along the x∗-direction and y∗-axis is taken per-
pendicular to the direction of the channel flow. The stationary lower plate is situated
at y∗ = −h. The upper plate is at y∗ = h and it moves at a constant speed U (Fig. 1).
A magnetic field

−→
B is applied at an angle α with the vertical y∗-direction. The

interaction between magnetic and velocity fields give rise to an electric field
−→
E

and it satisfies the relation
−→
E = −→

V × −→
B . In this research, the flow is considered

along the x∗-direction only and consequently, the velocity and magnetic flux profiles
are given by

−→
V = (u, 0, 0) and

−→
B = (0, B sin α, 0). It is also assumed no electric
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Fig. 1 MHD flow through a infinite parallel plates in presence of an inclined magnetic field

field is applied in the above mentioned flow. In this flow situation, the dimensional−→x -momentum equation is

0 = − 1

ρ

∂p∗

∂x∗ + μ

ρ

(
∂2u∗

∂x∗2

)
+ σ B2 sin2 α

ρ
u∗ (1)

and consequently, the dimensionless form of the Eq. (1) can be expressed as

d2u

dy2
− M2 sin2 αu = −P (2)

where P(= − dp
dx ) is the pressure gradient which is constant, in the longitudinal x-

direction, α is an inclination of angle of the magnetic field and M = Bh
√

( σ
ρν

) is the

Hartmann number which is directly proportional to the the Magnetic field B. Also,
M represents the relative significance between the magnetic force and the viscous
force. Solving (1) with respect to the non-dimensional boundary conditions u = 0
at y = −1 and u = 1 at y = 1, the dimensionless velocity distribution is given by

u(y) = 1

sinh(2M sin α)

[
sinh(M sin(y + 1)) − P

M2 sin2 α
sin h(M sin α)

× cosh(M sin α)y

]
+ P

M2 sin2 α
(3)

Figure2a and b represent the velocity distribution for different values ofHartmann
number (M) and inclination of an angle (α) of the magnetic field respectively. From
the figures, it is seen that velocity significantly decreases with the increment of M
and α. This is because, the applied magnetic field produces a Lorentz force which
acts against the flow. In a similar manner, the inclination of an angle of the magnetic
field resists the flow.
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Fig. 2 Velocity distribution for various values of a M when α = 30◦, b α when M = 1

When a passive solute with an invariable molecular diffusivity D is introduced in
the above mentioned flow in existence of a first-order reaction at the inner and outer
walls of the channel, the mean concentration C(x, y, t) of the tracers satisfies the
following dimensionless advection-diffusion equation,

∂C

∂t
+ Scu(y)

∂C

∂x
= ∂2C

∂x2
+ ∂2C

∂y2
, (4)

Here, the dimensionless parameters are t = Dt∗
h2 , x = x∗

h , y = y∗
h , u = u∗h

ν
where

ν = μ

ρ
and Sc = ν

D is the Schmidt number expressed as the ratio of momentum
diffusivity (kinematic viscosity) and mass diffusivity. The Schmidt number is used
to characterize the fluid flow inwhichmomentum andmass diffusion processes occur
simultaneously. The corresponding initial and boundary conditions are considered
as,

C(x, y, 0) = δ(y) (5a)[
∂C

∂y
+ βC

]
y=1

= 0 at y = 1 (5b)

[
∂C

∂y
− βC

]
y=−1

= 0 at y = −1 (5c)

Also, it is assumed that at all points, the value of C is finite,

1

2

∫ 1

−1

∫ ∞

−∞
C(x, y, 0)dxdy = 1 (6)

where β = (β∗h) defines the first-order reaction rate or reaction parameter corre-
sponding to the catalytic reaction at both walls. If β = 0 then one can suggest the
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dispersion process of solute is chemically inert or neutrally buoyant. From Aris’s
moment method, the kth integral moment of the mean concentration distribution is
as follows,

Ck(y, t) =
∫ ∞

−∞
xkC(x, y, t)dx (7)

The concentration of the solute is distributed along the channel’s cross section as
follows,

Mk(t) = Ck =
∫ 1
−1 Ck(y, t)dy

2
(8)

Using (7), the diffusion Eq. (4) with initial and boundary conditions become

∂Ck

∂t
− ∂2Ck

∂y2
= ku(y)ScCk−1 + k(k − 1)Ck−2 (9)

with
Ck(y, 0) = δ(y) (10)

where
Ck(y, 0) = 1 for k = 0 (11)

Ck(y, 0) = 0 for k > 0 (12)

[
∂Ck

∂y
+ βCk

]
y=1

= 0 (13a)

[
∂Ck

∂y
− βCk

]
y=−1

= 0 (13b)

and

dMk

dt
= kScu(y)Ck−1 + k(k − 1)ck−2 − 1

2
β[Ck(−1, t) + Ck(+1, t)] (14)

Where
Mk(0) = 1 f or k = 0 (15)

Mk(0) = 0 f or k > 0 (16)

The cross-sectional mean concentration of the tracers is indicated by the over-bar.
For a concentration distribution, the kth integral moment about the mean is given by



318 S. Das and K. K. Mondal

νk(t) = 1

2M0

∫ 1

−1

∫ ∞

−∞
(x − xg)Cdxdy (17)

where

xg = 1

2M0

∫ 1

−1

∫ ∞

−∞
xCdxdy = M1

M0
(18)

xg represents the first moment or the centroid of the solute which defines the initial
location of the slug’s centre of gravity with mean fluid velocity and M0 is the total
mass of the contaminant. The variance, skewness, and kurtosis of a contaminant’s
distribution are designated as ν2, ν3 and ν4 respectively. The non-zero values of
skewness suggest the deviation from theGaussianity of the concentration distribution
and when the kurtosis is greater than 3, the peak of the mean concentration of the
contaminant becomes sharper.

3 Numerical Procedure

when k � 1 and β �= 0, a finite difference implicit scheme is used for solving the
Eq. (9), with above initial (10) and boundary [(13a)–(13b)] conditions, due to the
analytical complexity. Here, the mesh point (p, q) indicates a point where tp = (p −
1) × Δt and yq = −1 + (q − 1) × Δy. The increments along the time t direction
and the space y directions are represented by Δt = tp+1 − tp and Δy = yp+1 −
yp respectively. Using forward difference for ∂Ck

∂t and three-point averaged central

difference for ∂2Ck
∂y2 , the resulting system of linear algebraic equation is given by,

EqΩk(p + 1, q + 1) + FqΩk(p + 1, q) + GqΩk(p + 1, q − 1) = Hq (19)

where Eq , Fq ,Gq and Hq are the matrix elements. The finite difference schemes for
the initial and boundary conditions are

Ck(1, q) =
{
1 for k = 0,

0 for k � 1
(20)

and for k � 0

Ck(p + 1, 0) = Ck(p + 1, 2) − 2βΔyCk(p + 1, 1) at y = −1
(21a)

Ck(p + 1, M + 1) = Ck(p + 1, M − 1) − 2βΔyCk(p + 1, M) at y = 1
(21b)

In this work, M(=31) is the value of the index q at the outer wall of the channel. The
index p which represents the dispersion time is lies between 1 and N where Nmax
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is taken as 12000. The Thomas algorithm [12] is employed to solve the resultant tri-
diagonal coefficient matrix. Simpson’s one-third rule is used to compute the values
of Mk using the known values of u(y) and Ck .

Since the diffusion of the contaminant along the longitudinal direction is negli-
gibly small in compare to that of in the lateral direction, the effective longitudinal
dispersion coefficient is taken as [13]

Da = 1

2P2
e

dν2

dt
(22)

Also, the coefficients of skewness and kurtosis of the tracer distribution are rep-
resented as,

β2 = ν3

ν2
3
2

(23a)

β3 = ν4

ν2
2

− 3 (23b)

To find the distribution of the mean concentration Cm(x, t) along the longitudinal
direction, the Hermite polynomial expression [14] and the central moments ν2, β2,
β3 are used. The Hermite polynomial expression for the distribution of the mean
concentration is of the form,

Cm(t, x) = M0(t)e
−X2

∞∑
r=0

ar (t)Hr (x) (24)

where X = x−xg√
2ν2

, xg = M1
M0

and the Hermite polynomials Hr (x) that satisfy the recur-
rence relation [14]

Hr+1(x) = 2xHr (x) − 2r Hr−1(x), r = 1, 2, 3, . . . (25)

with H0(x) = 1. The coefficients ar are found [14] from Eq. (24),

a0 = 1√
2πν2

, a1 = a2 = 0, a3 =
√
2a0β2

24
, a4 = a0β3

96
.

4 Results and Discussions

In this section, the different flow characteristic such as dispersion coefficient and
mean concentration distribution of the solute are studied with respect to the vari-
ous flow parameters namely, Hartmann number (M), absorption parameter (β) and
inclination of an angle (α) of the magnetic field. Figure3a, b and c represent the
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Fig. 3 Coefficient of Dispersion Da for Sc = 1000 and different values of a M when: β = 3 and
α = 30◦. b β when: α = 30◦ and M = 3. c α when: β = 3 and M = 2

Fig. 4 Distribution ofMean concentrationCm(t, x) for Sc = 1000 at time t= 1.1 for various values
of a M when α = 45◦ and β = 2 b α when M = 3 and β = 2 c β when α = 45◦ and M = 3

variations of the dispersion coefficient for different values of M , β and α against the
dispersion time t , where the other flow parameter are described in the caption of the
figure. Figure3a shows that the coefficient of dispersion Da of the solute reduces if
the Hartmann number enhances. The cause behind this, as M increases, the resisting
Lorentz force enhances and consequently, there is a drop in Da . The reduction in the
coefficient of dispersion is also observed with the enhancement of both β and α [see
Fig. 3b and c]. It is seen that for all cases the Da reaches to a stationary circumstance
after certain dispersion time. It is also observed from the Fig. 3b that in absence of
reaction parameter at the walls, the Da reaches to its steady state after a longer instant
of time in compare to that of the dispersion coefficient when β is present.

Figure4a exhibits the variation of the distribution of mean concentrationCm(t, x)
at a particular time (t = 1.1) against the axial distance x − xg for different M when
α = 45◦, β = 2 and Sc = 1000. It is shown that the enhancement of M leads to
increment of the peak of the distribution of the mean concentration of the tracer
molecules but the axial expansion of the distributions diminishes. The reason behind
this, as M increases the flow velocity as well the dispersion coefficient reduces along
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Fig. 5 Distribution of Mean concentrationCm(t, x) for Sc = 1000, β = 1 and α = 30◦ for various
M at time a t = 0.08 b t = 0.4 c t = 1.2

the axial direction and hence there is an increment in the amplitude of the mean
concentration. The similar behavior is observed for the variation of α in the mean
concentration distribution [see Fig. 4b]. Figure4c illustrates the mean concentration
distribution for various values of β where the other parameters are α = 45◦, M = 3
and Sc = 1000. An opposite phenomena is found in the distribution of the mean
concentration of the traces in compared to that of the Fig. 4a and b, as β increases.
As β increases, the tracer molecules are attracted by the reaction parameter and it is
depleted along the walls. Thus, the distribution of the concentration mean becomes
flatter.

Figure5a–c represent the mean concentration distribution Cm(t, x) for different
values of Hartmann number with the dispersion times t = 0.08, 0.4, 1.2 respectively,
where the fixed parameter are α = 30◦, β = 1 and Sc = 1000. It is observed for all
cases that, as the Hartmann number enhances, the amplitude of the mean concentra-
tion profiles enhances. But, the strength of the concentration of the solute decreases
prominently as time proceeds. It is significantly note that the mean concentration
distribution of the tracers shows asymmetry when the dispersion time is small (see
Fig. 5a) and it tends to become symmetric when t is large (see Fig. 5c).

5 Conclusions

The present investigation addresses an analysis on the solute dispersion through an
incompressible magneto-hydrodynamics flow governed by an unsteady advection-
diffusion equations, by employing Aris’s method of moments with aid of a finite
difference implicit method. The effects of Hartmann number M , angle of inclination
of magnetic field α and reaction parameter β on the coefficient of dispersion and
profiles of the solute’s mean concentration are investigated. It is shows that the
coefficient of Dispersion Da reduces with the enhancement of β, M and α. When the
absorption parameter β enhances at the both boundary, an enhances the number of
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molecules of the solute undergoes in the absorption and hence there is a reduction in
Da . Again, when M and α increases, the resisting Lorentz force enhances and thus
Da decreases. It is seen that the peak of the mean concentration profiles increase with
the increment of both M and α. This is because, with the increment of M and α, the
flow velocity reduces and consequently, the mixing of the molecules with the flow
decreases. Thus, the amplitude of distribution of the mean concentration enhances.
But, the opposite phenomena is observed for the reaction parameter β. The reason
behind this, the total amount of the tracers reduces in the channel flow due to the
absorption effect of β at the walls. It is remarkable to note that as time proceeds
the strength of distribution of the mean concentration decreases significantly, as the
rate of the mixing of the solute material is large in compare to that of in smaller
times. It is seen that the profiles of distribution of the mean concentration contain an
asymmetric behavior for small dispersion time and it becomes symmetric when the
dispersion time reaches in a Taylor regime.
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Unsteady MHD Hybrid Nanoparticle
(Au-Al2O3/Blood) Mediated Blood Flow
Through a Vertical Irregular Stenosed
Artery: Drug Delivery Applications

Rishu Gandhi and Bhupendra K. Sharma

Abstract The current study investigates the influence of hybrid nanoparticles (Au
& Al2O3) on blood flow through a vertical artery with irregular stenosis with two-
dimensional pulsatile blood flow, an inclined external magnetic field, viscous dis-
sipation, and Joule heating. The blood flow is assumed to be unsteady, laminar,
viscous, and incompressible, and the artery walls are considered permeable. The
Reynolds temperature-dependent viscosity model is used to determine the variable
viscosity effects. The governing momentum and energy equations are solved using
Crank–Nicolson finite difference method by employing an appropriate coordinate
transformation to build an accurate mesh using rectangular mesh units. Outcomes of
the work are represented graphically for non-dimensional velocity, wall shear stress,
flow rate, and non-dimensional temperature, respectively. The recent findings could
be useful to biological researchers looking into the therapy of different cardiovascular
disorders.

Keywords Irregular-shaped stenosis · Heat transfer · Joule heating ·
Temperature-dependent viscosity · Hybrid nanoparticles

1 Introduction

Cardiovascular diseases (CVDs) have become a significant global public health issue,
with the highest morbidity and mortality rates among all conditions. A growing body
of evidence in the scientific literature indicates vascular fluid dynamics plays a vital
role in the onset and progression of arterial disorders. Stenosis is a term used to
describe narrowing an artery segment’s lumen. This is caused by the deposition
of numerous chemicals on the endothelium of the artery wall, such as cholesterol.
Many researchers have studied blood circulation dynamics via stenosed arteries, both
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theoretically and experimentally. Ponalagusamy et al. [12] investigated blood flow
through an artery with tapered stenosis considering an unsteady two-fluid model
of blood. Basri et al. [2] employed Fluid-Structure Interaction to perform a tran-
sient study of three pulse cycles to examine hemodynamic parameters in normal and
single stenosed renal arteries. Chandgar et al. [4] considered an inclined multiple
stenosed artery and analyzed drug transport utilizing spherical gold nanoparticles by
employing a single-phase model as well as a discrete-phase model. Mensah et al.
[10] highlighted the 15 most prevalent causes of death from cardiovascular disor-
ders and the 13 risk factors associated with them. Ponalagusamy [11] depicted a
four-layered mathematical model of blood flow through a mildly stenosed artery. To
determine how varying core viscosity influences blood flow control, they compared
the outcomes for variable core viscosity with constant core viscosity. By considering
blood as a biomagnetic fluid, Sharma et al. [15] explored Soret and Dufour’s effects
in an artery with tapering effects. Chen et al. [5] examined the influence of coexisting
cardiovascular disease on the severity of COVID-19 and discovered that COVID-19
could have a significant effect on heart function and lead to myocardial damage.
Majee et al. [9] conducted a comprehensive study on targeted drug delivery with
magnetic nanoparticles with the goal of better understanding the blood flow in an
atherosclerotic artery. Shahzadi et al. [13] addressed the importance of permeability
in hybrid nanofluid blood flow through a bifurcated stenosed artery. She discov-
ered that permeability effects are more efficient at reducing hemodynamic effects in
atherosclerotic arteries with bifurcation effects. Tripathi et al. [17] investigated the
impact of heat and mass transmission through a stenosed artery considering the vari-
able magnetic field and varying viscosity. Kumawat et al. [8] investigated two-phase
blood flow in a curved artery with time-variant stenosis, taking into account variable
viscosity in the core and plasma region, respectively. Sharma et al. [14] investigated
heat transmission and entropy generation in a multi-stenosed artery with tapering
effects, viscous dissipation, radiation, and Joule heating using hybrid nanoparticles
(gold and alumina).

Nanotechnology’s application in biomedicine is a rapidly growing field with
promising prospects for improving human illness diagnosis and therapy. The capacity
to incorporate medications into a functionalized nanoparticle marks a new beginning
inwhich drugs can be delivered to tissues or cells selectively. Consistent drug delivery
to a target produces a more substantial therapeutic effect with lower drug levels than
conventional dosing approaches. This research work is also motivated by the benefits
of the nanoparticle drug delivery system. Having surveyed the literature, it is visu-
alized that the inclined external magnetic field effects on hybrid nanoparticles (Au
& Al2O3) via a vertical artery with irregular stenosis having permeable walls is not
investigated yet. Most studies have overlooked the effects of Joule heating, viscous
dissipation, and variable viscosity in blood flow problems. In this work, the Reynolds
model for temperature-dependent viscosity is employed. The form of the stenosis
or the fatty buildup of particles on the artery wall cannot be precisely described
so, we’ve considered an irregular geometry of stenosis. The study’s objective is to
explore inclined magnetic field effects through an irregular stenosed artery consider-
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Fig. 1 The geometrical
representation of an artery
with irregular stenosis

ing permeable wall conditions in the presence of Joule heating, viscous dissipation,
and variable viscosity.

2 Mathematical Modeling

The cylindrical coordinate system (r∗
1 , θ̃, z

∗
1) is considered to analyze the blood flow

behavior through a vertical artery with irregular stenosis by assuming blood as a
Newtonian fluid. The flow is in the radial (i.e., r∗

1 -axis) and axial (z
∗
1-axis) directions

respectively. The mild stenotic assumption reduces the bi-directional flow to uni-
directional flow. The impact of an inclined external magnetic field, Joule heating,
pulsatile blood flow, and viscous dissipation is the subject of this study. The induced
magnetic field is considered meager compared to the applied magnetic field. Figure1
represents the geometry of the artery with suspended nanoparticles.

The geometry of the stenosis (irregular-shaped) [18] is assumed as

R(z∗1) =
⎧
⎨

⎩

R0 − 2δ

[

cos

(
2π
L0

(
z∗1−d
2 − L0

4

))

− 7
100 cos

(
32π
L0

(

z∗1 − d − L0
2

))]

d ≤ z∗1 ≤ d + L0,

R0 otherwise.
(1)

where R(z∗
1) represents the radius of the artery’s stenosed portion, d indicates the

stenosis location, R0 represents the radius of the artery in the non-stenotic area, δ
represents the critical stenosis height, and L0 represents the length of the stenosis.



328 R. Gandhi and B. K. Sharma

2.1 Governing Equations

The velocity and temperature fields for the present study are defined as follows in
the case of unsteady and axisymmetric hybrid nanoparticle-doped blood flow:

Ṽ ∗ = Ṽ ∗[u∗
1(r

∗
1 , z

∗
1, t

∗
1 ), 0, w

∗
1(r

∗
1 , z

∗
1, t

∗
1 )] , T̃ ∗ = T̃ ∗(r∗

1 , z
∗
1, t

∗
1 )

where u∗
1 represents the radial component and w∗

1 represents the axial component
respectively.

The governing equations of the flow are represented as:

∂u∗
1

∂r∗
1

+ u∗
1

r∗
1

+ ∂w∗
1

∂z∗
1

= 0 (2)

ρhn f

[
∂u∗

1

∂t∗1
+ u∗

1
∂u∗

1

∂r∗
1

+ w∗
1
∂u∗

1

∂z∗
1

]

= −∂ p∗
1

∂r∗
1

+ 1

r∗
1

∂

∂r∗
1

[

μhn f (T̃
∗)

∂u∗
1

∂r∗
1

]

+ ∂

∂z∗
1

[

μhn f (T̃
∗)

(
∂u∗

1

∂z∗
1

+ ∂w∗
1

∂r∗
1
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− 2μhn f (T̃
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1
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− σhn f B
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(6)

The boundary conditions for the flow are:
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Fig. 2 a Thermophysical parameters of hybrid nanofluid [6], bThermophysical properties of blood
and nanoparticles

∂w∗
1

∂r∗
1

= 0,
∂T̃ ∗

∂r∗
1

= 0 at r∗
1 = 0; (7)

w = ws,
∂w∗

1

∂r∗
1

= α
√
k∗
1

(ws − wporous), T̃ ∗ = T̃ ∗
w at r∗

1 = R, (8)

wherewporous is the velocity in the permeable boundary,ws is the slip velocity, Da is
theDarcy number,α (called the slip parameter) is a dimensionless quantity depending
on thematerial parameters which characterize the structure of the permeablematerial
within the boundary region.

The initial conditions are assumed as:

w∗
1 = 0, T̃ ∗ = 0 at t∗1 = 0 (9)

Figure2a depicts the thermophysical parameters of hybrid nanofluid whereas
Fig. 2b shows the thermophyiscal properties of blood and nanoparticles.

Blood flows through the cardiovascular system due to the heart’s pumpingmotion,
causing a pressure gradient across the vascular network. The pressure gradient is
separated into two parts: non-fluctuating (continuous) and fluctuating (pulsatile) [3]:
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− ∂ p∗
1

∂z∗
1

= A0 + A1cos(wpt
∗
1 ), t

∗
1 > 0 (10)

wherewp = 2π f p, f p denotes the heart pulse frequency, A0 signifies the amplitudes
of the steady-state component, and A1 represents the pulsatile components of the
pressure gradient, respectively.

The preceding governing equations (2)–(5) are non-dimensionalized to achieve a
numerical solution by introducing the following transformation variables:
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After inserting the non-dimensionalized variables, the normalized form of the pres-
sure gradient is:

− ∂ p∗
1

∂z∗
1

= B1[1 + ecos(c1t
∗
1 )] (12)

where

e = A1

A0
, B1 = A0R2

0

μ0U0
, c1 = 2πR0 f p

U0
(13)

With the substitution of variables given in (11), ignoring the bars, assuming that
in comparison to the radius of the artery, the maximal height of stenosis is lesser,
i.e., δ(= δ∗/R0) << 1 and the radius of the artery and the length of the stenotic
area have comparable magnitudes, i.e., ε(=R0/L0) = O(1), and further utilizing

the radial coordiante transformation given by

(
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1
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)

, the governing (2)–(5)

become:
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Table 1 The values of emerging parameters
Parameters φ1 φ2 d B1 c1 e δ β0 ws α ξ M Gr Da Re Pr Ec

Value 0.03 0.03 0.56 1.41 1 0.2 0.1 0.5 0.1 0.1 π/4
√
3 0.5 0.1 2 21 0.1
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(15)

Here, Reynolds viscosity model [7] is considered for the temperature-dependent
viscosity, which is as follows:

μ f (θ̃) = μ0e
−β0 θ̃ = μ0[1 − β0θ̃] where β0 << 1 (16)

The associated boundary conditions (7), (8) and the initial conditions (9) becomes:

∂w∗
1

∂x∗
1

∣
∣
∣
∣
x∗
1=0

= 0,
1

R

∂w∗
1

∂x∗
1

∣
∣
∣
∣
x∗
1=1

= α√
Da

(ws − wporous), w
∗
1 |x∗

1=1 = ws ,
∂θ̃

∂x∗
1

∣
∣
∣
∣
x∗
1=0

= 0, θ̃|x∗
1=1 = 1

(17)

w∗
1 |t∗1 =0 = 0, θ̃|t∗1 =0 = 0 (18)

The wall shear stress (WSS) and the flow rate are expressed as:

τw = − 1

R

(
∂w∗

1

∂x∗
1

)

x∗
1=1

(19)

Q1 = 2πR2
∫ 1

0
w∗

1x
∗
1dx

∗
1 (20)

The equations given by (14) and (15) are coupled partial differential equations,
and numerical schemes are often used to solve these equations as finding an exact
solution is a tedious work. The Crank–Nicolson scheme is based on the implicit finite
difference method. The fact that this method is unconditionally stable is one of the
key reasons for its use [16]. Furthermore, the order of convergence is two in time and
space. The step size in the spatial direction is x = 1/N+1, discretizing the spatial
variable in N+1 grid points. The value of t k given as t k = (k − 1)dt , determines the
time instant, and dt signifies a small increment in time. The method being implicit
is stable for any value of dt and dx , we have chosen the values very precisely as
dt = 0.0001 and dx = 0.0001. Also, no further change is noticed in the results with
a decrement in these values. The reduced system of Eqs. (14) and (15) are solved



332 R. Gandhi and B. K. Sharma

using the Tri-diagonal Matrix Algorithm (TDMA) [1] as they form a tri-diagonal
system of equations.

3 Results and Graphical Analysis

The goal of this study is to investigate the hemodynamic features under the effect of
pulsatile bloodflowvia an arterywith irregular stenosis, an inclined externalmagnetic
field, viscous dissipation, and Joule heating incorporating hybrid nanoparticles. The
validation of the work done is depicted by Fig. 3. Streamline contours for different
flow parameters are depicted in Figs. 4 and 5. The results for velocity, wall shear
stress, volumetric flow rate, and temperature are illustrated graphically in Figs. 6, 7,
8 and 9. The computational work has been carried out by using the data illustrated
in the Table1.

3.1 Validation of the Numerical Results

The results obtained are compared with previously published work to authenticate
the results obtained in the present study. Figure3a, b are used for validating velocity
and temperature profiles of the present work with previous study done by Tripathi et
al. [18]. The results are compared for Au-nanoparticles, which is common in both
the research work and the effect of the Darcy number (Da), velocity slip (α), and
Eckert number (Ec) has been ignored. Tripathi et al. [18] used the FTCS scheme
to solve the dimensionless governing equations. Therefore, in this comparison, the
FTCS scheme is employed for [18] work, and the Crank–Nicolson scheme is used
in the current study. These figures show a good agreement between our study for
velocity and temperature with the previous research [18].

The velocity contours depict the actual blood flow patterns as these correctly
illustrate the research efforts. Figures4 and 5 represent these contours for different
influential parameters. The impact ofws is depicted in Fig. 4. The number of trapped
boluses and their size increases with increasing ws values implying that the velocity
profile elevates with an increase in ws . The slip effect amplifies the acceleration in
the axial flow, which is the reason for elevation in velocity profiles with increasing
ws values. The velocity contours for different Re values are illustrated in Fig. 5.
With increasing Re values, the trapped boluses become fewer and eventually vanish,
suggesting a drop in velocity values. The regime becomes viscous-dominated at low
Re values. As a result, a drop in velocity is correlated with a rise in Re values.

The velocity profiles for Darcy number (Da), wall slip velocity (ws), inclination
parameter (ξ), and varying concentrations of Au & Al2O3 nanoparticles (φ1,φ2) are
illustrated in Fig. 6. Figure6a shows the influence of Da on non-dimensional velocity
profiles in the presence and absence of a magnetic field. The medium’s permeability
increases as the value of Da rises, resulting in a declination of the velocity profile.
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Fig. 3 a Comparison of velocity profile for M2 = √
3, b Comparison of temperature profile for Pr

= 21

Fig. 4 Velocity contours for wall slip velocity a ws = 0.03, b ws = 0.05, c ws = 0.1

Fig. 5 Velocity contours for Reynolds number a Re = 2, b Re = 3, c Re = 5

It’s also worth noting that when M2 rises, the velocity profile declines slightly. This
demonstrates that using a magnetic field to reduce blood velocity is advantageous.
The velocity profiles for different values of ws is represented by Fig. 6b. The hydro-
dynamic wall slip effect causes the axial flow to accelerate as the wall slip velocity
increases. The inclusion of slip results in a momentum increases at the application
zone, which improves the velocity profile. The Au-Al2O3/blood hybrid nanofluid
consistently reaches lower magnitudes than the Au/blood nanofluid, showing the
presence of Al2O3 nanoparticles decelerates the blood flow. Figure6c highlights the
influence of ξ on the dimensionless velocity profile. With increasing values of ξ, a
decreasing trend in velocity profiles is observed. This is because as the angle of incli-
nation increases, the influence of themagnetic field on fluid particles increases. Thus,
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Fig. 6 Effect of a Darcy number (Da), b wall slip velocity (ws ), c inclination parameter (ξ), and d
varying concentrations of Au&Al2O3 nanoparticles (φ1,φ2) on velocity at z∗1 = 1.06 and t∗1 = 1.2

Fig. 7 Influence of a stenotic depth (δ), b viscosity parameter (β0), on wall shear stress at t∗1 = 1.2

theLorentz force enhances,which causes a reduction in velocity values. The influence
of varying concentrations of Au&Al2O3 nanoparticles (φ1,φ2) on velocity profile is
shown in Fig. 6d. The value φ1 = 0.01,φ2 = 0.05 shows minimal velocity, whereas
themaximumvelocity is shown forφ1 = 0.05,φ2 = 0.01. This demonstrates that Au
& Al2O3 nanoparticles show opposite effects on velocity. The velocity profiles show
an enhancement with an increase in the concentration of Au-nanoparticles, whereas
a decrement in velocity profile is analyzed with an increase in Al2O3-nanoparticles.
This benefits bringing blood velocity under control and allowing surgeons to make
adjustments as needed.

The profiles corresponding to wall shear stress are demonstrated in Fig. 7 for
stenotic depth (δ) and viscosity parameter (β0). The wall shear stress profiles high-
lighting the impact of δ are represented by Fig. 7a. As shown by the profiles, the
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Fig. 8 Effect of a different concentrations of Au-nanoparticles (φ1), b varying concentrations of
Au & Al2O3 nanoparticles (φ1,φ2) on Flow rate at t∗1 = 1.2

values of wall shear stress show a decrement with increasing δ values. This implies
that there are lower shear stress values with an increment in the stenotic depth.
These lower values are more dangerous, as suggested by Zhang et al. [19] in their
study. Figure7b signifies the wall shear stress profiles for different values of β0. With
an increase in the β0 values corresponding increase in the wall shear stress values
is observed. The increment in wall shear stress denotes that the particles’ internal
resistance has decreased as the magnitude of the viscosity parameter has increased.

The volumetric flow rate is the amount of fluid(blood) that flows in a given amount
of time. Theflow rate profiles for varying concentrations ofAu-nanoparticles (φ1) and
varying concentrations of Au & Al2O3 nanoparticles (φ1,φ2) are depicted in Fig. 8.
Figure8a represents the influence of Au-nanoparticles concentration on volumetric
flow rate. According to the findings, the flow rate profiles demonstrate an increasing
trend with increasing concentration of Au-nanoparticles. The flow rate profiles for
the influence of varying concentrations of Au & Al2O3 nanoparticles is shown in
Fig. 8b. It can be interpreted that there is a declination in flow rate on increasing the
concentration of Al2O3 nanoparticles, whereas it enhances with increment in Au-
nanoparticles. So, it can be concluded from Fig. 8a and b that the Al2O3 nanoparticles
reduce the flow rate.

The non-dimensional temperature profiles for Eckert number (Ec) and Prandtl
number (Pr) are illustrated by Fig. 9. Figure9a depicts the impact of Ec on the non-
dimensional temperature profile. The Ec describes how work against viscous fluid
stress converts kinetic energy into internal energy. The heat energy develops in the
fluid due to this conversion which causes the fluid’s (blood) temperature to rise. As
a result, a rise in Ec denotes a higher temperature distribution. Figure9b portrays the
non-dimensional temperature profiles for different values of Pr. With increasing Pr,
the temperature profiles show a decreasing trend. The Pr is a dimensionless quantity
that correlates viscosity to thermal conductivity in a fluid. As a result, it determines
the link between the motion of a fluid and its heat transfer capacity. The thickness of
the thermal boundary layer reduces, which means the transfer of heat from the artery
decreases with increasing Pr values leading to a declination of arterial temperature.
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Fig. 9 The non-dimensional temperature profiles for a Eckert number (Ec), b Prandtl number (Pr)
at z∗1 = 1.06 and t∗1 = 1.2

4 Conclusions

This study focuses on the influence of hybrid nanoparticles on blood flow through
an artery with mild irregular stenosis. This model aims to improve nanoparticle drug
delivery to a desired location in the human body. The partial differential equations are
solved using an implicit finite difference scheme, i.e., the Crank–Nicolson scheme.
The effects of a wide range of physical parameters have been evaluated on axial
blood velocity, temperature profile, volumetric flow rate, and artery wall shear stress
(WSS). The following are some of the study’s key findings: The streamline contours
illustrate that as ws increases, so does the velocity. The velocity profile diminishes
as Da and ξ are increased. The profiles for wall shear stress show an enhancement
with increasing β0 values, whereas an increase in δ leads to lower profiles. The flow
rate increases as φ1 increases but decreases as φ2 increases. The temperature profiles
increase as the Ec values rise but decrease as the Pr values rise.
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An Analytical Approach to Study the
Environmental Transport of Fine Settling
Particles in a Wetland Flow

Subham Dhar , Nanda Poddar , and Kajal Kumar Mondal

Abstract The present research deals with an analytical solution of convection-
diffusion equation which represents the water phase based superficial concentration
in a vegetated wetland. Gill’s series expansion method is used to obtain the disper-
sion coefficient and mean concentration distribution of the settling particles. For the
limiting case of vegetation factor, tortuosity and settling velocity, the dispersivity is
compared with the earlier research work and an excellent agreement is achieved with
them. Effects of settling velocity, tortuosity and vegetation factor, on the dispersion
coefficient andmean concentration are observed. A physical application is performed
to predict the critical length of the concentration cloud beyond the ecological safe
level. It is seen that with the increment of settling velocity, the duration for safe level
increases. Moreover, the study provides two important criteria for wastewater treat-
ment namely critical length and duration of solute cloud in the wetland. The work
may also be applicable to investigate the sedimentation process and flood damage
control.

Keywords Vegetated wetland · Gill’s series expansion method · Dispersion ·
Settling velocity · Critical length

1 Introduction

The study of solute dispersion phenomena was initially introduced by Taylor [1].
Following his work, Aris [2] employed the method of moments and removed some
restrictions of Taylor’s theory. Later, Gill and Sankarasubramanian [3, 4] used the
series expansion method to find the solution of the convection-diffusion equation.
Several researchers [5–7] investigated the free surface effect on the dispersion of
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tracer in a wetland flow. The influences of bed absorption and bulk degradation
on mass transfer phenomena are studied by numerous researchers [8, 9]. Various
analytical methods such as multi-scale analysis [5, 10–12], method of moments [13,
14], Taylor’s classical technique [15] were used to investigate the environmental
dispersivity and mean concentration distribution. Hammer [16] and Zhou et al. [17]
showed how the constructed wetland is useful for wastewater treatment. Wu et al.
[18] observed the tidal effect on environmental dispersion coefficient for a depth
dominated wetland flow. Recently, Dhar et al. [19] and Poddar et al. [20] explored
the dispersion of settling particles in a wetland flow using finite difference technique
and the method of moments respectively.

The current research presents an analytical approach to investigate the environ-
mental transport of fine particles with settling velocity in a depth dominated wetland
flow. The influences of linear and nonlinear boundary reactions on the solute disper-
sion was studied by many researchers but the transport of fine sediment particles in
a wetland flow paid low attention though it has a wide range of applications in the
direction of environmental engineering. Gill’s series expansion method is used to
explore the environmental dispersivity and mean concentration in this study. More-
over, the critical length and the duration of the concentration cloud are obtained
with the help of the mean concentration profile of the tracers. It is seen that, the
solute concentration is conglomerated near the source when the fall velocity of the
particles in the wetland flow increase significantly. The maximum critical length
and corresponding duration of the cloud of settling particles are obtained for 5 day
Biochemical Oxygen Demand (BOD5), Total Phosphorus (TP) and Total Nitrogen
(TN) which relates the wastewater treatment in the wetland.

2 Mathematical Formulation

2.1 Velocity Distribution

Consider the dispersion of settling particles in a fully developed and unidirectional
flow with constant porosity (φ), vegetation force (F), tortuosity (κ), momentum
dispersivity (L) and mass dispersivity K in a depth dominated wetland channel of
depth H . A Cartesian coordinate system is used where x∗-axis is along the longitudi-
nal direction, y∗-axis along the vertical direction and the origin is situated at the bed
surface. For a depth dominated wetland channel, effects of width are considered neg-
ligible as the first approximation, and so related terms are taken as width-averaged
(see Fig. 1). For a constant pressure gradient, the momentum equation reduces as
[15],
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Fig. 1 Sketch of the present model

κ(μ + Lyy)
d2u

dy∗2 = μFu + dp

dx∗ (1)

with stationary conditions, u(y∗) y∗=0 = u′(y∗) y∗=H = 0 (2)

Considering the characteristic velocity uc = − dp
dx∗ · H 2

μ+Lyy
and the dimensionless

parameter y = y∗
H , Eq. (1) can be rewritten as,

κ
d2u

dy2
− α2u = −uc, (3)

where, α =
√

μFH 2

μ+Lyy
is the vegetation factor which depends on vegetation force (F),

fluid viscosity (μ) and vertical momentum dispersivity (Lyy). The corresponding
stationary condition is given by,

u(y) y=0 = u′(y) y=1 = 0. (4)

Solving (3) and (4), the normalized velocity profile is found as,

ψ = u

uc
= 1

α2

(
1 −

cosh( α√
κ
(y − 1))

cosh( α√
κ
)

)
. (5)

It is amusing to observe that, without vegetation factor and tortuosity (i.e., α →
0, κ = 1), the velocity profile becomes an open channel flow as

lim
α→0,κ→1

ψ = y(2 − y)

2
(6)

The effects of vegetation factor and tortuosity on the velocity profile are shown in
Fig. 2. It is observe that, when the amount of vegetation in wetland increases, the
flow velocity significantly decreases as the vegetation factor resists the flow. On the



342 S. Dhar et al.

Fig. 2 Variation of velocity profile u(y)/uc: a α → 0, α = 0.3, 0.6, 0.9, 1.2, 2 with κ = 0.5 and
b κ = 0.01, 0.1, 0.5, 1, 1.5, 2 with α = 1

other hand, as tortuosity increases the flow becomes tortous and consequently speed
of the flow decreases.

2.2 Mass Transport Equation

When the fine particles of settling velocity ω∗ with mass diffusivity λ is injected into
the above mentioned vegetated wetland flow, the water phase based concentration
C∗ satisfies the following mass transfer equation

∂C∗

∂t∗
+ u

ϕ

∂C∗

∂x∗ − ω∗ ∂C∗

∂y∗ = κ

(
λ + K

ϕ

) (
∂2C∗

∂x∗2 + ∂2C∗

∂ y∗2

)
. (7)

with the corresponding initial and boundary conditions

C∗(x∗, y∗, t∗)|t∗=0 = 


(
x∗

H

)
(8a)

[
κ

(
λ + K

ϕ

)
∂C∗

∂y∗ + ω∗C∗
]

y∗=0,H

= 0 (8b)

C∗(x∗, y∗, t∗)|x∗→±∞ = 0. (8c)



An Analytical Approach to Study the Environmental Transport … 343

Introducing the non-dimensional parameters t = κ
(
λ+ K

ϕ

)
t∗

H 2 , y = y∗
H , C = C∗

Q/H 2 , x =
κ
(
λ+ K

ϕ

)

H 2ū (x∗ − ūt∗), � = u
ū , ω = ω∗H

κ
(
λ+ K

ϕ

) , the Eq. (7) becomes

∂C

∂t
+ (� − 1)

∂C

∂x
− ω

∂C

∂y
= 1

P2
e

∂2C

∂x2
+ ∂2C

∂y2
(9)

where Pe = ūH

κ
(
λ+ K

ϕ

)
ϕ
is the Péclet number whichmeasures the ratio of the convection

rate to diffusion rate. Also, the respective non-dimensional initial and boundary
conditions are given by

C(x, y, t)|t=0 = 
(x) (10a)[
∂C

∂y
+ ωC

]

y=0,1

= 0 (10b)

C(x, y, t)|x→±∞ = 0 (10c)

3 Mean Concentration Expansion

The solution of Eq. (9) can be formulated using Gill’s series expansion method as
[4],

C = C̄ +
∞∑
k=1

fk(t, y)
∂kC̄

∂xk
(11)

where C̄ = ∫ 1
0 Cdy. Putting (11) in Eq. (9), one can get

∂C̄

∂t
+ (� − 1)

∂C̄

∂x
− 1

P2
e

∂2C̄

∂x2
+

∞∑
k=1

[(
∂ fk
∂t

− ∂2 fk
∂yk

− ω
∂ fk
∂y

)
∂kC̄

∂xk

+(� − 1) fk
∂k+1C̄

∂xk+1
− 1

P2
e

∂k+2C̄

∂xk+2
+ fk

∂k+1C̄

∂xk∂t

]
. (12)

To obtain the time dependent dispersion coefficient, the dispersion model can be
expressed as

∂C̄

∂t
=

∞∑
i=1

Ki (t)
∂ i C̄

∂xi
, (13)

and consequently one can have
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∂k+1C̄

∂xk∂t
=

∞∑
i=1

Ki (t)
∂ i+kC̄

∂xi+k
. (14)

Using (13) and (14) in (12), we get

(
K1(t) + � − 1 + ∂ f1

∂t
− ∂2 f1

∂y2
− ω

∂ f1
∂y

)
∂C̄

∂x
+

(
K2(t) − 1

P2
e

+ (� − 1) f1

+ f1K1 + ∂ f2
∂t

− ∂2 f2
∂y2

− ω
∂ f2
∂y

)
∂2C̄

∂x2
+ · · · = 0. (15)

On comparing the terms associated with ∂C̄
∂x and ∂2C̄

∂x2 , we have,

K1(t) + � − 1 + ∂ f1
∂t

− ∂2 f1
∂y2

− ω
∂ f1
∂y

= 0, (16)

K2(t) − 1

P2
e

+ (� − 1) f1 + f1K1 + ∂ f2
∂t

− ∂2 f2
∂y2

− ω
∂ f2
∂y

= 0. (17)

Similarly, putting Eq. (11) in (10b), we get

[
∂ fk
∂y

+ ω fk = 0

]

y=0,1

for k = 1, 2, . . . . (18)

Taking average operation on Eqs. (16) and (17), it is found that

K1(t) = 0, (19)

K2(t) = 1

P2
e

−
∫ 1

0
� f1dy. (20)

Since, mean concentration satisfies the one dimensional diffusion like equation, one
can neglect other terms of Eq. (13) and it becomes

∂C̄

∂t
= K2(t)

∂2C̄

∂x2
. (21)

Now, solving Eq. (16) with the help of (18), f1 can be found as

f1 = tanh Ka

Ka − tanh Ka

(
1 + ω − ωy

ω2

)
+

(
Ka cosh(Ka(y − 1)) − ω sinh(Ka(y − 1))

(Ka − tanh Ka)(Ka
2 − ω2) cosh Ka

)

+ Ae−ωy + e−
ωy
2

∞∑
n=1

1 − cos (nπ)

nπ
e−(n2π2+ ω2

4 )t
(
cos(nπy) − ω

2nπ
sin (nπy)

)
.

(22)
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where A = ω
e−ω−1

[
(ω+2) tanh Ka

2ω2(Ka−tanh Ka)
+ Ka sinh Ka+ω(cosh Ka−1)

Ka(K 2
a−ω2)(Ka−tanh Ka) cosh Ka

]
and Ka = α√

κ
. Now,

using (22) in (20), one can get K2(t) as

K2(t) = 1

P2
e

+ Ka

Ka cosh Ka − sinh Ka

[
(1 + ω) tanh Ka sinh Ka

ω2Ka(Ka − tanh Ka)
− tanh Ka(cosh Ka − 1)

ωK 2
a (Ka − tanh Ka)

+ 1

(Ka − tanh Ka)(K 2
a − ω2) cosh Ka

[
sinh 2Ka

4
+ Ka

2
+ ω sinh2 Ka

2Ka(K 2
a − ω2)

]

−A

(
ω(cosh Ka − e−ω) − Ka sinh Ka

K 2
a − ω2

)
+

∞∑
n=1

Bne
−(n2π2+ ω2

4 )t

]
, (23)

where Bn = 1−cos(nπ)

nπ

[(
1 − ω

2nπ

)
Bn1 + (

1 + ω
2nπ

)
Bn2

]
, Bn1 = 2Ka−ω

(2Ka−ω)2+4n2π2

(e−ω/2 cos nπ − e−Ka ) and Bn2 = 2Ka+ω

(2Ka+ω)2+4n2π2 (−e−ω/2 cos nπ + e−Ka ). Thus, the

dispersion coefficient becomes DT = P2
e K2(t). Now, for large time evolution, with-

out vegetation, tortuosity and settling velocity (i.e., t → ∞, α → 0, κ = 1, ω → 0),
the dispersion coefficient becomes

lim
t→∞ lim

α→0
lim
ω→0

DT = 1 + 2

945
P2
e (24)

which is exactly equal with the steady dispersion coefficient of Bandyopadhyay and
Mazumder [24], and it validates the present solution. Taking the average operation on
the initial condition (10a), the solution of the Eq. (13) becomes longitudinal Gaussian
distribution as

C̄ = 1√
4πK2(t)

exp

(
− x2

4K2(t)

)
. (25)

Now, let us consider a free surface wetland with porosity φ = 0.9, mean stem diame-
ter d = 10−2 m and H = 1mas in [21]. From theBruggemann equation [22], one can
obtain the tortuosity as κ = √

φ. The vegetated shear force F can be obtained from
the Ergun equation [23] as F = 150(1−φ2)

d2φ3 . One can take the ambient properties of

water such as density ρ = 103 kgm−3, viscosityμ = 10−3 kgm−1s−1, and diffusivity
λ = 10−5m2 s−1 as in [22]. Also, themass diffusivity andmomentumdispersivity can
be taken as K = 2.86 × 10−3m2s−1 and Lyy = 1.28 kgm−1s−1 respectively [21]. In
case of wastewater emission into the wetland, a sediment cloud would appear in the
flow and the mean concentration decays under the combined action of fall velocity
and hydraulic transport. For an environmental or ecological risk assessment, related
with the solute cloud moving downwards with the mean flow, an influenced region
where the involved concentration is beyond the standard level can be obtained. From
Eq. (25), the critical length of the influenced region can be found as

S(t) = 4

√
−K2 log

(
C0φH 2

√
4πK2

Q

)
. (26)
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For an instantaneous emanation of unit quantity per unit width is taken as Q =
1kgm−1 in this work. The basic limited values of C0 for BOD5, TN and TP are taken
as 4 × 10−3 kgm−3, 1 × 10−3 kgm−3 and 2 × 10−4 kgm−3 respectively [22].

4 Discussion of Results

In this section, the effects of Péclet number, vegetation factor, tortuosity and settling
velocity on the dispersion coefficient and on the mean concentration distribution are
described. Also, a physical application of the current work is shown. From Fig. 3a, it
is seen that the dispersion coefficient of the tracers increases with the increment of
Péclet number because it increases the convection rate. Enhancement in vegetation
results the flow resistance in the wetland and thus the dispersion coefficient decreases
gradually (see Fig. 3b). From Fig. 3c, it is observed that, if tortuosity κ ≤ 0.1, a
boundary layer is created near the bed surface and consequently, the dispersion coef-
ficient enhances with the enhancement of it. On the other hand, if κ > 0.1, the flow
becomes tortuous and thus dispersivity reduces significantly. The concentration of the
fine particles conglomerated near the bed surface as the settling velocity increases
and consequently, dispersion of the contaminants decreases prominently and it is
presented in Fig. 3d.

Figure4a shows the temporal evolution of the dispersion coefficient of the solute.
It is seen from the figure that, as time progresses dispersion increases for small dis-
persion times and it reaches its stationary state after a certain critical time. Since, the
vegetation factor and tortuosity resists the flow, it is seen from Fig. 4b, c that with the
increment of vegetation factor and tortuosity, the concentration agglomerated near
the source and hence the peak of the mean concentration profile increases. Figure4d
depicts the mean concentration of the tracers for different values of settling velocity.
It is seen that as the settling velocity increases, the peak of the mean concentra-
tion distribution enhances. This is because, the deposition of the settling particles

Fig. 3 Variation of dispersion coefficientwith a Peclet number Pe,b vegetation factorα, c tortuosity
κ , d settling velocity ω
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Fig. 4 a Temporal evolution of dispersion coefficient; Variation of mean concentration with b
vegetation factor (α), c tortuosity (κ), d settling velocity (ω)

Fig. 5 a Variation of influenced region (S) with settling velocity; b influenced region for BOD5,
TN, TP; c influenced region for BOD5, TN, TP (log-log)

increases with the increasing values of settling velocity and thus the distribution of
mean concentration enhances.

From Fig. 5a, it is observed that the length of the influenced region increases
as time proceeds and after a certain time it reaches its maximum and finally it
decreases to zero. The maximum critical length for 5 day Biochemical Oxygen
Demand (BOD5), Total Nitrogen (TN) and Total Phosphorus (TP) are 500m, 1000m
and 2000m corresponding to the duration 8.6h, 30h and 135h respectively. It is inter-
esting to observe that, the duration of the influenced region of BOD5 increases with
the increment of the settling velocity of the fine particles although the maximum
length remains unchanged. This is because, the fine particles settle at the bed of the
wetland and consequently the solute particles stay in the wetland for longer time (see
Fig. 5a). The removal of BOD5 also depends on the settling velocity of the particles.
It is seen that the duration of the particle cloud enhances though the maximum length
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remains unaltered with the enhance of settling velocity. It is seen from Fig.5b and c
that, when the releasing quantity is unaltered, BOD5 has the weakest and TP has the
strongest detrimental effect, because the metabolism due to suspended or vegetation
supported bacteria may accelerate the removal of soluble organism. Again, since the
removal of TP is mainly depends on the decomposition of chemical molecule, it has
much stronger damage compare to other constituents.

5 Conclusions

In the present study, Gill’s series expansion method is employed to study the trans-
port of fine particles having settling velocity in a wetland flow. Moreover, analytical
expressions for Taylor dispersivity and the mean concentration profile of tracer parti-
cles are obtained. The present research shows that the dispersion of settling particles
decreases with the enhancement of vegetation factor, tortuosity and settling velocity
in the wetland flow. It is seen that the concentration of settling particles agglomer-
ated near the source when the settling velocity of particles, tortuosity of the flow
and vegetation of the wetland increases. It is also observed that the duration of the
settling particles for 5 day Biochemical Oxygen demand (BOD5) increases with the
enhancement of settling velocity. The results may play a significant role to study the
wastewater treatment and sedimentation process.

References

1. Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R.
Soc. Lond. A 219, 186–203 (1953). https://doi.org/10.1098/rspa.1953.0139

2. Aris R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A
235, 67–77 (1956). https://doi.org/10.1098/rspa.1956.0065

3. Gill, W.N.: A Note on the Solution of Transient Dispersion Problems. Proc. R. Soc. A: Math.
Phys. Eng. Sci. 298(1454), 335–339 (1967). https://doi.org/10.1098/rspa.1967.0107

4. Gill, W.N., Sankarasubramanian, R.: Exact analysis of unsteady convective diffusion. Proc. R.
Soc. Lond. A 316, 341–350 (1970). https://doi.org/10.1098/rspa.1970.0083

5. Wu, Z., Li, Z., Zeng, L., Shao, L., Tang, H., Yang, Q., Chen, G.: Environmental dispersivity in
free-water-surface-effect dominated wetland: multi-scale analysis. Front. Environ. Sci. & Eng.
China 5(4), 597–603 (2011). https://doi.org/10.1007/s11783-011-0311-9

6. Zeng, L., Wu, Y.H., Ji, P., Chen, B., Zhao, Y.J., Chen, G.Q., Wu, Z.: Effect of wind on contam-
inant dispersion in a wetland flow dominated by free-surface effect. Ecol. Model. 237–238,
101–108 (2012). https://doi.org/10.1016/j.ecolmodel.2012.04.020

7. Wang, P., Wu, Z., Chen, G.Q., Cui, B.S.: Environmental dispersion in a three-layer wetland
flow with free-surface. Commun. Nonlinear Sci. Numer. Simul. 18(12), 3382–3406 (2013).
https://doi.org/10.1016/j.cnsns.2013.04.027

8. Zeng, L., Chen, G.Q.: Ecological degradation and hydraulic dispersion of contaminant in
wetland. Ecol.Modell. 222, 293–300 (2011). https://doi.org/10.1016/j.ecolmodel.2009.10.024

9. Wang, H., Zhu, Z., Li, S., Huai, W.: Solute dispersion in wetland flows with bed absorption. J.
Hydrol. 579, 124149 (2019). https://doi.org/10.1016/j.jhydrol.2019.124149

https://doi.org/10.1098/rspa.1953.0139
https://doi.org/10.1098/rspa.1956.0065
https://doi.org/10.1098/rspa.1967.0107
https://doi.org/10.1098/rspa.1970.0083
https://doi.org/10.1007/s11783-011-0311-9
https://doi.org/10.1016/j.ecolmodel.2012.04.020
https://doi.org/10.1016/j.cnsns.2013.04.027
https://doi.org/10.1016/j.ecolmodel.2009.10.024
https://doi.org/10.1016/j.jhydrol.2019.124149


An Analytical Approach to Study the Environmental Transport … 349

10. Wu, Z., Li, Z., Chen, G.Q.: Multi-scale analysis for environmental dispersion in wetland
flow. Commun. Nonlinear Sci. Numer. Simul. 16, 3168–3178 (2011). https://doi.org/10.1016/
j.cnsns.2010.12.002

11. Zhi, L., Ping, W., Tao, S., Yiran, A., Xodong, W.: Critical length of contaminant cloud in a
three-layer wetland: multi-scale analysis for environmental dispersivity.Wetlands 36, 193–203
(2016). https://doi.org/10.1007/s13157-015-0663-1

12. Wu, Z., Zeng, L., Chen, G.Q.: Analytical modeling for environmental dispersion in Wetland.
Ecolog. Modell. Eng. Lakes Wetl. 26, 251–274 (2014). https://doi.org/10.1016/b978-0-444-
63249-4.00011-7

13. Wu, Z., Chen, G.Q., Zeng, L.: Environmental dispersion in a two-zone wetland. Ecol. Model.
222(3), 456–474 (2011). https://doi.org/10.1016/j.ecolmodel.2010.10.026

14. Wang, H., Huai, W.: Analysis of environmental dispersion in a wetland flow under the effect of
wind: extended solution. J. Hydrol. 557, 83–96 (2018). https://doi.org/10.1016/j.jhydrol.2017.
12.029

15. Zeng, L., Chen, G.Q., Tang, H.S., Wu, Z.: Environmental dispersion in wetland flow. Commun.
Nonlinear Sci. Numer. Simul. 16(1), 206–215 (2011). https://doi.org/10.1016/j.cnsns.2010.02.
019

16. Hammer, D.A.: Constructed wetlands for Wastewater Treatment: Municipal, Industrial,
and Agricultural. Lewis Publishers, Chelsea, MI, USA (1989). https://doi.org/10.1201/
9781003069850

17. Zhou, J.B., Jiang, M.M., Chen, B., Chen, G.Q.: Emergy evaluations for constructed wetland
and conventional wastewater treatments. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1781–
1789 (2009). https://doi.org/10.1016/j.cnsns.2007.08.010

18. Wu, Z., Zeng, L., Chen, G.Q., Li, Z., Shao, L., Wang, P., Jiang, Z.: Environmental dispersion
in a tidal flow through a depth-dominated wetland. Commun. Nonlinear Sci. Numer. Simul.
17(12), 5007–5025 (2012). https://doi.org/10.1016/j.cnsns.2012.04.006

19. Dhar, S., Poddar, N., Kairi, R.R., Mazumder, B.S., Mondal, K.K.: Numerical study on dis-
persion of fine settling particles in a depth dominated wetland flow. Commun. Nonliear Sci.
Numer. Simulat. 96, 105707 (2021). https://doi.org/10.1016/j.cnsns.2021.105707

20. Poddar, N., Das, S., Dhar, S.,Mondal, K.K.: Semi-analytical study on environmental dispersion
of settling particles in a width-independent wetland flow. Environ. Fluid Mech. 21(4), 1–22
(2021). https://doi.org/10.1007/s10652-021-09809-2

21. CPCB, Annual Water Quality Statistics of India, from 2019. Central Pollution Control
Board, Government of India (2019). http://www.cpcbenvis.nic.in/waterpollution/2019/Water_
Quality_Canals_Sea_Water_Drains_STPs_2019.pdf

22. Liu, S., Masliyah, J.H.: Dispersion in porous media. In: Vafai, K. (ed.) Handbook of Porous
Media. CRC Press, Boca Ratton, FL, USA, pp. 81–140 (2005), https://www.routledge.com/
Handbook-of-Porous-Media/Vafai/p/book/9781439885543

23. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952). http://
dns2.asia.edu.tw

24. Bandyopadhyay, S., Mazumder, B.S.: Unsteady convective diffusion in a pulsatile flow through
a channel. Acta Mech. 134, 1–16 (1999). https://doi.org/10.1007/BF01170300

https://doi.org/10.1016/j.cnsns.2010.12.002
https://doi.org/10.1016/j.cnsns.2010.12.002
https://doi.org/10.1007/s13157-015-0663-1
https://doi.org/10.1016/b978-0-444-63249-4.00011-7
https://doi.org/10.1016/b978-0-444-63249-4.00011-7
https://doi.org/10.1016/j.ecolmodel.2010.10.026
https://doi.org/10.1016/j.jhydrol.2017.12.029
https://doi.org/10.1016/j.jhydrol.2017.12.029
https://doi.org/10.1016/j.cnsns.2010.02.019
https://doi.org/10.1016/j.cnsns.2010.02.019
https://doi.org/10.1201/9781003069850
https://doi.org/10.1201/9781003069850
https://doi.org/10.1016/j.cnsns.2007.08.010
https://doi.org/10.1016/j.cnsns.2012.04.006
https://doi.org/10.1016/j.cnsns.2021.105707
https://doi.org/10.1007/s10652-021-09809-2
http://www.cpcbenvis.nic.in/waterpollution/2019/Water_Quality_Canals_Sea_Water_Drains_STPs_2019.pdf
http://www.cpcbenvis.nic.in/waterpollution/2019/Water_Quality_Canals_Sea_Water_Drains_STPs_2019.pdf
https://www.routledge.com/Handbook-of-Porous-Media/Vafai/p/book/9781439885543
https://www.routledge.com/Handbook-of-Porous-Media/Vafai/p/book/9781439885543
http://dns2.asia.edu.tw
http://dns2.asia.edu.tw
https://doi.org/10.1007/BF01170300


Effects of Radiation and Chemical
Reaction on MHD Mixed Convection
Flow over a Permeable Vertical Plate

C. Sowmiya and B. Rushi Kumar

Abstract In this paper, we investigate the mixed convective flow of a viscous fluid
in a vertical plate fixed in a porous medium under radiation, Dufour effect. Consider
an incompressible, two-dimensional steady-state fluid subjected to flow over a semi-
infinite plate influence of viscous dissipation, magnetic field. The non-linear PDEs
convert into non-linear ODEs by using non-dimensionalization. The problem solved
analytically by employing perturbation method. A study of the effects of velocity,
temperature, concentration is significantly determined by existence of viscous dis-
sipation, chemical reaction, radiation, Dufour effect are obtained. In addition, the
effects of skin friction, the rate of energy, mass transfer are determined. It is notice,
radiation parameter increases with temperature declines, Diffusion mass decreases
with chemical reaction constraints.

Keywords Vertical plate · Slip condition · Buoyancy effect · Heat and mass
transfer

1 Introduction

Several fields of science and engineering contain significant applications of hydro-
magnetic incompressible viscous flow as it involves heat, mass transfer under chem-
ical reaction regions. Observing a field, we realize its influence, mixed convection
arising flow from heated vertical plate is a significant problem from a theoretical
and practical perspective. It is one of the most common topics of interest recently,
it has become a separate focus of intensive research since heat and mass are con-
stantly being transferred through porous media, which occur as part of a variety of
technological processes. Heat and mass transfer have made considerable progress in
magnetohydrodynamic flows over the past few years theMHD power generators and
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Hall accelerators are a few examples of their use. Mixed convection proceeding from
fluid flow through a upright plate under the impact of magnetic field was studied by
Yih [1], Barletle [2], Chin [3], Chamkha [4]. Micropolar fluids move convectively
past vertical porous plates when they heated or absorbed by heat to which magnetic
field applied was investigated by Rahman et al. [5]. Motsa [6] studied based on mag-
netohydrodynamic of thermal and mass transfer by convection under radiation and
chemical effect, through a vertical permeable plate. The hydromagnetic flow of a
heat-generating or absorbing vertical surfaces, effects of chemical and hall current
had examinedbyPatil et al. [7].Makinde et al. [8] examined adiagonalmagnetic field,
radiation, and heat transfer from variable viscosity fluid observed without account-
ing for chemical reactions. Impact of buoyancy, radiation on mass transfer across
semi-infinite surfaces explored by Shateyi [9]. Mansour et al. [10] described the
MHD convection flow and chemical reaction. Palani et al. [11] discussed about heat
transfer which lies between vertical plates convective MHD flow effects. Talukdar
et al. [12] investigated boundary layer slip condition with thermal radiation, chemi-
cal reaction is characterized by mass and energy transfer across a vertical permeable
plate. Pal et al. [13] analyzed thermodynamics of mixed convection heat transfer in
porous media. Makinde et al. [14] studied dufour and soret effects of a convective
boundary layer through a porous medium. Chemical reactions, heat sources have
attracted attention in the flow of electrically conductive fluid in various design was
evaluated by Bisht et al. [15]. Olanrewaju et al. [17] analysed flat plate subjected to
an thermal boundary layer produced by exponentially declining internal heat gener-
ation, convective boundary conditions. Makinde et al. [16] analyzed the interaction
between MHD mixed convection, radiation, higher order chemical reactions. The
boundary layer of an incompressible fluid travels past a semi-infinite vertical plate
investigated by Rushi kumar et al. [18]. Sheea Juilet et al. [19] Studied flow over a
porous medium over a surface subject to exponential stretching under free convec-
tion. Nalivela Nagi Reddy et al. [20] determined effect of mass movement, chemical
transmission on the natural movement of mass through endless perpendicular plates,
dissipative and radiative liquids glide in convection.

Motivated by the aforementioned literature review, we investigate the effects on
steady convection boundary layer through a permeable vertical plate influence of vis-
cous dissipation, buoyancy, heat source, radiation, Dufour effect, chemical reaction,
nonlinear PDEs transform into nonlinear ODEs by using non-dimensionalization.
The problem solved analytically by employing perturbation method, impact of perti-
nent parameters on theflow rate of temperature, concentration is graphically depicted.

2 Formulation of the Problem

We consider an incompressible two-dimensional steady flow, viscous, heat-source
fluid past a vertical permeable plate with slip flow. There exists a first-order chemical
reaction with a fixed rate. B0 is a magnetic field applied in the existence of radiation
and buoyancy effects. The x-axis is taken to the vertical direction along the pla-
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Fig. 1 Sketch of flow
geometry

nar surface, y-axis taken surface normal to plate. According to the principle of the
immeasurable plane surface, the fluid flow variables are the functions of y, t only
(Fig. 1).

Governing equations of fluid flow as follows:

∂u

∂x
+ ∂v

∂y
= 0, (1)

(
u

∂u

∂x
+ v

∂u

∂y

)
= ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
− σB2

0

ρ
u + gβT (T − T∞) + gβc(C − C∞) − ν

k
u,

(2)

(
u

∂T

∂x
+ v

∂T

∂y

)
= k

ρCp

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ ν

ρCp

(
∂u

∂x
+ ∂u

∂y

)2

− Q(T − T∞)

ρCp

− 1

ρCp

∂qr
∂y

+ DmkT
CsCp

∂2C

∂y2
, (3)

(
u

∂C

∂x
+ v

∂C

∂y

)
= D

(
∂2C

∂x2
+ ∂2C

∂y2

)
+ kr (C − C∞). (4)

Where (u, v) be the velocity components of (x, y), C-mass concentration, T -
temperature, ν-kinematic viscosity, g-gravity acceleration, σ-conductivity of fluid,
βT -thermal expansion coefficient, kT -thermal conductivity, C∞-ambient concentra-
tion, T∞-ambient temperature, Cp-specific heat.

The boundary conditions are:

u = Uslip, T = Tw C = Cw at y = 0;
u → u∞ = 0, Tw → T∞, Cw → C∞ as y → ∞.

(5)
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A two-dimensional motion and an adequate length of the plate produce a situation,
the x-axis is independent of all physical variables,

∂u

∂x
= 0, (6)

From equation of continuity, the suction velocity is either a function of t or constant.
Hence integrate (1), we get the following form,

v = −V0, (7)

where V0 is velocity for scale of suction which has positive constant other than zero.
Energy flux due to radiation is follows,

∂qr
∂y

= −4aσ(T 4
∞ − T 4), (8)

In the fluid flow region, the temperature difference is small enough, so if Taylor series
are expanded around T∞, T4 can be obtained by omitting the coefficients of higher
order,

T 4 = 4T 3
∞T − 3T 4

∞,

Non-dimensional transformation are described below:

U = u

U0
, V = v

V0
, Y = V0y

ν
, θ = T − T∞

Tw − T∞
, φ = C − C∞

Cw − C∞
. (9)

In non-dimensional form, the above transformation (2) to (4) obtain as follows,

− ∂U

∂Y
= ∂2U

∂Y 2
+ Grθ + Gcφ −

(
M2 + 1

λ

)
U , (10)

− ∂θ

∂Y
= 1

Pr

∂2θ

∂Y 2
+ E

(
∂U

∂Y

)2

+ N
∂2θ

∂Y 2
+ Du

∂2φ

∂Y 2
− αθ, (11)

− ∂φ

∂Y
= 1

Sc

∂2φ

∂Y 2
+ Kφ. (12)

Combined boundary conditions are;

U = Uslip, θ = 1, φ = 1 at Y = 0,

U → 0, θ → 0, φ → 0 at Y → ∞.
(13)

Since the flow will be super imposed on main flow due to joules dissipation,
the Eckart number is always less than 1 (E << 1). where Gr = γgβT (Tw−T∞)

V 2
0 U0

is

the thermal Grashof number, Gc = gβCγ(Cw−C∞)

V 2
0 U0

is the solutal Grashof number,
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M = γσB2
0

ρV 2
0
,-magnetic field, Pr = Cpμ

k -Prandtl number, N = 16σT∞γ
V 2
0 ρCp3k

-radiation heat-

flux, Du = (Cw−C∞)DmkT
(Tw−T∞)γCsCp

is the Dufour number, Sc = ν
D is the schmidt number,

K = krγ
V 2
0
is the chemical reaction, E = U 2

0
ρCp(Tw−T∞)

, λ = V 2
0 K
γ2 -porous permeability,

α = Q
ρCpV 2

0
-heat absorption.

3 Method of Solution

A closed form solution cannot be found for this set of partial differential equation
(10)–(13). In an analytical form, it is possible to solve the problems by using ordinary
differential equations, we can solve these equations in which velocity, energy, and
mass can be represented as dimensionless form,

U (y) = U0(y) + EU1(y) + O(E2), (14)

θ(y) = θ0(y) + Eθ1(y) + O(E2), (15)

φ(y) = φ0(y) + Eφ1(y) + O(E2). (16)

Applying (14) to (16) in (10) to (13), and comparing the balanced and unbalanced
terms, ignoring higher power of O(E2), we obtained,

U
′′
0 +U

′
0 −

(
M2 + 1

λ

)
U0 = −Grθ0 − Gcφ0, (17)

U
′′
1 +U

′
1 −

(
M2 + 1

λ

)
U1 = −Grθ1 − Gcφ1, (18)

θ
′′
0(1 + PrN ) + θ

′
0Pr − αθ0Pr = −DuPrφ

′′
0, (19)

θ
′′
1(1 + PrN ) + θ

′
1Pr − αθ1Pr = −DuPrφ

′′
1 −U

′2
0 Pr, (20)

φ
′′
0 + Scφ

′
0 + K Scφ0 = 0, (21)

φ
′′
1 + Scφ

′
1 + K Scφ1 = 0. (22)

Boundary condition are transformed by,

U0 = γU
′
0, U1 = γU

′
1, θ0 = 1, θ1 = 1, φ0 = 1 φ1 = 1 as y = 0,

U0 = 0, U1 = 0, θ0 → 0, θ1 → 0, φ0 → 0 φ1 → 0 as y → ∞.
(23)
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Solving the (17)–(22) along with (23) we get,

U0 = A2e
−m1 y + A3e

−m2 y + A4e
−m3 y (24)

U1 = A13e
−m1 y + A14e

−m2 y + A21e
−m3 y + A15e

−2m1 y + A16e
−2m2 y

+A17e
−2m3 y + A18e

−(m1+m2)y + A19e
−(m1+m3)y + A20e

−(m3+m2)y, (25)

θ0 = (1 − A1)e
−m2 y + A1e

−m1 y, (26)

θ1 = A5e
−m1 y + A12e

−m2 y + A6e
−2m1 y + A7e

−2m2 y + A8e
−2m3 y

+A9e
−(m1+m2)y + A10e

−(m3+m2)y + A11e
−(m1+m3)y, (27)

φ0 = e−m1 y, (28)

φ1 = e−m1 y . (29)

The density, temperature, and concentration distributions were determined by
substituting (24)–(29) in (14) to (16)

U (Y, t) = [
A2e

−m1 y + A3e
−m2 y + A4e

−m3 y
] + E

[
A13e

−m1 y + A14e
−m2 y

+ A21e
−m3 y + A15e

−2m1 y + A16e
−2m2 y + A17e

−2m3 y

+ A18e
−(m1+m2)y + A19e

−(m1+m3)y + A20e
−(m3+m2)y

]
, (30)

θ(Y, t) = [
(1 − A1)e

−m2 y + A1e
−m1 y

]
+ E

[
A5e

−m1 y + A12e
−m2 y + A6e

−2m1 y + A7e
−2m2 y + A8e

−2m3 y

+ A9e
−(m1+m2)y + A10e

−(m3+m2)y + A11e
−(m1+m3)y

]
, (31)

φ(Y, t) = e−m1 y
[
1 + E

]
. (32)

The physical parameter of wall shear stress τw is given by,

τw = μ
(

∂u
∂y

)
y=0

= U0V0
ρ

(
∂U
∂Y

)
Y=0 ,

Local skin friction coefficient τ is given by,

τ = τwρ

U0V0
, (33)

τ = U
′
(0) = − (A2m1 + A3m2 + A4m3) − E

(
A13m1 + A14m2

+ A21m3 + 2A15m1 + 2A16m2 + 2A17m3

+ A18(m1 + m2) + A19(m3 + m2) + A20(m1 + m3)
)
, (34)

Local surface heat flux is given by,

qw = −K
∂T

∂y
= −K (Tw − T∞) V0

γ

(
∂θ

∂Y

)
Y=0

,
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Nu = Nux
Rex

= θ
′
(0) = ((1 − A1)m3 + A1m1)

− εent
(
A5m2 + A12m5 + 2A6m1 + 2A7m3

+ 2A8m4 + A9(m1 + m3) + A10(m3 + m4) + A11(m1 + m4)
)
, (35)

K—effective heat conductivity.
Local surface mass flux is given by,

Sh = Shx

Rex
= φ

′
(0) = −m1(1 + E). (36)

Here, Rex = V0K
ν

is Reynolds Number.

4 Results and Discussion

The problem consider a two-dimensional steady convective fluid over a vertical
plate submerged in a porous medium. It include radiation, chemical reaction, Dufour
effect in the occurrence of suction. The numerical values of various parameters
Gr,Gc,M,λ,α, Pr, Sc, N , K , Du. have been computed with boundary condition.
The results are depicted as graphs in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and
15.

The most important fluids are atmospheric in air, H2O, results are limited for
Prandtl’s number (Pr = 0.71, 7.0) representing air, H2O at 20 ◦C, were chosen
Schmidt numbers of (Sc = 0.21, 0.62, 0.78, 2.62) representing chemical species
of H2, O2, CO2, C9H12 diffusing in the air. In the velocity boundary layer, ther-
mal Grashof number is equal to the relation of buoyant to viscous forces acting
on a fluid. For the following graphs we have used Gr = 1,Gc = 1, E = 0.2,α =
0.1,λ = 2,M = 2, N = 1, γ = 1, K = 1, Du = 0.5, Sc = 0.6.

The velocity distribution in Fig. 2 shows that velocity decreases as the values of
M increase because of the existence of magnetic field sets in Lorentz force which
induces the retarding force on velocity field. Figure3 depicts velocity rising with an
rise the values λ since porosity reduce the drag force help fluid to go fast. The effects
of thermal, solutal Grashof number depicted in Figs. 4, 5, from these figures shown
the velocity increases with raise the values of Gr and Gc it is due to the presence of
thermal buoyancy boost the velocity distribution.

In Fig. 6 temperature distribution diminishes as the value of heat absorption
increases, that has a tendency to lower thermal buoyancy effects. Pr increased then
fluid temperature distribution is decreases displayed in Fig. 7. By increasing Pr ,
thermal conductivities will decreases, which leads to faster diffusion of heat apart
fromheated plate. Figure8 shownDufour number rises temperature distribution falls.
Radiation heat-flux N causes the fluid temperature distribution to increase as dis-
played in Fig. 9. When N increases thickness of boundary layer, heat transfer rate
also increase. Figure10 presented the mass distribution is decreasing while increas-
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Fig. 2 Effect of M on
velocity distribution

Fig. 3 Effect of λ on
velocity distribution

Fig. 4 Effect of Gc on
velocity distribution
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Fig. 5 Effect of Gr on
velocity distribution

Fig. 6 Effect of α on
temperature distribution

Fig. 7 Effect of Pr on
temperature distribution
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Fig. 8 Effect of Du on
temperature distribution

Fig. 9 Effect of radiation on
temperature distribution

Fig. 10 Effect of Sc on
concentration distribution
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Fig. 11 Effect of K on
concentration distribution

Fig. 12 Effect of γ on skin
friction distribution

ing the values of Sc, because Sc is small, it leads to smaller diffusivity which results
fall in mass. By increasing chemical reaction values K , the concentration decreases
as shown in Fig. 11. The reverse trend is noticed due to appearance of chemical reac-
tion at constant rate. When γ increases, the skin friction also increase and increase
the value Gc, skin friction decreases as shown in Fig. 13. Nu against M , various
values of Pr is increases in heat transfer monotonically, which is shown in Fig. 14.
Sh against the M for various values K , resulting in mass transfer being reduced as
represented in Fig. 15.
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Fig. 13 Effect of Gc on skin
distribution

Fig. 14 Effect of Du on
Nusselt number distribution

Fig. 15 Effect of K on
Sherwood number
distribution
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5 Conclusion

We have investigate steady state mixed convectional heat, mass transfer in a per-
meable vertical plates with Dufour and chemical reaction. By using perturbation
method, we have obtain an analytical solution to this problem and numerical results
are depicted as graphs. Several important parameters are analyzed in this study.
Following are some highlights.

– If magnetic field is increases, velocity distribution is decreases.
– If λ, Gc, Gr increases, there is an enhancement in velocity profile.
– An temperature distribution is diminished by increasing heat absorption, Prandtl
number, Dufour effects.

– Raising radiation parameter ‘N’, increases temperature distribution.
– Concentration distribution decreases while Sc, K are increases.

Appendix

m1 = Sc +
√
Sc2 − 4K Sc

2
, m2 = −pr

1 + PrN
,m3 = 1 + √

1 + 4N

2
,

A1 = −Du.Pr.m2
1

(1 + PrN )m2
1 − m1 pr − αpr

, A2 = −(Gr A1 + Gc)

m2
1 − m1 − N

, A3 = Gr(1 − A1)

m2
3 − m3 − N

,

A4 = −A2[1 + γm1] − A3[1 + γm2]
1 + γm3

, A5 = −pr.Du.m2
1

m2
1(1 + Npr) − m1Pr − αpr

,

A6 = −pr.A22m
2
1

4m2
1(1 + Npr) − 2m1Pr − αpr

, A7 = −pr.A23m
2
2

4m2
2(1 + Npr) − 2m2Pr − αpr

,

A8 = −pr.A24m
2
3

4m2
3(1 + Npr) − 2m3Pr − αpr

, A9 = −2pr.A2A3m1m2

(m1 + m2)(1 + Npr) − (m1 + m2)Pr − αpr
,

A10 = −2pr.A4A3m2m3

(m2 + m3)(1 + Npr) − (m2 + m3)Pr − αpr
,

A11 = −2pr.A2A4m1m3

(m1 + m3)(1 + Npr) − (m1 + m3)Pr − αpr
, A12 = −A5 − .... − A11,

A13 = Gr A5 + Gc

m2
1 − m1 − N1

, A14 = Gr A12
m2
2 − m2 − N1

, A15 = Gr A6
4m2

1 − 2m1 − N1
,

A16 = Gr A7
4m2

2 − 2m2 − N1
, A17 = Gr A8

4m2
3 − 2m3 − N1

, A18 = Gr A9
(m1 + m2)

2 − (m1 + m2) − N1
,

A19 = Gr A10
(m2 + m3)

2 − (m2 + m3) − N1
, A20 = Gr A11

(m1 + m3)
2 − (m1 + m3) − N1

,

A21 = −(A13[1 + γm1] + A14[1 + γm2] + A15[1 + γ2m1] + A16[1 + γ2m2]
+A17[1 + γ2m3] + A18[1 + γ(m1 + m2)] + A19[1 + γ(m2 + m3)]
+A20[1 + γ(m1 + m3)])/(1 − γm3).
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Note on the Circular Rayleigh Problem

G. Chandrashekhar and A. Venkatalaxmi

Abstract We consider stability of axial flows of an incompressible, inviscid homo-
geneous fluid to axisymmetric disturbances known as circular Rayleigh problem of
hydrodynamic stability. For circular Rayleigh problem, we derived instability region
for a class of flows and which intersect with Batchelor and Gill semicircle under
some conditions. Also, we derived a necessary condition for stability.

Keywords Inviscid fluid · Axial flows · Incompressible · Axisymmetric
disturbances

1 Introduction

The study of linear stability of axial flows of an inviscid, incompressible, homoge-
neous fluid to axisymmetric disturbances is an important part of fluid dynamics and
geophysical fluid dynamics (cf. [1, 3]). Circular Rayleigh problem is a inviscid case
ofOrr-Sommerfeld problem (cf. [2])which dealswith incompressible inviscid homo-
geneous axial flows to axisymmetric disturbances. Many analytical results have been
proved for this problem. Reference [1] derived a necessary condition for instability

which states that r
(
W ′
r

)′
should changes its sign at least once. Also, he proved that
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K (r) = −ψ(r)
r(W−Ws )

> 0, where ψ(r) = r
(
W ′
r

)′
. For instability [4] derived a necessary

condition which is r
(
W ′
r

)′
(W − Ws) < 0 at least once. They also proved a semi-

circle know as Batchelor & Gill semi-circle which gives the location of eigen values.
Reference [5] proved Howard’s conjecture namely growth rate k ci approaches to
zero as wave number k approaches to infinity. Reference [7] derived a sufficient
condition for stability and short-wave stability. Reference [6] derived a parabolic
instability regions which intersects with Batchelor and Gills semi-circle [4] by fol-
lowing the approach of [9]. The parabolic instability region derived by [6] depends
on φ(r) > 0 or ψ(r) < 0.

In this present work, we derived parabolic instability regions for a class of flows
and which intersects with Bachelor and Gill semicircle under some condition. Also,
we derived a necessary condition for stability, namely k2 > k2c where kc is the critical
value of the wave number then the flow is stable. This has been illustrated with an
example.

2 Circular Rayleigh Problem

The circular Rayleigh Problem (cf. p. 361 of [1]) is given by

(W − c)
[
DD∗ − k2

]
u − r D

[
DW

r

]
u = 0, (1)

with boundary conditions
u(R1) = 0 = u(R2). (2)

Where D∗ = D + 1
r , D = d

dr ,W is the velocity function, c = cr + i ci (Complex
eigen value), u is the eigen function and k is the wave number .

Apply the transformation u = (W − c)
1
2 G, we get

D [(W − c) D∗G] − 1

2
r D

[
DW

r

]
G −

(W ′)
2

4

W − c
G − k2 (W − c)G = 0, (3)

With boundary conditions G(R1) = 0 = G(R2). (4)
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3 Instability Region

Theorem 1 If Wmin > 0, ci > 0, then c2i ≤ λ [cr − (Wmax − Wmin)] , where, λ =
(W ′)

2
max

4Wmin

[
R1 π2

R2(R2−R1)
2 +k2R1

] .

Proof Multiplying (3) by r G∗, integrating, using (4), we get

∫ R2

R1

(W − c)
[|D∗G|2 + k2 |G|2] r dr +

∫ R2

R1

1

2
r

(
W ′

r

)′

r |G|2 dr

+
∫ R2

R1

⎛
⎝

(W ′)
2

4

(W − c)

⎞
⎠ r |G|2 dr = 0 . (5)

Equating real and imaginary parts, we have

∫ R2

R1

(W − cr )
[|D∗G|2 + k2 |G|2] r dr + 1

2

∫ R2

R1

r

(
W ′

r

)′

r |G|2 dr

+
∫ R2

R1

⎛
⎝

(W ′)
2

4 (W − cr )

|W − c|2

⎞
⎠ r |G|2 dr = 0 . (6)

Since ci > 0, we have

∫ R2

R1

[|D∗G|2 + k2 |G|2] r dr −
∫ R2

R1

⎛
⎝

(W ′)
2

4

|W − c|2

⎞
⎠ r |G|2 dr = 0 . (7)

Multiplying (7) by [Wmin − Wmax] and adding with (6), we get

∫ R2

R1

(W − cr + Wmin − Wmax)
[
|D∗G|2 + k2 |G|2

]
r dr + 1

2

∫ R2

R1

r

(
W ′
r

)′
r |G|2 dr

+
∫ R2

R1

⎛
⎝

(W ′)
2

4 (W − cr − Wmin + Wmax)

|W − c|2

⎞
⎠ r |G|2 dr = 0 . (8)

Since Wmin < cr < Wmax this implies that (W − cr + Wmin − Wmax) is negative
hence dropping the first integral term in the above equation, we get
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1

2

∫ R2

R1

r

(
W ′
r

)′
r |G|2 dr ≥

∫ R2

R1

⎛
⎝

(W ′)2
4 (Wmin − Wmax + cr − W )

|W − c|2

⎞
⎠ r |G|2 dr .

(9)
Multiplying (7) by cr and adding with (6), we get

∫ R2

R1

W
[|D∗G|2 + k2 |G|2] r dr + 1

2

∫ R2

R1

r

(
W ′

r

)′

r |G|2 dr

+
∫ R2

R1

⎛
⎝

(W ′)
2

4 (W − 2cr )

|W − c|2

⎞
⎠ r |G|2 dr = 0 . (10)

Substituting (9) in (10), we have

∫ R2

R1

W
[
|D∗G|2 + k2 |G|2

]
r dr ≤

∫ R2

R1

⎛
⎝

(W ′)2
4 (cr − Wmin + Wmax)

|W − c|2

⎞
⎠ r |G|2 dr .

Using Rayleigh Ritz inequality and 1
|W−c|2 ≤ 1

c2i
, we have

c2i ≤ λ [cr − Wmin + Wmax] , (11)

where λ =
(W ′)2max

4

Wmin

[
R1 π2

R2 (R2− R1)
2 + R1 k2

] .

Theorem 2 If λ < λc, where critical value λc = 3Wmax − Wmin

− 2
√
Wmax (2Wmax − Wmin), then the parabola c2i ≤ λ [cr − Wmin + Wmax] inter-

sect with Batchelor and Gill semicircle.

Proof Batchelor and Gill semicircle (cf. [4]) is given by

[
cr − Wmin + Wmax

2

]2

+ c2i ≤
[
Wmax − Wmin

2

]2

. (12)

Substituting (11) in (12), we get

c2r + [λ − (Wmin + Wmax)] cr + [WminWmax + λ (Wmax − Wmin)] ≤ 0 .

Above equation is a quadratic equation in cr , for real roots, its discriminant part
should be greater than or equal to zero, we have

λ2 − 2 [3Wmax − Wmin] + [Wmax − Wmin]
2 ≥ 0 .



Note on the Circular Rayleigh Problem 371

Fig. 1 cr vs ci (The instability region is the shaded region)

Fig. 2 cr vs ci (Parabolic instability region)

Solving the above equation, we get λ = 3Wmax − Wmin ±
2
√
Wmax (2Wmax − Wmin) . λ = 3Wmax − Wmin + 2

√
Wmax (2Wmax − Wmin) will

lead to cr < Wmin and hence

λc = (3Wmax − Wmin) − 2
√
Wmax (2Wmax − Wmin) ,

then the parabola (11) intersect with Batchelor and Gill semicircle (12).

Example 1 Let us consider example W (r) = sin(r2), R1 = 1, R2 = 2.
Wmin = 0.03925 > 0,Wmax = 0.069756 and λ = 0.003,λc = 0.00308. so, λ < λc

which implies that the parabola intersects the semi circle (Fig. 1).

Figure2 illustrate the reduction of parabolic instability region for different values
of k, as wave number k increases, the instability region reduces.
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Example 2 Let us consider example W (r) = 1 + (r − 1
2 ), R1 = 1, R2 = 2.

Wmin = 1.5 > 0,Wmax = 2.5 and λ = 0.03376,λc = 0.0839. so, λ < λc which
implies that the parabola intersects the semi circle.

Theorem 3 If ci > 0 and
(
W ′
r

)′

min > 0 then ci 2 ≤ λ
′
[cr − 2Wmin + Wmax],

where λ
′ = (W ′)

2
max

2
(

W ′
r

)′
min. R1

.

Proof Multiplying (7) by (Wmax − Wmin) and adding with (6) and since Wmin <

cr < Wmax, this implies that (W − cr + Wmax − Wmin) is positive and hence drop-
ping the first integral term, we get

1

2

∫ R2

R1

r

(
W ′

r

)′

r |G|2 dr +
∫ R2

R1

⎛
⎝

(W ′)2
4 (W − cr − Wmax + Wmin)

|W − c|2

⎞
⎠ r |G|2 dr ≤ 0 .

Since 1
|W−c|2 ≤ 1

c2i
, we have

R1

(
W ′
r

)′
min

∫ R2

R1
r |G|2 dr ≤ 1

2

( (
W ′)2

max (cr − Wmin + Wmax − Wmin)

ci 2

)∫ R2

R1
r |G|2 dr .

i.e., ci
2 ≤ λ

′
[cr − 2Wmin + Wmax] , (13)

where λ
′ = (W ′)

2
max

2
(

W ′
r

)′
min. R1

.

Theorem 4 Ifλ
′
< λ

′
c,whereλ

′
c =

(
3 − 2

√
2
)
(Wmax − Wmin), then theparabola

c2i ≤ λ
′
[cr − 2Wmin + Wmax] intersect with Batchelor and Gill semicircle.

Proof Proceeding in the same way as in Theorem 3.2, we get the proof.

4 Short Wave Stability

Theorem 5 For an unstable mode (ci > 0), it is necessary that k2 < kc2, where

kc2 =
−

[
r
(

W ′
r

)′]2

2 r
(

W ′
r

)′
(W−Ws )

.
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Proof Multiplying (1) by r
[
(r u∗)

′

r

]′

, integrating and applying (2), we get

∫ R2

R1

∣∣∣∣∣∣

[
(r u)

′

r

]′ ∣∣∣∣∣∣

2

r dr −
∫ R2

R1

⎡
⎢⎣k2 +

r
(
W ′
r

)′

W − c

⎤
⎥⎦ ur

(
(r u∗)

′

r

)′

dr = 0 . (14)

From (1), taking complex conjugate, we have

(
(r u∗)

′

r

)′

=
⎡
⎢⎣k2 +

r
(
W ′
r

)′

W − c∗

⎤
⎥⎦ u∗. (15)

Substituting (15) in (14), we have

∫ R2

R1

∣∣∣∣∣∣

[
(r u)

′

r

]′ ∣∣∣∣∣∣

2

r dr − k4
∫ R2

R1

|u|2 rdr − k2
∫ R2

R1

⎡
⎢⎣
r

(
W ′
r

)′

W − c

⎤
⎥⎦

|u|2 rdr − k2
∫ R2

R1

⎡
⎢⎣
r

(
W ′
r

)′

W − c∗

⎤
⎥⎦ |u|2 rdr −

∫ R2

R1

[
r

(
W ′
r

)′]2

|W − c|2 |u|2 rdr = 0 .

Equating real parts, we get

∫ R2

R1

∣∣∣∣∣∣

[
(r u)

′

r

]′ ∣∣∣∣∣∣

2

r dr − k4
∫ R2

R1

|u|2 rdr − 2k2
∫ R2

R1

⎡
⎢⎣
r

(
W ′
r

)′
(W − cr )

|W − c|2

⎤
⎥⎦ |u|2 rdr

−
∫ R2

R1

[
r

(
W ′
r

)′]2

|W − c|2 |u|2 rdr = 0 . (16)

Multiplying (1) by r u∗, integrating, applying (2) and equating imaginary part, we
get

− ci

∫ R2

R1

⎡
⎢⎣
r

(
W ′
r

)′

|W − c|2

⎤
⎥⎦ r |u|2 dr = 0 . (17)
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Multiplying (17) by 2k2
(
cr−Ws

ci

)
and adding with (16), we get

∫ R2

R1

∣∣∣∣∣∣

[
(r u)

′

r

]′ ∣∣∣∣∣∣

2

r dr − k4
∫ R2

R1

|u|2 rdr −
∫ R2

R1

⎡
⎢⎢⎢⎣
2k2r

(
W ′
r

)′
(W − Ws) +

[
r

(
W ′
r

)′]2

|W − c|2

⎤
⎥⎥⎥⎦ |u|2 rdr = 0 .

From the above equation, we have

2k2r

(
W ′

r

)′

(W − Ws) +
[
r

(
W ′

r

)′]2

> 0 .

Which implies that, k2 <

⎡
⎣

[
r

(
W ′
r

)′]2

−2r
(

W ′
r

)′
(W−Ws )

⎤
⎦

r = rp

.

Hence k2 < kc2 , where

kc
2 =

[
r

(
W ′
r

)′]2

−2r
(
W ′
r

)′
(W − Ws)

. (18)

Theorem 6 If k 2 > k2c , where kc
2 =

[
r

(
W ′
r

)′ ]2

−2r
(

W ′
r

)′
(W−Ws )

then the flow is stable.

Proof Follows from (18).

Example 3 Let us consider exampleW (r) = sin(r2), R1 = 1, R2 = 2. r
(
W ′
r

)′
=

−4r2 sin(r2) and r
(
W ′
r

)′
changes its sign at rs = √

π , hence the value of Ws is

zero. Which implies kc2 = 8. Therefore If k > 2.828 then the flow is stable (Fig. 3).
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Fig. 3 r vs
(
W ′
r

)′
(The Stable and Unstable modes for different values of kc)

5 Concluding Remarks

In this paper, we consider linear stability of axial flows of an inviscid, incompress-
ible, homogeneous fluid to axisymmetric disturbances. For this problem, we derived
parabolic instability region for a class of flows, and which intersect with Batchelor
and Gill semicircle under some conditions. Also, we derived a necessary condition
for stability, namely if the wave number k is greater than or equal to critical wave
number kc then the flow is stable.

Acknowledgements We are thankful to the reviewer for his suggestions in improving the presen-
tation of our paper.
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Soret and Chemical Reaction Effects
on Heat and Mass Transfer in MHD Flow
of a Kuvshinski Fluid Through Porous
Medium with Aligned Magnetic Field
and Radiation

Raghunath Kodi and Mohana Ramana Ravuri

Abstract This article explores the free convective outflow of radiativekuvshinski
fluid through an inclined upward permeable platter implanted in the porous object
in the proximity of Radiation absorption, thermal-diffusion (Soret) and aligned
magnetic field. When a crosswise magnetic domain exists, it is known that the base
is immersed in an identical permeable medium and travels at a fixed velocity in
the movement regulation. The nonlinear systems of partial differential equations
are changed to the ordinarily differential equalities by utilizing similarities trans-
formations. The changed systems of equations were then solved making use of the
perturbation methodology. The graphical representations of velocity, temperature,
and concentration distributions obtained from mathematical solutions. Additionally,
examine the effect of several specifications of the skin interference, the rate ofwarmth
transference in the frame of the Nusselt number, and the mass transference rate at the
surface as measured by the Sherwood number. It was observed that progressing the
buoyancy and Soret specifications increased the velocity distribution while dimin-
ishes magnetic field specification. Temperature declined when the Prandtl number
and Radiation absorption has raised, whereas concentration diminished when the
Schmidt number and chemical reaction specification were progressed.
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1 Introduction

The flows of the non-Newtonian fluids are increasing considerably owing to plen-
tiful practical submissions in manufactures as well as industrially procedures. Exam-
ples of non Newtonian fluids are molten plastic, blood, ketchups, grease, artificially
fiber, paints, and certain oily liquids, in addition to numerous others. These fluids
violate Newton’s law of viscosity. Those liquids were extremely glutinous those did
expose their important property of elasticity. Those models of liquids are important
in compositely process, polymers depolarization, bubbles absorptions, as well as
boiling points, etc. The second-grade fluid exhibited the effects of the natural stress
as well as cannot predict the shear thin in addition to shear thicken phenomenon. But
a model of the third ordered liquids can predicts together the natural stresses as well
as the shear thin as well as the shear thicken phenomenon evenly the constitutive
governing equations had more complexity. The resolutions of the specialized third
graded liquid toward the stagnation points of the unstable absorbent stretched and/or
shrinking surfaces are obtained by Naganthran et al. [1]. The phenomenon’s of incre-
ment of the thermally conductance of the liquid through scattering nano-particles
were studied by Masuda et al. [2]. Buongiorno [3] found that the Brownians move-
ment as well as thermophoresis impacts of nanofluids gave an outstanding increment
in fluids thermally conductivities. The computational resolution of nanofluids over
the stretched sheets utilizing Buongiornos modeling as well as analyzing the Brown-
ians movement as well as the thermophoresis impacts on the temperature transporta-
tion rates at the surface are obtained through Khan as well as Pop [4]. Khan et al.
[5] considered the effects of non-linearly radiating on a MHD flows of the Carreau’s
liquids over the non-linearly stretched surfaces by the convection frontier conditions.

The term “non-Newtonian” is most commonly used to describe fluids that can be
used in such diverse areas as chemical, mechanical, and biotechnological systems.
Two teams of physicists, mathematicians, and engineers (and several other individ-
uals in various locations) had differing viewpoints on the primary concept of the
Kuvshinski fluid flowwas examined due to a multitude of factors. Given the plethora
of factors to be considered in magnetic flow, the authors Seth and Bhattacharya
[6] recently addressed the new Statistical Simulation of hydromagnetic Convection
in Porous Media with higher Order Chemical reactions and Newtonian warming.
As Newtonian flow is combined with additional diffusion in non-expanding porous
media, as hypothesized by Seth et al. [7], they found a new system double-diffusive
MHDflow in the pore fluids. Seth et al. [8] decentralized the Flowwarmth andmagni-
tude variations are crucial in designing vertical-screw turbines that rotate against fluid
or natural convection. Seth et al. [9] study a consequence of Hall movement onMHD
Natural Convection in a revolving Fluid/Solid Coupling System on Study of Past-
slip non-mode of Viscoelastic Flow past. Seth et al. [10] have tackled the concept
of diffusion-controlled convection, which has imperfectly approximated the motion
of viscous fluid on rough interfaces and discovered time-dependent hydromagnetic
unsteady flow with the Hall Effect and ocean stream expands and contracts with a
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fast turning mechanism. Hari and Patel [11] have done warmth and expanse vari-
ation tests in MHD capillary-coupled capillary tube movement beyond a revolving
upright platter within a penetrable object wall at ramped temperature differences.
Akhil and Harshad [12] have recently discovered the significance of MHD on mixed
convection, a breakthrough in understanding it. Krishna et al. [13] expressed MHD
Convection outpour of Kuvshinski liquid movement an indefinite Upright permeable
Platter with thermic dispersal and radiation impacts. Krishna et al. [14] conferred
the radiating and absorbing on the MHD convection flows of nanoliquids over a
vertically travels porous plate.

The attending work is affected by the aligned magnetic domain, Soret conse-
quence, Radiation and Kuvshinski liquid specification on MHD convective warmth
and mass transfer outpour of an unstable, incompressible electrically manipulating
fluid beyond a semi-unbounded inclined upright permeable platter in the existence of
chemical response and Radiation absorption. The governing equations of movement
are translated analytically by utilizing the perturbation approach. In this deconstruc-
tion, we have generalized the outcome done by Raghunath et al. [15] by evaluating
Radiation absorption and Kuvshinski liquid specification. This contemplation may
be generous in several industrial applications, such as polymer exhibition, ceramics
or glassware edibles processing, and so forth.

2 Mathematical Formulation

Regard an unstable bi-dimensional outpour of a laminar, dense, isentropic, eclec-
tically functioning, emitting, and chemically responding Kuvshinski liquid via a
permeable object beyond a semi-unbounded abrupt moving platter. In accord with
the coordinate approach, * x-axis is carried along the upright permeable platter in
the upward directive and * y-axis expected to it. The liquid is supposed to be a
gray, immersing emitting but non dispersion object. The radiative warmth instability
in the * x-supervision is regarded inconsequential analogized to that in the * y-
supervision.An invariantmagnetic specialization is spreadperpendicular to the liquid
gush approach and presumed that an influencedmagnetic area is ignored.Viscous and
Darcy antagonism spans are carried into account. The liquid belongings are presumed
to be invariant, excluding thickness deviation with temperature and concentration in
the body significance stint. The level of foreign mass is assumed to be low So that the
Dufour effect is neglected. Also, believe that the overindulgence consequences are
overlooked. The physical structure of the problem followed by Obulesu et al. [16].
Beneath the above speculations and gathering the Boussinesq expression, the border
coating equations controlling the warmth and mass transmission of a viscoelastic
liquid can be composed as (Fig. 1).

∂v∗
∂y∗ = 0 → v∗ = −v0(v0 > 0) (1)
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Fig. 1 Physical structure of
the problem

(
1 + λ

∂

∂t

)
∂u∗
∂t∗ + v ∗ ∂u∗

∂y∗ = − 1

ρ

∂p∗
∂x∗ + ϑ

∂2u∗
∂y∗2

+ gβT (T ∗ −T ∗
∞ )Cosα +

gβC(C ∗ −C∗
∞)Cosα − σ B2

0

ρ
Sin2γ u ∗ −ϑu∗

k∗

(2)

∂T∗
∂t∗ + v ∗ ∂T∗

∂y∗ = K

ρCp

∂2T∗
∂y∗2

− 1

ρCp

∂qr∗
∂y∗ + Q∗

ρCp
(C ∗ −C∗

∞) (3)

∂C∗
∂t∗ + v ∗ ∂C∗

∂y∗ = D
∂2C∗
∂y∗2

− K ∗(C ∗ −C∗
∞) + D1

∂2T∗
∂y∗2

(4)

With the connected primary along with border stipulations were,

u∗ = u∗
p, T

∗ = T ∗
w + ε

(
T ∗

w − T ∗
∞

)
en

∗t∗ ,C∗ = C∗
w + ε

(
C∗

w − C∗
∞

)
ent at y∗ = 0

u∗ → u∗
∞ = U0

(
1 + sen

∗t∗), T ∗ → T ∗
∞ C∗ → C∗

∞ as y∗ → ∞ (5)

The continuity equation renders that V* is either an invariant or some position of
time, hence supposing that.

v∗ = −V0
(
1 + A ε en

∗t∗) (6)

where A is a real optimistic invariant, ε and Aε are smallish than unity, V0 is the scale
of the suction velocity, which has a non-zero optimistic invariant.

Beyond the border layer, Eq. (2) gives

− 1

ρ

∂p∗
∂x∗ = ∂U∞

∂t∗ + υ

k∗U
∗
∞ + σ B2

0

ρ
U ∗

∞ Sin2γ (7)

We assess an arithmetical prototype for an optically delicate limit gray gas near
equaliser in the layout presented by Cramer and Pai [17]. Later Grief et al. [18]
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∂qr∗
∂y∗ = 4

(
T ∗ − T ∗

w

)
I (8)

where I =
∞∫
0
Kλω

(
∂ebλ
∂T

)
ω
dλ, Kλω the absorption specification at the wall and ebλ is

Planck’s specification.
To formalize the arithmetical embodiment of the physical concern, familiarise the

subsequent non-dimensional amounts and specifications

u = u∗
U0

, y = U0 y∗
ϑ

, T = T ∗ −T ∗∞
T ∗
w − T ∗∞

,C = C ∗ −C∗∞
C∗

w − C∗∞
,Pr = μρCp

kT
, Sc = ϑ

D
, M = σ B20ϑ

ρU2
0

,

Gr = ϑgβ(T ∗
w − T ∗∞)

U 3
0

,Gm = ϑgβ∗(C∗
w − C∗∞)

U 3
0

, K = U 2
0 K

∗
0

ϑ2
, t = t ∗U 2

0

ϑ
,

Kr = ϑK ∗
C

U 2
0

, R = 16a∗v2σT ∗3∞
kU 2

0

, Q = Q1v

U 2
0

, S0 = D1(T ∗
w − T ∗∞)

ϑ(C∗
w − C∗∞)

, R = 4ϑn∗

U 2
0

(9)

The non-dimensional form of the equalizations (2), (3) and (4) are

(
1 + λ

∂

∂t

)
∂u

∂t
− ∂u

∂y
= ∂2u

∂y2
+ Gr θ Cosα + Gm φ Cosα −

(
1 + λ

∂

∂t

)
ξ u

(10)

∂θ

∂t
− ∂θ

∂y
= 1

Pr

∂2θ

∂y2
+ Qφ − Rθ (11)

where ξ = (
1
k + M uSin2γ

)

∂φ

∂t
− ∂φ

∂y
= 1

Sc

∂2φ

∂y2
+ S0

∂2φ

∂y2
− Krφ (12)

The connected border circumstances are given by

u = Up θ = 1 + εent φ = 1 + εent , at y = 0

U → U∞ = 1 + εent , θ → 0, φ → 0 as y → ∞ (13)



382 R. Kodi and M. R. Ravuri

3 Method of Solution

The equalizations (11)–(13) are the partial differential arrangement that can’t be
decrypted in sealed conditions. Regardless, these can be decoded by consoli-
dating them into regular differential equations utilizing the subsequent perturbation
approach. Now describe the velocity, temperature, and concentration disbandments
in stints of harmonic and non-harmonic processes as

U (y, t) = u0(y) + εu1(y)e
nt + O

(
ε2

)
T (y, t) = θ0(y) + εθ1(y)e

nt + O
(
ε2

)
C(y, t) = φ0(y) + εφ1(y)e

nt + O
(
ε2

)
(14)

Covering Equalization (15) into equalizations (11)–(13), and correlating the
harmonic and non-harmonic stints, and overlooking themore elevatedmandate stints
of ε, acquire the subsequent teams of equations of ordering zero and one.

3.1 Zero Order Terms

u′′
0 + u′

0−ξ u0 = −Gr cosα θ0 − Gm cosα φ0 (15)

θ ′′
0 + Pr θ ′

0 + Pr Qφ0− R Pr θ0 =0 (16)

φll
0 + Sc φl

0 − ScKφ0 = −Sc Sr θ ll
0 (17)

3.2 First Order Terms

u′′
1 + u′

1−(ξ + n) u1 = −Gr cosα θ1 − Gm cosα φ1 (18)

θ ′′
1 + Pr θ ′

1 − n Pr θ1 − Pr Q φ1 + Pr R θ1 = −PrA θ ′
0 (19)

φll
1 + Sc φl

1 − Sc (K + n) φ1 = −AScφl
0 − Sc Sr θ ll

1 (20)

The corresponding boundary conditions are

u0 = Up, u1 = 0, θ0 = 1, θ1 = 1, C0 = 1, C1 = 1 at y = 0

u0 = 1, u1 = 1, θ0 → 0, θ1 → 0,C0 → 0,C1 → 0 as y → ∞ (21)
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Solving Eqs. (15)–(20) under the boundary conditions (21), the following
solutions are obtained

φ0 = A3 exp(−m1y) + A4 exp(−m3y) (22)

θ0 = exp(−m1y) (23)

u0 = 1 + A9 exp(−m5y) + A10 exp(−m3y) + A11 exp(−m5y) (24)

φ1 = A5 exp(−m1y) + A6 exp(−m2y) + A7 exp(−m3y) + A8 exp(−m4y) (25)

θ1 = A1 exp(−m1y) + A2 exp(−m2y) (26)

u1 = 1 + A12 exp(−m1y) + A13 exp(−m2y) + A14 exp(−m3y) + A15 exp(−m4y)

+ A16 exp(−m3y) + A17 exp(−m6y) (27)

Substituting Eqs. (22)–(27) in Eq. (14), obtain the velocity, temperature and
concentration distribution in the boundary layer as follows

u =(
1 + A9 exp(−m1 y) + A10 exp(−m3 y) + A11 exp

(−m5 y
)) + εent (1 + A12 exp(−m1 y)+

A13 exp(−m2 y) + A14 exp(−m3 y) + A15 exp(−m4 y) + A16 exp
(−m5 y

) + A17 exp(−m6 y)
) (28)

θ = exp(−m1y) + εent (A1 exp(−m1y) + A2 exp(−m2y)) (29)

φ = A3 exp(−m1y) + A4 exp(−m3y) + εent (A5 exp(−m2y)+
A6 exp(−m2y) + A7 exp(−m3y) + A8 exp(−m4y)) (30)

3.3 Skin Friction

τ = −(m1A9 + m3A10 + m5A11)

−ε ent (m1A12 + m2A13 + m3A14 + m4A15 + m5A16 + m6A17)
(31)

3.4 Nusselt Number

Nu = −
(

∂θ

∂y

)
y=0

= −m1 − ε ent (m1A1 + m2A2) (32)
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3.5 Sherwood Number

Sh = m1A3 + m3A4 + ε ent (m1A5 + m2A6 + m4A7 + m5A8) (33)

4 Results and Discussion

The consequence of the Grashof numeral on the velocity silhouettes is caught in
Fig. 2. A proliferation in Gr contributes to an upsurge in velocity when all different
specifications in the velocity domain are held unchanging. Also, it is detected that
as we push away from the platter, the consequence of Gr is not that influential. The
adjusted Grash of numeral Gm on the velocity silhouettes is memorialized in Fig. 3.
A proliferation in Gm is seen to exploit the velocity to rise. Also, it is noticed that as
we push far away from the platter, it is caught that the outcome of Gm is discovered
to be not that influential.

The consequences of the magnetic domain specification on the velocity dispersal
silhouettes across the border coating are exemplified in Fig. 4. The outcome of

Fig. 2 The consequence of
thermal Grash of number
(Gr) specification on velocity

Fig. 3 The consequence of
Mass Grash of number (Gr)
specification on velocity
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Fig. 4 The consequence of
Magnetic field (M)
specification on velocity

raising magnetic domain specification M diminishes the velocity issuance across
the bordering coat. This is because the intro of a transverse magnetic domain stan-
dard to the outpour movement compels the trend to create a drag squad due to
Lorentz power, retarding the velocity silhouettes. It can be glimpsed in Fig. 5 that
gradient of inclination (α) diminishes the consequence of the buoyancy power due to
thermal disbandment. Hence, the enterprising significance to the liquid diminishes
as a outcome velocity of the liquid declines. The impact of the aligned magnetic
domain specification in the velocity silhouette is portrayed in Fig. 6. It is regarded that
the velocity lessens with an enlargement aligned magnetic domain (γ) specification.
Figure 7 depicts the consequence of the permeability specification (k) on the velocity
disbandment silhouettes from which it evolves transparent that as the permeability
specification (k) raises, the velocity gains along with the border layer consistency,
which is anticipated since when the hollows of the permeable medium evolve more
expansive, the resistivity of the medium may be overlooked. Figure 8 exhibits the
consequences of Soret numeral (Sr) on the velocity domain; it is encountered that
the velocity expands with an expansion in Sr.

Figure 9 exemplifies the radiation absorption specification consequence on the
border layer’s temperature silhouettes. As the radiation absorption specification

Fig. 5 The consequence of inclined angle (α) specification on velocity
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Fig. 6 The consequence of Aligned magnetic field (γ) specification on velocity outlines

Fig. 7 The consequence of
Permeability of porous
media (k) on velocity
outlines

Fig. 8 The consequence of
Permeability Soret (Sr)
specification on velocity
outlines

expansions, temperature dispersals rise when the additional physical specifications
are designated. Figure 10 portrays the consequence of Prandtl numeral (Pr) on
temperature silhouettes in existence of some established fluids such as Hydrogen
(Pr = 0.68), Air (Pr = 0.71), Carbon dioxide (Pr = 0.76) and Electrolytic solution
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Fig. 9 The consequence of radiation absorption (Q) specification on temperature outlines

Fig. 10 The consequence of
Prandtl number (Pr)
specification on temperature

(Pr= 1). This sculpture regarded that enlargement in the Prandtl numeral lessens the
temperature of the outpour domain at all matters. Due to the proportion of swiftness
diffusivity to thermic diffusivity. Figure 11 depicts the temperature disbandment on
the radiation specification (F). This sculpture exhibits that the temperature lessens
with an accumulation in the Radiation Specification.

Figure 12 depicts Concentration silhouette for distinct significances of Schmidt

Fig. 11 The consequence of
radiation parameter (F)
specification on temperature
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Fig. 12 The consequence of
Schmidt number (Sc)
specification on
concentration

numeral Sc, delivers that growth in Sc declines the concentration silhouette. Phys-
ically, this is accurate because the wetness hazes can possess a definitive concen-
tration area, whereas hydrogen can be utilized to preserve an adequate concentra-
tion area. Figure 13 exemplifies the concentration silhouettes for distinct matters of
Soret numeral Sr. As witnessed from this chart, the concentration of species declines
with the importance of the accumulation of the Soret number. Figure 14 depicts the

Fig. 13 The consequence of
Soret number (Sr)
specification on
concentration

Fig. 14 The consequence of
Chemical reaction (K)
specification on
concentration outlines
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convincing of the chemical response influence on concentration. This mannequin
viewer’s concentration declines with an accumulation in the significances of the
chemical retort specification.

The interpretation in skin-friction specification, the rate of warmth transmission in
the physique of Nusselt numeral, and the rate of mass transmission in the physique of
Sherwoodnumeral formiscellaneous specification are dissected viaTables 1, 2, 3. For

Table 1 Skin friction

M γ Gr Gm Q Kr τ (previous)
Obulesu et al. [16]

τ (previous)
Raghunath et al. [15]

τ

1 π/6 5 5 0.5 0.8 0.0985 0.0927 0.0827

1.5 0.1745 0.1680 0.1370

2 0.1985 0.1851 0.1881

π/4 0.1247 0.1254 0.1881

π/3 0.2876 0.2897 0.2819

7.5 1.2479 1.2654 1.2862

10 2.5478 2.4785 2.4898

7.5 −1.7854 −1.6754 −1.6192

10 −3.4578 −3.3324 −3.3212

−0.6478 −0.6782 −0.6470

0.0457 0.0467 0.0827

0.2 −0.3547 −0.3457 −0.3673

0.4 −2.4785 −2.4578 −2.4396

1.0 0.2478 0.2547 0.1968

1.5 0.3245 0.3245 0.2660

16.1475 16.1547 16.5628

20.4789 20.4578 20.5053

24.4521 24.4577 24.1451

Table 2 Nusselt number

Q Pr R Nu (previous)
Obulesu et al. [16]

Nu (previous)
Raghunath et al. [15]

Nu (present)

0.2
0.4
0.6

0.71
0.71
0.71

2
2
2

−1.7575
−1.6785
−1.5782

−1.6765
−1.6093
−1.5381

−1.6897
−1.6797
−1.5370

0.1
0.1
0.1

0.25
0.71
7.0

2
2
2

−0.2478
−1.7210
−9.3547

−0.2512
−1.7088
−9.3225

−0.2896
−1.7820
−9.4271

0.1
0.1
0.1

0.71
0.71
0.71

1
3
5

−1.3478
−1.9874
−2.4007

−1.3372
−1.9969
−2.4559

−1.3823
−1.9856
−2.5880
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Table 3 Sherwood Number

Q Kr Sr Sh (previous)
Obulesu et al. [16]

Sh (previous)
Raghunath et al. [15]

Sh (present)

0.2
0.4
0.6

0.5
0.5
0.5

2
2
2

0.4785
0.5478
0.5367

0.5868
0.5586
0.5286

0.5457
0.4577
0.5247

0.1
0.1
0.1

2
4
6

2
2
2

−0.0874
0.6712
3.6874

−0.0722
0.6003
3.6683

−0.0687
0.6154
3.7857

0.1
0.1
0.1

05
0.5
0.5

1
3
5

0.2101
0.9875
1.6780

0.2501
0.9504
1.6507

0.2155
0.9851
1.7514

the reality of our work, to analogize our consequences with the existent consequences
of Raghunath et al. [15] in the scarcity of permeable object and heat conception. Our
result arises to be in exceptional arrangement with the present consequences.

5 Conclusion

From the current examination, the subsequent findings can be illustrated:

1. The liquid velocity supplementswhen theGrashof numeral (Gr), alteredGrashof
numeral (Gm), the Soret numeral (Sr), the permeable media (k) proliferation.

2. The liquid velocity diminishes with an accumulation aligned magnetic domain
specification (γ), chemical reaction specification (K), and the angle of inclina-
tion specification (α).

3. The liquid temperature diminishes with the consequence of the Prandtl numeral
(Pr), radiation specification (R), and enhanced when increases of radiation
absorption specification (Q).

4. The concentration declines with enhancing of Soret numeral (Sr) chemical
reaction specification (Kr) and the Schmidt number (Sc).
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Effect of Reversible Reaction
on Concentration Distribution of Solute
in a Couette Flow

Nanda Poddar , Subham Dhar , and Kajal Kumar Mondal

Abstract A multiple-scale homogenization technique is employed in the current
research to show the dispersion phenomena in a Couette flow where the solute
may undergoes a reversible phase exchange between the immobile phase (station-
ary boundary bed phase) and mobile phase (fluid phase). Analytical solutions are
obtained to view the influences of retardation factor and phase exchange kinetics on
transport coefficient as well as in the two-dimensional longitudinal and transverse
concentration distributions. Effects of several transversal position and dispersion
time on longitudinal real concentration and the impact of different downstream sta-
tions on transverse concentration distributions are also determined. It is seen that
with the increment of Damkohlar number the effective dispersivity reduces.

Keywords Homogenization technique · Dispersion · Couette flow · Reversible
reaction · Phase exchange kinetics

1 Introduction

The dispersion of solute affected by reversible reaction ismotivated for its huge appli-
cations in the fields of biological, environmental and chemical engineering. Due to
its practical importance, the researchers has paid attention to study the influence of
reversible reaction on the transport of tracer in flows in recent days. Sir Taylor [1]
presented solute dispersion process through a tube in his pioneer work. He intro-
duced an approximate solution which was valid for large dispersion time under some
certain limiting conditions. Then after, Aris [2] dispelled those restrictions employ-
ing the method of moments for the solution of advection-diffusion equation. Later,
Chatwin [3] accuired an asymptotic series solution of advection-diffusion equation
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for a pipe. Mei et al. [4] introduced a multi-scale asymptotic homogenization method
to determine the dispersion coefficient which is also valid for longer dispersion time
in compare to diffusion time. By applying this technique, to investigate the solute
transport phenomena, it is observed that longitudinal real concentration, transverse
concentration and mean concentration distributions can be found simultaneously.
Bandyopadhyay andMazumder [5] analyzed the scalar transport phenomena in gen-
eralized Couette flow by the method of moments. Afterwards, Ng and Yip [6] and
Ng and Bai [7], Mazumder and Paul [13], Barik and Dalal [14] studied the effect
of reversible sorptive exchange in open channel flow and oscillatory Couette flow
respectively. In recent time, several researchers such as Wu and Chen [8], Barik and
Dalal [9], Poddar et al. [10], Dhar et al. [11] and Das et al. [12] applied multiple-scale
homogenization theory for study the dispersion phenomena of solute through various
flow geometry to show the impacts of different flow parameters.

The study of dispersion process of tracers with reversible reaction in steady Cou-
ette flow is investigated using homogenization technique for the first time. The main
purpose of the present research is to view the effect of reversible phase exchange
kinetics between the fluid phase and the stationary boundary bed in a simple Couette
flowby employing themulti-scale homogenization technique. In view of the previous
literature survey, it is found that, this is the first time in which the study on dispersion
of solute is performed for a simple Couette flow for finding the dispersion coefficient,
longitudinal real concentration and transverse concentration together. The analytical
expressions for dispersion coefficient and real concentration distribution are obtained
to inspect the impacts of reversible phase exchange kinetics, retardation factor, time
of dispersion and other flow parameters on them. The current analytical result is
compared with the results of Bandyopadhyay and Mazumder [5] and Ng and Bai [7]
for confirmation of validation. It is seen that, in absence of the retardation factor, the
present result of dispersion coefficient of the solute is exactly equal with those of
[5, 7].

2 Formulation of the Problem

2.1 Velocity Profile

For the current research problem an one-dimensional laminar, viscous, incompress-
ible Couette flow is considered between two infinite parallel plates. The plates are
separated by a distance h. The x̄ axis and ȳ axis are taken along the longitudinal and
transversal directions respectively in a Cartesian coordinate system. It is assumed
that the lower plate is situated at ȳ = 0 and it is at rest, however the upper plate
oscillates with a constant characteristic velocity U in its own plane. Neglecting the
pressure gradients, momentum equation reduces to
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d2ū

d ȳ2
= 0, (1)

with boundary conditions

ū(ȳ) ȳ=0 = 0 and ū(ȳ) ȳ=h = U. (2)

The analytical solution for velocity distribution in Couette flow is

ū = U
ȳ

h
, (3)

2.2 Governing Equation and Boundary Conditions

Consider the dispersion of reactive species through the above mentioned flow (see
Fig. 1). It is assumed that the tracer material is fully mixable in the flow of fluid.
A portion of tracer concentration is flows with the fluid and the rest stay at the
the boundary during the flow. The mobile phase or fluid phase is the phase where
concentration moves with the flowing fluid and the immobile phase is that in which
the tracer retains at the boundary.

The dispersion problem of concentration of the solute, when it released into the
above mentioned Couette flow, is given by:

∂C

∂ t̄
+ ū

∂C

∂ x̄
= D

(
∂2 C

∂ x̄2
+ ∂2 C

∂ ȳ2

)
, 0 < ȳ < h, (4)

where,C(x̄, ȳ, t̄) is the solute concentration (mass of reactive contaminant dissolved
per bulk volume of the fluid) of the fluid phase t̄ is the time and D is the molecular
diffusivity.

Fig. 1 Systematic diagram of Couette flow
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Consider a uniform and instantaneous release of solute with mass Q at the cross-
section of x̄ = 0 at time t̄ = 0, the initial condition can be taken as

C(x̄, ȳ, 0) = Q

h
δ

(
x̄

h

)
(5)

where, δ(x̄) is the Dirac delta function.
The boundary conditions respectively given as

D
∂C

∂ ȳ
= 0, at ȳ = h (6)

D
∂C

∂ ȳ
= ∂Cs

∂ t̄
= γ(θ̄C − Cs), at ȳ = 0 (7)

where,Cs is the immobile phase concentration (mass of reactive contaminant retained
per unit area of channel bed surface), γ is the reversible reaction rate and θ̄ is the
retention factor or partition coefficient that relates the concentrations of mobile and
immobile phases.

Since, the tracer material can not move at infinity, the upstream and downstream
conditions are given by

C(x̄, ȳ, t̄)|x̄+→±∞ = 0 (8)

3 Multi-scale Method of Homogenization

3.1 Scales Selection

In order to find the solution of convection diffusion equation three different time
scales are taken as Mei’s multi-scale homogenization technique, related with two
scales of length h (the channelwidth) and L (relative length of the tracer cloud). These
are T0, T1 and T2, where, T0 = h2/D as the diffusion time across the channel width,
T1 = L/U as the convection time across the characteristic length and T2 = L2/D is
the diffusion time along longitudinal direction. The general expression of the ratio
of three distinct time scales is given by

T0 : T1 : T2 = 1 : 1
ε

: 1

ε2
(9)

where ε = h
L (� 1) can be taken as perturbation parameter.
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3.2 Dimensionless Governing Equation and Velocity Profile

On introduction of the dimensionless parameters

x = x̄

L
, y = ȳ

h
, u = ū

U
, t = Dt̄

h2
, Pe = Uh

D
, Da = γh2

D
, θ = θ̄

h
, (10)

where Pe, Da, θ are the Peclet number,Damkohler number and dimensionless reten-
tion parameter respectively.

Then the concentration transport equation and the associate stationary conditions
is reduces to

∂C

∂t
+ εPeu

∂C

∂x
= ε2

∂2C

∂x2
+ ∂2 C

∂y2
, 0 < y < 1, (11)

∂C

∂y
= 0, at y = 1, (12)

∂C

∂y
= ∂Cs

∂t
= Da(θC − Cs), at y = 0. (13)

The dimensionless velocity is defined as

u = y. (14)

3.3 Homogenization

Mei’s homogenization technique [4] is employed for the asymptotic analysis. The
expansion of mobile and immobile concentration into multi-scale are

C = C (0) + εC (1) + ε2 C (2) + O(ε3), (15)

and
Cs = C (0)

s + εC (1)
s + ε2 C (2)

s + O(ε3), (16)

On the basis of discussion of Sect. 3.1 the fast, medium and slow time variables are
taken as

t0 = t, t1 = εt, t2 = ε2t. (17)

The original time derivative becomes, according to the chain rule

∂

∂t
≡ ∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
(18)
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Substitution of Eqs. (15) and (18) into Eqs. (11)–(13) results in

(
∂C (0)

∂t0
− ∂2 C (0)

∂y2

)
+ ε

(
∂C (0)

∂t1
+ ∂C (1)

∂t0
+ uPe

∂C (0)

∂x
− ∂2 C (1)

∂y2

)
+ ε2

(
∂C(0)

∂t2

+∂C (1)

∂t1
+ ∂C (2)

∂t0
+ uPe

∂C (1)

∂x
− ∂2 C (0)

∂x2
− ∂2 C (2)

∂y2

)
+ O(ε3) = 0, 0 < y < 1,

(19)

∂C (0)

∂y
+ ε

∂C (1)

∂y
+ ε2

∂C (2)

∂y
+ O(ε3) = 0 at y = 1, (20)

and

∂C (0)

∂y
+ ε

∂C (1)

∂y
+ ε2

∂C (2)

∂y
+ O(ε3) = ∂C (0)

s

∂t0
+ ε

(
∂C (0)

s

∂t1
+ ∂C (1)

s

∂t0

)

+ε2
(

∂C (0)
s

∂t2
+ ∂C (1)

s

∂t1
+ ∂C (2)

s

∂t0

)
+ O(ε3) = Da

(
θC (0) − C (0)

s

)

+ε
(
Da

(
θC (1) − C (1)

s

)) + ε2
(
Da

(
θC (2) − C (2)

s

)) + O(ε3) at y = 0. (21)

Using this perturbation analysis, for leading order (O(1)) the general solution of
C (0) is given by

C (0) = C (0)
0 (x, t1, t2) +

∞∑
n=1

Re
[
C (0)
n (x, t1, t2)e

inπy
]
e−n2π2t0 . (22)

The solution can be considered

C (0) = C (0)
0 (x, t1, t2) (23)

On omitting the reliance of C (0) on y, the stationary condition from (21) (leading
order (O(1))) gives

C (0)
s = θC (0)

0 (24)

Since, the time scale t0 is larger than the another time scale t1, the derivative with
respect to t0 is negligible, for first order (O(ε)) the perturbation problem becomes

∂C (0)

∂t1
+ uPe

∂C (0)

∂x
= ∂2 C (1)

∂y2
, 0 < y < 1, (25)

we define section average function 〈 f 〉 of a function f with respect to y as

〈 f 〉 =
∫ 1

0
f dy (26)
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Now taking this section averageofEqs. (25) subject to the condition fromperturbation
analysis, we get

∂C (0)

∂t1
+ Pe

〈u〉
R

∂C (0)

∂x
= 0, (27)

here R = 1 + θ is the retardation parameter.
Subtracting (27) from (26), which suggest the following substitutions

C (1) = Pe A(y)
∂C0

∂x
(28)

C (1)
s = Pe As

∂C0

∂x
(29)

On comparing terms related with ∂C (0)

∂x , the function A(y) is found to be governed by

d2 A

dy2
= u − 〈u〉

R
, 0 < y < 1, (30)

with the stationary conditions

d A

dy
= 0, at y = 1, (31)

d A

dy
= θ〈u〉

R
= Da(θA − As), at y = 0, (32)

and
〈A〉 = 0. (33)

Solving the above equations, we get

A = y3

6
− y2

4R
− 1

2

(
1 − 1

R

)
y + 5

24
− 1

6R
(34)

As = 5R

24
− 3

8
− 1

6R
+ 1

2Da

(
1 − 1

R

)
(35)

From second order (O(ε2)) perturbation analysis the effective transport equation is
given by

∂C (0)

∂t
+ εPe

〈u〉
R

∂C (0)

∂x
= ε2

(
1

R
− P2

e

〈uA〉
R

+ P2
e

〈u〉As

R2

)
∂2 C (0)

∂x2
, (36)

using (14) and (34) one can easily get



400 N. Poddar et al.

〈uA〉 = 1

30
− 1

16R
− 1

6

(
1 − 1

R

)
+ 1

2

(
5

24
− 1

6R

)
. (37)

In termsof newvariables τ = T , ξ = x̄
h − Pe

〈u〉R
T with the help of initial andboundary

conditions, the solution of (36) is given by

C (0) = 1√
4πDT T

exp

(
− ξ2

4DT T

)
, (38)

where

DT = 1

R
− P2

e

〈uA〉
R

+ P2
e

〈u〉As

R2
(39)

is the dispersion coefficient.
The explicit form of the dispersion coefficient is

DT = 1

R
− P2

e

R

( −7

240
+ 1

48R

)
+ P2

e

2R2

(
5R

24
− 3

8
+ 1

6R

)
+ 1

2Da

(
1 − 1

R

)

(40)
In the similar manner of (28) and (29) one can easily find

C (2) = P2
e B(y)

∂2 C (0)

∂x2
, (41)

C (2)
s = P2

e Bs
∂2 C (0)

∂x2
. (42)

On comparing the terms related with ∂2C (0)

∂x2 , we have

d2B

dy2
=

(
u − 〈u〉

R

)
A − 〈uA〉

R
+ 〈u〉As

R2
, 0 < y < 1, (43)

with the boundary conditions

dB

dy
= 0, at y = 1, (44)

dB

dy
= θ〈uA〉

R
− 〈u〉As

R2
= Da(θA − As), at y = 0, (45)

and
〈B〉 = 0. (46)

Solving the above equations, we get
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B = y6

30
− y5

60R
− 1

24

(
1 − 1

R
− 1

4R2

)
y4 + 1

24

(
5

6
+ 1

3R
− 1

R2

)
y3

+
(

7

240
− 1

8R
+ 1

12R2

)
y − 691

20160
− 177

1440R
(47)

Bs = − 691R

20160
+ 1769

20160
− 25

288R
+ 1

30R2
− 1

Da

(
7

240
− 1

8R
− 1

12R2

)
(48)

when Pe > 100 the longitudinal diffusion is usually disregarded. Therefore the the
dispersion coefficient becomes

DT ≈ DTa (49)

where

DTa = 〈uA〉
R

+ 〈u〉As

R2
(50)

is called the apparent dispersion coefficient, which is depending on θ and Da.
Also the real concentration distribution is obtained in new Pe independent system
{η/Pe,CPe}.

For validation the result, the limiting case (θ = 0 or R = 1) of apparent dispersion
coefficient is compared with the previous result of Ng & Bai and Bandyopadhyay &
Mazumder.

In the case of θ = 0 or R = 1 the dispersion coefficient becomes

DTa = 1

120
, (51)

which is Taylor dispersion coefficient for simple Couette flow. It is exactly same
result as of limiting case of dispersion coefficient as Bandyopadhyay and Mazumder
[5] and Ng and Bai [7].

4 Results and Discussion

How the dispersion coefficient changes with the sorptive partition coefficient (θ)
and kinetics (depending on Da) are sketched in Fig. 2. It is observed that lower
kinetics of sorptive exchange i.e. when Da is larger, dispersion coefficient is smaller.
It is remarkable to note that if the phase exchange kinetics is mild i.e. Da � 1,
the dispersion coefficients are large in comparison to that of the phase exchange
kinetics is fast i.e. Da > 1. The reason behind this as the phase exchange kinetics
is slow that is rate of reversible reaction is less so the solute restrained with the
flow as a result dispersion coefficient is large, on the other way when the phase
exchange kinetics is large, the rate of reversible reaction is high which absorbs the
solute more so the dispersion coefficient is small. It is also clearly seen that with
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Fig. 2 Evolution of effective
dispersivity with retention
factor θ for different values
of Damkohler number Da
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the increases of retardation factor θ the dispersion coefficient initially increases and
after a certain value of θ it decreases. The dispersion coefficient attains their highest
values when the values of θ in between 0.2–0.4. After a critical value of θ, with
the enhancement of θ transport coefficient decreases due to the larger retardation
parameter,which reduces the tracer spreadingwith theflow. In theFig. 3a longitudinal
real concentration distribution is sketched for different transversal position with θ =
1, Da = 1, T = 1. It is observed that as transversal width increases from the lower
plate the concentration distribution move away through the longitudinal direction.
The cause behind this with the increases of transversal width from the lower plate the
velocity is increases as a result convection also increases. Effect of several dispersion
time on real concentration distribution are depicted in Fig. 3b with θ = 1, Da = 1,
y = 0.5. It is clearly obtained that as dispersion time progresses the peak of the real
concentration distribution decreases and becomesmore flatter. This is because as time
proceeds the dispersion in the longitudinal direction increases prominently due to the
combined effect of convection, diffusionof the solute.Variations of real concentration
distribution for different Damkohlar number with θ = 1, T = 1, y = 0.5 are shown
in Fig. 3c.With the enhancement of Da the peak of the real concentration distribution
increases. It occurswhen the diffusion rate ismuch slower than the reversible reaction
rate i.e. Da 
 1. As a result from the immobile phase (i.e. the lower plate) the
solute moves quickly to the flow and the tracer concentration enhances in the mobile
phase. The opposite phenomena happens when molecular diffusion rules the rate of
reversible reaction i.e. Da � 1 and it makes the real concentration distribution more
flatter also blunt. Longitudinal real concentration distribution for several values of θ
are observed in Fig. 3d with Da = 1, T = 1, y = 0.5. It is interesting to note that the
peak of the real concentration distribution of the solute decreases with the increase
of θ and after a certain value it also increases.
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Fig. 3 Longitudinal real concentration distribution for different a transversal position y, b disper-
sion time T , c different Damkohlar number Da, d different retardation factor θ

Transverse concentration distribution for various values of retardation factor is
plotted in Fig. 4a. It is seen that initiallywith the enhancement of retardation factor the
transverse concentration decreases and after a certain value as of real concentration
distribution it also enhances. Figure 4b shows the transverse concentration of the
solute at different downstream locations. It is seen that the concentration of the
solute decreases significantly as it is moving towards the downstream directions. For
all the downstream stations, the concentration of the tracer is maximum at y = 1 and
it becomes minimum at the lower plate. The reason behind it, the flow velocity is
maximum at y = 1 and minimum at y = 0.

Effect of reversible reaction on solute transport in Couette flow is sketched in
Fig. 5. It is clearly observed that in mobile phase as the Damkohlar number Da
increases the concentration of the solute agglomerated near the source. The reason
may be the faster rate of exchange between the lower plate of the channel and
fluid phase enhances the contaminant concentration in the phase of fluid. Also, the
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Fig. 4 Transverse variation of concentration profile for different values of a retardation factor, b
downstream stations
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Fig. 5 Mobile phase concentration contours for different Da = 0.5, 2, 10

Damkohlar number disproportionate with the diffusivity i.e. with the increment of
reversible phase exchange kinetics (Damkohlar number), diffusion decreases, as a
result concentration of the solute conglomerated near the source.

5 Conclusion

The solute transport phenomena in simple Couette flow with reversible reaction
which relate the phase exchange between the mobile phase and immobile phase is
investigated analytically bymulti-scale homogenizationmethod. The limiting case of
the result is compared with the established analytical result and achieved an excellent
agreement. The results shows the effect of Damkohlar number (phase exchange
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kinetics), retention factor, dispersion time on dispersion coefficient, transverse and
longitudinal real concentration distributions. Some major outcomes are as follows:
(I) with the enhancement of Da the dispersion coefficient decreases.
(II) With the increment of θ the dispersion coefficient increases and after a certain
value it is decreases.
(III) When Da 
 1 i.e. the diffusion rate is much slower than the reversible reaction
rate, the real concentration distribution of the solute increases. Opposite phenomena
occurs for Da � 1, also peak of the real concentration become blunt.
(IV) As dispersion time progresses the peak of the concentration decreases and
become flatter.
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Mathematical Analysis of Hybrid
Nanoparticles (Au − Al2O3) on MHD
Blood Flow Through a Curved Artery
with Stenosis and Aneurysm Using
Hematocrit-Dependent Viscosity

Poonam and Bhupendra K. Sharma

Abstract The current study deals with hybrid nanoparticles (Au − Al2O3/blood)
to explore the impact of hemodynamic parameters (such as wall shear stress and
resistive impedance) on unsteady MHD blood flow via a curved artery in the pres-
ence of stenosis and aneurysm. The governing momentum equation is solved using
the Crank-Nicolson method. Velocity contours for numerous parameters have been
provided to study the overall behavior of flow patterns. Comprehensive solutions
for gold and gold-aluminum oxide hybrid blood flow are presented using medi-
cally relevant hemodynamic data. The investigation shows that hybrid nanoparticles
(Au − Al2O3) have lower hemodynamic characteristics such as WSS (wall shear
stress) and resistive impedance. The findings could aid in identifying and treating
cancer, plaque rupture, the clearance of blood clots, infections, and brain aneurysms.

Keywords Curved artery · Hematocrit-dependent viscosity · Hybrid
nanoparticles · Aneurysm · Stenosis

1 Introduction

The addition of nanoparticles to blood flow in a curved stenotic artery significantly
impacts hemodynamical variables (such as WSS and impedance). Because of the
low cytotoxicity of gold nanoparticles and their inert nature, localized SPR, and
distinctive optical properties, these nanoparticles are frequently utilized as precise
cancer killers. Hybrid nanoparticles are gaining popularity due to innovations in
the treatment of numerous cardiovascular problems. Hybrid nanoparticles possess
a range of uses in biosciences, including angioplasty, cancer therapy, angiography,
and bio-nanopolymer coatings of surgical equipment. Zaman et al. [1] investigated
the effect of silver-alumina hybrid nanoparticles on blood flow through an artery
with stenosis and an aneurysm. Das et al. [2] looked into the hemodynamic and rhe-
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ological changes generated by blood-mediated hybrid nanoparticles Cu − Al2O3.
Jayanti Tripathi et al. performed simulation studies with hybrid nano blood (Au-
Ag/blood) via irregular stenosis [3]. Cardiovascular disorders are the leading cause
of death worldwide, accounting for approximately 30% of all deaths. According to
the literature, the effects of stenosis on the hemodynamics of blood going beyond
and through the tapered arterial section have been studied in many theoretical and
experimental studies. These researches can contribute to the detection and treatment
of a wide range of cardiovascular disorders. The post-stenotic blood flow is induced
as the stenosis advances due to the increased wall shear stress caused by the steno-
sis. This post-stenotic flow contributes to arterial wall weakening and post-stenotic
dilation (aneurysm). When compared to a single segment (with stenosis only), the
combined impact of various anomalies necessarily raises the chances of rupturing
these stenotic segments. Arterial curvature also affects the growth of the abnormal
segment of the atherosclerotic artery. As a result, it is a crucial geometrical param-
eter to research. With this objective in mind, Zaman et al. [4, 5] developed several
mathematical models to study the unsteady flow of blood via a curved artery with
associated stenosis and aneurysm. The majority of prior studies assumed constant
viscosity; however, viscosity is influenced by several factors, including hematocrit,
temperature, and shear rate. The hematocrit has a considerable impact onwhole blood
viscosity. Several mathematical models have been used to investigate the effects of
altering viscosity on blood flow hemodynamics. The study mentioned above did not
include hematocrit-dependent viscosity and curved arterial flow.

Nomenclature
x Axial direction B1 Pressure gradient parameter
r Radial direction Re Reynold’s Number
t Time B Uniform Magnetic Field
R∗ Radius of the curved channel Rc dimensionless radius of curvature of the artery
u Radial Velocity component v Axial velocity component
M2 Magnetic Number Q volumetric flow Rate
u0 Reference velocity P Pressure
e Systolic to diastolic pressure ratio R0 Radius of normal artery
A1 Amplitude of pulsatile component Abbreviation
A0 Amplitude of pressure gradient WSS Wall Shear Stress
Greek Letters
τw Shear stress at the wall δ Stenosis depth
σ Electrical conductivity ρhn f Density of hybrid nano-fluid
μ0 Reference viscosity φ1, φ2 Nanoparticles Concentration
μ f Blood’s viscosity λ Impedance, ωp Circular frequency

Based on our literature study, no attempt has been made to investigate the
effects of magnetic field and body acceleration on the flow of a hybrid nanofluid
(Au − Al2O3/blood) via a curved channel with stenosis and aneurysm using
hematocrit-dependent viscosity. We developed a mathematical model to examine
curvature effects, Au − Al2O3 hybrid nanoparticles, body acceleration, hematocrit-
dependent viscosity, external magnetic field on pulsatile blood flow through a curved
artery with stenosis and aneurysm. The objective of this research is to learn more
about how to cure atherosclerosis without surgery to save money on health expenses.
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2 Model Formulation

2.1 Geometry of the Model

Consider blood as an unsteady, Newtonian, laminar, viscous, incompressible fluid
moving through a stenosed curved artery with aneurysm.The uniform magnetic field
B is applied perpendicular to the axial direction. The diseased segment’s geometry
(Fig. 1) can be mathematically characterized as follows [5]:

R(x) =

⎧
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⎪⎪⎪⎩

(α∗
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,

σ ∗
i ≤ x ≤ σ ∗
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(α∗
i x − R0) Otherwise ,

(2)
where R(x) denotes the upper wall geometry of a curved artery and −R(x) denotes
the lower wall geometry. L is the length of the arterial channel, α = tanψ represents
the constriction of the diseased artery,ψ represents the tapering angle, λi denotes the
length of the diseased segment, and σ ∗

i is the length of the i th abnormal section from
the origin and δ∗

i stands for the critical height of the i th diseased section occurring
at two explicit locations given by:
x = σ ∗

1 + λ1/2, and x = σ ∗
2 + λ2/2, where the value of δ∗

i takes a positive value for
stenosis and a negative value for an aneurysm.

2.2 Governing Equations

The current flow model is illustrated by two-dimensional orthogonal curvilinear co-
ordinates (r, x). The flow velocity vector is defined as V = (u(r, x, t), v(r, x, t)),
with u and v representing the radial and axial velocity components, respectively.
Figure1 shows the geometry of a curved artery with stenosis and aneurysm.

The equations for continuity, momentum, and energy are written as:

Continuity equation

∂u

∂r
+ u

R∗ + r
+ R∗

R∗ + r

∂v

∂x
= 0. (3)
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Fig. 1 Geometrical representation of diseased artery

Momentum equations
r- direction

ρhn f

[
∂u

∂t
+ u

∂u

∂r
+ R∗v

R∗ + r

∂v

∂x
− v2

R∗ + r

]

= − ∂P

∂r
+ μhn f

[
∂2u

∂r2
+ 1

R∗ + r

∂u

∂r
+

(
R∗

R∗ + r

)2 ∂2u

∂x2

− u

(R∗ + r)2
− 2R∗

(R∗ + r)2
∂v

∂x

]

+
(
4

3

∂u

∂r
− 2

3

(
R∗

R∗ + r

∂v

∂x
+ u

R∗ + r

))
∂μhn f

∂r
,

x-direction

ρhn f

[
∂v

∂t
+ u

∂v

∂r
+ R∗v

R∗ + r

∂v

∂x
+ uv

R∗ + r

]

= − R∗

R∗ + r

∂P

∂x
+ G(t) + μhn f

[
∂2v

∂r2
+ 1

R∗ + r

∂v

∂r

+
(

R∗

R∗ + r

)2
∂2v

∂x2
− v

(R∗ + r)2
+ 2R∗

(R∗ + r)2
∂u

∂x

]

+
(

R∗

R∗ + r

∂u

∂x
+ ∂v

∂r
− v

R∗ + r

)
∂μhn f

∂r

− σhn f B
2v.

(4)
The following is the equation for the axial pressure gradient:

−∂ P̄

∂ x̄
= A0 + A1 cos(2πωpt), t > 0,

where, A1 = Amplitude of the pulsatile component, A0 = Mean pressure gradient,
ωp = 2π f p.
The initial and boundary conditions that the flow is subjected to are as follows:
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{
v = 0 at t = 0,

v = 0, at r = R and r = −R.
(5)

Here, hematocrit-dependent viscosity is considered which is illustrated as:

μ f = μ0[1 + β1h(r)], (6)

where, h(r) = hm

[

1 −
(

r
R0

)m]

, hm = maximum hematocrit at the center of the

artery.
β1 = 2.5, m = exact shape of velocity profile, m ≥ 2.

2.3 Non-dimensionalization of Governing Equations

The previous flow Eqs. (3)–(4) is non-dimensionalized using the non-dimensional
parameters listed below to evaluate numerical solutions:

r̄ = r

R0
, x̄ = x

λi
, ū = λi u

δ∗u0
, v̄ = v

u0
, t̄ = u0t

R0
,

Rc = R∗

R0
, ε = R0

λi
, Re = ρ f u0R0

μ0
, δ = δ∗

R0
,

P̄ = R2
0P

μ0u0λi
, M2 = σ f B2R2

0

μ0
.

After using non-dimensional parameter and mild stenotic condition, i.e.,
δ(= δ∗

R0
) << 1, ε(= R0

λi
) = O(1), Eqs. (3)–(4) will be reduced as:

Non–dimensional equations
∂ P̄

∂ r̄
= 0, (7)

ρhn f

ρ f
Re

∂v̄

∂ t̄
= − Rc

Rc + r̄

∂ P̄

∂ x̄
+ μhn f

μ0

[
∂2v̄

∂ r̄2
+ 1

Rc + r̄

∂v̄

∂ r̄
− v̄

(Rc + r̄)2

]

−
(

∂v̄

∂ r̄
+ v̄

Rc + r̄

)
mβ1hmr̄m−1

(1 − φ1)2.5(1 − φ2)2.5
− σhn f

σ f
M2v̄,

(8)

Pressure gradient and body acceleration are obtained as follows after non-
dimensionalization:
∂ P̄
∂ x̄ = B1(1 + e cos(c1 t̄),



412 Poonam and B. K. Sharma

where B1 = A0R2
0

μ0u0
, e = A1

A0
, c1 = 2πR0wp

u0
.

Non-dimensionalized form of associated initial and boundary conditions sub-
jected to the flow are rewritten as:

{
v̄ = 0 at t = 0,

v̄ = 0 at r = R and r = −R.
(9)

Now, the non-dimensionalized form of geometry of curved arterial channel with
stenosis and aneurysm is obtained as:

R(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 + αx)

(

1 −
(

δ

2

(

1 + cos 2π

(

x − σi − 1

2

))))

,

σi ≤ x ≤ σi + 1, i = 1, 2

(1 + αx) Otherwise ,

(10)

with σi = σ ∗
i

λi
; α = α∗λi

R0
.

In Eq. (10), the tapering parameter is α = tan(ψ), and the associated taper angle
is ψ . The following are the mathematical formulae for hemodynamical factors such
as wall shear stress, volumetric flow rate, and resistive impedance:

τw =
(

∂v̄

∂ r̄

)

r̄=R

, Q =
∫ R

−R
v̄r̄dr̄ , λ =

L

(
∂ P̄
∂ x̄

)

Q
. (11)

Hybrid nano fluid equation

μhn f = μ f

(1 − φ1)2.5(1 − φ2)2.5
,

ρhn f = (1 − φ2)[(1 − φ1)ρ f + φ1ρs1] + φ2ρs2,

σhn f = σb f

[
σs2(1 + 2φ2) + 2σ f (1 − φ2)

σs2(1 − φ2) + σ f (2 + φ2)

]

,

where

σb f = σ f

[
σs1(1 + 2φ1) + 2σ f (1 − φ1)

σs1(1 − φ1) + σ f (2 + φ1)

]

.
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3 Solution Process

Since the governing equations (8) is a non-linear partial difference equation, so a
robust numerical method is used to solve the resulting dimensionless boundary value
problem. An implicit Crank-Nicolson (an unconditionally stable) scheme based on
a finite difference approach is used for the current blood flow problem. Furthermore,
in both space and time, this technique is second-order convergent. The partial spatial
and temporal derivatives used in this method are stated as:

∂v̄

∂ r̄
= v̄k

i+1 − v̄k
i−1

2�r̄
,
∂2v̄

∂ x̄2
= v̄k

i+1 − 2v̄k
i + v̄k

i−1

(�x̄)2
,
∂v̄

∂ t̄
= v̄k+1

i − v̄k
i

�t̄
. (12)

3.1 Discretization of Governing Equations

By using the partial derivatives as given in Eq. (12), we discretize the governing
equations (8).

The following are the discretized boundary and initial conditions related with the
governing equations:

v̄k+1
1 = 0, v̄k+1

N+1 = 0, v̄1
i = 0. (13)

The spatial variable is now uniformly discretized into N + 1 discrete grid points
xi , (i = 1, 2, ..., N + 1), with �x = 1/(N + 1) as the step size. t k = (k − 1)�t
indicates the time levels, with�t representing a small increment in time. Despite the
fact that this approach is unconditionally stable for all values of �t and �x , we have
chosen�t = 10−4 and�x = 10−4 as the choices for step sizes. As previously stated,
the Crank-Nicolson approach is an implicit one, hence the governing equation (8) is
reduced to Eq. (14). It form a tri-diagonal system of equations that can be simplified
using the Tri-diagonal Matrix Algorithm.

Equation (8) corresponds to a tri-diagonal system, which can be calculated as
follows:

Ski v̄
k+1
i−1 + T k

i v̄k+1
i +Uk

i v̄k+1
i+1 = S

′k
i v̄k

i−1 + T
′k
i v̄k

i +U
′k
i v̄k

i+1 + Fk
i , (14)

where Ski , T
k
i ,Uk

i , S
′k
i , T

′k
i ,U

′k
i , Fk

i are the corresponding coefficient matrices.
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4 Results and Graphical Analysis

This mathematical investigation aims to see how hematocrit-dependent viscosity and
nanofluid hemodynamics affect blood flow via a curved artery with two aberrant seg-
ments (stenosis and aneurysm).As hybrid nanoparticles, Au and Al2O3 nanoparticles
are combined. The effect of emergent characteristics such as hematocrit-dependent
viscosity (hm), magnetic field (M2), onWSS and impedance profiles of hybrid blood
(φ1 = 0.01, φ2 = 0.01) is investigated. The Crank-Nicolson method has been used
to simplify dimensionless governing equations. The wall shear stress and impedance
profiles are computed using MATLAB algorithms for the C-N approach. The flow
patterns for different values of Rc and volume fraction of nanoparticles are studied
using velocity contours.

The computational work has been done by utilizing the default values of param-
eters as illustrated in (Table 1b).

Table 1 Thermophysical properties and Physical parameters’s values table

(a) Thermophysical properties of blood, Au and Al2O3 nanoparticles

Thermophysical properties Gold Alumina Blood

Thermal Conductivity [K (W/mK )] 314 40 0.492

Electrical Conductivity [σ(S/m)] 4.10 × 107 3.5 × 107 0.667

Density [ρ(kg/m3)] 19320 3970 1063

Thermal Expansion Coefficient [β × 10−5(K−1)] 1.4 0.85 0.18

Heat Capacitance [Cp(J/kgK )] 129 765 3594

(b) Physical parameters’s values with their sources

Parameters Ranges Sources

Magnetic Number 0–4 [6]

Maximum Hematocrit 0–2 [7]

Thermal Grashof number 0–6 [8]

4.1 Validation of the Numerical Results

The validation of our study is consummated with published work Zaman [5]
for the curved artery with stenosis and aneurysm, which is common in both the
study.The graphs (Fig. 2a, b) for dimensionless velocity profiles have been plotted for
authentication using the following set of emergent parameters: Pr = 14, Gr = 0.8,
Re = 0.5, Nr = 0, hm = 0,M2 = 0, s = 0, Rc = 3, slip parameter (α = 0), thermal
slip parameter (γ = 0), heat source or sink parameter ( β = 0), B2 = 0, B1 = 1.41,



Mathematical Analysis of Hybrid Nanoparticles … 415

Dimensionless radius of curved artery

0

0.2

0.4

0.6

0.8

D
im

en
si

on
le

ss
 v

el
oc

ity
 o

f n
an

of
lu

id

Present Work

Zaman[5]

(a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Dimensionless radius of curved artery

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
im

en
si

on
le

ss
 v

el
oc

ity
 o

f n
an

of
lu

id

Present work (Au-blood)

Zaman[5] (Cu-blood)

(b)

Fig. 2 Variation of velocity profile patterns for a Cu-blood, b Cu and Au-blood at t = 0.86 and
x = 0.7

ψ = 0, φ1 = 0.05, φ2 = 0. The published work Zaman [5] for the curved artery with
stenosis and aneurysm (which is prevalent in both studies), completes the confir-
mation of our research. The Cu-blood velocity profiles in both studies are shown in
Fig. 2a. The current paper’s velocity profile matches the published paper [5] quite
well.

The velocity profiles of Au-blood (present work) and Cu-blood [5] are compared
in Fig. 2b. There is a great match between the velocity trend in our study and the
velocity profile trend in Ref. [5]. There is a little difference in velocity profiles due to
the use of gold nanoparticles instead of copper nanoparticles since Au-blood velocity
is greater than Cu-blood velocity [9].

4.2 Velocity Contours

The varied blood flow patterns in terms of velocity contours are incorporated the
research effortsmore correctly. The influence of the curved artery’s non - dimensional
radius (Rc) on the flow patterns are shown in Fig. 3a–c, which shows that the pattern
of streamlines and circulating bolus shrinks to symmetric form as the value of Rc

increases.
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Fig. 3 Variation in blood flow patterns for different values of dimensionless radius of curved
channel, a Rc = 3, b Rc = 5, c Rc → ∞
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4.3 Resistance Impedance

The ratio of pressure drop to the flow rate is known as resistive impedance. The
study of variation in resistive impedance is quite helpful in controlling blood flow
during surgery. Figure 4a shows the variation of resistive impedance in the axial
direction for different values of the hematocrit parameter (hm). It can be observed
from the figure that flow impedance increases as the hematocrit parameter increases.
Blood viscosity increases as hm increases, blocking blood flow. The impedance vari-
ation at the stenotic neck is greater than at the aneurysm neck for varied hm values.
Figure 4b shows the temporal variation of resistive impedance for different values of
dimensionless radius of curvature of the artery. It can be noted from the figure that
impedance varies periodically as time passes. The resistive impedance decreases as
Rc grows, illustrating that the resistance to the flow in a curved artery is greater than
in a straight arterial channel. In addition, when Rc increases, the impedance profiles
become close.

The relationship between frictional resistance and maximal stenosis height for
varying lengths of the curved artery is shown in Fig. 4c. As the artery lengthens, the
resistive impedance rises. This indicates that resistive impedance in the large arteries
is higher than in the smaller arteries figure also depicts that the frictional resis-
tance increases (almost linearly) as the stenotic depth grows (owing to increased
flow obstruction, which raises flow resistance). It should also be noted that frictional
resistance is insignificant in the absence of stenosis, i.e., for (δ = 0). The impedance
variation (λ) with axial direction for different values of magnetic number is shown
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Fig. 4 Variation in impedance profile for, a hm , b time and Rc, c L with δ, d M2, e φ1, φ2
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in Fig. 4d. The figures show that when the magnetic number increases, flow resis-
tance increases. When the magnetic field intensity increases, the Lorentz force is
generated, slowing the flow and increasing the flow impedance. The influence of
the nanoparticle’s volume fraction on the flow resistance for Au − Al2O3/blood in
the axial direction is depicted in Fig. 4e. The resistive impedance increases as the
volume fraction of gold and alumina nanoparticles increases. This is very helpful the
controlling the flow rate during surgical processes.

4.4 Wall Shear Stress

Wall shear stress in arterial blood flow is described as the force per unit area applied
to the blood by the artery’s walls parallel to the local tangent plane. As we know,
arterial sections with low wall shear stress or significantly oscillating WSS are the
most susceptible to atherogenesis disorders. The atherogenic process is influenced
by pulsatile blood flow in the arterial system. WSS values can be determined using
velocity patterns along the artery’s walls. In Fig. 5a, the variation ofWSS in the axial
direction for different values of magnetic number is illustrated. In the absence of an
applied magnetic field, i.e., M2 = 0, the wall shear stress is greatest, and when M2

increases,a fall in wall shear stress can be observed. For a given value of M2, WSS in
the aneurysm region is higher thanWSS in the stenotic region becauseWSS changes
with stenotic depth. The variation in wall shear stress with the depth of the stenosis
for various values of magnetic number is depicted in Fig. 5b. The flow is subjected to
an opposing Lorentz force as M2 increases, reducing velocity and wall shear stress.
It is also noted that when maximum stenotic depth rises, WSS also reduces. WSS
decreases when blood lipids increase, which is consistent with Zhang’s experimental
findings [10]. Figure 5c shows WSS time series plots in stenotic and aneurysm sites
for various values of Rc. The radius of curvature has a significant impact on theWSS
profile towards the artery’s outer wall. It is revealed that if the channel has a small
radius of curvature or a high curvature, the WSS drops, which is consistent with
the findings of the [11]. The curved artery’s shape is reduced to a straight channel
(Rc = ∞ or curvature of channel = 0) when the value Rc grows, meaning that the
straight artery’s WSS remains higher than the curved artery (Rc < ∞). Figure 5d
depicts the effect of volume fraction of nanoparticles on the axial variation of WSS
profile for Au − Al2O3/blood. The WSS decreases as the volume fraction of gold
and alumina nanoparticles increases indicating that the effects of both nanoparticles
on WSS are the same.
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Fig. 5 Variation in WSS for, a M2 with x , b M2 with δ, c Rc with time, d φ1, φ2

5 Conclusion

The current study examined the effects of addition of nanoparticle on blood flow
through a curved artery with minor stenosis and aneurysm circumstances having
variable viscosity. This model aims to increase the delivery of medicine in a con-
fined curved artery using nanoparticles. The results shows that Impedance to the flow
decreases with increment in Rc, which signifies that resistive impedance is greater
for curved artery than for straight channel. WSS decreases when the concentration of
gold and alumina nanoparticles increases. Impedance increases when the concentra-
tion of gold and alumina nanoparticles increases. It is found that the high curvature
or small radius of curvature of the channel leads to a decrease in the WSS.
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Response Behavior of a Coaxial Thermal
Probe Towards Dynamic Thermal
Loading

Anil Kumar Rout, Niranjan Sahoo, Pankaj Kalita, and Vinayak Kulkarni

Abstract An in-house fabricated fast responsive coaxial thermal probe has been
utilized to capture the transient temperature response in the exhaust of an internal
combustion (IC) engine. The high temperature coaxial thermal probe (ht-CTP) is
fabricated from chromel and constantan in the laboratory scale. A constantan wire
(of 0.91 mm diameter and 15 mm length) is placed inside the chromel wire (of
3.25 mm diameter and 10 mm length) and clubbed together with an epoxy which
also acts as an insulator separating the two. The junction between them is prepared
at the surface using abrasion method. The sensor is flush mounted at the exhaust
pipe of an IC engine at a distance of 20 mm from the exhaust manifold. In a 4 stroke
engine, there is only one exhaust stroke in a complete cycle; therefore, the valve at
the exhaust also allows gases one time in a cycle. Therefore, the heat load (contained
in the exhaust gas) is also imparted on the sensor in a periodic manner. Hence, by
measuring the consecutive temperature response, the cycle time duration has been
measured and the engine RPM has been calculated. The RPM is compared with the
recorded RPM by the RPM sensor. Along with this, the initial temperature signal
is processed for heat flux estimation through analytical method which provides an
estimate about the magnitude of transient heat flux imparted on the sensor by the
exhaust gas of the engine.

Keywords Thermocouple · Transient temperature · Coaxial thermal probe · IC
engine · Cycle time · Transient heat flux
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1 Introduction

The information about transient thermal parameters such as “Transient temperature”
and “Transient heat flux” are required for the efficient design and modeling of many
engineering systems and sub-systems.Very limited sensors are used to capture instan-
taneous temperatures. One prominent sensor amongst them is coaxial thermal probe
(CTP). Due to fast response, CTP is capable to record instantaneous events in tough
conditions like shock tubes, shock tunnels, Gas turbines etc. [1]. Here, the capability
of the sensor has been evaluated in other tough conditions like the exhaust flow of
internal combustion engine. Nevertheless, the temperature information in combus-
tion chamber of IC engines, the temperature at the exhaust is the vital parameter
necessary for upgrading the IC engines.

The information about the temperature in combustion chamber of IC engines is
very important which was commonly measured by using sound waves. A transient
sound pulse was the main medium for the measurement. The transient sound pulse
was applied inside the test chamber and the difference in time between the generated
pulsed signal and transmitted pulsewas calculated [2]. Anothermethodwas preferred
for the measurement of average gas temperature where, a steady temperature state
was allowed to establish between a thin metallic wire and the gas temperature [3,
4]. Fast response thermocouples were employed for the measurement of transient
temperature as well as heat flux through different types of thermocouples [5–10]. The
information about both the input and output helps in proper thermodynamic analysis
of the engine. Hence, the temperature information at the outlet of engine is also an
important aspect in the learning of IC engine features [7, 8 and 11]. Some information
about the engine phenomena can be obtained from the exhaust gas analysis and also
from the exhaust gas temperature [9]. The unsteadiness of the temperature signal can
imply some information about the combustion phenomena taking place inside the
combustion chamber [10, 12]. It is also observed that the surface temperature and
heat flux obey similar pattern as observed inside the cylinder but, the trend varied
when it is measured away from the exhaust [13].

The exhaust valve of an internal combustion engine opens periodically after a
certain interval of time corresponding to the engine speed. These CTPs (if mounted
at any place in the exhaust line of the engine) can respond to the exhaust hot gas that
goes outside through the exhaustmanifold after the completionof combustionprocess
inside the engine cylinder. The time difference between the successive responses can
be measured and the cycle time corresponding to the engine RPM can be calculated.
Therefore, the present work focus on in-house fabrication of a high temperature
thermal probe (ht-CTP) for engine and its application in the engine exhaust to capture
transient temperature. Subsequently, the information of cycle time is obtained from
the temperature response and compared with the cycle time calculated using the
value from RPM sensor of the engine. The heat flux imparted on the sensor by the
exhaust gas is also estimated using the analytical modeling of the sensor.
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2 Fabrication and Calibration of the Thermal Probe

A coaxial probe (ht-CTP) has been fabricated in-house using chromel and constantan
as primary elements. For the present case, a (chromel-constantan) thermocouple
(CTP) is used due to its high sensitivity, called as “thermo-power” sensor. Constantan
wire (0.91 mm diameter, 15 mm length) and chromel wire (3.25 mm diameter,
10 mm length) are considered for fabrication of E-type CTP probe. The inner
element (constantan wire) is put into the outer element (chromel) concentrically
and symmetrically along with a minimal insulation thickness (~20 µ) in between
them. An adequate thickness of epoxy is maintained for its whole length leaving
the sensing surface unaffected. The epoxy acts as both electrical insulator as well as
binder for both the thermo-elements providing strength to the sensor. Proper care has
been taken to make sure that the inner element is straight, co-axial and there is no
linkage between the thermo-elements throughout the length to avoid any possibility
of multiple connections. A suitable length (10 mm) of the probe is chosen for proper
operation and experimentation.An alumina based adhesive is used as insulatingmate-
rial which can sustain a temperature of 1500 °C. The expected temperature at the
exhaust of the IC engine for the present experimental condition is nearly 400 °C and
an E-type probe can record a temperature up to 700 °C. Therefore, these probes can
be used to capture the response confidently. The linkage amongst the two elements is
prepared at the measuring surface using scratching technique. Same wires (Chromel
and constantan) are spot welded for further instrumentation purpose. The schematic
of the fabricated probe is mentioned in Fig. 1. The output from the probe is in the
form of electromotive force (EMF) which is generated in response to the change in
temperature obeying Seebeck effect. Therefore, to convert voltage into temperature,
a correlation is required which is commonly known as the sensitivity of the probe.
A furnace based set up is used to calibrate the probe where the probe is placed along
with a reference temperature probe in a heating environment and both the temper-
ature and EMF are noted for the change in temperature. The slope of the EMF and
Temperature plot provides the sensitivity value which for the present case found to
be 59 µV/ºC [1].

Fig. 1 Schematic of the
high temperature probe
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3 Experimental Engine Set Up

The sensor is mounted at the exhaust of a four stroke research engine running with
petrol. The engine is equipped with eddy current type water cooled dynamometer
attached to a loading unit. Piezo type pressure transducer is attached for pressure
measurement and Pt-100 RTD for temperature measurement. All the outputs from
the sensors equippedwith the engine are directly linked toDAS(Make:NIUSB-6210,
16-bit). It is awater cooled Research Engine setup-single cylinder, four stroke,Multi-
fuel VCR enginewith bore and stroke dimensions of 87.5mm* 110mm. the capacity
is 661 cc and connecting rod length as 234 mm. It has a compression ratio which can
be adjusted in between 6–10. The engine has a power rating of 4.5 KW at 1800 rpm,
Range of speed: 1200–1800 rpm. Along with the mentioned characteristics, the
engine test bench was equipped with many general purpose attachments.

• Fuel tank with a capacity of 15 lit. attached to a measuring tube
• Orifice meter and mano-meter attached air box.
• Rotameters for water flow measurement
• Load sensor indicator
• Calorimeter and its attachments

3.1 Experimental Procedure

The in-house fabricated CTP is exposed to the hot engine by product (hot air) at
the exhaust of the engine. The CTP is mounted at 20 mm distance from the exhaust
manifold (Fig. 2). The sensor is flush mounted so that the flow is not disturbed by the
presence of the sensor and the sensing surface is nicely exposed to the heat load. The
sensor is linked to a DAS (Make: NI, Model: NI-9223/ cDAQ-9178) to record high
frequency voltage signal at a rate of 100,000 samples per second. The compression
ratio is set to 10 which is almost one end for petrol engine. The engine is run for

Fig. 2 Schematic
highlighting the sensor
location
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Fig. 3 Temperature response from the probe; a voltage signal; b Cycle time calculation

two different RPMs (1500 & 1700) with full throttle condition and responses are
captured (Fig. 3).

4 Results and Discussion

The voltage signals are recorded using a NI based data acquisition system with the
help of lab view interface. The signal is filtered with low pass filter and the results
are plotted for 1500 and 1700 RPM in Fig. 3a. The sensor indicates a sharp rise
at the arrival of the hot gases and then the subsequent cooling phase. This cycle
repeats itself as the exhaust valve of the engine opens after a certain interval of time
corresponding to the RPM of the engine. According to the speed of the crank shaft,
the time required for 4 stroke cycles can be evaluated using Eq. 1. The experimental
cycle time is calculated using the time span between two sharp rise in signal and is
compared with the theoretical cycle time (Fig. 3b). The experimental and theoretical
cycle time is tabulated in Table 1. A deviation of 0.12 and 0.25% are observed in
1500 RPM and 1700 RPM, respectively.

Cycletime , t (ms) = 2 × 60

RPM
× 1000 (1)

Table 1 Comparison of
experimental and theoretical
cycle time

RPM Experimental cycle
time (ms)

Theoretical cycle
time (ms)

Deviation (%)

1500 79.9 80 0.12

1700 70.4 70.58 0.25
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4.1 Transient Heat Flux Calculation Using Analytical
Approach

Owing to the unavailability of any straight relation for the transient heat-flux calcula-
tion for short duration experiments, it is calculated through appropriate modeling of
the sensor. The time-varying temperature obtained from the experiment is employed
for the estimation of heat-flux. The process is carried out by considering one-
dimensional heat conduction in a semi-infinite substrate. With appropriate assump-
tions, and boundary conditions, the heat conduction equations take a shape asmention
in Eq. 2.

·
qs(t) = β√

π

t∫

0

1√
t − τ

d{Ts(τ )}
dt

dτ ; β = √
ρck (2)

The form presented in Eq. (2) need to be discretized for the temperature. Here, a
cubic spline of third order is used to discretize the temperature signal as explained
below [6, 7]:

[Ts(τ )]CS = C1,i + C2,i (τ − τi ) + 1

2
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T where, τ = St t is the scaled time and St is the scaling factor that is considered
as unity in this case. The coefficients are given by Eq. 4.
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dτ
(4)

Finally, the surface heat flux is estimated using Eq. 5.
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+C3,i

2
P2
i + C4,i

6
P3
i ; Vi = dFi

dτM+1
; Wi = d2Fi
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(5)

The heat flux signals for all the inputs are acquired from the discretized tempera-
ture signals using Eq. (5). More information regarding discretization can be obtained
from the reference [14]. Referring to Eq. 2; the magnitude of thermal product (β) for
a sensor is required for the calculation of the heat-flux. Researchers adopted various
magnitudes for the thermal product. It is tough to access the actual percentage from
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Fig. 4 Heat flux estimation for 0.5 s after the initial rise; a RPM = 1500; b RPM = 1700

individual thermo-element in the preparation of the junction. Hence, here the thermal
product magnitude is considered with 50% stake from individual component and the
magnitude calculated is 8650.2 Jm−2 K−1 s−0.5 [15]. The heat-flux signals are drawn
in Fig. 4. Considering the restrictions in the validity of one dimensional heat conduc-
tion and semi-infinite substrate assumption, the signal is considered for 0.5 s after
from the initial rise of the temperature for the heat flux estimation. As inferred from
Fig. 4, the peak magnitude of heat flux is in the range of 500 ± 50 kW/m2 for 1500
RPMand 550± 50 kW/m2 for 1700 RPM. The exhaust valve opens once in a cycle (4
strokes) and the sensor receives an instantaneous heat load. Therefore, the peak heat
flux of nearly similar magnitude indicates the nearly equivalent combustion process.

5 Conclusion

The coaxial probe is exposed to the exhaust gas coming out from the engine exhaust
manifold. The cyclic nature of heat load is well captured by the probe. From the
experiment it is clear that the sensor is able to capture cycle time correctly. The
transient temperature data is used to estimate the heat content getting lost as by
product in terms of heat flux. As expected, the peak magnitude of cyclic heat flux
are nearly equal and are in the range of 500 ± 50 kW/m2 for 1500 RPM and 550
± 50 kW/m2 for 1700 RPM. The aim of the study can be extended to engines in
moving vehicles where a sensor can be mounted somewhere in the line of exhaust
and some amount of exhaust air may be blown over it. From the response, the driver
can get the on time engine health monitoring.



428 A. K. Rout et al.

References

1. Rout, A.K., Sahoo, N., Kalita, P.: Effectiveness of coaxial surface junction thermal probe for
transient measurements through laser based heat flux assessment. Heat Mass Transf. 56(4),
1141–1152 (2020)

2. Livengood, J.C., Rona, T.P., Baruch, J.J.: Ultrasonic temperature measurement in internal
combustion engine chamber. J. Acoust. Soc. Am. 26(5), 824–830 (1954)

3. Nagao, et al.: Measurement of cylinder gas temperature of internal combustion engines. Bull.
JSME 13(64), 1240–1246 (1970)

4. Touloukian, Y.S.: Specific heatmetallic elements and alloys. In: Touloukian, Y.S. (ed.) Thermo-
Physical Properties of Matter; TPRC Data Series, vol. 4. IFI/Plenum Press, New York (1970).

5. Assanis, D.N., Badillo, E.: On heat transfer measurements in diesel engines using fast-response
coaxial thermocouples. J. Eng. Gas Turbines Power, Trans. ASME 111, 458–465 (1989)

6. Rakopoulos, C.D., Mavropoulos, G.C.: Experimental instantaneous heat fluxes in the cylinder
head and exhaust manifold of an air-cooled diesel engine. Energy Convers. Manage. 41, 1265–
1281 (2000)

7. Kar, et al.: Instantaneous exhaust temperaturemeasurements using thermocouple compensation
techniques. SAE Technical Paper Series 2004-01-1418 (2004)

8. Kee, et al.: Fast response exhaust gas temperature measurement in IC engines. SAE Technical
Paper Series 2006-01-1319 (2006)

9. Wang, X., Stone, C.R.: A study of combustion, instantaneous heat transfer, and emissions in a
spark ignition during warm-up. J. Automob. Eng., IMechE, Part-D 222, 607–618 (2008)

10. Hotta, S.K., Sahoo, N., Mohanty, K., Kulkarni, V.: Ignition timing and compression ratio as
effective means for the improvement in the operating characteristics of a biogas fueled spark
ignition engine. Renew. Energy 150, 854–867 (2020)

11. Sujith, R.I., Unni, V.R.: Dynamical systems and complex systems theory to study unsteady
combustion. Proc. Combust. Inst. 38(3), 3445–3462 (2021)

12. Marr, et al.: A fast response thermocouple for internal combustion engine surface temperature
measurements. Exp. Therm. Fluid Sci. 34, 183–189 (2010)

13. Mavropoulos, G.C.: Unsteady heat conduction phenomena in internal combustion engine
chamber and exhaust manifold surfaces. Heat Transf.-Eng. Appl. 283–308 (2011)

14. Taler, J.: Theory of transient experimental techniques for surface heat transfer. Int. J. HeatMass
Transf. 39(17), 3733–3748 (1996)

15. Agarwal, S., Sahoo, N., Singh, R.K.: Experimental techniques for thermal product determina-
tion of coaxial surface junction thermocouples during short duration transient measurements.
Int. J. Heat Mass Transf. 103, 327335 (2016)



Soret and Dufour Effects on Thin Film
Micropolar Fluid Flow Through
Permeable Media

G. Gomathy and B. Rushi Kumar

Abstract In this study, thin films of micropolar fluid flowing through porous media
are analysed over a stretching sheet with heat effect subjected to thermophoresis.
We assume that micropolar fluid is the base fluid and that the plate moves linearly
and is subjected to reference temperature and concentration variations. An analysis
of fluid flow over a steady stretching sheet utilizes the Soret and Dufour effects has
been conducted in this study. Through the use of similarity variables, basic fluid flow
equations are transformed to a nonlinear set of coupled equations with boundary
conditions. MATLAB bvp4c solver is used to solve the problem. Graphs are used
to illustrate the impact of physical parameters on the flow profiles that demonstrate
the velocity, concentration, and temperature of thin fluid films. A series of tables
illustrate the effects of dimensionless parameters on skin friction coefficients, Nusselt
and Sherwood numbers. It is observed that increasing permeability parameter results
in the decline of the velocity profile. With increasing Dufour and Soret number,
temperature and concentration profiles are observed to increase, respectively.

Keywords Micropolar fluid · Dufour-Soret effect · Thin film · Thermophoresis

1 Introduction

In recent decades, micropolar fluids have gained significant attention within the engi-
neering community due to the limitations ofNewtonian fluids. Particles in suspension
prevent Newtonian fluids from describing fluid flow. In contrast, micropolar fluids
can simulate fluid in the presence of dust particles. Micropolar fluids are present
in animal blood, dumbell-shaped molecules, liquid suspensions, and polymer flu-
ids. The subject of thin film flow has recently become prominent in research. In
chemical techniques, thin film fluids are used to make heat exchangers, requiring
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in-depth expertise in motion. Coating of wires and fibres, polymer preparation are
possible applications. Tiny particles moved from a hot surface onto a cold one dur-
ing the extrusion process, is called thermophoresis. As dust particles move along the
temperature gradient in gases, they exert thermophoretic force, and the acceleration
achieved is referred to as thermophoretic velocity.

Eringen’s [4] theory of micropolar fluids took into consideration the microscopic
influence caused by the local structure and micro-rotation of fluid particles and
believed to have a mathematical model explaining non-Newtonian fluid behaviour.
Thermophoresis involves transfer of small particles to cold surfaces, while hot sur-
faces resist particle transfer; thus, a layer of free particles occurs around hot surface,
as determined by Goldsmith and May [7]. Kim and Lee [10] analytically studied
a semi-infinite vertical rotating porous plate with electrically conducting viscous
incompressible micropolar fluid. They looked at the effect of different thermophysi-
cal and flow parameters and how they affected the temperature and flow fields in the
boundary layer. A thermophoresis effect is observed in the free convective flow of
boundary layer over a permeable barriers was reported by Chamka et al. [5, 9]. The
aim of Rashidi et al. [15] was to develop a complete and accurate method to predict
thermal transfer of micropolar fluid across a porous media with radiations based on
Homotopy analysis. Several investigations regarding micropolar fluids with different
physical structures and thermal radiations were discussed in [1, 3, 6, 8, 16].

Omowaye et al. [13] developed an analytical method to flow of an incompressible
viscous fluid that flows past a semi-infinite plate that is embedded in porous media.
They presumed fluid properties would remain unchanged except for the viscosity
of a fluid, which is inversely related to temperature. Shah et al. [17] conducted a
study over an unsteady stretched surface that included flow of thin film with effects
of Dufour and Soret, which is reported to be the first to incorporate such effects
in flow of thin film fluid. Tripathy et al. [18] numerically studied the interaction
of a chemical reaction on the convective flow, mass transfer and heat capacity of a
micropolar fluid over a stretched sheet embedded in porousmedia in the presence of a
volumetric non-uniform heat source. Palwasha et al. [14] investigated thin film flow
of fluid in three dimensions with different thermophysical properties of boundary
layers. Vakkar Ali et al. [2] examined the flow of a thin film of micropolar fluid
through porous layers subjected to thermophoresis and heat effect past a stretching
plate under the assumption that the micropolar fluid itself is the base fluid. Usman
et al. [19] investigated variations in Brownian motion, Hall current, thermophoresis
and couple stress within the steady convection MHD flow of micropolar nanofluid to
understand non-isothermal heat transfer from non-linear walls. Megahed et al. [11]
addressed the laminar boundary layer flow, heat transfer problem for MHD fluid
caused by a stretched sheets which is unsteady with prolonged heat flux. Naseem et
al. [12] computed Soret and Dufour effects applied on radiated material on a porous
stretched surface with thermal conductivity that depends on temperature.

To the author’s knowledge, there are no studies in the literature that analyze the
combined effects of Soret and Dufour of micropolar fluid in porous media over a
stretching sheet in the presence of thermal radiation and thermophoresis along with
magnetic field. Thus in the current work, we have considered thin films of micropolar
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fluid flowing through a porous media over a stretching sheet with combined effects
of Soret and Dufour in the presence of thermal radiation and thermophoresis along
with magnetic field. Once the boundary layer PDE are transformed into ODE, they
are solved numerically using shooting technique along with RK4 method. Graphs
are made to illustrate the impact of physical parameters like permeability, inertia
coefficient, microrotation, thermophoretic, radiation, and dimensionless numbers
such as Prandtl, Dufour and Soret on the flow profiles that demonstrate velocity,
concentration and temperature of thin fluid flow.

2 Mathematical Formulation

Let us consider the flow of thin micropolar fluids on a stretched plate, stretched at
a linear velocity Uw = ax . The constant a > 0 indicates the stretching rate, while x
represents the flow direction. The film is chosen to have a uniform thickness δ, while
the nature of the medium is porous, as indicated by Fig. 1. During stretching, the
temperature of the stretching plate is set at Tw and the concentration at Cw. On the
surface, Tw = T0 − Tre f

(Uwx
2ν

)
andCw = C0 − Cref

(Uwx
2ν

)
are presume to differwith

distance x relative to the plate. In addition to the temperature T0 and concentration
C0 at the plate, there are constant reference temperature Tre f (0 ≤ Tref ≤ T0) and
concentrationCref (0 ≤ Cref ≤ C0) as well.Moreover, it is speculated that the liquid
film grips and releases radiation. On the x-axis the radiative flux is taken into account,
while the y-axis is ignored.

Our suggested model’s basic flow equations are:

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ kc

∂σ

∂y
+ νϕ

K
(Uw − u) + Crϕ(U 2

w − u2), (2)

G1
∂2σ

∂y2
− 2σ

∂u

∂y
= 0, (3)

Fig. 1 A schematic diagram of the physical system
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u
∂T

∂x
+ v

∂T

∂y
= k

ρcp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

+ DmkT
cscp

∂2C

∂y2
, (4)

u
∂C

∂y
+ v

∂C

∂y
= Dm

∂2C

∂y2
+ DmkT

Tm

∂2T

∂y2
− ∂(VTC)

∂y
. (5)

For the two-dimensional flow of a liquid film, these are the boundary conditions:

u = Uw = ax, v = 0, σ = 0, T = Tw,C = Cw at y = 0

∂u

∂y
= 0,

∂T

∂y
= 0,

∂σ

∂y
= 0,

∂C

∂y
= 0, v = δx at y = δ

(6)

where thermophoretic velocity VT can be taken as VT = − k1ν

Tre f

∂T

∂y
, k1 represents

thermophoretic coefficient.
As defined by Rosseland, the Rosseland approximation is:

qr = −4σ ∗

3k∗
∂T 4

∂y
(7)

As a result of Taylor’s series, T 4 can be rewritten as follows:

T 4 = 4T 3
1 T − 3T 4

1 (8)

Equation (4) can be reduced using Eqs. (7) and (8) as follows:

u
∂T

∂x
+ v

∂T

∂y
= k

ρcp

∂2T

∂y2
+ 16σ ∗T 3

1

3ρcpk∗
∂2T

∂y2
(9)

Incorporating transformations for the non-dimensional variables f , g, θ , φ and the
similarity variable ’η’ as,

u = Uw f ′(η), v = −
(

νUw

2x

) 1
2

f (η), σ =
(
Uw

2νx

) 1
2

Uwg(η), η =
( a

2ν

) 1
2
y

(10)

T = T0 − Tref

(
Uwx

2ν

)
θ(η), C = C0 − Cref

(
Uwx

2ν

)
φ(η) (11)

When Eq. (10) and (11) are substituted into Eqs. (1)–(6), the basic governing equa-
tions with boundary conditions can be written as follows:

f ′′′ + f f ′′ − 2 f ′2 + Δg′ + 1

Mr
(1 − f ′) + Nr(1 − f ′2) = 0, (12)
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Grg′′ − 2(2g + f ′′) = 0, (13)

θ ′′(1 + 4

3
R) − Pr(2 f ′θ − f θ ′) + 2PrDuφ′′ = 0, (14)

φ′′ + Sc(Sr − τφ)θ ′′ + Sr( f − τθ ′)φ′ − 2Scφ f ′ = 0. (15)

f (0) = 0, g(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

f ′′(1) = 0, f (1) = 0, g′(1) = 0, θ ′(1) = 0, φ′(1) = 0.
(16)

here f , g, θ , andφ represents dimensionless velocity,micro-rotation angular velocity,
temperature and concentration function respectively. β represents fluid film non-
dimensional thickness. Also Δ, Mr , Nr , Gr , R, τ represents parameter of vortex-
viscosity, permeability, inertia coefficient micro-rotation, radiation, thermophoretic
respectively, and Pr , Du, Sc, Sr , represents Prandtl, Dufour, Schmidt, and Soret
number.

From a mathematical perspective, these parameters can be expressed as follows:

Δ = kc
ν

; Mr = Ka

2ϕν
; Nr = 2ϕCrUw

a
; Gr = G1a

ν
; R = 4σ ∗T 3

1

kk∗

Du = DmkT
cscpν

Cw − C0

Tw − T0
; Sc = ν

Dm
; Sr = DmkT

νTm

Tw − T0
Cw − C0

; τ = k1U 2
w

2νa

Skin friction coefficient, Nusselt number and Sherwood number are defined as fol-
lows

C f =
μ

(
∂u

∂y

)

y=0

1

2
ρU 2

w

, Nu =
−kx

(
∂T

∂y

)

y=0

k(Tw − T0)
, Sh =

−Dmx

(
∂C

∂y

)

y=0

Dm(Cw − C0)
with vari-

ables in Eq. (10), we can determine expressions for non-dimensional skin friction,
Nusselt number and Sherwood number as follows:

C f

(
Re

2

)1

2 = f ′′(0), Nu

(
Re

2

)−
1

2 = −θ ′(0), Sh

(
Re

2

)−
1

2 = −φ′(0)

(17)

Re = Uwx

ν
stands for Reynold’s number based on stretching velocity.
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3 Solution Approach

A finite-difference algorithm in MATLAB, which is called the bvp4c solver, is used
to solve boundary value problems (12)–(15), using boundary conditions (16). As
an adaptive mesh solver, this solver utilizes residual control to select the mesh and
control the error. Using this solver, we can create differential equations by using the
odefun function, boundary conditions by using the bcfun function, and initial
guesses by using the solinit function. By converting the boundary value problem
(BVP) to an initial value problem (IVP) and reducing the higher order ODE’s to first
order ODE’s, this code could be applied to the boundary value problem (BVP). First
order ODE’s are transformed as follows:

f = f (1); f ′ = f (2); f ′′ = f (3);

f ′′′ = − f (1) f (3) + 2( f (2))2 − Δ f (5) − 1

Mr
(1 − f (2)) − Nr(1 − ( f (2))2);

g = f (4); g′ = f (5);

g′′ = 1

Gr
[2(2 f (4) + f (3))];

θ = f (6); θ ′ = f (7);

θ ′′ = 1

(1 + 4
3 R) − 2PrDuSc(Sr − τ f (8))

[Pr(2 f (2) f (6)) + 2PrDuSr( f (1)

−τ f (7)) f (9) − 4PrDuSc f (2)];

φ = f (8); φ′ = f (9);

φ′′ = 1

2PrDuSc(Sr − τ f (8)) − (1 + 4
3 R)

[Pr Sc(Sr − τ f (8))(2 f (2) f (6) − f (1) f (7)

+(1 + 4

3
R)Sr( f (1) − τ f (7)) f (9) − 2Sc(1 + 4

3
R) f (2) f (8)]

4 Results and Discussion

An investigation has been conducted on the thin film motion of a micropolar fluid
through porous media. It includes the effects of energy radiation and thermophoresis,
as well asDufour-Soret effect through a stretching plate. Numerical computations are
performed for Mr = Nr = Gr = R = Sr = Du = Sc = Δ = τ = 1, Pr = 0.71.
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Table 1 Values of f ′′(0) with Mr , Nr and Δ variation

Mr Nr Δ f ′′(0)
0.8 0.3 0.3 2.302991

0.9 0.3 0.3 2.330854

1.0 0.3 0.3 2.353966

0.8 0.3 0.3 2.353966

0.8 0.4 0.3 2.317195

0.8 0.5 0.3 2.282024

0.8 0.3 0.3 2.282024

0.8 0.3 0.4 2.265702

0.8 0.3 0.5 2.249314

Table 2 Values of θ ′(0) with R, Pr and Du variation

R Pr Du −θ ′(0)
0.3 0.3 0.3 1.562135

0.4 0.3 0.3 1.221797

0.5 0.3 0.3 1.003682

0.3 0.3 0.3 1.003682

0.3 0.4 0.3 1.292026

0.3 0.5 0.3 1.561992

0.3 0.3 0.3 1.561992

0.3 0.3 0.4 1.471936

0.3 0.3 0.5 1.381899

Tables 1, 2 and 3, shows the computed value of skin friction coefficient, local Nus-
selt number, and Sherwood number. Figures 2, 3, 4, 5, 6, 7, 8, 9 and 10 illustrates
velocity, temperature, and concentration profiles of flow of thin film with variation
over physical parameters.

Based on different values of permeability, Fig. 2 displays the variation in veloc-
ity distribution. The presence of a porous medium causes higher fluid flow restric-
tion, which subsequently causes deceleration of fluid. Thus, increasing permeability
decreases fluid velocity due to fluid motion resistance. According to Fig. 3, higher
values of the inertia coefficient lead to increased fluid velocity, as it is directly related
to fluid motion. Figure 4 depicts the inertia parameter varies on the profile of micro-
rotation, which is dimensionless. A decrease in the microrotation profile is observed
when the inertia parameter increases. From Fig. 5, the microrotation profile of fluid
film decreases with increasing its parameter due to the inverse relationship between
the microrotation and viscosity parameter is depicted. Thus, as Gr increases, the
viscosity of the fluid decreases.
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Table 3 Values of φ′(0) with Sc, Sr and τ variation

Sc Sr τ −φ′(0)
0.3 0.3 0.3 1.267877

0.4 0.3 0.3 1.624919

0.5 0.3 0.3 1.957370

0.3 0.3 0.3 1.957370

0.3 0.4 0.3 1.896043

0.3 0.5 0.3 1.835538

0.3 0.3 0.3 1.197621

0.3 0.3 0.4 1.178786

0.3 0.3 0.5 1.160595

Fig. 2 Velocity profile with
Mr variation

Fig. 3 Velocity profile with
Nr variation
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Fig. 4 Microrotation profile
with Nr variation

Fig. 5 Microrotation profile
with Gr variation

Fig. 6 Temperature profile
with R variation
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Fig. 7 Temperature profile
with Du variation

Fig. 8 Concentration profile
with Sc variation

Radiation from thermal sources is always included as a special case in the energy
equation. Temperature rise with higher thermal radiation parameter is illustrated in
Fig. 6. Physically, a rise in temperature can be attributed to the rate at which energy
is transported in the fluid. As shown in Fig. 7, the Dufour number is influenced
by the temperature profile. Dufour number refers to how much thermal energy is
transferred in a flow due to concentration gradients. Consequently, concentration
gradients become larger at higher Dufour number. Therefore, mass diffusion takes
place faster, and energy is transferred from one particle to another at a higher rate.
This causes the temperature profile to rise.

In Fig. 8, Schmidt number is weighed against concentration. Due to the inverse
relationship between Sc and molecular diffusivity, increasing Schmidt numbers
decrease the concentration field. Schmidt numbers characterize the flow of fluids
where momentum dissipation is concurrent with mass dissipation. Figure 9 illus-
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Fig. 9 Concentration profile
with Sr variation

Fig. 10 Concentration
profile with τ variation

trates the effect of the Soret number on φ. A higher Soret number causes the vis-
cosity to increase, and φ to accelerate. Due to the increase in Soret number, the
difference in temperature between hot and the surrounding fluids increases, so the
temperature rises, which results in a higher concentration. Figure 10 illustrates the
relation between concentration and thermophoretic parameter. As the thermophoretic
parameter increases, the nondimensional concentration profile also increases.



440 G. Gomathy and B. Rushi Kumar

5 Conclusion

In this study, the flow of thin films past a stretched sheet through a permeablemedium
is investigated. A micropolar fluid served as base fluid, influenced by thermal radia-
tion and thermophoresis. Bvp4c solver is used to solve coupled nonlinear differential
equations modelled in this study. We have displayed and discussed how the physical
parameters affect the profile of velocity, concentration, and temperature. Accordingly
the problem outcomes are:

• Increase in permeability causes a decrease in fluid velocity due to fluid motion
resistance.

• Higher values of the inertia coefficient lead to increased fluid velocity.
• A decrease in the microrotation profile is observed when the inertia parameter
increases.

• Due to the growth of energy and transport, the temperature field increases as the
thermal radiation parameter increases. This elevates the temperature profile.

• It was found that temperature field enhancement occurs when Dufour number
increases.

• It has been found that, as Schmidt number increases, themass diffusivity decreases,
which decreases the concentration.

• Observations shows that an increase in Soret number boosts concentration field.

The subject of thin film flow has recently become prominent in research. In chemical
techniques, thin film fluids are used to make heat exchangers, which necessitate an
in-depth expertise inmotion. This study has possible applications in coating of wires,
fibres, and polymer preparation industries.

References

1. Abo-Eldahab, E.M., Ghonaim, A.F.: Radiation effect on heat transfer of a micropolar fluid
through a porous medium. Appl. Math. Comput. 169(1), 500–510 (2005)

2. Ali, V., Gul, T., Afridi, S., Ali, F., Alharbi, S.O., Khan, I.: Thin film flow of micropolar fluid
in a permeable medium. Coatings 9(2) (2019)

3. Bhattacharyya, K., Mukhopadhyay, S., Layek, G., Pop, I.: Effects of thermal radiation on
micropolar fluid flow and heat transfer over a porous shrinking sheet. Int. J. Heat Mass Transf.
55, 2945–2952 (2012)

4. C., E.A.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)
5. Chamkha, A.J., Al-Mudhaf, A.F., Pop, I.: Effect of heat generation or absorption on ther-

mophoretic free convection boundary layer from a vertical flat plate embedded in a porous
medium. Int. Commun. Heat Mass Transf. 33(9), 1096–1102 (2006)

6. Das, K.: Effect of chemical reaction and thermal radiation on heat andmass transfer flowofmhd
micropolar fluid in a rotating frame of reference. Int. J. Heat Mass Transf. 54(15), 3505–3513
(2011)

7. Goldsmith, P., May, F.G.: Diffusiophoresis and Thermophoresis in Water Vapour Systems, pp.
163–194. Aerosal Science, Academic Press, London (1966)



Soret and Dufour Effects on Thin Film … 441

8. Heydari, M., Loghmani, G., Hosseini, S.M.: Exponential bernstein functions: an effective tool
for the solution of heat transfer of a micropolar fluid through a porous medium with radiation.
Comput. Appl. Math. 36, 647–675 (2015)

9. Chamkha, J.A., Pop, I.: Effect of thermophoresis particle deposition in free convectionboundary
layer from a vertical flat plate embedded in a porous medium. Int. Commun. Heat Mass Transf.
31(3), 421–430 (2004)

10. Kim, Y.J., Lee, J.C.: Analytical studies on mhd oscillatory flow of a micropolar fluid over a
vertical porous plate. Surf. Coat. Technol. 171(1), 187–193 (2003)

11. Megahed, A.M., Reddy, M.G., Abbas, W.: Modeling of MHD fluid flow over an unsteady
stretching sheet with thermal radiation, variable fluid properties and heat flux. Math. Comput.
Simul. (MATCOM) 185(C), 583–593 (2021)

12. Naseem, T., Nazir, U., El-Zahar, E.R., Algelany, A.M., Sohail, M.: Numerical computation of
dufour and soret effects on radiated material on a porous stretching surface with temperature-
dependent thermal conductivity. Fluids 6(6), 2311–5521 (2021)

13. Omowaye, A., Fagbade, A., Ajayi, A.: Dufour and soret effects on steady mhd convective
flow of a fluid in a porous medium with temperature dependent viscosity: Homotopy analysis
approach. J. Niger. Math. Soc. 34(3), 343–360 (2015)

14. Palwasha, Z., Khan, N.S., Shah, Z., Islam, S., Bonyah, E.: Study of two-dimensional boundary
layer thin film fluid flow with variable thermo-physical properties in three dimensions space.
AIP Adv. 8(10), 105318 (2018)

15. Rashidi, M., Mohimanian Pour, S.: A novel analytical solution of heat transfer of a micropolar
fluid through a porous medium with radiation by dtm-padé. Heat Transf.-Asian Res. 39(8),
575–589 (2010)

16. Rashidi, M., Mohimanian pour, S., Abbasbandy, S.: Analytic approximate solutions for heat
transfer of a micropolar fluid through a porous medium with radiation. Commun. Nonlinear
Sci. Numer. Simul. 16(4), 1874–1889 (2011)

17. Shah, Q., Gul, T., Mamat, M.B., Khan, W., Tofany, N.: Soret and dufour effect on the thin film
flow over an unsteady stretching surface. AIP Conf. Proc. 1775(1), 030088 (2016)

18. Tripathy, R., Dash, G.,Mishra, S., Hoque,M.M.: Numerical analysis of hydromagneticmicrop-
olar fluid along a stretching sheet embedded in porous medium with non-uniform heat source
and chemical reaction. Eng. Sci. Technol. Int. J. 19(3), 1573–1581 (2016)

19. Usman, A.H., Shah, Z., Humphries, U.W., Kumam, P., Thounthong, P.: Soret, dufour, and
activation energy effects on double diffusive convective couple stress micropolar nanofluid
flow in a hall mhd generator system. AIP Adv. 10(7), 075010 (2020)



Effects of Slip Velocity and Bed
Absorption on Transport Coefficient in a
Wetland Flow

Debabrata Das , Subham Dhar , Nanda Poddar , Rishi Raj Kairi ,
and Kajal Kumar Mondal

Abstract In this research work, an investigation on solute transport in a width inde-
pendent wetland flow with the appearance of the vegetation, bed absorption and
slip velocity is explored. The equations of moment are formed from the governing
convection-diffusion equation with the help of method of moments. A finite dif-
ference implicit technique is imposed to find the solution of the resultant moment
equations. The behavior of the dispersion coefficient and skewness is analyzed graph-
ically for the various values of slip parameter, inhomogeneous reaction at the bed
surface and for vegetation parameter in the wetland. It is found that the slip velocity
reduces the dispersion of the tracers in the wetland flow. The uplifted values of slip
parameter, inhomogeneous reaction rate and vegetation factor shorten the critical
time to reach the stationary state of the transport coefficient. The slip effect reduces
the asymmetry of solute distribution, while the enlarged absorption introduces asym-
metry in the tracer distribution.

Keywords Wetland flow · Slip velocity · Bed absorption · Moment method ·
Dispersivity

1 Introduction

Wetland caused by the flood of the water permanently or seasonally got remarkable
attention in last two decades for its huge application in different ecosystems. Wet-
lands are benefiting human society in different ways, such as through irrigation, flood
control, water purification, ecological restoration and biodiversity conservation etc.
Also, its play a vital role for the supply of water, climate regulation as well as for con-
taminant degradation. Aris [1] was the first who introduce the method of moments to
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observed the dispersion of the substance in fluid flowing through a tube. The erosion
of average mean concentration due to the environmental dispersion was obtained by
Zeng et al. [2] with the help of Aris’s moment method. Later, to observe the variation
of solute concentration in a width dominated flow, Wu et al. [3] applied the multi-
scale technique. Zeng et al. [4] discussed a theoretical analysis for the degeneration
of depth-averaged concentration with the combined effect of hydraulic dispersion
and ecological degradation. To examine the behavior of the vertical distribution of
solute concentration in a wetland flow, Wu et al. [5] used mean concentration expan-
sion technique. In this direction, the transport of contaminant in a width independent
wetland flow with the presence of absorption and bulk degradation was analyzed
by Wang and Chen [6]. They showed that solute cloud becomes more shrunk and
reformed with the enhancement of damping factor in presence of the bed absorption.
The homogenization method was employed byWang et al. [7] to find the solution for
spatial concentration distributions of solute and reported that non-uniformity occurs
in vertical concentration profiles for vegetation shear. In recent time, Dhar et al. [8]
investigated environmental dispersion of settling particles numerically and revealed
the effects of some important parameters on sediment transport. Further, Poddar
et al. [9] introduced integral moment method to notice the dispersion phenomena in
a time independent wetland flow and employed Hermite polynomial representation
to determine the mean concentration distribution. Ng [10] showed the influence of
wall slippage on hydrodynamic dispersion in a parallel-plate channel and observed
that keeping slip length constant in the channel, the mixing of a contaminant cloud
reduces with the boundary slip. Munoz et al. [11] employed homogenization tech-
nique to study the slippage effect on hydrodynamic dispersion of a passive tracers in
a oscillatory electro-osmotic flow.

In the present investigation, the main focus is to explore the effect of slip velocity
in awidth independent wetland flow.Afinite difference technique is employed to find
the solution of the moment equations. Further, the behavior on dispersion coefficient
and skewness for the values of slip parameter, inhomogeneous reaction andvegetation
parameter are analyzed. The novelty of the present research is to observe the slip
effect on environmental dispersion which has a wide range of application.

2 Mathematical Formulation

In general, near the phase average scale, the basic momentum equation for a wetland
flow can be considered as

ρ

(
∂U
∂τ

+ ∇ · UU
φ

)
= −∇ p − μFU + κμ∇2U + κ∇ · (L · ∇U), (1)

where U, ρ, φ, μ, τ , p, κ, F are the velocity, density, porosity, dynamic viscosity,
time, pressure, tortuosity, shear factor respectively and L is taken as momentum
dispersivity. For the shallow wetland flow, the momentum equation is expressed
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Fig. 1 Schematic diagram for the present model

with the combination of Navier-Stokes equation (single-phase flow), Darcy’s law
(porous media) and a second order derivative term for the momentum dispersion.

Here, the contaminant transport phenomena is considered in a fully exhibited
unidirectional flow, where φ,κ, F, and L are constants in the wetland flow of height
h. In the above discussed flow, with the help of Cartesian coordinate system, x∗-
axis and z∗-axis are taken along the longitudinal and transversal direction of the
flow, respectively. Where the origin is considered at one of the channel banks (See
Fig. 1). For a width independent wetland flow, width effects are not significant and
the concerned quantities are assumed as width-averaged. Equation 1 is transformed
due to the pressure gradient as

κ(μ + Lz)
d2u∗

dz∗2 − μFu∗ = dp

dx∗ , (2)

where ρ is the fluid density. For the wetland flow, the slip condition at bed surface
(z∗ = 0) with slip length Ls and the no flux boundary condition at the free surface
(z∗ = h) are respectively as,

[
Ls

du∗(z∗)
dz∗ − u∗(z∗)

]
z∗=0

=
[
du∗(z∗)
dz∗

]
z∗=h

= 0. (3)

The characteristic velocity is defined as uc = − dp
dx

W 2

μ+Lz
. Introducing the dimension-

less parameters ζ = z∗
h , ls = Ls

h , u = u∗
uc
, the general solution of Eq. (2) with the help

of boundary conditions (3) becomes,

u(z) = 1

α2

(
1 − cosh{α(z − 1)}

lα sinhα + coshα

)
, (4)

whereα
(
=

√
μFh2

κ(μ+Lz)

)
is the vegetationparameterwhich illustrates the amalgamated

action of the depth of the channel wetland, fluid viscosity, effective vegetation force,
tortuosity of the flow and the momentum dispersivity towards the vertical direction.
The space variables x∗ and dispersion time t∗ is normalized as follows,
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Fig. 2 Velocity profile for different values of vegetation and slip parameters

x = x∗

h
, t = t∗h2

κ(λ + Kz/φ)
.

The velocity distribution in a wetland flow due to different values of vegetation
parameter and slip length is shown in Fig. 2. It is noticed that with the increment
of vegetation α, velocity deceases and for high vegetation, velocity profiles behave
like a log-law profile. Moreover, when slip velocity is present in the flow, it is seen
that, near the bed surface, velocity profile slips from the initial point towards the
longitudinal direction. It is fascinated to note that as vegetation increases in the
wetland, the slip effect diminishes. Whereas for high vegetation, the effects of slip
velocity is negligible near the free surface.

When a solute with mass concentration diffusivity λ is injected in the above
mentioned flow, the concentration C∗(x∗, z∗, t∗) satisfies the following advection-
diffusion equation,

∂C∗

∂t∗
+ u∗

φ

∂C∗

∂x∗ = κ

(
λ + Kx

φ

)
∂2C∗

∂x∗2 + κ

(
λ + Kz

φ

)
∂2C∗

∂z∗2 , (5)

where Kx and Kz are the constant value known as longitudinal and transversal mass
dispersivity. The non-dimensional concentration is C = C∗

Qm/φh , where Qm is the
amount of instantaneous released mass at the cross section of x∗ = 0 and time t = 0.
The governing Eq. (5) becomes

∂C

∂t
+ Peu

∂C

∂x
= R

∂2C

∂x2
+ ∂2C

∂z2
, (6)
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where Pe = uch
κ(λφ+Kz)

and R = φλ+Kx

φλ+Kz
. Here, Peclet number, Pe is the ratio of the

characteristic time for diffusion process
(

φh2

κ(φλ+Kz)

)
to the time of the convection

process
(

h
uc

)
, and R describes the ratio of total mass dispersivity and diffusivity

along the longitudinal and transversal direction. The boundary conditions are given
by

[
κ

(
λ + Kz

φ

)
∂C

∂z∗ − β∗C∗
]
z∗=0

=
[
κ

(
λ + Kz

φ

)
∂C

∂z∗

]
z∗=h

= 0, (7)

and their dimensionless forms are,

[
∂C

∂z
− βC

]
z=0

=
[
∂C

∂z

]
z=1

= 0, (8)

The corresponding dimensionless initial input condition is

C(x, z, t)|t=0 = δ(x), (9)

where δ is the Dirac delta function. Since, the concentration of the solute particles
cannot move at infinity, the normalized additional condition can be taken as

C(x, z, t)|x→±∞ = 0. (10)

Using p-th order integral moment of C(x, z, t) with respect to x according to the
method of moments (Aris [1]), we have

Cp(z, t) =
∫ ∞

−∞
x pC(x, z, t)dx . (11)

Taking depth average of Cp(z, t), one can obtain

Mp(t) = C p =
∫ 1

0
Cp(z, t)dz. (12)

Using (11)–(12) in Eq. (6), with the initial condition (10) and boundary conditions
(8), one can get

∂Cp

∂t
= puPeCp−1 + Rp(p − 1)Cp−2 + ∂2Cp

∂z2
, (13)

with

Cp(z, 0) =
{
1 for p = 0

0 for p > 0
, (14)
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and
[
∂Cp

∂z
− βCp

]
z=0

=
[
∂Cp

∂z

]
z=1

= 0, (15a)

and therefore,

dMp

dt
= pPeuC p−1 + p(p − 1)RC p−2 − βCp(0, t), (16)

with

Mp(0) =
{
1 if p = 0

0 if p > 0
, (17)

for p = 0, it is found that

M0(t) = 1 − β

∫
Cp(0, t)dt. (18)

3 Description of Statistical Components

The p-th order integral moment about the distribution of mean concentration is as
follows

νp(t) = 1

M0

∫ 1

0

∫ ∞

−∞
(x − xg)

pCdxdz, (19)

where

xg = 1

M0

∫ 1

0

∫ ∞

−∞
xCdxdz. (20)

Here, M0 defines the total amount of mass of the solute in the whole volume of the
wetland. xg is the centroid of the tracers, it determines the location of the center of
gravity of the movement of concentration cloud with the mean velocity of the fluid.
Also, variance (ν2), skewness (ν3) and kurtosis (ν4) are represented by the second,
third and fourth moments of contaminant distribution, respectively.

Taylor’s approximation for the diffusion coefficient Da = Pe/192 + 1/Pe is
developed by Aris [1], where the dispersion time is characterized asymptotically
large. In compare to the vertical diffusion, longitudinal diffusion is insignificant and
so, the effective transport coefficient may be express as

Da = 1

2Pe2
dν2

dt
, (21)
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Da describes the relation between diffusion and convection process. For a wetland
flow, Da depends on the absorption parameter β, vegetation parameter α and disper-
sion time t .

To determine the sharpness and symmetricity of the concentration distribution of
the solute, the coefficients of skewness and kurtosis are the important criteria. The
skewness and kurtosis are given respectively as

β2 = ν3

ν2
3
2

, (22a)

β3 = ν4

ν2
2

− 3. (22b)

When β2 = β3 = 0, the concentration distribution of solute is normal and their
nonzero values indicate the deviations from the Gaussianity.

4 Numerical Computation

When p > 1, the analytical solution of moment equations with concerned ini-
tial and boundary conditions is quite complicated. Thus, using a finite difference
implicit scheme based on Crank-Nicholson approach is employed to study the trans-
port of solute particles in the wetland. The grid point (m, n) indicates a point
where zm = (m − 1) × Δz and tn = (n − 1) × Δt . The enhancements of z and t
are Δz = zm+1 − zm and Δt = tn+1 − tn respectively. All the elements are deter-
mined at the grid point (m, n + 1), where m = 1 relates the bottom of the wetland
z = 0 and n = 1 relates the dispersion time t = 0. The two point forward difference
technique is adopted for ∂Cp

∂t at the (n + 1)-th mesh point

∂Cp

∂t
|
(m,n+1)

= Cp(m, n + 1) − Cp(m, n)

Δt
. (23)

To discretize ∂Cp

∂z , two point averaged central difference technique is used and it is
given by

∂Cp

∂z
|
(m,n+1)

= Cp(m + 1, n + 1) − Cp(m − 1, n + 1) + Cp(m + 1, n) − Cp(m − 1, n)

4Δz
.

(24)
The discretization for ∂2Cp

∂z2 is taken as three-point averaged central difference scheme
and it is written as
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∂2Cp

∂z2
|
(m,n+1)

= 1

2Δz2
[
Cp(m + 1, n + 1) − 2Cp(m, n + 1) + Cp(m − 1, n + 1)

+Cp(m + 1, n) − 2Cp(m, n) + Cp(m − 1, n)
]
.

(25)

For the term uCp−1, the discretization is as follows,

uCp−1|(m,n+1) = u(m, n + 1)Cp−1(m, n + 1). (26)

The finite difference schemes for the initial condition is

Cp(m, 1) =
{
1 for p = 0,

0 for p � 1
, (27)

and the boundary condition are

Cp(0, n + 1) = Cp(2, n + 1) − 2βΔzCp(1, n + 1), at the bed surface
(28a)

Cp(M + 1, n + 1) = Cp(M − 1, n + 1). at the free surface
(28b)

A tri-diagonal matrix is obtained by using the the above mentioned discretization
and it is given by

PmCp(m + 1, n + 1) + QmCp(m, n + 1) + RmCp(m − 1, n + 1) = Sm, (29)

where Pm, Qm, Rm and Sm are the matrix elements and they are describes as follow

Pm = − Δt

2Δz2
,

Qm =
[
1 + Δt

Δz2

]
,

Rm = − Δt

2Δz2
,

Sm =
[

Δt

2Δz2

]
Cp(m + 1, n) +

[
1 − Δt

Δz2

]
Cp(m, n) +

[
2

Δt

Δz2

]
Cp(m − 1, n)

+ [
puPeCp−1(m, n + 1) + p(p − 1)RCp−2(m, n + 1)

]
Δt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(30)
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The index m relates the wetland space whose range is from the value 1 to M .
At the wetland free surface, the value of m is considered as M . To obtain a optimal
result, in a steady flow through a wetland, the time grid and the space grid size are
taken as Δt = 0.0001 and Δz = 0.02. The mesh size for steady flow is taken as
Δt = 0.0001. The index related to the time is n and it is expanded from 1 to N . The
tri-diagonal coefficient matrix is constructed and solved with the help of initial and
boundary condition applying the Thomas algorithm. Simpson’s one-third formula
is used to compute the values of Mp with the known values of u(z) and Cp at the
corresponding mesh points.

5 Discussion of Results

In this section, the temporal variations of dispersion and skewness are illustrated for
various values of slip parameter (ls), absorption parameter (β), vegetation factor (α)
and R. From Fig. 3a, it is seen that the increment in the slip length minimizes the
dispersion in the flow. Slip on the bed surface reduces the velocity gradient along
the transverse direction of the flow and therefore, it abates the dispersion process of
the solute. Figure 3b is described that the presence of bed absorption declines the
solute dispersion. Further, dispersion coefficient prominently reduces with enlarge
values of the bed absorption strength, because enhanced value of β, increases the
depletion rate of the solute material at the bed surface. Also, due to the increase
of vegetation force in the wetland, reduction in the dispersion coefficient is found
(Fig. 3c). This is because of the resisting force in the flow, imposed by the vegetation
in the wetland. Moreover, it is interesting to observe from the Fig. 3a–c that the
critical time for reaching to the stationary state decreases with the rise in the values
of ls, β, α. However, the opposite phenomena is noticed in Fig. 3d i.e., the coefficient
of dispersion of the solute enhances with the increment of R. The reason behind this,
the longitudinal diffusion increases as R enlarges.

The influenceof different crucial flowparameters on skewness is depicted inFig. 4.
The variation of skewness of the distribution of solute material is shown in Fig. 4a
for different slip length. The increment in slip parameters result skewness coefficient
to move towards zero i.e. it reduces the asymmetry of the solute distribution and
moves towards the Gaussianity. Whereas, the reverse phenomena is found in Fig. 4b
for various values of the reaction parameter β. It illustrates that enhanced value of
absorption parameter introduces asymmetry in the tracer distribution. FromFig. 4c, it
is observed that the enhancement of α, the distribution of tracers gradually becomes
symmetric. Moreover, when α → 2, the skewness of the concentration vanishes and
it follows Gaussian distribution. It is remarkable to note that the effect of R is similar
to the slip parameter ls (See Fig. 4d).
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Fig. 3 Dispersivity Da with time for different values of a slip parameter ls , b bed absorption β, c
vegetation factor α d R; when α = 0.5, ls = 1,β = 1, Pe = 100 and R = 1

The variation of the kurtosis is delineated in Fig. 5. The kurtosis of the tracer
distribution is presented in Fig. 5a for various values of slip length. Due to the
enhancement in slip parameter, the kurtosis of the tracer distribution moves toward
zero for large dispersion time. The similar behaviour is observed in the kurtosis for
various values of β and R (See Fig. 5b, d). From the figures, it is concluded that for
small dispersion time (t < 0.2), the distribution of the tracer material deviates from
the Gaussianity and for large dispersion time with large ls,β, and R, the distribution
tends to reach the normal distribution. From Fig. 5c, it is seen that, when α→ 0, the
distribution approaches towards Gaussian distribution. Moreover, when α increases
in the wetland, the flow of the tracer decreases, which increases the peak of the
concentration.
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Fig. 4 Skewness β2 of solute distribution with time for different values of a slip parameter ls , b
bed absorption β, c vegetation factor α d R; when α = 0.5, ls = 1,β = 1, Pe = 100 and R = 1

6 Conclusion

An investigationon solute transport in awidth independent vegetatedwetland channel
flow is presented with the appearance of slip condition and absorption at the bed
surface. A finite difference implicit method is used to find the solution of the moment
equations. Some crucial observations are noticed in this work:

(a) The Enhancement of slip parameter reduces the dispersion coefficient in the
flow.

(b) The uplifted values of slip parameter, inhomogeneous reaction rate and vegeta-
tion factor shorten the critical time to reach the stationary state of the transport
coefficient.
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Fig. 5 Kurtosis β3 of solute distribution with time for different values of a slip parameter ls , b bed
absorption β, c vegetation factor α d R; when α = 0.5, ls = 1,β = 1, Pe = 100 and R = 1

(c) The slip effect reduces the asymmetry of solute distribution, while the enlarged
absorption introduces asymmetry in the tracer distribution.

(d) At small dispersion time, the distribution of tracer deviates from Gaussianity.
However, for large dispersion time with large ls,β, and R, the distribution tends
to reach the normal distribution.
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Entropy Analysis for MHD Flow Subject
to Temperature-Dependent Viscosity and
Thermal Conductivity

Umesh Khanduri and Bhupendra K. Sharma

Abstract This research aimed to figure out how to optimise the entropy of MHD
flow past a continuously stretching surface. The effect of temperature-dependent
variables viscosity and electric conductivity has been taken into account. The fluid
region is subjected to a uniform magnetic field. By using similarity analysis, the
governing coupled partial differential equations (PDEs) that describe the model are
turned into non-linear ordinary differential equations and then computed by employ-
ing “BVP4C” in MATLAB software. The effect of various pertinent parameters like
Magnetic field parameter M , radiation parameter R, Grashof number Gr , Brinkman
number Br , Reynold number Re, and a variation of variables viscosity ε1 and elec-
tric conductivity ε2 is analysed and presented graphically on velocity, temperature,
entropy, and concentration profile. The comparison is based on previously published
studies, and there is a considerable deal of agreement.

Keywords Entropy · Variable viscosity · Stretching sheet · MHD · Viscous
dissipation

1 Introduction

Numerous researchers and analysts studied the effect ofMHDflow across the stretch-
ing sheet due to its wide applications in industrial fields such asmachine design,mag-
netic drug targeting, glass blowing, electronic chips and astrophysics sensors. Hayat
et al. [1] demonstrated the influence of magnetic field and porous media on the flow
velocity and heat transfer profile under the exponential stretching sheet condition.
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This study also considered the velocity and thermal slip conditions and performed
it by adopting the “Homotopy analysis method”. Further, motivated by the appli-
cations of boundary layer flow, Sandeep et al. [2] extended the above study on the
thin stretching surface. Reddy et al. [3] considered the non-flat sheet and studied the
impact ofWilliamson nanofluid with variable thermal conductivity. In this investiga-
tion, they considered the flowviscosity as temperature-dependent instead of constant.
They observed that non-dimensional heat and mass transfer profiles rise significantly
due to temperature-dependent viscosity inflow. The impact of heat source, radiation
and chemical reaction under the convective boundary conditions has been studied
by Ram et al. [4] and state that the magnitude of heat and mass transfer rates at the
wall improves with the positive add in thermal and solute Biot numbers. Recently,
Sharma et al. [5] studied a mathematical model of blood flow to identify the effects
of Ohmic heating on the stretched arterial surface, claiming that heat transfer at the
surface diminishes as the Ohmic heating parameter increases. Reddy et al. [6] studied
the effect of different parameters on the blood flow inside the permeable wall with
heat source and viscous dissipation. Tripathi et al. [7] employed the “Homotopy per-
turbation method” to study the arterial blood flow using the variable viscosity. They
considered mild stenosis and hematocrit-dependent viscosity to analyze the blood
flow behaviour. Further, they [8] examined the temperature-dependent viscosity and
two-layer fluid model in blood flow with elliptical shaped stenosis.

Entropy generation is one of the fundamental phenomena associated with a level
of irreversibility that occurs in any thermal process. Several researchers have exam-
ined the effect of entropy generation in MHD flow due to its application in many
engineering systems. In order to reduce the irreversibility process, one can employ
the second law of thermodynamic for designing better thermal equipment. Bejan [9]
first introduced this concept by introducing the Bejan number, which signifies the
thermal irreversibility to the total heat loss due to fluid frictions. Bhatti et al. [10]
discussed the entropy generation on MHD Casson fluid with radiation and the effect
of nanoparticles over the porous surface. Mandal et al. [11] studied the properties of
nanoparticles by considering Buongiorno’s model and delineated the radiation and
viscous dissipation effect on unsteady MHD flow. By considering viscous dissipa-
tion and the magnetic field effect, Afridi et al. [12] explored entropy generation in
boundary layer flows. They perceived irreversible conduction as the principal source
of entropy generation far beyond the boundary. Several other researchers [13, 14]
have investigated the effect of Entropy generation on MHD flow.

In the present study, we have studied the effect of temperature-dependent variable
viscosity and thermal conductivity on the stretching sheet, including entropy genera-
tion. The governing equations are converted into ordinary differential equations and
then solved using MATLAB software by implementing “BVP4C”. The effect of var-
ious pertinent parameters had been analyzed and presented graphically on different
profile like velocity, temperature, entropy, and concentration.
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2 Mathematical Formulation

An unsteady, incompressible, two-dimensional MHD flow over a time-dependent
stretching sheet in the X-Y plane is considered as depicted in Fig. 1. The sheet is
aligned at an angle α with the vertical and uniform inclined magnetic field B(t) is
applied at an angle ξ to the sheet. At time t = 0, the sheet is stretched along the x-
axis with velocity Ũw(x, t) = dx

(1−χ t) . Here, d and χ are constant with conditions d >

0, χ ≥ 0 andχ t < 1. The velocity components ũ1 and ṽ1 are taken along x and y axis.
Here, T̃ and T̃∞ denotes the temperature and ambient temperature of the fluid, σ is the
electric conductivity,β is coefficient of temperature expansion,C∗

p is the specific heat,

β̃∗ is coefficient of concentration expansion, C̃ and C̃∞ denotes the concentration and
ambient concentration of the fluid, D∗

B is mass diffusion coefficient, and g represent
acceleration due to gravity. Temperature-dependent viscosity μ(T̃ ) is assumed to
change linearly with temperature as follows:

μ(T̃ ) = μ∞
[
1 + ε1

�T̃
(T̃w − T̃ )

]
(1)

Here �T̃ = T̃w − T̃ , ε1 is the temperature difference and viscosity variation param-
eter respectively. And, temperature-dependent thermal conductivity is given as:

K (T̃ ) = κ∞
[
1 − ε2

�T̃
(T̃ − T̃∞)

]
(2)

Fig. 1 Pictorial
representation of the
problem
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Here ε2 denotes the thermal conductivity variation parameter. The magnetic Reynold
number is assumed to be less than unity, so the induced magnetic field effect is
negligible. The fluid properties are considered to be constant. Based on the order of
magnitude along with Boussinesq approximation and using the above assumption,
the governing equations are:
Continuity:

∂ ũ1
∂x

+ ∂ ṽ1
∂y

= 0 , (3)

Momentum:

∂ ũ1
∂t

+ ũ1
∂ ũ1
∂x

+ ṽ1
∂ ũ1
∂y

= gβ(T̃ − ˜T∞) cosα + gβ̃∗(C̃ − ˜C∞) cosα + 1

ρ

∂

∂y

(
μ(T̃ )

∂ ũ1
∂y

)

− σ B2(t)

ρ
sin2 ξ ũ1 − μ(T̃ )

ρl1(t)
ũ1 , (4)

Energy:

∂ T̃

∂t
+ ũ1

∂ T̃

∂x
+ ṽ1

∂ T̃

∂y
= 1

ρC∗
p

∂

∂y

(
K (T̃ )

∂ ũ1
∂y

)
− 1

ρC∗
p

∂qr
∂y

+ μ(T̃ )

ρC∗
p

(
∂ ũ1
∂y

)2
+ σ B2(t)

ρC∗
p

sin2 ξ ũ1
2 ,

(5)
Concentration:

∂C̃

∂t
+ ũ1

∂C̃

∂x
+ ṽ1

∂C̃

∂y
= D∗

B

∂2C̃

∂y2
− �(t)(C̃ − C̃∞), (6)

The associate boundary conditions are:

⎧⎪⎨
⎪⎩
ũ1 = Ũw + Hμ∂ ũ1

∂y , C̃ = C̃w + J ∂C̃
∂y , ṽ1 = Ṽw, T̃ = T̃w + P ∂ T̃

∂y , at y = 0

ũ1 → 0, C̃ → C̃∞, T̃ → T̃∞ as y → ∞.

(7)
Where, H = H0(1 − χ t)

1
2 represent the velocity slip factor, P = P0(1 − χ t)

1
2 rep-

resent the thermal slip factor, J = J0(1 − χ t)
1
2 represent the concentration slip fac-

tor. The surface temperature T̃w(x, t), stretching velocity Ũw(x, t), and the concen-
tration C̃w(x, t) are given as:

T̃w = T̃∞ + cx

1 − χ t
, Ũw = dx

1 − χ t
, C̃w = C̃∞ + ex

1 − χ t
.

Here, c and e are constant and satisfies the condition c, e ≥ 0 and χ t < 1. In Eq. (7),
Ṽw represent the injection/suction velocity:

Ṽw = −
√

νŨw

x
f (0) . (8)
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The mass transfer at the wall is represented by Eq. (7) with velocity Ṽw > 0 in which
Ṽw > 0 represents injection and Ṽw < 0 represents the suction case. The expression
l1(t) used in the Eq. (4) represents the time-dependent permeability and it satisfies the
equation l1(t) = l2(1 − χ t). Let us now consider the magnetic field B(t) = B0(1 −
χ t)− 1

2 and chemical reaction parameter as �(t) = �0(1 − χ t)−1. Here B0 represent
the magnetic field at initial time, and �0 as constant. In Eq. (5), the radiative heat
flux [6] is approximate by Rosseland mean approximation and it is simplified as:

qr = −4σ∗
3k∗

∂ T̃ 4

∂y
. (9)

Here k∗ and σ∗ are the mean absorption coefficient and the Stefan-Boltzman con-
stant, respectively.We linearize the term T̃ 4 using a Taylor series about the free steam
function T̃∞, ignoring higher order terms by assuming small temperature differences.

T̃ 4 ∼= 4T̃ T̃ 3
∞ − 3T̃ 4

∞ . (10)

Now, similarity transformations are defined as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η = d
1
2 ν− 1

2 (1 − χ t)− 1
2 y,

ψ = d
1
2 xν

1
2 (1 − χ t)− 1

2 f (η),

θ(η) =
(

T̃−T̃∞
T̃w−T̃∞

)
,

φ(η) =
(

C̃−C̃∞
C̃w−C̃∞

)
.

(11)

Here, η represent the independent similarity variable, ψ denotes the stream function
and it is defined as ũ1 = ∂ψ

∂y , ṽ1 = − ∂ψ

∂x , which automatically satisfies Eq. (3). Now,
substitute Eqs. (10) and (11) into Eqs. (4)–(6),to get differential equations as:

(1 + e1(1 − θ)) f ′′′ + f f ′′ − A

(
f ′ + 1

2
η f ′′

)
− ( f ′)2 + Grθ cosα + Gcφ cosα − e1θ

′ f ′′

−M2 f ′ sin2 ξ − (1 + e1(1 − θ))
f ′

K
= 0 , (12)

(1 + R + e2θ)

Pr
θ ′′ − A

(
θ + 1

2
ηθ ′

)
+ f θ ′ − f ′θ + Ec(1 + e1(1 − θ))( f ′′)2 + Ec ∗ M2( f ′)2 sin2 ξ

+ e2
(θ ′)2
Pr

= 0, (13)

1

Sc
φ′′ + f φ′ − f ′φ − A

(
φ + 1

2
ηφ′

)
− γφ = 0 , (14)

The associated boundary conditions are:
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Table 1 Various dimensionless parameters involved in Eqs. (12)–(14)

M = B0

√
σ
ρd Gr = gβx(T̃w−T̃∞)

Ũw
2 A = χ

d Ec = Ũw
2

C∗
p(T̃

∗
w−T̃∞)

Gc = gβ̃∗x(C̃w−C̃∞)

Ũw
2 Sc = ν

D∗
B

Pr = μ∞C∗
p

κ∞ γ = �0
d

R = 16σ ∗ T̃ 3∞
3κ∞k∗ � = T̃w−T̃∞

T̃∞
K = dl2

ν
Re = Uwx

ν

Br = μ∞U2
w

κ∞�T̃
ν = μ∞

ρ
� = RDC̃∞

κ
� = C̃w−C̃∞

C̃∞

{
f = S, f ′ = 1 + S f f ′′(0), θ = 1 + Stθ ′(0), φ = 1 + Scφ′(0) at η = 0 ,

f ′ → 0, θ → 0, φ → 0, as η → ∞.

(15)
The non-dimensional thermal slip St , velocity slip S f , and solutal slip Sc parameters
are defined as:

St = P0

√
d

ν
, S f = H0ρ

√
dν, Sc = J0

√
d

ν
.

Here, prime denotes the differentiation with respect to η. In Eqs. (12)–(14), if A = 0,
it will correspondence that the problem reduce to the steady state flow. Also, in
Eq. (15), if S > 0, it indicates suction, S < 0 indicates injection. The dimensionless
numbers and parameter used in Eqs. (12)–(14) are specified in Table 1.

2.1 Quantities of Physical Interest

The quantities like heat transfer rate, skin friction coefficient, and mass transfer are
defined as:

Nux = xqw

K (T̃ )(T̃w − T̃∞)
, C f = τw

ρŨw
2

2

, Shx = mwx

D∗
Bρ(C̃w − C̃∞)

. (16)

Where the surface heat flux, wall shear stress, and mass flux are given by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qw = −K (T̃ )
(

∂ T̃
∂y

)
y=0

,

τw = μ(T̃ )
(

∂ ũ1
∂y

)
y=0

,

mw = −ρD∗
B

(
∂C̃
∂y

)
y=0

.

(17)

Use Eq. (17), to rewrite quantity (16) as:
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Nux = −Re
1
2
x θ ′(0), C f = 2(1 + ε1(1 − θ))Re

− 1
2

x f ′′(0), Shx = −Re
1
2
x φ′(0).

(18)
The quantity like Nusselt number Nux , skin-friction coefficientC f , and Sherwood
number Shx are dependent on the variation of the factors−θ ′(0), f ′′(0), and−φ′(0)
respectively.

3 Entropy

Expression for entropy generation is defined as:

S′′′
G = K (T̃ )

T̃ 2∞

⎧⎨
⎩

(
∂ T̃

∂y

)2

+ 16σ∗T̃ 3∞
3k∗k

(
∂ T̃

∂y

)2
⎫⎬
⎭ + μ(T̃ )

T̃∞

(
∂ ũ1
∂y

)2
+ σ

T̃∞
(ũ1

2B2)

+ μ(T̃ )

T̃∞K1
ũ1

2 + RD

T̃∞
∂ T̃

∂y

∂C̃

∂y
(19)

Characteristic entropy rate is defined as:

S′′′
0 = K (T̃ )(�T̃ )2

x2T̃ 2∞
(20)

Dimensionless entropy generation is defined as:

NG = S′′′
G

S′′′
0

(21)

Use Eqs. (20)–(21) to write the entropy generation number NG as:

NG = Rex

(
1 + R

1 + ε2θ

)
(θ ′)2 + ReBr

�

(
1 + 1

K

) (
1 + ε1(1 − θ)

1 + ε2θ

)
+ ReBrM

�(1 + ε2θ)
( f ′)2

+Re�
�

�
θ ′φ′. (22)

Here, Re, Br , and � are Reynolds number, Brinkmann number, and temperature
difference parameters respectively.
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4 Result and Discussion

This section deals with the characteristic behaviours of different relevant parameters
on velocity, temperature, entropy, and concentration profile. For numerical results,
the values of pertinent parameters are given as: M = 0.4, K = 0.5,Gr = 2, Pr =
0.71, ε1 = 0.1, A = 0.5,Gc = 2, ξ = π/4, α = π/4, ε2 = 0.1, Sc = 0.6, Br=0.5,
Re = 0.5, S f = 1.5, St = 1, S = 0.5, Sp = 0.5. Moreover, the values of specific
parameters are kept constant throughout the study unless mentioned in the appro-
priate graphs. Figure 2 depicts the validation of the previous published work for
temperature profile at R = 1.5 with current work. Reddy et al. [6] used the shooting
technique to solve the dimensionless governing equations. And, in the current work,
we used BVP4C technique that works on the collocation method.

Figure 3 shows the decreasing nature with both parameters M and ε1. As the mag-
netic field parameter M increases from 0.5 to 3, the velocity profile f ′(η) decreases;
this has happened due to an enhancement of Lorentz force that decreases the fluid
velocity. It depicts the significant phenomena used in the medical field to regulate
human blood by varying magnetic field. Figure 4 depicts the velocity profile with
varying parameter Gr and ε1. From the figure, it can be interpreted that the velocity
profile f ′(η) will increase if the parameter Gr increases while the reverse trend is
observed with ε1. The velocity profile is shown in Fig. 5 for various values of the
inclination angle α and viscosity parameter ε1. The velocity profile f ′(η) decreases
with an increase in both the parameters α and viscosity parameter ε1. At an angle
α = 0, there is a 17.80% decrement in the velocity profile for a change in viscosity
parameter ε1 from 0 to 1. The decrement in velocity profile with varying α can be
explained by the fact that changing the inclination angle (α = 0, π/4, π/3) results in
a reduction of the term cosα in the momentum equation, which lowers the buoyancy
force due to thermal diffusion. The temperature profile increases with an increase in
the parameter R and thermal conductivity ε2. An increment in thermal conductivity

Fig. 2 Comparison on
Temperature profile for
R = 1.5
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Fig. 3 Velocity profile f ′(η)

by varying M
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signifies the faster rate at which the heat will be transferred in the fluid. It can be
noted from the Fig. 6 that the temperature profile enhances as the radiation parameter
varies from R = 0 to R = 1.5.

In Fig. 7, we analyzed the change in temperature profile by varying parameters ε2
and Ec. Here, Ec (0.5, 1.5, 3) is positive, which signifies that the heat is transferred
from the stretching sheet to the fluid. Eckert number can be characterised as the self-
heating of the fluid because dissipation effect enhances the thermal boundary layer.
Increasing both parameters ε2 and Ec will raise the temperature profile. As Prandtl
number Pr varies from2 to 6, the fluid’s thermal conductivity decreases, reducing the
thermal boundary layer. Similarly, the temperature profile increases with an increase
in thermal conductivity parameter, ε2 from 0 to 1. Higher thermal conductivitymeans
that the fluid will dissipate heat more rapidly. It signifies that the temperature profile
decreases with an increase in the parameter Pr while the reverse trend is observed
for thermal conductivity parameter ε2 as depicted in Fig. 8. It is noted from Fig. 9
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Fig. 5 Non-dimensional
Velocity profile by varying α
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Fig. 6 Variation in
temperature profile by
varying R
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temperature profile by
varying Ec
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Fig. 8 Variation in
temperature profile by
varying Pr
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Fig. 9 Variation in
concentration profile by
varying Sc
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that the concentration profile decreases with an increase in parameter Sc. Although,
little variation is observed with a change in viscosity parameter ε1 from 0 to 1. As
the Schmidt number is inversely proportional to the diffusion coefficient, it declines
the solutal boundary layer. Figures 10, 11, 12 and 13 illustrate the effect of different
parameters on entropy number NG .

Entropy determines the possible ways of energy distribution in a system of
molecules. In other words, the measurable physical quantity that is associated with
the disordered movement of particles. The knowledge of entropy optimization helps
in enhancing the mechanical device’s performance. Therefore, it is essential to know
the effect of different parameters associatedwith entropy change. Figure 10 shows the
variation of entropy number NG with variation of Br and η. Entropy increases with
an increase in parameter Br but decreases asymptotically for η. Brinkman number
is one parameter that correlates with the system’s convective heat transfer in laminar
and transient flow. Its application can be seen in the microchannels flow, such as
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Fig. 10 Surface plot of NG
with axial direction η and Br

Fig. 11 Surface plot of NG
with axial direction η and R

Fig. 12 Surface plot of NG
with axial direction η and Re
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Fig. 13 Surface plot of NG
with axial direction η and �

cooling integrated circuit (IC) chips. The boost in entropy number due to an increase
in Brinkman Br can be explained by the fact that the Brinkman number signifies the
heat source in the fluid region and, together with the heat generated from the wall,
enhances the entropy rate.

Increasing the radiation parameter will increase more heat in the system, resulting
in the uplifting of the entropy rate. It is noted from the Fig. 12 that the entropy rate NG

increases as the Reynolds number Re increases and decreases asymptotically with
η. As the value of the Reynolds number increases, the frictional resistance increases,
resulting in more frictional irreversibility. This causes an increase in entropy. In
contrast, the entropy decreases with an increase in the axial direction. The initial
temperature difference is an essential criterion for the critical design of thermal
equipment. Figure 13 display the surface plot of entropy with parameters � and η. It
shows the decreasing trend of entropy with an increase in both the parameters � and
η. For a small value of temperature difference, the system’s entropy will be low due
to the dominant effect of viscous friction. At η = 0 and with the change in magnitude
of � from 0.103 to 3, there is a decrease of 89.22% in the entropy rate. Similarly,
there is a 95.86% decrease in entropy rate with parameter η from 0 to 3.

5 Conclusion

In this study, we addressed the entropy generation on MHD fluid over a stretching
sheet with variable viscosity μ(T̃ ) and thermal conductivity K (T̃ ) by altering the
parameter ε1 and ε2. The governing coupled PDEs that characterise the model are
transformed into non-linear ODEs using similarity analysis and then solved using
MATLAB software by implementing the “BVP4C” technique. The current study can
aid scientists in comprehending their findings and using this approach to mechani-
cal and industrial operations, including material processing, fuel cells, gas turbines,
ventilation and renewable energy. From the above discussion, we concluded that
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the velocity profile declines with increased viscosity parameter ε1 and magnetic
field parameter M . Positive growth in an Eckert number Ec and viscosity variation
parameters are responsible for enhancing the temperature profile. Increasing param-
eters Br and R will increase the Entropy generation NG profile, while the reverse
trend is observed with temperature difference parameter �.
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A Numerical Investigation on Transport
Phenomena in a Nanofluid Under
the Transverse Magnetic Field Over
a Stretching Plate Associated with Solar
Radiation

Shiva Rao and P. N. Deka

Abstract This numerical investigation considers the solar radiation effect on a
nanofluid over a stretching plate acted upon by a transverse magnetic field focusing
on the stagnation points. Here, linear Roseland approximation is applied for solar
radiation. The physical flow problem is modeled using the sets of partial differential
equations, which are then transformed into a set of non-linear ordinary differential
equations by using the appropriate similarity transformation. We have a new bvp4c
solver in theMATLAB platform to solve the equations numerically to investigate the
solar radiation effect on various flow parameters associated with MHD nanofluids
such as Brownian motion, velocity, temperature and concentration. A comparative
analysis is performed for the results with previous studies in some limiting cases
to prove the efficiency of the numerical approach. The results have been presented
graphically as well as in tabular form to intricate the flow pattern.

Keywords MHD flow · Solar radiation · Stretching plate · Rosseland
approximation · Stagnation point · Brownian motion

1 Introduction

Growing energy demand and associated energy crises coupled with environmental
issues are nowconsideredwith priority across the globe.Attention towards renewable
energy has increased as these can replace fossil fuels and reduce the ejection of
Green House Gases. Out of different renewable energies like hydro-power from
water, geothermal energy, wind energy, biomass from plants, solar energy is one of
the cleanest renewables that comes directly from the sun and can be transformed into
electricity directly by photoelectric effect and into heat by photo-thermal conversion.
Hence, the implementation of solar energy has gained mass attention recently.

Voltaic cells and solar thermal plants are themain gateways to use solar energy and
its efficiency can be increased by improving solar energy absorption. The dependence
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on fossil fuel can be reduced by using renewable energy which mainly relies on the
absorption of solar energy and conversion into thermal energy. However, there is a
significant loss of energy in the absorption of sunlight by collecting panels. The weak
thermo-physical properties of convectional fluids make it non-viable to construct
heat exchangers with greater efficiency [1]. The water-dispersed nano-particles are
found to improve the absorption of sunlight [27]. To increase the absorption effi-
ciency different researchers have tested different nano-particles. In recent decades,
nanofluids are extensively used in collectors as they elevate greater heat elimination
due to their superiority in thermo-physical properties in comparison to traditional
fluid [20].

Nowadays, industrial fluids are studied by researchers very intensively. Recently,
there has been a great discussion about the parameters behind the heat transfer in
nanofluid, despite many studies done already [33]. Nanofluids are made by the
suspension of nanoparticles in the base fluid. Choi [5] was the first researcher
to discover that the suspended nanoparticles in the base fluid could enhance the
thermal conductivity. Lee et al. [19] measured the thermal conductivity of different
metal oxides and revealed that both shape and size played an important role in
enhancing thermal conductivity of the nanofluid. Nanoparticles not only increase
thermal conductivity but also increase the heat transfer capacity by convection [25].
Eastman et al. [7] by their study conclude that the addition of copper nanoparticles
with volume fraction less than 1% in ethylene glycol could increase the thermal
conductivity up to 40%. Buonigiorno [4] attempted to explain the increase in the
thermal conductivity of the nanofluid by pointing out two slip mechanism i.e., Brow-
nian motion and thermophoresis for effective enhancement of thermal conductivity
of the base fluid. MHD nanofluid has a great significance in engineering. Buon-
giorno’s model [4] of viscous and incompressible nanofluid flow between a vertical
flat plate and a porous medium was investigated by Nield and Kuznetsov [18]. Khan
and Pop [16] were the first to investigated the evolution of heat transfer and nanopar-
ticle volume fraction in a nanofluid across a stretching sheet. Rana and Bhargava
[28] used the FEM approach to solve Khan and Pop’s problem for the nonlinearly
stretching sheet. Makinde and Aziz [23] investigated the heat transfer properties in
nanofluid flow utilising convective boundary conditions. The convectional flow in a
square duct in the presence of a high transverse magnetic field was investigated by
Chutia and Deka [6]. Some recent work on MHD nanofluid are presented in Refs.
[12, 13, 15, 30].

Thermal radiation on natural convection has become a great importance due to
its wide range application is physics and engineering especially in the design of
components and equipment, space technology and gas turbine, etc. Unlike conduc-
tion and convection, thermal radiation does not need any medium to transmit the
heat. These properties make thermal radiation much significant in heat transfer of
MHD nanofluid as it reduces the loss of heat. England and Emery [8] investigated
the effect of thermal radiation on the natural convective boundary layer flow along
vertical plate for absorbing and non-absorbing gases. Kumar et al. [17] presented
an idea of the impact of thermal radiation on nanofluid model for flow and heat
transfer over an infinite vertical plate under magnetic field and viscous dissipation.
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Ali et al. [2] studied the impact on thermal radiation and non-uniform heat flux of the
MHD hybrid nanofluid over the stretching cylinder. The effect of hall current which
chemical reaction and thermal radiation of a nanofluid flow in a rotating channel was
numerically investigated by Lv et al. [22].

Improvement in Solar collector model is one of the major priority for the use of
solar energy. Nanofluid is used as a main operating fluid in most of the solar collector
nowadays. Javadi et al. [14] have studied the working principle of nanofluid on solar
collector in details. Yousefi et al. [35] used Al2O3-water nanofluids as an operating
fluid in solar collector and draw a very interesting conclusion that the nanofluid
based model inceases the efficiency of solar collector by 28.3%. Faizal et al. [9]
claim the possibility to make a smaller solar collector, using different nanofluid
which produces the same output as the larger one. The action of CuO-water and
water in a solar collector was compared by Liu et al. [21]. Sarkar and Kundu [31]
studied an unsteady MHD nanofluid near a spinning sphere in the presence of solar
radiation. Mushtaq et al. [24] studied the radiation effect of the MHD nanofluid flow
in the two-dimensional form through the Runge–Kutta method with an appropriate
shooting technique. Ghasemi et al. [10, 11] used the Keller box and Differential
quadrature method (DQM) to conduct a numerical analysis ofMushtaq’s work under
the effects of radiation.

In this study, an investigation is done numerically with the following highlights:

• PDE’s are reduced to the sets of ODE’s by using similarity transformation.
• MATLAB build-in solver bvp4c is used to solve the ODE’s to investigate the

non-linear radiative transport phenomena in nanofluid flow under the action of
transverse magnetic field under solar radiation.

• This study presents a nanofluid model for a solar collector by considering some
thermal effects which can increase its efficiency to much extend.

• The study presents the velocity, temperature and concentration profiles to
investigate the effect of solar radiation alongwith the otherMHDflowparameters.

• The validity of the current results is verified by Mushtaq et al. [24]’s previous
study.

• Graphical results are discussed in details with physical reasoning to clarify
findings.

• The Nusselt number and Sherwood number for various parameters are thoroughly
explored.

2 Mathematical Formulation

In the present study, we consider a steady two dimensional flow of a nanofluid under
transverse magnetic field over a stretching sheet under the Solar radiation. As shown
in Fig. 1 the stretching sheet is placed at y = 0 and the fluid start flowing towards
x-axis when the sheet is stretched (force applied) along the same axis. The magnetic
field Bo acts perpendicular to the direction of the flow. The stretching velocity along
the x-axis is uw = ax and velocity outside the boundary layer is u∞ = bx .
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Fig. 1 Schematic diagram of the problem

The system of governing equations (see Refs. [18, 26, 32]) of the flow is given as
follows:

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
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∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+ Dt

T∞
∂2T

∂y2
(4)

where u and v are velocity component along the direction of x-axis and y-axis
respectively, T is the temperature and C is the nanoparticle concentration, ν f = μ f

ρ

is the kinematic viscosity, σe is the electrical conductivity, α = κ
(ρC) f

is the thermal
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diffusivity, qr is the radiation parameter, Qo is the internal heat generation/absorbtion
coefficient, DB and Dτ are coefficients of Brownian and thermophoretic diffusion
parameter respectively. In this case, we consider the Rosseland approximation for
radiation heat flux, which is mathematically expressed as (see Refs. [3, 29, 34]):

qr = −−4σ ∗

3k∗
∂4T

∂y
(5)

where σ ∗ and k∗ are Stefan-Boltzmann and mean absorption coefficient respectively.
Expanding the Taylor series and neglecting the higher order, we get

T4 = 4 T3
∞ T − 3T4

∞

Hence Eqs. (5) becomes-

∂qr
∂y

= −16σ ∗

3k∗ T3
∞

∂2 T

∂y2
(6)

The boundary conditions (see Ref. [16]) for the considered problem are:

u = uw(x) = ax, v = 0,

−k
∂T

∂y
= h

(
T − T f

)
,C = Cw at y = 0.

u → u∞(x) = bx, T → T∞,C → C∞ as y → ∞
(7)

The similarity transformation used to make Eqs. (1) to (4) dimensionless are as
follows (see Ref. [18]):

η =
√

a
ν f
y, u = ax f ′(η), v = −√

aν f f (η),

θ = T−T∞
T f −T∞ , φ = C−C∞

Cw−C∞

(8)

The set of PDE’s (2) to (4) are transformed by using the set of transformation
Eq. (7) to obtain:

f ′′′(η) + f (η) f ′′(η) − ( f ′(η))2 + λ2 + M(λ − f ′(η)) = 0 (9)

1

Pr
[1 + (Rd

(
1 + (θw − 1)θ(η))3

]
θ ′′(η) + f (η)θ ′(η) + Aθ + Nbθ

′(η)φ′(η) +
Nt (θ

′(η))2 + Ec( f
′′(η))2 + MEc(λ − f ′(η))2 = 0 (10)

φ′′(η) + Le f (η)φ(η) + Nt

Nb
θ ′′(η) = 0 (11)
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where M = σ B2
o

ρ f a
is the parameter associated with magnetic field strength, λ = b

a

is the ratio of rates of free stream velocity to the velocity of the stretching sheet,

Pr = ν f

α
is the Prandtl number, Rd = 16σ ∗T 3∞

3kk∗ is the Radiation parameter, θw = T f

T∞
is the Temperature parameter, Nb = τDB (Cw−C∞)

ν f
is the Brownian motion parameter,

Nt = τDt (Tw−T∞)

T∞ν f
is the Theromophoresis parameter, A = Qo

aρ f Cp
is the heat source

and heat sink parameter for A > 0 and A < 0 respectively, Ec = uw

Cp(Tw−T∞)
is the

Eckert number and Le = ν f

DB
is the Lewis number.

The boundary condition (7) in the dimensionless form are as follows:

f (0) = 0, f
′
(0) = 1, θ

′
(0) = −γ [1 − θ(0)], φ(0) = 1

f
′
(+∞) → λ, θ(+∞) → 0, φ(+∞) → 0 (12)

where γ = h

k
√

ν f
α

is the Biot number.

The surface heat flux and mass flux in dimensionless form can be represented as
follows:

Nux√
Rex

= −[
1 + Rdθ2

w

]
θ

′
(0) = Nur (13)

Sh√
Rex

= −φ′(0) = Shr (14)

3 Method of Solutions

The dimensionless ordinary differential Eqs. (9) to (11) along with dimensionless
boundary conditions (12) are solved using aMATLABbuilt-in solver bvp4c package.
The equations are converted into the set of first order differntial equations as follows:

f = y1, f
′ = y

′
1 = y2, f

′ ′ = y
′
2 = y3, θ = y4,

θ
′ = y

′
4 = y5, φ = y6, φ

′ = y
′
6 = y7

f
′ ′ ′ = y

′
3 = y22 − y1y3 + λ2 + M(λ − y2) (15)

θ ′′ = y
′
5 = −Pr[y1y5 + Ay4 + Nby5y7 + Nt y27 + Ecy23 + MEc(λ − y2)

2]
1 + Rd(1 − (θw − 1)y4)

3 (16)
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φ′′ = y
′
7 = −Ley1y7 − Nt

Nb
y5 (17)

The boundary conditions are given by:

y1(0) = 0, y2(0) = 1, y5(0) = −γ [1 − y4(0)], y6(0) = 1,
y2(+∞) = λ, y4(+∞) = 0, y6(+∞) = 0

(18)

4 Results and Discussions

Influence of non-dimensional parameter such as Radiation parameter Rd , along
with Brownian motion parameter Nb, Thermophoresis parameter Nt , Magnetic field
parameter M , Lewis number Le, Biot number γ , Prandtl number Pr and Eckert
number Ec on Temperature profile θ(η), Nanoparticle concentration φ(η), reduced
Nusselt number and reduced Sherwood number graphically and numerically.

The obtained numerical solutions are compared with those of prior published
Mushtaq et al. [24] to justify the correctness of the employed approach. Table 1
illustrates the numerical value of heat andmass transfer, aswell as the results reported
by [24] in the presence and absence of radiation, which demonstrates great agreement
with the results achieved in this investigation.

Table 2 shows the effect of radiation, together with other parameters, on heat and
mass transfer as numerical values of −θ

′
(0) and −φ′(0).

Figures 2 and 3 depict the effect of Nt along with Rd on the temperature profile
and Nanoparticle concentration profile respectively and it can be observed that the

Table 1 Comparison of values of −θ
′
(0) and −φ

′
(0) for the various value of Nb with Mushtaq

et al. [24]

Nb Rd Mushtaq et al. [24] Present study

−θ
′
(0) −φ

′
(0) −θ

′
(0) −φ

′
(0)

0.1 0 0.078993 2.44780 0.0785 2.4478

1 0.081387 2.40369 0.0815 2.4061

0.2 0 0.070373 2.43727 0.0704 2.4373

1 0.078183 2.39810 0.0779 2.4001

0.3 0 0.058202 2.44012 0.0582 2.4401

1 0.074496 2.39670 0.0735 2.3991

0.4 0 0.040852 2.44673 0.0409 2.4467

1 0.070375 2.39623 0.0681 2.3970

0.5 0 0.018834 2.45314 0.0189 2.4531

1 0.065911 2.39605 0.0615 2.3961
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Table 2 Value of Nur and Shr for different parameters along with radiation

Rd Nt Nb M Pr Le γ Ec −θ ′(0) −φ′(0)
0 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0880 0.6586

0.2 0.0879 0.6211

0.3 0.0878 0.5847

1 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0871 0.6589

0.2 0.0870 0.6213

0.3 0.0869 0.5846

0 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0880 0.6586

0.2 0.0650 0.6812

0.3 0.0847 0.6891

1 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0871 0.6589

0.2 0.0860 0.6801

0.3 0.0848 0.6874

0 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0880 0.6586

1.0 0.0866 0.6599

1.5 0.0853 0.6616

1 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0871 0.6587

1.0 0.0860 0.6580

1.5 0.0850 0.6577

0 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0880 0.6586

7.0 0.0881 0.6602

9.0 0.0880 0.6622

1 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0871 0.6589

7.0 0.0877 0.6581

9.0 0.0880 0.6583

0 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0880 0.6586

4.0 0.0870 1.4480

7.0 0.0865 1.9696

1 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0871 0.6589

4.0 0.0865 1.4408

7.0 0.0863 1.9586

0 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0880 0.6586

0.2 0.1651 0.6061

0.3 0.2329 0.5601

1 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0871 0.6589

0.2 0.1598 0.6147

0.3 0.2213 0.5776

(continued)
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Table 2 (continued)

Rd Nt Nb M Pr Le γ Ec −θ ′(0) −φ′(0)
0 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0880 0.6586

0.2 0.0826 0.6844

0.3 0.0771 0.7103

1 0.1 0.1 0.5 5.0 1.0 0.1 0.1 0.0871 0.6589

0.2 0.0830 0.6764

0.3 0.0790 0.6940

Fig. 2 Effect of Nt along with Rd on θ(η)

temperature increases with the increase of both Nt and Rd whereas the nanoparticle
concentration increases with Nt but decreases with an increase in radiation. Figure 4
describes the effect of Nt and Rd on the temperature derivative profile (−θ ′(η)) and it
is clear that it increases with the increase of Nt and Rd . The results are important for
calculating the Nusselt number since they have a direct relationship to its value when
η = 0. The reason behind the fact is that the increase in Nt results the enhancement
of thermophoresis forces which has the tendency to fast flow the nanoparticles from
hot surface to cold surface away from stretching. This results in an increase of heat
and mass transfer in the boundary layer region for nanoparticles.

Figures 5 and 6 illustrate how Nb affects the temperature and nanoparticle concen-
tration profiles in conjunction with the specified radiation. The study elucidates that
the temperature increases with the increment Nb but decreases with Rd whereas the
concentration decreases with the increase in both Nb and Rd . The impact of Nb along
with Rd on −θ ′(η) is depicted in Fig. 7 and an increase is observed with the increase
in Nb but an opposite trend is seen with Rd . It is well known that as Nb increases, so
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Fig. 3 Effect of Nt along with Rd on φ(η)

Fig. 4 Effect Nt of along with Rd on −θ ′(η)

does the random motion of nanoparticles, resulting in an increase in collisions with
other nanoparticles. As a result, the kinetic energy is transformed into heat energy,
and the temperature rises. But the rate of mass transfer decreases because of the
tendency of the particle to get close to each other as Nb increases.

Figures 8 and 9 show the effect ofBiot number γ on both temperature and nanopar-
ticle concentration and it is observed that both increases with the increase in γ .
The main reason behind the fact is that, increase in biot number means increase
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Fig. 5 Effect of Nb along with Rd on θ(η)

Fig. 6 Effect of Nb along with Rd on φ(η)

in convective heat exchange at the surface which results in the increase in thermal
boundary layer thickness and which in turn increases the nanoparticle concentration.
Figures 10 shows that the temperature decreases with the increase of Prandtl number
Pr whereas Fig. 11 shows that the nanoparticle concentration profile increases with
Pr . Themain reason behind the fact that with the higher value in Pr the heat diffuses
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Fig. 7 Effect of Nb along with Rd on −θ ′(η)

Fig. 8 Effect of γ along with Rd on θ(η)

more rapidly than the momentum. It is also observed that at large Pr the tempera-
ture falls more drastically due to the fact that the large values of Pr leads to the low
thermal conductivity.

Figure 12 depicts the impact of Ec on the temperature profile.We know that Eckert
number expresses a direct relationship of flow’s kinetic energy to the boundary layer
enthalpy differences. This leads to the fact that the increases in Ec enhance the kinetic
energy. Whereas it is well known that the temperature is an average kinetic energy.
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Fig. 9 Effect of γ along with Rd on φ(η)

Fig. 10 Effect of Pr along with Rd on θ(η)

Hence alternatively we can say that temperature rises with the increase in Eckert
number and which can be clearly seen in the figure.

Figures 13 , 14 and 15 show the effect of magnetic parameters on velocity, temper-
ature, and nanoparticle concentration respectively. It is noticed from the velocity
profile that the velocity decreases with the increase in magnetic parameter. An exact
opposite behavior is seen in the case of temperature profile where the temperature
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Fig. 11 Effect of Pr along with Rd on φ(η)

Fig. 12 Effect of Ec along with Rd on θ(η)

increases with the increase inM and radiation Rd . In the case of nanoparticle concen-
tration, it is clear from the graph that the concentration increases with the increasing
magnetic parameter but decreases with stronger radiation. As the magnetic field
parameter increases, a resistive force called a Lorentz force is producedwhich retards
in the formmagnetic pressure drop on the velocity, as a result the motion gets slowed
down. Therefore the velocity decreases with the increasing value of M . Again due
to the Lorentz force a resistance is offered to the flow which results in warming up
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Fig. 13 Effect of M along with Rd on f ′(η)

Fig. 14 Effect of M along with Rd on θ(η)

the boundary layer region. Hence the temperature increases as the values of M gets
increase.

The influence of Lewis number on temperature and nanoparticle concentration can
be depicted in Figs. 16 and 17 respectively. It is noted that a growing behavior is found
for temperature profile with the increment in Le and Rd whereas the concentration
decreases with the increase in Le. It is observed that a smaller increase in Le results
in larger differences in temperature and a thinner concentration boundary layer due to
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Fig. 15 Effect of M along with Rd on φ(η)

Fig. 16 Effect of Le along with Rd on θ(η)

a weak molecular diffusivity. Figures 18 and 19 depicts the behavior of temperature
profile for heat source parameter (A > 0) and heat sink parameter (A < 0) respectively.
It is observed that the temperature of the thermal boundary layer increases with the
increase in A (heat source parameter) and decreases with the decrease in A (heat sink
parameter) under constant thermal radiation.
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Fig. 17 Effect of Le along with Rd on φ(η)

Fig. 18 Effect of A < 0 on θ(η)

5 Conclusions

The influence of solar radiation on a constant two-dimensional MHD flow across a
stretched plate is examined for various parameters in this study. The findings acquired
in this investigation using the MATLAB programme bvp4c and the results obtained
in the previous study utilizing the Runge Kutta Fourth Order Scheme showed great
consistency. The impact of various parameters in our present investigation are as
follows:
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Fig. 19 Effect of A > 0 on θ(η)

• The increasing value of Magnetic field parameter can decrease the nanoparticle
velocity.

• The temperature distribution in the boundary layer region canbe enhancedwith the
increment of Magnetic field parameter, Biot number Thermophoresis parameter,
Brownian motion parameter, Heat source parameter, Lewis number and Eckert
number.

• The temperature distribution diminishes with the increasing value of Prandtl
number and Heat sink parameter.

• Nanoparticle volume fraction in the boundary layer region can be enriched by
increasing the value of Thermophoresis parameter, Biot number, Magnetic field
parameter, Lewis number and Prandtl number while it can decrease with the
increase in Brownian motion parameter.

• The increasing value of Radiation parameter increases the Temperature profile
and decreases the Nanoparticle volume fraction profile.

• The value of reduced Nusselt number is increased with the increase in Biot
number and the Prandtl number and deceases with magnetic field parameter,
Lewis number, Thermophoresis parameter and Brownian motion parameter.

• The value of reduced Sherwood number is increasedwith the increase inBrownian
motion parameter, Magnetic field parameter, Prandtl number, Lewis number and
Eckert number but decreases with Thermophoresis parameter and Biot number.

• It is very interesting to note that increase in Radiation parameter lead to the
decrease in Reduced Nusselt number and increase in Reduced Sherwood number.

• The applicability of MATLAB’s software bvp4c (Boundary layer problem of
fourth-order) is ensured by verifying the findings as compared to the previously
published results.

• The present study finds an application in efficient Solar collector, Cooling
problems in industry, etc.
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Analysis of Solute Dispersion Through
an Open Channel Under the Influence
of Suction or Injection

Gourab Saha , Nanda Poddar , Subham Dhar ,
and Kajal Kumar Mondal

Abstract In presence of suction or injection, the process of dispersion of solute in
an open channel flow is investigated through this work. The dispersion coefficient
is analytically determined by using Mei’s multi-scale analysis approach up to sec-
ond order. The effect of suction or injection on dispersion coefficient are displayed
graphically and discussed. The novelty of the present research is to find the effect of
suction/injection Reynolds number on the dispersion coefficient and concentration
distribution of the solute. It is found that the mass dispersivity decreases with the
increment of suction/injection Reynolds number. The present study may play a sig-
nificant role in the process of wastewater treatment. It is observed that, as dispersion
time progresses, the amplitude of the concentration curves along longitudinal direc-
tion becomes flat. It is observed that the iso-concentration contour spreads along the
longitudinal direction with the enhancement of injection Reynolds number.

Keywords Open channel · Multi-scale approach · Suction · Injection ·
Dispersivity

1 Introduction

The study of dispersion phenomena of solute through various flow situation has a
great importance because the results of this study may be applied in diverse fields,
namely, biology, chemical engineering, chromatography, environment fluid mechan-
ics etc. For controlling the air or water pollution, to create a design of chemical
reaction, for targeting drug delivery etc., the investigation of the mass transport of
the solute is highly important. Several researchers studied the Newtonian fluid flows
in different flow geometry. Suction/injection in the fluid flow can be a powerful
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mechanism for the flow management. This technique has an important potential in
bio-medical engineering, rocket technology and food processing. In medical engi-
neering, it plays a significant role for artificial qualitative analysis.

In an incompressible fluid flow, the longitudinal dispersion of solute through a
circular tube was first studied by Taylor [1]. There were some limitations in Tay-
lor’s research work, by removing those restrictions, Aris [2] introduced a method
of moment to analyze the dispersion phenomena of the tracers. Gill [3] obtained a
series solution for the dispersion of solute in a laminar flow through a tube using
mean concentration expansion technique. Mondal et al. [4] explored the dispersion
process of settling particles in a turbulent open channel flow from an elevated contin-
uous source. Mei [5] proposed a multiple scale analysis to investigate the dispersion
of solute through various flow geometries. In this process, one can analyze the dis-
persion phenomena for different time scales. Later, Wu et al. [6] used the multi-scale
analysis to observe the environmental dispersion in wetland flow.

Several researchers [7–10] used the boundary layer theory to analyze the impact
of suction or injection in various flow field. To control fluid flow on the surface
of subsonic aircraft suction/injection was imposed by Shojaefard et al. [7]. Suc-
tion/injection of a fluid has a great importance in heat transfer cooling [8]. Finite
difference implicit Keller-box method applied by Ishak et al. [9] to show that how
suction or injection can significantly change the flow field and it affects the rate of
heat transfer from the plate. An analytical solution for energy and momentum equa-
tions in presence of suction or injection was obtained by Jha et al. [10]. Recently,
Sasikumar et al. [11] investigated the effect of suction and injection on an unsteady
oscillating flow of an incompressible viscous electrically conducting fluid through
an asymmetric channel filled with perforated medium and oscillating wall tempera-
ture. In presence of extending surface effect with suction/injection, MHD Casson
nanofluid flow over nonlinearly heated porous medium was studied by Abo-Dahab
et al. [12] and they determined the wall drag, thermal and mass fluxes in the said
model.

The main purpose of the present study is to investigate the effect of suc-
tion/injection Reynolds number on dispersion phenomena of solute in a laminar
flow through an open channel. The analytical results are derived with the help of
multi-scale homogenization process. The impact of suction/injection parameter on
the dispersion coefficient, transverse concentration and longitudinal concentration
distributions are discussed.

2 Mathematical Formulation

For this work, a two dimensional laminar flow of a viscous incompressible fluid
through an open channel is considered. We introduce x ′-axis along the direction
of flow and y′-axis perpendicular to the flow. It is assumed that the depth of the
channel is very small compared to the length of the channel. The velocity distribution



Analysis of Solute Dispersion Through an Open Channel … 495

Fig. 1 Schematic diagram of the above flow

u′(y′) parallel to the x ′-axis of the above mentioned flow satisfies the Navier-Stokes
equation

ν
d2u′

dy′2 − V0
du′

dy′ = 1

ρ

∂p

∂x ′ , (1)

where ν is the kinematic viscosity of the fluid. The boundary conditions of the flow
field are taken as u′(y′) = 0 at y′ = 0 and du′

dy′ = 0 at y′ = h (See Fig. 1).
Introducing the following dimensionless quantities

x = x ′

L
, y = y′

h
, t = t ′

h2
D

, u = u′

uc
, Sc = ν

D
. (2)

The Eq. (1) takes the form

d2u

dy2
− γ

du

dy
= −1, (3)

where uc = − h2

ρν

∂p
∂x ′ and γ

(= V0h
ν

)
is the suction Reynolds number (-γ stands for

injection Reynolds number). The respective non dimensional boundary conditions
are

u(y) = 0 at y = 0,
du

dy
= 0 at y = 1. (4)

Solving Eq. (3) with the help of boundary condition Eq. (4), one can obtain

u(y) = e−γ

γ 2

[
1 − eγ y

] + y

γ
. (5)

Figure 2 shows the velocity profile through the considered open channel for var-
ious values of suction/injection Reynolds number. It is observed that the velocity
increases with the increment of injection parameter and if positive value of γ i.e. if
suction increases, the velocity reduces in the flow field. In the limiting case of suc-
tion/injection Reynolds number i.e. when γ → 0, the velocity of the fluid is exactly
similar to that of an open channel flow and it’s mathematical form is given below
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Fig. 2 Velocity profiles for different values of suction (γ ) and injection (−γ ) Reynolds number

lim
γ→0

u(y, γ ) = y − y2

2
. (6)

If we add the solute with constant diffusivity D in the above mentioned flow, the
concentration C(x ′, y′, t ′) of the tracers molecules satisfies the convective-diffusion
equation

∂C

∂t ′
+ u′ ∂C

∂x ′ − V0
∂C

∂y′ = D

(
∂2C

∂x ′2 + ∂2C

∂y′2

)
, f or 0 < y′ < h (7)

with the following conditions

C(x ′, y′, t ′)
∣
∣
t ′=0 = δ

(
x ′

h

)
, (8a)

D
∂C

∂y′

∣∣∣∣
y′=0

= 0, (8b)

D
∂C

∂y′

∣
∣∣∣
y′=h

= 0, (8c)

C(x ′, y′, t ′)|x ′→±∞ = 0, (8d)

where δ(.) is the Dirac delta function.
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2.1 Different Time-Scales

Mei [5] first introducedmulti-scale analysis to study the dispersion related problems.
For the present work, three different time scales and two length scales are used. The
length scales are taken as the channel depth (h) and the characteristic length of the
concentration cloud (L). The timescales are defined as T0 (i.e. the diffusion time
along the depth of the channel), T1 (i.e. the convection time along characteristic
length) and T2 (i.e. the diffusion time along the characteristic length), where

T0 = h2/D, T1 = L/U, T2 = L2/D.

So, the ratio of the different time scales are

T0 : T1 : T2 = 1 : 1
ε

: 1

ε2
,

where ε = h
L (� 1) is the perturbation parameter.

2.2 Dimensionless Concentration Equation

Using Eqs. (2) into(7) and (8), the dimensionless concentration equation and the
respective initial and boundary conditions becomes

∂C

∂t
+ εuPe

∂C

∂x
− εγ ∗Sc

∂C

∂y
= ε2

∂2C

∂x2
+ ∂2 C

∂y2
, f or 0 < y < 1 (9)

C(x, y, t)|t=0 = δ
( x

ε

)
, (10a)

∂C

∂y

∣∣∣∣
y=0

= 0, (10b)

∂C

∂y

∣∣
∣∣
y=1

= 0, (10c)

C(x, y, t)|x→±∞ = 0, (10d)

where Pe = uch
D is the Péclet number which is the ratio of convection rate

(
1

h/uc

)

and diffusion rate
(

1
h2/D

)
. Also, the suction/injection Reynolds number is defined as

γ = V0h
ν

= V0L
ν

h
L = εγ ∗.
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2.3 Homogenization

In the present work, Mei’s homogenization method is used for asymptotic analysis
and we define the following time variables (fast, medium and slow) as

t0 = t, t1 = εt, t2 = ε2t. (11)

Using chain rule, one can get

∂

∂t
≡ ∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
. (12)

The asymptotic expression for concentration C can be expanded into multi-scale as

C(x, y, t) = C0(x, y, t0, t1, t2) + εC1(x, y, t0, t1, t2) + ε2 C2(x, y, t0, t1, t2) + O(ε3).

(13)

Substituting Eqs. (12) and (13) into (9), (10b) and (10c), one can obtain

[
∂C0

∂t0
− ∂2 C0

∂y2

]
+ ε

[
∂C0

∂t1
+ ∂C1

∂t0
+ uPe

∂C1

∂x
− γ ∗Sc

∂C0

∂y
− ∂2 C1

∂y2

]

+ε2

[
∂C0

∂t2
+ ∂C1

∂t1
+ ∂C2

∂t0
+ uPe

∂C0

∂x
− γ ∗Sc

∂C1

∂y
− ∂2 C0

∂x2
− ∂2 C2

∂y2

]

+ O(ε3) = 0,

f or 0 < y < 1
(14)

and

∂C0

∂y
+ ε

∂C1

∂y
+ ε2

∂C2

∂y
+ O(ε3) = 0 at y = 0, 1. (15)

For the zeroth order (O(ε0)) perturbation, Eq. (14) and (15) gives

∂C0

∂t0
= ∂2 C0

∂y2
, f or 0 < y < 1 (16)

and
∂C0

∂y

∣∣∣∣
y=0,1

= 0. (17)

The general solution of Eq. (16) with boundary condition (17) is
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C0 = C (0)
0 (x, t1, t2) +

∞∑

n=1

Re
[
C (n)
0 (x, t1, t2)e

inπy
]
e−n2π2t0 . (18)

For large time evolution, one can consider only the first term of the expression and
take the solution (18) as

C0 = C0(x, t1, t2). (19)

Also, for the first order (O(ε)) perturbation, comparing the coefficients of ε from
Eqs. (14) to (15), we have

∂C0

∂t1
+ ∂C1

∂t0
+ uPe

∂C0

∂x
− γ ∗Sc

∂C0

∂y
− ∂2 C1

∂y2
= 0, (20)

∂C1

∂y

∣∣∣∣
y=0,1

= 0. (21)

As C0 is independent of y,
∂C0
∂y = 0. Thus, Eq. (20) reduces to

∂C0

∂t1
+ ∂C1

∂t0
+ uPe

∂C0

∂x
− ∂2 C1

∂y2
= 0. (22)

Since t0 is very large, Eq. (22) becomes

∂C0

∂t1
+ uPe

∂C0

∂x
− ∂2 C1

∂y2
= 0. (23)

Consider the depth averaged function 〈g〉 of a function g with respect to y as

〈g〉 =
∫ 1

0
gdy. (24)

Now, taking depth average of Eq. (23) and applying the conditions Eqs. (21), (23)
takes the form

∂C0

∂t1
+ 〈u〉Pe ∂C0

∂x
= 0. (25)

Subtracting Eq. (25) from Eq. (22), we get

∂C1

∂t0
+ Pe(u − 〈u〉)∂C0

∂x
= ∂2 C1

∂y2
. (26)

Considering the following substitution,

C1 = PeF(y)
∂C0

∂x
(27)
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in Eq. (26) and comparing the coefficients of ∂C0
∂x from both sides, one can get

d2 F

dy2
= u − 〈u〉 (28)

and

dF

dy

∣∣∣
∣
y=0,1

= 0, (29a)

〈F〉 = 0. (29b)

For second order o(ε2) perturbation, Eqs. (14) and (15) gives

∂C0

∂t2
+ ∂C1

∂t1
+ ∂C2

∂t0
+ Peu

∂C1

∂x
− γ ∗Sc

∂C1

∂y
− ∂2 C0

∂x2
− ∂2 C2

∂y2
= 0, (30)

∂C2

∂y

∣∣∣∣
y=0,1

= 0. (31)

Again, since t0 is very large, Eq. (30) reduces to

∂C0

∂t2
+ ∂C1

∂t1
+ Peu

∂C1

∂x
= γ ∗Sc

∂C1

∂y
+ ∂2 C0

∂x2
+ ∂2 C2

∂y2
(32)

Taking depth average on Eq. (32) and applying the conditions (31) & using Eq. (27),
the Eq. (32) becomes

∂C0

∂t2
+ ∂〈C1〉

∂t1
+ Pe〈u ∂C1

∂x
〉 = γ ∗ScPe[F(1) − F(0)]∂C0

∂x
+ ∂2 C0

∂x2

=⇒ ∂C0

∂t2
+ Pe〈u ∂C1

∂x
〉 = γ ∗Sc Pe[F(1) − F(0)]∂C0

∂x
+ ∂2 C0

∂x2
. (33)

Subtracting Eqs.(33) from Eq. (30), on can get

∂C1

∂t1
+ ∂C2

∂t0
+ Pe

(
u

∂C1

∂x
− 〈u ∂C1

∂x
〉
)

= γ ∗Sc
∂C1

∂y
+ ∂2 C2

∂y2

− γ ∗ScPe[F(1) − F(0)]∂C0

∂x
. (34)

Also, from Eq. (27), we have

∂C1

∂x
= PeF

∂2 C0

∂x2
(35)
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and

u
∂C1

∂x
= PeuF

∂2 C0

∂x2
. (36)

Again, taking depth average of Eq. (36), we get

〈u ∂C1

∂x
〉 = Pe〈uF〉∂

2 C0

∂x2
. (37)

Substituting Eqs. (37) in (33), it becomes

∂C0

∂t2
= [1 − P2

e 〈uF〉]∂
2 C0

∂x2
+ γ ∗Sc Pe[F(1) − F(0)]∂C0

∂x
. (38)

Multiplying Eq. (25) by ε and Eq. (38) by ε2 and adding them, the result gives

∂C0

∂t0
+ ε

∂C0

∂t1
+ ε2

∂C0

∂t2
+ εPe[〈u〉 − γ Sc{F(1) − F(0)}]∂C0

∂x
= ε2[1 − P2

e 〈uF〉]∂
2 C0

∂x2
.

(39)
Since C0 is independent of t0,

∂C0
∂t0

= 0. Using the identity (12), Eq. (39) reduces to

∂C0

∂t
+ εPe[〈u〉 − γ Sc{F(1) − F(0)}]∂C0

∂x
= ε2[1 − P2

e 〈uF〉]∂
2 C0

∂x2
. (40)

Introducing the following new dimensionless variables in the above equation

τ = t, ξ = x

ε
− Pe

[〈u〉 − γ Sc{F(1) − F(0)}] τ, (41)

the Eq. (40) takes the following form

∂C0

∂τ
= DT

∂2 C0

∂ξ 2
, (42)

where
DT = 1 − P2

e 〈uF〉. (43)

After solving Eq. (42) with the help of Eq. (10), one can get

C0 = 1√
4πDT τ

exp

( −ξ 2

4DT τ

)
. (44)

Using Eq. (27), (36) and (37) in Eq. (34), we have
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∂C2

∂t0
+ P2

e [uF − 〈u〉F − 〈uF〉] ∂2 C0

∂x2
= γ ∗Sc Pe

[
dF

dy
− {F(1) − F(0)}

]
∂C0

∂x

+ ∂2 C2

∂y2
, (45)

where ∂C1
∂t1

= −P2
e 〈u〉F ∂2C0

∂x2 . On considering the following substitution in Eq. (45)

C2 = P2
e G(y)

∂2 C0

∂x2
+ γ ∗PeScH(y)

∂C0

∂x
, (46)

and comparing the coefficients of ∂2C0
∂x2 and ∂C0

∂x from the both sides of Eq. (45), one
can get

d2G

dy2
= uF − 〈u〉F − 〈uF〉, (47)

along with the conditions

dG

dy

∣∣∣
∣
y=0,1

= 0, (48a)

〈G〉 = 0 (48b)

and
d2 H

dy2
= −

[
dF

dy
− {F(1) − F(0)}

]
, (49)

with

dH

dy

∣
∣∣∣
y=0,1

= 0, (50a)

〈H〉 = 0. (50b)

Solving Eqs. (28), (47) and (49) with respective boundary conditions, the solutions
are given below

F = e−γ

γ 3

[
(eγ − 1)

(
y2

2
+ 1

γ 2
− 1

6

)
− eγ y

γ
+ y − 1

2

]
+ 1

γ

(
y3

6
− y2

4
+ 1

24

)
,

(51)
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G = a1

(
y2

2
− 1

6

)

+ a2

(
y3

6
− 1

24

)

+ a3

(
y4

12
− 1

60

)

+ a4

(
y5

20
− 1

120

)

+ a5

(
y6

30
− 1

210

)

+ a6

(
eγ y

2
− y

γ
− eγ

γ 3 + 1

2γ
+ 1

γ 3 +
)

+ a7

(
yeγ y

γ 2 − 2eγ y

γ 3 + y

γ 2 − eγ

γ 3 + 3eγ

γ
− 1

2γ 2 − 3

γ 4

)

+ a8

(
y2eγ y

γ 2 − 4yeγ y

γ 3 + 6eγ y

γ 4 − 2y

γ 3 − eγ

γ 3 + 6eγ

γ 4 − 12eγ

γ 5
+ 1

γ 3 + 12

γ 5

)

+ a9

(
y3eγ y

γ 2 − 6y2eγ y

γ 3 + 18yeγ y

γ 4 − 24eγ y

γ 5
+ 6y

γ 4 − eγ

γ 3 + 9eγ

γ 4 − 36eγ

γ 4 − 36eγ

γ 5

+60eγ

γ 6 − 3

γ 4 − 60

γ 6

)
+ a10

(
e2γ y

4γ 2 − y

2γ
− e2γ

8γ 3 + 1

4γ
+ 1

8γ 3

)

, (52)

where

a1 =
[
e−γ

γ 3

(
eγ − 1

) (
1

γ 2 − 1

6

)
− e−γ

2γ 3 + 1

24γ

] [
e−γ

(
eγ − 1

)

γ 3 − 1

2γ

]

− 〈uF〉,

a2 = 1

γ

[
e−γ

γ 3

(
eγ − 1

)
(

1

γ 2 − 1

6

)
− e−γ

2γ 3 + 1

24γ

]
+ e−γ

γ 3

[
e−γ

(
eγ − 1

)

γ 3 − 1

2γ

]

,

a3 = e−γ

γ 4 +
[
e−γ

(
eγ − 1

)

2γ 3 − 1

4γ

][
e−γ

(
eγ − 1

)

γ 3 − 1

2γ

]

,

a4 = 1

γ

[
e−γ

(
eγ − 1

)

2γ 3 − 1

4γ

]

+ 1

6γ

[
e−γ

(
eγ − 1

)

γ 3 − 1

2γ

]

, a5 = 1

6γ 2 ,

a6 = − e−γ

γ 2

[
e−γ

γ 3

(
eγ − 1

)
(

1

γ 2 − 1

6

)
− e−γ

2γ 3 + 1

24γ

]
− e−γ

γ 4

[
e−γ

(
eγ − 1

)

γ 3 − 1

2γ

]

,

a7 = − e−2γ

γ 5
− e−γ

γ 5
, a8 = − e−γ

γ 2

[
e−γ

(
eγ − 1

)

2γ 3 − 1

4γ

]

,

a9 = − e−γ

6γ 3 , a10 = e−2γ

γ 6 ,

H = −e−γ

γ 3

[
(eγ − 1)

(
y3

6
− 1

24

)
+

(
y2

2
− 1

6

)
− eγ y

γ 2
+ y

γ
+ eγ

γ 3
− 1

2γ
− 1

γ 3

]

− 1

γ

(
y4

24
− y3

12
+ 1

80

)
+ [F(1) − F(0)]

(
y2

2
− 1

6

)
.

(53)
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3 Result and Discussions

This section deals with a discussion of mean concentration distribution and Taylor
dispersivity under the influence of suction/injection Reynolds number (γ ).
The transverse concentration distribution and mean concentration distribution are
given as follows

C = C0 + εC1 + ε2 C2, (54)

〈C〉 = C0 + ε〈C1〉 + ε2〈C2〉. (55)

The Taylor dispersion coefficient is given by

DT = 1 − P2
e 〈uF〉. (56)

Figure 3 describes the dispersion coefficient of solute for various values of γ .
It is seen from Fig. 3a that the dispersivity increases significantly for large values
of injection parameter (−γ ). On the other hand, the opposite situation arises when
the suction parameter (γ ) increases. In case of injection, the dispersion coefficient
is large in compare to that of the case in suction parameter. Also, it is observe that,
for all cases, the dispersion coefficient increases as the Péclet number enhances.
Figure 3b depicts the Taylor dispersivity of the solute material for different values of
injection parameter with respect to the channel height y. It is seen that as the injection
Reynolds number increases, the dispersivity increases throughout the whole channel
height. It is also visible from the Fig. 3b that near the bed (y = 0), the dispersivity
is very low and as, height of the channel rises, the dispersivity also increases. It is
observed that at the free surface of the open channel (y = 1), the Taylor dispersivity
gains it’s maximum value. The Taylor dispersivity is presented for various values
of suction Reynolds number in Fig. 3c. The opposite phenomena on the dispersion
coefficient is observed in compare to that of in Fig. 3b.

Figure 4 displays the longitudinal real concentration for different values of γ ,
τ and y. It is seen from Fig. 4a that with the enhancement of injection parame-
ter, the amplitude of the concentration distribution increases. It is noted that when
−γ ≥ 3, the effect of injection on concentration along longitudinal direction is neg-
ligible. Influence of suction on distribution of concentration is shown in Fig. 4b and
it is observed that the peak of the concentration curve reduces as suction Reynolds
number increases. It is noticed from Fig. 4c that the amplitude of the longitudinal
real concentration reduces significantly with the increment of dispersion time. It is
interesting to note that the concentration distribution moves towards the downstream
direction when transverse position raises from the bed surface (see Fig. 4d).

Iso-concentration contours are depicted in Fig. 5 for different values of injection
parameter. When −γ = 3 the concentration stay at the bed surface. The concen-
tration starts to move away longitudinally for −γ = 5, the reason behind this, the
introduction of injection in the flow, the flow velocity increases, as a result convec-
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Fig. 3 aDispersion coefficient for different values of injection (−γ ) and suction (γ ) Reynolds num-
ber, b Transverse concentration for various values of injection Reynolds number (−γ ), c Transverse
concentration for different values of suction Reynolds number (γ )
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Fig. 4 Longitudinal real concentration distribution for various values of: a injection Reynolds
number (−γ ), b suction Reynolds number (γ ), c dispersion time, d height of the channel

tion takes places in the flow. Also for −γ = 10 the rate of convection is large as
compared to the previous values of injection Reynolds number.
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Fig. 5 Iso-concentration contour for: a −γ = 3, b −γ = 5, c −γ = 10

4 Conclusion

In the present study, solute transport in an open channel flow is analyzed by using
multi-scale analysis technique. The real concentration distribution and Taylor dis-
persivity of the solute is evaluated analytically. It is observed that Taylor dispersivity
decreases with the increment of suction Reynolds number and it increases with
the enhancement of injection Reynolds number. The reason behind this, when γ

increases, the flow decreases, as a result rate of dispersion reduces and consequently,
the peak of the amplitude of the longitudinal concentration distribution decreases.
The opposite scenario arises when −γ increases, i.e. when injection Reynolds num-
ber increases. With the enhancement of −γ , the flow velocity increases which helps
to increase the rate of dispersion. Therefore, one can observe the increment in the
amplitude of the real concentration along the longitudinal direction. As dispersion
time progresses, the amplitude of the concentration curves along longitudinal direc-
tion becomes flat. This is because, with the increment of time, themixing of the solute
increases. It is observed that the iso-concentration contour spreads along the longi-
tudinal direction with the enhancement of injection Reynolds number (−γ ), because
the rate of convection becomes large for higher values of the injection Reynolds
number (−γ ).
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Mathematical Modelling of Magnetized
Nanofluid Flow Over an Elongating
Cylinder with Erratic Thermal
Conductivity

Debasish Dey, Rupjyoti Borah, and Joydeep Borah

Abstract An attempt has been made to analyze the flow behaviours of magnetized
nanofluid due to an elongating cylinder with the contemporary effects of both heat
and mass transference. The flow governing equations are re-modeled into a solvable
form by considering a suitable similarity transformation. TheMATLAB fourth-order
Runge-Kutta shooting technique is implemented toworkout the problem.Thenumer-
ical findings are assembled on a system of tables and diagrams. These results show
nanofluid properties for a wide range of circulations such as motion, thermal and
mass fractions including physical dimensionless numbers. The major result of this
study is that the thermal fraction of the nanofluid is an escalating function of the flow
parameters namely the magnetic, Brownian motion, thermophoresis, temperature
ratio and the curvature parameters.

Keywords Nanofluid · Heat transfer · Mass transfer · Extending cylinder ·
Variable thermal conductivity

1 Introduction

The flow of different fluid models caused due to an extending or contracting geome-
tries have lots of applications in engineering sciences, industrial processes and
medical sciences etc. Crane [1] was the first author who has discussed the fluid’s
flow caused due to stretching/shrinking surfaces in 1970. Again, the relevance of
magnetic field on the fluid’s flow caused due to different surfaces has plentiful appli-
cations in diverse fields. In the last five years, many researchers Gangadhar et al.
[2], Das et al. [3], Dey et al. [4], Dey and Borah [5], Dey et al. [6, 7] etc. have
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discussed the effects of magnetic field on the different fluids flow by considering
stretching/shrinking surfaces.

The simultaneous effects of both thermal and mass transmission on fluid flows
havemultifarious applications. The effect of heat transfer has drawnmany researchers
due to its applications in different fields such as industrial processes,medical sciences
and biological systems. The mass transfer phenomenon draws an imperative func-
tion in realizing industrial processes such as reverse osmosis, membrane separation,
dissemination of chemical impurities and distillation of water etc. Manjunatha et al.
[8] and Divya et al. [9] have discussed the simultaneous effects of both heat and mass
transfers in the peristaltic mechanism of the Jeffrey fluid flow model. In recent time,
Prasad et al. [10], Dey and Borah [11] and Vaidya et al. [12] etc. have discussed
the flow behaviours with the influenced of both heat and mass transfers due to a
stretching/shrinking geometries respectively. Abel et al. [13] and Jahan et al. [14]
have explored the nature of flow by considering variable fluid properties.

The nanofluid signifies a crucial function in the modern time because it can
enhance the thermal transmission that is important in industrial processes. It is one
kind of fluid that contains solid particles with dimension less than 100 nm. Suspen-
sion of nanoparticles in fluid is one of the most appropriate techniques for enhancing
heat transmission coefficients. It is a smart fluid where we can reduce or enhance
the heat transfer phenomenon as requirement. The nanofluid has lots of applications
such as industrial processes, nuclear reactors, transportation, electronics, extraction
of geothermal power, biomedicine and food processing etc. In 1995, Choi [15] has
developed the term ‘Nanofluid’. Many researchers have influenced the various appli-
cations of nanofluid in modern times and put their ideas to rich the research level on
nanofluids. Das et al. [16], Ghosh and Mukhopadhyay [17] and Molli and Naikoti
[18] etc. have investigated the behaviour of nanofluid flow and their importance in
different physical fields. Prasad et al. [10], Li et al. [19] and Narender et al. [20] have
examined the flow nature of nanofluid with the effects of both heat and mass trans-
fers. Khashi’ie et al. [21] have given the mathematical model of hybrid nanofluid
flow due to a shrinking cylinder which is situated in porous medium.

The intention of this model is catalogued below:

i. Time-independent flow of magnetized nanofluid due to an extending cylinder
with the effects of both thermal and concentration diffusions is considered.

ii. The governing equations viz., equation of motion, energy and species of the
nanofluid are transformed into solvable form by adopting appropriate similarity
transformation and hence decipher with the support of MATLAB fourth-order
Runge- Kutta Shooting method.

iii. Flowbehaviours of nanofluidwith temperature andmass fractions are presented
pictorially for assorted amount of novel flow parameters.

iv. The physical measures of curiosity such as drag force, local Nusselt number
and mass diffusion rate of the fluid at the vicinity of the system are tabulated.

v. A comparison table is made to validate our results for the limiting case with
the pioneer works of Jahan et al. [14].
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Webelieved that thiswork carries lots of novelty such as idea of nanofluid, variable
fluid properties and elongating cylinder etc. and may be applied in various industrial
processes, scientific fields andmedical sciences etc. In future, researchersmay extend
this work by considering different geometries by assisting different approaches.

2 Problem Construction

To form the mathematical model of this problem, the following suppositions are
made.

(i) The steady, 2D, incompressible and viscous nanofluid flow over an extending
cylinder with the synchronized influences of both heat and mass transference.

(ii) The flow is governed by (a) inertia force, (b) viscous force and (c) pressure
gradient.

(iii) The cylinder of diameter 2R is immersed horizontally in the nanofluid with
the ambient fluid’s velocity is Ue = bx where b ≥ 0.

(iv) A constant magnetic field of strength (B0) is considered in the vertical
direction of the flow.

(v) The surface of the geometry is characterized by the velocity UW (x) = ax ,
wherea is the constant such thata > 0 signifies elongate at the surfacewith the
prescribedwall temperature and concentration are TW (x)−T∞ = x&Cw(x)−
C∞ = x respectively, where T∞ and C∞ are the ambient temperature and
concentration respectively.

(vi) k(T ) is supposed to fluctuate with temperature in linear manner.

The schematic illustration of this problem is drawn in Fig. 1. Following Jahan
et al. [14], the leading equations are:

∂

∂x
(ru) + ∂

∂r
(rv) = 0, (1)

Fig. 1 Flow diagram
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The relevant boundary conditions are

u = Uw = ax, v = 0, T = Tw,C = Cw at r = R,

u → Ue = bx, T → T∞,C → C∞ as r → ∞, (5)

To transform the Eqs. (1)–(4) into solvable form, the following new quantities are
launched (following Jahan et al. [14]):

η =
√

a

2υ

(
r2 − R2

R

)
, ψ =

√
υa

2
Rx f (η), T − T∞ = (Tw − T∞)θ(η),

C − C∞ = (Cw − C∞)φ(η), u = 1

r

∂ψ

∂r
, v = −1

r

∂ψ

∂x
. (6)

For liquidmetal, k revolutionizewith temperature in linearway from0◦F−400◦F
approximately (Keys [22]). FollowingAbels et al. [13],wedefine k(T ) = k∞(1+εθ),
where ε = kw−k∞

k∞ is the small temperature parameter.
The Eq. (1) is satisfied by the Eq. (6) which represents the validation of the

similarity transformation. Applying Eq. (6) into the Eqs. (2)–(4) and (5) we have
achieved the following solvable equations along with boundary condition.

(2 + 2Kη) f ′′′ + f f ′′ − ( f ′)2 + 2K f ′′ − M2( f ′ − A) + A2 = 0, (7)

(1 + εθ)(2 + 2Kη)θ ′′ + ε(2 + 2Kη)
(
θ ′)2 + (1 + εθ)K θ ′ + Pr

(
f θ ′ + M2Ecf ′2)

+ 2 Pr Nb(2 + 2Kη)θ ′φ′ + Pr NT (2 + 2Kη)θ ′2 = 0, (8)

(2 + 2Kη)φ′′ + Kφ′ + Nt

Nb
(2 + 2Kη)θ ′′ + Nt

Nb
K θ ′ + Le( f φ′ − f ′φ) = 0. (9)

The surface restrictions are:

f (0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1;
f ′(∞) → A, θ(∞) → 0, φ(∞) → 0.

(10)
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where, the parameters are defined in the following way:

K = 1

R

√
2υ

a
,Pr = μcp

k∞
, M2 = σ B2

0

ρa
, Ec = U 2

w

cp(Tw − T∞)
,

A = b

a
, Nb = τDB(Cw − C∞)

υ
, Nt = τDT (Tw − T∞)

υT∞
&Le = υ

DB
.

The dimensionless numbers such as drag force of the fluid at surface, local Nusselt
number andmass accumulation rate (determined by Sherwood number) are observed
in this study. These quantities play a vital role in significant real life areas. These
quantities are defined in the following way:

C f = 1

ρU 2
w

μ

(
∂u

∂r

)
r=R

, Nux = − x

(Tw − T∞)

(
∂T

∂r

)
r=R

Shx = − x

(Cw − C∞)

(
∂C

∂r

)
r=R

. (11)

The Eq. (6) is implemented on this Eq. (11), we have got the following form:

1√
2
C fRe

1/2
x = f ′′(0),

1√
2
NuxRe

−1/2
x = −θ ′(0),

1√
2
ShxRe

−1/2
x = −φ′(0).

(12)

3 Methodology

FollowingHazarika [23] andHazarika et al. [24], theMATLAB fourth-order Runge–
Kutta shooting scheme is adopted to solve the Eqs. (7)–(9) along with the surface
restriction (10). Shooting technique is a suitable scheme for solving a boundary value
problem of fluid dynamics. It is a sophisticated computer oriented numerical method.
This method can be used for solving both systems of linear and non linear equations,
highly coupled boundary value problems of ordinary differential equations. This
method does not need linearization of the equations, has been effectively applied to
this class of problems.

In case of boundary value problems of second order differential equations, one
condition is prescribed at either of the end points. Hence, at the initial point of
integration, one condition is always missing. Shooting method estimates the missing
initial condition in such a way that the estimation satisfies the condition prescribed
at the boundary too, to some desired accuracy. At the beginning, the missing value
is guessed and refined by using an iterative technique until the desired accuracy is
obtained.
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4 Results and Discussion

The above mentioned numerical technique is adopted to obtain the effects of flow
parameters on the nanofluid flow in terms of velocity, temperature and mass frac-
tion. A special emphasis is given on the effects of the magnetic (M), curvature (K),
small temperature (ε), Brownian motion (Nb) and thermophoresis (Nt) parameters
in the flow. We have fixed the value of the Lewis number (Le) (ratio of the Schmith
number and Prandtl number) is 2 throughout the study. The greater value of Le than
1 represents that the heat will neutralize more hurriedly than species.

Influence of M on the velocity and temperature fields of the nanofluid flow are
shown in Figs. 2 and 3. Application of magnetic field on the fluid decelerates the
motion during the flow regionwhich is in consistencywith the reality that the Lorentz
force plays as a hindering force and, subsequently, it shrinks the thickness of the
boundary-layer of the motion. But, temperature of the nanofluid is an amplifying
function of M. This ensues due to the strength of the applied magnetic field enhances
in an electrically conducting fluid, it develops the resistive type force called ‘Lorentz
force’. This force decelerates the motion of the fluid. Again, the thermal force as
the supplementary work done involved to defy the nanofluid against the exploit of
M. It warms up the conducting nanofluid and raises the temperature field. Figures 4,
5 and 6 are depicted to demonstrate the persuade of K on the flow. To control the
fluid’s velocity and mass fraction, the curvature parameter is very important. That is
the fluid’s velocity dwindles when the curvature of the cylinder enlarges (see Fig. 4).
But, the fluid’s temperature is an increasing function of K (see Fig. 5) whereas, the
mass fraction of the nanofluid drop downs withK (see Fig. 6). It can be accomplished
that the curvature of the cylinder is a controlling parameter of fluid’s velocity and
mass fraction. Moreover, the larger boundary layer thickness of the momentum and
concentration of the flow are obtained with lower values ofK. The Brownian motion

Fig. 2 Velocity outline
against η for incremental
amount of M
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Fig. 3 Temperature field
against η for incremental
amount of M

Fig. 4 Velocity outline
against η for different
amount of K

(represents the randommotion of nano-particles) effects on the temperature andmass
fraction of the nanofluid are shown pictorially in Figs. 7 and 8. From these figures, it is
perceived that the fluid’s temperature andmass fraction are increasing function ofNb.
The reason behind this phenomenon is that the augmented values of Nb enhances
the thickness of the thermal and concentration boundary layers, which eventually
boost ups the fluid’s temperature and concentration. Influence of Nt on the thermal
and mass fraction of the fuid are elaborated in Figs. 9 and 10. The thermophoresis
parameter helps to enhance the thermal transmission of the nanofluid (see Fig. 9).
From this figure, it is noticed that the thermal boundary layer thickness enhances and
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Fig. 5 Temperature field
against η for different
amount of K

Fig. 6 Mass Fraction
against η for different
amount of K

tends asymptotically to zero as the distance rises from the surface of the cylinder. It
can be endorsed that the escalating amount of Nt improves the liquid temperature
which is happened due to development in nanoparticles percentage with Nt. But,
the mass fraction of the nanoparticles lessens with the improving values of Nt (see
Fig. 10). The Fig. 11 is depicted to show the influence of small temperature parameter
(ε) which is responsible for variable thermal conductivity. The thermal transmission
rate enhances for improving values of ε. The physics behind this characteristics is that
on growing values of ε increases the thermal conductivity of the fluidwhich allows for
a faster rate of heat transfer. The Fig. 12 shows the effect of Lewis number (Le) on the
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Fig. 7 Temperature field
against η for different
amount of Nb

Fig. 8 Mass fraction against
η for different amount of Nb

volume fraction of the nano-particles suspended in the fluid. It is discerned that the
escalating values of Le significantly drops down the mass fraction of the nanofluid.
Increasing values of Le signifies the larger thermal boundary filmwidth at the outflow
of dropping thewidth of the concentration boundary film and, consequently, themass
fraction of the nanfluid drops down.

In the nonappearance of nanofluid and concentration effects, the governing
Eqs. (1)–(3) along with their boundary restrictions are fit with Jahan et al. [13]
works. They have studied the boundary layer fluid’s flow due to a stretching cylinder
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Fig. 9 Temperature field
against η for different
amount of Nt

Fig. 10 Mass fraction
against η for different
amount of Nt

with variable thermal conductivity. We have matched up to our numerical values
(bvp4c and shooting method solutions) of drag force at the surface of the cylinder
with the results of Jahan et al. [13] (see Table 1).

From this Table 1, a good reasonable conformity is observed of our solutions with
the work of Jahan et al. [14]. The bvp4c solution of the drag force is comparatively
matched with Jahan et al. [14] works than the shooting method solution.
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Fig. 11 Temperature field against η for different amount of ε

Fig. 12 Mass fraction against η for different amount of Le

The Table 2 demonstrates the outcome of the dimensionless parameter M, K&A
on the skin friction coefficient of the nanofluid. From this table, it is perceived that the
skin friction coefficient is a decreasing function of M&K . Therefore, we can reduce
the effects of drag force ( f ′′(0)) of the nanofluid flow caused due to stretching
cylinder by applying magnetic field. But, the drag force of the fluid increases with
A. It is also seen that the numerical values of skin friction coefficient obtained by
shooting method is higher than the bvp4c solver solutions. The numerical values of
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Table 1 Drag force at the surface for the flow parameters Pr = 1, ε = 0.2, Ec = 0.5, Le = Nt =
Nb = 0

K M A Skin friction coefficient

Jahan et al. [14] works Present results

Bvp4c solution Shooting method solution

0.0 0.2 0.1 − 0.68667 − 0.6829 − 0.7098

0.2 − 0.72698 − 0.7293 − 0.7326

0.3 0.5 − 0.81618 − 0.8122 − 0.7948

0.2 0.2 − 0.7136 − 0.7136 − 0.7123

0.5 − 0.5111 − 0.5011 − 0.5395

Table 2 Skin friction coefficient for the flow parameters M, K & A when Pr = Le = 2.0, Nt =
Nb = 0.5, ε = 0.2& Ec = 0.5

M K A Skin friction coefficient ( f ′′(0))
Bvp4c solver Shooting method

0.2 0.2 0.1 − 0.8217 − 0.7326

0.5 − 0.8962 − 0.7873

0.5 0.2 − 0.8962 − 0.7873

0.4 − 0.9751 − 0.8016

0.2 0.3 − 0.7538 − 0.6711

0.5 − 0.5756 − 0.5171

Nusselt number with different values of flow parameters are tabulated in Table 3.
From this table, it is perceived that the Nusselt number reduces for the increasing
values of the M, Nt&Nb, whereas, the flow parameters K&ε enhance the heat
transfer rate in the vicinity of the surface. Again, the Shooting method solutions of
Nusselt number is smaller than the Bvp4c solver solutions. The Brownian motion
(Nb), thermophoresis (Nt) and Lewis number (Le) parameters enhance the mass
accumulation rate of the nanofluid at the surface of the cylinder (see Table 4). The
Bvp4c solver solutions of the Sherwood number are comparatively smaller than the
Shooting method solutions.

5 Conclusions

From this investigation, the following conclusions are established:

• Effects of M&K reduce the motion of the nanofluid, whereas, they enhance the
temperature of the fluid.

• The temperature of the nanofluid enhances due to the presence of Nb, Nt&ε.
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Table 3 Nusselt number for the flow parameters M, K , Nt, Nb& ε when Pr = Le = 2.0& Ec =
0.5

M K Nt Nb ε Nusselt number (−θ ′(0))
Bvp4c solver Shooting method

0.2 0.2 0.5 0.5 0.2 0.1564 0.1057

0.5 0.1344 0.0748

0.5 0.2 0.1344 0.0748

0.4 0.1492 0.1293

0.2 0.4 0.1406 0.0679

0.7 0.1224 0.0528

0.5 0.5 0.1007 0.0748

0.8 0.0354 0.0065

0.5 0.2 0.1007 0.0748

0.4 0.1095 0.1335

Table 4 Sherwood number for the flow parameters Pr = Le = 2.0, Ec = 0.5, M = 0.5, K =
0.2& ε = 0.2

Nb Nt Le Sherwood number (−φ′(0))
Bvp4c solution Shooting method solution

0.2 0.5 2.0 1.0181 1.2550

0.5 1.1227 1.4238

0.5 0.4 1.1028 1.3345

0.7 1.1665 1.6028

0.5 1.0 0.7873 1.1846

2.0 1.1227 1.4238

• The volume fraction of the nanofluid boosts up due to the effects of Nb. But,
influence of Nt&Le lessen the nanofluid’s volume fraction.

• Byapplyingmagnetic field,we can reduce the effects of drag force of the nanofluid
at the surface of the cylinder.

• From the comparative study, we have achieved that the MATLAB built-in bvp4c
solver scheme gives nearest exact solution than the Shooting technique.

Nomenclature:

ρ-density, υ-kinematic viscosity, cp-specific heat, σ -electric charge density u-
velocity along x-axis, v-velocity along r -direction, DB-the Brownian diffusion
coefficient, DT -thermophoretic coefficient, R-radius of the cylinder, a, b-constants,
ψ-dimensionless stream function, K -curvature parameter, Pr-Prandtl number, M-
Magnetic field, Ec-Eckert number, A-velocity ratio parameter, Nb−Brownian
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motion parameter, Nt -thermophoresis parameter, ε-small temperature parameter, Le-
Lewis number, θ(η)-dimensionless temperature, φ(η)-dimensionless concentration,
Rex -local Reynolds number, τ = (ρC)p

(ρC) f
-the ratio of effective heat capacity of the

nanoparticle and base”.
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Structure of Protein Interaction Network
Associated With Alzheimer’s Disease
Using Graphlet Based Techniques

Ahamed Khasim , Venkatesh Subramanian , K. M. Ajith ,
and T. K. Shajahan

Abstract The crucial step in analyzing a real-world network is to choose an accept-
able network model. We try to select an appropriate network model for the protein-
protein interaction (PPI) network of Alzheimer’s disease (AD) using Graphlet-based
metrics. The Relative Graphlet Frequency (RGF) count in the AD-PPI network is
similar to that of the corresponding Scale-Free network. However, based on Graphlet
Degree Distribution (GDD), the AD-PPI network has a good match with Geometric
random graphs. The graphlet correlation statistics of the AD network show that it
has a core-periphery topology.

Keywords Alzheimer’s disease · Protein-protein interaction networks ·
Graphlets · Graphlet Correlation Matrix

1 Introduction

Alzheimer’sDisease (AD) is a complexdiseasewhose genetic architecture is believed
to be polygenic [4]. Hence its genotype can be modeled with a biological network
depicting the interaction between causal agents. In this paper, we model it with
a Protein-Protein Interaction (PPI) network. In the case of general datasets, it is
commonplace to establish their theoretical model before proceeding to analyze them.
For instance, one makes statements like, ‘this dataset has a normal distribution’,
before proceeding to the analysis. We would like to do the same, but for network
datasets. Specifically, we study the large-scale structure of AD linked network. In
the case of networks, some examples of theoretical models are Er̈dos-Rényi random
graph (ER) [3], Scale-Free graph (SF) [1], Geometric random graph (GEO) [9],
etc. In this paper we assess which of these theoretical models are a good fit for the
AD-associated PPI network.
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Fig. 1 G0 to G29 graphlets of 2–5 nodes. The orbits are labeled from 0 to 72. In a particular
graphlet, the similar types of nodes (automorphism orbits) are colored the same. [17]

We adopted a bottom-up method to investigate the network’s local structural
features and to provide a theoretical model. The degree distribution of several disease
PPI networks is a power-law distribution, implying that they belong to Scale-free
networks. A more general method had been implemented using graphlets by N.
Prẑulj et al. [13, 14]. The graphlets are small non-isomorphic subgraphs that exist
in a network (see Fig. 1). The graphlet degree distribution is one of the metrics to
check the similarity between two networks. In a network, the distribution of a 2-node
graphlet is the standard degree distribution, which is just one among the 30 graphlet
distributions. Thus, the graphlet-based method is more general and provides a more
in-depth examination of the network.

In this study, we collected AD-associated proteins from several databases and
their physical interacting partners present in the human PPI network. Three graphlet-
basedmetrics are used to analyze the network: Relative Graphlet FrequencyDistance
(RGFD), Graphlet Degree Distribution Agreement (GDDA), and Graphlet Correla-
tion Matrix (GCM-11). We recognize that the constructed AD network has a core-
periphery structure with features of SF, ER-DD, and GEO network models.
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2 Methodology

2.1 Collection of AD-Related Genes

Genes related to Alzheimer’s disease are retrieved from several databases using
the methods described in the article of A Podder et al. [12]. 105 AD-associated
genes are collected from NeuroDNet [16]. NeuroDNet has experimentally verified
genetic information associated with neurodegenerative diseases sourced from the
research literature. A set of 183 AD-associated genes extracted through text mining
and genome-wide association studies (GWAS) are collected fromDISEASEdatabase
[11]. AD-related genes appeared in the PubMed literature repository with more than
two pieces of literature evidence (Number of PubMed IDs ≥ 2) are collected from
DisGeNet and GLAD4U databases. 853 genes are collected fromDisGeNet [10] and
54 genes are collected fromGLAD4U [5]. AD-associated genes reported in genome-
wide association studies (GWAS) are collected from two databases; GWAS Catalog
[8] and GWASdb2 [7]. 98 genes are collected from GWA studies.

All of the datasets discussed above generated a total of 1293 genes associated
with Alzheimer’s disease. Since all databases do not use the same symbol format to
represent genes, we converted all gene symbols to HUGO nomenclature committee
(HGNC) approved symbol format [2].

2.2 Construction of AD-Associated Network

Direct physical interaction partners of AD-associated genes are retrieved from the
Human Interactome project portal of the Center for Cancer Systems Biology (CCSB)
database [15]. CCSB database has six independent datasets of binary interaction data
of humanproteins.Out of 1293AD-associatedgenes collected fromdifferent sources,
only 904 genes were listed in the CCSB database. The interacting partners of 904
genes are collected and constructed an AD-associated protein interaction network.
TheAD-related network has 4253 nodes and 7429 interactions. The largest connected
component of the constructed network is considered for further topological analysis
which comprises 4073 nodes and 7150 interactions after removing self-loops and
multiple edges.

2.3 Network Topology Using Graphlet Analysis

We employed graphlet-based analysis to learn about the large-scale structure of
the network. Graphlets are small connected non-isomorphic subgraphs in a large
network. 30 graphlet structures of 2 to 5 nodes are shown in Fig. 1.
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Relative graphlet frequency (RGF) can be used to check similarity between two
networks [14]. The relative graphlet frequency of a network G is

Fi (G) = Ni (G)

T (G)
(1)

where Ni (G) is the number of graphlets of type i ∈ (0, 1, 2, ..29) and T (G) is the
total number of graphlets in the large network. The similarity between two networks
G and H is measured using relative graphlet frequency distance and is defined as [14]

RGFD(G, H) =
29∑

i=0

∣∣∣∣log
Ni (G)

T (G)
− log

Ni (H)

T (H)

∣∣∣∣ (2)

The lower the RGFD value, the greater the similarity between two networks.
Each of the graphlets has certain symmetries and hence automorphic orbits are

defined for each of them. This results in a total of 73 orbits in the 30 graphlets. In
a large network, the number of nodes that touches j th orbit k times is denoted as
d j
G(k). Hence the j th orbit degree distribution [13] is defined as

S j
G(k) = d j

G(k)

k
(3)

along with a scaling factor of 1
k . We use the scaled degree distribution so that the

orbits with a higher degree do not dominate the metric. We can normalize the scaled
graphlet degree distribution [13] as,

N j
G(k) = S j

G(k)

T j
G

(4)

where T j (G) = ∑∞
k=1 S

j
G(k)

The similarity between two networks can be measured using the graphlet degree
distribution distance [13] and is defined as

D j (G, H) =
( ∞∑

k=1

[N j
G(k) − N j

H (k)]2
) 1

2

(5)

The GDD agreement of j th orbit between two networks [13]

A j (G, H) = 1 − D j (G, H) (6)

Considering all orbits j ∈ {0, 1, 2, . . . 72} from 30 graphlets; the GDD agreement
[13]
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GDDA(G, H) = 1

73

72∑

j=0

A j (G, H) (7)

We compared the RGFD and GDDA values of the created AD network to those
of several model networks. Model networks include (1) Erdös-Rényi random graphs
(ER) with the same number of nodes and edges as AD networks, (2) Erdös-Rényi
random graphs with the same degree distribution as AD networks (we denote as ER-
DD), (3) Scale-Free networkswith the same number of nodes (SF), (4) 2-dimensional
geometric random graph (GEO 2D), and (5) 3-dimensional geometric random graph
(GEO 3D). From each type, 20 model networks have been constructed. To assess
the similarity of model networks, the RGFD and GDDA of the AD network and 100
model networks are computed using the Graphcrunch software [6].

In a large network, each nodemay be represented as a 73-dimensional vector, with
each dimension corresponding to the number of connected orbits in contact with the
node. This vector is termed as Graphlet Degree Vector (GDV). GDV of i th node is
GDVi = (C0,C1,C2, ...C72)whereC0 is the number of orbit-0 in contact with node
i and similarly for other orbits also. By considering only 11 non-redundant orbits of
2- to 4-node graphlets, the graphlet degree vector may be reduced to 11 dimensions
[18]. A metric is defined to characterize a network based on the correlations between
the 11 non-redundant orbits ( j={0,1,2,4,5,6,7,8,9,10,11}) of 2- to 4-node graphlets
[18]. 11 dimensional GDV of each node is calculated and are arranged in an n × 11
matrix with each row corresponds to a node. Now, Spearman correlation coefficient
(rs) is calculated for every possible pair of columns. Then a 11 × 11 matrix is made,
called the Graphlet Correlation Matrix (GCM), with the rs values [18]. That is, one
computes rs for columns 1 and 2 of the n × 11 matrix and sets it as GCM12, then
computes rs for columns 1 and 3 and sets it as GCM13, and so on. Thus, regardless
of the number of nodes in the network, one ends up with an 11 × 11 matrix.

3 Results and Discussion

3.1 RGFD Between AD-Network and Model Networks

We calculated the relative graphlet frequency of the AD-associated network and
compared it with the model networks. The similarity between the AD network and
model network is quantified using RGFD value (see Table 1). Based on the RGFD
value, the AD network is far from ER but close to ER-DD and SFmodel networks. A
similar kind of analysis using graphlet frequency count (of 3–5 nodes graphlets) had
been done by N. Prẑulj et al. [14] on 4 PPI network data sets of fruit fly and yeast. All
those PPI had a better fit with GEO, except for one network data set of fruit fly, which
had more noise. But in our network, the edge density is 0.086%, hence the chance
of noise is low. In our analysis, in addition to 3–5 node graphlets, we accounted for
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Table 1 The RGFD and GDDA value between AD-PPI network and different model networks.
The RGFD and GDDA between AD-PPI and 20 model networks from each type were calculated,
and their average is tabulated here

Model Networks RGFD GDDA

ER 8.6027 0.6823

ER-DD 3.6045 0.7925

SF 3.6971 0.7668

GEO 2D 6.1738 0.8100

GEO 3D 5.7149 0.8214

the frequency of 2 nodes graphlet (G0) also. Based on the RGFD metric we say that
AD-associated PPI has more fit with SF and ER-DD networks.

3.2 Graphlet degree distribution agreement

The graphlet degree distribution of 73 orbits present in the AD network and the
corresponding 100 model networks are calculated. GDDA between AD network
and 20 model networks of each type (ER, ER-DD, SF, GEO 2D, and GEO 3D) are
calculated and their average is given in Table 1. The AD network has more than 60%
agreement with all model networks. The agreement is highest for GEO 3D graphs
(GDDA = 0.8214) compared to ER, ER-DD, SF, and GEO 2D. The agreement of
GEO 3D with PPI networks had been reported in [13]. Since all model networks
show an agreement of more than 60%, we cannot claim that the AD-associated PPI
is strictly geometric random graphs.

3.3 Graphlet correlation matrix of AD-related PPI network

The graphlet correlation matrix (Fig. 2) of the AD network is constructed for 11 non-
redundant orbits. The GCM-11 have two separated correlated clusters; correlation
cluster of orbits {1, 6, 9} and orbits {0, 2, 4, 5, 7, 8, 10, 11}. Orbits 1 and 6 are single
degree nodes in graphlets G1 and G4 respectively. Hence, the correlation of orbits 1
and 6 can be characterized as the existence of degree-1 nodes in the networks.

Orbits 7 and 8 exhibit a significant correlation in GCM-11’s second correlation
cluster (nearly equal to 1). Orbit 7 and 8 are mediator nodes in G4 and G5. This cor-
relation indicates the existence of mediator nodes in the network. Similarly, the high
correlations of orbits 7with 2, 5with 11, and 8with 2 are observed inGCM-11.Orbits
{11} corresponds to higher degree mediator nodes while {2,5,7,8} corresponds to
just broker type nodes (act as a link between two nodes) in the networks. In short,
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Fig. 2 GCM-11 of the
AD-related PPI network.
Non-redundant orbits from 0
to 11 are labeled on the
horizontal and vertical axes.
Each cell’s color gradient
represents Spearman’s
correlation value between
corresponding orbits. The
strongly correlated orbits are
brought together in the
illustration

the correlation between the orbits in the second cluster indicates that the network
comprises mediator nodes that are either highly connected or just brokers.

A similar correlation pattern was identified in GCM-11 of world trade net-
work (WTN) [18]. Countries that participate in global markets are either on the
periphery or at the center of WTN. Similarly, in the AD-associated PPI network, the
proteins are either sparsely distributed on the network’s outer shell or located in the
network’s inner core as mediators or hubs.

4 Conclusion

Graphlet-based metrics were used in this study to assess the resemblance of the
protein protein interaction network (PPI) associated with Alzheimer’s Disease (AD)
to several theoretical network models. The Relative Graphlet Frequency Distance
(RGFD) and Graphlet Degree Distribution Agreement (GDDA) are used to calculate
the resemblance of created AD-network to theoretical model networks. According
to the RGFD value, the network is more similar to the Erdös-Rényi random graph
with degree distribution same as that of AD network (ER-DD) and Scale-Free (SF)
networks. Our results contradict the prior conclusion, in which PPI was near to 3
Dimensional Geometric random graph (GEO 3D) [14]. Using GDDA data, our AD-
associated PPI outperforms other model networks in terms of agreement with GEO
3D. The resemblance with other model networks is likewise noteworthy (greater
than 60% agreement). Based on the RGFD and GDDA metrics, AD network shows
features of all three models: i.e., Geometric random, Scale-Free, or Erdös-Rényi
random. We can also see from the graphlet correlation matrix of the AD-related
network that the proteins are either on the network’s periphery or at its center. That
is, the network has a core-periphery structure.
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On Divisor Function Even(Odd) Sum
Graphs

S. Shanmugavelan and C. Natarajan

Abstract The theory of numbers has numerous applications in cryptography and
information security. Number theoretic graphs are a novel and hybrid branch of
number theory and graph theory. In this paper, we introduce a new structure of graphs
called divisor function even sum graphs and divisor function odd sum graphs, which
are analogous to divisor function graphs, and investigate some of their properties. In
addition, we present a MATLAB code for generating the graph in O(n) time.

Keywords Number theoretic graphs · Divisor function even sum graph · Divisor
function odd sum graph

1 Introduction

For each natural numbern, NumberTheory is compoundedwith a variety of functions
such as the Euler function φ(n), sigma function σ(n), divisor function D(n), Möbius
function μ(n) and so on. These functions are used to construct number theoretic
graphs, a developing field that has captivated researcher’s interest ([9, 13]). In the
last decade, various research studies about such graphs have been conducted ([2, 7,
14, 15, 17]). In spectral graph theory, a number theoretic graph known as Ramanujan
networks is employed to solve optimization problems in communication network
theory ([4, 18]) and is also used in cryptography [1]. Engineering and communication
networks make advantage of the cycle structure of arithmetic Cayley graphs ([10,
11]), which are number theoretic graphs. For notations and terminologies in graph
theory and number theory that are not defined here, we generally follow ([3, 5]).
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Throughout our discussion, the set of all factors for each natural number n is
denoted as Divisor function D(n), and whose cardinality is known as the tau function
τ(n), which will be computed from the prime factorization of n = pr11 × pr22 × . . . ×
prnn , where pi ’s are distinct primes and ri ’s are positive integers.

In 2015, Kannan et al. [8] introduced the divisor function graphGD(n). In addition,
they proved that GD(n) is always connected and complete graph if and only if no two
proper divisors in D(n) are relatively prime. Also, for perfect square numbers, the
chromatic number for GD(n) is at least 3 and it is Eulerian. For further studies on
divisor function graph, we may refer ([12, 16]). Chalapathi and Kiran Kumar [6]
presented Euler even graphs εn and Euler odd graphs On for 2n and 2n + 1 in 2016,
examined connectedness and completeness, and established that the graph ε2n+1 is
isomorphic to disjoint union of two complete graphs. They also proved that the graph
O2n+1 is Eulerian if and only if φ(2n + 1) is a multiple of 4. Motivated by this, we
introduce divisor function even (odd) sum graphs and study their properties. We also
write a MATLAB code to get graphical representation, order and size, which will be
used to study numerous graph theory concepts.

2 Divisor Function Even Sum Graph

In this section, we introduce the Divisor function even sum graph and study its basic
properties.

Definition 1 For any natural number n, the Divisor function even sum graph is a
simple graph (V, E) where V = {di : di | n, n is any positive integer} is the vertex
set and the edge set E= {did j : di + d j= an even number}. We denote it by GeD(n).

Example 1 TheDivisor function even sumgraph of Ramanujan number 1729which
has all its divisors as odd is shown in Fig. 1.

Theorem 1 GeD(n) is complete iff it has only odd divisors.

Fig. 1 Divisor function even
sum graph GeD(1729)
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Proof Necessity: Assume that GeD(n) is complete. Clearly, the sum of an edge’s
endpoints is even. Suppose that one of the divisors is an even number. Because 1 is
a divisor for any integer, the sum of such end vertices with 1 leads to an odd sum,
implying that there are no edges in this case, which is impossible.

Sufficiency: Assume that n has only odd divisors for every number n. The sum
of two odd divisors, on the other hand, is always even. As a result, every distinct pair
of vertices has an edge, and the graph is complete.

Corollary 1 GeD(2n+1) is complete.

Corollary 2 GeD(pn) is complete, p �= 2.

Proof Since all the divisors of prime powers are {1, p, p2, . . . , pn−1, pn} which are
clearly odd. By Theorem 1, the proof follows.

Theorem 2 GeD(n) is not a bipartite graph.

Proof Suppose that GeD(n) is bipartite.

Case 1: n is an Odd Integer
In this case, one of the partitions, say X , only has one vertex 1. The second partition,
Y , is comprised of all the remaining vertices, and because odd numbers only have
odd divisors, the sum of 1 and the other odd divisor is even. The sum of two odd
divisors in Y , on the other hand, is even, which is not possible.

Case 2: n is an Even Number

One of the partitions say X , consists of improper divisors of n only. Note that even
numbers may have both odd and even divisors.

Case 2a: Odd Proper Divisors

It is not possible to have odd proper divisors in X , since the sum of 1 with such odd
proper divisors would result in an even sum. Then, by Case 1, all such divisors must
be placed in Y , which is impossible.

Case 2b: Even Proper Divisors

Here, it is not possible to have even proper divisors in X , since the sum of n with
such even proper divisors will results in an even sum. Then all such divisors must be
placed in Y , which is impossible in this instance as well because the sum of any two
even proper divisors is also even.

Theorem 3 For an odd composite number n, GeD(n) is an Euler graph iff and it has
odd number of divisors.
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Proof Necessity: Assume that GeD(n) is an Euler graph. We claim that n has an odd
number of divisors. If n has an even number of odd divisors, then all of the vertices
will have an odd degree, since the sum of any two odd divisors in GeD(n) is even,
contradicting our hypothesis.

Sufficiency:Assume that n is odd composite and has odd number of divisors. Clearly,
the graph’s vertices should then be adjacent to each other. Because the number of
divisors is odd, every vertex should receive an even degree, and soGeD(n) is Eulerian.

Theorem 4 Any regular non-complete GeD(2n) can be decomposed into disjoint
union of 2K τ(2n)

2
, n ≥ 2.

Proof Let the prime factorisation of 2n = 2a × pr11 × pr22 × . . . × prkk , where pi ’s
are odd. Hence, τ(2n) = |V (GeD(n)| = (a + 1)(r1 + 1) . . . (rk + 1). Let the total
number of odd divisors of 2n = (r1 + 1) × . . . × (rk + 1) = O (say).

Claim: O = τ(2n)

2 .
Clearly, O ≤ τ(2n)

2 .
Suppose that τ(2n) < 2O.
(i.e.) (a + 1) × (r1 + 1) × . . . × (rk + 1) < 2O.
Then, (a + 1) × (r1 + 1) × . . . (rk + 1) < 2(r1 + 1) × . . . (rk + 1)which makes

a < 1 and so a is either 0 or negative integer. Since n ≥ 2, a cannot be negative.
Therefore, the onlyprobability isa = 0 (i.e.) τ(2n) = pr11 × . . . prkk ,which is a factor-
ization as product of odd primes only, which is a contradiction and hence, τ(2n)

2 ≥ O.
Let us label the vertices of odd factors of 2n as o1, o2 . . . oτ(2n)/2 whose induced

subgraph is isomorphic to Kτ(2n)/2. Now, the total number of even divisors (say) (E).
Now,

E = τ(2n) − O
= (a + 1) × (r1 + 1) × . . . (rk + 1) − (r1 + 1) × . . . (rk + 1)

= [a + 1 − 1](r1 + 1) . . . (rk + 1)

= a × [(r1 + 1) . . . (rk + 1)].

Let us label the vertices of even divisors of 2n as e1, e2 . . . eξ whose induced
sub graph is a complete of order ξ . Also note that there is no edge connecting the
vertices of Oi ’s to E j ’s, i = 1, 2 . . . τ (2n)

2 , j = 1, 2 . . . ξ . Now it is enough to prove
ξ = τ(2n)/2.

Suppose that 2ξ > τ(2n). This implies, 2 × a × (r1 + 1) × . . . × (rk + 1) <

(a + 1) × (r1 + 1) × . . . × (rk + 1), a similar contradiction is arrived. Hence the
proof.

The following MATLAB Code is used to get a graph of divisor even sum graph
with its order and size.

Input: Any natural number n > 1.

Output: A graph of Divisor even sum graph with its order and size.



On Divisor Function Even(Odd) Sum Graphs 539

1 function Divisorfunction_evensum_graph(n)
2 n=input('Enter any natural number >1');
3 sum=0;
4 j=0;
5 for i=1:n
6 if mod(n,i)==0
7 j=j+1;
8 a(j)=i;
9 end

10 end
11 disp('The Vertices of Divisor Even sum ...

graph are');
12 disp(a);
13 disp(' ');
14 x=1;y=1;
15 disp('The Divisor Even sum graph Edges are');
16 for i=1:j-1
17 for k=i+1:j
18 sum=a(i)+a(k);
19 if mod(sum ,2)==0
20 fprintf('{%d,%d}',a(i),a(k));
21 disp(' ');
22 s(x)=a(i);
23 t(y)=a(k);
24 x=x+1;y=y+1;
25 end
26 end
27 end
28 G=graph(s,t);
29 o=0;
30 for q=1:n
31 if(q �=a)
32 o=o+1;
33 m(o)=q;
34 end
35 end
36 GE=rmnode(G,[m]);
37 PO=plot(GE);
38 PO.NodeColor='k';
39 PO.EdgeColor='k';
40 PO.NodeLabel =[a];
41 title('Divisor Even Sum Graph of ',n);
42 m=numnodes(GE);
43 disp('The Order of Divisor Even Sum ...

Graph is');
44 disp(m);
45 ne=numedges(GE);
46 disp('The size of Divisor Even Sum ...

Graph is');
47 disp(ne);
48 end
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Fig. 2 Divisor Even sum
graph of 2022

Example 2 The sample output of divisor even sum graph of n = 2022 (satisfies the
hypothesis of Theorem 4 which is isomorphic to union of two complete graphs K4

is shown in Fig. 2.

3 Divisor Function Odd Sum Graph

Let us define a Divisor function odd sum graph:

Definition 2 For any natural number n, Divisor function odd sum graph is a simple
(V, E) graph such that V = {di : di | n, n is any positive integer} and the edge set
E = {did j : di + d j= an odd number}. We denote it by GoD(n).

Example 3 The Divisor function odd sum graph for n = 1234 is shown in Fig. 3.

Theorem 5 GoD(2n) is always a star for any positive integer n.

Proof Clearly, there is no edge between 2i and 2 j , 1 ≤ i, j ≤ n. But, 1 ∈ V [GoD

(2n)], the sum of 1 with remaining n vertices leads to odd sum only. As a result, a
star graph is formed by keeping all even powers in one partition and 1 in another.

Theorem 6 LGoD(2n) is complete for any positive integer n.

Fig. 3 Divisor function odd
sum graph GoD(1234)
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Fig. 4 k-Regular even
GoD(n)

Proof Clearly, V (GoD(2n)) = {20, 21 . . . 2k} and GoD(2k ) � K1,k because 1 is the
only odd divisor of 2n and remaining n divisors are even, all of those can be kept in
same partition. Moreover, it is obvious that the line graph of a star graph is always
complete, the proof follows.

Theorem 7 For a k−Regular even GoD(n), α = β = τ(n)

2 .

Proof Assume that GoD(n) be a k-Regular graph of even order p. Clearly, D(n)

contains a set of all even(odd) divisors (say) E(O) respectively. Since GoD(n) is
k-regular, it follows that |O| = |E | = τ(n)

2 . Let the odd divisors be o1, o2, . . . o τ(n)

2
and the even divisors be e1, e2, . . . e τ(n)

2
. Note that there exists an edge from oi to

ei , i = 1, 2 . . . τ (n) and there is no edge from oi to o j and ei to e j , i �= j .
Clearly, GoD(n) � K τ(n)

2 , τ(n)

2
(refer Fig. 4) and hence any minimum vertex cover

must include vertices only from O or only from E . Henceforth,

|O| = β = τ(n)

2
Now, α = p − β

= p − τ(n)

2
= τ(n)

2
.

Theorem 8 If n is factorised as an equal number of odd and even proper divisors,
then GoD(n) is Hamiltonian.

Proof Without loss of generality, let us assume n be an even integer, whichmay have
both odd and even divisors. Let O denotes a set of all odd proper divisors and label
the vertices of O as {o1, o2 . . . os} and E denotes a set of all even proper divisors
which are labelled as {e1, e2 . . . es}.

Let us prove the theorem by induction on s. For s = 1, the resulting graph is C4

which has a spanning cycle with vertices {1, o1, e1, n}. Assume that the result is true
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Fig. 5 Hamiltonian GoD(n)

for all integer n which has at most (s − 1) odd proper divisors. Consider the case in
which n has s odd proper divisors. Note that the induced subgraphs G[{1} ∪ V (E)]
and G[{n} ∪ V (O)] forms a star.

The vertex 1 is not adjacent any odd proper divisor oi ’s , the vertex n is not
adjacent to any even proper e j ’s and there exists an edge between every oi ’s and e j ’s,
1 ≤ i ≤ (s − 1), 1 ≤ j ≤ (s − 1) (Refer Fig. 5). By hypothesis, we have a spanning
cycle C for any arbitrary vertex (say) ei , 1 ≤ i ≤ (s − 1) which comprises of a
walkW : {eioi , oi ei+1, ei+1oi+1 . . . e(s−1)o(s−1)} followed by edges {o(s−1)n, n1, 1ei }
such that the length of C is 2(s − 1) + 3 = 2s − 1. Now, consider a subgraph C ′ =
C − {e(s−1)o(s−1), o(s−1)n} adding the edges {es−1os, oses, esos−1} to C ′ again forms
spanning cycle which includes all 2s + 2 vertices.

4 Conclusion

In this article, we introduced a new class of number theoretic graph structures termed
divisor even sum (odd sum)graphs.Wealso studied several properties of these graphs,
such as covering number, completeness, etc. In addition, we created a MATLAB
method to draw these graphs, which will allow us to explore various other properties
of these graphs. This research work has possible applications in communication
networks and will be studied further in the future.
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A Visible Watermarking Approach
Likely to Steganography Using Nonlinear
Approach

Sabyasachi Samanta

Abstract Digital watermarking is the course of action of set in information into
digital content. Authenticity or integrity is one of the key features of watermarking.
Perceptibility or existence of information on cover signal depends on nature of water-
marking process. In this effort, a massive amount of message may embed in coopera-
tion with nonlinear pixel and bit positions of image. Without embedding any specific
position, data embedded to entire image stating from an arbitrary position chosen by
the secret key. The number of effected pixels of carrier image is proportionally got
higher with the level of message. Choice of pixel position entirely depends on the
size of message. At decryption era, without inspect all of the pixels of cover image,
data bits are composed from that special pixel and bit positions. With embedding of
large amount of information, sometimes it produces some visible scrap to the carrier.
Though it’s visible to us but it’s still secure to us, as it’s embedded through some
key to some nonlinear pixel positions. This approach is highly convinced the visible
watermarking approach as well as the steganography approach also.

Keywords Information Security · Payload · Nonlinear Pixel Position (NPP) ·
Steganography · Visible Watermarking

1 Introduction

Digital Watermarking is the development of embedding a message on a host signal.
Awatermark can either be visible or invisible [16]. In visible watermarking the infor-
mation comes to be visible on the image or video or picture [2, 4]. That is typically
used for logos or text. Invisible digital watermarking is a type of steganography that
aims to secrete information through medium to substantiate ownership, truthfulness
or deliver additional information [9–12]. Steganography hides the visibility through
the carrier like invisible watermarking [13–15]. Here I have proposed the Nonlinear
Pixel Position-4 bit (NPP-4 bit) method, which is based on nonlinear pixel position
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selection through the image. The pixel positions are selected depending on the size
of the message. Six digits key value is taken as a private key. Using the key value the
initial and total pixel positions are selected. Then the pixel positions are calculated
by doing the exponential function with the height and width of the image. In this
proposed technique, the embedding process is made by the exponential values started
from nonlinear pixel position of the carrier image. The bit position is calculated from
the exponential values. Depending on the magnitude of the message the next pixel
positions are selected by the combination of key. In this process the primary pixel
position is not unique to all, i.e. it’s varied from process to process and entirely
depends on key. Also depending on payload and size of the image, the pixel posi-
tions varied from one to other. All over the data bits are being embedded to the entire
carrier image. Figure 1 describes the 4 bits embedding process to the different bit
positions for color images.

Section2 represents the relatedworks relatedwith thewatermarking and steganog-
raphy technique. Section 3 represents an implementation of the technique of visible
watermarking approach. Section 4 demonstrates the evidence of experimental result.
Section 5 is with the performance analysis of NPP-4 bit methodology. Section 6
draws the conclusion of the work.

Fig. 1 Working principle of NPP-4 bit for color image
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2 Related Works

Jiasheng Qu et al. [1] proposed a visible image watermarking scheme based on
gradient-weighted class activation mapping. They have proposed the region of
interest selection strategy to locate the secluded body of images for watermark
embedding. They have used the similar technique for gray scale and each component
of colour image.

Kamaldeep Joshi et al. [3] planned an image steganography using 7th bit of a
pixel as indicator by introducing the successive temporary pixel in the gray scale
image. One bit is hidden at the selected pixel position and the second bit is hidden
to the next pixel position. On the basis of the seventh bit of the pixels of an image, a
mathematical function is applied to that bit position of the pixels.

Hide in Picture (HIP) [5] was created by Davi Tassinari de Figueiredo. HIP tech-
nique uses only for bitmap images. If payload is high, it’s necessary to modify more
than one bit from each byte of the image. This process uses password protection to
hide files and only those who know the password, are able to retrieve the data.

QuickStego [6]: QuickStego modify the pixels of the image. It encodes the secret
text by adding small deviation in color to the image. In practice these small differences
does not appear to the human eye. This technique does not encrypt the secret text
message by any encoding scheme.

Mansoor Fateh et al. [7] proposed an improved version of the LSBmatching. Thry
proposed the schemewhich contains two phases including embedding and extracting
the message. Here a pair of bits of the secret message is hidden in a pair of pixels
with only one change.

Wenfa Qi et al. [8] proposed an adaptive embedding method for visible water-
marking. Here they have embedded watermark image the host image Just Noticeable
Difference coefficient. Mukherjee et al. [17] proposed the mid position value tech-
nique to embed data bits within the tangled cover image. Also they applied the inverse
Arnold transformation on stego image.

3 The Scheme

This section represents the algorithm for visible watermarking approach. Section A
explains the total encryption process and section B depicts the decryption of plain
text from the stego image.

A. Algorithm for data embedding in cover image.

Step I: Take message input, compute the length and create an array.

Step II: Select the initial pixel position using the key.

(i) Calculate the number of required pixel positions.
(ii) Calculate the exponential of function using key (or key set).
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(iii) Take the digits up to “e”. Accumulate first three digits to A[x], next three
digits to A[y] and last digit to A[z].

Step III: Replace of data bits with R, G & B values of pixels.

(i) Calculate the width and height of the image as (M x N).
(ii) Select the pixel position and set the value of x and y with the value of M and

N ((0, 0) to (M-1, N-1)).

If (x > (M-1)) or (y > (N-1)) then Set P (x, y) = P (0 + (x %( M-1)), (0 + (y
%( N)) else set P (x, y) = (x, y).

(iii) To select the bit position, set z = A[z] of a pixel.
(iv) The four data bits are replaced in analogous bit position of each RGB elements

and pixels are reformed.

Step IV: Repeat Step II to Step IV.

Step V: Stop.

B. Algorithm for data extraction from stego image.

Step I: To search out the pixel and bit position in R, G & B of selected pixels follow
Step II and step III of Algorithm A.

Step II: Retrieve the embedded data bits from the selected bit positions of selected
pixels and accumulate it to data array.

Step III: Initially find out the length of the message from the encrypted array.

Step IV: Find out the embedded data bits from the stego image and bring together
the delivered message.

Step V: Stop.

4 Implementation of Process and Experimental Result

Figure 2 stands for the cover and stego image of LENA and MONALISHA after
embedding 1000 characters. Figure 3 shows the histogram of LENA image (512 ×
512) as cover and stego image. Figure 4 shows the histogram comparison using PoV
for Red, Green, for Blue using LENA Image.

5 Performance Analysis of NPP-4 Methodology

Invisible digital watermarking is called a kind of steganography. Embedding of 500
more characters using NPP-4 bit method creates visible dissimilarities at the output
image. Sometimes NPP-1 bits may also create tiny spots in stego image. As a result
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Fig. 2 (a, c) Cover and (b, d) Stego image of LENA and MONALISHA after embedding 1000
characters using NPP-4 bit

Fig. 3 Histogram of LENA as (a) Cover and (b) Stego image after embedding 1000 characters
using NPP-4 bit
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Fig. 4 Histogram comparison using PoV for Red, Green, and Blue using LENA image

its do not support the benchmarks of invisible digital watermarking. The visible vari-
ations or patches on cover image do not break any principles of information security
or confidentiality. As the data bits have embedded to arbitrary pixel and bit posi-
tions of entire image. Without applying the embedding algorithm or key value, the
extraction of original message from noticeable zones of stego image is quite impos-
sible to attackers. In steganography, the embedding algorithm produces the image
output as the attacker does not minds the presence of message. Also invisible digital
watermarking produces similar like output. To measure the qualitative performance
of developed NPP-4bit approache, HIP (Hide In Picture) [18], QuickStego [19] and
Xiao Steganohraphy [20] tools have choosen.

The x–y direction of the following figures represents the methodologies and
different performancemetrics respectively. The x-direction of following igures repre-
sent theNPP-4 bit and otherwell known existingmethodologies likeHIP,QuickStego
andXiaoSteganohraphy. Figures 5 and6 represent the comparison for PSNRbetween
NPP-4 bit and other well known approaches for color and gray scale image using
LENA (128× 128) as a cover respectively. Figures 7 and 8 subsequently signify the
superiority of SSIM between NPP 4bit and other well known approaches for color
and gray scale image as same cover image. As I have explained the embedding of
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Fig. 5 PSNR comparison of different NPP approaches with other methodologies using
LENA/(Color, 128 × 128) Images
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Fig. 6 PSNR comparison of different NPP approaches with other methodologies using
LENA/(Gray Scale, 128 × 128) Images
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Fig. 7 SSIM comparison of different NPP approaches with other methodologies using
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Fig. 8 SSIM comparison of different NPP approaches with other methodologies using
LENA/(Gray Scale, 128 × 128) Images

four bits i.e. NPP-4 bit generate the tiny spot on image. So for the PSNR for both
color and gray scale stego image sometimes generates lower result for the newly
developed methodology. The SSIM measure for color images produces the likewise
result for NPP-1 bit and NPP-2 bit techniques. The SSIM measure for both the color
and gray scalge images generates similar graph for newly developed methodology.

6 Conclusion

Here I have proposed a visible watermarking approach likely to steganography using
nonlinear approach and private key cryptographic technique. In this approach, four
data bits have placed in every selected pixel element with random pixel positions
about the image. Moreover for fewer number of content, sometimes it produces the
similar images in naked eye. But for more it produces nonlinear tiny spots throughout
the image. So for this approach I have named as a visible watermarking approach
likely to steganography. Though the tiny spots are visible to us as effected location,
but it’s quite impossible to retrieve the embedded message from stego image. Only
using the key and proper set of pixel and bit positions embeddedmessage can retrieve
from thewatermarked image. So it’s the visible watermarking approach throughNPP
but the methodology hold up the unadulterated steganography approaches.
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A New Public Key Encryption Using
Dickson Polynomials Over Finite Field
with 2m

Kamakhya Paul , Madan Mohan Singh , and Pinkimani Goswami

Abstract The Dickson polynomials are widely used in different context. Because
of the permutation behaviors and semi-group property under composition, its appli-
cation can also be noticed in cryptography. In this paper, we propose a new public
key encryption scheme based on Dickson polynomial of first kind over a finite field
with 2m , where m is the product of two large primes p and q, with primes 2p − 1
and 2q − 1. The security of the proposed scheme is equally dependent on the Inte-
ger Factorization Problem (IFP) and the Discrete Dickson Problem (DDP). We also
compared the encryption-decryption performance of the proposed schemewith some
other existing schemes and found that the performance of the proposed scheme is
better compared to them.

Keywords Dickson polynomial · Integer Factorization Problem · Discrete
Dickson Problem · Discrete Logarithm Problem · Encryption scheme

1 Introduction

Public key cryptography, also known as asymmetric cryptography, where transmis-
sion of messages takes place over an open network, was first introduced by Diffie
and Hellman [1] in 1976. Here separate keys are used for encryption and decryption,
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and hence the insecurity of transmitting the secret key over an insecure channel was
overcome. This is observed in symmetric cryptosystems.

Dickson [2] first introduced a type of polynomial, which was later labeled by
Schur [3] as Dickson polynomial. With the proposition by Dickson [2], extensive
research and looking into the properties of the polynomial had started and hence
followed by application of Dickson polynomial in cryptography [4–7]. Lidl [7], also
surveyed the algebraic properties of the Dickson polynomial over Fq and over the
integers Zn .

Most of the cryptographic schemes are being developed based on the hard prob-
lems that can be solved both ways only if prior knowledge of the related problem is
known. Initially, the hard problems that were being used includes discrete logarithm
and factoring of a large composite number in terms of primes, taken only one hard
problem at a time. McCurley [8] in 1988 was the first to use two different number
theoretic assumptions in the development of a single key distribution protocol. Many
more cryptosystems were later proposed [9–12, 14–16, 24, 25], which were based
on the merging of two hard problems such as Discrete Logarithm and Factoring of a
large composite number, Elliptic Curve Discrete Logarithm, Knapsack problem, and
many more. Which prompted us to use two hard problem in Dickson polynomial to
propose a public key encryption scheme.

In this paper, we have operated Discrete Logarithm and Integer Factorization in
the Discrete Dickson Problem (DDP) over the finite field with cardinality 2m and
proposed a cryptosystem whose security is based on the hardness of solving IFP and
DDP.

2 Dickson Polynomial

A type of polynomial was introduced by Dickson [2] in 1896 in the form of

xk + k
(k−1)/2∑

i=1

(k − i − 1)...(k − 2i + 1)

2.3...i
ai xk−2i , k is odd, (1)

over the finite field Fq , which later came to be known as the Dickson polynomial.

2.1 Definition (Dickson Polynomial of First Kind)

Assume n be a positive integer and a ∈ Fq , then the Dickson polynomial Dn(x, a)

of the first kind over any finite field Fq is defined by
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Dn(x, a) =
� n
2 �∑

i=0

n

n − i

(
n − i

i

)
(−a)i xn−2i (2)

where � n
2 � is the largest integer less than or equal to n

2 .
The Dickson polynomial satisfy the recurrence relation: Dn(x, a) = xDn−1(x, a)

− aDn−2(x, a), n ≥ 2, under the initial condition D0(x, a) = 2 and D1(x, a) = x
and a few initial polynomials are given below:

D2(x, a) = x2 − 2a
D3(x, a) = x3 − 3ax
D4(x, a) = x4 − 4ax2 + 2a2

D5(x, a) = x5 − 5ax3 + 5a2x

Commutativity under composition is of considerable importance and is satisfied
by the Dickson polynomial for a = 0 or 1 [18], and hence it satisfies the semi-group
property under composition:

Dmn(x, 1) = Dm(Dn(x, 1), 1) = Dm(x, 1) ◦ Dn(x, 1) = Dn(x, 1) ◦ Dm(x, 1) =
Dn(Dm(x, 1), 1)) = Dnm(x, 1).

2.2 Definition (Modified Dickson Polynomial)

Let us define a map, Dp : Zn → Zn , which is defined as y = Dp(x) (mod n), with
x and n being integers. Here, we call y = Dp(x) (mod n) as the modified Dickson
polynomial. Below are a few properties satisfied by modified Dickson polynomial.

1. The modified Dickson polynomial is commutative under composition, that is
Dp(Dq(x) (mod n)) = Dpq(x) (mod n) = Dq (Dp(x) (mod n))

2. Let q be an odd prime and let x ∈ Z such that 0 ≤ x < q. Then the period of the
sequence Dn(x)(mod q) for n = 0, 1, 2, 3, 4, ....... is a divisor of q2 − 1.

The first key exchange cryptosystem which was based on Dickson polynomial
was introduced by Müller and Nöbauer [18] in 1981, where the power functions of
the RSA system, introduced by Rivest et al. [17] in 1978, was replaced by Dickson
polynomials Dn(x, a) with parameter a = −1, 0, 1. It was also observed that the
RSA cryptosystem was equivalent to the Dickson system for parameter a = 0 [18].
In 2011, Wei [13] introduced in his paper that the Dickson polynomial Dn(x, 1)
over a finite field 2m is a permutation polynomial if and only if n is odd and proved
that solving a Discrete Dickson Problem (DDP) is as difficult as solving Discrete
Logarithmic Problem (DLP). Note that the hardness of DLP was also observed by
McCurley [20]. It is also observed that computable groups where DLP is hard to
solve [21–23] are of great importance in cryptography.
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2.3 Definition (Discrete Dickson Problem)

Let R be a commutative ring with unity, for any n ∈ Z
+, and given y and x , the

problem of calculating the value of n such that y = Dn(x, 1) is called the Discrete
Dickson Problem(DDP).

It is observed throughout the paper that we have used for a = 1, Dn(x, 1) =
Dn(x).

3 Our Proposed Public Key Encryption Scheme

Here we propose our scheme, which consists of three parts, that includes, Key gen-
eration, encryption, and decryption.

Key Generation

The generation of the key includes the below given steps:

1. Choose two random large primes, p and q, of the same size, such that 2p − 1 and
2q − 1 are prime.

2. Using the above p and q, compute n = 2m , where m = p × q.
3. For the value of n, find φ(n), where φ(n) = (22p − 2p+1)×(22q − 2q+1).
4. Choose e, such that 1 < e < φ(n) and gcd(e, φ(n)) = 1.
5. Find d, such that ed ≡ 1 (mod φ(n)), where d is the modular inverse of e.
6. Choose a, such that 0 ≤ a ≤ φ(n) - 1.
7. Choose a random α ∈ Z

∗
n and compute x = 1

2Da(2α) (mod n).

– PUBLIC KEY: (n, e, x, α)

– PRIVATE KEY: (p, q, a, d)

Encryption

Here the process of encrypting the simple plain text into cipher text is performed, so

that an intruder doesn’t get to read the message. For the message M ∈ Zn ,

1. Select a random r ∈ Z
∗
n and for the selected r , compute k1 = 1

2De(2r) (mod n).
2. Similarly select c ∈ Z

∗
n and for the selected c, compute k2 = 1

2Dc(2α) (mod n).
3. Now finally compute k3 using selected r and the given x , where k3 = M

4 Dc(2x)
De(2r) (mod n).

For the plain text message “M”, the encrypted ciphertext is (k1, k2, k3), which
will be received by the decoder to generate the message.
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Decryption

On receiving the encrypted message (k1, k2, k3), the receiver performs the below

given steps:

1. Firstly, he/she deals with obtaining the value of r , by computing 1
2Dd(2k1)

(mod n).
2. Followed by computing Y , where Y = k−1

1 (mod n).
3. Compute W , where W = k3Y (mod n).
4. Then compute Z , where Z = 1

2Daφ(n)+1(2k2) (mod n) = 1
2Dc(2x) (mod n).

5. Finally obtain the plain-text message M = WZ−1 (mod n).

Verification

First verification is dealing with obtaining the value r in the decryption.

1
2Dd(2k1) (mod n)

= 1
2Dd(21

2De(2r)) (mod n)

= 1
2Dd(De(2r)) (mod n)

= 1
2Dde(2r) (mod n)

= 1
22r

= r

As Dickson polynomial is commutative under composition, we have Dd(De(α))

(mod n) = D(de)(α) (mod n) = De(Dd(α) (mod n)) = D1(α) (mod n) = α, also

Z
= 1

2Daφ(n)+1(2k2) (mod n)

= 1
2Da(21

2Dc(2α)) (mod n)

= 1
2Dc(Da(2α)) (mod n)

= 1
2Dc(2x) (mod n)

And the verification of the message to be generated is

WZ−1 (mod n)

= k3Y Z−1 (mod n)

= k3k
−1
1 ( 12Dc(2x))

−1
(mod n)

= M
4 Dc(2x)De(2r)( 12De(2r))

−1
( 12Dc(2x))

−1
(mod n)

= M
4 Dc(2x)De(2r)2D−1

e (2r)2D−1
c (2r) (mod n)

= M
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4 Explanation with a Simple Example Using Wolfram
Mathematica

Key Generation

1. Let p = 3 and q = 5, so 23 − 1 and 25 − 1 is prime.
2. So n = 215, where m = 3 ∗ 5.
3. For n = 32768, φ(n) = 46080.
4. e = 11 and gcd(e, φ(n)) = 1.
5. d = 41891, for ed ≡ 1 (mod n).
6. Choose a = 122.
7. For α = 177, x = 1

2D122(2 × 177) (mod 32768) = 15041.

• PUBLIC KEY: (32768, 11, 15041, 177)
• PRIVATE KEY: (3, 5, 122, 41891)

Encryption

For message M = 4433.

1. Taking r = 223, k1 = 1
2D11(2 × 223) (mod 32768) = 6623.

2. Taking c = 19, k2 = 1
2D19(2 × 177) (mod 32768) = 29745.

3. k3 = 4433
4 D19(2 × 15041)D11(2 × 223) (mod 32768) = 20943.

Encrypted message (6623, 29745, 20943).

Decryption

1. 1
2D41891(2 × 6623) (mod 32768) = 223.

2. Y = 6623−1 (mod 32768) = 25119.
3. W = 20943 × 25119 (mod 32768) = 9745.
4. Z = 1

2D122φ(32768)+1(2 × 29745) (mod 32768)= 1
2D19(2 × 15041) (mod 32768)

= 6337.
5. 6337−1 (mod 32768) = 30529.
6. Finally 9745 × 30529 (mod 32768) = 4433 = M .

And hence the original message is generated.

5 Security

In the proposed cryptosystem, the security is found to be completely built upon the
Integer Factorization Problem (IFP) and the Discrete Dickson Problem (DDP). Here
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we have observed a few cases of common attacks where the proposed cryptosystem
was well secured.

As the encrypted message can be assessed by an intruder, he/she can have an
assess to (k1, k2, k3). Now, for him/her to generate the message M , he/she has to
obtain the value of p and q of m and so the value of d, followed by finding a from
1
2Da(2α) (mod n). And this can only be achieved if both the Integer Factorization
Problem andDiscrete Dickson Problem can be solved. The value of p and q is chosen
in such a way that the size of m is 1024-bit or above, so no known algorithm can be
used to factor m. And also to find a from 1

2Da(2α) (mod n), the intruder have to
solve DDP. Also, the value of α and r should be large enough to prevent exhaustive
search attack. It should be kept in mind that to encrypt different messages different
values of r and c should be used. Because if a sender uses same parameters for
the encryption of two different messages M1 and M2, then the intruder can obtain
k3 = M1

4 Dc(2x)De(2r) (mod n) and k
′
3 = M2

4 Dc(2x)De(2r) (mod n). And hence
from the relation M2 = k

′
3k

−1
3 M1, the intruder can have the message M2 on knowing

M1. So on choosing different values of r and c, the message M2 cannot be known
even on knowing M1.

Suppose the intruder somehowmanages tofind the values of p andq and then com-
putes r = 1

2Dd(2k1) (mod n) andW = k3Y (mod n) = k3k
−1
1 (mod n) = M

2 Dc(2x)
(mod n). To find the message M from above, one has to know c, which is a computa-
tionally impossible assumption of the Discrete Dickson Problem which is equivalent
to solving Discrete Logarithm Problem (DLP).

6 Performance Analysis

Here we have observed the performance of our proposed cryptosystem.
Let Tddp, Tmul , Texp, Tch , and Tinv represents the time for execution of Dis-

crete Dickson Problem, time for modular multiplication, time for modular exponen-
tial operation, time for Chebyshev map and time for modular inverse computation
respectively. And the time for computation is 1Tddp = 0.172 s, 1Tmul = 0.00207 s,
1Texp = 5.37 s, 1Tch = 0.172 s and 1Tinv = 0.0207s. Hence in our cryptosystem,
the total computational complexity required is 6Tddp + 8Tmul + 2Tinv and the total
time is equivalent to 1.09012 s, which is comparatively a smaller amount of time
taken for computation.

Below we have compared the computational complexity of the proposed scheme
with few other existing schemes (Table1).
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Table 1 Comparison Table

Scheme Encryption Decryption Time
encryption (s)

Time
decryption(s)

Total time(s)

Gowsami et
al. [9]

6Texp + 3Tmul 4Texp +
3Tmul + 3Tinv

32.22621 21.54831 53.77452

Poulakis [10] 6Texp + 4Tmul 3Texp +
2Tmul + 2Tinv

32.22828 16.15554 48.38302

Goswami et
al. [25]

4Texp + 2Tmul 3Texp +
2Tmul + 2Tinv

21.48414 16.15554 37.63968

Tahat et al.
[24]

6Tch + 3Tmul 4Tch +
3Tmul + 3Tinv

1.03821 0.75631 1.79452

Proposed
Scheme

4Tddp +
4Tmul

2Tddp +
4Tmul + 2Tinv

0.69628 0.39384 1.09012

7 Conclusion

In this paper,we have proposed a public key cryptosystembased on IFP andDDP. The
use of IF and DDP has highly enhanced the security of the proposed cryptosystem
and it is also observed that the computational complexity is quite low compared to
that of other schemes.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–
654 (1976)

2. Dickson, L.E.: The analytic representation of substitutions on a power of a prime number of
letters with a discussion of the linear group. Ann. Math. 11(1), 65–120 (1896/1897)

3. Schur, I.: Arithmetisches über die Tschcbyscheffschen Polynome. Gesammelte Abhandlungen
3, 422–453 (1973)

4. Lidl, R., Müller, W.B.: Permutation polynomials in RSA-cryptosystems, In: Chaum, D. (eds.),
Advances in Cryptology, pp. 293–301. Springer, Boston, MA (1984). https://doi.org/10.1007/
978-1-4684-4730-923

5. Lidl, R., Müller, W.B.: A note on polynomials and functions in algebraic cryptography. Ars
Combinatoria 17, 223–229 (1984)

6. Lidl, R., Müller, W.B.: On commutative semigroups of polynomials with respect to composi-
tion. Monatshefte für Mathematik 102(2), 139–153 (1986)

7. Lidl, R.: Theory and applications of Dickson polynomials. Top. Polynomials One Sev. Var.
Their Appl. Vol. Dedic. Mem. PL Chebyshev 1821–1894, 371–395 (1993)

8. McCurley, K.S.: A key distribution system equivalent to factoring. J. Cryptol. 1(2), 95–105
(1988)

9. Goswami, P., Singh,M.M., Bhuyan, B.: A newpublic key scheme based on integer factorization
and discrete logarithm. Palest. J. Math. 6(2), 580–584 (2017)

10. Poulakis, D.: A public key encryption scheme based on factoring and discrete logarithm. J.
Disc. Math. Sci. Cryptograp. 12(6), 745–752 (2009)

https://doi.org/10.1007/978-1-4684-4730-923
https://doi.org/10.1007/978-1-4684-4730-923


A New Public Key Encryption Using Dickson Polynomials … 563

11. Guo, R.,Wen, Q., Jin, Z., Zhang, H.: Pairing based elliptic curve encryption schemewith hybrid
problems in smart house. In: 2013 Fourth International Conference on Intelligent Control and
Information Processing (ICICIP), pp. 64–68. Institute of Electrical and Electronics Engineers
(IEEE), Beijing, China (2013)

12. Shao, Z.: Signature schemes based on factoring and discrete logarithms. IEE Proc.-Comput.
Digit. Tech. 145(1), 33–36 (1998)

13. Wei, P., Liao, X., Wong, K.W.: Key exchange based on Dickson Polynomials over finite field
with 2m . J. Comput. 6(12), 2546–2551 (2011)

14. Ismail, E.S., Hijazi, M.S.N.: A new cryptosystem based on factoring and discrete logarithm
problems. J. Math. Stat. 7(3), 165–168 (2011)

15. Mohamad, M.S.A., Ismail, E.S.: Threshold cryptosystem based on factoring and discrete log-
arithm problems. In: AIP Conference Proceedings, pp. 1020–1023. American Institute of
Physics, Selangor, Malaysia (2013)

16. Baocang, W., Yupu, H.: Public key cryptosystem based on two cryptographic assumptions.
In: IEE Proceedings—Communications, vol. 152(6), pp. 861–865 (2005). https://doi.org/10.
1049/ip-com:20045278

17. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key
cryptosystems. Commun. ACM 21(2), 120–126 (1978)

18. Müller, W.B., Nöbauer, R.: Some remarks on public key cryptography. Studia Scientiarum
Mathematicarum, Hungarica 16, 71–76 (1981)

19. Mullen, G.L., Panario, D.: Handbook of Finite Fields (Discrete Mathematics and Its Applica-
tions), 1st edn. CRC Press, Boca Raton (2013)

20. McCurley, K.S.: The discrete logarithm problem. In: Proceedings of Symposia in Applied
Mathematics, Cryptology and Computational Number Theory, vol. 42, pp. 49–74. American
Mathematical Society, Boulder Colorado (1990)

21. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Hand Book of Applied Cryptographhy.
CRC Press, Bacon Raton (2018)

22. Álvarez, R., Tortosa, L., Vicent, J.F., Zamora, A.: Analysis and design of a secure key exchange
scheme. Inf. Sci. 179(12), 2014–2021 (2009)

23. Coppersmith, D., Odlyzko, A.M., Schroeppel, R.: Discrete logarithms in GF(p). Algorithmica
1(1), 1–15 (1986)

24. Tahat, N., Tahat, A.A., Abu-Dalu, M., Albadarneh, R.B., Abdallah, A.E., Al-Hazaimeh, O.M.:
A new public key encryption scheme with chaotic maps. Int. J. Electr. Comput. Eng. 10(2),
1430–1437 (2020)

25. Goswami, P., Singh, M.M., Bhuyan, B.: A new public key scheme based on DRSA and gener-
alized GDLP. Disc. Math. Algorithms Appl. 8(4), 1650057 (2016)

https://doi.org/10.1049/ip-com:20045278
https://doi.org/10.1049/ip-com:20045278


Strongly k-Regular Dominating Graphs

Anjan Gautam and Biswajit Deb

Abstract A dominating set D of V (G) is defined to be a k-regular dominating set
if the subgraph of G induced by D is k-regular. We define a graph to be a strongly
k-regular dominating graph if each dominating set of it is k-regular. Some classes
of graphs that are strongly 0-regular and 1-regular are characterized. In particular,
all trees T with diam(T ) ≤ 7 for which trees are strongly 0-regular dominating are
characterized.

Keywords Tree · Domination number · k-regular dominating set · Triangular
Snake graph

1 Introduction

A graph G is a pair (V (G), E(G)), where V (G) is a finite nonempty set and E(G)

is a set of unordered pairs of distinct elements of V (G). The degree of a vertex
v ∈ V (G) is the number of edges incident to it in G and it is denoted by deg(v). If
all the vertices of G have the same degree k, then G is k-regular, or simply regular.

The eccentricity ε(v) of a vertex v is the greatest distance between v and any other
vertex, that is

ε(v) = max
u∈V d(v, u).

The center of a graph is the set of all verticeswithminimumeccentricity. The diameter
of a graph is the maximum eccentricity of any vertex in the graph. A graph H is said
to be a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). The induced subgraph〈
S
〉
is the graph whose vertex set is S ⊆ V and whose edge set consists of all of the

edges in E that have both endpoints in S.
The open neighborhood N (v) of v ∈ V (G) is defined as
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N (v) = {u ∈ V : uv ∈ E}

and the closed neighborhood N [v] of v is defined as

N [v] = {u ∈ V : uv ∈ E} ∪ {v}.

A vertex of degree one is called a pendant vertex, its neighbor a support vertex, and
its incident edge a pendant edge or leaves. If a vertex v is adjacent to two or more
leaves, v is said to be a strong support vertex. For standard terminology in graphs,
we refer the book by Harary [2].

The set S is called a dominating set ofG if every vertex in V \ S has a neighbor in
S. The domination number γ (G) is the cardinality of a minimum dominating set of
G. A set D ⊆ V (G) is a totally dominating set of a graphG if every vertex v in V (G)

is adjacent to some vertex in D. The total domination number γt (G) is the cardinality
of the minimum totally dominating set. For concepts related to domination we refer
[7]. Recently in 2019, a new lower bound on the domination number of a graph is
observed [10]. A dominating set D of V (G) is defined to be a k-regular dominating
set if

〈
D

〉
is k-regular.We define a graph to be a strongly k-regular dominating graph if

eachminimum dominating set of it is k-regular (For example see Fig. 1). The concept
of the domination number in a graph was defined by Berge [1] as, “coefficient of
external stability”. Later in 1962, Ore [3] used the name “domination number” for
the same. The connected domination number was studied by Sampathkumar and
Walikar [4]. In 1994 Sampathkumar and Latha studied set domination in graphs
[5]. The concept of regular set domination number was introduced by Kulli and
Janakiram [6] in 2009. For a survey on domination in graphs, we refer book “Topics
in Domination in Graphs” [8].

Consider a region that is suffering from a pandemic situation like COVID-19.
Suppose that regular testing has to be done of the entire population and to achieve
this new test centers are to be established. With limited resources, test center with
medical facilities are to be placed with back up in strategic locations. The problem
is to decide about the locations where such testing center needs back up. Let vertices
represent different localities of the region and an edge connects two localities that

Fig. 1 Strongly 3-regular
dominating graph with
dominating set
D = {1, 2, 3, 4}
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11 1

2 3

4 6

7

9

12 5

8
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share boundary. A locality (or vertex) and all of the regions that are adjacent to it we
can refer as the neighborhood of that locality. A testing center in a location can serve
the people in the localities in its neighborhood. Here the domination problem is to
choose localities at which place these service facility to be located such that each
neighborhood contains at least one and if required their must be a backup testing
center in its neighborhood. An optimal solution for this problem can be achieved by
obtaining a k-regular dominating set for k ≥ 1 with minimum number of vertices.
It is to be noted that a connected dominating set may not be a good idea to solve
the above problem due to the scarcity of the resources and high demand of the test
centers.

2 Results

2.1 Strongly 0-Regular Dominating Graph

Theorem 1 Let Pn be a path with n vertices. Then Pn is strongly 0-regular domi-
nating graph if and only if n ≡ 0 or 2 (mod 3).

Proof The domination number of a path with n vertices is γ (Pn) = ⌈
n
3

⌉
. Let Pn =

v1v2 . . . vn be strongly 0-regular dominating graph. If possible let n ≡ 1 (mod 3).
Consider the partition A0, A1, . . . , Am−1,m = ⌈

n
3

⌉
, where Ai = {v3i+1, v3i+2, v3i+3}

for i = 0, 1, . . . ,m − 2 and Am−1 = {v3(m−1)+1}. The vertex v3i+2, covers Ai , for
i = 0, 1, . . . ,m − 2, and vertex v3(m−1)+1 is covered by v3(m−2)+3 or itself. If we
consider a dominating set D = {v2, v5, . . . , v3(m−2)+2, v3(m−2)+3} of size m = ⌈

n
3

⌉
,

then v3(m−1)+2 and v3(m−1)+3 are adjacent as shown in Fig. 2 so,
〈
D

〉
is not 0-regular,

a contradiction. Thus n ≡ 0 or 2 (mod 3).
Conversely, let n ≡ 0 or 2 (mod 3).

Case 1: n ≡ 0(mod 3).
The set S = {v2, v5, . . . , v3(m−1)+2} is the only dominating set of size m =⌈
n
3

⌉
. If possible let, there exist a dominating set T = {u1, u2, . . . , um} of

sizem other than S. As n ≡ 0(mod 3) each vertex ui , i = 1, 2, . . . ,m must
cover 2 other vertices. If u1 = v1 then u1 will cover just one vertex v2 and
if u1 = v3 then u1 will cover v2 and v4, which makes v1 uncovered. Thus,
we can say u1 = v2. Similarly u2 = v5, u3 = v8, . . . , um = v3(m−1)+2. As〈
S
〉
is 0-regular which implies Pn is strongly 0-regular dominating graph.

Case 2: n ≡ 2(mod 3).
In this case there are only two dominating set of size m.

Let D = {v2, v5, . . . , v3(m−2)+2, v3(m−1)+2}
and S = {v2, v5, . . . , v3(m−2)+2, v3(m−1)+1} be dominating set of size m.
One can similarly show as Case 1, that any other dominating set T of size
m is either D or S. As

〈
D

〉
and

〈
S
〉
are both 0-regular, thus Pn is strongly

0-regular dominating graph.
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1 2 3 4 5 6 7

Fig. 2 A Path P7 with dominating set D = {2, 5, 6}

Theorem 2 Let Cn be a cycle with n vertices. Then Cn is strongly 0-regular domi-
nating graph if and only if n ≡ 0 or 2 (mod 3).

We can write the proof of Theorem 2 on the same line as Theorem 1.

Lemma 1 A strongly 0-regular dominating graph G cannot have a pair of pendant
vertices at distance 3 apart.

Proof Let G be a graph with a path of length 3 between any two pendent vertices
u, v. Let the path be {u, u1, v1, v} and D be a minimum dominating set of G. As
u and v are pendent vertices, we may consider u and v to be in D but alternately,
we can also consider u1, v1 ∈ D to cover u and v. As {u1, v1} is an edge so G is not
strongly 0-regular dominating graph.

Remark 1 If a tree has no pendant vertices at distance 3, then no two support vertices
in T are adjacent.

Theorem 3 A tree T with diam(T ) ≤ 5 is strongly 0-regular dominating graph if
and only if no two pendant vertices are at distance 3.

Proof Let a tree T with diam(T ) ≤ 5 is 0-regular dominating graph. If possible
let two pendant vertices are at distance 3 then by Lemma 1 graph T is not strongly
0-regular dominating graph, a contradiction.

Conversely, let T has no pendant vertices at distance 3. Let D be a minimum
dominating set. For a tree T with diam(T ) = 1, 2, the result holds as dominating
set consists of one vertex. Tree which holds the condition with diam(T ) = 3 does
not exist.

Consider a tree T with diam(T ) = 4 and u1u2u3u4u5 be its diametric path. Any
minimum dominating set D consists of either support vertex or pendant vertex. By
Remark 1 D is 0-regular, thus T with diam(T ) = 4 is strongly 0-regular dominating
graph.

Consider diam(T ) = 5 and u1u2 . . . u6 be a diametric path. Diametric path and
pendant vertices of u2, u5 will be covered by u2 and u5. If u3 has a tail u3v1v2, then
v1 or v2 will cover its tail. Thus any minimum dominating set D comprises of strong
support vertices, and support vertices or pendent vertices. As two support vertices
are not adjacent thus D is 0-regular dominating set.

Theorem 4 A tree T with diam(T ) = 6 is strongly 0-regular dominating graph if
and only if

(i) no two pendant vertices are at distance 3, and
(ii) center of T contains a pendant vertex or a tail of length 2.



Strongly k-Regular Dominating Graphs 569

Proof Let T be a strongly 0-regular dominating tree with diam(T ) = 6 and
u1u2 . . . u7 be a diametric path in it. By Lemma 1G cannot have a pendant vertices at
distance 3 apart. If possible let center(T ) does not contains a pendant vertex or a tail
of length 2. Let D be a minimum dominating set containing all the support vertices.
A set aggregating only of all support vertices will not dominates center(T ) = u4,
as v3 or v5 has no pendant vertices. Thus D consisting of support vertices along with
v3 or v5 is not 0-regular dominating set, a contradiction. Hence, center of T contains
a pendant vertex or a tail of length 2.

Conversely, assume that (i) and (i i) holds for a tree T . Let D be any minimum
dominating set of T .

Case 1: Center of T contains a pendant vertex.
As (i) implies u3 and u5 are not support vertices, so u3, u5 /∈ D. For, if
u3 ∈ D, then u3 covers u2, u4 and the support vertex w1 of any tail u3w1w2

at u3, if there is any. To cover the pendant vertices at u2, u4 and w1 we need
3 more vertices other than u3 in D. But all these vertices may be covered by
{u2, u4,w1}, contradicting our assumption that D is minimum. Similarly
we can argue that u5 /∈ D. Therefore, u4 ∈ D and u3, u5 /∈ D. Any other
vertex in D will be a support vertex or a pendant vertex. By (i) no two
support vertices are adjacent, so < D > is 0-regular.

Case 2: Center of T contains a tail of length 2.
Let u4v1v2 be a tail of length 2 at u4. We claim that, u3, u4, u5 /∈ D. For if
u4 ∈ D, then either v1 or v2 ∈ D.
If v1 ∈ D, then u4 must cover either u3 or u5. Suppose u4 covers u3. Then
either deg(u3) = 2 or there is a tail at u3 other than u3u2u1, whose pendant
vertex is in D. Also either u1 or u2 ∈ D. Contradicting the minimality of
D.
If v2 ∈ D, then u4 is either covering itself or u3 or u5. If u4 covering u3 or u5,
then arguing in the sameway as above, we can show that D is notminimum.
If u4 covering itself, than dropping u4 and v2 from D and including v1 we
can get a dominating set smaller than D, contradiction to the minimality of
D. Therefore, u4 /∈ D and v1 ∈ D.

For if u3 ∈ D, then u3 is either covering itself or u2 or w1 of any tail
u3w1w2 at u3. But u3 does not cover u2 or w1 as it is covered by its pendant
vertex. If u3 covers itself then removing u3 and u1 from D and adding u2 we
can get dominating set smaller than D, a contradiction. Therefore, u3 /∈ D,
similarly u5 /∈ D. Thus, any vertex in D is either support vertex or a pendant
vertex, so

〈
D

〉
is 0-regular.

As every minimum dominating set D of T is 0-regular, so T is a strongly 0-regular
dominating graph.

Definition: For any two vertices u1, u2 ∈ V (G), by saying that (u1, u2) has a tail
of length (a1, a2) we mean that there is a tail at ui of length ai , for i = 1, 2.

Theorem 5 Let T be a tree with diam(T ) = 7 and center {u4, u5}. Then T is
strongly 0-regular dominating graph if and only if
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(i) no two pendant vertices in T are at distance 3, and
(ii) (u4, u5) does not have a tail of length (2, 0) and (2, 3).

Proof Consider a tree T with diam(T ) = 7 and center {u4, u5} that is strongly 0-
regular dominating graph, and u1u2 . . . u8 be a diametric path. Let D be a minimum
dominating set of T . By Lemma 1 T cannot have pendant vertices at distance 3 apart.
If possible let there exist a tail at (u4, u5) of length (2, 0) or (2, 3). Let u4v1v2 be a
tail at u4 and u5w1w2w3 at u5.

Case 1: (u4, u5) has a tail of length (2, 0).
As u6, u4 has no pendant vertex, D consisting of u2, u7, v1, support vertices
of tails at u3 or u6 if any, along with u4 or u6 or u5 will cover T . Consid-
ering u4 ∈ D, u4v1 will be an edge in

〈
D

〉
, therefore it is not 0-regular, a

contradiction.
Case 2: (u4, u5) has a tail of length (2, 3).

Similarly as above, D consisting of u2, u7, v1, support vertices of tails
at u3 or u6 along with u4 or u6 or u5 or w1 will cover T . Considering
u4 or u6 or w1 ∈ D,

〈
D

〉
will not be 0-regular, a contradiction.

Thus, if T is strongly 0-regular dominating graph then (i), (i i) holds.
Conversely, let (i), (i i) holds and D be any minimum dominating set of T . We

consider the following cases.

Case 1: u4, u5 /∈ closed neighbor of any support vertex.
In this case (u4, u5)may have tail of length (3, 3) or (0, 3) or (3, 0) or they
may have no tail. In any case D consist of support vertex or pendant vertex
together with u4 or u5, so

〈
D

〉
is 0-regular. Hence T is strongly 0-regular

dominating graph.
Case 2: Either u4 or u5 ∈ closed neighbor of any support vertex.

If u4 ∈ closed neighbor of any support vertex, then (u4, u5) may have tail
of length (1, 0) or (1, 2) or (1, 3) or (2, 2). If (u4, u5) have tail of length
(1, 0) or (1, 3), then u4 must be in D to cover u5 and pendant vertex of u4.
If u4 /∈ D then we need two more vertex in D, contradicting the minimality
of D. Therefore, D comprise of support vertex or pendant vertex together
with u4, thus

〈
D

〉
is 0-regular.

If (u4, u5) have tail of length (1, 2), then u5 /∈ D. For if u5 ∈ D we will
need twomore vertex in D to cover pendant vertex at u4 and pendant vertex
of a tail of length 2 at u5. But if we just consider u4 and support vertex of a
tail at u5, then theywill cover same number of vertices as, u6 can be covered
by u7. In this case any Dwill consist of support vertices or pendant vertices,
Thus

〈
D

〉
is 0-regular.

If (u4, u5) have tail of length (2, 2), then support vertices of tails from u4
and u5 will cover them respectively. Arguing as above

〈
D

〉
will be 0-regular.

For if u4 and u5 have more than one tail of different lengths then we can
argue similarly as above that, any D will consist of support vertices or
pendant vertices. Thus, in any case

〈
D

〉
is 0-regular. Hence T is strongly

0-regular dominating graph.
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1 2 3 4 5 6

1 2 3 54

Fig. 3 A Triangular Snake T6 with dominating set D = {u2, u4, u5}

Definition: A Triangular Snake graph Tn is obtained from a path u1, . . . , un by
joining ui and ui+1 to a new vertex vi for 1 ≤ i ≤ n − 1. That is, every edge of a
path is replaced by a triangle.

Theorem 6 A Triangular Snake Tn is strongly 0-regular dominating graph if and
only if n ≡ 1 (mod 2).

Proof Let a Triangular Snake Tn be strongly 0-regular dominating graph. Domina-
tion number of Triangular Snake Tn = ⌊

n
2

⌋
. If possible let n ≡ 0 (mod 2).

Consider the partition A0, A1, . . . , Am−1, m = ⌊
n
2

⌋
, where A0 = {u1, u2, u3,

v1, v2}, Ai = {u2(i+1), u2(i+1)+1, v2i+1, v2(i+1)}, for 1 ≤ i ≤ m − 2 and Am−1 =
{un, vn−1}. The vertex u2 dominates A0 and u2(i+1) dominates Ai for 1 ≤ i ≤ m − 2.
Am−1 is dominated by un or by un−1. Let us consider the dominating set of size

⌊
n
2

⌋
,

D = {u2, u4, . . . , un−2, un−1}, as shown in Fig. 3 (for n = 6). As
〈
D

〉
contains an

edge un−2un−1 so Tn is not strongly 0-regular dominating graph, a contradiction.
Conversely, let n ≡ 1 (mod 2). Then the set D = {u2, u4, . . . , un−1} is the only

dominating set of size
⌊
n
2

⌋
. If possible let S = {w1,w2, . . . ,wm}, be a another dom-

inating set of size m = ⌊
n
2

⌋
. If w1 = u1 then u3 and v2 is not covered and if w1 = u3

then u1 and v1 is not covered. Thus w1 = u2 will cover all the vertices of partition
A0. Similarly we can show w2 = u4, . . . ,wm = un−1. As

〈
D

〉
is 0-regular, therefore

Tn is strongly 0-regular dominating graph.

Remark 2 For k ≥ 2 a tree T is not strongly k-regular dominating graph.

2.2 Strongly 1-Regular Dominating Graphs

Double star: Double star Sm,n is the graph obtained by joining the center of two
stars K1,n and K1,m with an edge.

Remark 3 Double star Sm,n is strongly 1-regular dominating graph for m, n ≥ 2.

Book Graph: The m-book graph is defined as the graph Cartesian product Bm =
Km,1�P2, where Km,1 is a star graph and P2 is the path graph on two vertices.
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1 2 3 4

Fig. 4 A Path P4 with dominating set D = {2, 4} or {2, 3} or {1, 4} or {1, 3} and total dominating
set S = {2, 3}

Theorem 7 Book graph Bm is strongly 1-regular dominating graph for m ≥ 2.

Proof Consider a book graph Bm = Km,1�P2, where Km,1 is a star graph and P2
is the path graph on two vertices. Let V (Km,1) = 1, 2, . . . ,m + 1, where the cen-
ter is 1, and V (P2) = a, b. Now, V (Bm) = (1, a), (1, b), (2, a), (2, b), . . . , (m +
1, a), (m + 1, b). From thedefinitionofCartesianproduct the set D = {(1, a), (1, b)}
is sufficient to cover all the vertices of Bm , for allm. Form ≥ 2, every dominating set
D = {(1, a), (1, b)}, thus 〈

D
〉
is 0-regular, and Bm is strongly 1-regular dominating

graph.

Lemma 2 A strongly 1-regular dominating graph cannot have a path of length 3,
with degree sequence of its vertices as 1, a, 2, 1, for a ≥ 2.

Proof Let G be a graph with a path of length 3 and degree sequence of vertices of
path {u1, u2, u3, u4} is 1, a, 2, 1, a ≥ 2. Let D be a minimum dominating set of G.
We can consider u2, u3 ∈ D or u2, u4 ∈ D to dominate vertices of path. As we have
u2, u4 ∈ D so, G is not strongly 1-regular dominating graph.

Theorem 8 If a graph is strongly 1-regular dominating graph, then every minimum
dominating set of G is equal to its minimum total dominating set.

Proof Let a graphG be strongly 1-regular dominating graph and D be anyminimum
dominating set. As every vertex of V (G) has a neighbor in D, thus D is a total
dominating set.

Remark 4 The converse of Theorem 8 is not true. For example, see Fig. 4, here
domination number is equal to total domination number, but induced subgraph of
every dominating set is not 1-regular.

2.3 Construction of Strongly k-Regular Dominating Graph

Given a graph G we can construct strongly k-regular dominating graph.

• Take a complete graph Kk+1.
• Put at least two pendant vertices to each vertex of Kk+1.
• Now select two vertices u, v of Kk+1 and add one more vertex to both of them
(those vertices has degree at least k + 3).

• Take an edge xy ∈ E(G) and replace x and y with any one of the pendant vertices
of u and v.
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• Take |E(G)| copies of Kk+1 with pendant vertices.
• Repeat the above step with each edge of G.
• Dominating set γ (G) contains all the vertices of Kk+1 which is k-regular.

3 Conclusion

In this study, the concept of a strongly k-regular dominating graph is introduced and
some classes of strongly 0-regular and 1-regular dominating graphs are characterized.
Specifically, all 0-regular dominating trees T with diam(T ) ≤ 7 are characterized.
Application of domination number is discussed in various field such as Computer
Communication Networks, Radio Stations, Facility Location Problems, Coding The-
ory etc. [9].
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Chaotic Based Image Steganography
Using Polygonal Method
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Abstract Information security is the most concerning factor in the time of tremen-
dous innovative headway. Immense specialized information cleared a way for the
development of information taking methods. Steganographic methods help to veil
the mysterious data with some other media that goes about as a spread to the data.
This strategy makes it hard for programmers to see the data since it shows up as a
media instead of as data itself. Image steganography assists with concealing mystery
data in any dimension and worth of images. These pictures can be traded without
looking for any consideration of programmers to the mystery data inside it. Here
the information is encoded into the image through an arbitrary rectangular region, to
make it more secure. Using chaotic map we have generated random number series
through which data embedded in rectangular region with uneven interval. This can
be unscrambled at the beneficiary side with the best possible calculation alongside
the secret key. We have scrambling the data and concealing it in the image utilizing
the chaotic map. Removing the data and unscrambling it is done at the beneficiary.
Embedding capacity of the proposed methodology is also comparable with other
well known existing methodologies. Performance analysis is also measured and the
proposed methodology generates enhanced result than the others.
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1 Introduction

Various strategies such as encryption and steganography are used to protect the data
on the Internet. Encryption is the study of transforming a mysterious message into
another structure, and the ultimate goal is not universally understandable. Steganog-
raphy is a strategy for making sure about data by concealing it in some other medium,
with the end goal that the presence of data is disguised to everybody aside from the
planned sender and collector. Steganography suggest to the craftsmanship and study
of concealing mystery data from other media [7, 8]. The data that is hidden is called a
mystery message, and the medium in which the data is hidden is called a distribution
report. A distributed dataset containing implied messages is called a stego report.
A calculation used to obfuscate a message on the sender’s propagating media and
remove the obfuscated message from the saver’s stego archive called stego frame-
work [9–12]. Here in this study introduces image steganography technology the
contributions of this work is very inventive. Initially we have inserted a gray scale
image with size of M*N and chosen a rectangular region to hide the text inside the
image using chaotic map to generate the random number. We have used the math-
ematical functions which give the better output collect to other existing techniques
and unauthorized users can not access our information.

Section 2 gives an overview of some existing related systems. The proposed
system is presented and the analysis of the proposed system is evaluated in Sect. 3.
Section 4 explains the performance of the proposed system with the relevant existing
system. Finally, the conclusion of this work is in Sect. 5.

2 Literature Review

Information covering by using LSB [1] is one of themost basic and habitual strategies
so far. This methodology works by concealing information at all noteworthy bits of
the pixels (LSB). Huge however it’s yet at the same time a few changes in the picture
may disable the implanted information. The Pixel Value Differencing (PVD) [2],
recommended by Wu and Tsai is one of the convincing cryptographic approach.
It structures pixel hinders from the spread and adjusts the pixel contrast in each
pair of squares for information inclusion. More prominent the distinction more is
the adjustment made. In light of PVD, another technique for tri method of pixel
esteem differencing is proposed by Chang et al. [3]. This new strategy has shown
better performance in terms of payload [4, 18] and PSNR. Gray Level Correction
(GLM) [5] proposed by Potder Et al. is another strategy for mapping information by
reforming the dark level estimates of the pixels present in the image. The gray level
estimates for the selected pixels are distinguished based on the secret information bits.
Several strategies have also been proposed to combine PVD and GLM techniques
with the goal of increasing payload. One such technology is Safarpour Et al. is taught
by [6]. When inspected, the image is screened and split at the correct pixels using
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bit substitution. These pixels are randomly selected rather than in order. Chen Et al.
adopted the strategy used when using the side match technique [13]. Using particle
swarm optimization and chaos theory, authors propose a steganography technique
that finds the optimal pixel position in the cover image and hides confidential data
while preserving the quality of the resulting stego image. To increase the embedded
capacity, the host and secret images are divided into blocks, each block containing
the appropriate amount of secret bits. In [14], Hsiao Et al. suggested a method of
data hiding based on a 16 × 16 Sudoku matrix by taking a 16 × 16 Sudoku matrix
and extending it to a two-layer magic square. Low-cost data embedding methods
are also being considered to improve PSNR and maintain good image quality with
the same embedding capacity. Here Manikandan et al. [15] proposes a method to
validate the receiver by incorporating the E-mail and OTP verification to get the
encrypted image. Mansoor Fateh et al. [16] proposed an improved version of the
LSB matching, which works with two phases including embedding and extracting
the message. In this method two bits of the secret message are hidden in two pixels
with only one change. Wenfa Qi et al. [17] proposed an adaptive embedding method
for visible watermarking where they embedded watermark image in the host image.

3 Proposed Work and Algorithms

3.1 Process of the Proposed Work

The following is an overview of a new plan using the chaos system with the goal
of being able to change the intensity values for all pixels. To hide the secret data in
the proposed plot, (a) we make a square shape district of dimension 512 × 512 of a
unique picture (dimension of the gray scale picture is 512 × 512); (b) input different
payload type text as 1024 bytes text and store in s1 variable (c) Chaotic maps are
used to generate private keys. (d) A bitwise XOR operation is applied between the
target pixel and the private key to get the final encrypted image. Figure 1 shows a
block diagram of the proposed method.

3.2 Algorithm for Encoding Process

Step 1: Input gray scale image of size 512 × 512 and a text (size of text vary with
respect to programming.

Step 2: Initialize the variable q = 0.9898 (the value of q is deter-
mined from chaotic map) ands = 5, xc = row

2 , yc = col
2 , where

row and col is the size of the image. Choose the value of n (secret
key) as in following order of varying text file(n, s1). Here s1 is the
size of text file. The text file is stored in pk in one dimensional array.
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Fig. 1 Block diagram of the proposed method

{(4, 100), (8, 500), (12, 1000), (17, 2000), (22, 3000), (26, 5000), (30, 10000),
(33, 20000) and (36, X)}, here X is the remaining text file size. Store the value of n
into image location which will be used in decryption process for extract the original
text file. The value of n is stored in image location as img

(
row
2 + 10, col

2 + 10
) = n.

Here image location is also a secret key.
Step 3: Initialize i = xc − n, j = yc − n.
Step 4:I f (i ≤ xc + nand j ≤ yc + n)
Step 5: Then

r =�q × 1000�%125, q = 3.5 × q × (1 − q),

imgi, j = imgi, j+1 ⊕ r ⊕ pk,where k is the si ze of text f ile,

s = �s × 1000 × q�%2 + 2,

Iterate uneven gap which is s times.
Step 6: Repeat Step 4 until condition is false.
Step 7: Create the desired steganography image.
Step 8: Stop.

3.3 Flow Chart of Encoding Process

3.4 Algorithm for Decoding Process

Step 1: Input gray scale image (steganography img) of size 512 × 512 and a text
(cover text may differ from process to process).
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Fig. 2 Encoding flow chart

Step 2: Initialize the variable q = 0.9898 (the value of q is determined from
chaotic map) and s = 5, xc = row

2 , yc = col
2 , where row and column is the

measurement of the picture.
The merit of n is accepted via image location as n = img

(
row
2 + 10, col

2 + 10
)
.

Here image location is defined during encryption process.
Step 3: Initialize as i = xc − n, j = yc − n.
Step 4: I f (i ≤ xc + nand j ≤ yc + n)
Step5: Then
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r = �q × 1000�%125, q = 3.5 × q × (1 − q),

pk = imgi, j+1 ⊕ r ⊕ imgi, j ,where k is the si ze of text f ile,

s = �s × 1000 × q�%2 + 2,

Repeat for s times.
Step 6: Repeat Step 4 until condition is false.
Step 7: Extract the desired text file.
Step 8: Stop.

3.5 Flow Chart of Decoding Technique

4 Performance Analysis

Here we have considered the performance metrics as Structural Similarity Index
Measure, Peak Signal Noise Ratio, Mean Square Error, Root Mean Square Error,
Average Difference (AD), Normalized Cross—Correlation (NK), Maximum Differ-
ence, Laplacian Mean Square Error, Normalized Absolute Error and Entropy. Some
trial results are acquainted with exhibit the visual quality and implanting the payload
of the proposed strategy is in Table 1. Table 2 describes the performance matrix of
the different statistical parameters. The different capacity of information has been
concealed inside the image like “LENA” and “PEPPER”. If we could able to preserve
the quality of the secret information which is embedded inside the image, the hiding
process is very successful. In our proposed method, each single bit of the secret
image is embedded into the cover image and also we can extract all the embedded
bits without any distortion. So the quality of the image is conserved as the cover
image was.

Figure 4 shows the cover and stego image of PEPPER after embedding maessage.
Figures 5, 6 and 7 show the comparison of the differentmethods of related to different
images [18–21]. Various text capacities embedded in the image. Figure 5 describes
the graphical representation of information inside the image and results is compare
with the other existing scheme with our proposed scheme. Here, the comparision
result shows that our proposed scheme is extremely secure in the scheme of informa-
tion hiding through image. Figure 6 shows the comparison of PSNR value with the
other existing scheme with our proposed scheme. Our chaotic method’s based algo-
rithm has been found the optimized value of PSNR and the value of this statisticale
parameter is better which has been compare with other scheme.

Figure 7 illustrates the SimilarityMeasure for ChaoticMethod over other Existing
Technique. The SSIM result of our proposed scheme describe that the quality of infor-
mation has been preserved 100% that is there are no difference between information
(before embedding and after extraction) which has been hidden inside the images.
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Fig. 3 Decoding flow chart

5 Conclusion

Steganography is incredible and powerful for the correspondence of mystery infor-
mation. For image steganography, different techniques have been utilized. Here, we
have proposed an approach that hides the mystery messages in the image utilizing
a chaotic map. Image steganography strategies can be utilized to spare significant
passwords and keys without recognizable to the outside world. It can likewise be
utilized by the advanced craftsmanship creators to secure the copyrights of their
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Table 1 Embedding capacity through different methodology

Comparison of embedding capacity

Image Image size PVD GLM Ahmad T
et al

Safarpour
et al

MPV Proposed
scheme

LENA 128 × 128 ** 2048 2493 3906 4096 5000

256 × 256 ** 8192 10,007 15,500 16,384 20,000

512 × 512 50,960 32,768 40,017 58,861 65,536 60,000

PEPPER 128 × 128 ** 2048 2493 3906 4096 5000

256 × 256 ** 8192 9767 15,500 16,384 20,000

512 × 512 50,685 32,768 39,034 58,861 65,536 60,000

(** For PVD method, all the images that were used, are of size 512 × 512)

computerized expressions by implanting their subtleties into the work. It is to give
greater security to mystery interchanges. In this manner, the proposed strategy also
limits obfuscation methods for hiding secret message. The security features split
through the proposed chaotic method is quite not viable as data embedded through
the key. Moreover the proposed methodology is one of the novel secure techniques
in the field of image steganography. Also it gives better result both in payload and in
performance measure though performance metrics.
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Fig. 4 (a) Cover and (b) Stego image of PEPPER after embedding 20,000 characters

Fig. 5 Graphical representation of embedding capacity for chaotic method over other existing

Fig. 6 Comparisn of PSNR for chaotic method over other existing techniques
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Fig. 7 Comparison of SSIM for chaotic method over other existing techniques
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Involutory MDS Matrices over F2m

Meltem Kurt Pehlivanoğlu , Mehmet Ali Demir ,
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and Muharrem Tolga Sakallı

Abstract In this paper, we propose new construction structures, in other words,
transposition-permutation path patterns for 3 × 3 involutory and MDS permutation-
equivalentmatrices overF23 andF24 .Wegenerate 3 × 3 involutory andMDSmatrices
over F23 and F24 by using the matrix form given in [1], and then all these matrices are
analyzed by finding all their permutation-equivalent matrices. After that, we extract
whether there are any special permutation patterns, especially for this size of the
matrix. As a result, we find new 28,088 different transposition-permutation path
patterns to directly construct 3 × 3 involutory and MDS matrices from any 3 × 3
involutory and MDS representative matrix over F23 and F24 . The 35 patterns are in
common with these finite fields. By using these new transposition-permutation path
patterns, new 3 × 3 involutory and MDS matrices can be generated especially for
different finite fields such as F28 (is still an open problem because of the large search
space). Additionally, the idea of finding the transposition-permutation path patterns
can be applicable to larger dimensions such as 8 × 8, 16 × 16, and 32 × 32. To the
best of our knowledge, the idea given in this paper to find the common and unique
transposition-permutation path patterns over different finite fields is the first work in
the literature.
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Keywords MDS matrix · Lightweight cryptography · Diffusion matrices ·
Permutation-equivalent matrices

1 Introduction

Substitution-Permutation Networks (SPNs) are one of the main structures used in
designing a block cipher. SPNs include three components: key scheduling, non-linear
layer (e.g., Substitution boxes (S-boxes)), and linear layer (or diffusion layer).

MaximumDistanceSeparable (MDS)matrices have themaximumbranch number
that ensures themaximumdiffusion [2].Recently, studies basedondesigning efficient
MDS diffusion layers aim to minimize the circuit depth and reduce the required
number of logical gates (especially Exclusive-OR (XOR) gates). XOR count metric
defines the hardware implementation cost of a diffusion layer. To design circuit
implementation of a diffusion layer with the lowest circuit depth ensures low latency.

Basically, the construction methods for MDS matrices are divided into three
methods: direct construction methods, search-based methods, and hybrid methods.
Cauchy matrices [4], companion matrices [5], Vandermonde matrices [6], and the
3 × 3 matrix form given in [1] are direct construction methods. Because of their
algebraic structures, an MDS matrix can be generated directly (without searching)
by using these structures. In search-based methods, the special matrix forms such
as circulant matrices, Hadamard matrices, Toeplitz matrices are used to generate
MDS matrices. Hybrid construction methods combine direct construction method
and search-based method. Generalized Hadamard (GHadamard) [7] matrix form is a
hybrid construction method and generates directly new (involutory) MDS matrices
by using an (involutory and MDS) Hadamard matrix of which MDS property can be
confirmed by search. But, all these construction methods are evaluated as local opti-
mization technique that focuses on the diffusion matrix coefficients with minimum
XOR count. They do not guarantee to find the best circuits. Recent studies have been
focused on optimizing the diffusion matrix circuits globally [3, 11–13].

In this paper, efficient construction structures of involutory andMDSmatrices are
evaluated. In [8], the authors proved the existence of special matrix types (patterns)
for constructing involutory Hadamard MDS matrices. In [9], the authors generated
lightweight involutory and MDS matrices by using elementary block matrices. They
also focused on the properties of blockmatrices and gave some constructionmethods.
In [10], the authors defined new constructions based on the idea of the subfield con-
struction method to identify involutory MDS matrices. In [11], the authors extracted
special construction methods. They used permutation-equivalent classes to search
for involutory MDS matrices.

In this paper, we focus on using the permutation-equivalent classes for finding
whether there are any special transposition-permutation path patterns, especially for
3 × 3 involutory and MDS matrices over F23 and F24 defined by the irreducible
polynomials x3 + x + 1 (the hexadecimal notation 0xb corresponds to this polyno-
mial notation), x3 + x2 + 1 (0xd), x4 + x + 1 (0x13) and x4 + x3 + 1 (0x19),
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respectively. The 3 × 3 matrix form given in [1] is used to generate all involutory
and MDS matrices over these finite fields. Then, we find the representative matrices
which can represent a class of all permutation-equivalent matrices. After that, we
extract all the transposition-permutation paths where Pc, Pr and T express column
permutation, row permutation, and matrix transposition, respectively. To find new
transposition-permutation path patterns, column permutation (Pc), row permutation
(Pr ) and matrix transposition (T ) steps are applied repetitively on each representa-
tive matrix. There are 1,176 and 37,800 3 × 3 involutory andMDSmatrices over F23

and F24 (See Proposition 1. [1]). So, we analyze 2,352 and 75,600 3 × 3 involutory
and MDS matrices in total over F23 and F24 , respectively.

1.1 Motivation and Contribution

To design an efficient involutory andMDSmatrix is a challenging open problem [2].
Recent studies have focused on the global optimization of the lightweight involutory
and MDS matrices to extract the lightest circuits. In [3], it has also remained as
future work to focus on the integration of local and global optimization techniques to
increase the potential of all these techniques. Especially, it is important to construct
involutory andMDSmatrices with lightweight coefficients in the local optimization.
But first, it is important to know that how one can directly construct an involutory and
MDSmatrix in an efficient way. Then the local optimization and global optimization
techniques are used to reduce the hardware cost. The contributions of this paper can
be summarized as follows:

– To the best of our knowledge, the idea based on finding the common and unique
transposition-permutation path patterns over different finite fields is the first work
in the literature.

– We give all found transposition-permutation path patterns results publicly avai-
lable at https://github.com/mkurtpehlivanoglu/transposition-permutation-path-
patterns.git.

– We give new transposition-permutation path patterns especially for 3 × 3 invo-
lutory and MDS matrices over F23 and F24 . For all generated 3 × 3 involutory
and MDS matrices over these finite fields, permutation-equivalent matrices are
grouped together, in other words, permutation-equivalent classes are found. Then,
we extract all the transposition-permutation paths. Finally, we find 28,088 dif-
ferent transposition-permutation path patterns that construct all the permutation-
equivalent classes. The 35 patterns are in common with these finite fields.

– These patterns could be applied to any involutory and MDS matrix, then its
permutation-equivalent matrices could be constructed directly without any search-
ing cost. Additionally, by using these new transposition-permutation path patterns,
new 3 × 3 involutory and MDS matrices can be generated especially for differ-
ent finite fields which have large search space such as F28 . Moreover, the idea of

https://github.com/mkurtpehlivanoglu/transposition-permutation-path-patterns.git
https://github.com/mkurtpehlivanoglu/transposition-permutation-path-patterns.git
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finding the transposition-permutation path patterns can be applied not only 3 × 3
dimension but also to different larger dimensions.

1.2 Organization

This paper is organized as follows, the preliminaries on the involutory and MDS
matrices and the specialmatrix form used in generating all 3 × 3 involutory andMDS
matrices are given in Sect. 2. In Sect. 3, we show that how to find new transposition-
permutation path patterns and we give these structures. The conclusion is given in
the last section.

2 Preliminaries

In this paper,weuse theF2m/p(x)notation to express thefinitefieldF2m definedby the
irreducible polynomial p(x). The hexadecimal notation of the irreducible polynomial
p(x) can be used instead of the polynomial notation, e.g. the hexadecimal notation
0xb corresponds to polynomial notation of the irreducible polynomial x3 + x + 1
in F23 , and it can be represented by F23/0xb. In Definition 1, we recall the MDS
matrix definition.

Definition 1 Let L be an n × n matrix in Mn(F2m ), L is an MDS matrix if and only
if it’s all square sub-matrices are non-singular [11].

Theorem 1 Let A and B be two n × n matrices in Mn(F2m ). If A is an MDS matrix,
and A and B are permutation-equivalent matrices, if and only if B is an MDS matrix
[11].

From Theorem 1, if we permute the rows and columns of an MDS matrix, the MDS
property will be preserved.

Corollary 1 Let A and B be two n × n matrices in Mn(F2m ). If A and B are
permutation-equivalent matrices, then A and B have the same implementation cost
(XOR count) [11].

Definition 2 Let A =
⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ be a 3 × 3 over F2m for a12 = (a11 +

1)b0, a13 = (a11 + 1)b1, a21 = (a22 + 1)b0−1, a23 = (a22 + 1)b0−1b1, a31 = (a11 +
a22)b1

−1, a32 = (a11 + a22)b1
−1b0, a33 = a11 + a22 + 1, where a11 �= a22 �= a33 and

b0, b1 ∈ F2m − {0} [1].
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The 3 × 3 matrix form I M can be represented as follows:

IM =
⎡
⎣

a11 (a11 + 1)b0 (a11 + 1)b1
(a22 + 1)b0−1 a22 (a22 + 1)b0−1b1
(a11 + a22)b1−1 (a11 + a22)b1−1b0 a11 + a22 + 1

⎤
⎦ (1)

By using Eq. 1, all 3 × 3 involutory andMDSmatrices over theF2m (See proof [1])
can be generated. Moreover, the number of all 3 × 3 involutory and MDS matrices
over F2m is (2m − 1)2 · (2m − 2) · (2m − 4), where m > 2 [1].

In this paper,weuse thematrix formgiven inEq. 1, thenwegenerate all 3 × 3 invo-
lutory and MDS matrices over the F23/0xb , F23/0xd, F24/0x13 and F24/0x19.

The number of 3 × 3 involutory and MDS matrices over F23 is (23 − 1)2 · (23 −
2) · (23 − 4) = 1, 176, and the number of 3 × 3 involutory and MDS matrices over
F24 is (24 − 1)2 · (24 − 2) · (24 − 4) = 37, 800 for each irreducible polynomial.

3 Findings on New Transposition-Permutation Path
Patterns

Totally 77,952 3 × 3 involutory and MDS matrices are generated over F23 and F24 .
We search all the permutation-equivalent matrices and grouped them together, i.e.
permutation-equivalent classes are found. Then, one representative matrix is picked
from each class. As a result, we find 100 different 3 × 3 involutory and MDS repre-
sentative matrices over F23/0xb and F23/0xd finite fields, and also find 3,132 and
3,119 different 3 × 3 involutory and MDS representative matrices over F24/0x13
and F24/0x19, respectively. After that, Pc, Pr and T steps are applied repetitively
on each representative matrix to find its own permutation-equivalent matrices, and
all these transposition-permutation paths are recorded. We find a total of 28,088 dif-
ferent transposition-permutation path patterns which give the possible transposition-
permutation steps to construct whole permutation-equivalent matrices from one rep-
resentative matrix. In Table 1, we give 35 common path patterns which are found
over F23 and F24 . In Table 2, we give most commonly used 50 path patterns over F4

2.
The Pci, j , Pri, j and T , notations given in the tables represent changing (permutation)
the i th column with the j th column, changing the i th row with the j th row, and
transposition of the given matrix, respectively, where 0 ≤ i, j ≤ 2. The path num-
bers (the first column) which are given in bold in the tables indicate the common
paths over two finite fields. All the common transposition-permutation path patterns
for F23 and F24 finite fields are given in bold in Tables1 and 2.

In Table 1, we give a total of 35 common transposition-permutation path patterns.
Normally, we find totally 537 different path patterns over these fields. The second
column of the table represents which steps have to be applied to the representative
matrix, and the third column represents how many 3 × 3 involutory and MDS rep-
resentative matrix uses the related pattern to construct its permutation-equivalent
matrices. For example, for the third path pattern “Pc1,0 , Pr1,0 ” indicates two steps:
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Table 1 Generated common transposition-permutation path patterns for F23 and F24 .
No Transposition-permutation Number of matrices

path patterns F23 /0xb F23 /0xd F24 /0x13 F24 /0x19

1 Pc1,2 ,Pr1,2 ,T 13 12 415 399

2 Pc0,1 ,Pr0,1 ,T 12 24 424 412

3 Pc1,0 ,Pr0,1 6 13 422 411

4 Pc2,0 ,Pr0,2 35 15 434 398

5 Pc2,1 ,Pr1,2 ,T 4 17 446 402

6 Pc1,2 ,Pr2,1 4 14 415 415

7 Pc1,0 ,Pr1,0 ,T 19 13 374 421

8 Pc0,1 ,Pr0,1 9 29 411 418

9 Pc0,2 ,Pr0,2 12 12 381 404

10 Pc1,2 ,Pr1,2 11 15 418 399

11 Pc2,0 ,Pr0,2 ,T 28 14 373 418

12 Pc2,1 ,Pr2,1 19 2 421 380

13 Pc2,0 ,Pr2,0 9 6 411 416

14 Pc0,1 ,Pr1,0 ,T 18 11 414 398

15 Pc2,0 ,Pr2,0 ,T 10 5 427 444

16 Pc1,2 ,Pr2,1 ,T 8 14 385 379

17 Pc1,0 ,Pr0,1 ,T 2 5 425 370

18 Pc2,1 ,Pr1,2 12 18 383 430

19 Pc1,0 ,Pr1,0 27 6 438 399

20 Pc1,2 ,Pr2,1 ,T-Pc0,2 ,Pr2,0 1 1 9 16

21 Pc2,1 ,Pr2,1 ,T 24 2 408 392

22 Pc0,2 ,Pr2,0 14 15 404 455

23 Pc0,2 ,Pr2,0 ,T 17 19 408 395

24 Pc0,2 ,Pr0,2 ,T 8 9 405 413

25 Pc1,2 ,Pr2,1 ,T-Pc0,2 ,Pr2,0 ,T 1 4 9 11

26 Pc0,1 ,Pr1,0 14 16 415 406

27 Pc0,2 ,Pr2,1 ,T-Pc1,0 ,Pr2,1 ,T 6 1 12 11

28 Pc0,1 ,Pr2,0 ,T-Pc1,2 ,Pr0,2 5 2 12 10

29 Pc1,0 ,Pr1,2 ,T-Pc2,0 ,Pr1,2 7 5 6 16

30 Pc2,0 ,Pr0,1 ,T-Pc0,1 ,Pr2,0 6 8 9 15

31 Pc2,0 ,Pr1,0 ,T-Pc0,2 ,Pr2,1 ,T 7 2 19 19

32 Pc1,0 ,Pr1,2 ,T-Pc2,0 ,Pr1,2 ,T 4 4 12 11

33 Pc2,1 ,Pr2,0 ,T-Pc2,1 ,Pr1,0 ,T 2 1 10 14

34 Pc1,0 ,Pr1,2 ,T-Pc2,0 ,Pr2,1 2 4 10 15

35 Pc2,0 ,Pr2,0 ,T-Pc0,1 ,Pr0,1 1 3 9 14

firstly replace the second column of this matrix with first column, and then replace
the second row of thematrixwith first row. In total 25 and 814 representativematrices
use this patterns over F23 and F24 , respectively.
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Table 2 Most commonly used 50 transposition-permutation path patterns for F24 .

No Transposition-permutation Number of matrices

path patterns F24/0x13 F24/0x19

1 Pc2,1 ,Pr1,2 ,T 446 402

2 Pc1,0 ,Pr1,0 438 399

3 Pc2,0 ,Pr0,2 434 398

4 Pc2,0 ,Pr2,0 ,T 427 444

5 Pc1,0 ,Pr0,1 ,T 425 370

6 Pc0,1 ,Pr0,1 ,T 424 412

7 Pc1,0 ,Pr0,1 422 411

8 Pc2,1 ,Pr2,1 421 380

9 Pc1,2 ,Pr1,2 418 399

10 Pc1,2 ,Pr2,1 415 415

11 Pc0,1 ,Pr1,0 415 406

12 Pc1,2 ,Pr1,2 ,T 415 399

13 Pc0,1 ,Pr1,0 ,T 414 398

14 Pc0,1 ,Pr0,1 411 418

15 Pc2,0 ,Pr2,0 411 416

16 Pc0,2 ,Pr2,0 ,T 408 395

17 Pc2,1 ,Pr2,1 ,T 408 392

18 Pc0,2 ,Pr0,2 ,T 405 413

19 Pc0,2 ,Pr2,0 404 455

20 Pc1,2 ,Pr2,1 ,T 385 379

21 Pc2,1 ,Pr1,2 383 430

22 Pc0,2 ,Pr0,2 381 404

23 Pc1,0 ,Pr1,0 ,T 374 421

24 Pc2,0 ,Pr0,2 ,T 373 418

25 Pc2,1 ,Pr0,1 ,TPc2,1 ,Pr2,0 ,T 27 14

26 Pc2,0 ,Pr1,2 ,TPc0,2 ,Pr1,0 24 15

27 Pc1,0 ,Pr0,1 ,TPc0,1 ,Pr1,0 24 15

28 Pc0,2 ,Pr2,1 ,TPc0,1 ,Pr2,1 ,T 24 13

29 Pc2,0 ,Pr1,2 ,TPc2,1 ,Pr0,2 22 11

30 Pc2,1 ,Pr1,0 ,TPc2,1 ,Pr2,0 21 15

31 Pc0,2 ,Pr2,0 ,TPc1,0 ,Pr1,0 21 8

32 Pc1,2 ,Pr1,2 ,TPc0,1 ,Pr1,0 20 17

33 Pc2,1 ,Pr0,1 ,TPc2,0 ,Pr0,1 ,T 20 12

34 Pc0,2 ,Pr0,2 ,TPc0,1 ,Pr1,0 ,T 20 11

35 Pc0,2 ,Pr1,0 ,TPc2,0 ,Pr1,2 20 7

36 Pc2,0 ,Pr1,0 ,TPc0,2 ,Pr2,1 ,T 19 19

(continued)
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Table 2 (continued)

No Transposition-permutation Number of matrices

path patterns F24/0x13 F24/0x19

37 Pc0,2 ,Pr2,1 ,TPc1,2 ,Pr2,0 19 14

38 Pc2,1 ,Pr0,1 ,TPc2,1 ,Pr2,0 19 12

39 Pc2,1 ,Pr1,2 ,TPc1,2 ,Pr1,2 19 12

40 Pc1,0 ,Pr2,0 ,TPc0,1 ,Pr1,2 ,T 19 10

41 Pc2,0 ,Pr1,2 ,TPc0,1 ,Pr1,2 19 9

42 Pc1,2 ,Pr1,0 ,TPc0,2 ,Pr1,0 18 16

43 Pc0,2 ,Pr1,2 ,TPc2,0 ,Pr1,0 ,T 18 16

44 Pc1,0 ,Pr1,2 ,TPc1,2 ,Pr0,1 18 16

45 Pc0,2 ,Pr2,1 ,TPc1,0 ,Pr2,1 18 16

46 Pc1,0 ,Pr1,2 ,TPc1,2 ,Pr1,0 18 15

47 Pc0,1 ,Pr0,1 ,TPc1,2 ,Pr2,1 ,T 18 14

48 Pc0,1 ,Pr0,2 ,TPc1,0 ,Pr1,2 ,T 18 14

49 Pc2,1 ,Pr2,1 ,TPc1,0 ,Pr1,0 ,T 18 13

50 Pc2,0 ,Pr1,0 ,TPc2,1 ,Pr0,1 18 13

In Table 2, we give the most commonly used 50 transposition-permutation path
patterns over F24 . Normally, we find 27,551 different path patterns over F24/0x13
and F24/0x19 and 2,722 of these paths are common.

By using these new transposition-permutation path patterns, new 3 × 3 involu-
tory and MDS matrices can be generated especially for different finite fields such as
F28 . Finding lightweight involutory MDS matrices over F28 is a challenging prob-
lem because there are ≈ 231.95 3 × 3 involutory and MDS matrices over these fields.
Instead of searching involutory andMDSmatrices, finding direct construction struc-
tures is crucial. Finding new transposition-permutation path patterns for different
finite fields will ensure the extraction of many common paths. Moreover, the idea
given in this paper can be extended to larger dimensions. Firstly, some representative
matrices for these large dimensions can be found, then new transposition-permutation
path patterns given in this paper can be used to generate new involutory MDS matri-
ces. That will be more efficient because it does not require any search cost.

4 Conclusion and Future Works

Designing of involutory and MDS matrices is a challenging problem. In this paper,
we focus on finding new transposition-permutation path patterns from 3 × 3 repre-
sentative matrices over the finite fields F23 and F24 . We generate 28,088 different
and 35 common transposition-permutation path patterns for these finite fields. It is
remarkable that all the common path patterns over F23/0xb and F23/0xd are also
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take place over F24/0x13 and F24/0x19. It is clear that all the patterns could be
applied to any involutory and MDS matrix, then permutation-equivalent matrices
could be computed directly without any search cost.

As a future work, it would be interesting to focus on finding new transposition-
permutation path patterns for 3 × 3 involutory andMDSmatrices over different finite
fields. Then, all these path patterns would be compared to extract the common paths.
Thus, these common paths would ensure a direct construction method for finding
permutation-equivalent matrices of any representative involutory and MDS matrix.
Moreover, the idea given in this paper for 3 × 3 involutory and MDS matrices could
be applied to larger dimensions such as 8 × 8, 16 × 16, and 32 × 32.
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A Novel Generalized Method for
Evolution Equation and its Application
in Plasma

Santanu Raut, Subrata Roy, and Ashim Roy

Abstract This article presents a new class of the kink soliton, anti-kink soliton solu-
tion for the Zakharov-Kuznetsov-Burgers (ZKB) equation. To establish the existence
of such type of model in a real physical situation, an unmagnetized viscous plasma
containing cold ions and the electrons obeying Cairns-Tallis distribution is consid-
ered, and employing reductive perturbation method (RPM) classical ZKB equation
is derived. The Generalised Kudryashov method (GKM) is employed to explore
the solution of the aforesaid equation and the symbolic software package Maple is
adopted in carrying out the complicated algebraic computation. Finally, the physical
significance of different parameters on wave propagation is demonstrated through
numerical understanding.

Keywords Zakharov-Kuznetsov-Burgers equation · Cairns-Tallis distribution ·
Reductive perturbation method · Generalised Kudryashov method

1 Introduction

During the last few decades, nonlinear evolution equations (NLEEs) have gained a
lot of attention from the authors, due to their vast applications in different branches
of nonlinear sciences. For example, NLEEs have been utilized to formulate various
problems associated with protein chemistry, chemical kinetics, quantum mechanics,
plasma physics, the propagation of shallow-water waves, etc. The classical KdV
equation is an example of NLEE which is extensively utilized to model weakly non-
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linear long waves. In many works [1, 2], the investigations done were restricted
to the only one-dimensional flow of the ions and the electrons. However, in many
situations, the classical KdV equation becomes inappropriate when one encoun-
ters a situation where the higher dimensional coordinate system is included. The
Kadomtsev-Petviashili (KP) equation and the Zakharov-Kuznetsov (ZK) equation
[3] are adopted to investigate the properties of solitary waves in various nonlin-
ear systems with higher dimensional systems. To determine characteristics of IAW
wave, as well as DAW, is determined in different plasma mediums the ZK model is
utilized in many situations [4]. For the first time, Munro and Parkes [5] found that
the governing equation ZK turns into a modified form (mentioned as modified ZK
equation) in a plasma environment when the non-isothermal type electrons are con-
sidered. Further, it was also found that choosing a suitable form of electron number
density in a particular form of plasma environment suggested by Schamel [6], causes
to form modified form of ZK equation through RPT [7]. It is found that in most of
the observations for finding propagating characteristics of IAW in a plasma environ-
ment the impact of viscosity, collisions, ion streaming velocity is neglected. But, a
large number of experimental studies has been carried out in different plasma states
and it has been observed that the evolution of solitary wave in a dissipative system
significantly depends on inter-particle collisions and viscosity, etc. [8–10]. Recently,
some authors observed IAW in the ZKmodel alongwith the consideration of Burgers
term. For instance, Moselem et al. [11] report some analytical solutions of the ZKB
equation to investigate IAW propagating in a magnetized dusty plasma containing
isothermal electron and cold positive ions. Bedwehy and Moslem [12] again applied
the ZK model to observe the characteristic of the shock waves in three-component
plasma. Yin et al. [13] find some solitary wave solution of (2 + 1)-dimensional ZKB
equation in order to find the generalized beta effect in the system. Seadawy in the
year 2015, find some nonlinear wave solutions for the (3 + 1)-dimensional ZKB
equation in [14] and discuss the stability of the solutions briefly. In the year 2016,
Yang et al. [15] reports some three-dimensional Rossby solitary waves solutions for
the ZKBmodel. Abdullah et al. [16] employed amodified extendedmappingmethod
in order to obtain a solitary wave solution for (3 + 1)-dimensional ZKB equation. To
solve different kinds of NLEEs, several researchers have proposed and applied var-
ious analytical, as well as numerical techniques, such as the modified trial equation
method (MTEM), the modified Kudryashov method, (G ′/G)-expansion method, the
functional variable method, and many other symbolic techniques involving tedious
computations, [17–19]. Recently, The generalized Kudryashov method (GKM) is
employed to construct traveling wave solutions of different evolution equations.
Compared with other nonlinear techniques, the GKM is more efficient to construct
directly the exact solutions of high order nonlinear partial differential equations [19].
To acquire the traveling wave solutions of the ZKB equation the GKM is applied in
the present investigation.

We observe the weakly nonlinear IAW in collisionless, unmagnetized, plasma
system containing nonextensive electrons and cold ions. To aim this, we first derive
the (2+1)-dimensional ZKB equation and apply GMK various types of solution such
as kink and anti-kink soliton have been derived. In the present investigation, we
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consider Cairns-Tallis distribution because such a two-parameter mixed distribution
function may describe effectively various nonlinear phenomena in a nonthermal
plasma environment. For the first time, Tribeche et al. [20] proposed this distribution
and addressed the effectivity of the distributionwhen nonthermal and non-extensivity
may act simultaneously.Model equation andDefinition ofCorresponding Parameters
and derivation of the ZK-Burgers equation are describe in Sect. 2. An outline for the
proposed nonlinear method and a set of the new solution are derived using GKM in
Sect. 3. Section4 briefly discusses the numerical structure of the solutions. Finally,
concluding remarks are given in Sect. 5.

2 Model Equation and Definition of Corresponding
Parameters

To verify the reliability of our results, a magnetized three-component plasma sys-
tem with cold ions, electrons obeying q nonextensive nonthermal distribution and
immobile negatively charged dust grains is considered. The external magnetic field
is directed along x − axis, i.e. B = B0 x̂ . At equilibrium, the charge neutrality con-
dition can be written as ni0 = neo + Zdnd0 where n j0 represent the equilibrium den-
sities of jth species ( j = e, i, d stands for electron, ion and dust grains respectively)
and Zd denotes the charge number of dust grains. Assuming the existence of such a
plasma environment, the dynamics of IAWs is governed by

∂ni
∂t

+ ∇.(niui ) = 0 (1a)

∂ui
∂t

+ (ui .∇)ui = −∇φ + Ω(ui × x̂) + νi∇2ui (1b)

∇2φ = ne − ni + δ (1c)

where δ = Zdnd0
ni0

and n j is the density of the jth species ( j = e, i, d stands for electron,
ion and dust grains respectively). ui is the ion fluid velocity and φ is chosen an
electrostatic potential. Here n j is normalized by the unperturbed ion density ni0. ui is

normalized by the ion-acoustic speed Csi =
√

Te
mi
. φ, the electrostatic wave potential

is normalized by Te
e . The space and time variables are in units of the ion Debye

length λdi =
√

Te
4πni0e2

and the ion plasma period ω−1
pi =

√

mi
4πni0e2

. Also Ω = ωci
ωpi

where the ion gyrofrequency ωci is defined as ωci = eB0
mi c

and c is the velocity of
light. νi = ν0

ωpiλ
2
di
represent the normalized ion kinematic viscosity where ν0 is the

unnormalized kinematic viscosity. e is the magnitude of electron charge, mi is mass
of ion.

The electron density is given by
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ne(φ) = ne0

{

1 + (q − 1)
eφ

Te

}
q+1

2(q−1)

{

1 + L1

(

eφ

Te

)

+ L2

(

eφ

Te

)2
}

(2)

where

L1 = − 16qα

3 − 14q + 15q2 + 12α

L2 = 16qα(2q − 1)

3 − 14q + 15q2 + 12α

Here, α stands to present the spectral index and the density (ne) of nonextensive
nonisothermal electrons can be written as

ne = μ {1 + (q − 1) φ} q+1
2(q−1) {1 + L1φ + L2φ2} (3)

which implies

ne = μ

{

1 + 1 + q

2
φ + (1 + q)(3 − q)

8
φ2 + (1 + q)(3 − q)(5 − 3q)

48
φ3

}

×
{1 + L1φ + L2φ2}

= μ{1 + β1φ + β2φ
2 + β3φ

3 + · · · } (4)

where

μ = ne0
ni0

β1 = L1 + 1 + q

2

β2 = L2 + L1
1 + q

2
+ (1 + q)(3 − q)

8

β3 = L2
1 + q

2
+ L1

(1 + q)(3 − q)

8
+ (1 + q)(3 − q)(5 − 3q)

48

Here μ denotes the unpertubated density ratios of electrons to ions (= ne0
ni0

). We
express Eqs. (1a)–(1c) as follows

∂ni
∂t

+ ∂ (niuix )

∂x
+ ∂

(

niuiy
)

∂y
= 0 (5a)

∂uix
∂t

+
(

uix
∂

∂x
+ uiy

∂

∂y

)

uix = −∂φ

∂x
− νi

(

∂2

∂x2
+ ∂2

∂y2

)

uix (5b)

∂uiy
∂t

+
(

uix
∂

∂x
+ uiy

∂

∂y

)

uiy = ∂φ

∂y
− νi

(

∂2

∂x2
+ ∂2

∂y2

)

uiy + Ωuiz (5c)
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∂uiz
∂t

+ (uix
∂

∂x
+ uiy

∂

∂y
)uiz = ∂φ

∂y
− νi

(

∂2

∂x2
+ ∂2

∂y2

)

uiz + Ωuiy (5d)

(

∂2

∂x2
+ ∂2

∂y2

)

φ = ne − ni + δ (5e)

Independent variables are stretched as

ξ = ε
1
2 (x − vpt), η = ε

1
2 y, τ = ε

3
2 t (6)

Actually to derive ZKB equation, the dependent variables are expanded as [21]

ni = 1 + εni1 + ε2ni2 + · · · (7a)

uix = εuix1 + ε2uix2 + · · · (7b)

uiy = ε2uiy1 + ε3uiy2 + · · · (7c)

uiz = ε3/2uiz1 + ε5/2uiz2 + · · · (7d)

φ = εφ1 + ε2φ2 + · · · (7e)

νi ≈ ε1/2νi0 (7f)

Here vp =
√

1
μβ1

is phase velocity. Using RPT method [7] and after setting φ1 = Φ,

we finally get a relation that can be claimed as the (2+1)-dimensional ZKB equation

∂Φ

∂τ
+ AΦ

∂Φ

∂ξ
+ B

∂3Φ

∂ξ3
+ C

∂3Φ

∂ξ∂η2
+ D

(

∂2

∂ξ2
+ ∂2

∂η2

)

Φ = 0 (8)

where

A = 3

2vp
− μβ2v

3
p, B = v3

p

2
, C = v3

p

2
(1 + Ω−2), D = −νi0

2
.

3 Solution of (2+1)-Dimensional ZKB Equation

3.1 Description of the Generalized Kudryashov Method

In the present section, a generalized structure of the GKM is described in brief. We
consider the fractional differential equation as,

uτ = N (uξ, uξξ, uτξ, uξζζ , uξξξ...) (9)
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where u = u(ξ, η, τ ). The main steps of GKM are stated below as,
Step 1. We introduce a new variable θ to substitute the variables ξ, η and τ . Now,
we write

u(ξ, η, τ ) = V (θ), θ = kξ + nη − ωτ (10)

where k, n and ω, are the constants to be determined later. Then, the Eq. (9) is
converted into a nonlinear ordinary differential equation (NODE) as,

ωV ′ = Q(V, V ′, V ′′, V ′′′, · · · ) (11)

for V = V (θ) where Q presents a polynomial of V along with its derivatives (the
superscripts stands for presenting the differential w.r.t. θ).
Step 2. Now, we choose the solution of Eq. (11) in the particular form presented
below as,

V (z) =
∑r

i=0 aiY
i (θ)

∑p
j=0 a jY j (θ)

= a0 + a1Y (θ) + a2Y 2(θ) + · · · + arY r (θ)

b0 + b1Y (θ) + b2Y 2(θ) + · · · + bpY p(θ)
. (12)

where Y = Y (θ) obeys the NODE,

Y ′ = Y 2 − Y, (13)

Combining Eqs. (12) and (11) we find the polynomial equation Y . Using the homo-
geneous balance principle the relation between p and r is determined.
Step 3. Equating the coefficients of the term Ym a system of algebraic equation
is determined. Utilizing the symbolic system package Maple this system is solved.
Finally, the values of ai , i = 0, 1, 2, 3, . . . , r and b j , j = 0, 1, 2, . . . , p are deter-
mined.
Step 4. Substituting the parametric values ai and b j , and setting the general solution
of Eq. (13) Y = 1/(1 ± eθ) in Eq. (12), the solutions of Eq. (9) are obtained.

3.2 Application of the Generalized Kudryashov Method on
ZKB Equation

In this sub-section generalized kudryashov method is employed to construct a set of
exact analytic solution of ZK-Burgers equation. To get traveling wave solution of
Eq. (8), we consider the transformation

Φ(ξ, η, τ ) = V (θ), θ = kξ + nη − ωτ . (14)
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Substituting Eq. (14) into Eq. (8), we have obtained the following nonlinear differ-
ential equation:

− ωV ′ + AkV V ′ + Bk3V ′′′ + Ckn2V ′′′ + Dk2V ′′ + Dn2V ′′ = 0 (15)

Integrating we get

− ωV + AkV 2

2
+ Bk3V ′′ + Ckn2V ′′ + Dk2V ′ + Dn2V ′ = 0 (16)

Applying homogeneous balance principle between V ′′ and V 2, we find a relationship
for r , p as,

r = p + 2

Taking p = 1, gives r = 3. We choose a trial solution of Eq. (16) as

V = a0 + a1Y + a2Y 2 + a3Y 3

b0 + b1Y
(17)

Putting Eq. (17) into Eq. (16) a system of algebraic equations is obtained and by
solving this system with the help of symbolic computation software Maple, we find
the values of the involved coefficients. These are determined as,
Set 1.

a2 = −12Db0(k2 + n2)

5Ak
, B = −5Cn2 − Dk2 − Dn2

5k2
, ω = −6D(k2 + n2)

5
,

a0 = 0, a1 = 0, a2 = a2, a3 = 0, b0 = b0, b1 = 0 (18)

By using Eq. (18), the solution can be written as

Φ2a = −3D(k2 + n2)

5Ak

(

1 − tanh

(

θ

2

))2

(19)

where θ = kξ + nη + 6D(k2+n2)τ
5 .

Set 2.

B = −Cn2

k2
, ω = −D(k2 + n2), a0 = 0, a1 = −2Db0(k2 + n2)

k A
, a2 = 0,

a3 = 0, b0 = b0, b1 = 0. (20)
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By using Eq. (20), the soliton solution can be written as

Φ1a = −D(k2 + n2)

k A

(

1 − tanh

(

θ

2

))

(21)

where θ = kξ + nη + D(k2 + n2)τ .
Set 3.

B = −5Cn2 − Dk2 − Dn2

5k2
, ω = 6D(k2 + n2)

5
, a0 = −a2, a1 = 0, a2 = a2,

a2 = −12Db0(k2 + n2)

5k A
, a3 = 0, b0 = b0, b1 = 0 (22)

By using Eq. (22), the soliton solution can be termed as

Φ3a = 3D(k2 + n2)

5k A

(

1 −
(

1 − tanh

(

θ

2

))2
)

(23)

where θ = kξ + nη − 6D(k2+n2)τ
5 .

4 Results and Discussion

This work presents a new class of effective solutions for ZK-Burgers model. In
fact, we choose some particular numerical values for the coefficients (depending on
various parameters) of the equation and plot some 2D and 3D graphs accordingly.
Figure 1a is drawn to exhibits the effect of Burgers term in shock profile. Figure 1a
clearly shows that the amplitude of the wave substantially depends on dust kinematic
viscosity. Increasing νi0 leads for rising dissipation in a system and naturally the
amplitudes of the shock rises. The effect of the variation of unperturbed density
ratio of electrons to that of ions (μ) in wave profile is demonstrated in Fig. 1(b)
where enhancing μ causes for rising of the amplitude of the shocks. In order to
show the effect of variation of the parameters spectral index (α) and nonextensive
parameter q Fig. 1c, d are plotted, where enhancing of both the parameters causes
for diminishing of the amplitude of the shocks. Utilizing the symbolic computation
systemMathematica, two three dimensional graphs of the obtained solutions of ZKB
medium are drawn in Fig. 2. Figure 2a clearly shows the propagation of shock in
space zone whereas the significant effect of the viscosity parameter νi0 is shown in
Fig. 2b.
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Fig. 1 a The 2D Profiles of Solution (19) for α = 0.5, q = 0.2, τ = 1, n = 1√
2
, k = 1√

2
, η =

1, μ = 0.5, ω = 0.5, b when α = 0.5, q = 0.2, τ = 1, n = 1√
2
, k = 1√

2
, η = 1, νi0 =

0.1, ω = 0.5 c when νi0 = 0.1, q = 0.2, τ = 1, n = 1√
2
, k = 1√

2
, η = 1, μ = 0.5, ω = 0.5, d

when α = 0.5, νi0 = 0.1, τ = 1, n = 1√
2
, k = 1√

2
, η = 1, μ = 0.5, ω = 0.5

Fig. 2 a The 3D Profiles of Solution (19) for α = 0.5, q = 0.2, τ = 1, n = 1√
2
, k =

1√
2
, μ = 0.5, ω = 0.5, νi0 = 0.1, b for α = 0.5, q = 0.2, τ = 1, n = 1√

2
, k = 1√

2
, η =

1, μ = 0.5, ω = 0.5
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5 Conclusion

We have utilized the ZKB model to observe IAW propagating in a non-extensive
plasma medium, this example has been provided basically to establish the existence
of such types of models in different physical situations. Actually, in the light of our
observation, emphasis is imposedonderiving themodel solutions. TheGKMmethod,
a newly developed novel nonlinear technique, is employed to ZKB equation and a
new class of effective solutions such as kink soliton, anti-kink soliton, are derived
which may be useful in the various dynamic systems of physical situations like the
water wave phenomena, the elastic media, the quantum mechanics, the dynamics of
adiabatic parameters, problems on the industrial phenomena, etc. Some complicated
algebraic calculations have been solved with the help of the symbolic computations
package Maple. Finally, some 2D and 3D figures are also drawn to show the impact
of different parameters on wave structures.
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Impact of Fear and Strong Allee Effects
on the Dynamics of a Fractional-Order
Rosenzweig-MacArthur Model

Hasan S. Panigoro and Emli Rahmi

Abstract This paper discusses the impact of fear and strong Allee on the dynamical
behaviors of the prey and predator relationship following theRosenzweig-MacArthur
model using fractional-order derivative as the operator. As results, four equilibrium
points are identified namely the origin point, a pair of axial points, and the interior
point. The origin is always locally asymptotically stable while others are condition-
ally asymptotically stable. The occurrence of transcritical bifurcation around the axial
and Hopf bifurcation in the interior are also successfully investigated. The numerical
simulations are conducted to support analytical findings. Some interesting dynamics
such as forward bifurcation and bistability condition are also provided numerically.

Keywords Fractional-order · Rosenzweig-MacArthur · Allee effect · Fear effect

1 Introduction

Food chain schemes are always found in nature. Every organism may become a
predator to others due to its need for food.As a result, eachorganismhas a chance to go
extinct as an impact of this ecological mechanism. Therefore, studying the existence
of organisms that have prey and predator relationship always be a crucial issue for
researchers. One of the much-publicized ways is using mathematical modeling.

In 1963, amathematical model is developed byRosenzweig andMacArthur based
on the Lotka-Volterra predator-preymodel which assumes that the population of prey
grows logistically and its hunting by the predator for foods following Holling type-
II as the predator functional response [1]. Nowadays, the Rosenzweig-MacArthur
model becomes an attractive reference to establish a novel predator-prey model by
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Table 1 The biological interpretation of variables and parameters

Variables and parameters Biological interpretation

x The density of prey

y Density of predator

r Intrinsic growth rate of prey

k Level of fear

K Environmental carrying capacity of prey

b Allee threshold

m Predation rate

a Half saturation constant of predation

n Predator growth rate which converted from the predation process

d Predator death rate

involving some ecological components associated with real phenomena in nature.
For example, see [2, 3] and references therein.

In this paper, we assume that the growth rate of prey is influenced by the indirect
impact of the predator through the fear effect [4]. We also assume that this intrinsic
growth rate could also decrease by the intraspecific competition and difficulty in
finding mates is known as the Allee effect [5]. Thus, we have the following model.

dx

dt
= r x

1 + ky

(
1 − x

K

)
(x − b) − mxy

a + x
,

dy

dt
= nxy

a + x
− dy.

(1)

See Table 1 for the biological interpretation of variables and parameters. The term
(x − b) represents the Allee effect where for b ≤ 0 called weak Allee effect and
b > 0 called strong Allee effect. In our work, we assume that the intrinsic growth
rate of prey affected by strong Allee effect. Due to biological purpose, other param-
eters also positive constant and both x(t) and y(t) satisfy (x, y) ∈ R

2+ where
R

2+ := {(x, y) | x ≥ 0, y ≥ 0, x ∈ R, y ∈ R}.
Since the current state of both prey and predator depends on all of their previ-

ous conditions, using fractional-order derivative is considered more appropriate in
expressing the model better than classical integer-order derivative [3, 6, 7]. Follow-
ing a similar way with [3, 7] such as replacing the first-order with fractional-order
derivative and scaling the time dimension, we obtain the new model as follows.

CDα
t x = r x

1 + ky

(
1 − x

K

)
(x − b) − mxy

a + x
,

CDα
t y = nxy

a + x
− dy,

(2)
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where CDα
t is Caputo fractional-order derivative defined by

CDα
t f (t) = 1

�(1 − α)

∫ t

a

f ′(τ )

(t − τ)α
dτ,

α ∈ (0, 1] is the order of the derivative and �(·) is Euler Gamma function [8].
In Sasmal [9], the predator-prey model involving fear and Allee effects has been

studied. Sasmal’s model is quite similar to ours both in assumptions and the deter-
ministic model. The big difference which becomes the novelty of our works lies in
the predator functional response and the operator of the model. In our works, the
Michaelis-Menten type is used as the predator functional response which is consid-
ered more realistic than bilinear ones. The fractional-order derivative is also used to
replace the first-order derivative as the operator to cover the memory effect.

The rest of the paper is arranged as follows. In Sect. 2, the feasibility and local
stability of equilibrium points are verified. Furthermore, the existence of transcritical
and Hopf bifurcations are examined in Sect. 3. Several numerical simulations are
explored in Sect. 4 not only to support the analytical findings but also to show other
dynamical behaviors such as the occurrence of forward bifurcation and bistability
conditions. We finally end our work by giving a conclusion in Sect. 5.

2 Feasibility and Stability of Equilibrium Points

The feasible equilibrium points of model (2) are acquired by finding the the positive
solution of the following equations.

[
r(x − b)

1 + ky

(
1 − x

K

)
− my

a + x

]
x = 0,

[
nx

a + x
− d

]
y = 0.

Therefore, four equilibrium points are identified as follows.

(i) The origin E0 = (0, 0) which represents the extinction of both populations.
(ii) A pair of axial points E1 = (b, 0) and E2 = (K , 0) which represent the exis-

tence of prey and the extinction of predator.
(iii) The interior point E3 = (x̂, ŷ) which represents the existence of both popula-

tions where x̂ = ad
n−d and ŷ is the positive solution respect to y of the following

equation.

y2 + y

k
+ m̂

4k2m
= 0, (3)

where 3m̂ = 4(x̂−K )(x̂−b)(x̂+a)kr
K . Since Ei ∈ R

2+ ∀i = 0, 1, 2, then they always exist.
Furthermore, the existence condition of E3 is given by the following theorem.
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Theorem 1 If n > d and (i) m ≤ m̂ then the interior point does not exist; (ii) m > m̂
then there exists an interior point.

Proof Since n > d then x̂ is always positive. Thus, the existence of E3 depends on
the positive solution of quadratic equation (3). Ifm < m̂ then the solution of equation
(3) is a pair of complex conjugate numbers and hence the interior point does not exist.
Whenm = m̂, we have ŷ = − 1

2k < 0, and hence E3 also does not exist. Form > m̂,

the only positive solution of equation (3) is given by ŷ = − 1
2k

(
1 −

√
1 − m̂

m

)
. This

completes the proof. �

Now, we discuss the local stability for each equilibrium point. The following
theorems are presented.

Theorem 2 The origin E0 = (0, 0) is always locally asymptotically stable.

Proof The linearization around E0 gives the Jacobian matrix as follows.

J (x, y)|E0 =
[−br 0

0 −d

]
.

The eigenvalues of J (x, y)|E0 are λ1 = −br and λ2 = −d which give |arg (λi )| =
π > απ/2∀ i = 1, 2.According to theMatignon condition [10], E0 is always locally
asymptotically stable. �

Theorem 3 The axial point E1 = (b, 0) is locally asymptotically stable if b > K
and n < (a+b)d

b .

Proof For the axial point E1, we have the Jacobian matrix

J (x, y)|E1 =
[− (b−K )br

K − bm
a+b

0 bn
a+b − d

]
, (4)

whichgive eigenvaluesλ1 = − (b−K )br
K andλ2 = bn

a+b − d. BasedonMatignon condi-
tion [10], the local asymptotic stability condition are satisfied when λi < 0, i = 1, 2
which are given by b > K and n < (a+b)d

b . �

Theorem 4 The axial point E2 = (K , 0) is locally asymptotically stable if b < K
and n < (a+K )d

K

Proof The Jacobian matrix evaluated at E2 is given by

J (x, y)|E2 =
[

(b − K )r − mK
a+K

0 nK
a+K − d

]
, (5)

where the eigenvalues are λ1 = (b − K )r and λ2 = nK
a+K − d. If b < K and n <

(a+K )d
K then |arg (λi )| = π > απ/2, i = 1, 2 that obeys the Matignon condition

[10]. �
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Theorem 5 The interior point E3 = (x̂, ŷ) is locally asymptotically stable if (i) ξ1 <

0, or (ii) ξ1 > 0, ξ 2
1 < 4ξ2, and α < α̂, where ξ1 = − (3x̂2−2(b+K )x̂+bK )r

(1+k ŷ)K − amŷ
(a+x̂)2 ,

ξ2 = (1+2k ŷ)ad3mŷ
(1+k ŷ)n2 x̂2 , and α̂ = 2

π
tan−1

(√
4ξ2−ξ 2

1

ξ1

)
.

Proof At E3, we have

J (x, y)|E3 =
[

ξ1 − nξ2 x̂2

ad2 ŷ
ad2 ŷ
nx̂2 0

]
. (6)

Therefore, the polynomial characteristic is obtained as follows.

λ2 − ξ1λ + ξ2 = 0. (7)

Since ξ2 > 0, by obeying Proposition 1 in [11], the stability conditions given in
Theorem 5 are proven. �

3 Bifurcation Analysis

In this section, we give two types of bifurcations phenomena namely transcritical
and Hopf bifurcations by following theorems.

Theorem 6 Suppose that n < min
{

(a+b)d
b , (a+K )d

K

}
. Two axial points E1 and E2

exchange their stability via transcritical bifurcation when b crosses K .

Proof Since n < min
{

(a+b)d
b , (a+K )d

K

}
, we have |arg (λ2)| = π > απ/2 for each

Jacobian matrix (4) and (5). Therefore, the stability of E1 and E2 depend on
the sign of λ1. When b < K , |arg (λ1)| = π > απ/2 for Jacobian matrix (5) and
|arg (λ1)| = 0 < απ/2 for Jacobian matrix (4). Hence, E1 is a saddle point while
E2 is locally asymptotically stable. When b = K , E1 = E2 and |arg (λ1)| = απ/2
which represents a non-hyperbolic equilibriumpoint. For b > K the sign of |arg (λ1)|
for Jacobian matrices (4) and (5) are switched which indicates the stability of E1 and
E2 changes. According to those circumstances, the transcritical bifurcation occurs
driven by the Allee threshold (b). �

Theorem 7 Let ξ1 > 0 and ξ 2
1 < 4ξ2. A Hopf bifurcation occurs around the interior

point E3 = (x̂, ŷ) when α passes through α̂.

Proof From (7), the appropriated eigenvalues are given by

λ1,2 = 1

2

(
ξ1 ±

√
ξ 2
1 − 4ξ2

)
. (8)
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Since ξ1 > 0 and ξ 2
1 < 4ξ2, the eigenvalues (8) are a pair of complex conjugate num-

berswith positive real parts. It is alsovalid thatm(α̂) = α̂π/2 − min1≤i≤2 |arg (λi )| =
0 and dm(α)

dα

∣∣∣
α=α̂

�= 0. According to Theorem 4.6 in [12], Hopf bifurcation occurs

around E3 driven by α with α̂ is the critical point. �

4 Numerical Simulation

Somenumerical simulations are demonstratedusing ageneralizedpredictor-corrector
scheme given by Diethelm et al. [13]. This scheme is applied to numerical software
calledPython-3 to produce somefigures such as bifurcation diagrams and time series.
In this paper, we study numerically the influence of the Allee threshold (b) and the
order of the derivative (α) to the dynamical behaviors of model (2). Since the model
does not discuss a specific case, all parameter values are chosen hypothetically by
considering the previous analytical results. We first set the parameter as in Table2
and varying the Allee threshold (b) in interval [0.4, 2.4], see Fig. 1.

From the bifurcation diagram given by Fig. 1a, when b is varied in the interval
[0.4, 2.4], the dynamical behaviors change two times. For 0.4 ≤ b < 1, we have a
locally asymptotically stable equilibrium point E2 and an unstable point E1. The
stability of both E1 and E2 change sign when b crosses b̂1 = 1 which confirm the
existence of transcritical bifurcation given by Theorem 6. This dynamical behaviors
are maintained for b̂1 < b < b̂2 = 1.8. Denote that the interior point E3 does not
exist for interval 0.4 ≤ b < b̂2. When b passes b̂2, the axial point E1 again losses
its stability, and a locally asymptotically stable point E3 emerges which indicates
the existence of forward bifurcation. This conditions are preserved for b̂2 < b ≤ 2.4.
Remember that E0 is always locally asymptotically stable and hence the bistability
condition always occurs for each case when the dynamical behaviors change. We
perform the phase portraits by picking the values of b = 0.5, 1.5, 2.3, which presents
the dynamical behavior for each interval. See Fig. 1b, c, d. The stability shifts from
E2 to E1 and finally to E3 while E0 always locally asymptotically stable. This means,
the bistability condition always exists for [0.4, 2.4] except in every bifurcation point.
Thismeans that the existence of populations depends on the initial values. From those
phase portraits, we show that for the given two close initial values, the solutions tend
to distinct equilibrium points. Both populations could be extinct or only the existence
of prey is preserved.

The next simulation aims to show the influence of the order of the derivative
(α) to the dynamical behaviors of model (2). The parameter values are chosen as

Table 2 Parameter values for numerical simulations given in Fig. 2

Parameters r k K m a n d α

Values 0.4 0.8 1 0.3 0.9 0.15 0.1 0.9
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Fig. 1 Bifurcation diagram and phase portraits of model (2) with parameter values as in Table2

Fig. 2 Phase portraits of model (2) with parameter values as in Table 3
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Table 3 Parameter values for numerical simulations given in Fig. 2

Parameters r k K b m a n d

Values 0.4 0.8 1 0.2 0.3 0.6 0.2 0.1

in Table 2. Based on Theorem 5, The Jacobian matrix (6) has a pair of complex
conjugate eigenvalues with positive real parts. Thus, from Theorem 7, the interior
point E3 undergoes a Hopf bifurcation when α passes through the critical point b̂. By
using these parameter values, we confirm that the critical point is α̂ � 0.84304. To
show this condition, we pick α = 0.8 and α = 0.9 and the numerical results given
by the phase portraits in Fig. 2. When α = 0.8, two locally asymptotically stable
equilibrium points occur i.e. E0 = (0, 0) and E3 ≈ (0.6, 0.22). As the impact, the
model (2) leads to bistability condition. For two close initial values, the solutions
convergent to different equilibrium points namely E0 and E3. When α is increased
to 0.9, E3 losses its stability and nearby solution convergent to a periodic signal
namely limit-cycle. Although the interior point is unstable, both populations are still
preserved periodically around the interior point. This ends our numerical simulations.

5 Conclusion

Thedynamical behaviors of a fractional-orderRosenzweig-MacArthurmodel involv-
ing fear and strong Allee effects have been studied. The model has four equilibrium
points namely the origin, a pair in axial, and a unique interior point. Those two equi-
librium points in the axial may exchange their stability via transcritical bifurcation.
For the interior point, the stability may change via Hopf bifurcation driven by the
order of the derivative. To support the analytical findings, numerical simulations
are provided including a bifurcation diagram and phase portraits. We have found
numerically that the model undergoes transcritical bifurcation, forward bifurcation,
Hopf bifurcation, and bistability conditions. From the biological viewpoint, these
circumstances mean that the existence of both prey and predator are threatened due
to predation mechanism, fear, and allee effects.
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Stabilization of Fractional Order
Uncertain Lü System

Manoj Kumar Shukla

Abstract This paper presents a stabilization strategy for fractional order chaotic
systems (FOCS) with unknown parameters. Control of FOCS is a less explored
area and very limited approaches have been put forward in the literature. Here, an
effort has been made to propose an improved stabilizing controller for a particular
class of systems. The control structure is obtained by using a systematic adaptive
backstepping procedure which is based on fractional order extension of Lyapunov
stability results. The designed controller also avoids the singularity problem common
in the traditional backstepping procedure. Parameter update laws achieved while
applying adaptive backstepping strategy give estimates of the uncertain parameters
of the system. The numerical simulation results given at the end validate the control
strategy proposed for the stabilization of uncertain Lü system.

Keywords Fractional calculus · Chaotic system · Adaptive backstepping · Lü
system

1 Introduction

Fractional derivative and integration have found wide applications in the past two
decades. Control system has become one of the areas of application of fractional
calculus. Nonlinear systems especially chaotic systems find applicability in almost
every area of engineering and science. The fractional order version of the chaotic
systems also called as fractional order chaotic systems (FOCS) have become the
point of discussion in the past 15 years and various researchers have put forward the
analysis and control of different FOCS [1, 2].

Several techniques that have been employed for control of integer order chaotic
systems (IOCS) [3, 4], have been extended for FOCS also [5, 6].

One of the main advantages of going for fractional order chaotic systems is that
such systems display chaos for a range of values of fractional order and hence can
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be used for different applications. Fractional order version of various IOCS has been
studied in the literature. Some prominent contributions can be found in [7, 8], etc.
The backstepping control technique developed by Kristic et al. [9] is widely used
for the control of IOCS with known or unknown parameters. It is based on the
Lyapunov stability technique and ensures the global stability of systems. Podlubny
et al. [10] extended Lyapunov theory to fractional order nonlinear systems which is
further based on Mittag- Leffler stability concept and both of these combined with
backstepping approach have been utilized in the present manuscript.

The main contribution of the work is to propose a stabilizing controller for a class
of FOCS. The technique is further implemented for control of fractional order Lü
System. Various approaches have been proposed in the literature for designing feed-
back controller for this system but these techniques have some drawbacks and also
most of these cannot handle the case of unknown parameters. In [11, 12], the system
stability is analyzed via traditional Lyapunov stability, whereas in the present work,
Lyapunovmethod is extended for FOCSon the basis ofMittag–Leffler stabilitywhich
proves to give better performance in comparison to traditional methods. Multiple
controllers are to be designed in the techniques presented in [13, 14]. On the other
hand, only one controller needs to be designed in the strategy presented in the present
manuscript.

Further, Sect. 2 gives the basic idea of fractional calculus and the stability of
FOCS. The controller design approach is given in Sect. 3. Section 4 gives numerical
simulations results. Section 5 concludes the contributions made here.

2 Basic Preliminaries of Fractional Calculus

The fractional order derivative and integral can be defined as

a Dq
t =

⎧
⎨

⎩

dq

dtq q > 0
1 q = 0

∫ t
a(dτ)−q q < 0

(1)

The major definitions are expressed as

Grunwald–Letnikov Definition

Dq
t f (t) = lim

h→0

1

hq

∞∑

j=0

(−1) j

(
q

j

)

f (t − jh) (2)

Riemann–Liouville Definition
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Iq f (t) � 1

�(q)

t∫

0

(t − τ)q−1 f (τ )dτ (3)

Caputo Definition (Derivative)

Dq f (t) � Im−qDm f (t) = 1

�(m − q)

t∫

0

f (τ )m

(t − τ)q−m+1 f (τ )dτ (4)

The solution of nonlinear fractional order differential equation (FODEs) can be
derived from Grunwald–Letnikov definition [1, 15, 16]. The following expression
gives the numerical solution of the nonlinear FODE of form a Dq

t y(t) = f (y(t), t)

y(tk) = f (y(tk), tk)h
q −

k∑

j=1

c(q)

j y(tk− j ) (5)

3 Stabilization Strategy

The approach for obtaining the stabilizing controller by using adaptive version of
backstepping control for the systems of a particular class. The system parameters are
taken to be unknown. The general form of the class of the systems is given below:

Dq1
t x1(t) = θ1(x2(t) − x1(t))

Dq2
t x2(t) = −x1(t)x3(t) + θ2x1(t) + θ3x2(t) (6)

Dq3
t x3(t) = x1(t)x2(t) − θ4x3(t) + u

where, θ1, θ2, θ3 and θ4 are unknown constant parameters u is the controller. Table 1
gives a list of these types of systems.

The backstepping technique is modified to tackle the singularity problem. The
result can be written in form of the following theorem:

Theorem 1 The system in (6), can be controlled by the controller which is expressed
as

u = −kz21 + θ
∧

4α2 + Dqα2 (7)
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Table 1 FOCS represented
by the class of systems given
in (6)

Name of System Dynamics

Liu system Dq1
t x1(t) = a(x2(t) − x1(t))

Dq2
t x2(t) = −kx1(t)x3(t) + bx1(t)

Dq3
t x3(t) = x1(t)x2(t) − bx3(t)

Lü system Dq1
t x1(t) = a(x2(t) − x1(t))

Dq2
t x2(t) = −x1(t)x3(t) + cx2(t)

Dq3
t x3(t) = x1(t)x2(t) − bx3(t)

Chen system Dq1
t x1(t) = a(x2(t) − x1(t))

Dq2
t x2(t) = −x1(t)x3(t) + dx1(t) + cx2(t)

Dq3
t x3(t) = x1(t)x2(t) − bx3(t)

The controller guarantees the asymptotic stabilization of the system, provided,
θ3
θ1

< k < 1with an assumption θ1 > 0, where k is the design parameter. The variable

z1 = x1, α2 is the virtual controller given as α2 = θ
∧

1 + θ
∧

2 + kθ
∧

3 − k2θ
∧

1 + kθ
∧

1,
where, θ

∧

i ; i = 1, 2, 3, 4; are the estimates of unknow system parameters which can
be expressed as:

Dqθ
∧

1 = γ z1z2
(
1 − k2 + k

);
Dqθ

∧

2 = γ z1z2;
Dqθ

∧

3 = γ kz1z2;
Dqθ

∧

4 = −γ z3α2

Proof By choosing q1 = q2 = q3 = q, let z1 = x1 and z2 = x2 − α1, where α1 is
the virtual controller. It gives,

Dq z1 = θ1(x2 − x1) = θ1z2 + θ1α1 − θ1x1 (8)

One can chose the as V1 = 1
2 z21. One can differentiate V1 w.r.t. time while taking

a fractional order q,

Dq V1 ≤ z1Dq z1 ⇒ Dq V1 ≤ z1(θ1z2 + θ1α1 − θ1x1)

The dynamics gets modified to,

Dq z1 = θ1z2 + θ1(kz1 − z1) = θ1z2 − θ1(1 − k)z1 (9)

where, α1 = kz1. Also, the fractional derivative of V1 now satisfies the following
condition:
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Dq V1 ≤ −θ1(1 − k)z21 + θ1z1z2

In a similar fashion, with the help of equations in (6) the second transformation
variable will be represented as:

Dq z2 = −z1x3 + θ2x1 + θ3x2 − k(Dq z1)

⇒ Dq z2 = −z1(z3 + α2) + θ2z1 + θ3z2 + θ3kz1 − kθ1z2 + k(1 − k)θ1z1 (10)

where, z3 = x3 − α2. The Lyapunov function for the overall system up to this stage
shall be expressed as:

V2 = V1 + 1

2
z22 + 1

2
γ −1

(
θ1 − θ

∧

1

)2 + 1

2
γ −1(θ2 − θ

∧

2)
2 + 1

2
γ −1(θ3 − θ

∧

3)
2

which further can be written as,

Dq V 2 ≤ −θ1(1 − k)z21 + θ1z1z2 + z2Dq z2 − γ −1
(
θ1 − θ

∧

1

)(
Dqθ

∧

1

)

−γ −1
(
θ2 − θ

∧

2

)(
Dqθ

∧

2

)
− γ −1

(
θ3 − θ

∧

3

)(
Dqθ

∧

3

)

⇒ Dq V2 ≤ −θ1(1 − k)z21 − (θ1k − θ3)z
2
2

− z1z2z3 + z1z2
{
θ1 + θ2 + θ3k + θ1k − θ1k2 − α2

}

− γ −1
(
θ1 − θ̂1

)(
Dq θ̂1

)
− γ −1

(
θ2 − θ̂2

)(
Dq θ̂2

)

− γ −1
(
θ3 − θ̂3

)(
Dq θ̂3

)

Here, θ
∧

1, θ
∧

2 and θ
∧

3 estimates of system parameters θ1, θ2 and θ3, respectively. Also,
γ is a parameter that controls the convergence of the estimates of the parameters.
For stabilizing the system and to satisfy the stability criterion α2 may be selected as:

α2 = θ
∧

1 + θ
∧

2 + kθ
∧

3 − k2θ
∧

1 + kθ
∧

1 (11)

The following expressions give the parameter update laws as,

Dq θ̂1 = γ z1z2
(
1 − k2 + k

); Dq θ̂2 = γ z1z2; Dq θ̂3 = γ kz1z2 (12)

The update laws and the controller led to the following expression:

Dq V 2 ≤ −θ1(1 − k)z21 − (θ1k − θ3)z
2
2 − z1z2z3
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With the assumption, θ1 > 0, one has to ensure that, θ3
θ1

< k < 1, so that stability
can be ensured. Further, from the 3rd expression in (6), one can have,

Dq z3 = x1x2 − θ4x3 + u − Dqα2 = z1z2 + kz21 − θ4z3 − θ4α2 + u − Dqα2 (13)

Finally, the overall Lyapunov function for the transformed system dynamics in
(8), (10) and (13), can be chosen as:

V3 = V2 + 1

2
z23 + 1

2
γ −1(θ4 − θ

∧

4)
2

which further leads to the following expression:

Dq V 3 ≤ −θ1(1 − k)z21 − (θ1k − θ3)z
2
2 − z1z2z3

+ z3(z1z2 + kz21 − θ4z3 − θ4α2 + u − Dqα2)

The final control law and the expressions for parameter update for stabilization
of the whole system are given below:

u = −kz21 + α2θ
∧

4 + z3θ
∧

4 + Dqα2 (14)

& Dq θ̂4 = −γ z3α2 (15)

The above selection of the controller and update law, leads to the following
stability condition:

Dq V 3 ≤ −θ1(1 − k)z21 − (θ1k − θ3)z
2
2 − θ4z23 (16)

The results in (14), (15) and (16) confirm the finite time convergence of transfor-
mation variables z1, z2 and z3 to zero,which further ensures stabilization of the system
states x1, x2 and x3. The controller obtained here avoids the singularity problem.

4 Simulation Results for Fractional Order Lü System

Thecontroller design approach is illustrated in this sectionwith the help of an example
system. Fractional order Lü system which belongs to the category of systems given
in Table 1, can be described as:

Dq
t x1(t) = θ1(x2(t) − x1(t))

Dq
t x2(t) = −x1(t)x3(t) + θ2x2(t) (17)
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Dq
t x3(t) = x1(t)x2(t) − θ3x3(t) + u

Here, parameters θ1, θ2 and θ3 are considered to be uncertain. For q1 = q2 = q3 =
q, the final controller structure using the approach mentioned in Sect. 3, is described
as follows:

u = θ
∧

3α2 + Dqα2 − kz21 (18)

and the updating laws for parameter estimates are given as,

Dqθ
∧

1 = γ x1(x2 − kx1)
(
1 − k2 + k

)

Dqθ
∧

2 = γ x1(x2 − kx1)(1 + k) (19)

Dqθ
∧

3 = γ (x3 − α2)α2

where, z1 = x1, z2 = x2 −α1 and z3 = x3 −α2. Here, θ1 > 0, and also, θ2
θ1

< k < 1.
With controller u in action, on the basis of the same arguments given in the previous
section, the stability of the system can be ensured.

The system parameters are chosen as (θ1, θ2, θ3) = (36, 3, 20) and the design
constant k is taken as: k = 0.7.The initial values of the systemstates havebeen chosen
as: (x1(0), x2(0), x3(0)) = (−0.1, 0.5, 0.2) and the order of derivative is taken as,
q = 0.95. The convergence parameter is selected as γ = 1.5. The simulation time is
taken as 10 s with a step size of h = 0.005 s. Figure 1 depicts the convergence of the
x1 and x2 converge to zero in finite time, whereas, state x3 can be seen to be bounded
as time tends towards infinity. Therefore, one can conclude that the proposed control
strategy leads the systems towards stability in finite time, even when the system
parameters are uncertain.

The controller for the particular systemhas been derived by using the backstepping
strategy which is further based on the Lyapunov stability criterion. While applying
the backstepping technique, in each step Lyapunov function has to be framed and its
derivative is calculated which should be proven to be negative definite for a particular
choice of controller. After the subsequent steps, the final controller is obtained while
ensuring that the time derivative of the overall Lyapunov function is negative definite.
this ensures the stability of the whole system, whatever be the dynamics.

With the right choice of the controller and ensuring the stability of the whole
system, it can be concluded that the states of the systems are converging which is
evident from the simulation results.
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Fig. 1 a Convergence of system states b Estimates of the unknown parameters

5 Conclusion

The paper presents a novel method for the stabilization of uncertain FOCS of a partic-
ular class. The backstepping method used here is systematic and ensures asymptotic
stability. The proposed controller has been employed for the stabilization of uncertain
fractional order Lü system. The simulation results validate the efficacy of the same.
The controllers presented here can be extended for synchronization of the chaotic
systems which further can be used for different practical applications like secure
communication etc.
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The Transfer Trajectory
onto the Asteroid for Mining Purposes
Using LPG-Algorithm

Vijil Kumar and Badam Singh Kushvah

Abstract In this research, a newmethodology named as LPG-Algorithm is designed
to determine the transfer trajectory between two celestial bodies or any two locales in
space. It is constructed by combining Lambert’s problem with the genetic algorithm
(GA). In this algorithm, the initial state of the transfer trajectory has been optimized
with the help ofGA,which is already attained by solvingLambert’s problem.Wehave
successfully applied this algorithm to obtain the transfer trajectory of a spacecraft
from the LowEarth orbit (LEO) to some desired asteroidwithin a time frame. For this
purpose, 8 Near-Earth Asteroids (NEAs) have been selected. These are likely assets
to help space industrialization, as they have the earmarks of being the least affordable
source of certain required crude materials like valuable metals and semiconducting
elements. The convergence of the genetic algorithm to the optimal initial state of the
transfer trajectory is also shown in this research.

Keywords Asteroid mining · Genetic algorithm · Lambert’s problem · Orbital
mechanics · Transfer trajectory trajectory

1 Introduction

The asteroids are also a part of our solar system like all planets. All asteroids were
formed at the beginning of the solar system. On January 1, 1801, the first asteroid
1Ceras was discovered by G. Piazzi from the Palermo astronomical observatory.
About 100years later the first Near Earth Asteroid 433Eros was discovered by
G. Witt. The astronomers are constantly searching for asteroids in our solar sys-
tem and have so far identified about 600,000 asteroids. Nearly 10,000 asteroids of
total asteroids, passes close to Earth’s orbit, and orbiting around the Sun, are called
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Near-Earth Asteroids (NEAs) [22]. The NEAs are some of the most accessible real
estate in the solar system. Onto the 17% NEAs, is much easier to reach than a soft
landing on the Earth’s moon.

Only in one Platinum Group Metals (PGMs) rich asteroid of diameter 50-m, may
contain 174 times the monthly world output of PGMs [7]. The most useful PGMs
are platinum, iridium, osmium, palladium, rhodium and ruthenium. Some asteroids
may found metallic elements like iron, nickel and copper sometimes in incredible
quantities [17, 26]. In addition, asteroids may contain water and other gases, like
CO2,CO , nitrogen andmethane. Some semiconductors non-metallic&metallic also
found in asteroids. The semiconductors like tellurium, antimony, indium, cadmium,
selenium, arsenic, germanium, gallium and phosphorus are used in micro electronic
manufacturing. These are the key to supporting life in the present timespan [2, 6].

On the other hand, the two-point boundary value problem (TPBVP) in the two-
body dynamical environment is known as Lambert’s problem. To solve this problem,
we required the positions of any two celestial bodies respectively and also the transfer
time between them. The solution of the Lambert’s problem gives the initial and final
velocity of the transfer trajectory. A brief knowledge about Lambert’s problem is
given by Blanchard [5]. They discuss all the various cases of Lambert’s theorem in to
a single form, which especially suitable for numerical work. The determination of an
orbit having a specified flight time and connecting two position vectors, frequently
referred to as Lambert’s problem. A variety of methods of dealing with this problem
has been discussed over the years by many writers. There are many solutions of this
problem that may be found in the literature. Most of the earlier methods have been
characterized by a particular formulation of the time of flight equation and a particular
independent variable to be used in a Newton-Rephson style of iteration [21]. Finding
low energy transfer of satellite, minimum transfer time, optimal burnout angle of
transfer and so on, they are just a few examples of the trajectory design problem in
astrophysics [20]. Levine showed that the true anomaly of the point in an orbit where
the velocity vector is parallel to the line of sight from an initial point to the terminal
point is independent of the orbit [15]. In his research, they developed a new corollary
to the famous Lambert’s problem and apply a new property of two body boundary
value problem [24]. The elementary form of Kepler’s equation provides the analytic
description of the time of flight [3, 13].

Thenceforth, the convergence is remarkable rapid and almost uniform as well
as being essentially independent of the initial guess [4]. In a research, the author
finds the new conic direction that interfaces two points of a gravity field in a given
time, which is represented by a set of transcendental equations due to Lagrange. The
Lagrange equation for the orbital transfer time can be expressed as a series expansion
for all cases. Lambert’s theorem is one of the most useful tool for interplanetary
transfer trajectory design. The interplanetary transfer trajectory has three phases.
The first phase is the powered phase. In which spacecraft gets an impulse to jump
from parking orbit of departure planet to transfer orbit. The second phase is called
the free-flight phase, in which the spacecraft freely move towards the destination
point with the help of center gravitational force. The final phase is re-entry phase. In
this phase the spacecraft enter the parking orbit of destination planet with the help of
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backward impulse [14, 28]. The backward impulse is used to decrease the velocity
of a spacecraft. Besides, the accuracy of interplanetary transfer trajectory depends
significantly on the free flight phase.

However, The purpose of issue here is that the free flight phase is the biggest
dynamic factor in the transfer trajectory. It will take 90% to 98% time of whole
transfer time and also has the least control. This implies that the accuracy of the free
flight phase depends on the accuracy of the powered and re-entry phase. So, these
must be selectedwith as greater precision as possible.We calculate the synodic period
of every asteroid to know the next encounter with the Earth. The synodic period is
calculated to dividing the product of two orbital periods by their differences, i.e.
when the two orbital periods are nearly equal then the synodic period is quite long.
We are getting the close encounter epoch of the asteroid and the Earth from the JPL
Small-Body Database Browser. The collision point of an asteroids with the Earth is
determined. The important figuring is done to counteract the collision, for example,
the diversion in the trajectory of the asteroid by hitting the Earth. In this way, with
the assistance of spacecraft, the asteroid could be pushed far away from the Earth’s
impact point.

On the other hand, the genetic algorithm has been included in LPG-Algorithm for
optimizing the investigation of the interplanetary trajectory. The genetic algorithm
has been effectively applied to a few streamlining undertakings, going in size from
2-variable to the 7-variable problem [8, 31]. In every case, its performs significantly
better then the grid search technique that is commonly used [9, 19]. Most of the basic
and advanced properties of the genetic algorithm are given by the author Mitsuo gen
in his research. They described detail of the use of the genetic algorithm in the area
of optimization research like advanced planning and scheduling model, real time
task scheduling models, reliability optimization models, communication network
model, interplanetary transfer trajectory design, multi-objective rendezvous model
and many more [11]. A classical multi-objective technique requires a prior problem
information. Since the GA uses population points, they might have the option to
numerous Pareto-optimal arrangements at the same time [18]. The results of recent
research suggests that the non-dominated sorting GA can be effectively used to
discover various Pareto-optimal solution, the information on which could be helpful
to the best optimal launch date and optimal initial velocity for trajectory design
[27, 29]. Many of the methods like differential correction methods have been used
to improve the initial state. Because the solution of the transfer trajectory is very
sensitive for the initial state of the transfer trajectory [16, 30].

We introduced a new algorithm to obtain a suitable initial state of the transfer
trajectory. i.e., LPG-Algorithm. The results indicate the promising performance of
the proposed method in providing an appropriate initial state for reaching the space-
craft to the asteroid. LPG-Algorithm is specially made for interplanetary transfer
trajectory. In this research, this technique have used to transfer a spacecraft on the
near Earth asteroids. It is guaranteed to impact the spacecraft to the asteroid even
if the solution of Lambert’s problem is not optimal. The solution of the Lambert’s
problem gives us the initial velocity vector. If we have a non-optimal solution then it
is required more fuel and also longer maneuver time. Then the genetic algorithm is

https://ssd.jpl.nasa.gov/sbdb.cgi
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applied on it. Thus, the fittest part of the last generation of the LPG-Algorithm will
be the optimal initial state of the transfer trajectory. And the spacecraft will precisely
land on the pre-selected asteroid with the least error in position.

2 LPG-Algorithm

A new algorithm has been developed for transfer trajectory from one celestial body
onto another celestial body. It’s named LPG-Algorithm. We combine Lambert’s
problem with the Genetic Algorithm (GA) in this methodology. And it has used
to solve the most famous astrophysics problem with high accuracy. The Lambert’s
problem is an approach to fathom for the direction interfacing two position vectors
with a given time of transfer. Figure 1 demonstrates that r0 is the initial position
vector at the time t0 and rf is the final position vector at the time t f . �t = t f − t0 is
the transfer time of the spacecraft between the two positions and �ν is the transfer
angle between the two positions. The transfer trajectory is depicted in Fig. 1 by the
red color arc. The Earth’s orbit and the asteroid’s orbit is portrayed by blue and
green color, respectively. The departure and arrival position is portrayed by the red
dot. Lambert’s problem is the well known problem in astrophysics. So, we are not
going in details to the solution of the Lambert’s problem. Any interested reader
may go through the references papers [5, 24] for more explanation. Further, the
genetic algorithm is a population based stochastic process. A single variable, which
the genetic algorithm will optimize, is called genes. The collocation of all genes is
called the chromosomes. And the number of chromosomes used in a single iteration
is denoted as population, which is depicted in Fig. 2. It generates randomly and then
reaches the best optimal value by the genetic algorithm process. The three leading
operators are used in it, namely; Selection, Crossover and Mutation. There are many

Fig. 1 Transfer trajectory
using solution of Lambert
problem without scale
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Fig. 2 Distribution of population for the genetic algorithm

Fig. 3 Crossover process

methods that were found in literature for the selection process. We are using one of
the most common method that are the roulette wheel selection process [23].

In the crossover process, we select two parents chromosomes and create randomly
two markers on the chromosomes. Then interchange the genes between the markers
and generate two new child chromosomes. it is also showing in Fig. 3. We can see
that the three genes of parent 1 (orange) are replaced by parent 2 (cyan) and generate
two new child chromosomes. After creating the child chromosomes, we select the
better one between the parent and the child chromosomes.

The mutation operators are for the most part used to give investigation. The
crossover operators is generally used to lead the population to converge on one good
solution found up until now. Thus, while crossover tries to converge to a particular
point in the scene, the mutation forth a valiant effort to stay away from assembly
and investigate more regions. We like to investigate substantially more toward the
start of the pursuit procedure. Then again, we lean toward more exploitation toward
the finish of the inquiry procedure to guarantee the convergence of the population
to the global optimum [10]. There is only an exemption; when population joins to
a nearby optimum, we should expand the population assorted variety to investigate
different regions. As indicated by the above actualities, too high mutation rate builds
the likelihood of looking through more regions in search space, however, it prevents
the population to converge to an optimum solution. On the other hand, too small
mutation rates may result in falling to local optima instead of the global optimum
i.e., too high mutation rate reduces the search ability of the genetic algorithm to a
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Fig. 4 Mutation process

simple random walk while a too small mutation rate almost always falls to a local
optimum. So, in our computation we are using 35% mutation factor (Fig. 4).

3 Problem Statment and Solution Process

It is demonstrated by an pseudo code and given below:

Algorithm 1 Problem formulation and LPG-Algorithm process
procedure LPG- Algorithmm Procedure

Step 1: We assume the equation of motion of two body problem [20] under the central gravi-
tational force as the Sun.

Step 2: To solve the Lambert problem for the velocity of spacecraft [va, vb] at the low Earth
orbit and the pre-selected asteroid respectively.

Step 3 (goal): Next, we formulate an objective function for genetic algorithm, that minimize
the distance between the spacecraft position [X, Y, Z ] and the target position [Rx , Ry, Rz].

Step 4: Now, we update the initial state [r0, va] of the transfer trajectory using genetic algo-
rithm.

Step 5 (output): Finally, we get the optimized initial state [r0, va] and described the needed
data in the tables and figures.

3.1 Advantage and Limitations

The merits and demerits of the proposed methodology are as follows: This concept is
easy to understand. It searches from a population of points, not a single point, which
means it calculates the value of the objective function and chooses the minimum of
them. LPG-Algorithm is robust concerning the optimum local value of the objective
function. It is stochastic and can be operated on many representations.

However, this requires less information about the problem, but designing an objec-
tive function and the representation and operators can be difficult. It is a computa-
tionally expensive algorithm i.e., it is time-consuming.
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4 Apply on the Equation of Motion

Let us suppose two celestial bodies that are rotating about their center ofmass. r0 & v0
are the position & velocity vectors of the first celestial body at the departure time t0.
r f & v f are the position & velocity vectors of the second celestial body at the arrival
time t f and is defined as:

r0 = [r0x , r0y, r0z], (1)

v0 = [v0x , v0y, v0z], (2)

r f = [r f x , r f y, r f z], (3)

v f = [v f x , v f y, v f z] (4)

where the subscript “ f ” and “0” denote the arrival and departure states respectively.
The subscript “x”, “y” and “z” denote the unit vectors along with the x-axis, y-axis
& z-axis respectively. Now find the solution of Lambert’s problem using r0, r f and
the transfer time �t = t f − t0. The solution comes in the form of velocity vectors
of the transfer trajectory at the departure and arrival position. Suppose that velocity
vectors are:

va = [vax , vay, vaz], (5)

vb = [vbx , vby, vbz] (6)

The initial state for the transfer trajectory from r0 onto r f is given:

initial state = [r0x , r0y, r0z, vax , vay, vaz] (7)

where, the first three quantity [r0x , r0y, r0z] are the departure position of space-
craft in 3-D coordinate respectively. And last three quantity [vax , vay, vaz] are the
velocity of the spacecraft in x, y, z direction respectively. The velocity vectors
va = [vax , vay, vaz] are obtained from the solution of Lambert’s problem. This initial
state is non optimal because, the spacecraft fails to reach the desired position using
this initial state. We apply the Genetic algorithm to optimize it. For the Genetic algo-
rithm, we generate the random chromosomes as follows: We generate the number of
chromosomes is equal to the number of population size. Here, the position vectors is
fixed, because the departure position of spacecraft does not change. Further, calculate
the fitness value of every chromosomes using two-body simulation as the solution
of Keplerian orbit [12]. The central gravitational force in two-body simulation and
Lambert’s solution are the same. The gravitational force of the Sun is 1.3271 × e11

km3s−2. A new optimization function is introduced which is defined below (Fig. 5):
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Fig. 5 Non-optimal initial
state of transfer trajectory

Fopt = {‖X − r f x‖ + ‖Y − r f y‖ + ‖Z − r f z‖} (8)

subject to: √
(Rx − r f x )2 + (Ry − r f y)2 + (Rz − r f z)2 = Rpark (9)

where, ‖ · ‖ is denotes the modulas value, [X, Y, Z ] is the position vector of the
spacecraft. We obtain this from the solution of two-body problem. The position
vector [r f x , r f y, r f z] of target celestial body and is defined in Eq. 3 and Rpark is
a user-defined quantity, which may be varies for the different planets or asteroids.
It denotes the radius of parking orbit around the target celestial body. The Eq. 9
gives the constrained condition of the objective function (8). We can understand the
LPG-Algorithm in a better way from the short python program, which is given in
Fig. 6.Where the python function TwoBody() contains the equations of motion of the
two-body problem. The python function RKF45() is defined for integration, which is
based on Runge-Kutta-FehlbergMethod. It has a methodology to decide whether the
proper step size h is being utilized. At each progression, two unique approximations
for the solution are made and compared. In the event that the two answers are in
close understanding, the estimate is accepted. On the off chance that the two answers
don’t consent to a predefined tolerance, the step size is diminished. And also if the
answer consent to more significant digits than required, the step size is expanded.
The input required for the function is a mathematical model (here TwoBody()), the
initial state of the mathematical model (given in equation-7), the initial and final time
for integration time (here [t0, t f ]) and a initial step size (here h). We set the relative
tolerance as 1.0 e−10. The python function CalculateF() is made to calculate the
fitness value for every generated chromosomes. The inputs required for this function
are the position vectors of the target celestial body (here r f ), the spacecraft (here
[X, Y, Z ]) and the radius of parking orbit around the target celestial body (here
Rpark).

The function GeneticAlgorithm() is the main optimization process function.
It takes input a mathematical model function TwoBody(), a integration method
RKF45(), a function to calculate the fitness value CalculateF() and the initial state
of the model to integrate it. With in this function, we take the population size is
equal to 100. It generates randomly chromosomes equal to the population size as the
initial state of the mathematical model. Further, integrates the mathematical model
for every chromosomes using given integrating function and also calculate the fitness
value using the fitness function (8). Then the functionGeneticAlgorithm(), picks up a
most optimal chromosome refers to the optimal initial state. For future investigation,
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Fig. 6 A python program to demonstrate the basic of LPG-Algorithm

we make a separate data text file to store the numerical data of every iteration. We
repeat this process either till they complete theMaxIteration or satisfies the optimal
condition Fopt <= 1 · e−9.

5 Numerical Simulation

We are introducing here a newmethodology for the interplanetary transfer trajectory
design. A genuine interplanetary transfer trajectory experiences different gravita-
tional forces consistently such as radiation pressure, magnetic forces, atmospheric
drag, sun oriented radiation, etc. The interplanetary transfer trajectory design prob-
lem can be expressed as an optimization issue. Where one of the essential objectives
is tominimize fuel requirements. Some other optimization problems are intermediate
planetary flybys, type of arrival, mission duration and velocity constraints, etc. The
primary thought of the proposed methodology comprises of focusing on an asteroid
that might be a good source of extraterrestrial Platinum Group Metals (PGMs). The
asteroids are chosen from the close Earth class with the fly-by distance from the Earth
smaller then 2.647e−2 AU . From the past few decades, these types of asteroids have
attracted the attention of researchers for their spacious storage of precious metals. An
asteroid must be selected before starting the asteroid mining mission. The selection
of asteroids for mining purposes, and mission design follows the following these
steps.
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Table 1 Name of selected asteroid with their properties and the close encounter epoch to the Earth

Asteroid name Diameter (m.) Mass(kg.) Close encounter
epoch (MJD)

Close encounter
distance (AU)

1996 GT 670 5.44 × e11 59856.40833 7.123 × e−2

1999 RA32 170 9.37 × e9 60756.32569 9.184 × e−2

1998 SF36 380 1.04 × e11 63679.66319 8.529 × e−2

1999 JU3 380 1.01 × e11 63952.24513 4.744 × e−2

1986 EB 1800 1.11 × e13 64408.32569 2.647 × e−1

2011 UW158 280 3.94 × e10 69293.18402 4.315 × e−2

1996 FG3 550 3.13 × e11 70134.60347 5.646 × e−2

1999 RQ36 180 9.91 × e9 73725.02500 5.007 × e−3

– In the first step, the required minerals for mining must be determined.
– Then, the asteroids with the probable of being endowed in the target minerals must
be found.

– Before examining the subtleties of these two stages, it is important to talk about
the conceivable objective bodies and minerals that can be found in the core of the
Near-Earth Asteroid (NEAs).

In Table 1, we listed some selected asteroids who will pass near the Earth in the
upcoming four decades. The name of the selected asteroids are given in the first
column. The diameter of the asteroids is shown in the second column. Themass of the
asteroids is shows in the next column. The fourth column shows the close encounter
epoch of the asteroid in Modified Julian Date(MJD) format, which referred from
JPL HORIZONS Web-Interface. And the last column denote the close encounter
distance between the Earth and the asteroid. The spacecraft follows the following
steps to reach on the surface of the asteroid.

1. Start of spacecraft from Low Earth Orbit (LEO) to asteroid along transfer trajec-
tory using a solution of Lambert’s problem.

2. The Lambert solution fails to get optimal initial state to reach onto the desired
asteroid.

3. Next, we update the initial state of the spacecraft using the LPG-Algorithm.
4. Finally, we get an optimal initial state of the spacecraft with good accuracy.

The significant errand of the mission design everywhere comprises of the picked
of all factor free parameters. The first step is to choose an launch date few hours
before the close encounter epoch of the asteroid. Now we execute the mission from
solving Lambert’s problem, which allows transferring the zero mass object from one
space point to another alongKeplerian orbit in given transfer time. The coordinates of
the Earth and the asteroid are taken from JPL small body database. The gravitational
field is supposed to the center of the Sun. It should be mentioned that on the phase of
calculation of asteroidmotion. Then find the transfer time between these two position

https://ssd.jpl.nasa.gov/horizons.cgi#results
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Fig. 7 Iteration of all asteroids versus logarithmic function of distance

vectors �t = t f − t0. We have three parameters here i.e., departure position vector,
arrival position vector and the transfer time. Now we apply the LPG-Algorithm
successfully. It gives the optimal initial state, allowing the spacecraft to reach as
close to the prearranged target asteroid as possible. Here the value of Rpark is set
equal to radius of the target asteroid, because our goal is to reach onto the asteroid.

We use python interpreted language for the computational purpose. For the numer-
ical calculation of the LPG-Algorithm, we run it up to 10 thousand iterations and save
the data of each iteration in a separate text file. Figure 7 portrays a graphs between
the number of iterations and the distance between the spacecraft & the asteroids.
We see that when the iteration of the genetic algorithm is increased up to 10000,
the distance is going to decrease continuously up to 1e−3Km from the asteroid. In
first, 10% iterations, the distance is decreased rapidly and in the remaining itera-
tions it is approximately constant (decreasing slowly). In the first 10% iterations, the
distance reduces from 0.15 million kilometers to 10km, which is hard to show in a
single plot because of a huge difference along with the iterations. So, here we have
changed the scale of the distance to the logarithmic function with base “e”. i.e., 0.15
million kilometers on y-axis denoted by 11.91839057 and 10km on y-axis denoted
by 2.30258509. It is an easy way to show a large distance and a small distance in
a graph. All the sub-plot of Fig. 7 are shown the number of iteration of the genetic
algorithm and logarithmic function of distance(d) with base “e” of all pre-selected
asteroids.
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Table 2 All necessary calculated data of transfer trajectory to the asteroids

Asteroid
Name

Departure
(Earth)

Arrival
(Asteroid)

Transfer
time
(Hours)

�V1 ( Km.
sec ) �V2 ( Km.

sec ) Computational
time
(Minutes)

1996 GT 59839.20000 59856.40833 413 3.49857 4.07962 10.2356

1999 RA32 60732.15902 60756.32569 579 4.16823 5.39587 12.8542

1998 SF36 63659.99652 63679.66319 482 4.57381 3.76428 13.5168

1999 JU3 63932.99513 63952.24513 473 5.07286 3.10864 9.4687

1986 EB 64371.40208 64408.32569 571 5.78610 6.37561 10.2584

2011
UW158

69273.64236 69293.18402 469 2.50942 3.82617 8.0962

1996 FG3 70114.06180 70134.60347 493 5.68423 4.11682 10.5962

1999 RQ36 73709.23333 73725.02500 379 3.18354 6.74251 9.5316

Our computer has intel i7, 7th generation, 16 GB RAM, 3.5GHz processor and
Windows 10. And we use this computer for all numerical simulations. The necessary
computation of the transfer trajectory is shown in Table 2. All the pre-selected aster-
oids names are given in the first column of the Table 2, which is also given in Table 1.
The second and third column describes departure and arrival epoch of the spacecraft
in MJD format respectively. In the fourth column, the transfer time is given in hours.
We chose the arrival time few hours before the close encounter epoch. The fifth col-
umn represents the minimum required impulse (�V1), when the spacecraft is going
to leave Low Earth Orbit (LEO). The required second impulse (�V2) is given in the
next column. The spacecraft enter in the parking orbit of the asteroid after applying
the second impulse. The total computational time of the respective asteroid is given
in the last column.

Figure 8 has portrayed the graph of the transfer trajectory from Low Earth Orbit
to the asteroids. These asteroids are selected randomly from the list of pre-selected
asteroids. In left side sub-figure Fig. 8a, c, e are the asteroid 1996 GT, 1999 RA32
and 1999 RQ36 respectively. These sub-figures demonstrates:

1. Earth orbit with a blue line and Earth position on departure time with a blue dot.
2. Asteroid orbit with a green line and the asteroid position on an arrival time with

a green dot.
3. The yellow dotted line shows the keplerian orbit of the transfer trajectory by using

Lambert’s problem.
4. The red line shows the keplerian orbit of the transfer trajectory by using LPG-

Algorithm.

We portray the transfer trajectory in these left side graph but it is not visible
because of too close. It can not be seen without zoom in. So, we have added extra
sub-figure in the right side. These all sub-figures Fig. 8b, d, f show a particular part
(vicinity of the asteroid) of the left side sub-figures Fig. 8a, c, e respectively. Here,
in the right side sub-figures shows:



The Transfer Trajectory onto the Asteroid for Mining Purposes … 645

(a) 1996 GT (b) 1996 GT (zoomed)

(c) 1999 RA32 (d) 1999 RA32 (zoomed)

(e) 1999 RQ36 (f) 1999 RQ36 (zoomed)

Fig. 8 The difference in the transfer trajectory using Lambert’s problem and the LPG-Algorithm
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1. The green dot shows the arrival position of the asteroid.
2. The blue and green lines shows the Earth’s orbit and the asteroid’s orbit respec-

tively.
3. The yellow dotted line shows the transfer trajectory by using Lambert’s problem.
4. The red line shows the transfer trajectory by applying LPG-Algorithm.

We observe that from the figures and calculations, the transfer trajectory by using
Lambert’s problem and by using LPG-Algorithm are approximately same in periods.
Only difference is in accuracy of results. We find that the error in target position is
approximately 1e−3 by the Lambert solution. And by the LPG-Algorithm this error
can be reduced to less than 1e−9. The LPG-Algorithm gives more accurate optimal
initial state of the transfer trajectory. And LPG-Algorithm is effective and transfers
the spacecraft exactly to the desired asteroid even if the solution of the Lambert’s
problem is far from the global optimum. Only three variable i.e., velocity component
of the initial state is needed for a interplanetary transfer trajectory from Low Earth
Orbit to the asteroid [1, 25]. It must renovates the possibility to reach the desired
asteroid.

6 Conclusions

In this article, we present the LPG-Algorithm, a new substantial methodology for
solving the Lambert problemusing a genetic algorithm. It has also been demonstrated
that, because of its low complexity, it has numerous advantages in terms of generality
and performance. It has been implemented to find the transfer trajectory from the
Low Earth Orbit to the 8 selected asteroids. The asteroids, which may have perilous
metals. All these asteroids are in Near-Earth Asteroid (NEA) group and they also
close fly-by to the Earth. The results show that two small impulses on the spacecraft
can transfer it to the asteroid. The numerical simulation data and figure show the
clear difference between the solution of Lambert’s problem and the LPG-Algorithm.
In both cases, the transfer time is the same. The LPG-Algorithm is very useful
for interplanetary transfer trajectory design and gives more accurate results. This
algorithm can be implemented in an interplanetary transfer trajectory design and a
ballistic missile trajectory.

Acknowledgements All the required data has downloaded through the following:
1. https://ssd.jpl.nasa.gov/sbdb.cgi
2. https://ssd.jpl.nasa.gov/horizons.cgi
3. http://www.asterank.com/.

https://ssd.jpl.nasa.gov/sbdb.cgi
https://ssd.jpl.nasa.gov/horizons.cgi
http://www.asterank.com/


The Transfer Trajectory onto the Asteroid for Mining Purposes … 647

References

1. Abdelkhalik, O., Mortari, D.: N-impulse orbit transfer using genetic algorithms. J. Spacecraft
Rockets 44(2), 456–460 (2007)

2. Andrews, D.G., Bonner, K., Butterworth, A., Calvert, H., Dagang, B., Dimond, K., Eckenroth,
L., Erickson, J., Gilbertson, B., Gompertz, N., et al.: Defining a successful commercial asteroid
mining program. Acta Astronautica 108, 106–118 (2015)

3. Battin, R.H., Fill, T.J., Shepperd, S.W.: A new transformation invariant in the orbital boundary-
value problem. J. Guidance Control 1(1), 50–55 (1978)

4. Battin, R.H., Vaughan, R.M.: An elegant lambert algorithm. J. Guidance Control Dyn. 7(6),
662–670 (1984)

5. Blanchard, R., Devaney, R., Lancaster, E.: A note on lambert’s theorem. J. Spacecraft Rockets
3(9), 1436–1438 (1966)

6. Brophy, J.R., Friedman, L., Culick, F.: Asteroid retrieval feasibility. In: 2012 IEEE Aerospace
Conference, pp. 1–16. IEEE (2012)

7. Busch, M.: Profitable asteroid mining. JBIS 57, 301–305 (2004)
8. Cage, P., Kroo, I., Braun, R.: Interplanetary trajectory optimization using a genetic algorithm.

In: Astrodynamics Conference, p. 3773 (1994)
9. Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using a genetic

algorithm. IEEE Trans. Reliab. 45(2), 254–260 (1996)
10. Dos Santos, D.P., Prado, A.F.: Minimum fuel multi-impulsive orbital maneuvers using genetic

algorithms. Adv. Astron. Sci. 145, 1137–1150 (2012)
11. Gen, M., Lin, L.: Genetic algorithms. Wiley Encyclopedia of Computer Science and Engineer-

ing, pp. 1–15 (2007)
12. Hinckley, D.W., Hitt, D.L.: Evolutionary approach to lambert’s problem for non-keplerian

spacecraft trajectories. Aerospace 4(3), 47 (2017)
13. Ivashkin, V., Lan, A.: Construction of the optimal trajectories for the earth-asteroid-earth mis-

sion under high-thrust flight. Cosmic Res. 58, 111–121 (2020)
14. Ivashkin, V., Lang, A.: Optimum trajectories for an earth–asteroid–earth mission with a high

thrust flight. In: Reports of the Academy of Sciences, vol. 484, pp. 161–166 (2019)
15. Izzo, D.: Revisiting lambert’s problem. Celestial Mech. Dyn. Astron. 121(1), 1–15 (2015)
16. Jiang, R., Chao, T.,Wang, S., Yang,M.: Adaptive genetic algorithm in rendezvous orbit design.

In: 2016 35th Chinese Control Conference (CCC), pp. 5677–5682. IEEE (2016)
17. Kargel, J.S.: Metalliferous asteroids as potential sources of precious metals. J. Geophys. Res.

Planets 99(E10), 21129–21141 (1994)
18. Kim, Y.H., Spencer, D.B.: Optimal spacecraft rendezvous using genetic algorithms. J. Space-

craft Rockets 39(6), 859–865 (2002)
19. Kumar, V., Kushvah, B.: Computation of periodic orbits around l 1 and l 2 using pso technique.

Astron. Reports 64(1), 82–93 (2020)
20. Lawden, D.: Minimal rocket trajectories. J. Amer. Rocket Soc. 23(6), 360–367 (1953)
21. Lei, H., Xu, B.: Families of impulsive transfers between libration points in the restricted three-

body problem. Monthly Notices Royal Astron. Soc. 461(2), 1786–1803 (2016)
22. Lewicki, C., Diamandis, P., Anderson, E., Voorhees, C., Mycroft, F.: Planetary resources-the

asteroid mining company. New Space 1(2), 105–108 (2013)
23. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. Phys. A: Stat.

Mech. Appl. 391(6), 2193–2196 (2012)
24. Nelson, S.L., Zarchan, P.:Alternative approach to the solutionof lambert’s problem. J.Guidance

Control Dyn. 15(4), 1003–1009 (1992)
25. Rauwolf, G.A., Coverstone-Carroll, V.L.: Near-optimal low-thrust orbit transfers generated by

a genetic algorithm. J. Spacecraft Rockets 33(6), 859–862 (1996)
26. Sonter, M.J.: The technical and economic feasibility of mining the near-earth asteroids. Acta

Astronautica 41(4–10), 637–647 (1997)
27. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic

algorithms. Evolut. Comput. 2(3), 221–248 (1994)



648 V. Kumar and B. S. Kushvah

28. Wheelon, A.D.: Free flight of a ballistic missile. ARS J. 29(12), 915–926 (1959)
29. Wu, G.q., Tan, L.G., Li, X., Song, S.M.: Multi-objective optimization for time-open lambert

rendezvous between non-coplanar orbits. Int. J. Aeronaut. Space Sci., 1–16 (2019)
30. Yokoyama, N., Suzuki, S.: Modified genetic algorithm for constrained trajectory optimization.

J. Guidance Control Dyn. 28(1), 139–144 (2005)
31. Zhang, D., Song, S., Duan, G.: Fuel and time optimal transfer of spacecrafts rendezvous using

lambert’s theorem and improved genetic algorithm. In: 2008 2nd International Symposium on
Systems and Control in Aerospace and Astronautics, pp. 1–6. IEEE (2008)



Prediction of Chaotic Attractors
in Quasiperiodically Forced Logistic Map
Using Deep Learning

J. Meiyazhagan and M. Senthilvelan

Abstract Weforecast twodifferent chaotic dynamics of the quasiperiodically forced
logistic map using the well-known deep learning framework Long Short-TermMem-
ory. We generate two data sets and use one in the training process and the other in
the testing process. The predicted values are evaluated using the metric called Root
Mean Square Error and visualized using the scatter plots. The robustness of the Long
Short-Term Memory model is evaluated using the number of units in the layers of
the model. We also make multi-step forecasting of the considered system. We show
that the considered Long Short-Term Memory model performs well in predicting
chaotic attractors upto three steps.

Keywords Logistic map · Chaos · Prediction · Deep learning · Long short-term
memory

1 Introduction

Recently, Machine Learning (ML) and Deep Learning (DL) models have been used
in various fields of physics [1–3]. In the study of dynamics of nonlinear systems,
ML and DL algorithms are extensively used for the prediction and discovery of the
behaviour of the chaotic and complex systems. For example, they have been used
to identify chimera states [4, 5], in the replication of chaotic attractors [6], using
symbolic time series for network classification [7], separating chaotic signals [8],
learning dynamical systems in noise [9] and in the prediction of extreme events [10–
15]. Very recently, the authors of Ref. [16] have considered Hénon map and used a
ML algorithm, namelyArtificial Neural Network (ANN), to study the extreme events
in it. The authors have focussed on binary classification and classified the data points
as extreme and non-extreme [16].
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Fig. 1 Schematic phase
diagram of the
quasiperiodically forced
logistic map. C1 and C2 are
two different chaotic regimes
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In our studies, we consider logistic map with quasiperiodic forcing and predict
the time series of the system which is not continuous. The system exhibits chaos
in two different regimes. We predict both the chaotic attractors of this system with
the help of the DL framework, namely Long Short-Term Memory (LSTM). The
logistic map with quasiperiodic forcing is described by the following equations,
namely [17, 18]

xn+1 = α[1 + ε cos(2πφn)]xn(1 − xn), (1a)

φn+1 = φn + ω (mod 1), (1b)

where ε and ω = (
√
5 − 1)/2 are the forcing amplitude and irrational driving fre-

quency respectively. The authors in Ref. [17] redefined the driving parameter as
ε′ = ε/(4/α − 1) to study the dynamics of the system in the regimes of 0 ≤ x ≤ 1,
0 ≤ φ ≤ 1 and 0 ≤ ε ≤ 1. The schematic phase diagram [17] of the system is given in
Fig. 1. The system shows various dynamic behaviours, namely periodic, strange non-
chaotic and chaotic attractors which can be characterized by the nonzero Lyapunov
exponent Λ [17], where

Λ = lim
N→∞

1

N

N∑

i=1

ln |α[1 + ε cos(2πφi )](1 − 2xi )|. (2)

From Fig. 1, we can notice the interesting behaviour of the considered system
which has two chaotic regimes, namelyC1 andC2. TheC1 regime is the continuation
of the chaotic regime in the logistic map for ε = 0 at the end of the period-doubling
cascade, at α = 3.5699.... The chaos in C2 regime is due to low nonlinearity and
large amplitude forcing [17]. Our aim is to predict chaotic attractors in both the
regime using LSTM model since it is capable of forecasting the data which is in the
form of a sequence.
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We organize our work as follows. In Sect. 2, we discuss the generation of training
and testing data. In Sect. 3, we consider a DL framework called LSTM and train it
using training set data and predict the test set data. The performance of the LSTM
model is discussed in Sect. 4. We present the conclusion in Sect. 5.

2 Data Preparation

Generating data is the foremost task in prediction because prediction is done only
by learning the relationship between the given data. We calculate the value of x for
105 iterations using Eqs. (1a, 1b) in both the regimes C1 and C2. This discrete space
data is then converted into supervised learning data by taking xn as input and xn+1

as output. The chaotic attractors in the both regimes C1 and C2 are shown in Fig. 2.
The Fig. 2a, b corresponding to the regime C1 and Fig. 2c, d correspond to the C2

regime.
The values of the parameters are taken as (a) α = 3.6, ε′ = 0.5, (b) α = 3.9, ε′ =

1.0, (c) α = 3.0, ε′ = 1.0 and (d) α = 3.1, ε′ = 0.8. We divide the data into two
parts: (i) training set and (ii) test set. Training set data are used during the training
process of the DL model and test set data are used for the evaluation of the ability of
the DL model. In Fig. 2, the blue dots are the data used for training purpose and the

Fig. 2 Chaotic attractors in two different regimes C1 and C2. a α = 3.6, ε′ = 0.5 and b α =
3.9, ε′ = 1.0 correspond to C1. c α = 3.0, ε′ = 1.0 and d α = 3.1, ε′ = 0.8 correspond to C2. The
points in blue (colour online) denoting the training set data and red (colour online) denoting the test
set data
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red coloured data are used for testing. We use 6 × 104 data as training set data and
4 × 104 data as test set data.

These two sets of data are rescaled using min-max normalization which is given
by the formula [19],

xrescaledi = a + (xi − xmin)(b − a)

xmax − xmin
, i = 1, 2, 3, . . . , n, (3)

where xmin and xmax are theminimumandmaximumvalue of the data set respectively.
We fix a = −1 and b = +1 in order to scale the data between−1 and+1. During the
testing phase, this preprocessing scaling step is reversed after obtaining the output
from the DL model in order to compare the results with the actual data.

3 Deep Learning Framework: Long Short-Term Memory

When the data is in a sequential form one can make use of the Recurrent Neural
Networks (RNN) [20] which is a type of ANN. For the present study we consider
a DL framework known as LSTM [21] which is a special kind of RNNs. In recent
years, LSTM framework has proven to be capable of forecasting time series of the
chaotic systems even when there are extreme events in the time series [10, 13, 14].
The main feature that differentiates LSTM from the other RNNs is that the latter has
only one activation function for the neurons that is tanh but in the case of the former,
a sigmoid function is used for recurrent activations and tanh is used for the activation
of neurons. The sigmoid activation function is defined by [22],

σ(z) = 1

1 + e−z
. (4)

We construct the LSTM model in the following way. We consider two LSTM
layers each having 16 units in it and followed by a layer which has one neuron for
output. During the training, we give both the input and the corresponding output to
the model, that is we give xn as the input and xn+1 as the output. By doing this, the
model will learn the nonlinear relations between the given data. After training, the
learned model is used to forecast the data steps. During the testing phase, we feed
only the input data and ask the model for the corresponding output. The predicted
values at the output given by the LSTM model are compared with actual values
to determine the efficiency of the model in forecasting the chaotic attractors of the
considered system.
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4 Results and Discussion

To visualize the performance of the considered DL model, predicted data are plotted
over the actual data in Fig. 3. Black dots (colour online) denote the actual value
and green dots (colour online) denote the predicted value. The data in Fig. 3a, b
correspond to C1 regime and Fig. 3c, d correspond to C2 regime. From the plots, we
can see that relatively all predicted data coincide with the actual data. To have a clear
understanding of the efficiency of the model we calculate the Root Mean Square
Error (RMSE) value using the formula,

RMSE =
√√√√

NTest∑

i=1

(Ŷ T est
i − Y Test

i )2

NTest
, (5)

where Ŷ T est
i , Y Test

i and NTest denote the predicted values, actual values and total
number of data in the test set respectively. Wemake use of the scatter plots which are
plotted by taking actual values in the x-axis and predicted values in the y-axis (see
Fig. 4). From Fig. 4a, b we can see that the RMSE values for the regime C1 are 0.015
and 0.012 respectively for the parameter values α = 3.6, ε′ = 0.5 and α = 3.9, ε′ =
1.0. The outcome of the scatter plots almost fit in straight line, thereby indicating
that the difference between predicted and actual values are very low. From Fig. 4c, d

Fig. 3 Plots of forecasted values over the actual values for four different sets of α and ε values as
mentioned in Fig. 2. The Figures a, b correspond to C1 regime and c, d correspond to C2 regime.
Black dots denote the actual value and green dots denote the predicted value
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Fig. 4 Scatter plots and RMSE values of the four different cases. The green colour plots correspond
to the regime C1 and blue colour corresponds to C2

we can see that the results of the second regime C2 are calculated as 0.013 and 0.004
respectively for the parameter values α = 3.0, ε′ = 1.0 and α = 3.1, ε′ = 0.8. The
scatter plots for the test set data of regime C2 also show very little scatter points,
thereby indicating the best fit of predicted data with the actual data.

4.1 Effect of Model Architecture

To study the effect of model architecture on the performance of the considered model
we vary the number of units and analyse the performance based on the RMSE values.
For this purpose, we change the units in both LSTM layers and train the model. Then
each trained model is evaluated using the test set data. The outcome is shown in
Fig. 5. For the C1 regime, we evaluate the model with the data corresponding to
α = 3.6, ε′ = 0.5 and plot the results in Fig. 5a. For the C2 regime, we evaluate the
model with the data corresponding toα = 3.0, ε′ = 1.0 and plot the results in Fig. 5b.
The RMSE value changes while varying the number of units in the LSTM layers.
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Fig. 5 RMSE values for various number of units in LSTM layers. a, b corresponds to the regimes
C1, α = 3.6, ε′ = 0.5 and C2, α = 3.0, ε′ = 1.0 respectively

4.2 Multi-step Forecasting

Now, we consider the task of multi-step forecasting. To do this, while preparing the
supervised learning data, instead of having only one future step value, we take more
than one value at the output. For this we consider the data in both the regimes C1

(α = 3.6, ε′ = 0.5) and C2 (α = 3.0, ε′ = 1.0). The results of multi-step forecasting
are shown in Fig. 6.

From this figure we can infer that in the forecasting of multi-steps two and three,
the considered model outperformed our expectations in the prediction task, the plots
have fewer scatter points and the RMSE values are in admissible range. But for steps

Fig. 6 Scatter plots with RMSE values for the multi-step forecasting. a–d correspond toC1 regime
α = 3.6, ε′ = 0.5 and e–f correspond to C2 regime α = 3.0, ε′ = 1.0
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four and five, the model failed to give accurate values in both the regimes. It can be
seen from Fig. 6c, d, g, h, the points are scattered much when making forecasting
with fourth and fifth steps.

5 Conclusion

In this work, we have considered the logistic map with quasiperiodic forcing. The
systemexhibits chaos in twodifferent regimes.Weemployed aDL frameworkLSTM,
for the prediction of two different chaos. For this, we have generated 105 data totally
and used 6 × 104 data for training and the remaining 4 × 104 data for the purpose
of testing. We forecast the chaos corresponding to the two regimes C1 and C2. The
outcome of the experiments are evaluated using the performance metric RMSE value
and they are analyzed through the scatter plots which have been plotted between the
predicted value and actual value. Further, we have checked the effect of the number
of units of the LSTM layers on the performance of the model. In this connection,
we have done multi-step forecasting in order to predict more than one future value
of the considered map. From the obtained results, we conclude that the developed
LSTM framework can be used for forecasting the chaotic dynamics of the discrete
system, namely quasiperiodically forced logistic map described by Eqs. (1a, 1b).
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Dynamic Calibration of a Stress-Wave
Force Balance Using Hybrid Soft
Computing Approach

Sima Nayak and Niranjan Sahoo

Abstract Aerodynamic vehicles come across the influence of impulsive forces and
these are the major concerns associated with high-speed atmospheric vehicles. These
shock wave induced impulsive forces impart hazardous effects on the surface of the
vehicle. So, the magnitude of these forces is required for the design and modification
of aerospace vehicles. Due to practical constraints, the real-time experiment is very
difficult. Therefore, the ground-based test facilities are carried out using an aero-
dynamic model in shock tubes and shock tunnels. These models are required to be
calibrated properly before carrying out the actual experiments. In the present study,
a bi-cone model with a stress-wave force balance is used to perform the calibration
task. The balance is mounted inside the model with strain gauge which records strain
signal related to the applied force acting on the nose of bi-cone model. The strain
signals of impulsive forces are captured for different magnitude and these signals are
used for training and recovery of forces. Two different methods have been adopted
for the recovery of the forces; one through classical de-convolution technique and
another using the hybrid soft-computing approach, Adaptive neuro-fuzzy inference
system (ANFIS). The forces recovered through both the techniques are compared
with the known forces and also with each other. This provided an insight about
the feasibility and applicability of the soft computing approach towards the inverse
recovery of unknown forces for short duration experiments.

Keywords ANFIS · De-convolution · Short duration force recovery · Soft
computing · Strain gauge

1 Introduction

In aerodynamic industry impulsive forces are the key concerns alliedwith hypersonic
space vehicles like missiles, aircrafts, space shuttle, etc. The impulsive forces are
resulted due to the shock waves generated in high-speed flow conditions. The impact
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of such forces on the aerodynamic bodies causes serious damages to the structures
causing huge losses to the aerospace programs. Pre-determination of the magnitude
of such forces helps in themodification of the existing aero structural designs and also
in the development of new designs. Nevertheless, such forces are highly transient
and impulsive in nature that exists for a very small duration of time. Owing to
the constraints associated with actual aerodynamic experiments, ground-based test
facilities like shock tubes and shock tunnels are often employed to create such an
impulsive environment where similar aero models are tested for impulsive forces
[1, 2]. As a common practice, the aero models are tested in the test section of the
shock tubes or shock tunnels where the high-speed flows having Mach numbers in
the range of supersonic flow are imparted on the model surface. For the measurement
purpose, the sensors are placed on any attachment mounted on the aeromodels where
the effect of the forces can be felt by the attached structure [3]. These mounting
structures are popularly known as stress-wave force balance which is judiciously
designed to capture the appropriate response from the sensors [4, 5]. Two types of
force balances are mostly used for calibration purposes; one is inertia-dominated and
another is stiffness-based. The shock wave imparts an impulsive force on the body
of the model where the magnitude in general is higher at the nose of the model. It
may be noted here that, due to the short duration of action, direct measurement of the
steady-state value of the force is difficult. Therefore, it is inversely predicted from
strain gauge or accelerometer responses.

The response from the strain gauge or accelerometer is required to be post-
processed to get the imparted force through inverse calculation. The convolution-
deconvolution approach is popularly used for the recovery of such impulsive forces.
For a single-component, linear system, with an applied load u(t) and a single-output
signal y(t), a convolution integral relates between input forces and output responses
through an impulse response function g(t) as presented by Eq. (1).

y(t) =
∫ t

0
g(t − τ) u(τ ) dτ (1)

The solution of this equation is obtained in the time domain by discretizing the
signals with a time step �t and Eq. (1) is represented in the following form in which
g(t) is obtained via calibration tests.

The researchers make use of different calibration strategies in order to evaluate
g(t) for which the mathematical formulation relies on a linear relationship between
the input and output responses. Therefore, this process is mathematically complex
and cumbersome. However, with the advancement of the soft-computing approach,
a simplified model can be adopted for the recovery of such forces. In fact, the soft
computing approach is mathematically less intensive and can also provide accu-
rate prediction results [6]. The soft computing approach is very popular among
researchers nowadays due to its simplicity and versatility. Therefore, its use is found
in various fields of engineering such as image recognition, control theory, power
sectors, etc. [7, 8]. The most popular soft computing approaches are the neural
network, fuzzy logic, genetic algorithms, etc. However, the hybrid method proved



Dynamic Calibration of a Stress-Wave Force Balance … 661

to be better in recent times. One such hybrid approach is the “adaptive neuro-fuzzy
inference system” (ANFIS)which is a combination of fuzzy logic and artificial neural
network (ANN). It is an assembly of Takagi–Sugeno type fuzzy inference system
embedded in the network of ANN. Moreover, it is a data-driven approach driven by
the ANNwith a fuzzy system acting as a front-end pre-processor for the input–output
task [9, 10].

Most of the researchers have adopted the de-convolution approach for the inverse
prediction of impulsive forces whereas, a very limited use of the ANFIS technique
is observed in the open literature. Therefore, the objective of the present work is to
implement and test the usage of the ANFIS technique for the recovery of impulsive
forces in the case of short-duration aerodynamic experiments. To accomplish the
objective one aero model (blunt bi-cone model) has been fabricated (DASA CTV)
in-house and a calibration task has been performed using an impulse hammer and
strain gauges. A suitable stiffness-based force balance has been fabricated and the
location of maximum strain has been identified through numerical simulation using
the finite element method (ANSYS Workbench 18.0). The strain gauge is mounted
at the location of maximum strain corresponding to the axial force. The strain data is
recorded for known impulsive forces (applied using the impulse hammer) of different
magnitude. These “time-strain-force” signals are used to train the ANFIS system
and the force is predicted for time-strain input using the trained ANFIS system
and compared with the known forces as well as with the forces recovered through
deconvolution technique. The detailed working procedure has been elaborated in the
Fig. 1.

Fig. 1 Layout of the proposed work
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2 Calibration Experiment

To check the effectiveness of theANFIS system for the prediction of impulsive forces
during short duration experiments is the aim of the present work. To train the ANFIS
system there is a requirement of strain and force signals. Therefore, a calibration
task has been planned by mounting stiffness-based force balance on the fabricated
model [11]. Typically, force measurement using any force balance (Fig. 2) includes
various considerations such as; the design of force balance for specific sensors, their
mounting structure, choice of sensing location, balance calibration and force recovery
[12–15]. Stiffness dominated force balance is generally used for measurement of
forces through the measurement of strain signal using semiconductor strain gauges.
In this category of force balance, model is assumed to behave as a rigid body. When
the model is subjected to an impulsive force (using impulse hammer), it imparts a
strain signal corresponding to the applied force where, the response is captured using
a strain gaugemodule and data acquisition system. The strain gauge is mounted at the
specified axial location (Fig. 2) on the force balance and connected to a Wheatstone
bridge circuit. The balance is mounted on a fixed support using a bench vice. The
strain signal is captured by an Oscilloscope (Model: MDO3024, Tektronix, USA,
2.5GS/s) corresponding to the impulsive force applied by the impulse hammer. These
known forces along with their corresponding strain signals are used to establish a
relation between the strain and force so that the unknown forces can be inversely
estimated using the strain signal. In the present studies, the calibration has been done
at the nose of the test model with the help of the impulse hammer.

The direction of the impulse hit should be normal to the hitting surface of the
test model. Strain signals are recorded in the oscilloscope during calibration experi-
ments for different impulsive forces. Typical signals of the impulsive force and strain
responses for the axial direction are shown in Fig. 3. The initial strain values show
the values in the negative direction indicating a compression strain. This is expected

Fig. 2 Sectional view of the test model integrated with force balance
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Fig. 3 Force and strain signals from the calibration a Impulsive force from the impulse hammer b
Strain responses from the strain gauge

as the balance is mounted on support. The known set (4 sets) of “time-strain-force”
signals are used to train the ANFIS system and the other forces are recovered and
compared with the known data. Similarly, the strain signals are used to predict the
forces through de-convolution technique.

3 Recovery of Forces Using ANFIS Method

The recovery of impulsive forces using the soft computing-based ANFIS approach is
the central theme of the present work. The strain signals obtained from the calibration
experiment corresponding to four different (73N, 108N, 113N, and 138N) impulsive
loads are used for the training and recovery of force through the ANFIS method. As
inferred from the literature, the prediction through ANFIS technique is better when
the recovered datasets are within the training range. Therefore, for the present case,
108 N and 113 N forces are recovered individually, after training the other three data
sets.Asmentioned previously, theANFIS is a data-drivenmethod dealingwith input–
output mapping. It is a multi-input single-output system (MISO) consisting of one
input layer, four hidden layers and one output layer [16]. The ANFIS architecture
is shown in Fig. 4. One of the standard modules of MATLAB is equipped with
ANFIS architecture is used for the training and testing purpose. It works with hybrid
and steepest descent algorithm providing a better output. As mentioned previously
ANFIS is a combination of neural network and fuzzy logic; their combined effect
help in better training and recovery of the impulsive force [17]. Therefore, the “time-
strain-force” combinations for all four sets are used for this purpose. The system is
trained with three sets of data excluding the set of data to be recovered. Successful
implementation of ANFIS for the present exercise needs a proper understanding of
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Fig. 4 ANFIS architecture
for optimized combinations

the process and algorithm to be followed. All such steps require different user inputs
to achieve proper training and recovery [18].

The ANFIS training system starts with the fuzzification of the training data sets.
The fuzzy logic part of the hybrid approach helps in the fuzzification of the data
sets. The parametric variations for fuzzification depend on the type of member-
ship functions (MFs) to normalize the input training data set [19]. The available
options for these functions are from the broad categories as piecewise linear func-
tions, Gaussian functions, bell-shaped functions, and sigmoid functions. Therefore,
the standard input MFs used are triangular MFs, trapezoidal MFs, bell-shaped MFs,
sigmoid MFs, Gauss MFs, singleton MF, pi MF, etc. Similarly, there are two types
of output MFs viz. “linear” and “constant”. Out of the different MFs, the selection
of a suitable one depends on the type of data and the user experience. With the help
of MFs, the fuzzy system can be tuned by adopting an optimization technique out of
the available ones as “backpropagation method” and “hybrid method” such that the
input–output modelling can be carried out. The backpropagation method adopts the
steepest descent algorithm for modifying all parameters during training whereas, the
hybrid model uses the least square method for parameters linked to the output MFs
and backpropagation for the parameters linked to the input MFs [20]. Since various
options are available and the best one needs to be selected, parametric studies are
performed to find out the input requirements ofANFIS, and its capability is judged for
the force recovery. According to the evidence from literature, the grid partition type
of clustering technique is suitable for problem definitions having a smaller number
of input variables (less than 6). After few iterations with the available parameters, it
is observed that a combination of “three linguistics variables”, “gauss-gauss2 IMF
combinations”, constant outputMF, and hybrid optimization technique yields a better
recovery of the data set due to less root mean square error (RMSE). Therefore, all
the results are obtained using these optimized parameters which are discussed in the
next section.
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4 Recovery of Forces Using De-convolution Technique

Asmentioned previously, the classical way of inverse prediction of the forces is using
the convolution-deconvolution approach. Here, the time domain is converted to the
frequency domain and the response function is generated which acts as the linkage
parameter and remains nearly constant. For the present case, two intermediate forces
are recovered to compare with the ANFIS. The 108 N and 113 N forces are recovered
by using the time strain signal corresponding to the other three forces individually.
AMat Lab based programming is used to recover the unknown forces and compared
with the known value. All these results are compared with the ANFIS results.

5 Results and Discussion

The accuracy of the force prediction on applying impulse loads in axial directions on
nose of model is analyzed using ANFIS method as well as Deconvolution method.
The impulsive forces in axial direction of the model along with the corresponding
strain signals are filtered using a low pass filter of 12.5 kHz to remove the noise.
The system is trained with three sets of data leaving the one to be recovered. Out of
four different magnitudes of forces (73 N, 108 N, 113 N, and 138 N), 108 N force
is recovered after training the ANFIS with 73 N, 113 N and 138 N force. Similarly,
113 N force is recovered after training the ANFIS with 73 N, 108 N and 138 N force.

The peakmagnitudes of these forces have been compared with the original signals
and the percentage of deviation is calculated for all the cases. The ANFIS is able to
predict the unknown forceswith a certain degreeof accuracy for thedifferent data sets.
An error of 2.87% and 3.54% are obtained for 108 N and 113 N force, respectively
when compared with the actual signal (Table.1). Similarly, the intermediate forces
(108 N and 113 N) are recovered individually, through deconvolution technique by

Table 1 Error calculation between the recovered and the input value

Categories of
forces: Actual
Value = 108 N

Force
(N)

Error (%)∣∣∣∣Factual − Frecovered
Factual

∣∣∣∣
×100

Categories of
forces: Actual
value = 113 N

Force
(N)

Error (%)∣∣∣∣Factual − Frecovered
Factual

∣∣∣∣
×100

Deconvolution
(DC-1)

111.9 3.6 Deconvolution
(DC-4)

108.4 4.77

Deconvolution
(DC-2)

112.6 4.25 Deconvolution
(DC-5)

120.7 6.81

Deconvolution
(DC-3)

114.0 5.55 Deconvolution
(DC-6)

122.6 8.49

ANFIS
recovered

104.9 2.87 ANFIS
recovered

109.0 3.54
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Fig. 5 Recovered signals using ANFIS and Deconvolution technique; (a) 108 N; (b)113 N

obtaining the response function from other three forces. The 108 N is recovered
with the help of 113 N (DC-1), 138 N (DC-2) and 73 N (DC-3). Similarly, 113 N is
recovered with the help of 108 N (DC-4), 138 N (DC-5) and 73 N (DC-6).

All the results obtained for 108 N and 113 N are compared with the original
signal as well as with the ANFIS and deconvolution recovered results (Fig. 5). For
108 N recovery, a deviation of 2.87% is observed amongst ANFIS predicted results
as compared with the original results and a maximum deviation of 5.55% with the
results obtained through deconvolution technique. Similarly, for 113 N recovery, a
deviation of 3.54% is observed amongst ANFIS predicted results as compared with
the original result and a maximum deviation of 8.49% with the results obtained
through deconvolution technique. The recovery signal trend is matching well with
the original results. Therefore, the results obtained through ANFIS recovery matches
well within the uncertainty band.

6 Conclusion

The stress wave force balance and bi-cone model have been successfully fabricated
and by using a semiconductor strain gauge module, the calibration experiment has
been performed. The strain signals corresponding to four sets of impulsive forces
(applied with the help of an impulse hammer) is recorded with the help of an oscil-
loscope and the results are filtered using a low pass filter at a frequency of 12.5 kHz.
These “time-strain-force” signals are used to train and recover the forces through
an ANFIS based soft computing approach. The system is trained with three sets of
data leaving the data to be recovered. All the known data sets are recovered and their
peak magnitudes are compared with the actual ones. It is observed that the ANFIS
is able to predict the forces within a certain range of accuracy. Similarly, the forces
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are also recovered using deconvolution technique and the results are compared with
the ANFIS recovered results as well with the original ones. The ANFIS results are
found obeying the signal trend pretty well. Compared to the original value, the least
error of peak magnitude value is less in case of ANFIS recovered results (2.87%)
as compared to the de-convolution results (3.6%). However, the maximum error of
3.54% is observed in case of ANFIS as compared to 8.49% in deconvolution results.
Therefore, the ANFIS method can be used for short duration force recovery well
within the training range where the prediction can fall in the acceptable error range.
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Environment-Friendly Smart City
Solution with IoT Application

Ayush Kumar, Saket Kumar Jha, and Jitendra Singh Tamang

Abstract In the proposed system, a whole city will be spectated and observed.
Since a Smart City is considered, it is likely to be a metropolitan city so that basic
necessities like transportation, internet, telecommunication, etc. are presumed to
be available. The proposed system will be equally expensive for both brownfield
and Greenfield projects of Smart Cities. With the advancing times, IoT technology
is getting familiar to every section of society and by the virtue of advent of the
5G system, the IoT appears to be the primus inter pares for its application in the
futuristic scenario. The sensor arrays and input/output devices are being used in
different sections of the devices to perform the required operation. The introduction
of solar powered independent systems proved to be an autonomous robust technology.
The low latency communication between node clusters can be a significant factor for
the development and transformation of smart cities in a modern fashion that is the
root basis for the introduction of futuristic models.

Keywords IoT · 5G · Sensor array · Solar powered · Low latency · Node
clusters · Smart city · Futuristic model

1 Introduction

In 1998 the term smart city erupted [1] and has gained its popularity in recent
years. This new generation holds youth of technical era; every sector of society
is shifting from the product centric pattern to the service-oriented pattern to follow
up with latest trends of Internet of Things. Now, Societies ponder Smart cities as an
ecosystem of infrastructure and services due to its all-rounder essence with context
of its reasonable facilities [2]. In attempt to provide these services globally, one
must have a holistic view of every smart city problem and its comprehensive solu-
tion. The IoT and 5G combination enable a unified ecosystem for wide range of
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applications in metropolitan vicinity, with the benefit that authorities can operate
the e-administration and services for the means to produce inexpensive and resilient
smart city infrastructure. In addition, for a holistic smart city development, a central-
ized approach for the processing of large amounts of data flow in the same network
infrastructure is needed for data processing that can be further used for providing
the instruction to the actuators using edge computing paradigm, [3] which pushes
computation and data processing away from the core datacenters to the outer edge
of networks that are closer to the data sources. The main benefit of this work is it
makes the process faster in computation, processing of data and increases the ability
as well as scalability. The IoT era means a whole new world of applications and
services. This includes the Smart City surveillance and evaluation where a set of
smart sensors and IoT devices monitors everyday smart city activities and helps
in forecasting, reducing energy consumption, keeping the administration updated
about big and small incidents of vicinity with centralized management server. It is
a robust technology for the futuristic management which just not only insures real-
time service delivery potential but simultaneously prevents the global warming and
facilitates the residents with latest infrastructure. Perfect mixtures of small and big
technologies are preferable so that innovation possibilities could cope up with future
advancements.Currently,widely used platforms that are addressing upwith our needs
are Radiofrequency identification (RFID), Bluetooth Low-Energy (BLE), Near Field
Communication (NFC) and Fourth Generation of cellular systems (4G) and for the
long range of applications, the Low PowerWide Area (LPWA) has its superset LoRa
WAN protocol and the future cellular IoT [4]. Smart City applications potentially
benefit from IoT technologies; particularly they take advantage of the diversified and
reactive character of IoT infrastructure. Others have addressed smart city applica-
tions like typical grid computing, using cloud services as a measure to work around
the scope and complexity. This has led to extreme utilization of multiple parallel
processing methodologies such as general data transmission or data sharing that
have been long used to develop Distributed Systems applications, [5] where it was
observed as a primitive coordination model and illustrates a more advanced version
of the dataflow model. Data management is a component in the IoT for enabling the
smart cities infrastructure which consists of data acquisition, processing and dissem-
ination [6]. Data standards, quality, and utilization are the different aspects of data
acquisition. When 5G is used in conjunction with its advanced characteristics, it
enables an increase in the number of peripherals, acquires optimum bandwidth for
uplink and downlink, ultra—low latency and supports energy-efficient data trans-
mission [7]. Smart cities are built on the experiences and success of decades [8]
which resembles a nation’s innovation capabilities and success approaching deter-
mination [9]. There is no doubt that future of administration lies in the lap of IoT
and corresponding steps by the administration is necessary to deal the future [10].

Conflict arises when existing IoTs are being compared with futuristic 5G IoT
system. However, 5G beats the existing technology in all manners except for capital.
These 5Gantennas have very narrowcoverage length and hence require huge physical
infrastructure investment for its successful implementation. Moreover, it is found out
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to be a one-time investment as it balances the chart with its efficient and worthwhile
returns in account of futuristic demands.

In this paper we will talk about our approach of designing a networking system
in smart city and will be talking about different layers of our model in detail. The
model will explain about methodology of fetching the data from physical layer to
processing and managing the data in the servers and its utilization. This system will
be managing environmental parameters primarily, fetched from different parts of
region along with some other data sets and will transmit details to the centers. This
will not only help in getting to know about the real-time local conditions but will also
help administration to identify the relatively polluted regions and work as needed.
The data acquitted can be used for various statistical purposes in future.

2 Smart City Solution (Model Approach)

The concept entails splitting the city into 3–4 specified regions, each with its own
Base Station. A Central Hub must be created in the heart of the city for cohesive
strategic planning and as a location for preserving maintenance data. The base must
be separated into distinct network stations in order to have practical non-erroneous
data analysis capabilities that can handle ground reports and maintain the databases
up to date with real-time environment parameter reports. Such characteristics are to
be harvested from node clusters generated by taking into account certain nodes from
specified locations.

The nodes will be having 5G connectivity from which the communication with
peer nodes and network stations are to be established. From Fig. 1, the sensed data
are being recorded by nodal database and then transmitted using 5G protocol.

Fig. 1 Basic structure of a node
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Fig. 2 A node cluster

A cluster of nodes will consist of 8–10 nodes in a region and will be required
for certain locations in order to centralize infrastructure that can be used as unified
eco-space for better and more efficient human surveillance in a confined region.
This is necessary to avoid machine malfunctions and to ensure that the installed
infrastructure is properly maintained. The node cluster is seen in Fig. 2. Clusters are
described as communication between peer nodes in defined areas, despite the fact
that no specific node is necessary to bind nodes to create a cluster. The importance
of constructing a cluster is that network stations can observe an average and accurate
information about a region’s climatic component. However for very local and root
level details of small area data obtained from nodes are best suited.

The Network Stations will have access to the data collected by the nodes. The
Network Stations will keep an eye on various nodes and may be regarded a place
where actual human beings are sitting and observing data. Any unexpected find-
ings from the node clusters must first be validated by a person before being sent
to the Base Station who oversees the numerous network stations. The Base Station
will continue to supervise the Network Stations’ appropriate operation and admin-
istration. Network Stations authority would be able to make critical decisions at the
local level to avert public disruption and improve service performance. If Network
Stations detect a fire or a water leak through sensors, police may check the situation
using a CCTV camera and then quickly make remedial arrangements for the risky
situation. Furthermore, Network Stations may connect with local police stations to
take required steps in emergency situations, such as evacuation of regions, etc.

The Node Clusters, Network Stations, Base Stations, and Central Hub are
aligned hieratically in Fig. 3 to build a systematic smart city model, with the
Central Hub having to serve as the top authority with administration, execution, and
crucial decision-making powers. Multiple base stations will be linked to the central
hub. Base Stations are subservient to the Central Hub, which monitors Network
Station activities, supervises their coordination, and double-checks the smooth func-
tioning and decision-making. It also maintains the link between the Central Hub and
the Network Stations. Network stations on the other hand are to be seen as local
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Fig. 3 5G Structured communication model

level smart city authority which will be monitoring all the Node Clusters under its
boundaries and will be keeping a watch on instances being observed by the nodes. In
case of non-urgent but important decision needed, it should be relayed to the Central
Hub via Base Stations so that it can be carried out correctly and methodically.

3 Future Scope and Conclusion

The optimum use of 5G technology occurs when it is combined with Internet of
Things. It is very remarkable to witness data being delivered in real-time. Environ-
mental characteristics from a confined area under observation are being acquired
using sensors placed at each node having 5G connectivity. The benefit of adopting
5G communications technology is the ability to communicate with peer nodes and
Network Stationswithminimal latency.Onemay speculate that the sensors employed
can only perceive a restricted area, but this goes in hand with 5G technology, which
offers more bandwidth while communicating in a limited area since bandwidth and
distance of a channel are inversely related to each other. As a result, bringing nodes
closer together would result in perfect synchronization with 5G low-latency commu-
nication and viable surveillance. Each node will have its own local data acquisition
system, allowing data to be retained locally for future reference.

Henceforth 5G technology when combined with IoT for noble purpose like Envi-
ronment monitoring as a pollution control measure can prove to be a boon for society.
This will not just keep us updated about our environment parameter real-time but can
also help government to take steps in maintaining pollution levels on different parts
of city. Also, this will enable us to get information of our very local environment
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parameters as well important and urgent activities on our fingertips through mobile
phone. Thus, this paper gives a structural overview to a method for working and
maintenance of a noble purpose like Smart city environment monitoring.

References

1. VanBastelaer, B.: Digital cities and transferability of results. In: 4th EDCConference onDigital
Cities, Salzburg, pp. 61–70 (1998)

2. Bruneo, D., Distefano, S., Giacobbe, M., Minnolo, A.L., Longo, F., Merlino, G., Mulfari, D.,
et al.: An IoT service ecosystem for smart cities: The# smartme project. Internet Things 5,
12–33 (2019)

3. Cicirelli, F., Guerrieri, A., Spezzano, G., Vinci, A.: An edge-based platform for dynamic smart
city applications. Future Gener. Comput. Syst. 76, 106–118 (2017)

4. Goudos, S.K., Dallas, P.I., Chatziefthymiou, S., Kyriazakos, S.: A survey of IoT key enabling
and future technologies: 5G, mobile IoT, sematic web and applications. Wirel. Pers. Commun.
97(2), 1645–1675 (2017)

5. Giang, N.K., Lea, R., Blackstock, M., Leung, V.C.: On building smart city IoT applications: a
coordination-based perspective. In: Proceedings of the 2nd International Workshop on Smart,
pp. 1–6 (2016)

6. Gharaibeh, A., Salahuddin, M.A., Hussini, S.J., Khreishah, A., Khalil, I., Guizani, M., Al-
Fuqaha, A.: Smart cities: a survey on data management, security, and enabling technologies.
IEEE Commun. Surv. Tutor. 19(4), 2456–2501 (2017)

7. Rao, S.K., Prasad, R.: Impact of 5G technologies on smart city implementation. Wirel. Pers.
Commun. 100(1), 161–176 (2018)

8. Repko, J., DeBroux, S.: Smart cities literature review and analysis. IMT 598 Spring 2012
Emerg. Trends Inf. Technol. (2012)

9. Nam, T., Pardo, T.A.: Smart city as urban innovation: focusing on management, policy,
and context. In: Proceedings of the 5th International Conference on Theory and Practice of
Electronic Governance, pp. 185–194 (2011)

10. Kumar, S., Tiwari, P., Zymbler, M.: Internet of Things is a revolutionary approach for future
technology enhancement: a review. J. Big Data 6, 111 (2019)



Parametric Optimization of WEDM
Process on Nanostructured Hard Facing
Alloy Applying Metaheuristic Algorithm

Abhijit Saha , Pritam Pain , and Goutam Kumar Bose

Abstract Wire Electric Discharge Machining (WEDM) is broadly utilized for
manufacturing geometrically intricate and hard material parts. Taguchi orthogonal
array using L25 is applied as design of experiment for the five input process param-
eters. Artificial Neural Network is utilized for testing and validation of the exper-
imental data. This is trailed by employing a multi-objective optimization through
Genetic Algorithm (GA) approach. As the outcomes got through GA infer a set of
possible solutions. Grey Relation Analysis (GRA) is applied theory to find out the
best parametric amalgamation among the arrangement of practical other options.
In this case the weights are considered through Fuzzy set. Lastly the optimized
results are obtained with regards to discharge pulse time (0.5 µs), discharge stop
time (12 µs), servo voltage (36 V), wire tension (501gm), wire feed rate (8 m/min)
correspondingly.

Keywords Artificial Neural Network (ANN) ·Multi objective Genetic Algorithm
(M-GA) · Grey relational analysis ·Wire Electric Discharge Machining
(WEDM) · Orthogonal array

1 Introduction

The capability to fabricate coatings is significant to manufacturing blueprint.
Numerous segments need utilization of extra layers to enhance the mechanical prop-
erties and secure against hazardous environments. Nanostructured hard facing alloy
are extensively used in various die and tool making industries. Machining of these
materials is rather challenging if higher machined quality is warranted. Wire electric
discharge machining (WEDM) process has evolved as a promising cutting strategy
for cutting such hard to cut conductive materials.
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In WEDM process, the workpiece material is taken out by a progression of series
of distinct electrical spark between the anode workpiece and cathode wire. Due to
the presence of dielectric fluid those sparks are extremely focused and due to this the
temperature of that local area increases rapidly. That temperature is high enough to
melt and instantly vaporize the workpiece material.

Based on the past research work by several researchers a brief literature review is
presented here. Somashekhar et al. [1] employed ANN for modeling and optimize
the input process parameters in micro-electric discharge machining. Ming et al. [2]
also used ANN to predict cutting parameters in WEDM.

Genetic algorithms depend on procedure of natural selection and natural heredity
qualities, which are supplementary strong and bound to find the universal best
possible combinations. A few uses of GA-based method in nontraditional process
optimization issues have been accounted in the literature. Kuriakose and Shunmugam
[3] developed multiple regression models to represent association among WEDM
input parameters and output responses. GA was used to obtain a most favorable
amalgamation of process parameters. Mahapatra and Patnaik [4] employed genetic
algorithm technique to optimize theWEDM process parameters. Prasad and Krishna
[5] used GA to optimize the cutting speed and surface roughness in WEDM process.
Pasam et al. [6] also evaluated the control parameters of WEDM titanium alloy
(Ti6Al4V) using GA.

Moreover, Kuruvila and Ravindra [7] applied Taguchi’s technique and a genetic
algorithm to resolve parametric influence and optimal process parameters inWEDM
process. Kumar and Agarwal [8] also used a GA to optimize the machining setting
in WEDM. Zhang et al. [9] proposed hybrid method of RSM and GA for multi-
criteria optimization of WEDM process parameters. Padhi et al. [10] also employed
non dominating sorting GA technique to optimize the multiple responses of WEDM
process. Sharma et al. [11] developed mathematical model using RSM and optimiza-
tion has been carried using GA. Varun and Venkaiah [12] applied grey relational
analysis coupled with GA based hybrid technique to simultaneously optimize the
process responses in WEDM. Nair et al. [13] used GRA and GA to optimize the
multi-performance characteristics in WEDM of Inconel 617. Shandilya et al. [14]
applied various techniques viz. teaching–learning-based optimization, grey relational
analysis and genetic algorithm for parametric optimization ofWEDMprocess param-
eters. Various specialists have concentrated on the impacts of idealmachining bound-
aries on exhibitions in WEDM process utilizing a variety of optimization techniques
[15–17].

Additionally, it is found however, from the machining literature that a not many
researchers [18–20] assessed the best amalgamation of different input process param-
eters on finishing attributes in WEDM for machining nanostructured hardfacing
material. Very little investigation has been accessible on optimization of WEDM
condition for nanostructured hard facing alloy using multi-objective GA. It is essen-
tial to explore the quality characteristics of any finished component in order to illus-
trate its performance. In order to find out the best parametric blend of GA results a
Multi-Criteria Decision Making (MCDM) technique which is commonly known as
GRA method has been employed.
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2 Experimental Setup

The current experiments were done on 5 axes CNC Wire Electric Discharge
Machining. The figure of the machining system is shown in the Fig. 1.

To reduce the experiments machining were carried out following L25 Orthogonal
Array taking five important input parameters like discharge pulse time (Ton),
discharge stop time (Toff), servo voltage (SV), wire tension (WT) and wire feed rate
(WF) [16]. The factors and their levels as considered for testing is shown in the
Table 1.

After the experiments average surface roughness (Ra) of allmachined surfacewere
measured by using Taylor Hobson’s Talysurf. The MRR is calculated by measuring
the area of the work surface removed by time. The machining time is calculated by
using stopwatch.

Fig. 1 WEDM machine

Table 1 Machining inputs
with their ranges [16]

Machining parameter Unit Range

Ton µs 0.3–0.5

Toff µs 8–12

SV V 35–47

WT gm 500–900

WF m/min 5–9
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3 Results and Discussions

Artificial Neural Network (ANN) has been applied for identifying and learning the
link between the input statistics and corresponding responses. The outcomes can be
predicted once the training, validation and testing of the trial data is over by applying
ANN. Figure 2 shows the simulink model for ANN.

3.1 ANN Analysis

For training 80% of the data have been considered, 10% of the data have been
considered for validation and for testing 10% of data are considered during ANN
analysis of MRR. MSE achieved after 6 iterations and it was ended. Figures 3 and 4
show regression and performance plot of the MRR.

Here in Fig. 2 shows, training R= 0.99854, validation R= 0.90286 and testing R
= 0.96343. Thus overall value of the R is 0.91931. Hence, the training data suggests
a noble fit because the validation and test results showing the values of R is greater
than 0.9. Similarly Fig. 5a and 5b illustrate the final performance plot for machining
time and Ra respectively.

3.2 Multi-objective Optimization of Responses

In this current examination, an effort has beenmade to choose the ideal estimations of
input process parameters to get themain quality outputs inside the boundaries ranges.
A practical advancement system, GA is created to deal with the streamlining issue
for this assessment. In GA the numerical condition is outlined to give as the input
parameter. As the outcomes acquired through GA suggest a domain of solutions,
for that reason where the weight of the control parameters are calculated via Fuzzy

Fig. 2 Simulink diagram
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Fig. 3 Regression plot [MRR]

set hypothesis, there GRA can be applied. This can calculate the best parametric
alternatives from the solution region (Fig. 6).

The specified weights of MRR, machining time and Ra are 33%, 26% and 41%
respectively as determined by using Fuzzy set theory. Table 2 exhibits the results of
grade and their ranks. It has been found that experiment number 3 has the maximum
grey relational grade point. Consequently, the experimental run of 3 which has para-
metric combination Ton 0.5 µSec, Toff 12 µSec, SV 36 V, WT 501 g and WF
8 m/min is the finest amongst other experimental trail for having high MRR and
lower machining time and Ra.
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Fig. 4 Performance plot [MRR]

Fig. 5 Performance plot a Machining time b Surface roughness

3.3 Confirmation Experiments

Confirmation tests were performed in order to validate the optimization results by
setting input parameters (Ton = 0.5, Toff = 12, SV= 36,WT= 501 andWF= 8). The
corresponding responses (MRR, machining time and Ra) were measured. Predicted
error lies within the limit of 5% and hence, can be considered as significant for
acceptance (Table 3).
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Fig. 6 Plot functions for GA

Table 2 Optimization results

Exp. no Control parameters Responses Grey grade Rank

Ton Toff SV WT WF MRR Machining Ra

1 0.3 12 44 523 5 33.915 3.58 2.58 0.485 7

2 0.4 12 42 510 5 41.236 2.96 2.61 0.481 10

3 0.5 12 36 501 8 44.987 1.40 2.72 0.640 1

4 0.3 12 44 523 5 34.527 3.54 2.58 0.484 8

5 0.3 12 44 522 5 36.658 3.42 2.58 0.492 6

6 0.5 8 36 508 7 52.081 2.24 2.97 0.436 15

7 0.5 9 44 506 7 54.722 2.92 2.91 0.460 13

8 0.5 8 46 506 7 56.927 3.16 2.93 0.519 3

9 0.5 9 42 507 8 53.387 2.70 2.88 0.445 14

10 0.4 12 44 522 5 37.349 3.37 2.58 0.492 5

11 0.5 10 41 506 7 49.769 2.47 2.81 0.423 18

12 0.4 12 43 522 5 40.734 3.05 2.60 0.483 9

13 0.5 10 36 506 8 48.690 2.00 2.89 0.435 16

14 0.5 12 36 510 7 44.412 1.55 2.69 0.588 2

15 0.5 8 36 512 8 51.147 2.16 2.97 0.429 17

16 0.5 10 36 506 8 47.943 1.82 2.83 0.474 11

17 0.5 12 41 502 7 49.284 2.27 2.67 0.512 4

18 0.5 10 44 506 7 53.768 2.80 2.84 0.460 12
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Table 3 Confirmation of
optimization results

Comparison MRR Machining time Ra

Experimental 44.987 1.40 2.72

Predicted 45.811 1.37 2.63

% Error 1.83 2.14 3.3

4 Conclusions

Metaheuristic methods have verified their effectiveness in solving difficult optimiza-
tion problems. It can adequately uphold the leaders to decide the ideal interac-
tion boundary setting for any industrialized practice. The incorporated methodology
might be utilized for a determination issue including quite a few choice standards.

Lastly the optimized results are obtained with regards to Ton = 0.5, Toff = 12,
SV = 36, WT = 501 and WF = 8 respectively. This examination work might be
broadened further by considering some other exhibition qualities, for example, kerf,
form factor as well as relevant input process parameters such as peak current, wire
diameter in WEDM.
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Object Detection: A Comparative Study
to Find Suitable Sensor in Smart
Farming

Mohit Kumar Mishra and Deepa Sonal

Abstract Crop-loss is one of the major factors that led the farmers to ruin their lives
and everything they possess. Internet of Things (IoT) is an advanced technology that
is effectively benefitting various fields nowadays.Wehave tried to use this technology
to save the lives of farmers by saving their crops from being ruined. For this, we have
proposed a model that is going to be used in the agricultural fields to prevent wildlife
attacks that is one of the major factors of crop loss. As we know that Animal hunting
is one of the punishable offences in many countries. We want the animals to run
away from the field without any physical harm. In this paper, we have tried to do a
comparative study of sensors that would be most preferable for our proposed model.
We want to find out which sensor is most suitable for the detection of wild animals in
the agriculture field. For finding that we have done some experiments and observed
the results to justify our sensor selection. As we want to choose the most suitable
sensors for our crop protection model.

Keywords IoT · Sensors · Crop protection · IR sensor · Ultrasonic sensor · Attack
detection · Comparative study · Another keyword

1 Introduction

There is no doubt that a significant amount of research has been done in the realm of
software and hardware applications in Internet of Things (IoT). One of them is the
suggested research project. Inmost cases, a typical pest repeller will emit a consistent
frequency. This consistent frequency will only deter the pest for a short time and is
ineffective [1]. It is because strong and unusual sounds, such as ultrasonic sounds that
rats can hear, frequently scare them and cause transient aversion lasting anywhere
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from a few minutes to a few weeks. In this research, we have tried to find out the
most suitable sensors used for detecting the animals or pests in this animal repelling
system [2]. One important commitment, we are going to make here is we don’t want
to physically harm any animal or pest for repulsion [3]. We want only to scare them
and ran them away from the agricultural field as they enter the field [4]. An IoT
based system is implemented to detect the Animal and produce repelling sound and
repelling frequency to scare them away from the crop field [5].

We have two options for animal detection sensors. First one is ultrasonic sensor
and second one is IR sensor. Both the sensors can be used to detect any object comes
in the way. Let us first know about both the sensors individually. Some of the recent
studies done in this field is given in [6] where the author has described that ultrasonic
sensor can work well with sponge, wood, Tile and plastic whereas IR sensor can
work only with Paper sheet typen of products.

1.1 IR Sensor

Infrared Sensor or IR Sensor is an equipment used to detect the objects present
in surrounding by sending infrared waves which is usually has frequency in range
of 300GHz to 400 THz. This sensor works on the theory of reflected light waves.
Reflected infrared light or light emitted from an infrared remote or beacon. Distance
and vicinity are also determined via infrared sensors [7]. After detecting the reflected
light, a range calculation between the sensor and the target is computed [8]. The Fig. 1
given below shows the diagram of IR sensor.

1.2 Ultrasonic Sensor

An ultrasonic sensor is also used to detect the obstacle in the way and determine
the distance of the object. It works on the principle of reflecting sound waves [9,
10]. The ultrasonic sensor emits sound waves, which are reflected if an obstacle is
before it. Ultrasound is a type of sound that is inaudible to the individual ear since
its lowest working frequency is still higher than the human hearing threshold of
roughly 20 kHz. Ultrasound spans a wide range of frequencies, from 40 kHz for

Fig. 1 IR sensor
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Fig. 2 Ultrasonic sensor

proximity sensors to 1 MHz and above for diagnostic imaging. The range finding by
an ultrasonic sensor can be seen in the Fig. 2 given.

So, objective of this research paper is to find out the most suitable sensor for
animal detection so that Animal repeller system can work efficiently. In first section
of this paper, we have given the introduction about the system and sensors. In second
section, we have described the methodology for showing difference in the sensors
theoretically and experimentally. In third section, we have done analysis on data
observed in experiment and in fourth section we have given the conclusion of this
research.

2 Methodology

Choosing a sensor for particular application might be difficult in either project. The
dependability of the sensor and other application equipment has a big impact on the
effectiveness of the machine. There are a few factors to contemplate when choosing
a sensor for your applications. Accuracy refers to how accurate the measurement is
in relation to the genuine distance. The minimal reading or variation in readings that
can be recorded is called resolution.

Precision refers to the tiniest measurement that can be taken frequently and
dependably.

To compare and study the behavior of both the above sensors, it is very important
to list out the features of IR and ultrasonic sensor theoretically. Then we have done
some experiments on both the sensors by attaching it to Arduino board one by one
and checking out its performance through observations. And finally checking out the
observation results through data analysis whether the experiment result is significant
or not.
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2.1 Theoretical Differences in Features of Both the Sensors

The main distinction among the two types of sensors is that IR sensors sense electro-
magnetic radiation, whereas ultrasonic sensors sense mechanical or auditory energy.
Hard things (e.g. walls, doors), fog, dust, mist, sunlight, and other factors alter
infrared frequencies. As a result, it cannot pass through walls or doors. It works
on line of sight (LoS), so point-to-point communication is done.

Infrared sensors have a number of drawbacks, including the inability to utilize
them in direct sunlight due to interference. It can make it difficult to use outdoor
applications or dismal indoor applications. Ultrasonic sensors identify obstructions
through sound waves and are unaffected by a variety of circumstances. Ultrasonic
sensors are more efficient than infrared sensors if reliability is a priority in the sensor
choices.

2.2 Experimental Observations for Both the Sensors

We have done experiments also to take observations for checking efficiency of both
the sensors one by one.We have collected data readings through serial monitor, some
during day time and some at night time. Various parameters for both the sensors can
be seen in the given dataset table Table 1.

First we have taken the readings for ultrasonic sensor in day time and night time
for object detection. Figure 3 here shows the reading taken on experimental setup of

Table 1 Various parameters for experimental setup

Parameters IR Sensor Ultrasonic sensor

Range 10–80 cm 2–10 cm

Beam-width 75° 30°

Beam Pattern Narrow (Line) Canonical

Frequency 353 THz 40 kHz

Unit cost ~750 INR ~130 INR

Fig. 3 Ultrasonic sensor data displayed on serial monitor of arduino IDE
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ultrasonic sensor with Arduino UNOmicrocontroller. Figure 4 is showing the circuit
diagram of experimental setup.

The circuit diagram in Fig. 4 has been designed using tinkercad.com online app.
Experimental setup of given circuit design has been done which is shown in Fig. 5.
The same experiment we have done with IR sensor and taken the observations to
check its efficiency in day time and night time.

The Fig. 6 shows the observation taken during the daytime in sunlight using both
the sensors one-by-one. It shows the efficiency of both the sensors of sensing the

Fig. 4 Circuit design of ultrasonic sensor with arduino UNO

Fig. 5 Experimental setup with LCD display to show distance
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Fig. 6 Detection of an object coming toward both sensors in the daytime

object coming towards them. It is visible from the above chart that the IR sensor is
also working efficiently during day-time in Sunlight. IR sensor is able to detect the
object as efficiently as ultrasonic sensor can detect.

(a) Then we perform the same experiment at night and dark environment to check
the efficiency of both the sensors using the same experimental setup. And based
on the readings of the experiment for both the sensors, Fig. 7 has been plotted
as given.
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We can see the difference in working efficiency of both the sensors at night/dark.
It is very much clear from the above plotted graph that IR sensor was unable to detect
the coming object three times. It shows that IR sensor is not that much reliable during
night.

3 Results and Discussion

From these experimental observations, we can discuss that IR sensor can be used
efficiently in day time and for indoor experiments, while for outdoor experiments that
needs to be done at night or in darkness; ultrasonic sensor is muchmore efficient than
the IR sensor. For strongly supporting our experiment, we have done data analysis
also that can show the significance of our experiment being carried out.

Both the experiments are analyzed and we have tried to find out the significance of
experiment conducted during day and night time respectively (as shown in Tables 2
and 3). In Table 3, total no. of observations is 7 whereas actually total 10 observations

Table 2 Data analysis showing significance of experiment during daytime

SUMMARY

Groups Count Sum Average Variance

Column 1 10 191 19.1 0.766667

Column 2 10 186 18.6 1.377778

ANOVA

Source of variation SS df MS F P-value F crit

Between groups 1.25 1 4.25 4.165803 0.294521 4.413873

Within groups 19.3 18 1.072222

Total 20.55 19

Table 3 Data analysis at night/dark

SUMMARY

Groups Count Sum Average Variance

Column 1 10 189 18.9 0.988889

Column 2 7 126 18 0.666667

ANOVA

Source of variation SS df MS F P-value F crit

Between groups 3.335294 1 3.335294 3.878249 0.067672 4.543077

Within groups 12.9 15 0.86

Total 16.23529 16
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were taken. IR sensor was not able to sense object 3 times in night/dark. The F-
tabulated andF-calculated values are also very closed in observational analysis during
day time. It shows the significance of observation and experiment. It implies that
IR sensor is not reliable for object detection in fields. As we have to make guarding
systemespecially for nightswhenFarmers are either sleeping or not in the agricultural
fields. In fact in day time if there is a cloudy day, then also it will not work effectively
because of lack of light. So it is most efficient to work with ultrasonic sensor than
IR sensor where 24 × 7 guarding is required.

4 Conclusion

We can conclude that we should go for ultrasonic sensor instead of infrared sensor in
our Animal repeller proposed model. We have to design and develop a final cropland
guarding system that can help out farmers not only in daytime but especially during
night [11]. So we should use the best components in our animal repeller system.
Before repelling the wild animals, it is very much essential to detect the animals at
right time and quickly [3]. So that crop harm can be minimized or removed. Thus
we have concluded to use ultrasonic sensor for our animal detection system.
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Robust Adaptive Controller for a Class
of Uncertain Nonlinear Systems
with Disturbances

Ngo Tri Nam Cuong, Le Van Chuong, and Mai The Anh

Abstract This paper presents a method to synthesize the controller for uncertain
nonlinear systems based on a combination of sliding mode control, adaptive control,
and radial basis function (RBF) neural network. We propose an adaptive control law
based on the RBF neural network to identify and compensate for variable param-
eter components, nonlinear function vectors, and external disturbance. The main
linear component is built based on a sliding control. The designed controller has the
advantage of being resistant to the elements of uncertainty and has a high control
quality.

Keywords Nonlinear systems · Adaptive control · System identification

1 Introduction

In practice, the uncertain nonlinear systems are affected by external disturbances
which are very common. The existence of uncertain parameters adversely affects the
performance of the system. Control design for such a class of objects has attracted
the attention of many researchers in past decades. A combination of the adaptive
control method and the neural network has been shown in the researches [1–4],
in which nonlinear components and external disturbance are identified using the
neural network to generate a compensation control signal for the uncertain compo-
nents. Some researches on adaptive control have been implemented for such variable
nonlinear systems, where variable parameters are identified and adjusted by adap-
tive control law [5–7]. In [8], a control law is built based on sliding mode control in
which uncertain components are considered for control design, and thus the designed
system is stability. The control design using backstepping and fuzzy techniques is
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implemented in [9], where the external disturbance is identified and compensated
by fuzzy logic, the variable parameters are determined based on the backstepping
technique. In the papers [10, 11], identifying and correcting uncertain parameters are
also implemented based on the backstepping control. Thus, there are many different
methods to synthesize control systems for the class of nonlinear objects under the
affection of variable parameters and external disturbance. Many results have been
shown advantages of diffirent methods, however enhancing performmance of the
designed system is still problems of interest to many researches. This paper presents
a method of synthesizing a stable adaptive controller based on combining adaptive
control, sliding control, and RBF neural network.

2 Problem Formulation

Amulti-inputmulti-output (MIMO) nonlinear systemwill be considered in the paper:

ẋ = Ax + [B + �B]u + f(x) + d(t), (1)

where x = [x1, x2...xn]T is state vector; u = [u1, u2...um]T is control vector; A ∈
IRn×n is Hurwitz matrix with fixed elements; B ∈ IRn×m is matrix with fixed ele-
ments; �B ∈ IRn×m matrix matched uncertainty; f(x) = [ f1(x), f2(x), ..., fn(x)]T
is smooth nonlinear vetor, matched uncertainty; d(t) = [d1(t), d2(t), ..., dn(t)]T
is external disturbance vector with slow varible elements, matched uncertainty
|di (t)| ≤ dM .

The block diagram of the designed system using identification structure with
compensation of uncertain component and external disturbance is shown in Fig. 1.
MODEL is the identification model; IDENT is the identification block; COMP is the
compensation block of uncertain components and external disturbance; SMC is the
sliding mode controller.

The control signal can be considered as follow:

u = usmc + uc, (2)

where usmc is control signal vector of SMC; uc is control signal vector for compen-
sation of uncertain component and external disturbance.
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Fig. 1 Block diagram of the designed system

3 Algorithm for Identification and Compensation
of Uncertain Parameters

Uncertain components �B, f(x),d(t) in (1) need to be identified and adjusted
for compensation. The identification model for uncertain parameters in (1) can be
written:

ẋm = Axm + [B + �B̂]u + f̂(x) + d̂(t), (3)

where xm = [xm1, xm2...xmn]T is state vector of themodel;�B̂ is the estimatedmatrix
of �B which is defined by elements �bi j ; f̂(x) = [ f̂1(x), f̂2(x), ..., f̂n(x)]T is the
estimated vector of f(x); d̂(t) = [d̂1(t), d̂2(t), ..., d̂n(t)]T is the estimated vector of
d(t).

From (1) and (3), we have:

ė = Ae + �B̃u + f̃(x) + d̃(t), (4)

where e = x − xm ;�B̃ = �B − �B̂; f̃(x) = f(x) − f̂(x); d̃(t) = d(t) − d̂(t). Iden-
tification progress will be converging when�B̃ → 0, f̃(x) → 0, d̃(t) → 0. Because
A is defined by a Hurwitz matrix, so e → 0, and (4) is stability.

With f(x) is a smooth function vector, by using a RBF neural network for the
approximation. The elements of f(x) can be written:

fi (x) =
L∑

j=1

w∗
i jφi j (x) + εi , (5)
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∀i = 1, n; j = 1, L , where L is number of basis functionwith a large enough number
to guarantee the error |εi | < εmi ,w

∗
i j = const is the ideal weights. The basis functions

are selected by the following form:

φi j (x) = exp

(∥∥x − ci j
∥∥2

2σ 2
i j

)
, (6)

where ci j are the position of the center of the basis functions φi j (x), and σi j are the
standard deviation of the basis functions. The evaluation vector f̂(x) is defined by
(6) with adjusted weights ŵi j :

f̂i (x) =
L∑

j=1

ŵi jφi j (x), i = 1, n. (7)

Training of the RBF neural network is implemented by adjustment of the weights
ŵi j in comparison with the ideal weights w∗

i j :

w̃i j = w∗
i j − ŵi j , (8)

from (5), (7) and (8), we have:

fi (x) = f̂i (x) + εi → f̃ (x) =
L∑

j=1

w̃i jφi j (x) + εi , (9)

εi is the approximate error with a sufficiently small value.

Theorem 1 Equation (4) are stable when the following conditions are satisfied:

‖e‖ >

2
n∑

i=1
εi

∥∥P̄i

∥∥

rmin (Q)
; (10)

uT�B̃TPe +
n∑

i=1

m∑

j=1

�
˙̃bi j�b̃i j = 0; (11)

eTP

⎡

⎢⎢⎢⎢⎢⎢⎣

L∑
j=1

w̃1 jφi j (x)

...
L∑
j=1

w̃njφi j (x)

⎤

⎥⎥⎥⎥⎥⎥⎦
+

n∑

i=1

L∑

j=1

˙̃wi j w̃i j = 0; (12)
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eTPd̃ (t) +
n∑

i=1

˙̃di d̃i = 0. (13)

P is a positive definite symmetric matrix �
Proof. For Eq. (4), the Lyapunov function is selected as follows::

V = eTPe +
n∑

i=1

m∑

j=1

�b̃2i j +
n∑

i=1

L∑

j=1

w̃2
i j +

n∑

i=1

d̃2
i . (14)

The Eq. (4) will be stable if the derivative (14) V̇ < 0. From (14), we have:

V̇ = ˙ePe + eT P ė + 2
n∑

i=1

m∑

j=1

�
˙̃bi j�b̃i j + 2

n∑

i=1

L∑

j=1

˙̃wi j w̃i j + 2
n∑

i=1

˙̃di d̃i . (15)

Substitute (4) into (15):

V̇ = eT
(
ATP + PA

)
e + 2uT�B̃TPe + 2eTPf̃ (x) + 2eTPd̃ (t)+

+2
n∑

i=1

m∑
j=1

�
˙̃bi j�b̃i j + 2

n∑
i=1

L∑
j=1

˙̃wi j w̃i j + 2
n∑

i=1

˙̃di d̃i .
(16)

From (16) and (9), we have:

V̇ = eT
(
ATP + PA

)
e + 2eTPε + 2(uT�B̃TPe +

n∑
i=1

m∑
j=1

�
˙̃bi j�b̃i j )+

+2(eTP

⎡

⎢⎢⎢⎢⎢⎢⎣

L∑
j=1

w̃1 jφi j (x)

...
L∑
j=1

w̃njφi j (x)

⎤

⎥⎥⎥⎥⎥⎥⎦
+

n∑
i=1

L∑
j=1

˙̃wi j w̃i j ) + 2(eTPd̃ (t) + 2
n∑

i=1

˙̃di d̃i ).
(17)

Substitute (11), (12), and (13) into (17)):

V̇ = eT
(
ATP + PA

)
e + 2eTPε. (18)

The Eq. (18) can be written:

V̇ = −eTQe + 2
n∑

i=1

εi P̄ie, (19)

Q = −(ATP + PA), P̄i is the i-th row of the matrix P.
Using inequality transformations [12], the Eq. (19) can be written:
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V̇ = −eTQe + 2
n∑

i=1

εi P̄ie < −rmin(Q)‖e‖2 + 2
n∑

i=1

εi
∥∥P̄i

∥∥ ‖e‖ . (20)

Substitute (10) into (20), we have V̇ < 0, the Eq. (4) is stable. �

The expressions (11), (12), and (13) of the Theorem 1 contain identification algo-
rithms �B, f(x), and d(t).

The Eq. (11) contains slowly variable elements, i.e. �ḃi j ≈ 0. The matrix �B
with uncertain parameters is identified by the matrix �B̂ using the update law:

�
˙̂bi j = u j P̄ie. (21)

From (7) and (12), because of w∗
i j = const , we have ẇ∗

i j = 0. The vector f̂(x) for
identification of the nonlinear function f(x) can be written:

f̂i (x) =
L∑

j=1

ŵi jφi j (x), i = 1, n. (22)

The update weights can be defined:

˙̂wi j = P̄ieφi j (x) . (23)

From (13), because of slow-varying external disturbance ḋ (t) ≈ 0. The vector d̂(t)
for identification of d(t) can be written:

˙̃di (t) = P̄ie. (24)

The received results from (21), (22), (23), and (24) are used to synthesis the com-
pensation control law uc.

The Eq. (1) can be again written as follows:

ẋ = Ax + Bu + IfΣ(t), (25)

where fΣ(t) = �Bu + f(x) + d(t), fΣ(t) = [ f Σ
1 , f Σ

2 , ..., f Σ
n ]T ; In×n hasmaindiag-

onal elements Ii j = 1, i = j = 1, n are rows which corresponds to the vector fΣ(t)
in the case | f Σ

i | 	= 0; other elements Ii j = 0 in the case i 	= j and | f Σ
i | = 0.

Substitute (2) into (25):

ẋ = Ax + Busmc + Buc + IfΣ(t). (26)

The vector uc can be selected:

uc = −Hf̂Σ(t), (27)
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f̂Σ(t) = �B̂u + f̂ (x) + d̂ (t) ; (28)

�B̂, f̂(x), and d̂(t) are presented in (21), (22), (23), and (24).
Substitute (27) into (26):

ẋ = Ax + Busmc − BHf̂Σ(t) + IfΣ(t). (29)

From (29)we can see that uncertain elementswill be compensatedwith the condition:

− BHf̂Σ(t) + IfΣ(t) = 0. (30)

The Eq. (30) will be satisfied with the following condition:

BH = I. (31)

The Eq. (31) will be satisfied with:

H =B+. (32)

where B+ is the pseudo-inverse matrix of B.
Thus, the article has synthesized the compensation control law uc (27) with iden-

tification vectors f̂Σ(t) (28), H (32).
Using the compensation control law (27), the Eq. (29) can be written:

ẋ = Ax + Busmc. (33)

Thus, in this section, the identification and compensation control law uc (27) for the
uncertain components of (1) have been presented, and then (1) is rewritten to (33).
For (33), the control law is synthesized based on the sliding mode control.

4 Synthesis of the Sliding Mode Control Law

The error vector between the state vector x and the desired state vector xd :

x̃ = x − xd → x = x̃ − xd . (34)

Substitute (34) into (33), we have:

˙̃x = Ax̃ + Busmc + Axd − ẋd . (35)

For (35), the hyper sliding surface is chosen as follows [13]:

s = Cx̃, (36)
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where C is the parameter matrix of hyper sliding surface, s = [s1, s2, ..., sn]T .
The next problem is to define the control law usmc which ensures movement of

the system (35) towards the hyper sliding surface (36) and keep it there.
The control signal usmc can be written by:

usmc =
{
us if s 	= 0
ueq if s = 0

, (37)

us is the control signal that moves the system (35) towards the hyper sliding surface
(36); ueq is the equivalent control signal that keeps the system (35) on the hyper
sliding surface (36).

The Eq. (37) can be rewritten as:

usmc = ueq + us, (38)

ueq is defined in [13]:
ṡ = C ˙̃x = 0. (39)

From (35) and (39), we have:

C
(
Ax̃ + Bueq + Axd − ẋd

) = 0. (40)

From (40), the equivalent control signal can be defined as follows:

ueq = −[CB]−1
[
CAx̃ + CAxd − Cẋd

]
. (41)

Next, we define the control signal us that moves the system (35) towards the hyper
sliding surface (36).

For the hyper sliding surface (36), the Lyapunov function can be selected by:

V = 1

2
sT s. (42)

Condition for the existence of slip mode can be written:

V̇ = sT ṡ < 0. (43)

Substitute (35) and (38) into (43), with attention to (39), (40) we have:

V̇ = sT
[
C

(
Ax̃ + Bueq + Axd − ẋd

) + CBus
]

< 0. (44)

Inequality (43) can be written as:

sT [CBus] < 0. (45)
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So to satisfy the condition (43), the control signal from (45) can be defined as follows:

us = −[CB]−1
[
δsgn (s1) , δsgn (s2) , ..., δsgn (sn)

]T
, (46)

δ is a positive coefficient. Substituting (41) and (46) into (37), the control signal can
be defined by usmc as follows:

usmc =
{−[CB]−1

[
δsgn (s1) , δsgn (s2) , ..., δsgn (sn)

]T
i f s 	= 0

−[CB]−1
[
CAx̃ + CAxd − Cẋd

]
i f s = 0

. (47)

Finally, the control signals (27) and (47) are used for (2), and the control laws of
(1) have been synthesized successfully.

5 Results and Discussion

Simulations are implemented on theMatlab environment for the controller (2) where
parameter matrix, nonlinear function vectors, disturbance vectors of the system (1)
are defined as follows:

A =
[−3.7376 0.0779

2.3515 −4.1702

]
;B =

[
0.7014 0.5629
0.7248 0.4541

]
;�B =

[
0.2104 0.1689
0.2174 0.1362

]
;

f (x) =
[
0.02 sin (x1) sin (x2)

0.02x21

]
;d (t) =

[
0.2 sin (0.5t)

0.2 cos (0.7t + 2)

]
.

(48)
With the desired signal xd = [1.5, 1.0]T . The simulation results are shown in Figs. 2,
3 and 4.

The results of the identification of variable parameter components, nonlinear func-
tion vectors, and external disturbance are shown in Fig. 2. The results after using
the compensation signal from the identification rule for uncertain components are
presented in Fig. 3. From Figs. 2 and 3, we can see that the uncertain components
are identified and compensated with an asymptotic error of zero. Figure4 depicts
responses of the system which present the result of tracking the state vectors of the
system with the desired signal vector. These simulation results once again prove the
correctness and effectiveness of the proposed control law.
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Fig. 2 The identification vectors f̂Σ (28)

Fig. 3 The error between (1) and linear model (33) with compensation for uncertain components
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Fig. 4 Responses of the system for the desired signals xd

6 Conclusion

The article has synthesized the controller for a class of nonlinear objects. Lyapunov
stability theory is used to design the adaptive update law which allows identifying
uncertain parameter components, nonlinear function vectors, and external distur-
bance. The identification results are used to generate adaptive control rules that
compensate for the uncertain components. And then, the linear part of the control
law is synthesized based on sliding mode control. The simulation results show that
the variable parameter components, nonlinear function vectors, and external distur-
bance are identified and compensated according to the algorithm proposed by the
article; the output vector of the system tracks to the desired set signal vector with
high controllability.
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Role of Additional Food in a Delayed
Eco-Epidemiological Model
with the Fear-Effect

Chandan Jana , Dilip Kumar Maiti , and Atasi Patra Maiti

Abstract This paper proposes an eco-epidemiological system with saturated inci-
dence kinetics and a generalised Holling type-response function. Logistically grow-
ing prey species are partitioned into susceptible and infected prey. Predator-induced
fear among prey populations suppresses the logistic growth rate and incidence rate.
Additional food is supplied to predators to support them. Time-delay is incorporated
to transform susceptible prey into infected prey.We derive the conditions for the exis-
tence, permanence, stability of all feasible equilibrium and the occurrence of Hopf
bifurcation. Optimal control strategies are used for disease controlling by supplying
additional food. Numerically, we verify analytical results and exhibit the system’s
dynamicity. Predator-induced fear lowers their size and switches an unstable system
into a stable one. Also, an appropriate additional food supply to predators protects
them from extinction and controls prey’s infection.

Keywords Eco-epidemic · Fear · Additional food · Delay · Disease control ·
Chaos

1 Introduction

Eco-epidemiology is the intermixing of two biological fields: ecology which studies
about population dynamics, and epidemiology which studies about infectious dis-
eases in biological communities. In an epidemiological system, disease transmits
from infected populations to susceptible ones due to their mutual coexistence and
interaction. There are several disease transmission functions (incidence rate): the

C. Jana · D. Kumar Maiti (B)
Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar
University, Midnapore 721102, West Bengal, India
e-mail: d_iitkgp@yahoo.com

A. Patra Maiti
Directorate of Distance Education, Vidyasagar University, Midnapore 721102,
West Bengal, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Banerjee and A. Saha (eds.), Nonlinear Dynamics and Applications,
Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-99792-2_60

709

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99792-2_60&domain=pdf
http://orcid.org/0000-0003-4140-9526
http://orcid.org/0000-0002-5226-0977
http://orcid.org/0000-0002-1758-0916
mailto:d_iitkgp@yahoo.com
https://doi.org/10.1007/978-3-030-99792-2_60


710 C. Jana et al.

law of mass action (βSI ) [2], saturated incidence
(

βSI
1+α I

)
[9], and standard inci-

dence
(

βSI
S+I

)
[6], etc. In ecology the prey-predator correlation is described by the

term ‘functional responses’ which is the intake rate of a predator in unit time as
a function of food density. Over the last decades, researchers have studied various
‘functional response’, like Holling type-II [7], Holling type-III [1], Crowley-Martin
[5] to demonstrate prey-predator interaction.

Some recent studies [10, 11] established that due to fear of predation, prey indi-
viduals enhance their vigilance, give up their favourite food zone and habitation,
migrate to a relatively low-risk region for foraging, and control their reproductive
strategies accordingly. These survival strategies lower their birth rate, mutual con-
tact and consequently decrease the infection rate. Samaddar et al. [10] explored the
influence of predator-imposed fear in the prey-predator system associated with
additional food to predators. They investigated that the fear together with additional
food play an essential role in persisting a stable coexistence ecosystem.

Through literature reviews, to best of our knowledge, an eco-epidemiological
system with (i) saturated incidence rate, (ii) Holling type-II functional response,
(iii) predator-imposed fear among preys, (iv) incidence delay and (v) additional food
supply to predators has not been studied yet. The main objectives of the present work
are:

• To investigate how does the force of infection drive the population dynamicity?
• To illuminate the contribution of fear-effects to species survival and improvement
of ecosystem stability?

• To observe whether additional food supply to predators can sustain their existence
and control the disease of prey species?

This paper is arranged as follows: In Sect. 2, we formulate both non-delayed and
delayed models. The well-posedness of the model is verified in Sect. 3. We analyse
local stability and Hopf-bifurcation in Sect. 4. An attempt is made to control the
disease in Sect. 5. In Sect. 6, we validate analytical results and investigate the system’s
dynamicity through numerical simulation. At last, the conclusion and significance
of the work are presented in Sect. 7.

2 Mathematical Model Formulation

Some basic assumptions are taken into account to formulate the model.

• The model consists three subpopulations: susceptible prey (S(t)), infected prey
(I (t)) and predator (P(t)) at any time t .

• Disease transmits from infected preys to susceptible individuals due to their coex-
istence by saturated incidence rate βSI

1+α I where β represents the infection force and
α is the effect of inhibition.

• Prey-predator interaction is governed by a generalised Holling type II functional
response.
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Table 1 Units and description of the used symbols

Parameters Biological meaning Unit

r Birth rate of prey population Time−1

k Environmental carrying
capacity for total prey

Biomass

k1, k2 Cost of fear Biomass−1

α Inhibition effect Time−1

β Force of infection Time−1

m1 Rate of predation of
susceptible prey

Time−1

m2 Rate of predation of infected
prey

Time−1

a1, a2 Handling time Time−1

e1, e2 and e3 Conversion efficiency of P on
S, I and Λ, respectively

Constant

Λ Additional food Constant

ϕ Quality of additional food Constant

n Quantity of additional food Biomass

d1 Death rate of infected prey Time−1

d2 Death rate of predator Time−1

• Due to fear of predation, fear among prey populations suppresses the logistic
growth rate and incidence rate.

• The non-reproducing additional food, proportionate to the density of predators, is
provided to predators at constant rate to survive them from their extinction.

Considering all these biological factors, proposed model is expressed as follows:

d S

dt
= r S

1 + k1P

(
1 − S + I

k

)
− βSI

(1 + α I ) (1 + k2P)
− m1S P

1 + a1S + a2 I + ϕnΛ

= f̄1(S, I, P), (1)

d I

dt
= βSI

(1 + α I ) (1 + k2P)
− m2 I P

1 + a1S + a2 I + ϕnΛ
− d1 I = f̄2(S, I, P), (2)

d P

dt
= (e1m1S + e2m2 I + e3nΛ) P

1 + a1S + a2 I + ϕnΛ
− d2P = f̄3(S, I, P) (3)

where r , k, n, a1, a2, d1, d2, e1, e2, e3, k1, k2, m1, m2, α, β, ϕ and Λ are positive con-
stants (ref. Table1) and S(0) = s0 > 0, I (0) = i0 > 0, P(0) = p0 > 0. A schematic
representation of interaction among S, I and P is presented in Fig. 1.

Let, τ be the time lag to transform the susceptible individual into an infected one
until the disease spreads to his body up to a certain level. Then, the delayed system
is governed by the following equations:
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Fig. 1 Schematic view of the dynamical interactions of S, I and P in the propose model

d S

dt
= r S

1 + k1P

(
1 − S + I

k

)
− βSI (t − τ)

{1 + α I (t − τ)} (1 + k2P)

− m1S P

1 + a1S + a2 I + ϕnΛ
= f1(S, I, P), (4)

d I

dt
= βSI (t − τ)

{1 + α I (t − τ)} (1 + k2P)
− m2 I P

1 + a1S + a2 I + ϕnΛ
− d1 I = f2(S, I, P),

(5)

d P

dt
= (e1m1S + e2m2 I + e3nΛ) P

1 + a1S + a2 I + ϕnΛ
− d2P = f3(S, I, P) (6)

where S(0) = ϑ1(ξ) > 0, I (0) = ϑ2(ξ) > 0, P(0) = ϑ3(ξ) > 0, ξ ∈ [−τ, 0] and
ϑ j ∈ C

(
[−τ, 0] → R

+)
for j=1, 2, 3.

3 Basic Mathematical Results

Theorem 1 The system (Eqs.1–3) is invariant in the positive octant of R3 (i.e., R+
3 ).

Theorem 2 All the solutions (S, I, P) of the system (Eqs.1–3), starting from
R

+
3 , are uniformly bounded in the area Δ = {(S, I, P) ∈ R

+
3 : 0 < S + I ≤ k, 0 <

P ≤ φ

η
− k}, where φ = rk

4

(
1 + η

r

)2
and 0 < η ≤ min

{
d1, d2 − e3

ϕ

}
> 0, provided

d2 > e3
ϕ

.
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4 Equilibrium Points and Stability Analysis

4.1 Equilibrium Points

The stagnant state
(

f̄i (S, I, P) = 0 for i = 1, 2, 3
)
of the system (Eqs. 1–3) yield

the following ecologically meaningful equilibria:

(i) Trivial equilibria E0(0, 0, 0) which always exists.
(ii) Disease-free and predator-free equilibrium E1(k, 0, 0) exists if β ≤ d1 and

e1m1k
1+a1k+ϕnΛ

≤ d2.

(iii) Disease-free equilibria E2(Ŝ, 0, P̂) where Ŝ = d2(1+nϕΛ)−e3nΛ

e1m1−a1d2
(provided e1m1

> a1d2 and d2(1 + nϕΛ) > e3nΛ) and P̂ is the positive root of the following

equation: kk1m1P2 + km1P −
(

k − Ŝ
) (

1 + a1 Ŝ + nϕΛ
)

= 0. Since k > Ŝ,

using Descartes’ rule of signs, this equation must have unique positive root of
P , say, P̂ .

(iv) Predator-free equilibria E3(S′, I ′, 0) where S′ = d1(1+α I ′)
β

and I ′ is obtained
from the following equation: (d1α + β)rα I 2 + {r(d1α + β) + β2k − αr(βk −
d1)}I − (βk − d1) = 0. For the existence of E3, we must have βk > d1. Using
Descartes’ rule of signs, it is deduced that this equation possesses unique posi-
tive root of I , say, I ′.

(v) Coexistence equilibria E4(S∗, I ∗, P∗): (I ∗, P∗) is the intersection point of null-
clines:Φ1(I, P) = r

1+k1 P

(
1 − f (I )+I

k

)
− m1 P

1+a1 f (I )+a2 I+ϕnΛ
− β I

(1+α I )(1+k2 P)
and

Φ2(I, P) = β f (I )
(1+α I )(1+k2 P)

− m2 P
1+a1 f (I )+a2 I+ϕnΛ

− d1. Here, S = (a2d2−e2m2)I
e1m1−a1d2

+
d2+(d2ϕ−e3)nΛ

e1m1−a1d2
= f (I ), and consequently one can compute S∗ using the

value of I ∗.

4.2 Stability Analysis

The characteristic of the delayed system (Eqs. (4–6)) at E4 is

λ3 + M1λ
2 + M2λ + M3 + e−λτ

(
N1λ

2 + N2λ + N3
) = 0 (7)

where M1 = − (m11 + m22), M2 = m11m22 − m12m21 − m13m31 − m23m32, M3 =
m11m23m32 − m13m21m32 + m13m22m31 − m12m23m31, N1 = −n22, N2 = m11

n22 − m21n12 and N3 = m31(m13n22 − m23n12).
Non-delay system (τ = 0): The characteristic Eq. (7) becomes λ3 + L1λ

2 + L2λ +
L3 = 0 where Li = Mi + Ni (i = 1, 2, 3). By applying Routh Hurwitz stability cri-
terion, we provide the stability condition at E4 in the Theorem 3.

Theorem 3 The interior equilibria E4 locally asymptotically stable (LAS) if the
conditions are fulfilled: (i) L1 > 0, L3 > 0 and (ii) L1L2 − L3 > 0.
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Lemma 1 Trivial equilibrium E0 is always saddle.

Lemma 2 Axial equilibria E1 and predator-free equilibria E3 are always locally
asymptotic stable.

Lemma 3 Disease-free equilibria E2(Ŝ, 0, P̂) is LAS if r Ŝ(1 + a1 Ŝ + ϕnΛ) >

a1m1k Ŝ P̂(1 + k1 P̂).

Delayed system(τ > 0): Here, we derive the critical value of delay parameter (τ ) at
which delayed system (Eqs. (4–6)) switch its dynamical behaviour.

Theorem 4 The delayed system is asymptotically stable around E4 for τ < τc and
undergoes through Hopf bifurcation at τ = τc which is given by

τc = 1

ω̂
arccos

(
L4L6 + L5L7

L2
4 + L2

5

)
+ 2 jπ

ω̂
, j = 0, 1, 2.... (8)

where L4 = N1ω̂
2 − N3, L5 = −N2ω̂, L6 = M3 − M1ω̂

2 and L7 = M2ω̂ − ω̂3.

4.3 Hopf Bifurcation

Theorem 5 Taking the force of infection (β) as bifurcation parameter, non-delay
system undergoes through Hopf bifurcation under the following conditions:

(i) L1 > 0 and L3 > 0 at β = βc,
(ii) L1L2 − L3 = 0 at β = βc (for pair of purely imaginary eigenvalues),

(iii) [L1(βc)L2(βc)]
′ �= L

′
3(βc),

where Li ’s (i = 1, 2, 3) are mentioned formerly.

5 Implementation of Optimal Control to Disease

We apply control on the quality (ϕ) and quantity (n) of additional food to minimize
the infection and finally to eradicate diseases from system. Due to seasonal variation
of contact rate, we consider ϕ and n as time dependent. Let us consider objective
functional J as

J = min
ϕ,n

∫ t f

t0

{I + Υ1ϕ
2(t) + Υ2n2(t)}dt (9)

subject to the Eqs. (1–3) and the parameters t0 and t f are beginning and end time,
respectively. We have to optimize J . Here, Υ1 and Υ2 are weights related with con-
trols ϕ and n, respectively. For the optimal control (ϕ∗, n∗), we have J (ϕ∗, n∗) =
minϕ,n∈Δ J (ϕ, n)whereΔ = {(ϕ, n) : 0 ≤ ϕ(t) ≤ Mϕ, 0 ≤ n(t) ≤ Mn, t ∈ [t0, t f ]}
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is the measurable set. Mϕ and Mn represent the respective upper bound of controls
ϕ and n, respectively.

To solve the optimal control problem (Eq. (9)), let us consider the Lagrangian L =
I + Υ1ϕ

2 + Υ2n2 which is to be minimized. Then, the Hamiltonian of the system is
H = L + γ1

d S
dt + γ2

d I
dt + γ3

d P
dt where the adjoint variables γi (i = 1, 2, 3) can be

computed by solving the system of Eq. (10):

γ̇1 = −∂ H

∂S
, γ̇2 = −∂ H

∂ I
and γ̇3 = −∂ H

∂ P
(10)

satisfying transversality conditions: γi (t f ) = 0 for i = 1, 2, 3. Let γ̄1, γ̄2, γ̄3 be the
solutions of the system (Eq.10) and (S̄, Ī , P̄) as optimum value of (S, I, P).

Theorem 6 [3, 4] There is an optimal control (ϕ∗, n∗) such that J (I (t), ϕ∗(t),
n∗(t)) = minϕ,n J (I (t), ϕ(t), n(t)) subject to the Eqs. (1–3).

We use Pontryagin’s Maximum Principle [8, 9] to prove the Theorem 6.

Theorem 7 Over the region Δ, values of optimal control pair (ϕ∗, n∗) which mini-
mizes J is given by ϕ∗ = max{0,min(ϕ̂, Mϕ)} and n∗ = max{0,min(n̂, Mn)} where
ϕ̂ and n̂ are provided later.

Proof According to the optimality condition, we have ∂ H
∂ϕ

= 0 when n is fixed

and ∂ H
∂n = 0 when ϕ is fixed. These equations yield least positive real roots, say,

ϕ̂ and n̂. Again, 0 ≤ ϕ(t) ≤ Mϕ and 0 ≤ n(t) ≤ Mn for t ∈ [t0, t f ]. So, we have
ϕ∗ = max{0,min(ϕ̂, Mϕ)} and n∗ = max{0,min(n̂, Mn)}, and consequently the
optimized J .

6 Numerical Simulation

We perform numerical simulation to validate the analytical results and observe
dynamical behaviour of the system. A set of parameters’ values are considered, based
on idea related to the sensitivity of parameters, as Z = {r = 1, k = 5, a1 = 1, a2 =
0.9, d1 = 0.15, d2 = 0.1, e1 = 0.5, e2 = 0.4, e3 = 0.15, k1 = 0.15, k2 = 0.02,
m1 = 0.4, m2 = 0.5, α = 0.6, β = 2, ϕ = 1, n = 0.65, L = 1}.

6.1 Non-delay System

Evidently, for the set Z two nullclines Φ1(I, P) = 0 and Φ2(I, P) = 0 inter-
sect uniquely at (0.4517, 0.5754) in the I P-plane (ref. Fig. 2a). Then, we have
S∗ = 0.1788, i.e. the coexistence equilibria E4(0.1788, 0.4517, 0.5754) exists (ref.
Fig. 2b). At E4, we have the eigenvalues as−0.0297 + 0.4295i ,−0.0297 − 0.4295i ,
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−0.0029, i.e., real part of all the eigenvalues are negative. Moreover, all the quanti-
ties L1 = 0.0560, L2 = 0.0008 and L1L2 − L3 = 0.0112 are positive at E4 (i.e., all
the criterias of Theorem 3 are fulfilled). Therefore, E4 is asymptotically stable for
non-delay system which is illuminated in Fig. 2d.

In Fig. 3, an attempt is made to illuminate system behaviour with the variation of
force of infection β considering three cases: (a–c) absence of fear (k1 = 0, k2 = 0)
and additional food (Λ = 0), (d–f) absence of fear (k1 = 0, k2 = 0) and the presence
of additional food (Λ = 1), and (g–i) presence of fear (k1 = 0.15, k2 = 0.02) and
additional food (Λ = 1). For these three situations, corresponding Hopf-points are
βc = 1.35, 2.1 and 1.7, respectively, i.e., at those points system’s stability switches
from unstable to stable one. It is seen that in the absence of fear (k1 = 0, k2 = 0) and
additional food (Λ = 0), predator extinct beyond β = 1.55. But, in the presence of
additional food (ref. Fig. 3f), predators extinct beyond β = 2.4. Biologically speak-
ing, an additional food supply to predators can survive themselves from its extinction

Fig. 2 a Existence of the intersection point of the nullclines Φ1(I, P) = 0 and Φ2(I, P) = 0; b
existence of unique E4(0.1788, 0.4517, 0.5754); c time histories of populations; d stable focus for
the parameter set Z of system (Eqs. 1–3)
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Fig. 3 Bifurcation diagram against force of infection β for the parameter set Z . a–c in the absence
of fear (k1 = 0, k2 = 0) and additional food (Λ = 0), d–f in the absence of fear (k1 = 0, k2 = 0)
and the presence of additional food (Λ = 1), and g–i in the presence of fear (k1 = 0.15, k2 = 0.02)
and additional food (Λ = 1)
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Fig. 4 Existence of various equilibria in ϕη-plane

on a large scale of β, relatively. Further, incorporating fear-effect (ref. Fig. 3g–i), it
can be seen that system becomes stable on a relatively large scale of β. Hence, fear-
effect is efficient to make a sustainable stable ecosystem. It may be mentioned that a
certain level of fear is fruitful to survive all the populations. But, a level of fear may
eradicate predators from the system. Evidently, infected populations increase up to
a certain level of increasing β. After that, all the populations decrease noticeably
with a further increase in β. This is biologically reasonable because the density of
the I -population attains a maximum value at a threshold β. Thereafter, the system
declines to increase the density of infected population as S-populations decrease
with increasing β.

In Fig. 4, we present various equilibria in ϕn-plane in the presence or absence of
fear. One may observe that both quality (ϕ) and quantity (n) of additional food must
be a reasonable amount for the existence of all the populations; otherwise, predators
may become extinct from the system. Also, by supplying suitable quality (ϕ) and
quantity (n) of additional food, we make a system disease-free as seen in Fig. 4. We
use Pontryagin’s Maximum Principle to find the optimum value of (ϕ, n) for disease
controlling by supplying additional food. Moreover, the presence of the fear-effect
increase the region of existence of interior equilibria.

6.2 Delayed System

Taking τ as a bifurcation parameter, the dynamical behaviour of the delayed system
is explored in Fig. 5 with the help of the bifurcation diagram. The delayed system is
stable for τ < 0.72. For τ > 0.72, the delayed system’s exhibits complex dynamics,
discussed in Fig. 5. It is seen that when τ crosses the critical values, steady-state val-
ues separated into maximum and minimum of the periodic oscillatory solution, and
coexistence steady-state becomes unstable, i.e., Hopf bifurcation occurs at point of
separation. For a fixed τ , the occurrence of toomany local maxima/ minima indicates
that the system performs chaotic behaviour. However, during the chaotic situation,
populations take successive values randomly occupying a fixed range of correspond-
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Fig. 5 Bifurcation diagram against delay parameter τ for the parameter set Z

Fig. 6 Spectra of instantaneous S- population for several fixed τ for the parameter set Z

ing populations , similar to a situation of sin( 1x ) as x gets closer to zero. It is seen
that the system is periodic for τ ∈ [0.72, 27.04] ∪ [33.57, 36.75] ∪ [39.25, 40.53],
otherwise chaotic. This complexity in the system’s dynamics can be verified from
Fig. 6. A finite number of the spectral peak corresponds to periodic behaviour, while
no definite spectral peak exposes system’s chaotic behaviour.

7 Conclusion

Here, we have proposed and analysed an eco-epidemiological system with infec-
tion among prey species, and additional food is provided to predators. Fear-effect
is incorporated as a reducing factor in logistic growth of prey species and the dis-
ease transmission function. Also, we consider incidence delay to make the system
biologically more realistic.

The numerical analyses is executed extensively to investigate the potentiality that
cost of fears and additional supplied food can play a pivotal role in the system. It
has been observed that a suitable choice of additional food may eradicate the disease
from the system and help the predators to survive. Also, an adequate level of fear
transforms an unstable system into a stable one. The system exhibits rich dynamics
in the presence of incidence delay. Hence, a reasonable amount of fear-effect and
additional food is essential to survive all the populations and to make a sustainable
stable ecosystem. Our studies reveal a non-chemical approach to control disease in
an eco-epidemiological system.

Acknowledgements AuthorDilipK.Maiti acknowledges supports given by theDST-FIST, INDIA
(Sanction Order No.: SR/FST/MS-1/2018/21(C) dated-13/12/2019) for upgradation of research
facility at the departmental level.



Role of Additional Food in a Delayed Eco-Epidemiological Model … 719

References

1. Banerjee, R., Das, P., Mukherjee, D.: Global dynamics of a holling type-iii two prey-one
predator discretemodelwith optimal harvest strategy.NonlinearDyn. 99(4), 3285–3300 (2020)

2. Greenhalgh, D., Khan, Q.J., Al-Kharousi, F.A.: Eco-epidemiological model with fatal disease
in the prey. Nonlinear Anal. Real World Appl. 53, 103072 (2020)

3. Kar, T., Ghorai, A., Jana, S.: Dynamics of pest and its predator model with disease in the pest
and optimal use of pesticide. J. Theoret. Biol. 310, 187–198, 103072 (2012)

4. Lukes, D.L.: Differential Equations: Classical to Controlled (1982)
5. Maiti, A.P., Jana, C., Maiti, D.K.: A delayed eco-epidemiological model with nonlinear inci-

dence rate and crowley-martin functional response for infected prey and predator. Nonlinear
Dyn. 98(2), 1137–1167, 103072 (2019)

6. Maji, C., Kesh, D., Mukherjee, D.: The effect of predator density dependent transmission rate
in an eco-epidemic model. Differ. Equ. Dyn. Syst. 28(2), 479–493, 103072 (2020)

7. Panday, P., Samanta, S., Pal, N., Chattopadhyay, J.: Delay induced multiple stability switch and
chaos in a predator-prey model with fear effect. Math. Comput. Simul. 172, 134–158, 103072
(2020)

8. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press (1987)
9. Sahoo, B.: Role of additional food in eco-epidemiological system with disease in the prey.

Appl. Math. Comput. 259, 61–79, 103072 (2015)
10. Samaddar, S., Dhar, M., Bhattacharya, P.: Effect of fear on prey–predator dynamics: exploring

the role of prey refuge and additional food. Chaos Interdiscip. J. Nonlinear Sci. 30(6), 063129
(2020)

11. Sha, A., Samanta, S., Martcheva, M., Chattopadhyay, J.: Backward bifurcation, oscillations
and chaos in an eco-epidemiological model with fear effect. J. Biolog. Dyn. 13(1), 301–327,
103072 (2019)



Impact of Predator Induced Fear
in a Toxic Marine Environment
Considering Toxin Dependent Mortality
Rate

Dipesh Barman, Jyotirmoy Roy, and Shariful Alam

Abstract The concentration of harmful toxins in the marine ecosystem coming
from different external sources is increasing day by day and becomes a serious threat
to living organisms. On the other hand, in the field of predator-prey interactions,
one main aspect which has been neglected for decades is predator-induced fear to
prey species that affects reproduction rate of prey individuals. Keeping in mind both
the factors, a mathematical model has been proposed by incorporating predator-
induced fear in that toxic ecosystem. It has been observed that the system undergoes
Hopf-bifurcation with respect to both the parameters associated with fear factor and
toxicity. Also, there is a complex relationship between these two parameters and fear
factor plays a significant role in predator extinction. All the analytical findings have
been verified through numerical simulations by considering appropriate hypothetical
parameter sets.

Keywords Fear effect · Toxicity · Hopf-bifurcation · Population density

1 Introduction

Till decades one of the most ignoring fact in predator-prey interactions is to avoid
the indirect effect of predator induced fear to prey species. Most of the researchers
formulated predator-prey model by taking into consideration the direct predation of
prey species and accordingly analyze the system dynamics. But, in 2011, Zanette
et al. [16] made an experiment to song sparrow by supplying their predator’s vocal
cues to some of the song sparrow population while the remaining others do not
experience any vocal cues of their predators. However, it is observed that, all the
song sparrow populations who suffered from predator cues have shown a lessen
activity in reproduction by 40% as compared to the population who did not receive
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any disturbance of predator’s sound. Influencing by this phenomenon, Wang et al.
[14] formulated a mathematical model and observed that predator induced fear has
an immense impact on system dynamics. Later on many researchers [1–3, 13, 15,
17] modified predator-prey model by considering this fear effect and analyzes them
accordingly (for more interest one may read the references therein).

Marine pollution happens due to the entry of harmful chemicals, metals, etc.,
from different point and non point sources into the sea water. The vast majority of
marine contamination comes from land. Air contamination is likewise a contributing
component via carting away iron, sulfur, nitrogen, silicon, carbonic acid, pesticides
or residue particles into the ocean [5]. The point source pollution includes entry of
harmful particles from a easily identified source while non point source contami-
nation describes pollutants coming from agricultural activities, wind-blown debris,
and dust. At the point when pesticides are joined into the marine environment, they
immediately become consumed into marine food webs and as a consequence various
types of illness such as disease, mutation, tissue related problems, decrease in repro-
duction, etc., begin to occur in marine life [7, 9, 11, 12]. So, due to toxicity many
marine species suffered from increasing mortality rate. Not only this toxin harms
marine species, it also has an immense impact on the higher tropic level in food web
including sea birds and human being who consume this species [6].

In recent days, a lot of attention by researchers was paid to address the impact
of toxicants in environment. In this regard, Hallam and Clark [8] studied the first
order kinetics of a population in the presence of toxicity. After that, Hallam and De
Luna [9] investigated a model considering toxins from both the environmental and
food chain pathways. Later on, Chattopadhyay [4] performed a study on two species
competing with each other and observed that all the populations persist with the help
of toxicants. Again, Huang et al. [10] demonstrated through a research study of a
prey-predator model with the influence of environmental toxicants where both prey
and predator are exposed to the toxicants simultaneously. However, in this study, we
havemade an attempt to realize the effect of toxic substance inmarine environment in
the presence of predator induced fear. Here, we havemade an attempt in exploring the
role of predator exerted fear on prey population where both the species suffer from an
increasedmortality rate due to toxicity of water in marine ecosystem. Themotivation
of this study includes to explore the role of fear effect and toxicity in systemdynamics
in the presence of external toxin sources. Not only this thing, how toxicity and fear
level are related to each other in system dynamics is also an interest of this study.
This article has been organized in several sections such as: Sect.2 describes about
the formation of model system (1); Sect.3 verifies the well-posedness of system (1)
while Sect.4 manages to analyse local stability around different equilibrium points.
The findings of this system have been obtained in Sect. 5 with the help of MATLAB
& MATCONT. Finally, this article ends with Sect. 6 as conclusion.
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2 Model Formulation

Here, we have formulated a predator-prey model in (1) by considering predator
induced fear to prey population in a toxic marine ecosystem as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx

dt
= r x

1 + f y
− d1x − mx2 − αxy

1 + bx
− eγT

1 + eγT
x,

dy

dt
= βxy

1 + bx
− d2y − eγT

1 + eγT
y,

dT

dt
= A − aT − γ(x + y)T,

(1)

with initial conditions

x(0) > 0, y(0) > 0, T (0) > 0, (2)

where x, y and T respectively denote the density of prey population, predator pop-
ulation and harmful toxin concentration at any time t . The above model (1) has been
constructed based on some assumptions such as

(i) In the absence of predator population, prey individuals grow logistically with
growth rate r andnaturalmortality rated1. Furthermore, prey individuals engage
into a clash among themselves at a rate m for food resources.

(ii) Predator population consumes prey individuals according to Holling type -II
functional response at a rateα and predator species get benefited by reproducing
new offsprings at a rate β from this food consumption. They die naturally at a
rate d2.

(iii) The birth rate of prey species reduces due to the fear exerted from predator

species according to a function φ( f, y) = 1

1 + f y
as proposed by Wang et al.

[14]. One can read the detailed biological assumptions for constructing this fear
function described in [14].

(iv) The harmful toxins for both species are coming from various types ofmanmade
external sources like industries, households, pesticides used in agriculture, etc.
at a constant rate A. It is assumed that toxin declines naturally or toxic mate-
rials in marine system have been removed at a rate a due to different types
of government initiatives or awareness. Furthermore, it is assumed that toxin
concentration reduces due to the interaction between toxin and both the species
at a rate γ.

(v) It is further assumed that due to the interaction with toxin, both the species
die out from the system and this death rate depends on the concentration of
toxin and strength in toxin, i.e., toxicity e. We have proposed that both the
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species die according to the function Ψ (e, T ) = eγT

1 + eγT
. Clearly, it is to be

noted that, both species do not die in the absence of toxin as Ψ (e, T ) = 0;
level of toxin, i.e., toxicity may influence the death rate because for e = 0,

Ψ (e, T ) becomes zero. Interestingly,
∂Ψ

∂e
> 0 and

∂Ψ

∂T
> 0 indicates that both

population suffers a higher death rate with the increase of both the toxicity level
e and toxin concentration T .

3 Well-posedness

3.1 Positivity

Theorem 1 Every solution of system (1) starting from IC (2) remains positive for
any time t > 0.

Proof The proof is very much straight forward and hence omitted.

3.2 Boundedness

Theorem 2 Every solution of system (1) starting from IC (2) is always bounded.

Proof The proof is very much straight forward and hence omitted.

4 Stability Analysis

4.1 Fixed Points with Their Existence Conditions

Model system (1) has three fixed or equilibrium points, namely

(i) Axial equilibrium point E1

(

0, 0,
A

a

)

always exists;

(ii) Planar equilibrium point E2

(

x̄, 0,
A

a + γ x̄

)

exists for Aeγ < (r − d1)(a +
Aeγ) and x̄ has to be extracted from the underlying equation

mγx2 + {m(a + Aeγ) − γ(r − d1)x} + Aeγ − (r − d1)(a + Aeγ) = 0.

(iii) Interior equilibrium point E∗ (x∗, y∗, T ∗) where
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x∗ = eγT ∗ + d2(1 + eγT ∗)

(1 + eγT ∗)(β − bd2) − beγT ∗ exists for β − bd2 >
Abeγ

Aeγ + a + γ(x∗ + y∗)
,

T ∗ = A

a + γ(x∗ + y∗)
,

and y∗ has to be calculated from

α f y2 − { f (d2 − d1 − mx∗)(1 + bx∗) − α − β f x∗}y + βx∗ − r − (d2 − d1 − mx∗)(1 + bx∗) = 0,

under the restriction βx∗ + (mx∗ + d1 − d2)(1 + bx∗) < r .

4.2 Local Stability Analysis (LAS)

In this subsection, our main interest is to explore the restrictions under which system
(1) remains close enough to the corresponding fixed points under a slight given
perturbation and this job has been performedwith the help of the following theorems.

Theorem 3 System (1) exhibits LAS behavior around axial equilibrium point

E1

(

0, 0,
A

a

)

for r < d1 + Aeγ

a + Aeγ
.

Proof Eigenvalues of Jacobian matrix computed at axial equilibrium point

E1

(

0, 0,
A

a

)

are

λ1 = r − d1 − Aeaγ

a + Aeaγ
< 0 for r < d1 + Aeaγ

a + Aeaγ
, λ2 = −d2 − Aeγ

a + Aeγ
< 0, λ3 = −a < 0.

Hence the result.

Theorem 4 System (1) exhibits LAS behavior around planar equilibrium point

E2

(

x̄, 0,
A

a + γ x̄

)

for

(i)
β x̄

1 + bx̄
< d2 + eγT̄

1 + eγT̄
,

(ii) r < a + (γ + 2m)x̄ + d1 + eγT̄

1 + eγT̄
,

(iii) (a + γ x̄)

(

r − d1 − 2mx̄ − eγT̄

1 + eγT̄

)

+ eγ2 x̄ T̄

(1 + eγT̄ )2
< 0.

Proof One eigenvalue of Jacobian matrix computed at planar equilibrium point

E2

(

x̄, 0,
A

a + γ x̄

)

is
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λ1 = β x̄

1 + bx̄
− d2 − eγT̄

1 + eγT̄
< 0 for

β x̄

1 + bx̄
< d2 + eγT̄

1 + eγT̄
,

and other two eigenvalues has to be obtained from

λ2 −
(

r − d1 − 2mx̄ − eγT̄

1 + eγT̄
− a − γ x̄

)

λ − eγ2 x̄ T̄

(1 + eγT̄ )2
− (a + γ x̄)

(

r − d1 − 2mx̄ − eγT̄

1 + eγT̄

)

= 0.

The above equation will have two negative real roots for conditions (ii) and (iii).
Hence the result.

Theorem 5 System (1) displays LAS behavior close to interior equilibrium point
E∗(x∗, y∗, T ∗) if ξ1 > 0, ξ3 > 0 and ξ1ξ2 > ξ3 hold.

Proof Characteristic equation of the Jacobian matrix computed at interior equilib-
rium point E∗(x∗, y∗, T ∗) is given by

λ3 + ξ1λ
2 + ξ2λ + ξ3 = 0, (3)

where

ξ1 = − J ∗
11 − J ∗

22 − J ∗
33,

ξ2 =J ∗
11 J

∗
22 + J ∗

11 J
∗
33 + J ∗

22 J
∗
33 − J ∗

23 J
∗
32 − J ∗

12 J
∗
21 + J ∗

13 J
∗
21,

ξ3 =J ∗
12 J

∗
21 J

∗
33 − J ∗

12 J
∗
31 J

∗
23 − J ∗

13 J
∗
21 J

∗
33 + J ∗

13 J
∗
23 J

∗
31 − J ∗

11 J
∗
22 J

∗
33 + J ∗

11 J
∗
23 J

∗
32

and

J ∗
11 = r

1 + f y∗ − d1 − 2mx∗ − αy∗

(1 + bx∗)2
− eγT ∗

1 + eγT ∗ , J ∗
12 = − r f x∗

(1 + f y∗)2
− αx∗

1 + bx∗ ,

J ∗
13 = − eγx∗

(1 + eγT ∗)2
, J ∗

21 = βy∗

(1 + bx∗)2
, J22 = βx∗

1 + bx∗ − d2 − eγT ∗

1 + eγT ∗ , J23 = − eγy∗

(1 + eγT ∗)2
,

J ∗
31 = −γT ∗, J ∗

32 = −γT ∗, J ∗
33 = −a − γ(x∗ + y∗).

From Routh Hurtwitz criteria, equation (3) have negative root or roots having neg-
ative real part if ξ1 > 0, ξ3 > 0 and ξ1ξ2 > ξ3 hold. Hence the theorem.

4.3 Existence of Hopf-bifurcation

Here, we are going to explore the Hopf-bifurcation existence conditions of the model
system (1) around the interior equilibrium point E∗(x∗, y∗, T ∗) w.r.t the fear effect
f .

Theorem 6 The system (1) undergoes Hopf-bifurcation around the interior equi-
librium point E∗(x∗, y∗, T ∗) w.r.t the fear effect f if f exceeds the threshold value
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f = f ∗. The necessary and sufficient conditions for occurring Hopf-bifurcation at
f = f ∗ of the model system (1) are

(i) η1( f ∗)η2( f ∗) − η3( f ∗) = 0,

(ii) The transversality condition
d

d f
[Re(λ( f ))] f = f ∗ �= 0.

Proof The characteristic equation (3) at f = f ∗ becomes

(λ2 + η2)(λ + η1) = 0, (4)

i.e., λ1 = i
√

η2, λ2 = −i
√

η2 and λ3 = −η1.
For f ∈ ( f ∗ − μ, f ∗ + μ), where μ is a sufficiently small positive quantity and

the general root can be taken as follows

λ1( f ) = θ1( f ) + iθ2( f ),

λ2( f ) = θ1( f ) − iθ2( f ),

λ3( f ) = −η1.

Now, let us try to figure out the restrictions for which the transversality condition
is satisfied.

Substituting λ1( f ) = θ1( f ) + i θ2( f ) into (4) and taking the derivative w.r.t f ,
we get

E( f )θ′
1( f ) − F( f )θ′

2( f ) + G( f ) = 0,

F( f )θ′
1( f ) + E( f )θ′

2( f ) + H( f ) = 0,

where

E( f ) = 3θ21( f ) + 2η1( f )θ1( f ) + η2( f ) − 3θ22( f ),

F( f ) = 6θ1( f )θ2( f ) + 2η1( f )θ2( f ),

G( f ) = θ21( f )η
′
1( f ) + η′

2( f )θ1( f ) + η′
3( f ) − η′

1( f )θ
2
2( f ),

H( f ) = 2θ1( f )θ2( f )η
′
1( f ) + η′

2( f )θ2( f ).

Since θ1( f ∗) = 0, θ2( f ∗) = √
η2( f ∗), so

E( f ∗) = −2η2( f
∗),

F( f ∗) = 2η1( f
∗)

√
η2( f ∗),

G( f ∗) = η′
3( f

∗) − η′
1( f

∗)η2( f ∗),

H( f ∗) = η′
2( f

∗)
√

η2( f ∗).

Therefore,
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d

d f
[Re(λ( f ))] f = f ∗

= − F( f ∗)H( f ∗) + E( f ∗)G( f ∗)
E2( f ∗) + F2( f ∗)

= −2η1( f ∗)
√

η2( f ∗)η′
2( f

∗)
√

η2( f ∗) + (−2η2( f ∗)){η′
3( f

∗) − η′
1( f

∗)η2( f ∗)}
(−2η2( f ∗))2 + {(2η1( f ∗)

√
η2( f ∗)}2

= −η1( f ∗)η′
2( f

∗) − η′
3( f

∗) + η′
1( f

∗)η2( f ∗)
2{η2( f ∗) + η1( f ∗)}2

�= 0, if η′
3( f

∗) �= η1( f
∗)η′

2( f
∗) + η′

1( f
∗)η2( f ∗) and λ3( f

∗) = −η1( f
∗) �= 0.

Hence the theorem.

5 Numerical Simulation

In this section, we are going to verify all the analytical findings as discussed before
by using the softwares MATLAB andMATCONT. So, at first, we have to choose the
parameter set as follows:

r = 0.5, f = 0.01, m = 0.1, α = 0.5, β = 0.4, b = 2, e = 1.16, A = 0.6, a = 0.05,

γ = 0.07, d1 = 0.01, d2 = 0.02. (5)

To check the influence of predator generated fear in system dynamics, we have
considered periodic behavior of system dynamics by choosing e = 0.5 and varied
fear level in different ranges. We have observed that fear level f plays a contributory
role in the context of stability through a super-critical Hopf-bifurcation (as the first
lyapunov co-efficient is a negative quantity). It is observed that system remains
in periodic mode until f passes away its threshold value f = f ∗ = 2.8 as shown
in Fig. 1. Ecologically, it signifies that with the increase in fear level, predator’s
food resources decrease which consequently makes a balance in system dynamics
to exhibit stable behavior. Now, we want to explore the impact of toxin in system
dynamics through the parameter strength in toxin e. Similarly, here also we have
noticed that e has a huge impact in system dynamics in terms of stability. The system
exhibits unstable behavior for lower level of toxicity (e ≤ 1.16) and becomes stable
for higher level of toxicity (e >1.16) as displayed in Fig. 2. It is to be noted that
with increasing value of e, both prey and predator population suffer from higher
mortality rate and hence both population density decline which somehow makes a
balance in the system to exhibit stable behavior. Now, we have plotted population
biomass with respect to f to check its impact in population density in Fig. 3. From
Fig. 3, we observed that both prey density and toxin concentration initially increases
and then saturates as f increases. The prey population saturates after increasing its



Impact of Predator Induced Fear in a Toxic Marine Environment … 729

Fig. 1 Bifurcation diagram w.r.t. predator induced fear f in [0, 4] by considering e = 0.5 and
rest other parameters are kept as fixed. All the three figures jointly describe that the system (1)
remains in periodic manner as long as f does not exceed f = f ∗ = 2.8. But, as soon as f crosses
the threshold value f = f ∗ = 2.8, the system instantly becomes stable by removing the periodic
oscillations of the solution trajectory

density because of controlled population growth rate. But, strangely, as f increases,
predator population goes to extinction. The reason behind it may be interpreted as
the reduction in food sources for predator species due to the decline in prey’s growth
rate caused by increasing level of fear.

However, one question comes to our mind that, is there any relation between fear
level f and toxicity e ? To answer this question we have plotted a two parametric
bifurcation diagram (see Fig. 4) around the co-existence steady state and observed
that both f and e are inversely related with each other. The reason behind such
observation may be interpreted as prey species are less frightened from predation
due to the illness of predator species caused from consuming more toxic foods.
From Fig. 4, it is noticed that low level of fear f is required to obtain the Hopf-
bifurcation curve with the increasing level of toxicity e. It explains that prey species
is less sensitive in perceiving the predation risk with increasing toxicity e in that
ecosystem.
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Fig. 2 Bifurcation diagram w.r.t. strength of toxin e in [0, 1.25] by considering f = 0.01 and rest
other parameters are kept as fixed of system (1). All the three figures jointly describe that the system
remains in periodic manner as long as e does not surpass e = e∗ = 1.16. But, as soon as e passes
the threshold value e = e∗ = 1.16, the system quickly becomes stable by eliminating the periodic
oscillations of the solution trajectory

Fig. 3 Plot of population
density under the variation of
predator incited fear f by
choosing e = 1.16. It is
noticed that both prey
density and toxin
concentration initially
increases and then saturates
as f increases. But,
interestingly, as f increases,
predator population goes to
extinction
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Fig. 4 Two dimensional projection of Hopf-bifurcation curve in f vs e parametric plane revealing
that the existence of inverse linear relationship between f and e. It is clear that need of higher
level of predator induced fear is necessary to obtain the critical line of Hopf-bifurcation curve for
decaying level in strength of toxin e

6 Conclusion

In this article, a predator-prey model has been proposed and analysed in a toxic
marine environment by considering predator induced fear to prey’s birth rate and
toxin dependent death rate for both species. The well-posedness of model system
(1) along with stability analysis has been performed analytically. It is noticed that
both fear factor and toxicity play a crucial role in controlling the system dynamics
in a complex way. Model system (1) undergoes Hopf-bifurcation w.r.t. both these
parameters. Predator produced fear has a stable impact on system dynamics for
increasing level of fear in the presence of toxin. Strangely, for lower level of toxicity
the system exhibits periodic solution whereas for higher level of toxicity it shows
stable behavior by eliminating the periodic oscillations. The lower the toxicity level,
the higher the periodic oscillations which is quite interesting. Apart from controlling
the stability of system dynamics w.r.t. fear factor, it has an immense impact on
population density. Although, fear factor does not influence prey biomass and toxin
concentration significantly, it horribly forces the predator species in extinction due
to lack of nourishing food resources. This model can be further extended by taking
into consideration various toxin related factors which can be left as future work to
the interested audience.
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Stability Analysis of the Leslie-Gower
Model with the Effects of Harvesting
and Prey Herd Behaviour

Md. Golam Mortuja, Mithilesh Kumar Chaube, and Santosh Kumar

Abstract Prey herd behaviour has been studied using a modified Leslie-Gower
model, including harvesting in both populations. Three separate fixed points can
be seen in the model. Local stability theory has been used to investigate the fixed
point’s stability. The stability of the interior fixed point under a parametric condition
is investigated. Few numerical simulations are run to verify the results.

Keywords Predator-prey system · Prey group defense · Fixed points · Local
stability · Environmental sustainability

1 Introduction

Since the classical Lotka-Volterra model [1, 2], which was developed by Lotka and
Volterra, many researchers have become interested in such concerns [3–5], and they
have approached the topic from several perspectives yielding numerous important
conclusions [6–8]. Such as the authors in [9] analyzed the bifurcations of a Leslie type
predator-prey model with Holling type-III functional response. Lin et al. discussed
the multitype bi-stability using the population model in [10]. In [11] the authors
analyzed the model using Allee effect. Specifically, the authors in [12] looked at the
Leslie-Gower predator-prey model, which is given by:

{
dX
dt = r X

(
1 − X

P

) − α1XY
N1+X ,

dY
dt = SY

(
1 − α2XY

N2+X

) (1)

where X is the density of prey, and Y is the density of predators. The authors have
studied the above model, and by using the Lyapunov function, they analyzed the
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stability of the fixed points. In [13] the authors examined the global stability of
Leslie-Gower model with feedback controls.

Harvesting is an excellent strategy for people [14, 15] to keep predator and prey
populations in balance so that the population can continue to grow appropriately
and offer economic benefits [16, 17]. In research, prey harvesting is generally seen
merely to control population numbers. The Leslie-Gower predator-prey systemswith
constant prey harvesting were examined by the authors in [18]. Later, the Leslie-
Gower predator-prey model with nonlinear prey harvesting was explored by the
authors in [19]. In a Leslie-Gower model, Xie et al. [20] investigated the impact of
harvesting and looked at the super-critical Hopf bifurcation that leads to a stable
limit cycle. In a discrete modified LG model, Anuraj et al. [21] investigated many
co-dimension 1 and 2 bifurcations. A diffusive LG model with Allee effects and
mutual predator interface was developed and analyzed by Tiwari & Raw [22]. The
dynamics of a stochastic modified LG model with time delay and prey harvest were
investigated in [23]. We must consider the harvesting in the prey population and
the predator for ecological balance and good economic development. In the present
paper, proportional harvesting is regarded in both populations.

Some prey populations show herd behavior, in which predator and prey interact
around the perimeter of the prey species, resulting in the predator’s hunting rate of
prey that varies from that predicted by conventional models. In the ocean, a fish’s
rate of collecting zooplankton is more significant than a fish’s rate of capturing
phytoplankton. In this case, the phytoplankton is acting in a herd-like way. That
kind of interaction cannot be fully described by Holling-type functional responses.
To comprehend the prey population’s herd behavior, Ajraldi et al. [24] utilized the
square root of the prey density, such that there is an interaction between both species
in the prey herd behavior. The paper’s main objective is to analyze the dynamics of
the Leslie-Gower model with harvesting in both populations considering prey herd
behaviour.

1.1 Mathematical Modeling

The modified Leslie-Gower model [12] with harvesting in both population consid-
ering prey herd is as follows (after scaling the parameter and variables):

⎧⎨
⎩

dX
dt = X (1 − X) − α

√
XY

m+√
X

− γ x,
dY
dt = kY

(
1 − dY

m+√
X

)
− δY

(2)

The Jacobian matrix of the above system at origin is undefined. For that the
transformation X = x2,Y = y has been applied on the above system:
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{
dx
dt = 1

2

[
x

(
1 − x2

) − αy
m+x − γ x

]
,

dy
dt = ky

(
1 − dy

m+x

)
− δy

(3)

2 Fixed Points and Their Stability

In this section, the existence and stability of the fixed point of the system have been
studied. For the background of biology it is considered that the fixed points all are
non negative.

2.1 Existence of Fixed Points

To find the fixed points of the system need to solve the following equations:

{
x(1 − x2) − γ x − αy

1+mx = 0,

ky(1 − dy
m+x ) − δy = 0,

(4)

The following theorem is about the fixed points of the system and their existence.

Theorem 1 The system have three fixed points which are:

(i) E0 = (0, 0), the population free fixed point.
(ii) E1 = (x1, 0), the predator fixed point, if γ < 1.
(iii) E2 = (x2, y2), the interior fixed point.

Proof By solving the equations it is easy to see that (0, 0) is a fixed point of the
system. Now if y = 0 then 1 − x2 − γ = 0. As we considered that the fixed point
are non negative, the predator free fixed point will be (

√
1 − γ , 0) if γ < 1 from

1 − x2 − γ = 0. Now, the interior fixed point E2 is exists satisfying the equations:{
x2(1 − x22 ) − γ x2 = α

d (1 − k
δ
),

y2 = 1
d (m + x2)(1 − k

δ
),

(5)

2.2 Stability of the Fixed Points

The stability of the fixed point has been analyzed in this subsection. The Jacobian
matrix of the system at (x, y):
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J (x, y) =
(

1
2

[
1 − 3x2 + αy

(m+x)2 − γ
]

− 1
2

(
α

m+x

)
dky2

(m+x)2 k − 2dy
m+x − δ

)
.

Theorem 2 The fixed point E0 is:

(i) unstable if 1 > γ, k > δ,
(ii) stable if 1 < γ, k < δ,
(iii) saddle if 1 > γ, k < δ or 1 < γ, k > δ,
(iv) non-hyperbolic if either 1 = γ or k = δ.

Proof The real eigenvalues of the Jacobianmatrix J (x, y) at E0 are 1
2 (1 − γ ), k − δ.

It is easy to see that if 1 > γ, k > δ then the eigenvalues are positive implies E0 is
unstable node. If 1 < γ, k < δ then the eigenvalues are negative implies E0 is stable
node. If 1 > γ, k < δ or 1 < γ, k > δ, then the eigenvalues are opposite in sign
implies E0 is saddle. If either 1 = γ or k = δ then one of the eigenvalues is zero
implies E0 is non-hyperbolic.

Theorem 3 The fixed point E1 is:

(i) stable if k < δ,
(ii) saddle if k > δ,
(iv) non-hyperbolic if k = δ.

Proof The real eigenvalues of the Jacobianmatrix J (x, y) at E1 are−x21 , k − δ. First
eigenvalue is always positive as x1 = √

1 − γ > 0 since γ < 1. It is easy to see that
if k < δ then the eigenvalues are negative implies E1 is stable node. If k > δ, then
the eigenvalues are opposite in sign implies E1 is saddle. If k = δ then the second
eigenvalue is zero implies E1 is non-hyperbolic.

Theorem 4 The fixed point E2 is stable if T < 0, D > 0.

Proof The characteristic equation of the Jacobian matrix J at (x2, y2) is given by
μ2 − Tμ + D = 0, where

⎧⎪⎪⎨
⎪⎪⎩

T = 1

2

[
1 − 3x22 + αy

(m + x2)2
− γ

]
+ dy2

m + x2
,

D = 1

2

[
1 − 3x22 + αy

(m + x2)2
− γ

] (
dy2

m + x2

)
+ −1

2

(
α

m + x

) (
dky2

(m + x)2

)
.

(6)
Now if T < 0, D > 0 then the Jacobian matrix J has two eigenvalues having neg-
ative real parts. Hence the theorem.
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3 Discussion with Numerical Examples

By introducing the parameter values the following results have been identified:
For γ = 0.5337, α = 0.005, d = 0.14,m = 0.8, δ = 0.5, if k = 0.8 > δ then the

axial fixed point E1 is saddle (Fig. 1b) and if k = 0.45 < δ then the axial fixed
point E1 is stable (Fig. 1a). For α = 0.005, d = 0.14,m = 0.8, δ = 0.5, k = 0.8,
if γ = 0.15 then the interior fixed point E2 is stable (Fig. 1c). For γ = 0.1, α =
0.05, d = 0.14,m = 0.6, δ = 0.5 we plot the time series with respect to prey and
predator by changing the parameter value k = 0.8 > δ and k = 0.45 < δ. There are
three equilibrium states, as we can see. The first is E0(0, 0), which means there
are no members of either species present. The second is E1(x1, 0), x1 = √

1 − γ , in
which the predators are not present and the preys are at their maximum sustainable
number x1. Both populations are present in the third state. Using the abovementioned
parameters values, we see from the eigenvalues that E1 is a strictly stable node for
k < δ, and is a saddle and therefore unstable for any k > δ. At this point we have a
rather complete picture of the equilibria of the system and the stability. For k < δ,
the only stable equilibrium state is the all prey populations state at the maximum
sustainable population x1 = √

1 − γ (Fig. 2).
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4 Conclusion

Amodified Leslie-Gower model with harvesting in both populations has been devel-
oped considering prey herd behaviour. Themodel exhibits three different fixed points
population-free, predator-free and interior fixed point. The stability of the fixed point
has been analyzed by local stability theory. If 1 < γ, k < δ, the origin is stable, other-
wise unstable, or non-hyperbolic. Predator-free fixed point is stable if 1 < γ, k < δ.
It is examined that the interior fixed point is stable under a parametric condition.
We also include some numerical simulations to support our analytical findings and
conclusions. As a result, our research could help to ensure long-term environmental
sustainability. In a pond or natural ocean system, huge fishes eat small fish as their
main source of nutrition. To defend their predator, certain fish gather. As a result,
the findings of the article could be useful in fisheries management. Management will
be informed of the rate at which little fish species (preys) must be taken to maintain
ecological balance based on the findings of this study.
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Modeling the Symbiotic Interactions
Between Wolbachia and Insect Species

Davide Donnarumma, Claudia Pio Ferreira, and Ezio Venturino

Abstract A sex-structured mathematical model is proposed to address the inter-
actions among Wolbachia and Aedes mosquitoes. Several features associated with
the infection that impacts mosquito phenotype like the cytoplasmic incompatibility,
sex ratio biased to females, and maternal inheritance are considered. The analysis of
the model shows the presence of three equilibria: the infection-free point, which is
attainable only for a narrow range of initial conditions, the point where all individuals
are infected, which however arises only in a very particular situation, namely the full
vertical transmission of the bacterium, and the endemic equilibrium. Thresholds for
the stability of the coexistence equilibrium are obtained, and they involve a relation
among parameters and the initial prevalence of the infected mosquito in the popula-
tion. As expected, increasing the sex ratio biased to females promotes the fixation of
the infection on the population at high values.

Keywords Ordinary differential equations · Stability analysis · Thresholds

1 Introduction

Wolbachia is a common type of Gram-negative bacteria that infects about 60% of
all arthropods, but is harmless for animals and humans. These obligated intracellular
parasites are harbored mainly in the reproductive organs of the insects [20], but
also in the legs and guts [6]. It is known that Wolbachia infection of the common
mosquito Culex pipiens alters its reproduction in diverse ways that favor its invasion
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of wild non-infected populations. For example, infectedmales cannot reproducewith
uninfected females because of cytoplasmic incompatibility (CI). Female-biased sex
ratio can burst the size of the infected population and can be achieved by killing part of
the males at the larval stage, or by the feminization of males (males develop as sterile
females), or by parthenogenesis (infected females generate offspringswithoutmating
with males) [9]. Fitness cost associated with carrying the bacteria (like an increase
in the mortality rate) can be overcome by the CI and maternal inheritance (infected
females can transmit vertically the Wolbachia bacteria to their offsprings) [14].

Two types of mosquitoes have attained the limelight in recent years, being par-
ticularly harmful. They are currently spreading northwards (and southwards) from
tropical regions, carrying with them the viruses of formerly unknown diseases at
temperate latitudes, such as Chikungunya, Dengue, Zika [20]. They are the Aedes
albopictus and the Aedes aegypti mosquitoes. Ways of controlling their spread vary
from larvicide and insecticide spraying, through mosquito surveillance, and popu-
lation education programs with focusing attention on their living surroundings, for
example, by removing standing water which may serve as a breeding site for the
mosquito [22].

A different way of fighting mosquitoes, that does not involve genetically modified
insects, is based on the observation that Aedes aegypti does not harbor theWolbachia
bacteria. This fact has been exploited to devise a biological control program, for
which Aedes aegypti are inoculated with Wolbachia. Thus, males infected in the
laboratory are subsequently released into the environment, and their mating with
wild females is unsuccessful, producing eggs that do not hatch, reducing the size
of the next generation population. The release however should be monitored and
repeated in time, as Wolbachia dies with the host insect [21].

Results on the effectiveness of these programs have been reported in several coun-
tries. Besides the reduction of the mosquito population, the presence of Wolbachia
interferes with arboviruses by reducing its infection into mosquitoes [17]. Therefore,
geographic areas where the presence of the infected mosquito is high are expected
to report less prevalence of arboviruses on the human population. For instance, in
Indonesia, the release of Aedes aegypti inoculated by the wMel strain of Wolbachia
in several randomly-selected geographical locations were proven to offer protection
efficacy (by reducing the incidence of dengue disease) against the four serotypes of
dengue in 77.1% of the people taking part in the experiment [19]. As a consequence
of the bacterium introgression in the mosquito population, the need for hospital
treatment was reduced for the virologically-confirmed dengue patients living in the
areas subject to the treatment. The symptomatic cases as well as the hospitalizations
were significantly lower than in other areas where Wolbachia release had not been
implemented.

In Brazil, deployments of the wMel strain of Wolbachia in selected geographic
areas were monitored by keeping track of the monthly reported human cases of
Dengue, Chikungunya, and Zika, against the data coming from an untreated region.
The bacterium release was associated with a 69% reduction in Dengue incidence,
in a little more than a half reduction of the incidence for Chikungunya and a little
more than a third of the Zika cases. Thus, a significant benefit can result for the
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health system by the presence of bacterium-affected mosquitoes in urban areas,
independently of the possible spatial heterogeneity [13].

In Italy, a similar technique is being used against Aedes albopictus [4]. These
mosquitoes have been inoculated with the Wolbachia naturally present in Culex
pipiens, and then reared in the laboratory to producemales that are incompatible with
the wild Aedes albopictus females. Again, these males are subsequently released into
the environment, leading to mating that produce infertile eggs.

From the mathematical point of view, several models have been proposed to
study aspects of this new symbiotic interaction. For instance, [1] showed that the
cytoplasmic incompatibility does not guarantee establishment of the Wolbachia-
infected mosquitoes if the imperfect maternal transmission is considered. For this,
the optimal Wolbachia release problem was studied in different scenarios, where
the decision makers either aim for replacement or co-existence of both populations.
As in other works [5, 16], the viability of the technique relies on the number of
infected mosquito released, and on and periodicity of the releasing. In [2, 8] a delay
differential model was derived with the aim of studying the colonization and per-
sistence of the Wolbachia-transinfected Aedes aegypti mosquito. The conditions of
existence for each equilibrium of the model were obtained analytically. The persis-
tence of both infected andwild populations was explored in the context of mosquito’s
fitness, host-symbiont interaction, and temperature change. It was shown that the
increase of the delay, which represents the development time, can promote, through
Hopf bifurcation, stability switch towards instability for the nonzero equilibria. A
two-sex mosquito model, that accounts for multiple pregnant states and the aquatic-
life stage, is used to compare the effectiveness of different integrated mitigation
strategies to establish theWolbachia infection on the population [15]. The proposed
model presents a subcritical bifurcation indicating that even when R0 < 1, there can
still exist a stable endemic equilibrium. Also, it argues that mitigation strategies
to reduce the population of wild uninfected mosquitoes before releasing numerous
Wolbachia-infected mosquitoes could improve the establishment of the infection in
the population. Coupling mosquito population with human population, other works
assessed the reduction of dengue transmission by the fact that aWolbachia infection
is established in the mosquito population [7, 10, 23]. In this case, the susceptibility
ofWolbachia-carrying mosquito to dengue infection is explored under different sce-
narios that take in consideration variation in mosquito fitness, maternal inheritance,
and cytoplasmic incompatibility inherent to each Wolbachia strain.

In this paper, we develop a model to study the introduction and persistence of the
Wolbachia bacteria into the mosquito population, partitioning the mosquito popula-
tion among sexes and infection status. Only adult mosquitoes were considered. The
paper is organized as follows. In the next section, we formulate the model. Trajecto-
ries are shown to be bounded in Sect. 3, the equilibria are studied in Sect. 4, and the
simulations for the endemic case are reported in Sect. 4.3. A thorough investigation
of the equilibria in terms of the model parameter variations concludes the paper.
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2 Model Setup

Let F represent the susceptible female mosquitoes, i.e. those not infected with the
Wolbachia bacterium, I the Wolbachia-infected female mosquitoes, M the suscep-
tible male mosquitoes and U theWolbachia-infected male mosquitoes. Now, repro-
duction success is determined by the presence of the Wolbachia, in the sense that
reproduction after mating of an infectedmale with any female occurs at amuch lower
rate than for a couple of healthy individuals, and furthermore an infected female that
mates a healthy male has very, very low chances of success, if at all. In other words,
the outcomes are schematically represented in Table1.

The ordinary differential system is given by

dF

dt
= 1

2
r

M

M +U
F + pr1 (1 − ρ) I + pkr

U

U + M
F − mF − aF (F + M + I +U ) ,

d I

dt
= pr1ρ I − μI − bI (F + M + I +U ) , (1)

dM

dt
= 1

2
r

M

M +U
F + qr1 (1 − ρ) I + qkr

U

U + M
F − mM − cM (F + M + I +U ) ,

dU

dt
= qr1ρ I − μU − gU (F + M + I +U ) .

Note that in order to make sense both mathematically and biologically, in this model
we assume

U + M �= 0. (2)

The other parameters of the model are as follows. In all (susceptible) compart-
ments, the natural mortality m explicitly appears. Also, in the last terms of all the
equations, we allow for possible intraspecific competition among the four classes,
at rate a for the susceptible females, b for the infected ones, c for susceptible males
and g for the infected ones.

The first equation describes the evolution of susceptible female mosquitoes. They
are born bymating with a susceptible male, first termwith reproduction (oviposition)
rate r , assuming that the offsprings split evenly among the two sexes with the same
ratio (1/2). A similar term is indeed found in the susceptible male’s equation. The

Table 1 Reproduction rates given by all possible mating combinations. The wild populations are
denoted by F andM , and theWolbachia-infected one by I andU . Here r1 < r and k << 1, possibly
k = 0

Male Female

F I

M r r1
U kr r1
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second term accounts for the mating of an infected female, which may occur with
a healthy male, with probability M(M +U )−1, or with an infected one, with prob-
ability U (M +U )−1. The resulting reproduction however has a lower rate r1 < r
than for a healthy-healthy mating, and furthermore we allow for possible vertical
transmission of theWolbachia. Thus, if ρ < 1 represents the vertical transmission of
the infection, a portion 1 − ρ of the offspring are born healthy. In case of infection,
we also account for the possibility of Wolbachia presence altering the sex ratio of
the offspring: p is the fraction of female offspring, while q = 1 − p represents the
male fraction [3]. To sum up, the second term represents the healthy females gen-
erated by mating infected females with a male. The third term models the mating
of a susceptible female with an infected male at a rate r , which has a probability of
success k << 1, if not k = 0. The offspring have an altered sex ratio so that we find
p healthy females.

The second equation for the infected females contains the recruitment termcoming
from themating of infected females at a reduced rate r1 with any kind ofmale. The sex
ratio is altered, p for the female offspring, and the bacteria are vertically transmitted
with probability ρ which generates infected individuals. The second term contains
the natural plus infection-induced mortality μ > m.

Susceptiblemales dynamics is represented in the third equation,with reproduction
and mortality terms that are identical to those of the healthy females. However,
here, the offsprings coming from infected females have the sex ratio altered by the
fraction q.

The infected males, fourth equation, again are recruited from infected females
with reduced reproduction rate r1 and with a fraction q of sex ratio and probability
of vertical bacteria transmission ρ. They are subject to natural plus infection-related
mortality μ, the very same as for the females.

The Jacobian of (1), needed for the stability analysis, turns out to be:

J =

⎛
⎜⎜⎜⎝

J1,1 pr1 (1 − ρ) − aF r
FU ( 1

2 −pk)
(M+U )2

− aF −r
FM( 1

2 −pk)
(M+U )2

− aF
−bI J2,2 −bI −bI

r
1
2 M+qkU
M+U − cM qr1 (1 − ρ) − cM J3,3 −r

MF( 1
2 −qk)

(M+U )2
− cM

−gU qr1ρ − gU −gU J4,4

⎞
⎟⎟⎟⎠ ,

(3)
with

J1,1 = 1

2
r

M

M +U
+ pkr

U

U + M
− m − a (F + M + I +U ) − aF,

J2,2 = pr1ρ − μ − b (F + M + I +U ) − bI,

J3,3 = 1

2
r

U

(M +U )2
F − qkr

U

(M +U )2
F − m − c (F + M + I +U ) − cM,

J4,4 = −μ − g (F + M + I +U ) − gU.
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3 Boundedness

First, note that
p + q = 1. (4)

Let Z = F + I + M +U denote the total mosquito population. Summing the
equations in (1), for η > 0, recalling (4) we obtain

dZ

dt
+ ηZ = r

M + kU

M +U
F + r1 (1 − ρ) I − m(F + M) − μ(U + I ) + r1ρ I

−(aF + bI + cM + gU )Z + ηZ

≤ (r + η)F + (r1 + η)I − aF2 − bI 2 − cM2 − gU 2

≤ (r + η)F + (r1 + η)I − aF2 − bI 2

≤ F∗ + I∗ = Z∗, with F∗ = (r + η)2

4a
, and I∗ = (r1 + η)2

4b
.

From the resulting differential inequality for Z ,

dZ

dt
+ ηZ ≤ Z∗,

we get

Z(t) ≤ e−ηt

[
Z(0) − Z∗

η

]
Z∗
η

≤ max

{
Z(0),

Z∗
η

}
= Z+.

In view of the fact that all populations are nonnegative, we finally find

F(t), I (t), M(t),U (t) ≤ Z+

i.e. the solution trajectories of (1) are bounded.

4 Equilibria

Here, we are looking for points (F̄, Ī , M̄, Ū ) that solve the equilibrim equations of
the system (1).
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4.1 The Infection-Free Case

In this case we have Ī = 0, Ū = 0 and the admissible equilibrium turns out to be

E1 =
(
2arm − 4am2 + 4cm2 − 4cmr + cr2

2a (2ma + ar − 2cm + cr)
, 0,

r (r − 2m)

2 (2ma + ar − 2cm + cr)
, 0

)
.

To achieve feasibility, we need to ensure that the following inequalities hold true:

F̄ = cr2 − 2mr (2c − a) − 4m2 (a − c)

2a[r (a + c) − 2m (c − a)] > 0, M̄ = r (r − 2m)

2a[r (a + c) − 2m (c − a)] > 0.

Now, the denominator of both fractions is nonnegative for

r > 2m
c − a

c + a
. (5)

Note that the above condition holds unconditionally in case c < a. To have the
numerator of F̄ nonnegative we need either one of the following inequalities to be
satisfied

r < 2m
c − a

c
, r > 2m, (6)

with the proviso that for c < a the former is not satisfied, since allmodel’s parameters
are positive. Now, to have the numerator of M̄ nonnegative we need

r > 2m, (7)

and combining (5), (6) and (7), E1 is feasible for

r > 2m. (8)

Thus, this equilibrium feasibility depends only on the birth and death rates. Following
the same argument it is easy to see that if

r < 2m
c − a

c + a

we cannot have both F̄ and M̄ nonnegative.
Figure1 shows the total population at equilibrium E1 as a function of m and r

for a = c = 1. The initial conditions are the following: M0 = F0 = 1,U0 = I0 = 0.
The other parameters are arbitrary, since the equilibrium does not depend on them.
Assuming that the condition r > 2m is satisfied, either the increase of r or decrease
of m or both promote the increase of Z̄ = F̄ + M̄ .
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Fig. 1 The figure shows the
total healthy population
Z̄ = F̄ + M̄ (here
Ī = Ū = 0) at the
infection-free equilibrium
E1 as function of r and m for
a = 1, c = 1
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Stability of this equilibrium can be assessed in view of the fact that the char-
acteristic equation factorizes into the product of the two minors of the following
matrices:

A =
(

r
2 − m − a

(
F̄ + M̄

) − aF̄ −aF̄
r
2 − cM̄ −m − c

(
F̄ + M̄

) − cM̄

)
,

B =
(

ρ r1
2 − μ − b

(
F̄ + M̄

)
0

ρ r1
2 −μ − g

(
F̄ + M̄

)
)

.

The Routh-Hurwitz conditions for A give

tr (A) = r

2
− m − a

(
F̄ + M̄

) − aF̄ − m − c
(
F̄ + M̄

) − cM̄ < 0

which explicitly becomes

r2
(
c2 + 3 ac

) − r
(
c2 + ac − a2

) − 4m2
(
ac − c2

)
2a (r (c + a) − 2m (c − a))

> 0. (9)

The numerator is positive for r < r− or r > r+, with

r± = 2m
−a2 + ac + c2 ± √

a4 − 2 a3c + 2 a2c2

c (3 a + c)
.

The denominator is positive for r > r3, with

r3 = 2m
c − a

c + a
.

Note that r±, r3 < 2m. Therefore, (9) holds if the following condition is satisfied,

r > max{r±, r3}.
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The second Routh-Hurwitz condition for A is

det(A) =
[ r
2

− m − a
(
F̄ + M̄

) − aF̄
]
[−m − c

(
F̄ + M̄

) − cM̄] + aF̄
[ r
2

− cM̄
]

and explicitly it yields

4 am2 − 2 amr − 4 cm2 + 4 cmr − cr2

4 a
< 0

which is satisfied for r < 2m(c − a)c−1 or for r > 2m.
Combining these result with (8), these stability conditions for E1 coming from A

hold unconditionally whenever the equilibrium is feasible.
For the minor B we have

tr (B) = ρ r1
2

− μ − b
(
F̄ + M̄

) − μ − g
(
F̄ + M̄

)
< 0

which explicitly gives the first stability condition

(ρ r1 − 4μ) a + (b + g) (2m − r) < 0. (10)

Further,

det(B) =
[ρ r1

2
− μ − b

(
F̄ + M̄

)] [μ + g
(
F̄ + M̄

)] < 0.

from which we obtain the second stability condition

b (r − 2m) > a (ρ r1 − 2μ) . (11)

In conclusion, E1 is stable if both (10) and (11) hold.
Figure2c shows the total mosquito population Z̄ = F̄ + M̄ at equilibrium E1 as

a function of the parameters a and c. The influence of the latter is scant, while the
population size grows fast for very small values of a, the intraspecific competition
rate affecting the healthy females. Figure2a shows the decrease in the different
populations when a increases. The females disappear faster than the males, as it
should be expected, since a influences directly their population. Figure2b shows the
populations behavior when c increases. The females grow, males drop, while the
total population remains constant. For c < a males exceed the females. In all sets of
parameters, the initial condition is the same one used in Fig. 1; recall that the other
parameters are chosen arbitrarily.

In conclusion, feasibility for E1 requires the oviposition rate for healthy
mosquitoes to be at least twice as much as their mortality rate. Stability hinges
on (10) and (11); in particular E1 can be destabilized by the suitable introduction
of bacteriological infection, as these conditions contain parameters related to the
Wolbachia action.
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Fig. 2 In a top right, Female F , males M , and the total population Z = F + M at the disease-free
equilibrium E1 as function of the females intraspecific competition rate a with c = 0.2, and in
b top left, F , M , and Z populations at the disease-free equilibrium E1 as function of the males
intraspecific competition rate c, with a = 0.2, and in c bottom, the total healthy population Z at
the disease-free equilibrium E1 as function of the intraspecific competition rates a for females and
c for males, with r = 30, m = 0.1. In both (a) and (b) the parameters r and m are fixed as in (c)

4.2 Persistence of theWolbachia-Infected Population and
Extinction of the Wild Population

Here we consider the equilibrium with F̄ = M̄ = 0, but this situation could arise
only in the full vertical transmission case ρ = 1. The corresponding equilibrium is

E2 =
(
0,

2br1μ − 4bμ2 + 4gμ2 − 4gμr1 + gr21
2b (2μb + br1 − 2gμ + gr1)

, 0,
r1 (r1 − 2μ)

2 (2μb + br1 − 2gμ + gr1)

)
.

The analysis follows very closely the one of E1, so that we just mention the final
results. Feasibility holds in case

r1 > 2μ, (12)
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which concerns only reproduction rate and mortality of the infected mosquitoes and
is independent of their intraspecific competition rates b and g. For stability, the
Jacobian again factorizes and ultimately E2 is stable whenever feasible.

Similarly, the dependence of the population values on b and g indicates that
increasing the intraspecific competition b among infected females implies a sharp
reduction in the total (infected) population Z̄ = Ī + Ū (as here F̄ = M̄ = 0), while
the latter is scantly affected by changes in g, although the male to female ratio is
much reduced.

In summary, this equilibrium would be beneficial, because all the insects would
be Wolbachia-affected. Thus, in case of a bacterium with perfect vertical transmis-
sion rate, it would always be possible to attain a stable endemic state at which all
individuals are infected and the population is lower, using considerations already
seen for equilibrium E1, due to the bacteria-induced reduced reproductive capacity
and higher mortality.

4.3 Coexistence with Endemic Infection

This equilibrium is investigated numerically. To this end,weuse information obtained
from the literature [12], such as the vertical bacterial transmission that is taken to be
almost perfect, ρ � 99%.

The reduction of adult longevity is about p � 21%, thus from

μ = m
p

100 − p
,

we find
μ � 1.27m. (13)

Egg survival is about � 83 − 96%, which combined with their reduction due to the
action of the bacterium, estimated to be about � 15% [8], implies that the reduced
reproduction rate is

0.7055 r < r1 < 0.8160 r. (14)

Finally, following [18], we assume thatWolbachia prevents the successful mating of
an infected male with a susceptible female, thereby setting

k � 0. (15)

For the remaining parameters, we fix the following hypothetical values

r = 150, r1 = 120, m = 20, μ = 25.4, ρ = 0.99, (16)

k = 0.01, a = 1, b = 1, c = 1, g = 1, p = q = 0.5.
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The initial conditions are

F0 = I0 = M0 = U0 = 1. (17)

Solving numerically system (1), three cases of interest arise:

(i) bacteria-free equilibrium (the equilibrium E1 which was already discussed in
Sect. 4.1), with F̄1 = 27.5, M̄1 = 27.5 and of course Ī1 = Ū1 = 0 (observe that
the condition r > 2m is satisfied for this chosen parameter set). The Jacobian
eigenvalues are all negative, −55.0, −75.0, −80.4 and −21.0, so it is asymptot-
ically stable.

(ii) two coexistence points:

(a) E3 = (F̄3, Ī3, M̄3, Ū3) with

F̄3 = 0.2, Ī3 = 16.8, M̄3 = 0.2, Ū3 = 16.8.

The eigenvalues of the Jacobian matrix are all negative, −34.0, −51.6,
−54.0, −59.4. Thus, this point is asymptotically stable; and

(b) E4 = (F̄4, Ī4, M̄4, Ū4) where

F̄4 = 12.1, Ī4 = 4.9, M̄4 = 12.1, Ū4 = 4.9.

The eigenvalues of the Jacobianmatrix in this case are:−34.0,−54.0,−59.4
and 14.9. Because the last one is positive, this equilibrium is unstable.

Note that the total mosquitoes populations are Z̄ = F̄ + M̄ = 55 at E1 and Z̄ =
F̄ + Ī + M̄ + Ū = 34 at E4, with almost all (99%) mosquitoes infected. Thus, in
addition to render the insects infected,Wolbachia reduces also their population size,
in agreement with the field studies [4, 6, 13, 19].

The unstable equilibrium E4 gives us tips about the invasion threshold; it says
that the initial prevalence of the infection must exceed 0.285, i.e.,

I0 +U0 > 0.285 (F0 + I0 + M0 +U0) . (18)

In Figure3 we show the bistability situation that arises in case (ii). We plot the
system trajectories in the projection of the phase space onto the plane that contains
the infected populations I +U versus the healthy ones F + M . The initial points are
in red, in blue the equilibria. The one near the vertical axis represents the endemic case
E3, while the one over the horizontal axis is the disease-free point E1. In the former, as
stated above, the healthy population is scant, and the level of the infected population
at the endemic equilibrium Ī + Ū , and consequently the resulting total population
at this point, is much lower than the total (healthy) population Z̄ = F̄ + M̄ at the
disease-free equilibrium E1. We also report both healthy and infected populations
of females against males, in Fig. 4. Because these are projections of the trajectories
of a four dimensional system onto planes, there are some apparent intersections, not
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Fig. 3 Projections of the system trajectories on the infected I +U versus healthy F + M total
populations, with randomly generated initial conditions (red circles). The trajectories tend to either
one of the equilibria (blue circles), the endemic point near the vertical axis and the disease-free over
the horizontal one. Here, the initial conditions are always chosen so that I0 = U0 and M0 = F0
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Fig. 4 The same simulations of Fig. 3, with the same parameters and with randomly generated
initial conditions for all the populations, with trajectories projected onto the healthy plane M − F ,
left, and onto the infected planeU − I , right. In these simulations, conditions I0 = U0 andM0 = F0
do not hold

occurring in the four dimensional phase space. Note also that in these simulations
taking p = q = 0.5, as well as a = c and b = g, implies that the equilibria are found
on the bisectrix, as the size of male and female populations are the same. Figure3
suggests the presence of a separatrix in the four dimensional population space. Its
position and shape depends on the choice of the parameters, here (16). Note that in
particular, condition (17) has been set so that the bacterium can settle endemically
in the population.
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5 Numerical Simulations

In this section, we will focus on the case of persistence of both populations of
mosquitoes, the infected and uninfected ones. Therefore, all simulations were done
using the baseline parameters. Also, the initial subpopulation values are set to 1, so
that I0 +U0 = 2, F0 + I0 + M0 +U0 = 4, and their ratio is 0.5 > 0.285, ensuring
the endemicity of the bacterium. This sets up a proxy for the study of the coexistence
equilibrium as a function of some parameters.

5.1 Oviposition

Figure5a shows the total mosquito population Z = F + I + M +U as function of
the reproduction parameters r and r1. For low values of both oviposition rates, the
population is much reduced. For higher values of r and low r1 the population grows
linearly, with the healthy portion prevailing on the infected one, as can be seen in
Fig. 5a and b. When instead r1 grows and r is small in comparison, the bacterium
establishes endemically in themosquito population. In such case, the total population
(on the right of Fig. 5a) grows in a slower way and attains lower values than those
found for the healthy one, on the left of the Fig. 5a. This is in agreement with the
fact that the introduction of Wolbachia-carrying mosquitoes, when successful, can
decrease the total mosquitoes population. The sharp jump that separates the two
surfaces represents the reduction of mosquitoes due to the Wolbachia presence. Its
position clearly depends on the model parameters.

5.2 Mortality

For high values of the mortality rates (2m > r , 2μ > r1) the population dies out,
which is apparent in the front part of the Fig. 6a, which is rotated, with the origin in
the back. For values ofm andμ becoming lower, the population increases linearly, as
expected.Again, on the left of Fig. 6awefind the bacteria-free case, as theWolbachia-
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induced mortality μ is much higher than the natural mortality m; on the right of
Fig. 6a instead the system settles to the endemic situation, because here the bacterium
has a reduced impact on the single individual. This situation corresponds to the
phenomenon observed in various natural situations, where diseases with high killing
rates are of course lethal for the individual, but in this way they have fewer chances
to spread in the whole community, with a thereby resulting smaller impact for the
population as a whole. For better understanding of these remarks, see Fig. 6b and c
for the total healthy and infected subpopulations.

5.3 Vertical Transmission

Figure7 shows the healthy, infected and total mosquito populations as function of the
Wolbachia vertical transmission rate ρ, in themeaningful range ρ ∈ [0.7, 1], because
for lower values the equilibrium becomes bacterium-free. The infected population
is clearly seen to rise with higher values of the transmission coefficient. Therefore,
it is important to choose a strain ofWolbachia that optimizes the transmission of the
bacteria from mother to its offspring.

5.4 Mating Prevention

The role of Wolbachia as preventing agent for mating reproduction success among
an infected male and a healthy female transpires from Fig. 8. In view of the field
findings, [18], only very small values of k << 1 are meaningful, and in such case
the healthy population settles at very low levels, as it should be expected. Comparing
Figs. 8 and 7 we observe that the coexistence equilibrium is more sensitive to the
parameter ρ that is related to bacteria inheritance than to k that accounts for the
cytoplasmic incompatibility.
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Fig. 7 Mosquito populations at equilibrium in terms of the vertical transmission rate ρ. Blue line:
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Fig. 8 Mosquito populations at equilibrium in terms of the bacterium-induced mating prevention
action k. Blue line: the total healthy population F + M ; red line: the total infected population
I +U ; black line: the total mosquito population Z = F + I + M +U

5.5 Intraspecific Competition

In Fig. 9a, where again the origin is at the far end, for decreasing and low values
of b, the intraspecific competition experienced by the infected females entails a
large increase in the mosquito level, independently of the intraspecific competition
experienced by the healthy females a. The increase is due to Wolbachia endemic
presence in the population, see Fig. 9b and c. Large values of b coupled with low
values of a determine also a sharp population increase, in this case, being due to the
bacterium eradication.
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Fig. 11 Equilibrium in terms of the infected females and males intraspecific competitions b and
g. In a left, the total mosquito population Z = F + I + M +U ; note that the figure is rotated and
the origin is located in the right corner; in b center, the healthy mosquito population F + M ; and
in c right, the infected mosquito population I +U

A sharp increase in the mosquito population level is found in the right corner of
Fig. 10a, i.e. for lowvalues of healthymales intraspecific competition c and large ones
for their infected counterparts, g. Again, the sudden surge is due to the disappearance
of the bacterium from the population, compare Fig. 10b and c.

As it has been discovered in the left frame of Fig. 9, also in case of changes in the
infected subpopulations intraspecific coefficients b and g a jump is observed, Fig. 11,
when large values of both coefficients produce higher equilibrium value, where the
infection is eradicated. On the other hand, small values of the female competition
b induce the endemic equilibrium, independently of the value that a attains, see the
central and right frames in Fig. 11.

Finally, the healthy female and male intraspecific parameters a and c do not alter
the coexistence equilibrium. And, in order to increase its presence in the mosquito
population, the bacteria must increase male’s mortality.
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5.6 Sex Ratio

Here it is seen that a low value of the female offsprings newborns p, induced by the
Wolbachia action, entails a low female to male subpopulations’ ratio, as it should
be expected, Fig. 12. At a critical value of p � 0.25 the females suddenly disappear,
to rebound to higher values for increasing values of p, up to 90% when p = 1. A
corresponding linear increase of the total population is also observed. The males
instead in the interval of p ∈ [0.25, 1] experience an increase to the peak at p �
0.6, to decline afterwards up to a tenth of the total population when p = 1. If we
consider the infected population, it is absent for p < 0.25, and correspondingly the
total population is healthy. For p > 0.25 the infected population starts to increase,
with increasing p, attaining 90% of the population for p = 1, and a corresponding
decrease of the healthy individuals occurs. Thus, as it is expected, sex relation bias
to female (p > 0.5) increases the probability of the Wolbachia infection’s fixation
in the population, especially when the bacteria vertical transmission rate is high.

6 Conclusion

The introduction ofWolbachia-infectedmosquito into uninfectedwild populations of
Aedesmosquito can reduce or halt the transmission of some arboviruses. This occurs
because disease transmission depends on the ratio between vector and human popula-
tions, and theWolbachia-carrying mosquitoes have reduced vectorial capacity when
challengedwith dengue virus. The establishment of aWolbachia-carrying population
in an area where aWolbachia-free population is endemic depends on several param-
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eters like mosquitoes fitness, maternal inheritance and cytoplasmic incompatibility.
Therefore, using a sex-structured epidemiological model, we discussed populations
competition and persistence under several scenarios. The proposed model has four
equilibria: (i) extinction of mosquito population, (ii) extinction of infected popu-
lation and persistence of uninfected one, (iii) extinction of uninfected population
and persistence of infected one, and (iv) coexistence of both populations. First, the
persistence of the population (infected or uninfected one) occurs only for r > 2m
or, r1 > 2μ which means that reproduction rates overcome mortality rates. Besides,
case (iii) is possible only when maternal inheritance is perfect. Moreover, coexis-
tence is achieved given that the initial infection prevalence is above a threshold value
(given by Eq.18) which depends on model parameters. Finally, female-biased sex
ratio (see Fig. 12), or high maternal inheritance (see Fig. 7), or high cytoplasmic
incompatibility (see Fig. 8) promote the fixation of the Wolbachia-infection on the
mosquito population. Overall, the results obtained here are in agreement with the
ones described in the literature.
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Effect of Nonlinear Harvesting
on a Fractional-Order Predator-Prey
Model

Kshirod Sarkar and Biswajit Mondal

Abstract In this paper,wehave introducednonlinear harvesting to study a fractional-
order predator-prey model with Holling-II response. Existence of multiple equilib-
rium points of the model and their stability under different conditions are analyzed.
Global stability analysis of the co-existence equilibrium point has examined by con-
sidering suitable Lyapunov function. we have observed that fractional-order model
is more viable for the memory-based system than integer-order model. Our model
exhibits Hopf bifurcation with respect to fractional-order of the derivative. Further-
more, we have investigated period of doubling bifurcation with respect to some other
parameters. Numerical simulations have performed to verify the theoretical results
using Adams-Bashforth-Moulton type scheme.

Keywords Fractional-order · Nonlinear harvesting · Stability analysis · Hopf
bifurcation

1 Introduction

For the basic needs, harvesting of biological resources are rigorously practiced for
fishing and management of wildlife etc. The study of dynamical systems with har-
vesting is another important research topic in population dynamics. It is observed that
the nonlinear harvesting ismore reasonablewhen the number of harvesting of species
is very large. Furthermore, It is quite realistic to implement linear harvesting when
prey population is low. In linear harvesting, the harvesting function h(x) = qEx ,
increases proportionally as harvesting species x increases, which is unrealistic in the
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biological sense. But these unreasonable features can be fixed by applying nonlinear
type harvesting.

Many researchers have considered nonlinear harvesting in their models. Hu and
Cao [7] has incorporated a nonlinear type prey harvesting in Leslie-Gowermodel and
have discussed different types of bifurcation analysis. A bioeconomic predator-prey
model is studied by [9] and they consider nonlinear harvesting for prey only. Also
[6] have discussed the predator-prey model with nonlinear harvesting in predator
population and established that nonlinear harvesting is more realistic for large popu-
lation. Stability and bifurcation analysis in a prey-predator model with group defence
as well as nonlinear harvesting are studied by [8]. Effect of nonlinear harvesting in a
prey-predator model with square root functional response are discussed by [14]. Fur-
thermore, a notable research considering nonlinear type harvesting have examined
by [5]. Stability and bifurcation analysis of a prey-predator model with Holling-
IV functional response and nonlinear harvesting are examined by [16]. Recently,
[11] have examined the dynamical effects of nonlinear harvesting in prey species
with Holling-II predation in their model and have considered the harvesting function
h(x) = hu

h+u where h is positive constants. But the form of this type nonlinear har-
vesting function is a particular case rather than the general case. The general form
of nonlinear harvesting function is f (u) = qEu

m1E+m2u
. Here, q denotes the harvesting

coefficient, E denotes the harvesting effort and m1, m2 are positive constants. We
have incorporated nonlinear harvesting function qEu

m1E+m2u
in our model

du

dτ
= ru

(
1 − u

k

)
− buv

c + u
− qEu

m1E + m2u
dv

dτ
= euv

c + u
− dv, (1)

where u(0) > 0, v(0) > 0. Here r and k are intrinsic growth rate and carrying capac-
ity of prey species respectively. Parameter b is the consumption rate per unit time, c
is the half saturation constant, e is the conversion factor per unit time by per predator
and d is the death rate of predator species. To reduce free and floating parameters,
we have applied non-dimensional scheme. Thus we take some set of transformation
as follows: x = u

k , y = bv
k , t = rτ , β = 1

r , α = c
k , h = qE

m2rk
, m = m1E

m2k
, β1 = e

r and

δ = d
r . Then we have obtained a dynamical model:

dx

dt
= x(1 − x) − βxy

α + x
− hx

m + x
dy

dt
= β1xy

α + x
− δy, (2)

Fractional order differential equations manifests greater degrees of freedom and
some realistic results in complex dynamicalmodel. Fractional order differential equa-
tion ismore appropriate to analyzebiological systemas it contains thememorykernel.
In recent years, many researches have been done in fractional-order model due to
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its ability to execute a better approximation of nonlinear dynamics. Now consider
n − 1 < μ < n and n ∈ N , then the Caputo type fractional derivative of order μ > 0
is defined as [2]:

Dμ
t f (t) = 1

�(n − μ)

∫ t

t0

f n(s)

(t − s)μ+1−n
ds,

where f (t) is a function of order μ and f (t) ∈ Cn([t0,∞),R). There are very few
articles which have discussed fractional-order prey-predator model with nonlinear
harvesting. Fractional order Leslie-Gowermodel with nonlinear harvesting is studied
by [4]. Further, authors [12] have considered a fractional-order Leslie-Gower model
with nonlinear harvesting and discussed the optimal control strategies. Here we
consider the model 2 with fractional order differential equation as follows:

dμx

dtμ
= x(1 − x) − βxy

α + x
− hx

m + x
dμy

dtμ
= β1xy

α + x
− δy, (3)

where x(0) > 0, y(0) > 0 and 0 < μ ≤ 1.
The arrangement of remaining portion of the paper is given as follows: existence

of different equilibrium points and their local stability are examined in Sect. 2. The
global stability and Hopf bifurcation are discussed in Sects. 3 and 4 respectively.
Numerical simulations have been organized in Sect. 5 and finally, conclusions have
discussed in Sect. 6.

2 Equilibrium Points and Local Stability

The trivial equilibrium point E0 = (0, 0) is always exist. This model has at most
two predator free equilibrium(PFE) points, namely it is EL = (xL , 0) and ER =
(xR, 0) and it depends on the equation g(x) = 1 − x − h

m+x = 0. Then roots of

the equation are xL and xR , where xL = 1
2

(
1 − m − √

(1 − m)2 − 4(h − m)
)
and

xR = 1
2

(
1 − m + √

(1 − m)2 − 4(h − m)
)
. Conditions for the existence of twoPFE

points is m < h < m0 = (
1+m
2

)2
, where m < 1. In this case obviously, g′(xL) > 0

and g′(xR) < 0. Only axial PFE point ER = (xR, 0) exist for h ≤ m. If h = m0, these
two PFE points collides each other at the point

(
1−m
2 , 0

)
and then g′ ( 1−m

2

) = 0. No
axial equilibrium point exist for h > m0. Co-existing equilibrium point is obtained at

E∗ =
(
x∗, y∗ =

(
α+x∗

β

)
g(x∗)

)
, where x∗ = δα

β1−δ
, which is meaningful only when

β1 > δ. Hence from the above studies, we have the following results:
(i) If m < h < m0, system has two PFE points ER and EL . Interior equilibrium

point E∗ exists if xL < x∗ < xR .
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(i i) If m ≥ h, system has one PFE point ER . Interior equilibrium point E∗ exist
if 0 < x∗ < xR .

(i i i) If h = m0, two PFE points ER and ER collide with each other. No interior
equilibrium point exists when h ≥ m0.

The Jacobian matrix at any point (x, y) of the system 3 is

J (x, y) =
(
1 − 2x − βαy

(α+x)2 − hm
(m+x)2 − βx

α+x
β1αy

(α+x)2
β1x
α+x − δ

)
. (4)

2.1 m < h < m0

Theorem 1 (a) The trivial equilibrium point E0 is locally asymptotically stable
(LAS).

(b) Both the equilibrium points EL and ER are saddle point if xL < x∗ < xR.
(c) The equilibrium point EL is unstable, while equilibrium point ER is a saddle

point if 0 < x∗ < xL .
(d) The equilibrium point EL is saddle point, while equilibrium point ER is LAS if

xR < x∗.
(e) If T (J (E∗)) ≤ 0, then the equilibrium point E∗ of the system 3 is LAS.
( f ) If T (J (E∗)) > 0 and T 2(J (E∗)) < 4D(J (E∗)), then the equilibrium point E∗

is LAS for μ if
√| T 2(J (E∗)) − 4D(J (E∗)) | > T (J (E∗))tan

(μπ
2

)
.

Proof Wehave analysed the local stability of the different equilibrium points accord-
ing to the results of [13, 15]. (a) We have obtained the eigen values of the matrix
J (E0). It is observed that the eigenvalues of λ1 < 0 if h > m and λ2 < 0, conse-
quently we get | arg(λ1) |= π >

μπ
2 . Hence according to Matignon’s condition, E0

is LAS when h > m.
(b) From Eq.4, we have obtained the eigenvalues of the Jacobian matrix J (EL)

as λ1 = xLg′(xL) and λ2 = β1xL
α+xL

− δ. For xL < x∗ < xR it gives g′(xL) > 0 and
β1xL
α+xL

< δ, consequently we have λ1 > 0 and λ2 < 0. Thus EL is saddle point. The

eigenvalues of the matrix J (ER) are obtained as λ1 = xRg′(xR) and λ2 = β1xR
α+xR

− δ.

But in this case we have λ1 < 0 and λ2 > 0, as g′(xR) < 0 and β1xR
α+xR

> δ. Hence ER

is also a saddle point.
(c) For the case 0 < x∗ < xL , it is obvious that eigenvalue λ1 > 0 of J (EL) as

g′(xL) > 0 and eigenvalue λ2 > 0 as β1xL
α+xL

− δ > 0. So the condition | arg(λi ) |>
μπ
2 , for i = 1, 2 does not satisfy.
Hence in this case EL is unstable. Now eigenvalue of the matrix J (ER) are such

that λ1 = xRg′(xR) and λ2 = β1xR
α+xR

− δ. Similarly in this case we obtained as λ1 < 0
and λ2 > 0. Therefore ER is a saddle point.

(d) If xR < x∗, then eigenvalues of J (EL) is such that λ1 > 0 and λ2 < 0. Hence
EL is saddle point. Now eigenvalues of J (ER) is such that λ1 < 0 and λ2 < 0.
Therefore, using Matignon’s condition of stability we have ER is LAS.
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(e) In this case coexistence equilibrium point E∗ exist when xL < x∗ < xR . The
characteristic equation of J (E∗) is given by λ2 − T (J (E∗))λ + D(J (E∗)) = 0.
Then it gives T (J (E∗)) = 1 − 2x∗ − βαy∗

(α+x∗)2 − hm
(m+x∗)2 and D(J (E∗)) = βαβ1x∗ y∗

(α+x∗)3 >

0. Now if T (J (E∗)) = 0, then J (E∗) has two purely imaginary complex conjugate
eigenvalues λ1 and λ2 such that | arg(λ1,2) |= π

2 . Hence the equilibrium point
E∗ is stable. If T (J (E∗)) < 0, then also the eigenvalues of J (E∗) are satisfied the
Matignon’s condition and hence E∗ is LAS.

( f ) If T (J (E∗)) > 0 and T 2(J (E∗)) < 4D(J (E∗)), then J (E∗) has a pair of
complex conjugate eigenvaluesλ1 andλ2 with positive real parts. From the given con-
dition it is obvious that Im(λ1) > Re(λ1) tan(

μπ
2 ) and −Im(λ2) > Re(λ2) tan(

μπ
2 ).

After some calculation it implies that | arg(λi ) |> μπ
2 , for i = 1, 2. Hence

E∗ is LAS for μ ∈ (0,μ∗], where the critical value μ∗ is given by

μ∗ = 2
π
tan−1

(√| T 2(J (E∗)) − 4D(J (E∗)) |/T (J (E∗))
)
.

2.2 h ≤ m

Theorem 2 (a) The trivial equilibrium point E0 is saddle point when h < m and
stable when h = m.

(b) Only PFE point ER is saddle point if 0 < x∗ < xR and LAS if xR < x∗.
(c) Interior equilibrium point E∗ of the system 3 is LAS if T (J (E∗)) ≤ 0.
(d) If T (J (E∗)) > 0 and T 2(J (E∗)) < 4D(J (E∗)), then the equilibrium point E∗

is LAS for μ if
√| T 2(J (E∗)) − 4D(J (E∗)) | > T (J (E∗))tan

(μπ
2

)
.

Proof (a) The eigenvalues of J (E0) are λ1 = 1 − h
m and λ2 = −δ < 0. Now for

h < m, we have λ1 > 0 and hence E0 is saddle point for the case h < m.
(b) In this case only one PFE point ER exist. Now we obtain the eigenvalues of

J (ER) as λ1 = xRg′(xR) and λ2 = β1xR
α+xR

− δ. For 0 < x∗ < xR , it gives g′(xR) < 0

and β1xR
α+xR

> δ. Consequently we have λ1 < 0 and λ2 > 0. Thus ER is saddle point.
But when xR < x∗, we have λ1 < 0 and λ2 < 0. Hence in this case ER is LAS, since
it satisfies the Matignon’s condition. In this case coexistence equilibrium point E∗
exist when 0 < x∗ < xR . Local stability analysis around E∗ of the Theorem2c and
d are same as the Theorem1e and f respectively.

2.3 h ≥ m0

It is clear that when g′(xL) = 0, then EL coincide with ER . Thus in this case saddle-
node bifurcation occurs at h = m0, when m �= 1. the only equilibrium point E0

exists when h ≥ m0. Eigen values of J (E0) are λ1 = 1 − h
m < 0 and λ2 = −δ < 0

and hence E0 is LAS when h ≥ m0.
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3 Global Stability

Theorem 3 The co-existence equilibrium point E∗ of the dynamical model 3 is
globally asymptotically stable if it is locally asymptotically stable.

Proof For E∗ = (x∗, y∗), we have 1 − x∗ − βy∗
α+x∗ − h

m+x∗ = 0 and β1x∗
α+x∗ − δ =

0. Consider a function L1(x, y) = (
x − x∗ − x∗log x

x∗
) + a1

(
y − y∗ − y∗log y

y∗

)
.

where a1 > 0 is a constant. Now applying μ fractional order derivative of L1(x, y)
and apply the Lemma 3.1 of [17]. After some calculations it follows that dμL1

dtμ ≤(
βy∗

(α+x)(α+x∗) + h
(m+x)(m+x∗) − 1

)
(x − x∗)2 + (a1αβ1 − βx∗ − βα)

(x−x∗)(y−y∗)
(α+x)(α+x∗) .

Now choosing the constant a1 = β(α+x∗)
αβ1

and after some calculations it has dμL1
dtμ ≤(

βy∗
α(α+x∗) + h

m(m+x∗) − 1
)

(x − x∗)2. Now consider the two functions L2(x, y) =
1
2 [(x − x∗) + β

β1
(y − y∗)]2 and L3(x, y) = [(x − x∗) + β

β1
(y − y∗)].

Then takeμ fractional-order derivative of L3(x, y) and using linearity propertywe
get that dμL3

dtμ = −x(x − x∗) + hx(x−x∗)
(m+x)(m+x∗) + βy∗(x−x∗)

α+x∗ − βx∗(y−y∗)
α+x∗ . Again applying

μ fractional-order derivative in L2(x, y) we have

dμL2
dtμ

<

(
h

m + x∗ + βy∗
α + x∗ + βy∗

β1

)
(x − x∗)2 − β2x∗(y − y∗)2

β1(α + x∗)
+

(
βh

β1(m + x∗)
+ β2y∗

β1(α + x∗)
− βx∗

β1
− βx∗

α + x∗

)
(x − x∗)(y − y∗). (5)

It is noted that
(

βh
β1(m+x∗) + β2 y∗

β1(α+x∗) − βx∗
β1

− βx∗
α+x∗

)
(x − x∗)(y − y∗) ≤ P(x −

x∗)2 + β2x∗(y−y∗)2
2β1(α+x∗) ,where P =

(
βh

β1(m+x∗)
+ β2 y∗

β1(α+x∗)
− βx∗

α+x∗ − βx∗
β1

)2

2β2x∗/β1(α+x∗) . Thus from Eq.5 we have
dμL2
dtμ ≤

(
h

m+x∗ + βy∗
α+x∗ + βy∗

β1
+ P

)
(x − x∗)2 − β2x∗(y−y∗)2

2β1(α+x∗) .

Now consider the Lyapunov function L(x, y) = L1(x, y) + a2L2(x, y), where
a2 > 0 is a positive constant. Therefore taking μ order derivative of L(x, y) and
after simplification it has

dμL

dtμ
≤ −

((
1 − βy∗

α(α + x∗)
− h

m(m + x∗)

)
− a2

(
βy∗

α + x∗ + h

m + x∗ + βy∗
β1

+ P

))

×(x − x∗)2 − a2β
2x∗(y − y∗)2

2β1(α + x∗)
.

Nowwe can choose constant a2 in a suitable way such that
(
1 − βy∗

α(α+x∗)
− h

m(m+x∗)

)
−

a2
(

βy∗
α+x∗ + h

m+x∗ + βy∗
β1

+ P
)

= 1
2

(
1 − βy∗

α(α+x∗)
− h

m(m+x∗)

)
. Thus it gives us(

1 − βy∗
α(α+x∗) − h

m(m+x∗)

)
= 2a2

(
βy∗

α+x∗ + h
m+x∗ + βy∗

β1
+ P

)
> 0. Then we get that

dμL
dtμ ≤ − 1

2

(
1 − βy∗

α(α+x∗) − h
m(m+x∗)

)
(x − x∗)2 − a2β2x∗(y−y∗)2

2β1(α+x∗) . Therefore we have
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dμL
dtμ < 0, f or (x, y) �= (x∗, y∗) and dμL

dtμ = 0 f or (x, y) = (x∗, y∗). Hence E∗ of
the system 3 is GAS.

4 Hopf Bifurcation

Theorem 4 The necessary and sufficient conditions for the dynamical system 3
exhibits Hopf bifurcation through E∗ if the parameter μ crosses the critical value

μ∗ = 2
π
tan−1

(√
|T 2(J (E∗))−4D(J (E∗))|

T (J (E∗))

)
, where T (J (E∗)) > 0 and T 2(J (E∗)) <

4D(J (E∗)).

Proof From the given conditions it is clear that the eigenvalues of the Jacobian
matrix J (E∗) are λ1,2 = φ ± iω where we have φ = 1

2T (J (E∗)) > 0 and also

ω = 1
2

√| T 2(J (E∗)) − 4D(J (E∗)) |. Now it hasG1,2(μ
∗) = μ∗π

2 − | arg(λi ) |=
μ∗π
2 − tan−1 | ω/� | =tan−1 | ω/� | −tan−1 | ω/� |= 0 and obviously

∂G1,2

∂μ
|μ=μ∗= π

2 �= 0. Therefore, according to Sect. (2.2) of [1] Hopf bifurcation
occurs if the bifurcation parameter μ crosses the value μ = μ∗.

5 Numerical Simulation

Here we have performed some numerical computations to check the feasibility of
our model. In this fractional-order model, a generalized Adams-Bashforth-Moulton
type scheme is used accordingly by [3, 10]. We have observed that the parameters
h and m have a major biological impact on the model. In Fig. 1, we have drawn
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Fig. 1 The existence of various PFE equilibrium points depends on the parameters h and m. X-
nullcline and y-nullcline for different values of parameters that are fixed except h andm are obtained
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Fig. 2 No interior, as well as PFE point exists in the red shaded region. The interior equilibrium
point and two PFE points exist in the green shaded region. Whereas interior equilibrium point and
one PFE point exist in the cyan region
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Fig. 3 Phase portraits are obtained forμ = 0.99,α = 0.5, β = 0.55, β1 = 0.5, h = 0.3,m = 0.25.
a no interior equilibrium exist, ER is LAS, EL is saddle point and E0 is LAS. b Interior equilibrium
point E∗ is nodal sink, ER and EL are saddle point and E0 is LAS

x-nullcline and y-nullcline where we consider different values of h, m along with
β = 0.55, β1 = 0.5, α = 0.5, δ = 0.25.

The Existence of the interior equilibrium and PFE points depends on two param-
eters h and m, which are shown in Fig. 2. First we check the case m < h < m0

and consider the parameters β = 0.55, β1 = 0.5, α = 0.5, h = 0.3, m = 0.25 and
δ = 0.3. In this case two PFE points ER = (0.67604, 0) and EL = (0.07396, 0) are
exist and no interior equilibrium exist as the condition xL < x∗ < xR does not fol-
lows. It is observed that E0 is LAS as h > m, ER is a nodal sink and EL is a saddle
point as x∗ > xR and drawn in Fig. 3a. Now consider δ = 0.26 and other parameters
are the same. Then the system has two PFE points and interior equilibrium points at
E∗ = (0.54167, 0.15035) which is a nodal sink as T (J (E∗)) = −0.2411 < 0 and
depicted in Fig. 3b.
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Fig. 4 Phase planes are drawn at β = 0.55, β1 = 0.5, α = 0.5, h = 0.3 and m = 0.25

Consider δ = 0.21 and other parameters are same. Then the Phase portraits given
by Fig. 4a shows that system 3 has interior equilibrium at E∗ = (0.36207, 0.23165).
We found that E∗ is a spiral sink and E0 is LAS. Here EL and ER are saddle
points. Now take δ = 0.2 with the other parameters are same. We have seen that
from Fig. 4b, coexistence equilibrium point E∗ = (0.34746, 0.23176) is unstable
as T (J (E∗) = 0.0062 > 0. But if we consider μ = 0.92, system 3 becomes LAS
around the E∗ and displayed in Fig. 4c. Now consider δ = 0.1 and other parameters
are fixed. Then E∗ = (0.125, 0.085227) is unstable and two PFE points are saddle
points, which is shown in Fig. 5a. When δ = 0.05, no interior equilibrium exists. We
examine that EL is a nodal source and ER is a saddle point because 0 < x∗ < xL
and depicted in Fig. 5b.

To check the dynamics for the case h < m, we have considered β = 0.55, β1 =
0.5, α = 0.5, h = 0.3, m = 0.35 and δ = 0.3. Here, no coexistence equilibrium
exist as x∗ > xR , one PFE point ER exist and it is LAS and trivial equilibrium
E0 is a saddle point as h < m and shown in Fig. 6a. Now consider δ = 0.25 along
with the same parameters value. It has examined that E∗ exist as x∗ > xR and it is
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Fig. 6 Phase planes are drawn with the values of μ = 1, β = 0.55, α = 0.5, β1 = 0.5, h = 0.3
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Fig. 7 Phase planes are drawn at β = 0.55, α = 0.5, β1 = 0.5, h = 0.3, m = 0.35 and δ = 0.18

spiral sink. Beside these, E0 and ER are saddle point. Now consider δ = 0.18 along
with the same parameters value. We have obtained for integer-order system that the
coexistence equilibrium E∗ is a unstable and E0, ER are saddle points. But the system
3 with μ = 0.94 becomes LAS around E∗ as μ < μ∗ = 0.9655, obtained from the
Theorem 4 and shown in Fig. 7.

With the same parameters value we have obtained a figure with various regions
of influence in (h,μ)-plane in Fig. 8. For h = 0.3, we have obtained μ∗ = 0.9655
and which is again verified in this figure. To check the effect δ and h in the system
3, we have obtained some bifurcation diagrams and have displayed in Figs. 9 and
10. We have observed that for μ = 1 model 3 exhibits Hopf bifurcation around
E∗ at δ = 0.2331. It is observed from Fig. 9 that predator species can be extinct if
δ > 0.4985. The bifurcation diagram given by the Fig. 10 shows that extinction of
both species can happen if h > 0.81.
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Fig. 8 We have obtained various regions in (h,μ)-plane for the parameters value β = 0.55, α =
0.5, m = 0.35, β1 = 0.5 and δ = 0.18. Equilibrium point E∗ is LAS in S1 for integer-order as
well as fractional-order system, LAS only for fractional-order system in S2, unstable in S3 and no
co-existence equilibrium point exists in S4

Fig. 9 Double period bifurcation occurs for δ when β = 0.9, α = 0.5, h = 0.3, m = 0.8 and
β1 = 0.8. Hopf bifurcation occurs at the critical value δ = 0.2331. When μ = 1, model 3 becomes
unstable around E∗ when 0 ≤ δ < 0.2331, LAS when 0.2331 < δ < 0.5 and extinction of predator
species can happen for δ > 0.5

Fig. 10 Double period bifurcation when μ = 1 and other parameters are considered as β = 0.9,
α = 0.5, m = 0.8, β1 = 0.8 and δ = 0.2



772 K. Sarkar and B. Mondal

6 Conclusions

It is observed that predator-prey model with nonlinear harvesting possesses multi-
ple predator free equilibrium points under the different conditions of the harvesting
parameters h and m. It is observed theoretically that both prey and predator species
can be extinct if h > m0 and validates this result by Figs. 8 and 10. Coexistence equi-
librium point E∗ = (x∗, y∗) exist only when the prey equilibrium value x∗ is less
than the value xR . Stability analysis of the fractional-order model 3 has been studied
according toMatington’s conditions. Global stability analysis has been demonstrated
successfully by constructing a suitable Lyapunov function and have verified it that
E∗ is globally asymptotically stable. We have discussed the occurrence of Hopf
bifurcation for the fractional-order μ and have examined it theoretically and numer-
ically. Also we have studied that Hopf bifurcation of the system 3 when μ = 1 for
the parameters δ and h occurs around the coexistence equilibrium point and have
discussed in numerical simulation. It is shown that a larger death rate of predators can
be extinct predator species. We have examined the influence of the fractional-order
μ on the fractional-order system and it is shown that an unstable integer order system
becomes stable in fractional-order system which obeys the theoretical results.
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A Numerical Application of Collocation
Method for Solving KdV-Lax Equation

Seydi Battal Gazi Karakoc and Derya Yildirim Sucu

Abstract In this paper, a mathematical model representing the numerical solutions
of Lax equation which is version of generalized fifth-order nonlinear KdV equation
(fKdV) is studied. Collocation method with septic B-splines has been used for the
model problem. Using a powerful Fourier series analysis of the linearized scheme,
the numerical results have been shown to be unconditionally stable. L2 and L∞
error norms are calculated for single solutions to show practicality and robustness
of proposed scheme. The obtained numerical results are shown in the table. Also,
all simulations are shown to illustrate the numerical behavior of a single soliton.
Present results show that the method provides highly accurate solutions. Therefore,
the current scheme will be useful for other nonlinear scientific problems.

Keywords Lax equation · Finite element method · Collocation
1 Introduction

Fifth-order KdV-type equation in its general form is given by

ut + αu2ux + βuxuxx + γuuxxx + uxxxxx = 0. (1)

Here α, β and γ are arbitrary positive parameters. These parameters strongly change
the properties of the equation.This type of fifth-order Eq. (1) is the universal model
for the study of shallow water waves with surface tension and has many physical
applications a wide range of areas. Many versions of fKdV equation can be gener-
ated using different values of these parameters. For example, the following KdV-Lax
equation
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ut + 30u2ux + 30uxuxx + 10uuxxx + uxxxxx = 0, (2)

with α = 30, β = 30, and γ = 10.
In this study, Lax equation, which is one of the fKdV equation, will be discussed.

Many applications of various methods for the all forms of the fKdV equation can be
found in the literature, but our scheme has not been implemented before. Because
of the great importance of fKdV equation in nonlinear equations, many scientists
obtained analytical and numerical solutions. In the literature, one can find out that
the equation was solved with several methods, among others; Adomian [1], extended
tanh [2], Haar wavelet sorting [3], Hirota’s bilinear [4], auto-Bäcklund and Hirota
transform [5], inverse scattering transform [6].

In addition, Inan and Ugurlu applied exp-function method for fifth-order KdV
equation [7]. Bilige et al. [8] proposed an extended simplest equation method to
search for full traveling wave solutions for various forms of the fifth-order KdV
equation. The existence and stability of traveling waves of the fifth order KdV
equation are investigated for a general class of nonlinearity satisfying power-like
scaling relationships at [9]. A numerical approach based on the Homotopy perturba-
tion transform method (HPTM) was applied to obtain exact and approximate solu-
tions of nonlinear fifth-order KdV equations to study magneto-acoustic waves in the
plasma at [10]. Travelling wave solutions were found for the generalized nonlinear
fifth-order Korteweg-de Vries (KdV) equations using the direct algebraic method at
[11]. Seventh order Lax equation is analyzed by Darvishi et al. with pseudospectral
method [12].

The main form of our study can be briefly stated as follows: In Sect. 2, the septic
B-spline approach is shown and the solution of the KdV-Lax equation by the finite
element method is proposed. The stability analysis of the method is discussed in
Sect. 3. In Sect. 4, numerical applications and their results are shown in table and
graphs. In the final, a brief conclusion is given on the method presented in Sect. 5.

2 Septic B-Spline Approximation

In this study, we are interested in the numerical solutions of the KdV-Lax equation,
whose bidirectional generalisation is given below:

ut + 30u2ux + 30uxuxx + 10uuxxx + uxxxxx = 0, (3)

with initial and boundary conditions

u(x, 0) = f (x), a ≤ x ≤ b, (4)

u(a, t) = 0, ux (a, t) = 0, (5)

u(b, t) = 0, ux (b, t) = 0, t > 0. (6)
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KdV-Lax equation is searched into the boundary conditions u → 0 while x → ±∞,

x and t which generally denote time and space, respectively. The equation is a
member of the completely integrable hierarchy of higher-order KdV equations [13].
To start the procedure, our first task to solve the initial-boundary value problem
given in Eqs. (3)–(6) numerically is to separate the solution domain.The septic
B-spline functions {φ−3(x),φ−2(x), . . . ,φN+3(x)}, at the nodes xm are described
on the solution zone [a, b] in [14].

Now, we continue the numerical treatment, which we will apply using the septic
B-spline collocation finite element method, by generating an approximate solution
for the equation system. We find the numerical approximation solution uN (x, t) in
the following form,

uN (x, t) =
N+3∑

m=−3

φm(x)σm(t). (7)

Applying the following transformation

hξ = x − xm, 0 ≤ ξ ≤ 1 (8)

to the specific finite region [xm, xm+1] is planned to more easily practicable region
[0, 1] [15]. Thus, septic B-splines depending on variable ξ over the finite element
[0, 1] are described as:

φm−3 = 1 − 7ξ + 21ξ2 − 35ξ3 + 35ξ4 − 21ξ5 + 7ξ6 − ξ7,
φm−2 = 120 − 392ξ + 504ξ2 − 280ξ3 + 84ξ5 − 42ξ6 + 7ξ7,
φm−1 = 1191 − 1715ξ + 315ξ2 + 665ξ3 − 315ξ4 − 105ξ5 + 105ξ6 − 21ξ7,
φm = 2416 − 1680ξ + 560ξ4 − 140ξ6 + 35ξ7,
φm+1 = 1191 + 1715ξ + 315ξ2 − 665ξ3 − 315ξ4 + 105ξ5 + 105ξ6 − 35ξ7,
φm+2 = 120 + 392ξ + 504ξ2 + 280ξ3 − 84ξ5 − 42ξ6 + 21ξ7,
φm+3 = 1 + 7ξ + 21ξ2 + 35ξ3 + 35ξ4 + 21ξ5 + 7ξ6 − ξ7,
φm+4 = ξ7.

(9)

The values of um,and its derivatives at the knots are calculated from using Eq. (7)
and septic B-splines (9) in terms of element parameters σm in following form

uN (xm , t) = σm−3 + 120σm−2 + 1191σm−1 + 2416σm + 1191σm+1 + 120σm+2 + σm+3,

u′
m = 7

h (−σm−3 − 56σm−2 − 245σm−1 + 245σm+1 + 56σm+2 + σm+3),

u′′
m = 42

h2
(σm−3 + 24σm−2 + 15σm−1 − 80σm + 15σm+1 + 24σm+2 + σm+3),

u′′′
m = 210

h3
(−σm−3 − 8σm−2 + 19σm−1 − 19σm+1 + 8σm+2 + σm+3),

uivm = 840
h4

(σm−3 − 9σm−1 + 16σm − 9σm+1 + σm+3),

uv
m = 2520

h5
(−σm−3 + 4σm−2 − 5σm−1 + 5σm+1 − 4σm+2 + σm+3).

(10)
Now, using the (7) and (10) into Eq. (2), following general form equation is reached
for the linearization technique:
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·
σm−3 + 120

·
σm−2 + 1191

·
σm−1 + 2416

·
σm + 1191

·
σm+1 + 120

·
σm+2 + ·

σm+3
+(30Zm1 + 20Zm2)

7
h (−σm−3 − 56σm−2 − 245σm−1 + 245σm+1 + 56σm+2 + σm+3)

+10Zm3
210
h3

(−σm−3 − 8σm−2 + 19σm−1 − 19σm+1 + 8σm+2 + σm+3)

+ 2520
h5

(−σm−3 + 4σm−2 − 5σm−1 + 5σm+1 − 4σm+2 + σm+3) = 0,
(11)

where
·
σ = dσ

dt and

Zm1 = u2 = (σm−3 + 120σm−2 + 1191σm−1 + 2416σm + 1191σm+1 + 120σm+2 + σm+3)
2,

Zm2 = uxx = 42
h2

(σm−3 + 24σm−2 + 15σm−1 − 80σm + 15σm+1 + 24σm+2 + σm+3),

Zm3 = u = σm−3 + 120σm−2 + 1191σm−1 + 2416σm + 1191σm+1 + 120σm+2 + σm+3.

Let’s discretize for time parameters σi ’s according to the Crank-Nicolson for-
mula and it is separated using forward finite difference approximation for its spatial
variables and their derivatives

·
σ’s in the following form in Eq. (11):

σi = σn+1
i + σn

i

2
,

·
σi = σn+1

i − σn
i

Δt
. (12)

Thus, the above operation allows us to derive a recursion relationship between
two time levels based on the parameters δn+1

i and δni for as:

λ1σ
n+1
m−3 + λ2σ

n+1
m−2 + λ3σ

n+1
m−1 + λ4σ

n+1
m + λ5σ

n+1
m+1 + λ6σ

n+1
m+2 + λ7σ

n+1
m+3= λ7σ

n
m−3 + λ6σ

n
m−2 + λ5σ

n
m−1 + λ4σ

n
m + λ3σ

n
m+1 + λ2σ

n
m+2 + λ1σ

n
m+3,

(13)

where
λ1 = [1 − E − T − M] ,
λ2 = [120 − 56E − 8T + 4M] ,
λ3 = [1191 − 245E + 19T − 5M] ,
λ4 = [2416] ,
λ5 = [1191 + 245E − 19T + 5M] ,
λ6 = [120 + 56E + 8T − 4M] ,
λ7 = [1 + E + T + M] ,
E = a

2Δt, T = b
2Δt, M = 2520

2h5
Δt,

a = [30Zm1 + 20Zm2],
b = [ 2100

h3
Zm3].

(14)

If we take a look at the algebraic system (13) we obtained above, the num-
ber of linear equations are less than the number of unknown coefficients, that
is, the system involves of (N + 1) equation (N + 7) unknown time dependent
parameters [16]. The simplest way to find a unique solution is to remove six
unknowns σ−3,σ−2,σ−1, . . . ,σN+1,σN+2, and σN+3 from the system. This proce-
dure is applied using the boundary conditions with the values of u and after eliminat-
ing unknowns, a matrix system of (N + 1) linear equations with (N + 1) unknown
parameters dn = (σ0,σ1, . . . ,σN )T are obtained in the form of the followingmatrix-
vector system:

Rdn+1 = Sdn. (15)
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3 Stability Analysis

In this part, we explain through the Von-Neumann theory to demonstrate stability of
the linearized numerical algorithm. To show the stability analysis, the fKdV equa-
tion was linearized by supposing that the quantities u2, uxx and u in the nonlinear
terms u2ux , uxuxx and uuxxx are locally constant, respectively. Growth factor ξ of a
characteristic Fourier mode is identified as:

σn
m = ξneimkh, (16)

here i = √−1, h is the element greatness and k is the mode number, is obtained
from the linear stability analysis of the algorithm. Putting the equality (16) into the
iterative system (13), which gives the growth factor

ξ = ρ1 − iρ2
ρ1 + iρ2

, (17)

where
ρ1 = 2 cos (3kh) + 240 cos (2kh) + 2382 cos (kh) + 2416,
ρ2 = (2M + 2T + 2E) sin (3kh) .

(18)

|ξ| = 1 is obtainedwhenwe take themodulus of Eq. (17). In thisway,we demonstrate
that scheme (13) is unconditionally stable under the present conditions.

4 Numerical Applications and Discussions

In this section,we exemplify ourmethod improved in Sect. 2 to theKdV-Lax equation
for different parameters of the time and space division. To check the sensibility and
reliability of the presented method, the following L2 and L∞ error norms will be
used respectively:

L2 = ∥∥uexact − uN

∥∥
2 �

√√√√h
N∑

j=1

∣∣∣uexactj − (uN ) j

∣∣∣
2
, (19)

L∞ = ∥∥uexact − uN

∥∥∞ � max
j

∣∣uexactj − (uN ) j
∣∣ , j = 1, 2, ..., N . (20)

Lax equation has an exact solution of the form

u(x, t) = 2k2
(
2 − 3tanh2

[
k

(
x − 56k4t − x0

)])
, (21)

where k and x0 are arbitrary real numbers. We will consider the Lax equation with
the boundary-initial condition which is
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Table 1 Error norms for k = 0.01, Δt = 0.0004 and various values of h

Δt = 0.0004, h = 0.5 Δt = 0.0001, h = 0.05

t L2 L∞ L2 L∞
0.1 0.0007476185 0.0003786723 0.0006605026 0.0003870472

0.2 0.0008112957 0.0003797258 0.0006965400 0.0004162210

0.3 0.0008167458 0.0003793303 0.0007209887 0.0003999905

0.4 0.0008542324 0.0003784037 0.0007876002 0.0004253867

0.5 0.0008354053 0.0003899616 0.0008298723 0.0005542919

0.6 0.0008850945 0.0003787136 0.0009135698 0.0009698522

0.7 0.0008491875 0.0003800426 0.0011118805 0.0022608287

0.8 0.0008693723 0.0003949290 0.0019634349 0.0059890208

0.9 0.0009128289 0.0003794148 0.0048874414 0.0170258202

1.0 0.0008974475 0.0003791528 0.0140005587 0.0499546306

u(x, 0) = 2k2tanh2 [k(x − x0)] , (22)

where u → 0 as x → ±∞. We let x0 = 0 and k = 0.01 over the interval x ε
[−20, 20], to present numerical solutions.

The algorithm has been performed in the calculation range [−20, 20] and up to
time t = 1. It was recorded that the solitary wave has amplitude A = 0.0002 at x = 0
and at the initial moment of t = 0. In simulation calculations, typical values we use
are Δt = 0.0004; 0.0001 with h = 0.5 and 0.05. Values of the L2 and L∞ error
norms are displayed in Table1. It has been observed that the calculated values of the
error norms are found to be adequately small. It is evident that the minimum L∞
error norm 3.786723 × 10−4 with the parameters Δt = 0.0004 and h = 0.5. These
errors do not change much over time. In addition, it can be seen that the real solutions
and the numerical solutions are in good agreement and the method is efficient when
the values of the error norms are seen from the table. If the Fig. 1 is examined, we can
clearly see that the three dimensional states of the bell shaped solitary wave solutions
produced from t = 0 to t = 1. It can be said that amplitude and shape are preserved
as time passes. On the other hand, numerical error distribution is also plotted at time
t = 1 for different values of h and Δt in Fig. 1.
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Fig. 1 Motion of single solitary wave and the error distributions at t = 1 for the parameters Δt =
0.0004 and h = 0.5

5 Conclusion

In this study, numerical solutions of Lax equation, which is a fifth-order KdV equa-
tion, are investigated by considering some fixed selection initial and boundary condi-
tions. In this trajectory, a combination of the collocation method on the finite element
approach is used to construct the numerical scheme of the equation. Septic B-splines
have been chosen as the interpolation functions of this application. We have shown
that our linearized scheme is unconditionally stable. In order to perform numerical
experiments, the algorithm is studied with a single solitary wave motion whose ana-
lytical solution is known. The performance and validity of the numerical scheme
was measured by calculating both L2 and L∞ error norms. All experiments were
supported by figures and table. The sampled results confirm that our error norms are
good enough as required. It may be concluded that the method used here is powerful,
efficient and confidental technique for solving a wide class of nonlinear evolution
equations.
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Influence of Suspension Lock
on the Four-Station Military Recovery
Vehicle with Trailing Arm Suspension
During Crane Operation

M. Devesh, R. Manigandan, and Saayan Banerjee

Abstract The present work is focused on the development of a non-linear dynamic
mathematical model of a four-station military recovery vehicle with trailing arm
hydro-gas suspension (HSU) during crane operations over flat terrain. The influ-
ence of the crane payload non-linear motion on the trailing arm dynamic behavior
is brought out in the dynamic model. The model additionally contains non-
linearities due to the penalty contact phenomenon, which are associated with the
HSU rebound/bump-stoppers, suspension locks or between the dummy masses and
ground. Second-order coupled governing non-linear differential equations of motion
are formulated for 13 degrees of freedomof the vehicle, namely, sprungmass bounce,
pitch and roll, angular motions of the 4 unspring masses, crane payload angular
motions in the longitudinal and lateral directions as well as bounce motion of the 4
dummy masses. The equations of motion are coded and solved in MATLAB. The
maximum pay-load lifting capacity could be determined by modeling the dynamic
influence of the suspension locks on the recovery vehicle static equilibrium config-
uration, which is an essential pre-requisite before deciding upon the vehicle moving
speed with the crane payload. This model is novel, generic and would provide deep
insight into the development of a recovery vehicle simulator.
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1 Introduction

Military recovery vehicle cranes are typically used to lift and carry required payloads
from the battlefield to the nearest base workshop. The payload inertias can directly
influence the vehicle stability, which necessitates a detailed study to determine the
maximumpayload capacitywith the trailing armhydro-gas suspension configuration.
The comparative dynamic analysis of a military recovery vehicle during crane oper-
ations with linear suspension over flat terrain was discussed by Nikhil [1]. However,
in Nikhil [1], linear vertical spring-mass system was considered to determine the
maximum crane payload which would yield definite differences in sprung mass
responses when compared to that with trailing arm suspension. The effects of the
integrated ride and cornering dynamics of amilitary vehicle on the weapon responses
were brought out by Banerjee et al. [2]. A non-linear mathematical model of a single
station with hydro-gas trailing arm suspension was developed by Banerjee et al.
[3]. However, in Banerjee et al. [2] and Banerjee et al. [3], the dynamic effects
from sprung mass large pitch and roll angular motions were not considered in the
governing equations. Moreover, in Banerjee et al. [2] and Banerjee et al. [3], contact
algorithms were not incorporated into the governing equations to simulate the stop-
pers or loss of ground contact. The meshed gear profile penalty contact formulation
is established accurately by Xiufeng and Yabin [4]. A sprung mass non-linear pitch
dynamics mathematical model with a trailing arm torsion bar suspension systemwas
developed by Devesh et al. [5]. However, in Devesh et al. [5], an in-plane dynamic
model with two degrees of freedom is only considered to determine the sprung mass
dynamic responses.

It is noteworthy that extensive research has been undertaken in the field of military
vehicle dynamics. However, the present study brings out the integrated dynamic
influence of crane payload inertias and suspension locks with their associated penalty
contact formulation on the military recovery vehicle static settlement configuration
through a detailed non-linear dynamic mathematical model, which has not been
reported in the literature to date. The road-holding phenomenon of the unsprang
masses under such integrated dynamic influence is additionally simulated through
penalty contact formulation in the governing equations, which has also not been
brought out in literature to date. The dynamic effects of sprung mass large pitch and
roll angular motions are additionally considered in the present mathematical model.
This dynamic model is very novel and generic. It would establish a stepping stone
towards deciding upon the vehicle moving speed along with the crane payload and
development of a recovery vehicle simulator.
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2 Description of the Four-Station Military Recovery
Vehicle Dynamic Model

The second-order coupled governing differential equations of motion consists of 13
degrees of freedom, namely, sprung mass bounce, pitch, roll about its CG, left (LHi)
and right (RHi) unsprung mass angular motions from the rebound (i = 1 to 2), crane
payload angular motions in the longitudinal and lateral directions with respect to the
vertical axis and as well as left (LHi) and right (RHi) dummy mass bounce motions
(i = 1 to 2). The hydro-gas suspension rebound, bump-stoppers and suspension
locks are modelled by using penalty contact formulation with high magnitudes of
torsional stiffness and damping. The loss of wheel-to-ground contact under high
pay-load magnitudes is also simulated through the penalty contact formulation by
the introduction of suitable dummy masses. Figure 1 represents the coordinates for
different degrees of freedom and other vehicle parameters. Figure 2 describes the
associated free body diagram with a detailed representation of forces and moments

Fig. 1 Vibration model of the military recovery vehicle with crane payload- a Side View of the
vehicle, b Front View of the vehicle, c. Top View of the vehicle
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Fig. 2 Free body diagram of four-station military recovery vehicle with crane payload- a Sprung
mass bounce & pitch angular motion and angular motion of unsprung masses, b Sprung mass roll
motion, c Bounce motion of the dummy masses from side view, d Bounce motion of the dummy
masses from front view, e Crane payload angular motion in the longitudinal direction, f Crane
payload angular motion in the lateral direction

on the crane, sprung and unsprung masses. The description of different variables
which are used in the free body diagram and their corresponding magnitudes are
highlighted in Table 1.
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Table 1 Description and magnitudes of the variables

Variable Definition Magnitude

M Sprung mass 20,000 kg

I Pitch moment inertia of sprung mass about the CG 170,000 kgm2

J Roll moment inertia of sprung mass about the CG 17,000 kgm2

mli , mri LHi& RHi (i = 1, 2) unsprung masses 500 kg

ktli ,ktri LHi& RHi (i = 1, 2) road-wheel & track pad vertical stiffness 8000 kN/m

c Viscous damping coefficient along the direction of actuator
piston motion

400 kNs/m

L 1 Longitudinal dist. from sprung mass CG to front suspension
pivotal points

3.3 m

L 2 Longitudinal dist. from sprung mass CG to rear suspension
pivotal points

2.7 m

B 1 Lateral dist. from sprung mass CG to left suspension stations 1.45 m

B 2 Lateral dist. from sprung mass CG to right suspension stations 1.55 m

L 7 Longitudinal dist. from sprung mass CG to crane boom
mounting location

2.8 m

L 10 Lateral dist. from sprung mass CG to crane boom mounting
location

1 m

L t Axle arm length 0.5 m

H 2 Vertical dist. from unsprung mass CG to crane boom
mounting location

2 m

H 0 Vertical dist. from sprung mass CG to crane boom mounting
location

1 m

d Vertical dist. from sprung mass CG to the suspension pivotal
points

0.25 m

αli ,αri LHi& RHi (i = 1, 2) suspension axle arm rebound angles 420

mb Mass of the crane boom 1100 kg

cw Torsional viscous damping coefficient about the payload hinge
point

100 kNms/rad

L b Length of the crane boom 5.4 m

L w Length of the payload string 3 m

θc Crane boom inclination with respect to longitudinal axis (in
XZ plane)

670

θcl Crane boom inclination with respect to longitudinal axis (in
XY plane)

1350

dmli , dmri LHi& RHi (i = 1, 2) dummy masses 1 kg

ksli ,ksri Contact stiffness between the dummy masses and ground 105 kN/m

csli ,csri Contact damping between dummy masses and ground 1 kNs/m

kub Contact stiffness of the bump stopper 105 kNm/rad

krb Contact stiffness of the rebound stopper 105 kNm/rad

(continued)
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Table 1 (continued)

Variable Definition Magnitude

cub Contact damping coefficient of the bump stopper 1 kNms/rad

crb Contact damping coefficient of the rebound stopper 1 kNms/rad

mw Crane payload mass including the mass of the string and hook (Variable
magnitude)

ϕs Bump stopper/Suspension lock angle with respect to rebound position (Variable
magnitude)

3 Equations of Motion of the Four-Station Military Vehicle

The second order coupled governing non-linear differential equations of motion
are derived by referring to the free body diagram in Fig. 2. The non-linear bounce
equation of the sprung mass, which is measured at its CG, is written as

MZ̈+Pl1 + Pl2 + Pr1 + Pr2 + ktl1Ztl1 + ktl2Ztl2 + ktr1Ztr1 + ktr2Ztr2

+ M1g + mw Z̈w1 + mw Z̈v1 + mw Z̈v2 = 0 (1)

where MZ̈ is the sprung mass vertical inertia, Pli & Pri are the vertical inertias of
the LHi & RHi (i = 1 to 2) unsprung masses, respectively, ktli Ztli & ktri Ztri are
restoring forces from the road wheel springs of the LHi and RHi (i= 1 to 2) stations,
respectively, M1g is the force due to self-weight of the sprung and unsprung masses
as well as crane boom and payload,mw Z̈w1, mw Z̈v1 andmw Z̈v2 are the crane payload
vertical inertias due to sprung mass bounce, pitch and roll motions as well as due to
its own angular motion in the longitudinal and lateral directions, respectively. The
effects of sprung mass large pitch and roll angular motions along with its inertia
coupling with the unsprung mass and crane payload angular motion, are highlighted
in the subsequent equations.

In Eq. (1), Pli = mli Z̈li ,Pri = mri Z̈ri , where

Zli = Z + Ltcosαli − Ltcos(αli + ϕli + θ) + d − dcosθ + pLi sinθ + B1sin∅

(2)

Zri = Z + Ltcosαri − Ltcos(αri + ϕri + θ) + d − dcosθ + pLi sinθ − B2sin∅

(3)

(p = −1 for i = 1 and p = + 1 for i = 2).
The LHi and RHi road-wheel spring vertical displacements Ztli and Ztri (i = 1

to 2), respectively, which are obtained by accounting for the load transfer effects due
to crane payload inertias in both longitudinal and lateral directions, are described by

Ztli = (
Zli + pZlit1 − Zlit2 − Zlit3

)
(4)
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(p = +1 for i = 1 and p = −1 for i = 2)

Ztri = (Zri + pZrit1 + Zrit2 − Zrit3) (5)

(p = +1 or i = 1 and p = −1 for i = 2)
where Zlit1 & Zrit1(i = 1 to 2) are components of the LHi &RHi (i = 1 to 2) road-

wheel spring vertical displacements, respectively, due to load transfer effects from
the crane payload longitudinal inertias and Zlit2 & Zrit2(i = 1 to 2) are components
of the LHi &RHi (i = 1 to 2) road-wheel spring vertical displacements, respectively,
due to load transfer effects from the crane payload lateral inertias.

Z jit1 = (L ji Bq)
(
mw Ẍh1 − mw Ẍw1

){(H2 − H0)cosθ + Z}
(B1 + B2)(kt j1L2

j1 + kt j2L2
2)

(6)

(j = l or r; q = 2 for j = l; q = 1 for j = r)

Z jit2 = Bq
(
mwŸh1 − mwŸw1

){(H2 − H0)cosθ + Z}
2(ktl1B2

1 cos∅ + ktr1B2
2 cos∅)

(7)

(j = l or r; q = 1 for j = l; q = 2 for j = r)
In Eqs. (1), (6) and (7),

L j1 = L1cosθ − Ltsin
(
α j1 + ϕ j1 + θ

) − dsinθ (8)

L j2 = L2cosθ + Ltsin
(
α j2 + ϕ j2 + θ

) + dsinθ (9)

where j = l or r

M1 = (M + ml1 + ml2 + mr1 + mr2 + mb + mw) (10)

Zw1 = Z − L7sinθ − L10sin∅ (11)

Zv1 = Lw − Lwcosθw1 (12)

Zv2 = Lw − Lwcosθw2 (13)

The sprung mass non-linear pitch equation of motion about its CG, is written as

I θ̈−Pl1Ll1 + Pl2Ll2 − Pr1Lr1 + Pr2Lr2 + Hl1Ll3 + Hl2Ll4 + Hr1Lr3

+ Hr2Lr4 − ktl1Ztl1Ll1 + ktl2Ztl2Ll2 − ktr1Ztr1Lr1 + ktr2Ztr2Lr2

− ml1gLl1 + ml2gLl2 − mr1gLr1 + mr2gLr2 − (
mwg + mw Z̈w1 + mw Z̈v1 + mw Z̈v2

)
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Uc1 + (
mw Ẍh1 − mw Ẍw1

)
Vc − mbgUc2 = 0 (14)

In Eq. (14), Hli = mli Ẍli ,Hri = mri Ẍri , where

Xli = −pLi−Ltsinαli + pLicosθ + dsinθ + Ltsin(αli + ϕli + θ) (15)

Xri = −pLi−Ltsinαri + pLicosθ + dsinθ + Ltsin(αri + ϕri + θ) (16)

(p = −1 for i = 1 and p = +1 for i = 2)

Xh1 = Lwsinθw1 (17)

Xw1 = L7 − L7cosθ (18)

L j3 = Ltcos
(
α j1 + ϕ j1 + θ

) + dcosθ + L1sinθ (19)

L j4 = Ltcos
(
α j2 + ϕ j2 + θ

) + dcosθ − L2sinθ ( j = l or r) (20)

Uc1 = Lbcos(θc − θ − ∅)cosθcl + L7cosθ + H0sinθ (21)

Vc = Lbsin(θc − θ − ∅)−L7sinθ + H0cosθ (22)

Uc2 = (Lb/2)cos(θc − θ − ∅)cosθcl + L7cosθ + H0sinθ (23)

The second order non-linear roll equation of the sprung mass with reference to
the CG of the vehicle is written as

J ∅̈+Pl1B1cos∅ + Pl2B1cos∅ − Pr1B2cos∅ − Pr2B2cos∅ + ktl1Ztl1B1cos∅
+ ktl2Ztl2B1cos∅ − ktr1Ztr1B2cos∅ − ktr2Ztr2B2cos∅ + ml1gB1cos∅ + ml2gB1cos∅
− mr1gB2cos∅ − mr2gB2cos∅ − (

mw Z̈w1 + mw Z̈v1 + mw Z̈v2 + mwg
)
Ud1

+ (
MwŸh1 − MwŸw1

)
Vd − mbgUd2 = 0 (24)

where J ∅̈ is the sprung mass roll moment of inertia about its CG, mwŸh1 &mwŸw1
are the crane payload inertias in the lateral direction due its own angular motion as
well as due to coupling with the sprung mass large roll angular motion, respectively.

In Eq. (24), Yw1 = L10 − L10cos∅, Yh1 = Lwsinθw2

Ud1 = Lbcos(θc − θ − ∅)sinθcl + L10cos∅ + H0sin∅ (25)
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Vd = Lbsin(θc − θ − ∅)+L10sin∅ + H0cos∅ (26)

Ud2 = (Lb/2)cos(θc − θ − ∅)sinθcl + L10cos∅ + H0sin∅ (27)

The governing non-linear equations of motion, which represent the angular
motions of LHi & RHi (i = 1 to 2) unsprung masses about their respective pivotal
points, are written as.

Pli Lt sin(αli + ϕli + θ) + Hli Lt cos(αli + ϕli + θ) + mli gLt sin(αli + ϕli + θ)

+ktli Ztli sin(αli + ϕli + θ) + Tpli = 0
(28)

Pri Lt sin(αri + ϕri + θ) + Hri Lt cos(αri + ϕri + θ) + mri gLt sin(αri + ϕri + θ)

+ktri Ztri Lt sin(αri + ϕri + θ) + Tpri = 0
(29)

where Tpli & Tpri are the sum of moments about pivotal points of the LHi & RHi

(i = 1 to 2) unsprung masses due to the gas restoring force & damping force on
the actuator piston as well as due to bump-stopper/rebound stopper contact forces.
It may be noted that the bump-stopper or rebound stopper contact forces would act
only if contact is established with the suspension axle arm during its angular motion.
The hydro-gas suspension kinematics, stiffness & damping properties are arrived at
by referring to [3].

Tpji =

⎧
⎪⎪⎨

⎪⎪⎩

Tji
{
ϕ j i

} + cẋ ji
{
ϕ j i

}
L0; 0 ≤ ϕ j i ≤ ϕs, j = lorr,(

Tji {0} − krb
(
ϕ j i

)2) + (
cẋ ji {0}L0 + crb

(
ϕ̇ j i

));ϕ j i < 0,
(
Tji {ϕs} + kub

(
ϕ j i − ϕs

)2) + (
cẋ ji {ϕs}L0 + cub

(
ϕ̇ j i

));ϕ j i > ϕs

(30)

The governing second order non-linear equations, which represent vertical motion
of the LHi & RHi (i = 1 to 2) dummy masses, are written as

dmli Z̈li t3 − ktli (Zli − Zlit3) + dmli g − Fli = 0 (31)

dmri Z̈ri t3 − ktri (Zri − Zrit3) + dmri g − Fri = 0 (32)

where dmli Z̈li t3 & dmri Z̈ri t3 are the LHi & RHi (i = 1 to 2) dummy mass vertical
inertia forces, ktli (Zli − Zlit3) & ktri (Zri − Zrit3) are the LHi & RHi (i = 1 to 2)
road-wheel spring restoring forces, dmli g & dmri g represent self-weight of the LHi

& RHi (i = 1 to 2) dummy masses, Fli & Fri are the ground contact forces on the
LHi & RHi (i = 1 to 2) dummy masses such that
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Fji =
{
ks ji (Z jit3)

2 − cs ji
(
Ż ji t3

);
0;

Z jit3 ≤ 0, j = lorr,
Z jit3 > 0

(33)

The crane pay-load angular motion about its hinge point in the longitudinal and
lateral directions are written as

Iw1θ̈w1+mwgLwsinθw1 − mw Ẍw1Lwcosθw1 + cw θ̇w1

+ mw Z̈w1Lwsinθw1 + mw Z̈v2Lwsinθw1 = 0 (34)

Iw1θ̈w2+mwgLwsinθw2 − mwŸw1Lwcosθw2 + cw θ̇w2

+ mw Z̈w1Lwsinθw2 + mw Z̈v1Lwsinθw2 = 0 (35)

where Iw1θ̈w1 & Iw1θ̈w2 are the crane payload rotational inertia about its hinge
point in the longitudinal and lateral directions, respectively, cw θ̇w1 & cw θ̇w2 are
the viscous torsional damping moments about the crane payload hinge point in the
longitudinal and lateral directions, respectively,mw Ẍw1Lwcosθw1 &mwŸw1Lwcosθw2
are the moments about the hinge point due to the payload horizontal inertia by
virtue of its coupling with the sprung mass large pitch & roll motions, respectively,
mw Z̈w1Lwsinθw1 & mw Z̈w1Lwsinθw2 are the moments about the hinge point due to
the payload vertical inertia by virtue of its coupling with the sprung mass degrees of
freedom.

4 Static Equilibrium Response Comparison
with and Without Suspension Lock Over Flat Terrain

Equations (1) to (35) are coded in MATLAB and solved by using similar technique
as that described in [3]. The magnitudes of various fixed parameters are described
in Table 1. The four-station military vehicle is considered to have bump-stopper (ϕs

= 60°) at every suspension station with which the dynamic effects of variation in
the crane payload (mw) from 4.5 t, 8.5 t, 12.5 t & 14.5 t on the sprung mass roll
angle and RH1 & LH2 wheel reactions are observed initially. Thereafter, suspension
locks, which are similar in functionality to the usual bump-stoppers, were added to
each station in order to limit the wheel travel and sprung mass roll as well as to
reduce the suspension loads. In this regard, the suspension lock angle ϕs is reduced
to 35° from 60°. It may be noted that since the crane payload acts on the vehicle
right side and that too on one corner, RH1 & LH2 wheel stations encounter the
extreme loading conditions. Therefore, the transient dynamic and subsequent static
equilibrium response comparison (in terms of sprungmass roll angle and LH2 &RH1

vertical wheel reactions) with the suspension lock and usual bump-stopper over flat
terrain under different crane-payload conditions, is brought out from the non-linear
dynamic mathematical model of the military vehicle.
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Fig. 3 a Sprung mass roll under different payloads when ϕs = 60°, b Sprung mass roll under
different payloads when ϕs = 35°

The HSU rebound gas charging pressure is considered to be 95 bar in all the
stations for all the load cases. Figure 3a and b highlight the time dependent sprung
mass roll angular displacement variation with usual bump-stopper at 60° and suspen-
sion lock at 35°, respectively. Figure 4a and b represent the vertical reaction load
variation on the RH1 suspension station and Fig. 5a and b highlight the vertical reac-
tion load variation on the LH2suspension station with usual bump-stopper at 60° and
suspension lock at 35°, respectively. Table 2 indicates the comparative final static
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Fig. 4 a RH1 wheel vertical load under different payloads when ϕs = 60°, b RH1 wheel vertical
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Table 2 Final static equilibrium configuration of the four-station military vehicle with the crane
payload

Crane payload (t) Sprung mass roll (rad) RH1 wheel vertical
reaction (t)

LH2 wheel vertical
reaction (t)

ϕs = 60° ϕs = 35° ϕs = 60° ϕs = 35° ϕs = 60° ϕs = 35°

4.5 0.114 0.093 9.65 9.84 3.23 3.59

8.5 0.144 0.1 12.76 13.13 1.42 2.25

12.5 0.164 0.106 16.47 16.57 0.06 0.96

14.5 0.174 0.11 18.34 18.99 0 0.37

equilibrium response in terms of the sprung mass roll, RH1 & LH2 vertical wheel
reaction loads. It is observed from Fig. 3a and b and Table 2 that the sprung mass
roll angular displacement reduces further with the suspension lock when compared
to that with the usual bump-stopper under all the loading conditions. Therefore, as
the sprung mass roll is reduced, the wheel travel also gets limited. Moreover, as the
crane payload increases, there is more reduction in the sprung mass roll displace-
ment. Therefore, it clearly reveals the advantage of implementing the suspension
lock at a lesser angle by reducing the roll over tendency under given payloads. This
is evident from the LH2 wheel vertical reaction load which tends to become zero
(i.e., tends to lose ground contact) without the suspension lock. It is observed from
Figs. 4a and b, 5a and b and from Table 2 that there is a marginal increase in the
RH1 and LH2 wheel vertical reaction loads with implementation of the suspension
lock. However, it may be noted that with addition of the suspension lock at a lesser
angle, the vertical reaction load is shared by both the lock and HSU. This reduces
the overall suspension loads with addition of the lock. It is estimated from Table 2
that the safe crane payload for the given vehicle & suspension configuration is 12.5
t by considering a load factor of 1.5.

5 Conclusion

The non-linear mathematical model of the four-station military vehicle with trailing
arm HSU and crane hanging payload is developed to simulate the dynamic influence
of suspension lock on the vehicle dynamic behavior and final static equilibrium
configuration. The trailing arm dynamic behavior, inertia coupling effects between
the sprung & unsprung masses as well as hanging payload, rebound/bump-stopper
and ground contact phenomenon is brought out in the mathematical model. The
safe crane payload can also be estimated from the model. With the suspension lock
at a relatively lesser angle, sprung mass roll and overall suspension load reduction
are observed. Therefore, the implementation of suspension lock ascertains vehicle
stability. The model is a prerequisite for deciding upon the allowable vehicle speed
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during movement with the crane payload. The model is very novel & generic and
provides deep insight into the development of the recovery vehicle simulator.
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One-Dimensional Steady State Heat
Conduction Equation with and Without
Source Term by FVM

Neelam Patidar and Akshara Makrariya

Abstract A One-dimensional (1D) steady-state heat conduction equation with and
without source term is presented in this paper. The temperature distribution in a body
is determined by themodel of the heat equation based on some physical assumptions.
The heat equation is solved by finite volume method (FVM). By using the Matlab
software, a numerical simulation of the raised examples was investigated. The results
of the heat equation with and without source term are well compared and it is found
that the temperature distribution of 1D steady-state heat equation with source term
is parabolic whereas the temperature distribution without source term is linear. The
results concluded that the numerical solutions perfectly matched the exact solutions
as expected.

Keywords Heat equation · Heat conduction equation · Source term · Finite
volume method (FVM) · Partial differential equation (PDE) · One-dimensional
(1D)

1 Introduction

The heat equation is a crucial PDE that defines how heat (or temperature variation)
is distributed in a particular location over time. Mathematical analysis, numerical
computations, and experiments are all made easier by the heat equation. It’s also
extremely practical: engineers must ensure that engines do not melt and computer
chips do not overheat [1].Wemust examine the concepts in depth because of these and
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many other real-world applications of the heat equation [2, 3]. The control volume
approach has become a prominent fluid flow solution procedure over the last two
decades.

Chai et al. [4] presented a finite volume method (FVM) to capture collimated
beam. To demonstrate the FVM’s capabilities, it has been used in two- and three-
dimensional enclosures with transparent, emitting, absorbing and anisotropically
scattering media. All The obtained results have been compared with other published
results. And, it was conclude that the FVM is accurate and efficient.

Li et al. [5] proposed a new FVM for cylindrical heat conduction issues. The
problem was taken based on a local analytical solution. The novel approach’s com-
putation results are compared to those of the traditional second-order FVM. The
developed method for cylindrical heat conduction issues is more accurate than pre-
vious methods. The obtained results reveal that the novel method takes much less
computation effort than traditional methods to achieve the same degree of accuracy.

Belghazi et al. [6] presented an analytical approach of unsteady-state heat conduc-
tion. The study has done for two-layered material based on moving Gaussian laser.
The homogeneous part of the heat equation was solved by the separation of vari-
ables method. This model can also be used to calculate the thermal contact resistance
between layers.

A method for the solution of heat conduction problems with phase-changing and
movable boundary conditions has been developed by Juan [7]. The problem has been
solved by the element-free Galerkin method [8, 9]. According to the results of this
approach, it can effectively deal with the marked nonlinearity of fusion latent heat
release in heat transfer problems with phase change. Numerical results are obtained
accurate and stable by its straightforward implementation.

A numerical simulation of non-Fourier heat conduction in fins under periodic
boundary conditions has been done by Liu et al. [10]. To evaluate the non-fourier
heat conduction, the Lattice Boltzmann approach was used [11]. The study analyzed
the effect of frequency, shape and relaxation time of the base temperature oscillations
on heat transfer efficiency [12].

We have looked at 1D heat conduction in a steady state. Steady means the tem-
peratures do not change with time and hence, the heat flow does not change over
time. 1D means that the temperature is determined by a single dimension [13].

Heat Conduction: The thermal conductivity is defined by Fourier’s law. Accord-
ing to Fourier’s law, the area at right angles to the gradient through which the heat
flows is proportional to the negative gradient of temperature and the time rate of heat
transfer. Fourier’s law is also known as the law of heat conduction [14]. The aim
of this study is to derive a 1D heat equation with and without source term, and its
solution using the FVM along with its numerical analysis using MATLAB.

Finite volumemethod: The FVM is a numerical method that converts PDEs into
discrete algebraic equations. The PDEs express conservation laws across differential
volumes. Discrete algebraic equations can be solved over finite volumes [15, 16]. To
obtain the values of the dependent variables for each element, the system of these
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equations was solved. The resulting system of equations usually includes fluxes that
enter the finite volume faces, hence flux calculations are crucial in FVM [17, 18].
Interpolation and gradient methods are also used in this process [19].

2 Solution of 1D Steady-State Heat Conduction Equation
by FVM

The 1D steady-state heat conduction equation with the source term that we are using
in this study is created using the given formula

d

dx

(
k
dT

dx

)
+ S = 0

where ‘T’ is the rod’s temperature. The temperature boundary of values at A and B
are specified. Thermal diffusivity is denoted by the letter k and the source term is S.

2.1 Grid Generation

The discretization of the domain into discrete control volumes is the first stage in the
finite control volume, as shown in Fig. 1.

In this figure, the number of nodal points is placed between A and B. Here are
three nodal points. We are calculating the equation at node P. The finite control
volume is represented by the highlighted area. P is the center of control volume and
W and E are the neighboring nodes of the node P to its west and east respectively.
The w represents the interface between W-P and e represents the interface between
P-E. Grid size is denoted by δx. For this problem, we have assumed a uniform grid
[15, 20].

Fig. 1 discretization of the domain
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2.2 Discretization

Over the control volume, integrate the governing equation as follows:

∫
�V

d

dx

(
α
dT

dx

)
dV +

∫
�V

SdV = 0

The cross-sectional area of the control volume is A. �V is the control volume. The
average value of the source S over the control volume is S. Hence, dv = Adx and
�V = Aδx. since the heat generation rate is uniform, So the equation becomes

∫ e

w

d

dx

(
αA

dT

dx

)
dx + S

∫
�V

dV = 0

[(
αA

dT

dx

)
e

−
(

αA
dT

dx

)
w

]
+ S�V = 0

The above equation states that the generation of temperature is equal to the diffusive
flux of temperature leaving the east face of the control volume minus the diffusive
flux of temperature entering the west face. As we can observed that, the flow is
conserved within the control volume [21]. To derive useful forms of the discretized
equation, the interface diffusion coefficient and temperature gradient at east and west
face are required. Linear approximations seem to be the obvious and this is the easiest
method of computing interface values and gradients. This practice is called a central
differencing scheme [22].

αw = αW + αP

2
,αe = αE + αP

2

And the diffusive flux terms are calculated as follows:
(

αA
dT

dx

)
e

= αe Ae

(
TE − TP

δxPE

)
(

αA
dT

dx

)
w

= αw Aw
TP − TW
δxW P

The finite volume method approximates the source term as

S�V = Su + SpTP

The final equation can be rearranged as

(
αe Ae · TE − TP

δxPE

)
−

(
αw Aw · TP − TW

δxW P

)
+ (

Su + SpTP
) = 0
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This can be arranged as

(
αe Ae

δxPE
+ αw Aw

δxW P
− Sp

)
TP =

(
αw Aw

δxW P

)
TW +

(
αe Ae

δxPE

)
TE + Su

Identifying the coefficient of TP , TW , TE as aW , aP , aE and rearranging the equation
as under

aPTP = aWTW + aETE + Su

where

aW = aw AW

δxW P
, aP = αe Ae

δxPE
, aE = aW + aP − Sp

3 Numerical Solution

A textbook exam is taken “An Introduction to Computational Fluid Dynamics” by
Versteeg and Malasekara [15]: Consider the problem of heat conduction with and
without source term in an insulated rod whose ends are kept at a constant temperature
of 100 ◦Cand 500 ◦C respectively. Calculate the temperature distribution in a road at a
steady state. The cross-sectional areaA is 10 × 10−3 m2 and the thermal conductivity
is 1000 W/m/K.

3.1 The Heat Conduction Equation with Source Term

Under uniform heat generation S = 1000K, the equation for the governing
process is

d

dx

(
K ∗ dT

dx

)
+ S = 0

Integrating above the control volume dV and discretization of the above equation
will yield

K · A ·
(
TE − TP

dx

)
− K · A ·

(
Tp − TW

dx

)
= SAdx

2K · A
dx

· TP = K · A
dx

· TE + K · A
dx

· TW + SAdx

The above equation represents the solution of temperature at the inner nodes. The
boundary conditions for this domain are T1 = 100 ◦C (left end) and T2 = 500 ◦C
(right end). At the left control volume, the node associated with the left boundary is

2K A

dx
· TP = K A

dx
· TA + K A

dx
· TE + SAdx
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And, the node associated with the right boundary is

2K A

dx
· TP = K A

dx
· TB + K A

dx
· TW + SAdx

3.2 The Heat Conduction Equation Without Source Term

d

dx

(
K ∗ dT

dx

)
= 0

Integrating above control volume dV and discretization of the above equation will
yield

K A ·
(
TE − TP

dx

)
− K A ·

(
Tp − TW

dx

)
= 0

2K A

dx
· TP = K A

dx
· TE + K A

dx
· TW

The above equation represents the solution of temperature at the inner nodes. The
node associated with the left boundary

2K A

dx
· TP = K A

dx
· TA + K A

dx
· TE

The node associated with the right boundary

2K A

dx
· TP = K A

dx
· TB + K A

dx
· TW

To verify the accuracy, the final equation is performed in MATLAB on 5, 10, and 25
nodes. The numerical solution is compared to the exact solution. The exact solution
is contained in the textbook [15].

4 Results and Discussion

The temperature distributions were analyzed at 5, 10 and 25 nodes to validate the
results. From the results, it was found that numerical accuracy increases as we
increase the number of nodes. The following outputs were obtained from the study.

The temperature distribution of the rod is shown in Fig. 2. In this figure, the straight
line shows the temperature distribution of a rod obtained by numerical method and
the dotted line represents the exact temperature distribution. The temperature of a
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Fig. 2 Temperature
distribution of rod

Fig. 3 Temperature
distribution of rod on adding
external source

rod increases with increasing the length of rod. The temperature start increasing from
100 ◦C then reached at 500 ◦C. The temperature increases linearly.

Figure3 shows the distribution of temperature of the rod on adding an external
heat source. In this figure, the straight line shows the temperature distribution of a rod
obtained by FVM and the dotted line represents the exact temperature distribution.
The temperature of a rod increases as increasing the length of the rod. The temperature
starts increasing from 100 ◦C and reached at 590 ◦C then again starts decreasing and
reached at 500 ◦C. The temperature distribution was obtained parabolically.

Figure4 shows the comparison between one-dimensional heat conduction equa-
tions with and without source term. It was obtained that the temperature distribution
of a rod without an external heat source is linear. On adding the external heat source
in a rod, the temperature distribution gets changed and becomes parabolic. From all
these results it was observed that the external source affects the temperature distri-
bution of a rod.
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Fig. 4 Comparison between
heat equations with and
without source term

5 Conclusion

A one-dimensional heat equation can be used to represent many physical phenomena
that are connected to temperature distribution, as demonstrated in this study. Analyt-
ical solutions are sometimes insufficient for understanding the behavior of solutions.
Due to this, we may rely on numerical solutions to find out more about the inherent
problems. In this study, we have seen how to obtain and solve a 1D steady-state
heat equation with and without a source term. It was observed that the temperature
distribution of 1D steady-state heat equation with source term is parabolic whereas
the temperature distribution without source term is linear. The numerical solutions
were found to be similar to the exact solutions, as expected. Furthermore, by using
MATLAB programming, we have provided a real comprehension of the example
mentioned in the study.
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Travelling and Solitary Wave Solutions
of (2+1)-Dimensional Nonlinear
Evoluation Equations by Using Khater
Method

Ram Mehar Singh , S. B. Bhardwaj , Anand Malik, Vinod Kumar,
and Fakir Chand

Abstract The most of the physical systems are nonlinear by nature which can be
represented by various nonlinear partial differential equations. Here, we present
a simple technique say Khater method to find the Travelling and Solitary Wave
solutions of (2+1)-dimensional nonlinear evoluation equations. This method is a
very powerful tool for obtaining the exact solutions of various nonlinear differential
equations. In this study, modified Korteweg- de Vries-Zakharov-Kuznetsov (mKdV-
ZK) equation is taken as an example of nonlinear evoluation equation which is used
in astrophysics to study various space phenomena, dynamics of plasma etc.

Keywords mKdV-ZK equation · Khater method · Traveling wave solutions ·
Solitary wave solutions

1 Introduction

The concept of solitary wave was introduced by Zabusky and Kruskal in 1965 in
their well known experiment on KdV- equation . It gain interest of researchers
working in areas of nonlinear dynamics. Various phenomena such as prolonga-
tion structures, space curves , gauge-equivalence, Lie-algebraic properties , sin-
gularity structures are related to the concept of solitons and can be described by
different nonlinear evolution equations(NLEEs) [1–3]. The investigation of travel-
ling and solitary wave solutions of these equations is a major component of the
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research that play a significant role in the description of various nonlinear systems.
The exact solutions of such equations yield lot of information about the system
concerned [4, 5] which can be obtained by reducing the nonlinear partial differ-
ential equations(NLPDEs) to associated ordinary differential equations by using
the ansatz g(x, y, t) = g(ξ), ξ = x + y − ct . In past, several efforts have been
made by mathematicians and physicists to find the exact solutions of the non-
linear partial differential equations by employing various methods like extended
modified auxiliary equation mapping method, exp-function method, ansatz method,
trial equation method, extended direct algebaric method, auxiliary equation method,
e(−iφξ)-expansionmethod, extended tanh-functionmethod,Kudryashovandmodified
Kudryashov methods, improved tan(

φ
2 )-expansion method,

(
G‘
G

)
-expansion method

, novel
(
G‘
G

)
-expansion method, improved

(
G‘
G

)
-expansion method etc. [6–12].

Now, we introduce a new method for solving various NLEEs i.e. Khater method
which is one of the few general methods available for solving various NLEEs. There
are lot of NLEEs to describe various nonlinear systems but in the present study,
we have computed the travelling and solitary wave solutions of (2+1)-dimensional
mKdV-ZK equation [13–15]which is an important class of NLEEs arising in fluid
dynamics, plasmaphysics,Bose-Einstein condensate, shallowwaterwaves, nonlinear
optics astrophysics, quantumoptic, hydrodynamic andmathematical physics to study
nonlinear physical phenomena.The organization of the paper is as follow : The basic
formulation of the Khater method is discussed in Sect. 2. Under the elegance of
Khater method, exact solitonic solutions of (2+1)-dimensional mKdV-ZK equation
and their graphical representations are given in Sect. 3. Finally concluding remarks
are addressed in Sect. 4.

2 Khater Method

Consider the nonlinear evolution equation as :

P(u, Dη
x q, Dη

yq, Dη
z q, Dη

t q, Dη
x D

η
yq, Dη

x D
η
t q, Dη

y D
η
t q, .....) = 0, (1)

where P is a polynomial in q(x,y,t) and its partial derivatives .

Step 1. Consider the transformation

g(x, y, t) = g(ξ), ξ = x + y − c1t, (2)

where c1 is the constant, then Eq. (2) transformed in the following ODE:

Q(q, q ′, q ′′, q ′′′, ........) = 0 (3)

where Q is a polynomial in q(ξ) and its various derivatives.
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Step 2. Consider solution of Eq. (3) as

q(ξ) =
N∑

i=0

aia
ig(ξ), (4)

where a, ai , are constants to be calculated, such that aN �= 0 and g(ξ) satisfies the
following differential equation :

g′(ξ) = 1

ln(a)

(
ηa−g(ξ) + ρ + δag(ξ)

)
(5)

Step 3. Determine the positive integer N in Eq. (5) by balancing the highest order
derivatives and the nonlinear terms.

Step 4. Inserting Eq. (4) along Eq. (5) into Eq. (3) and rationalization of the resultant
expression, we met a set of algebraic equations, which can be solved by symbolic
computation to get the values of ai and (η, ρ, δ).

The solutions of Eq. (5):
When (ρ2 − ηδ < 0 & σ = 0).

a f (ξ) =
[−ρ

δ
+

√−(ρ2 − ηδ)

δ
tan

(√−(ρ2 − ηδ)

2
ξ

)]
(6)

or

a f (ξ) =
[−ρ

δ
+

√−(ρ2 − ηδ)

δ
cot

(√−(ρ2 − ηδ)

2
ξ

)]
(7)

When (ρ2 + ηδ > 0 & δ �= 0).

a f (ξ) =
[−ρ

δ
−

√
(ρ2 − ηδ)

δ
tanh

(√
(ρ2 − ηδ)

2
ξ

)]
(8)

or

a f (ξ) =
[−ρ

δ
−

√−(ρ2 − ηδ)

δ
coth

(√
(ρ2 − ηδ)

2
ξ

)]
(9)

When (ρ2 + η2 > 0 & δ �= 0 & δ = −η).

a f (ξ) =
[

ρ

η
+

√
(ρ2 + η2)

η
tanh

(√
(ρ2 + η2)

2
ξ

)]
, (10)

or

a f (ξ) =
[

ρ

η
+

√
(ρ2 + η2)

η
coth

(√
(ρ2 + η2)

2
ξ

)]
. (11)
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When (ρ2 + η2 < 0 & δ �= 0 & δ = −η).

a f (ξ) =
[

ρ

η
+

√−(ρ2 + η2)

η
tan

(√−(ρ2 + η2)

2
ξ

)]
, (12)

or

a f (ξ) =
[

ρ

η
+

√−(ρ2 + η2)

η
cot

(√−(ρ2 + η2)

2
ξ

)]
. (13)

When (ρ2 − η2 < 0 & δ = η).

a f (ξ) =
[−ρ

η
+

√−(ρ2 − η2)

η
tan

(√−(ρ2 − η2)

2
ξ

)]
, (14)

a f (ξ) =
[−ρ

η
+

√−(ρ2 − η2)

η
cot

(√−(ρ2 − η2)

2
ξ

)]
. (15)

When (ρ2 − η2 > 0 & δ = η).

a f (ξ) =
[−ρ

η
+

√
(ρ2 + η2)

η
tanh

(√
(ρ2 + η2)

2
ξ

)]
, (16)

a f (ξ) =
[−ρ

η
+

√
(ρ2 + η2)

η
coth

(√
(ρ2 + η2)

2
ξ

)]
. (17)

When (η=δ=0).

a f (ξ) =
[−(1 + e2ρξ) ± √

2(e4ρξ + 1)

e2ρξ − 1

]
(18)

or

a f (ξ) =
[−(1 + e2ρξ) ± √

e4ρξ + 6e2ρξ + 1

2e2ρξ

]
(19)

When (ρ2 =ηδ).

a f (ξ) =
[−η(ρξ + 2)

ρ2ξ

]
(20)

When (ρ=k, η=2k, δ=0).

a f (ξ) =
[
ekξ − 1

]
. (21)
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When (ρ=k, δ=2k, η=0).

a f (ξ) =
[

ekξ

1 − ekξ

]
. (22)

When (2ρ = η + δ).

q(x, y, t) = −(c1 + η + δ) − 4δ

[
1 − ηe

1
2 (η−δ)(x+y−c1t)

1 − δe
1
2 (η−δ)(x+y−c1t)

]
, (23)

or

q(x, y, t) = −(c1 + η + δ) − 4δ

[
1 + ηe

1
2 (η−δ)(x+y−c1t)

−1 − δe
1
2 (η−δ)(x+y−c1t)

]
. (24)

When (−2ρ=η+δ).

a f (ξ) =
[
ηe1/2(η−δ)ξ + η

δe1/2(η−δ)ξ + δ

]
. (25)

When (η=0).

a f (ξ) =
[

ρeρξ

1 + δ
2e

ρξ

]
(26)

When (ρ = η = δ �=0).

a f (ξ) =
[−(ηξ + 2)

ηξ

]
. (27)

When (ρ = η =0).

a f (ξ) =
[−2

δξ

]
. (28)

When (β = 0, η = δ).

a f (ξ) =
[
tan

(ηξ + C

2

)]
. (29)

When (δ = 0).

a f (ξ) =
[
eβξ − η

2ρ

]
. (30)

where C is arbitrary constant.

Step 5. Implying these values and the solutions of Eq. (5) into Eq. (4), one obtains
the exact solutions of Eq. (1).
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3 Example

In this section, we employ Khater method to obtain travelling and solitary wave
solutions of the (2+1)-dimensional mKdV-ZK equation [13–15] given by

qt + αq2qx + (qxx + qyy)x = 0, (31)

Using the transformation(2) in Eq. (31), we get

6q ′′ + αq3 − c1q = 0, (32)

by using the principle of homogenity, we have N = 1 then Eq. (4) becomes

q(ξ) = a0 + a1a
g(ξ), (33)

Inserting Eq. (33) and its derivative into Eq. (32) and then after rationalization, one
obtain a system of algebraic equations on solving by symbolic computation

a0g : 6a1ηρ + αa30 − ca0 = 0, (34)

a1g : 6a1(ρ2 + 2ηρ) + 3αa20a1 − ca1 = 0 (35)

a2g : 18a1δρ + 3αa0a
2
1 = 0 (36)

a3g : 12a1δ2 + αa31 = 0 (37)

After solving these equations, we get

a1 = 2δ

√−3

α
= 2δm, a0 = −−3ρ

αm
=

√
c1 − 12ηδ

α
. (38)

So that, the exact traveling wave solution of equation (31) be in the form:

q(x, y, t) =
√
c1 − 12ηδ

α
+ 2δm ag(ξ). (39)

Thus, solitary wave solutions for different papametric conditions are When (ρ2 −
ηδ < 0 & δ �= 0).

q(x, y, t) = −
√
c1 − 12ηδ

α
+ 2

√
3(ρ2 − ηδ)

α
tan

(√−(ρ2 − ηδ)

2
(x + y − c1t)

)
,

(40)
or
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q(x, y, t) = −
√
c1 − 12ηδ

α
+ 2

√
3(ρ2 − ηδ)

α
cot

(√−(ρ2 − ηδ)

2
(x + y − c1t)

)
,

(41)
When (ρ2 + ηδ > 0 & δ �= 0).

q(x, y, t) = −
√
c1 − 12ηδ

α
+ 2

√
−3(ρ2 − ηδ)

α
tan

(√
(ρ2 − ηδ)

2
(x + y − c1t)

)
,

(42)
or

q(x, y, t) = −
√
c1 − 12ηδ

α
+ 2

√
−3(ρ2 − ηδ)

α
cot

(√
(ρ2 − ηδ)

2
(x + y − c1t)

)
,

(43)
When (ρ2 + η2 > 0 & δ �= 0 & δ = −η).

q(x, y, t) = −
√
c1 − 12ηδ

α
− 2

√
−3(ρ2 + η2)

α
tan

(√
(ρ2 + η2)

2
(x + y − c1t)

)
,

(44)
or

q(x, y, t) = −
√
c1 − 12ηδ

α
− 2

√
−3(ρ2 + η2)

α
cot

(√
(ρ2 + η2)

2
(x + y − c1t)

)
,

(45)
When (ρ2 + η2 < 0 & δ �= 0 & δ = −η).

q(x, y, t) = −
√
c1 − 12ηδ

α
− 2

√
3(ρ2 + η2)

α
tan

(√−(ρ2 + η2)

2
(x + y − c1t)

)
,

(46)
or

q(x, y, t) = −
√
c1 − 12ηδ

α
− 2

√
3(ρ2 + η2)

α
cot

(√−(ρ2 + η2)

2
(x + y − c1t)

)
,

(47)
When (ρ2 − η2 < 0 & δ = η).

q(x, y, t) =
√
c1 − 12ηδ

α
+ 2

√
3(ρ2 − η2)

α
tan

(√
(−ρ2 − η2)

2
(x + y − c1t)

)
,

(48)
or

q(x, y, t) =
√
c1 − 12ηδ

α
+ 2

√
3(ρ2 − η2)

α
cot

(√
(−ρ2 − η2)

2
(x + y − c1t)

)
,

(49)
When (ρ2 − η2 > 0 & δ = η).
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q(x, y, t) =
√
c1 − 12ηδ

α
+ 2

√
−3(ρ2 − η2)

α
tanh

(√
(ρ2 − η2)

2
(x + y − c1t)

)
,

(50)
or

q(x, y, t) =
√
c1 − 12ηδ

α
+ 2

√
−3(ρ2 − η2)

α
coth

(√
(ρ2 − η2)

2
(x + y − c1t)

)
,

(51)
When (ρ2 = ηδ).

q(x, y, t) =
√
c1 − 12ρ2

α
−

[
2
√−3(ρ(x + y − c1t) + 2)√

α(x + y − c1t)

]
(52)

When (ρ = k, δ = 2k, η = 0).

q(x, y, t) =
√
c1
α

+ 4k

√−3

α

[
ek(x+y−c1t)

1 − ek(x+y−c1t)

]
. (53)

When (2ρ = η + δ).

q(x, y, t) =
√
c1 − 12ηδ

α
+ 2δ

√−3

α

[
1 − ηe

1
2 (η−δ)(x+y−c1t)

1 − δe
1
2 (η−δ)(x+y−c1t)

]
, (54)

or

q(x, y, t) =
√
c1 − 12ηδ

α
+ 2δ

√−3

α

[
1 + ηe

1
2 (η−δ)(x+y−c1t)

−1 − δe
1
2 (η−δ)(x+y−c1t)

]
. (55)

When (−2ρ = η + δ).

q(x, y, t) =
√
c1 − 12ηδ

α
+ 2δ

√−3

α

[
η + e

1
2 (η−δ)(x+y−c1t)

δ + e
1
2 (η−δ)(x+y−c1t)

]
, (56)

When (η = 0)

q(x, y, t) =
√
c1
α

+ 2δ

√−3

α

[
ρeρ(x+y−c1t)

1 + δ
2e

ρ(x+y−c1t)

]
(57)

When (ρ = η = δ �= 0).

q(x, y, z, t) =
√
c1 − 12η2

α
+ 2η

√−3

α

[−(η(x + y − c1t) + 2)

η(x + y − c1t)

]
. (58)



Travelling and Solitary Wave Solutions … 815

Fig. 1 Solitary wave solution of Eqs. (41, 44–46, 50, 56) with α = −1, δ = η = t = c1 =
1 & ρ = 2
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When (ρ = η = 0).

q(x, y, z, t) = − 4
√−3√

α(x + y − c1t)
. (59)

When (ρ = 0, η = δ).

q(x, y, t) = 2η

√−3

α
tan

(
η(x + y + z − c1t) + C

2

)
. (60)

Graphical representation of solutions:We have obtains the travelling and solitary
wave solutions ofmKdV-ZKequation for various case in termof unknownparameters
. The solitary wave solutions can be derived from the travelling wave solutions for
the specific value of parameters . Some plots of solitary waves for suitable values of
unknownparameters are shown in Fig. 1 . Forα = −1, δ = η = t = c1 = 1& ρ = 2.
Equations (41), (44), (45), (46) , (50) and (56) represents the periodic waves, Kink
wave, dark and bright solitons, soliton like travelling wave and bright solitons etc.

4 Conclusions

In this paper, we have obtained the solitary and travelling wave solutions of the
(2+1)-dimensional mKdV-ZK equation by Khater method using the symbolic com-
putation. Various higher order polynomials arising in mathematical physics, high
energy physics, fluid dynamics, geochemistry and chemical kinematics can be solved
by this method. It is seen Khater method provide an effective that powerful tech-
nique for solving various nonlinear evaluation equations used in area of science and
engineering.The solitary wave solutions computed in this study are hyperbolic, trig-
nometric and exponential forms , which are discussed graphically as shown in Fig. 1.
The computed solutions play significant role in various disciplines of sciences and
engineering and useful for physical interpretation of a nonlinear systems also [13].
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Cosmological Models for Bianchi Type-I
Space-Time in Lyra Geometry

Pratik V. Lepse and Binaya K. Bishi

Abstract The main purpose of this manuscript is to investigate the Bianchi type-I
dark energy cosmological models in the framework of Lyra geometry. The modified
Einstein’s field equations is derived for Lyra geometry and obtained the exact solu-
tions. In order to obtained the exact solutions volumetric expansion law is used. As
per the Exponential and Power-law expansion, we have discussed the two cosmo-
logical models. Several physical parameters are obtained for both the models and
discuss its physical importance following the observational data.

Keywords Bianchi type-I · Cosmological constant · Lyra geometry

1 Introduction

The concept of dark energy should be explored for the better understanding of the
universe. The cosmologist, scientist and astronomers believed that dark energy is a
kind of a repulsive force which acts as an antigravity and responsible for accelerated
expansion of the universe, is termed as dark energy. The experiments, particularly
WMAP (WilkiinsonMicrowaveAnisotropic Probe) and satellite experiment [1] con-
cludes that, our universe consists of three major components namely dark energy
nearly 73%, dark matter 23% and usual matter is about 4% [1–3]. The supernova
project and HIGH-Z Supernova team reveals that the universe is expanding with
acceleration. For closed universe, Hubble parameter H , the matter energy density
parameter ΩM and the dark energy density parameter ΩΛ, predicted by Tegmark [4]
are near about H ≈ 0.32, Ωm ≈ 0.23 and ΩΛ ≈ 1.17. For flat cosmological model,
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the cosmological observation [5, 6] suggested the existence of a positive cosmo-
logical term-Λ with magnitude Λ ≈ 10−123 and with Ωm = 0.3,ΩΛ = 0.7 in the
accelerating universe.

The dark energy is characterised through the equation of state (EoS) parameter
p = ωρ in the universe. Here ω may be a constant or a function of cosmic time.
The cosmic time dependent ω(t) is revive from experimental data. The analysis is
performed on the experimental data in ordered to determine ω(t) [11, 12]. This
parameter ω(t) have been calculated with some reasoning leading to simple param-
eterization of the dependence character of ω by many authors [13–16]. In view of
galaxy clustering statistics [4] and SNe Ia data with CMBR, ω is approximated as
ω ≈ −0.977. The above discussed results are consistent with both time dependent
and time independent equation of state parameter ω. The different values of ω corre-
sponds to the different type of universe. The universe is classified with the different
value of ω as [17, 18]

ω =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 : Vacuum fluid universe

0 : Dust fluid univesrse
1
3 : Radiation fluid universe

1 : Stiff fluid universe

The variableω asω(t) orω(z), z denotes redshift is investigated by Jimenez [19] and
Das et al. [20]. The quintessence models, ω > −1 and phantommodel, ω < −1 give
rise to dependent ω(t) [21–24]. Several forms of ω(t) can be found in the literature,
which are involved in investigating dark energy [25–28].

After the formulation of General Relativity, Einstein devoted his entire life in the
search of the theory that takes into account both gravitation and electromagnetism.
He was not happy with the field equations Ri j − 1

2 Rgi j = −kTi j of General Rela-
tivity. Since the right hand side is not geometrical in nature although the left hand
side is. Further, the solution of the field equations are not free from singularities.
A total field theory should not give rise to singularities. There have been various
attempts to unify the gravitation and electromagnetism either by considering non-
Riemannian geometry of four dimensions or by considering Riemannian spaces of
higher dimensions.

Lyra [29] adduced Riemannian geometry by incorporating a gauge function in
to the manifold, which is in fact structure less. In such case the geometry naturally
gives rise to cosmological constant. This bears the remarkable resemblance toWely’s
geometry. The Einstein’s field equations (EFEs) based on Lyra’s manifold in normal
gauge is expressed as (Take c = 1 and 8πG = 1)

Ri j − 1

2
Rgi j + 3

2
φiφk − 3

4
gikφmφm = −kTi j . (1)

In which φi is the displacement vector defined through the gauge function β. The
displacement vector field is considered as
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φi = (0, 0, 0,β(t)). (2)

In this paper, we have studied the exponential-law expansion model and power-law
expansion model in Bianchi type-I universe in view of Lyra geometry.We distributed
our work in section wise like in Sect. 2. Bianchi type-I metric is presented and field
equations for Lyra’s manifold are derived. In Sect. 3 the solution of the Bianchi type-
I cosmological model is constructed under exponential and power-law expansion.
Conclusive remarks of the work is described in Sect. 4.

2 Field Equations for Bianchi Type-I Line Element

let us consider the Bianchi type-I line element of the form

ds2 = −dt2 + A2dx2 + B2dy2 + c2dz2. (3)

Here A, B and C are function of t only. The energy momentum tensor T j
i is

considered as
T i
j = (ρ + p)υiυ

j + pg j
i (4)

Here ρ and p represents the proper energy density and pressure respectively. The
quantity θ is the scalar of expansion which is given by,

θ = ν i
|i (5)

and υi satisfies the relation
gi jυ

iυ j = −1. (6)

we assume that coordinates to be co-moving, so that

υ1 = υ2 = υ3 = 0, υ4 = 1. (7)

Equation (4) yield

T 1
1 = px = ωxρ = ωρ,

T 2
2 = py = ωyρ = (ω + γ)ρ,

T 3
3 = pz = ωzρ = (ω + δ)ρ,

T 4
4 = px = −ρ. (8)

where px , py , pz and ωx , ωy , ωz indicates the directional pressure and equation of
state (EoS) parameters along x , y and z axes respectively. The EoS parameter of the
fluid, which is deviation free is denoted by ω. We have parameterized the deviation
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from isotropy by setting ωx = ω and then introducing skewness parameter γ and
δ that are the deviation from ω along y and z axes, which are ωy = (ω + γ) and
ωz = (ω + δ) respectively.

The field Eq. (1) in Lyra’s geometry, for the metric (2), using Eqs. (2) and (4)
takes the form

B44

B
+ C44

C
+ B4C4

BC
+ 3

4
β2 = −ωρ (9)

A44

A
+ B44

B
+ A4B4

AB
+ 3

4
β2 = −(ω + γ)ρ (10)

A44

A
+ C44

C
+ A4C4

Ac
+ 3

4
β2 = −(ω + δ)ρ (11)

A4B4

AB
+ B4C4

BC
+ A4C4

AC
− 3

4
β2 = ρ (12)

where A4 = d A
dt ,A44 = d2A

dt2 .

The energy conservation T j
i, j = 0 leads to

3

2
ββ4 + 3

2
β2

(
A4

A
+ B4

B
+ C4

C

)

= 0 (13)

The spatial volume V for model and the average scale factor are defined as

V = a3 = ABC (14)

In terms of scale factor or metric potentials, the Hubble parameter may be
define as

H = a4
a

= 1

3

(
A4

A
+ B4

B
+ C4

C

)

(15)

The deceleration parameter, q is expressed as

q = −aa44
a24

(16)

The following physical parameters are defined as

Scalar expansion = θ = A4

A
+ B4

B
+ C4

C
(17)

Shear scalar = σ2 = 1

2

3∑

i=1

(

H 2
i − 1

3
θ2

)

(18)
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Average anisotropy parameter = Am = 1

3

3∑

i=1

(
ΔHi

H

)2

(19)

where ΔHi = Hi − H , i = 1, 2, 3. Hi represents the directional Hubble parameter
H along x , y and z axes respectively.

3 Solutions of Field Equation

The field Eqs. (9) to (12) are the four differential equations with eight unknown
parameters A, B, C , β, ρ, ω, δ and γ. To make the system complete, we need the
additional four conditions. Special law of variation for generalized Hubble’s param-
eter is used as the first condition, which provides a constant value of deceleration
parameter. The mean Hubble parameter H and the average scale factor are related
through the expression as

H = la−n (20)

From which we write (using Eq. (15))

a4 = la−n+1 (21)

a44 = −l2(n − 1)a−2n+1 (22)

Using Eqs. (21) and (22) in the Eq. (16) we have

q = n − 1 (23)

The inflation of a model is determined by the sign of q. q has positive sign for
n > 1 corresponding to “standard” decelerating model whereas it has negative sign
for 0 ≤ n < 1 indicating accelerating model [30]. Integration of Eq. (21), leads to

a =
{

(nlt + α1)
1
n , for n �= 0

α2elt , for n = 0
(24)

whereα1 andα2 are constants andwhich come out from the integration. Thus, the law
(20) generate volumetric expansion in the form of power-law (PL) and exponential-
law (EL)(One can see from Eq. (24)). We assume the second condition as σ1

1 ∝ θ ,
which leads

A = (BC)m (25)

where m > 0 . As a third assumption, we take γ = δ that means the deviation from
ω along y and z axes are equal. From the differential Eqs. (10) and (11), we deduced
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B

C
= α3 exp

[

α4

∫

(ABC)−1dt

]

(26)

where α3 and α4 are integration constants. In view of the parameter n, for n = 0 and
n > 0 corresponds to the exponential-law (EL) and power-law (PL) respectively.

3.1 Model in Exponential-Law expansion

In this case, lengthy but straight forward calculation leads to the metric potentials in
the following forms:

A(t) = α
3m
m+1
2 exp

(
3ml

m + 1
t

)

B(t) = √
α3α

3
2(m+1)

2 exp

[
3lt

2(m + 1)
− α4

6lα3
2

e−3lt

]

C(t) = α
3

2(m+1)

2√
α3

exp

[
3lt

2(m + 1)
+ α4

6lα3
2

e−3lt

]

(27)

Thus in EL expansion (24), the required metric is

ds2 = −dt2 + α
6m
m+1
2 exp

(
6mlt

m + 1

)

dx2 + α3α
3

(m+1)

2 exp

[
3lt

(m + 1)
− α4

3lα3
2

e−3lt

]

dy2

+ α
3

(m+1)

α3
exp

(
3lt

m + 1
+ α4

3lα3
2

e−3lt

)

dz2 (28)

At early time, the scale factor is constant but it increases with time and reaches
infinity at the late epoch of time. It shows that at first, the universe starts with a
constant volume and expands exponentially to infinity. Let us calculate all physical
quantities β(t), H1, H2, H3, θ, σ, Am , ρ, ω, γ and δ for exponential law. When Eq.
(15) is applied to Eq. (13), the gauge function β(t) takes the form

β(t) = N

α3
2e

3lt
, (29)

where N is constant of integration. At initial stage of time, gauge function β(t)
return constant value and it is decreasing exponentially with increasing in time at
later time. So that gauge function β(t) of the model is goes over to the model of
general relativity (Pradhan et al. [35]). The directional Hubble parameter H along
x , y and z axes are given by
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H1 = A4

A
= 3ml

m + 1
(30)

H2 = B4

B
= 3l

2(m + 1)
+ α4

2α3
2

e−3lt = 3l

2(m + 1)
+ α4

2

(
β

N

)

(31)

H3 = C4

C
= 3l

2(m + 1)
− α4

2α3
2

e−3lt = 3l

2(m + 1)
− α4

2

(
β

N

)

(32)

It is noticed from the above equations that, Hi (i = 2, 3) depends upon gauge func-
tion β(t). When β(t) = 0, this shows the nature of directional Hubble parameter
and they are constant at early stage as well as lateral stage of time t . The following
physical parameters for the model (28) are deduced as

θ = 3H = 3l (33)

σ2 = 3l2(2m − 1)2

4(m + 1)2
+ α2

4

4α6
2

e−6lt = 3l2(2m − 1)2

4(m + 1)2
+ α2

4

4N 2
β2 (34)

Am = (2m − 1)2

2(m + 1)2
+ α2

4

6l2α6
2

e−6lt = (2m − 1)2

2(m + 1)2
+ α2

4

6l2N 2
β2 (35)

The expansion scalar θ exhibit constant value for whole range of time t . This show
uniform exponential expansion of the model. The shear of the model is depending
upon gauge function β(t). Initially it has constant value and goes on decreasing with
increasing time t . When t → ∞, σ2 → (2m−1)2

2(m+1)2 and Am → (2m−1)2

2(m+1)2 . Further, it is

noticed that at late time shear and average anisotropy parameter vanishes form = 1
2 .

Using the Eqs. (27) and (29), in differential Eq. (12), we obtained ρ as

ρ = 9l2(4m + 1)

4(m + 1)2
− 3N 2

4α4
2

e−4lt − α2
4

4α6
2

e−6lt

= 9l2(4m + 1)

4(m + 1)2
− 3

4
β2 − α2

4

4N 2
β2

(36)

The energy density depends upon the gauge function β(t). At initial time, the
energy density has a constant value 9(4m + 1)α6

2l
2 − (m + 1)2(α2

4 + 3α2
2N

2). The

positivity of energy density leads to the constraint onm such that 4m+1
(m+1)2 >

(α2
4+3α2

2N
2)

9α6
2l

2 .

When t → ∞, the energy density ρ → 9l2(4m+1)
4(m+1)2 . With the help of Eqs. (9) and (12),

the EoS parameter ω has been calculated as
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ω =
(
27 l2α2

6e6 lt + α4
2 (m + 1)2

)
e4 lt + 3 N 2α2

2e6 lt (m + 1)2
(−9α2

6 (4m + 1) l2e6 lt + α4
2 (m + 1)2

)
e4 lt + 3 N 2α2

2e6 lt (m + 1)2

= −27N 2l2 − 3N 3(m + 1)2β2 − α2
4(m + 1)2β2

9 (4m + 1) l2N 2 − 3 N 3 (m + 1)2 β2 − α4
2 (m + 1)2 β2

(37)

In this exponential-law of expansion, the EoS parameter ω depends upon gauge
function β(t). In early time of the universe, the ω takes a constant value equal to

27α26l2+(m+1)2(3 N 2α22+α42)
(m+1)2(3 N 2α22+α42)−9 (4m+1)α26l2

. In late time, it approaches − 3
4m+1 . We write the

values of the skewness parameter γ and δ, using the Eqs. (9), (10), (29) and (36) as
follows:

γ = δ = 18 (m + 1) e4 lt (2m − 1) e6 ltα2
6l2

3α2
2
(−3α2

4l2 (4m + 1) e4 lt + N 2 (m + 1)2
)
e6 lt + (m + 1)2 e4 ltα4

2

= 18 (m + 1) N 2 (2m − 1) l2

α4
2 (m + 1)2 β2 + 3 N 2 (m + 1)2 β2 − 9 (4m + 1) l2N 2

(38)
For the value of time t = τ0 given by

τ0 = 1

2l
log

[
2α2

4(m + 1)2Σ0

α2
2(Σ

2
0 − 2N 2(m + 1)2Σ0 + 4N 4(m + 1)4)

]

, (39)

which leads to equation of state parameter ω = 0. So that dusty universe at time
t = τ0 given by Eq. (39). Again, it is to be noted that when time t lies in open
interval τ1 < t < τ2 with

τ1 = 1

2l
ln

[
178(m + 1)2α2

4Σ1

α2
2(Σ

2
1 − 178(m + 1)2N 2Σ1 + 31684(m + 1)4N 4)

]

(40)

τ2 = 1

2l
log

[
6(m + 1)2α2

4Σ2

α2
2(Σ

2
2 + 6N 2(m + 1)2)Σ2 + 36(m + 1)4N 4

]

(41)

the equation of state parameter ω lies in the range −1.67 < ω < −0.62, which con-
sistent and in good agreement with the limiting observational results [31]. Where

Σ0 = 3

√
√
√
√−8

(

− 3
√
3α4

2l

2

√

4 N6 (m + 1)2 + 27α4
4l2 + N6 (m + 1)2 + 27α4

4l2

2

)

(m + 1)4

Σ1 = 3

√
√
√
√
√
√
√
√
√

−
{

− 2 lα42

89

√

−
(

44589 (m + 1)2 N6 − 251001α44l2
(

m − 133

668

))(

m − 133

668

)

− 1002α44l2

89

(

m − 133

668

)

+ (m + 1)2N6
}

5639752 (m + 1)4
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Σ2 = 3

√
√
√
√
√
√
√
√
√
√

− 216(m + 1)4
{

− 2α2
4l

3

√

−
(

31 (m + 1)2 N6 − 961α4
4l2

9

(

m − 119

124

))(

m − 119

124

)

+ N6m2 +
(

2 N6 − 62α4
4l2

9

)

m + N6 + 119α4
4l2

18

}

Further for the value of time t = τ , given by

τ = 1

2l
ln

[
2α2

4(m + 1)2Σ

α2
2(Σ

2 − 2N 2(m + 1)2Σ + 4N 4(m + 1)4)

]

(42)

where

Σ = 3

√
√
√
√
√
√
√
√

− 8(m + 1)4
{

− 3α4
2l

2

√(
9 (2m − 1) α4

4l2 − 4 N 6 (m + 1)2
)
(2m − 1)

+ N 6 (m + 1)2 − 9 l2
(

m − 1

2

)

α4
4

}

The values of ω comes out to be −1. For flat model, the matter energy density
ΩM and dark energy ΩΛ, satisfies

ΩM + ΩΛ = 1 (43)

where

ΩM = ρ

3H 2
and ΩΛ = Λ

3H 2
(44)

Thus, Eqs. (43) and (44) gives

ρ + Λ = 3H 2

and then using Eqs. (33) and (36), we write the expressions of Λ as

Λ = 3l2 + 3N 2

4α4
2

e−4lt + α2
4

4α6
2

e−6lt − 9l2(4m + 1)

4(m + 1)2

= 3l2 + 3

4
β2 + α2

4

4N 2
β2 − 9l2(4m + 1)

4(m + 1)2

(45)

From Eq. (45), one can noticed that cosmological constant Λ takes a positive

constant value
3 l2(2m−1)2α26+(m+1)2(3 N 2α22+α42)

4α26(m+1)2
at early stage of the universe and

approaches to a positive value 3l2
[
1 − 3(4m+1)

4(m+1)2

]
at late time for all values of m and

l. From Eqs. (33), (36) and (45), we have
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ΩM = 3(4m + 1)

4(m + 1)2
− N 2

4l2α4
2

e−4lt − α2
4

12l2α6
2

e−6lt

= 3(4m + 1)

4(m + 1)2
− 1

4l2
β2 − α2

4

12l2N 2
β2

(46)

ΩΛ = N 2

4l2α4
2

e−4lt + α2
4

12l2α6
2

e−6lt − 3(4m + 1)

4(m + 1)2
+ 1

= 1

4l2
β2 + α2

4

12l2N 2
β2 − 3(4m + 1)

4(m + 1)2
+ 1

(47)

FromEq. (46), we have observed that thematter energy densityΩm takes the value
3(4m+1)
4(m+1)2 −

[
N 2

4l2α4
2
+ α2

4

12l2α6
2

]
at initial time. At late time, Ωm is positive valued with the

value 3(4m+1)
4(m+1)2 . Further Eq. (47) indicates that, the dark energy ΩΛ is positive valued

at initial and late time for all the values of parameters involved in the expression. ΩΛ

is a decreasing function of cosmic time and approaches to 1 − 3(4m+1)
4(m+1)2 when t → ∞.

3.2 Model in Power-Law Expansion

We solved the differential Eqs. (9), (10), by using the power-law expansion (n �= 0)
(24) and Eqs. (25) and (26), we arrived at

A(t) = (nlt + α1)
3m

n(m+1)

B(t) = √
α3(nlt + α1)

3
2n(m+1) exp

[
α4

2l(n − 3)
(nlt + α1)

n−3
n

]

C(t) = 1√
α3

(nlt + α1)
3

2n(n−3) exp

[

− α4

2l(m + 1)
(nlt + α1)

n−3
n

]
(48)

Thus the metric (3) reduced to ( f or n �= 0), for power law expansion

ds2 = −dt2 + (nlt + α1)
6m

n(m+1) dx2 + α3(nlt + α1)
3

n(m+1) exp

[
α4

2l(n − 3)
(nlt + α1)

n−3
n

]

dy2

+ 1

α3
(nlt + α1)

3
n(m+1) exp

[

− α4

2l(n − 3)
(nlt + α1)

n−3
n

]

dz2

(49)

At early time, the scale factor is constant but it increases with time and reaches
infinity at the late epochof time. It shows that at first, the universe startswith a constant
volume and expands rapidly to infinity. Let us calculate all physical quantities β(t),
H1, H2, H3, θ, σ, Am , ρ, ω, γ and δ for power law. When Eq. (15) is applied to Eq.
(13), the gauge function β(t) takes the form for n �= 0 as,
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β(t) = N (nlt + α1)
− 3

n (50)

where N is constant of integration. At initial stage of time, gauge function β(t) return
constant value and it is decreasing with evolution of time. The directional Hubble
parameters Hi along x , y and z axes are given by

H1 = A4

A
= 3ml

m + 1

1

(nlt + α1)
(51)

H2 = B4

B
= 1

2

[
3l

(1 + m)(α1 + nlt)
+ α4(α1 + nlt)

−3
n

]

(52)

H3 = C4

C
= 1

2

[
3l

(1 + m)(α1 + nlt)
− α4(α1 + nlt)

−3
n

]

(53)

The physical parameters for the model (49) are deduced as

θ = 3H = 3l(nlt + α1)
−1 (54)

σ2 = 1

4

[
3l2(1 − 2m)2

(1 + m)2(α1 + nlt)2
+ α4

2β(t)2N−2

]

= 1

4

[
3l2(1 − 2m)2

(1 + m)2(α1 + nlt)2
+ α4

2(α1 + nlt)
−6
n

] (55)

AM = 1

6

[
3(1 − 2m)2

(1 + m)2
+ α4

2β(t)2N−2(α1 + nlt)2

l2

]

= 1

6

[
3(1 − 2m)2

(1 + m)2
+ α4

2(α1 + nlt)
2n−6
n

l2

] (56)

The expansion scalar θ is a decreasing function of cosmic time t . It exhibit a
constant value initially and approaching to zerowith the evolutionof cosmic time.The
shear and average anisotropy parameters of the model is depending upon the gauge
function β(t). Both the parameters are decreasing function of cosmic time t . Initially
σ2 has constant value and approaching towards zero at late time. The anisotropy
parameter AM has constant value initially and AM → ∞ and AM → (1−2m)2

2(1+m)2
for

n > 3 and 0 < n < 3 respectively. Using the Eqs. (48) and (50), in differential Eq.
(12), we obtained ρ as

ρ = 1

4

[
9l2(1 + 4m)

(1 + m)2(α1 + nlt)2
− α4

2β(t)2N−2 − 3β(t)2
]

= 1

4

[
9l2(1 + 4m)

(1 + m)2(α1 + nlt)2
− (α1 + nlt)

−6
n (α4

2 + 3N 2(α1 + nlt)
2
n )

] (57)
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The energy density depends upon the gauge function β(t). At initial time, the

energy density has a constant value 1
4

[
9l2(1+4m)

α1
2(1+m)2

− α1
−6
n (α4

2 + 3N 2α1
2
n )

]
. The

positivity of energy density leads to the constraint on m such that 4m+1
(m+1)2 >

4α1
2n−6
n (α4

2+3N 2α1
2
n )

9l2 . When t → ∞, the energy density ρ → 9l2(4m+1)
α1

2(m+1)2 . Using the Eqs.
(48) and (57) in Eq. (9), the EoS parameter ω have been calculated as

ω =
3l2(4(1+m)n−9)
(1+m)2(α1+nlt)2 − α4

2β(t)2N−2 − 3β(t)2

9l2(1+4m)

(1+m)2(α1+nlt)2 − α4
2β(t)2N−2 − 3β(t)2

=
3l2(4(1+m)n−9)
(1+m)2(α1+nlt)2 − (α1 + nlt)

−6
n (α4

2 + 3N 2(α1 + nlt)
2
n )

9l2(1+4m)

(1+m)2(α1+nlt)2 − (α1 + nlt)
−6
n (α4

2 + 3N 2(α1 + nlt)
2
n )

(58)

In this power-law of expansion, the EoS parameterω depends upon gauge function
β(t) from (50). In early time of the universe, the ω takes a constant value equal to

3l2(−9+4(1+m)n)

α1
2(1+m)2

−α1
−6
n (α4

2)+3α1
2
n N 2

9l2(1+4m)

α1
2 (1+m)2−α1

−6
n (α4

2)+3α1
2
n N 2

. In late time, it approaches 4n(1+m)−3
1+4m for 0 < n < 2.

We write the values of the skewness parameter γ and δ, using the Eqs. (50), (57) and
(58) in (10) as follows

γ = δ =
4

[

9l2(1+4m)

4(1+m)2(α1+nlt)2
+ 3l2(3+2m(3−2m(n−3)−3n)−2n)

4(1+m)2(α1+nlt)2
+

3l2 (4(1+m)n−9)
(1+m)2 (α1+nlt)2

−α4
2β(t)2N−2−3β(t)2

9l2 (1+4m)

(1+m)2 (α1+nlt)2
−α4

2β(t)2N−2−3β(t)2

]

9l2(1+4m)

(1+m)2(α1+nlt)2
− α4

2β(t)2N−2 − 3β(t)2

=

4

[ 9l2(1+4m)

4(1+m)2(α1+nlt)2
+ 3l2(3+2m(3−2m(n−3)−3n)−2n)

4(1+m)2(α1+nlt)2

+
3l2(4(1+m)n−9)

(1+m)2(α1+nlt)2
−(α1+nlt)

−6
n (α4

2+3N2(α1+nlt)
2
n )

9l2(1+4m)

(1+m)2(α1+nlt)2
−(α1+nlt)

−6
n (α4

2+3N2(α1+nlt)
2
n )

]

9l2(1+4m)

(1+m)2(α1+nlt)2
− (α1 + nlt)

−6
n (α4

2 + 3N 2(α1 + nlt)
2
n )

(59)

For the value of time t = τ0 given by

τ0 = 1

nl

[
l

m + 1

√
3[4n(m + 1) − 9]

α2
4 + 3N 2(α1 + nlt)

2
n

] n
n−3

− α1

nl
(60)

the equation of state parameter ω = 0. So that we have dusty universe at time t = τ0
given by Eq. (60). It is to be noted that when time t lies in open interval τ1 < t < τ2,
where
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τ1 = 1

nl

[
1.06l

m + 1

√
[4n(m + 1) + 4(5m − 1)]

α2
4 + 3N 2(α1 + nlt)

2
n

] n
n−3

− α1

nl
(61)

τ2 = 1

nl

[
1.36l

m + 1

√
[4n(m + 1) + 7.44m − 7.1]

α2
4 + 3N 2(α1 + nlt)

2
n

] n
n−3

− α1

nl
(62)

then the equation of state parameter ω lies in the range −1.67 < ω < −0.62, which
consistent and in good agreement with the limiting observational results [31]. When
the domain of time t is τ3 < t < τ4, in which

τ3 = 1

nl

[
1.13l

m + 1

√
[4n(m + 1) + 15.96m − 5.01]

α2
4 + 3N 2(α1 + nlt)

2
n

] n
n−3

− α1

nl
(63)

τ4 = 1

nl

[
1.29l

m + 1

√
[4n(m + 1)9.48m − 6.63]

α2
4 + 3N 2(α1 + nlt)

2
n

] n
n−3

− α1

nl
(64)

then we observed the values of ω as −1.33 < ω < −0.79 which coincides with the
values obtained from observational results [32]. Also it is noticed that when t lies in
the open interval τ5 < t < τ6 where

τ5 = 1

nl

[
1.10l

m + 1

√
[4n(m + 1) + 17.28m − 4.68]

α2
4 + 3N 2(α1 + nlt)

2
n

] n
n−3

− α1

nl
(65)

τ6 = 1

nl

[
1.25l

m + 1

√
[4n(m + 1) + 11.04m − 6.24]

α2
4 + 3N 2(α1 + nlt)

2
n

] n
n−3

− α1

nl
(66)

then the values of ω are found to be −1.44 < ω < −0.92 which are very much
consistent with the values of ω of latest observational results in 2009 [33, 34].
Further for the value of time t = τ , given by

τ = 1

nl

[
1.22l

m + 1

√
[4n(m + 1) + 12m − 6]
α2
4 + 3N 2(α1 + nlt)

2
n

] n
n−3

− α1

nl
, (67)

the values of ω comes out to be −1. The geometrical and physical behaviour of
the dark energy model is to be discussed on the values of EoS parameter and the
gauge function β(t). The gauge function β(t) is appeared in all physical quantity
like H,σ, AM , ρ,ω, δ, γ. If the constant of integration N = 0 then β(t) = 0 from
Eq. (50). Thus for N = 0, the physical quantity ρ,ω and time t in our model goes
over to the result of Pradhan et al. [35]. If N �= 0, then the gauge function β(t) play
a role in our models. Thus in this note, an attempt has been made to generalize the
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model of Pradhan et al. [35], in Lyra’s geometry. For flat model (in the absence of
curvature), the matter energy density ΩM and dark energy ΩΛ, satisfies the relation

ΩM + ΩΛ = 1 (68)

where
ΩM = ρ

3H 2

ΩΛ = Λ

3H 2
.

(69)

Thus, Eqs. (68) and (69) gives

ρ + Λ = 3H 2

and then using Eqs. (54) and (57), we write the values of Λ as

Λ = 1

4

[
3l2(3 + 4m + 4m2)

(1 + m)2(α1 + nlt)2
+ α4

2β(t)2N−2 + 3β(t)2
]

= 1

4

[
3l2(3 + 4m + 4m2)

(1 + m)2(α1 + nlt)2
+ (α1 + nlt)

−6
n (α4

2 + 3N 2(α1 + nlt)
2
n )

] (70)

From Eq. (70), one can noticed that cosmological constant Λ takes a positive

constant value 1
4

[
3l2(3+4m+4m2)

(1+m)2α2
1

+ α
−6
n
1 (α4

2 + 3N 2α
2
n
1 )

]
at early stage of the universe

and approaches to zero at late time for all the parameters involved in the expression
(70). The cosmological term Λ is a decreasing function of cosmic time t . From Eqs.
(54), (57) and (70), we write the values of the matter energy density ΩM = ρ

3H 2 and
dark energy ΩΛ = Λ

3H 2 as,

ΩM = 3

4

(4m + 1)

(m + 1)2
− (α1 + nlt)2−

6
n (α4

2 + 3N 2(α1 + nlt)
2
n )

12l2
(71)

ΩΛ = 1

4

(4m2 − 4m + 1)

(m + 1)2
+ (α1 + nlt)2−

6
n (α4

2 + 3N 2(α1 + nlt)
2
n )

12l2
(72)

Here we noticed that both the matter energy density ΩM and dark energy ΩΛ

start evolve with a constant value. Further, ΩM → 3
4

(4m+1)
(m+1)2 and ΩΛ → 1

4
(4m2−4m+1)

(m+1)2

when t → ∞ for 0 < n < 2. The ΩΛ is a decreasing function of cosmic time t .
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4 Concluding Remarks

In this manuscript, we have studied the dark energy cosmological models for Bianchi
type-I universe in viewofLyra geometry.Wehave analysed two cosmologicalmodels
namely PL model and EL model. The outcomes obtained from these two models are
presented below:

– In both the models, the energy density ρ starts with a constant value initially and
approaches to same value 9l2(4m+1)

4(m+1)2 at late time for α1 = ±2.
– The cosmological constant Λ is depending on the gauge function and in terms of
cosmic time, the qualitative behaviour ofΛ is decreasing in nature for both the dis-
cussed models. In case of exponential model and power law model, cosmological

constant Λ approaches to 3l2
[
1 − 3(4m+1)

4(m+1)2

]
and zero at late time respectively.

– In both the models, the dark energy ΩΛ is a decreasing function of cosmic time t .
In PL (n = 0)and EL (0 < n < 2)modelsΩΛ → 1 − 3(4m+1)

4(m+1)2 andΩΛ → (2m−1)2

4(m+1)2

respectively at late time.
– The results discussed in Lyra’s geometry reduces to the results of general relativity
for N = 0.
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A Non-linear Model of a Fishery
Resource for Analyzing the Effects
of Toxic Substances

Sudipta Sarkar, Tanushree Murmu, Ashis Kumar Sarkar,
and Kripasindhu Chaudhuri

Abstract The goal of the proposedmodel is to investigate and analyze the qualitative
behaviour of predator-prey fishery resource in an aquatic ecosystem by a non-linear
mathematicalmodel inwhich prey and predator species are contaminated by the toxic
substances released by each of the species. In this model the species are subjected to
bio-economic combined harvesting and obey the logistic growth rate function. Bio-
economic harvesting of prey-predator species in presence of harmful toxic substances
released by them is analyzed here by usingmodified catch rate function.Boundedness
of the proposedmodel is examined here. Biological and bionomic steady states of the
proposedmodel are derived. The conditions for local behaviour, instability and global
behaviour of the steady states are exhibited in this paper. Optimal harvesting policy
with the help of Pontryagin’s maximal principle and finally, numerical exmples are
illustrated to verify theoretical observations obtained from proposed model.

Keywords Fishery resource · Bioeconomic combined harvesting · Stability ·
Steady state · Optimal equilibrium · Toxicity · Net revenue

1 Introduction

Sustainable resources fishery, forestry, wild life etc. are vital origins of food and
other necessary commodities in human life. These resources play a salient role for
existence and advancement of biological populations. For these renewable resources
management, our aim is to maximize the current value of advantages obtained from
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these sustainable resources and their proper preservation so that the extinction of these
resources can be preserved. One of the most vital problems in an aquatic ecological
system is the consequence of toxic elements. The growth of the fish and other aquatic
organisms is highly influenced by these toxic substances.During the last fewdecades,
so many researchers have carried out their investigations regarding fishery resource
management. Clark [2, 3], Meserton-Gibbons [10, 11] have pursued their valuable
analysis based on mathematical modeling of harvesting of fishery. Excessive and
unregulated harvesting is not only the cause of depletion of fish species but also the
consequence of toxic substances, the competitiveness of inter and intra species among
predator-prey resources etc. are reasons. Chattopadhyay [1], Kar and Chaudhuri [7],
Kar et al. [8], Dubey and Hussain [4] and Mukhopadhyay et al. [12] have conducted
their mathematical analysis based on non-linear mathematical modeling of predator-
prey fishery resource keeping the salient focus in toxicity. Our main focus is to find
out the optimal control so that maximal value of the benefits obtained from this
predator-prey fishery resource in presence of toxic substances by using a modified
catch rate function preserving the extinction of both species. Further, the concept of
Maynard [9] for competing fisherymodel subjected to commercially exploitation and
toxicity was developed by Kar and Chaudhuri [7]. Ghosh et al. [5] developed a non-
linear model to show the consequences of toxic elements on predator-prey fishery
resource. Haque and Sarwardi [6], Pal et al. [13] developed a non-linear model to
exhibit the effects of toxic elements for an aquatic system. A non-linear model was
introduced by Sarkar et al. [15] using a modified catch rate function.

Our current model is arranged in the following manner: In Sect. 2: problem
construction, Sect. 3: equilibria of the proposed dynamical system are exhibited.
In Sect. 4: qualitative behaviour of the proposed model are analyzed. Finally, opti-
mal harvesting policy with the help of Pontryagin’s maximal principle, numerical
results as well as interpretations of our proposed model have been shown in the
consecutive sections.

2 Model Formulation

After incorporationof toxic affects, the dynamical systemof prey-predator competing
fishery resource model is as follows:

dx

dt
= r x

(
1 − x

K

)
− αxy − γ1x

3y − q1Ex

b1 + E
,

dy

dt
= sy

(
1 − y

L

)
− βxy − γ2xy

2 − q2Ey

b2 + E
. (1)

Here, x = x(t), y = y(t) denote prey and predator population density at time t
respectively. r, s, α, β, K, L denote maximum growth rate of prey and predator fish
species, coefficients of competition and environmental carrying capacities of prey
and predator fish species respectively.
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Here,γ1,γ2 represent the toxicity co-efficient of prey andpredator fish populations.
The parameters assumed in this paper are all positive constants. The term γ1x3 is
treated as one kind of response function of the predator fish to the prey population
and it originates from the toxic substances by the predator species to put off the prey

population from sharing the common resources. Here, the terms
d(γ1x3)

dx = 3γ1x2 > 0

and
d2(γ1x3)

dx = 6γ1x > 0 are positive. So, increasing growth rate of the toxic elements
is observed as the biomass of prey-predator populations s are increased. Here, q1, q2
denote the coefficients of catchability of both fish species respectively and b1, b2 are
all positive constants.

In the beginning of fishery resurce models, the catch rate function is usually taken
in the form h = qEx based on the CPUE (catch-per-unit-effort) hypothesis [2]. Later
on, it is revised in the form as h = qEx

bE+lx .
It is assumed that the fisherman search randomly in a given area effectively which

is a function of the effort level to harvest the fish resource by the fisherman. We
rename this concept as a searching efficiency for the area of discovery. The capture
rate of fish resource dependent on how effectively(efficiently) the effort level is used
in presence of other fisherman. On the basis of the above hypothesis accordingly,
we modify the catch rate function as a function of the fish resource population being
captured for different effort levels in the form h = qEx

b+E , where E, q, b denote the
harvesting effort, the catchability coefficient and a positive constant respectively.

3 The Equilibria and Their Feasibility

There are four equilibria of the dynamical system of Eqs. (1) which are E0(0, 0),

E1(x1, 0), E2(0, y2)& E∗(x∗, y∗), where x1 = K
r

(
r − q1E

b1+E

)
, y2 = L

s

(
s − q2E

b2+E

)
,

y∗ = L(s−βx∗− q2E
b2+E )

s+Lγ2x∗ and we get the value of x∗ from the following cubic equation

A1x1
∗3 + A2x1

∗2 + A3x1
∗ + A4 = 0, (2)

where A1 = γ1Lβ, A2 = −r
K Lγ2 − γ1Ls + Lγ1q2E

b2+E , A3 = −rs
K + r Lγ2 + αLβ −

q1ELγ2
b1+E and A4 = rs − αLs + q2EαL

b2+E − q1Es
b1+E .

It is observed that the steady state E0 is always feasible, E1 is feasible if r >
q1E
b1+E

and E2 exists if s >
q2E
b2+E .

If D < 0, then there exists at least one positive root say x∗ of the Eq.
(3). So, the existence condition of E∗(x∗, y∗) is s − βx∗ − q2E

b2+E > 0 and s >
αLq2E

αL(b2+E)−r(b2+E)+ q1E(b2+E)
(b1+E)

.
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4 Qualitative Analysis

4.1 Boundedness

In the system (1), the solutions are uniformly bounded.

Proof

To prove the boundedness of the system let us choose a function ω = x + y.

dω

dt
+ ζω = r x

(
1 − x

K

)
+ sy

(
1 − y

L

)
− (α + β) xy − xy(γ1x

2 + γ2y)r

−E

(
q1x

b1 + E
+ q2y

b2 + E

)
+ ζ (x + y)

<
K

4r

(
r + ζ − Eq1

b1 + E

)2

+ L

4s

(
s + ζ − Eq2

b2 + E

)2

= η.

Thus, we get 0 < ω(x, y) < η
ζ
(1 − exp−ζt ) + ω(0) exp−ζt < max

{
η
ζ
,ω(0)

}
.

Therefore, the solutions are uniformly bounded in

Rxy =
{
(x, y) ∈ �2

+ : ω(x, y) ≤ η

ζ
+ ε for any ε > 0

}
.

4.2 Local Behaviour of the Equilibria

Let Jn be the variational matrix of the steady states En where n = 0, 1, 2. The
eigenvalues of J0 are r − q1E

b1+E and s − q2E
b2+E . So, E0(0, 0) is stable node if E >

max

(
b1r
q1−r ,

b2s
q2−s

)
and unstable if E < min

(
b1r
q1−r ,

b2s
q2−s

)
.

The eigen values of J1 are λ1 = −r x1
K and λ2 = s − βx1 − q2E

b2+E . Obviously, λ1 <

0 and hence E1(x1, 0) is a stable node if λ2 < 0 which imply that E >
b2(s−βx1)
q2−s+βx1

. It

can be shown that E1(x1, 0) is saddle if E <
b2(s−βx1)
q2−s+βx1

.

The eigen values of J2 are λ1 = r − αy2 − q1E
b1+E and λ2 = −sy2

L . It is observed

that λ2 < 0. Hence E2(0, y2) is a stable node when λ1 < 0 i.e., if E >
b1(r−αy2)
q1−r+αy2

and

saddle point if E <
b1(r−αy2)
q1−r+αy2

.
The variational matrix of (1) around E∗ is as follows:
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J ∗ =
( −r1x∗

K − 2γ1x∗2y∗ − αx∗ − γ1x∗3

−βy∗ − γ2y∗2 −sy∗
L − γ2x∗y∗

)

Here, trace(J ∗) < 0. So, for the local stability of the system of Eq. (1) around
E∗, we have to show that det (J ∗) is strictly positive.

det (J∗) = x∗y∗
[
rs

K L
− αβ + γ2

(
q1E

b1 + E
− r

)
− βγ1x

∗2 + 2x∗
(

γ1γ2x
∗y∗ + sγ1y

∗
L

+ rγ2
K

)]
.

(3)

So, det (J ∗) > 0 if x∗2 < 1
βγ1

[
rs
K L + γ2

(
q1E
b1+E − r

)
− αβ

]
.

4.3 Non-existence of Periodic Solution

The system of Eq. (1) can be written in the form Ẏ = G(Y ), where Y = (x, y) and
G = (G1,G2). Here, G1,G2 ∈ C∞(R), G1 = r x

(
1 − x

K

) − αxy − γ1x3y − q1Ex
b1+E

and G2 = y
(
1 − y

L

) − βxy − γ2xy2 − q2Ey
b2+E . Let us consider a function

F(x, y) = 1
xy . Then F(x, y) > 0 for (x, y) ∈ Rxy .

∇.(FG) = −
[

r

K y
+ 2γ1x + s

Lx
+ γ2y

x

]
< 0 ∀(x, y) ∈ Rxy . (4)

It follows that ∇.(FG) < 0 always. So, by Bendixson-Dulac’s criterion, there
does not exist any periodic orbit for the proposed model.

4.4 Global Stability Analysis

For global stability analysis of the dynamical system (1), a Lyapunov function is
constructed as follows:

V (x, y) =
[(

x − x∗ log
x

x∗

)
+

(
y − y∗ log

y

y∗

)]
. (5)

Here, V is positive definite ∀(x, y) ∈ �2+. Now,

dV

dt
= −

[
P

(
x − x∗)2 + R

(
x − x∗) (

y − y∗) + Q
(
y − y∗)2

]
, (6)

where P = r
K + γ1y (x + x∗) > 0, Q = s

L + γ2x > 0, R = α + β + γ1x∗2 +
γ2y∗ > 0.
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Now, 4PQ − R2 = 4
{ r
K + γ1y(x + x∗)

} { s
L + γ2x

} −
{
α + β + γ1x

∗2 + γ2y
∗}2

>

0, if 4rs > K L {α + β + γ1x∗ + γ2}2.
So, dV

dt = 0 at E∗(x∗, y∗) and dV
dt < 0 at all the points other than E∗(x∗, y∗).

Using Lyapunov- LaSalle’s invariance principle, we have shown that E∗(x∗, y∗) is
globally asymptotically stable under certain conditions.

4.5 Bionomic Steady States

When the total revenue (TR) achieved by selling the harvested biomass is equal to
the total cost (TC) for the harvesting, then the bionomic equilibrium is obtained.
Then the net revenue at any time is as follows:

π(x, y, E, t) =
(

p1q1x

b1 + E
+ p2q2y

b2 + E
− C

)
E, (7)

where C=constant cost for fishing per unit effort, p1=constant price per unit prey
biomass, p2= constant price per unit predator biomass. To make our calculation
simple, the cost of harvesting per unit effort is considered as constant.

Now, from equation ẋ = 0, we get E = αyb1+γ1x2 yb1−r(1− x
K )b1

r(1− x
K )−αy−γ1x2 y−q1

.

Thus, E is positive, when αy + γ1x2y < r
(
1 − x

K

)
< αy + γ1x2y + q1.

Similarly, from the equation ẏ = 0 we get E = βb2x+γ2xyb2−s(1− y
L )b2

s(1− y
L )−βx−γ2xy−q2

.

So, E is positive when βx + γ2xy < s
(
1 − y

L

)
< βx + γ2xy + q2. Therefore,

the interior equilibrium point exists on the curve

αyb1 + γ1x2yb1 − r
(
1 − x

K

)
b1

r
(
1 − x

K

) − αy − γ1x2y − q1
= βb2x + γ2xy − s

(
1 − y

L

)
b2

s
(
1 − y

L

) − βx − γ2xy − q2
, (8)

where 0 ≤ x ≤ K and 0 ≤ y ≤ L .
We can find the bionomic steady states of the open access fishery model using Eq.

(8) and conditionπ = T R − TC = 0,which gives the result
(

p1q1x
b1+E + p2q2 y

b2+E − C
)

= 0.

5 Optimal Harvesting Policy

Our salient task is to fix the optimal adjustment between the current and future
harvests values. The current value I of revenues is as follows:

I =
∫ ∞

0
π(x, y, E, t)e−δt dt. (9)
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Here, π(x, y, E, t) = p1q1xE
b1+E + p2q2 yE

b2+E − CE and δ denotes the instant annual
discount rate, C is the fishing cost per unit effort, p1, p2 are prices per unit prey and
predator biomass respectively. Our main focus is to maximize I along with the Eq.
(1) with the help of Pontryagin’s Maximum Principle [14]. Here, 0 ≤ E(t) ≤ Emax

and control set Vt = [0, Emax ] where Emax is the possible maximum value of the
effort of harvesting.

For our problem, the Hamiltonian is given by:

H =
(

p1q1x

b1 + E
+ p2q2y

b2 + E
− C

)
Ee−δt + λ1

[
r x

(
1 − x

K

)
− αxy − γ1x

3y − q1Ex

b1 + E

]

+λ2

[
sy

(
1 − y

L

)
− βxy − γ2xy

2 − q2Ey

b2 + E

]
. (10)

Here, λ1, λ2 are adjoint variables. For finding an optimal solution, we are taking

E = αyb1 + γ1x2yb1 − r
(
1 − x

K

)
b1

r
(
1 − x

K

) − αy − γ1x2y − q1
= βb2x + γ2xyb2 − s

(
1 − y

L

)
b2

s
(
1 − y

L

) − βx − γ2xy − q2
. (11)

Now, from the two adjoint equations ( dλ1
dt = − ∂H

∂x and dλ2
dt = − ∂H

∂y ), we get

d2λ1

dt2
−

(
r x

K
+ 2γ1x

2y + sy

L
+ xyγ2

)
dλ1

dt

+
[(

r x

K
+ 2γ1x

2y

)(
sy

L
+ xyγ2

)
−

(
βy + γ2y

2

)(
αx + γ1x

3

)]
λ1 = M1e

−δt ,

(12)

where M1 =
(

p1q1Eδ
b1+E

)
+

(
sy
L + xyγ2

)
p1q1E
b1+E −

(
βy + γ2y2

)
p2q2E
b2+E .

The auxiliary equation for the Eq. (12) is as follows:

μ2 −
(
r x

K
+ 2γ1x

2y + sy

L
+ xyγ2

)
μ

+
[(

r x

K
+ 2γ1x

2y

)(
sy

L
+ xyγ2

)
−

(
βy + γ2y

2

)(
αx + γ1x

3

)]
= 0. (13)

Then, complete solution of the Eq. (13) is as follows:

λ1(t) = A1e
μ1(t) + A2e

μ2(t) +
(
M1

N1

)
e−δt . (14)
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Here, N1 =
[
δ2 − δ

(
r x
K + 2γ1x2y + sy

L + xyγ2

)
+

(
r x
K + 2γ1x2y

)(
sy
L +

xyγ2

)
−

(
βy + γ2y2

)(
αx + γ1x3

)]
	= 0. It is true that λ1 is bounded if

A1 = A2 = 0.

So, we have λ1(t) =
(

M1
N1

)
e−δt and λ2(t) =

(
M2
N1

)
e−δt , where M2 = p2q2Eδ

b2+E +
(

r x
K + 2γ1x2y

)
p2q2E
b2+E −

(
αx + γ1x3

)
p1q1E
b1+E .

At t → ∞, λi (t)eδt , i = 1, 2 become constant if they satisfy the transversality
condition.

Now, the equation ∂H
∂E = 0 along with λ1(t) and λ2(t) gives the following:

(
p1 − M1

N1

)
q1b1x

(b1 + E)2
+

(
p2 − M2

N1

)
q2b2y

(b2 + E)2
= C. (15)

Using the Eqs. (11) and (15), we get the optimal equilibrium of the populations
i.e., x = xδ, y = yδ .

At δ → ∞, Eq. (15) gives the result p1q1b1x
(b1+E)2 + p2q2b2 y

(b2+E)2 = C which implies ∂π
∂E = 0.

Thus, the economic rent is totally vanished. Then, from the Eqs. (11) and (15),
we get the following:

∂π

∂E
= M1

N1

q1b1x

(b1 + E)2
+ M2

N1

q2b2y

(b2 + E)2
. (16)

Since M1 and M2 are o(δ) where N1 is o(δ2), it is found that ∂π
∂E is o(δ−1). So,

∂π
∂E is gradually decreasing function with δ(≥ 0).

Therefore, it is concluded that ∂π
∂E attains it’s maximum value at δ = 0.

6 Numerical Simulations

Here, we verify the analytical findings numerically using MATLAB-2016a and
Maple-18. For this purpose, a set of parameter values have been taken as follows:
r=3.5, k=300, α = 0.02, q1 = 0.9, E = 10, b1 = 0.5, γ1 = 0.0002, s = 1.1, l =
100, β = 0.001, γ2 = 0.0001, q2 = 0.7, b2 = 0.3. For the same set of parameter
values, it is shown that: (i)E0(0, 0) is unstable, (ii)E1(226.53, 0) is stable node,
(iii)E2(0, 38.22) is stable node, (iv)E∗(16.8679, 31.8064) is both locally and glob-
ally asymptotically stable node.

From Figs. 1 and 2, it is seen that the system possesses an interior equilibrium
point E∗ = (16.8679, 31.8064) and around that point, the system (1) is globally
asymptotically stable.
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Fig. 1 Globally stable steady state of the fishery resource model with various initial values

Fig. 2 Globally stable steady state of the fishery resource model with various initial values

It is found that the bionomic equilibrium i.e., (x∞, y∞) = (16.5346, 33.2731)
(Fig. 3) occurs for the same parameter values p1 = 10, p2 = 10, C = 50 and E =
αyb1+γ1x2 yb1−r(1− x

k )b1
r(1− x

k )−αy−γ1x2 y−q1
.

Without the effect of toxicity i.e., (γ1 = γ2 = 0), we found (x∞, y∞) =
(190.84, 21.24) (Fig. 4).

From thefigures, it is concluded that the population density of prey (x∞ = 190.84)
at which the bionomic equilibrium occurs without toxicity is greater than the biomass
density of prey (x∞ = 16.5346) with toxicity. On the other hand, the population
density of predator (y∞ = 21.24) at which the bionomic equilibrium occurs with-
out toxicity is lower than the population density of predator (y∞ = 33.2731) with
toxicity.
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Fig. 3 Bionomic equilibrium of the fishery model when toxicity 	= 0

Fig. 4 Bionomic equilibrium of the fishery model when toxicity = 0

7 Conclusions

On a note to conclude, it can be prudently placed that this paper, has attempted to
discuss the consequences of toxic elements released by both species in a competing
predator-prey fishery model, where both the species are subjected to harvesting with
a modified catch rate function. An effort has been taken to examine both the local and
global stabilities. An endeavour, in this article has also been taken to delineate the
existence of bionomic equilibrium in presence of toxicity along with the task of por-
trayal of the state of the bionomic equilibrium in absence of toxicity. The numerical
examples adopted for the present purpose, suggest that the severity of releasing toxins
by predator-prey species may change the qualitative nature of the proposed model,
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explicating the fact that toxicity may cause extinction of any one of the species. It has
been observed that if the toxicity is considered, the population level of the bionomic
equilibria steady states for the first species quickly decreases, whereas in the second
species, it slowly increases. Thus, to put this in a nutshell, it can be said that the
moderate increase of toxic substances come from both the predator-prey species,
have severe impact on both and would finally lead to annihilation. The optimal har-
vesting policy, has also been discussed, as another key component of the paper. The
policy, which has been employed, applying the Pontryagin maximum principle, has
revealed the maximization of net revenue . The investigation has also ascertained
that the shadow price remains constant with respect to time, as the transversality
condition is satisfied by the optimal equations at infinity. The model has led us to
derive the fact that the maximization of net revenue is led by the zero-discounting
rate while the completion dissipation of net revenues is led by the infinite discounting
rate.
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Analysis for the Impact of HIV
Transmission Dynamics in
Heterosexuality and Homosexuality

Regan Murugesan , Suresh Rasappan , and Nagadevi Bala Nagaram

Abstract The purpose of this paper is to examine the aspects of the mathematical
analysis of HIV transmission through homo and heterosexual. A system of differ-
ential equations is designed for the transmission for homo and heterosexual. Equi-
librium and interior equilibrium points are identified. Bifurcation analysis forms an
important tool in this study. The asymptotic mean square stability criterion is derived
for non-deterministic situations. The non-deterministic analysis has been performed
around the interior equilibrium point. Numerical simulation is carried out and it sup-
ports the theoretical result. Derivation of a mathematical model is the outcome of
this study.

Keywords HIV transmission · Homosexual · Heterosexual · Bifurcation

1 Introduction

Mathematical modeling comes in handy to describe and analyze a real life situation.
The Human Immunodeficiency Virus (HIV) turned into diagnosable in 1980s [1]. It
is a type of lentivirus. It continues to be a noteworthy worldwide medical problem
[2]. According to 2017 statistics, 36.9 million individuals live with HIV and most
strikingly around 25% of them do not know that they have the virus [3]. 940,000
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people have died due to AIDS related illnesses. The homosexual and heterosexual
form the major root cause for the transmission of HIV. In India, 2.1 million people
live with HIV and especially 86% of people are affected by HIV through sexual
transmission. It has been the third biggest HIV epidemic around the world [3].

The majority among HIV people are located in low- and middle-income countries
[3]. Sex laborers,menwhohave intercoursewithmen (MSM), individualswho infuse
drugs (PWID), Hijiras/transgender individuals, migrant workers and truck drivers
are the major key affected HIV population in India. There is no solution to cure
the diseases till now but controlling the diseases is possible. Controlling the HIV
transmission in the external i.e., person to person through sex, needles etc., is more
important than the internal of the human body i.e., after presence of HIV in human
body cells. Prevention and public awareness are the major instruments to control the
HIV infection.

NACO [3] is in charge of defining policy and executing programs for the hindrance
and control of theHIVprevalence in India. Themainmotive of theNACO is to reduce
the annual new HIV infections through HIV treatment, education, care and support
for those at high risk of HIV.

AIDS is one of the universal menaces to humanity, so most of the mathematicians
have been evincing interest to take a look at the transmission of HIV/AIDS and its
dynamics by using the mathematical model. Sex structured models are bringing out
the better understanding the associated nuances of the disease. Many mathemati-
cians have developed various models without considering the sex structure wherein
they have mainly focused on the dynamics of the disease by considering suitable
systems of nonlinear differential equations. However, inclusion of sex structure in a
mathematical model would make it more realistic.

It would be worthwhile to refer to some of the related works of the previous
researchers. Abu and Emeje analyzed the strategies to control HIV/AIDS with math-
ematical models [4]. The objective of their research is the identification of the effect
of condom use and antiretroviral therapy separately and the combination of both as
control strategies. Miao et al proposed an SIR model for a stochastic system and
investigated the transmission vertically i.e., mother to child and vaccination [5]. The
threshold dynamics conditions are explored. They have incorporated less noise and
large noise in their model. Their model helps to control the epidemic of infective
disease. Bushnaq et al built a biological model to examine the existence and stability
of HIV/AIDS infection employing fractional order derivative [6].

The present study focuses attention on the prevention of HIV affected people by
undertaking mathematical analysis. Its main focus is on HIV education and coun-
selling support. Due to continuous monitoring (feedback from HIV prevention pro-
grammes) of key affected people, the annual threshold level may be stabilized. Our
results may also support development in the direction of 90-90-90 objectives in India.
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2 System Description

Amathematical model is one way of describing the system using mathematical con-
cept or any mathematical tools. HIV/AIDS is a challenging illness in medical sector.
Sex laborers, men who have intercourse with men (MSM), individuals who infuse
drugs (PWID), Hijras/transgender individuals, migrant workers and truck drivers are
identified as key transmitters. A system of differential equationwas designed for HIV
transmission [7, 8] under the category homo and heterosexuality. In the present study,
a mathematical model is developed based on the following general assumptions:

The sexually active population is divided into five sectors respectively as sus-
ceptible female, infected female, susceptible male, infected male and AIDS affected
individuals. The population sizes of the genders are initially assumed respectively as
λ1 andλ2.The direct transmission from female-to-female phenomenon is considered.
The age factor is ignored. The natural mortality rateµ is considered to be equal in all
the sectors. All possibilities of HIV transmission through the factors are considered.

The following Fig. 1 represents the flow diagram of HIV transmission. The
Mathematical model for the HIV transmission is developed as

ẋ1 = (λ1 + γ1 − μ − α1 − ψ2 − Δ1)x1 + η1x2 + y1 + κ1y2
ẋ2 = α1x1 + (γ2 − η1 − κ2 − μ − α2 − φ1)x2 + Δ2y1 + φ2y2
ẏ1 = ψ2x1 + κ2x2 + (λ2 + δ1 − ψ1 − Δ2 − β1 − μ)y1 + η2y2
ẏ2 = Δ1x1 + φ1x2 + β1y1 + (δ2 − η2 − κ1 − φ2 − β2 − μ)y2
ż = α2x2 + β2y2 − (μ + r1)z

(1)

Fig. 1 Flow diagram of HIV
transmission
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The modified Mathematical model is

ẋ1 = ξ1x1 + η1x2 + ψ1y1 + κ1y2
ẋ2 = α1x1 + ξ2x2 + Δ2y1 + φ2y2
ẏ1 = ψ2x1 + κ2x2 + ξ3y1 + η2y2
ẏ2 = Δ1x1 + φ1x2 + β1y1 + ξ4y2
ż = α2x2 + β2y2−ξ5z

(2)

where x1 identifies the population suppressed under susceptible females, x2 rep-
resents the individual population of infected females , y1 identifies the individual
population suppressed under susceptible males, y2 represents the individual popula-
tion of infected males, z represents the AIDS affected population , η1 and α1 are the
rates of transmission from x1 to x2 and x2 to x1,β1 and η2 are the rates of transmission
from y1 to y2 and y2 to y1, χ1and χ2 are the rates of transmission from y1 to x1 and
x1 to y1, φ1 and φ2 are the rates of transmission from y2 to x2 and x2 to y2, Δ1 and
κ1 are the rates of transmission from x1 to y2 and y2 to x1, Δ2 and κ2 are the rates of
transmission from x2 to y1 and y1 to x2, γ1 and γ2 are the rates of transmission from
x1 to x1 and x2 to x2, δ1 and δ2 are the rates of transmission from y1 to y1 and y2 to
y2, α2 and β2 are the rates of transmission from x2 to z and y2 to z, μ and r1 are the
natural death rate at all states and death rate due to AIDS concerning z, respectively.

3 HIV Impact, Equilibrioception and Stability

3.1 Equilibrioception Points

The equilibrioception points arising from the HIV impact are obtained with the
fulfillment of the condition ẋ1 = ẋ2 = ẏ1 = ẏ2 = ż = 0. The equilibrioception is
estimated at individual sectors of the system which is carried out in five cases.
Case 1: The HIV transmission rate from susceptible female is assumed to be zero,
i.e., ẋ1 = 0. After computation, the possible equilibrioception points of the sus-
ceptible females are obtained as (− (κ1 y2+ψ1 y1)

ξ1
, 0, 0, 0, 0), (− (η1x2+ψ1 y1)

ξ1
, 0, 0, 0, 0),

(− (η1x2+κ1 y2)
ξ1

, 0, 0, 0, 0). These are called as equilibrioception points of susceptible
females.
Case 2: Consider the case of the transmission rate from infected females taking the
value zero i.e., ẋ2 = 0. The possible equilibrioception points of the infected females
are obtained as (0,− (Δ2 y1+φ2 y2)

ξ2
, 0, 0, 0), (0,− (α1x1+φ2 y2)

ξ2
, 0, 0, 0), (0,− (α1x1+Δ2 y1)

ξ2
,

0, 0, 0). They are called infected female equilibrioception points.
Case 3: The rate of transmission from susceptible males is taken as zero, i.e., ẏ1 = 0.
The equilibrioception points in this case are obtained as (0, 0, − (κ2x2+η2 y2)

ξ3
, 0, 0),

(0, 0,− (ψ2x1+η2 y2)
ξ3

, 0, 0) and (0, 0,− (ψ2x1+κ2x2)
ξ3

, 0, 0). They are called susceptible
male equilibrioception.
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Case 4: The infected male equilibrioception points are determined when ẏ2 = 0.
Theyare (0, 0, 0,− (Δ1x1+φ1x2)

ξ4
, 0), (0, 0, 0,− (β1 y1+Δ1x1)

ξ4
, 0), (0, 0, 0,− (β1 y1+φ1x2)

ξ4
, 0)

Case 5: Finally, when the transmission rate of AIDS affected people is considered as
zero, i,e., żh = 0, the equilibrioception points are derived as (0, 0, 0, 0,− β2 y2

ξ5
) and

(0, 0, 0, 0,− β2x2
ξ5

).

3.2 Endemic Equilibrioception

The endemic equilibrium point is got as E∗ (
x∗
1 , x

∗
2 , y

∗
1 , y

∗
2 , x

∗
1 , z

∗) where x∗
1 =

−(η1x2 + κ1y2 + ψ1y1)/ξ1, x2
∗ = −(α1x1 + Δ2y1 + φ2y2)/ξ2, y1

∗ = −(ψ2x1 +
κ2x2 + η2y2)/ξ3, y2

∗ = −(β1y1 + Δ1x1 + φ1x2)/ξ4 and z∗ = (α2x2 + β2y2)/xi 5. It
is seen that HIV transmission persists or exists.

4 The Stability of the HIV Impaction

Theorem 1 The endemic equilibrioception point E∗ is asymptotically stable glob-
ally, if (x1

∗−x1) = ξ1 + (η1x2 + κ1y2 + ψ1y1)/x1, (x2∗−x2) = ξ2 + (α1x1 + 2y1 +
φ2y2)/x2, (y1∗−y1) = ξ3 + (ψ2x1 + κ2x2 + η2y2)/y1, (y2∗−y2) = ξ4 + (β1y1 +
1x1 + φ1x2)/y2 and (z∗−z) = (α2x2 + β2y2)/z−ξ5.

Proof The stability of HIV impaction of the model is obtained by Lyapunov func-
tion. It is HIV transmitting function. x1∗−x1, x2∗−x2, y1∗−y1, y2∗−y2 and z∗−z
are acting as HIV disease spreading reducers. The stability of the model is depending
on the disease reducers. These reducers are considered around the endemic equilib-
rioception.

Consider the Lyapunov function

V = (x1−x1
∗−x1

∗ log(x1 / x1
∗)) + (x2−x2

∗−x2
∗ log(x2 / x2

∗))
+ (y1−y1

∗−y1
∗ log(y1 / y1

∗))
+ (y2−y2

∗−y2
∗log(y2 / y2

∗)) + (z−z∗−z∗log(z/z∗))

V̇ = (x1−x1
∗)ẋ1/ x1 + (xi s2−x2

∗)ẋ2 / x2 + (y1−y1
∗)ẏ1 / y1

+ (y2−y2
∗)ẏ2/y2 + (z−z∗)ż/z.
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By applying endemic equilibrioception point, we obtain

V̇ = (x1−x1
∗)(ξ1 + (η1x2 + κ1y2 + ψ1y1)/x1)

+ (x2−x2
∗)(ξ2 + (α1x1 + 2y1 + φ2y2)/x2)

+ (y1−y1
∗)(ξ3 + (ψ2x1 + κ2x2 + η2y2)/y1)

+ (y2−y2
∗)(ξ4 + (β1y1 + 1x1 + φ1x2)/y2)

+ (z−z∗)((α2x2 + β2y2)/z−ξ5)

V̇ = −(x1−x1
∗)2−(x2−x2

∗)2−(y1−y1
∗)2−(y2−y2

∗)2−(z−z∗)2

V̇< 0

which is negative definite. Hence by LaSalle’s invariance principle, the HIV trans-
mission dynamic (1) is globally asymptotically stable at endemic equilibrioception.

5 The Non-deterministic Model

The non-deterministic model is considered for the homo and heterosexual population
in a HIV transmission. In this model, the perturbations are permitted into the factors
x1, x2, y1, y2 and z around the endemic equilibrioception E* for the situation when it
is feasible and regionally asymptotically steady. Local steadiness of E∗ is implied via
the existence conditions of E∗. So in the model (1), it is assumed that the stochastic
disturbances of the factors around their values at E∗ are of white noise type, which
are relative to the distances of x1, x2, y1, y2 and z from the values of x1∗, x2∗, y1∗,
y2∗ and z∗. The Stochastic differential equation of the HIV is

dx1 = [ξ1x1 + η1x2 + ψ1y1 + κ1y2]dt + σ1[x1−x1∗]dw1(t)

dx2 = [α1x1 + ξ2x2 + 2y1 + φ2y2]dt + σ2[x2−x2∗]dw2(t)

dy1 = [ψ2x1 + κ2x2 + ξ3y1 + η2y2]dt + σ3[y1−y1∗]dw3(t)

dy2 = [1x1 + φ1x2 + β1y1 + ξ4y2]dt + σ4[y2−y2∗]dw4(t)

dz = [α2x2 + β2y2−ξ5z]dt + σ4[z−z∗]dw5(t)

(3)

where σi , i = 1, 2, 3, 4, 5 are real constants and wi (t), i = 1, 2, 3, 4, 5 are indepen-
dent from each other by standard Wiener processes [9].

6 Stability of the Non-deterministic Model

The non-deterministic model (3) can be centered at its endemic equilibriocep-
tion E∗ positively by the change of variables u1 = (x1−x∗

1), u2 = (x2−x∗
2), u3 =

(y1−y∗
1), u4 = (y2−y∗

2), u5 = (z−z∗). The non-deterministic differential equations
around the endemic equilibrioception E∗ are linearized and taken in the form
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du(t) = f (u(t))dt + g(u(t))dw(t) (4)

where u(t) = [u1(t)u2(t)u3(t)u4(t)u5(t)]T

f (u(t)) =

⎡

⎢
⎢⎢⎢
⎣

ξ1 0 0 0 0
0 ξ2 0 0 0
0 0 ξ3 0 0
0 0 0 ξ4 0
0 0 0 0 ξ5

⎤

⎥
⎥⎥⎥
⎦
u(t) (5)

g(u(t)) =

⎡

⎢⎢
⎢⎢
⎣

σ1u1 0 0 0 0
0 σ2u2 0 0 0
0 0 σ3u3 0 0
0 0 0 σ4u4 0
0 0 0 0 σ5u5

⎤

⎥⎥
⎥⎥
⎦

(6)

In (4) the positive interior equilibrium E∗ corresponds to the trivial solution
u(t) = 0. Let U be the set U = {(t≥t0)×Rn, t0 ∈ R+}.

Thus, V ∈ C2
0(U ) is two times constantly differentiable function with respect to

u and a continuous function with respect to t . With reference to Afanasev et al. [10],
the Eq. (4) implies the following Itö differential equation

LV (t, u) = ∂V (t, u)

∂t
+ f T (u)

∂V (t, u)

∂t

1

2
trace

[
gT (u)

∂2V (t, u)

∂u2
g(u)

]

where ∂V
∂u = Col

(
∂V
∂u1

, ∂V
∂u2

, ∂V
∂u3

, ∂V
∂u4

, ∂V
∂u5

)
and ∂2V (t,u)

∂u2 = ∂2V
∂u j∂ui

, i, j = 1, 2, 3, 4.

Remarks

Suppose the function V ∈ C2
0(U ) exists as above. Then if the inequalities

M1|u|q≤V (t, u)≤M2|u|q , (7)

LV (t, u)≤−M3|u|q , Mi>0, q>0 (8)

hold, then the trivial solution of (4) is exponentially q−stable for t ≥ 0. When q = 2
the trivial solution due to (7) and (8) is globally asymptotically steady in probability.

Theorem 2 If σ1
2 = −4ξ1, σ2

2 = −4ξ2, σ3
2 = −4ξ3, σ4

2 = −4ξ4 and σ5
2 = −4ξ5,

then the solution with the zero of (4) is asymptotically mean square steady.
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Proof Let us assume the Lyapunov function

V (u) = 1

2
[w1u1

2 + w2u2 + w3u3
2 + w4u4

2 + w5u5
2]

where wi , i = 1, 2, 3, 4, 5 are real positive constants to be chosen. It is straightfor-
ward to check that the inequalities (7) and (8) hold with q = 2. Now the Itö Process
gives

V (u) = w1(ξ1u1)u1 + w2(ξ2u2)u2 + w3(ξ3u3)u3 + w4(ξ4u4)u4 + w5(ξ5u5)u5

+ 1

2
trace

[
gT (u)

∂2V (t, u)

∂u2
g(u)

]

V (u) = w1(ξ1u1)u1 + w2(ξ2u2)u2 + w3(ξ3u3)u3 + w4(ξ4u4)u4 + w5(ξ5u5)u5

+ 1

2
[σ1

2w1u1
2 + σ2

2w2u2
2 + σ3

2w3u3
2 + σ4

2w4u4
2 + σ5

2w5u5
2]

= w1(ξ1 + σ1
2)u1

2 + w2(ξ2 + σ2
2)u2

2 + w3(ξ3 + σ3
2)u3

2

+ w4(ξ4 + σ4
2)u4

2 + w5(ξ5 + σ5
2)u5

2

V (u) = −ξ1w1u1
2−ξ2w2u2

2−ξ3w3u3
2−ξ4w4u4

2−ξ5w5u5
2

Hence the system is asymptotically mean square stable.

7 Numerical Simulation for Deterministic Model

A simulation was carried out by taking the initial conditions x1 = 5.013, y1 =
4.218, z = 1.298, x2 = 4.558, y2 = 9.383. and the parametric values

ξ1 = 0.2345, η1 = 0.3837,ψ1 = 0.2312,ϕ1 = 0.2345, ξ2 = 0.4834, η2 = 0.7845,

ψ2 = 0.7543,ϕ2 = 0.4567, ξ3 = 0.1987,α1 = 0.1976,β1 = 0.9109, 1 = 0.1209,

ξ4 = 0.2987,α2 = 0.7652,β2 = 0.2109, 2 = 0.5768, ξ5 = 0.2345,κ1 = 0.9872,

κ2 = 0.6092

As a result of this simulation process between the five states, it is observed that
the dissemination of HIV in a homo and heterosexual affected populace is stabilized
at the origin. The result is depicted in Fig. 2.
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Fig. 2 Analysis of deterministic system for dissemination of HIV among homosexual and hetero-
sexual affected population

8 Numerical Example for Non-deterministic Model

A simulation was carried out by taking the initial conditions x1 = 15.013, y1 =
17.218, z = 5.298, x2 = 18.558, y2 = 15.383 and the parametric values
ξ1 = 0.5645, η1 = 0.7247,ψ1 = 0.6542,ϕ1 = 0.7250, ξ2 = 0.5234, η2 = 0.6845,
ψ2 = 0.3543, ϕ2 = 0.6567, ξ3 = 0.7987,α1 = 0.2376,β1 = 0.7609, 1 = 0.6209,
ξ4 = 0.1257,α2 = 0.7651,β2 = 0.8654, 2 = 0.2768, ξ5 = 0.8765,κ1 = 0.1872,
κ2 = 0.1092.

The noise band in Wiener process is taken as the closed interval [0, 1]. With the
above values, the following observations are made.

When the value of σ is in the range between 0.1 and 0.49, susceptible males
and infected females are affected more by HIV. When the value of σ is in the
range between 0.5 and 1, the persons in all the five categories namely susceptible
female, infected female, susceptible male, infected male and AIDS affected people
are impacted by the HIV transmission of homo and heterosexual population. The
simulation result for the non-deterministic model is furnished in Fig. 3.
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Fig. 3 Non-deterministic nature of homosexual and heterosexual affected population

9 Hyperbolic Equilibria and Bifurcation Analysis

9.1 Hyperbolic Equilibria

The Jacobian matrix of the model (1) is

J =

⎡

⎢⎢⎢
⎢
⎣

ξ1 η1 ψ1 κ1 0
α1 ξ2 Δ2 φ2 0
ψ2 κ2 ξ3 η2 0
Δ1 φ1 β1 ξ4 0
0 α2 0 β2 −ξ5

⎤

⎥⎥⎥
⎥
⎦

(9)

The characteristic equation of the Jacobian matrix J is

λ5−aλ4−bλ3−cλ2−dλ−E = 0 (10)

In this analysis, If E �= 0, then there exists a hyperbolic equilibrium point for the
system. This equilibrium point is robust. Therefore the system of equations is struc-
turally stable and when E = 0, there exists a non-hyperbolic equilibrium point.
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9.2 Bifurcation

If η1,ψ1, κ1,α2, β1 and β2 are negative, or η1,ψ1, κ1, β1 = 0 or negative, α2 = 0 and
β2 = 0, then J has a pair of imaginary eigen values. Consequently, the stability of the
systemmay change or disappear or split into many equilibrium points. This indicates
the existence of bifurcation. If ξ1 = ξ4 = ξ5 = 0, then J has zero eigenvalue and a
pair of imaginary eigen values. In this case also, bifurcation exists.

10 Conclusion

Themathematical analysis of the problemofHIV transmission throughhomoandhet-
erosexual investigated by designing a newmathematical model. A non-deterministic
model is investigated and its qualitative properties are analyzed. Hyperbolic equilib-
rium points and bifurcation analysis strengthen the qualitative properties of the pro-
posed model. The hyperbolic equilibrium points give the robustness of the proposed
model. Numerical computations concerning the stability analysis of the proposed
model using the MATLAB software are presented. From the bifurcation analysis, it
is observed that the disease-free equilibrium condition is not possible if the individual
can suppress AIDS and the mortality rate or mortality span may undergo change due
to continuous prevention and treatment. As a result of this study it is seen that, due
to the severity of the HIV transmission, the endemic equilibrioception may change,
disappear or split into many endemic equilibrioception.
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Exact Traveling Wave Solutions
to General FitzHugh-Nagumo Equation

Subin P. Joseph

Abstract A general FitzHugh–Nagumo equation is considered in this paper and
new traveling wave exact solutions for this nonlinear partial differential equation are
derived. This nonlinear reaction-diffusion equation models several evolution equa-
tions such as the transmission of nerve impulses and the evolutionary rescue in the
case of spatial invasions. Since the equation is highly nonlinear, the exact solutions
are computed using certain ansatz forms and using a computer algebra system.

Keywords FitzHugh–Nagumo equation · Nonlinear evolution equation · Exact
solutions

1 Introduction

In this paper we consider the cubic nonlinear evolutionary equation

∂u

∂t
− η

∂2u

∂x2
= α1u + α2u

2 + α3u
3 (1)

where u = u(x, t) and η, α1, α2 and α3 are real parameters. This equation is the
generalization of FitzHugh– Nagumo equation [11, 12] given by

∂u

∂t
− ∂2u

∂x2
= u(1 − u)(u − ρ), (2)

with α1 = −ρ, α2 = (1 + ρ), α3 = −1, η = 1 and 0 < ρ < 1. Equation (2) has
many applications in the fields of astrophysics, fluid mechanics, exciting electronic
circuit theory, population genetics, heart electrical waves, chemical chemistry, trans-
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mission of nerve impulses and the evolutionary rescue in the case of spatial invasions
etc. [1, 2, 4–7, 10, 13–15, 17–19].

The theory which investigate evolutionary rescue in the case of well-mixed pop-
ulations that are declining due to an environmental shift and spatial invasions are
presented in [19] . The prevention of population extinction by adaptation is termed
as evolutionary rescue [3, 8]. If u(x, t) is the relative invader frequency, then its rate
of change is

∂u

∂t
− η

∂2u

∂x2
= ωu(1 − u), (3)

whereη andω are the species diffusion constant and the frequency independent fitness
advantage for the invader respectively. Similarly, when the fitness of the resident is
linearly decreasing with respect to the frequency of the invader, then

∂u

∂t
− η

∂2u

∂x2
= ωu2(1 − u). (4)

The Eqs. (3) and (4) are special cases of the general Eq. (1). Putting α1 = ω, α2 =
−ω , α3 = 0 and putting α1 = 0, α2 = ω, α3 = −ω in Eq. (1), we can recover these
equations respectively.

Since the evolutionary equations given above are having many applications in
different fields such as natural computations, exact solutions are necessary for the
better analysis of the situation in hand aswell as checking the accuracyof approximate
solutions. But the available exact solutions are rare for these nonlinear evolutionary
equations [5–7]. Nonlinear partial differential equations are very difficult to solve in
general to find exact solutions. Several methods are developed to find exact solutions
for nonlinear equations that appear in mathematical physics. But the efficient and
widely usedmethod to solve these equations are various ansatz methods, such as tanh
method, sech method, sinh-cosh method, Exp-function method, the Jacobi elliptic
function expansion method and(G’/G)-expansion method and several variants of
these methods [9, 16, 20, 21]. In this paper also we apply ansatz method to find new
travelingwave exact solutions to the general evolutionEq. (1). Since the computations
are much involved, we need to depend on any of the powerful computer algebra
system in performing the required computations. In the next section we explain the
algorithm used to compute the solutions. Several new exact solutions for the general
evolution equation are derived in the third section. The paper is concluded in the last
section with a discussion.

2 Method

We need to find the traveling wave solutions to the evolution Eq. (1). First of all, the
traveling wave transformation u(x, t) = v(ξ) is used to convert this equation in to
an ordinary differential equation, where ξ = dx + ct and d and c are traveling wave
parameters. The resulting ordinary differential equation is then given by
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d2ηv′′(ξ) − cv′(ξ) + α1v(ξ) + α2v(ξ)2 + α3v(ξ)3 = 0. (5)

Now, to derive the exact solutions, we assume that the solutions to the above
ordinary differential equation exist in the form

v(ξ) = a0 + a1 + a2g1(ξ) + a3h1(ξ)

b1 + b2g2(ξ) + b3h2(ξ)
(6)

where the functions g1, g2, h1 and h2 and the parameters ai ’s and bi ’s are to be deter-
mined later. Then, v(ξ) given by Eq. (6) is substituted in to the ordinary differential
Eq. (5). Then we obtain a system of nonlinear algebraic equations corresponding
to this differential equation by using any of the computational algebra system. This
system of equations is then solved to determine the value of the parameters. Using
these parametric values we can determine the exact solutions to Eq. (1). We use
different trial functions to derive new exact solutions in the following section.

3 Exact Solutions

To obtain the first family of solutions, we select the trial function g1(ξ) =
sech2(ξ), g2(ξ) = csch2(ξ), h1(ξ) = tanh(ξ) and h2(ξ) = coth(ξ). Then Eq. (6)
becomes

v(ξ) = a0 + a1 + a2sech2(ξ) + a3csch2(ξ)

b1 + b2 tanh(ξ) + b3 coth(ξ)
. (7)

Substituting this value of v(ξ) in Eq. (5), we get a system of thirteen nonlinear
algebraic equations given in appendix. Solving this system of algebraic equations,
the following sets of different solutions are obtained.
SET-I:

c = ±
α2

√
α2
2 − 4α1α3

4α3
, d = −

√
4α1α3 − α2

2

2
√
2
√

α3
√

η
, b1 = −a1α2

2α1
, a0 = 0

b2 = ∓
a1

√
α2
2 − 4α1α3

2α1
, b3 = 0, a2 = 1

4
a1

(
α2
2

α1α3
− 4

)
, a3 = 0.

(8)

SET-II:

c = ±
α2

√
α2
2 − 4α1α3

4α3
, d = −

√
4α1α3 − α2

2

2
√
2
√

α3
√

η
, b1 = −a1α2

2α1
, a0 = 0

b2 = 0, b3 = ∓
a1

√
α2
2 − 4α1α3

2α1
, a2 = 0, a3 = a1

(
1 − α2

2

4α1α3

)
.

(9)
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SET-III:

c = ±
α2

√
α2
2 − 4α1α3

8α3
, d = −

√
4α1α3 − α2

2

4
√
2
√

α3
√

η
, b1 = −a1α2

2α1
, a0 = 0

b2 = ∓
a1

√
α2
2 − 4α1α3

4α1
, b3 = ∓

a1
√

α2
2 − 4α1α3

4α1
,

a2 = 1

16
a1

(
α2
2

α1α3
− 4

)
, a3 = 1

16
a1

(
4 − α2

2

α1α3

)
.

(10)

SET-IV:

c = ±
α2

√
α2
2 − 4α1α3

8α3
, d = −

√
4α1α3 − α2

2

4
√
2
√

α3
√

η
, b1 = −a1α2

2α1
, a0 = 0

b2 = ∓
a1

√
α2
2 − 4α1α3

4α1
, b3 = ∓

a1
√

α2
2 − 4α1α3

4α1
, a2 = 0, a3 = 0.

(11)

SET-V:

c = ±
α2

√
α2
2 − 4α1α3

4α3
, d =

√
4α1α3 − α2

2

2
√
2
√

α3
√

η
, b1 = −a1α2

2α1
, a0 = 0

b2 = 0, b3 = ∓
a1

√
α2
2 − 4α1α3

2α1
, a2 = 0, a3 = 0.

(12)

SET-VI:

c = ±
α2

√
α2
2 − 4α1α3

4α3
, d =

√
4α1α3 − α2

2

2
√
2
√

α3
√

η
, b1 = −a1α2

2α1
, a0 = 0

b2 = ∓
a1

√
α2
2 − 4α1α3

2α1
, b3 = 0, a2 = 0, a3 = 0.

(13)

Corresponding to each set of above solutions, the exact solutions for theFitzHugh–
Nagumo equation are given below respectively.

v1,2(x, t) = − sech2(ct + dx)
(
α2
2 + 4α1α3 sinh2(ct + dx)

)

2α3

(
α2 ±

√
α2
2 − 4α1α3 tanh(ct + dx)

) , (14)

v3,4(x, t) = α2
2csch

2(ct + dx) − 4α1α3 coth2(ct + dx)

2α3

(
α2 ±

√
α2
2 − 4α1α3 coth(ct + dx)

) , (15)
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v5,6(x, t) = csch(ct + dx)sech(ct + dx)
(
α2
2 − 4α1α3 cosh2(2(ct + dx))

)

4α3

(
α2 sinh(2(ct + dx)) ±

√
α2
2 − 4α1α3 cosh(2(ct + dx))

) , (16)

v7,8(x, t) = − 2α1 sinh(2(ct + dx))

α2 sinh(2(ct + dx)) ±
√

α2
2 − 4α1α3 cosh(2(ct + dx))

, (17)

v9,10(x, t) = − 2α1

α2 ±
√

α2
2 − 4α1α3 coth(ct + dx)

, (18)

v11,12(x, t) = − 2α1

α2 ±
√

α2
2 − 4α1α3 tanh(ct + dx)

, (19)

where the values of c and d are given by Eqs. (8)–(13). Graphical representation of
the first solution u1(x, t) is given in Fig. 1.

Now, we will derive second family of solutions by letting g1(ξ) =
coth(ξ), g2(ξ) = 0, h1(ξ) = coth2(ξ) and h2(ξ) = 0. Then Eq. (6) becomes

Fig. 1 Graphical representation of the exact solution v1(x, t) given by Eq. (14) of the FitzHugh–
Nagumo equation, where η = 1, α1 = − 1

2 , α2 = 3
2 , α3 = −1
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v(ξ) = a0 + a1 + a2 coth(ξ)

b1 + b2 coth2(ξ)
. (20)

Substituting this value of v(ξ) in Eq. (5), we get another system of nonlinear
algebraic equations given by

a2b
2
1c = α3a

3
1 + a21b1 (3a0α3 + α2) + a0b

3
1 (a0 (a0α3 + α2) + α1)

+ a1b1
(
b1

(
3α3a

2
0 + 2α2a0 + α1

) − 2b2d
2η

)
,

2a1 (b1 − b2) b2c = α3a
3
2 + 2a2

(
b2b1

(
2a0α2 + 3a20α3 + α1 + 6d2η

)

+b2
(
a1 (3a0α3 + α2) + b2d

2η
) + b21d

2η
)
,

b2
(
a0b2 (a0 (a0α3 + α2) + α1) − a2c + 2a1d

2η
) = 0,

b2
(
2a1b2c + a2

(
b2

(−2a0α2 − 3a20α3 − α1 + 2d2η
) + 6b1d

2η
)) = 0,

b2
(
a22 (3a0α3 + α2) + 3a0b1b2 (a0 (a0α3 + α2) + α1)

+a2b2c + a1
(
b2

(
2a0α2 + 3a20α3 + α1 − 8d2η

) − 6b1d
2η

)) = 0,

2a1b1b2c + a2
(
3α3a

2
1 + b21

(
2a0α2 + 3a20α3 + α1 − 2d2η

)

+b1
(
2a1 (3a0α3 + α2) − 6b2d

2η
))
a22 (3a1α3 + b1 (3a0α3 + α2))

+ a2b
2
1c + b2

(
a21 (3a0α3 + α2) + 3a0b

2
1 (a0 (a0α3 + α2) + α1)

+2a1
(
b1

(
2a0α2 + 3a20α3 + α1 + 4d2η

) + 3b2d
2η

)) = 0.

(21)

Solving this systemof algebraic equations, the following sets of different solutions
are obtained.
SET-I:

c = ±
α2

√
α2
2 − 4α1α3

4α3
, d = −

√
4α1α3 − α2

2

2
√
2
√

α3
√

η
,

a2 = ∓
a1

√
α2
2 − 4α1α3

α2
, b1 = −a1α2

2α1
, b2 = a1

(
α2

2α1
− 2α3

α2

)
.

(22)

SET-II:

c = ±
α2

√
α2
2 − 4α1α3

4α3
, d =

√
4α1α3 − α2

2

2
√
2
√

α3
√

η
,

a2 = ∓
a1

√
α2
2 − 4α1α3

α2
, b1 = −a1α2

2α1
, b2 = a1

(
α2

2α1
− 2α3

α2

)
.

(23)

Corresponding to the above sets of solutions, the only exact solutions for the
FitzHugh–Nagumo equation are given by .
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v13,14(x, t) = −
2α1

(
α2 ±

√
α2
2 − 4α1α3 coth(ct + dx)

)

4α1α3 coth2(ct + dx) − α2
2csch

2(ct + dx)
. (24)

where the values of c and d are given by Eqs. (22) and (23).
Finally, we derive a third family of solutions by letting g1(ξ) = tanh(ξ), g2(ξ) =

0, h1(ξ) = sech2(ξ) and h2(ξ) = 0. Then Eq. (6) becomes

v(ξ) = a0 + a1 + a2 tanh(ξ)

b1 + b2sech2(ξ)
. (25)

Substituting this value of v(ξ) in the Eq. (5), we get a systemof nonlinear algebraic
equations given by

a2 (b1 + b2)
2c = α3a

3
1 + a21 (b1 + b2) (3a0α3 + α2) + a0 (b1 + b2)

3 (a0 (a0α3 + α2) + α1)

+ a1 (b1 + b2)
(
b1 (a0 (3a0α3 + 2α2) + α1) + b2

(
2a0α2 + 3a20α3 + α1 + 2d2η

))
,

b2
(
a0b2 (a0 (a0α3 + α2) + α1) + a2c − 2a1d

2η
) = 0,

b2
(
a22 (− (3a0α3 + α2)) + 3a0b2 (b1 + b2) (a0 (a0α3 + α2)

+α1) + a2b2c + a1
(
b2

(
2a0α2 + 3a20α3 + α1 − 2d2η

) + 6b1d
2η

)) = 0,

b2
(
a21 (3a0α3 + α2) + 3a0 (b1 + b2)

2 (a0 (a0α3 + α2) + α1)

+2a1
(
b2

(
2a0α2 + 3a20α3 + α1 + d2η

) + b1
(
2a0α2 + 3a20α3 + α1 + 4d2η

)))

= a2
(
a2 (3a1α3 + b1 (3a0α3 + α2) + b2 (3a0α3 + α2)) + (b1 + b2)

2c
)
,

(26)

b2
(
a2

(
b2

(
2a0α2 + 3a20α3 + α1 + 4d2η

) + 6b1d
2η

) − 2a1b2c
) = 0,

a2
(
b2b1

(
2a0α2 + 3a20α3 + α1 + 4d2η

) + b2 (a1 (3a0α3 + α2)

+b2
(
2a0α2 + 3a20α3 + α1 + 4d2η

)) + b21
(−d2

)
η
) = α3a

3
2 + 2ca1b2 (b1 + 2b2) ,

2a1b2 (b1 + b2) c + a2
(−3α3a

2
1 − 2a1b2 (3a0α3 + α2)

−b22
(
2a0α2 + 3a20α3 + α1 + 4d2η

) + b21
(−2a0α2 − 3a20α3 − α1 + 2d2η

)

−2b1
(
a1 (3a0α3 + α2) + b2

(
2a0α2 + 3a20α3 + α1 + d2η

))) = 0.
(27)

Solving this systemof algebraic equations, the following sets of different solutions
are obtained.
SET-I:

c = ±
α2

√
α2
2 − 4α1α3

4α3
, d = −

√
4α1α3 − α2

2

2
√
2
√

α3
√

η
,

a1 = −α2b1
2α3

, a2 = ∓
√

α2
2 − 4α1α3b1

2α3
, b2 = 1

4

(
α2
2

α1α3
− 4

)
b1.

(28)
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SET-II:

c = ± −
α2

√
α2
2 − 4α1α3

4α3
, d =

√
4α1α3 − α2

2

2
√
2
√

α3
√

η
,

a1 = −α2b1
2α3

, a2 = ∓
√

α2
2 − 4α1α3b1

2α3
, b2 = 1

4

(
α2
2

α1α3
− 4

)
b1.

(29)

Corresponding to the above sets of solutions, the only exact solutions for the
FitzHugh–Nagumo equation are given by .

v15,16(x, t) = −
2α1 cosh2(ct + dx)

(
α2 ±

√
α2
2 − 4α1α3 tanh(ct + dx)

)

4α1α3 sinh2(ct + dx) + α2
2

. (30)

where the values of c and d are given by Eqs. (28) and (29). Graphical representation
of the first solution u15(x, t) is given in Fig. 2.

Fig. 2 Graphical representation of the exact solution v15(x, t) given by Eq. (30) of the FitzHugh–
Nagumo equation, where η = 1, α1 = − 1

2 , α2 = 3
2 , α3 = −1
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4 Discussion

Three families of new exact solutions to the nonlinear evolution Eq. (1) are derived
in this paper. This equation represents several physical and biological processes
such as transmission of nerve impulses and the evolutionary rescue from biological
invasion. The number of existing exact solutions for this equation are very rare.
But, exact solutions for such equations are required for a better understanding of the
physical problem and for checking accuracy of any numerical algorithm developed
for solving the real problems. Since it is difficult to derive the exact solutions using
any analytical methods, we employ ansatz method to derive the exact solutions.
But, when using this method, a large nonlinear system of equations are obtained
corresponding to each ansatz form. It is needed to find out the nontrivial solutions
that simultaneously satisfy this system of algebraic equations. This is can be done by
using any of the computational algebra system. Other exact solutions for FitzHugh–
Nagumo equation can also be derived by assuming similar ansatz forms for exact
solutions.

Appendix

Substituting this value of v(ξ) in Eq. (5), we get a system of nonlinear algebraic
equations given by

α3a
3
2 + 2a2b

2
2d

2η = 0, α3a
3
3 + 2a3b

2
3d

2η = 0,

a2b2
(−a2 (3a0α3 + α2) + b2c + 6b1d

2η
) = 0,

a2 (−3a2 (a1 + a2 − a3) α3 + b1 (3b2c − a2 (3a0α3 + α2))

+b22
(
2a0α2 + 3a20α3 + α1 − 2d2η

) + 6b21d
2η + 6b2b3d

2η
) = 0,

a2 (−a2b3 (3a0α3 + α2) + 2b2 ((a1 + a2 − a3) (3a0α3 + α2)

+2b3c) + b1
(
b2

(
4a0α2 + 6a20α3 + 2α1 − 4d2η

) + 16b3d
2η

) + 2b21c
)

= b2
(
a0b

2
2 (a0 (a0α3 + α2) + α1) − a1

(
b2c + 2b1d

2η
) + a3

(
b2c + 2b1d

2η
))

,

a3b3
(
a3 (3a0α3 + α2) + b3c + 6b1d

2η
) = 0,

3α3a
3
2 + a22 (3 (2a1 − 3a3) α3 + 2b1 (3a0α3 + α2)) + a2 (b1 (2 (a1 − a3) (3a0α3 + α2) − 2b2c + 5b3c)

+b21
(
2a0α2 + 3a20α3 + α1 − 8d2η

) + 2b2b3
(
2a0α2 + 3a20α3 + α1 + d2η

) + 3
(
α3 (a1 − a3)

2 + 4b23d
2η

)

+b22
(−2a0α2 − 3a20α3 − α1 + 2d2η

)) + b2 (−3a0b1b2 (a0 (a0α3 + α2) + α1)

+a3
(
b2

(
2a0α2 + 3a20α3 + α1 − 8d2η

) − b1c − 6b3d
2η

)

+a1
(
b2

(−2a0α2 − 3a20α3 − α1 + 2d2η
) + b1c + 6b3d

2η
)) = 0,

a22 (b2 − 2b3) (3a0α3 + α2) + a2 (2b2 ((a1 − 2a3) (3a0α3 + α2) + 2b3c)

+b3 (−2 (a1 − a3) (3a0α3 + α2) − 3b3c)
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+2b1
(
b2

(
2a0α2 + 3a20α3 + α1 + d2η

) + b3
(−2a0α2 − 3a20α3 − α1 + 11d2η

))

+2b21c + b22c
) + b2

(
a21 (3a0α3 + α2) + a23 (3a0α3 + α2)

+3a0
(
b21 + b2b3

)
(a0 (a0α3 + α2) + α1)

+a1
(−2a3 (3a0α3 + α2) + 2b1

(
2a0α2 + 3a20α3 + α1 + d2η

) + b2c
)

−2a3
(
b1

(
2a0α2 + 3a20α3 + α1 − 2d2η

) + 2b2c
)) = 0,

α3a
3
3 + 9a22α3a3 + a3

(
3α3a

2
1 + b1 (2a1 (3a0α3 + α2) + 6b2c + b3c)

+b21
(
2a0α2 + 3a20α3 + α1 − 2d2η

) + 2b2b3
(
2a0α2 + 3a20α3 + α1 + 7d2η

)

+b22
(−2a0α2 − 3a20α3 − α1 + 20d2η

) + 2b23d
2η

)

+ a2
(−3α3a

2
1 + 12a3α3a1 − 9a23α3 + 2a0α2b

2
3 + 3a20α3b

2
3

−b1 (2 (a1 − 2a3) (3a0α3 + α2) + b2c + 6b3c) − 2b2b3
(
2a0α2 + 3a20α3 + α1 + 7d2η

)

+b21
(−2a0α2 − 3a20α3 − α1 + 2d2η

) + α1b
2
3 − 2b22d

2η − 20b23d
2η

)

= a31α3 + a32α3 + α3a
3
0b1

(
b21 + 6b2b3

) + α2a
2
0b1

(
b21 + 6b2b3

)

+ a0b1
(
3

(
a22 + a23

)
α3 + α1b

2
1 + 6α1b2b3

) + a22α2b1 + a23α2b1

+ a21b1 (3a0α3 + α2) + a1
(
3α3a

2
2 + 3a23α3

+b21 (a0 (3a0α3 + 2α2) + α1) + 2b2b3
(
2a0α2 + 3a20α3 + α1 + 6d2η

)

+b1 (b2 + b3) c + 2b22d
2η + 2b23d

2η
)
,

a3
(
3a23α3 − 3a1a3α3 − 3a2a3α3 − 2a0α2b

2
3 − 3a20α3b

2
3

−b1 (a3 (3a0α3 + α2) + 3b3c) − α1b
2
3 − 6b21d

2η + 2b23d
2η − 6b2b3d

2η
) = 0,

3α3a
3
3 + a3

(
3α3a

2
1 + 6a2α3a1 + 3a22α3 − 2a0α2b

2
3 − 3a20α3b

2
3

+b1 (2 (a1 + a2) (3a0α3 + α2) + 5b2c − 2b3c)

+b21
(
2a0α2 + 3a20α3 + α1 − 8d2η

)

+2b2b3
(
2a0α2 + 3a20α3 + α1 + d2η

) − α1b
2
3 + 12b22d

2η + 2b23d
2η

)

+ b3
(
3a0b1b3 (a0 (a0α3 + α2) + α1) + a2

(
b3

(
2a0α2 + 3a20α3

+α1 − 8d2η
) − b1c − 6b2d

2η
) + a1

(
b3

(
2a0α2 + 3a20α3 + α1 − 2d2η

)

−b1c − 6b2d
2η

)) = a23 (3 (2a1 + 3a2) α3 + 2b1 (3a0α3 + α2)) ,

a3 (b3 ((2a1 + 4a2 − a3) (3a0α3 + α2) + b3c) + 2b2 (2b3c − (a1 + a2 − a3)

(3a0α3 + α2)) + 2b1
(
b3

(
2a0α2 + 3a20α3 + α1 + d2η

)

+b2
(−2a0α2 − 3a20α3 − α1 + 11d2η

)) + 2b21c − 3b22c
)

= b3
(
a21 (3a0α3 + α2) + a22 (3a0α3 + α2)

+3a0
(
b21 + b2b3

)
(a0 (a0α3 + α2) + α1)

+a1
(
2a2 (3a0α3 + α2) + 2b1

(
2a0α2 + 3a20α3 + α1 + d2η

) + b3c
)

+a2
(
b1

(
4a0α2 + 6a20α3 + 2α1 − 4d2η

) + 4b3c
))

,

b3
(−a0b

2
3 (a0 (a0α3 + α2) + α1) + a1

(
b3c + 2b1d

2η
) + a2

(
b3c + 2b1d

2η
))

= a3 (2 (a1 + a2 − a3) b3 (3a0α3 + α2) + b2 (a3 (3a0α3 + α2) + 4b3c)

+2b1
(
b3

(
2a0α2 + 3a20α3 + α1 − 2d2η

) + 8b2d
2η

) + 2b21c
)
.
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AMulti-criteria Model of Selection
of Students for Project Work Based
on the Analysis of Their Performance

Sukarna Dey Mondal , Dipendra Nath Ghosh ,
and Pabitra Kumar Dey

Abstract Project work does not always imply extensive knowledge, but it does
imply the application of such information. Through this project work, students are
exposed to educational ideas as well as technical ideas. Therefore, the selection and
evaluation of students are crucial parts of any project for any education organization
concerning excellence. So, an attempt has been made to draw a mathematical model
with the help of several MCDM techniques and Statistics from which it will be very
easy to evaluate and select a suitable student for the project. First of all, a payoff
matrix has been created with the AHP method. Entropy is used to calculate the total
weight. Then utility based, distance based, and out-ranking basedMCDM techniques
are applied to get several ranking structures. Ultimately, through a voting method,
the study offers a ranking of 5 students under student excellence.

Keywords AHP · Entropy · TOPSIS · VIKOR · COPRAS · PROMETHEE-2 ·
WSM · Voting system

1 Introduction

In recent times, project work is gradually becoming compulsory in schools and
colleges. A properly decorated project can carry extra marks in an interview or
an exam. Project work is essential to escalating the volume of conception. Thus,
command of the project matter, technical skill, ability to communicate, discipline &
behavior, experience, leadership and managing power, and stress tolerance are

S. Dey Mondal (B)
Department of Mathematics, Dr. B.C. Roy Engineering College, MAKAUT, Kolkata,
West Bengal, India
e-mail: sukarnadey@gmail.com

D. Nath Ghosh
Controller of Examinations, Kazi Nazrul University, Asansol, West Bengal, India

P. Kumar Dey
Department of Computer Applications, Dr. B.C. Roy Engineering College, MAKAUT, Durgapur,
West Bengal, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Banerjee and A. Saha (eds.), Nonlinear Dynamics and Applications,
Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-99792-2_73

873

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99792-2_73&domain=pdf
https://orcid.org/0000-0003-4251-2787
https://orcid.org/0000-0002-1390-2527
https://orcid.org/0000-0002-7362-4610
mailto:sukarnadey@gmail.com
https://doi.org/10.1007/978-3-030-99792-2_73


874 S. Dey Mondal et al.

important requirements towards performance analysis of students. MCDM approach
delivers upgraded knowledge to scrutinize the potential of a student in an education
organization for ranking a project. Project work means that not only good students
are eligible, but also all types of students have to do project work. In many cases due
to their lack of technical intelligence, very good students did not get a place in that
project. So, finding a skilled student for a project is an important part of the research.
A mathematical model has been created by looking into everything from which it
will be very easy to rank all these skilled students.

A scientificmodel related to students’ projectwork has already been createdwhere
AHP, PROMETHEE-2, and TOPSIS were used. With the previous model in mind,
another new scientific model has been developed and several MCDM approaches
like Entropy, VIKOR, COPRAS, andWSM have been applied.Whereas early model
only one ranking was found as two MCDM methods were used but now there are
several rankings for using several MCDM methods. For this model, the opinions of
several project guides have been taken to the performance of the students concerning
some pre-assigned criteria. Ultimately, an experiment has been made to explicate in
particular how the voting system has been transported from several ranking structures
to the single ranking structure to take the final decision.

2 Literature Review

The pair-wise comparisonmethod and the hierarchicalmodelwere developed in 1980
by Saaty in the context of theAnalyticalHierarchy Process (AHP) [1, 2]. A pis and nis
basedmethod (TOPSIS) is sketched [3]. To inspect the quality of performance assess-
ment, a study has been developed on performance management [4]. “The Effects of
the Performance Evaluation Process on Academic employees in Higher Education
Institutions” is an important research work in today’s scenario with the help of the
performance estimation [5]. Research work has been carried out with the help of
different multi-criteria-decision-making like AHP, Fuzzy-AHP, COPRAS, TOPSIS,
Cooperative Game Theory, Compromise Programming, and Group Decision to
analyse the performance of a teacher [6]. To examine the performance of supporting
staff, a mathematical model is designed using multi-criteria decision making by
eight methodologies containing AHP, COPRAS, SAW, TOPSIS, Fuzzy-TOPSIS,
PROMETHEE-II, Compromise Programming, Normalized-Weighted-Average and
Group Decision-Making method [7]. Another research work is done on how
Employee Management can be effectively managed in the future by using perfor-
mance management, performance appraisal [8]. In recent situations, educational
organizations have grown day by day. However, the quality and effective perfor-
mance among themhas not increased proportionally. Already an innovative statistical
model has been initiated to explore the NAAC rating of a well-known Engineering
College usingMulti-Criteria Decision-MakingMethods, Statistics, and Group Deci-
sion Making [9]. Another research work has been carried out to select the best engi-
neering college by using AHP, TOPSIS, and Fuzzy AHP [10]. College placement
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is a procedure in which professionals assess each candidate’s performance against
a set of pre-determined criteria. So, using TOPSIS and AHP in an Interval Types 1
and 2 fuzzy environment (IT1F, IT2F), a mathematical model has been developed
to analyse specific criteria [11]. A preference function approach (PROMETHEE-2)
is introduced [12]. It is one of the versions, out of 5 of PROMETHEE, i.e., 1–5 [13,
14]. The scholars of V.G.T. University, (Zavadskas et al. 1996) initiated the COPRAS
method (Complex Proportional Assessment), applicable for max. and min. criteria
values. In 2007, the substituteMCDMmethodVIKORwas approached byOpricovic
et al. [15]. Another method used as a benchmark solution in the situations (Entropy
Method) approximates the weights of the criteria. Hwang and Yoon [16] the Entropy
Method simplifies disparities between sets of data. Weighted Average Method is
a software-kind MCDM approach. Here objective functions are transformed by
defining as weighed sums of various objects [17, 18].

3 Proposed Methodology

In the beginning, a literature inspection was conducted. Five different categories of
students were observed and arbitrarily nominated for the current study w.r.to 5 scale
rating.

It is considered as
Two students are below average, one is normal, and two are above average.
The sample of five different categories must be preserved separately, according

to NBA (National Board of Accreditation) or NAAC (National Assessment and
Accreditation Council) rules. In the sameway, 5 students have been given importance
in this matter.

Anadditional surveywas arrangedbetweenExperts (E1,E2), for adding/removing
criteria. They furnished their valuable judgment w.r.to the following criteria (Fig. 1
and Table 1).

C1—command of the project matter
C2—technical skill
C3—ability to communicate clearly
C4—discipline & behavior
C5—past experience
C6—leadership and managing power
C7—stress tolerance

3.1 Proposed Flowchart

See Fig. 2.
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Fig. 1 Hierarchy of ranking students based on the below mentioned criteria

Table 1 Experts’ opinion against each student with respect to each criteria

Students/Experts Criteria

C1 C2 C3 C4 C5 C6 C7

E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2

S1 VG E E VG E G G G E G B G G G

S2 G G G G B A VG E E G VG G VG A

S3 E E VG G E E VG VG G E B G B G

S4 G VG B G E VG G B VG VG VG G G VG

S5 VG VG G E G A G VG VG VG G B A B
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Fig. 2 Proposed flowchart for selection of students for project work
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3.2 Proposed Algorithm

See Table 2.

4 Analysis and Discussion

After using the opinions which are collected from the experts, prepare a pay-off
matrix and, using the Entropy technique (see Table 4), determine the weight of the
criteria. The Entropy method is emphasized here due to the important aspect of
entropy, where the result of entropy will change with the change of data. For this
characteristic, Entropy is different from the rest of themethods for estimatingweights
(Table 3).

With the help of the pay-off matrix, five MCDM methods have been applied
consecutively. Then from there the rankings of students in different methods were
found. It is noticed that the students’ rankings in TOPSIS and COPRAS are identical.
On the other hand, again the ranking of students in VIKOR, PROMETHEE-2, and
WSM are identical. The complete ranking of students in numerous MCDMmethods
is expressed in Table 5.

Earlier a mathematical model for students’ projects was created using three
MCDM approaches where the rankings of students from different MCDMs were
more or less the same. And the biggest advantage was that there was only one student
who got the same first position in all three MCDMmethods. So, it has been possible
to find the best student for the project very easily from that mathematical model
but the rest are not so easy. This work has been extended where frequent MCDM
methods have been applied. Along with this model, another mathematical model has
been created in this current study whereas previous work has been extended with
some more MCDM approaches.

Finally, a system has been applied to the rankings of students obtained from
Table 5. The name of the system is Voting System. It is a majority system. “Majority
decisionwins thematch”. This fact has been used here. Therefore, it has been possible
to get a single ranking structure of students through the voting system based on the
majority ranking obtained from the MCDMmethods from Table 6. It is very easy to
find the best student as well as the ranking of other students for the project from this
single ranking structure. This way any educational organization can effortlessly find
the best team of students for their project through this mathematical model. In such
a manner, the validity of the voting system has been maintained here (Table 6).
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Table 2 Proposed algorithm for selection of students for project work

Step 1 Consider the opinions of 2 Experts regarding the
candidates

Step 2 Apply pairwise comparison method AHP to find the
numeric value or pay-off matrix of the criteria and
candidates

Step 3 Using the Entropy approach, measure the weight of
each condition

MCDM Approaches

Utility/Priority-Based MCDM Methods WSM

Step 4.1.1 Normalize the pay-off matrix obtained from AHP

Step 4.1.2 Calculate weighted normalized matrix

Step 4.1.3 Rank the candidates in descending order

Distance-Based MCDM Methods TOPSIS

Step 5.1.1 Compute the pis and nis as for each criterion:

A∗ = {
v∗
1 , v

∗
2 , ....., v

∗
n

}

where v∗
n gives the maximum value of nth criteria

A− = {
v−
1 , v−

2 , .......v−
n

}

where v−
n gives the minimum value of nth criteria

Step 5.1.2 Calculate the distance of individual alternatives
from PIS and NIS, as well as their relative proximity
to the optimal answer, where there are J alternatives
and n criteria

CCi = d−
i

d∗
i +d−

i
i = 1,2, 3…., J

Step 5.1.3 Rank the candidates in descending order

VIKOR

Step 5.2.1 Calculate R, S, and Q

Qi = ϑ
[

Si−S∗
S−−S∗

]
+ (1 − ϑ)

[
Ri−R∗
R−−R∗

]

where Qi signifies the i-th VIKOR value,
i = 1, 2, 3 . . . .m;
S∗ = Min(Si ); S− = Max(Si );
R∗ = Min(Ri ); R− = Max(Ri )

and ϑ is the utmost group utility’s value (usually it
is to be set to 0.5)

Step 5.2.2 The choice with the lowest VIKOR value is
considered to be the right approach

Step 5.2.3 Rank the candidates in descending order

COPRAS

Step 5.3.1 Calculate weighted normalized decision matrix

(continued)
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Table 2 (continued)

Step 1 Consider the opinions of 2 Experts regarding the
candidates

Step 5.3.2 Obtain the sums of the threshold values for each
choice (bigger values are preferred) (optimization
direction is maximization)

Step 5.3.3 Obtain the sums of the threshold values for each
choice (smaller values are preferred) (optimization
direction is minimization)

Step 5.3.4 Determine the minimal value

Step 5.3.5 Calculate the utility degree of each alternative

Step 5.3.6 Rank the candidates in descending order

Outranking-Based MCDM Methods PROMETHEE-2

Step 6.1.1 Normalize all the values w.r.to any normalization
method

Step 6.1.2 Calculate the threshold values of each criterion

Step 6.1.3 Calculate the preference function using any
preference function; here Gaussian function is used
as a preference function

Step 6.1.4 Construct the preferences factor matrices by
estimating the preference score

Step 6.1.5 Analyze net ø value of each option and the
associated rank

Step 6.1.6 Choose the best option that has the biggest ø value

Step 6.1.7 Rank the candidates in descending order

VOTING SYSTEM

Step 7.1.1 Construct Ranking Matrix corresponding to all 5
MCDM methods

Step 7.1.2 Apply voting system to finalize the original decision

Table 3 Saaty’s 9-point of
pairwise comparison

Scale Compare factor of i and j

1 Equally important

3 Weakly important

5 Strongly important

7 Very strongly important

9 Extremely important

2,4,6,8 Intermediate value between adjacent scales
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Table 4 Weights of criteria by Entropy method

Criteria Weights

C1 0.1438

C2 0.1407

C3 0.1477

C4 0.1442

C5 0.1386

C6 0.1426

C7 0.1425

Table 5 Ranking of students in different MCDM methods

Students MCDM methods

TOPSIS VIKOR COPRAS PROMETHEE-2 WSM

S1 2 3 2 3 3

S2 4 4 4 4 4

S3 1 1 1 1 1

S4 3 2 5 2 2

S5 5 5 3 5 5

Table 6 Final ranking of students based on the Voting System

Students MCDM methods Voting system

TOPSIS VIKOR COPRAS PROMETHEE-2 WSM

S1 2 3 2 3 3 3

S2 4 4 4 4 4 4

S3 1 1 1 1 1 1

S4 3 2 5 2 2 2

S5 5 5 3 5 5 5

5 Conclusion

Student selection and evaluation for the project are significant parts of any educational
organization. Improving the teaching–learning in school or college mostly depends
on the student’s project. Through this project, various educational organizations
have often received different funds. Therefore, appropriate students are very much
desirable to accomplish the projects. So, this study establishes an innovative MCDM
model that amalgamatesAHP,Entropy,TOPSIS,VIKOR,COPRAS,PROMRTHEE-
2, and WSM to keep up with students’ performance ranking decisions. Finally, an
experimentwas conducted to demonstrate how the voting system is transformed from
many ranking structures to a single ranking structure to get the conclusion. So, with
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the help of this model not only the educational organization will benefit but will also
work in the same way where performance is evaluated with judgment on different
criteria.
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Mathematical Modeling of Thermal
Error Using Machine Learning

Rohit Ananthan and N. Rino Nelson

Abstract On many types of machine tools, thermal effects produce the most of
machining defects, with linear expansion and deformation of structural parts creating
undesired movement between the tool and the workpiece. Thermal flaws are difficult
to control without some type of compensation because heat inputs that produce
temperature rise and gradients occur from a variety of sources bothwithin and outside
themachine tool.Moreover, heat generation also cannot be prevented. As a result, the
goal of this research is to focus on thermal error modelling and evaluate the various
machine learning algorithms to discover the most effective solution.

Keywords CNC machine · Multiple regression · Thermal expansion · Linear
regression

1 Introduction

Because of the expanding need in the contemporary industry, thermal compensation
has been thoroughly explored. These complex machines generate a lot of heat, which
causes the machine tools and the work piece to distort, which is the main source of
inaccuracy [1]. According to Bryan’s research published in 1990, the thermal error
accounts for 40–70% of the total error [2]. In general, there are two kinds of heat
sources in machine tools, namely internal and external heat sources, bringing about
the temperature rising and thermal errors [3].

– Internal heat sources: heat generated from cutting process; heat generated from
frictions in ball screws, spindle, gear box, guides, etc.; heat generated in motor;
heating or cooling influences provided by the various cooling systems.

– External heat sources: environmental temperature variation; solar and personal
radiations.
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As the core component in machine tool, the spindle would generate large amounts
of heat when it is running at a high speed. Among the heat sources listed above, the
spindle is considered as an important one [4].

In order to minimize the spindle thermal error, there are namely three methods:

1. Thermal error avoidance
2. Thermal error control
3. Thermal error compensation

Here we have taken up thermal error compensation as our topic of research.
Compared with other two types of methods, thermal error compensation is more
convenient and cost-efficient [5]. The most obvious method for reducing the impli-
cations of thermal error inmachine tool is to compensate for the changes.The simplest
and most widely used way is to record temperature and thermal displacement, which
may then be used to create a model. The measured temperatures will be input to the
developed mode for predicting the thermal displacement of the spindle which will
be compensated using a controller. Error compensation approaches try to create a
artificial error in order to compensate for the real one [6]. The foundation of accurate
thermal error identification is advanced detection technology. A laser interferometer
or other measuring instruments can easily measure the geometric error as well as
thermally induced errors. Yang suggested a new spindle thermal error monitoring
method based on a ball bar system rather than a capacitance sensor system.

Thermal errors on CNC machine tools can be well predicted by splitting
the machine tool into its constituent elements and modelling just those portions
exhibiting the highest thermal movement. They also demonstrated that machine
tool structural elements may be accurately simulated using rectangle-based prisms.
White shown that in order to predict the two-dimensional deformation of a machine
tool structural element over a wide range of machine operating conditions, it was
necessary to know both the magnitude and position of temperature gradients.

2 Creation of a Thermal Model

The created thermal model is used to compensate for thermal errors. Temperature
and displacement sensors are measured from key spots on the machine tool, as well
as other potential locations (Fig. 1).

Heat emanates from a variety of places in precision machine tools.

– The heat generated during the cutting process. The work piece, the chips, and
the coolant [7] all exposed to the heat. The bulk of heat is taken away by chips
(60–80%) and finally passed to the coolant.

– Heat was generated as a result of mechanical, electrical, and hydraulic losses [7].
Motion (spindle bearing) losses are used to indicate mechanical losses. The heat
generated in motors and drives represents the electrical losses. Fluid dynamic
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Fig. 1 Concept diagram of thermal compensation system

friction energy losses in the collet closer, hydraulic, and coolant pump constitute
hydraulic losses [7].

– Changes in the ambient environment’s thermal influence.

Thermal deformation of machine tool components can be caused by both internal
and external heat sources, resulting in poor geometric precision in work parts after
machining. Temperature and thermal deformation issues account for approximately
40–70% of total machining errors. As a result, developing solutions for reducing
and eliminating thermal deformation faults is crucial and attracts a lot of attention
in high-precision machining [8]. Temperature-sensitive points, also known as key
temperature measurement sites on a machine tool, are locations where temperature
changes have a strong relationship with thermal displacement.

3 Thermal Modelling

One of the most important tasks in successful thermal error modelling and correction
is to identify the source of the error. The temperature of the primary locations on the
machine, as well as other available factors, can be used to determine deformations
or displacement changes at specific places of machine tools owing to thermal inac-
curacy [9]. This approach makes use of temperature factors, which show a strong
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link between thermal deformation and critical components. This effective approach
has now been adopted for a variety of machine equipment. Thermal error compen-
sation includes recording thermal deformation measurement, create an error model
and then compensate it.

3.1 Sensor Placement

This research [10] established a measuring and compensating control system for
machine tool spindle thermal expansion. The tool setting probeMP4 and the low-cost
yet precise thermal sensor of AD 590 IC were designed for temperature and spindle
expansion measurements, respectively [10]. The error model is developed from the
cutting state rather than the non-cutting condition. Using accessible temperature data
points at any given moment, a linear error model may be developed.

3.2 Estimating Thermal Deformation of Main Spindle

The primary spindle rotation causes the greatest amount of thermal deformation
due to internal heating. The spindle speed affects this property of thermal defor-
mation. As a result, precisely estimating thermal deformation proved challenging.
To overcome this challenge, we used experimental formulations based on spindle
speed parameters to characterize these deformation characteristics, and we added
the formula for compensating in a continuously transient condition into the compu-
tation for predicting thermal deformation. This has made it possible to precisely
predict thermal deformation at all rotation speeds.

3.3 Linear Regression Analysis

Linear-regressionmodels are relatively simple and provide an easy-to-interpretmath-
ematical formula that can generate predictions. The relationship between predictor
and responder variables is explicitly described in a data model. Linear regression
is used to fit a data model with linear coefficients. A least-squares fit is the most
frequent sort of linear regression, and it can fit both lines and polynomials, among
other linear models. Linear regression is an extensively used method to compare the
correlation between two variables using a linear line. The dependent variable can be
predicted using the independent variable as well [11] (Table 1).

Y = β0 + β1 ∗ x1 + β2 ∗ x2 + β3 ∗ x3 + ε (1)
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Table 1 Linear regression
results

Training results

RMSE (Validation) 8.6107

R-Squared (Validation) 1

MSE (Validation) 74.144

MAE (Validation) 6.5657

Prediction speed 13,000 obs/sec

Training time 1.2053s

Test results

RMSE (Test) 8.3586

R-Squared (Test) 1

MSE (Test) 69.866

MAE (Test) 6.359

ε =
∑

i=1

(
yi − ŷi

)2
(2)

x is the independent variable
Y is the dependent variable
β0 is the constant term
β1 is the coefficient of x1
∈ is the total error of the actual and predicted value
yi is the i th input value
ŷi is the i th predicted value
As shown in the above Fig. 2, the linear graph has been presented with DIA

(diameter) versus Temperature recorded in the spindle housing bed using MATLAB
regression analyzer.

3.4 ANN (Artificial Neural Networks)

The neural network is a complicated algorithm used for predictive analysis that is
physiologically inspired by the structure of the human brain. Time series data may be
predicted using neural networks. A neural network may be programmed to recognize
patterns in incoming data and provide noise-free output.

Even when the data contains a substantial quantity of noise, neural networks
have a high degree of accuracy. This is a significant benefit; if the hidden layer
can still uncover correlations in the data despite noise, you may be able to use
otherwise worthless data. Multiple variables are employed as input and output in
the neural network model, as shown in Fig. 3. In a traditional NN model, there are
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Fig. 2 Linear regression plot

Fig. 3 ANN

three layers (input, output, and hidden). Figure 3 shows how the input layer, hidden
layer and output layer minimizes the error during the training phase due to the input
being continuously being optimized while moving towards the output layer. External
signals and data are accepted by the input layer. The hidden layer is a unit that resides
between the input and output layers and cannot be seen from the outside of the system,
and it realizes the output of the system processing results.

In the NN training procedure, the Sum-Square Error (SSE) is the object function
of the network optimization under the same training epoch (the number of iterations).
A high number of training epochs may result in a small training error (SSE), but it
does not necessarily lead to a better network. An error goal that is too small will also
lead to an over-training problem similar to a surplus of neurones in the hidden layer.
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Fig. 4 ANN validation epoch plot

It involves,

1. Processing the dataset
2. Making the artificial neural network
3. Training the ANN
4. Testing the ANN

The following results were acquired after analyzing the input and output layers
withMATLAB’s neural network toolbox,whichwere both analyzed and then lowered
to smaller values to reduce error. Figure 4 demonstrate how the RMSE value changed
over time and at which epoch the performance was at its best, which is 2.6471e-06
at epoch 29.

3.5 SVM

SVM is a pattern recognition classifier derived from the generalized portrait tech-
nique. For the leaderway-V450 machining center, Miao et al. developed spindle
thermal error models based on SVM and multiple regression in 2013. It was deter-
mined that the SVM model employed for thermal error correction not only had high
accuracy, but also good robustness, by examining the accuracy of the cross-quarter
experimental data [12]. One of the most important aspects of machine learning is
data classification. The aim behind a support vector machine is to establish a hyper
plane between data sets to show which class they belong to. The goal is to teach the
machine to recognize structure in data and map it to the appropriate class label. The
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hyper plane has the greatest distance to the nearest training data points of any class,
resulting in the best outcome.

In kernel SVM, you map your data points onto a Hilbert space H with poten-
tially infinite dimensions. The normal vector to the separating hyperplane (which
completely characterizes the decision boundary) turns out to have the form

w =
∑n

i=1
αi yiφ(xi ) (3)

We classify a point x via

sgn(b + 〈w, x〉) = sgn
(
b +

∑n

i=1
αi yi K (xi , x)

)
(4)

where K is the kernel function. For K,

K
(
x, x ′) = exp

(
−γ

∣∣∣∣x − x ′∣∣∣∣2
)

(5)

We have,

∣∣∣∣x − x ′∣∣∣∣2 = ||x ||2 + ∣∣∣∣x ′∣∣∣∣2 − 2xT x ′ (6)

Each test point’s squared norm is computed by X1, while each training point’s
squared norm is computed by X2. Then compute the total of these minus two times
the data points’ inner products, which is the (or at least a) vectorized approach to do
all pairwise calculations (Table 2).

∣∣∣∣x − x ′∣∣∣∣2 (7)

Table 2 SVM results Training results

RMSE (Validation) 10.193

R-Squared (Validation) 1.00

MSE (Validation) 103.9

MAE (Validation) 8.3483

Prediction speed 24,000 0bs/s

Training time 3.1051

Test results

RMSE (Test) 10.023

R-Squared (Test) 1.00

MSE (Test) 100.46

MAE (Test) 8.3321
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3.6 Bagged Trees

The primary idea behind bagged trees is that instead of relying on a single decision
tree, you rely on a large number of them, allowing you to combine the insights
of multiple models The problem is that any small change in the data might cause
significant changes in the model and future forecasts. The rationale for this is that
one of the advantages of bagged trees is that it reduces variation while maintaining
bias consistency.

Given a set of independent observations,

Z1, ..., Zn

Each with variance

σ2

The variance of Z’ is

(
σ2

)
/n

Calculation using N separate training sets

f 1
∧

(x), f 2
∧

(x), .., f N
∧

(x)

And obtain a low variance statistical learning model using

fave

∧

(x)
1

N

∑N

n=1
f n
∧

(x) (8)

N distinct bootstrapped training data sets are constructed from repeated samples
from the taken data set. In order to get

f ∗n
∧

(x)

The nth bootstrapped training set is trained.
Finally

fbag
∧

(x)
1

N

∑N

n=1
f ∗n
∧

(x) (9)

is calculated by averaging all of the forecasts.
Regression trees are not trimmed and have a deep root system. As a result, each

tree has a high variation but a low bias. As a result, by averaging these B trees, the
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Table 3 Bagged trees results Training results

RMSE (Validation) 3.977

R-Squared (Validation) 1.00

MSE (Validation) 15.817

MAE (Validation) 2.4622

Prediction speed 5400 obs/s

Training time 3.5372

Test results

RMSE (Test) 2.333

R-Squared (Test) 1.00

MSE (Test) 5.443

MAE (Test) 1.4669

variance is reduced. By grouping hundreds or even thousands of trees into a single
method, bagging has been shown to provide significant gains in accuracy (Table 3).

4 Conclusion

This work aims to improve the efficiency of compensation system in CNC machine.
The location of the sensor is observed to play a significant influence in building a
robust thermal model. A total of four key sensing stations were chosen after testing
many temperature fields. The following conclusions are derived,

1. The thermal errors are unpredictably variable, resulting in a distinct thermal
model each time. The use of linear regression revealed that it is one of the
simplest and most straightforward methods.

2. In ANN, the nonlinearity won’t be captured if there aren’t enough neurons in
the hidden layer. In contrast, if we include too many neurons, the ANN suffers
from overfitting, resulting in a lack of generalizability. The RMSE value is lower
than all other approaches and is beneficial in prediction when a large number
of data points are involved.

3. A fully formed decision tree, has a large variance and a low bias. Bagging forest
aggregates these high variance models in order to minimize variance and hence
improve prediction accuracy. This leads in reduced RMSE values for the bagged
trees approach, which has been demonstrated to be more efficient than linear
regression.
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Establishing the Planting Calendar
for Onions (Allium cepa L) Using
Localized Data on Temperature
and Rainfall

Jubert B. Oligo and Julius S. Valderama

Abstract The study aimed to determine a planting calendar for a red variety of onion
(Allium cepa L) in Aritao, Nueva Vizcaya utilizing the temperature and rainfall data
of the locality and matched with the temperature and water requirements of the
onion plant. Onion has 9 stages starting from the sowing stage to the fall-down stage
that lasted for an average of 126 days. Onions require cooler weather during the
early stages of growth while a dry atmosphere with moderately high temperature is
necessary for bulb development up to maturation until the harvesting period. Water
requirements of the onion plant also vary from every stage; lack of water, as well
as excessive water, could be disadvantageous to the plant growth and development.
Ten years of data on rainfall and temperature of the locality were sourced-out in
the NVSU Agromet station. These data were used to forecast 12 months of data on
temperature and rainfall using three forecastingmethods of the SPSS, NCSS, andMS
Excel. The forecasted rainfall and temperature data on weekly basis were matched
to the 9 stages of onions to its temperature and water requirements starting from the
sowing stage to the fall-down stage. The study was able to determine the best timing
for the plant; it is on the second week of February up to the third week of June.
Onions planted at this time interval have a high forecasted percentage of survival as
the temperature and water requirements of the plant in its stages were all sustained.

Keywords Climate adaptation · Planting calendar · Time-series analysis
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1 Introduction

Climate change presents significant risks and opportunities for agriculture [1].
Chmielewski et al. [2], Kalbarczyk [3] confirmed that rapid changes in air temper-
ature in the rest of the world and it is associated to the so-called climate change.
According to Altieri et al. [4], climate change impact potentially significant to small
farm production is loss of soil organic matter due to soil warming. Higher air temper-
atures are likely to speed the natural decomposition of organic matter and to increase
the rates of other soil processes that affect fertility. Climate changes remote from
production areas may also be critical. Irrigated agricultural land comprises less than
one-fifth of all cropped area but produces between 40 and 45%of theworld’s food and
water for irrigation is often extracted from rivers that depend upon distant climatic
conditions [5]. Climate change produces a basic sense of ethical and existential
violation that creates new norms, laws, markets, technologies, understandings of the
nation and the state, urban forms, and international cooperation [6].

Air temperature is one of the most important meteorological elements, deciding
the rate of a plant’s growth and development. The examined onion phenophases were
most correlated at P < 0.01, with the mean air temperature from the period of 6–
9weeks before the earliest date of their occurrence [3]. Hatfield and Prueger [7] states
that changes in short-term temperature extremes can be critical, especially if they
coincide with key stages of development. Only a few days of extreme temperature
(greater than 32 °C) at the flowering stage of many crops can drastically reduce yield.

The same is true with precipitation—gross production value in agriculture would
decrease by 0.24 for every 1 mm increase in precipitation but more number of rain
days would increase gross production value by 1.24. An increase in Diurnal range
temperature asmeasured by the difference between the dailymaximumandminimum
temperature would decrease gross production value by 5.74 [8]. Daymond et al. [9]
revealed that Measurements of the ratio of the maximum diameter of the bulb to the
minimum diameter of the neck for onions showed that there was little or no influence
of CO2, whereas the effect of temperature was substantial. Bulbing was accelerated
by high temperature and was greatly delayed at low temperature.

Onion farmers aimed to produce quality onions. The quantity of their harvest is
dependent on the available land area for cultivation, capital for the expenditures,
manpower, and some resources which limits the capacity of the farmer to produce a
larger quantity. In onion production and on its business side, the quality and quantity
of the harvest are two inseparable ideas. Some researchers like Al-jamal et al. [10]
have worked on optimizing the yields in onion productions but maintaining the farm
inputs practices to produce quality onions. They focused on improving the yield
but not sacrificing the quality of the onions. On the other hand, some researchers
like Boyhan et al. [11] ventured on producing quality onions, but not sacrificing the
yield produced. Moreover, researchers like Piri and Naserin [12], de Santa et al. [13],
Zheng et al. [14], Channagoudra et al. [15] who have worked on how to improve the
quality of onions produced and the same time the quantity produced.
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As a tropical country, the Philippines is acknowledged as an onion-growing state.
Because the versatile high-value crop could be grown all over the archipelago, many
rice farmers have shifted to onion farming as they tried and proven that they earn
more from cultivating the red bulb better known to Filipinos as “sibuyas”. In Aritao,
Nueva Vizcaya, farmers shifted to growing onions in large-scale production. Onion
has become the town’s One Town, One Product. The production surplus of onions
in the province is also seen as a bright opportunity among farmers as an alternative
source of income and to boost the local economy [16]. The study was limited to the
red variety of onions as this variety of onions is commonly planted by the farmers in
the locality.

Onion farmers used to plant onions (Allium cepa L) from December to April
when rain is not expected to occur. However, because of climate change, even during
these said months, rains already occur. Making the time to plant onions becomes
unpredictable and risky, thus resulting in a poor harvest of farmers. It is for this
reason that this research was conducted to determine the right timing for farmers to
plant onions to obtain a bountiful harvest. In this study, the objectives were: (1) to
determine the trend of temperature and rainfall from January, 2008 to March, 2018,
(2) to determine the water and temperature requirements of onions, (3) to predict the
rainfall and temperature for the next planting seasons of onions, and (4) to establish
the planting calendar for onions.

2 Methods

Descriptive—exploratory type of research was used in this study. The descriptive
type was used to describe the onion’s water and temperature requirements, as well
as the trends of the climatic data using 10 years of previous data on temperature and
rainfall. The exploratory part of the designwas used in the generation ofmathematical
models for forecasting one-year data for rainfall and temperature. Exploration was
also used in establishing the planting calendar.

Physiological characteristics of the red onions, particularly its need requirements
for water and temperature was established through literature reviews, guidebooks
in onion productions, fact sheets, and internet resources. These onions’ characteris-
tics were then presented to experts for their validation and further enhancement or
recommendation. Experts in Onion cropping and production, as well as the farmers,
were identified with the assistance of the Department of Agriculture—Aritao.

The studywas conductedmid-year of 2019, however, the available data on rainfall
and temperature used for the analysis includes from January 2008 to March 2019.
Temperature and Rainfall data from January 2008 to March 2019 was collected
from the Agromet Station of Nueva Vizcaya State University Bayombong (NVSU-
PAGASA). The study was conducted at Aritao, Nueva Vizcaya since red-onion
production is more abundant in the said municipality.

The growth and production of onions are influenced by several factors like soil
moisture and nutrients [17], soil quality or types [18], farm irrigation [19], and others.
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Since the study was conducted purposely for Aritao, other parameters were no longer
considered as all the red-onion farms in the locality were all paddy, not irrigated, and
with soil pH ranging from <4.50 to >6.80.

The data was transformed into weekly temperature and rainfall data by getting
the average of the 7 consecutive days. The data was used to determine the climatic
condition of Nueva Vizcaya Province. In addition, this was also used to predict the
climate condition for the next 48 weeks (1 year) using the three different forecasting
models namely SPSS forecast, MS Excel, and NCSS. The average of the obtained
weekly forecasted data was then utilized to analyze whether or not possible to plant
onion in the week/month of the year 2020 considering the water and temperature
requirements of the onions.

3 Results and Discussion

3.1 The Water and Temperature Requirements of Onions

Table 1 reflects the stages of onions starting from sowing to harvesting. The average
number of weeks in every stage was also included in the table. Onions cropping
is ideal if the plot has provisions for irrigation, however, onions are dependent on
rainfall as rainfall could cause excessive water in the plot and later cause the plant
to wilt and die.

Land preparation is done one month (4 weeks) prior to transplanting. Transplant
seedlings 4–6 weeks after sowing. First side-dressing will be done ten days after
transplanting 4,6,8 weeks after transplanting. Depending on soil types, irrigation
varies between 4 to7 days. Stop irrigation 2–3 weeks before harvest. Harvest when
the tops begin to fold over. Ambient temperature requires the Seedling growth 20–
22 ºC, before bulbing 15–24 ºC and for bulb development 15–24 ºC. Bulb Onions
grow well in an easily crumbled and well-drained loam soil with good water holding

Table 1 Stages of planting
onions

Stages Allowable Time (in weeks)

Land preparation (Basal)/sowing
transplanting and fertilization

4 week

Transplanting 4–6 weeks after sowing

Fertilization (side dress) 4–8 weeks after
transplanting

Irrigation 1 week
Note: stop irrigation 2-3
weeks before harvest

Pest & Disease management As the need arises

Harvesting Harvest when the tops begin
to fold over
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Table 2 Water and temperature requirements of onion on its stages

Growth stage Average water use rate
(mm/day)

Total water use during
stage

No. of days

Seed in soil after sowing 33.0 33.0 1.0

Loop stage 4.9 98.0 20.0

First leaf ‘flag’ stage 3.4 41.0 12.0

Cotyledon senescence 3.6 36.0 10.0

Fourth leaf ‘leek’ stage 3.6 51.0 14.0

Fall of the first leaf 3.7 52.0 14.0

Start of bulbing 3.6 51.0 14.0

Bulb swelling 2.8 75.0 27.0

Fall-down or soft neck 3.6 50.0 14.0

Total 487.0 126.0

capacity and pH between 6 and 7. The result was supported by Netafim. The Best
Management Practices (BMPs) determined the additional proven research becomes
available wherein the optimum ambient temperatures for onion are: Seedling growth
20–25 ºC, vegetative growth 13–24 ºC, before bulbing 15–21 ºC and for bulb devel-
opment 20–25 ºC. The soil suitability must be fertile, light, deep friable well-drained
fine sandy, loamy and alluvial and the optimum soil pH is 5.8 to 6.5 [20–24].

Table 2 reflects thewater and temperature requirements of Onions in all the stages.
On average, one-onion cropping lasted for 126 days starting from sowing up to fall-
downstage. Included in the table are the data on the average water use rate (mm/day)
of the onions, and the total water use for the entire specific growth stage.

The data in Table 2 was supported by the study of Pejic [25] the effect of different
irrigation schedules on yield and water use of onion (Allium cepa L.), the values
of evapotranspiration of 450–500 mm could be used as a good platform for onion
growers in the region in terms ofmaximumyield and optimumutilization of irrigation
water. The average daily water needs of onion during irrigation season grown in a
semi-arid climate with a mean temperature of 20 °C needs approximately 6.5 mm
of water per day and the indicative values of crop water needs are 350-550 mm.
Harvesting starts at 95 DAT or 125 DAS.

3.2 The Monthly Average of the Rainfall and Temperature

Figure 1 reveals the average monthly rainfall for 10 years from January 2008–May
2019 of Nueva Vizcaya particularly. On average, water precipitation from January to
April was at the minimum or scarce level, little precipitation occurred from May to
July, high volume of water precipitation was down-pour from August to December.
These rainfall patterns coincide with the weather seasons of the Philippines.
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Fig. 1 Average rainfall and temperature from 2008–2019

On the other hand, seemingly there was small variation as to temperature reading
from January to December. The coldest months were from December to February,
and the hottest months were from March to May.

These patterns or trends of temperature and rainfall occurred repeatedly every
year following the weather cycle of the Philippines. Water precipitation increases in
the months of June and begins to decrease in the months of November. Temperature
also follows a trend.

3.3 Forecasted One-Year Data of Rainfall and Temperature

Table 3 is the weekly forecasted rainfall and temperature of Aritao, Nueva Vizcaya.
Model 1 corresponds for time series analysis using SPSS, Model 2 for NCSS, Model
3 for MS Excell, and Ave Model for the average of the values.

Table 3 shows the forecasted weekly rainfall and temperature for January 2020
to March 2021 through the use of SPSS time series (Model 1), NCSS forecasting
(Model 2), and MS Excel forecast function (Model 3). The averages of these data
were used to determine the planting season onions (Allium cepa L) inAritao to be able
to have an effective yield. On the other hand, the average slightest rainfall forecasted
is the third week of January 2019 to the second week of April 2019 which is ranging
from 10–32 mm while the average forecasted temperature for the whole year round
is ranging from 22 °C–28 °C.
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Table 3 Forecasted temperature and forecasted rainfall for the January 2020–March 2021

Month/wk Forecasted temperature Forecasted rainfall

Model 1 Model 2 Model 3 Model
Tmp

Model 1 Model 2 Model 3 Model
Rnf

January

w1–w2 23.5 23 24 23.5 84.5 17 34 45.5

w3–w4 24.5 23 25 24.5 31.5 14 17 20.5

February

w1–w2 25 23.5 24 24 26 11 13 16.5

w3–w4 27 25.5 26 26 25 16 22 21

March

w1–w2 26.5 23.5 26 25.5 24.5 6 10 13.5

w3–w4 27 23.5 27 25.5 26.5 15.5 21.5 21

April

w1–w2 29 24 28 27 23 14.5 19 18.5

w3–w4 29.5 24 29 27.5 61 25.5 41 42.5

May

w1–w2 30 24 30 28 82 24.5 49 52

w3–w4 29.5 24 29 27.5 59.5 32.5 52.5 48

June

w1–w2 30 24 30 28 66.5 20.5 37 41

w3–w4 29.5 24 29 27.5 56.5 25.5 40 40.5

July

w1–w2 29 23 28.5 27 93 32 56 60.5

w3–w4 28.5 23 27.5 26 110 49 87 82

August

w1–w2 28.5 23 27.5 26 66 35.5 54 52

w3–w4 28 22 28.5 26 78 71.5 96 81.5

September

w1–w2 28.5 22.5 27.5 26 65 107 144 105.5

w3–w4 27 22 26.5 25.5 82 49 77 69.5

October

w1–w2 25.5 21.5 26 24 49.5 73 97 73

w3–w4 26 21.5 26 24.5 55 71.5 96.5 74

November

w1–w2 24.5 21 26 24 56 38 53.5 49

w3–w4 24.5 20 25.5 23.5 60 40.5 58 52.5

(continued)
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Table 3 (continued)

Month/wk Forecasted temperature Forecasted rainfall

Model 1 Model 2 Model 3 Model
Tmp

Model 1 Model 2 Model 3 Model
Rnf

December

w1–w2 23.5 20 24.5 22.5 18 20 26.5 21.5

w3–w4 23 19 24.5 22 21 38.5 42.5 34

January

w1–w2 23.5 18.5 24 22 85 13 35 44.5

w3–w4 25 19 25 23 32.5 12.5 17.5 20.5

February

w1–w2 25 19 24 23 27 10.5 13 16.5

w3–w4 27 19.5 26 24 26 15 22.5 21

March

w1–w2 27 18.5 26 24 25 5.5 10 14

w3–w4 27 18.5 27 24 27 15 22 21

3.4 The Planting Calendar for Onions

The predicted rainfall data and temperature data in Table 3 were matched to estab-
lished water and temperature requirements as presented in Table 1. The forecasted
rainfall and temperature; and the onion’s water and temperature requirements were
analyzed to come up with a planting schedule that can sustain the growth and yield
production of the plant. This was determined using the identified water and temper-
ature requirements of the plant and matched to the value of the Model average for
rainfall and temperature.

Wkly prob =
{
1 if computed Model ave is lower than the plant requirement
0 if computed Model ave is higher than the plant requirement

In every stage of the plant, if it is denoted by 1, it means to say that the onion’s
requirements, both temperature, and rainfall were satisfied. Thus, the plant life can
be sustained in that week. On the contrary, if it is denoted by 0, it means that either
or both the onion’s requirements on water or temperature were not sustained. Thus,
the plant life is at risk on that week.

The rate of survival indicates the percentage of the number of weeks the plant
sustained over the total number of weeks. Thus, 100% implies that plant life will be
sustained throughout the cropping; and 90% could be sustained with 10% risk.

There are six identified planting schedules for onion. These six schedules have a
high probability of supporting the water and temperature requirement of onion for
18 weeks from planting up to harvesting. As presented in Table 4, these were the
following schedules (planting—harvesting):
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Table 4 Schedule of Planting Onions

Month/wk Forecasted temperature Forecasted rainfall

Model 1 Model 2 Model 3 Model
Tmp

Model 1 Model 2 Model 3 Model
Rnf

January

w1–w2 23.5 23 24 23.5 84.5 17 34 45.5

w3–w4 24.5 23 25 24.5 31.5 14 17 20.5

February

w1–w2 25 23.5 24 24 26 11 13 16.5

w3–w4 27 25.5 26 26 25 16 22 21

March

w1–w2 26.5 23.5 26 25.5 24.5 6 10 13.5

w3–w4 27 23.5 27 25.5 26.5 15.5 21.5 21

April

w1–w2 29 24 28 27 23 14.5 19 18.5

w3–w4 29.5 24 29 27.5 61 25.5 41 42.5

May

w1–w2 30 24 30 28 82 24.5 49 52

w3–w4 29.5 24 29 27.5 59.5 32.5 52.5 48

June

w1–w2 30 24 30 28 66.5 20.5 37 41

w3–w4 29.5 24 29 27.5 56.5 25.5 40 40.5

July

w1–w2 29 23 28.5 27 93 32 56 60.5

w3–w4 28.5 23 27.5 26 110 49 87 82

August

w1–w2 28.5 23 27.5 26 66 35.5 54 52

w3–w4 28 22 28.5 26 78 71.5 96 81.5

September

w1–w2 28.5 22.5 27.5 26 65 107 144 105.5

w3–w4 27 22 26.5 25.5 82 49 77 69.5

October

w1–w2 25.5 21.5 26 24 49.5 73 97 73

w3–w4 26 21.5 26 24.5 55 71.5 96.5 74

November

w1–w2 24.5 21 26 24 56 38 53.5 49

w3–w4 24.5 20 25.5 23.5 60 40.5 58 52.5

(continued)
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Table 4 (continued)

Month/wk Forecasted temperature Forecasted rainfall

Model 1 Model 2 Model 3 Model
Tmp

Model 1 Model 2 Model 3 Model
Rnf

December

w1–w2 23.5 20 24.5 22.5 18 20 26.5 21.5

w3–w4 23 19 24.5 22 21 38.5 42.5 34

January

w1–w2 23.5 18.5 24 22 85 13 35 44.5

w3–w4 25 19 25 23 32.5 12.5 17.5 20.5

February

w1–w2 25 19 24 23 27 10.5 13 16.5

w3–w4 27 19.5 26 24 26 15 22.5 21

March

w1–w2 27 18.5 26 24 25 5.5 10 14

w3–w4 27 18.5 27 24 27 15 22 21

1—water and temperature requirements can be sustained
0—water and temperature requirements cannot be sustained
x, y—planting time, harvesting time

Table 4 shows the schedule of planting Onions (Allium cepa L) for C.Y. 2020.
The requirements for planting Onions as shown in the table using the codes 0 and 1;
whereas code 0 means the plant will not survive on that specific stage as the temper-
ature requirement or rainfall requirement or both requirements were not sustained.
Code 1 means that both temperature and rainfall were sustained in that specific
week. X marks reefers to planting time, and Y represents the harvesting time. The
probability of 100% survival indicates that the plant requirement for rainfall and
temperature were all sustained.

In the table, the highest probability rate of survival falls under schedule 6 which is
the 2ndweek of February 2020 to the 3rdweek of June 2020with a probability rate of
94% while the lowest probability rate is schedule 1 which is the 1st week of January
2020 to 2nd week of May 2020 with a probability rate of 72%. For best growth
and bulb quality, onion requires cooler weather during the early stages of growth
and a dry atmosphere with moderately high temperature for bulb development &
maturation until the harvesting period.

4 Conclusions and Recommendations

The studyhas shown the seasonality of rainfall and temperature ofBayombongNueva
Vizcaya for 10 years. The dry season’s starts in the months of January 2020 up to
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April 2020 while the wet season starts with the months of May 2020 to November
2020, then another cycle of the dry season in the months of January 2021 up to April
2021. The study suggested the planting seasons of onions for CY 2021 could be
scientifically determined using combinations of time-series analysis. Based on the
established planting calendar of onions, the highest probability rate of survival is if
the plant will be planted on the 2nd week of February 2020 to the 1st week of March
2020 and expected to be harvested on the 3rd week of June to 2nd week of July.
The forecasting procedure of the study could be repeated for the year 2022 or in the
future years to determine the planting calendar of the red onion, white onion, and
yellow onion.
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Growth of Single Species Population: A
Novel Approach

Suvankar Majee, Soovoojeet Jana, Anupam Khatua, and T. K. Kar

Abstract In this paper, we have proposed a new growth model for a single species
population that captures certain features of logistic growth. We have constructed the
growth model for a single species population on the basis of the assumptions that
the individual reproduction rate is proportional with the available resources and a
portion of the population species have no reproduction power. We have shown that
this model would give better realistic phenomena than the other existing models, and
also, it is capable of making new useful models.

Keywords Ecological problems · Birth-death process · Growth rate ·
Environmental carrying capacity · Reproduction rate

1 Introduction

In mathematical ecology, the growth rate of a population species is one of the most
important aspects. Several growth models have been developed considering different
biological organisms. In most cases, the population dynamics are modeled contin-
uously. In their books, Kot [1] and Britton [2] described different growth rates for
living creatures. The very basic model to describe the growth of species without
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constraint is exponential growth. In this model, the equation for the single species
population whose biomass density is x can be written as follows:

dx

dt
= r x, x(0) = x0 (1)

Where the single population species has an average birth rate, say, b and, has an
average death rate, say, d and then the intrinsic growth rate is defined as r = b − d.
This type of growth is known as the Malthusian growth. The main drawback of the
exponential growth is x → ∞ as t → ∞ if r > 0, i.e., the population biomass would
go at infinite level along with time. If there are some limitations, the growth must
be checked, and then the population would not grow following geometric ratio or
exponential ratio. As there are some limitations (like limitations in available food,
place for living, etc.) regarding the growth of any population species, therefore the
Malthusian growth is modified. The simplest modifications have been done by the
logistic type growth where it is considered that environmental carrying capacity is
fixed and the growth of the population depends on that capacity. In this model, the
growth of a single species population is described by the following equation:

dx

dt
= r x

(
1 − x

K

)
, x(0) = x0 (2)

where the environmental carrying capacity is taken as K > 0.
Later on, many researchers have generalized the growth model and also proposed

new types of growth functions. Different types of growth functions are available
in the literature, for example, generalized logistic growth Nelder [11], Von Berta-
lanffy’s growth [8], Richards’s growth [9], Gompertz growth [10]), Weibull function
(Rwalings et al. [12]), Allee type growth function (Courchamp et al. [16]), etc. Some
other growth functions and the estimation of the system parameters can be found in
Tsoularis and Wallace [3], Bhowmick and Bhattacharya [4], Bhowmick et al. [4],
Koya and Goshu [7], Crescenzo and Spina [6], Misra and Chaturvedi [13], Misra and
Babu [14] and Kumar et al. [15]. The proper growth model is extremely important
in studying the biological growth problems.

In the logistic type of growth, we have to consider a non-linear term of the state
variable limiting the growth of the population species. This article proposes a new
type of growth curve of a single species population. In this model, we consider the
growth equation as theMalthusian type, although the intrinsic growth rate varies from
time to time, and the intrinsic growth rate depends on the available environmental
resource.
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1.1 The Growth Model

Obviously, for each species, there are some individuals, who may be identified and
differ from others, have no reproduction power. Besides the juvenile and the old
individuals, there is a certain number of other individuals who have no reproduction
power, and their reproduction power has been destroyed due to some disease or by
means of some natural reason. For example, in species like bee, most portions of
the individuals have no reproduction power, and thus considering an average per
capita birth for each individual is not logical at all. Therefore, to overcome these
inconveniences, we can propose two separate ways to consider the birth rate of a
species. In the first assumption, we can assume that a certain portion of the species,
say, ρ(0 ≤ ρ ≤ 1) has no reproduction power, and the rest portion (1 − ρ) has that
power. On the other hand, the species like bees, etc., we can assume constant biomass,
say, m has reproduction power, and the rest of individual biomass (x − m) are not
capable of reproducing. However, in both cases, the birth rate of those individuals
who have no reproduction power should be zero. In contrast, for the parameter death
rate, we don’t claim that any particular individual has zero death rates, although it is
quite true that some individual has some less death rates and the other has somemore
death rate. Therefore, without loss of generality, we can assume that the death rate
of the single species individual follows a distribution such that the weighted mean of
this distribution exists and say it is d, i.e., the per capita death rate of each individual
is d. In the rest of the paper, by the phrase ‘birth rate’ we would mean that the per
capita birth rate of those individuals which have reproduction power.

Nowwe assume that the portionρ(0 ≤ ρ ≤ 1) has no reproduction powerwhether
the others are capable of reproducing. We also consider the per capita birth rate is b
and the per capita death rate is d. Therefore, the governing equation regarding the
change of the biomass of the single species population x(t) with time is given by:

dx

dt
= (1 − ρ)bx − dx, with x(0) = x0. (3)

The system (3) can be written in the following form:

dx

dt
= (b − d − bρ)x, with x(0) = x0. (4)

From system (4), itmay be concluded that, x(t) → ∞ ifρ < b−d
b whereas ifρ > b−d

b

then the population species go to extinct and lastly for ρ = b−d
b we have x(t) = x0

for all time t (here we assume that b > d). Thus, it can be concluded that if ρ > b−d
b ,

i.e., if the portion of the individual has no reproduction power is greater than some
threshold, then the population species may go extinct. Hence for any population
species, if the biomass of old age individuals is on the higher side continuously, then
that species either goes extinct, or its biomass would be very low. Our present model
can draw an extensive light on these types of natural phenomena.
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Both the exponential growth and logistic growth models (as presented in Eqs.
(1) and (2)), the intrinsic growth rate (r) is considered as an independent model
parameter. But according to our explanations, r cannot be an independent parameter,
rather, it should depend on mainly three parameters, namely (i) the portion of the
population (ρ) which have no reproduction power, (i i) the birth rate (ρ), and (i i i)
the per capita death rate (d). Thus we can define the intrinsic growth rate as follows:

r = b − d, for those portions which are capable of reproducing offspring,

= −d, for those portions which are unable to reproducing offspring.

Therefore, we can define the intrinsic growth rate r as follows

r = (1 − ρ)b − d, 0 ≤ ρ ≤ 1 (5)

whereρ, b, d are defined earlier.Hereρ = ρ(K , t) is a function of available resource
(i.e., the carrying capacity of the individual K ), and it varies with time. Now obvi-
ously, ρ will be inversely related to environmental carrying capacity K . Depending
upon the numeric value of ρ, the intrinsic growth rate r may be positive or negative.
The parameter ρ can be treated as a control parameter, and this parameter has a huge
and important role, not only to evaluate the exact value of r but also to determine the
exact population biomass level at any time.

With the help of the above definition of r , the growth of the single species popu-
lation whose biomass is x(t) can be defined as follows:

dx

dt
= r x, x(0) = x0 (6)

where r may be positive or negative or zero. This type of growth is also one type of
exponential growth, but the main difference of this type of growth is that here r is
not always positive.

2 Explanations of the Model

Nowsuppose that initially r > 0, then after some time, say after t = t1, the biomass of
the population will be x0exp(r t1). Now the growth, birth, and death of the population
depend on the quantity as well as the quality of the available resource. If the available
resource can sufficient to fulfill the requirement of x = x1 number of individuals, then
as soon as the population goes beyond the level of x1, then there will be a competition
among them for the resource and due to this competition, some of them unable to
avail any resource or a negligible amount of resource. When the population biomass
goes beyond this level x1, then due to the competition, some less amount of biomass
than the level x1 would able to use the resource, and they remain stronger, and the rest
portion (which is greater than the (x − x1) when x > x1) becomes weaker. Now at
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Fig. 1 Growth of population species

x = x2, level, say the individual of biomass (x2 − x1 − ηx), 0 ≤ η < 1 don’t get any
resource to live. Thus wemay consider that the individual of biomass (x2 − x1 − ηx)
have no birth rate although they have death rate d. Now recalling the definition of r ,
we can conclude that the intrinsic growth rate r of that portion will be−d. Therefore,
after a certain amount of time, say, t1, r will be negative, and then the biomass of the
species will decrease instantaneously. Again let after t = t2, the population biomass
reaches at x3, far below the maximum available resource x1 and then again r changes
its sign and r becomes positive, until the population biomass x reaches some x11,
(which may be different from x1 because the available resource may vary time to
time) and after that r will again change its sign and will be negative. This process will
continue, and if the population follows this type of growth, then the population will
remain between some x(≥ 0) to some x̄(< ∞) level as the environmental carrying
capacity is always finite, however large it may be (Figs. 1 and 2). This type of growth
can define the extinction of a population species also. For example, for some time
period, r will be less than zero and the available resource also reduces with time
and eventually becomes so less that it will make tough to live for individuals of the
species, then r will never be positive since the birth rate entirely depends on the
resource. In this situation x(t) → 0 after t > t1 and it remains stable there.

The main difference of considering this type growth rate and the logistic type and
the classical exponential growth rate are as follows:
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Fig. 2 Extinction of a population species due to unavailability of resource. Here green line rep-
resents the carrying capacity of the environment for that population species and deep blue line
represents the level of population biomass

(1) Here, we need not consider any intraspecific competition term in the differential
equation of the population, i.e., in (6) there is no carrying capacity term. The
available resource depends on the growth rate

(2) The carrying capacity is taken as a fixed quantity in logistic type growth model,
although in reality, it changes time to time.

(3) The logistic growth model is unable to produce a sufficient explanation of the
extinction of a species in a single species model (since for logistic growth, the
trivial equilibrium x(t) = 0 is an unstable equilibrium).

(4) The logistic type growth explains that x(t) → K as t → ∞ but here we explain
that through our model, x(t) will oscillate within some region unless it goes to
extinct, and this phenomenon is a quite more realistic one.

(5) Our model is quite simple than the logistic type growth model (since here (the
model (6)) right-hand side is the simple linear function of the single variable
x and there is no quadratic term in it) and can describe more broad dynamics.
Through our described model (6) can describe the dynamics of any population
species.

(6) Through this model (6), we can define the local asymptotic stability of the sin-
gle species population at its environmental carrying capacity level provided the
available resource to live always remains constant, say some k1. In this situ-
ation we have, x = k1 − ε and x̄ = k1 + ε for ε > 0 and then the population
always remains within (k1 − ε, k1 + ε) and hence it can be concluded that if the
available resource is sufficient for k1 amount of population biomass, and k1 will
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always remain constant then the population will asymptotically stable at x = k1
(Fig. 3). Thus we can derive the result of the logistic growth model through our
model (6).

Fig. 3 Asymptotic stability of population biomass near where is the upper limit of the population
biomass such that the population can live healthy with the help of available resource which always
remains same

3 An Application in Ecology

Our present analysis can be used to solve different ecological problems concerning
the growth of population species. For example, when we are concerned about the
pest control problem or vector disease problem, to keep our society free from pests
or vectors, we have to reduce their corresponding resources. If a living creature can
be used to eat same food as those of the larvae of mosquitoes, then the resource
for mosquitoes’ larvae would be reduced. Thus, the growth of mosquitoes can be
checked.
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4 Conclusions

This paper introduces a newordinary differential equation-basedmathematicalmodel
for a single species model in order to study the dynamics of a single-dimensional
population species, where a significant number of individuals have no reproduction
power. Our present assumption and the model of type (6) would be very helpful in
studying the growth of single species, and it is very close to reality. In spite of being
the model the first-order ODE, it is capable of capturing the dynamics of non-linear
ODE-based growth like logistic growth. The present study draws light on a possible
cause of the extinction of species. In order to control the agricultural pest, notorious
vectors which cause diseases, if it is possible to make non-reproductive individuals
greater than some threshold for a continuous time period, then those pests and the
vector populations can be controlled significantly. On the other hand, if the alive
member of a species is very low and the species is threatening to go to extinct, then
one significant way to keep that species exist is to increase the birth rate.
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A Numerical Approximation of the
KdV-Kawahara Equation via the
Collocation Method

Seydi Battal Gazi Karakoc and Derya Yıldırım Sucu

Abstract This paper presents a finite element scheme for numerical solution of the
Korteweg-de Vries-Kawahara (KdV-K) equation using septic B-spline functions as
approximate functions. L2 and L∞ error norms are calculated for single solutions
to show the practicality and robustness of the proposed scheme. Applying von-
Neumann theory, we demonstrate that the scheme is marginally stable. Obtained
numerical results have been illustrated with tables and graphics for easy visual-
ization of properties of the problem modelled. Numerical experiment supports the
correctness and reliability of the method.

Keywords KdV-Kawahara equation · Finite element method · Collocation

1 Introduction

Almost all physical processes encountered in nature are defined by various types of
non-linear partial differential equations (NLPDEs). Understanding the structure of
these NLPDEs and seeking their solutions is of prime importance for scientists, as
their solutions illuminate the way to understand the behavior of systems and help to
predict the development of the process in nature [1]. However, usually it is difficult
to find their solutions analytically and sometimes it is almost impossible. There-
fore many researchers have been working on to obtain efficient and high accurate
numerical algorithms to overcome such problems [2].

In 1895, Dutch mathematician Korteweg and de-Vries defined a PDE (KdV)
equation
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ut + uux + uxxx = 0, (1)

which models the propagation of wide waves in shallow water waves to model
Russell’s soliton phenomenon. They observed that these solitons treat as particles
[3]. Kawahara equation which is known as a fifth-order KdV type equation has the
following form

ut + κuux + quxxx − ruxxxxx = 0, (2)

whereκ,q, r are constants [4, 5].Another formof theKawahara equation is following
modified Kawahara equation [6, 7]:

ut + κu2ux + quxxx − ruxxxxx = 0. (3)

By coupling the KdV equation and the modified Kawahara equation, one can obtain
the following generalized Korteweg-de Vries-Kawahara (GKdV-K) equation [8, 9]

ut + αux + κu pux + quxxx − ruxxxxx = 0, (4)

where p � 1 is a positive integer, α ≥ 0,κ > 0, q > 0 and r > 0 [10]. In recent
years, many authors have been interested in the solution of the equation [11–16].

The main form of the paper can be outlined in brief as follows: In Sect. 2, septic
B-spline approximation is introduced and finite element solution of KdV-K ( for
p = 1) equation is proposed. Stability analysis of method has been done in Sect. 4.
Sect. 4.1 exhibited numerical application and it’s results with table and graphs to see
the performance and accuracy of the method. Finally, in Sect. 5, a brief conclusion
about the presented method is given.

2 Application of the Numerical Method

In this section, our goal is to find numerical solution of the KdV-K Eq. (4) with
following initial and homogeneous boundary conditions below:

u(x, 0) = f (x), a ≤ x ≤ b,
u(a, t) = 0, u(b, t) = 0,
ux (a, t) = 0, ux (b, t) = 0,
uxx (a, t) = 0, uxx (b, t) = 0,

(5)

where f (x) is a detected function. To obtain the solution on the interval a ≤ x ≤ b
division a = x0 < x1 < ... < xN = b of the space domain is imagined scattered uni-
formly with h = b−a

N = (xm+1 − xm) for m = 1(1)N . The septic B-spline functions
at the nodes xm are described on the solution region [a, b] by Prenter [17]:
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φm(x) = 1

h7

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l, [xm−4, xm−3],
l − 8m, [xm−3, xm−2],
l − 8m + 28n, [xm−2, xm−1],
l − 8m + 28n − 56p, [xm−1, xm],
r − 8s + 28y − 56z, [xm, xm+1],
r − 8s + 28y, [xm+1, xm+2],
r − 8s, [xm+2, xm+3],
r, [xm+3, xm+4],
0, otherwise

(6)

where l = (x − xm−4)
7,m = (x − xm−3)

7,n = (x − xm−2)
7, p = (x − xm−1)

7, r =
(xm+4 − x)7, s = (xm+3 − x)7, y = (xm+2 − x)7, z = (xm+1 − x)7. Now, we con-
tinue the numerical treatment, which we will apply using the septic B-spline colloca-
tion finite element method, by generating an approximate solution for the equation.
Approximate solution uN (x, t) for analytical solution u(x, t) are sought in the fol-
lowing equality,

uN (x, t) =
N+3∑

m=−3

φm(x)σm(t) (7)

where σm(t) are time dependent unknown coefficients specified from the boundary
conditions [18]. In each element, when we use the following equality,

hσ = x − xm, 0 ≤ ξ ≤ 1 (8)

Equation (6) is defined in terms of σ on interval [0, 1] as [19]:

φm−3 = 1 − 7σ + 21σ2 − 35σ3 + 35σ4 − 21σ5 + 7σ6 − σ7,

φm−2 = 120 − 392σ + 504σ2 − 280σ3 + 84σ5 − 42σ6 + 7σ7,

φm−1 = 1191 − 1715σ + 315σ2 + 665σ3 − 315σ4 − 105σ5 + 105σ6 − 21σ7,

φm = 2416 − 1680σ + 560σ4 − 140σ6 + 35σ7,

φm+1 = 1191 + 1715σ + 315σ2 − 665σ3 − 315σ4 + 105σ5 + 105σ6 − 35σ7,

φm+2 = 120 + 392σ + 504σ2 + 280σ3 − 84σ5 − 42σ6 + 21σ7,

φm+3 = 1 + 7σ + 21σ2 + 35σ3 + 35σ4 + 21σ5 + 7σ6 − σ7,

φm+4 = σ7.

(9)
The values of um and its derivatives at the knots are calculated as:
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uN (xm , t) = σm−3 + 120σm−2 + 1191σm−1 + 2416σm + 1191σm+1 + 120σm+2 + σm+3,

u′
m = 7

h (−σm−3 − 56σm−2 − 245σm−1 + 245σm+1 + 56σm+2 + σm+3),

u′′
m = 42

h2
(σm−3 + 24σm−2 + 15σm−1 − 80σm + 15σm+1 + 24σm+2 + σm+3),

u′′′
m = 210

h3
(−σm−3 − 8σm−2 + 19σm−1 − 19σm+1 + 8σm+2 + σm+3),

uivm = 840
h4

(σm−3 − 9σm−1 + 16σm − 9σm+1 + σm+3),

uv
m = 2520

h5
(−σm−3 + 4σm−2 − 5σm−1 + 5σm+1 − 4σm+2 + σm+3).

(10)

Now, using (7) and (10) into Eq. (4), the following general form of equation is
reached:

·
σm−3 + 120

·
σm−2 + 1191

·
σm−1 + 2416

·
σm + 1191

·
σm+1 + 120

·
σm+2 + ·

σm+3

+(α + κZm) 7h (−σm−3 − 56σm−2 − 245σm−1 + 245σm+1 + 56σm+2 + σm+3)

+q 210
h3 (−σm−3 − 8σm−2 + 19σm−1 − 19σm+1 + 8σm+2 + σm+3)

−r 2520
h5 (−σm−3 + 4σm−2 − 5σm−1 + 5σm+1 − 4σm+2 + σm+3) = 0,

(11)
where

·
σ = dσ

dt and

Zm = u = (σm−3 + 120σm−2 + 1191σm−1 + 2416σm + 1191σm+1 + 120σm+2 + σm+3).

Both the finite difference approach and the Crank-Nicolson diagrams described
below can be applied to the Eq. (11):

σi = σn+1
i + σn

i

2
,

·
σi = σn+1

i − σn
i

Δt
. (12)

So, the above operation allows us to derive a recursion relationship between two
time levels based on the parameters σn+1

i and σn
i as:

λ1σ
n+1
m−3 + λ2σ

n+1
m−2 + λ3σ

n+1
m−1 + λ4σ

n+1
m + λ5σ

n+1
m+1 + λ6σ

n+1
m+2 + λ7σ

n+1
m+3

= λ7σ
n
m−3 + λ6σ

n
m−2 + λ5σ

n
m−1 + λ4σ

n
m + λ3σ

n
m+1 + λ2σ

n
m+2 + λ1σ

n
m+3,

(13)

where

λ1 = [1 − EZm − M + K ] , λ2 = [120 − 56EZm − 8M − 4K ] ,

λ3 = [1191 − 245EZm + 19M + 5K ] , λ4 = [2416] ,

λ5 = [1191 + 245EZm − 19M − 5K ] , λ6 = [120 + 56EZm + 8M + 4K ] ,

λ7 = [1 + EZm + M − K ] ,

E = 7
2hωΔt, M = 105

h3
qΔt, K = 2520

h5
rΔt, ω = (α + κZm).

(14)
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In this algebraic system (13), the number of linear equations are less than the
number of unknowncoefficients, that is, the systemcontains the (N + 1) equation and
(N + 7) unknown time-dependent parameters [20]. The best way to obtain a unique
solution is to remove the six unknowns σ−3,σ−2,σ−1, . . . ,σN+1,σN+2, and σN+3

from the system. This procedure is implemented using the boundary conditions with
the values of u and after removing the unknowns, using a matrix system consisting of
linear equations (N + 1) unknown parameters dn = (σ0,σ1, . . . ,σN )T is obtained
the following matrix vector form:

Rdn+1 = Sdn. (15)

3 Stability Analysis

In this section, Von-Neumann theory was used for the stability of the algorithm.
To display stability analysis, KdV-Kawahara equation was linearized by supposing
that quantities u p in nonlinear term u pux is locally constant. Growth factor ξ of a
characteristic Fourier mode is identified as:

σn
m = ξneimkh, (16)

here i = √−1. Putting the equality (16) into the iterative systems (13), gives the
following growth factor

ξ = ρ1 − iρ2
ρ1 + iρ2

, (17)

where
ρ1 = 2 cos (3kh) + 240 cos (2kh) + 2382 cos (kh) + 2416,
ρ2 = (2M + 2T + 2E) sin (3kh) .

(18)

|ξ| = 1 is obtainedwhenwe take themodulus of Eq. (17). In thisway,we demonstrate
that scheme (13) is unconditionally stable under the present conditions.

4 Numerical Experiment and Discussion

In this part, we illustrate our method, improved in Sect. 2, to the KdV-K equation for
single solitary wave. Effectiveness of the suggested method will be checked with the
L2 and L∞ error norms given as [21]

L2 = ∥
∥uexact − uN

∥
∥
2 �

√
√
√
√h

N∑

j=1

∣
∣
∣uexactj − (uN ) j

∣
∣
∣
2
, (19)
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and

L∞ = ∥
∥uexact − uN

∥
∥∞ � max

j

∣
∣uexactj − (uN ) j

∣
∣ , j = 1, 2, ..., N . (20)

KdV-K equation (4) possesses three conservation constants given by

I1 = ∫ b
a Udx � h

∑N
j=1U

n
j ,

I2 = ∫ b
a U 2dx � h

∑N
j=1(U

n
j )

2,

I3 = ∫ ∞
−∞ U p+2(x, t)dx .

(21)

which correspond to conversation of mass, momentum and energy, respectively.

4.1 Case 1

KdV-K equation has the following exact solution:

u(x, t) = 105

169
sech4[ 1

2
√
13

(

x − 205

169
t − x0

)

], (22)

x0 is the center of the solitary wave. For the equation following initial condition is
chosen

u(x, 0) = 105

169
sech4[ 1

2
√
13

(x − x0)]. (23)

To illustrate the validity of our numerical scheme, the algorithmwas run up to time
t = 30. The solitary wave has amplitude A = 0.62130 at x = 0. In simulation calcu-
lations, typical values Δt = 0.01 with h = 0.1 were used. In Table 1, the conserved
quantities and error norms L2 and L∞ for different time levels and different step
sizes were presented. The table shows that the three conserved amounts remained
nearly constant over time and the changes in the amounts are in good agreement
with their analytical values. Thus, the effects of the amount of sorting points on the
numerical method can be seen more easily. The calculated L2 and L∞ errors were
found to be satisfactorily small. These errors hardly change as time progresses. If
we examine Fig. 1, two and three dimensional state of the bell shaped solitary wave
solutions produced from t = 0 to t = 30 can be clearly seen. From the figures, it can
be noticed that studied method executes the propagation movement of a single wave,
it conserves the amplitude and shape.
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Table 1 Invariants and error norms for single solitary wave

T ime I1 I2 I3 L2 L∞
0 5.9734098 1.2724981 0.6839459 0.00000000 0.00000000

5 5.9734128 1.2724980 0.6839449 0.00012014 0.00014431

10 5.9733848 1.2724980 0.6839444 0.00012188 0.00015202

15 5.9733818 1.2724980 0.6839422 0.00012665 0.00015689

20 5.9733887 1.2724980 0.6839417 0.00013701 0.00016202

25 5.9733943 1.2724980 0.6839418 0.00015282 0.00016746

30 5.9733890 1.2724980 0.6839406 0.00017237 0.00017310

Fig. 1 Numerical solutions of KdV-K equation at different time stages withΔt = 0.01 and h = 0.1

5 Conclusion

In this paper, numerical solution of KdV-K equation has been investigated by consid-
ering some fixed selection initial and boundary conditions. Our numerical algorithm
is shown to be unconditionally stable. The algorithm has been tested for single soli-
tary wave in which the exact solution is known. L2 and L∞ error norms and the
invariants are calculated to show the reliability and accuracy of the method. From
these calculations, we can say that the proposed method yield good enough results.
For our method, we portray some graphical illustrations of the obtained solutions of
the equation. It may be concluded that the method used here is a powerful, efficient
and powerful technique for solving a wide class of nonlinear evolution equations.
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Approximate Solutions to
Pseudo-Parabolic Equation with Initial
and Boundary Conditions

Nishi Gupta and Md. Maqbul

Abstract Thismanuscript concernedwith the pseudo-parabolic equation alongwith
initial and boundary conditions. We prove the existence and uniqueness of a solution
with the aid of Rothe’s time-discretization technique. We have exemplified the main
result.

Keywords Pseudo-parabolic equation · Semidiscretization method · Boundary
conditions · Strong solution

1 Introduction

Rothe’s time-discretization method has been opted by many researcher for solving
differential equations. In this paper, approximate solutions, as well as the existence of
unique strong solution, are established by applying Rothe’s method for the following
pseudo-parabolic equation

∂g

∂t
− μ

∂3g

∂t∂y2
− μ

∂2g

∂y2
= p(t, g(t, y)), t ∈ (0,�], y ∈ (0, 1) (1)

subject to the following initial and the boundary conditions

g(0, y) = G0(y) and
∂2g

∂y2
(0, y) = G1(y) for all y ∈ (0, 1), (2)

g(t, 0) = g(t, 1) for all t ∈ [0,�], (3)

where, � > 0, μ > 0, and p, G0, and G1 are some given suitable functions.
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Type (1) equations have various applications in many physical situations, namely,
in the study of homogeneous fluid seepage in fissured rocks [1], heat conduction and
newtonian fluids theory [2, 3]. Maqbul and Raheem [5] established unique solution
to semilinear pseudo parabolic equation with integral conditions by using Rothe’s
method.

2 Abstract Formulation and Preliminaries

Defining s(t, y) as

s(t, y) = g(t, y) − μ
∂2g

∂y2
. (4)

Then, (1)–(3) becomes

∂s

∂t
+ s(t, y) = g(t, y) + p(t, g(t, y)), (5)

g(0, y) = G0(y) and s(0, y) = S0(y), (6)

g(t, 0) = g(t, 1), (7)

where, S0(y) = G0(y) − μG1(y).
Let L2(0, 1) = H be the Hilbert space. Defining two functions g : [0,�] → H,

s : [0,�] → H, and the nonlinear map p : [0,�] × H → H as

g(t)(y) = g(t, y), s(t)(y) = s(t, y), p(t, g(t))(y) = p(t, g(t, y)),

respectively. Consider the following presumptions:

(C1) � and μ are positive real numbers.
(C2) G0, G1 ∈ H.

(C3) p : [0,�] × H → H holds the Lipschitz inequality that ∃ ζ > 0 as

‖p(t, g) − p(δ, s)‖ ≤ ζ(|t − δ| + ‖g − s‖) for all t, δ ∈ [0, �], for all g, s ∈ H.

D(·) and R(·), domain and range of an operator respectively. Consider the linear
operator A defined as

D(A) :=
{
� ∈ H : �′′ ∈ H, �(0) = �(1)

}
, A� = −�′′.

Then, −A is an infinitesimal generator of C0-semigroups of contractions in Hilbert
space. Therefore, (4)–(7) become
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g(t) + μAg(t) = s(t), (8)
ds

dt
+ s(t) = g(t) + p(t, g(t)), (9)

g(0) = G0, s(0) = S0. (10)

Hence, both (1)–(3) and (8)–(10) represent the same problem.

3 Discretization Scheme and a Priori Estimates

Assume that (C1) − (C3) are true for the rest of this article. Dividing [0,�] into
m subintervals [tmk−1, t

m
k ] with �m = �

m for each m ∈ N, where tmk = k�m, for k =
1, 2, . . . ,m. Let gm0 = G0 and sm0 = S0 for all m ∈ N. Successively, {gmk } and {smk }
are unique solution of the equations.

gmk + μAgmk = smk (11)

and
smk − smk−1

�m
+ smk = gmk−1 + p(tmk , gmk−1). (12)

Lemma 1 There exists κ > 0 such that

‖gmk ‖ + ‖smk ‖ ≤ κ, k = 1, 2, . . . ,m, m ≥ 1. (13)

Proof In view of (11) and Theorem 1.4.3 of [6]

‖gmk ‖ ≤ ‖smk ‖. (14)

By (12),

〈 1

�m
smk , smk

〉
+ 〈smk , smk 〉 =

〈 1

�m
smk−1 + gmk−1 + p(tmk , gmk−1), s

m
k

〉
. (15)

Therefore,

‖smk ‖ ≤ ‖smk−1‖ + �m‖gmk−1‖ + �m‖p(tmk , gmk−1)‖. (16)

Thus,
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‖smk ‖ ≤ ‖sm0 ‖ + �m

k∑
i=1

(‖gmi−1‖ + ‖p(tmi , gmi−1)‖)

≤ ‖S0‖ + (ζ + 1)�m

k∑
i=1

‖smi−1‖ + ζ�2 + �‖p(0, 0)‖. (17)

Therefore,

‖smk ‖ ≤ α1 + β1�m

k∑
i=1

‖smi ‖, (18)

where, α1 = (ζ� + � + 1)‖S0‖ + ζ�2 + �‖p(0, 0)‖ and β1 = ζ + 1.
By Gronwall’s inequality,

‖smk ‖ ≤ α1

1 − β1�m
exp

(
β1( j − 1)�m

1 − β1�m

)
≤ α1

1 − β1�m
exp

( �β1

1 − β1�m

)
.

Therefore,
‖smk ‖ ≤ κ, where κ = sup

m∈N

[
α1

1−β1�m
exp

( �β1

1−β1�m

)]
.

By (14), ‖gmk ‖ ≤ κ.

Lemma 2 There exists κ > 0 such that

‖gmk − gmk−1‖ + ‖smk − smk−1‖ ≤ �mκ, k = 1, 2, . . . ,m, m ≥ 1. (19)

Proof In the view of (11), for k = 2, 3 . . . ,m, and Theorem 1.4.3 of [6]

‖gmk − gmk−1‖ ≤ ‖smk − smk−1‖. (20)

By (12), for k = 2, 3 . . . ,m,

1

�m
‖smk − smk−1‖ ≤ ‖gmk−1 − gmk−2‖ + ‖p(tmk , gmk−1) − p(tmk−1, g

m
k−2)‖. (21)

Therefore, for k = 2, 3 . . . ,m,

1

�m
‖smk − smk−1‖ ≤

k∑
i=2

(
‖gmi−1 − gmi−2‖ + ‖p(tmi , gmi−1) − p(tmi−1, g

m
i−2)‖

)

≤ ζ(k − 1)hm + (ζ + 1)
k∑

i=2

‖gmi−1 − gmi−2‖

(22)
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Thus,
1

�m
‖smk − smk−1‖ ≤ α2 + β2

k∑
i=1

‖smi − smi−1‖, (23)

where, α2 = �ζ and β2 = ζ + 1.
By Gronwall’s inequality,

1

�m
‖smk − smk−1‖ ≤ α2

1 − β2�m
exp

(
β2(k − 1)�m

1 − β2�m

)
≤ α2

1 − β2�m
exp

( �β2

1 − β2�m

)
.

Therefore,
1

�m
‖smk − smk−1‖ ≤ κ, where κ = sup

m∈N

[
α2

1−β2�m
exp

( �β2

1−β2�m

)]
.

By (20), 1
�m

‖gmk − gmk−1‖ ≤ κ .

4 Convergence

Let m ∈ N. Defining Um(t), Wm(t), Xm(t) and Ym(t) as

Um(t) =
{
gm0 if t = tm0 ,

gmk if t ∈ (tmk−1, t
m
k ], (24)

Wm(t) =
{
sm0 if t = tm0 ,

smk if t ∈ (tmk−1, t
m
k ], (25)

Xm(t) =
{
gm0 if t = tm0 ,

gmk−1 + (t − tmk−1)g
m
k if t ∈ (tmk−1, t

m
k ], (26)

and

Ym(t) =
{
sm0 if t = tm0 ,

smk−1 + 1
hm

(t − tmk−1)(s
m
k − smk−1) if t ∈ (tmk−1, t

m
k ], (27)

where, k = 1, 2, . . . ,m. For t ∈ (tmk−1, t
m
k ], 1 ≤ k ≤ m, define Pm(t) by

Pm(t) = gmk−1 + p(tmk , gmk−1), (28)

then (11) and (12) comes out to be

d−Xm

dt
(t) + μAUm(t) = Wm(t), t ∈ (0,�], (29)

d−Ym

dt
(t) + Wm(t) = Pm(t), t ∈ (0,�], (30)
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Integrating (30),

Ym(t) +
∫ t

0
Wm(δ)dδ = S0 +

∫ t

0
Pm(δ)dδ. (31)

Lemma 3 There exists g, s ∈ C([0,�]; L2(0, 1)) such as Xm(t) → g(t) and
Ym(t) → s(t) uniformly on [0,�]. g(t) and s(t) are differentiable a.e. on [0,�]
as well.

Proof Consider t ∈ (tmk−1, t
m
k ] and t ∈ (tql−1, t

q
l ], tmk ≤ tql , 1 ≤ k ≤ m, 1 ≤ l ≤ q.

Then, by (29) and Theorem 1.4.3 of [6],

1

2

d

dt
‖Xm(t) − X q(t)‖2 ≤ ‖Wm(t) − Wq(t)‖‖Xm(t) − X q(t)‖. (32)

By (30),

〈d−

dt
(Ym(t) − Yq(t)),Ym(t) − Yq(t)

〉
+ 〈Wm(t) − Wq(t),Ym(t) − Yq(t)〉

= 〈Pm(t) − Pq(t),Ym(t) − Yq(t)〉. (33)

By (33) and using Lemmas 1 and 2,

1

2

d

dt
‖Ym(t) − Yq(t)‖2 ≤ 4κ2(�m + �q) + ‖Pm(t) − Pq(t)‖‖Ym(t) − Yq(t)‖.

(34)
Consider,

‖Wm(t) − Wq(t)‖ ≤ 2κ(�m + �q) + ‖Ym(t) − Yq(t)‖,

and

‖Pm(t) − Pq(t)‖ ≤ (ζ + 2κ + 2ζκ)(�m + �q) + (ζ + 1)‖Xm(t) − X q(t)‖.

Combining (32) and (34),

1

2

d

dt

(
‖Xm(t) − X q(t)‖2 + ‖Ym(t) − Yq(t)‖2

)

≤ κ(�m + �q)[2ζ + 10κ + 4ζκ + (ζ + 3κ + 2ζκ)(�m + �q)]
+

(
1 + ζ

2

)
(‖Xm(t) − X q(t)‖2 + ‖Ym(t) − Yq(t)‖2).
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Therefore,

d

dt

(
‖Xm(t) − X q(t)‖2 + ‖Ym(t) − Yq(t)‖2

)

≤ 	mq + (ζ + 2)(‖Xm(t) − X q(t)‖2 + ‖Ym(t) − Yq(t)‖2),

where,

	mq = 2κ(�m + �q)[2ζ + 10κ + 4ζκ + (ζ + 3κ + 2ζκ)(�m + �q)].

Since Xm(0) = G0 and Ym(0) = S0 for all m ∈ N, for t ∈ [0,�],

‖Xm(t) − X q(t)‖2 + ‖Ym(t) − Yq(t)‖2

≤ �	mq + (ζ + 2)
∫ t

0
(‖Xm(δ) − X q(δ)‖2 + ‖Ym(δ) − Yq(δ)‖2)dδ.

Applying Gronwall’s inequality,

‖Xm(t) − X q (t)‖2 + ‖Ym(t) − Yq (t)‖2 ≤ �	mqe
(ζ+2)t ≤ �	mqe

(ζ+2)� ∀t ∈ [0, �].
(35)

Thus, {Xm(t)} and {Ym(t)} are Cauchy sequences in C([0,�]; L2(0, 1)). There-
fore we get g, s ∈ C([0,�]; L2(0, 1)) such that Xm(t) → g(t) and Ym(t) → s(t)
uniformly on [0,�]. As ‖Xm(t) − Xm(δ)‖ ≤ κ|t − δ| and ‖Ym(t) − Ym(δ)‖ ≤
κ|t − δ| hence g(t) and s(t) are Lipschitz continuous on [0,�]. Therefore, dg

dt ,
ds
dt ∈

L∞([0,�]; L2(0, 1)).

5 Main Results

Theorem 1 If the presumptions (C1)–(C3) hold good, then (8)–(10) has a unique
strong solution (g(t), s(t)) on [0,�]. Furthermore, the inequality ‖g(t)‖ ≤ ‖s(t)‖
holds for all t ∈ (0,�].
Proof Let g(t) and s(t) functions obtained from Lemma 3 and t ∈ (tmk−1, t

m
k ], k =

1, 2, . . . ,m, m ∈ N. Since,

‖Um(t) − g(t)‖ ≤ κ�m + ‖Xm(t) − g(t)‖,

and
‖Wm(t) − s(t)‖ ≤ 2κ�m + ‖Ym(t) − s(t)‖,
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hence, Um(t) → g(t) and Wm(t) → s(t) uniformly on [0,�]. Therefore, ‖Um(t)‖
and ‖Wm(t)‖ are bounded uniformly on [0,�].
Consider,

‖Pm(t) − g(t) − p(t, g(t))‖ ≤ ζ�m + (ζ + 1)(‖gmk−1 − Xm(t)‖ + ‖Xm(t) − g(t)‖)
≤ (ζ + κ + ζκ)�m + (ζ + 1)‖Xm(t) − g(t)‖.

Therefore, Pm(t) → g(t) + p(t, g(t)) uniformly on [0,�]. Thus, ‖Pm(t)‖ is
bounded uniformly on [0,�]. By Lemmas 1 and 2, ‖ dXm

dt ‖ and ‖ dYm

dt ‖ are bounded
uniformly on [0,�]. Hence, ‖AUm(t)‖ is bounded uniformly on [0,�]. From
Lemma 2.5 of [4], AUm(t) ⇀ Ag(t) on [0,�]. Clearly, (11) becomes

Um(t) + μAUm(t) = Wm(t), t ∈ (0,�]. (36)

Therefore, AUm(t) = 1
μ
(Wm(t) − Um(t)) → 1

μ
(s(t) − g(t)) uniformly on

[0,�]. Hence, AUm(t) → Ay(t) uniformly on [0,�]. Therefore,

g(t) + μAg(t) = s(t), t ∈ (0,�]. (37)

SinceXm(tm0 ) = Xm(0) = gm0 = G0 for allm ∈ N, g(0) = G0.By (31), for every
� ∈ H,

∫ t

0
〈Wm(δ), �〉dδ = 〈S0, �〉 − 〈Ym(t), �〉 +

∫ t

0
〈Pm(δ), �〉dδ.

By the bounded convergence theorem,

∫ t

0
〈s(δ), �〉dδ = 〈S0, �〉 − 〈s(t), �〉 +

∫ t

0
〈g(δ) + p(δ, g(δ)), �〉dδ. (38)

Since s(t) is Bochner integrable function on [0,�], by (38),

{ ds

dt
+ s(t) = g(t) + p(t, g(t)) a.e. t ∈ [0,�],

s(0) = S0.
(39)

Thus, by (37) and (39), doublet of functions g and s is a strong solution of (8)–
(10) on [0,�]. By (37) and by Theorem 1.4.3 of [6], ‖g(t)‖ ≤ ‖s(t)‖ holds for all
t ∈ (0,�].

Suppose that (g1, s1) and (g2, s2) are two strong solutions of (8)–(10). Let g =
g1 − g2 and s = s1 − s2. Then,
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g(t) + μAg(t) = s(t),
ds

dt
+ s(t) = g(t) + p(t, g1(t)) − p(t, g2(t)),

g(0) = s(0) = 0.

Applying Theorem 1.4.3 of [6],

‖g(t)‖ ≤ ‖s(t)‖, (40)

and

d

dt
(‖s(t)‖2) ≤ 2‖g(t) + p(t, g1(t)) − p(t, g2(t))‖‖s(t)‖

≤ 2(ζ + 1)‖g(t)‖‖s(t)‖ ≤ 2(ζ + 1)‖s(t)‖2.

By Gronwall’s inequality, ‖s(t)‖2 = 0 ∀ t ∈ [0,�]. By (40), ‖g(t)‖ = 0 for all
t ∈ [0,�]. Thus, g1(t) = g2(t) and s1(t) = s2(t) ∀ t ∈ [0,�].

6 Applications

Example 1 Consider the following pseudo-parabolic equation

∂l

∂t
− ∂3l

∂t∂y2
− ∂2l

∂y2
= cos t + 	1l(t, y), t ∈ (0,�], y ∈ (0, 1) (41)

with initial conditions

l(0, y) = sin y and
∂2l

∂y2
(0, y) = cos y for all y ∈ (0, 1), (42)

and boundary condition (3), where � > 0 and 	1 > 0, and the unknown function
l : [0,�] → L2(0, 1).Here,μ = 1, L0(y) = sin y, L1 = cos y, and p(t, l(t, y)) =
cos t + 	1l(t, y).Clearly, both functions L0 and L1 belong to L2(0, 1).Then,wehave

‖p(t, l) − p(δ, s)‖ ≤ ζ(|t − δ| + ‖l − s‖),

where ζ 2 = 2max{1, 	2
1}. Therefore, from Theorem 1, the problem (41)–(42) with

the boundary condition (3) has a unique strong solution l(t, y).
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7 Conclusions

Here, we considered a pseudo-parabolic equation (1) that is subjected to initial con-
ditions (2) and a boundary condition (3). First, the problem (1)–(3) is reduced in the
form of coupled Eqs. (8)–(10). To prove the existence and uniqueness of the solution
of (1)–(3), Rothe’s time-discretization technique is adopted. A pair of sequence of
function is fabricated, and then established their uniform convergence to the unique
pair of strong solutions. Eventually, we provided an example in support of the results.
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Mathematical Model for Tumor-Immune
Interaction in Imprecise Environment
with Stability Analysis

Subrata Paul, Animesh Mahata, Supriya Mukherjee,
Prakash Chandra Mali, and Banamali Roy

Abstract We introduce a tumor model with a tri-trophic level of prey, interme-
diate predator and top predator in an imprecise environment. The model consists of
tumor cells, hunting predator cells, and resting predator cells in a three-dimensional
predictable system. We investigated the non-negativity and boundedness of the
system’s solutions and identified all equilibrium points of the model along with their
existence conditions. In the imprecise environment, stability analysis was performed
and presented at all of the model system’s equilibrium points. We also explain the
global simulation study of such equilibrium position using an appropriate Lyapunov
function. Detailed numerical simulations to investigate the dynamical behavior of
the model are performed.

Keywords Tumor model · Stability analysis · Numerical simulation

1 Introduction

Over the last three decades, mathematical modeling has focused mostly on tumor
development and immune system dynamics. Tumors are cancerous growths of aber-
rant cells that can infect tissues and cause death. Cancer cells can spread throughout
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the body via the bloodstream and lymphatic system. A tumor is a mass or lumps
of tissue generated by an accumulation of aberrant cells, and it is the most serious
sickness in medical science [1–3]. Evidence is accumulating in recent years demon-
strating that the immune system may detect and eradicate malignant tumors. Before
a tumor grows to the point that it kills the patient or permanently impairs their quality
of life, it goes through numerous phases. Cancer is a group of illnesses distinguished
by uncontrolled cell proliferation. Tumors can develop and cause problems with the
digestive, neurological, and circulatory systems, as well as releasing hormones that
cause changes in bodily processes. Our immune response serves a critical role in
preventing the spread of malignant cells. Chemotherapy, immunotherapy, radiation
therapy, surgery, and other treatments are available to patients with cancer. The type
of treatment depends on the position and severity of the tumor, the phase of the
disease, the patients’ medical condition, and their age. The objective of treatment
is to completely remove the cancer without causing harm to the rest of the body.
However, the majority of cancer therapies have a harmful effect on normal bodily
cells. The natural control techniques that exist for tumors must be considered while
studying the growth and regulation of cancer. The use of mathematical models in
the theoretical research of cancer is a particularly important strategy for shaping our
understanding of tumor resistance dynamics [4–7]. Mathematical tools have been
used in a range of studies in this field [8–10].

There are several studies of mathematical models of tumor development and
interactions between the tumor and the immune system. The early research on tumor
formation was aimed at figuring out how "normal" cells may transform become
cancer cells. Cancer research, with a focus on theoretically and experimentally
immunotherapy, receives a significant amount of human and financial resources,
with both successful and unsuccessful outcomes. Despite the fact that cancer is one
of theworld’s leading causes of death, it is common in themedical field for patients to
present with advanced cancer that cannot be cured. This awe-inspiring phenomenon
of unexpected cancer remission lives on in medical history, completely unexplain-
able but genuine. A significant amount of effort has gone into developing dynamical
models that may be used to explain and predict tumor progression during the last
few decades. There are a few more studies on tumor-immune interactions [11–15].

Researchers make various assumptions in mathematical modeling in order to
replicate facts in a truncated but adequately meaningful way. Interaction between
biotic and abiotic entities has been represented throughout the field of mathematical
biology and ecology bymany functions includingmany parameters, with the greatest
of these values being regarded constant. However, due to incorporation of various
human and ecological elements, it iswidely accepted that uncertainty and imprecision
about these characteristics cannot be disregarded. Despite the fact that a lot of work
has previously been done in this topic involving uncertainty theory [16–18], there
is still a lot of opportunities to improve and expand this area. The parameters of a
tumor model with a tri-trophic level of prey-predator system are represented as fuzzy
interval numbers in this paper. The findings have confirmed the imprecise solution’s
viewpoint, which has been visually and quantitatively connected.
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2 Preliminaries

Definition 1 The interval I = [α, β] can be represented as f (μ) = (α)μ−1(β)μ for
μ ∈ [0, 1], where f (µ) : interval valued function.

3 Model Formulation

To formulate the model framework, the following assumption is made:

x(t) the number of tumor cells present,
y(t) the number of intermediate (hunting) predator cells present,
z(t) the number of top (resting) predator cells present,
r the development rate of tumor cells,
q the conversion of normal cells to malignant ones (fixed input),
k1 the maximum carrying or packing capacity of tumor cells,
k2 the maximum carrying capacity of resting cells (also, k1 > k2),
a rate of predation of tumor cells by the hunting cells,
b resting cell to hunting cell conversion rate,
c natural death rate of hunting cell,
d development rate of resting predator cell,
e natural death rate of resting cell.

dx

dt
= q + r x

(
1 − x

k1

)
− axy

dy

dt
= byz − cy

dz

dt
= dz

(
1 − z

k2

)
− byz − ez (1)

In the imprecise environment where all the coefficients are interval numbers, the
above-mentioned tumor model (1) can be altered as follows:

dx

dt
= q + r̃ x

(
1 − x

k1

)
− ãxy

dy

dt
= b̃yz − c̃y

dz

dt
= d̃z

(
1 − z

k2

)
− b̃yz − ẽz (2)
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where, r̃ = [rm, rn], ã = [am, an], b̃ = [bm, bn], c̃ = [cm, cn], d̃ = [dm, dn], ẽ =
[em, en] and rm, rn , am, an, bm, bn, cm, cn , dm, dn, em, en all are positive.

Using Definition 1, the system (2) can be written as

dx

dt
= q + r1−p

m r p
n x

(
1 − x

k1

)
− a1−p

n a p
mxy

dy

dt
= b1−p

m bp
n yz − c1−p

n cpm y

dz

dt
= d1−p

m d p
n z

(
1 − z

k2

)
− b1−p

n bp
m yz − e1−p

n epmz

(3)

where p ∈ [0, 1].

3.1 Non-negativity and Boundedness

The non-negativity and boundedness of solutions of the system will be discussed in
this section.

Theorem 1 All the solutions of the system (3) are positive.

Proof From the system (3) we have.

dx

dt
= q + r1−p

m r p
n x

(
1 − x

k1

)
− a1−p

n a p
mxy.

Now, integrating in [0, t] we get,

x(t) = x(0)e

t∫
0
�(x,y,z)dt ≥ 0,∀t

x(t) = x(0)e
∫ t
0�(x,y,z)dt ≥ 0,∀t as, x(0) ≥ 0 where �(x, y, z) = q

x +
r1−p
m r p

n

(
1 − x

k1

)
− a p

n a
1−p
m y.

Again, from second equation we have

dy

dt
= b1−p

m bp
n yz − c1−p

n cpm y

Integrating the above equation we get, y(t) = y(0)e

t∫
0
µ(x,y,z)dt ≥ 0∀t as, y(0) ≥ 0

whereµ(x, yz) = b1−p
m bp

n z−cpn c
1−p
m . dzdt = d1−p

m d p
n z

(
1 − z

k2

)
−b1−p

n bp
m yz−e1−p

n epmz
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At last, integrating the above equation, we get, z(t) = z(0)e

t∫
0
ω(x,y,z)dt ≥ 0,∀t as,

z(0) ≥ 0 where ω(x, y, z) = d1−p
m d p

n

(
1 − z

k2

)
− b1−p

n bp
m y − e1−p

n epm .

Thus, all solutions of the system (3) are non-negative.

4 Stability Analysis

All the equilibrium points of system (3) as well as their existence requirements are
presented in this section.

4.1 Equilibrium Points and Existence Criteria

The equilibrium points of the system (3) are as follows:

(i) Boundary equilibrium point E1(x1, 0, 0)

where x1 = k1
2

(
1 +

√
1 + 4q

k1r
1−p
m r p

n

)
.

(ii) Planar equilibrium point E2(x2, 0, y2)

where x2 = k1
2

(
1 +

√
1 + 4q

k1r
1−p
m r p

n

)
and y2 = k2

(
1 − e1−p

n epm
d1−p
m d p

n

)
.

The existence of the planar equilibrium point depends on the criteria:
e1−p
n epm

d1−p
m d p

n
< 1.

(iii) Interior equilibrium point E3(x∗, y∗, z∗)

where, x∗ is the solution of the equation,

r1−p
m r p

n

k1
x∗2+

[
a1−p
n a p

md
1−p
m d p

n

b1−p
n bp

m

(
1 − c1−p

n cpm

k2b
1−p
m bp

n

)

− a1−p
n a p

me
1−p
n epm

b1−p
n bp

m

− r1−p
m r p

n

]
x∗ − q = 0,

y∗ = d1−p
m d p

n

b1−p
m bp

n

(
1 − c1−p

n cpm
k2b

1−p
m bp

n

)
− e1−p

n epm
b1−p
n bp

m
and z∗ = c1−p

n cpm
b1−p
m bp

n
.E3(x∗, y∗, z∗) will exist if

b1−p
m bp

n k2(d
(1−p)
m d p

n − e(1−p)
n epm) > c(1−p)

n cpmd
(1−p)
m d p

n .
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4.2 Local Stability Analysis

The Jacobian matrix at (x, y, z) of the system (3) can be written as

J (x, y, z) =
⎛
⎜⎜⎝
r1−p
m r pn

(
1 − 2x

k1

)
− a1−p

n a pm y −a1−p
n a pm x 0

0 b1−p
m bpn z − c1−p

n cpm b1−p
m bpn y

0 −b1−p
n bpm z d1−p

m d pn
(
1 − 2z

k1

)
− b1−p

n bpm y − e1−p
n epm

⎞
⎟⎟⎠

Theorem 2 The system (3) displays unstable behavior at the boundary equilibrium
point E1(x1, 0, 0).

Proof The Jacobian matrix at the boundary equilibrium point E1(x1, 0, 0) is.

⎛
⎜⎝

−r1−p
m r p

n

√
1 + 4q

k1r
1−p
m r p

n
− a1−p

n a p
mk1

2

(
1 +

√
1 + 4q

k1r
1−p
m r p

n

)
0

0 −c1−p
n cpm 0

0 0 d1−p
m d p

n − e1−p
n epm

⎞
⎟⎠

The eigen values of this matrix are λ1 = −r1−p
m r p

n

√
1 + 4q

k1r
1−p
m r p

n
< 0, λ2 =

−c1−p
n cpm < 0 and λ3 = d1−p

m d p
n − e1−p

n epm > 0
(if the planar equilibrium point E2 exist, then λ3 > 0).
Therefore, the system is saddle at the boundary equilibrium point and we can say

that, it is unstable at this point.

Theorem 3 The model (3) is unstable at E2(x2, 0, y2).

Proof Now the Jacobian matrix at the planer equilibrium point E2(x2, 0, y2) is.

⎛
⎜⎜⎜⎝

−r1−p
m r p

n

√
1 + 4q

k1r
1−p
m r p

n
− a1−p

n a p
mk1

2

(
1 +

√
1 + 4q

k1r
1−p
m r p

n

)
0

0 b1−p
m bp

n k2
(
1 − e1−p

n epm
d1−p
m d p

n

)
− c1−p

n cpm 0

0 −b1−p
n bp

mk2
(
1 − e1−p

n epm
d1−p
m d p

n

)
−

(
d1−p
m d p

n − e1−p
n epm

)

⎞
⎟⎟⎟⎠

The eigen values of this Jacobian matrix are λ
/

1 = −r1−p
m r p

n

√
1 + 4q

k1r
1−p
m r p

n
< 0,

λ
/

2 = b1−p
m bp

n k2
(
1 − e1−p

n epm
d1−p
m d p

n

)
−c1−p

n cpm > 0 (from the existence criteria of E3) and

λ
/

3 = −
(
d1−p
m d p

n − e1−p
n epm

)
< 0. Hence the model (3) is unstable at E2(x2, 0, y2)

if E3 exist.

Theorem 4 The model (3) is asymptotically stable at E3(x∗, y∗, z∗).

Proof Finally, the Jacobian matrix at the interior equilibrium point E3 is.
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⎛
⎜⎜⎝

M −a1−p
n a p

mx∗ 0

0 0 b1−p
m bp

n

[
d1−p
m d p

n

b1−p
n bp

m

(
1 − c1−p

n cpm
k2b

1−p
m bp

n

)
− e1−p

n epm
b1−p
n bp

m

]
0 − b1−p

n bp
mc

1−p
n cpm

b1−p
m bp

n
b1−p
m bp

n

[
d1−p
m d p

n

b1−p
n bp

m

(
1 − c1−p

n cpm
k2b

1−p
m bp

n

)
− e1−p

n epm
b1−p
n bp

m

]

⎞
⎟⎟⎠

where,

M =

−
√√√√

[
a1−p
n a pmd

1−p
m d p

n

b1−p
n bpm

(
1 − c1−p

n cpm

k2b
1−p
m bpn

)
− a1−p

n a pme
1−p
n epm

b1−p
n bpm

− r1−p
m r pn

]2

+ 4r1−p
m r pn q

k1

The eigen values of the Jacobian matrix are

λ∗
1 =

−
√√√√

[
a1−p
n a pmd

1−p
m d p

n

b1−p
n bpm

(
1 − c1−p

n cpm

k2b
1−p
m bpn

)
− a1−p

n a pme
1−p
n epm

b1−p
n bpm

− r1−p
m r pn

]2

+ 4r1−p
m r pn q

k1
,

λ∗
2 = −h +

√
h2 − 4g

2
and λ∗

3 = −h −
√
h2 − 4g

2

where,

h =
[
2d1−p

m d p
n c

1−p
n cpm

k2b
1−p
m bp

n

− b1−p
n bp

md
1−p
m d p

n c
1−p
n cpm

k2b
1−p
m bp

n

]
> 0,

g = d1−p
m d p

n c
1−p
n cpm

(
1 − c1−p

n cpm

k2b
1−p
m bp

n

)
− c1−p

n cpme
1−p
n epm > 0

(from the existence condition of E3).
Since,λ∗

1 < 0 andλ∗
2,λ

∗
3 have negative real part. Thus, the system is asymptotically

stable around E3.

4.3 Global Stability Analysis

The coexistence critical point’s global stability indicates that all solution trajectories
connected with the system (3) approach the point’s trajectories.

Theorem 5 The system (3) is globally asymptotically stable at E3(x∗, y∗, z∗) in the
region D =

{
(x, y, z) ∈ R

3 : 0 < x
x∗ = y

y∗ = z
z∗ < 1

}
.
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Proof Taking the appropriate Lyapunov function into consideration.

L = A
[(
x − x∗) − x∗ log

( x

x∗
)]

+ B

[(
y − y∗) − y∗ log

(
y

y∗

)]

+ C

[(
z − z∗) − z∗ log

(
z

z∗

)]

Taking time derivative, we get

dL(t)
dt

= A
x − x∗

x

dx(t)

dt
+ B

y − y∗
y

dy(t)
dt

+ C
z − z∗

z

dz(t)
dt

= A
x − x∗

x

[
q + r1−p

m r pn x

(
1 − x

k1

)
− a1−p

n a pm xy

]
+ B

y − y∗
y

[
b1−p
m bpn yz − c1−p

n cpm y
]

+ C
z − z∗

z

[
d1−p
m d pn z

(
1 − z

k2

)
− b1−p

n bpm yz − e1−p
n epm z

]

= A
(
x − x∗)[ q

x
+ r1−p

m r pn

(
1 − x

k1

)
− a1−p

n a pm y − q

x∗ − r1−p
m r pn

(
1 − x∗

k1

)
+ a1−p

n a pm y∗
]

+ B
(
y − y∗)[

b1−p
m bpn z − c1−p

n cpm − b1−p
m bpn z

∗ + c1−p
n cpm

]

+ C
(
z − z∗)[

d1−p
m d pn

(
1 − z

k2

)
− b1−p

n bpm y − e1−p
n epm − d1−p

m d pn

(
1 − z∗

k2

)
+ b1−p

n bpm y∗ + e1−p
n epm

]

= A
q
(
x − x∗)2
(xx∗)

− A

(
r1−p
m r pn
k1

)(
x − x∗)2 − C

d1−p
m d pn
k2

(
z − z∗)2 − a1−p

n a pm
(
x − x∗)(

y − y∗)

− Bb1−p
m bpn

(
y − y∗) (

x∗z∗ y − xzy∗)
yy∗ − Cb1−p

m bpn
(
y − y∗)(

z − z∗)
.

So dL(t)
dt < 0, since D =

{
(x, y, z) ∈ R

3 : 0 < x
x∗ = y

y∗ = z
z∗ < 1

}
.

Hence the system (3) is globally asymptotically stable at E3(x∗, y∗, z∗).

5 Numerical Simulation

We use rigorous numerical study to assess and confirm the analytical conclusions of
our model system in this section. To graphically forecast the model’s solution, we
utilize MATLAB (2018).

In this scenario, we simulate the system (3) using the model parameter values
provided in Table 1 and pick the value of parameter ‘p’ into three levels that satisfy
the requirement specified in Theorem 4. At this equilibrium position, we ran the
model system and computed the eigen values of the Jacobi matrix. Table 2 displays
the eigen values. As a result all the eigen values of Jacobi matrix are negative, we
may deduce that the interior equilibrium point E3(x∗, y∗, z∗) is stable in nature when
model parameters satisfy the criteria given in Theorem 4 (Figs. 1 and 2).
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Table 1 Parametric values
for interior equilibrium point

Parameters Values (for interior)
∼
r [0.9, 0.95]
∼
a [0.3, 0.35]
∼
b [0.1, 0.2]
∼
c [0.02, 0.03]
∼
d [0.8, 0.9]
∼
e [0.03, 0.04]

k1 0.85

k2 0.7

q 12

Table 2 Eigen values and nature of equilibrium point E3(x∗, y∗, z∗) for different levels of p
p Equilibrium point Eigen value Nature

0 (3.524, 1.638, 0.2912) (−7.293,−0.63,−0.02) Stable

0.5 (3.354, 2.628, 0.1813) (−7.26,−0.048,−0.314) Stable

1 (3.198, 3.768, 0.112) (−7.33,−0.0305,−0.1705) Stable

6 Conclusion

We have presented a tumor model for a tri-trophic level with prey, intermediate
predator, and top predator in an imprecise environment. We have formulated the
model system in an imprecise situation and realized all its stable state points. The
feasibility criteria of the system equilibrium points in the supporting environment
are studied along with their stability analysis. To justify and confirm the model’s
analytical conclusions, careful numerical simulations were performed. In nature,
foraging behavior is frequent, and the best foraging technique plays an essential
role in prey-predator engagements. The tumor growth mathematical models help us
comprehend the nature of tumor–immune interactions. The major objective of health
administrators, policymakers, and researchers is to create diverse cancer medications
and identify the most effective therapy against tumor cell spread. Our model research
is a little step in the right direction.
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Fig. 1 Time series plot of system (3) in [0, 2000] for various values of parameter ‘p’. This figure
shows that the interior equilibrium point E3(x∗, y∗, z∗) is stable
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Fig. 2 When numerical simulation is started from different beginning points under the option
of model parameter values as indicated in Table 1, the system (3) approaches a stable interior
equilibrium point E3(x∗, y∗, z∗) for different values of the parameter p
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Dromion Lattice Structure for Coupled
Nonlinear Maccari’s Equation

J. Thilakavathy , K. Subramanian , R. Amrutha ,
and M. S. Mani Rajan

Abstract In this article, we are interested to obtain analytic solutions of coupled
nonlinear Maccari’s equation. We employ Truncated Painlevé Approach to construct
dromion lattice structure. The solution of the Maccari’s equation is expressed in the
form of arbitrary functions. Further, we have constructed dromion lattice structure
graphically by considering suitable arbitrary functions. It is seen that the amplitude
of the dromion lattice is stable and does not move during the time evolution. The
coupled nonlinear Maccari’s equation have wide applications in ocean wave theory.

Keywords Coupled nonlinear Maccari’s equation · Trunctated Painlevé
approach · Dromion lattice

1 Introduction

Dromions [1–3] are the localized solutions that travel with a constant speed without
dispersion or dissipation. Dromions have their origin at the intersection of two line-
solitons. They have exponentially decaying tails in all the directions and in contrast
to lumps that decay only algebraically. Earlier, dromion solution was constructed for
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theDavey–Stewartson I equation [4, 5] which is a (2 + 1) dimensional generalization
of the nonlinear Schrödinger equation [6].

In this work, Truncated Painlevé Approach [7–9] is applied to obtain the local-
ized solution such as dromion lattice structure [17] for the coupled nonlinear Mac-
cari’s equation [10–12]. The Maccari’s equation was derived by Maccari from the
Kadomtsev–Petviashvili equation, by means of a reduction method based on Fourier
decomposition and space–time rescaling.Noteworthy developments have been estab-
lished for examining the closed form solutions of Maccari’s equation in recent years.
Plentiful effective tools have been utilized to handleMaccari’s equation, such as, Exp-
function method [13], generalized Riccati relation [14], extended Fan sub-equation
method [15], bilinear method [16] etc. and closed form solutions with arbitrary
parameters are successfully obtained.

This paper is systematized as follows: In Sect. 2, the solution of coupled nonlinear
Maccari’s equation has shown by using the tool Trunctated Painlevé Approach. The
Sect. 3 is devoted for the discussion on the dromion lattice structure. Finally, we have
concluded with notes and comments.

2 Solution of Coupled Nonlinear Maccari’s Equation
by Truncated Painlevé Approach

We consider the Maccari’s equation

i St + Sxx + LS = 0, (1)

i Kt + Kxx + LK = 0, (2)

Ly = (SS∗ + KK ∗)x . (3)

By considering, S = α, S∗ = β, K = γ , K ∗ = δ, then Eqs. (1)–(3) can be given as

iαt + αxx + Lα = 0, (4)

− iβt + βxx + Lβ = 0, (5)

iγt + γxx + Lγ = 0, (6)

− iδt + δxx + Lδ = 0, (7)

Ly = (αβ)x + (γ δ)x . (8)
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The truncated Laurent series of the solutions of Eqs. (4)–(8) results the following
Bäcklund transformation

α = α0

φ
+ α1, β = β0

φ
+ β1, γ = γ0

φ
+ γ1, δ = δ0

φ
+ δ1 and L = L0

φ2 + L1
φ

+ L2.

(9)
We assume the vacuum solutions as α1 = β1 = γ1 = δ1 = 0 and

L2 = L2(x, t). (10)

By substituting Eq. (9) with the above vacuum solutions into Eqs. (4)–(8) and equate
the like coefficients of φ−3 to zero, one gets

2α0φ
2
x + L0α0 = 0, (11)

2β0φ
2
x + L0β0 = 0, (12)

2γ0φ
2
x + L0γ0 = 0, (13)

2δ0φ
2
x + L0δ0 = 0, (14)

2(α0β0φx + γ0δ0φx − L0φy) = 0. (15)

From Eqs. (11)–(14), the value of L0 is determined by

L0 = −2φ2
x (16)

nd
α0β0 + γ0δ0 = −2φxφy . (17)

Equating the like coefficients of φ−2 to zero yields

− iα0φt − 2α0xφx − α0φxx + L1α0 = 0, (18)

iβ0φt − 2β0xφx − β0φxx + L1β0 = 0, (19)

− iγ0φt − 2γ0xφxx − γ0φxx + L1γ0 = 0, (20)

iδ0φy − 2δ0xφx − δ0φxx + L1δ0 = 0, (21)

L0y − L1φy = (α0β0 + γ0δ0)x . (22)

Using Eqs. (16) and (17) in Eq. (22), we get
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L1 = 2
(φxxφy − φxyφx )

φy
. (23)

By substituting Eq. (23) into Eqs. (18)–(21), the field variables α0, β0, γ0 and δ0
can be determined as

α0 = U (y) exp

⎡
⎣1

2

∫ −iφt + φxx − 2φxφxy

φy

φx
dx

⎤
⎦ , (24)

β0 = U (y) exp

⎡
⎣1

2

∫ iφt + φxx − 2φxφxy

φy

φx
dx

⎤
⎦ , (25)

γ0 = V (y) exp

⎡
⎣1

2

∫ −iφt + φxx − 2φxφxy

φy

φx
dx

⎤
⎦ , (26)

δ0 = V (y) exp

⎡
⎣1

2

∫ iφt + φxx − 2φxφxy

φy

φx
dx

⎤
⎦ , (27)

where U (y) and V (y) are arbitrary functions.
When the like coefficients of φ−1 is equated to zero, it gives

iα0t + α0xx + L2α0 = 0, (28)

− iβ0t + β0xx + L2β0 = 0, (29)

iγ0t + γ0xx + L2γ0 = 0, (30)

− iδ0t + δ0xx + L2δ0 = 0, (31)

L1y = 0. (32)

The Eq. (32) can be expressed as

φxxyφ
2
y + φxφxyφyy − φ2

xyφy − φxφxyyφy = 0. (33)

The Eq. (33) can be solved as

φ = φ1(x) + φ2(t), (34)

where φ1(x)and φ2(t) are arbitrary functions.
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When Eqs. (24)–(27) and (34) are plugged into Eq. (17), one obtains

V (y) = iU (y). (35)

When the like coefficients of φ0 is equated to zero, it gives

L2y = 0. (36)

The Eq. (36) is solved into

L2 = 1

2

∫ −φ2t t

φ1x
dx − φ1xxx

2φ1x
+ φ2

2t + φ2
1xx

4φ2
1x

. (37)

With the help of Eqs. (16), (23), (24)–(27), (34), (35) and (37) into Eq. (9), the
solution of Eqs. (1)–(3) is obtained as

S =
U (y) exp

[
1
2

∫ −iφ2t+φ1xx

φ1x
dx

]

φ1(x) + φ2(t)
, (38)

K =
iU (y) exp

[
1
2

∫ −iφ2t+φ1xx

φ1x
dx

]

φ1(x) + φ2(t)
, (39)

L = −2φ2
1x

(φ1(x) + φ2(t))2
+ 2φ1xx

(φ1(x) + φ2(t))
− 1

2

∫
φ2t t

φ1x
dx − φ1xxx

2φ1x
+ φ2

2t + φ2
1xx

4φ2
1x

.

(40)
The magnitudes of Eqs. (38) and (39) are represented as

|S|2 = U 2(y)φ1x

(φ1(x) + φ2(t))2
, (41)

|K |2 = −U 2(y)φ1x

(φ1(x) + φ2(t))2
. (42)

3 Dromion Lattice Solution

The dromion lattice solution is constructed by setting the φ1(x) = exp(d1x); φ2(t) =
1 + exp(d2t); F1(y) = exp(cos(y) − d3). The snapshot of dromion lattice structure
is shown in Fig. 1. It is noted that the peaks of dromion lattice is constant and it does
not move during the time evolution.

Notes and Comments. In this paper, the solution of coupled integrable Maccari’s
equation is obtained by the tool Truncated Painlevé Approach. The solution contains
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Fig. 1 Dromion lattice pattern for arbitrary constants d1 = 1; d2 = 1; d3 = 1; at t = -10

three arbitrary functions of space and time. By setting suitable arbitrary functions,
the localized solution for dromion lattice has constructed. It is noted that the arbitrary
manifold is independent of only one space variable y. To understand the physical
behavior of the dromion lattice structure, it is also illustrated graphically. It would be
interesting to note that the amplitude of dromion lattice is constant and the wave pat-
tern is static during the time evolution. This eccentric nature occurs due the complete
separation of arbitrary functions in space (x, y) and time (t).
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Solving Non-linear Partial Differential
Equations Using Homotopy Analysis
Method (HAM)

Ajay Kumar and Ramakanta Meher

Abstract In this research paper, a semi-analytical method,i.e.,homotopy analysis
method, is implemented for finding the solution of non-linear partial differential
equations. Homotopy analysis method is very effective, and easy to evaluate as
compared to other numerical methods. The results through HAM on illustrative
examples are compared with two well-known methods, namely, Variational Iteration
Method(VIM) and Adomian Decomposition Method(ADM). The comparisons of
obtained solutions results in the high accuracy through HAM when compared to the
other competing methods. Hence, the solution obtained using HAM has much faster
convergence to the exact solution.

Keywords Non-linear partial differential equation · Numerical results ·
Homotopy analysis method

1 Introduction

Solving a partial differential equation (PDE) involves lot of computations and when
the PDE is non-linear it become really tough for solving and getting solutions. For
solving non-linear PDE we have many numerical methods which provide numerical
solutions. Also we solve non-linear PDE using analytic methods. The main differ-
ence between analytical and numerical approach is that numerical solution provides
solution at discrete points while analytical technique provides continuous graph for
the solution. Non-linear equations are not easy to solve, it needs better computational
software and systems.

Homotopy analytical techniquewasfirstly proposed byLiao [1–3] in 1992.Homo-
topy analytical method is based on the concept of homotopy of topology. Themethod
has been widely implemented for solving several nonlinear problems in physical sci-
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ence & engineering [4–12], after Liao published a book[13] in 2004. For solving
non-linear problems, HAM [14–17] is a powerful mathematical tool. Adjusting and
controlling the convergence region and rate of convergence of the series solution
with the help of certain auxiliary parameter h is the main advantage of HAM.

The objective of the current paper is to solve initial value problems of non-linear
partial differential equations by HAM and to make comparison of obtained approx-
imate solutions by HAM with that already obtained by Variational Iteration Method
[18–20] and Adomian Decomposition Method [21–23].

2 Analysis of Homotopy Analysis Method

Let’s consider a non-linear differential equation, for the better understanding of the
method,

N [ f (ζ, η)] = 0, (1)

where N is representing as operator for non-linearity, ζ denotes spatial variables,
η stands for time-related independent variables, & f (ζ, η) is taken as an unknown
function.

For quick understanding and simplification, each initial conditions and boundary
conditions are intentionally ignored, which can be explained with similar way.
According to the concept of homotopy, the so called 0th-order deformation equation
can be constructed as follow,

(1 − q)L[ψ(ζ, η; q) − f0(ζ, η)] = hqH(ζ, η)N [ψ(ζ, η; q)], (2)

where q (0 ≤ q ≤ 1) is known as embedding parameter, h is known as a non-zero
auxiliary parameter, H (ζ, η) is known as a non-zero auxiliary function, L is known
as an auxiliary operator for linearity, f0 (ζ, η) is an initial assumption of the solution
f (ζ, η), and ψ (ζ, η; q) is an unspecified function. It must be noted that there is no
restriction in choosing the initial assumption, L the auxiliary operator for linearity ,
h the auxiliary parameter, and H (ζ, η) the auxiliary function.

For q = 0 & q = 1, ψ (ζ, η; q) can be expressed as follows

ψ(ζ, η; 0) = f0(ζ, η), ψ(ζ, η; 1) = f (ζ, η) (3)

So, ψ (ζ, η; q) reaches from the initial assumption f0 (ζ, η) to f (ζ, η) as a solution,
when the value of q increases from 0 to 1. Expansion of ψ (ζ, η; q) in the Taylor
series concerning the parameter q, we obtain

ψ(ζ, η; q) = f0(ζ, η) +
∞∑

n=1

fn(ζ, η)qn, (4)
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Here fn (ζ, η) stands for

fn(ζ, η) = 1

n!
∂nψ(ζ, η; q)

∂qn

∣∣∣∣
q=0

(5)

At q = 1, the choice of auxiliary operator for linearity L, the initial assumption
f0 (ζ, η), the auxiliary parameter h and the auxiliary function H(ζ, η) is proper then
above series converges, and we obtain

f (ζ, η) = f0(ζ, η) +
∞∑

k=1

fk(ζ, η), (6)

Equation (6) is original nonlinear equation’s one of the solution. As shown in Eq.
(6), the controlling equation can be obtained from 0th-order deformation equation.
Define vector,

f̄ (ζ, η) = { f0(ζ, η), f1(ζ, η), f2(ζ, η), ..., fn(ζ, η)} (7)

Taking n-times differentiation of 0th-order deformation equation concerning embed-
ding parameter q, putting q = 0 and after dividingwith n!, the deformation equation
of nth-order can be presented as follows

L[ fn(ζ, η) − χn fn−1(ζ, η)] = hH(ζ, η)Rn( f̄n−1) (8)

where Rn( f̄n−1) stands for

Rn( f̄n−1) = 1

(n − 1)!
∂n−1N [ψ(ζ, η; q)]

∂qn−1

∣∣∣∣
q=0

(9)

and

χn =
{
0, n ≤ 1

1, n > 1.
(10)

Here, It is surely noted that when n ≥ 1, fn (ζ, η) is controlled by the linear defor-
mation equation of nth-order .

3 Numerical Application

Example 1 Consider the 1st-order quasi-linear homogeneous partial differential
equation[24]

∂u(ζ, η)

∂η
+ (1 + u(ζ, η))

∂u(ζ, η)

∂ζ
= 0, 0 ≤ η (11)
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with the initial condition

u(ζ, 0) = ζ − 1

2
, (12)

Equation (11) can be simply expressed as

∂u

∂η
+

(
∂u

∂ζ

)
+ u

(
∂u

∂ζ

)
= 0 (13)

Exact solution for this problem is u(ζ, η) = ζ−η−1
η+2 , which can also be verified.

For solving problem in Eq. (11) using HAM we need to consider initial approxi-
mation, letting the initial approximation to be

u0(ζ, η) = ζ − 1

2
(14)

Here, nonlinear operator for Eq. (11) can be defined as

N [ψ(ζ, η; q)] = ∂ψ(ζ, η; q)

∂η
−

(
∂ψ(ζ, η; q)

∂ζ

)
− ψ(ζ, η; q)

(
∂ψ(ζ, η; q)

∂ζ

)

(15)
Now, we have to construct the 0th-order deformation equation as

(1 − q)L[ψ(ζ, η; q) − u0(ζ, η)] = hqN [ψ(ζ, η; q)]. (16)

where an auxiliary linear operator L is expressed as

L[ψ(ζ, η; q)] = ∂ψ(ζ, η; q)

∂η
(17)

Also, at q = 0 & 1, we have ψ(ζ, η; q) as

ψ(ζ, η; 0) = u0(ζ, 0), ψ(ζ, η; 1) = u(ζ, η). (18)

Here, ψ(ζ, η; q) varies from initial guess u0(ζ, η) = ζ−1
2 to the solution u(ζ, η), as

q varies from 0 to 1.
Now, we will have the nth-order deformation equation as

(1 − q)L[un − χnun−1] = hRn(
−→u n−1), (19)

where

Rn(
−→u n−1) = ∂un−1

∂η
− ∂un−1

∂ζ
−

(
n−1∑

i=0

ui
∂un−1−i

∂ζ

)
(20)
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Therefore,
un = χnun−1 + hL−1[Rn(

−→u n−1)], (21)

where

L−1 =
∫

(·)dη (22)

So, Eq. (19) becomes

un = χnun−1 + h
∫

Rn(
−→u n−1)dη, (23)

The first few terms of the solution, with the help of u0(ζ, η) from Eq. (14) can be
expressed as follows:

u1 (ζ, η) = h

(
η

4
+ 1

4
ζη

)

u2 (ζ, η) = 1

4
hη + 1

4
hζη + 1

8
η2h2 + 1

8
η2h2ζ + 1

4
h2η + 1

4
h2ζη

u3 (ζ, η) = 1

4
hη + 1

4
hζη + 1

4
η2h2 + 1

4
η2h2ζ + 1

2
h2η + 1

2
h2ζη + 1

16
η3h3

+ 1

16
η3h3ζ + 1

4
η2h3 + 1

4
η2h3ζ + 1

4
h3η + 1

4
h3ζη

Thus, the approximated series solution

u(ζ, η) = u0(ζ, η) + u1(ζ, η) + u2(ζ, η) + u3(ζ, η) + ...

= ζ − 1

2
+ h

(
η

4
+ 1

4
ζη

)
+ 1

4
hη + 1

4
hζη + 1

8
η2h2 + 1

8
η2h2ζ + 1

4
h2η

+ 1

4
h2ζη + 1

4
hη + 1

4
hζη + 1

4
η2h2 + 1

4
η2h2ζ + 1

2
h2η

+ 1

2
h2ζη + 1

16
η3h3 + 1

16
η3h3ζ + 1

4
η2h3 + 1

4
η2h3ζ + 1

4
h3η + 1

4
h3ζη + · · ·

Example 2 Consider the second order nonlinear hyperbolic equation [25]

∂2u(ζ, η)

∂η2
= ∂

∂ζ

(
u(ζ, η)

∂u(ζ, η)

∂ζ

)
, 0 ≤ η (24)

with the initial conditions

u(ζ, 0) = ζ 2, uη(ζ, 0) = −2ζ 2 (25)
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Equation (24) can be simply expressed as

∂2u

∂η2
=

(
∂u

∂ζ

)2

+ u

(
∂2u

∂ζ 2

)
(26)

Exact solution for this problem Eq. (24) is u(ζ, η) =
(

ζ

1+η

)2
, which can be verified

also.
For solving Eq. (24) using HAM, let the initial approximation be

u0(ζ, η) = ζ 2 (1 − 2 η) (27)

Here, nonlinear operator for Eq. (24) can be defined as

N [ψ(ζ, η; q)] = ∂2ψ(ζ, η; q)

∂η2
−

(
∂ψ(ζ, η; q)

∂ζ

)2

− ψ(ζ, η; q)

(
∂2ψ(ζ, η; q)

∂ζ 2

)

(28)
Now, we have to construct the 0th-order deformation equation as

(1 − q)L[ψ(ζ, η; q) − u0(ζ, η)] = hqN [ψ(ζ, η; q)]. (29)

where an auxiliary linear operator L is expressed as

L[ψ(ζ, η; q)] = ∂2ψ(ζ, η; q)

∂η2
(30)

Also, at q = 0 & 1, we have ψ(ζ, η; q) as

ψ(ζ, η; 0) = u0(ζ, 0), ψ(ζ, η; 1) = u(ζ, η). (31)

Here, ψ(ζ, η; q) varies from initial guess u0(ζ, η) = ζ 2 (1 − 2 η) to the solution
u(ζ, η), as q varies from 0 to 1.

Now, we will have the nth-order deformation equation as

(1 − q)L[un − χnun−1] = hRn(
−→u n−1), (32)

where

Rn(
−→u n−1) = ∂2un−1

∂η2
−

(
n−1∑

i=0

∂ui
∂ζ

∂un−1−i

∂ζ

)
−

(
n−1∑

i=0

ui
∂2un−1−i

∂ζ 2

)
(33)

Therefore,
un = χnun−1 + hL−1[Rn(

−→u n−1)], (34)
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where

L−1 =
∫ ∫

(·)dηdη (35)

So, Eq. (32) becomes

un = χnun−1 + h
∫ ∫

Rn(
−→u n−1)dηdη, (36)

The first few terms of the solution, with the help of u0(ζ, η) from Eq. (27) can be
expressed as follows :

u1 (ζ, η) = h
(
−2 η4ζ 2 + 4 η3ζ 2 − 3 η2ζ 2

)

u2 (ζ, η) = −2 η4ζ 2h + 4 η3ζ 2h − 3 η2ζ 2h − 4 η7h2ζ 3

21
− 8 η7h2ζ 2

7
+ 2

3
η6ζ 3h2

+ 4 η6ζ 2h2 − η5h2ζ 3 − 6 η5h2ζ 2 + 1/2 η4ζ 3h2 + η4ζ 2h2 + 4 η3ζ 2h2 − 3η2ζ 2h2

u3 (ζ, η) = 20 η9ζ 2h3

7
− 12 η5h2ζ 2 − 3 η2ζ 2h3 − 6 η2ζ 2h2 − 3 η2ζ 2h

+ 4 η4ζ 2h3 + 32 η7h3ζ 2

7
− η5h3ζ 3 − 2 η4ζ 2h + 80 η9ζ 3h3

189

+ 2 η4ζ 2h2 + 16 η7h3ζ 3

21
− 16 η10ζ 3h3

189
+ 1

3
η6ζ 3h3

+ 2

3
η6ζ 3h2 + 4 η3ζ 2h3 − 4/7 η10ζ 2h3 + 5 η6ζ 2h3 + 4 η3ζ 2h + 8 η3ζ 2h2

− 12 η5h3ζ 2 + 1

2
η4ζ 3h2 − 4 η7h2ζ 3

21
− 20 η8ζ 3h3

21

− 16 η7h2ζ 2

7
− 45 η8ζ 2h3

7
+ 1

2
η4ζ 3h3 + 8 η6ζ 2h2 − η5h2ζ 3

Thus, the approximated series solution

u(ζ, η) = u0(ζ, η) + u1(ζ, η) + u2(ζ, η) + u3(ζ, η) + ... (37)

From calculated ui (ζ, η)’s, i = 0, 1, ... the above series solution when h = −1
becomes

u(ζ, η) = −8 η7ζ 2 − 6 η5ζ 2 + 1/2 η4ζ 3 + 7 η6ζ 2 − 2 ζ 2η + ζ 2 − 8 η7ζ 3

7
+ η6ζ 3 − η5ζ 3

− 20 η9ζ 2

7
+ 20 η8ζ 3

21
+ 4/7 η10ζ 2 − 80 η9ζ 3

189
+ 45 η8ζ 2

7
+ 16 η10ζ 3

189
+ 5 η4ζ 2

− 4 η3ζ 2 + 3 η2ζ 2 + ...
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4 Results and Discussion

This section discusses the numerical values of the solution of some non-linear partial
differential equations that has been solved using HAM. Table1, shows the error of
solution obtained by HAM that is compared with the errors of ADM [24] and VIM
[24]. Table2 discusses the error of solution obtained by HAM and is compared with
the errors of ADM [25]. It is apparent from the tables that the error is lower with
Homotopy Analysis Method as compared to Adomian Decomposition Method and
Variational Iteration Method.

Table 1 Comparison of the error in Example 1 of the solutions by uADM [24], uV IM [24] and
uH AM (h = −0.77)

ζ η |uExact − uADM | |uExact − uV IM | |uExact − uH AM |
−1 0 0 0 0

−0.8 0.1 6 × 10−7 7.7 × 10−6 3.3 × 10−5

−0.6 0.2 1.8 × 10−5 1.2 × 10−4 6.5 × 10−5

−0.4 0.3 1.3 × 10−4 5.4 × 10−4 5.8 × 10−5

−0.2 0.4 5.3 × 10−4 1.6 × 10−4 2.9 × 10−5

0 0.5 1.6 × 10−3 3.6 × 10−3 5.2 × 10−6

0.2 0.6 3.7 × 10−3 7.1 × 10−3 1 × 10−10

0.4 0.7 7.8 × 10−3 1.2 × 10−2 1.1 × 10−5

0.6 0.8 1.5 × 10−2 2 × 10−2 1.0 × 10−4

0.8 0.9 2.5 × 10−2 2.9 × 10−2 4.4 × 10−6

1 1 4.2 × 10−2 4.2 × 10−2 1.2 × 10−3

Table 2 Comparison of the error in Example 2 of the solutions by uADM [25] and uH AM (h = −1)

ζ η |uExact − uADM | |uExact − uH AM |
0 0 0 0

0.1 0.1 5.4 × 10−7 4.0 × 10−8

0.2 0.2 6.2 × 10−5 4.1 × 10−6

0.3 0.3 9.7 × 10−4 5.1 × 10−5

0.4 0.4 6.7 × 10−3 2.5 × 10−4

0.5 0.5 3.0 × 10−2 5.8 × 10−4

0.6 0.6 9.8 × 10−2 1.6 × 10−4

0.7 0.7 2.7 × 10−1 4.3 × 10−3

0.8 0.8 6.5 × 10−1 2.0 × 10−2

0.9 0.9 1.4 × 10−0 5.9 × 10−2

1 1 2.8 × 10−0 1.3 × 10−1
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5 Conclusion

In this paper, two PDEs’ analytical and approximate solutions are obtained using
HAM. It is found that the obtained solutions using the HAM approach are very
close to exact solutions as compared to the solutions of other available methods, as
mentioned in the section. It can be seen from the comparison results that HAM is
efficient and robust in finding analytical solutions for a broader class of problems.
Furthermore, HAM gives us a free hand on adjusting and controlling the series solu-
tion’s convergence by taking appropriate values of homotopy & auxiliary parameters
accordingly. In conclusion, ourmethodHAMalso provides exact solutions accurately
for various problems.
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Nonlinear Modelling and Analysis
of Longitudinal Dynamics of Hybrid
Airship

Abhishek Kumar and Om Prakash

Abstract The objective of the paper is to develop a Nonlinear mathematical model
for analyzing the longitudinal dynamics of a hybrid small sized airship that includes
wings and elevators as a control surface. In this model will propose a single body
longitudinal dynamicsmodel for the hybrid airship and two body dynamicsmodel for
the hybrid airship with tethered suspended payload. Apparent mass matrix is taken
care in the modelling of hybrid airship. Analysis of the system is done on MATLAB
with simulated results.

Keywords Hybrid airship · Nonlinear longitudinal dynamics ·Multi body
dynamics

1 Introduction

This paper deals with the area of dynamics and modelling of lighter than air vehicles.
More specifically modelling of hybrid airship is dealt. Modelling is usually done
using some subset of the inputs and outputs, taken from flight data according to the
objective. Due to huge cost, these plants are rarely accessible to do experiment design
on it. Modelling work is carried out with the help of flight data, geometry data and
aerodynamic data by understanding the mathematics and physics of the proposed
model. Airships are being proposed for heavy freight aerial transport and also for
surveillance tasks. The Hybrid airship system consists of semi rigid airship hull mass
(including apparent mass and included air mass) and rigid wing attached below the
hull and a payload is attached through number of riser lines. The suspension lines
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Fig. 1 Body axes system of an aircraft with primary control surfaces

coming down from the hull are attached to the payload riser through a connection
point allowing independent rotational motion of hull and payload.

The idea of the hybrid airship model has been taken from [1, 2] and Autonomous
parafoil payload delivery systems. Here in Fig. 1. the positions of the three primary
control surfaces (i.e. aileron δa or ξ, elevator δe or η and rudder δr or τ) are shown
properly. Centre of gravity is shown as a yellow dot near the join position of two
wings and is also known as the origin of the body axes system. X-axis is in the
forward direction of the pilot also known as Roll axis, Y-axis is towards the direction
of right wing known as Pitch axis and Z-axis is in downward direction towards the
gravity known as Yaw axis. Angular velocities or applied moments about the x, y
and z body axes are described with the adjectives roll, pitch and yaw respectively.
These moments are positive if they follow the directions as shown in the Fig. 1. The
rigging angle is a critical design parameter as we have the provision to control the
roll moment and pitch moment with deflecting the control lines attached to airship as
shown in the Fig. 5. Improper choice of rigging angle can lead to adverse dynamics
during deployment. The type of uncertainty expected for the trajectory tracking is
primarily due to the inability to accurately predict the aerodynamics and control
coefficients for the hybrid airship.

However, controller designed for airship must guarantee stability for the system
and provide a satisfied control performance. The final control objective based on
obtained design parameter such as rigging angle for two body dynamics is the robust-
ness of stability and tracking performance to the presence of modelling uncertainty.
Moreover, a control strategy is desired for which stability and robustness to uncer-
tainty, collision avoidance and trajectory tracking can be guaranteed, and a solution
can be obtained in real time. The parafoil/payload system described in reference [3]
can be utilised for safe guided delivery of payload to a specific target region or to
numerous targets from a single launch. In reference [2–4], a full 9 DOF or 4 DOF
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two-body dynamic model for parafoil payload delivery system is used to capture
these distinct motions along with pendulum stability effect and the hybrid airship 4
DOF model has been proposed with this concept. Unlike an aeroplane, where the
wings are the most deformable, an airship’s hull is the most flexible component.
The hull shape of both semi-rigid and non-rigid airships is maintained by a pressure
level greater than the surrounding air pressure. apparent mass matrix is taken care in
modelling of hybrid airship. Mathematical modelling of hybrid airship with payload
is more complicated compared with either Aircraft or with Parafoil delivery system.

2 Aircraft Dynamics and Parameter Definition

Flight test data is required for aerodynamic parameter estimation of a postulated
mathematical model of an aircraft. The mathematical model consists of both the
aircraft equations of motion and the equations for aerodynamic forces and moments,
known as the aerodynamic model equations. State variables and control inputs of
an aircraft are defined as shown in Fig. 2. An inertial coordinate system is fixed by
earth’s surface. The origin of the body-fixed coordinate system coincides with the
centre of mass of the aircraft.

Here some description of the notations used in Fig. 2. and they are as follows:
u, v, w = body-axis components of aircraft velocity relative to Earth axes.
p, q, r = body-axis components of aircraft angular velocity.
Xb, Yb, Zb= body-axis components of aerodynamic force acting on the aircraft.
L, M, N= body-axis components of aerodynamic moment acting on the aircraft.

Fig. 2 Airplane notation and sign convention
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Fig. 3 Pictorial Idea for winged hybrid airship flight vehicle with suspended payload

3 Modelling of Hybrid Airship

As shown in Fig. 3, the proposed model named as “winged hybrid airship flight
vehicle with suspended payload”, located at 1st row 1st column, having devel-
oped with combining the modelling features of winged aircraft, airship with aircraft
feature known as ‘plimp’ and parafoil payload delivery flight system. The hybrid
airship geometric, apparent mass and Inertia, aerodynamics data and payload data
are taken from A.F.A. Gaffar [1] for dynamic simulation of Hybrid-Airship with
payload system. The Hybrid Airship is assumed to carry attached payload (Tables 1
and 2).

4 Mathematical Modelling of Hybrid Airship

4.1 Single Body Dynamics for Hybrid Airship

The complexity in mathematical derivation of hybrid airship is because of the centre
ofmass or centre of gravity and centre of volume is positioned at twodistinct locations
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Table 1 Hull geometry Hull Parameter Value

Hull mass mk 10 kg

Overall length,L 3.75 m

Maximum Diameter, D 1.6 m

Volume,V 5.6 m3

Hull Reference Area, Sk 3.16 m2

Hull Reference length, c 1.78 m

Ellipsoid semi-minor axis,b 0.8 m

Wing spanb 3.06 m

Wing area,St 1.72 m2

tail spanbt 3.06 m

tail area,St 0.916 m2

Rck 0.8 m

Table 2 Payload geometry Payload Parameter Value

mb 2 kg

Sb 0.1 × 0.2 m2

Rcb 0.25 m

C D
B 1.05

as shown in the Fig. 4. Moment equation and force equation is obtained easily on
centre of mass or centre of gravity. In Hybrid airship, the centre of volume is almost

Fig. 4 Coordinate location of CG and CV
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Fig. 5 4 DOF Longitudinal Two body dynamics for Hybrid Airship-payload system

located at the centre position of HULL that is filled with Helium or Hydrogen gas.
Centre of mass or centre of gravity in hybrid airship is located near gondola where
payload is attached, its mass is larger compared to HULL mass. Airship and hybrid
airship is lighter than air vehicle, so wemust take care of apparent mass of the system
in the mathematical derivation which is not required in the final equation of motion
of the aircraft as shown in Eq. (3).

For calculating the lift in airship design, Archimedes principle required volume
for hydrostatic lift

Lhst = vol
(
ρa − ρg

)
(1)

where ρaandρg are densities of air and lifting gas.

wnet = (mGTw × g − Lhst ) (2)

Net weight wnet is gross take-off weight minus the weight balanced by the
hydrostatic lift.

Hybrid airship 6 DOF Non-linear equation of motion:

(3)
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r XG =
⎡

⎣
0 −az ay
az 0 −ax
−ay ax 0

⎤

⎦ (4)

(
r XG

)T = −(
r XG

)
(5)

Aircraft 6 DOF Non-linear equation of motion:

[
mI3 0
0 I0

][
V̇0

ω̇0

]
+

[
m(ω0 × V0)

ω0 × (I0ω0)

]
=

[
F
ζ

]
(6)

Airship and hybrid airship is lighter than air vehicle, sowe have to take of apparent
mass of the system in the mathematical derivation which is not required in the final
equation of motion of the aircraft as shown in Eq. (3) and (6).

The simplified version of the equation for propulsion system of hybrid airship is
given in Eq. (7).

MP = MT = Tdz (7)

whereMT is themoment due to propulsion systemor thrust, T is total thrust generated
by the engine and dz is the distance of propulsion system from CV. For simplifying
the complexity in the 6DOF non-linear dynamic equations of motion for hybrid
airship (3), the dynamics can be analysed in two parts as longitudinal dynamics
consists of 3DOF equation of motion and lateral dynamics consists of another 3DOF
equation of motion. This can be done because, the shape of the hybrid airship is also
symmetrical along x-axis just as an aircraft. The longitudinal dynamics consists of
axial force equation (U̇ ), normal force equation (Ẇ ), pitching moment equation (q̇)

and kinematic equation (θ̇ ). All the 6 DOF non-linear equation of motion is given in
body axis frame of reference. The longitudinal 3 DOF non-linear equation of motion
for single body dynamics of hybrid airship by considering the associated terms used
for longitudinal dynamics and dropping out the remaining terms in the given 6 DOF
nonlinear equation of motion for airship is proposed here. The simulation is done in
wind axis coordinate system, so the terms used for simulation is V̇ (resultant of U
and W velocity in wind axis), γ̇ (gamma), q̇ and θ̇ for longitudinal dynamics of the
system.

v̇ = 1

mx
× (T × cos(α) + q × s × (−1) × Cd − (m × g − B) × sin(γ )) (8)

γ̇ = 1

(mz × v)
× (T × sin(α) + FAY − (m × g − B) × cos(γ )) (9)

q̇ =
((

(Mq − m × ax × v × cos(α) − m × az × v × sin(α)
) × q

) + Ma + Ms + MT )

IH
(10)
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θ̇ = q (11)

FAY = q × s × Cl + (−1) × 0.5× ρ × v

2
× S × MAC × clq × 0.5 (12)

Mq = ( ρX v) X S X MAC2X Cmq) (13)

4.2 Two Body Dynamics for Hybrid Airship with Suspended
Payload

Mathematical model of the hybrid airship for getting the desired objective is devel-
oped by applying physical laws which describes aerodynamics and non-linear
dynamics of the hybrid airship. In reference [3], The aerodynamic forces and
moments acting at parafoil canopymass center aremodelled in terms of aerodynamic
force and moment coefficients as:

CL = CL(αP , δs) + cLδaδa (14)

CP
D = CP

D(αP , δs) + CDδaδa + cLδeδe (15)

CY = CYβ + CYr rp
b

2VP
+ cYδa

δa (16)

In terms of hybrid airship-fixed axis coefficients:

CX = (−CP
Du p + CLwP

)
/VP (17)

CY = CY (18)

Cz =
(−CP

DwP − CLuP
)
/VP (19)

Cl = Clβ + Clp Pp
b

2VP
+ Clδaδa (20)

Cm = {
CmC/4(αP , δs) + xpaCz

} + Cmqqp
c

2V p
+ Cmδa

δa + cLδeδe (21)
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Cn = Cnββ + CnP PP
b

2VP
+ Cnδaδa (22)

Ms = −(mgaz + Bbz) sin θ − (mgax + Bbx ) cosφ cos θ (23)

where symmetric brake deflection δs corresponds both right and left brakes equally
down, while asymmetric brake deflection δa is defined as δa = l/c, where l is length
of control lines pulled down. Positive δa represents right brake down and negative
δa represents left brake down. Positive δe is considered in downward deflection.
As shown in Fig. 5, the rigging angle μ is the angle between the line joining mid-
baseline point of the hull to joint C and the line parallel to Zh axis passing through
the mid-baseline point. Therefore,

zCP = Rch cosμ (24)

xcp = Rch sinμ (25)

ycp = 0 (26)

The 4DOF model of hybrid airship with suspended payload has been proposed as
shown in Fig. 5 by combing the 3DOF longitudinal dynamics of hybrid airship with
wing and the 3DOF equation of motions of suspended payload. The idea to develop
the 4 DOF model of hybrid airship come from 9 DOF model of hybrid airship [2],
the 9DOF and 4DOF model of parafoil payload system [4, 5]. 4-DOF model of
winged hybrid airship flight vehicle -payload system is formed with B vector in
Eq. (27a to f) and A systemmatrix in Eq. (28) and by deriving dynamic equations for
winged hybrid airship flight vehicle. The 4DOF model of hybrid airship will consist
of a Submodel of winged hybrid airship flight vehicle canopy, airship wing link and
joint C and payload submodel consisting of payload, payload link and joint C, by
separating the winged hybrid airship flight vehicle -payload system at the link joint C
and considering components of internal joint forces Fx, Fz, and their moment about
airship CG and payload CG respectively. It is expected that the outcome of hybrid
airship with wing and suspended payload is a combined effect of the dynamics of
parafoil payload delivery system and dynamics of aircraft. For Level Flight Thrust is
equal to drag force for airship dynamic model with velocity assumed to be constant
at 20 m/s. In the moment equation the effect of elevator at wing and moment at fin
is also considered. Apparent mass is also taken care in the modelling.

b1 = −mbg sin θb −QbSbCDb cosαb (27a)

b2 = mbg cos θb − QbSbCDb sin αb + mbRbq
2
b (27b)
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b3 = 0 (27c)

b4 = −mpg sin θp +QpSpCx +mpcRp sinμq2p − (C− A)
(
uC sin θP + wC cos θp

)
qp (27d)

b5 = mPg cos θp + QpSρCz + mpARp cos
μ q2P − (C − A)

(
UC cos θP − wC sin θp

)
qp (27e)

b6 = −xpaQ pSpCz + QpSPCCM (27f)

The two body dynamic model as 4DOF is developed for Parafoil payload delivery
system and wing payload delivery system. For hybrid airship with payload delivery
system, the two body dynamic 4DOF model has been proposed here and simulated
on MATLAB and verified the result with single body 3DOF result and the result of
Ghaffar [1].

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎣

mbcosθb
mbsinθb

0
mpAcosθp
mPC sinθP

0

−mbsinθb
mbcosθb

0
−mpAsinθp
mPC cosθP

0

mbRb
0
Ib
0
0
0

0
0
0

mPARpcosμ
−mpcRP sinμ

IPF

cosθb
sinθb

−Rbcosθb
−cosθp
−sinθp
zcp

−sinθb
cosθb
Rbsinθb
sinθp
−cosθp
−xCp

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎣

u̇c
ẇC

q̇b
q̇p
Fx
Fz

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎦

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b1
b2
b3
b4
b5
b6

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(28)

5 Simulation Result

As in Fig. 6, By changing the rigging angle μ, the payload attached with airship
moves backward and forward. If the payload movement is in backward side, then
the airship noses up and vice-versa. So from changing the rigging angle also we

Fig. 6 Simulation result of 4DOF longitudinal dynamics of hybrid airship with suspended payload
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Fig. 7 Simulation result of 3DOF longitudinal dynamics of hybrid airship at delfin 0 degree
deflection

can control the pitching moment of the airship. In Fig. 7, the values of alpha, q,
theta and gamma trim at almost 0 degree which match with trim values of A.F.A.
Gaffar [1]. The velocity trims at 18.5 m/s with initial value provided with 16.8 m/s.
All the output settles the trim condition within 20 s. For q, time period is 4.1 s
and oscillation frequency as 1.5 rad/sec. Time period of theta is 3.9 s with angular
frequency as 1.6 rad/sec. The system is stable as it settles within 20 s. By deflecting
the delfin also the trim value of the longitudinal dynamics of hybrid airship is noted
down and it also settles down within 20 s. The trajectory variation is observed in
longitudinal dynamics by looking the trajectory of flight path angle and theta angle,
when a deflection happens in delfin control surface as shown in Fig. 8.

Fig. 8 Flight path trajectory with delfin deflection
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6 Conclusion

The 3DOF nonlinear longitudinal dynamic model for hybrid airship is developed
and the simulation result is verified with trim values of A.F.A. Gaffar [1] obtained
for linearized longitudinal model for the same. The 4 DOF nonlinear longitudinal
dynamic model for hybrid airship with suspended payload has been developed and
the simulated result is almost behaving like the result obtained from single body 3
DOF longitudinal model. The new thing in the 3 DOF hybrid model is included and
that is fin deflection control maneuvers and in 4DOF, the new finding is by changing
the rigging angle also pitch control of airship can be done. More accurate result will
come if wind tunnel data for the system is available.
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A New Two-Parameter Odds Generalized
Lindley-Exponential Model

Sukanta Pramanik

Abstract A new two-parameter lifetime model, called Odds Generalized Lindley-
Exponential distribution (OGLED), is proposed for modelling life time data. A
detailed structural and reliability properties of the new distribution is derived. The
mle method has been derived for estimating the model parameters. A real life time
data set has been analysed to illustrates as application.

Keywords T-X family of distributions · Exponential distribution · Lindley
distribution

1 Introduction

Fitting real-life dataset with a new probability distribution and synthesising infor-
mation becomes a more challenging work for researchers. Classical probability dis-
tributions e.g. binomial, gamma, exponential, hypergeometric, Poisson, normal are
insufficient to get information properly from the dataset. In nature now a day it is
very complex to generate data from the day-to-day work environment. Statistical
distributions are very important for parametric inferences and the applications to
fit real-world phenomena. Various methods have been developed to generate statis-
tical distributions in the literature to fit and analyse complex data. Some methods
were developed prior to 1980s s like the Pearsonian system by Pearson [11], John-
son [6], and Tukey [14]. Azzalini [3],McDonald [10],Marshall andOlkin [9] are also
developed since 1980s. In this current century, Eugene et al. [5] developed the beta
generated family of distributions, Jones [7] and Cordeiro and de Castro [4] developed
the beta generated family of distributions by using Kumaraswamy distribution in the
place of beta distribution.
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Alzaatreh et al. [2] has proposed a new generalized T-X (Transformed-
Transformer) family of distributions. Using the T-X family of distributions, I have
defined positive support of a generalized class of any distribution. Taking, the odds
function W (Fθ (x)) = Fθ (x)

1−Fθ (x)
, the cdf of my proposed distribution is given by

F(x; λ, θ) =
∫ Fθ (x)

1−Fθ (x)

0
fλ(t)dt. (1)

Here, Fθ (x)
1−Fθ (x)

= Fθ (x)
F̄θ (x)

= ∞ as x → ∞ (assuming 1
0 = ∞). The resulting distribution

is not only generalized but also addedwith someparameter(s) to this base distribution.
I called this kind of class of distributions as Odds Generalized family of distributions
(OGFD).

In this present article, I choose the Lindley distribution as base distribution with
pdf fλ(x) = λ2(1+x)

1+λ
e−λx and the transformer distribution is exponential distribution

in (1) i.e. Fθ (x) = 1 − e−θx . So, I call this distribution as a new two-parameter odds
generalized Lindley-exponential distribution (OGLED).

In this article in Sect. 2, I developed the new modelling of the distribution. The
mathematical, structural and reliability properties of the new model is derived in
Sect. 3. In Sect. 4, I estimate the parameters. In Sect. 5, the applicability i.e. the
application of the distribution is provided. At last in Sect. 6 conclusions.

2 The Pdf and Cdf of the OGLED

The c.d.f of the OGLED is given by

F(x; λ, θ) =
∫ F(x)

1−F(x)

0
fλ(x)dx = 1 − 1 + λeθx

1 + λ
e−λ(eθx−1) (2)

Also the p.d.f of the OGLED is given by

f (x; λ, θ) = λ2θe2θx

(1 + λ)
e−λ(eθx−1) (3)

with range(0,∞). Figure1 is the pdf plot for λ =2 and 3 with different values
of θ . Figure2 is the pdf plot for fixed θ with different values of λ.
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Fig. 1 The pdf of the OGLED

Fig. 2 The pdf of the OGLED

3 Properties of the Distribution

3.1 The Limits of the Distribution

Since the cdf of this distribution is F(x; λ, θ) = 1 − 1+λeθx

1+λ
e−λ(eθx−1)

so, limx→0 F(x; λ, θ) = limx→0(1 − 1+λeθx

1+λ
e−λ(eθx−1)) = 0

i.e. F(0) = 0
Now limx→∞ F(x; λ, θ) = limx→∞(1 − 1+λeθx

1+λ
e−λ(eθx−1)) = 1 i.e. F(∞) = 1.

Figure3 is the plot of the cdf for different values of λ and θ .
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Fig. 3 The cdf of the OGLED

3.2 Structural Properties of the OGLED

The mean value of this OGLED is:

μ
′
1 = eλ

(1 + λ)θ

[
�(1)(2, λ) − ln λ.�(2, λ)

]

Themedian value of our distribution is solving the following equation using numer-
ical method

1 − 1 + λeθM

1 + λ
e−λ(eθM−1) = 1

2

The mode value of our distribution: mode= arg max(f(x))
So that log fl.e(x) = 2 log λ + log θ + 2θx − log(1 + λ) − λ(eθx − 1)
Now d

dx log fl.e(x) = 2θ − λθeθx = 0, i.e. x = 1
θ
log

(
2
λ

)
,

Thus the mode is 1
θ
log

(
2
λ

)
.

The rth raw moment of the OGLED is as follows:

E(Xr ) = eλ

(1 + λ)θ r

r∑
j=0

(−1)(r− j)

(
r

j

)
(ln λ)−( j−r) �( j)(2, λ) (4)

Now putting suitable values of r in the above equation, I can have the Variance (μ2),
Skewness (γ1), and Kurtosis (γ2) of the OGLED.

Moment Generating Function(MGF):

MX (t) =
∞∑
r=0

r∑
j=0

tr

r !
eλ

(1 + λ)θ r
(−1)−( j−r)

(
r

j

)
(ln λ)−( j−r) �( j)(2, λ) (5)
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Characteristic Function(CF):

�X (t) =
∞∑
r=0

(i t)r

r !
eλ

(1 + λ)θ r

r∑
j=0

(−1)−( j−r)

(
r

j

)
(ln λ)−( j−r) �( j)(2, λ) (6)

Cumulant Generating Function(CGF):

KX (t) = lne

⎡
⎣ ∞∑

r=0

tr

r !
eλ

(1 + λ)θ r

r∑
j=0

(−1)−( j−r)

(
r

j

)
(ln λ)−( j−r) �( j)(2, λ)

⎤
⎦ (7)

Mean Deviation:
The mean deviation about the mean is

MDμ = 2eλ

(1 + λ)

[
1

θ

{
�(1)(2, λeθμ) − ln λ.�(2, λeθμ)

} − μ(1 + λeθμ)e−λeθμ

]

(8)
also mean deviation about the median is

MDM = −μ + 2eλ

(1 + λ)θ

[
�(1)(2, λeθM) − ln λ.�(2, λeθM)

]
(9)

respectively, where μ = E(X) and M = Median(X).

Conditional Moments: The rth raw moment of the residual life is

mr (t) =
∑r

j=0

∑ j
k=0

(−1) j

θ j

(r
j

)
tr− j (−1)( j−k)

( j
k

)
(ln λ)( j−k) �(k)(2, λeθ t )

(1 + λeθ t )e−λeθ t

The rth raw moment of the reversed residual life is

m̄r (t) = eλ
∑r

j=0

∑ j
k=0

(−1) j

θ j

(r
j

)
t (r− j)

( j
k

)
(− ln λ) j−k

[
γ (k)(2, λeθ t ) − γ (k)(2, λ)

]
{
1 + λ − (1 + λeθx )e−λ(eθx−1)

}

Quantile function(Q(p)): Let X denote a r.v. with the pdf in (3).

1 − 1 + λeθ(Q(p))

1 + λ
e−λ[eθ(Q(p))−1] = p, (10)

where, F(Q(p)) = p
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3.3 Incomplete Moment, Bonferroni and Lorenz Curves

The rth order incomplete moment of the OGLED is

mI
r (t) = eλλ2

θ r (1 + λ)

[
�(r)(2, λ) − �(2)(2, λeθ t )

]
(11)

The Bonferroni and Lorenz curves are defined by

B(p) = mI
1(xp)

pμ
(12)

and

L(p) = mI
1(xp)

μ
(13)

respectively, where, μ = E(X) and xp = F−1(p) which is to be calculated numeri-
cally using (10) for given p.

3.4 Entropies

The Rényi entropy for a new two-parameter model is

HR(β) = − log θ + λβ

1 − β
− β

1 − β
log(1 + λ) − 2β

1 − β
logβ + log� (2β, λβ)

1 − β

Shannon measure of entropy for a new two parameter model is

H( f ) = E[− log f (X)] = −2 log λ − log θ − λ + log(1 + λ) + eλ

1 + λ
� (3, λ)

− 2eλ

(1 + λ)

[
�(1)(2, λ) − log λ.�(2, λ)

]

3.5 Reliability Properties

The survival or reliability function is given by

R(x) = 1 + λeθx

1 + λ
e−λ(eθx−1) (14)
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Fig. 4 Hazard rate and Reversed Hazard Rate of the OGLED

also the hazard rate function is given by

r(t) = λ2θe2θ t

1 + λeθ t
(15)

Now, log f (x) = 2 log λ + log θ + λ − log(1 + λ) + 2θx − λeθx

So, d
dx log f (x) = 2θ − λθeθx and d2

dx2 log f (x) = −λθ2eθx

Since λ > 0, θ > 0 and x > 0, d2

dx2 log f (x) < 0. Thus, the it is log-concave distri-
bution. So, the distribution possesses an Increasing failure rate (IFR) and Decreasing
Mean Residual Life (DMRL) property. Figure4 is the Hazard rate and Reversed
Hazard Rate of the OGLED plot for λ = 1.1 and 2.1 with different values of θ .

The expression of mean residual life (MRL) function is

m1(t) = eλeθ t

1 + λeθ t

[
1

θ
�(1)(2, λeθ t ) −

(
t + ln λ

θ

)
�(2, λeθ t )

]
. (16)

Reversed Hazard rate:

μ(x) = f (x)

F(x)
=

λ2θe2θx

(1+λ)
e−λ(eθx−1)

1 − 1+λeθx

1+λ
e−λ(eθx−1)

(17)

The expression of mean reversed residual life (MRRL) function is

m̄1(t) = eλ
[(
t + ln λ

θ

) {γ (2, λ) − γ (3, λeθ t )} − 1
θ
{γ (2)(2, λ) − γ (2)(3, λeθ t )}]

1 − (1 + λeθ t )e−λ(eθ t−1) + λ

Figure5 is the MRL and MRRL of the OGLED plot.
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Fig. 5 Plots of the MRL and MRRL of the OGLED

3.6 Stress-Strength Reliability

The Stress-Strength reliability model describes the probability of surviving the life
of a component with a random strength(X) subjected to a random stress(Y). Let
X ∼ OGLED(λ1, θ1) and Y ∼ OGLED(λ2, θ2) be iid’s. Thus,

R = P(X > Y ) = 1 − eλ1+λ2λ1
2θ1

(1 + λ1)(1 + λ2)

∫ ∞

0
[1 + λ2e

θ2x ]e2θ1xe−λ1eθ1x−λ2eθ2x dx

When both θ1 and θ2 are equal to θ , then

R = 1 − λ1
2

(1 + λ1)(1 + λ2)

[
(1 + λ2)

(λ1 + λ2)
+ (1 + 2λ2)

(λ1 + λ2)2
+ 2λ2

(λ1 + λ2)3

]

4 Estimation of the Parameters

Here, I estimate the parameters of the OGLED by using the method of Maximum
Likelihood Estimation (MLE).

The MLEs of λ and θ are the roots of

∂ ln L(x; λ, θ)

∂λ
= 0 and

∂ ln L(x; λ, θ)

∂θ
= 0

Here using numerical methods, the two parameters λ and θ are to be estimated.
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Table 1 Summarized table for fitting the data set

Distributions Estimate of the parameter AIC

Gamma-Half Normal θ̂ = 0.3934, α̂ = 2.8794, β̂ = 3.1725 105.3572

OGLED λ̂ = 0.2202, θ̂ = 1.3773 102.3232

Fig. 6 Plot of the OGLED model(pdf and cdf) for the above data set

5 Application

Here, I fit the new two-parameterOGLEDmodel to a real data set whichwas obtained
fromRaqab et al. [12] in this section and the data set is the tensile strength, measured
in GPa for single carbon fibers which were tested at 20mm. Gamma-Half Normal
distribution has been fitted byAlzaatreh andKnight [1]. λ̂ = 0.2202 and θ̂ = 1.3773
are the estimated parameter values of the of OGLED and AIC = 102.3232. In the
OGLED fitting, only two parameters are estimated to minimize estimation error
(Table1 and Fig. 6).

6 Conclusion

The above article, studied a new two-parameter Odds generalized Lindley-
exponential distribution. The distribution is a particular form of the Transformed-
Transformer (or T-X) family of distributions. The different properties like structural
and reliability properties have been studied. The parameters are estimated by the
maximum likelihood method of estimation. The appropriateness of fitting the new
two-parameter Odds generalized Lindley-exponential model has been established by
fitting a real-life data set.

Acknowledgements The author thank the anonymous referee for constructive suggestions, which
immensely helped to improve the paper.
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Stability Switching in a Cooperative
Prey-Predator Model with Transcritical
and Hopf-bifurcations

Sajan , Ankit Kumar , and Balram Dubey

Abstract In nature organisms attempt to adopt new techniques to diminish the
possibilities of being falling prey. Interspecies cooperation is one of these approaches
which two different types of prey can use against a common predator. Inspired by this,
we purpose a prey-predator model having two prey who cooperate with each other
while interacting with a predator. For making the model more general and realistic,
the interactions between prey and predator are handled through general Holling type-
IV and Crowley-Martin functional responses. For well-posedness of the proposed
model, firstly, its boundedness is investigated which is followed by the vigorous
proofs for the existence of equilibrium points, their stability analysis, evaluation
of conditions for occurrence of transcritical and Hopf-bifurcations. Numerically,
we observe that as the inverse measure of predator’s immunity from first prey and
coefficient of cooperation from first prey to second prey crosses some respective
critical values, there is occurrence of Hopf-bifurcation.Transcritical bifurcation is
also depicted numerically for the intrinsic growth rate of first prey and the death
rate of predator species. Several phase portraits, bifurcation diagrams are drawn to
support our analytical findings.We also endorse the attribute of bistability, and basins
of attraction for both stable equilibrium points are also drawn.

Keywords Prey-predator · Cooperation · Bifurcation · Bistability
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1 Introduction

The study of prey-predator interrelationships is the foundation for research in the
field of ecology. Exploring this relationship helps us to disclose various phenomena
happening in ecology. Prey can use various techniques to reduce their predation like;
camouflage, imitation of some dangerous breed, escape instead of direct encounter,
use of harmful chemicals in the form of chemical defence, changing body color,
formation of a team, etc. [1] There can be a reasonable possibility of cooperation
among two types of prey to fight against a predator in an ecological sector. A nice
introduction about teaming technique can be seen in [2]. Tripathi et al. [3] examined
a three-dimensional model with two prey who help each other against a predator,
although these two prey are competing internally. They discussed the persistence,
permanence, and global stability of the model about an interior stationary point.
Mishra and Raw [4] studied a prey-predator system having two prey and a predator
involving teaming of prey. They used modified Holling type-IV and Holling type-II
functional response to study the interaction against the predator.

Recently, Mondal and Samanta [5] worked on a three species population model
having two prey and a predator. They assumed that prey help each other by forming
team against the predator, and neglected the inter-species competition between these
two types of prey. They used functional response of Holling type II, I and a single
discrete delay in the model. Alsakaji et al. [6] extended the cooperation model by
Tripathi et al. [3], by replacing the linear functional responses by Monod-Haldane
functional responses with inclusion of two gestation delays in each response. They
evaluated the critical values of delays for occurrence of Hopf-bifurcation. Ferrara et
al. [7] extended the work of Mishra and Raw [4] with incorporation of two discrete
delays. They did the Hopf-bifurcation and local stability analysis of the proposed
model.

To the best knowledge of authors, a tri-trophic model with two prey and one
predator model with cooperation between prey, where first prey is consumed by
general Holling type-IV response while the interaction of predator with second one
is dealt by Crowley-Martin functional response has not been studied yet.

2 Construction of Mathematical Model

Tripathi et al. [8] again investigated a two-prey one predator competitive systemwith
help. But this time, they assumed that the predator consumes both the prey species
via Beddington-DeAngelis response (model (1)). In this, the terms a4xyz and b4xyz
correspond to the help provided by both prey species x and y to each other against
the predator z, whereas the terms a3xy and b3xy signify the interspecies competition
among both the prey species. The rest of the parameters in model (1) have their
conventional meanings.
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dx

dt
= a1x

(
1 − x

k1

)
− a2xz

m + m1x + m2z
− a3xy + a4xyz,

dy

dt
= b1y

(
1 − y

k1

)
− b2yz

n + n1y + n2z
− b3xy + b4xyz,

dz

dt
= −c1z − c2z

2 + c3xz

m + m1x + m2z
+ c4xz

n + n1x + n2z
.

(1)

Inspired from studies [3, 4, 8], we aim to study a 3-dimensional autonomous system
of ordinary differential equations reflecting an interaction between a predator and a
team of two prey species, in which these two prey species help each other against
the predator to save themselves. A realistic example for this can be seen in forest
when Antelope and Zebras cooperate in fighting against the predator like cheetah,
lion, etc. Let x1(t) and x2(t) are the densities of two prey species where y(t) is
the density of predator population. The purposed model can be written in the form
of a system of three non-linear differential equations and which is based upon the
following assumptions:

1. Both the prey, x1 and x2 grows logistically in the absence of predator y, which

is reflected by the terms r1x1

(
1 − x1

K1

)
and r2x2

(
1 − x2

K2

)
, respectively. Here,

ri is the intrinsic growth rate and Ki is the carrying capacity of habitat, for prey
xi , i = 1, 2.

2. Prey x1 is assumed to show the characteristic of group defence, hence the inter-
action between x1 and y is addressed by generalised Holling type-IV functional
response. This is given by the function f (x1) = x1

ax12+bx1+c , where a is the inverse
measure of predator’s immunity from prey, b is the handling time for each prey
and c is the half saturation constant.

3. Prey x2 is assumed to be consumed by Crowley-Martin response, given by func-
tion, g(x2, y) = x2

(1+αx2)(1+βy) . In this, α is the handling time for each prey and β

is coefficient of interference among predator species for this prey population.
4. The terms σ1x1x2y and σ2x1x2y represent cooperation among both the prey

species against the predator y. Here, σi is the coefficient of cooperation when
x j helps xi , i �= j = 1, 2.

5. Predator y is assumed to be a specific predator that is dependent only upon x1
and x2. Hence, in the absence of these prey species it dies, which is shown by the
term δ0y and the intraspecific competition among predator species is indicated
by the term δ1y2. The remaining parameters have their standard meanings.
With all above assumptions, the purposed model is:
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dx1
dt

= r1x1

(
1 − x1

K1

)
− m1x1y

ax12 + bx1 + c
+ σ1x1x2y = F1(x1, x2, y),

dx2
dt

= r2x2

(
1 − x2

K2

)
− m2x2y

(1 + αx2)(1 + βy)
+ σ2x1x2y = F2(x1, x2, y),

dy

dt
= c1m1x1y

ax12 + bx1 + c
+ c2m2x2y

(1 + αx2)(1 + βy)
− δ0y − δ1y

2 = F3(x1, x2, y),

(2)

where ri , Ki , mi , a, b, c, α, β, σi , ci , δ0, δ1 ∈ (0,∞) for i = 1, 2. The relevant
biological initial condition for model (2) are x1(0) ≥ 0, x2(0) ≥ 0, y(0) ≥ 0.

3 Kinetics of the Model

In this section, firstly we show that the solution of our system is bounded, which
restricts the population explosion in finite time. Then we find all the possible equi-
librium points and check their local and global behavior.

3.1 Boundedness

Theorem 1 The set � =
{
(x1, x2, y) : 0 ≤ x1 ≤ K1, 0 ≤ x2 ≤ K2, 0 ≤ c1x1 +

c2x2 + y ≤ K
δ∗

}
, is a positive invariant set for all the solutions starting inside

of the positive octant, where K = 2c1r1K1 + 2c2r2K2 + c21σ
2
1 K

2
1 K

2
2

2δ1
+ c22σ

2
2 K

2
1 K

2
2

2δ1
and

δ∗ = min{r1, r2, δ0}.
Proof From the first and second equation of model (2), it is easy to get

lim sup
t→∞

x1(t) ≤ K1 and lim sup
t→∞

x2(t) ≤ K2.

Now, let M = c1x1 + c2x2 + y, which implies dM
dt = c1

dx1
dt + c2

dx2
dt + dy

dt , as men-
tioned in [3, 8], to avoid population explosion in upcoming time, we also assume that
the cooperation terms in model (2) are dominated by the prey-predator interaction
terms, thus using this fact we get

dM
dt ≤ c1r1

(
1 − x1

K1

)
+ c1σ1x1x2y + c2r2

(
1 − x2

K2

)
+ c2σ2x1x2y − δ0y − δ1y2

≤ 2c1r1K1 + 2c2r2K2 − δ1
2

(
y − c1σ1K2x1

δ1

)2 + c21σ
2
1 K

2
2 x

2
1

2δ1
− δ1

2

(
y − c2σ2K1x2

δ1

)2 +
c22σ

2
2 K

2
1 x

2
2

2δ1
− c1r1x1 − c2r2x2 − δ0y
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≤ 2c1r1K1 + 2c2r2K2 + c21σ
2
1 K

2
2 x

2
1

2δ1
+ c22σ

2
2 K

2
1 x

2
2

2δ1
− c1r1x1 − c2r2x2 − δ0y.

So, dM
dt = K − δ∗(c1x1 + c2x2 + y).

Thus lim sup
t→∞

M(t) ≤ K
δ∗ , where K = 2c1r1K1 + 2c2r2K2 + c21σ

2
1 K

2
1 K

2
2

2δ1
+ c22σ

2
2 K

2
1 K

2
2

2δ1

and δ∗ = min{r1, r2, δ0}.

Thereby, the solutions of the purposed model are bounded.

3.2 Existence of Biomass Stationary Points

Model (2) has seven equilibrium points, namely, E0(0, 0, 0), E1(K1, 0, 0),
E2(0, K2, 0), E3(K1, K2, 0), E4(0, x̄2, ȳ), E5(x̃1, 0, ỹ) and E∗(x∗

1 , x
∗
2 , y

∗). The
equilibrium points E0(0, 0, 0), E1(K1, 0, 0), E2(0, K2, 0) and E3(K1, K2, 0) exist
trivially. Now we drive the conditions under which remaining equilibrium points
exist.

– Existence of E4(0, x̄2, ȳ) : x2 = x̄2, y = ȳ are the positive solutions of a system
of equations given as

r2
(
1 − x̄2

K2

)
= m2 ȳ

(1 + α x̄2)(1 + β ȳ)
= 0,

c2m2 x̄2
(1 + α x̄2)(1 + β ȳ)

− δ0 − δ1 ȳ = 0.

(3)
Solving above both the equations, we obtain a 5-degree algebraic polynomial in
terms of x̄2, given as:

A5 x̄
5
2 + A4 x̄

4
2 + A3 x̄

3
2 + A2 x̄

2
2 + A1 x̄2 + A0 = 0, (4)

where, A5 =
(

c2r23β2α2

K2
2

)
, A4 =

(
− 2c2r22β2α2

K2
+ 2c2r22β2α

K2
2

)
, A3=

(
− 4c2r22β2α

K2
+

c2r22β2α2 + c2r22β2

K2
2 + 2c2m2r2βα

K2
− δ0r2βα2

K2
+ δ1r2α2

K2

)
, A2 =

(
2c2r22β2α − 2c2r22β2

K2

− 2c2m2r2βα + 2c2m2r2β
K2

+ δ0α
2r2β− 2δ0r2βα

K2
− δ1r2α2 + 2δ1r2α

K2

)
, A1=

(
c2r22β2

− 2c2m2βr2 + δ0r2β
(
2α − 1

K2

) − δ1r2
(
2α − 1

K2

) + c2m2
2 − δ0m2α

)
, A0 =

−δ0(m2 − r2β) − δ1r2.
By using Descarte’s rule of sign, (4) has at least one positive x̄2 if

m2 > r2β.
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Using this x̄2 in first equation of (3), we get y =
r2(1+α x̄2)

(
1− x̄2

K2

)

m2−r2β(1+α x̄2)

(
1− x̄2

K2

) ,which is pos-

itive under the condition m2 > r2β(1 + α x̄2)
(
1 − x̄2

K2

)
. Therefore, E4(0, x̄2, ȳ)

exists if

m2 > max
{
1, (1 + α x̄2)

(
1 − x̄2

K2

)}
.

– Existence of E5(x̃1, 0, ỹ) : x1 = x̃1, y = ỹ are the positive solutions of a system
of equations given by

r1

(
1 − x̃1

K1

)
= m1 ỹ

ax̃21 + bx̃1 + c
,

c1m1 x̃1
ax̃21 + bx̃1 + c

− δ0 − δ1 ỹ = 0. (5)

By solving above both equations, again we get a 5-degree polynomial as in the
previous one, and it is in terms of x̃1, given as

B5 x̄
5
1 + B4 x̄

4
1 + B3 x̄

3
1 + B2 x̄

2
1 + B1 x̄1 + B0 = 0, (6)

where, B5 =
(

a2δ1r1
m1K1

)
, B4 =

(
− δ1r1a2

m1
+ 2abδ1r1

m1K1

)
, B3 =

(
− 2abδ1r1

m1
+ 2acδ1r1

m1K1
+

δ1r1b2

m1K1

)
, B2 =

(
− δ1r1b2

m1
− 2acδ1r1

m1
+ 2bcδ1r1

K1m1
− δ0a

)
, B1 =

(
− 2δ1r1bc

m1
+ c2δ1r1

m1K1
−

δ0b + c1m1

)
, B0 = − δ1r1c2

m1
− δ0c. Again from Descarte’s rule of sign, (6) has at

least one positive root x̃1 and using this in first equation of (5) we get

ỹ = r1
m1

(
1 − x̃1

K1

)
(ax̃21 + bx̃1 + c),

and hence we obtain E5(x̃1, 0, ỹ).
– Existence of E∗(x∗

1 , x
∗
2 , y

∗):
Interior equilibrium E∗ is the positive solution of the system of equations given
as:

r1

(
1 − x∗

1

K1

)
− m1y∗

ax∗
1
2 + bx∗

1 + c
+ σ1x

∗
2 y

∗ = 0, (7)

r2

(
1 − x∗

2

K2

)
− m2y∗

(1 + αx∗
2 )(1 + βy∗)

+ σ2x
∗
1 y

∗ = 0, (8)

c1m1x∗
1

ax∗
1 + bx∗

1 + c
+ c2m2x∗

2

(1 + αx∗
2 )(1 + βy∗)

− δ0 − δ1y
∗ = 0. (9)
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Since Eqs. (7–9) are complex, and hence it is not easy to prove the existence of
interior equilibrium analytically. Thus we will show its existence numerically.

3.3 Stability Analysis

For local stability analysis of model (2), we have following findings:

– It is easy to see that the equilibrium point E0(0, 0, 0) is a saddle point with unstable
manifold along the x1x2 plane and stable manifold along the y-axis.

– E1(K1, 0, 0) is a saddle pointwith onedimensional stablemanifold and twodimen-
sional unstable manifold if c1m1K1

aK1
2+bK1+c

> δ0 or with two dimensional stable man-

ifold and one dimensional unstable manifold if c1m1K1

aK1
2+bK1+c

< δ0.
– E2(0, K2, 0) is a saddle point with similar interpretation as of E1.
– E3(K1, K2, 0) is locally asymptotically stable point, provided c1m1K1

aK1
2+bK1+c

+
c2m2K2
(1+αK2)

< δ0, otherwise a saddle point.

– One of the eigenvalue of variational matrix for E4(0, x̄2, ȳ) is r1 − m1 ȳ
c + σ1 x̄2 ȳ

and rest two of eigenvalues are given by the roots of equation given below.

ξ 2 + C1ξ + C2 = 0, (10)

where, C1 = ( r2 x̄2
K2

− m2αx̄2 ȳ
(1+αx̄2)2(1+β ȳ) + c2m2β x̄2 ȳ

(1+αx̄2)(1+β ȳ)2 + δ1 ȳ
)

and C2 = ( r2 x̄2
K2

−
m2αx̄2 ȳ

(1+αx̄2)2(1+β ȳ)

) ( c2m2β x̄2 ȳ
(1+αx̄2)(1+β ȳ)2 + δ1 ȳ

) + ( m2 x̄2
(1+αx̄2)(1+β ȳ)2

)( c2m2 ȳ
(1+α x̄2)2(1+β ȳ)

)
. From

Routh–Hurwitz criteria the real part of all roots of (10) are negative iffC1 > 0 and
C2 > 0. Thus we can state the following theorem

Theorem 2 Model (2) is asymptotically stable in neighbourhood of stationary
point E4 with three dimensional stable manifold, if r1 <

m1 ȳ
c − σ1 x̄2 ȳ and r2 >

m2K2α ȳ
(1+αx̄2)2(1+β ȳ) .

– Similarly one of the eigenvalue of Jacobian matrix corresponding to E5(x̃1, 0, ỹ)
is r2 − m2 ỹ

1+β ỹ + σ2 x̃1 ỹ and rest of two eigenvalues are the roots of equation given
by

�2 + D1� + D2 = 0, (11)

where, D1 = ( r1 x̃1K1
− m1 ỹ(2ax̃21+bx̃1)

(ax̃21+bx̃1+c)2
+ δ ỹ) and D2 = ( r1 x̃1

K1
− m1 ỹ(2ax̃21+bx̃1)

(ax̃21+bx̃1+c)2

)
δ ỹ +( m1 x̃1

ax̃21+bx̃1+c

)( c1m1 ỹ(−ax̃21+c)
(ax̃21+bx̃1+c)2

)
. Again from Routh–Hurwitz criteria, we have the fol-

lowing theorem.

Theorem 3 The system (2) is asymptotically stable around the equilibrium E5 if

r2 <
m2 ỹ
1+β ỹ − σ2 x̃1 ỹ and r1 >

m1K1 ỹ(2ax̃21+bx̃1)
x̃1(ax̃21+bx̃1+c)2

.
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– The variational matrix about E∗(x∗
1 , x

∗
2 , y

∗) is

J |E∗ =

⎡
⎢⎢⎢⎢⎣

− r1x∗
1

K1
+ m1 y∗(2ax∗

1
2+bx∗

1 )

(ax∗
1
2+bx∗

1+c)2
σ1x∗

1 y
∗ − m1x∗

1

ax∗
1
2+bx∗

1+c
+ σ1x∗

1 x
∗
2

σ2x∗
2 y

∗ − r2x∗
2

K2
+ m2αx∗

2 y
∗

(1+αx∗
2 )2(1+βy∗)

− m2x∗
2

(1+αx∗
2 )(1+βy∗)2

+ σ2x∗
1 x

∗
2

c1m1 y∗(−ax∗
1
2+c)

(ax∗
1
2+bx∗

1+c)2
c2m2 y∗

(1+αx∗
2 )2(1+βy∗)

− c2m2βx∗
2 y

∗
(1+αx∗

2 )(1+βy∗)2
− δ1y∗

⎤
⎥⎥⎥⎥⎦ .

Characteristic equation corresponding to above variational matrix is

λ3 + E1λ
2 + E2λ + E3 = 0. (12)

In equation (12), the multipliers E1, E2 and E3 are given as
E1 = −(k11 + k22 + k33), E2 = (k22k33 − k23k32) + (k11k33 − k13k31) + (k11k22
− k12k21), and E3 = −(k11(k22k33 − k23k32) − k12(k21k33 − k23k31) + k13(k21k32
− k22k31)), where, kmn for m, n = 1, 2, 3 represent an entry in J |E∗ , in mth row
and nth column. Again all eigenvalues of J |E∗ have negative real part iff E1 >

0, E3 > 0 and E1E2 > E3. Thus, we can state the following theorem.

Theorem 4 The interior equilibrium E∗(x∗
1 , x

∗
2 , y

∗) is asymptotically stable iff
E1 > 0, E3 > 0 and E1E2 − E3 > 0.

Theorem 5 The system (2) is globally asymptotically stable about the interior equi-
librium E∗ under the following conditions: r1

K1
>

m1 y∗(a(K1+x∗
1 )+b1)

(ax∗
1
2+bx∗

1+c)c
, r2

K2
>

αm2 y∗
(1+αx∗

2 )(1+βy∗) , (σ1 + σ2l1)2y2M <
(

r1
K1

− m1 y∗(a(K1+x∗
1 )+b1)

(ax∗
1
2+bx∗

1+c)c

) (
r2
K2

− αm2 y∗
(1+αx∗

2 )(1+βy∗)

)
,

σ2
2l1

2x∗
1
2 <

(
r2
K2

− αm2 y∗
(1+αx∗

2 )(1+βy∗)

) (
δ1 + c2m2x∗

2β

(1+βyM )(1+αx2)(1+βy∗)

)
,(

σ1x∗
2 + l2c1m1aK1x∗

1

(ax∗
1
2+bx∗

1+c)c

)2
<

(
r1
K1

− m1 y∗(a(K1+x∗
1 )+b1)

(ax∗
1
2+bx∗

1+c)c

) (
δ1 + c2m2x∗

2β

(1+βyM )(1+αx2)(1+βy∗)

)
.

Proof Consider a positive definite function V as an appropriate Lyapunov function
around E∗ given as
V (x1, x2, y) = (

x1 − x∗
1 − x∗

1 ln
x1
x∗
1

) + l1
(
x2 − x∗

2 − x∗
2 ln

x2
x∗
2

) + l2
(
y − y∗ − y∗ ln y

y∗
)
,

where l1 = l2c2(1+βy∗)
(1+αx∗

2 )
and l2 = (ax∗

1
2+bx∗

1+c)
c1c

. Now, after differentiating V with respect
to time along with solution of (2) and with some algebraic manipulations, we get
dV
dt = − 1

2 A11(x1 − x∗
1 )

2 + A12(x1 − x∗
1 )(x2 − x∗

2 ) − 1
2 A22(x2 − x∗

2 )
2 − 1

2 A22(x2 −
x∗
2 )

2 + A23(x2 − x∗
2 )(y − y∗) − 1

2 A33(y − y∗)2 − 1
2 A11(x1 − x∗

1 )
2 + A13(x1 − x∗

1 )

(y − y∗) − 1
2 A33(y − y∗)2,

where, A11 = r1
K1

− m1 y∗(a(x1+x∗
1 )+b1)

(ax∗
1
2+bx∗

1+c)(ax12+bx1+c)
, A22 = r2

K2
− αm2 y∗

(1+αx2)(1+αx∗
2 )(1+βy∗) , A33=

δ1 + c2m2x∗
2β

(1+βy)(1+αx∗
2 )(1+βy∗) , A12 = σ1y + σ2l1y, A13=σ1x∗

2 − l2c1m1ax1x∗
1

(ax∗
1
2+bx∗

1+c)(ax12+bx1+c)
,

A23 = σ2l1x∗
1 .

So, using Sylvester’s criterion, dV
dt is negative definite under the hypothesis given

in statement of the theorem. Therefore, E∗ is globally asymptotically stable with the
assumed conditions.
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3.4 Bifurcation Assessment

Theorem 6 Coexistence equilibrium E∗ is bifurcated from the planner equilibrium
E4, through a transcrtical bifurcation, when parameter r1, crosses its transcritical
threshold value r1 = r tc1 = m1 ȳ

c − σ1 x̄2 ȳ.

Proof To prove this theorem, we have to satisfy the conditions given in Sotomayor
Theorem [9]. Consider, V = (v1, v2, v3)

T , W = (w1, w2, w3)
T as the eigenvec-

tors corresponding to zero eigenvalue of J |E4 and J T |E4 , respectively. Here, v1 =
a22a33−a23a32
a32a21−a22a31

, v2 = a23a31−a33a21
a32a21−a22a31

and v3 = 1, where ai j , for i, j = 1, 2, 3 is an entry
in J |E4 in i th row and j th column. Also W = (w1, w2, w3)

T = (1, 0, 0)T . Define,

U (x1, x2, y) = (F1, F2, F3)
T . Therefore, Ur1 =

[
∂F1
∂r1

, ∂F2
∂r1

, ∂F3
∂r1

]T = [
x1

(
1 − x1

K1

)
,

0, 0
]T

. One can easily verify the transversality conditions: WTUr1(E4, r tc1 ) = 0,

WT [DUr1(E4, r tc1 )]V = v1 �= 0, WT [D2U (E4, r tc1 )(V, V )] = (− 2r tc1
K1

+ 2m1bȳ
c2 )v1v1

+ 2σ1 ȳv1v2 − 2
( 2m1b

c2 + σ1 x̄2
)
v1v3. Hence, if (− 2r tc1

K1
+ 2m1bȳ

c2 )v1v1 + 2σ1 ȳv1v2 −
2
( 2m1b

c2 + σ1 x̄2
)
v1v3 �= 0 then can say that at r1 = r tc1 , E∗ is bifurcated from E4

by the transcritical bifurcation.

Note: A similar result can be established for transcritical bifurcation involving inte-
rior equilibrium E∗ and predator free equilibrium E3 (depicted in numerical simu-
lation). We also provide conditions under which our 3D-model (2) undergoes Hopf-
bifurcation around the positive equilibrium E∗ when the parameter α passes its some
critical value αh f .

Theorem 7 The necessary and sufficient prerequisites for occurrence of Hopf-
bifurcation of system (2) around E∗ at α = αh f are

1. E1 > 0, E3 > 0.
2. E1E2 − E3 = 0.
3. d

dα
(Re(λ))α=αh f �= 0. This condition holds iff dR

dα
�= 0, where R = E1E2 − E3.

Proof Proof of this theorem readily follows as in [8].

4 Numerical Simulation

r1 = 7, K1 = 10, m1 = 0.45, a = 0.025, b = 0.1, c = 7, σ1 = 0.001, r2 = 5, K2 = 15, m2 = 0.1,

α = 0.07, β = 0.0025, σ2 = 0.004, c1 = 0.2222, c2 = 0.7, δ0 = 0.01, δ1 = 0.001.
(13)

For the set of parameters give in (13), E0(0, 0, 0), E1(10, 0, 0), E2(0, 15, 0), E3(10,
15, 0), E4(0, 1.183603, 56.973631), E5(5.600137, 0, 57.108613) are saddle points
whereas E∗(3.982544, 0.573808, 73.695332) is a stable focus with (−0.033869 ±
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Fig. 1 E4 is going for transcritical bifurcation with loosing its stability which leads to generation of
E∗ and E∗ changes its stability twice via Hopf-bifurcation on further increase of r1 with parameters
same as in (13)

0.436450i,−2.108830) as eigenvalues. The systemgoes through transcritical aswell
as Hopf-bifurcation for the parameter r1 (Fig. 1). As long as r1 lies in the interval
[0.1, r tc1 ), E4 is a stable focus and in this interval E∗ is not biologically feasible.
At r1 = r tc1 = 3.595156, E4 undergoes transcritical bifurcation to become unstable
with, dim(Wu(E4)) = 1 and dim(Ws(E4)) = 2. The stable and unstable branches of
E4 are shown by solid and dashed curves in purple colour, respectively. At this critical
value, r tc1 , E∗ is generated as a spiral sink. FromFig. 1, we can observe that, on further
increase of r1, E∗ passes through Hopf-bifurcation at r1 = rh f11 = 3.930962, and
on keep increasing r1, E∗ again endures Hopf-bifurcation at r1 = rh f21 = 4.599987
to become stable and it maintains this behavior on further increment of r1. So, we
observed that E∗ is bifurcated from E4 via a transcritical bifurcation and E∗ switches
its stability two times by means of Hopf-bifurcation with respect to parameter r1. In
this figure, E∗ is indicated by the green colour.

Now, Keeping all the parameters fixed given in (13), whenwe use inversemeasure
of predator’s immunity a, as a control parameter then system (2) experiences Hopf-
bifurcation in the vicinity of E∗. For a < ah f = 0.072198, E∗ remains stable and at
a = ah f , E∗ becomes non-hyperbolic and then turn into a spiral source on continue
increment of a. For an example, concerning with a as a bifurcation parameter, we
simulate model (2) for a = 0.04 < ah f and a = 0.08 > ah f , showing the stable and
unstable nature of the system, respectively. From Fig. 2(a), we can see that as long
as a < ah f , system remains stable. As a crosses its critical value ah f , system go
through Hopf-bifurcation to become unstable. The unstable nature of E∗ is depicted
in Fig. 2(b).

Now, we talk about the coefficient of help σ2. When help provided by x1 to x2
is less than a threshold value, system remains stable but as it becomes σ2 = σ

h f
2 =

0.005389, E∗ suffers Hopf-bifurcation. So, the model (2) turns to be an unstable
system. We have presented two illustrations of 3D-phase portraits for this case in
Fig. 3. Firstly for σ2 = 0.0045 (Fig. 3(a)), we see that, E∗ remains continue to be a
stable focus untilσ2 reaches its critical value. Secondly fromσ2 = 0.0065, (Fig. 3(b)),
it is clear that system becomes unstable for σ2 > σ

h f
2 . So, the excess amount of help
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Fig. 2 Stable nature of system for a = 0.04 < ah f (Fig. a) and unstable nature for a = 0.08 > ah f

(Fig. b) with all parameters same as in (13)

from x1 to x2 makes the system unstable.
For δ0, the system experiences the change of stability twice by Hopf-bifurcation

and then a transcritical bifurcation on its further increment. This involves the predator
free equilibrium E3 and the coexistence equilibrium E∗. For δ0 < δ

h f1
0 = 0.049805,

E∗ remains a stable focus and at δh f10 , the system suffers Hopf-bifurcation around E∗.
Then it again become stable around E∗ via Hopf-bifurcation at δh f20 = 0.102547. The
interval (δh f10 , δ

h f2
0 ) corresponds to a stable limit cycle. For δ0 < δtc0 = 0.607423, E3

continue to be a proper unstable node. At δtc0 , E3 becomes a stable node, and E∗
disappears through the transcritical bifurcation. These two bifurcations are shown
simultaneously in Fig. 4 through three corresponding bifurcation diagrams. In this
figure, E∗ is indicated with green colour where unstable and stable components of
E3 are shown by dashed and solid curves in purple colour, respectively.

Moreover, we have drawn Fig. 5 to depict the distribution of regions according
to the feasibility of E3, E4 and E∗ in the r1δ0-plane. In region R1, E3 and E4 are
the feasible equilibria. Region R1 and R2 are separated by the transcritical curve
marked with red colour. When we moves from R1 to R2, the interior equilibrium E∗
is generated via transcritical bifurcation. Region R2 and R3 are separated by a blue
coloured line δ0 = 0.512195.When δ0 becomes greater than 0.512195, y component
of E4 remains negative with all values of r1, so E4 becomes non-feasible in R3. Next,
when δ0 > 0.607423, E∗ disappears beyond the transcritical curve δ0 = 0.607423
marked with pink colour. So in region R4, E3 is the only feasible equilibrium point.

To show the bistablity phenomenon in the system, we choose the following set of
parameters:
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Fig. 3 Using σ2 as the control parameter, phase portrait (Fig. a) shows the stable focus for σ2 =
0.0045 and (Fig. b) exhibits a stable limit cycle for σ2 = 0.0065 with parameters fixed in (13)
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Fig. 4 E∗ changes its stability twice by Hopf-bifurcation and on further increase of δ0, E∗ disap-
pears and E3 becomes stable via transcritical bifurcation, with parameters fixed in (13)

r1 = 3, K1 = 10, m1 = 0.4, a = 0.1, b = 0.08, c = 0.11, σ1 = 0.01, r2 = 4, K2 = 7, m2 = 0.62,

α = 0.01, β = 0.03, σ2 = 0.02, c1 = 0.4, c2 = 0.63, δ0 = 0.1, δ1 = 0.02.
(14)

For set of parameters (14), we have two locally asymptotically stable equilibrium
points; one is coexistence equilibrium E∗(7.792154, 0.593490, 12.534084), and the
other one is planner equilibrium E4(0, 0.751129, 7.025585). We have illustrated
this characteristic of the system through a phase portrait diagram given in Fig. 6(a)
in which two solutions started from two different initial conditions converge to these
two different equilibrium points. We have also plotted their basin of attraction in
Fig. 6(b).
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Fig. 5 Distribution of regions for existence of E3, E4 and E∗ in r1δ0-plane with parameters same
as in (13)

Fig. 6 In Fig. (a) solutions in red and blue color are tending to E∗ and E4, respectively. Figure (b)
represent the basin of attractions (red dots for interior and blue dots for planner equilibrium point)
where P(0) ∈ [3.5, 10], Z(0) ∈ [1, 4] and F(0) ∈ [0.1, 15], with parameters fixed in (14)

5 Conclusion

In the present work, we have formulated a prey-predator model with cooperation
between two types of prey against a predator. Both the prey species are assumed
to grow logistically whereas predator consume the one prey via Holling type-IV
type response and another prey via Crowley–Martin type response. Firstly, we have
proved that the model is biologically well-posed having the quality of being bounded
in a compact domain� of R3+. In the dynamics of the system, we study the existence
of seven equilibrium points. During the stability analysis, we notice that E0, E1 and
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E2 always behave like saddle points, while E3, E4 and E5 are stable under some
conditions. We also studied the global stability of E∗ by picking an appropriate
Lyapunov function. Further, we have analyzed the transcritical as well as Hopf-
bifurcations for the system involving E4, E∗ and E3, E∗. From the bifurcation
diagrams for r1, it can be noticed that on increase of r1, x1 increases which increase
the efficiency of their group defence and so predator shifts its attention to prey x2
which decreases the density of x2 population. When we use a as the bifurcation
parameter, x1 increases with a partial decrement in x2. Now, as when we increase
a more than a threshold value a = ah f , there is a rise of periodic oscillations due
to Hopf-bifurcation. Most importantly, when the help (σ2) provided by x1 to x2 is
increased, there is a growth in the population density of x2 but this increased help
imparts a negative effect on x1 population due to its sacrifice in helping x2. Raising
this help against a certain limit becomes a cause of instability in the system. The
system also shows the property of bistability. From numerical simulation, we can
see that our system shows much more rich dynamical behavior than the existing
studies. Thus we hope that our work can be a useful source for ecologists to explore
different segments of experimental and theoretical ecology in a better way.
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Mathematical Model of Solute Transport
in a Permeable Tube with Variable
Viscosity

M. Varunkumar

Abstract The purpose of this paper is to investigate the influence of variable viscos-
ity on solute transfer in fluid flow through a permeable tubewith possible applications
to the blood flow in glomerular capillaries. The difference in transcapillary hydro-
static pressure and the equivalent difference in colloid osmotic pressure regulates
solute transport through the glomerular capillary wall(Starling’s law). Fluid flow in
a capillary is assumed to be viscous, incompressible, and Newtonian with variable
viscosity. The nonlinear and coupled equations regulating fluid flow and solute trans-
port are solved analytically and numerically. Graphs have been used to discuss the
impacts of varying viscosity and flow parameters on hydrostatic and osmotic pres-
sures, and solute concentrations using a set of physiological data. It is observed that
increasing the viscosity coefficient raises the hydrostatic pressure while decreasing
the osmotic pressure at the capillary’s end. As the viscosity coefficient increases, the
solute concentration at the exit falls and the solute clearance increases through the
capillary wall.

Keywords Starling’s law · Ultrafiltration · Variable viscosity · Permeable wall ·
Finite difference method

1 Introduction

The kidneys have two primary functions. They perform two functions: first, they
excrete the large majority of waste products produced during metabolism, and sec-
ond, they regulate the concentrations of the vast majority of body fluids. Insight
into the mechanisms of glomerular ultrafiltration and blood waste removal, which
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create urine. Normally, the capillaries walls pass roughly one-fifth to one-third of
the amount of blood plasma entering each glomerulus. This fluid’s composition is
close to that of an ideal ultrafiltrate, with solute concentrations similar to plasma
water. The development of this ultrafiltrate is controlled by the driving factors that
dictate fluid flow through the capillaries, specifically the imbalance between tran-
scapillary hydrostatic and colloid osmotic pressures. Ultrafiltrate plasma travels into
Bowman’s Space as a result of these pushing factors. Several theoretical and mathe-
matical models developed to describe the dynamics of ultrafiltration assumed that the
glomerulus’s local driving factors for fluid transfer were evenly distributed through-
out the entire glomerular capillary network [1–4].

A study by Brenner et al. [5, 6] focused on glomerular pressure measurements at
the afferent and efferent ends of the glomerulus, as well as the glomerular filtering
rate of single kidney nephrons, in addition to extravascular pressures in Bowman’s
space, solute concentrations, and colloid osmotic pressure. Deen et al. [7] examined
the relationship between ultrafiltration and the rise in plasma protein concentration
caused by ultrafiltration, and their findings led them to the conclusion that the overall
filtration rate rises as blood volume flow rises. The models for glomerular ultrafil-
tration proposed by Marshal and Trowbridge [8] and Huss et al. [9] eliminated the
assumption of a constant axial pressure gradient and regarded the intraluminal pres-
sure gradient to be dependent on the axial distance. As seen in Papenfuss and Gross
[10], a model developed by them examined the effects of intraluminal pressure drop
and wall permeability on glomerular ultrafiltration. Papenfuss and Gross [11] and
Salathe [12] investigated fluid exchange and solute transport in capillary tissue under
the assumption that concentrations were identical at each cross-section. Axially, the
concentration profiles were determined by assuming the capillary wall as imperme-
able and applying a constant hydrostatic pressure to the solute transfer in capillary,
as done by Deen et al. [13].

Ross [14] proposed a mathematical model for mass transfer in fluid flow through
a capillary membrane with a tiny radial fluid flux (ultrafiltration) assumed to be zero
by zero osmotic pressure. In addition, it should be mentioned that the ultrafiltration
process is regulated by hydrostatic and oncotic pressure differences (Starling’s the-
ory) as well as the solute transported across the permeable wall by diffusion and
convection as investigated by Chaturani and Ranganatha [15]. In a porous tube with
varying permeability, Varun and Muthu [16] obtained a solution for the transport of
solutes.

The relationship between fluid viscosity and solute concentration is significant in
the filtering process. The viscosity is treated as a constant in the previous research, but
in reality, it is dependent on a wide range of fluid characteristics ([17, 18]). A steady-
state boundary layer with changing diffusivity and viscosity, as explored by Davis
and Leight [20], was considered by Davis and Sherwood [19]. For concentration-
dependent viscosity and diffusion coefficient, Bowen and Williams [21] introduced
cross flowultrafiltration.As a result of this inspiration, the impact of varying viscosity
is examined in this article.
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2 Mathematical Model

Consider a fluid flow through a rigid cylindrical permeable tube with a radius R and
a length L (refer Fig. 1). The set-up is considered to be axisymmetric, with axial and
radial directions z and r , and corresponding velocity components v(r, z)(radial) and
u(r, z)(axial). The following are the equations that govern viscous, incompressible
Newtonian fluid flow and solute transport ([15, 16]):

∂u

∂z
+ ∂v

∂r
+ v

r
= 0 (1)

u
∂u

∂z
+ v

∂u

∂r
+ 1

ρ

∂P

∂z
− 2μ(r)

∂2u

∂z2
− 1

ρr

∂

∂r

(
rμ(r)

(
∂v

∂z
+ ∂u

∂r

))
= 0 (2)
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∂v
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+ 1
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∂P

∂r
− 2

∂

∂r

(
μ(r)

∂v
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− 2
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μ(r)

(
∂v

∂r
− v

r

)
− ∂

∂z

(
μ(r)

(
∂v

∂z
+ ∂u

∂r

))
= 0

(3)

v
∂c

∂r
+ u

∂c

∂z
− D

(
∂2c

∂r2
+ ∂2c

∂z2
+ 1

r

∂c

∂r

)
= 0 (4)

where P , μ(r) and ρ are the fluid’s pressure, variable viscosity, and density, respec-
tively. The solute concentration is denoted by c, while the diffusion coefficient is
denoted by D.

The boundary conditions are expressed as follows ([15, 22, 23]):
At z = 0,

c = c0, �P = �Pa,
∫ R

0
2πru(r, 0)dr = Q0 (5)

At r = 0,

v = 0,
∂u

∂r
= 0,

∂c

∂r
= 0 (6)

Fig. 1 Geometric model of
the glomerular capillary L
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At r = R,

v = k(�P − σ�π) = VR(z), u = 0,−D
∂c

∂r
= (TR − 1)VR� + h(c − cT ) (7)

The second boundary condition in (7) is stated according to Starling’s hypothesis,
which states that the flow velocity through the capillary wall is proportional to the
difference between the hydrostatic and osmotic pressure differences. According to
the third boundary condition in (7), the solute flow through membrane equals the
solute flux via the interface. The product of solute permeability (h) and concentration
difference (c(r = R) − cT ) gives the solute transported by ordinary diffusion via the
membrane interface. ((TR − 1)VR) is the solute flux through membrane pores. � ={
c; VR > 0
cT ; VR < 0

, �P = P − PT , �π = π − πT , the hydrostatic pressures within

and outside the capillary wall are P and PT , respectively, while the corresponding
osmotic pressures are π and πT . The volume flow rate and hydrostatic pressure
at channel’s entry are Q0 and Pa . The wall’s hydraulic permeability is k, and the
reflection coefficient is σ ([24]). PT and πT are assumed to be constants. Here, c0
and cT are represent the solute concentration at the tube’s entry, and concentration
outside the channel, respectively. h and TR are represent the solute permeability at
the wall, and transmittance coefficient, respectively.

In the present study, we considered the connection between osmotic pressure π

and solute concentration c(r, z) as:

π(c) = 0.009 c3 + 0.16 c2 + 2.1 c (8)

2.1 Non-dimensionalization

The non-dimensional quantities listed below are introduced in Eqs. (1)–(8):
ẑ = z/R, r̂ = r/R, û = u/U0, v̂ = v/U0, V̂R = VR/U0, ĉ = c/c0, ĉT = cT /c0,
�π̂ = �π/�Pa,�P̂ = �P/�Pa, b̂1 = b1/(�Pa/c0), b̂2 = b2/(�Pa/c20), b̂3 =
b3/(�Pa/c30), ĴS = JS/(c0D/R), ĴC = JC/Q0c0, μ̂ = μ/μ0, Q̂ = Q/Q0, Q0 =
πR2U0. In glomerular capillaries, axial diffusion is modest in comparison to radial
diffusion [7]. There are no end effects since the tube length to radius ratio is expected
to be so enormous. In addition, net radial flow is likewise minimal in comparison
to average axial flow and inertial effects can be ignored (The Reynolds number is
of 10−3). The governing equations (1)–(8), which are based on non-dimensional
quantities and assumptions, become (after dropping caps)

∂u

∂z
+ 1

r

∂

∂r
(rv) = 0 (9)
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rμ(r)
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∂(�P)
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= 0 (11)

v
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+ u
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= 1
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[
∂2c
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+ 1

r

∂c

∂r

]
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The non-dimensional boundary conditions leading to,
At z = 0,

c = 1, �P = 1,
∫ 1

0
2ru(r, 0)dr = 1 (13)

At r = 0,

v = 0,
∂u

∂r
= 0,

∂c

∂r
= 0 (14)

At r = 1,

v = εRp(�P − σ�π) = VR(z), u = 0,
∂c

∂r
= Pe(1 − TR)VR� + Sh(cT − c)

(15)
where, Pe = U0R/D, Sh = hR/D, Rp = (R�Pa)/(μ0U0), and ε = kμ0/R denote
the Peclet number, the Sherwood number, the non-dimensional parameter and the
filtration coefficient, respectively.

3 Method of Solution

The axial and radial velocities are calculated by solving Eqs. (9) and (10) using the
conditions (14) and (15) as follows:

u(r, z) = − Rp

2

d(�P)

dz

∫ 1

r

r

μ(r)
dr (16)

v(r, z) = Rp

4

d2(�P)

dz2

(
r
∫ 1

r

r

μ(r)
dr + 1

r

∫ r

0

r3

μ(r)
dr

)
. (17)

Equation (17) and the second boundary condition of (15) produce the equation for
hydrostatic pressure,
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d2(�P)

dz2
+ 4ε

I1
(σ�π − �P) = 0. (18)

The second and third conditions of (13) are written in the following form,

�P = 1,
d�P

dz
= − 1

Rp I2
at z = 0 (19)

�π = 0.009[c3 − c3T ] + 0.16[c2 − c2T ] + 2.1[c − cT ], (20)

I1 =
∫ 1

0

r3

μ(r)
dr, I2 =

∫ 1

0
r

(∫ 1

r

r

μ(r)
dr

)
dr (21)

The viscosity affects the integrations in Eqs. (16)–(19). This study used the expo-
nential viscosity model, which is provided as [17].

μ(r) = e−αr (22)

where α denotes viscosity. The exponential type of viscosity was used in all of the
calculations. Due to their dependency, the solutions of Eqs. (12) and (18), hydrostatic
pressure (�P), and solute concentration (c) are difficult to derive analytically in a
closed formexpression.Using the relevant boundary conditions of (13), (14) and (15),
get numerical solutions for (12) and (18) correspondingly. For solute concentration,
Eq. (12) is solved, which is linked with Eqs. (18), (16), (17) and (20), along with u,
v and �P quantities. The solution technique was explained in detail by Varun and
Muthu [16].

4 Results and Discussions

To understand the influence of variable viscosity during filtering, a mathematical
model of solute transfer through a permeable tube was developed. Computations
were performed utilizing physiological data from rat glomerular capillaries (Chat-
urani and Ranganatha [15]). The observed findings for α = 0(zero viscosity) are in
excellent accord with earlier research [15, 16]. The viscosity is modelled as an expo-
nentially decreasing function of radial distance, with decreasing fluid viscosity as
the viscosity parameter is increased. Viscosity parameter (α) and emerging param-
eters have substantial influence on flow quantities such as hydrostatic and osmotic
pressures, and solute concentration investigated.

Hydrostatic Pressure and Osmotic Pressure: Figures2 and 3 illustrate the
distribution of hydrostatic pressure (�P) and osmotic pressure (�π ) profiles for
distinct values of viscosity parameter α and other emerging parameters with regard
to axial distance z. In accordance with the experimental results, the hydrostatic and
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Fig. 2 Effect of viscosity parameter (α) on hydrostatic and osmotic pressure distributions

Fig. 3 Effects of TR and h on hydrostatic and osmotic pressure distributions

osmotic pressure curves may be seen in [23]. Osmotic pressure�π rises nonlinearly
as the axial length of the capillary decreases because of the linear reduction in �P .

Figure2 shows the effect of the viscosity parameter (α) on hydrostatic pressure and
osmotic pressure. It is noticed that as the parameterα is increased,�P increases along
the axial length. This indicates that driving fluids with greater viscosities requires a
higher pressure (Fig. 2a). When predicted, the osmotic pressure (�π ) values drop as
the viscosity parameter (α) is increased in the z− direction (Fig. 2b). Figure3 shows
that solute wall permeability h and transmittance coefficient TR have only a little
impact on the �P profiles. The osmotic pressure falls throughout the axial length as
TR and h rise, indicating that the solute has crossed the channel wall. The increase
in TR values indicates greater solute transfer across the capillaty wall and as a result,
�π falls in the axial direction.

Concentration Profiles c: Figure4 depicts the impact of the viscosity parameter
(α) on concentration patterns at two distinct positions. The concentration at the
centerline grows insignificantly while the concentration near the wall drops as (α)
increases. The solute concentration falls as you get closer to the wall and reaches its
maximum on thewall, as seen in this diagram. For various TR and h, Fig. 5 depicts the
distribution of solute concentration at two distinct positions along the tube’s length.
Because of the delicate balance between convective protein transport and diffuse
protein transport, at any given axial location the concentration of solutes at wall is
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Fig. 4 Effect of viscosity parameter (α) on concentration (c) with r at different locations a z = 15
and b z = 50

Fig. 5 Effects of TR and h on solute concentration (c) with r at z = 15 and z = 50

larger than at centerline. The solute concentration increases with radial distance at
any constant cross-sectional tube because solute particles remove via ultrafiltration.

The effect of ε and D on concentration distribution is seen in Fig. 6. The concen-
tration of solute increases as ε increases, indicating that the solute volume per unit
volume at the wall has risen. With a rise in D, the solute concentration decreases
along the axis. It is true that in the situation of ε = 0(zero ultrafiltration), it is a
fact that no solute is transferred through the wall. That is, from the initial constant
value (c0 = 1) to zero at cross-section z = 15, the radial concentration profile falls
considerably.

Concentration at the wall cw : The impact of the viscosity parameter (α) on wall
concentration is seen in Fig. 7, along axial direction. It is noted that variation in the
concentration exists only near the permeable wall. It is also worth noting that as (α),
the concentration near the wall drops. The wall concentration with axial distance for
two cases �π �= 0 and �π = 0 with various values of the ultrafiltration parameter
ε are shown in Fig. 8. To enforce the scenario where there is no osmotic pressure
across the permeable border explicitly,�π = 0 is used in Eq. (18). In both situations
of �π , as ε rises, the wall concentration rises. In the case of �π = 0, the numerical
value of the wall concentration is higher than in the case of �π �= 0.
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Fig. 6 Effects of D and ε on concentration of solute (c) with r

Fig. 7 Effect of viscosity parameter (α) on wall solute concentration (cw)

Fig. 8 Effects of ε on wall concentration cw for �π = 0 and �π �= 0
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5 Conclusions

This study concentrated on the quantitative evaluation of fluid and solute transfer in a
tube with a permeable wall under the influence of varying viscosity. The controlling
fluid flow and solute transport equations have been solved analytically and numeri-
cally. It is noteworthy to note that the hydrostatic pressure loss is quite minimal in the
current results, whereas it is considered constant in some of the earlier models. The
consideration of solute transport via the permeable tube in conjunctionwith exponen-
tially varying viscosity, specifically in the flow through glomerular capillaries, is one
of the study’s unique aspects. The results are obtained for hydrostatic and osmotic
pressures and, concentration profiles, demonstrating the impact of various viscosity
parameter values and other factors. The following are the study’s key findings:

(i) The hydrostatic pressure drops linearly throughout the capillary’s length. The
�P decreases as the viscosity parameter (α) rises. The osmotic pressure rises in a
nonlinear fashion throughout the capillary’s length. As (α) increase, the �π lowers.
(ii) As the viscosity parameter (α) is increased, the concentration increases along the
axis and drops along the wall.
(iii) As the viscosity parameter decreases, so does the concentration near the wall.
For small values of ε, the findings for two specific instances �π = 0 and �π �= 0
are close to each other. The discrepancy between the two outcomes increases as ε

rises.
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Dynamical Systems: Chaos, Complexity
and Fractals



Impact of Cooperative Hunting and
Fear-Induced in a Prey-Predator System
with Crowley-Martin Functional
Response

Anshu, Sourav Kumar Sasmal, and Balram Dubey

Abstract Cooperative hunting among predators and the fear-induced growth rate
reduction in prey populations is an ecologically significant phenomenon. Many
researchers have studied the effects of hunting cooperation and fear independently,
but there has not been much research on the combined effect. This study analyzed
a classical predator-prey system incorporating hunting cooperation and fear effect
with Crowley-Martin functional response. We have done the basic analysis, includ-
ing positivity, boundedness of solutions, existence and stability analysis of equilibria,
Hopf-bifurcation, saddle-node bifurcation. We analyzed that incorporating cooper-
ative hunting among predators may destabilize the system dynamics by producing
limit cycles via Hopf-bifurcation. Furthermore, we noticed that the system shows
bi-stability behavior between predator-free equilibrium and the coexistence equilib-
rium. Also, analysis shows that the system becomes unstable for a fixed hunting
cooperation parameter on increasing the strength of fear. To validate the analytical
conclusions, numerical simulations are conducted.

Keywords Prey-predator dynamics · Fear effect · Hunting cooperation · Stability
analysis · Bifurcation.

1 Introduction

For many species, social interactions between individuals constitute an important
aspect of their life histories. Cooperative behavior among animals is a common
and essential phenomenon from a biological perspective. Cosner et al. [3] derived
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a functional response depending on the spatial distribution of predators when the
predators aggregate for capturing prey. Berec [2] studied a prey-predator model
and discovered that hunting cooperation destabilizes the system by affecting the
encounter rate between prey and predator. Alves and Hilker [1] discovered that
cooperative huntingmight benefit the predator population by increasing the encounter
rate, but it may also lead to a sudden collapse of the predator population.

Due to predation fear, preys exhibit a wide range of anti-predator behaviors,
including habitat change, reduced foraging activities, reducing prey’s per capita
growth rate. Zanette et al. [11] conducted an experiment on song sparrows and dis-
covered that only predation fear could reduce the reproduction rate of song sparrows
by 40%. Wang et al. [10] studied the dynamics of a predator-prey model incorporat-
ing the fear effect and analyzed that relatively high values of the fear parameter may
stabilize the system by excluding the existence of limit cycles. Sasmal and Takeuchi
[9] investigated the effects of fear in a predator-preymodel and analyzed that fear can
greatly affect the system dynamics. In literature, many researchers have studied the
effects of cooperative hunting and fear on the dynamics of the prey-predator system,
but not much work has been done on the combined effects. Pal et al. [7] studied the
dynamics of a prey-predator model incorporating hunting cooperation and fear and
discovered that fear-induced due to cooperative hunting might destabilize the system
by producing periodic oscillations.

Crowley-Martin type functional response shows that higher predator density
reduces predator feeding rate due to interference among themselves for a limited
resource [4]. This assumption makes the functional response more pragmatic from
the ecological point of view. Kumar and Dubey [5] studied a predator-prey model
with Crowley-Martin functional response and analyzed that preserving the prey pop-
ulation below a certain threshold level is beneficial to both the species. Maiti et al.
[6] studied the dynamics of a stage-structured predator-prey system with Crowley-
Martin type functional response. To the best of the authors’ knowledge, the combined
effect of hunting cooperation and fear induced by a predator on prey in a predator-
prey system with Crowley-Martin type functional response has not been studied.
Thus, we propose a mathematical model to study the dynamics of the prey-predator
system incorporating the above aspects.

2 Mathematical Model

We consider a habitat in which prey of density x(t) and specialist predator of density
y(t) live together at any time t .We assume that the prey species is growing logistically
with intrinsic growth rate r and carrying capacity k, thus its dynamics leads to the
following ODE:

dx

dt
= r x

(
1 − x

k

)
. (1)
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Since the predator populationmay decline at high predator density due to interference
among them for common limited resources, hence to capture this aspect Crowley-
Martin [4–6] type functional response is more realistic. This functional response is
given by

f (x, y) = βx

(1 + ax)(1 + by)
,

where β is attack rate, a is handling time required per prey and b is the magnitude of
interference among predator individuals. It may be pointed out here that when a > 0
and b = 0, then f (x, y) becomes Holling type-II functional response; when a = 0
and b > 0, then f (x, y) describes a saturation response with respect to predator;
when a = 0 and b = 0, f (x, y) denotes linear mass-action response.

Now, we assume that predators cooperate among themselves to encounter a strong
prey, and in such a case the attack rate β is given by β = α0 + αy, where α0 is the
capture rate without considering the cooperative hunting among predators and α is
hunting cooperation parameter among predators. These predators induce fear among
preywhich causes a decrease in the growth rate of prey. This fear function is described
by [5, 9, 10]

g(e, α, y) = 1

1 + eαy
,

where e is the cost of fear. Keeping all the above aspects in view, the dynamics of
our proposed system can be governed by the following system of ODEs:

dx

dt
= r x

(1 + eαy)
(1 − x

k
) − (α0 + αy)

(1 + ax)(1 + by)
xy,

dy

dt
= c(α0 + αy)

(1 + ax)(1 + by)
xy − δ0y − δ1y

2, (2)

x(0) ≥ 0, y(0) ≥ 0.

In the above model, c(0 < c < 1) is the conversion rate from prey to predator
density, δ0 is the predators’ natural mortality rate, and δ1 is the intraspecific interfer-
ence coefficient among predators. It may be pointed out here that in case of strong
prey, α may be large and b negligible; and in case of weak prey α may be negligible
and b large.

3 Mathematical Analysis

Now, we will do the basic mathematical analysis of the model (2). All the parameters
involved in our model are positive.
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3.1 Basic Analysis

The proofs of the following two theorems are similar to [5] and hence, omitted.

Theorem 1 All the solutions φ(t) = (x(t), y(t)) with initial conditions φ0(t) =
(x0, y0) ∈ R

2+ remains positive in the first quadrant.

Theorem 2 �1 = {(x, y) : 0 ≤ x ≤ k, 0 ≤ x + 1
c y ≤ 2rk

δmin
} is a positively invariant

set for all the solutions originating from the first quadrant, where δmin = min{r, δ0}.

3.2 Equilibria Analysis

The system (2) can have the following non-negative equilibria:
The trivial equilibrium E0 = (0, 0), and the predator-free equilibrium E1 = (k, 0)

always exist. We can find the interior equilibrium by solving the following set of
equations:

r

1 + eαy
(1 − x

k
) − (α0 + αy)y

(1 + ax)(1 + by)
=: f (x, y)

c(α0 + αy)x

(1 + ax)(1 + by)
− δ0 − δ1y =: g(x, y)

(3)

From f (x, y) = 0, it follows that:
When y = 0, then x∗ = k. When x = 0, we get a cubic equation in y i.e.
eα2y3 + α(1 + eα0)y2 + (α0 − rb)y − r = 0 which has a positive root (using
Descarte’s rule of sign). Now

dy

dx
= −

(
r

k(1 + eαy)
− ay(α0 + αy)

(1 + ax)2(1 + by)

)
(

reα

(1 + eαy)2
(1 − x

k
) + (α0 + 2αy + bαy2)

(1 + ax)(1 + by)2

) .

From above analysis, we notice that f (x, y) = 0 passes through the points (k, 0)
and (0, y1) and it may increase or decrease depending upon the sign of dy

dx .
From g(x, y) = 0, it follows that:

When y = 0, then x1 = δ0
cα0−aδ0

. When x = 0, then y2 = − δ0
δ1
.

dy

dx
= c(α0 + αy)

(1 + ax)2(1 + by)
( c(bα0−α)x

(1+ax)(1+by)2 + δ1
) .

Therefore, the above analysis shows that g(x, y) = 0 passes through (x1, 0) and
(0, y2) and it may increase or decrease depending on the sign of dy

dx .
Now, based on the above analysis, we state the following theorems.
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Fig. 1 Existence of equilibria for model (2) with varying δ0. Remaining parameters are fixed as
r = 4, k = 10, e = 10, c = 0.1, α0 = 3, α = 0.5, a = 0.3, b = 0.5 and δ1 = 0.03. Here, the slope
of predator isocline is positive

Fig. 2 Existence of equilibrium points for the model (2) with varying α. Remaining parameters
are fixed as r = 4, k = 10, e = 10, c = 0.5, α0 = 0.5, a = 0.3, b = 0.01, δ0 = 0.9 and δ1 = 0.03.
Here, the slope of predator isocline is negative

Theorem 3 The system will have atmost one interior equilibrium if
( c(bα0−α)x

(1+ax)(1+by)2 +
δ1

)
> 0 and k(cα0 − aδ0) > δ0 hold (see Fig. 1).

Theorem 4 The system will have atmost two interior equilibrium if
( c(bα0−α)x

(1+ax)(1+by)2 +
δ1

)
< 0 holds (see Fig. 2).

Now we have the following theorems for the stability analysis of different equi-
libria corresponding to system (2).

Theorem 5 The trivial equilibrium E0 is always a saddle point.

Proof The eigenvalues of the Jacobian matrix at the trivial equilibrium E0 are given
by λ1 = r(> 0) and λ2 = −δ0(< 0).
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Theorem 6 The axial equilibrium E1 = (k, 0) always exists and is locally asymp-
totically stable if ckα0 < δ0(1 + ak).

Proof The eigenvalues of the Jacobian matrix at the predator-free equilibrium E1

are given by λ1 = −r(< 0) and λ2 = ckα0
1+ak − δ0. Thus, E1 is locally asymptotically

stable if ckα0 < δ0(1 + ak).

Theorem 7 The interior equilibrium E∗ = (x∗, y∗) is locally asymptotically stable
if tr(JE∗) < 0 and det (JE∗) > 0, where JE∗ is the Jacobian matrix evaluated at E∗.

Proof The Jacobian matrix JE∗ at the interior equilibrium E∗ = (x∗, y∗) is given
by:

JE∗ =
[

− r x∗
k(1+eαy∗) + a(α0+αy∗)x∗ y∗

(1+ax∗)(1+by∗)
−eαr x∗

(1+eαy∗)2 (1 − x∗
k ) − (α0+2αy∗+bα(y∗)2)x∗

(1+ax∗)(1+by∗)2
c(α0+αy∗)y∗

(1+ax∗)2(1+by∗) −(
c(bα0−α)x∗ y∗

(1+ax∗)(1+by∗)2 + δ1y∗)

]
.

From above matrix, we have the characteristic equation as:

λ2 − tr(JE∗)λ + det (JE∗) = 0,

λ2 +
[

r x∗
k(1+eαy∗) − a(α0+αy∗)x∗ y∗

(1+ax∗)(1+by∗) + (
c(bα0−α)x∗ y∗

(1+ax∗)(1+by∗)2 + δ1y∗)
]
λ+[(

r x∗
k(1+eαy∗) − a(α0+αy∗)x∗ y∗

(1+ax∗)(1+by∗)

)(
c(bα0−α)x∗ y∗

(1+ax∗)(1+by∗)2 + δ1y∗
)]

+[(
eαr x∗

(1+eαy∗)2 (1 − x∗
k ) + (α0+2αy∗+bα(y∗)2)x∗

(1+ax∗)(1+by∗)2

)(
c(α0+αy∗)y∗

(1+ax∗)2(1+by∗)

)]
= 0

(4)

Thus, E∗ = (x∗, y∗) is locally asymptotically stable if tr(JE∗) < 0 and
det (JE∗) > 0 (using Routh-Hurwitz criterion).

Remark: It may be noted that if:

r

k(1 + eαy∗)
>

a(α0 + αy∗)y∗

(1 + ax∗)(1 + by∗)

holds, then tr(JE∗) < 0 and det (JE∗) > 0, and hence E∗ = (x∗, y∗) is locally
asymptotically stable.

4 Bifurcation Analysis

Next, we investigate the possibility of existence of limit cycle via Hopf-bifurcation
near the interior equilibrium E∗

1 with respect to the parameter α.
The characteristic equation evaluated from the Jacobian matrix at E∗

1 is:

λ2 − tr(JE∗
1
)λ + det (JE∗

1
) = 0.
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For theHopf- bifurcation to occur,weneed tr(JE∗
1
) = 0, and det (JE∗

1
) > 0. From

the above two conditions, we calculate the critical value α = α∗ of hunting cooper-
ation parameter.

Then we check the transversality condition:

∂

∂α
|tr(JE∗

1
)|α=α∗ = −

[
rex∗y∗

k(1 + eαy∗)2
+ ax∗(y∗)2

(1 + ax∗)(1 + by∗)
+ cx∗y∗

(1 + ax∗)(1 + by∗)

]
�= 0

Hence, the system experiences Hopf-bifurcation at the equilibrium point E∗
1 when

α = α∗.

Theorem 8 The system (2) goes through a saddle-node bifurcation around the equi-
librium point E(x̄, ȳ) as the cooperation parameter α crosses the bifurcation value
α = αc if and only if

−
(

−rex̄ ȳ
(1+eαc ȳ)2

(
1 − x̄

k

)
− x̄ ȳ2

(1+ax̄)(1+bȳ) − fx̄
gx̄ (1+ax̄)(1+bȳ)

)
�= 0,[(

fx̄ x̄ − fx̄
f ȳ

( fx̄ ȳ + f ȳx̄ ) + f 2x̄
f 2ȳ
f ȳ ȳ

)
− fx̄

gx̄

(
gx̄ x̄ − fx̄

f ȳ
(gx̄ ȳ + gȳx̄ ) + f 2x̄

f 2ȳ
gȳ ȳ

)]
�= 0,

where

fx̄ = − r1 x̄

k(1 + eαc ȳ)
+ a(α0 + αc ȳ)x̄ ȳ

(1 + ax̄)(1 + bȳ)
,

f ȳ = −eαcr x∗

(1 + eαc y∗)2

(
1 − x̄

k

)
− (α0 + 2αc ȳ + bαc(ȳ)2)x̄

(1 + ax̄)(1 + bȳ)2
,

gx̄ = c(α0 + αc ȳ)ȳ

(1 + ax̄)2(1 + bȳ)
,

gȳ = −
(

c(bα0 − αc)x̄ ȳ

(1 + ax̄)(1 + bȳ)2
+ δ1 ȳ

)
.

Proof The Jacobian matrix calculated at the interior equilibrium E(x̄, ȳ) is :

JE(x̄,ȳ) =

⎡
⎢⎢⎣

− r x̄
k(1+eα ȳ) + a(α0+α ȳ)x̄ ȳ

(1+ax̄)(1+bȳ)
−eαr x̄

(1+eα ȳ)2

(
1 − x̄

k

)
− (α0+2α ȳ+bα(ȳ)2)x̄

(1+ax̄)(1+bȳ)2

c(α0+α ȳ)ȳ
(1+ax̄)2(1+bȳ) −

(
c(bα0−α)x̄ ȳ

(1+ax̄)(1+bȳ)2 + δ1 ȳ

)
⎤
⎥⎥⎦ .

Now differentiating the given system w.r.t. α, we get

Fα(x̄ ȳ) =
⎡
⎣ −rex̄ ȳ

(1+eαy)2

(
1 − x̄

k

)
− x̄ ȳ2

(1+ax̄)(1+bȳ)

cx̄ ȳ2

(1+ax̄)(1+bȳ)

⎤
⎦
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B = Df (E(x̄, ȳ), αc) =
[
fx fy
gx gy

]

One can see that the eigenvector corresponding to zero eigenvalue of matrix B =
Df (E(x̄, ȳ), αc) is v′ =

[
1 − fx

fy

]T
, and the eigenvector corresponding to zero

eigenvalue of matrix BT = [Df (E(x̄, ȳ), αc)]T is: w′ =
[
1 − fx

gx

]T
.

Using Sotomayor theorem [8] for saddle-node bifurcation, we get the conditions for
saddle-node bifurcation by doing simple calculations.

5 Numerical Simulations

In this section, we perform some numerical simulations to show the population
insights from our analytical findings.

In Fig. 3, we fixed the parameters as r = 4, k = 10, e = 10, c = 0.1, α0 = 3,
δ0 = 0.5, a = 0.3, b = 0.5 and δ1 = 0.03. For α = 0.2, the system (2) has a stable
unique interior equilibrium point i.e. E∗

1 (5, 0.53) as a spiral sink (Fig. 3a) and for
α = 2, the system (2) has a stable limit cycle around the interior equilibrium point
E∗
1 (3.2, 0.271) i.e. E

∗
1 is a spiral source (Fig. 3b).

In Fig. 4, we fixed the parameters values as r = 4, k = 10, e = 10, c = 0.5, α0 =
0.5, δ0 = 0.8, a = 0.3, b = 0.01 and δ1 = 0.03 and here, the system has two interior
equilibrium points E∗

1 and E
∗
2 . For α = 0.2, the system (2) has two possible attractors

E1(10, 0) and E∗
1 (6.25, 1.45) (Fig. 4a). Moreover for α = 0.25, the system (2) has a

stable equilibrium point E1(10, 0) and also, a spiral source equilibrium E∗
1 (5.2, 1.3)

(4b). In Fig. 4a, we notice that the system exhibits bi-stability between the interior
equilibrium E∗

1 (6.25, 1.45) and the axial equilibrium E1(10, 0). Moreover, in Fig. 5,

Fig. 3 All other parameters are fixed as r = 4, k = 10, e = 10, c = 0.1, α0 = 3, δ0 = 0.5, a = 0.3,
b = 0.5 and δ1 = 0.03. Here, E(0, 0) and E1(10, 0) are always saddle points



Impact of Cooperative Hunting and Fear-Induced … 1023

Fig. 4 All other parameters are fixed as r = 4, k = 10, e = 10, c = 0.5, α0 = 0.5, δ0 = 0.8, a =
0.3, b = 0.01 and δ1 = 0.03. Here, E0 and E∗

2 are always saddle points

Fig. 5 Basin of attraction
for the prey-only equilibrium
E1(10, 0) and the interior
equilibrium point E∗

1 . Here,
all the other parameters are
fixed as r = 4, k = 10,
e = 10, c = 0.5, α0 = 0.5,
α = 0.22, a = 0.3, b = 0.01,
δ0 = 0.8 and δ1 = 0.03.
Blue and yellow represents
the convergence region of E1
and E∗

1 , respectively

we show the basin of attraction for the predator-free equilibrium and the interior
equilibrium. Basin of attraction for an equilibrium point is a set of initial points for
which the solutions will converge to the same equilibrium point.

Next, we plot the bifurcation diagram of prey with respect to α in Fig. 6. We
notice that for relatively small cooperation parameter α values, both prey and preda-
tor species have stable coexistence. As the cooperation parameter α increases, Hopf-
bifurcation occurs, and the stable coexistence equilibrium loses its stability and pro-
duces periodic oscillations. In Fig. 7, we show the bifurcation plot of prey with
respect to the fear parameter e. We also observe that for a fixed value of coopera-
tion parameter α, the system tends to become unstable with an increase in the fear
parameter e. Here, we have only shown bifurcation plot for prey population because
prey and predator has the same bifurcation behavior.

Figure 8 depicts saddle-node bifurcation with respect to the parameter α. We
have fixed all the parameters as r = 4, k = 10, e = 10, c = 0.5, α0 = 0.5, a = 0.3,
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Fig. 6 Bifurcation plot of
prey for the model (2) with
varying hunting cooperation
parameter α. Here, all the
other parameters are fixed as
r = 4, k = 10, e = 10,
c = 0.1, α0 = 3, a = 0.3,
b = 0.5, δ0 = 0.5 and,
δ1 = 0.03
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Fig. 7 Bifurcation plot of
prey for the model (2) with
varying fear parameter e.
Here, all the other parameters
are fixed as r = 4, k = 10,
c = 0.1, α0 = 3, α = 1.2,
a = 0.3, b = 0.5, δ0 = 0.5
and, δ1 = 0.03
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Fig. 8 Plot of saddle-node
bifurcation with respect to
the parameter α. Remaining
parameters are fixed as
r = 4, k = 10, e = 10,
c = 0.5, α0 = 0.5, a = 0.3,
b = 0.01, δ0 = 0.8 and
δ1 = 0.03. Here, blue colour
indicates stable equilibrium
point; red colour indicates
source; green colour
indicates saddle point
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b = 0.01, δ0 = 0.8 and δ1 = 0.03. Here, we observe that the system goes through
saddle node bifurcation at α = 0.0938 and the set of parameters satisfy the analytical
conditions.

6 Discussion and Concluding Remarks

Social interactions within a population are a common and essential phenomenon
from an ecological perspective. In particular, predators cooperate during hunting to
increase the success rate of catching prey. Due to predation fear, prey shows a vari-
ety of anti-predator behavior, decreasing prey’s per capita growth rate. The present
manuscript considered a model incorporating both hunting cooperation and fear
effect with Crowley-Martin functional response. First, we observed that incorporat-
ing hunting cooperation may produce limit cycles via Hopf-bifurcation and, hence,
destabilizing the system. Also, the system undergoes saddle-node bifurcation with
respect to the parameter α under certain conditions. In addition, we noticed that the
system shows bi-stability behavior in which the solution tends to prey-only equilib-
rium or coexisting equilibrium state. Furthermore, we have seen that for a fixed value
of hunting cooperation parameter, increasing the strength of fear makes the system
unstable. Hence, hunting cooperation and fear effect is of great significance from an
ecological aspect.
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Chaotic Dynamics of Third Order Wien
Bridge Oscillator with Memristor Under
External Generalized Sinusoidal
Stimulus

Aniruddha Palit

Abstract The qualitative behaviour of the signals generated by a third order Wien
bridge oscillator with memristor under external generalized sinusoidal stimulus is
studied. The bifurcation of the nature of the solution for different range of the parame-
ters of the system reveal that the external stimulus generates an added layer of security
which can be used to build a secure communication channel using the synchroniza-
tion of chaos. Some specific regimes of the parameters of the external stimulus are
identified over which such secure channel can be established. The 0-1 test of chaos
has been employed to verify the chaotic nature of the output signal.

Keywords Wien bridge oscillator · Memristor · Bifurcation · Chaos

1 Introduction

The study of dynamical behaviour of the signals in the circuit theory has always been
a topic of interest because of the complex dynamics and noise arising in the output
and the analysis of their characteristic properties is a matter of great importance in
the transmission of signals to make a consistent communication system. In the year
1971 Leon Chua [4] first observed that four fundamental variables, namely charge
(q), current (i), flux (φ) and voltage (v) arise inmathematical formulation of a circuit.
Determination of these four variables require four relations involving them out of
which three relations can be generated by the axioms of classical two terminal circuit
elements, namely inductor (relation involving i and φ), resistor (relation involving i
and v) and capacitor (relation involving v and q). However, one relation between φ
and q remains undefined. Chua postulated this missing element, named as memristor
which was realized recently [20] by Stan Williams group of HP Labs in 2008. The
character of memristor is nonlinear and unique in the sense that no combination of
nonlinear resistive, capacitive and inductive components can duplicate its excellent
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feature of memory and neuromorphic property. As a consequence the application of
memristor has drawn the attention of many researchers in the construction of non-
volatile memory [16], neural network [12], nonlinear circuits [23] and various other
fields.

In the circuit theory wien bridge oscillator is used to generate sinusoidal sig-
nals and is composed of resistors and capacitors. Recently memristors are used in
such circuit exhibiting complex dynamic phenomena such has chaotic [22], hyper-
chaotic [25] behaviours as well as periodic and quasiperiodic behaviours for different
regimes of the parameters present in the system. Wu et al. [22] designed a fourth
order chaotic oscillator by the construction of a generalized memristor. Ye et al. [25]
manufactured a fifth-order Wien-bridge hyperchaotic circuit. However, these higher
order circuits are difficult to analyze due to their complex dynamics. Bao et al. [1]
presented a third-order RLCM-four-elements-based autonomous memristive chaotic
circuit by an active oscillator and a memristor. Rajagopal et al. [17] studied a third
order Wien bridge oscillator (WBO) with fractional order memristor. Xu et al. [24]
introduced external sinusoidal voltage stimulus in WBO and studied different com-
plex behaviour. This kind of systems possessing complex dynamic behaviour can be
used in information engineering such as generation of pseudorandom sequences in
various information encryption, chaotic communication systems and synchroniza-
tion etc.

Various electrical circuits such as Chua circuit, WBO etc. produce chaotic output
which are categorized into self-excited and hidden attractors. The basin of attraction
of a self-excited attractor is connected with neighbourhoods of unstable equilibrium
point. Therefore, such attractors can be identified numerically following standard
computational procedures in which starting from a sufficiently small neighbourhood
of an unstable equilibrium point and after a transient process a trajectory is attracted
to a state of oscillation and then traces it. On the other hand the basin of a hidden
attractor is not connected with equilibria and hence it is very much challenging
to visualize. Leonov et al. [11] classified hidden and self-excited attractors which
captured the attention of the scientific community. Burkin and Khien [2] introduced
an analytical-numerical method for localization of hidden attractors. Dynamics of
self-excited and hidden attractors have been studied by Chen et al. [3], Stankevich et
al. [19] and many more. Synchronization of such attractors in Chua circuit have been
investigated by Kiseleva et al. [10]. Therefore, identification of chaotic attractors
and realization of its nature is a challenging and active research of interest and is
expected to contribute significantly in the transmission of confidential information
through a secure communication channel.

Secure communication with chaos is an important field in engineering. A continu-
ously changing chaotic signal is used as a carrier signal in the chaotic communication
in contrast to a fixed carrier signal as used in classical communication. As a result it
becomes verymuch difficult to predict the signal transmitted through chaotic commu-
nication thereby increases the security level and consequently it has very important
place in secure communication system. Oppenheim et al. [14] first made the study
of chaotic communication in 1992 and this field has been further explored by dif-
ferent researchers studying 5D hyperchaotic systems [26], chaotic systems with no
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equilibrium [27] or hidden attractor [15]. Even chaotic system of fractional order
[15], jerk chaotic system using sliding mode control [6] and several other interesting
studies have been reported in literature. Therefore, identification of the regimes of
the parameters of an WBO has significant applications in chaotic communication.
One must apply proper verification method to identify the chaotic nature of a signal,
without which definite decisions cannot be made. The computation of the maximal
Lyapunov exponent is one such technique to determine chaos for quite a long time
in the literature. However, we have used another method proposed by Gottwald and
Melbourne [8] for detecting chaotic dynamics, known as 0-1 Test, which is based on
time series data and has shown its potential in the determination of chaotic as well
as non-chaotic nature of a signal in the recent past. The test can be applied in higher
order systems without any practical difficulties.

In this article we have proposed a model of WBO under externally driven gener-
alized sinusoidal voltage stimulus and studied the nature of the output signal. The
objective of this paper is to check the potential of the driven stimulus on the output
and to identify regimes of the parameters of these external forces for which chaotic
signals can be generated by this kind of circuits. Such external stimulus enables us
to make extra layer of security over the system parameters making the transmission
of the signals in chaotic communication system more unpredictable and the system
becomes more reliable.

The article is arranged as follows. A stability analysis of the equilibrium points of
theWBO is presented in Sect. 2. The bifurcation of the output signals of drivenWBO
have been studied in Sect. 3 and the subsection therein and regimes of the parame-
ters of the external stimulus are identified for which chaotic output is produced. A
specimen of the parameter values are chosen and the 0-1 test is employed on the
corresponding output signal to ensure its chaotic nature in Sect. 4. Conclusions and
future aspects of this model are discussed in Sect. 5.

2 Stability Analysis of Wien Bridge Oscillator

The idea of memristor was first introduced by Chua [4] and its mathematical model
was first proposed in [5]. A third order Wien bridge oscillator can be written in
dimensionless form [17] as

ẋ = x
(
a − 1 − cz2

) − by (1a)

ẏ = ax − by (1b)

ż = −x − z
(
d − x2

)
(1c)

where a, b, c and d are parameters of the oscillator. In an electrical circuit the resistors
and capacitors are responsible for the loss of electrical energy and so the external
stimulus should be introduced in the circuit to restore this loss in order to execute
the operation of the circuit for a long time. The external stimulus produces elec-
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tromotive force (EMF) which is responsible to maintain voltage difference between
the nodes of a circuit. Various external energy sources such as battery, generators
etc. can be introduced at different nodes to boost the voltage differences in order to
produce chaotic output of the circuit making it difficult to predict in advance unless
one precisely knows the values of the parameters involved in the system and such
output can be made to build a secure chaotic communication system. In order to
enhance the security of the chaotic communication system more than one sources
for production of EMF can be introduced in the above circuit having various magni-
tude, phase and frequency. We consider three different external sinusoidal stimulus
having different magnitudes in the above system and check if the parameters of these
external stimuli make any additional layer of security over the system parameters by
producing chaotic output signal. Since, an autonomous system representation of a
differential system is not unique, for the sake of simplicity, we can study the effect
of these external stimuli separately in each of the above equations so that it can be
written in generalized form as

ẋ = x
(
a − 1 − cz2

) − by + f1 cos (ωt) (2a)

ẏ = ax − by + f2 cos (ωt) (2b)

ż = −x − z
(
d − x2

) + f3 cos (ωt) (2c)

and study its qualitative behaviour under the influence of the parameters of these
external stimuli.

The unperturbed system (1) has the fixed points at

P0 = (0, 0, 0) , P1 =
(

xP1 ,
a

b
xP1 ,

xP1(
xP1

)2 − d

)

, P2 =
(

xP2 ,
a

b
xP2 ,

xP2
(
xP2

)2 − d

)

P3 =
(

−xP1 ,−
a

b
xP1 ,−

xP1(
xP1

)2 − d

)

and P4 =
(

−xP2 ,−
a

b
xP2 ,−

xP2(
xP2

)2 − d

)

where,

xP1 =
√

−c + √
c
√
c − 4d + 2d

√
2

, xP2 = −
√

−c − √
c
√
c − 4d + 2d

√
2

.

It is notable that xP1 and xP2 are not real for any real value of c and d so that the
only effective real fixed point of the system (1) is the point P0. By linearizing the
system near the point P0 the Jacobian Matrix can be expressed as

J =
⎡

⎣
−1 + a −b 0

a −b 0
−1 0 −d

⎤

⎦
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the characteristic equation of which is

λ3 − (−1 + a − b − d)λ2 − (−b − d + ad − bd)λ + bd = 0.

The eigen values of J at the fixed point P0 are the roots of the above characteristic
equation given by

λ1 = −d, λ2,3 = 1

2

(
−1 + a − b ±

√
−4b + (1 − a + b)2

)
.

It is clear that the eigen values λ2 and λ3 will be complex conjugates when the
discriminant is negative i.e., if

−4b + (1 − a + b)2 < 0 i.e. if 1 − 2
√
b + b ≤ a ≤ 1 + 2

√
b + b.

In this interval if particularly a < b + 1 along with d > 0, the real parts of λ2 and λ3

will be negative and in that case the equilibrium point will be asymptotically stable.
However, if a > b + 1 with d > 0, we have λ1 < 0, Re (λ2) > 0 and Re (λ3) > 0
so that the points P0 becomes an unstable equilibrium point.

The oscillator (1) is generally known to generate sinusoidal waves in a large range
of frequencies. However, we observe that the system has chaotic solution for different
values of the parameters. Rajagopal et al. [17] studied the Wien Bridge Oscillator
with fractional order memristor considering the values

b = 1, c = 0.5, d = 2 (3)

as the parameter a increases. In this sectionwe highlight similar nature of the solution
of the system (1) for the abovementioned set of values of the parameters. The solution
orbit for some discrete values of a are shown in Fig. 1.

Wemay observe different kind of orbits in these figures. Notably, a small change in
a from5.96 in theFig. 1c to 5.97 in theFig. 1dproduces a bifurcation froman irregular
orbit to a perfectly periodic orbit. The nature of the irregularity cannot be explicitly
identified unless we perform certain test for confirmation of chaotic behaviour. One

(a) (b) (c) (d)

Fig. 1 Solution orbit of the WBO system (1) with parameter values given by (3) for a =
2.55, 3, 5.96, 5.97 respectively in the subfigures (a) − (d)
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(a) (b) (c)

Fig. 2 Bifurcation diagram of xmax, ymax and zmax of the solution orbit of the WBO system (1)
for 700 ≤ t ≤ 1000 against the parameter a when b = 1, c = 0.5, d = 2

can only state that the parameters present in the system have significant effect not
only on the nature of the equilibrium point P0, but also on the stability of the periodic
solution. In order to have a proper idea regarding the effect of the parameter a on the
periodic or chaotic nature of the solution orbit we draw the bifurcation diagram of
xmax, ymax and zmax for 700 ≤ t ≤ 1000 against a as shown in Fig. 2.

It is clear from these figures that the system (1) exhibits sensitive dependence on
the values the parameter a. The periodic and chaotic regimes occur alternately in
the spectrum of the parameter a. Extensive study has been performed [1, 17, 25] for
this classical third order WBO. A transmitter made by WBO generates sinusoidal
waves which can be easily captured by a receiver thereby making a consistent com-
munication system. However, such periodic transmission can be captured by any
receiver synchronizing the parameter values without facing much difficulties, which
makes the communication system open to all. Confidential information cannot be
transmitted through such a system. A confidential information requires the data to be
encrypted in such a manner that cannot be decrypted by anyone without the detailed
specification of the communication system. Such a secure communication channel
can be established by the synchronization of chaos, through which information can
be transmitted and received and finally decrypted only when the chaotic data can
be generated identically in the receiver end. Sensitive dependence of the system on
more than one parameters like a may produce an additional layer of security and in
order to introduce such extra layer we apply external generalized sinusoidal stimuli
to the system (1) and construct the generalized forced system (2) and check if the
externally excited system produce chaotic output signal controlled by the parameters
f1, f2, f3 and ω.

3 Qualitative Behaviour of Forced Wien Bridge Oscillator

The dynamic behaviour of nonautonomous memristor oscillator circuits have been
investigated by several authors [24] showing complex dynamics induced by varia-
tions of the amplitude and frequency of the external stimulus and system parameters.
Several experimental, simulative and theoretical aspects of the memristor have been
studied by many authors [1, 17, 22, 25] in the last decade exhibiting different higher
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and lower order complex dynamics. Such complex dynamical behaviour of the sys-
tem are very much useful in the construction of chaotic communication system and
remarkable results have been achieved by many researchers [6, 15, 26, 27]. The
characters of chaotic signals, such as nonlinearity, unstability, aperiodicity etc. have
made it attractive for the use in the chaotic communication to enhance the level of
security of the transmission of the encrypted data. In this section we shall investigate
how the external periodic forces applied on the traditional wien bridge oscillator
impact on the generation of chaotic solution and construct an enhanced layer of
security over the system parameters.

3.1 Effect of Amplitude of the Driven Forces

We first study the forced Wien bridge oscillator (FWBO) given by (2) for a = 2,
b = 1, c = 0.5, d = 2 and check the behaviour of its solution for the special case
when f1 = f2 = f3 = f (say) and f increases in the range 0 ≤ f ≤ 4, where we
have chosen ω = 1.We present the bifurcation diagram of the x , y coordinates of the
points on the Poincare section of the solution by the half plane z = 0, x ≥ 0 along
with the distance r = √

x2 + y2 from the fixed point P0 (0, 0, 0) in Fig. 3a-c as f
increases in the range 0 ≤ f ≤ 4. We observe that the deformation of the periodic
orbit starts at f = 3.54 and finally lead to chaotic orbit as f increases. We choose
a specimen value f = 3.65 from the chaotic regime and draw the solution orbit as
shown in the Fig. 3d. The Poincare section of this orbit by the half plane z = 0, x ≥ 0
is presented in the Fig. 3e. The corresponding plots of x(t), y(t), z(t) are shown in
Fig. 3f for 700 ≤ t ≤ 1000.

The bifurcation diagrams shown inFig. 3a-c clearly show that the FWBOproduces
periodic oscillation for a wide range of values of f . However, this periodic nature
of the solution breaks and it deforms into unstable orbit which ultimately produces
chaotic behaviour for little increase in the value of the amplitude f . In order to get
a clear idea the solution orbit for f = 3.65 is displayed in Fig. 3d which evidently
shows that the orbit is not periodic at all for 700 ≤ t ≤ 1000. It is clear that the
orbit is chaotic in nature and becomes evident from its Poincare section in Fig. 3e,
though some decisive tests such as 0-1 test is required to be performed as discussed in
Sect. 4. The solutions x, y, z plotted against t in the Fig. 3f do not have any periodic
nature. If the value of the parameter f is increased further the chaotic solution again
deforms to period one. We clearly obtain periodic orbit when f increases beyond
3.765. Thus, we identify a small window of f for which the FWBO produces chaotic
solution. Identification of such small window is necessary for the enhancement of
the security of the chaotic communication system.
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(a) (b) (c)

(d)
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Fig. 3 Bifurcation diagram of a the x coordinate, b the y coordinate, c the distance r = √
x2 + y2

from P0 (0, 0, 0) for the points of the Poincare section of the solution of the FWBO system (2)
by the half plane z = 0, x ≥ 0 against the parameter f . d The solution orbit of the system (2) for
f = 3.65, e corresponding Poincare section by the half plane z = 0, x ≥ 0 and f plots of x(t), y(t),
z(t) for 700 ≤ t ≤ 1000. Here, a = 2, b = 1, c = 0.5, d = 2, ω = 1 and f1 = f2 = f3 = f in all
the subfigures

3.2 Effect of Frequency of the Driven Forces

We next study the effect of the parameter ω on the system (2). The vertical gridlines
in Fig. 3a-c at f = 3.5 show that the solution of this system is periodic for ω = 1.
We now see how the behaviour of the solution changes when the frequency ω of
the externally applied force vary. In order to study elaborately we may inspect the
bifurcation diagram of the x, y coordinates of the points on the Poincare section of
the solution along with the distance r = √

x2 + y2 when 700 ≤ t ≤ 1000 in Fig. 4a-
c as ω increases from 0.95 to 1. We find that as ω decreases, the nature of the
solution of the system deforms from periodic to chaotic through the route of periodic
doubling bifurcation, starting from ω = 0.9872. The chaotic orbit is observed when
ω decreases further and becomes less than 0.9829. Similar bifurcation diagrams
are also plotted in Fig. 4d-f when ω increases from 1.3 to 1.44. One may observe
bifurcation of the periodic solution starting from ω = 1.379 and generates chaotic
solution, but in this case it does not follow the route of periodic doubling. Thus, we
identify two ranges of ω, viz. 0.95 ≤ ω ≤ 0.9829 and 1.379 ≤ ω ≤ 1.44 in which
the system (2) exhibits chaotic behaviour. Therefore, signals generated by FWBO
in this kind of unusual windows of the frequency ω may be securely transmitted
exploiting its chaotic nature.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Bifurcation diagram of a the x coordinate, b the y coordinate, c the distance r = √
x2 + y2

from P0 (0, 0, 0) for the points of the Poincare section of the solution of the FWBO system (2) by the
half plane z = 0, x ≥ 0 against the parameter ω when 0.95 ≤ ω ≤ 1. Similar bifurcation diagram
of d the x coordinate, e the y coordinate, f the distance r = √

x2 + y2 against the parameter ω
when 1.3 ≤ ω ≤ 1.44. Here, a = 2, b = 1, c = 0.5, d = 2 and f1 = f2 = f3 = f = 3.5 in all the
subfigures

3.3 Effect of Variable Amplitude of the Driven Forces

We have observed the effect of the external forces on the FWBO and identified some
ranges of the amplitude f and frequency ω in which the solution of the system
has chaotic behaviour. So far we have imposed the restriction that f1 = f2 = f3 =
f (say). Here, we investigate the system under little general criteria assuming f3 �=
f = f1 = f2. Similar to the Fig. 3d we fix f3 = 3.65, but decrease the value of
f and investigate the behaviour of the system. The Fig. 5 show the bifurcation of
the x , y coordinates of the points on the Poincare section of the solution along
with the distance r = √

x2 + y2 by the half plane z = 0, x ≥ 0 for the interval
700 ≤ t ≤ 1000. It is interesting to see that the solution does not intersect the half
plane for 1.82725 ≤ f ≤ 2.16375. We, therefore, check the section of the solution
orbit by the half plane z = −2, x ≥ 0 and find that it is periodic in this range and so
no such diagram is presented here. Thus, we find that the system produces chaotic
oscillation for quite a large value of the amplitude f of the driven forces.

4 The 0-1 Test for Chaos Applied on the FWBO

One standard technique for determination of the chaotic nature of a solution is to
compute the maximal Lyapunov exponent [9]. Recently Gottwald and Melbourne
proposed a new method [8] for detecting chaotic dynamics, known as 0-1 Test,
which can be applied to ordinary and partial differential equations as well as on
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Bifurcation diagram of a the x coordinate, b the y coordinate, c the distance r = √
x2 + y2

from P0 (0, 0, 0) for the points of the Poincare section of the solution of the FWBO system (2) by
the half plane z = 0, x ≥ 0 against the parameter f when 0 ≤ f ≤ 2. Similar bifurcation diagram
of d the x coordinate, e the y coordinate, f the distance r = √

x2 + y2 against the parameter f
when 2 ≤ f ≤ 3.65. Here, a = 2, b = 1, c = 0.5, d = 2, f3 = 3.65 and f1 = f2 = f in all the
subfigures

maps. Even if the deterministic time series data is provided, one can bypass the
phase space reconstruction technique using this 0-1 test and determine whether a
solution is chaotic or non-chaotic. The simplicity of the technique has drawn the
attention of many researchers in the recent past [7, 13, 18]. The main advantages of
this test are (i) it is binary i.e., the output of this test can be 0 or 1, (i i) the nature of the
vector field and the dimension of the system do not impose any practical limitations,
(i i i) the difficulty of the phase space reconstruction process can be avoided for time
series data. In this section we apply the 0-1 test on FWBO for specific values of the
parameters, as a specimen, to check if the signal so generated is chaotic in nature.
We choose the parameter values given by (3) and

a = 2, f1 = f2 = 1, f3 = 3.65, ω = 1.4 (4)

and verify whether the corresponding solutions x (t), y (t) and z (t) of FWBO are
chaotic.

We briefly review this test in the context of the solution x (t). The test has under-
gone through different equivalent modifications [8]. We are following the version,
known as correlation method, discussed in [21] where a pseudo code is provided to
determine the output K of the test. The values of x (t) are discretized to x j = x

(
t j

)

for j = 1, 2, . . . , N and generate the translation variables

pn (c) =
n∑

j=1

x j cos ( jc) ,qn (c) =
n∑

j=1

x j sin ( jc) (5)
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for n = 1, 2, . . . , N , where c ∈ (0,π), with little abuse of notation of the parameter c
in the FWBO (2). One important property of the test is that themethod is independent
of the discrete values of the solution and almost any choice of x j will serve the
requirement. The only precaution one should take is that discrete values must be
chosen after sufficient long time so that the trajectories lie on the attractor or remain
close to the attractor.Keeping this inmindwe choose t j in the domain [700, 10000] by
considering t1 = 700 and choosing the subsequent values of t at a distance �t = 2
so that t j = t1 + ( j − 1) �t . The second important necessary requirement for the
scheme is that the time series should be long enough to allow for asymptotic behaviour
of pn (c) and qn (c), which means that the value of N should be taken sufficiently
large.

It is notable that the output of the test is independent of the choice of the parameter
c. It can be rigorously shown that pn (c) and qn (c) are bounded if the underlying
dynamics is periodic or quasiperiodic, whereas they behave like Brownian motion
for large class of chaotic dynamical systems. These behaviours can be investigated
by analyzing the mean square displacement defined by

Mn (c) = lim
n→∞

1

N

N∑

j=1

[
pn+ j (c) − p j (c)

]2 + [
qn+ j (c) − q j (c)

]2
(6)

for n = 1, 2, . . . , Nc 	 N . In practice we have the approximate formula

Mn (c) 
 1

N

N∑

j=1

[
pn+ j (c) − p j (c)

]2 + [
qn+ j (c) − q j (c)

]2
(7)

where N is taken as a sufficiently large positive integer. The mean square displace-
ment is a bounded function if the underlying signal is periodic or quasiperiodic,
whereas it becomes unbounded for chaotic data. The asymptotic growth rate K (c)
is defined by

K (c) = lim
n→∞ ρ (tn,Mn (c)) (8)

where tn = (t1, t2, . . . , tn) and Mn (c) = (M1 (c) , M2 (c) , . . . , Mn (c)) and ρ des-
ignates the correlation coefficient between tn and Mn (c). This K (c) is practically
computed by the approximation Kn (c) = ρ (tn,Mn (c)) for n = Nc. The process
involves different approximations of Mn (c) and K (c) which may produce little
variation in the asymptotic growth rate. The value of K (c) will be 1 for chaotic sig-
nal and 0 for periodic or quasiperiodic signal. However, the approximation process
involved in the computation scheme will produce the value of K (c) close to either 1
or 0. In our computation we have taken N = 3200, Nc = 400, c = 1 and the plot of
pn versusqn is shown in Fig. 6a alongwith the graph ofMn (c) in Fig. 6b. The graph of
Kn (c) is plotted in Fig. 6c for n ≤ Nc showing that Kn (c) 
 1 at n = Nc. Although
the quantity K (c) is expected to produce a value which does not depend on c, the
approximation process involved in this scheme may produce unexpected variation
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Fig. 6 a The pn versus qn plot, b the graphs of Mn , c the graph of Kn computed for the solution
x (t) of the FWBO system (2). Analogously, d The pn versus qn plot, e the graphs of Mn , f the
graph of Kn computed for the solution y (t) of the system (2). Finally, g The pn versus qn plot,
h the graphs of Mn , i the graph of Kn computed for the solution z (t) of the system (2). Here, the
values of the parameters are given by (3) and (4) in all the subfigures

in the approximation of K (c) for some isolated value of c, such as resonant points.
This problem is treated by considering K = median {K (c1) , K (c2) , . . . , K (cm)},
where c1, c2, . . . , cm are chosen randomly from the domain (0,π). The median is
taken in place of mean because of the fact that median is robust and less sensi-
tive against outliers associated to resonances. We have restricted, for simplicity, the
domain of c to [0.5, 1.5] and taken equidistant values of c as

c1 = 0.5, c2 = 0.75, c3 = 1, c4 = 1.25, c5 = 1.5

and found the approximations K (c1) = 0.990825, K (c2) = 0.988733, K (c3) =
0.994847, K (c4) = 0.995746, K (c5) = 0.995214 and get K = 0.994847 
 1
showing that the solution x (t) is chaotic.

Analogous computations are performed for y (t) and z (t). The pn versus qn
plot, the graphs of Mn (c) and Kn (c) are shown in the Fig. 6d-f with c = 1 for
y (t). Similar plots for z (t) are shown in Fig. 6g-i. The signals represented by y (t)
produce the approximations K (c1) = 0.997263, K (c2) = 0.991210, K (c3) =
0.995412, K (c4) = 0.997774, K (c5) = 0.978373 so that K = 0.995412 
 1.
The signals represented by z (t) produce the approximations K (c1) = 0.998093,
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(a) (b)

Fig. 7 a The solution orbit of the FWBO system (2) and b the corresponding x (t), y (t), z (t).
Here, the values of the parameters are given by (3) and (4) in all the subfigures

K (c2) = 0.995041, K (c3) = 0.991666, K (c4) = 0.995254, K (c5) = 0.994567
so that K = 0.995041 
 1. Thus, we observe that the solutions y (t) and z (t)
produce chaotic signals which can be used in the chaotic transmission. Therefore,
the 0-1 test confirms the chaotic nature of the output signals generated by the FWBO
where the parameter values of the system are given by (3) and (4) . The solution orbit
of this system is displayed in the Fig. 7a and the corresponding x (t), y (t), z (t) are
presented in Fig. 7b.

5 Conclusion

A model of Wien bridge oscillator driven by external sinusoidal stimulus have been
studied and regimes of the parameters of these external forces have been identified
over which the signal so generated becomes very much unpredictable enhancing
the security in chaotic communication system. A theoretical analysis of the system
dynamics has been performed using phase portraits, bifurcation diagrams. It is found
that the external periodic stimuli are responsible to generate chaotic carrier signals.
The signals generated by the circuit have been tested by 0-1 test confirming its chaotic
nature. The behaviour of the output generated under other kind of external stimulus
such as digital, trapezoidal, triangular, sawtooth signals remains an open problem
and will be studied elsewhere.
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The Electrodynamic Origin
of the Wave-Particle Duality

Álvaro García López

Abstract A derivation of pilot waves from electrodynamic self-interactions is pre-
sented. For this purpose, we abandon the current paradigm that describes electro-
dynamic bodies as point masses. Beginning with the Liénard-Wiechert potentials,
and assuming that inertia has an electromagnetic origin, the equation of motion of
a nonlinear time-delayed oscillator is obtained. We analyze the response of the uni-
formmotion of the electromagnetic charged extended particle to small perturbations,
showing that very violent oscillations are unleashed as a result. The frequency of these
oscillations is intimately related to the zitterbewegung frequency appearing inDirac’s
relativistic wave equation. Finally, we compute the self-energy of the particle. Apart
from the rest and the kinetic energy, we uncover a new contribution presenting the
same fundamental physical constants that appear in the quantum potential.

Keywords Nonlinear dynamics · Chaos · Delay differential equations ·
Electrodynamics · Retarded potentials · Pilot waves · Quantum mechanics

1 Introduction

Recently developedmodels of silicon droplets have shown deep connections between
quantummechanical systems and classic hydrodynamics, allowing nonlinear dynam-
icists to grasp how the complex motion of a quantum particle can be [1, 2]. More
specifically, thesemacroscopic systems describe the unpredictable dynamics ofwalk-
ing droplets as the result of a feedback interaction between the bouncing particle and
the waves that it produces when it strikes the surface of a fluctuating medium under-
neath, close to and even beyond the Faraday threshold. Fortunately, and contrary to
quantum mechanical models, these hydrodynamic analogs are investigated in terms
of understandable and firmly established principles of chaos theory and nonlinear
dynamical systems.
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Although the pilot wave dynamics of silicon droplets has been proposed as a can-
didate to comparatively investigate quantum systems, a specific homologous mech-
anism that can give rise to the wave-particle duality in the microscopic realm has not
been rigorously developed until very recently [3]. In the present paper we provide
strong evidence suggesting that the wave-particle duality has its basis in the theory
of classical electromagnetism. For this purpose, we show that extended charged bod-
ies can self-interact when they are accelerated. A certain region of the particle can
emit radiation, which later on affects a different region of the same particle. This
phenomenon introduces a time-delay in the self-force of the extended body.

Consequently, the description of the dynamics of charged bodiesmust be posed by
means of retarded differential equations. As it is well-known, the solutions to these
differential equations frequently present limit cycle behaviour as a consequence of
the Andronov-Hopf bifurcation [4, 5]. The feedback interaction of radiative and
Coulombian fields among different charged parts of the particle can trigger a fast
oscillation, destabilizig its uniform motion. These fields produce dissipation and
antidamping as a consequence of radiation reaction. In the thermodynamic context of
open systems, such a periodic motion has been recently referred as a self-oscillation
[6]. In this manner, we show that the wave-particle duality is just an immediate
consequence of the self-oscillation of extended electrodynamic bodies, which can
be regarded as dissipative structures.

2 Electrodynamics of an Extended Body

Wemodel the electrodynamics of an extended charged body by using the Lagrangian
density of Maxwell’s theory of electrodynamics with sources. This density is written
as

L = − 1

4μ0
Fμν Fμν − Aμ Jμ, (1)

where Jμ denotes the four-current density representing the sources, and Fμν is the
Faraday tensor. Then, Maxwell’s equations can be derived in covariant form from
the previous action by differentiation, yielding

∂μFμν = μ0 J ν . (2)

To describe the dynamics of the source of charge, we express the four-density as
Jμ = ρ0Uμ, where the density of charge ρ0 in the proper frame and the four-velocity
Uμ have been introduced. The charge density ρ in some inertial reference frame can
be related to the density in the proper frame by using the Lorentz factor γ , through
the relation ρ = γρ0. Then, the four-current is simply written as Jμ = (ρc, J ), with
J = ρvs the euclidean current density. Here we are considering a rigid distribution of
charge. This assumption allows us to write the charge density at time t as ρ(x, t) =
ρ(x − xs(t)), where the vector xs(t) represents the position of the particle’s centre
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of mass at time t . Under these assumptions, Maxwell’s equations can be solved in
terms of retarded potentials, which allow to generally derive the fields by means of
Jefimenko’s equations. Using the fact that Fμν = ∂μ Aν − ∂ν Aμ, the four-potential
in the Lorenz gauge can then be written as

Aμ(x, t) = 1

4πε0c2

∫
Jμ(x, tr )

|x − x ′| d3x ′, (3)

where we have introduced the retarded time tr = t − |x − x ′|/c. The analysis pre-
sented ahead considers a very simple rigid charged distribution comprised of two
point particles at a fixed distance. Therefore, in order to compute the self-force, we
can simply use the Liénard-Wiechert potential. This potential is the solution to a
charged point particle, whose charge density can be represented by means of the
Dirac delta distribution, in the form ρ(x, t) = qδ(x − xs(t)). In the Lorenz gauge
we have the solution

Aμ(x, t) = q

4πε0c

(
vμ

(1 − ns · βs)|x − xs |
)

t=tr

, (4)

where the relative speed of the source βs(t) = vs(t)/c has been defined, together
with the time-like four-vector v

μ
s = (c, vs(t)). Finally, the unit vector ns(x, t) =

(x − xs(t))/|x − xs(t)| has also been introduced. It points to the spatial point x ,
where we want to compute the value of the fields. Its application point is located at
the position xs(t), where the charge was placed at the retarded time t = tr .

2.1 A Model of an Electron

In the preset work we consider the charge density ρ(x, t) = −(e/2)δ(x − xs(t))δ(z)
(δ(y + d/2) + δ(y − d/2)). It is the most simple model of an electron, represented
as an “extended" electrodynamic body, as shown in Fig. 1. This charge density repre-
sents a body formed by two pointswith charge−e/2 placed at a fixed distance d in the
y-axis, which moves along the x-axis. We restrict the motion to transversal displace-
ments to simplify our study, since the non-conservative character of electrodynamics
with sources makes the computations very entangled, due to the fact that the Liénard-
Wiechert potential is retarded in time. By restricting ourselves to a one-dimensional
translational motion, we avoid the more complicated three-dimensional problem,
including self-torques. This fudamental model has been designed in previous works
to underpin the use of the Abraham-Lorentz force and also to study the contribution
of electromagnetic mass to inertia [7].We use this elementarymodel hereafter, which
suffices to explain the physical mechanism leading to the wave-particle duality.
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Fig. 1 An electron is shown at the retarded time tr and at the present time t . It consists of two point
charges placed along the y-axis at a constant distance d. From tr to t , the particle accelerates and
advances a distance l along the x-axis. A field perturbation is shown emerging from the upper point
at the retarded time (yellow photon). Later on, this perturbation exerts a force on the second point
at the lower side of the body. In this manner, an extended corpuscle can feel itself in the past. The
speed v and the acceleration a of the particle are represented in green and red, for clearness

2.2 The Self-Interaction

As shown in Fig. 1, an extended electrodynamic body can interact with itself. This
kind of interaction is frequently called a self-interaction [7]. The upper charged
point exerts an electromagnetic force on the lower point a short time later. The self-
force appears because electromagnetic waves can travel between the two points of
the electrodynamic body. Apart from a force of inertia, a term of damping and a
restoring elastic force, it can induce the self-exicted motion of the particle due to a
radiation reaction force. We now compute the electric field produced by the upper
point at the lower point of the body. If we utilize the Liénard-Wiechert potential of
a point particle, we obtain

E = q

8πε0

r

(r · u)3

(
u(1 − β2) + 1

c2
r × (u × a)

)
, (5)

where the relative position between the two points at different times is r(tr ), the
normalized velocity is β(tr ) = v(tr )/c, the acceleration a(tr ) and the vector u =
r̂ − β has been introduced.We highlight that these kinematic variables depend on the
retarded time tr = t − r/c. This time-delay appears because electromagnetic field
perturbations travel with limited velocity in spacetime, according to the principle
of causality. This limitation puts a constraint r = c(t − tr ) on the self-interaction,
assigning a specific event in the past light cone from which the signals coming from
one point of the particle can affect the remaining point.
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According to Fig. 1, we can write the position as r = l x̂ + d ŷ, the velocity as
β = v/cx̂ and the acceleration vector as a = a x̂. These relations allow to compute
the vector u as u = (l − rβ)/r x̂ + d/r ŷ. Then, making use of the identity r2 =
(x(t) − x(tr ))2 + d2, the following inner product r · u = r − lβ results. Regarding
the radiative component of the field, we need to expand the double cross-product
in the form r × (ru × a) = −d2a x̂ + dal ŷ. The total self-force on the center of
mass of the particle can be written as Fself = −eE, where the symmetry of the
arrangement has been taken into consideration. Because of the rigidity of the charge
density, we recall that the the magnetic attractive forces and the electric repulsive
forces all cancel each other along the y-axis. The resulting force that the particle
exerts on itself is

Fself = e2

8πε0

1

(r − lβ)3

(
(l − rβ)(1 − β2) − d2

c2
a

)
x̂. (6)

2.3 Time-Delayed Equation of Motion

Following the tradition, we could now invoke Newton’s second law of mechanics.
For a non-relativistic particle it is written as Fself = ma, with m the electron’s bare
mechanical mass. However, it has been shown in recent works that the self-force can
be expanded by using a Taylor series of the time-delay r/c [3]. Among the infinite
linear and nonlinear terms that contribute to the self-force, the most well-known are
the Lorentz-Abraham force, which consists of a linear term proportional to the jerk
(ȧ) of the particle, and the term of inertia, which is proportional to the acceleration.
This term dominates over all other terms in the limit of very small d/c, what allows
to approximate the self-force as Fself = −mea for non-relativistic velocities. To
this end, we simply define the electromagnetic mass as mec2 = e2/16πε0d, where
Einstein’s mass-energy relation has been obviously used.

In the present work we are assuming that the rest mass of the electron comes
entirely from its electrostatic energy, so that its bare mass can be made equal to zero.
For if mass is not a fundamental property of particles, but just energy, all the mass in
our model must come from the electrostatic energy of the two point charges. Then,
if we use Sommerfeld’s relation for the fine structure constant, the rest mass of the
electron is

me = �α

4dc
. (7)

Using this relation, we can approximate a electron radius of re = d/2 = 0.35 fm.
Naturally, this value is closely related to the the electron’s classical radius.

Therefore, this approach does not artificially introduce bare mechanical inertia in
the theory of classical electromagnetism. Instead, we use the principle of D’Alembert
that, in the approximation of macroscopic objects, leads to Newton’s second law.
Thus classical mechanics should be considered an emergent theory resulting from
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averaging magnitudes over large numbers of electrodynamic bodies. As a corollary,
we predict that the gravitational force between two particles have an electrodynamic
origin as well. Consequently, we propose to replace Newton’s second law by the
static problem

Fext + Fself = 0. (8)

As long as we can approximate Fself = −mea in the macroscopic limit, we see
that Newton’s second law naturally arises from Maxwell’s dynamical theory of the
electromagnetic field. The force of inertia reveals in this way as an electromagnetic
force of self-induction, coming from the interior of the body as a consequence of
Faraday’s law. This statement opposes to Mach’s principle, which tries to justify the
origin of inertial forces on external distant masses.

To study the “free” particle, we can settle the external forces to zero, thus we have
the simple law of motion Fself = 0. Its solution describes the geodesic motion of
the electrodynamic body in the same way as in the theory of general relativity, for
example. The differential equation of motion is

d2

c2
a(tr ) + r

c

(
1 − v2(tr )

c2

)
v(tr ) +

(
1 − v2(tr )

c2

)
(x(tr ) − x(t)) = 0. (9)

The difficulty with this state-dependent delayed differential equation [8] is that most
kinematic variables are specified at the retarded time tr = t − r/c. If we translate
them to the present time t → t + r/c, we obtain

a(t) + r

d

c

d

(
1 − v2(t)

c2

)
v(t) +

( c

d

)2
(
1 − v2(t)

c2

) (
x(t) − x

(
t + r

c

))
= 0.

(10)
This differential equation clearly evokes a nonlinear oscillator [6].We can identify

a term of Newtonian inertia and a typical linear oscillating term representing an
elastic restoring force. But we can see two more nonlinear contributions, as well.
Firstly, the contribution appearing in the second term acts as a nonlinear damping
force, producing the system’s dissipation. Secondly, the advanced potential produces
a non-conservative force of antidamping.

The frequency of oscillation can be approximated asω0 = c/d, what yields a value
of the period T0 = 4πre/c = 1.18 × 10−22s, if we use the electron’s classical radius.
Thus the electron oscillates very fast describing a deterministic motion. However,
this motion resembles a stochastic motion at large enough time scales. This jittery
dynamics and the specific value of its period are very familiar to quantummechanical
theorists. They are closely related to the trembling motion appearing in Dirac’s wave
equation equation for relativistic particles, commonly known as zitterbewegung.

Importantly, we notice that the time-delay and the damping term involve an arrow
of time. Irreversibility is inherent to non-conservative dynamical systems presenting
limit cycle behavior. It is also conventional in time-delayed systems, whose trajecto-
ries are not specifiedby some initial conditions, but rely on the complete knowledge of
functions describing part of their previous history. Of course, this non-conservative
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dynamics only appears when we try to describe the motion of the particle solely,
without reference to the dynamical fields.

In summary, fundamental particles can be considered as open dissipative struc-
tures. They are locally active and operate far from equilibriumby taking and releasing
electromagnetic energy to their surroundings. The dissipative nature of classical elec-
trodynamics with sources becomes manifest by the fact that a Lagrangian density
for the motion of the particle cannot be written by using the traditional minimal
coupling, as it is frequently done in quantum particle physics.

3 Stability Analysis

Now we prove that transversal motion at constant speed is not stable. Consequently,
self-oscillatory motion is the only possibility, irrespective of the periodicity of this
nonlinear oscillation. For this purpose, we consider the differential Eq. (10) and pose
it in the phase space canonical variables. We obtain

ẋ = v,

v̇ = − c

d

r

d

(
1 − v2

c2

)
v −

( c

d

)2
(
1 − v2

c2

)
(x − xτ ) . (11)

The variable xτ has been introduced. It represents the electron’s position evaluated
at time t + τ , where we recall that τ = r/c. Consider that motion at constant speed
βc is feasible. Since x(t) = vt , we also have x(t + r/c) = vt + vr/c, what yields
x − xτ = −vr/c. If we now substitute in Eq. (11) we get

ẋ = v,

v̇ = − c

d

r

d

(
1 − v2

c2

)
v + c

d

r

d

(
1 − v2

c2

)
v = 0. (12)

Therefore, every uniformmotion is an invariant solution of our delayed dynamical
system. We now prove that these solutions are unstable as well. For this purpose, we
compute the variational equations

δ ẋ = δv,

δv̇ = − c

d

δr

d

(
1 − v2

c2

)
v − c

d

r

d

(
1 − v2

c2

)
δv + c

d

r

d

2v2

c2
δv−

− c

d

r

d

2v2

c2
δv −

( c

d

)2
(
1 − v2

c2

)
(δx − δxτ ) . (13)

We follow by computing δr when v̇ = 0, with v = βc. For this purpose, we use the
relation r2 = (x(t) − x(tr ))2 + d2 and Eq. (9). If we combine these two equations
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we can derive polynomial of degree two in r . If we also introduce the Lorentz factor
γ = (1 − β2)−1/2, the solution to this polynomial yields

r = γ d

√
1 + γ 6β̇2

(
d

c

)2

+ γ 4cββ̇

(
d

c

)2

. (14)

Recall, the speed and the acceleration appearing in Eq. 14 are evaluated at time tr .
Interestingly, the time-delay becomes a function of the kinematic variables. When
the particle increases its speed, the self-force is originated at an earlier past time,
because the light cone of the particle evolves with its motion. Evaluating the Eq. (14)
at time t , the computation of the variations of r can be done immediately, yielding

δr(t) = γ 4β

(
d

c

)2

δv̇(t) + dδγ (t). (15)

Grouping terms and using the equation r = γ d for v̇ = 0, we obtain the variational
equation

δ ẋ = δv,

δv̇γ 2 = − c

d
γ δv −

( c

d

)2 (
1 − β2

)
(δx − δxτ ) . (16)

If we consider exponential solutions δx = Aeλt , the characteristic equation of the
dynamical system (16) can be found. It reads

μ2 + μ + (1 − β2)(1 − eμ) = 0, (17)

where the variable μ = λγ d/c has been defined. With the exception of one eigen-
value, the solutions to this equation always present a positive real part, what guar-
antees their unstability for all values of β. As depicted in Fig. 2, this analytical
statement is confirmed by numerical simulation. An infinite spectrum of eigenvalues
of the frequency is obtained, with the following quantization rule

ωn = ηn
c

γ d
. (18)

The appearence of the γ factor is due to the Lorentz boost, which produces a time
dilation. The form factor ηn is characteristic of the geometry of the body. In summary,
we have proved mathematically the existence of oscillatory motion in our dynamical
system for any value of the relative velocity β. Importantly, we would like to mention
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Fig. 2 The complex
function f (z) =
z2 + z + (1 − β2)(1 − ez)

and its roots are computed
for seven different values of
the velocity, with the aid of
Newton-Raphson method.
Since z = γ d/c, we get the
spectrum of eigenfrequencies
of the self-oscillation, which
can be approximated as
ωn ∝ nc/γ d. The
background corresponds to a
representation of the
function for β = 0, using a
domain coloring technique

that this instability depends on the shape of the particle. If the geometry of the
electrodynamic body is switched from oblate to prolate, a Hopf bifurcation occurs
[5].

4 The Quantum Potential

We conclude the present paper by deriving the relativistic kinetic energy and the
quantum potential from the Liénard-Wiechert potential. The insertion of Eq. (14)
into the equation r2 = l2 + d2 allows to exactly obtain l as a function of the relative
speed β and the relative acceleration β̇. The result yields the equation

l =

√√√√
γ 2c2β2

(
d

c

)2

+ γ 8c2β̇2(1 + β2)

(
d

c

)4

+ 2c2γ 5ββ̇

(
d

c

)3
√
1 + γ 6β̇2

(
d

c

)2

.

(19)

Now we denote the self-energy of the particle as E , which we define as the
energy of non-dissipative origin needed to build the charge and achieve its particular
dynamical state of motion. As it is well-known, the magnetic fields perform no work,
and because dissipated energy is being disregarded, we focus on the curl-free part of
the electric field. Bearing in mind these considerations, the potential energy E of the
electrodynamic particle can be defined by means of the Liénard-Wiechert potential
as E = −ecA0/2, what yields
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E = e2

16πε0

1

r · u . (20)

Using previous relations, this equation is written as

E = �αc

4(r − lβ)
. (21)

If we replace the Eqs. (14) and (19) and expand the resulting self-potential in powers
of d/c, we obtain the following Taylor series expansion

E = γ
�αc

4d
− γ 7 a2

2c2
�α

4

(
d

c

)
+ γ 13 3a4

8c4
�α

4

(
d

c

)3

− γ 19 5a6

16c6
�α

4

(
d

c

)5

+ ...

(22)
Again, we assume the idea that mass and inertia have a total electromagnetic ori-
gin. Therefore, the size of the particle can be written using Eq. (7) as d = �α/4mec.
Noticeably, massme is proportional to �. This relation implies that any kind of energy
or canonical momentum can be written as proportional to Planck’s constant. Further-
more, if the speed of the particle is related to the group velocity of the pilot wave,
then it seems reasonable to consider that the relation p = �k holds. This introduces
De Broglie’s relation connecting the velocity of the particle and the wavelength of
the electromagnetic pilot wave. Substitution of Eq. (7) in Eq. (22) yields

E = γ mec2 + Q, (23)

where we have introduced the potential

Q = �
2

2me

α2

8d2
γ

∞∑
n=1

(−1)n(2n − 1)!!
2nn! γ 6n a2n

c2n

(
d

c

)2n

. (24)

We detect two well differentiated terms in Eq. (23). The former corresponds to the
famous relativistic equation representing the energy of a particle in the theory of
special relativity. It contains the rest energy of the particle together with its kinetic
energy. Importantly, we stress that these two magnitudes are not fundamental and
correspond to plain electrodynamic energy. Additionaly, apart from the rest mass
and the kinetic energy, the new potential energy Q has appeared. By using a quadra-
ture related to the coefficients in Eq. (24), the series can be computed and one last
integration yields [3] the expression

Q = − �
2

2me

α2

8d2
γ

(
1 − 1/

√
1 + γ 6β̇2 (d/c)2

)
. (25)

This new contribution vanishes for uniform motion. The Lorentz factor prevents the
particle from traveling at velocities equal or above the speed of light. The constant
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term �
2/2me preceding this potential is identical to the quantum potential appearing

in Bohmian mechanics [9], which can be written as Q = −(�2/2me)∇2R/R. This
potential can not be derived fromaHamiltonian including an external source of poten-
tial, and involves a self-organising process produced by the internal electromagnetic
field [3]. The quantum potential entails an interpretation of classical electrodynamic
phenomena in terms of an emergent hydrodynamic theory [10, 11], which overcomes
the representation of complicated internal self-interactions by using the concept of
quantum pressure.

In theory, once the dynamical system approaches its asymptotic limit set, a func-
tional relation between the position of the particle in the configuration space and its
acceleration can be provided. This relation can be replaced in Q(x, t), allowing to
compute the function R(x, t). Then, we can pose the Hamilton-Jacobi equation. If
the particle is also subjected to the influence of a newtonian external potential V (x, t)
and its average velocity is not relativistic, such an equation reads

∂S

∂t
+ 1

2me
(∇S)2 + Q + V = 0. (26)

After solving the previous equations, and making use of the information about
the particle’s trajectory, the wave function can be built using the polar expression
ψ(x, t) = R(x, t) exp (i S(x, t)/�). Importantly, we deduce from these relations that
the wave function is not an ordinary probabilistic entity, but a real physical field [9]
related to external and internal electrodynamic fields. These fields describe the pilot
wave of the particle, which can produce well-known physical phenomena, as for
example interference and diffraction.

A conservative approximation of the quantum potential has been derived in recent
works, connecting it to typical potentials that break fundamental symmetries [3]. In
particular, it has been claimed that the quantum potential can produce the symmetry
breaking of the Lorentz group. Importantly, we recall that symmetry breaking is an
essential feature in the study of nonlinear dynamics [12].

5 Conclusions and Discussion

The dynamics of an extended electrodynamic body has major similarities with the
motion of silicon droplets found in many experiments during the past decade. In the
present model, quantum waves have their origin in the self-oscillation of the elec-
tron, produced by the feedback interaction of the particle with its own electromag-
netic field. This self-interaction enforces a pilot wave travelling with the corpuscle.
Therefore, the wave-particle duality is immediately explained, since quantum waves
appear naturally as perturbations of the dynamic electromagnetic fields. These self-
interactions and their concomitant forces of recoil, perhaps together with external
zero-point fluctuations [13], can prevent the collapse of the hydrogen atom [14].
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The fact that electromagnetic mass allows to derive the exact relativistic kinetic
energy analytically from the electrodynamic potentials strongly suggests that inertial
mass is not a fundamental concept in physics, but an emergent one. This conclusion
points towards the fact that gravitational mass is also a redundant idea in fundamental
physics, and that the force of gravity has an electromagnetic origin as well. In this
perspective, an electrodynamic theory of the gravitational force would also explain
in simple terms the principle of equivalence. The equality of gravitational mass and
inertial mass would then be explained because of their common origin in the electro-
magnetic force. Importantly, our finding that Newton’s second law can be deduced
from classical electrodynamics shows that classical mechanics is an emergent theory
based on classical electromagnetism. Just in the same way as thermodynamics laws
result from averagingmechanical properties over large number of ensembles. Conse-
quently, equations in which the concept of mass appears as an elementary parameter,
as it occurs with the Schödinger or the Dirac equations, should not be considered
fundamental in physics.

Finally, the model presented in this work is not very realistic because it considers
a rigid charge density, which is structurally unstable. More reasonably, it is expected
that fundamental particles can arise from self-confined fields as a consequence of the
rotation of the fields and their electromagnetic stress, stabilizing the electron. This
idea suggests that particles are electromagnetic solitons [15, 16], perhaps arising
in the context of the Einstein-Maxwell equations. Then, zitterbewegung could be
regarded from the point of view of a field theory as a quasi-breather solution.

Theories including more complex lagrangian densities with other general rela-
tivistic invariants or even nonlinear electrodynamic fields [17] might also allow to
understand fundamental particles as compact field configurations. Then, the electric
charge could be explained as the topological charge of the solitary wave, and not as
a fundamental parameter. Anyway, no theory of elementary particles can be consid-
ered a fundamental theory as long as it does not conform to the principle of general
covariance. Only this principle allows adopting any reference frame to describe the
motion of dynamical fields, dispensing with the metaphysical concept of absolute
spacetime.
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Randomness and Fractal Functions
on the Sierpinski Triangle

A. Gowrisankar and M. K. Hassan

Abstract The notion of fractal and its inherent characters are, in general, explained
through the classical examples Cantor set and Sierpinski triangle. This article incor-
porates the probability and randomness on the dyadic Sierpinski triangle as follows.
The construction process of dyadic Sierpinski triangle starts with an equilateral tri-
angle as an initiator. Then, the generator divides the initiator into four equal triangles,
by connecting the midpoints of three sides and removing the middle interior trian-
gle with probability (1 − p), here the probability gears the randomness. Further, the
homogeneous relation between the fractal dimension of the dyadic Sierpinski trian-
gle and its randomness is investigated. Finally, the fractal interpolation function with
variable scaling is implemented on the Sierpinski triangle by defining its Laplacian.

1 Introduction

Fractal analysis is introduced to describe the irregular objects which are traditionally
observed as too complex to describe using classical Euclidean geometry. Although
the phenomena of a fractal does have a long history in mathematics, it is precisely
defined as a particular class of processes called iterated function systems in which
the so-called selfsimilar or fractal sets can be produced as follows. Let (X, d) be
a complete metric space and (H(X), Hd) denotes the corresponding hyperspace
of nonempty compact subsets of X where Hd is Hausdorff metric. For n ∈ N, let
Nn := {1, 2, . . . , n}. A complete metric space X consisting of a finite family of
contractions fk with the ratios αk , for k ∈ Nn , constitutes an iterated function system
(IFS) and it is symbolized by {X; fk : k ∈ Nn}. Define a self mapF on the complete
metric space H(X) by
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F(B) =
⋃

k∈Nn

fk(B) (1)

which is a contraction with the ratio α = max{αk : k ∈ Nn}, and thus it has a unique
invariant point B∗ in H(X). This invariant point B∗ is referred as a deterministic
fractal constructed by the IFS {X; f1, f2, . . . , fn}. The fixed point B∗ satisfies the
Eq. (1), thus B∗ can be written as the finite copies of itself. The fractal B∗ generated
by the above process obviously have exact self-similarity and hence B∗ is called the
deterministic fractal generated by the finite family of contraction mappings. For a
detailed exposition of the iterated function system reader may refer to [1–4]. The
powerful method to construct the deterministic fractals is iterated function system
[2]. With the help of iterated function system, Barnsley [2] constructed the fractal
interpolation function (FIF) as follows which is development over the interpolation
techniques.A data set {(xk, yk) ∈ R

2 : k ∈ Nn}with x1 < x2 < · · · < xn is given and
xi ’s are not necessarily equidistant. Let I and Ik denote the closed intervals [x1, xn]
and [xk, xk+1], respectively, for k ∈ Nn−1 and Lk : I → Ik, k ∈ Nn−1 be (n − 1)
contraction homeomorphisms such that

Lk(x1) = xk, Lk(xn) = xk+1. (2)

For rk ∈ [0, 1), k ∈ Nn−1 and X := I × R. Set Rk : I × R → R be the n − 1 con-
tinuous mappings satisfying

Rk(x1, y1) = yk, Rk(xn, yn) = yk+1

|Rk(x, y1) − Rk(x, y2)| ≤ rk |y1 − y2|, x ∈ I, y, y∗ ∈ R.
(3)

That is, Rk is contraction mapping with respect to second variable. Define functions
fk : X → Ik × R by fk(x, y) = (Lk(x), Rk(x, y)), for k ∈ Nn−1. Associated with
the IFS {X; fk : k ∈ Nn−1}, a set valued mapping F is defined on K(X) by

F(A) =
⋃

k∈Nn−1

fk(A),

for any A ∈ K(X). K(X) together with the Hausdorff metric h is a complete metric
space, since X is complete. Moreover, by the theory of IFS the contraction mapping
F on K(X) has a unique invariant set G such that G = F(G) and G is the graph
of a continuous function g : I → R satisfying g(xk) = yk for k ∈ Nn . For the data
set {(xk, yk) ∈ R

2 : k ∈ Nn}, the function g whose graph is the attractor of an IFS
{X; fk : k ∈ Nn−1} is called a fractal interpolation function.

Let a set of interpolation data {(xk, yk) ∈ [x1, xk] × R : k ∈ Nn} be given. Then,
the following process explains the construction of an iterated function system in
R

2 such that its attractor is the graph of the interpolation function of given data.
The interpolation function f ∗ is generated as the fixed point of the self mapping
T : G → G defined by
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(T f )(u) = Rk(L
−1
k (u), f ◦ L−1

k (u)), u ∈ Ik, k ∈ Nn−1,

where G = {h : I → R|h is continuous on I, h(x1) = y1, h(xn) = yn} is a compete
metric space equipped with the uniform metric δ( f, g) = max{| f (u) − g(u)| : u ∈
I }. Then T is a contraction map on (G, δ)with contractivity factor r = max{rk : k ∈
Nn−1} < 1. The invariant point f ∗ of T is the fractal interpolation function obeying
the fixed point equation

f ∗(u) = Rk(L
−1
k (u), f ∗ ◦ L−1

k (u)), u ∈ Ik, k ∈ Nn−1. (4)

As widened applications of FIF for approximating the naturally occurring functions,
there have been sequel studies reported in the literature [10–20]. Mostly, the FIFs
are generated from the IFS of the form

Lk(x) = akx + bk, Rk(x, y) = αk(x)y + qk(x), k ∈ Nn−1, (5)

where {αk : αk ∈ (−1, 1), k ∈ Nn−1} is a family of parameters named as vertical
scaling factors. The shape and fractal dimension of the fractal interpolation function
are heavily influenced by the set of vertical scaling factors. The FIF generated by
the constant vertical scaling parameter have self-similar character which could lead
to loss of flexibility and may cause approximation error. Since, the natural functions
are not necessarily self-similar and nature always like to enjoy the freedom of choice
not determinism. To overcome this problem, a class of FIF with variable scaling
parameter is introduced and analyzed based on the affine iterated function system
by considering Rk(x, y) = αk(x)y + qk(x), k ∈ Nn−1, where αk ∈ C(I ) satisfying
‖αk‖∞ = sup{|αk | : x ∈ I } < 1 (formore details, refer [7]). The fractal interpolation
functions (FIFs) on the Sierpinski gasket is defined in [8] and some basic proper-
ties like finite energy, min-max property of uniform fractal interpolation functions
explored in [9]. These study motivates to investigate the FIF with variable scaling
parameter on the Sierpinski triangle by defining its Laplacian. Further, this paper
explores the analogous facts about randomness on the Sierpinski triangle and gen-
eralized Cantor set, which should be regarded as the classical examples of a fractal
supporting a concept of random fractals.

This paper is organized in the following manner. Section 2 starts with the con-
struction of deterministic Sierpinski triangle and its fractal dimension is discussed
through the scaling law. Additionally, the fractal dimension is estimated by defining
the qth moment of the remaining smaller equilateral triangle as sum of qth power
of its size. The dyadic Sierpinski triangle is explored by introducing the probability
in the process of removing its middle part and its fractal dimension is measured
through the moments. Further, the generalized Cantor set is presented in term of the
partition value of the closed interval [0, 1] and the effect of partition value in the
fractal dimension is investigated in Sect. 2. In Section 3, a new family of FIF with
variable scaling parameter is described on the Sierpinski triangle which gives the
degrees of freedom in the choice of vertical scaling of the fractal function.
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2 Randomness on the Sierpinski Triangle

The pedagogical importance and impact of the Sierpinski triangle (ST) motivated us
to investigate interesting variants of the Sierpinski triangle in which both probability
and randomness are included in a logical progression in this section.

2.1 Sierpinski Triangle

Generalization of the Cantor set into higher dimension is Sierpinski triangle in this
case the initiator is an equilateral triangle S0 and the generator divides it into four
equal triangles, by connecting the midpoints of the sides and remove the interior
triangle whose vertices are the midpoints of each side of the initiator leaving the
boundary of the triangle. The resultant is S1 ⊆ S0. Next each of the remaining three
triangles are split up into four smaller triangles with side length 1/4, and threemiddle
triangles are taken away. The resultant is S2 ⊆ S1. The generator is then applied over
and over again to all the available triangles, this process gives sequence Sn of sets
such that S0 ⊇ S1 ⊇ S2 ⊇ . . .. The limit of Sn is called the Sierpinski triangle, thus
S = ∩n∈NSn .

It is easy to find out that at the nth step, there are N = 3n triangles of side δ = 2−n.

So the total area of Sn is 3n.(1/2n)2.
√
3/4. As n → ∞, Sn approaches to 0. The

total area of the Sierpinski triangle is 0. Further, all the subsequent approximations
Sn, n ≥ k will have the line segments that constitute the boundary of one of the
triangles of Sn . Hence, the set S includes at least all boundaries. In Sn , there are
3n triangles, individually having 3 edges of length 2−n . Therefore, the length of
entire S is at least 3n.3.2−n . This approaches ∞ as n → ∞. It gives that the total
length of Sierpinski triangle is infinite. Moreover, eliminating n from the scaling law
N (δ) ∼ δ−d f , here N (δ) is the number of boxes with size δ required to cover the
given object X and d f is the fractal dimension of X . That is, 3n ∼ (1/2)−nd f provides
d f = ln 3

ln 2 which is the fractal dimension of the Sierpinski triangle.
Suppose x1, x2, . . . , xN are size of each equilateral triangle. Define the qth

moment Mq of the remaining equilateral triangle by

Mq =
N∑

i

xqi , (6)

where x1 = x2 = · · · = xN = 2−n and N = 3n at the nth step of the construction
process. Observe, M0, M1 are increasing quantity with n whereas M2 is decreasing
quantity with n. Hence, there exists q ∈ (1, 2) such that Mq = ∑N

i xqi = 1,

Mq = en ln 3−qn ln 2. (7)
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If q = ln 3
ln 2 , then

M ln 3
ln 2

=
3n∑

i=1

(
1

2n

) ln 3
ln 2

= 1, (8)

independent of n and d f = ln 3
ln 2 moment equal to size of S0. At the nth step there are

N = 3n triangles of side δ = 2−n . Eliminating n in favor of δ yields N ∼ δ− ln 3
ln 2 . One

can also show that M ∼ L
ln 3
ln 2 and M− ln 3

ln 2
= 1. The conservation law

M− ln 3
ln 2

= 1 (9)

is obeyed here as well regardless of n when the object is Sierpinski triangle.

2.2 Dyadic Sierpinski Triangle

Starts with a equilateral triangle as an initiator. The generator divides the initiator
into four equal triangles, by connecting the midpoints of three sides and removing
the middle interior triangle with probability (1 − p). Now system have (3 + p)
average number of smaller triangle each of size 1/2 because after step one the middle
interior triangle is presentwith probability p and it has probability (1 − p) for absent.
In second step, the generator is employed to each of the leftover (3 + p) smaller
triangles to separate them into four equal parts. Thus, each of 3 smaller triangles in
step onewill have 3 triangleswith absolute certainty and one trianglewith probability
p. Then, the middle interior triangle in step one will have 3 triangles with probability
p and one trianglewith probability p2. Thus, after step two systemwill have (3 + p)2

average number of smaller triangles of size 1
22 and (1 − p)(3 + p) average number

of smaller triangles are removed. First and second iteration are showed in Fig. 1.
Continue this process recursively to all the remaining smaller triangles at each step,
then the resultant system is dyadic Sierpinski triangle provided number of iteration
approaches to infinity.

In nth step of the construction process of dyadic Sierpinski triangle there are
(3 + p)n average number of triangles with size 1

2n . By Eq. (6)

Mq =
(3+p)n∑

i=1

(
1

2n

)q

= en ln(3+p)−nq ln 2,

(10)

for all p ∈ (0, 1). Thus, d f = ln(3+p)
ln 2 provides

Mdf =
(3+p)n∑

i=1

2−nd f = 1. (11)



1062 A. Gowrisankar and M. K. Hassan

Fig. 1 First and second iteration of the dyadic Sierpinski triangle

It is independent of n. Therefore, dth
f moment Mdf of the (3 + p)n average number

of remaining triangles of size 1/2n is a conserved quantity. Meantime, adding all
removed triangles at each step gives followings. After step 1 there are 3 triangles
each of area 1/4. One has area 1/4 with probability p. The one which is thrown out
has area 1/4 with probability 1 − p. If we sum them all we get

3

4
+ p

4
+ 1 − p

4
= 1, (12)

which is the area of the initiator. After step 2, there are 9 triangles each of area
1/42, 6 of them have area 1/42 with probability p, one of them have area 1/42 with
probability p2. The ones are thrown are as follows. Three of them have area 1/42

with probability (1 − p) and one of them have area 1/42 with probability p(1 − p).
If we now sum all the surviving triangles and the ones in the bin we get

9

42
+ 6p

42
+ p2

42
+ 3(1 − p)

42
+ p(1 − p)

42
+ 1 − p

4
= 1, (13)

the size of the initiator. Observe that the last term on the L.H.S. is the size of the
thrown out quantity in the bin.

We thus see that the amount which is thrown in the bin at step 1 is (1 − p)/4. In
step 2 we throw

3(1 − p)

42
+ p(1 − p)

42
= 1 − p

4

(3 + p)

4
. (14)

Similarly, we can find that after step 3 the amount we throw to the bin is 1−p

4
(

(3+p)
4

)2 .

We can now add all the quantities in the bin and find the following series

1 − p

4

[
1 + (3 + p)

4
+

(
(3 + p)

4

)2

+
(

(3 + p)

4

)3

+ ... + ...

]
= 1 − p

4

1

1 − (3+p)
4

= 1.

(15)
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However, the dth
f moment equals the size of the initiator providing that there are

infinitely many smaller triangles in the resultant set.

Example 1 Let X be an equilateral triangle with the vertices v1 = (0, 0), v2 =
(1, 0) and v3 = (1/2,

√
3/2) and consider the IFS on X consists of the follow-

ing three contractions, f1(u, v) = ( 12u, 1
2v); f2(u, v) = ( 12u + 1

2 ,
1
2v); f3(u, v) =

( 12u + 1
4 ,

1
2v +

√
3
4 ). All these three contractions have contraction factor 1/2. The

resulting fractal is called Sierpinski triangle. If the contraction factor is chosen as an
arbitrary number in (0, 1), say α, then it provides different fractal as function of α.
Thus, G : (0, 1) → H(X) defined by G(α) = A∗

α , where A∗
α is a fixed point of the

IFS including three contractions

f1(u, v) = (αu, αv);
f2(u, v) = (α(u + 1), αv);

f3(u, v) =
(

α(u + 1

2
), α(v +

√
3

2
)

)
.

2.3 Generalized Triadic Cantor Set

The generalized triadic Cantor set is constructed as follows. Consider the unit length
line segment as closed interval C0 = [0, 1] which is called as an initiator. Initially to
generate the set, divide the initiator into k(3 ≤ k < ∞) equal pieces and remove the
centre piece among k subintervals. It remains two closed intervals [0, 1

k ] and [ k−1
k , 1]

in step 1 each of length 1
k . Thus, C1 = [0, 1

k ]
⋃[ k−1

k , 1]. Now remove the middle
parts from the leftover intervals thus, obtaining four equal pieces of closed interval
of length 1

k2 and they are [0, 1
k2 ], [ k−1

k2 , 1
k ], [ k−1

k , k2−k−1
k2 ], [ k2−1

k2 , 1]. This gives

C2 = [0, 1

k2
]
⋃

[k − 1

k2
,
1

k
]
⋃

[k − 1

k
,
k2 − k − 1

k2
]
⋃

[k
2 − 1

k2
, 1].

Now remove the middle parts from each of the remaining four intervals to create
eight smaller closed intervals. This continuous process gives the generalized triadic
Cantor set as a limitC of the decreasing sequence (Cn)n∈N of sets. Hence, the limit is
the intersection of the sets, C = ∩n∈NCn . If one can continue the above construction
process through infinitely many steps then the following questions naturally arise :
(i) What is the cardinality of C? (ii) How much of the initiator removed in [0, 1]?

Start to generate the set by splitting the initiator into k equal parts and hence there
are k number of smaller intervals which has size 1/k. Removing the middle parts
from the k subintervals means k − 2 of them are removed in step one so that two
closed intervals [0, 1/k] and [ k−1

k , 1] is remained in the system. The sum of the sizes
of all the intervals removed at this stage is k−2

k . In step two, each of the two subsets is
divided into k intervals and remove the middle k − 2 number of smaller intervals so
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there will be four intervals [0, 1/k2] and [k − 1/k2, 1/k]. The size of the intervals
being removed are k−2

k , 2(k−2)
k2 , 4(k−2)

k3 etc. If we sum them up, we get

k − 2

k

∑

n

(
2

k

)n

= k − 2

k

1

1 − 2/k
= 1.

Moreover, the set Cn contains 2n disjoint closed intervals, each of length ( 1k )
n in

step n. So the total length of Cn , (i.e.) the sum of the lengths, is (2/k)n and its limit
is limn→∞( 2k )

n = 0. Therefore, the total length of the Cantor set is zero. k = 3 gives
the total length of all the thrown intervals is equal to the size of the initiator and
length of C is zero. If k approaches to infinity, then the total length of all intervals
begin thrown away is zero as well as length of C is zero. This is quite surprising
as it implies that there is hardly anything left in the Cantor set. However, there are
infinite number of points in the Cantor set. Since construction of Cantor set started
with the initiator [0, 1] and the endpoints 0 and 1 belong to all of the succeeding sets
Cn0 , n0 ≥ n, and hence belong to the intersectionC . Thus,C is nonempty and taking
every endpoints of all the intervals in every approximations Cn provides an infinite
number of endpoints which are belonging to C .

Define the qth moment Mq of the leftover intervals at the nth step of the construc-
tion process as

Mq =
2n∑

i

xqi . (16)

Note that each of the leftover intervals at the nth step are of equal size xi = k−n and
hence can write

Mq = en ln 2−qn ln k . (17)

It means that if q = ln 2
ln k then

M ln 2
ln k

= 1, (18)

independent of n. That is, this result is true even in the limit n → ∞. Thus, it
concludes that the set is nonempty which is another surprising fact of the Cantor set.
In the construction process of Cantor set, the nth step starts with deleting the middle
parts from each of the leftover 2n−1 intervals in the (n − 1)th step to produce 2n

closed intervals of size 1/kn for each n. If one can take yardstick as δ = k−n then the
number of yardsticks N (δ) required to cover the setC is equal to N = 2n . Removing
n from N = 2n with the help of δ provides N (δ) is direct proportion to δ−d f that is
N (δ) ∼ δ−d f where d f = ln 2

ln k is the box-counting or fractal dimension of the Cantor
set.

Remark 1 The fractal dimension of generalized Cantor set is d f = ln 2
ln k which is

decreasing quantity whenever k is increasing. Thus, if the partition of the initiator
increased then it will give the more irregular Cantor type set.
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If the partition of the initiator k = 3, then the generalized triadic Cantor set is known
as the classical Cantor set and its fractal dimension d f is ln 2

ln 3 . Further, by applying
probability on the construction of the Cantor set, one can get the dyadic Cantor set
as follows: The generator divides the initiator [0, 1] into two equal parts. In which
delete one subinterval with probability (1 − p), remains another subinterval with
probability p. Now, the systemwill have an average (1 + p) number of sub-intervals
each of size 1/2. By continuing the process over and over again on all the available
intervals at each step recursively, the dyadic Cantor set is obtained . This result
is investigated in [5]. If we find the d f th moment Mdf of the (1 + p)n available
intervals of size 2−n by using the Eq. (6), then it provides that Mdf is conserved
quantity. Hence, by changing the partition value k and applying above procedure one
can get different types of the Cantor set with fractal dimension d f = ln2

lnk .

Example 2 Let X = [0, 1] and consider the IFS on X with the following two map-
pings, f1(x) = x

3 , f2(x) = (x+2)
3 . The self mappings f1, f2 are contractions with

contraction factor 1/3 and the resulting fractal of the I FS {X; f1, f2} is Cantor set.
If the contraction factor α is chosen as an arbitrary number in (0, 1), then one can get
different fractal as function of α. Thus, G : (0, 1) → H(X) defined by G(α) = A∗

α ,
where A∗

α is a fixed point of the IFS including two contractions f1(x) = αx, f2(x) =
α(x + 2). As per the remark 1, if α1 ≤ α2, then d f (A∗

α1
) ≤ d f (A∗α2). The relation

between the contraction factor α and the number of partition k in the construction of
generalized Cantor set is α = 1/k.

The influence of contraction factor in the shape of the resultant fractals is explained
in Example 1 and Example 2.

3 Fractal Function on the Sierpinski Triangle

This section demonstrates the fractal interpolation function with variable scaling on
the Sierpinski triangle by defining the Laplacian on the Sierpinski triangle (ST). That
is the class of FIF with vertical scaling parameters αwk : ST → (−1, 1), here αwk

is continuous and satisfies ‖αwk‖∞ = sup{|αwk | : ∀x ∈ ST } < 1, are considered in
this study.

3.1 Laplacian on the Sierpinski Triangle

Let V0 = {p1, p2, p3} be a set of vertices of an equilateral triangle, say X , in R
2.

Define fk(x) = 1
2 (x + pk) on X . Then, the attractor of the iterated function sys-

tem {X; fk : k = 1, 2, 3} is a Sierpinski triangle. Define a sequence of finite sets
(Vm)m≥0 by Vm+1 = ∪3

k=1 fk(Vm). We write fw = fw1 ◦ fw2 ◦ . . . fwm for any finite
sequencew = (w1, w2, . . . , wm)of length |w| = m, k ∈ {1, 2, 3} i.e.w ∈ {1, 2, 3}m .
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The union of the image of V0 under the iteration of fw constitutes the set ofm vertices
Vm . For any p ∈ Vm , let Nm,p be the collection of the direct neighborhood of p in
Vm .

Observe that, the cardinality of Nm,p is

|Nm,p| =
{
4 if p /∈ V0

2 if p ∈ V0.

Let C(Vm) = {h : h is continuous on Vm to R} and define the linear operator �m :
C(Vm) → C(Vm) by

5m(�mh)(p) =
∑

q∈Nm,p

(h(q) − h(p))

for all h ∈ C(Vm) and all p ∈ Vm . Then the Laplacian on the Sierpinski triangle is
defined by

(�mh)(p) → (�h)(p)

as m → ∞. A function f ∈ C(Vm) is called as harmonic on Vm if (�m f )(p) = 0
for all p ∈ Vm/V0. A continuous function f : ST → R is said to be harmonic, if its
restriction to Vm is harmonic for all m.

In [8], the first degree polynomials are constructed as classical harmonic func-
tions on an interval and by substituting them on the Sierpinski triangle using
the standard Laplacian on SG of fractal analysis, the theorem of interpolation
for ST is obtained. Whereas, this study extends the class of FIF by considering
vertical scaling parameters as αwk : ST → (−1, 1), here αwk is continuous and
satisfies ‖αwk‖∞ = sup{|αwk | : ∀x ∈ ST } < 1 in place of constant scaling factors
αwk ∈ (−1, 1), for all k ∈ {1, 2, 3}, in [6, 7]. Note that αw = αw1 ◦ αw2 ◦ . . . αwm .

Theorem 1 Let h ∈ C(Vm) be given and any αw(x) forw ∈ {1, 2, 3}m with ‖αw‖ <

1. Then there is a unique continuous function g : ST → R satisfying g|Vm = h and

g( fw(x)) = αw(x)g(x) + qw(x)

where qw is harmonic function on ST for all w ∈ {1, 2, 3}m.
Let T = {t : ST → R continuous function with t (pk) = h(pk), k = 1, 2, 3}. Then
T is complete with respect to uniform metric. Define T : T → T by

(T t)(x) = αw(x)t ( f −1
w (x)) + qw( f −1

w (x))

where qw is the harmonic function on ST with qw(pk) = h( fw(pk)) − αw(x)h(pk)
for k = 1, 2, 3. It is observed that, T is well defined, contractive with ratio ‖αw‖ and
(T t)(pk) = h(pk). Then, the unique fixed point of T obeys
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g(x) = αw(x)g( f −1
w (x)) + qw( f −1

w (x))

for x ∈ fw(ST ) and w ∈ {1, 2, 3}m ,

g( fw(x)) = αw(x)g(x) + qw(x).

Remark 2 If αwk(x) = αwk , then Theorem 1 provides the results in [8] and [9]. In,
[8, 9], authors have considered the scaling factors αwk as constant value in between
1 and −1 whereas in this paper scaling factors are considered as a function scaling.

4 Conclusion

In the present study, the dyadic Sierpinski triangle is introduced which is a classical
example of the fractal supporting a concept of random fractal. Further, the fractal
dimension of the dyadic Sierpinski triangle estimated by moments of available tri-
angle in each iteration narrates that there is a conservative law on it since M− ln 3

ln 2
= 1

which is independent of its iteration n. Consequently, the generalized Cantor set
presented in term of the partition value of the closed interval in [0, 1] and the influ-
ence of partition value in the fractal dimension is investigated which generalizes
the dyadic Cantor set considered in [5, 6]. Finally, a new set of fractal functions
with variable scaling parameter on Sierpinski triangle is demonstrated which gives
the more flexibilities and degrees of freedom in the choice of vertical scaling of the
fractal function.
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Bifurcation Analysis of a Leslie-Gower
Prey-Predator Model with Fear
and Cooperative Hunting

Ashvini Gupta and Balram Dubey

Abstract The current work examines the dynamical features of a Leslie-Gower
prey-predator model. The effects of fear and group defense among prey with the
mechanism of cooperative hunting by predators are incorporated. The existence and
uniqueness of the interior equilibrium are explained. We obtained sufficient condi-
tions for the local and global stability behavior. With regard to the fear parameter and
cooperation strength parameter, the proposed system undergoes Hopf-bifurcation,
transcritical bifurcation, and saddle-node bifurcation. Moreover, the system exhibits
the property of bi-stability between two interior equilibrium points. The basin of
attraction of these points is also plotted. All theoretical results are verified numeri-
cally by MATLAB R2021a.

Keywords Prey-predator · Fear · Cooperative hunting · Bifurcation

1 Introduction

Understanding of prey-predator interactions via differential equations is a classical
application of mathematics in ecology. The dynamics of such systems are often
altered due to various ecological factors. Employing these factors makes the system
more consistent with the real world. Introducing fear may cause the interacting
populations to oscillate or stabilitate about their steady-state [12]. These oscillations
are most commonly due to the occurrence of Hopf-bifurcation [4]. In population
dynamics, group defense is a common concept that describes an instance in which
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prey form groups to defend against the predator, which can cut off the predation
rate. Considering Holling type IV or Monod-Haldane type functional response is
the most frequent and accessible technique to implement group defense [6, 11].
It is evident from the research that dominance of defense could lead to predator’s
extinction [5]. The cooperation among predators to hunt down the target significantly
increase the chances of their survival [1]. Saha and Samanta [10] extensively studied
a 3-D prey-predator model involving cooperative hunting strategy and group defense
mechanism. They observed transcritical bifurcation, saddle-node bifurcation, Hopf-
bifurcation, and many other type of bifurcations. Pal et al. [8] studied the combined
effect of fear and cooperative hunting and they observed various bifurcations and
bi-stability in their model. The predator often switches to a different food to prevent
extinction and becomes a generalist. The standard way to incorporate this feature
is to use the modified Leslie-Gower scheme. Many authors [2, 3, 7] remarked the
persistence of species in the modified Leslie-Gower prey-predator model. As per
our knowledge, there is no work done comprising fear, group hunting, and group
defense in a Leslie-Gower prey-predator model. Hence our main purpose is to study
the effects of group defense in prey, group hunting in predator and fear induced by
predator in prey on the dynamical behavior of prey-predator system.

2 The Mathematical Model

The survival of species is one of the most fundamental and significant issues in ecol-
ogy. The modified Leslie-Gower prey-predator model formulation is an interesting
approach in species conservation. According to this scheme, the predator acts as a
generalist, which increases their chances of survival. Inspiring from aforementioned
facts and pioneering literature as cited in the introduction, we consider an ecosys-
tem where prey-predator species are interacting with each other through modified
Leslie-Gower scheme. Prey species defend themselves against predators for their
survival. Predator species hunt prey in groups and induce fear in the prey. With all
these assumptions, we propose the following model:

dx

dt
= r x

1 + Ky
− r0x − r1x

2 − (α + λy)xy

a + x2
:= f (x, y),

dy

dt
= sy − ωy2

b + x
:= g(x, y),

x(0) ≥ 0, y(0) ≥ 0.

(1)

The variables and parameters involved in the model are listed in Table 1 wih their
biological meaning and dimensions.
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Table 1 Biological explanation and dimension of variables/parameters employed in model (1)

Variables/Parameters Biological explanation Dimensions

x Prey density Biomass

y Predator density Biomass

r Birth rate of prey Time−1

K Cost of fear Biomass−1

r0 Prey mortality rate Time−1

r1 Death rate of prey due to competition among
them

Biomass−1 Time−1

α Predation rate Biomass Time−1

λ Cooperation strength of predators Time−1

a Half saturation constant of prey Biomass2

b Half saturation constant of predator Biomass

s Intrinsic growth rate of predator Time−1

ω The highest rate of predator eradication per
capita

Time−1

3 Dynamics of the System

The model (1) can be re-written as

dx

dt
= xφ1(x, y),

dy

dt
= yφ2(x, y),

where

φ1(x, y) = r

1 + Ky
− r0 − r1x − (α + λy)y

a + x2
, φ2(x, y) = s − ωy

b + x
.

It follows that

x(t) = x(0)e
∫ t
0 φ1(x(θ),y(θ))dθ ≥ 0, y(t) = y(0)e

∫ t
0 φ2(x(θ),y(θ))dθ ≥ 0.

Hence, in R2+, all (x(t), y(t)) solutions with the positive starting point stay positive.
Nature does not enable any species to spread rapidly due to a lack of resources.

As a result, it is critical to ensure that the defined model is bounded.

Theorem 1 All solutions initiating in R2+ are contained in the domain� = {(x, y) ∈
R2+ : 0 ≤ x ≤ K1, 0 ≤ y ≤ s(b+K1)

ω
}, where K1 = r−r0

r1
.

Proof We may write the first equation of the model as

ẋ ≤ r x − r0x − r1x
2.
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This implies

lim sup
t→∞

x(t) ≤ r − r0
r1

:=K1.

To show the boundedness of y(t), we can write

ẏ ≤ sy − ωy2

b + K1
.

This entails

lim sup
t→∞

y(t) ≤ (b + K1)s

ω
:= K2,

which completes the proof.

3.1 Equilibrium Points

The proposed system has four feasible equilibrium points: extinction equilibrium;
E0(0, 0), predator-free equilibrium; E1(K1, 0), prey-free equilibrium; E2(0, bs

ω
) and

interior equilibrium; E∗(x∗, y∗). Here x∗ is a positive root of the following quartic
equation:

A1x
4 + A2x

3 + A3x
2 + A4x + A5 = 0, (2)

where A1 = r1ω2sK , A2 = ω2(r0Ks + r1ω + r1Ksb) + s3λK , A3 = ω2Ks(r0b +
r1a) + 3bλKs3 + s2ω(λ + αK ) − (r − r0)ω3, A4 = (r0Ksa + r1a(ω + Ksb))
ω2 + 3λKb2s3 + sαω2 + 2bs2ω(λ + αK ), A5 = λKb3s3 + b2s2ω(λ + αK ) +
bω2s(α + r0aK ) − (r − r0)aω3.

Since A1, A2 and A4 are positive. Therefore, according to the Descartes’ rule of
signs, Eq. (2) will have unique, two, three or no positive root based on the sign of A3

and A5 (refer to Table 2 and Fig. 1). It is worthy to note here that when A3 > 0 and

Table 2 Existence of positive root of (2)

A3 A5 Number of positive
roots

Color

- + 2 or 0 yellow

- - 3 or 1 red

+ - 1 green

+ + 0 blue
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Fig. 1 Different colors showing all cases of Table 2 in Kλ-plane, where r = 0.6, a = 1, α =
0.4, ω = 1, b = 1, s = 0.4, r0 = 0.05, r1 = 0.05

A5 < 0, Eq. (2) has a unique positive solution x∗. On obtaining x∗ from Eq. (2), we
can easily determine y∗ from the relation

y∗ = s(b + ω)

x∗ .

3.2 Stability Analysis

The local stability feature of any equilibrium can be established using eigenvalue
theory. The boundary equilibria with their local stability feature are described in
Table 3.

Table 3 The local stability characteristics of system (1)’s boundary equilibria

Equilibrium points Stability characteristics

E0(0, 0) Unconditionally unstable

E1(K1, 0) Always saddle point

E2(0, bs
ω

) Asymptotically stable if r < (1 + bKs
ω

)(r0 + (αω+λbs)bs
aω2 );

saddle if r > (1 + bKs
ω

)(r0 + (αω+λbs)bs
aω2 )
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Biological significance: As per the concept of the modified Leslie-Gower prey-
predator model, the predator can switch to other food when prey is absent. Moreover,
predator performs cooperative hunting and induce fear in prey. Due to all these
factors, predators may not become extinct. Therefore, when the prey’s birth rate is
less than a critical value, they might become extinct, nevertheless, predator always
persists due to their generalist nature. Hence the prey-free equilibrium E2(0, bs

ω
)

can be stable, but the extinction state E0(0, 0) and predator-free state E1(K1, 0) can
never be stable.

Theorem 2 E∗(x∗, y∗) is locally asymptotically stable if and only if B1 > 0 and
B2 > 0, where B1 and B2 are stated in the proof.

Proof The Jacobian matrix, computed at positive equilibrium E∗(x∗, y∗) is given
by

J |E∗ =
(

−r1x∗ + 2(α+λy∗)x∗2 y∗
(a+x∗2)2 − r K x∗

(1+Ky∗)2 − (α+2λy∗)x∗
a+x∗2

ωy∗2
(b+x∗)2 − ωy∗

b+x∗

)

.

The characteristic equation for the aforementioned matrix is as follows:

ξ 2 + B1ξ + B2 = 0, (3)

where B1 = −tr(J |E∗) and B2 = det (J |E∗).
As per the Routh-Hurwitz criterion, the interior equilibrium E∗(x∗, y∗) is locally
asymptotically stable if and only if B1 > 0 and B2 > 0.

Remark. If r1 >
2(α+λy∗)x∗ y∗

(a+x∗2)2 , then E∗(x∗, y∗) is locally asymptotically stable.
In a two-dimensional system, the possible attractors inside the positive invariant

set could be equilibrium points and periodic solutions. If we are able to show that
no periodic solution exists, and all boundary equilibrium points are unstable, then,
in that case, all trajectories starting in the positive invariant region will eventually
converge to the interior equilibrium E∗ if it exists uniquely.

Theorem 3 Let the positive equilibrium E∗ exists uniquely. Then it is globally
asymptotically stable under the following conditions:

(i) r > (1 + bKs
ω

)(r0 + (αω+λbs)bs
aω2 ),

(ii) 3
√
3(α+λK2)

8a
√
a

< r1
K2

+ ω
K1(b+K1)

.

Proof If (i) holds, it directly implies E2(0, bs
ω

) is a saddle point. Now, to show the
non-existence of periodic solution, consider a function that is continuously differen-
tiable in R2+, H = 1

xy and we define

∇ = ∂

∂x
( f H) + ∂

∂y
(gH).

Simple calculation yields
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∇ = −r1
y

+ 2x(α + λy)

(a + x2)2
− ω

x(b + x)
.

∇ remains negative if 3
√
3(α+λK2)

8a
√
a

< r1
K2

+ ω
K1(b+K1)

.
Hence, system (1) cannot have a closed trajectory in the interior of the positive xy-
plane, according to the Bendixson-Dulac criteria. In such a case, all solutions starting
in � will converge to the interior equilibrium E∗, if it exists uniquely.

3.3 Bifurcation Analysis

Theorem 4 System (1) experiences a transcritical bifurcation between the axial
equilibrium E2(0, bs

ω
) and interior equilibrium E∗(x∗, y∗)with respect to the param-

eter K at K [tc] = ω
bs

(
(r−r0)aω2−(αω+λbs)bs
r0aω2+(αω+λbs)bs

)

if (r − r0)aω2 > (αω + λbs)bs and

δ3 
= 0, where δ3 is defined in the proof.

Proof At K = K [tc],

A = J |E2 =
(
0 0
s2

ω
−s

)

.

v = (1, s
ω
) and w = (1, 0) are the eigenvectors of matrix A and AT for the zero

eigenvalue, respectively. Let F = ( f, g)T , where f and g are the RHS functions of
model (1). Now, we define
δ1 = wT FK (E2, K [tc]), δ2 = wT [DFK (E2, K [tc])v], and δ3 = wT [D2F(E2, K [tc])
(v, v)].

Simple computation yields

δ1 = 0, δ2 = − rbsω

(ω + bKs)2
< 0

and

δ3 = −2r1 − 2

ra2ω4b
(r0aω2 + (αω + λbs)bs)((r − r0)aω2 − (αω + λbs)bs).

If δ3 
= 0, then all the conditions of the Sotomayor’s Theorem [9] are satisfied.
Hence, the system experiences a transcritical bifurcation at K = K [tc] =
ω
bs

(
(r−r0)aω2−(αω+λbs)bs
r0aω2+(αω+λbs)bs

)

between prey-free equilibrium E2 and coexistence equi-

librium E∗.

Theorem 5 Let us assume that B2 is positive. Then system (1) experiences a Hopf-
bifurcation with respect to the cooperation strength λ at λ = λ[h f ] around the coex-
istence equilibrium E∗.
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Proof It can be noted that

(i) When B1 > 0 and B2 > 0, E∗ is locally asymptotically stable for λ < λ[h f ].
(ii) When B1 < 0 and B2 > 0, E∗ is unstable for λ > λ[h f ].

Here B1 and B2 are defined in Eq. (3). This indicates that there is a switching of
stability when cooperative strength λ crosses the critical value λ = λ[h f ]. At this
point, B1 = 0 and B2 > 0, which implies that the eigenvalues are purely imaginary.
Furthermore, we check the transversality condition viz.,

dB1

dλ

∣
∣
∣
∣
λ=λ[h f ]

= − 2x∗2y∗2

(a + x∗2)2
< 0.

Therefore, by the Andronov-Hopf bifurcation theorem, the system undergoes Hopf-
bifurcation at λ = λ[h f ] near the equilibrium point E∗.

4 Numerical Simulation

We use MATLAB R2021a to run numerical simulations to validate our analytical
results of the model. The dataset we have picked is as follows:

r = 0.6, λ = 0.7, K = 0.1, a = 1, α = 0.0005, ω = 1, b = 1, s = 0.4, r0 = 0.05,

r1 = 0.05
(4)

For λ = 0.005 and other parameters from (4), the predator-only state (0, 0.4) is

a saddle-point. As per the Theorem 3, we obtain 3
√
3(α+λK2)

8a
√
a

− r1
K2

+ ω
K1(b+K1)

=
−0.002, implying that the system cannot have a closed trajectory in R2+. The interior
equilibrium E∗(7.8437, 3.5374) exists uniquely, and is a globally stable focus with
eigenvalues −0.395 ± 0.2044i . This phenomenon can be seen in Fig. 2.

In the model, fear parameter K plays a vital role. As per Theorem 4, we obtain
K [tc] = 6.7478 and δ3 = −0.3367 
= 0. All conditions of the theorem are satisfied,
hence the systemundergoes a transcritical bifurcation at K = K [tc]. The phenomenon
of transcritical bifurcation is easy tounderstandwith thehelpof a bifurcationdiagram.
It can be depicted from Fig. 3, E∗ is stable and E2 is unstable when K < K [tc]. In
this range, the value of ∇ remains negative. Therefore, E∗ is globally stable. After
crossing the threshold value of the fear parameter, the stability of E∗ is transferred
to E2 via a transcritical bifurcation.

The traits of the system (1) are not limited to transcritical bifurcation. It has been
observed that there are three positive equilibrium points, out of which two are stable,
and the other is a saddle-point for the parameters given in (4)withα = 0.7. The stable
point E∗(1) and saddle-point E∗(2) approach towards each other with the variation
in cooperation strength. At λ = λ[sn], they annihilate one another by means of a
saddle-node bifurcation (see Fig. 4).
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Fig. 6 a Phase portrait showing E∗ as stable focus at λ = 3. b After λ > λ[h f ], stable limit cycle
surrounding unstable E∗ at λ = 3.9

The phase portrait diagram illustrating bi-stability between two interior equilib-
rium points (E∗(1), E∗(3)) alongwith one saddle interior equilibrium E∗(2) and saddle
prey-free equilibrium E2 is shown in Fig. 5a. In such a case, the initial condition of
the solution decides its convergence. Here, the solutions from red color ∗ will even-
tually go to the attractor E∗(1)(0.2929, 0.5171). On the other hand, if the solution
begins from blue color ∗, it will approach E∗(3)(4.088, 2.0352) in the future (refer
to Fig. 5b).

For s = 0.2, α = 0.7 and keeping other parameters same as in (4), we compute
the value of Hopf-bifurcation point λ[h f ] by equating B1 to zero, and we obtained

λ[h f ] = 3.6567. At this value, B2 = 0.0424 > 0, and dB1
dλ

∣
∣
∣
∣
λ=λ[h f ]

= −0.1064 < 0.

Hence, according to the above theorem, the system experiences Hopf-bifurcation at
λ[h f ] = 3.6567 around E∗(5.0208, 1.2041).

For the lower value of cooperation strength λ, both species fluctuate for a finite
time around their steady-state. They eventually reach the positive equilibrium E∗ (see
the phase portrait in Fig 6a at λ = 3 < λ[h f ]). When the value of λ is increased, E∗
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loses its stabilitywith the formation of a stable limit cycle throughHopf-bifurcation at
λ = λ[h f ] = 3.6567. The phase portrait after Hopf-bifurcation is depicted in Fig. 6b
at λ = 3.9 > λ[h f ].

5 Conclusion

In the presentmanuscript,weproposed amodifiedLeslie-Gower predator-preymodel
employing ordinary differential equations. While formulation, we considered that
the birth rate of the prey population is reduced due to the fear induced by predators.
Therefore we multiply the birth rate of the prey population with the decreasing
function of the predator population size, φ(K , y) = 1

1+Ky . Moreover, we assumed
that predators cooperate for hunting a common target. This mechanism affects the
predation rate significantly. Therefore, the group hunting termα + λy is incorporated
in the predation term. Prey species perform group defense for their survival in this
situation, which is shown in the model through simplified Holling type IV functional
response.

To ensure the biological validity of the system, we proved that all solutions are
positive and bounded in R2+. We determined all feasible equilibrium points and ana-
lyzed their stability. The extinction state E0(0, 0) and predator-free state E1(K1, 0)
are always unstable. When the prey’s birth rate is less than a critical value, the prey-
free equilibrium E2(0, bs

ω
) is stable. All cases of the existence of positive equilibrium

E∗ are discussed. We obtained sufficient conditions for the local and global stability
of E∗.

It is noticed that the fear parameter K and the cooperation strength parameter λ

play a crucial role in the system’s dynamics. The system experiences transcritical
bifurcation for the fear parameter. Moreover, we remarked that a high level of fear
might cause the prey species to be extinct. The system shows a feature of bi-stability
between two interior points, and it undergoes a saddle-node bifurcation with respect
to λ. We noticed that both species start to fluctuate about their co-existence state
when the cooperation strength λ is more than a critical value λ[h f ]. This change in
dynamics is due to the Hopf-bifurcation at λ = λ[h f ].
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Chaotic Behavior in a Novel Fractional
Order System with No Equilibria

Santanu Biswas, Humaira Aslam, Satyajit Das, and Aditya Ghosh

Abstract This article takes into consideration a novel chaotic system of four dimen-
sional fractional order having no equilibria. We cannot use mathematical methods
such as Melnikov’s and Shilnikov’s method to prove that the given system is chaotic.
We shall analyse the dynamical features of the fractional order system by using
predictor-corrector algorithm. This method reports chaotic dynamics.We shall apply
the basic ideas of non linear dynamical analysis such as bifurcation diagrams and
Lyapunov exponents to recognise the chaotic behavior for the given system. One
interesting phenomena for the system is that it has cascade of period doubling bifur-
cations and chaotic attractors without having any equilibrium points.

Keywords Fractional calculus · Lyapunov exponents · Chaotic dynamics ·
Predictor-corrector algorithm · No equilibrium point

1 Introduction

Fractional calculus is an ongoing topic which is being used since the last 300years,
however its implementation has been inflated in recent years. The mathematical
phenomenon describe real objects more precisely than the classical integer methods.
The concept of fractional calculus for example has been implemented for modelling
circuit theory [1], control systems [13] etc. Li et al. [10] fractional order Chua’s
circuit, [22] fractional order Rossler system, [16], which describes that fractional
order systems can also behave chaotically.Moreover all these fractional order systems
deal with either one or maybe more than one equilibrium points; except for only few
systems that have already been discovered exhibiting chaos without any equilibrium
points until now.
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Sprott [14] found 19 chaotic models with five terms and six terms, including
linear and quadratic terms by exhaustive computer searching with no more than
three equilibrium points. Inspired by his pioneering work, the chaotic dynamics in
an integer order model has been examined in [2, 9, 18, 20]. References [17, 19]
introduced and analyzed new chaotic systems having no equilibrium points. The
presence of chaos cannot be verified by Shilnikov method as, they can not have
homoclinic or heteroclinic orbits. Referring to the fractional order system, as far as
our knowledge goes only two systems [3, 11, 12] describe a system having chaotic
dynamics without any equilibria.

In this article, we have described a novel 4D fractional jerk system with hidden
attractors. The dynamics of the non commensurate order fractional model & the
commensurate order fractional model, has been explained individually. The article
can be helpful to solve the problem of sudden chaotic oscillation caused by hid-
den attractors, thus providing a good reference and inspiration for solving similar
engineering oscillation problems.

Based on the given chaotic attractors it is exciting to develop the chaos theory
in order to create new systems. From this point of view a novel fractional order
system with chaotic dynamics is described in the given article. The presence of
chaos is illustrated by using various bifurcation diagrams and maximum Lyapunov
exponents. Using Adams–Bashforth Moulton algorithm we have solved the given
fractional order system. One interesting phenomena for the above said system is that
it has cascade of period doubling bifurcations and chaotic attractors without having
any equilibrium points.

The remaining article is organized in the following manner: Sect. 2 focuses on the
development of the integer order model with its basic dynamics; In Sect. 3, we deal
with the fractional order model having no equilibrium. Elaborate discussion of the
dynamical analysis of the fractional model is done in Sect. 4. The predictor corrector
algorithm is described in Sect. 4 as well. We conclude the article with a discussion.

2 Proposed System

In the search for chaotic flows, we were inspired by [14] case K system,

dx
dt = xy − z
dy
dt = x − y
dz
dt = x + 0.3z.

(1)

Equation1 has two equilibria.
We performed a search for additional chaotic systemwith no equilibria.We added

a constant to each of the derivatives in Eq.1with the simplest four dimensional exten-
sion of the system using linear feedback control. We consider a general parametric
form as
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dx
dt = ay2 + γ1xy + γ2x2 + γ3z2 + γ4xz + γ5yz − z + a1
dy
dt = bx − y + a2
dz
dt = cx + dz + a3 + k1w
dw
dt = −k2z

(2)

We search for the cases where we can show algebraically that the equilibrium
points are imaginary. An extensive search for the chaotic system with no equilibrium
points found the example

dx
dt = ay2 − z + a1
dy
dt = bx − y
dz
dt = cx + dz + k1w
dw
dt = −k2z

(3)

where x, y, z, w are state variables and a, a1, b, c, d, k1, k2 are real constant param-
eters. Eq. 3 is dissipative if d < 1.

The system (3) can not have chaotic solution in few cases. So, we proved the
following Theorem.

Theorem 1 Suppose that the following conditions hold:

1. k1 = 0, c = 0, a > 0 and a1 > 0
2. k1 = 0, c = 0, a < 0 and a1 < 0

then system (3) does not have bounded chaotic attractors.

Proof From system (3) we get,

ÿ − abẏ2 + (1 + d)ẏ + dy = ∫ t
0 [bd(ay2 + a1) − bk1w − bcx]dy + C. (4)

Under the above said assumptions Eq.4 has a monotone left hand side. Arguing as
[8] we can say that the system can not be chaotic.

2.1 Dynamics of the System (3)

The model (3) has no point of equilibria for a1 > 0. Phase plot for the system (3) is
drawn in Fig. 1 with parameter values as a = a1 = 0.1; b = 0.1; c = 0.4; k1 =
k2 = 0.01 ; d = 0.25 and the initial value was assumed as [1, 1, 0, 1]. Figure1
depicted chaotic dynamics for the system (3). Due to the chaotic behaviour of the sys-
tem, the trajectories diverges from [1, 0.1, 0, 40] to the higher values. Small changes
in the initial value may results dramatically different trajectories.

The divergence and convergence exponential rates of the trajectories close by in
the phase plane of the given chaotic system is measured by the Lyapunov exponents.
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Fig. 1 Phase plot for the system equation3 in x-z plane and x-y plane

Hence we have constructed these Lyapunov exponents for the given system (3) by
making use of the algorithm in [21] to verify that the given system is chaotic or not.
We calculated the Lyapunov exponents and plot in the Fig. 2b for the system (3). We
see that the two Lyapunov exponents is negative (cyan, red), one is zero (green) and
another is positive (blue).

We define the Lyapunov dimension by

Dky = j + 1

L j+1
�

j
i=1Li ,

where j is the largest integer satisfying �
j
i=1Li ≥ 0 and �

j+1
i=1 Li < 0. For the system

equation3, Dky = 3.1456 > 3. Hence it is an indication of a strange attractor.
The bifurcation diagram for the given system (3) is depicted in Fig. 2a with ref-

erence to the parameter d in the range of d ∈ [−0.02, 0.25]. The values of the given
parameters are fixed as a = a1 = 0.1; b = 0.1; c = 0.4; k1 = k2 = 0.01. Although
the system (3) has no equilibrium but still the system (3) has period doubling bifur-
cation route to chaos. After d crosses the critical value 0, the system equation3
losses it’s stability and undergoes a period-doubling bifurcation. Gradual increase
of d makes the system chaotic. We can observe that the bifurcation diagram and the
Lyapunov exponents spectrum very well coincide.

3 Fractional Order Model

By fractional-order systems, we refer to dynamical systems which can be modeled
using a fractional differential equation alongwith a non-integral derivative. Fractional
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Fig. 2 Chaotic dynamics for the system equation3 with respect to parameter d

order systems are quite useful in understanding the characteristics of the dynamical
system in various fields of electrochemistry, biology, physics, and chaotic systems.
Recently fractional-order systems have captured a lot of interest and recognition
because of their usefulness in providing an exact description of various nonlinear
phenomena. Control theory has a lot of applications in fractional-order systems since
several physical systems cannot be effectively modeled using differential equations
of integer order, hence fractional-order systems have an important role to play here.
The presence of non-integral derivatives is the primary reason for selecting fractional-
order systems in mathematical modeling problems. The fractional-order controller
gives comparatively more adjustable time and frequency response for any given
control system. Being a modified form of the integer order systems fractional order
systems adjust the controllers more accurately according to the system requirements.
Hence fractional-order systems are preferred over integer order systems formodeling
various dynamical systems.

In this section we consider the fractional-order system denoted as Eq.5. The
standard derivative is replaced by a fractional derivative as follows:

Dq1x = ay2 − z + a1
Dq2 y = bx − y
Dq3 z = cx + dz + k1w
Dq4w = −k2z

(5)

where 0 < q1, q2, q3, q4 ≤ 1; Dqi denote the Caputo fractional operator with initial
time t0 = 0. When q1 = q2 = q3 = q4 = 1, the above system becomes Eq.3.



1086 S. Biswas et al.

Next, we consider two methods to solve the system (5). We discuss the methods
in next two sections.

4 Adams–Bashforth–Moulton Method

Diethelm and Ford [6] already discussed about converting to Volterra integral equa-
tions from fractional differential equations with initial conditions. Now, by applying
the predictor-corrector algorithm [7], the solution of the system (5) can be written
as:

xn+1 = x0 + hq1
�(q1+2) {ay pn+1y

p
n+1 − z pn+1 + a1 + �n

j=0a1, j,n+1(ay2j − z j + a1)}
yn+1 = y0 + hq2

�(q2+2) {bx p
n+1 − y pn+1 + �n

j=0a2, j,n+1(bx j − y j )}
zn+1 = z0 + hq3

�(q3+2) {cx p
n+1 + dz pn+1 + k1w

p
n+1 + �n

j=0a3, j,n+1(cx j + dz j + k1w j )}
wn+1 = w0 + hq4

�(q4+2) {−k2z
p
n+1 + �n

j=0a4, j,n+1(−k2z j )}

(6)

in which

x p
n+1 = x0 + 1

�(q1)
{�n

j=0b1, j,n+1(ay2j − z j + a1)}
y p
n+1 = y0 + 1

�(q2)
{�n

j=0sb2, j,n+1(bx j − y j )}
z pn+1 = z0 + 1

�(q3)
{�n

j=0b3, j,n+1(cx j + dz j + k1w j )}
w

p
n+1 = w0 + 1

�(q4)
{�n

j=0b4, j,n+1(−k2z j )}

(7)

4.1 Chaos and Bifurcations with q = q1 = q2 = q3 = q4
for the System (5)

Assuming the parameter values as a = 0.1; b = 0.1; c = 0.4; k1 = k2 = 0.01;
a1 = .001; d = 0.245; q = q1 = q2 = q3 = q4 = 0.98 and initial conditions as =
(1, 0.1, 0, 40)we get the following phase space trajectory in Fig. 3. The chaoticmotion
which was identified in Fig. 3 is confirmed by the maximum Lyapunov exponents
following by [15] and plotted in Fig. 4.

In order to make it direct, a bifurcation diagram shall be drawn with respect to
q = q1 = q2 = q3 = q4 for 0.86 ≤ q ≤ 0.99 and the rest of the parameter values
are fixed like in Fig. 3. The bifurcation diagram with respect to q plotted in Fig. 5,
depicts the complex dynamical features in our presented model equation5 from
the limit cycle to chaos and on gradually increasing q we observe that the system
switches its stability such that from being stable focus to limit cycle oscillation it
becomes limit cycle oscillation to chaotic oscillation. We can observe that in Fig. 5
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(a) Phase plot for the system 5 in x-y
plane

−3500 −3000 −2500 −2000 −1500 −1000 −500 0 500 1000 1500
−250

−200

−150

−100

−50

0

50

100

150

x

y

(b) Phase plot for the system 5 in x-z
plane

Fig. 3 Phase plot for the system (5) with commensurate fractional order
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Fig. 4 Maximum Lyapunov exponents for the system (5)
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Fig. 5 Bifurcation diagram for the system (5) with respect to the parameter q

for q ∈ [0.86, 0.885) the system is stable, for q ∈ [0.885, 0.968) it exhibits limit
cycle oscillations and for q ∈ [0.968, 0.99] it shows a comparatively higher periodic
as well as chaotic oscillations.

4.2 Chaos and Bifurcations with Different qi
for the System (5)

For the incommensurate order case we find dynamics present in the system (5) for
q1 = 0.98; q2 = 0.85; q3 = 0.98; q4 = 0.4 as well. The corresponding phase plots
and maximum Lyapunov exponents [4, 5] for the system equation5 has been drawn
in Fig. 6 and Fig. 7 respectively. We did not try to find the lowest order chaos for the
incommensurate order case.

In order to understand the dynamics of the given system (5) with different qi We
shall consider the following three cases:

1. First with respect to q1 for 0.7 < q1 ≤ 0.99, we shall draw a bifurcation diagram
where the remaining parameters are fixed as in Fig. 3. The bifurcation diagram
with reference to q1 shown in Fig. 8a, identifies the complex dynamical behaviour
in the model (5) from the limit cycle to chaos. As we increase the values of q1 the
system (5) converts from a stable focus to limit cycle oscillation and then limit
cycle oscillation to chaotic oscillation. Figure8a depicts that for q1 ∈ (0.7, 0.78)
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Fig. 6 Phase plot for the system (5) with non-commensurate fractional order
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Fig. 7 Maximum Lyapunov exponents for the system (5)
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Fig. 8 Bifurcation diagrams with respect to different qi for the system (5)

the system equation5 is stable, for q1 ∈ [0.78, 0.95) it exhibits limit cycle oscil-
lations, and for q1 ∈ [0.95, 0.99] it shows a higher periodic as well as chaotic
oscillation.

2. In the next step we shall draw the bifurcation diagram with reference to the
parameter q2 for q2 ∈ [0.25, 0.99] where q1 is kept constant at 0.98 and q3 =
q4 = 0.98. From the Fig. 8b the complex dynamical behaviour of the system (5)
with reference to q2 including chaos is clearly evident. We can also notice that for
q2 ∈ [0.25, 0.60) the system exhibits 4 - periodic solution, a 8 - periodic solution
can be seen for 0.60 < q2 < 0.70 and for q2 ∈ [0.70, 0.99] the system exhibits
higher periodic and chaotic oscillations.

3. On gradually increasing the parameter q3 the system equation5 exhibits chaotic
dynamics. Figure8c shows that q3 behaves exactly in the same way as q1. We
omit the details. Here, all other parameters are fixed as in Fig. 3.

4.3 Chaos and Bifurcations with Different d
for the System (5)

Let us take theparameter values asa = 0.1; b = 0.1; c = 0.4; k1 = k2 = 0.01; a1 =
0.001; q1 = q2 = q3 = q4 = 0.98 and vary d from −0.02 to 0.25 with the initial
condition (1, 0.1, 0, 40). The bifurcation diagram is shown in Fig. 9. On comparing
the fractional order system (5) with the integer order system (3) we see that they both
have the same kind of tendency with the parameter d. For d ∈ [−0.02, 0.06) the
system shows stable behaviour, for d ∈ [0.06, 0.18) the system exhibits limit cycle
behaviour and higher periodic, chaotic oscillations can be seen for d ∈ [−0.18, 0.25].
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Fig. 9 Bifurcation diagram for the system (5) with respect to the parameter d

5 Conclusion

The dynamics for the proposed system Eqs. 3 (integer order) and 5 (fractional order)
has been studied in this article. We solve the system (5) using Adams-Bashforth-
Moulton method. The method describes chaotic dynamics in the system (5) though
the system has no equilibria. Several bifurcation diagrams and maximum Lyapunov
exponents are drawn to establish our results by takingdifferent values of theparameter
d and the fractional order qi . The existence of the attractors of the same kind in the
integer order system and fractional order systemboth are a newfield to explore, also it
represents a new exciting phenomenon, which may serve helpful in the forthcoming
research regarding the relations between integer order system and fractional order
system. We leave synchronization control to the considered fractional model for
future work.
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Soliton Dynamics in a Weak Helimagnet

Geo Sunny, L. Kavitha, and A. Prabhu

Abstract We considered a Helimagnetic nanowire, with an antisymmetric spin
interaction known as the Dzyaloshinskii-Moriya (DM) interaction in analogy with
Cholesteric Liquid Crystal (CLC) model. We derive the nonlinear dynamical equa-
tion after boronizing the nanowire with the Holstein–Primakoff (HP) transforma-
tion aided with Glauber’s coherent-state representation. The governing equation of
motion is the celebrated Discrete Non-Linear Schrodinger (DNLS) equation for the
Helimagnetic nanowire. We attempt to solve the DNLS equation, using Jacobian
elliptical function (JEF) technique, and analyzed the competency of the helicity and
the weak DM interaction on the dynamics of helimagnetic nanowire.

Keywords Soliton · Helimagnet · Dzyaloshinskii–Moriya (DM) interaction

1 Introduction

Recently, helimagnetic systems have been gaining lots of attention due to its con-
tribution in the field of data storage technology [1, 2] as it can be easily fabricated
into different structures like arrays of wires, dots, rings and sheets which have varied
possibilities in the development of magnetic storage devices. Amid this, helimag-
netic nanowire exhibits uniqueness due to its tunable magnetization properties which
arises from its inherent shape anisotropy [3]. The current research in the field of heli-
magnetic nano-wire is the development of ultra-high density magnetic recordings
incorporating the DM interaction. The DM interaction plays a crucial role in the for-
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Fig. 1 Schematic representation of a helimagnet

mation of chiral spin texture. It is generated by the strong spin-orbit coupling (SOC)
between the atomic spins due to the chiral interaction between them. Recent study by
Sampaio et al. demonstrated the influence of DM interaction in themagnetic memory
cell performance [4]. Various experimental researches are also being conducted in
this field, these provide validation to some of the theoretical works [5–7].

Various models have been proposed to investigate the dynamics of helimagnetic
systems [8]. Chandra et al. showed that the large quantum fluctuations induce an
anisotropy in the helimagnet [9]. Beula et al. investigated the influence of constant
magnetic field on the dynamics of an anisotropic helimagnet and found that the spin
configurations are unstable when the applied field is normal to the anisotropic axis
[10]. Martin et al. studied the ground state of MnGe cubic alloy and observed pro-
liferation in the long wavelength with gapless spin fluctuations which is associated
with evolution of the helical correlation length [11]. Daniel et al. considered a Heli-
magnetic model in analogous to cholesteric liquid crystal and found that the soliton
excitations govern the nonlinear dynamics of the helimagnet. They found that the
helicity does not alter the nature of the soliton during propagation, however it suffers
with some fluctuations in the localized region [12] (Fig. 1). The dynamics of Discrete
Breather (DB) in an antiferromagnetic system under the influence of DM interaction
has already been explored [13, 14]. The discrete Breathers are spatially localized
nonlinear excitations which appear in classical discrete lattice systems [13, 15–17].
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It has been a concern for the scientists to find an exact solution for the nonlin-
ear dynamic equation. These solutions may provide more insight towards physical
phenomenons happening in biology, chemistry, physics and various other fields. To
obtain an exact solution to these dynamical equations various methods have been
implemented such as the inverse scattering method, the tangent hyperbolic function
method, the Jacobi elliptical function method, the sine-cosine function method, the
trail function method, the nonlinear transformation method and so on. In this paper,
we attempt to derive an exact solution for the helimagnetic system under the influence
of DM interaction using jacobi elliptical method.

2 Governing Dynamical Model and Equation

We consider an one dimensional ferromagnetic system in analogous to the CLC
model in order to incorporate the helicity. As the play role of the anisotropy is much
significant for the intrinsic localisation of nonlinear spin waves, we consider an
anisotropic weak ferromagnetic spin chain with appreciable helicity as represented
by the Hamiltonian,

H̃ = −
∑

n
[J (�Sn · �Sn+1) + �D · (�Sn × �Sn+1) + τ

{
[k̂ · (�Sn × �Sn+1)]2 − q21

}
− A(Szn)2 − A′(Szn)4]

(1)

where �Sn = (Sx
n , S

y
n , Szn) represents the local spin vector at the lattice site ‘n’. J >

0 characterize the nearest-neighbor exchange interaction, which is a short ranged
strong spin-spin exchange coupling. The second term designates the presence of DM
interaction, and lead to the canting of spins which depends on the direction of the
monoaxial vector �D = Dêz , restricted to z axis. The cross product �Dn · (�Sn × �Sn+1)

characterize the spin-flop hopping arises due to the presence ofDM interactionwhich
occurs in the systems lacking inversion symmetry. The term represents the helical
spin interaction similar to that of the molecular interaction in a CLC. We adopt
a similar kind of helical twisting designated as

{[k̂ · (Sn × Sn+1)]2 − q2
1

}2
, where

k = (0, 0, 1), q1 is the helical pitch which controls the long-range ordering of spins.
The last two terms designate the lower and higher order anisotropy mainly arised
due to the combined effect of crystal field effect and spin-orbit interaction. A and A′
respectively are the lower and higher order single-ion unizxial anisotropy parameters,
when A(> 0), we assume that all spins align along the z axis, being the easy axis of
magnetization in the ground state. We map the spin operators of our one dimensional
helimagnetic systems of spin-s moments on a discrete lattice to bosonic creation a†i
and annihilation operator ai using the Holstein–Primakoff (H–P) representation [18]



1096 G. Sunny et al.

Ŝ+
i = (2S)1/2

[
1 − a†i ai

2S

]1/2
ai ,

Ŝ−
i = (2S)1/2a†i

[
1 − a†i ai

2S

]1/2
,

Ŝzi =
[
S − a†i ai

]
.

where a†i (ai ) is a bosonic creation(annihilation) operator at site ′i ′ satisfies the
bosonic commutation relations in the secondquantisation formulation of the helimag-
netic spin lattice as [a j , a

†
i ] = δi j , [a j , ai ] = [a†j , a†i ] = 0. and ni = aia

†
i represents

the number operator. In this mapping, each Holstein–Primakoff bosonic operator
represents a spin-1 moment in the −z direction and the vaccum state of the bosons,
i.e. |n = 0 > has a spin of +S in the z direction. In this mapping, the vaccum state
is not always the ground state, thereby representing a perturbation from the classical
ferromagnetic ground state. Conceived by this physical picture, it is manifested that
the factor

√
2S − ni , limits the number of HP bosons to 2S on a given site i , since

the z-projection of the spin moment at a given site ‘i’ must be between −S and +S.
Since low temperatures, the number of perturbations about the classical ground state
is very small ni << S, we invoke power series expansion of the HP transformation
for the spin operators as,

Ŝ+
n = √

2

[
1 − ε2

4
a†nan − ε4

32
a†nana

†
nan − Oε6

]
εan,

Ŝ−
n = √

2εa†n

[
1 − ε2

4
a†nan − ε4

32
a†nana

†
nan − Oε6

]
,

Ŝzn = [1 − ε2a†nan]. (2)

where ε = 1/
√
S

i�
∂an
∂t

= [an, H ] = F(a†n, an, a
†
n+1, an+1).

We then introduce the Glauber’s coherent—state representation [19] defined by
the product of the multimode coherent states |u >= ∏

n |un > with < u|u >= 1.
Here |u(n) > is an eigenstate vector of the annihilation operator an i.e., an|u >=
un|u >, and un is the coherent amplitude. The p-representation of nonlinear equation
leads,
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i
dun
dt

= ε2
[
2(τ − A − 2A′)un − J (un−1 + un+1) − i Dz (un+1 − un−1)

]

+ ε4

4

[
J [| un |2 (un+1 + un−1) + u2n (u∗

n+1 + u∗
n−1)+ | un+1 |2 un+1+ | un−1 |2 un−1]

− 4(J + 2τ)[| un+1 |2 + | un−1 |2]un + 8τ [u2n+1 + u2n−1]u∗
n + 8(A + A′) | un |2 un

+ i Dz [2(un+1 − un−1) | un |2 −(u∗
n+1 − u∗

n−1)u
2
n+ | un+1 |2 un+1− | un−1 |2 un−1]

]

+ i Dz ε5

32

[
3 | un |4 (un+1 − un−1) − 2 | un |2 u2n (u∗

n+1 − u∗
n−1)+ | un+1 |4 un+1− | un−1 |4 un−1

]

+ ε6

32

[
J

(
2u2n (| un+1 |2 u∗

n+1+ | un−1 |2 u∗
n−1) + 4 | un |2 (| un+1 |2 un+1+ | un−1 |2 un−1)

− 3 | un |4 (un+1 + un−1) − 2 | un |2 u2n (u∗
n+1 + u∗

n−1) − (| un+1 |4 un+1− | un−1 |4 un−1)

)

+ 16τ

(
2u∗

n (| un+1 |2 u2n+1+ | un−1 |2 u2n−1) + 3 | un |2 u∗
n (u2n+1 + u2n−1) − 2(| un+1 |4 + | un−1 |4)un

− 4 | un |2 (| un+1 |2 + | un−1 |2)un + u3n (u∗2
n+1 + u∗2

n−1)

)
+ 384A′ | un |4 un

− i Dz
(
2 | un |2 (| un+1 |2 un+1− | un−1 |2 un−1) − u2n (| un+1 |2 u∗

n+1+ | un−1 |2 u∗
n−1)

)]
.

(3)

Equation (3) represents the spin dynamics of an anisotropic weak helimagnet.
This discrete equation leads to several nonlinear excitations. The combination of
nonlinearity and discreteness gives rise to new types of nonlinear excitations which
are not present in the continuummodels. These complexities make it difficult to solve
the equation directly.

3 Kink Solitonic Profile

The exact solution to the Eq. (3) can be obtained by the use of Jacobi elliptic function
method [20]. We introduce the transformations [21]

un = eiθnφn(ξn), (4)

where,
θn = pn + ωt + θ0, ξn = kn + ct + χ0,

using the trignometric relation e±i p=cos(p) ± isin(p), separate the real and imagi-
nary parts, we obtain following set of equations:
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ωφn + ε2
[
2(J − A − 2A′)φn − J (φn+1 + φn−1)(cos p + Dz sin(p))

] +
(1/4)ε4

[
J
[
(3φ2

n (φn+1 + φn−1) cos(p)) + (φ3
n+1 + φ3

n−1) cos(p)
] − 4(J + 2τ)

(φ2
n+1 + φ2

n−1)φn + 8τφn(φ2
n+1 + φ2

n−1) cos(2p) + 8(A + 6A′)φ3
n + Dz sin(p)

(2φ2
n (φn+1 − φn−1) − φn+1 + φn−1 + φ3

n+1 − φ3
n−1)) − (Dzε5 sin(p)/32)(5φ4

n

(φn+1 + φn−1) + φ5
n+1 + φ5

n−1) − (ε6/32)(J cos(p)(φ2
n (φ3

n+1 + φ3
n−1)) − 5φ4

n

(φn+1 + φn−1) − φ5
n+1 − φ5

n−1) + 16τ(φn(cos(2p) − 1)2(φ4
n+1 + φ4

n−1) + 4

(cos(2p) − 1) × φ3
n (φ2

n+1 + φ2
n−1)) + 384A′φ5

n + 3Dz sin(p)φ2
n (φ3

n+1 + φ3
n−1) = 0, (5)

−cφ
′
n − ε2(J (φn+1 − φn−1) sin(p) + Dz cos(p)(φn+1 − φn−1)) + (1/4)ε4(J

(φ3
n+1 + φ3

n−1) sin(p) + 8τφn(φ2
n−1 − φ2

n+1) sin(2p) + Dz cos(p)(φ2
n (φn+1

−φn−1) + φ3
n+1 − φ3

n−1)) + (1/32)Dzε5 cos(p) × (φ4
n (φn+1 − φn−1) + φ5

n+1

−φ5
n−1) − (1/32)ε6(J sin(p) × (2φ2

n (φ3
n+1 − φ3

n−1) − φ4
n (φn+1 − φn−1)

−φ5
n+1 + φ5

n−1) + 32τ sin(2p)(φn(φ4
n+1 − φ4

n−1) + φ3
n (φ2

n+1 − φ2
n−1))

−Dz cos(p)φ2
n (φ3

n+1 − φ3
n−1)) = 0. (6)

We use the following series of expression [22] as a solution:

φn(ξn) = a0 + a1sn(ξn),

φn+1(ξn) = a0 + a1
sn(ξn)cn(k,m)dn(k,m) + sn(k,m)cn(ξn)dn(ξn)

1 − m2sn2(ξn)sn2(k)
,

φn−1(ξn) = a0 + a1
sn(ξn)cn(k,m)dn(k,m) − sn(k,m)cn(ξn)dn(ξn)

1 − m2sn2(ξn)sn2(k)
. (7)

Further substituting Eq. (7) into Eqs. (5) and (6) and after equating the coefficients of
all power to zero, we get a series of algebraic equations. After solving these equations
using symbolic computation, we obtain the following solution

φn(ξn) = a0 +
[
2DZ sin(p) − 15360ετa0A′ + 3ε J cos(p)a0

−3072εA′
]
tanh(kn + ct + χ0), (8)

Upon substituting Eq. (8) in Eq. (4), we write the exact travelling solitary solution
as,

u(n, t) =
[
a0 +

[2DZ sin(p) − 15360ετa0A′ + 3ε J cos(p)a0
−3072εA′

]
tanh(kn + ct + χ0)

]
ei(pn+ωt+θ0)

(9)

The solution of Eq. (9) is plotted with set of parameters (a0 = 0.2, J = 0.2 and
A′ = 0.1) and the Fig. 3 shows that the magnetic soliton assumes Kink soliton profile
and propagates along the chain.
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4 Results and Discussion

We have investigated the soliton profile of the Helimagnetic nanowire by varying
the strength of helicity and DM interaction. It can be observed from the Fig. 2 that
there is a significant change in the soliton profile when the value of helicity (τ ) is
changed. When the value of τ is increased from 0.1 to 0.9, nature of soliton profile

Fig. 2 Soliton profile for Dz = 0.1,a0 = 0.2, J = 0.2, A′ = 0.1 and a τ = 0.1b τ = 0.5 c τ = 0.9
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Fig. 3 Cumulative plots for the soliton profile for values a0 = 0.2 ,J = 0.2, A′ = 0.1 and a Dz =
0.1, Dz = 0.3, Dz = 0.5 and Dz = 0.9 b τ = 0.1, τ = 0.3, τ = 0.5, τ = 0.9

changes from kink to antisoliton and there is also an increase in the amplitude of the
profile. When τ is 0.1, the kink soliton has an amplitude of 0.3 and for τ = 0.9, the
antisoliton has an amplitude of 1.1. So as τ is increased from 0.1 to 0.9, the amplitude
has increased at the blistering speed and grows exponentially. We can see that the
difference between the height of the two maxima’s is also very less for τ = 0.1 and
is significantly larger when τ reaches 0.9. So it can be inferred that the structure of
helimagnet in analogy with CLC stabilizes the soliton and settle in a more robust and
coherent profile fashion. In Fig. 3 we have plotted the cumulative plots for various
values of τ and Dz . On the left side, cumulative plot in 3D is displayed and the 2D
plot for the same is displayed on the right side. It is evident from Fig. 3a that, there
is a decrease in the amplitude of the soliton profile when there is an increase in the
DM interaction. When Dz is 0.1, amplitude is 0.209 and when Dz is increased to
0.5, amplitude decreases to 0.207. Further increase in the Dz value to 0.9 decreases
the amplitude to 0.204. Hence, the amplitude of the soliton is inversely proportional
to the strength of the DM interaction in the Helimagnetic nanowire. Additionally, a
marginal difference between the heights of the two maxima’s can be seen, when the
strength of the DM interaction is increased. It can be noted that there is no significant
changes in the nature of soliton profile.
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5 Conclusions

In this paper, we have investigated the effect of DM interaction along with the influ-
ence of helicity on a weak Helimagnetic nanowire. We have obtained a DNLS evo-
lution equation using the HP transformation aided with the Glauber’s coherent-state
representation. The DNLS equation thus obtained is solved for exact solution using
the JEF approach. Analyzing the soliton profile obtained, it is observed that the
value of helicity plays a major role in the profile of the antisoliton. Even though the
changes in the Kink soliton profile due to the varying DM interaction is significantly
low, amplitude is influenced by the strength of the DM interaction. These results
emphasize the significance of helicity and DM interaction in materials used for the
memory storage devices.
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Delay-Resilient Dynamics of a Landslide
Mechanical Model

Sr -dan Kostić and Nebojša Vasović

Abstract In present paper we analyze dynamics of a simple landslide mechanical
model induced by the co-action of included time delay between the motion of the
neighboring blocks and their coupling strength. Analyzed mechanical model repre-
sents an idealized interaction between accumulation and feeder slope at the accumu-
lation coast. Dynamics of the proposed dynamical system is examined by applying
standard bifurcation analysis: we derive explicit relations between time delay, spring
stiffness and control parameters, while bifurcation curves are derived numerically.
The results of the presented research indicate the onset of Hopf bifurcation, i.e.
occurrence of instability for rather high values of the assumed time delay and spring
stiffness, which indicates that slope instability occurs only in case when feeder and
accumulation slope are observed as strongly coupled, but with a significant delay in
interaction. Moreover, we showed that the increase of friction force along the sliding
surface suppresses the effect of time delay, indicating that sliding surfaces with low
friction parameters are prone to onset of instability.

Keywords Landslide · Time delay · Spring stiffness · Friction · Bifurcation

1 Introduction

Mechanical models are commonly used to successfully simulate dynamics of many
natural phenomena, since their dynamics could be reliably described by a set of ordi-
nary/partial differential equations, whose solutions for different initial conditions and
values of control parameters could also be confirmed by real physical simulation of
the process under study. The most remarkable example of this approach is certainly
Burridge–Knopoff model of the earthquake nucleation process, composed of series
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of blocks, interconnected only to neighboring blocks, while sliding over the rough
surface [1]. In their original paper, Burridge and Knopoff showed that sudden trig-
gering events (“spikes”) which occur during the sliding of the blocks, follow macro-
seismological Gutenberg–Richter and Omori–Utsu laws. This original model has
been in succeeding years used as a common model of seismogenic fault movement,
whose dynamics has been described by different equations capturing different effect
of controlling parameter and interactions among the blocks, including the variable
friction laws [2–5]. Apart from the use of this model for description of earthquake
nucleation process, it was also used for description of other processes, such as land-
slide dynamics. In a dynamical sense, both earthquakes and landslides act similarly:
a period of no movement or with only small displacements is followed by the period
of sudden large displacements, when accumulated energy is being dissipated. The
first attempt of using spring-block model for simulation of landslide dynamics was
made by Davis [6], who formulated simple mechanical model of two interconnected
blocks (accumulation and feeder slope) sliding along the accumulation coast. In his
paper, Davis recorded a certain time delay between the movement of the feeder and
accumulation slope, which was not included in further analysis, but certainly have
effect on the landslide dynamics. This model of Davis [6] was further examined
by Morales et al. [7], who studied effect of different friction laws on the landslide
dynamics.

In present paper, we start from the model proposed by Davis [6] andMorales et al.
[7], but also explicitly include time delay effect between the feeder and accumulation
slope, in order to analyze its effect on the onset of instability. Influence of time delay
is examined in co-action with coupling strength between the neighboring blocks and
frictional parameters along the sliding surface.

2 Description of the Proposed Model

We start from the model proposed by Davis [6]:

m1V̇1 = W1sinβ1 − S1 − F

m2V̇2 = W2sinβ2 − S2 + F

Ḟ = k(V1 − V2) + c
(
V̇1 − V̇2

)
(1)

where the superposed dot denotes differentiation with respect to time, and: W =
mig—block weight, g—acceleration of gravity; Si—sliding resistance on failure
surface along each block, F—combined elastic and viscous forces, k—spring
constant, c—dash pot constant, and β i = slope angle. Sliding resistance along the
failure surface is defined using conventional effective stress model for frictional
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strength: Si = Wi(1 – αi)cosβ if(V i), where α represents the effect of piezometric
elevation on the effective stress which acts on the failure surface: αi = γ whwi/γ hi,
where γ and γ w are the unit weights of the slide material and the pore water respec-
tively, and hi and hwi are layer thickness and groundwater depth within the layer. The
function f(V i) represents the mobilized strength on the failure surface:

f (Vi )

{= tanϕ f orVi > 0
≤ tanϕ f orVi = 0

(2)

where ϕ represents the effective stress friction angle appropriate to the slide material.
In contrast to Davis [6] and model (1), we consider the following:

• two blocks (upper feeder and accumulation slide) on an inclined plane are only
connected by elastic springs (Fig. 1a), without the dash pot, which also reduces
the effect of F only to elastic force;

• sliding resistance on failure surface is assumed to have the following general form:

S = aV 3
i + bV 2

i + cVi (3)

which is the nonmonotonic friction law according to Morales et al. [7], and
it describes a smooth spinodal friction law similar to the one introduced in
Cartwright et al. [3], see Fig. 1b.

• values of frictional parameters a, b, and c are chosen according to Morales et al.
[7], where cubic friction force is given for a = 1, where a is the location of the
local minimum, i.e. the transition point from the velocity weakening (b < v < a)
to the velocity strengthening regime (v > a).

Fig. 1 a (top) Typical accumulation slide profile; (bottom) idealized model for accumulation slide.
b Assumed friction law along the sliding surface
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Given this, we propose the model for landslide dynamics in the following general
form:

dUn

dt
= Vn

m
dVn

dt
= k(Un+1 − 2Un +Un−1) − F(V0 + Vn) + G (4)

where G is the tangential component of the gravity force, and F(V) is a velocity-
dependent friction force. A steady state of (4) exists when the block achieves a
constant velocity motion dU/dt = V0, and then F(V0) = G, so Eq. (4) represents a
dynamical system moving at velocity V0. Hence, equilibrium state of the examined
model is considered as a creep regime, with initial conditions set to (Ui, V i)= (0.01,
0.02). Such setup of the examined model corresponds to the old existing landslide
where creep along the sliding surface is permanently observed and considered as
equilibrium state, e.g. landslide “Plavinac” in Smederevo (Serbia).

Model (4) actually represents an infinite chain of identical blocks linearly coupled
though Hookean springs of stiffness k that slips at the constant velocity V0 over an
inclined surface.

For two coupled blocks, model (4) becomes:

dU1

dt
= V1

m1
dV1

dt
= k(U2 −U1) − F(V0 + V1) + F(V0)

dU2

dt
= V2

m2
dV2

dt
= k(U1 −U2) − F(V0 + V2) + F(V0) (5)

Model (5) with the included delayed interaction becomes:

dU1(t)

dt
= V1(t)

dV1(t)

dt
= 1

m
[k(U2(t − τ) −U1(t)) − F(V0 + V1(t)) + F(V0)]

dU2(t)

dt
= V2(t)

dV2(t)

dt
= [k(U1(t − τ) −U2(t)) − F(V0 + V2(t)) + F(V0)] (6)
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3 Results

Linearization of the system (6) and substitutionU1 = A1eλt ,U2 =A2eλt ,U1(t− τ )=
A1eλ(t − τ ), U2(t − τ ) = A2eλ(t − τ ), V1 = B1eλt and V2 = B2eλt results in a system of
algebraic equations for the constants A1, A2, B1 and B2. This system has a nontrivial
solution if the following is satisfied:

[
λ

(
λ + 1

m

dF(V0 + v)

dv
|v ≡ 0

)
+ k

m

]2

−
[
k

m
e−λτ

]2

= 0 (7)

Equation (7) is the characteristic equationof the system (6). Infinite dimensionality
of the system (6) is reflected in the transcendental character of (7). By substituting
λ = iω in Eq. (7) we obtain:

[
1

m

dF(V0 + v)

dv
|v ≡ 0

]
• ω = ± k

m
sinωt (8)

In this way, one obtains parametric representations of the relations between τ and
the parameters, which correspond to the bifurcation values λ = iω. The general form
of such relations is illustrated by the following formula for k as a function of ω:

k = m

2
ω2 + 1

2m

(
dF(V0 + v)

dv
|v ≡ 0

)2

(9)

and for τ as a function of ω:

τ = 1

ω
arctan

(
1
m

dF(V0+v)

dv
|v ≡ 0

ω2 − k
m

)

+ (2n + 1)π, n = 0, 1, 2, . . . (10)

One should know that although the solution of characteristic equation is indicative
of Hopf bifurcations, proof of this claim is rather lengthy to convey [8]. Instead, it
could be numerically shown that the above parametric equations for k and τ coincide
with the Hopf bifurcation curve illustrated in Fig. 2, which shows the transition from
constant slow creep of the landslide (which we consider as equilibrium state) to
oscillatory periodic motion (which we consider as instable region).

As one can see a supercritical Hopf bifurcation occurs for rather strong spring
stiffness k (>6) and high values of time delay τ (>1). In present paper, we consider
that onset of regular periodic oscillations indicates instability along the slope. Onset
of instability for high spring stiffness indicates that system under study (condition-
ally stable slope) needs to be observed as a system of strongly coupled accumulation
and feeder slope, in order to exhibit the instability. On the other hand, occurrence of
instability for high values of time delay shows the high resilience of the conditionally
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Fig. 2 Hopf bifurcation curve k(τ), for the fixed values of parameters V0 = 0.1, a = 3.2, b = –7.2
and c = 4.8. Initial conditions are set to (Ui, Vi) = (0.01, 0.02). The appropriate time series which
correspond to points a and b are shown in Fig. 3

Fig. 3 Temporal evolution of variable V1 for a τ = 3, k = 3, b τ = 7, k = 8. Time series are
constructed for the fixed values of parameters V0 = 0.1, a = 3.2, b = –7.2 and c = 4.8
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Fig. 4 Time delay between the onset of feeder and accumulation slope, as suggested by Davis [6]

stable slope to occurrence of time delay between the motion of feeder and accumula-
tion slope. This may indicate that the time delay indicated originally by Davis [6], as
shown in Fig. 4, maybe does not have significant influence on the system dynamics,
for the chosen values of friction parameters.

If we want further to examine the effect of time delay, let us analyze the influence
of the frictional parameters on the effect of τ . If one holds value of time delay
and spring constant above the bifurcation curve, increase of parameters a, b and c
suppress the effect of the introduced time delay (Fig. 5). In particular, for lower values
of parameter a (Fig. 5a), b (Fig. 5b) and c (Fig. 5c), observed dynamical system is
in unstable regime (periodic motion), while further increase of the friction effect
induces the transition to equilibrium state. This indicates that sliding surfaces with
low friction parameters are more susceptible to the onset of instability.

4 Conclusions

In present paper we analyze the sensitivity of the landslide mechanical model to the
effect of time delay between the displacement of the accumulation and feeder slope.
The research was performed using standard bifurcation analysis, while bifurcation
curves were constructed numerically. Assumed friction law along the existing sliding
surface is assumed to have cubic expression. The case analyzed represents the case
of the landslides with slow permanent displacement. Results obtained indicate that
for the analyzed friction parameter values, instability occurs for high values of time
delay and coupling strength, which indicates high resilience of the model under
study to the effect of delayed interaction between the accumulation and feeder slope.
Moreover, we showed that sliding surface with low frictional parameters is more
prone to the onset of instability.
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Fig. 5 Bifurcation diagrams regarding the effect of frictional parameters on the onset of instability:
a τ = f(a), b τ = f(b), c, τ = f(c), for fixed parameters values: V0 = 0.1, K = 7, a = 3.2, b = –7.2
and c = 4.8. EQ stands for the equilibrium state, while PM denote periodic (oscillatory) regime

Further research on this topic should include additional inquiries on the types of
instabilities which are formed with the increase of time delay, with the emphasis of
irregular or stick–slip regime, which could be treated as an adequate representative
of the real landslide motion. Moreover, one could analyze the effect of the choice of
various friction laws on the onset of instability.
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The Fifth Order Caudrey–Dodd–Gibbon
Equation for Exact Traveling Wave
Solutions Using
the (G′/G, 1/G)-Expansion Method

M. Mamun Miah

Abstract In this investigation, I am trying to extract abundant exact traveling wave
solutions for the nonlinear partial fifth order Caudrey–Dodd–Gibbon (CDG) differ-
ential equation via the (G ′/G, 1/G)-expansion method. Here I accomplish varieties
types of wave solutions as like, trigonometric, hyperbolic, and rational function solu-
tion. Since new solutions provided us new physical explanation of the mathematical
model for engineering applications and nonlinear sciences. So this article is very
effective to extract abundant new analytic traveling wave solitons. Graphical repre-
sentations of the obtained solutions are also portrayed and the shapes of the new
solutions are bright soliton, dark soliton, periodic soliton etc. This eminent method
is more applicable and easier to analysis nonlinear partial differential models.

Keywords Nonlinear partial differential equation · The fifth order
Caudrey-Dodd-Gibbon equation · Traveling wave solutions · The
(G ′/G, 1/G)-expansion method

1 Introduction

Most of the physical conditions exist in all branches of engineering applications
and scientific fields such as plasma physics, optical fibers, fluid mechanics, elastic
media, solid state physics etc. may be expressed as in terms of mathematical models
i.e. nonlinear partial differential equations (NLPDEs). So the studies of NLPDEs
are most interesting topics in modern researcher. For the consequences of modern
researcher there are manymethods invented to investigate the nonlinear system, such
as the homogeneous balancemethod [1, 2], the Jacobi elliptic functionmethod [3], the
tanh-coth method [4], the first integral method [5], the Kudryashovmethod [6, 7], the
(G ′/G)-expansion method [8], the unified method [9] etc. Recently a new technique
is discovered for investigating nonlinear evolution equations (NLEEs) and the name
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of this method is the (G ′/G, 1/G)-expansion method [10–12]. Many researcher are
used this method and get outstanding performance for studying NLEEs. At first Li
et al. [13] invented this eminent method and investigated the Zakharov equations
for extracting abundant new traveling wave solutions. Recently, Chowdhury et al.
[14] investigated the integro-differential equations make use of this eminent method.
Very recently, Iqbal et al. [15] applied this method onDate–Jimbo–Kashiwara–Miwa
equation with conformable derivative and obtained abundant exact traveling wave
solutions. I have seen that, by using this renowned method there extract huge closed
formwave solutions. Since no one scrutinized the fifth order CDG equation bymeans
of the indicated method, so I used this method.

Our article is scheduled as following instruction: In Sect. 2, the applied method
explanation. In Sect. 3, exact solutions of the fifth order CDG equation is scrutinized.
In Sect. 4, graphical representations are delivered and finally, Sect. 5, the conclusions
are given.

2 Explanation of the (G′/G, 1/G)-Expansion Method

Here, I designate the brief explanation of the applied method for extracting wave
solutions of denoted NLEE. At first I suppose that the auxiliary equation as,

G ′′(ξ) + λG(ξ) = μ (1)

where both two of μ and λ arbitrary constants and setup the expression as follows,

ϕ = G ′/G, ψ =1/G (2)

Thus,

ϕ′ = −ϕ2 + μψ − λ, ψ ′ = −ϕ ψ (3)

Depends on λ, I have discussed three cases:
Case 1: For λ < 0, the general exact solution of Eq. (1),

G(ξ) = A2 cos(
√−λ ξ) + A1 sinh(

√−λ ξ) + μ

λ
, (4)

where above two constants A1 and A2 are arbitrary. Consequently,

ψ2 = −λ
(
ϕ2 − 2μψ + λ

)

λ2σ + μ2
, (5)
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wherein, σ = A2
1 − A2

2.
Case 2: For λ > 0,

G(ξ) = A2 cos(
√

λ ξ) + A1 sin(
√

λ ξ) + μ

λ
, (6)

and hence

ψ2 = λ
(
ϕ2 − 2μψ + λ

)

λ2ρ − μ2
, (7)

wherein ρ = A2
1 + A2

2.
Case 3: For λ = 0,

G(ξ) = μ

2
ξ 2 + A1 ξ + A2, (8)

and I obtain,

ψ2 =
(
ϕ2 − 2μψ

)

A2
1 − 2 μ A2

. (9)

Assume the following NLEE is in two variables x and t which are independent,

T (u, ux , uxt , ut , utt , uxx , uxxt . . .) = 0, (10)

here T is a function of nonlinear polynomial of u and its derivatives partially. Now
to apply our desired method I consider the following steps:

Step 1: For transferring to ordinary from partial differential equation, I consider
the wave variable as,

u(x, t) = u(ξ) and ξ = x − v t (11)

where v is a constant which takes arbitrary values.
From Eqs. (11) to (10),

M(u, u′,−vu′, v2u′′, u′′ . . .) = 0, (12)

wherein M is a function of nonlinear polynomial of u and its derivatives ordinary.
Step 2: Let us consider the solution of Eq. (12),
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u(ξ) =
N∑

i=0

aiϕ(ξ)i +
N∑

i=1

biϕ(ξ)i−1ψ(ξ), (13)

where above two constants ai and bi are arbitrary and for both i = 1, 2, 3, 4 . . ..
Step 3: By the use of balance principal, the value of N and after setting the value

of N into Eq. (13) and inserting this modified Eqs. (13) into (12), using (3) and
(5) (for case 1), after this performances the left-hand side of Eq. (12) moves into
a polynomial of ϕ and ψ , in which the degree of ϕ and ψ are zero to any positive
integer and less than one respectively. Equating coefficient of the same powers to
zero, gives a set of equations in arbitrary constants and solving these system yield
the values of required arbitrary constants for λ < 0.

Step 4: Utilizing these obtained arbitrary values in step 3 and back substituting
in Eqs. (10), (11) and (12), I obtain our desired wave solutions of the NLEEs.

Step 5: Again applying step 3 and step 4, back substituting Eqs. (13), (12), (3)
and (7) for λ > 0 (or from Eqs. (3) to (9) for λ = 0), the exact solutions of Eq. (12)
i.e. Eq. (10) demonstrated by trigonometric function solutions (or by the rational
function solutions) respectively. The details of our applied method are given in Ref.
[10–15].

3 Exact Solutions of the CDG Equation

First I introduce the fifth order CDG equation [16, 17],

ut + uxxxxx + 30 u uxxx + 30 ux uxx + 180 u2ux = 0. (14)

Equation (14) moves to ordinary differential equation by applying the wave
transformation Eq. (11) as,

−v u′ + u(5) + 30 u u′ + 30 u′ u′′ + 180 u2u′ = 0. (15)

Integrating Eq. (15) and using c as integrating constant,

c − v u + u(4) + 30 u u′′ + 60 u3 = 0. (16)

Now applying the idea of homogeneous balance number between u(4) and u3,
assume the solution of Eq. (16),

u(ξ) = a0 + a1ϕ(ξ) + a2ϕ(ξ)2 + b1ψ(ξ) + b2ϕ(ξ)ψ(ξ), (17)

where b1, b2, a0, a1 and a2 all are arbitrary constant which are determine below. Here
I discuss three cases for solving the NLEE Eq. (14).
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Case 1. When λ < 0, the final exact solution in terms of hyperbolic function are
given as,

u(ξ) = −5 λ

6
+ λ

{
A2 sinh(

√−λ ξ) + A1 cosh(
√−λ ξ)

}2

{
A2 cosh(

√−λξ) + A1 sinh(
√−λ ξ) + μ

λ

}2

+ μ

A2 cosh(
√−λξ) + A1 sinh(

√−λ ξ) + μ

λ

±
√

μ2 + λ2σ
{
A2 sinh(

√−λ ξ) + A1 cosh(
√−λ ξ)

}

{
A2 cosh(

√−λ ξ) + A1 sinh(
√−λξ) + μ

λ

}2 ,

(18)

wherein ξ = x + λ3

9 t , v = λ2, σ = A2
1 − A2

2. For special case if A2 = 0, A1 �= 0
and μ = 0 in Eq. (18), the traveling exact wave solution set as,

u(x, t) = −5 λ

6
+ λ coth2

(√−λ

(
x + λ3

9
t

))

± λ coth

(√−λ

(
x + λ3

9
t

))
cos ech

(√−λ

(
x + λ3

9
t

))
(19)

Case 2. When λ > 0, the exact solution in terms of trigonometric function are
given as follows,

u(ξ) = −5 λ

6
−

λ
{
−A2 sin(

√
λ ξ) + A1 cos(

√
λ ξ)

}2

{
A2 cos(

√
λξ) + A1 sin(

√
λ ξ) + μ

λ

}2

+ μ

A2 cos(
√

λξ) + A1 sin(
√

λ ξ) + μ

λ

±
√

λ2ρ − μ2
{
−A2 sin(

√
λ ξ) + A1 cos(

√
λ ξ)

}

{
A2 cos(

√
λ ξ) + A1 sin(

√
λξ) + μ

λ

}2 ,

(20)

wherein ξ = x + λ3

9 t , v = λ2 , ρ = A2
2 + A2

1. Again I consider A1 = 0, A2 �= 0,
μ = 0 in (20),

u(x, t) = −5 λ

6
− λ tan2

(√
λ

(
x + λ3

9
t

))

± λ tan

(√
λ

(
x + λ3

9
t

))
sec

(√
λ

(
x + λ3

9
t

))
(21)

For A2 = 0, A1 �= 0 and μ = 0 in (20),
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u(x, t) = −5 λ

6
− λ cot2

(√
λ

(
x + λ3

9
t

))

± λ cot

(√
λ

(
x + λ3

9
t

))
cos ec

(√
λ

(
x + λ3

9
t

))
. (22)

Case 3. When λ = 0, the exact solution in terms of rational function solution are
given as follows,

u(ξ) = a0 − (μξ + A1)
2

2(μ

2 ξ 2 + A1ξ + A2)2
+ μ

2
(

μ

2 ξ 2 + A1ξ + A2
)

±
√
A2
1 − 2μA2(μξ + A1)

2
(

μ

2 ξ 2 + A1ξ + A2
)2 . (23)

where ξ = x + 120 a30 t , v = 180 a20 , a0, A1 and A2 are arbitrary constants. If I
choose arbitrary constants to zero, further traveling exact wave solutions to the fifth
order CDG equation can be extracted, but limitation of the article pages have not
been sketched. The above solutions of Eq. (14) gives in our article are correct and
new other than the solutions remaining in the research fields.

4 Graphical and Physical Explanation

In this section, I discussed about the graphical representation and physical expla-
nation of some soliton solutions. The extracted solutions of our desire equation are
different kind such as rational, hyperbolic and trigonometric function. Here, I plotted
and discussed about three types of solutions. Figures 1 and 2 shows that the bright
solitary wave of solution Eq. (18) for 3D plot and contour plot for the values of,
λ = −2, μ = 1, A1 = 2, A2 = 1 within x ∈ [−5, 5] and t ∈ [−5, 5]. Figures 3
and 4 shows the periodic solitary wave of solution Eq. (20) for 3D plot and contour
plot for the values of, λ = 2, μ = 1, A1 = 1, A2 = 1 within x ∈ [−5, 5] and
t ∈ [−5, 5]. Figures 5 and 6 shows the dark solitary wave of solution Eq. (23) for
3D and contour plot for the values of, a0 = 1, μ = 2, A1 = 3, A2 = 1 within
x ∈ [−5, 5] and t ∈ [−5, 5]. If I plotted the solution in Eq. (19), it’s give same
figure of Eq. (18) and similarly same shaped are obtained for the Eqs. (20) and
(21). The following obtained figures have been plotted with the help of computation
package program like Maple.
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Fig. 1 Bright solitary wave of solution Eq. (18), figure is 3D plot and right one is Contour Plot for
the values λ = −2, μ = 1, A1 = 2 and A2 = 1

Fig. 2 Bright solitary wave of solution Eq. (18), the figure is Contour Plot for the values, λ = −2,
μ = 1, A1 = 2 and A2 = 1

5 Conclusion

In our article, I extract numerous new exact solutions for the fifth order CDGequation
and trace out the graphical representations of these results. There are special types
of solutions are founded such as, bright soliton, dark soliton, periodic soliton etc.
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Fig. 3 Periodic solitary wave of solution Eq. (20), the figure is 3D plot and right one is Contour
Plot for the values λ = 2, μ = 1, A1 = 1 and A2 = 1

Fig. 4 Periodic solitary wave of solution Eq. (20), the figure is Contour Plot for the values, λ = 2,
μ = 1, A1 = 1 and A2 = 1
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Fig. 5 Dark solitary wave of solution (23), the figure is 3D plot for the values of a0 = 1, μ =
2,A1 = 3 and A2 = 1

Fig. 6 Dark solitary wave of solution Eq. (23), the figure is Contour Plot for the values of a0 = 1,
μ = 2,A1 = 3 and A2 = 1

and such solution pattern are important in nonlinear sciences. The obtained traveling
wave solutions might have significant impact for further investigation of the fifth
order CDG equation. For the performance of the (G ′/G, 1/G)-expansion method, I
conclude that the method is easier and faster compare to other method by means of
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computational package program like Mathematica or Maple. Finally I conclude that,
our investigation can be extended to other NLPDEs which arise in nonlinear physics,
applied mathematics and other branches of engineering and nonlinear science.
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Results on Fractal Dimensions
for a Multivariate Function

T. M. C. Priyanka and A. Gowrisankar

Abstract In the present work the fractal dimensions for the fractional integral on
themultivariate function is explored. In particular, the upper bound of box dimension
and Hausdorff dimension for the mixed Riemann–Liouville fractional integral of a
multivariate function, which belongs to the class of Hölder continuous functions, is
investigated. Further, if themultivariate function satisfiesLipschitz condition, the box
dimension and the Hausdorff dimension of its mixed Riemann–Liouville fractional
integral are estimated.

Keywords Multivariate function · Fractional integral · Hausdorff dimension ·
Box dimension

1 Introduction

Fractal dimension is the fundamental feature which distinguishes the naturally occur-
ring functions into smooth and coarse functions. Themost surprising aspect of fractal
dimension is that it is not always an integer but can also be a fractional number. Box
dimension and Hausdorff dimension are the widely discussed quantifiers in the frac-
tal approximation theory. For the basic definitions of fractal dimension and fractal
functions, the reader is encouraged to refer the textbooks [1–3].

The interesting connection between the fractal geometry and fractional calculus
is the evaluation of fractal dimension for the graphs of fractional derivatives (inte-
grals) of various types of fractal curves. Fractional calculus for different types of
fractal functions has been discussed in [4–6]. Many elegant and simple results have
been proved concerning the fractal dimension of univariate and bivariate continu-
ous functions. For the Riemann–Liouville (RL) fractional integral of 1D continuous
function of bounded variation, the box dimension is proved to be 1, in [7]. Liang has

T. M. C. Priyanka · A. Gowrisankar (B)
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology,
Vellore 632014, Tamil Nadu, India
e-mail: gowrisankargri@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Banerjee and A. Saha (eds.), Nonlinear Dynamics and Applications,
Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-99792-2_95

1123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99792-2_95&domain=pdf
mailto:gowrisankargri@gmail.com
https://doi.org/10.1007/978-3-030-99792-2_95


1124 T. M. C. Priyanka and A. Gowrisankar

investigated the box dimension of 1D continuous functions of unbounded variation
in [8] and its RL fractional integral in [9]. Fractal dimension of bivariate continuous
functions of bounded variation and its fractional integral has been explored in [10].
Subhash and Syed have examined the box dimension of Katugampola fractional inte-
gral of 2D continuous functions in [11]. For more details on fractional calculus and
fractal dimension, refer [13–16]. Several researchers have also discussed the fractal
dimension of fractal functions, see for instance [17–19]. Recently, the bounds of
Hausdorff dimension and box dimension of mixed RL fractional integral of bivariate
continuous function is estimated in [12]. The aforementioned result stimulates an
important question of whether an analogous result exists for a multivariate function.
This paper estimates the bounds ofHausdorff dimension and box dimension ofmixed
RL fractional integral for a multivariate continuous function.

The rest of the paper is structured as follows: Preliminaries such as definition
of mixed RL fractional integral of a multivariate function, box dimension, Haus-
dorff dimension and other basic terminologies are presented in Sect. 2. Estimation of
bounds for the fractal dimensions of the mixed RL fractional integral of a multivari-
ate function, which belongs to the class of Holder continuous functions, is discussed
in Sect. 3. Conclusion of the paper is presented in Sect. 4.

2 Preliminaries

The basic terminologies that are necessary for the current study are precisely over-
viewed in this section.

Definition 1 Suppose the function f is defined on [a1, b1] × [a2, b2] × · · · [an, bn]
with a1, a2, . . . , an ≥ 0, then its mixed RL integral is given by

Iδ f (z1, z2, . . . , zn) = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1

a1

∫ z2

a2
· · ·

∫ zn

an

(z1 − w1)
δ1−1(z2 − w2)

δ2−1

. . . (zn − wn)δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn,

where δ = (δ1, δ2, . . . , δn) with δ1, δ2, . . . , δn > 0.

Definition 2 Consider a non-empty subset V of Rn , the diameter of V is given by

|V | = sup{|u − t |; u, t ∈ V }.

Consider the countable collection of sets {Vk} of diameter at most ε which can cover
A. That is,

A ⊂
∞⋃

k=1

Vk, 0 < |Vk | ≤ ε,

here {Vk} is a ε-cover of A for each k. If A is a subset ofRn and for any ε > 0, define
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Hd
ε (A) = inf

{ ∞∑
k=1

|Vk |d : {Vk}is a ε-cover of A

}

where d is any non-negative real number. Then, for the set A, the d-dimensional
Hausdorff measure is given by

Hd(A) = lim
ε→0

Hd
ε (A).

Definition 3 For the subset A of Rn and d > 0,

dimH(A) = sup{d : Hd(A) = ∞}
= inf{d : Hd(A) = 0}

is known as the Hausdorff dimension of A. Suppose d = dimH(A),Hd(A) may be
0 or ∞, or may obeys

0 < Hd(A) < ∞ (1)

If a Borel set obeys (1), it is referred as a d-set.

Definition 4 Consider a non-empty bounded subset A of Rn . The least number of
sets required to cover A is denoted by Nε(A) with diameter at most ε. Then, the
lower and upper box dimensions are, respectively, given by

dimB(A) = lim
ε→0

log Nε(A)

− log ε
,

dimB(A) = lim
ε→0

log Nε(A)

− log ε
.

If dimB(A) = dimB(A), the common value is termed as the box dimension for A.
(i.e.,)

dimB(A) = lim
ε→0

log Nε(A)

− log ε
.

Let Gr( f, J1 × J2 × · · · × Jn) denote the graph of the function f defined on J1 ×
J2 × · · · × Jn where Ji ⊂ R, for i = 1, 2, . . . , n and dimH Gr( f, J1 × J2 × · · · ×
Jn),dimB Gr( f, J1 × J2 × · · · × Jn) and dimB Gr( f, J1 × J2 × · · · × Jn) represent
the Hausdorff dimension, box dimension and upper box dimension of f defined on
J1 × J2 × · · · × Jn , respectively, in this entire paper.
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Lemma 1 ([11]) If f ∈ C(J1 × J2 × · · · × Jn) and for some C > 0, 0 ≤ v ≤ 1,

| f (p1, p2, . . . , pn) − f (q1, q2, . . . , qn)| ≤ C‖(p1, p2, . . . , pn) − (q1, q2, . . . , qn)‖v
2, (2)

∀(p1, p2, . . . , pn), (q1, q2, . . . , qn) ∈ J1 × J2 × · · · × Jn. Then the inequality

n ≤ dimH Gr( f, J1 × J2 × · · · × Jn) ≤ dimB Gr( f, J1 × J2 × · · · × Jn) ≤ n + 1 − v

remains true if (2) holds with ‖(p1, p2, . . . , pn) − (q1, q2, . . . , qn)‖2 < ε for some
ε > 0. Suppose v = 1, the function f becomes Lipschitz continuous.

Lemma 2 [11] Let
Hv(J1 × J2 × · · · × Jn)

= { f (z1, z2, . . . , zn) : | f (z1 + l1, . . . , zn + ln) − f (z1, . . . , zn)| ≤ C‖(l1, l2, . . . , ln)‖v
2},

∀(z1 + l1, . . . , zn + ln), (z1, . . . , zn) ∈ J1 × J2 × · · · × Jn, be the set of all Hölder
continuous functions with holder exponent v. If f ∈ H v(J1 × J2 × · · · × Jn), then

n ≤ dimH Gr( f, J1 × J2 × · · · × Jn) ≤ dimB Gr( f, J1 × J2 × · · · × Jn) ≤ n + 1 − v.

3 Fractal Dimensions of the Mixed RL Fractional Integral
on Multivariate Function

This section establishes the relation between the two fractal dimensions namely box
dimension and Hausdorff dimension of mixed RL fractional integral of a Hölder
continuous multivariate function.

Theorem 1 Let f (z1, z2, . . . , zn) ∈ H v(J1 × J2 × · · · × Jn) on [a1, b1] ×
[a2, b2] × · · · × [an, bn] such that f (0, 0, . . . , 0) = (0, 0, . . . , 0) and suppose its
mixed RL type integral exists, then

dimH Gr(Iδ f, J1 × J2 × · · · × Jn) ≤ dimB Gr(Iδ f, J1 × J2 × · · · × Jn) ≤ n + 1 − v,

0 < δ1, δ2, . . . , δn < 1.

Proof Let 0 < δ1, δ2, . . . , δn < 1 and 0 ≤ a1 ≤ z1 ≤ z1 + l1 ≤ b1, 0 ≤ a2 ≤ z2 ≤
z2 + l2 ≤ b2, . . . , 0 ≤ an ≤ zn ≤ zn + ln ≤ bn. Then
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(Iδ f )(z1 + l1, z2 + l2, . . . , zn + ln) − (Iδ f )(z1, z2, . . . , zn)

= 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1+l1

a1

∫ z2+l2

a2

· · ·
∫ zn+ln

an

(z1 + l1 − w1)
δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)

δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn

− 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1

a1

∫ z2

a2

· · ·
∫ zn

an

(z1 − w1)
δ1−1

(z2 − w2)
δ2−1 . . . (zn − wn)

δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn

= I1 + I2 + I3 + · · · + In+1 + In+2 + In+3,

where

I1 = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ a1+l1

a1

∫ a2+l2

a2
· · ·

∫ an+ln

an

(z1 + l1 − w1)
δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn,

I2 = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ a1+l1

a1

∫ z2+l2

a2+l2
· · ·

∫ an+ln

an

(z1 + l1 − w1)
δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn,

I3 = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1+l1

a1+l1

∫ a2+l2

a2
· · ·

∫ an+ln

an

(z1 + l1 − w1)
δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn,

...

In+1 = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ a1+l1

a1

∫ a2+l2

a2
· · ·

∫ zn+ln

an+ln
(z1 + l1 − w1)

δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn,

In+2 = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1+l1

a1+l1

∫ z2+l2

a2+l2
· · ·

∫ zn+ln

an+l2
(z1 + l1 − w1)

δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn,

In+3 = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1

a1

∫ z2

a2
· · ·

∫ zn

an

(z1 − w1)
δ1−1

(z2 − w2)
δ2−1 . . . (zn − wn)δn−1 f (w1, w2, . . . , wn)dw1dw2 . . . dwn .
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By applying variable transformation in In+3,

I∗
n+3 = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1+l1

a1+l1

∫ z2+l2

a2+l2
· · ·

∫ zn+ln

an+ln
(z1 + l1 − w1)

δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1

× f (w1 − l1, w2 − l2, . . . , wn − ln)dw1dw2 . . . dwn

In+2 − I∗
n+3 = In+4 = 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1+l1

a1+l1

∫ z2+l2

a2+l2
· · ·

∫ zn+ln

an+l2
(z1 + l1 − w1)

δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1

[ f (w1 − l1, w2 − l2, . . . , wn − ln) − f (w1, w2, . . . , wn)]dw1dw2 . . . dwn

|In+4| ≤ 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1+l1

a1+l1

∫ z2+l2

a2+l2
· · ·

∫ zn+ln

an+l2
|(z1 + l1 − w1)

δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1

× [ f (w1 − l1, w2 − l2, . . . , wn − ln) − f (w1, w2, . . . , wn)]|dw1dw2 . . . dwn

As the function f (z1, z2, . . . , zn) ∈ H v(J1 × J2 × · · · × Jn)on [a1, b1] × [a2, b2] ×
· · · × [an, bn],

|Jn+4| ≤ C‖l1, l2, . . . , ln‖v
2

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ z1+l1

a1+l1

∫ z2+l2

a2+l2

· · ·
∫ zn+ln

an+ln

|(z1 + l1 − w1)
δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)

δn−1|dw1dw2 . . . dwn

= C‖l1, l2, . . . , ln‖v
2

Γ (δ1 + 1)Γ (δ2 + 1) . . . Γ (δn + 1)
(z1 − a1)

δ1(z2 − a2)
δ2 . . . (zn − an)

δn

For (z1, z2, . . . , zn) ∈ [a1, b1] × [a2, b2] × · · · × [an, bn], one can get

|In+4| ≤ C‖l1, l2, . . . , ln‖v
2

Γ (δ1 + 1)Γ (δ2 + 1) . . . Γ (δn + 1)
(b1 − a1)

δ1(b2 − a2)
δ2 . . . (bn − an)

δn

|In+4| ≤ C‖l1, l2, . . . , ln‖v
2

where

C = (b1 − a1)
δ1(b2 − a2)

δ2 . . . (bn − an)
δn

Γ (δ1 + 1)Γ (δ2 + 1) . . . Γ (δn + 1)
.

Now, similarly applying the above steps, the bound of J1 is found to be
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|I1| ≤ 1

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ a1+l1

a1

∫ a2+l2

a2
· · ·

∫ an+ln

an

|(z1 + l1 − w1)
δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1|

× | f (w1, w2, . . . , wn) − f (0, 0, . . . , 0)|dw1dw2 . . . dwn

≤ C‖l1, l2, . . . , ln‖v
2

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ a1+l1

a1

∫ a2+l2

a2
· · ·

∫ an+ln

an

|(z1 + l1 − w1)
δ1−1

(z2 + l2 − w2)
δ2−1 . . . (zn + ln − wn)δn−1|dw1dw2 . . . dwn

≤ C‖l1, l2, . . . , ln‖v
2

Γ (δ1)Γ (δ2) . . . Γ (δn)

∫ a1+l1

a1

∫ a2+l2

a2
. . .

∫ an+ln

an

|(a1 + l1 − w1)
δ1−1(a2 + l2 − w2)

δ2−1 . . . (an + ln − wn)δn−1|dw1dw2 . . . dwn

= C‖l1, l2, . . . , ln‖v
2

Γ (δ1 + 1)Γ (δ2 + 1) . . . Γ (δn + 1)
lδ11 lδ22 . . . lδn

n

≤ C‖l1, l2, . . . , ln‖v
2.

where

C = lδ11 lδ22 . . . lδn
n

Γ (δ1 + 1)Γ (δ2 + 1) . . . Γ (δn + 1)
.

Similarly, the bounds of remaining integrals are obtained as

|I2| ≤ C‖l1, l2, . . . , ln‖v
2, where C = lδ11 (b2 − a2)

δ2 . . . lδn
n

Γ (δ1 + 1)Γ (δ2 + 1) . . . Γ (δn + 1)

|I3| ≤ C‖l1, l2, . . . , ln‖v
2, where C = (b1 − a1)

δ1lδ22 . . . lδn
n

Γ (δ1 + 1)Γ (δ2 + 1) . . . Γ (δn + 1)
...

|In+1| ≤ C‖l1, l2, . . . , ln‖v
2, where C = lδ11 lδ22 . . . (bn − an)

δn

Γ (δ1 + 1)Γ (δ2 + 1) . . . Γ (δn + 1)
.

As a consequence, for a suitable constant C,

|(Iδ f )(z1 + l1, z2 + l2, . . . , zn + ln)−(Iδ f )(z1, z2, . . . , zn)|
≤ |I1| + |I2| + |I3| + · · · + |In+1| + |In+2| + |In+3|
≤ C‖l1, l2, . . . , ln‖v

2.

The proof follows from Lemma2.

Theorem 2 If the continuous function f (z1, z2, . . . , zn) defined on [a1, b1] ×
[a2, b2] × · · · × [an, bn] with f (0, 0, . . . , 0) = (0, 0, . . . , 0) obeys Lipschitz condi-
tion, then for 0 < δ1, δ2, . . . , δn < 1,
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dimH Gr(Iδ f, J1 × J2 × · · · × Jn) = dimB Gr(Iδ f, J1 × J2 × · · · × Jn) = n.

The proof follows from Lemma1 and Theorem1.

Remark 1 For any fractal function f (z1, z2, . . . , zn) having box dimension n +
1 − v, the upper box dimension of its RL type fractional integral is not more than
n + 1 − v.(i.e.,) If

dimB G( f, J1 × J2 × · · · × Jn) = n + 1 − v,

then
dimB G(Iδ f, J1 × J2 × · · · × Jn) ≤ n + 1 − v.

Hence,

dimB Gr(Iδ f, J1 × J2 × · · · × Jn) ≤ dimB Gr( f, J1 × J2 × · · · × Jn) = n + 1 − v.

4 Conclusion

In this article, the bounds for both the Hausdorff dimension and upper box dimension
of the mixed RL fractional integral of a multivariate function are found to be n +
1 − v, when it satisfies Hölder condition. On the other hand, when it obeys Lipchitz
condition, it is illustrated that the box dimension and Hausdorff dimension of a
multivariate function are n.
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Stochastic Predator-Prey Model
with Disease in Prey and Hybrid
Impulses for Integrated Pest
Management

Shivani Khare , Kunwer Singh Mathur , and Rajkumar Gangele

Abstract The stochastic effect is sometimes crucial in the case of integrated pest
management due to fluctuating exotic environmental and climate conditions, and it
also affects the resources required for pest extinction. Hence, we extend the classical
predator-prey model into an impulsive control system by incorporating disease in
the prey along with a stochastic element, which helps in controlling optimal pesti-
cide level more accurately in most economic means for pest eradication. Further in
analysis, it is obtained that the solution of the proposed model is positively bounded
and globally attractive. The long-term behavior of the model is examined, and the
condition for pest eradication is driven. The analysis shows that pest control becomes
more complex due to the high amplitude of impulsive period and higher intensities
of external interference. Finally, we perform some numerical simulations to support
our analytical findings and their interpretation.

Keywords Predator-prey model · Integrated pest management · Impulsive
control · Pest eradication · Permanence · Stochastic differential equations

1 Introduction

Integrated pest management (IPM) is one of the most effective methods to reduce the
pest level. It is also an environmentally friendly approach that relies on the combina-
tion of common-sense practices. The IPM approach mainly focuses on reducing pest
damage by the most economical means and the least possible hazard to people, prop-
erty, and the environment. Biological control, chemical control, mechanical control,
microbial control, remote sensing are the most valuable and significant methods to
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suppress the pest population. Mechanical control is a traditional method requiring
more human efforts, while the chemical control is used to eradicate the pest by using
chemical pesticides. But, heavy use of chemical pesticides creates more problems to
the environment, and it also affects human health, i.e., overuse of DDT damage bird
eggs. On the other hand, the biological control involves controlling populations of
pests by releasing other living organisms that are commonly called natural predators.
Microbial control with pathogens is also a part of biological control. Microbial con-
trol with the pathogen can suppress pests by releasing infected pests into the region
of consideration, which is a natural process in controlling pests without harming the
crop. In this paper, the hybrid approach including biological and chemical controls
will be used, which is more effective in controlling pests.

Further, the mathematical models play a vital role in describing the impact of
various pest control strategies in IPM systems. Mathematical modeling is recently
catching a lot of attention in the field of Integrated pest management systems [14,
19]. Mathematical models have also been proposed to study the hybrid effect of
biological and chemical pesticides together in the eradication of pest population [4,
8]. Moreover, some models involving chemical pesticides and disease incorpora-
tion (microbial control) in the pest population are presented in [9, 13]. Further, the
impulsive differential equations serve as a tool to study the dynamic processes that are
subject to a sudden change in the state of the population [10, 18]. Many researchers
have developed a state-dependent impulsive differential equations system in order
to study the pest control system by releasing pest controlling agents when the pest
population exceeds the economic threshold level [15, 16]. Many authors consid-
ered time-dependent impulsive differential systems because sometimes pest control
agents are released in a periodic manner [12, 21]. They considered either biological
or hybrid approaches, e.g., biological (including microbial) and chemical control.

Besides, the real world is full of randomness. Random fluctuations occur due
to drought, earthquake, flooding, harvesting fire, sudden rainfall, temperature rise.
These random events affect the dynamics of the ecosystem, and these fluctuations
can not be neglected. Generally, in the deterministic system, it is taken that involved
parameters are constant, but due to random fluctuations, these parameters fluctuate
around some average value, and this fluctuation in parameters affects the system’s
dynamics. Therefore, to capture the effect of random fluctuations, some authors
presented a stochastic prey-predator system for integrated pest management [1, 2,
7, 11]. But generally, these models incorporate single impulsive control strategy i.e.
biological control or chemical control [3, 6, 17, 20]. Hence stochastic prey-predator
model, which incorporates natural enemies, disease, and chemical pesticides in an
impulsive manner, is a new challenging problem to the researchers and has not been
investigated yet.

Motivated from the literature, this paper considers two species predator-prey
model with stochastic effect for integrated pest management. Also, we apply micro-
bial control with the pathogen, natural enemies, and chemical control methods in an
impulsive manner to suppress the pest.

The main aim of our paper is to analyze the dynamics of the proposed Impulsive
Eco-epidemic prey-predator system by considering white noise and finding out the
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condition for pest extinction and permanence of populations. The presented paper
is organized as follows: In Sect. 2, we construct the stochastic Eco-epidemic model.
Also, some assumptions of themodel and essential lemmas are formulated. In Sect. 3,
we investigate the susceptible pest extinction solution and the condition for the per-
manence of the system. Some numerical simulations are carried out to validate the
theoretical results in Sect. 4. Finally, we discuss some conclusions of our proposed
model and the scope of the work in the last section.

2 Model Development

A predator-prey model with disease in prey and two impulses for integrated pest
management is proposed analyzed by Shi et al. in [13]. In this model, two compart-
ments are considered for the pest population: Susceptible pest S(t) and Infected pest
I(t). It is considered that the pest can be suppressed with the help of a biological
approach using microbial control with the pathogen and releasing of natural enemies
simultaneously. However, the growth of pests and natural enemies is affected due
to several random fluctuations, like, varying environmental and climate conditions
which are not considered in [13] and hence the model proposed in [13] is not able to
describe biological phenomena realistically. In this case, only stochastic differential
equations can be used to model this biological situation. Keeping in mind the facts,
we will propose a stochastic prey-predator model with disease in prey with hybrid
impulsive pest management strategies with the following assumptions:

(A1) Due to continuous environment fluctuations, the intrinsic growth rate of sus-
ceptible pest population r , natural death rate of infected pest d1 and death
rate of natural enemies d2 fluctuates around some average value. We construct
stochastic model by perturbing r → r + σ1dB1(t), d1 → d1 − σ2dB2(t) and
d2 → d2 − σ3dB3(t).

(A2) Both chemical and biological control are used to suppress the pest population.
It is assumed that a portion δn of susceptible pest is reduced impulsively by
spraying chemical pesticides while a portion pn of infected pest and qn of
natural enemies are released impulsively at every moment of time t = nT .

(A3) Moreover, it is considered that natural enemies consume the susceptible pests
with the predation rate β2 with conversion efficiency rate k.

Therefore, with the above assumptions, we formulate the following stochastic prey-
predator model for integrated pest management:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =
[
r S(t)

(
1 − S(t)

K

)
− β1S(t)I (t) − β2S(t)N (t)

]
dt

+σ1S(t)dB1(t),
d I (t) = [β1S(t)I (t) − d1 I (t)] dt + σ2 I (t)dB2(t),
dN (t) = [kβ2S(t)N (t) − d2N (t)] dt + σ3N (t)dB3(t),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t �= nT,

S(t+) = (1 − δn)S(t),
I (t+) = (1 + pn)I (t),
N (t+) = (1 + qn)N (t),

⎫
⎬

⎭
, t = nT, n ∈ z+.

(2.1)
Here S(t), I (t) and N (t) denotes the population densities of the susceptible pest,
infected pest and natural enemies at time t . σ1, σ2, and σ3 are the coefficient effect of
environmental stochastic perturbation on susceptible pest, infected pest and natural
enemies, Bi i = 1, 2, 3 are independent from other standard Wiener process.

3 Model Analysis

This section is devoted to stating and proving our main results.

Theorem 1 For all t ∈ [0,∞), the model (2.1) has a unique solution (S(t),I(t),N(t))
for any initial condition (S0, I0, N0) ∈ R3+.

Proof First we consider the model (2.1) without impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t) =
[

r S1(t)

(

1 −
∏

0<nT<t

(1 − δn)
S1(t)

K

)

− β1

∏

0<nT<t

(1 + pn)I1(t)S1(t)

−β2

∏

0<nT<t

(1 + qn)N1(t)S1(t)

]

dt + σ1S1(t)dB1(t),

d I1(t) =
[

β1

∏

0<nT<t

(1 − δn)S1(t)I1(t) − d1 I1(t)

]

dt + σ2 I1(t)dB2(t),

dN1(t) =
[

kβ2

∏

0<nT<t

(1 − δn)S1(t)N1(t) − d2N1(t)

]

dt + σ3N1(t)dB3(t),

(3.1)
with the initial value (S10, I10, N10) = (S0, I0, N0). The classical theory of stochastic
differential equations without impulses suggests that there is a unique global positive
solution of the system (3.1).

Let

S(t) =
∏

0<nT<t

(1 − δn)S1(t), I (t) =
∏

0<nT<t

(1 + pn)I1(t), N (t) =
∏

0<nT<t

(1 + qn)N1(t),

with the initial condition (S10, I10, N10) = (S0, I0, N0). S(t), I (t), and N (t) are con-
tinuous on every interval t ∈ (nT, (n + 1)T ), n ∈ Z+ = 0, 1, 2, . . ..

For S(t), we have
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dS(t) = d

[
∏

0<nT<t

(1 − δn)S1(t)

]

=
∏

0<nT<t

(1 − δn)dS1(t),

=
[

r S(t)

(

1 − S(t)

K

)

− β1S(t)I (t) − β2S(t)N (t)

]

dt + σ1S(t)dB1(t),

for every n ∈ N and t �= nT .

S(nT+) = lim
t→nT+

S(t) = lim
t→nT+

∏

0<iT<t

(1 − δi )S1(t) = (1 − δn)S(nT ),

for every n ∈ N . And

S(nT−) = lim
t→nT−

S(t) = lim
t→nT−

∏

0<iT<t

(1 − δi )S1(t) = (1 − δn)S(nT ).

For I(t), we have,

d I (t) = d

[
∏

0<nT<t

(1 + pn)I1(t)

]

=
∏

0<nT<t

(1 + pn)d I1(t)

= [β1S(t)I (t) − d1 I (t)] dt + σ2 I (t)dB2(t),

for every n ∈ N and t �= nT .

I (nT+) = lim
t→nT+

I (t) = lim
t→nT+

∏

0<iT<t

(1 + pi )I1(t) = (1 + pn)I (nT ),

for every n ∈ N . Also,

I (nT−) = lim
t→nT−

I (t) = lim
t→nT−

∏

0<iT<t

(1 + pi )I1(t) = (1 + pn)I (nT ),

for every n ∈ N . Similarly, for N(t), we have

dN (t) = d

[
∏

0<nT<t

(1 + qn)N1(t)

]

=
∏

0<nT<t

(1 + qn)dN1(t)

= [kβ2S(t)N (t) − d2N (t)] dt + σ3N (t)dB3(t), for every n ∈ N and t �= nT .

N (nT+) = lim
t→nT+

N (t) = lim
t→nT+

∏

0<iT<t

(1 + qi )N1(t) = (1 + qn)N (nT ),
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for every n ∈ N . Further more,

N (nT−) = lim
t→nT−

N (t) = lim
t→nT−

∏

0<iT<t

(1 + qi )N1(t) = (1 + qn)N (nT ),

for every n ∈ N . Hence, the theorem is proved.

Theorem 2 For any initial value (S0, I0, N0) ∈ R3+, there exists functions u(t), U(t),
v(t), V(t), w(t), W(t) such that the positive solution of the model (2.1) satisfies the
following inequalities.

u(t) ≤ S(t) ≤ U (t), v(t) ≤ I (t) ≤ V (t), w(t) ≤ N (t) ≤ W (t), t ≥ 0 a.s.
(3.2)

Proof The model (2.1) has a positive solution, therefore,

dS(t) ≤
[

r S(t)

(

1 − S(t)

K

)]

dt + σ1S(t)dB1(t).

We formulate the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

dU (t) =
[

rU (t)

(

1 − U (t)

K

)]

dt + σ1U (t)dB1(t), t �= nT,

U (t+) = (1 − δn)U (t), t = nT,

U (0) = S0

(3.3)

Obviously, there is a global continuous positive solution of the system (3.3) with
initial value S0.

U (t) =
∏

0<nT<t
(1 − δn) exp

[∫ t
0 (r − 0.5σ 2

1 )ds + σ1
∫ t
0 dB1(s)

]

1
S0

+ ∫ t
0

∏

0<nT<s
(1 − δn)

r
K exp

[∫ s
0 (r − 0.5σ 2

1 )dτ + σ1
∫ s
0 dB1(τ )

]
ds

.

According to the comparison theorem of stochastic differential equations, we get
S(t) ≤ U (t), t ∈ [0, t∗), a.s. Now from the second equation of the model (2.1),

d I (t) ≥ −d1 I (t)dt + σ2 I (t)dB2(t),

we formulate the following equation:

⎧
⎨

⎩

dv(t) = −d1v(t)dt + σ2v(t)dB2(t), t �= nT,

v(t+) = (1 + pn)v(t), t = nT,

v(0) = I0.
(3.4)
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Obviously, v(t) =
∏

0<nT<t
(1 + pn) exp

[−0.5σ 2
2 t + σ2B2(t)

]

1
I0

+ d1
∫ t
0

∏

0<nT<t
(1 + pn) exp

[−0.5σ 2
2 s + σ2B2(s)

]
ds

.

And we get I (t) ≥ v(t), t ∈ [0, t∗), a.s. Moreover, from the third equation of the
model (2.1), we can get the inequalities, dN (t) ≥ −d2N (t)dt + σ3N (t)dB3(t), we
construct the following equations:

⎧
⎨

⎩

dw(t) = −d2w(t)dt + σ3w(t)dB3(t), t �= nT,

w(t+) = (1 + qn)w(t), t = nT,

w(0) = N0.

(3.5)

Obviously, w(t) =
∏

0<nT<t
(1 + qn) exp

[−0.5σ 2
3 t + σ3B3(t)

]

1
N0

+ d2
∫ t
0

∏

0<nT<t
(1 + qn) exp

[−0.5σ 2
3 s + σ3B3(s)

]
ds

.

And we have N (t) ≥ w(t), t ∈ [0, t∗), a.s.
From second equation of the model (2.1), we have

d I (t) ≤ β1U (t)I (t)dt − d1 I (t)dt + σ2 I (t)dB2(t).

In the similar way, we get, I (t) ≤ V (t), t ∈ [0, t∗), a.s.

Here, V (t) =
∏

0<nT<t
(1 + p(nT )) exp

[−0.5σ 2
2 t + σ2B2(t)

]

1
I0

+ β1
∫ t
0

∏

0<nT<t
(1 + p(nT )) exp

[−0.5σ 2
2 s + σ2B2(s)

]
U (s)ds

.

Besides, from the third equation of the model (2.1), we have

dN (t) ≤ kβ2U (t)N (t)dt − d2N (t)dt + σ3N (t)dB3(t).

Obviously, W (t) =
∏

0<nT<t
(1 + q(nT )) exp

[
−0.5σ 2

3 t + σ3B3(t)
]

1
N0

+ kβ2
∫ t
0

∏

0<nT<t
(1 + q(nT )) exp

[
−0.5σ 2

3 s + σ3B3(s)
]
U (s)ds

represents the solution of the system of equations,

⎧
⎨

⎩

dW (t) = kβ2U (t)W (t)dt − d2W (t)dt + σ3W (t)dB3(t), t �= nT,

W (t+) = (1 + qn)W (t), t = nT,

W (0) = N0.

(3.6)

and N (t) ≤ W (t), t ∈ [0, t∗), a.s.
The first equation of the model (2.1) follows that

dS(t) ≥
[

r S(t)

(

1 − S(t)

K

)

− β1S(t)V (t) − β2S(t)W (t)

]

dt + σ1S(t)dB1(t).
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According to the comparison systemof theSDE,wehave S(t) ≥ u(t), t ∈ [0, t∗), a.s.
Here,

u(t) =
∏

0<nT<t
(1 − δ(t)) exp

[
(r − 0.5σ 2

1 )t − β
∫ t
0 (V (s) + W (s))ds + σ1B1(t)

]

1
S0

+ r
K

∫ t
0

∏

0<nT<t
(1 − δ(t)) exp

[
(r − 0.5σ 2

1 )s − β
∫ s
0 (V (τ ) + W (τ ))dτ + σ1B1(s)

]
ds

.

and β = max(β1, β2). By the following inequalities, we get that,

u(t) ≤ S(t) ≤ U (t), v(t) ≤ I (t) ≤ V (t), w(t) ≤ N (t) ≤ W (t), t ∈ [0, t∗), a.s.

Hence, the theorem is verified.

Theorem 3 If limt→∞
∑

0<nT<t ln(1−δn)

t < 0.5σ1
2 − r , then the susceptible pests of

SDE model (2.1) with any positive initial value tend to extinction according to prob-
ability 1.

Proof Consider the transformation, S(t) =
∏

0<nT<t

(1 − δn)ξ(t), and the lyapunov

function, V (t) = ln ξ(t), t ≥ 0.
Applying I t ô formula to the first equation of the model (2.1), we have

d ln ξ(t) = dξ(t)

ξ(t)
− (dξ(t))2

2ξ2(t)
≤
⎡

⎢
⎣r − 0.5σ 2

1 −
∏

0<nT<t
(1 − δn)ξ(t)

K

⎤

⎥
⎦ dt + σ1dB1(t), (3.7)

With the help of integration between 0 and t, we obtain that

ln ξ(t) = ln(S0) +
∫ t

0

[

r − 0.5σ 2
1 − S(s)

K

]

ds + M1(t), (3.8)

where M1(t)is a martingale and M1(t) = σ1
∫ t
0 dB(s), the quadratic variation of the

martingale is 〈M1(t), M1(t)〉 = σ 2
1 t . The theory of large numbers for local martin-

gales implies that limt→∞ M1(t)
t = 0.

Therefore, from (3.8),

∑

0<nT<t

ln(1 − δn) + ln ξ(t) − ln S0 =
∑

0<nT<t

ln(1 − δn) +
∫ t

0

[

r − 0.5σ 2
1 − S(s)

K

]

ds

+M1(t).

Wehave,
∏

0<nT<t

ln(1 − δn)ξ(t) − ln S0 =
∑

0<nT<t

ln(1 − δn) +
∫ t

0

[

r − 0.5σ 2
1 − S(s)

K

]

ds

M1(t).
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Therefore, ln S(t) − ln S0 ≤
∑

0<nT<t

ln(1 − δn) +
∫ t

0

[
r − 0.5σ 2

1

]
ds + M1(t).

According to the hypothesis, lim
t→∞ S(t) = 0.

4 Numerical Simulation and Discussion

This section is devoted to performing some numerical simulations to verify our theo-
retical findings.Here,we consider the numerical values of someparameters from real-
istic sources, and some are assumed in a realistic sense (seeTable1). Tofind the strong
solution of the stochastic system (2.1), Higham introduced the Milstein method in
[5]. By using this method, we transform the system (2.1) in discrete form and demon-
strate our main results. Here the main aim is to investigate the effects of the impulsive
time period, pulse releasing amount of chemical pesticides to harvest the suscepti-
ble pest, pulse releasing amount of infected pest, pulse releasing amount of natural
enemies, and the intensity of stochastic perturbations on the integrated pest manage-
ment system. The threshold which governs the permanence of all the species and pest
extinction is obtained in this section. We choose the initial values S(0) = 5, I (0) =
3, N (0) = 3, controlling parameters δn = 0.1, pn = 0.4208, qn = 0.4208 and other
parameters values from Table1. Then we analyze the stochastic system numerically
to validate our analytic results and to see the effect of external interference in the
system. Theorem1 shows that there exists a positive solution of the system (2.1). In
order to derive numerical simulation to validate the above results, first, we choose
σ1 = σ2 = σ3 = 0 in Fig. 1 and draw the time series plot of the model (2.1). In Fig. 2
we take σ1 = σ2 = σ3 = 0.1. From Fig. 3 it can be seen that as we increase the value
of noise σ1 = σ2 = σ3 = 0.3, we found that the solution of the system (2.1) fluctuates
with high amplitude. Chaos may occur, and pulse phenomena are covered, so pulse
can not be produced clearly. Further, consider the system (2.1) again. By compu-
tations we get, for the parameters values r(t) = 0.2, δn = 0.1, σ1 = 0.6, T = 5 and

lim
t→∞

∑
0<nT<t ln(1 − δn)

t
= −0.0211 < 0.5σ1

2 − r = −0.020. Therefore, from the

result of Theorem3 we can determine that the pest population will extinct for these
values of parameters. We can illustrate this result in Fig. 4. To see the significant
effect of chemical pesticides in the suppression of susceptible pest populations, we
take parameters values r(t) = 0.3, δn = 0.1, σ1 = 0.6, T = 5. From Fig. 5, we can
analyze that the susceptible pest population is not suppressed completely. In order
to eradicate the susceptible pest population, we have to increase the pulse releasing
the amount of chemical pesticides δn = 0.49 (see in Fig. 5). Moreover, we can ana-
lyze the effect of impulsive releasing amount of infected pest and natural enemies
on the system (2.1) with different intensities of stochastic perturbations. We choose
parameters r(t) = 3, δn = 0.1, pn = 0.4208, qn = 0.4208, σ1 = σ2 = σ3 = 0, T =
5. From Fig. 1 we can see that all the species coexists. If we increase pulse releasing
amount of infected pest pn = 1.719 and natural enemies qn = 1.719 then suscep-
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Table 1 Description of parameters values selection for model (2.1)

Parameter Description Values Unit Source

r Intrinsic growth
Rate

3 day−1 [6]

K Carrying capacity 12 ind [6]

β1 Number of
susceptible pest
become infected
at per unit time
due to direct
contact with
infected pest

0.3 ind−1 day−1 Assumed

β2 Attack rate of
natural enemies
to catch
susceptible pest

0.6 ind−1 day−1 [6]

k Conversion
efficiency of
natural enemies

0.5 – [6]

d1 Death rate of
infected prey

0.2 day−1 Assumed

d2 Death rate of
natural enemies

0.2 day−1 [6]
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Fig. 1 Stability analysis of system (2.1) with δn = 0.1, pn = 0.4208, qn = 0.4208, T = 5, σ1 =
σ2 = σ3 = 0, a–c Population dynamics in t − S(t), t − I (t), t − N (t) planes, respectively

tible pest population will die out (see in (a–c) of Fig. 6). Also from (d–f) of Fig. 6
we can observe that if there is small stochastic perturbation in the system (2.1), then
for the suppression of susceptible pest population we increase the value of pn = 1.8
and qn = 1.8 (see in (a-c) of Fig. 7). Similarly, if stochastic perturbation is large
(i.e. σ1 = σ2 = σ3 = 0.3), then we increase the pulse releasing amount of infected
pest pn = 2.5 and natural enemies qn = 2.5 to eradicate susceptible pest population
completely (see in (d–f) of Fig. 7).

Further, impulsive time period and intensity of noise also affect the stochas-
tic persistence and extinction of susceptible pest populations. In order to eradi-
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Fig. 2 Stability analysis of system (2.1) with δn = 0.1, pn = 0.4208, qn = 0.4208, T = 5, σ1 =
σ2 = σ3 = 0.1,a–c Population dynamics in t − S(t), t − I (t), t − N (t) planes, respectively
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Fig. 3 Stability analysis of system (2.1) with δn = 0.1, pn = 0.4208, qn = 0.4208, T = 5, σ1 =
σ2 = σ3 = 0.3, a–c Population dynamics in t − S(t), t − I (t), t − N (t) planes, respectively
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Fig. 4 Pest population of system (2.1) with S(0) = 5, r = 0.2, δn = 0.1, σ1 = 0.6, T = 5
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Fig. 5 Pest population of the system (2.1) with S(0) = 5, r = 0.3, T = 5, σ1 = σ2 = σ3 = 0.6
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Fig. 6 Stability analysis of system (2.1), a–c with δ = 0.1, pn = 1.719, qn = 1.719, T = 5, σ1 =
σ2 = σ3 = 0, Population dynamics in t − S(t), t − I (t), t − N (t) planes, respectively and (d-f)
with σ1 = σ2 = σ3 = 0.1 Population dynamics in t − S(t), t − I (t), t − N (t) planes, respectively

cate the susceptible pest population we take controlling parameters δn = 0.1, pn =
0.4208, qn = 0.4208 and the rest of the parameters are the same. If the intensity
of noise is σ1 = σ2 = σ3 = 0, then we get a threshold value for impulsive period
T ∗ = 1.8285. From Fig. 8 we can see that for T = 1.7557 < T ∗ = 1.8285 pest pop-
ulation become extinct and other populations will survives. If the intensity of noise is
σ1 = σ2 = σ3 = 0.1, then we have T ∗ = 1.7511. Similarly for σ1 = σ2 = σ3 = 0.3,
value of T ∗ will be 1.4379 (see Fig. 9). However, if the intensity of stochastic pertur-
bation is large, then stochastic permanence of all species and pest extinction of the
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Fig. 7 Stability analysis of system (2.1), a–c with δn = 0.1, pn = 1.8, qn = 1.8, T = 5, σ1 =
σ2 = σ3 = 0.1, Population dynamics in t − S(t), t − I (t), t − N (t) planes, respectively and d–f
with δn = 0.1, pn = 2.5, qn = 2.5, T = 5, σ1 = σ2 = σ3 = 0.3, Population dynamics in t − S(t),
t − I (t), t − N (t) planes, respectively
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Fig. 8 Stability analysis of system (2.1) with δn = 0.1, pn = 0.4208, qn = 0.4208, T = 1.7557 <

T ∗ = 1.8285, σ1 = σ2 = σ3 = 0, a–c Population dynamics in t − S(t), t − I (t), t − N (t) planes,
respectively
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Fig. 9 Stability analysis of system (2.1) with δn = 0.1, pn = 0.4208, qn = 0.4208, T = 1.27 <

T ∗ = 1.4379, σ1 = σ2 = σ3 = 0.3, a–c Population dynamics in t − S(t), t − I (t), t − N (t),
planes, respectively
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Fig. 10 3-D plot between: Susceptible pest, infected pest and natural enemywith δn = 0.1, pn = 1,
qn = 1, T = 20, and a with σ1 = σ2 = σ3 = 0, b with σ1 = σ2 = σ3 = 0.1

susceptible pest population could be changed. Further, we can also get that analysis
of the system (2.1) becomes more complex when the impulsive period is greater than
a certain critical value. A typical chaos oscillation occurs, and pulse phenomena are
covered (see Fig. 10).

5 Conclusion

In this paper, a stochastic prey-predator system with hybrid impulses has been pro-
posed and analyzed. In the modeling process, we considered that pests were com-
pletely eradicated by using both biological and chemical control strategies together
impulsively. We released natural enemies, infected pests, and chemical pesticides to
suppress the pest population. It is also noticed that real life is full of randomness. This
randomfluctuation occurs in a relatively short time interval due to some random envi-
ronmental factors such as flood, rainfall, harvesting, fire, etc. Generally, the species’
growth often suffers due to environmental fluctuations, and these fluctuations affect
the long-term dynamics of the system. So, we can not neglect these random fluc-
tuations, and it is essential to consider the prey-predator system with white noise.
Keeping this in view, we have constructed a stochastic prey-predator model with
disease in prey and a hybrid impulsive model for integrated pest management. We
analyzed the dynamics of the system (2.1) and carried out some theoretical results.
Theorem1 shows that there exists a positive solution of the system (2.1). Similarly,
Theorem2 proves the permanence of the system (2.1). Moreover, By the result of
Theorem3, we obtained the condition for the pest extinction. Our analysis shows that
these conditions mainly depend upon the parameters: impulsive releasing amount of
chemical pesticides δn , impulsive releasing amount of infected pest pn , impulsive
releasing amount of natural enemies, impulsive time-period T and the magnitude of
the intensities of external interferences σ1, σ2, σ3. If the birth rate of susceptible pests
is low, then susceptible pests can be controlled by using a small amount of chemical
pesticides. However, the birth rate of the susceptible pest is high, and the intensity of
stochastic perturbation is large, then susceptible pest population can be suppressed
by releasing both infectious pests and natural enemies. Moreover, pulse releasing
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the amount of infected pests and natural enemies is also responsible for the suscep-
tible pest extinction. The susceptible pest population can be suppressed by releasing
a large amount of controlling agents. Also, if the controlling agents are released
more frequently, the susceptible pest population can be eradicated completely. Our
analysis also shows that pest control becomes more complex due to the high ampli-
tude of impulsive period and higher intensities of external interference. Moreover,
our analysis can help the farmer to understand the interactions of susceptible pests,
infected pests, natural enemies, chemical pesticides, and environmental fluctuations
to design the appropriate pest control strategies andmake pest management decisions
to control the pest.
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Bifurcation Analysis of Longitudinal
Dynamics of Generic Air-Breathing
Hypersonic Vehicle for Different
Operating Flight Conditions

Ritesh Singh , Om Prakash , Sudhir Joshi , and Yogananda Jeppu

Abstract The advancements in the Hypersonic Technology have taken us a step
closer to the cost effective and reliable Hypersonic flight to Space. The paper outlines
nonlinear dynamical model analysis of the Air-breathing Hypersonic Vehicle (AHV)
using Bifurcation Method. It shows the Bifurcation Method implementation and its
application to the nonlinear dynamics and stability investigation for 3DOF Longitu-
dinal nonlinear dynamics of theGeneric AHV.BifurcationAnalysis of AHVpresents
a quantifiable valuation with equilibrium states throughout the whole broad flight
envelop and with dynamic stability analysis for Mach Number,M = 0.9. AUTO-07p
platform is used here to demonstrate the AHV flight dynamics and control anal-
ysis using the Bifurcation Technique and Continuation approach. The Bifurcation
Methodology is implemented for the AHV dynamic model using AUTO-07p for
different operating flight conditions with elevator deflection, δe.

Keywords Bifurcation analysis · Longitudinal dynamics · Hypersonic vehicle

1 Introduction

Air-breathing Hypersonic Vehicle provides a way forward for the Hypersonic Tech-
nology in the comingdecades to achieve tourism in space.Accomplishment ofHyper-
X experimental vehicle during the last decade has made an increased interest in the
AHV,which can lead the ultramodern dreams of rapid transportation across theworld
and to Space in the coming decades. Hypersonic Technology is now being devel-
oped around the world, with promising military and commercial applications, and
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for achieving Low Earth Orbit. The achievement with NASA Programs throughout
the last seven decades has opened a new awareness for cost-effective Space entrance
to many noncombatants and military missions, and provides renewed interest in
Hypersonic Vehicles and its technology. The challenges with the aerodynamics of the
AHV flight shows the dynamic interaction and nonlinear aerodynamics phenomena
occurring at the different high speeds for the wide flight regime. Therefore, the
flight dynamics of the AHV vehicle presents a challenge for the different operating
flight conditions for the vehicle and shows that further dynamics analysis can be
carried using the different nonlinear analysis methods. This gives a way forward
to the Bifurcation Technique, which can be investigated and implemented due to
the highly nonlinear AHV model, complicated aerodynamic characteristics over the
whole flight regimes, large flight envelop, and significant coupling interaction.

Bifurcation approach provides a potential to significantly enhance the flight
dynamics design process. The relevance of the bifurcation approach is that it may
show global stability and improvements in aviation control design parameters. The
nonlinear dynamical system with trim and stability analysis, may be investigated
computationally using Bifurcation approaches. The bifurcation method can be used
to find multiple trim points and different states which can co-exist utilizing a static
categorization with control restrictions. It also forecasts system behavior utilizing
several sorts of bifurcations that lead to the commencement of state dynamics, as
well as information on phugoid stability for AHV dynamics analysis. Continua-
tion algorithm implemented with the bifurcation technique delivers local stability
evidence around all trim points, making the method valuable for analysis. Bifur-
cation method provides promising application for flight controls and its effective
analysis of nonlinear phenomena occurring in the flight dynamics. When it comes
to flight dynamics and control system design, using Bifurcation analysis, it proves a
better nonlinear approach to be implemented, for the analysis of complex nonlinear
dynamics and dynamical system with multiple trim states and control parameters.

The organization of the paper is categorized with the following sections. Section 2
presents the Bifurcation Method introduction, application and its brief literature
overview. Section 3 discusses the implementation of the Bifurcation Method to the
3DOF Longitudinal AHVmodel using AUTO-07p platform. Section 4 discusses the
Bifurcation Results of AHV for theMach Number,M = 0.9 with elevator deflection,
δe. And at the end, Sect. 5 deliberates the conclusion of the Method implemented.

2 Bifurcation Method

Bifurcation techniques are a valuable tool for numerically investigating the nonlinear
effects of dynamical systems for trim and stability. With these analysis, nonlinear
behavior may be better understood since it keeps track of all trim points at which
equilibriums are created or destroyed, or at which the stability of equilibriums varies.
This technique was first implemented for flight dynamics by [1–3] around 1982.
Bifurcation analysis gives record of all critical bifurcation points for the equilibriums
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Fig. 1 AHV model

which shows the variation of the system stability change. Analysis and application
of this technique is implemented for the aircraft stability, dynamics and control
for high alpha effects in [4, 5]. The method is implemented for the 6DOF aircraft
models with nonlinear dynamics for different flight conditions of level, straight and
turn conditions for the flight dynamics analysis by [6–9]. Hence it can be shown
that this method provides fruitful way to understand the nonlinear dynamics with all
information regarding the equilibrium states and can be implemented to the flight
dynamics area.

The vehicle considered here is Generic Hypersonic Vehicle known as Winged
ConeModel from [10], developed byNASA is presented in the Fig. 1 [10]. Themodel
developed is based on the rigid-body hypothesis and is used for various developments
such for control systems, navigation and guidance, optimization and stability for
Single-Stage-To-Orbit. The propulsionmodel used for the vehicle is the combination
of the turbojet, ramjet and scramjet, and the rocket engine used for the entire flight
envelop. The hypothetically proposed ramjet and scramjet engine, integrated to the
vehicle makes the model to be called as Air-breathing Hypersonic Vehicle (AHV)
[11]. The nonlinear ODE (Ordinary Differential Equation) of the 3DOF longitudinal
AHV flight dynamic model, given by the Eqs. (1)–(5) using [11], are used for the
bifurcation method analysis. The nonlinear behavior of the AHV with complicated
aerodynamic model, large flight envelop and with strong dynamic coupling gives a
reasonable way to implement and apply the bifurcation technique.

The bifurcation method uses first order ODE’s represented by,
.
x= f (x, u), to

determine the steady states for the nonlinear systems. Themethod uses CBA (Contin-
uation Based Algorithm) to determine the all-possible trim equilibrium points using
the software platform AUTO-07p from [12]. The CBA computes, all potential trim
solutions for the system while the other control parameters are held constant and by
adjusting the free control parameter. At each of the trim points, the CBA computes
the local stability information. The Bifurcation Diagram provides two-dimensional
depiction with calculated trim results with the function in the variable control param-
eter that depicts the system’s overall behavior. Bifurcation Points are the stability
points where trim points calculated change with each calculation. These points
resemble the movements of the eigenvalues from LHS to RHS in the complex plane,
indicating and representing the dynamic behavior of the system stability as unstable
in nature.
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3 Bifurcation Method Study of 3DOF AHV Model

The 3DOF longitudinal nonlinear AHVmodel from [13] is considered for the Bifur-
cation methodology implementation with the nonlinear dynamic model given by the
Eqs. (1)–(5). The geometric and aerodynamic data of the AHV model is used from
[13], for the development of the nonlinear aerodynamic model. The aerodynamic
model developed from [14] provides changes with Mach Number and with angle-of-
attack for the entire AHV flight band. The propulsion model from [14] is considered
here, which is combination of the engine of turbojet, ramjet and scramjet, and rocket
for the complete AHV flight. The atmosphere model considering the altitude effects
for the temperature and air density from [15] is considered for the AHV model.
Combining the all-sub models, and the 3DOF AHV dynamic model given by the
Eqs. (1)–(5) are combined and developed as 3DOF AHV longitudinal model for the
bifurcation analysis. Bifurcationwith SBA is implementedwith theAHVmodel with
states considered as x = [V α q θ h] with the elevator deflection considered as input
given by u = [δe] and PLA (pilot lever angle) is used as the parameter p = [PLA].
Here the velocity term V, of the AHV is used asM, called as Mach number, which is
obtained by the ratio of the velocity to the speed of sound. The angle-of-attack of the
AHV is directly affected by the parameter, and the parameters in the SBA analysis are
fixed during the simulation run. For SBA implementation to this model, the results
are depicted in the terms of Bifurcation Diagram (BD) which provides in interpreting
and illustrating the AHV dynamic behavior. Bifurcation with EBA is applied with
the longitudinal AHV model with the dynamics given by the Eqs. (1)–(5), for the
level, climb/decent and straight flight paths.

mV̇ = (
T cosα − Fy − mgsinθ

)
(1)

mV α̇ = mVq − (T sinα + Fx − mgcosθ) (2)

Iyyq̇ = My (3)

θ̇ = q (4)

ḣ = V sinθ (5)

To initiate or run the developed AUTO-07p code, we need the initial, equilibrium
or starting values for the bifurcation or simulation to run. For this the equilibrium
values are obtained by solving the Eqs. (1)–(5), by equating the LHS of the Eqs. (1)–
(5) to zero and solving for the state values. These equilibrium values are needed for
the bifurcation to implement SBA and to start the simulation or to run the code. In
order to simplify the calculation α = θ = 0, and the equilibrium solution is obtained
for the different Mach number, M and the altitude h = h0, and the state equilibrium
solution is obtained and is given by the Eqs. (6)–(8).



Bifurcation Analysis of Longitudinal Dynamics … 1153

T (h0) = qSCD (6)

V0 = qSCL/(mg) (7)

My = 0 (8)

Here the term m, q, S, T are the vehicle mass, dynamic pressure, reference area
and vehicle thrust. And CD and CL , are the aerodynamic coefficient and My is the
pitching moment. Using the solution, given by the Eqs. (6)–(8), the drag term is
made equivalent to the thrust term, and this results in the initial thrust value which
can be used for the initial run. And similarly, the V0 start value for the initial run is
used by the above relation h = h0. Hence the bifurcation is carried with the states
as α, qandθ , considering the other states as fixed and constant value for the whole
bifurcation run.

The different bifurcation diagrams are obtained employing the bifurcation using
CBA, and all the potential trims of the AHV are computed. Using AUTO-07p, the
CBAmethod is used to compute different trims and elevator deflection, δe is varied in
order to commence the continuation of the numerical simulation. Each of the bifur-
cation diagrams below shows the collection of equilibrium points that corresponds
to the value of the specified parameter for each example. There is not at all varia-
tion with the state variables for any of the places on the curve where these solution
branches are formed. When the Bifurcation Diagram is created for AUTO-07p plat-
form, it provides altogether information of trim points in each variation with input
variables. In this case, negative and positive eigen values represent the stability and
instability of the dynamic system.

4 Bifurcation Results

Bifurcation analysis for the AHV at Mach number,M = 0.9 and altitude, h= 10,000
ft, is carried out and the Bifurcation Diagram obtained is shown in the Fig. 2, it
illustrates how the equilibrium solution point shifts between –12° and 12° deflections
when the elevator deflection, δe value changes. The AHV stability and bifurcation is
examined by focusing on varying the value of the system parameter δe and making
another parameter, thrust coefficient constant. Implementing theAUTO-07p code,we
observe the numerous bifurcations occurrences for the AHV’s states in consideration
to the parameter variation. Here the angle-of-attack, α given in the Fig. 2a, when
deflected for δe from 0° to 12° degrees, it indicates stable behaviour for the vehicle,
and when deflected from 0° to –12° degrees down it shows stable action. The pitch
angle, θ as shown in the Fig. 2b, for the elevator deflection, δe, 0° to –12° degrees the
variation is stable between –4.5 to 1.5 radians and for the –1.5 to –4.25 radians. At
each of the 24 possible equilibriumpoints,AUTO-07p generates result demonstrating
stable dynamics for all the eigenvalues. For the pitch angle, θ , from the bifurcation
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Fig. 2 Bifurcation diagram
for M = 0.9

(a) Angle of attack with variation

(b) Pitch with variation

(c) Pitch rate with  variation 
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diagram, the points 7 and 8 in the Fig. 2b show the nose going up, whereas points
19 and 20 show the nose going down. And for the elevator deflection 5°, the vehicle
will have 60° nose-down and 60° nose-up directional changes at various periods of
the vehicle’s climb or fall. The pitch rate, q as shown in the Fig. 2c, for the elevator
deflection, δe, 0° to –12° degrees the variation is stable and when deflected δe from
0° to 12° degrees, it also indicates stable behaviour for the vehicle, with ranging in
a stable magnitude for the δe change.

Running the AUTO-07p code for the bifurcation of AHV using CBA, we obtain
the bifurcation diagram as shown in the Fig. 2. We obtain the simulation results of
forward run and backward run for the implemented bifurcation method and is shown
inTable 1 andTable 2 respectively. These tabular results show the bifurcation diagram
data points for the different runs with iterations, indicating the different values of
α, θ and q. Here BR, PT, TY and LAB are the Bifurcation Result, Bifurcation
Point, Bifurcation Type and Labelled Solution respectively. Here for different range
(1 to 200) of PT’s, the forward and backward run are carried out with different
iterations and corresponding L2 Norm values for the different selected parameters
are determined.

It shows that the result is obtained for 200 different points with different iterations
and step size at each AUTO-07p run, with LP bifurcation type is obtained at 121 run;
and this indicates the presence of bifurcation point as fold for the ordinary differential
equation present in the AHV dynamics.

The eigen values determined from the forward and backward run are shown for
the corresponding PT for 1, 121 and 200. This shows the different eigen values with
respective to the different iteration and the stability of the AHV with the Bifurcation
TY. It shows the presence of Hopf function at PT 1 and Iteration 1; and Fold, BP
and Hopf function at PT 121, 200 and Iteration 5, 3; with the eigen values with each
iteration. The stability information can be determined with the corresponding each

Table 1 Bifurcation result with forward run in AUTO-07p

BR PT TY LAB δe(rad) L2-Norm α(rad) θ(rad) q

1 1 EP 1 0.00000 1.57080 0.00E+00 – 1.570E+0 0.00E+00

1 20 2 1.61874 1.42901 1.30E-02 – 1.428E+0 2.90E-29

1 40 3 3.61065 1.25028 2.91E-02 – 1.25E+0 9.51E-31

1 60 4 5.60149 1.06042 4.51E-02 – 1.059E+0 – 2.70E-29

1 80 5 7.58995 0.84797 6.11E-02 – 8.46E-01 1.42E-27

1 100 6 9.57201 0.58508 7.71E-02 – 5.79E-01 – 1.191E-26

1 120 7 11.4416 0.09220 9.22E-02 – 3.05E-03 4.91E-27

1 121 LP 8 11.4416 0.09215 9.22E-02 1.38E-05 5.74E-28

1 140 9 10.4622 0.42539 8.43E-02 4.17E-01 7.73E-29

1 160 10 8.48822 0.73837 6.84E-02 7.35E-01 – 2.00E-27

1 180 11 6.50178 0.96809 5.24E-02 9.67E-01 – 4.068E-27

1 200 EP 12 4.51178 1.16626 3.63E-02 1.17E+00 – 2.19E-28
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Table 2 Bifurcation result with backward run in AUTO-07p

BR PT TY LAB δe(rad) L2-Norm α(rad) θ(rad) q

1 1 EP 1 0.00E+00 1.57E+00 0.00E+00 – 1.57E+00 0.00E+00

1 20 2 – 1.62E+00 1.71E+00 – 1.30E-02 – 1.71E+00 9.76E-29

1 40 3 – 3.61E+00 1.89E+00 – 2.91E-02 – 1.89E+00 3.47E-29

1 60 4 – 5.60E+00 2.08E+00 – 4.51E-02 – 2.08E+00 7.11E-28

1 80 5 – 7.59E+00 2.30E+00 – 6.11E-02 – 2.29478 – 3.05E-27

1 100 6 – 9.57E+00 2.56E+00 – 0.077102 – 2.55934 – 9.77E-27

1 120 7 – 1.15E+01 3.12E+00 – 0.092300 – 3.11735 – 3.23E-26

1 121 LP 8 – 1.15E+01 3.14E+00 – 0.092327 – 3.14158 – 3.20E-29

1 140 9 – 1.03E+01 3.59E+00 – 0.083054 – 3.59342 – 3.03E-24

1 160 10 – 8.34E+00 3.90E+00 – 0.067136 – 3.89795 – 1.03E-25

1 180 11 – 6.35E+00 4.13E+00 – 0.051132 – 4.12518 – 1.55E-26

1 200 EP 12 – 4.36E+00 4.32E+00 – 3.51E-02 – 4.32E+00 4.09E-27

iteration with the eigen values. Considering the trim condition and iteration 1 the
eigen values with the dynamic stability information are shown in Table 3 indicating
the AHV stability information at the given Mach Number. It shows that there are
three eigen values with one eigen value with real number and the two eigen values
with complex in nature, as shown in the Table 3; and the corresponding damping
ratio and the frequency at the given Mach Number is determined indicating the short
period mode behaviour of the AHV.

For the eigen values considered the pole-zero plot is obtained and is shown in the
Fig. 3, which outlines the stable behaviour of the AHV at theMach Number,M = 0.9
as all the poles lying at the LHS plane of the stability axis. Thus, it can be said that
using the Bifurcation Method the AHV’s dynamically stability can be determined
and at M = 0.9 it is dynamically stable. Considering the simulation carried out
for the AHV at the Mach Number, M = 0.9 it shows, most stable behavior for it,
using the Bifurcation Method; and their bifurcation diagrams are nonlinear in nature
but are mirror images in the vertical plane and about δe = 0°. This shows that for
the different Mach number of the AHV’s flight can be considered to determine the
dynamical stability of the vehicle ranging from Mach number, M = 0 to 24.

Table 3 Dynamic stability using Bifurcation analysis for Mach Number, M = 0.9

Mach No. (M) Eigen values Damping ratio (ζ) Frequency (ωn) Stability

– 3.05831E-02

– 1.19248E+00

0.9 3.12365E+00 0.356 3.342 Dynamically

– 1.19248E+00 Stable

– 3.12365E+00
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Fig. 3 Pole-zero plot for
Mach Number, M = 0.9

5 Conclusion

Bifurcation analysis of Longitudinal dynamics for Generic AHV model considering
CBA has been implemented for AHV dynamics at Mach Number, M = 0.9, for
different choices of elevator deflection andwith the aim to observe the control effects.
Bifurcation technique is implemented with the 3DOF longitudinal AHVmodel using
the AUTO-07p platform for the different elevator deflection, δe= –12° and 12°.
The Bifurcation Diagram obtained for the data points with different forward and
backward runs with the different iterations, shows the parameter values of α, θ and
q. The forward and backward run shows the presence of Hopf function at PT 1
with iteration 1, and Fold, BP and Hopf function at PT 121, 200 and iteration 5, 3;
with the eigen values with each iteration. The stability information is determined
with the corresponding iteration of the eigen values, showing the dynamic stability
information. The eigen values determined, indicate the short period mode behaviour
of the AHV indicating the stable behaviour at the Mach Number. The Method shows
the AHV’s dynamically stability determined at M = 0.9 is stable. This shows that
for the different Mach Number of the AHV’s flight, Bifurcation is promising method
to determine the dynamical stability of the vehicle for the Mach number ranging
from M = 0 to 24. Finally, the paper outlines Bifurcation Methodology application
intended for the investigation of the dynamic stability of the Generic AHV.
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Multi-soliton Solutions of the Gardner
Equation Using Darboux Transformation

Dipan Saha , Santanu Raut , and Prasanta Chatterjee

Abstract The Gardner equation is a particular version of the extended Korteweg-de
Vries (KdV) equation which presents actually the same type of characters as the
standard KdV model, but it extends the range of validity to a larger domain of the
parameters of the wave motion for a dynamic system. The purpose of this article is
to explore a new type of multi-soliton solutions for the Gardner equation. To confirm
its integrability, first, we will construct the Lax pair of the Gardner equation using
Ablowitz–Kaup–Newell–Segur (AKNS) approach and finally, derive the one-soliton
and two-soliton wave solutions for the Gardner equation employing the Darboux
transformation method (DTM). These solutions can be extended to the generalized
multi-solitary for the Gardner equation by repetition of the transformation. Some
numerical graphs of one-soliton and two-soliton solutions are drawn for a clear
understanding of wave motion under Gardner equation.

Keywords Gardner equation · Wave motion · Multi-soliton solutions · Lax pair ·
Darboux transformation method

1 Introduction

For the last few decades, nonlinear evolution equations (NLEEs) have paid a lot of
interest due to theirwide applications in different branches of science and engineering
fields. For instance,NLEEs are substantially employed to formulate distinct problems
from fluid mechanics [1, 2], plasma physics [3–5], quantum field theory, quantum
mechanics [6, 7], propagation of shallow water waves [8, 9], chemical kinetics etc.
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The classical Korteweg-De Vries (KdV) equation is a particular type of generic evo-
lutionary partial differential equation which was actually addressed by Boussinesq
(A) and again rediscovered by the famous Dutch mathematician Diederik Johannes
Korteweg (31 March 1848–10 May 1941) and his pupil Gustav de Vries (22 January
1866-16 December 1934). KdV equation is a solvable nonlinear model which may
be exactly solved by using different analytical techniques such as, Inverse scatter-
ing transform method, Backlund transformation, Hirota’s bilinear approach etc. In
particular, the standard KdV equation is extensively used to model weakly nonlin-
ear long waves. Many important nonlinear features, especially, in internal unsteady
internal waves in oceanic water are explored through the KdV model. In remote
sensing experiments and situ measurements, it was observed that long solitary type
waves are commonly appeared in density layered shallow water. But, a number of
experimental observations confirm that although the KdV model effectively defines
the solitary waves for a vast range of parameters however there may arise some sit-
uations when the KdV framework miserably fails, for instance as, the critical values
of a particular parameter which causes the dismiss of the coefficient of the nonlinear
term in the said equation. To overcome this type of difficulty, it becomes neces-
sary to extend the KdV equation by incorporating higher-order nonlinearity instead
of quadratic nonlinearity. Often, these models become meaningful in the diverse
fields of applications. Considering dual nonlinearity in the KdV model, the Gardner
equation arises, which claims the validity to the larger parametric zone for internal
wave motion in the different physical environment. The introduction of this equa-
tion is attributed to the famous mathematician Clifford Gardner in 1968 [10]. Some
excellent works on Gardner mode for modeling of internal wave in the extensive
parametric domain can be found in [11]. Gardner equation is actually combination
form of KdV equation and modified KdV (mKdV) equation. The Gardner equation,
or the combined KdV-mKdV equation, reads

ut + auux + bu2ux + cuxxx = 0, (1)

where u(x, t) presents the amplitude of the wave model and evaluates the time of the
virtual displacement over the isopycnal surface, x signifies the scaled space variable
along the direction of wave mode and t determines the scaled time. a and b are
the coefficients of the quadratic and cubic nonlinear terms respectively whereas c
presents a dispersive effect. In the present investigation, the constants a, b, c are
taken as a = k1c, b = k2c (k1, k2 are non-zero constants).

Many powerful methods, like Backlund transformationmethod [12], Inverse scat-
tering transform method [13], Hirota method [14], pseudo spectral method [15], the
tanh-sech method [16], Exp-function method [17] and the sine-cosine method [18]
are used to investigate these types of equations. The Darboux transformation method
(DTM) [19] is one of the most powerful and fruitful method for getting explicit
solutions, which we will use in our present work.
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So the outline of the present paper is as follows. In Sect. 2, we construct Lax
pair of Eq. (1). Section3 is approved for presenting the Darboux transformation of
our proposed model. In Sects. 3.1 and 3.2, one-soliton and two-soliton solutions of
the Gardner equation are explored respectively. Finally, the conclusions are briefly
outlined in Sect. 5.

2 Lax Pair

In order to verify the integrability condition of a nonlinear partial differential equa-
tion, the Lax pair of a given equation is constructed. By Lax pair, we mean a set
of two operators that, if they exist, implies that a nonlinear evolution equation is
integrable. There is no general technique for finding the Lax pair of an integrable
system. Gardner equation belongs to the class of integrable system. According to the
AKNS approach [20], Lax pair of Eq. (1) is given by

ψx = Uψ =
(

λ u
− 1

6 (k2u + k1) −λ

)
ψ, (2)

ψt = Vψ =
(
A B
C −A

)
ψ, (3)

where

A = −4cλ3 − 1

3
c(k2u

2 + k1u)λ − 1

6
k1cux ,

B = −(4cuλ2 + 2cuxλ + 1

3
k2cu

3 + 1

3
k1cu

2 + cuxx ),

C = 2

3
c(k1 + k2u)λ2 − 1

3
k2cuxλ + 1

18
k22cu

3 + 1

9
k1k2cu

2

+ 1

18
k21cu + 1

6
k2cuxx .

Here λ is a parameter independent of x and t . The Lax equation is

Ut − Vx + [U, V ] = 0,

which is equivalent to Eq. (1).
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3 Construction of Darboux Transformation (DT)
and Soliton Solutions of Gardner Equation

In the late 1970s, V. B. Matveev showed that the spectral problem of second-order
ordinary differential equations may be improved to some important soliton equations
employing a technique addressed by G. Darboux about a century ago. This method
is popularly known as DTM. A number of examples for describing the continuous
and discrete spectrum management in quantum mechanics are demonstrated in [21,
22] where the elementary DT and binary DT (also known as twofold elementary DT)
are expressed in detail. It is also found that the n-fold Darboux transformation [23]
is a 2×2 matrix for the Kaup–Newell (KN) system. Employing n-fold DT, various
types of wave solutions of the nonlinear Schrodinger (DNLS) equation, such as, peri-
odic solution, rational traveling solution, breather solution, rogue wave, dark soliton,
bright soliton, are derived explicitly from the different seed solutions. In particu-
lar, Darboux transformation provides new route to study the generalized Sawada–
Kotera (SK) equation [24], the generalized TD equation, Kadomtsev–Petviashvili
(KP) equation [25], the Gerdjikov–Ivanov (GI) equation etc. Here, we will employ
the Darboux transformation to get multi-soliton solutions from an old solution of
the Gardner equation. Starting with the trivial solution u = 0 of the Gardner equa-
tion (1), one can use the Darboux transformation to obtain the soliton solutions. For
u = 0, the fundamental solution of the Lax pair can be obtained as

ψ(x, t, λ) =
(
e−4cλ3t+λx 0
e

2
3 ck1λ

2t+λx e4cλ
3t−λx

)
(4)

by integrating (3). Let λ1, σ1 be arbitrary real numbers and let

γ = e4cλ
3
1t−λ1x + σ1e

2
3 ck1λ

2
1t+λ1x

0 + σ1 · e−4cλ3
1t+λ1x

(5)

Take λ1 �= 0 and σ1 = exp(−2μ1) > 0, then (5) becomes

γ = γ1 = e2μ1+8cλ3
1t−2λ1x + e

2
3 ck1λ

2
1t+4cλ3

1t . (6)

Now consider the gauge transformation

ψ̄(x, t, λ) = D(x, t, λ)ψ(x, t, λ), (7)

where

D(x, t, λ) = λI2 − λ1

1 + γ 2

(
1 − γ 2 2γ
2γ γ 2 − 1

)
. (8)
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For such transformation, the spectral problems (2) and (3) are transformed into

ψ̄x = Ū ψ̄, ψ̄t = V̄ ψ̄, (9)

where

Ū =
(

λ u1
− 1

6 (k2u1 + k1) −λ

)
,

V̄ =
(
Ā B̄
C̄ − Ā

)
,

with

u1 = u + 4λ1γ

1 + γ 2
, (10)

Ā = −4cλ3 − 1

3
c(k2u

2
1 + k1u1)λ − 1

6
k1cu1x ,

B̄ = −(4cu1λ
2 + 2cu1xλ + 1

3
k2cu

3
1 + 1

3
k1cu

2
1 + cu1xx ),

C̄ = 2

3
c(k1 + k2u1)λ

2 − 1

3
k2cu1xλ + 1

18
k22cu

3
1 + 1

9
k1k2cu

2
1

+ 1

18
k21cu1 + 1

6
k2cu1xx .

3.1 One-Soliton Solution

Asolitarywave is a localized “wave of translation” that arises from a balance between
nonlinear and dispersive effects; and also preserves its shape upon collision. The
ultimate aim of the present investigation is to finding solitary waves solution for
the Gardner model and for this purpose we set, v1 = 2λ1x − 8cλ3

1t − 2μ1 and v2 =
− 2

3ck1λ
2
1t − 4cλ3

1t . Then from Eq. (6), γ = γ1 = e−v1 + e−v2 .
By substituting this value of γ in (10), we obtain

u1 = 0 + 4λ1(e−v1 + e−v2)

1 + e−2v1 + e−2v2 + 2e−v1−v2

The equation

u1 = 4λ1(e−v1 + e−v2)

1 + e−2v1 + e−2v2 + 2e−v1−v2
(11)

is taken as the one-soliton solution of the Gardner equation.
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3.2 Two-Soliton solution

Now if we take u1 as a seed solution, a new Darboux matrix can be constructed from
ψ̄ = (ψ̄i j ) and a series of new solutions of the Gardner equation can be obtained.

Take constants λ2 �= 0 (λ2 �= λ1) and σ2 = exp(−2μ2). According to (5),

γ̄2 = ψ̄22(x, t, λ2) + σ2ψ̄21(x, t, λ2)

ψ̄12(x, t, λ2) + σ2ψ̄11(x, t, λ2)
. (12)

Substituting ψ̄ = Dψ =
(
D11 D12

D21 D22

) (
ψ11 ψ12

ψ21 ψ22

)
into Eq. (12), we have

γ̄2 = (D21ψ12 + D22ψ22) + σ2(D21ψ11 + D22ψ21)

(D11ψ12 + D12ψ22) + σ2(D11ψ11 + D12ψ21)

∣∣∣∣
λ=λ2

= D21(ψ12 + σ2ψ11) + D22(ψ22 + σ2ψ21)

D11(ψ12 + σ2ψ11) + D12(ψ22 + σ2ψ21)

∣∣∣∣
λ=λ2

= D21 + D22
(ψ22+σ2ψ21)

(ψ12+σ2ψ11)

D11 + D12
(ψ22+σ2ψ21)

(ψ12+σ2ψ11)

∣∣∣∣
λ=λ2

= D21 + D22γ2

D11 + D12γ2

∣∣∣∣
λ=λ2

,

(13)

where

γ2 = ψ22(x, t, λ2) + σ2ψ21(x, t, λ2)

ψ12(x, t, λ2) + σ2ψ11(x, t, λ2)
. (14)

Using γ = e−v1 + e−v2 in (8) and using (4), from (7), we obtain

ψ̄(x, t, λ) =
(

ψ̄11 ψ̄12

ψ̄21 ψ̄22

)
= 1

L

(
P Q
R S

)
, (15)

where

L = 1 + e−2v1 + e−2v2 + 2e−v1−v2 ,

P = e−4cλ3t+λx (λ − λ1) + e−4cλ3t+λx (λ + λ1)(e
−2v1 + e−2v2 + 2e−v1−v2)

−2λ1e
2
3 ck1λ

2t+λx (e−v1 + e−v2),

Q = −2λ1e
4cλ3t−λx (e−v1 + e−v2),

R = −2λ1e
−4cλ3t+λx (e−v1 + e−v2) + e

2
3 ck1λ

2t+λx (λ + λ1)

+e
2
3 ck1λ

2t+λx (λ − λ1)(e
−2v1 + e−2v2 + 2e−v1−v2),

S = e4cλ
3t−λx (λ + λ1) + e4cλ

3t−λx (λ − λ1)(e
−2v1 + e−2v2 + 2e−v1−v2)
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and hence from Eq. (12), we have

γ̄2 = X

Y
, (16)

where

X = 1

L
[e4cλ3

2t−λ2x (λ2 + λ1)

+e4cλ
3
2t−λ2x (λ2 − λ1)(e

−2v1 + e−2v2 + 2e−v1−v2)

+e−2μ2{−2λ1e
−4cλ3

2t+λ2x (e−v1 + e−v2) + e
2
3 ck1λ

2
2t+λ2x (λ2 + λ1)

+e
2
3 ck1λ

2
2t+λ2x (λ2 − λ1)(e

−2v1 + e−2v2 + 2e−v1−v2)}],
Y = 1

L
[−2λ1e

4cλ3
2t−λ2x (e−v1 + e−v2)

+e−2μ2{e−4cλ3
2t+λ2x (λ2 − λ1)

+e−4cλ3
2t+λ2x (λ2 + λ1)(e

−2v1 + e−2v2 + 2e−v1−v2)

−2λ1e
2
3 ck1λ

2
2t+λ2x (e−v1 + e−v2)}].

Let, v3 = μ2 + 4cλ3
2t − λ2x, v4 = μ2 + 2cλ3

2t − 1

3
ck1λ

2
2t − λ2x . (17)

Then by simple calculations from Eq. (16), we have

γ̄2 = X̄

Ȳ
, (18)

where

X̄ = (λ2 + λ1) + (λ2 − λ1)(e
−2v1 + e−2v2 + 2e−v1−v2)

−2λ1e
−2v3(e−v1 + e−v2)

+e−2v4(λ2 + λ1) + e−2v4(λ2 − λ1)(e
−2v1 + e−2v2 + 2e−v1−v2),

Ȳ = −2λ1(e
−v1 + e−v2) + e−2v3(λ2 − λ1)

+e−2v3(λ2 + λ1)(e
−2v1 + e−2v2 + 2e−v1−v2)

−2λ1e
−2v4(e−v1 + e−v2).

According to Eq. (10),

u2 = u1 + 4λ2γ̄2

1 + γ̄ 2
2

u2 = 4λ1(e−v1 + e−v2)

1 + e−2v1 + e−2v2 + 2e−v1−v2
+ 4λ2γ̄2

1 + γ̄ 2
2

, (19)
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where γ̄2 is given byEq. (18). Equation (19) is a new solution of theGardner equation,
which is taken as the two-soliton solution of the Gardner equation. Proceeding in
this way finally we obtain multi-soliton solutions of the Gardner equation, but the
problem is that the calculation is too tedious.

4 Result and Discussion

We discuss the dynamics of exact solutions (11) and (19). Some of the furnished
solutions in this paper are depicted graphically for their physical appearance which
stands for different types of soliton, like, kink type soliton, bell-type soliton, two kink
type soliton, etc. Figure1a, b are showing distorted kink type soliton solutions. It is
interesting to note that a small transition from kink profile to bell profile follows in
Fig. 1b. Figure1c, d indicates the propagation of bell soliton in space-timedomain.On
the other hand, Fig. 2a shows the interaction of a kink and a solitary wave. Figure2b
signifies the interaction of two kinks and one solitary wave via the Eq. (19). This
type of nonlinear phenomenon appeases due to the presence of quadratic and cubic
nonlinearity along with the Burgers term. After interaction two kink waves appear,
which are moving with different amplitudes as shown in Fig. 2c, d.

Fig. 1 3D profiles of the solution (11), a when λ1 = 0.25; c = 0.25; μ1 = 0.5; k1 = 0.5; b when
λ1 = 0.3; c = 0.25; μ1 = 0.5; k1 = 0.5; c when λ1 = 0.25; c = 1; μ1 = 0.5; k1 = 0.5; d when
λ1 = 0.4; c = 1; μ1 = 0.5; k1 = 0.5

Fig. 2 3D Interaction of the two-soliton via solution (19) for a when λ1 = 0.5; c = 0.43; μ1 =
0.5; k1 = 0.5; μ2 = 0.5; λ2 = 0.4; b when λ1 = 0.12; c = 0.8; μ1 = 0.5; k1 = 0.25; μ2 =
0.5; λ2 = 0.4; c when λ1 = 0.1; c = 0.8; μ1 = 0.5; k1 = 0.5; μ2 = 0.5; λ2 = 0.5; d when
λ1 = 0.1; c = 0.7; μ1 = 0.5; k1 = 0.5; μ2 = 0.5; λ2 = 0.7.
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5 Conclusions

The present investigation provides a new class of effective solutions of the Gardner
equation which may come as a bell-shaped soliton, kink type soliton, kink bell mixed
soliton depending on the choosing of the values of the nonlinear and dispersive coef-
ficients. To the best of our knowledge, for the first time, we derive the solution of the
Gardner equation employing DTM. The one-soliton and two-soliton solutions are
explicitly explored and repeating the same process, n folded multi-soliton solutions
can be drawn from the previous seed. The obtained solutions acquired in the proposed
scheme contain many free parameters and are claimed to be fresh and further gen-
eral which might bear great importance in the research area. The numerical graphs
emphasized that the method utilized in this observation is of significance in nature
and the obtained solution could be utilized for modeling many natural phenomena
such as wave motion in a plasma environment, water wave in the oceanic platform,
etc.
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Optical Dark and Kink Solitons
in Multiple Core Couplers with Four
Types of Nonlinearity

Anand Kumar, Hitender Kumar, Fakir Chand, Manjeet Singh Gautam,
and Ram Mehar Singh

Abstract In recent years, solitons in nonlinear couplers have acquired attention of
the researchers. The switching of solitons is possible using any optical logic gate.
Optical switching is of particular interest due to the possibility of extremely fast
switching time within the femtosecond range. In this study the dark and kink type
solitons to two different types of optical multiple core couplers with four types
of nonlinearities viz Kerr law nonlinearity, power law nonlinearity, parabolic law
nonlinearity and dual power-law nonlinearity are extracted using the Kudryashov
integration algorithm. Coupling with nearest neighbors is one example, whereas in
the other case the coupling with all nearest neighbors is considered. The parametric
constraint conditions, also called integrability criteria are emerging with these novel
solutions and reported.

1 Introduction

Nonlinear optical couplers are crucial appliances that route light from the main fibre
in one or more section fibres. Optical couplers have also been employed as limiters
and intensity-dependent switches. Optical couplers can be manufactured as planar
semiconductor devices or as dual-core single-mode fibres with solitons conveying
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in each core. Multiple-core optical fibers can be used with high-powered lasers and
all-optical switching between the fiber cores [1].

The study of optical solitons in nonlinear optics has attracted a lot of attention,
and it’s played a big part in the development of all-optical systems. Studying the
dynamical behaviour of propagation of soliton along optical fibers, couplers, dense
wavelength division multiplexing (DWDM) systems, metamaterials, and metasur-
faces is therefore crucial to improve soliton transmission performance across long-
haul optical communication networks. Many efforts have been brought in the latter
half of the 19th century to solve the difficulties of optical soliton transmission by
appropriate control of the fiber group dispersion. Hasegawa et al. [2] presented adi-
abatic dispersion control to reduce dispersive wave radiation and collision-induced
frequency shift in WDM systems by altering dispersion in percentage to the soliton
power. Suzuki et al. [3] utilized non-adiabatic periodic dispersion compensation to
minimize integrated dispersion and transmit a 10 Gbit/s soliton signal across the
Pacific without using soliton management. Smith et al. [4] shows, even though the
dispersion is almost zero, a nonlinear soliton-like pulse exist in a fiber with a peri-
odic modulation of the dispersion. The nonlinearities such as Kerr law, power law,
parabolic law, and dual-power law are four forms of nonlinear media used in this
investigation. The governing model for multiple core fibers with STD (spatiotem-
poral dispersion) in addition to the standard GVD (group velocity dispersion) is the
nonlinear Schrödinger’s equation (NLSE). Hence, it is essential to investigate NLSE
in couplers and in fibers with the STD term incorporated. The ansatz technique [5],
the Jacobi elliptic function method [7], and other methods [6, 8–10] have all been
used to study optical couplers previously.

In this study, we use the Kudryashov approach [11] to handle multiple-core cou-
plers with four different types of nonlinearities, resulting in kink and dark soliton
solutions that will serve the soliton community. Kink and dark optical soliton solu-
tions will be found alongside their existing conditions that naturally occur from the
solution profiles.

Outlined of the manuscript is given as. The brief idea of Kudryashov method is
presented inSect. 2. Section3dealswithmultiple core couplerswith nearest-neighbor
coupling for four forms of nonlinearity. In Sect. 4, we extend our study on multiple
core couplers coupling with all neighbors for four forms of nonlinearity. Section5
allotted to graphical results. Finally, conclusions are made in Sect. 6.

2 A Succinet Overview of the Kudryashov Method

To present the analysis more coherently, we highlight succinctly the prime aspects
of the Kudryashov method.

We acknowledge a nonlinear partial differential equation (PDE), with a physical
field q, which is a function of independent variables x, t as:
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R(qx , qt , qxx , qxt , qtt , . . .) = 0, (1)

where R is polynomial in q(x, t)Here, we briefly highlighted the steps of themethod:

Step 1: By using ξ = k(x + vt), Eq. (1) modify to ODE (ordinary differential equa-
tion):

S(q, qξ , qξξ , qξξξ , . . .) = 0 (2)

Step 2: The solution of above equation can be specified in the more general form of
physical field q(ξ) as:

q(ξ) =
N∑

n=0

an[Ψ (ξ)]n, (3)

with aN �= 0 and the function Ψ (ξ) satisfying the new equation

Ψ (ξ) = 1

1 + exp(ξ + ξ0)
, (4)

which is the solution of a special kind of Riccati equation

dΨ

dξ
= Ψ 2(ξ) − Ψ (ξ). (5)

Step 3: The integer N is defined by homogeneous balance principal in Eq. (2).

Step 4: Replace Eq. (3) into Eq. (2), and determine all required derivatives qξ , qξξ ,

qξξξ , . . . as follows

qξ =
N∑

n=0

annΨ n(Ψ − 1), (6)

qξξ =
N∑

n=0

nΨ n(Ψ − 1)[(1 + n)Ψ − n]an, (7)

and so on. Replacing Eqs. (3), (6) and (7) along with (5) into Eq. (2), we attain the
polynomial form as

S[Ψ (ξ)] = 0. (8)

Step 5: UsingEqs. (8) and (4) and symbolic computer packages such asMathematica,
we found the analytic exact solutions of Eq. (1).

In the succeeding sections, we implemented the Kudryashov method to obtain
dark soliton solutions for multiple core couplers in which the coupling is held with
the nearest neighbors and all neighbors respectively.
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3 Multiple-Core Couplers (Coupling with Nearest
Neighbors)

This types of problems can be designated by the N -coupled NLSE with the nearest
neighbor linear coupling. The dictating NLSE for multiple-core couplers (coupling
with nearest neighbors) is written as

iu( j)
t + a ju

( j)
xx + b ju

( j)
xt + c j F(|u( j)|2)u( j) = Q[u( j−1) − 2u( j) + u( j+1)], (9)

where 1 ≤ j ≤ N and u j denotes the optical field in the j th core. The Eq. (9) is dis-
tinguished as the coupled NLSE in which initial term represents the evolving soliton
with time. The coefficients a j are the GVD coefficients while b j are the coefficients
of STD and c j denotes nonlinearity’s coefficients. The sign of nonlinearity is given
by functional F . Here F denotes algebraic function with real-valued. The constants
Q in Eq. (9) denotes the coupling coefficients in optical fibres and signifies the
strength of linear coupling. Also, coupled Eq. (9) possess three integrals of motion
such as energy (E), the Hamiltonian (H) and linear momentum (M). To attend these
coupled equations by the Kudryashov method, the following ansatz is appropriated.

u j (x, t) = Bj (ξ)eiφ(x,t), (10)

Here, Bj ( j = 1, 2), nearest neighbour signify the amplitude component and v is the
soliton’s speed, while φ(x, t) = −Kx + wt + θ is phase component, where K , w,
θ are the soliton frequency, wave number and phase constant respectively. Plugging
ansatz (10) into Eq. (9), then the real and imaginary parts are:

k2(a j − b jv)B
′′
j + (b jwK − w − a j K

2)Bj + c j F(B2
j )Bj

−Q[Bj−1 − 2Bj + Bj+1] = 0,
(11)

− (1 − b j K )kvB
′
j + (b jw − 2a j K )kB

′
j = 0. (12)

From the imaginary part (12), we determine soliton speed as

v = b jw − 2a j K

1 − b j K
, (13)

whenever 1 �= b j K . The balancing principle in (11) leads to Bj−1 = Bj = Bj+1, as
a result, the real part Eq. (11) transformed to

k2(a j − b jv)B
′′
j + (b jwK − w − a j K

2)Bj + c j F(B2
j )Bj = 0, (14)
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In the next subsections, we examine this equation for four different sorts of non-
linearity viz Kerr law, power law, parabolic law and dual power-law nonlinearities,
respectively.

3.1 Kerr Law Nonlinearity

This is most basic kind of cubic nonlinearity which is originates from the fact that due
to corresponding electric field, nonharmonicmotion is shown by the bound electrons.
Therefore, nonlinear responses exhibits by a light wave in an optical fiber. Hence,
the induced polarization (P) is also not linear in the electric field (E), but includes
higher-order factors in the amplitude of the electric field. F(u) = u for Kerr law
nonlinearity. For multiple-core couplers (coupling with nearest neighbors) with Kerr
law form nonlinearity, the executive model Eq. (9) reduces to

iu( j)
t + a ju

( j)
xx + b ju

( j)
xt + c j (|u( j)|2)u( j) = Q[u( j−1) − 2u( j) + u( j+1)], (15)

and Eq. (14) becomes

k2(a j − b jv)B
′′
j + (b jwK − w − a j K

2)Bj + c j B
3
j = 0. (16)

With balancing B
′′
j and B3

j in Eq. (16), we have N = 1. Consequently, we reach
Bj (ξ) = a0 + a1Ψ (ξ), where Ψ (ξ) satisfies the following general first and sec-
ond order nonlinear differential equations: B

′
j (ξ) = a1Ψ (ξ)[Ψ (ξ) − 1] and B ′′

j (ξ) =
a1Ψ (ξ)[Ψ (ξ) − 1][2Ψ (ξ) − 1], where a0, a1 are constants to be determined later,
such that a1 �= 0. Plugging the form of Bj (ξ) and their derivatives into Eq. (16) and
after collecting all the terms of Ψ j ( j = 0, 1, 2, 3) gives a set of algebraic equations
which on solving by aid of Maple, we have the results:

a0 = k2(a j − b jv)

c j
, a1 = −2a0, w = 2k4b jva j − k4(a2j − b2jv

2) + a j K 2c j

c j (b j K − 1)
.

(17)
Substituting Eq. (17) in Eqs. (3) and (4), we get the optical solitary wave solution for
multiple core coupler with Kerr law nonlinearity (coupling with nearest neighbours)
as

Bj (ξ) = k2(a j − b jv)

c j

[
1 − 2

1 + exp(ξ + ξ0)

]
, (18)

which can be equivalently written in more simplified form using the relation
1

1+exp(ξ)
= 1

2 − 1
2 tanh(ξ/2) and using Eq. (10), the optical dark solitary wave solu-

tion is specified as
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u j (x, t) = k2(a j − b jv)

c j
tanh

(k(x − b jw−2a j K
1−b j K

t)

2
+ ξ0

2

)
e[i(−Kx+wt+θ)] (19)

This optical dark solitary wave solution will exist provided that the constraint condi-
tions a j �= b jv, b j K �= 1 and the relation between wave numberw and wave speed v

fromEq. (17) can be understood as integrability conditionwithKerr law nonlinearity.

3.2 Power Law Nonlinearity

Such type of nonlinearity is a generalized version of Kerr law and is commonly
observed in nonlinear fiber optics and nonlinear plasmas. This nonlinearity can be
seen in a variety of materials, such as semiconductor lasers. For this nonlinearity,
F(u) = un where n accounts for the power-law nonlinearity factor and have n �= 2
and 0 < n < 2 to avoid self-focussing effect. Henceforth, the Eq. (9), for multiple-
core couplers (nearest-neighbor coupling) with power-law nonlinearity will now be
changed to

iu( j)
t + a ju

( j)
xx + b ju

( j)
xt + c j (|u( j)|2n)u( j) = Q[u( j−1) − 2u( j) + u( j+1)], (20)

and Eq. (14) leads to

k2(a j − b jv)B
′′
j + (b jwK − w − a j K

2)Bj + c j B
2n+1
j = 0. (21)

On setting Bj = U
1
n
j then Eq. (21) change into

k2(a j − b jv)
(
nU jU

′′
j + (1 − n)(U ′

j )
2) + n2U2

j (b jwK − w − a j K
2) + c j n

2U4
j = 0.

(22)
When the powers of UjU

′′
j are compared to the powers of U 4

j , the homogeneous
balancing in Eq. (22) leads to N = 1. We derive the following results using the
Kudryashov method’s solution approach:

a0 = −a1, a1 = 3

2

n

(n − 1)
, w = 4a j K 2(n − 1) + 3k2(a j − b jv)

4(n − 1)(b j K − 1)
. (23)

Substituting Eq. (23) in Eqs. (3) and (4) and using the relation Bj = U
1
n
j , we get

the optical dark solitary wave solution for multiple core coupler with power law
nonlinearity as
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u j (x, t) =
[
3

2

n

(n − 1)

{
1 + tanh

(k(x − b jw−2a j K
1−b j K

t)

2
+ ξ0

2

)}] 1
n

× e[i(−Kx+wt+θ)],

(24)

It is worth to see that the dark optical solitary wave solution (24) will satisfy the
parametric constraint conditions n �= 0, 1, a j �= b jv, b j K �= 1, b jw �= 0 and the
relation between wave number w and wave speed v from Eq. (23) can be understood
as integrability condition with power law nonlinearity.

3.3 Parabolic Law Nonlinearity

This is known as cubic-quintic nonlinearitywhich is portrayed by F(u) = αu + βu2,
where α and β are in overall constants that connects the two nonlinear forms. This
sort of nonlinearity has significant attention after it occurs in materials such as para-
toluene sulphonate that manifest fifth-order nonlinearity in response to extreme ultra-
short optical pulses at 620nm. With cubic-quintic nonlinearity, Eq. (9) for multiple-
core couplers (coupling with nearest neighbors) is formulated as

iu( j)
t + a ju

( j)
xx + b ju

( j)
xt + c j (α|u( j)|2 + β|u( j)|4)u( j) = Q[u( j−1) − 2u( j) + u( j+1)],

(25)
and Eq. (14) transformed to

k2(a j − b jv)B
′′
j + (b jwK − w − a j K

2)Bj + c j (αB
2
j + βB4

j )Bj = 0. (26)

A transformation formula is used to obtain a closed form analytic solution as Bj =
U

1
2
j then Eq. (26) changes into

k2(a j − b jv)
(
2UjU

′′
j − (U ′

j )
2
) + 4U 2

j (b jwK − w − a j K
2) + 4αc jU

3
j

+4βc jU
4
j = 0.

(27)

From Eq. (27), we have N = 1. Using the recipe of the Kudryashov method, we
obtain the following results:

a0 = − a1, a1 = 3k2(b jv − a j ) − 2αc j
k2(b jv − a j )

,

β = (b jv − a j )(−k2a j + 2c jα + k2b jv)k2

4[3k2(b jv − a j ) − 2αc j ] ,

w =−3(b jv − a j )
2k4 + 4(a j K 2 + 2c jα)(b jv − a j )k2 − 4c2jα

2

4k2(b j K − 1)(b jv − a j )
.

(28)



1176 A. Kumar et al.

Replacing Eq. (28) in Eqs. (3) and (4) and setting the relation Bj = U
1
2
j , we acquire

the dark optical solitary wave solution wave with parabolic law nonlinearity as

u j (x, t) =
[

− 3k2(b jv − a j ) − 2αc j
2k2(b jv − a j )

(
1 + tanh

(k(x − b jw−2a j K
1−b j K

t)

2
+ ξ0

2

))] 1
2

× e[i(−Kx+wt+θ)].
(29)

It is pointed that the dark optical solitary wave solution (29) will exist under the para-
metric constraint conditions a j �= b jv, b j K �= 1, b jw �= 0 and the relation between
wave number w and wave speed v from Eq. (28) can be specified as integrability
condition with parabolic law form nonlinearity.

3.4 Dual-Power Law Nonlinearity

Such typeof nonlinearity is commonlyused to explain spatial solitons in photovoltaic-
photo refractive materials like as Li NbO3. For dual-power law nonlinear media, the
function F(u) = αun + βu2n , where α and β are defined as real-valued constants.
Equation (9), account for multiple-core couplers (coupling with nearest neighbors)
with dual-power law nonlinearity as

iu( j)
t + a ju

( j)
xx + b ju

( j)
xt + c j (α|u( j)|2n + β|u( j)|4n)u( j)

= Q[u( j−1) − 2u( j) + u( j+1)], (30)

and Eq. (14) becomes

k2(a j − b jv)B
′′
j + (b jwK − w − a j K

2)Bj + c j (αB
2n
j + βB4n

j )Bj = 0. (31)

It should be observed that in Eq. (31), β = 0 recovers power-law nonlinearity, and
when n = 1 recovers Kerr law nonlinearity as well. However, if β �= 0 and n = 1,
one is back in the case of parabolic law nonlinearity, which was previously explored.

On equating Bj = U
1
2n
j then Eq. (31) change into

k2(a j − b jv)
(
2nUjU

′′
j + (1 − 2n)(U ′

j )
2) + 4n2U 2

j (b jwK − w − a j K
2)r

+4n2αc jU
3
j + 4n2βc jU

4
j = 0.

(32)

Balancing the leading dispersive term UjU
′′
j with nonlinear term U 4

j in Eq. (32),
provides N = 1. Using the Kudryashov method’s solution recipe, we obtain the
value of a0, a1, w and β.
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a0 = − a1, a1 = n(3k2(b jv − a j ) − 2nαc j )

k2(2n − 1)(b jv − a j )
,

w =
−3(b jv − a j )

2k4 + 8
(
K 2

(
n − 1

2

)
a j + nαc j

)
(b jv − a j )k2 − 4n2α2c2j

8k2(b j K − 1)
(
n − 1

2

)
(b jv − a j )

,

β = (a j + 2b jvn − b jv − 2a jn)(2nαc j − k2a j + k2b jv)k2

4n2(−2nαc j + 3k2b jv − 3k2a j )c j
.

(33)

Substituting these in Eqs. (3) and (4) and using the relation Bj = U
1
2n
j , we found the

exact dark optical solitary wave solution as

u j (x, t) =
[

− n(3k2(b jv − a j ) − 2nαc j )

2k2(2n − 1)(b jv − a j )

(
1 + tanh

(k(x − b jw−2a j K
1−b j K

t)

2
+ ξθ

2

))] 1
2n

× exp[i(−Kx + wt + θ)].
(34)

It is pointed that dark optical solitary wave solution (34) will exist under the
additional parametric constraint condition n �= 1

2 and the relation between wave
numberw and wave speed v from Eq. (33) can be specified as integrability condition
with dual power law form nonlinearity. For n = 1 as a special case, we get the
previously found solution (29) with parabolic form nonlinearity.

4 Multiple-Core Couplers (Coupling with All Neighbors)

For the pulses propagating through N coupled nonlinear fiber arrays, the governing
equation for multiple-core couplers is provided in the dimensionless form as

iu( j)
t + a ju

( j)
xx + b ju

( j)
xt + c j F(|u( j)|2)u( j) =

N∑

m=1

λ jmu
m, (35)

where 1 ≤ j ≤ N . The Eq. (35) depicts the generic model for optical couplers wher-
ever coupling with all neighbors is included with GVD and STD, which defines
soliton passage via multiple-core optical fibers under balancing outcome of disper-
sion and nonlinearity. Here λ jm in Eq. (35) renders the linear coupling coefficients in
optical fibers. To approach this model by the Kudryashov method for the four types
of nonlinear media, the first hypothesis is supposed to be

u j (x, t) = Bj (ξ)e(iφ(x,t)), (36)
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where ξ = k(x − vt). Replacing the hypothesis (36) into Eq. (35) and subsequently,
splitting into real and imaginary parts results in

k2(a j − b jv)B
′′
j + (b jwK − w − a j K

2)Bj + c j F(B2
j )Bj −

N∑

m=1

λ jm Bm = 0,

(37)
− (1 − b j K )kvB

′
j + (b jw − 2a j K )kB

′
j = 0 (38)

From the imaginary part (38), we deduce soliton speed as

v = b jw − 2a j K

1 − b j K
. (39)

For all sorts of specified nonlinearity in question, the velocity of the soliton, given by
(39), is constant. The balancing principle in Eq. (37) leads to Bj = Bm , as a result,
the real part Eq. (37) reduces to

k2(a j − b jv)B
′′
j + (b jwK − w − a j K

2 −
N∑

m=1

λ jm)Bj + c j F(B2
j )Bj = 0 (40)

From the Kudryashov method, this equation have the dark optical soliton with four
types of nonlinearities.

5 Graphical Results and Discussion

In this section, we illustrate the graphic representation of several wave structures
of the considered system. By utilizing Kudryashov method the soliton solution of
optical couplers are retrieved and graphically represented in 3-D, and their contours
with the selection of different parameters. The Kudryashov approach was used to
examine solitary wave solutions, which are unique and different from what many
other researchers have found using various methodologies.

The intensity distribution of dark solitary wave solution (19) is shown in Fig. 1
when parameter values a j = 1, b j = 1, c j = 1, k = 1, v = 0.2, K = 2, w = 3.44,
and ξ0 = 0. In Fig. 2, the intensity distribution of kink solitary wave solution (24)
when parameter values n = 3, a j = 1, b j = 1, c j = 1, k = 1, v = 0.2, K = 2,
w = 3.44, and ξ0 = 0 is depicted. In nonlinear optics, these types of propagating
structures are extremely significant. Soliton has been utilized to greatly improve the
transmission capabilities of Telecom lines. Solitons are well-localized structures that
can travel great distances without changing shape, and optical pulses propagate in
the form of solitons.
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Fig. 1 The intensity distribution of solitary wave solution (19) with parameter values a j = 1,
b j = 1, c j = 1, k = 1, v = 0.2, K = 2, w = 3.44, and ξ0 = 0

Fig. 2 The intensity distribution of kink solitary wave solution (24) with parameter values n = 3,
a j = 1, b j = 1, c j = 1, k = 1, v = 0.2, K = 2, w = 3.44, and ξ0 = 0

6 Conclusions

Optical couplers and switches are indispensable components of optical communi-
cation systems. In the present work, we obtains dark optical solitons to nonlinear
directional multiple cores couplers with four different kinds of nonlinearities using
Kudryashov algorithm scheme. Here, two distinctive cases were analyzed. Coupling
with nearest neighbors was addressed in the first instance, while coupling with all
neighbors was addressed subsequently. To ensure the existence of these solitons, the
necessary constraint conditions emerge naturally. The outcomes of this paper are
certainly stimulating to focus study on a diverse possibility with couplers.



1180 A. Kumar et al.

References

1. Biswas, A., Konar, S.: Introduction to Non-kerr Law Optical Solitons. CRC Press, Boca Raton
(2006)

2. Hasegawa,A.,Kumar, S., Kodama,Y.: Reduction of collision-induced time jitters in dispersion-
managed soliton transmission systems. Opt. Lett. 21(1), 39–41 (1996)

3. Suzuki, M., Morita, I., Edagawa, N., Yamamoto, S., Taga, H., Akiba, S.: Reduction of Gordon-
Haus timing jitter by periodic dispersion compensation in soliton transmission. Electron. Lett.
31(23), 2027–2029 (1995)

4. Smith, N., Knox, F., Doran, N., Blow, K., Bennion, I.: Enhanced power solitons in optical fibres
with periodic dispersion management. Electron. Lett. 32(1), 54–55 (1996)

5. Savescu, M., Bhrawy, A., Alshaery, A., Hilal, E., Khan, K.R., Mahmood, M., Biswas, A.:
Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod.
Opt. 61(5), 441–458 (2014)

6. Mirzazadeh,M.,Eslami,M., Zerrad,E.,Mahmood,M.F.,Biswas,A.,Belic,M.:Optical solitons
in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation
approach. Nonlinear Dyn. 81(4), 1933–1949 (2015)

7. Al Qurashi, M.M., Ates, E., Inc, M.: Optical solitons in multiple-core couplers with the nearest
neighbors linear coupling. Optik 142, 343–353 (2017)

8. Sarma, A.K.: A comparative study of soliton switching in a two-and three-core coupler with
TOD and IMD. Optik 120(8), 390–394 (2009)

9. Dahiya, S., Kumar, H., Kumar, A., Gautam, M.S., et al.: Optical solitons in twin-core couplers
with the nearest neighbor coupling. Part. Differ. Equ. Appl. Math. 4, 100–136 (2021)

10. Vega-Guzman, J., Mahmood, M., Zhou, Q., Triki, H., Arnous, A.H., Biswas, A., Moshokoa,
S.P., Belic,M.: Solitons in nonlinear directional couplers with optical metamaterials. Nonlinear
Dyn. 87(1), 427–458 (2017)

11. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations.
Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248–2253 (2012)



Analysis of a Variable-Order Multi-scroll
Chaotic System with Different Memory
Lengths

N. Medellín-Neri, J. M. Munoz-Pacheco, O. Félix-Beltrán,
and E. Zambrano-Serrano

Abstract This work presents a numerical analysis of the dynamical behavior of a
multi-scroll chaotic system using variable-order calculus. In this scenario, we intro-
duce the concept of variable-order from two approaches denominated herein as short-
memory and full-memory, respectively. For the first one, the basic idea is to study
the chaotic dynamics when the fractional-order changes abruptly like step-function
with respect to time. The second approach is related to a smoother variation between
the preceding order and the new fractional-order. To demonstrate the implications of
using variable-order with distinct memory contributions, we show several numerical
simulations of a multi-scroll chaotic system that contains a piecewise linear func-
tion. Numerical results are consistent with the underlying theory demonstrating the
usefulness of the proposed study.

Keywords Variable-order · Fractional calculus · Chaos · Multi-scroll · PWL

1 Introduction

The chaotic behavior has remarkable characteristics such as extreme sensitivity to
small variations of the initial conditions and parameters, limited trajectories in phase
space, and at least, a positive Lyapunov exponent [1]. For instance, two initial tra-
jectories that are extremely close between them, will diverge exponentially as time
tends to infinite, and thereafter, have totally different evolutions. In this manner, the
chaotic systems have been used in almost all fields of science and engineering, such
as secure communications [2], cryptography [3], robotics [4], mechanics [5], etc.
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For several decades, it was well known that chaotic behavior requires, at least,
a three-dimensional system to emerge [6], where the dimension relates to the order
of their derivatives. Therefore, a n-dimensional system is a system of mth order,
n = m, n ∈ Z. However, the exception to this rule is when the order of the derivative
is no longer integer but fractional (from now on we will use q when m ∈ R), like in
n �= q and also q ∈ R. Fractional calculus refers to the generalization of integrals and
derivatives to arbitrary order. Although this topic was proposed more than 300years
ago, it has recently been noted that the fractional calculus has superior characteristics
to the conventional calculus [7]. The main reason is that the fractional-order deriva-
tives have memory properties, giving a more convenient way to describe living and
nonliving phenomena [8–12].

The three main definitions for fractional derivatives are Riemann-Liouville [13],
Caputo [14], andGrünwald-Letnikov [15–17] that are equivalent under someassump-
tions. In literature, we can find many excellent works using fractional calculus with
constant values for the fractional-order, i.e., the fractional-order q is a positive real
constant that remains unchanged throughout the simulation time.As a result,memory
contributions follow a power-law evolution such as the Caputo derivative with singu-
lar kernel, where past events have lower implications than recent ones. In Caputo’s
definition, the memory kernel is expressed in the form of a convolution integral. As
seen, the fractional-order differential equations accumulate the whole past history in
a weighted form, this is called the “memory effect”.

However, a less researched area and still exciting is fractional calculus with
variable-order. It means that the value of the fractional-order can be updated as
time evolves, i.e., q(t). Then, the fractional-order can be defined as trigonomet-
ric, quadratic, polynomial, and constant piecewise linear functions with respect to
time. Indeed, the fractional-order value can also depend on a pseudo-state of the
underlying dynamical system. With the variable-order calculus, the memory con-
tributions change with time, altering the strength of the effects of this memory.
Many works have shown the importance of considering variable-order to increase
the accuracy and degrees of freedom inmany scientific areas. For instance, a variable-
order susceptible-infected-recovered (SIR) model described the COVID19 evolution
with better approximation to real data [18]. There, the memory contributions to epi-
demic spreadwere captured using a piecewise-linear fractional-order. Reference [19]
offered a unified discussion of variable-order differential operators in anomalous
diffusion modeling. Reference [20] reported block-based image encryption where
each block has a different fractional-order using a short-memory variable-order. In
mechanics, the effect of nonuniform viscoelastic frictional forces described applying
variable-order to demonstrate that constant fractional-order cannot approximate the
transition between the relevant dynamic regimes [21].

In this work, we present in the Eq. (5) a numerical analysis of the dynamical
behavior of a multi-scroll chaotic system [22] using variable-order calculus.

Amulti-scroll chaotic system can be defined as a nonlinear dynamical system that
presents a chaotic attractor composed of many scrolls [23], contrary to the classi-
cal chaotic systems with only double-scroll attractors, like Lorenz, Chua, and Chen
systems, to mention a few. The increased number of scrolls are originated from
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nonlinear functions in the form of piecewise-linear (PWL) functions such as satu-
rated, hysteresis, sawtooth, Heaviside, and so on [24]. As a result, the number of
equilibrium points also increases, and the dynamical system has the potential to gen-
erate a multi-scroll attractor. Recently, multi-scrolls chaotic systems continue being
a hot topic of research. Wu et al. proposed a new multi-scroll system that produces
three distinct hidden attractors with stable equilibria and without equilibrium points
[25]. Escalante-Gonzalez and Campos-Canton also reported a method for switch-
ing between hidden and self-excited multi-scroll chaotic attractors in multi-stable
systems [26]. Zhang et al. introduced a multi-scroll system based on a memristive
approach along with a Hindmarsh-Rose neuron model [27]. Ahmad et al. studied
how to transform a multi-scroll system to the fractional calculus domain, mainly
using the Caputo fractal-fractional operator [28].

The concept of variable-order is shown from two approaches denominated herein
as short-memory and full-memory, respectively. For the first one, the basic idea is
to study the chaotic dynamics when the fractional-order changes abruptly like step-
function with respect to time. The second approach is related to a smoother variation
between the initial order and the new fractional-order. Therefore, Section2 gives the
mathematical foundations of variable-order calculus. Section3 introduces the multi-
scroll chaotic system, studies the stability of equilibrium points, and presents phase
portraits. Section4 presents the proposed numerical analysis with short-memory and
full-memory approaches. Numerical simulations of a four-scroll chaotic attractor are
in particular analyzed. Finally, Section5 concludes the work.

2 Mathematical Preliminaries

Definition 1 Fractional calculus is a generalization of integration and differentiation
to the non-integer fundamental operator aD

q
t , where a and t are the limits of the

operation and q ∈ R. We have that the continuous integro-differential operator is
defined as [29]:

aD
q
t =

⎧
⎨

⎩

dq

dtq , q > 0,
1, q = 0,
∫ t
a (dτ)q , q < 0.

(1)

Additionally, The variable-order calculus is based on the fact that the order of
the derivative is not constant, for the case of study, the variation is carried out with
respect to time.

Definition 2 Let us consider q(t) > 0 as a function that is limited; the fractional
derivative of Caputo in its fractional-order (FO) version is defined as [19]:

C
t0 D

q(t)
t f (t) :=

{
1

�(q(t)−m)

∫ t
t0

f m (τ )

(t−τ)q(t)+1−m dτ , m − 1 < q(t) ≤ m,
dm

dtm f (t), q = m.
(2)
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Definition 3 Let us consider the following general form of arbitrary-order differen-
tial equation described by

C
t0 D

q
t x(t) = Ax(t) + Bu(t), (3)

where x ∈ R
n , u ∈ R

m, and A ∈ R
n×n , B ∈ R

n×m , n,m ∈ N, and C
t0 D

q
t x(t) =

[Ct0 Dq
t x1(t), . . . ,

C
t0 D

q
t xn(t)]T , q ∈ (0, 1] is the fractional-order, t and t0 are the

limits of operation. When the system (3) is autonomous, it can be rewritten as
C
t0 D

q
t x(t) = Ax(t), with x(0) = x0, 0 < q < 1, and x ∈ Rn . Then, the stability anal-

ysis of the autonomous system can be expressed according to following conditions
[29]:

– The system C
t0 D

q
t x(t) = Ax(t) is asymptotically stable if and only if | arg(λ)| >

qπ

2
for all eigenvalues (λ) of matrix A. In this scenario, the solution x(t) tends to 0
like t−q .

– The system C
t0 D

q
t x(t) = Ax(t) is stable if and only if | arg(λ)| ≥ qπ

2 for all
eigenvalues (λ) of matrix A obeying that the critical eigenvalues must satisfy
| arg(λ)| = qπ

2 and have geometric multiplicity of one.

Definition 4 The general numerical solution of the fractional differential equation
aD

q
t w(t) = f (w(t), t) can be expressed as [29]:

w(tk) = f (w(tk−1), tk−1)) hq −
k∑

j=1

c(q)

j w(tk− j ), (4)

with k = 1, 2, . . . , n, n = T f

h , n ∈ N, h the time step, and c(q)

j are binomial coeffi-

cients given by c(q)

0 = 1, c(q)

j =
(
1 − 1+q

j

)
c(q)

j−1.

The numerical algorithm in Definition 4 is based on the fact that for a wide class of
functions, the three definitions, Caputo, Riemann-Liouville and Grünwald-Letnikov,
are equivalent under the conditions [13].

3 Fractional-Order Multi-scroll Chaotic Systems Based
on PWL Functions

Based on the chaotic system proposed in [30], we introduce the multi-scroll chaotic
system with variable-order given by

C
t0 D

q(t)
t x(t) = y(t),

C
t0 D

q(t)
t y(t) = z(t),

C
t0 D

q(t)
t z(t) = −αx(t) − βy(t) − γ z(t) + φ f (x(t); ks, hs, ps, qs),

(5)
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Table 1 Equilibrium points (EPi ) of the system (5)

Function saturated series Equilibrium points (EPi )

f (x; ks , hs , ps , qs) = ks(x − ihs) + 2iks E P1 = (0, 0, 0), EP4,5 = (±2ks , 0, 0)

f (x; ks , hs , ps , qs) �= ks(x − ihs) + 2iks E P2,3 = (±ks , 0, 0), EP6,7 = (±3ks , 0, 0)

where C
t0 D

q(t)
t is variable-order Caputo’s derivative operator determined by definition

(2), q(t) variable-order; x(t), y(t), z(t) are the state variables, α = 2, β = 1, γ =
0.6, φ = 2, and f (x; ks, hs, ps, qs) is a PWL function, which consists of a set of
linear relationships valid in different regions as follows:

f (x; ks, hs, ps, qs) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2qs + 1)ks, x > kshs + 1,
ks(x − ishs) + 2iks, |x − ihs,≤ 1|,

−ps ≤ i ≤ qs,
(2i + 1)ks, ihs + 1 < x < (i + 1)hs − 1,

−ps ≤ i ≤ qs − 1,
−(2qs + 1)ks, x < −pshs − 1,

(6)
where ks = 1 and hs = 2ks are the multiplicative factors for the slopes and sat-
urated regions, i ∈ Z, and x is the state variable. When qs = ps = 1, we obtain
a PWL function with 7 segments (four saturated plateaus and three slopes), to
generate a 4-scroll chaotic attractor in 1D orientation on phase space. The equi-
librium points (EPi ) of system (5) are shown in Table1. In particular, when the
PWL function f (x; ks, hs, ps, qs) �= k(x − ihs) + 2iks with i = 1, 2, 3 and ks = 1,
the roots of the equation (5), for the equilibrium points EP2,3 and EP6,7 are:
λ1 = −1.1833 and λ2,3 = 0.2916 ± 1.2669i respectively. In this manner, the mini-
mumfractional-orderq, where themulti-scroll systemmaypresent a chaotic behavior

is q > 2
π

(
arctan

(
|±1.2669i |
0.2916

))
, i.e., q > 0.8560.

4 Numerical Analysis of the Variable-Order-Based
Memory

For simulation purposes, we herein use the numerical algorithm (4). Thus, the solu-
tion of system (5) with variable-order is given in (7). The idea is that the elements of
the summation operation will be adapted for short-memory and full-memory impli-
cations.
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Fig. 1 Multi-scroll chaotic attractor of system (5) applying short-memory approach with variable
order: q1 ∈ [t0, t1], and q2 ∈ [t1, t2]

x(tk) = [y(tk−1)]hq(t) −
k∑

j=1

cq(t)
j x(tk− j ),

y(tk) = [z(tk−1)]hq(t) −
k∑

j=1

cq(t)
j y(tk− j ),

z(tk) = [−αx(tk−1) − βy(tk−1) − γ z(tk−1) + φ f (x(tk−1))]hq(t) −
k∑

j=1

cq(t)
j z(tk− j ).

(7)
where x, y, z are the state variables, α = 2, β = 1, γ = 0.6, φ = 2, and f (x; ks, hs,
ps, qs) is the PWL function, h is the integration step, q(t) is the variable-order, c j
are binomial coefficients, and k is the number of iterations.

4.1 Short-Memory

With the short-memory term, we mean that the simulation t ∈ [t0, tn] is divided by
n intervals where each interval associates to a specific fractional-order. Considering
the initial time t0 with initial condition x0, we have t ∈ [t0, t1] and the corresponding
fractional differential equation C

t0 D
q0
t1 x = f (x0, t0). For the next interval, only the

memory from t1 is considered without taking into account the initial condition t0,
i.e., the accumulated data are deleted. Thus, we obtain the updated interval t ∈ [t1, t2]
and fractional differential equation C

t1 D
q1
t2 x = f (x1, t1); and so forth.

Figure1 shows the resulting 4-scroll chaotic attractor using short-memory contri-
butions with a constant PWL fractional-order q. In particular, the trajectory in blue
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color represents the chaotic oscillator with q1 = 0.90, while in black color the other
fractional-order q2 = 0.95, with a simulation time of 300s, and initial conditions
[0.1, 0.1, 0.1]. The following pseudo-code gives the main instructions to implement
the short-memory approach.

for i=1: NumberOfIterations
[t, y1]= GLMethod(Parameters , Order , AuxiliaryTime , ...

InitialConditions);
cond=[y1(end ,1), y1(end ,2), y1(end ,3)];
q_2=q+0.05;
Order =[q_2 ,q_2 , q_2];
if (i==1)
yn=y1;
else
yn=[yn;y1];
end
end

4.2 Full-Memory

In the full-memory approach, we want to preserve all the values for the index of the
summation in eq. (7). In this manner, the kth solution will depend on the whole previ-
ous values, including initial conditions k(0). As a result, all the previously generated
data since t0 are preserved and used to compute the next values for the new fractional-
order. Considering the initial time t0 with initial condition x0, we have t ∈ [t0, t1]
and the corresponding fractional differential equation C

t0 D
q0
t1 x(t) = f (x0, t0). For the

next interval, the full memory from t0 is preserved, i.e., the data are accumulated as
time evolves. Thus, we obtain the updated interval t ∈ [t1, t2] and fractional differen-
tial equation C

t1 D
q1
t2 x(t) = f (x0, t0). Next, we will obtain C

t2 D
q2
t3 x(t) = f (x0, t0) with

t ∈ [t2, t3], and so forth. Based on this principle, we simulate again the multi-scroll
chaotic system (5) with a constant PLW fractional-order q1 = 0.90 for t ∈ [0, 150s]
and q2 = 0.95 for t ∈ [150s, 300s], and initial conditions [0.1, 0.1, 0.1], as shown in
Fig. 2. Similarly to the case of short-memory in the previous subsection, the following
pseudo-code gives the main instructions to implement the full-memory approach:

function [t, Y]= GLMethod(parameter , order , simutime , Y0)
for i=2:n

if i≤15000
q=0.90;

x(i)=y(i-1)*h^q - (memoria(x, c1 , i));
y(i)=z(i-1)*h^q - (memoria(y, c2 , i));
z(i)=(-alpha*x(i-1)-beta*y(i-1)-gamma*z(i-1)+...

w*f_xpwl(x(i-1)))*h^q - (memoria(z, c3 , i));
else

q=0.95;
x(i)=y(i-1)*h^q - (memoria(x, c1 , i));
y(i)=z(i-1)*h^q - (memoria(y, c2 , i));
z(i)=(-alpha*x(i-1)-beta*y(i-1)-gamma*z(i-1)+...

w*f_xpwl(x(i-1)))*h^q - (memoria(z, c3 , i));
end

end
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Fig. 2 Multi-scroll chaotic attractor of system (5) applying full-memory approach with variable-
order: q1 ∈ [t0, t1], and q2 ∈ [t1, t]

0.85 0.9 0.95 1
-2

-1

0

1

Fig. 3 The spectrum of the Lyapunov exponents for the system (5) with q ∈ [0.8570, 0.9999]

For the simulated chaotic attractors, we compute the Lyapunov exponent spectrum
to demonstrate the chaos behavior. Figure3 shows the Lyapunov exponents for q ∈
[0.8570, 0.9999] based on the Wolf’s algorithm [31]. The results confirm that in the
interval q ∈ [0.8656, 0.9999] there is a system of chaotic dynamics with a strange
three-dimensional attractor.

4.3 Discussion

In Fig. 4, the time evolution (x(t), y(t), z(t)) ofmulti-scroll system (5)was computed
with both short-memory and full-memory proposed approaches. While the evolution
with short-memory is represented by the blue color, the full-memory implications
are in red color. We observe that both solutions have a similar evolution due to
the memory contributions of the fractional-order (q = 0.9) is the same for both
aproaches during the first interval [0, 150s]. However, the evolution diverges for the



Analysis of a Variable Order Multi-scroll Chaotic System … 1189

0 0.5 1 1.5 2 2.5 3

104

-5

0

5

0 0.5 1 1.5 2 2.5 3

104

-1
0
1
2

0 0.5 1 1.5 2 2.5 3

104

-2
0
2

Fig. 4 Time evolution for (x, y, z) of variable-order multi-scroll chaotic system (5) with the short-
memory (blue) and full-memory (red) proposed approaches

second time interval [150s, 300s]. The reason is that each approach (short-memory
and full-memory) has different characteristics. For the short-memory-based chaotic
system, the initial condition in the second interval is changed to the latter value
of (x(150), y(150), z(150)). It means that previous data are deleted. In the full-
memory-based chaotic system, the initial conditions remainsfixed to its original value
(x(0), y(0), z(0)), and all previous data of the state-variables vector are accumulated
with the current and next solutions.

In Fig. 5, we plot the solution of (5) for constant orders q = 0.9 and q = 0.95,
and variable-order q(t) = [q(t0), q(t1)] with short-memory order and full-memory,
respectively. As expected, the variable-order oscillator with short-memory (blue tra-
jectory) has a strong correlation with constant order q = 0.90 when t ∈ [0, 150],

0 0.5 1 1.5 2 2.5 3

104

-5

0

5

Fig. 5 Time evolution for state-variable x of multi-scroll chaotic system (5) with: constant order
q = 0.9 (red), constant order q = 0.95 (pink), variable-order q(t) with short-memory (blue), and
variable-order q(t) with full-memory (black)
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and with q = 0.95 when t ∈ [150, 300]. On the other hand, the trajectory with full-
memory (black color) has a behavior that diverges from the others once t ≥ 150.
This is the expected evolution because the full-memory approach considers all past
values of q = 0.9 to compute the solutions of recent iterations with q = 0.95.

5 Conclusion

Based on the variable-order theory, in this paper the numerical analysis of a multi-
scroll chaotic system using short- and full-memory implications has been presented.
In particular, the proposed approach considered two scenarios. The first is related to
splitting the simulation time into intervals with a specific fractional-order discarding
past values, whereas the latter computes the solution considering both past values
from the previous fractional-order and the current values for the new fractional-order.
The numerical simulations confirmed that the short-memory approach is similar to
compute the solution of the chaotic systems independently and just combine them.
In contrast, the full-memory strategy evolved with a distinct dynamical behavior due
to including not only current values but also the past values of the fractional-order.
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the Master in Sciences scholarship, number: 1072803. The authors also thank VIEP-BUAP for the
support through project 100519836-VIEP2021.
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Effect of DEN-2 Virus
on a Stage-Structured Dengue Model
with Saturated Incidence and Constant
Harvesting

Kunwer Singh Mathur and Bhagwan Kumar

Abstract The effect of the DEN-2 virus on dengue infection in children and adults
plays an important role. This paper proposes and analyses a nonlinear stage-structured
denguemodel with a saturated incidence rate and constant harvestingwith primary or
secondary dengue infection. We analyze the local and global stability of disease-free
and endemic equilibria of the system. The disease-free equilibrium is locally and
globally asymptotic stable for R0 < 1 and unstable for R0 > 1.We also analyzed the
stability of endemic equilibrium for R0 > 1, but at R0 = 1, the bifurcation exists,
which is proven using the center manifold theory. Finally, numerical simulations are
drawn to verify these theoretical results.

Keywords Dengue · Age-structure · Central manifold · Saturated incidence ·
Constant harvesting · Optimal control

1 Introduction

Dengue fever is the most common mosquito-borne acute arboviral (arthropod-borne
viruses), caused by the bite of infected Aedes aegypti or Aedes Albopictus (also
called Asian Tiger mosquito). Dengue virus infection is a leading cause of morbidity
and mortality in the tropics and subtropics, mostly in urban and semi-urban areas
of the world. The secondary infection of dengue in a person causes more severe
complications. Sometimes, the secondary infection occurs in the form of Dengue
haemorrhagic fever (DHF) or may have mild/moderate/high fever. It is also respon-
sible for headaches, nausea, vomiting, pain in the muscles, bones, or common rashes
on the skin, or most severe Dengue shock syndrome (DSS), which comprise rapid
drops in blood pressure, a sudden weak pulse, suffering breathing problems, dilated
pupils, cold, clammy skin, dry mouth, and restlessness. Once a patient goes into
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DSS, it could be fatal within 12–24 h unless treatment is given immediately. There
are four types of dengue virus (i.e., DEN-I, DEN-II, DEN-III, and DEN-IV), which
are closely related to the serotypes of the virus that causes dengue infection. The
four dengue serotypes, due to the infection, develop permanent immunity, probably
lifelong to it, but this does not confer protective immunity against the other three
serotypes. Thus, a person living in an endemic area can have as many as four dengue
infections during his lifetime, one with each serotype. Moreover, the mosquitoes
never recover from the infection and end their life during their infective period [7].
RT-PCR can detect the dengue viral genome in blood specimens up to day five simple
precautions. There is no suitable vaccine and no immediate prospect of immuniza-
tion prevention of the disease. Thus, one can say that dengue/severe dengue has no
specific treatment, but the fatality rates can be lower below 1% by early detection of
dengue infection and by providing proper medical care.

The transmission dynamics of infectious diseases throughMathematicalmodeling
havebeen studied since a long timeago.However, themodelingof denguedisease still
becomes a challenging question nowadays because of having more compartments
in its mathematical model. Only a few researchers developed mathematical models
for dengue disease transmission. Esteva and Vargas in [20], obtained the threshold
value and the condition for the coexistence of two serotypes of dengue virus in a SIR
model without including the age structure, which is not useful in the DHF outbreak of
Thailand. The transmission of dengue fever is age-dependent (see, [9, 21]). Feng et al.
analyzed the dengue transmission dynamics of the age–structuredmodel [8]. Further,
Suprianta is considered and investigated vaccination in a child age class models (see
[1, 6]). Although, a severe manifestation of dengue infection develops in those who
already have a primary infection [16]. This phenomenon should be considered in the
modeling part to better present a realistic situation. Furthermore, the incidence rate
will also play a key role inmodeling infectious disease transmission.Many incidence
rates are applicable inmodeling. In the scenario of an epidemic, the bilinear incidence
rate is also available, which is based on the law of mass action, which can’t explain
the disease dynamics [3]. Besides the bilinear incidence rate, the saturated incidence
rate is more realistic in comparison to bilinear [5, 13, 18]. Therefore, we include the
saturated incidence rate βA(t)V (t)

1+αV which tends to a level of saturation when V gets
large, here α is the half-saturation constant.

Keeping in mind the above discussion, we will develop and analyze a dynamical
system of nonlinear differential equations with two life stages in stage—structure
form, and it is assumed that the adult has only primary dengue infection while the
children under the age of 15 years have both primary and secondary infection. The
presentation of the paper is as follows: In Sect. 2, a mathematical model is proposed,
and in Sect. 3, the basic preliminary results including positivity and boundedness are
proved. Further, the stability of equilibria is analyzed in Sect. 4 and an optimal control
problem is discussed in Sect. 5. Finally, numerical simulations and conclusions are
given respectively in Sects. 6 and 7.
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2 Model Development

In this section, a mathematical model is proposed to study the effect of the DEN-2
virus in dengue disease transmission. The model is developed for two stages (e.g.,
children and adults) stage-structured population with a saturated incidence rate and
constant harvesting. Let total density of host population be N (t), in which, children
population can be distinguised into two categories. Under the first category, children
will not be infected by any dengue serotype DEN-I, DEN-III, DEN-IV, while in
second category childrenmay have an asymptomatic dengue infection. In this model,
we will consider only second category’s children population, which is divided into
two compartment susceptible children S(t) and infected children. Again, infected
children is divided into primary infected IP(t) and secondary infected children IS(t).
Here, the adult susceptible and infected populations are denoted by A(t) and I (t),
respectively, all recovered popuplation including children and adult is represented
by R(t). Hence N (t) = [S(t) + IP(t) + IS(t)] + [A(t) + I (t)] + R(t). let U (t) be
the susceptible vector population and V (t) be the infected vector population such
that M(t) = U (t) + V (t). The function βA(t)V (t)

1+αV represents the saturated incidence
rate. Further, it is assumed that:

(A1) The total susceptible children population is given by S(t) = νS(t) + (1 −
ν)S(t); (0 < ν < 1), where νS(t) represents the primary infection and (1 −
ν)S(t) represents the secondary infection, when children population interact
with infected (DEN-II) mosquitoes.

(A2) It is assumed that the probability of an adult being secondary infected is usually
short. Therefore, we do not consider secondary infection for adults.

(A3) It is also assumed that only the DEN-II serotype is prevalent at time t .

Here, all parameters are assumed positive.
The complete transmission dynamics is given in Fig. 1, which leads to propose

the following mathematical model:

Fig. 1 The flow diagram for
dengue disease transmission
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dS

dt
= Λ − β1νSV − β2(1 − ν)SV − mS − μ1S,

d IP
dt

= β1νSV − γ1 IP − μ1 IP ,

d IS
dt

= β2(1 − ν)SV − γ2 IS − μ1 IS − μIS,

d A

dt
= mS − βAV

1 + αV
− μ1A,

d I

dt
= βAV

1 + αV
− γ I − μ1 I,

dR

dt
= γ1 IP + γ2 IS + γ I − μ1R,

dU

dt
= ω1 − σU (IP + I ) − μ2U − pU,

dV

dt
= σU (IP + I ) − μ2V − qV .

(2.1)

The model possess the following non-negative initial conditions:

S(0) = S0, IP (0) = I10, IS(0) = I20, I (0) = I0, A(0) = A0, R(0) = R0, U (0) = U0, V (0) = V0.

Here, descriptions of other parameters are given in Table 1.

Table 1 Description of parameter used in model (2.1)

Parameter Description

m Maturation rate from child to adult

β2 Transmission rate by which recovered children from prior asympomatics
infection by heterologous serotype are further getting secondary infection
by DEN-II serotype

γ1 The rate of recovery for the primary infected children

γ2 The rate of recovery for the secondary infected children

γ The rate of recovery for adults

μ1 The natural death rate for all human classes

μ2 The natural death rate of mosquitoes

σ Transmission rate of infection to mosquitoes by primary infected children
and adults

μ Disease-induced death rate for the secondary infected children

Λ The constant recruitment rate

ω1 The recruitment rate for vector

β1 The rate of transmission of infection

β The rate of transmission primary infection

p , q Constant harvesting rate
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3 Preliminary Results

3.1 Boundedness

Lemma 1 The System (2.1) has a positively invariant and bounded solution in the
closed set:

Γ =
{
(S, I1, IS, A, I, R,U, V ) ∈ R

8+ : S + IP + IS + A + I + R ≤ Λ

μ1
,U + V ≤ ω1

μ

}
.

Proof Consider the system of differential (2.1) in ∈ R
8+ as

dZ

dt
= F(t, Z(t)), Z(0) = Z0 ∈ R

8
+ (3.1)

Let Fj (t, Z) ≥ 0 whenever Z ∈ R
8+ and Z j = 0; j = 1 to 8. The system (3.1) has

non-negative solution (see, [19]).Now, add themodel equations of the host population
and vector population separately, we can obtain that

dN

dt
= Λ − μ1N − ν IS,

dM

dt
≤ ω1 − μM, (3.2)

where μ = min{μ2 + p, μ2 + q}. Accordingly, lim sup
t→∞

N (t) = Λ

μ1
and

lim sup
t→∞

M(t) ≤ ω1

μ
. Thus, Γ is positively invariant and bounded.

Since the state variables R and U are not playing any role in infection dynamics,
hence we can exclude these variable. Thus, the following model is considered for
further analysis:

dS

dt
= Λ − β1νSV − β2(1 − ν)SV − mS − μ1S,

d IP
dt

= β1νSV − γ1 IP − μ1 IP ,

d IS
dt

= β2(1 − ν)SV − γ2 IS − μ1 IS − μIS,

d A

dt
= mS − βAV

1 + αV
− μ1A,

d I

dt
= βAV

1 + αV
− γ I − μ1 I,

dV

dt
= σ

(
ω1

μ2
− V

)
(IP + I ) − μ2V − qV,

(3.3)
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3.2 Existence of Equilibria

The disease-free state E0 = (S̃, ĨP , ĨS, Ã, Ĩ , Ṽ ) always exists, where

S̃ = Λ

m + μ1
, ĨP = 0, ĨS = 0, Ã = mΛ

(m + μ1)μ1
, Ĩ = 0, Ṽ = 0.

Let us denote β3 = (β1ν + β2(1 − ν)). The endemic state E∗ = (S∗, IP∗, IS∗, A∗,
I ∗, V ∗) is given as

S∗ = Λ

V ∗β3 + (m + μ1)
; I∗P = β1νS

∗V ∗
(γ1 + μ1)

; I∗S = β2(1 − ν)S∗V ∗
(γ2 + μ1 + ν)

; A∗ = mS∗

(
βV ∗

1+αV ∗ + μ1)
;

I∗ = βA∗V ∗
(1 + αV ∗)(γ + μ1)

;

V ∗ is the root of following quadratic polynomial

aV ∗2 + bV ∗ + c = 0, (3.4)

a = σνβ1Λ(β + αμ1)(γ + μ1) + ββ3(μ2 + q)(γ1 + μ1)(γ + μ1)

+ μ1αβ3(μ2 + q)(γ1 + μ1)(γ + μ1)

b = σβ1νΛμ1(γ + μ1) + mβσΛ(γ1 + μ1)

+ (μ2 + q)(γ1 + μ1)(γ + μ1)(μ1β3 + (m + μ1)(β + μ1α))

− σω1

μ
β1νΛ(γ + μ1)(β + μ1α)

c = μ1(μ2 + q)(m + μ1)(γ1 + μ1)(γ + μ1)(1 − R0),

Let V ∗± be the roots of (3.4) then

V ∗
± = −b ±

√
b2 − 4ac
2a

.

Since a >0. If R0 > 1, c < 0. Then it has one positive endemic state exits. If R0 <

1, c > 0. Then it has two real positive endemic state will exist provided b < 0 and
b2 − 4ac > 0.And if R0 = 1, c = 0.Thenone positive endemic state exist forb < 0.
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3.3 Basic Reproduction Number

We will determine the basic reproduction number by next generation approach [10],
the jacobian matrix of the system (3.3)

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 β1ν S̃
0 0 0 β2(1 − ν)S̃

0 0 0
β Ã

(1 + αṼ )2
σω1

μ
0

σω1

μ
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎝

γ1 + μ1 0 0 0
0 γ2 + μ1 + ν 0 0
0 0 γ + μ1 0
0 0 0 μ2 + q

⎞
⎟⎟⎠

clearly at E0 the next generation matrix is

FV−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
β1νΛ

(m + μ1)(μ2 + q)

0 0 0
β2(1 − ν)Λ

(m + μ1)(μ2 + q)

0 0 0
βmΛ

μ1(m + μ1)(μ2 + q)
σω1

μ(γ1 + μ1)
0

σω1

μ(γ + μ1)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We known that the largest eigenvalue of FV−1 is the basic reproduction number R0.

Which is computed as

R0 = σΛω1

μ(μ2 + q)(m + μ1)
[ βm

μ1(γ + μ1)
+ νβ1

(γ1 + μ1)
].

4 Stability Analysis

Theorem 1 The disease-free state is locally and globally asymptotically stable for
R0 < 1 and unstable for R0 > 1.

Proof The jacobian matrix[J] for the system (3.3) at E0 is
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J [E0] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(m + μ1) 0 0 0 0 − β3Λ

m + μ1

0 −(γ1 + μ1) 0 0 0
β1νΛ

m + μ1

0 0 −(γ2 + μ1 + ν) 0 0 β2(1 − ν)
Λ

m + μ1

m 0 0 −μ1 0 − βmΛ

μ1(m + μ1)

0 0 0 0 −(γ + μ1)
βmΛ

μ1(m + μ1)

0
ω1σ

μ
0 0

ω1σ

μ
−(μ2 + q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The eigenvalue of [J (E0)] are−m − μ1,−γ2 − μ1 − ν,−μ1 and other all the eigen-
value are given cubic polynomial λ3 + B1λ

2 + B2λ + B3. Where

B1 = 2μ1 + γ1 + γ + μ2 + q, B2 = (μ2 + q)(2μ1 + γ1 + γ )

+ (γ1 + μ1)(γ + μ1) − σω1

μμ1
(β1ν S̃ + βμ1 Ã)

B3 = (μ2 + q)(γ + μ1)(γ1 + μ1)(1 − R0).

It is clear that B1 > 0 andB3 > 0 f or R0 < 1. And

B1B2 − B3 = (2μ1 + γ1 + γ + μ2 + q)(μ2 + q)(2μ1 + γ1 + γ )

+ (γ1 + μ1)(γ + μ1)) + (γ + μ1)(γ1 + μ1)(μ2 + q)(1 − R0)

is positive if R0 < 1. By Routh-Hurwitz criterion the polynomial has eigenvalue
with negative real part if R0 < 1. This is showing the local stability at E0. Now by
Descartes Rule of signs it has one positive eigenvalue if R0 > 1. Hence, at E0 will
be Unstable if R0 > 1. Next we proof the system has global stability at E0.

Let L(IP , I, V ) = σΛIP
(γ1+μ1)

+ σΛI
(γ+μ1)

+ (μ2 + q)V be the positive definite function

L̇ = σΛ

γ1 + μ1
(β1νSV − γ1 IP − μ1 IP) + σΛ

γ + μ1
(

βAV

1 + αV
− γ I − μ1 I )

+ (μ2 + q)(σ (
2ω1

μ
− V )(IP + I ) − μ2V − qV )

L̇ ≤ Vμ2
2(R

2
0 − 1) ≤ 0 for R0 < 1. Therefore L(IP , I, V ) is Lyapunov function

for R0 < 1.At V = 0, L̇ = 0.Because E0 is the largest invariant setwhich is contains
the subset in which V=0. by LaSalle’s invariance principal [15], at E0 Locally and
globally stable for R0 < 1.

Theorem 2 The system (3.3) has a locally asymptotically stable endemic state E∗
for R0 > 1 and it has the forward bifurcation at R0 = 1.

Proof Let β1 = βc
1 is bifurcation parameter corresponds to R0 = 1,

βc
1 = γ1+μ1

ν
(
μ(μ2 + q)(m + μ1)

σΛω1
− βm

μ1(γ + μ1)
)
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Let δ = (δ1, δ2, δ3, δ4, δ5, δ6)
T be a right eigenvector corresponding to the eigenvalue

zero. It is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(m + μ1) 0 0 0 0 −(βc
1ν + β2(1 − ν))S̃

0 −(γ1 + μ1) 0 0 0 βc
1ν S̃

0 0 −(γ2 + μ1 + ν) 0 0 β2(1 − ν)S̃
m 0 0 −μ1 0 −β Ã
0 0 0 0 −(γ + μ1) β Ã

0
ω1σ

μ
0 0

ω1σ

μ
−(μ2 + q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

δ1
δ2
δ3
δ4
δ5
δ6

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0

Solving above equation, the right eigenvector is
(

δ1 = 0, δ2 = βc
1ν

(γ1 + μ1))
, δ3 = 0, δ4 = 0, δ5 = βm

μ1(γ1 + μ1)
, δ6 = (m + μ1)(γ + μ1)

Λ(γ1 + μ1)

)
.

Further, the left eigenvector ν = (ν1, ν2, ν3, ν4, ν5, ν6)
T corresponding to the eigen-

value zero such that δ.ν = 1 is
(

ν1 = 0, ν2 = ω1σΛ

(μ2 + q)(m + μ1)(γ + μ1 + μ2 + q)
, ν3 = 0, ν4 = 0,

ν5 = ω1σΛμ(γ1 + μ1)

μ(μ2 + q)(m + μ1)(γ + μ1)(γ + μ1 + μ2 + q)
, ν6 = μΛ(γ1 + μ1)

(μ2 + q)(m + μ1)(γ + μ1 + μ2 + q)

)
.

Let S = x1, IP = x2, IS = x3, A = x4, I = x5, V = x6. The system (3.3) becomes,

dx1
dt

= Λ − β1νx1x6 − β2(1 − ν)x1x6 − mx1 − μ1x1 := f1

dx2
dt

= β1νx1x6 − γ1x2 − μ1x2 := f2

dx3
dt

= β2(1 − ν)x1x6 − γ2x3 − μ1x3 − μx3 := f3

dx4
dt

= mx1 − βx4x6
1 + αx6

− μ1x4 := f4

dx5
dt

= βx4x6
1 + αx6

− γ x5 − μ1x5 − px5 := f5

dx6
dt

= σ(
ω1

μ2
− x6)(x2 + x5) − μ2x6 − qx6 := f6.

(4.1)

The partial derivatives at (E0) are

∂2 f2
∂x6∂β1

= νΛ

(m + μ1)
,
∂2 f5
∂x26

= − 2mΛα

(m + μ1)μ1
,

∂2 f6
∂x2∂x6

= ∂2 f6
∂x6∂x2

= ∂2 f6
∂x6∂x5

= ∂2 f6
∂x5∂x6

= −σ
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and remaining are zero. From Theorem 4.1 [4]. The coefficient a and b are computed
as,

a = 2ν6δ2δ6
∂2 f6

∂x2∂x6
+ 2ν6δ5δ6

∂2 f6
∂x5∂x6

+ ν5δ6δ6
∂2 f5

∂x6∂x6
,b = ν2δ6

∂2 f2
∂x6∂β1

Now substitue all the partial derivatives and left and right eigenvectors we get,

a = − 2σ(γ + μ1)

μ1(μ2 + q)(γ1 + μ1)(γ + μ1 + μ2 + q)
(μμ1β1ν + μβm + ω1mα),

b = ω1σνΛ(γ + μ1)

(μ2 + q)(m + μ1)(γ1 + μ1)(γ + μ1 + μ2 + q)
.

Clearly a < 0 and b > 0 is always. using Theorem 4.1 [4]. Forward bifurcation
is possible and the E∗ is found to be locally asymptotically stable for R0 > 1.

5 Optimal Control Problem

In this section, we develop an optimal control problem for the model system (2.1),
control the spread of an epidemic, it is imperative to propagate awareness amongst
individuals, but a successful intervention strategy reduces the number of infective
individuals with minimum cost [12] an effectual way of procuring the best strategy
for information propagation is using optimal control theory [11, 14]

J [u(t)] =
T∫
0

[z1 I (t) + z2u
2(t)]dt, (5.1)

dS

dt
= Λ − β1νSV − β2(1 − ν)SV − mS − μ1S,

d IP
dt

= β1νSV − γ1 IP − μ1 IP ,

d IS
dt

= β2(1 − ν)SV − γ2 IS − μ1 IS − μIS ,

d A

dt
= mS − βAV

1 + αV
− μ1A,

d I

dt
= βAV

1 + αV
− u(t)I

1 + ωI
− γ I − μ1 I,

dR

dt
= γ1 IP + γ2 IS + u(t)I

1 + ωI
+ γ I − μ1R,

dU

dt
= ω1 − σU (IP + I ) − μ2U − pU,

dV

dt
= σU (IP + I ) − μ2V − qV,

(5.2)

with initial condition
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S(0) ≥ 0, IP (0) ≥ 0, IS(0) ≥ 0, I (0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0,U (0) ≥ 0, V (0) ≥ 0

The coefficient z1 and z2 in the cost functional are balancing coefficients transform-
ing the integral into currency expended. The first in the cost functional represent the
cost due to infection caused by epidemic and last term represent cost associated with
the implementation of awareness program. Quadratic expression of control indicates
non-linear cost arising at high implementation level. find an optimal control u∗(t)
such that

J (u∗) = minu∈U J (u) (5.3)

where control set is defined as

Z = {u(t) : 0 ≤ u(t) ≤ umax; 0 ≤ t ≤ T, u(t) is Lebesgue measurable} .

Theorem 3 There exist an optimal control u∗ ∈ Z such that J (u∗) = min[J (u)]
corresponding to the control system (5.1)–(5.2)

Proof The boundedness of solution of system (5.2) asserts the existence of solution
to control system using results [17] Therefore, set of controls and corresponding
state variables is nonempty. The control set is closed and convex by definition. The
solution of system (5.1) are bounded above by a linear function in state and control.
The integrand in the cost functional, z1 I (t) + z2u2(t) is convex on control set Z . and
also there exits r1, r2 > 0 and m > 1 such that, z1 I (t) + z2u2(t) ≥ r1 + r2|u2(t)|m
where r1 depends upon the uper bound of I (t) and r2 = z2 Hence, the existence of
an optimal control is established.

5.1 Characterization of Optimal Control Function

The Pontryagin’s Maximum Principle [2] can be used for the differential systems of
adjoint variable and characterization of optimal control. we define the Hamiltoninan
as,

H(S, IP , IS , A, I, R,U, V, u, λ) = L(S, IP , IS , A, I, R,U, V, u, λ) + λ1 Ṡ + λ2 ˙IP + λ3 İS

+λ4 Ȧ + λ5 İ + +λ6 Ṙ + λ7U̇ + λ8V̇ = z1 I (t) + z2u(t)2 + λ1(Λ − β1νSV − β2(1 − ν)SV

−mS − μ1S) + λ2(β1νSV − γ1 IP − μ1 IP ) + λ3(β2(1 − ν)SV − γ2 IS − μ1 IS − μIS)

+λ4(mS − βAV

1 + αV
− μ1A) + λ5(

βAV

1 + αV
− u(t)I

1 + ωI
− γ I − μ1 I )

+λ6(γ1 IP + γ2 IS + u(t)I

1 + ωI
+ γ I − μ1R) + λ7(ω1 − σU (IP + I ) − μ2U − pU )

+λ8(σU (IP + I ) − μ2V − qV )

(5.4)

where λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) is konow as adjoint variable. We obtain
minimized cost functional subject to state variable for the given optimal control u∗
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and state variable there exits adjoint variable λi satisfying the following canonical
equations,

dλ1

dt
= (β1νV + m + μ1)λ1 + (β2(1 − ν)V − β1νV )λ2 − β2(1 − ν)Vλ3 − mλ4,

dλ2

dt
= (γ1 + μ1)λ2 − γ1λ6 − σUλ7 − σUλ8,

dλ3

dt
= (γ2 + μ1 + μ)λ3 − γ2λ6,

dλ4

dt
=

(
βV

1 + αV
+ μ1

)
λ4 − βV

1 + αV
λ5,

dλ5

dt
= −z1 +

(
u(t)

(1 + ωI )2
+ μ1 + γ

)
λ5 −

(
u(t)

(1 + ωI )2
+ γ

)
λ6 + σUλ7 − σUλ8,

dλ6

dt
= μ1λ6,

dλ7

dt
= (μ2 + p)λ7,

dλ8

dt
= (μ2 + q)λ8,

(5.5)

with transversality condition λi (T ) = 0, i=1 to 8. The Hamiltonian is minimized
with respect to u at the optimal value u∗ Now from the optimality condition, we have
∂H
∂u = 0 at u = u∗, so

H = z2u
2 + λ5

(−u(t)I

1 + ωI

)
+ λ6

(
u(t)I

1 + ωI

)
+ terms without u(t)

differentiating H with respect to u gives:

∂H

∂u
= 2z2u

∗ − (λ5 − λ6)
I

1 + ωI∗ = 0. Thus we get, u∗ = I

2z2(1 + ωI∗)
(λ5 − λ6)

Now from the above findings along with the characteristics of control set U, we have

u∗ =

⎧⎪⎪⎨
⎪⎪⎩

0 if I ∗
2z2(1+ωI ∗) < 0,

I ∗
2z2(1+ωI ∗) if 0 ≤ I ∗

2z2(1+ωI ∗) ≤ 1,

1 if I ∗
2z2(1+ωI ∗) > 1,

6 Numerical Simulation

We discuss the numerical simulation of the model as the parameters in the system
(2.1) are varified in MATLAB using ODE45. We assume that arbitrary initial condi-
tion Y1 = [0.8, 0.5, 0.4, 0.07, 0.1, 0.5, 20, 5], Y2 = [0.6, 0.3, 0.6, 0.1, 0.6, 0.8, 22,
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12], Y3 = [0.4, 0.9, 0.2, 0.4, 0.8, 5, 30, 7], Y4 = [1.5, 0.1, 0.9, 2.9, 0.8, 2, 40, 20]
and parameters value are m = 0.00183, β2 = 0.7, γ1 = 0.3, γ2 = 0.1428, γ =
0.5, μ1 = 0.0000457, μ2 = 0.0714, σ = 0.05, μ = 0.001, Λ = 0.00001, ω1 =
50, ν = 0.5, β1 = 0.005, β = 0.003, α = 0.09, p = 0.0001, q = 0.0001. The
basic reproducation number R0 = 0.76(< 1). So, E0 exits and it is calculated as
E0(S, IP , IS, A, I, R,U, V ) = (0.0345, 0, 0, 0.1234, 0, 0, 512.280, 0). We can see
from the projections of phase plot in IP − IS − I hyperplanes drawn in Figs. 2
and 3, that the solution trajectories converge to the state E0. This is showing
that global stability at E0. Now β1 = 0.1, β = 0.05 the basic reproduction number
R0 = 2.1432(> 1). So, E∗ will exit. And it is calculated as E∗(S, IP , IS, A, I, R,U,
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Fig. 5 A 3D A − S − V this is showing that the convergence to E∗

V ) = (0.00463, 0.000001325, 0.00008542, 0.0022694, 0.0000012546, 0.24961,
512.267, 0.0032145). The projections of phase plot in IP , IS, V hyperplanes have
been drawn in Figs. 4 and 5. The solution trajectories are found to converge to the
state E∗, so the stability of the endemic equilibrium state.
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7 Conclusion

We have constructed a stage-structured dengue model with a saturated incidence
rate and constant harvesting to see the effect of the DEN-2 virus on the primary/
secondary infection in children and adults.We have calculated the basic reproduction
number R0. It has been analyzed that the disease-free equilibrium point is locally
and globally asymptotically stable for R0 < 1 and unstable for R0 > 1. Further,
locally asymptotically stable endemic state E∗ for R0 > 1 and it has the forward
bifurcation at R0 = 1. An optimal control system has been constructed and by using
the pontryagin maximum principle, we obtain the minimized cost function. From
the numerical simulation, we verified some analytical results of the theorem. In
disease dynamics, a basic reproduction number plays an essential role in controlling
disease outbreaks. Here R0 is the function of harvesting coefficient q only and not
dependent on p, which suggests that the harvesting of susceptible mosquitos has no
impact on the dynamics. However, the harvesting coefficient q plays a crucial role
in controlling dengue infection. Hence, the Govt. policies can be regulated through
the basic reproduction number obtained in this paper, and the scientists can make
better policies to stop the outbreak.Moreover, the endemic equilibrium point became
saturated and depended on the half-saturation constant α. Finally, it is concluded that
the saturated incidence rate and vector harvesting rate have a more significant impact
on the system’s dynamics, which determines a more realistic analysis and is more
practical from an epidemic point of view.
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Modulational Instability Analysis in An
Isotropic Ferromagnetic Nanowire with
Higher Order Octopole-Dipole
Interaction

T. Pavithra , L. Kavitha , Prabhu, and Awadesh Mani

Abstract We investigate the nonlinear spin excitation in aHeisenberg ferromagnetic
nanowire with the higher order octupole-dipole interaction. In this study, the non-
linear dynamical equation of motion is obtained by a semi-classical limit employing
Glauber’s coherent state analysis along with Holstein-Primakoff bosonic representa-
tion for the spin operators. In the framework of linear stability analysis, we employ
the Modulational Instability for the ferromagnetic nanowire with octupole-dipole
interaction. It is found that the occurance of octupole-dipole exchange interaction
systematically helps to localize the excitation which improve the growth of high
amplitude localized robust solitons in the ferromagnetic nanowire lattice.

Keywords Nonlinear excitation · Octupole-dipole interaction · Modulational
instability analysis · Heisenberg ferromagnetic nanowire

1 Introduction

It ismore interesting to study the one dimensional classicalHeisenberg ferromagnetic
nanowire with several types of magnetic interactions which reveals the soliton spin
excitation and integrability characteristics [1, 2]. In this view, the parallel symmetry
of spins in the ferromagnetic nanostructures, especially in nanowire is controlled
by bilinear spin-spin exchange interaction and higher order exchange interactions
like magnetic octupole-dipole and biquadratic exchange interactions found to play
a predominant role in recent years [3–6]. The intergability behaviour of ferromag-
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netic systems in the view of biquadratic interaction is significantly established in
both classically and quantum mechanically. Moriya draw out the concept of super
exchange interaction to incorporate the spin-orbit coupling in a Heisenberg spin of
Hamiltonian along with the biquadratic interaction, there look to be a third degree
exchange interaction found to be (Si · Si+1)(Si+1 · �k)2. Here ‘k’ is fixed to be a
constant vector [7–10]. Substantially, this interaction was elucidated as octupole-
dipole interaction expressing the hyperfine construction of �3 ions in cubic sym-
metry and additionally performing as fascinating nonlinear dynamical model with
higher order interactions having much attention in field of nonlinear physics. Mostly,
the research works are only related with magnetic systems have been concerned to
the nearest-neighbor (NN) exchange interaction [11] and only very few research
works handle with the interaction of next-nearest neighbor (NNN) one. However, for
numerous materials with complex structure which is essential to take into account
of the NNN spin-spin interactions in the ferromagnetic system. Daniel et al. [12]
has investigated the octupole-dipole interaction through Painleve singularity struc-
ture analysis, where they explored the integrable spin chain model with nonlinear
spin excitation in the Heisenberg ferromagnet. Further, Bing Tang et al. [13] studied
effect of octupole-dipole interaction and localization of quantum breather and soli-
ton in the anisotropic ferromagnetic chain through quantum approach whereas they
consider the localised Hatree states as quantum breathers. And also, Kavitha et al.
[15] informatively studied the effective nonlinear excitation of spin in anisotropic
one dimensional Heisenberg ferromagnetic lattice by semi-classical approach in the
presence of octupole-dipole interaction where using soliton flipping they analyzed
the magnetic switching process under the influence of octupole-dipole interaction.
Recently, Djoufack et al.[14] reported the localisation of bright intrinsic localised
modes in an one dimensional isotropic ferromagnets with octupole-dipole magnetic
interaction. In the connection with above research works, we planning to study the
energy localisation in ferromagnetic nanowire of one dimensional with the higher
order octupole-dipole magnetic exchange interactions of NN and NNN spins. This
paper work is arranged in a following manner. First we introduce our dynamical
model: a Heisenberg spin model of ferromagnetic nanowire with first and second
neighbor exchange interaction, biquadratic and octupole-dipole interactions and we
derived the corresponding equations of motion. The analytical study is attribute to
the exploration of Modulational Instability (MI) analysis of a plane wave generating
in a ferromagnetic system of discrete lattice of nanowire and also we illustrate the
existence of symmetric solitons in the spin lattice of ferromagnetic nanowire.

2 Hamiltonian Model of the Dynamical System

We contemplate the motion of an isotropic one dimensional ferromagnetic nanowire
of N spins which can be expressed by the Hamiltonian with nearest (NN) and next
nearest neighbor(NNN) higher order magnetic spin interactions
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H = −
∑

n

[
2J1

[
(�Sn · �Sn+1) + (�Sn · �Sn+2)

]
+ 2J2

[
(�Sn · �Sn+1)

2 + (�Sn · �Sn+2)
2
]

+2J3
[
(�Sn · �Sn+1)(�Sn+1 · k̂)2 + (�Sn · �Sn+2)(�Sn+2 · k̂)2

]]
, (1)

where �Sn = (Sx
n , S

y
n , Szn) is the spin at the lattice site n and �Sn · �Sn = S(SH). There

are three types of interactions are involved in (1):

(i) The first two expressions correspond to J1 define the bilinear NN and NNN
exchange interactions in the isotropic ferromagnetic nanowire.

(ii) The next two terms proportional to J2 represents the biquadratic interactions
between first and second neighbor spin.

(iii) The last term related with J3 express the higher order octupole-dipole spin-spin
exchange interactions.

In order to demonstrate the spin excitations in spin lattice, we incorporate the boson
excitations using Holstein-Primakoff modification [16].

S+
i = â†j

√
2S − â†j â j ,

S−
i =

√
2S − â†j â j â

†
j ,

Szi = â†j â j − S, (2)

where the annihilation and creation operators are represented as âi anda
†
j respectively

which compensate the boson commutation correlation [âi , â j
†] = δi j . The number

operator n̂i = âi â
†
i designates the spin divergence from its esteem value (S). The

ground state intimates the all magnetic spins are along in the direction of +z or −z
in a ferromagnetic order . On that account, the magnetization begin to exist, which is
elucidated as the nonvanishing average of Sz = ∑

i S
z
i . By developing

√
2S − n̂i �√

2S[1 − n̂i/S] to a series around the truncated excitation < n̂i ><< 2S, we can
obtain the presiding equation for nonlinear excitations on ground states. Now, the
(2) expanded as,

Ŝ+
i = √

2[εai − ε3

4
a†i aiai − ε5

32
a†i aia

†
i aiai + O(ε7)],

Ŝ−
i = √

2[εa†i − ε3

4
a†i a

†
i ai − ε5

32
a†i a

†
i aia

†
i ai + O(ε7)],

Ŝzi = [1 − ε2a†i ai ]. (3)

Accordingly, behind the spin-wave approximation, we achieved the effective low-
energy Hamiltonian (1) as
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H = −
∑

n

[
ε2(J1 + J2 + J3)

[
a†n+1an + an+1a

†
n − a†n+1an+1 + ana

†
n+2 + a†nan+2

−a†n+2an+2 − a†nan
] − 1

4
ε4

[
(J1 + J3)

[
ana

†
n+1an+1 + a†nana

†
n+1ana

†
n+1

+a†na
†
nanan+2 − 4a†na

†
n+2anan+2 + a†nanana

†
n+2 + a†na

†
n+2an+2an+2

−4a†na
†
n+1an+1an + a†n+1a

†
nan+1an+1 + a†nan+1a

†
nan + a†n+2ana

†
n+2an+2

]

+J2
[ − 4a†n+1anana

†
n+1 − 4a†nan+1an+1a

†
n − 4a†n+1anan+1a

†
n − 4a†nanan+1a

†
n+1

+ 4ana
†
n+1ana

†
n + 4ana

†
n+1an+1a

†
n+1 + ana

†
n+1a

†
n+1an+1 + a†nanana

†
n+1

+ a†na
†
n+1an+1an+1 + 4a†nan+1ana

†
n + a†na

†
nanan+1 + 4a†nan+1an+1a

†
n+1

+ 4a†nanana
†
n+1 + a†n+1anan+1a

†
n+1 + a†nanana

†
n+1 + 4a†n+1an+1ana

†
n+1

+ 4a†nanan+1a
†
n + 4a†n+1an+1an+1a

†
n + a†nan+1an+1a

†
n+1 + a†na

†
nanan+1

− 4a†n+2anana
†
n+2 − 4a†nan+2an+2a

†
n − 4a†n+2anan+2a

†
n − 4a†nanan+2a

†
n+2

+ 4ana
†
n+2ana

†
n + 4ana

†
n+2an+2a

†
n+2 + ana

†
n+2a

†
n+2an+2 + a†nanana

†
n+2

+ a†na
†
n+2an+2an+2 + 4a†nan+2an+2a

†
n+2 + a†na

†
nanan+2 + 4a†nan+2ana

†
n

+ a†n+2anan+2a
†
n+2 + 4a†n+2an+2ana

†
n+2 + a†nanana

†
n+2 + 14a†nanana

†
n+2

+ 41a†nanan+2a
†
n + 4a†n+2an+2an+2a

†
n + a†nan+2an+2a

†
n+2 + a†na

†
nanan+2

− 12a†nanan+1a
†
n+1 − 4a†n+1an+1ana

†
n − a†n+1an+1an+1a

†
n+1 − 4a†nanana

†
n

− 12a†nanan+2a
†
n+2 − a†n+2an+2an+2a

†
n+2 − 4a†n+2an+2ana

†
n

]]]
. (4)

Consequently, we introduce the spin-wave approximation with some nonlinear alter-
ations. Let us consider the P representation also called the Glauber coherent-state
representation [17] described by the multiplication of the multimode coherent states
|v >= ∏

i |vi , in which each element |vi > is an eigen state of the annihilation oper-
ator âi i.e, âi |vi > vi |vi > where vi the coherent amplitude. The field operator sand-
wiched by |v > can be expressed only with their diagonal components because of
the coherent states are normalized and over completed. The Glauber coherent-state
representation of the nonlinear (4) can be written as

i�
∂ai
∂t

= [ai , H ] = F(a†i , a
†
i+1, ai , ai+1). (5)

Further, the spin dynamics are demonstrated in the view of Glauber’s coherent-state
representations
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−i
dvn

dt
= 2ε2

[
(J ′ + J2)

[
vn+1 + vn−1 + vn+2 + vn−2 − 4vn

]
− 4J3vn

]

−ε4

4

[
J ′

[
2|vn|2(vn+1 + vn−1 + vn+2 + vn−2) + v2

n(v
∗
n+1 + v∗

n−1

+v∗
n+2 + v∗

n−2) + |vn−2|2vn−2 + |vn+2|2vn+2 + |vn−1|2vn−1 + |vn+1|2vn+1

−4vn(|vn+1|2 + |vn−1|2 + |vn+2|2 + |vn−2|2)
]

+ J2
[
20|vn|2(vn+1 + vn−1

+ vn+2 + vn−2) + 10v2
n(v

∗
n+1 + v∗

n−1 + v∗
n+2 + v∗

n−2) + 10(|vn+1|2vn+1

+ |vn−1|2vn−1 + |vn−2|2vn−2 + |vn+2|2vn+2) − 8v∗
n(v

2
n+1 + v2

n−1 + v2
n+2

+ v2
n−2) − 24vn(|vn+1|2vn+1 + |vn−1|2vn−1 + |vn−2|2vn−2 + |vn+2|2vn+2)

− 32|vn|2vn
]

+ J3
[
8|vn+1|2vn+1 + |vn−2|2vn−2 + 8|vn+2|2vn+2

− 12vn(|vn−1|2 + |vn+1|2 + |vn+2|2 + |vn−2|2) + 16(|vn|2vn−1 + |vn|2vn−2)

+ 8v2
n(v

∗
n−1 + v∗

n−2) − 48|vn|2vn
]]

, (6)

where J ′ = J1 + J3 and the above nonlinear differential equation is in the configura-
tion of perturbed discrete nonlinear Schrödinger equation and finding the solution to
this equation is extremely tough task because of its high discreteness and nonlinear-
ity. In this curiosity we are attracted to examine the localization of energy in discrete
NN and NNN spin chain of ferromagnetic nanowire, we carryout the MI analysis.

3 Modulational Instability Through Linear Stability
Analysis

Our motivation of the current work is to study the MI of the extended nonlinear spin
waves in a ferromagnetic system consisting higher order octupole-dipole interaction.
Due to the interplay between the nonlinear onsite and intersite interactions as a
mechanism for changingMI and rule the localizedmodes occur in a nonlinear lattice.
let us assume the time periodic plane wave solution is un(t) = u0ei(kn+ω0t), where
ω0 designates the frequency of the plane wave and k is a wave vector. The linear
stability of the nonlinear plane wave explained by looking for solutions which is in
the form of adding small perturbation un(t) = u0(1 + Bn(t))ei(kn+ω0t), where Bn is
a perturbation of small magnitude of the carrier wave. Then we assume Bn in the
configuration of Bn(t) = B1ei(Qn−�t) + B∗

2 e
−i(Qn−�∗t), here B1 and B2 represent

the carrier wave amplitudes and taken as small as compared with the carrier wave
parameters and the terms of complex conjugation is denoted by asterisk symbol. The
frequency of modulation and wave vector are represented by � and Q respectively.
Upon switching the modulated spin wave into the equation of motion we achieved a
system of linearly coupled equations.
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(−� + A+ B
B � + A−

) (
B1

B2

)
=

(
0
0

)
(7)

If the determinant of the above matrix is vanishes, the equations yield only nontrivial
solution, where B and A± are given as follows

B = −ε4u20

[
J ′[ cos(k − Q) + cos(2(k − Q)) + 2 cos(k) + 2 cos(2k) + cos(k + Q)

− 4 cos(2Q) − 3 cos(2(k + Q))
]

+ 2J2
[
6 cos(2k) + 10 cos(k) + 5 cos(k − Q)

+ 5 cos(2(k − Q)) + 5 cos(2(k + Q)) − 4 cos(4k) + 5 cos(k + Q) − 12 cos Q

− 12 cos(2Q) − 8
]

+ 32J3
[
cos(2k) + cos(k) − 1

]]
,

A± = −ω0 + 4ε2
[
(J ′ + J2)(cos(2(k ± Q)) + cos(k ± Q) − 2) − 2J3

]

− 2u02ε4
[
J ′[2 cos(k ± Q) + 2 cos(k) + 2 cos(2(k ± Q)) − 2 cos(Q) − 4

]

+ J2
[
20 cos(k) + 20 cos(2k) + 20 cos(k ± Q) + 20 cos(2(k ± Q)) − 8 cos(2k ± Q)

− 8 cos(2(2k ± Q)) − 12 cos(2Q) − 12 cos(Q) − 40
]

+ J3
[
8 cos(2k) + 8 cos(k)

+ 8 cos(k ± Q) − 4 cos(2Q) + 8 cos(2(k ± Q)) − 4 cos(Q) − 16
]]

.

where,

ω0 = 4ε2
[
(J ′ + J2)(cos(2k) + cos(k) − 2) − 2J3

]
− 4u20ε

4
[
J ′[cos(2k) + cos(k) − 2]

+ 2J2
[
4 cos(2k) + 5 cos(k) − cos(4k) − 8

] + 2J3
[
cos(2k) + cos(k) − 4

]]
,

Solving (7), we obtain

� = 1

2

[
4ε2

[
(J ′ + J2)

[
cos(k − Q) + cos(k + Q) + cos 2(k − Q) + cos 2(k + Q)

−2 cos k − 2 cos(2k) − 8
] − 6J3

]
+ 2ε4u02

[
2J ′(cos(k + Q) + cos 2(k + Q)

+ cos(k − Q) + cos 2(k − Q) − 2 cos Q + 4 cos(2k) + 6 cos k + 4 cos k + 4)

−J2(24 cos(2Q) + 16 cos(4k) − 104 cos(2k) − 20 cos 2(k + Q) − 80 cos k

−20 cos(k − Q) − 20 cos(k + Q) + 8 cos(2k − Q) + 8 cos(2k + Q)

−20 cos 2(k − Q) + 12 cos Q + 8 cos 2(2k − Q) − 68) + J3(8 cos(2k) − 12 cos(2Q)

−4 cos Q + 8 cos 2(k − Q) + 8 cos(k − Q) − 8 cos k − 16 − 8 cos(2Q) + 16 cos(2k)

+32 cos(k + Q) + 32 cos 2(k + Q) + 32 cos k − 16 cos Q − 32)
]

±
√
M2 − ε8u40N

2
]
, (8)
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where

M = 4ε2
[
2J3 − (J2 + J ′)

[ − 2 + cos 2(k − Q) + cos 2(k + Q) + cos(k + Q)

+ 2 − 2 cos k + cos(k − Q) − 2 cos 2k
]] + 2u20ε

4
[
J ′[ − 4 cos Q − 10 cos k

− 40 + 2 cos 2(k − Q) + 2 cos(k − Q) + 2 cos(k + Q) + 2 cos(2Q + 2k) − 16 cos 2k
]

− J2
[ − 20 cos 2(k + Q) + 8 cos(2k − Q) + 24 cos(2Q) − 20 cos 2(k − Q) − 40 cos(2k)

+ 8 cos 2(2k + Q) + 24 cos Q − 40 cos k + 8 cos(Q + 2k) + 8 cos 2(2k − Q)

− 20 cos(k − Q) + 80 − 20 cos(Q + k)
] + J3

[ − 8 cos(2k) − 8 cos(Q)

+ 8 cos(2k − 2Q) − 4 cos(2Q) + 8 cos(k − Q) − 16 + 8 cos(2k) + 8 cos(Q + k)

− 4 cos(2Q) + 48 + 8 cos(2Q + 2k)
]]

,

N = J ′[ − 3 cos 2(Q + k) − 4 cos(2Q) + cos 2(k − Q) + 2 cos k + cos(k + Q) + cos(k − Q)

+ 2 cos(2k)
] + 2J2

[
6 cos 2k − 12 cos 2Q + 5 cos(k + Q) + 5 cos 2(k − Q)

− 4 cos(4k) + 5 cos 2(k + Q) − 8 + 5 cos(k − Q) − 12 cos Q + 10 cos k
]

+ 32J3
[
cos 2k cos k − 1

]
,

g(�) ≡ Im(�)

≡
[[

J ′[ cos(k + Q) − 4 cos(2Q) + cos 2(k − Q) − 3 cos 2(Q + k) + 2 cos(2k)

+ cos(k − Q) + 2 cos k
] + 2J2

[
6 cos 2k − 4 cos(4k) − 12 cos 2Q

+ 5 cos 2(k + Q) + 5 cos 2(k − Q) − 12 cos Q + 5 cos(k + Q) + 10 cos k

+ 5 cos(k − Q) − 8
] + 32J3

[
cos 2k − 1 + cos k

]]2 −
[
5ε2

[[
cos 2(k + Q) + cos(k + Q)

− 2 + cos(k − Q) + cos 2(k − Q) − 2 cos k + 2 + cos 2(k − Q) − 2 cos 2k
]

× 2J3 − (J ′ + J2)
]

+ 2u20ε
4
[

− J2
[
24 cos(2Q) − 40 cos(2k) + 8 cos(2k − Q)

− 20 cos 2(k − Q) − 20 cos 2(k + Q) + 24 cos Q − 40 cos k + 8 cos 2(2k − Q)

− 20 cos(k − Q) + 8 cos(Q + 2k) − 20 cos(Q + k) + 8 cos 2(2k + Q) + 80
]

+ J ′[2 cos 2(k − Q) + 2 cos(k − Q) + 2 cos(k + Q) + 2 cos(2Q + 2k)

− 10 cos k − 4 cos Q − 16 cos 2k − 40
] + J3

[ − 8 cos(Q) − 4 cos(2Q)

− 4 cos(2Q) − 8 cos(2k) + 8 cos(2k) + 8 cos(k − Q) + 8 cos(2k − 2Q) − 16

+ 8 cos(2Q + 2k) + 8 cos(Q + k) + 48
]]]2]1/2

, (9)

here Im represents the imaginary term and occurrence of localized constructions in
the ferromagnetic spin lattice of nanowire which are only achievable if the steady
amplitude of the solution becoming unstable. Whenever � < 0, the steady state
solution turn out to be unstable, whereas the perturbation exponentially expands
with the appreciable intensity. The gain reveals more fascinating relation of � with
the coupling exchange parameters J1, J2 and J3 describing the exchange interac-
tion and dispersive long range interactions for different values. Figure 1 depicts the
stable/instable area in the plane of (k, Q) and be in tune with the influence of the
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Fig. 1 MI gain profile for (a) J3 = 0.1, (b) J3 = 0.5, (c) J3 = 0.9 and on all plots J1 = 0.1,
J2 = 0.2
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Fig. 2 MI gain cumulative profile for (a) J3 = 0.1, (b) J3 = 0.5, (c) J3 = 0.9 and on all plots
J1 = 0.1, J2 = 0.2

interaction of octupole-dipole coupling parameter denoted as J3. In these figures, the
nonlinear plane waves are reliable and stable in the dark bluish area by modulating
the wavenumber Q and area with bright yellowish orange region where we expect the
sudden exponential growth of the amplitude of wave which seems to be appreciable
enhancement in the instability domain. Surprisingly, when we increase the octupole-
dipole interaction parameter J3 from 0.1 to 0.9 units (Fig. 1a–c), the stability region
becomes faded out and the generation of high amplitude, robustic nonlinear solitonic
waves are observed in the presence of biquadratic and bilinear interactions. Figure2
depicts the cumulative representation of Fig. 2 as 2D and 3D plots.

4 Conclusion

In this investigation, we have effectively studied the modulational instability anal-
ysis of extended nonlinear solitary waves in isotropic ferromagnetic nanowire with
NN-NNN higher order octupole-dipole magnetic spin interactions. The deliberated
discrete nonlinear Schrödinger (DNLS) equation derived by using the spin wave
approach of Glauber coherent approximation method. Then the highly discrete non-
linear complicated DNLS equation analysed through the modulational instability
analysis and the result is depicted in the figures shows that control on the strength
of octupole-dipole coupling exchange interaction of neighbouring spins, the place
of stability/instability in the plane are predicted in which the instability region is
increases with increasing of octupole-dipole interaction. The numerical simulations
explore the existence of possible localized long-lived excitations of solitonic pulse
in the ferromagnetic nanowire spin lattice that promote to nonlinear regime. This
robustic soliton expected to play a potential application in manufacturing of mag-
netic recording and memory devices.
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Study of Nonlinear Dynamics of Vilnius
Oscillator

Dmitrijs Pikulins, Sergejs Tjukovs, Iheanacho Chukwuma Victor,
and Aleksandrs Ipatovs

Abstract Most chaotic dynamical systems exhibit non-robust chaos when small
changes of system parameters lead to abrupt jumps from chaotic to periodic motions.
These unstable regimes could not be successfully utilized in practice. The detailed
systematic analysis of nonlinear dynamics becomes paramount for practical appli-
cations to identify regions of robust chaos and related transitions. This paper
presents an in-depth analysis of the nonlinear dynamics of a Vilnius oscillator,
providing a detailed numerical study of the operational regions ofVilnius oscillator’s,
constructing bifurcation map and brute-force bifurcation diagrams.

Keywords Chaotic Oscillator · Bifurcations · Robust Chaos

1 Introduction

For reliable and smooth communication, accurate data must be transmitted or
received robustly and securely. This, in turn, requires the implementation of
specific sophisticated data-coding algorithms. It has been revealed that the required
complexity could be observed in very simple dynamical systems exhibiting chaotic
oscillations. In recent years, an exponential rise in computer processing power
allowed modelling, predicting, and exploiting irregular dynamics of nonlinear
circuits.

What benefits could chaotic communications provide that sets it apart from
existing conventional systems? The answer lies in the characteristics of chaos-
based communication systems: a sensitivity to initial conditions, aperiodic and noise
like time series, and wide frequency bandwidth. These properties allow chaotic
transmissions to have reduced interception or even detection risk.

Chaotic oscillators are simple analogue or digital circuits producing chaotic
signals. Such oscillators exhibit rich dynamics and offer a wide range of applica-
tions in engineering, such as pseudo-random number generators [1], radar and sonar
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systems [2], switched-mode power supplies [3, 4], encryption for secure communica-
tion [5], and chaos-based communications [6–8]. Experiments on oscillatory systems
using circuits simulations allow the in-depth study of phenomena and develop a wide
range of practical applications.

The currently known dynamical systems frequently offer fragile chaos, meaning
that the chaotic attractor has some periodic attractors in the nearby region in the
parameter space [9]. This might be a concern for practical applications relying on
continuous chaotic signals created by chaotic oscillators. The phase diagrams for
several dynamic systems in [10] illustrate that small changes in the system param-
eters dramatically change its dynamics. If the chaotic attractor of a physical system
meant to generate chaotic signals is fragile, the dynamicsmay not evolve as predicted.
So, a given implementation may produce a system with parameters corresponding
to a nonchaotic attractor. Even if the system starts in a chaotic state, slight changes
in operational parameters caused by external stimuli or component faults may cause
the transition to periodic oscillations. In practical applications, such issues may be
avoided by using systemswith robust chaos. Thus, it is necessary to study the parame-
ters of oscillators in detail to determine how the system behaves in various conditions
and know what regions of operation produce the most resilient chaos.

One of the chaotic systems has been presented in [11] and referenced as "Vilnius
oscillator". Several papers were devoted to examining the nonlinear phenomena of
this circuit [12–14]. But all of them were fragmentary and incomplete.

In this paper, an in-depth analysis of the Vilnius oscillator’s nonlinear dynamics
is performed to determine parameter ranges that reliably produce robust chaos.

This paper is organized as follows. The second section is devoted to the description
of the schematic and analytical model of the Vilnius oscillator. The third section
presents the nonlinear analysis of the dynamics of the system under study. The last
section is devoted to the overall conclusions and suggestions on the applicability of
this type of chaotic oscillator.

2 Vilnius Oscillator Model

The schematic of the Vilnius chaotic oscillator under study is shown in Fig. 1. It
comprises affordable electronic components and can be implemented even on a
breadboard, thus simplifying practical research. Values and part numbers of the
components are summarized in Table 1.

The oscillator is built around a general-purpose operational amplifier. In the posi-
tive feedback loop, the RLC circuit is connected. A non-inverting amplifier config-
uration can be easily recognized in the negative feedback loop. Additional capacitor
C2 and silicon diode D1 drastically change the oscillator’s dynamics and transform
it into a circuit with complex behaviour. The numerical study of the circuit is based
on a system of differential equations, which is derived by applying general laws of
circuit analysis and making several simplifications. Firstly, the equation of an ideal
diode is used to describe current–voltage relations of D1:
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Fig. 1 The schematic
diagram of the Vilnius chaos
oscillator used in the study

Table 1 List of components
used in the Vilnius oscillator

Component Value or Part Number

R1 1 k�

R2 10 k�

R3 10 k�

R4 20 k�

C1 1 nF

C2 150 pF

L1 1 mH

D1 1N4148

OpAmp TL082

V1 Laboratory power supply

ID = IS

[
exp

(
q·V D

N · kB · T
)
− 1

]
(1)

where IS refers to saturation current, q = 1.6 × 10–19 C – the elementary charge, kB
– Boltzmann’s constant, T – the temperature in Kelvin, N = 1 for an ideal diode, ID
and VD are the current through a diode and voltage across it respectively. Equation 1
doesn’t consider parasitic capacitances of the p–n junction and equivalent resistance
Rs that models resistances of neutral regions and contacts associated with an actual
device. Secondly, to express the current through the R4, it is assumed that R4 >> R1.
As a result, according to Ohm’s law:

IR4 = V 1

R4
. (2)

Also, the gain of the non-inverting amplifier is expressed as:

k = 1+ R2

R1
. (3)
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A system of ordinary differential equations describing the Vilnius oscillator is
shown below:

C1
dVC1

dt
= IL1 (4)

L
d IL1
dt

= (k − 1) · R1 · IL1 − VC1 − VC2 (5)

C2
dVC2

dt
= IR4 + IL1 − ID1 (6)

Furthermore, in [11], dimensionless variables and parameters are suggested for
conventional numerical analysis:

x = VC1 · q
kB · T y =

IL1 · q ·
√

L
C1

kB · T z = VC2 · q
kB · T (7)

a = (k − 1) · R1√
L
C1

b =
IR4 · q

√
L
C1

kB · T c =
IS · q ·

√
L
C1

kB · T ε = C2

C1
(8)

These substitutions allow to use of a simplified version of the systemof differential
equations:

dx

dt
= y (9)

dy

dt
= ay − x − z (10)

ε
dz

dt
= b + y − c(ez − 1) (11)

In forthcoming sections,a and εwill be used as bifurcation parameters. In practical
experiments or circuit simulation software, it is possible to vary a by changing the
value of R3 and ε by the corresponding adjustment of C2.

3 Analysis of Nonlinear Dynamics of Vilnius Oscillator

The study of nonlinear dynamics of the Vilnius oscillator requires the discrete-time
model of the system. The model could be obtained numerically by sampling the
variables x, y, z, defined by the system of nonlinear Eqs. (9)–(11). The oscillator
under study is an example of an autonomous system, so it is impossible to obtain
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the stroboscopic map as no external clocking element is present. Thus, the Poincare
mapping is derived by sampling the variables, as the trajectory hits the plane y =
0 from positive to the negative side. This mapping is used to construct bifurcation
diagrams and provide the analysis of periodic or chaotic modes of operations.

First, the bifurcation map (also called the 2-parameter bifurcation diagram) is
calculated for the predefined range of system parameters. This, essentially, is the
graph depicting the periodic regions of regimes up to preset periodicity in the 2-
parameter space. For the Vilnius oscillator, the bifurcation parameters of interest
are a and ε, leaving all the other parameters fixed. The bifurcation map, depicted
in Fig. 2, gives a variety of reference points to start the more detailed study of
nonlinear dynamics of the oscillator, as we vary some parameters. The dashed areas
depict periodic regimes, while the white area represents the periodicity >8 of chaotic
modes of operation.

It could be seen that for small values of a = 0.05–0.1, the system exhibits stable
period-1 operation as we change ε in the whole range of interest. As we increase
the a for different values of ε, the dynamics of the system change from periodic to
chaotic, and in some cases, returns to periodic motions.

To provide a more detailed analysis of the nonlinear dynamics of the system, the
one-parameter brute-force bifurcation diagrams are obtained, essentially as cross-
sections of the bifurcation map.

The first bifurcation diagram is constructed for ε=0.05 and shown in Fig. 3.
It could be noticed that for the defined parameter values, no classical period-

doubling route to chaos could be observed. The stable period-1 solution suddenly
becomes unstable through the period-doubling bifurcation and later recovers the
stability. It could be shown that after the second period-doubling bifurcation, the

P1

0.1 0.2 0.3 0.4 0.5
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0.15
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0.25

0.1
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ep
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P6

P2
P3
P4
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P>8, 
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P4

Fig. 2 The bifurcation map of Vilnius oscillator for b = 40; a = 0.05–0.55; ε = 0.05–0.25
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P1

P21

P31

P32

P1
P22

Chaos

Fig. 3 Brute-force bifurcation diagram for b = 40; ε = 0.05; a = 0.05–0.55

period-1 solution is quantitatively different than that for smaller values of a. Figure 4
depicts the phase portraits in the x–y plane and the system’s trajectory for a = 0.05
and a = 0.34.

While the phase portraits show only insignificant changes in the system’s
dynamics, as a changes, the study of the whole trajectory allows establishing the
rapid growth of the amplitude of z (corresponding to the noticeable increase of
voltage across the capacitor C2-see Fig. 1. and Eq. 8).

After a = 0.37, the system’s dynamics become chaotic, exhibiting the transitions
to periodic windows of period-3 and period-2. Thus, from the practical point of view-
the most promising chaotic regions would be for a = 0.38–0.42 and a = 0.51–0.55.

To link obtained results to the physical implementation ofVilnius oscillator circuit
one must keep in mind that according to Eq. 7 variable x is directly proportional to
VC1, y to IL1, and z to VC2. Also, Eqs. 3 and 8 state that in a real circuit parameter a
can be changed in the defined range, either by sweep of value of R3 or simultaneous
variation of both R1 and R3. For example, to cover a range from 0.05 to 0.55, R3
must be varied from 500 � to 5.5 k�, which can be easily achieved using variable
resistor or switching matrix of resistors with different values. In depth experimental

Fig. 4 Phase portrait and trajectory of period-1 regime: for a = 0.05 (yellow), a = 0.34 (blue)
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verification is out of the scope of this paper. The main goal of current numerical
study is to identify regions of interest for both possible implementations in secure
communication systems and subsequent experimental verification of the obtained
results.

The following bifurcation diagram has been obtained for ε = 0.08 and depicts the
classical period-doubling route to chaos as a is varied from 0.05 to 0.55 (Fig. 5).

The system’s dynamics drastically changes for large values of a > 0.49. It could
be observed that there are two different chaotic attractors – one of them with a much
larger amplitude than the other one (see Fig. 6.). In practical implementations, this
could lead to the intermitted jumps from themain chaotic attractor that arose from the

P1
P2 P4 P8

Period-doubling cascade

Chaos 1

Chaos 2

Fig. 5 Brute-force bifurcation diagram for b = 40; ε = 0.08; a = 0.05–0.55

Fig. 6 Chaotic attractors for b = 40, ε = 0.08, a = 0.46 (yellow); a = 0.55(blue)
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classical period-doubling cascade to the larger one, potentially leading to overvoltage
and component failures. Thus, it would be desirable to avoid the operation of the
Vilnius oscillator in this unsafe chaotic region.

The analysis of the bifurcation map in Fig. 2 allows the prediction of the relatively
large chaotic region for a wide range of a values, as ε reaches 0.15. Figure 7 shows
the brute-force bifurcation diagram, depicting chaotization of the system through the
period-doubling cascade. However, unlike the chaotic region depicted, e.g. in Fig. 3,
where a great variety of periodic windows is observed within the chaotic region, the
diagram in Fig. 7 shows several intervals of robust chaotic oscillations (RCh1-RCh3).
This means that setting system parameters with the defined ranges guarantee stable
chaotic oscillations without the risk of shifting to periodic motion due to external
noise or slight fluctuation in component nominal values.

Another two brute-force bifurcation diagrams were also obtained based on the
bifurcation map in Fig. 2. In these cases, the value of parameter a was fixed (a =
0.15 in Fig. 8 and a= 0.2 in Fig. 9), and ε has been used as the bifurcation parameter
of interest.

 

P1
P21

P4

P3

P22

RCh1

RCh2
RCh3

Fig. 7 Brute-force bifurcation diagram for b = 40; ε = 0.15; a = 0.05 – 0.55

P11 P12

P22

P21

RCh1 RCh2

Fig. 8 Brute-force bifurcation diagram for b = 40; a = 0.5; ε = 0.05 – 0.4
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P21

P22

P12
P11

P41 P42

NRCh

Fig. 9 Brute-force bifurcation diagram for b = 40; a = 0.2; ε = 0.05–0.4

The comparison of the diagrams allows us to draw important conclusions on the
changes in the system’s dynamics for two values of a. In Fig. 8, the Vilnius oscillator
exhibits chaotic dynamics for small values of ε. Further, it operates in the narrow
period-1window, leading to the appearance of 2 regions of robust chaotic oscillations
(RCh1 and RCh2) separated by a narrow period-2 window. For ε > 0.18, the transition
to stable period-1 operation is observed through the inverse period-doubling cascade.
Thus, theRCh1 andRCh2 could beused if the oscillator is supposed to provide reliable
chaotic signals.

On the other hand, the similar transition from period-1 to chaos and back to
period-1 is shown in Fig. 9, where a = 0.2. However, the formed chaotic region is
full of stable periodic regimes (non-robust chaos- NRCh), making the oscillator not
applicable as the source of chaotic oscillations.

4 Conclusions

As the scope of applications of chaotic systems expands, a growing number of
different chaotic oscillators have been presented during several last decades. The
main requirements include ease of implementation and rich nonlinear dynamics.
The second point defines the necessity of the detailed numerical and experimental
study of the oscillators, as frequently, even minor fluctuations of parameter values
or external noises could lead to the transition from chaotic to periodic oscillations,
compromising the robustness and security of the whole application.

This paper provided a detailed analysis of the nonlinear dynamics of the Vilnius
oscillator in a wide parameter range. First, the usefulness of the bifurcation map has
been proved, allowing the deliberate choice of parameter range, ensuring the required
system’s dynamics. Second, the mentioned map has been used as the keystone for
constructing detailed bifurcation diagrams, revealing the exact transitions from peri-
odic to chaotic motions and vice-versa. The analysis of the results shows that this
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oscillator could exhibit chaotic oscillations of different nature and properties: robust
chaotic regions, non-robust chaoticmotions, and even regionswith coexisting chaotic
attractors of various sizes. Thus, it has been proved that it is crucial to provide a
comprehensive analysis of the system’s dynamics to meet the requirements of the
specific applications while utilizing the system within a feasible parameter range.
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11. Tamaševičius, A., Mykolaitis, G., Pyragas, V., Pyragas. K.: A simple chaotic oscillator for
educational purposes. Eur. J Phys. 26(1), 61 (2004)
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Classical Nonlinear Dynamics Associated
with Prime Numbers: Non-relativistic
and Relativistic Study

Charli Chinmayee Pal and Subodha Mishra

Abstract By mapping the system of prime numbers to a physical problem, it is
possible to characterise the hidden nonlinear dynamics associated with it. In order to
study the properties of primes, first the single particle Schrödinger equation is solved.
The wave function used in this case is constructed from the prime counting function
and their interaction potential is obtained. In the corresponding classical nonlinear
system, the phase trajectories and the associated fixed points which happens to be
half stable and half unstable are also studied. It is interesting to note that the Lambert
W function appears in connection to solutions for the fixed points as a function of
energy.

Keywords Quantum mechanics · Wave function · Nonlinear dynamics · Prime
numbers

1 Introduction

One can represent a dynamical system using prime numbers [1, 2] e.g a system of gas
molecules that are interactingwith each other. Though the prime numbers are abstract
points in the number universe, they can be represented by a one-particle system
with an effective potential. Many interesting works have been published recently in
this direction [3–8]. In the early 1970s Billingsley et al. [7] defined a random walk
problem based on the fundamental theorem of arithmetic. Julia et al. [6] proposed the
idea of a non-interacting gaswhere a single particlemay have discrete energy equal to
the logarithm of nth prime number. Berry and Keating developed [3] a theory where
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the zeros of theRiemannzeta function are related to the eigenvalues of the system.The
dynamics of this classical systemwere reported to be chaotic which is represented by
the Hamiltonian Hcl = X P (X and P are position and momentum). Recently Bender
et al. [4] constructed a Hamiltonian operator having eigenvalues as the nontrivial
zeros of Riemann zeta function where the associated eigenfunctions obey certain
boundary conditions. The classical limit of the operator is found to be exactly that
predicted by Berry and Keating. All these seminal works beautifully connect and
enrich quantumphysics, dynamical chaos, and the prime number theory. In this work,
we have taken a different approach to formulate a problem using the prime counting
function [9] denoted by π(x). The prime counting function π(x) gives the number of
primes below x as the number of particles.We construct the one dimension density as
ρ = π(x)/x and hence the corresponding wave function

√
ρ(x). Any small smooth

change in the parameter values (the bifurcation parameters) of a system causes a
bifurcation in the system. It refers to a sudden qualitative change in the behavior
of the dynamical system. The interaction potential between two bodies is obtained
using the wave function. In the end, the relativistic and non-relativistic dynamics are
studied by finding the flow trajectories, zeros, and bifurcation in that system.

2 Classical Dynamics: Non-relativistic

2.1 The Hamiltonian for Prime Number System

As discussed in the introduction, knowing the density function of primes, it is
possible to construct the wave function and using the Schrodinger equation, one
can map the prime number system to a dynamical system. The derivation of
the interaction potential [10] is detailed in the apendix (10), which appears as

V (x) = �
2

m
1
4x2

(
1

ln(x) + 3
2ln2(x)

)
, The classical Hamiltonian [11] for a single parti-

cle system (taking �
2/m = 1) using the derived potential appears as

H = p2

2m
+ V (x) = p2

2
+ 1

4x2

(
1

ln(x)
+ 3

2ln2(x)

)
= E (1)

The above classical Hamiltonian will be used to study the hidden classical non-
linear dynamics [12] of the system representing primes. The variation of potential
V (x) w.r.t x is plotted in Fig. 1 which shows V (x) = 0 at x = e−3/2 = 0.223 and is
negative below this value of x up to x = 0. Also one can see that V (x = 0) → −∞
and V (x = 1) → ∞. As x increases from 1, V (x) decreases and goes to zero as
x → ∞.

Since the interaction potential (10) is determined, one can study the hidden clas-
sical dynamics characterizing prime numbers through the corresponding classical



Classical Nonlinear Dynamics Associated with Prime Numbers … 1231

Fig. 1 Shows the variation of potential V (x) with x

Hamiltonian system. This classical study will provide the connection of prime num-
bers with the Lambert W functions [13] as reported earlier [14].

2.2 Phase Space, Trajectories and Zeroes

Now we study the classical aspects of the problem in the phase space of x and p.
Since the potential function in the above Hamiltonian is nonlinear in x , where the
nonlinear dynamics [12] of this system is studied here. In nonlinear dynamics the
trajectories and zeroes or fixed points are very important quantities which reveal
the interesting dynamics peculiar to the system. We find p(x) from the classical
Hamiltonian given in (1) as

p(x) = ±2

√
E − 1

4x2

(
1

ln(x)
+ 3

2ln2(x)

)
(2)

The plot between x and p for a given energy parameter E using Eq. (2) which is
shown in Fig. 2. To be specific we choose E = −10, 0, 1, 10, 100 and analyze those
trajectories on the x-p plane. We find there are only two zeros indicated by the circles
(x is a zero or a fixed point if ẋ = p = 0 at that point). These two zeroes are half
stable and half unstable fixed points. On the right branch of each of the x-p plot
different E of Fig. 2, if a particle has positive velocity, then it will go away from the
right side zero to ∞ and if it has negative velocity, it will come to that zero and stay
there. On the other hand in the left branch, it is opposite in nature that is if the particle
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Fig. 2 Plot of momentum p(x) as function of position x for five different values of energy E .
The circles indicate the fixed points. A half full and half empty circle indicates half stable and half
unstable nature of the fixed points. The two fixed points come closer as the energy increases. When
energy is zero, one fixed point is at x2 = 0.223 and other one is at infinity. For negative energy the
left fixed point moves towards zero from 0.223

has positive velocity then it will move towards the fixed point and if it has negative
velocity, then it will recede from it. As is done in standard nonlinear dynamics study,
stability is shown in darkness and instability in emptiness of the small circles drawn
at the fixed points. We also see that as the value of energy parameter E increases,
the two zeroes come closer and when E → ∞ they merge at x = x1 = x2 = 1. We
also find, when E = 0, there is only the left branch cutting the x-axis at x2 = 0.223,
and the other one x1 is moved to infinity. As E becomes negative, the left side zero
is at a value greater than 0 and less than x2 = 0.223.

2.3 Bifurcation with E as the Varying Parameter

As discussed in the Subsec-B, since the fixed points [12] are important in describing
the dynamics, we make a detail study of these fixed points or zeroes. We see that
in the Fig. 2, the two zeroes come closer as energy E increases. To find an analytic
expression for the distance between the two zeroes or to study their bifurcation as a
function of energy E , we first find out the positions of the two zeroes as functions of
energy E . Putting p = 0 in (2) we obtain Eq. (3) which is plotted in Fig. 3
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Fig. 3 The plot is the bifurcation diagram representing the positions of fixed points in x-space and
y-space defined as (y = ln(x)) as functions of energy

1

ln(x)
+ 1.5

ln2(x)
− 4Ex2 = 0 (3)

The solution of (3) when x = ey or (ln(x) = y) and (large x or y) for any real E

is given as y = 0.5Wn

(
1
2E

)
, ( Wn(x) being the famous Lambert W function [13]

corresponding to n = 0 as the principal branch and other corresponds to the branch
having n = −1).

The appearance of the Lambert W function in the prime number analysis is deep
rooted at different levels of analogy. It has been shown [14] recently that the prime
counting function π(x) (x → ∞) is approximately equal to exp(W0(x)) where
W0(x) is the principal branch of the Lambert W function.

3 Classical Dynamics: Relativistic

In order to study the relativistic dynamics of the problemwe construct the relativistic
Hamiltonian using the Klein-Gordon equation [10]. The K-G equation is given as

H =
√
p2c2 + m2c4 + V (x) = E (4)

where the first term is the relativistic kinetic energy and the V (x) is the potential
used earlier in the non-relativistic analysis.
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3.1 Phase Space, Trajectories and Zeroes

Now we study the classical aspects of the problem in the phase space of x and p
when the above relativistic Hamiltonian is taken into consideration. From (4) we get

p(x) = ±
√(

E − V (x)

c
+ mc

)(
E − V (x)

c
− mc

)
(5)

We will take m = 1 and c = 1 in our analysis without loss of generality. The flow
shows that the dynamics is different than the corresponding non-relativistic case.
The plot given in Fig. 4 shows that we have more number of trajectories and fixed
points.
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Fig. 4 The plot represents the trajectories and the positions of fixed points in x-space as functions
of energy for the relativistic case. We see that when E ≤ −1, there are two fixed points,
−1 < E < 1, three fixed points and when E > 1 we have four fixed points but they pair up
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3.2 Bifurcation with E as the Varying Parameter

We can also study the bifurcation in the system by taking E as the varying param-
eter. Hence putting p = 0 in (5) we get two equations which shows the bifurcation
phenomenon in the system as,

1

ln(x)
+ 1.5

ln2(x)
− 4x2(E + 1) = 0 (6)

1

ln(x)
+ 1.5

ln2(x)
− 4x2(E − 1) = 0 (7)

These two equations are simultaneously valid. Now we have plotted the bifurcation
diagram x = x(E) in Fig. 5.

We see that when E ≤ −1, there are two fixed points, for −1 < E < 1 , three
fixed points and when E > 1 we have four fixed points but they pair up (as the red
and blue line).

Fig. 5 The plot is the bifurcation diagram representing the positions of fixed points in x-space as
functions of energy. We see that when E ≤ −1, there are two fixed points, −1 < E < 1 , three
fixed points and when E > 1 we have four fixed points but they pair up (as the dotted red line for
(6) and solid blue line for (7).)



1236 C. C. Pal and S. Mishra

4 Appendix: Derivation of the Potential

Here we construct the wave function ψ(x) of Schrodinger equation (9) through the
asymptotic form of prime counting function. The prime counting function denoted
as π(x) gives the number of primes below the real number x . if we take x as 4,
then π(x) = 2 i.e. 2 and 3. (π(x)/(x/ ln(x)) → 1 as x → ∞) becomes x

ln(x) in
its asymptotic form [9]. The single particle local density for prime numbers in one
dimension is found to be ρ(x) = π(x)

x = 1
ln(x) . This gives a homogeneous distribution

of the prime numbers below each value of x. In stead of considering π(x) which is
a stair case function [3], its asymptotic form x

ln(x) is used. This consideration helps
in obtaining a continuous and smooth distribution of density.

The wave function is obtained to be

ψ(x) = √
(ρ(x)) = 1√

ln(x)
(8)

We are concerned about a single particle systemwithin a potential. So wewrite down
the one particle Schrodinger equation [15] as

Hψ(x) =
(−�

2∇2

2m
+ V (x)

)
ψ(x) = Eψ(x) (9)

In this problem,since we know the asymptotic behaviour of prime counting function,
we construct a probability density associated with primes as a function of x and from
that we calculate the wave function. By using this single particle wave function, we
find a formula for the effective potential through which we can study the classical
aspect of the prime number system.We derive [10] the potential function by using the
wave function ψ(x) from the Schrodinger equation (9) (up to an additional constant
and without loss of generality we have taken the constant E = 0 in the V (x)). Taking
�
2/m = 1, the interaction potential V (x) appears as

V (x) = 1

4x2

(
1

ln(x)
+ 3

2ln2(x)

)
(10)

5 Conclusion

In conclusion, a prime number system that is equivalent to an interacting quantum
many-particle system is represented by a single particle Schrodinger equation. The
interaction potential is obtained and the nonlinear classical dynamics associated with
this novel system are studied. We show that finding large prime numbers, which is
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otherwise computationally challenging becomes easier. The fixed points associated
with the classical trajectories are obtained to be half stable and half unstable. The
Lambert W function appears in the solution of fixed points and is a function of
energy. Thus by constructing the interaction potential for the prime number system,
its properties have been investigated.

References

1. Wells ,D.: Prime Numbers: the Most Mysterious Figures in Math, p. 56. Wiley (2005)
2. Ribenboim, P.: The New Book of Prime Number Records, 3rd edn, pp. 252–253. Springer,

New York, NY (1995)
3. Berry, M.V., Keating, J.P.: The Riemann zeros and eigenvalue asymptotics. SIAM Rev. 41(2),

236 (1999)
4. Bender, C.M., Brody, D.C., Muller, M.P.: Hamiltonian for the zeros of the Riemann zeta

function. Phys. Rev. Lett. 118, 130201 (2017)
5. Julia, B.: Statistical theory of numbers. In: Luck, J.M., Moussa, P., Waldschmidt, M. (eds.)

Number Theory and Physics, p. 276. Springer, Berlin (1990)
6. Julia, B.: Phys. A: Stat. Mech. Appl. 203(34), 425–436 (1994)
7. Billingsley, P.: Prime numbers and Brownian motion. Am. Math. Mon. 80, 1099 (1973)
8. Okubo, S.: Lorentz-invariant Hamiltonian and Riemann hypothesis. J. Phys. A 31, 1049 (1998)
9. Ingham, A.E.: The Distribution of Prime Numbers, pp. 1–3. Cambridge University Press,

Cambridge (1932)
10. Griffiths, D.J.: Introduction to Quantum Mechanics, p. 19. Prentice Hall, New Jersey (1995)
11. Goldstein, H., Poole, C., Safko, J.: ClassicalMechanics, 3rd edn, pp. 334–337.AddisonWesley,

New York (2000)
12. Strogatz, S.H.: Nonlinear Dynamics and Chaos, p. 18. Perseus books, Massachusetts (1994)
13. Corless, R.M, et al.: On the LambertW function. Adv. Comp. Math. 5, 329 (1996)
14. Visser, M.: Primes and the LambertW function. Mathematics 6, 56 (2018)
15. Mishra, S., Pfeifer, P.: FAST TRACK COMMUNICATION: Schrdinger equation for the one-

particle density matrix of thermal systems: an alternative formulation of Bose Einstein con-
densation. J. Phys. A.: Math. Theor. 4(0), F243 (2007)



Other Fields of Nonlinear Dynamics



Dynamics of Chemical Excitation Waves
Subjected to Subthreshold Electric Field
in a Mathematical Model of the
Belousov-Zhabotinsky Reaction

Anupama Sebastian , S. V. Amrutha , Shreyas Punacha ,
and T. K. Shajahan

Abstract We present a numerical study of the dynamics of spiral waves in a weak
external electric field, using the Oregonator model of the Belousov-Zhabotinky (BZ)
reaction. Both free and pinned spiral waves are studied in two types of electric fields:
unidirectional (DC) and Circularly Polarised Electric Field (CPEF). Both free spirals
and pinned spiral waves rotate faster in the DC field. The CPEF can help a free spiral
to be spatially confined. A pinned spiral period can be controlled by varying the
period of the CPEF. Both DC and CPEF can unpin the pinned spiral wave, but the
minimum electric field required to unpin is much less with CPEF compared to DC.
Thus, CPEF is more energy efficient to unpin a pinned spiral wave.

Keywords Excitable medium · Spiral wave · Belousov-Zhabotinsky reaction ·
Subthreshold stimulation · Unpinning · Critical threshold

1 Introduction

Excitable systems, in general, are non-equilibrium systemswith a stable resting state.
They canonlybe aroused to a transitory excited state after crossing a certain threshold.
However, perturbations below the threshold go unnoticed since they cannot set off
the system to an excited state. Following the excitation, the medium returns to their
resting state after a certain time period called the refractory period, during which
further perturbations cannot re-excite the system. Unlike the electromagnetic waves,
which obey the superposition principle, excitation waves annihilate upon mutual
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collision. Many excitable systems exist in nature, including the heart muscles [1,
2], chicken retina [3, 4], slime-mold aggregates [5], Xenopus oocytes [6, 7], and
Belousov-Zhabotinsky (BZ) reaction [8, 9].

One of the characteristic features of a two-dimensional excitable medium is the
fascinating patterns such as rotating spiral and target waves. However, in the case of
systems like the heart muscle, the high-frequency rotating spiral waves are known
to disrupt the natural sinus rhythm. Furthermore, rotating spirals get stabilized once
they get pinned to an obstacle. The pinned spiral waves play a key role in the pro-
gression of dynamical disorders, including cardiac arrhythmia [10, 11], and epileptic
convulsions [12]. Understanding the dynamics of the pinned spiral waves is crucial
to develop efficient techniques to control them.

The dynamics of spiral waves and their interaction with the external perturbations
can be easily studied in the Belusov-Zhabotinsky reaction. It is an oscillating system
that produces patterns by oxidizing malonic acid in the presence of a metal catalyst
such as ferroin. External forcing, such as periodic illumination [13] and electric field
application [14], are commonly used to study spiral dynamics. The electric field
is known to influence the transport of ionic species in chemical media [15]. As a
result, the spiral core drifts by forming a parallel and perpendicular component to
the direction of the applied field [16]. Li et al. developed a theory of spiral wave
drift caused by weak ac and polarised electric fields. Using response function theory,
they derive the spiral drift velocity and direction [17]. Circularly Polarised Electric
Field (CPEF) with rotational symmetry has been utilized to regulate spiral drift [18].
Frequency synchronization occurs if the CPEF and spiral are having a comparable
frequency [19]. The CPEF has been used in cardiac models to investigate the control
of both 2D [20] and 3D [21] pinned excitation waves. Punacha et al. proposed a
theory for WEH-induced unpinning and showed that spirals can always be unpinned
below a threshold time period of CPEF [22]. Furthermore, a unidirectional field is
used for the electrically forced release of pinned spiral waves in the BZmediumwhen
the field strength surpasses a critical threshold (i.e., for supra-threshold fields) [23].
Previous studies, however, have not looked into how a subthreshold field, one that is
below a critical threshold, interacts with free and pinned spirals in a BZ medium.

In this article, we investigate the dynamics of both free and pinned spirals in the
BZ medium exposed to the subthreshold electric field. We compare the behavior
of spiral waves with and without an obstacle. We find that the subthreshold elec-
tric field generates a shift in the spiral period. At greater field strengths, this effect
becomes more pronounced. Compared to DC, CPEF has a lower critical threshold
for unpinning, making it a more energy-efficient method to control spiral waves.

2 Methodology

We model the BZ reaction system using the two-variable Oregonator model [24,
25]. The activator, ‘u’, initiates the reaction, and the inhibitor, ‘v’, with its slow
dynamics, returns the system to the resting state. Their combined effect will steer the
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entire dynamics. In BZ reaction, u and v corresponds to the chemical concentration
of HBrO2 and catalyst respectively. In the presence of an electric field, E , the
dynamics of u, and v are given by the following equations.

∂u

∂t
= 1

ε
(u(1 − u) − f v(u − q)

u + q
) + Du∇2u + MuE · ∇u (1)

∂v

∂t
= (u − v) + Dv∇2v + MvE · ∇v (2)

Electric field (E) is implemented in above equations by using an advection term
E · ∇u and E · ∇v respectively. The model parameters are q = 0.002, f = 1.4, with
diffusion coefficients Du =1.0, Dv =0.6 and ionicmobilitiesMu =1.0 andMv =−2.0.
The value of ε is 0.01 and is used to explicitly determine the system’s excitability.

The entire 300 × 300 computation domain is discretized in space into grids of
uniform size dx = dy = 0.1 space units (s.u). The temporal evolution is studied using
the explicit forward Euler technique with a timestep, dt = 0.0001 time units (t.u).
Space and time are both measured in dimensionless units. A five-point Laplacian
operator gives the coupling between the grids. No flux boundary conditions are
imposed on the domain boundary. We use the phase-field method to implement them
on the obstacle boundary [26].

An anticlockwise rotating spiral (ACW), either free or pinned to an obstacle of
radius, ‘r ’ s.u, is created at the center of the domain. The diffusion coefficient Du

= 0.0001 is set inside the obstacle. After five sustained rotations of the spiral wave
with a period (Ts) in the medium, we apply (i) unidirectional DC and (ii) rotating
CPEF of strength E .

The DC field along the x-axis is modeled as

EDC = Eî (3)

and we implement an anticlockwise rotating CPEF in the form

ECPEF = E

(
cos

(
2π t

T

)
î + sin(

2π t

T
) ĵ

)
(4)

where T denotes the rotational period of the CPEF. Later, we vary the pacing ratio,
i.e., p = Ts

T from 0.5 to 2 in the steps of 0.25 by altering the rotational period of the
field. We apply an electric field until the critical threshold for pinned spirals, which
is the lowest field strength for unpinning.
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3 Results and Discussion

Our numerical study involves the interaction of the electric field of subthreshold
amplitude with the rotating spiral. We consider both free and pinned spiral waves in
this study.

We start with a unidirectional DC electric field in the medium oriented along the
positive x-axis. A free spiral traces out a large core with increasing field strength
and moves towards the positive electrode, as shown in Fig. 1a. We define the angle
formed by the drift direction with the negative x-axis (represented as OX) as ‘�’,
whereas the linear distance traveled by the spiral tip in one spiral rotation is called
‘λ’. We calculate λ as the distance between two adjacent petals, which can also be
referred to as the petal width. With the strength of the advective field, both � and λ

increases (see Fig. 1b, c). With increasing field strength, E from 0.2 to 0.8, � rises
quickly, reaching saturation at around 90 degrees at high field strength. Therefore,
the spiral drifts precisely perpendicular to the direction of strong advective fields.
The direction of spiral drift also depends on its chirality [16]. On the other hand, λ
varies slowly with field strength. As extremely high fields lead to wave break, we
limited our study up to E = 0.8.

In addition to the drift parameters, we measure the rotational period of the spiral
in the presence of the DC field. The normalised spiral period, TN , is defined as T f

Ts
,

where Ts and T f are the spiral periods before and after the forcing, respectively. We
observe that the forcing induces an increase in TN . When the field strength reaches

Fig. 1 Spiral drift in the presence of DC electric field. a An anticlockwise rotating free spiral
drifts towards the positive direction of the field by forming an angle � and petal width, λ. The field,−→
E is oriented in the positive x-direction, as indicated by the thick black arrow. b, c corresponds to
the variation of λ and � with the field strength, respectively
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Fig. 2 Variation of spiral rotational period with the subthreshold field strength. a A free
spiral’s normalised time period (TN ), which increases with field strength. b TN for a pinned spiral
anchored to radius, r = 5, 10 and 15, respectively. The field strength (E) is varied till the wave was
unpinned

E = 0.8, we see a 40% increase in the spiral period as in Fig. 2a. Hence, the field
inhibits spiral rotation and slows it down.

To understand how stable pinned spirals interact with the applied field, we analyze
spiral waves attached to obstacles with three different radii r = 5, 10, and 15. The
spiral tip gets unpinned when the external forcing reaches a critical threshold [23].
We employ a field with a strength below the critical threshold to avoid unpinning.
Like the free spiral, the pinned spiral attached to any obstacle of any size is slowed by
the DC field. However, when compared to a free spiral, the increase in the rotational
period is insignificant.

Unlike the DC field, CPEF is spatially uniform. In our simulations, we create an
anticlockwise rotating CPEF with period T that has rotational symmetry with the
spiral. The pacing ratio, p = T

Ts
indicates the extent of pacing. For each strength

of the electric field, we vary p from 0.5 to 2 in the steps of 0.25. When subjected
to CPEF, the spiral tip traces out meandering patterns if CPEF rotates too fast or
too slow (see Fig. 3b). However, the motion of the free spiral tip could be spatially
constrained for a range of p values closer to 1, as shown in Fig. 3c. In contrast to
directed drift in the DC, the rotational symmetry of the CPEF causes the spiral tip to
be confined to an area in the medium.

Surprisingly, the response of the pinned spiral to the electric field is strongly
influenced by the pacing ratio, p. The spiral period increases with field amplitude
for overdrive pacing (p > 1), meaning that the spiral slows down. The pacing ratio
p > 2, on the other hand, does not affect the spiral dynamics (see Fig. 4).We infer that
the spiral dynamics are unaffected by the exceedingly high pacing ratio. The spiral
period is reduced, or the spiral advances faster when the field strength increases
during underdrive pacing (p < 1). When the spiral period and the CPEF period are
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Fig. 3 The tip trajectory of the free spiral before and after applying CPEF. a A free spiral, in
the absence of an electric field (i.e., E = 0), performs rigid rotation with a small core. From the same
initial phase of the spiral (≈ 45◦), CPEF with field strength, E =0.6, and pacing ratios of b p = 2
and c p = 0.8 is applied to the medium. Meandering occurs when p = 2, but p = 0.8 results in
spatial confinement

Fig. 4 Response of pinned spiral in the presence of CPEF with different strength and pacing
ratio. a–c Shows the change in Normalised Spiral Period (TN ) as a function of field strength for
pacing ratios p ranging from 0.5 to 2 for radii r = 5. b Is same as a for r = 10. c Is same as a for
r = 15. TN increases with the strength of the electric field for overdrive pacing and decreases for
underdrive pacing
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Fig. 5 Unpinning at a critical threshold. a–d Snapshots of DC electric field-driven unpinning
from an obstacle of radius, r = 7.5 at the critical threshold of strength, E = 0.7. e For both DC (dots)
and CPEF with overdrive pacing (diamond), the critical threshold for unpinning is linearly related
to the obstacle size. The critical threshold for DC is higher than that of CPEF

both equal (p ≈ 1), the electric field strength does not affect the TN . Although the
range of TN varies, the trend mentioned above is followed for all obstacle sizes used
in our simulation. Therefore, the spiral alters its rotational period as a response to
the change in field frequency.

As the strength of the advective field increases, the pinned spiral’s tip drifts away
from the obstacle, a process known as unpinning. The critical threshold is the lowest
field required to remove the spiral from the obstacle, which may also be thought of
as the strength of the obstacle-spiral pinning interaction. In Fig. 5a–d, a DC electric
field with a strength of E = 0.7 induces unpinning from an obstacle with a radius of
r = 7.5 s.u. We investigate the critical thresholds for DC and CPEF for five obstacle
sizes with radii ranging from 5 to 15. The pacing ratio is a crucial component in the
case of CPEF. Underdrive pacing leads to unpinning only when the pacing ratio is
very low. Moreover, unpinning at comparable frequencies (p ≈ 1) is quite difficult.
As a result, we estimate the critical threshold for overdrive pacing in our simulation.

As shown in Fig. 5e, the unpinning critical threshold is directly proportional to
the obstacle radius in both DC and CPEF. Furthermore, unpinning may be influenced
by the initial spiral phase at field initiation. Throughout this study, we have used the
same initial phase (≈ 45◦) of the spiral. In addition, the critical threshold for DC
is higher than that for CPEF for a spiral fixed to any obstacle size. The low critical
threshold is a benefit when comparing CPEF to DC. This result helps in the efficient
selection of the best low-energy control method.
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4 Conclusion

Our numerical work focuses on the interaction of a subthreshold amplitude electric
field with a rotating spiral in a BZ medium. We used both unidirectional DC and
rotating CPEF to investigate how the spiral dynamics are affected by the direction
and frequency of the electric field. The unidirectional DC field slows both free and
pinned spirals with increasing field strength. Despite the fact that an electric field
increases the spiral period with field strength, the increase in the rotational period for
a pinned spiral is negligible compared to that of a free spiral. With CPEF, however,
the pacing ratio plays a crucial role in defining spiral dynamics. For a range of values
of pacing ratio, p, a free spiral is spatially confined by CPEF. Furthermore, the period
of a pinned spiral depends on the pacing ratio of the rotating field. Underdrive pacing
causes the spiral period to decrease with field strength, while overdrive pacing causes
it to increase. Pacing ratios that are greater than two (i.e., p > 2), on the other hand,
have no effect. The critical electric field for unpinning by CPEF at overdrive pacing
is much lower compared to that at the DC field.

We believe our work has implications for low energy control techniques used
for spiral unpinning and control in cardiac dynamics. In particular, a lower critical
threshold for CPEF compared to the DC field indicate that CPEF is more energy
efficient for unpinning the pinned spiral waves.
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A.S and S.V.A conceived the idea and planned the simulations. S.P designed the
numerical study aswell as the computational framework.T.K.S supervised the project
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Structural Transformation and Melting
of the Vortex Lattice in the Rotating Bose
Einstein Condensates

Rony Boral, Swarup Sarkar, and Pankaj K. Mishra

Abstract We numerically investigate the effect of the depth and lattice constant of
square optical lattice on the vortex lattice structure of the rotating Bose-Einstein con-
densates. For a given angular velocity and lattice constant of the optical lattice, vortex
lattice structure makes a transition from the hexagonal to the fully pinned square lat-
tice upon increasing the pinning strength of the potential. A detailed quantitative
analysis has been performed to understand the transition of the vortex lattice struc-
ture by changing the angular velocity, lattice constant and strength of the optical
lattice potential. We find that the angular velocity at which the minimum poten-
tial strength is required to obtain fully pinned square vortex lattice increases upon
decreasing the lattice constant of the potential with power law dependence. We also
show the effect of random impurities along with pinning potential on the structure
of the vortex lattice which triggers melting of the vortex lattice.

Keywords Optical lattice · Vortices · Abrikosov lattice · Random potential

1 Introduction

The experimental realization of Bose-Einstein condensates (BECs) in cold alkali-
metallic gases has given an entirely new direction to the research in the cold atom
physics [1]. One of the classical problem in ultracold system is to understand the gen-
esis of the generation and dynamics of the vortices, a quantized circulation generated
as a topological defect in the rotating BECs. Also the comprehensive understand-
ing of different ordered lattice structure displayed by them upon trapping under the
optical lattice has been the main thrust of the research. In last few decades the study
related to the vortex lattice formation and its structural transformation in presence of
different optical lattice, like square, hexagonal, rhomboid, etc. have caught a great
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attention of the scientific community due to the potential application of this in sev-
eral other fields of the condensed matter Physics [2]. The experiments in BECs are
highly tunable, so it helps to develop a better understanding of formation of pure
vortex lattice and their melting in presence of the impurity. In this paper, we numer-
ically investigate the effect of rotation and strength of the pinning potential on the
lattice structure of the vortex lattice in rotating BECs.

After the first experimental realization of the vortices in BECs by the Madison
Group [3] using laser stirring, the field has seen unprecedented growth at the theoret-
ical and numerical level to unravel the underlying mechanism behind arrangements
of the vortices on the lattice structure. Many theoretical investigations in BECs are
based on the analysis of the vortex lattice structure and dynamics using the mean-
fieldGross-Pitaevskii equation. In recent years BECs trapped under the optical lattice
have been used to understand many of interesting phenomena in many other fields
of condensed matter physics [2]. As for as an example optical lattice are used to
realize the Bloch Oscillations [4], Wannier-Stark Ladders [5], Josephson junction
arrays [6], and quantum phase transition from a superfluid to a Mott-insulator [7].
There are several research groups mainly focused to investigate the effect of depth
and periodicity of the optical lattice on the vortex lattice structure analytically and
numerically [8, 9]. Tung et al. [10] experimentally observed the structural phase
transition of the vortex lattice by rotating the condensates and investigated the effect
of pinning strength of the pinning potential on transformation of the vortex lattice
from the hexagonal to the square lattice structure. Pu et al. [11] showed that the
structural phase transition of the vortex lattice is very highly responsive to the ratio
of number of vortices with respect to the pinning sites when the condensate is trapped
in harmonic and optical lattice. They also obtained that the vortex pinning increases
when the vortex density matches the density of the lattice potential [12].

In recent years there are several studies that suggest a intricate nature of structural
transition of the vortex lattice structures for the binary mixtures of rotating BECs
trapped under optical lattice [13, 14]. William et al. [15] found that the dynamical
regimes of vortex lattice depends on the depth and the periodicity of the optical
lattice potential. In binary dipolar BECs such transitions between different vortex-
lattice structures, like, Abrikosov lattice to square lattice, have been observed either
by varying the angular velocity or by tuning the ratio of the inter- and intraspecies
strengths even in absence of the optical lattice trapping [16]. In this direction Kumar
et al. numerically investigated the transition of one vortex lattice to another for the
dipolar rotating BECs trapped under square optical lattice and found the transition
from the square to vortex sheet like structures upon tuning the ratio of the inter-species
and intra-species interaction [17].

Apart from investigating the transformation between the different structure of
the vortex in presence of the optical lattice, there are many studies that indicate the
melting of the vortex lattice mainly induced by the random impurities present in
the condensates. Mithun et al. numerically investigated the effect of the presence
of Gaussian defects on the structure of vortex lattice for the rotating BECs trapped
under the harmonic as well anharmonic potential and found that the beyond a certain
threshold strength of the defect the vortex lattice gets melted [18]. Hu and Gu studied
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squared potential pinned vortex lattice in presence of random depth optical lattice
and noticed the melting of the vortex lattice structure upon increasing the depth of
the random potential [19].

So far we find that lots of work in the rotating BECs which have only focused
on the different structure and their transition from one structure to another. How-
ever, a comprehensive quantitative picture the factors like interaction between the
vortex lattice and optical lattice, interaction between the impurities and vortex lat-
tice responsible for melting, etc. are lacking in the literature. In this paper, we first
numerically investigate the effect of the the pinning potential strength and rotation
on the structure of the vortex lattice. Further using the structure factor and lattice
energy of the vortex lattice we compute the minimum rotation and minimum poten-
tial strength required to perfectly pin the lattice to the optical lattice which is also
associated with the structural transformation of the lattice from the hexagonal lattice
structure also know as Abrikosov lattice (AL) to the pinned lattice (PL) which follow
the same square lattice structure as optical lattice have. We also identify the region
in the potential and rotation parameter space where there is coexistence of both AL
state and PL state. We extend our analysis for the vortex lattice structure in presence
of the random lattice.

The paper is organized as follows. In Sect. 2, we introduce the basic formulation
of the problem and review the optical lattice pinning potential. In Sect. 3 we present
the numerical procedure and simulation details to solve GP equation. In Sect. 4 we
present our numerical simulation results related to effect of change in the vortex
lattice structure in presence of the square optical lattice. A detailed analysis related
with different nature of the vortex lattice upon change in rotation rate and strength
of the pinning potential is presented. It is followed by a phase diagram that show the
different nature of the vortex lattice in the potential strength and rotation parameter
space. Here we also discuss the effect of addition of impurities on the vortex lattice
structure. In Sect. 5, we finally conclude our observations.

2 Governing Equations

We consider Bose-Einstein condensate gas confined in a harmonic potential and a
periodic potential in a frame rotating with an angular velocity � along the z-axis.
The macroscopic wave function of the condensate obeys the two-dimensional time-
dependent Gross-Pitaevskii equation which is given by [12]:

(i − γ )�
∂ψ

∂t
= [− �

2

2m
∇2 + Vext + g |ψ |2 − μ − �Lz]ψ (1)

where, ψ is the condensate wave function, ∇2 = ∂2
x + ∂2

y , Lz = −i�(x∂y − y∂x ) is
the z-component of the angular momentum operator, Vext (x, y) the external optical
potential which, we have chosen as a superposition of the harmonic and optical lattice
potential, and � is the angular velocity of the condensate along the z-axis. Here, we
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have chosen both condensate and the potential rotates with the same angular velocity.
The nonlinearity g = 4π�

2as
m is the strength of interaction with as being the s-wave

scattering length and m is the mass of the atom. γ denotes the dissipation due to the
presence of non-condensate at finite temperature and μ is the chemical potential of
the condensate. The value of γ is set to be 0.03, as obtained via fitting the theoretical
results with the experimental one [20]. For numerical simplification we have non-

dimensionalized the above set of (1) using the scheme as x = ah x̃ , t = t̃
ω⊥ ,ψ = ψ̃

a3/2h

,

where ah =
√

�

mω⊥ , with ω⊥ is the transverse angular frequency of harmonic trap

potential. Here the variables with tilde denote the non-dimensionalized variable. In
what follows for simplicity we will remove the tilde from the non-dimensionalized
variables. The above changes in the variables lead to the following non-dimensional
GPE

(i − γ )
∂ψ

∂t
= [−1

2
� + Vext + g | ψ |2 −μ − �Lz]ψ (2)

Where, Vext = 1
2 (x

2 + y2) + Vlattice, � = ∂2

∂x2 + ∂2

∂y2 . The tilde is omitted for sim-
plicity.

We have chosen the optical lattice as a superposition of the two perpendicular
Gaussian beams which can be represented as

Vlattice =
∑
n1

∑
n2

V0 exp(−|r − rn1n2 |2
( σ
2 )2

)

Here rn1n2 = n1a1 + n2a2 denotes the lattice vector with n1 and n2 number
of lattice points in the x- and y- direction respectively, and V0 is the strength of
the laser beam. For the square optical lattice the two lattice unit vectors are given
by a1 = a(1, 0) and a2 = a(0, 1). The width of the laser beam is considered to be
σ = 0.65.

3 Simulation Details

We have used strange Alternate Direction Implicit-Time Splitting pseudo spectral
(ADI-TSSP) method to solve the 2DGPE (2). In our numerical calculation, we con-
sider spatial step as �x=�y=0.1860 and time step as �t=0.001. All the simulation
runs are performed for fixed non-linearity g = 1000. Due to the non-zero value of
γ , the time development of (2) does not conserve the norm of the wave function.
In order to preserve the norm of the condensate wave function, we calculate the
correction to the chemical potential in each time step as
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�μ = (�t)−1 ln

[∫
d2r | ψ(t) |2 /

∫
d2r | ψ(t + �t) |2

]

and further run the simulation for the longer time until the stationary state is obtained.
We used GPELab, a Matlab Toolbox, for the implementation of the above numerical
procedure [21].

In simulation, we first determine the ground-state wave function of the condensate
in the absence of rotation and then using this ground-state wave function as the initial
state of the GP equation, the equilibrium state is obtained. We analyze the vortex
lattice structure using the density profile of the equilibrium condensate. We identify
the structural phase transition of the vortex lattice in the presence of optical lattice
using: (i) density profile of the equilibrium condensate, (ii) density profile in recipro-
cal space, (iii) the lattice potential energy < Elattice >= ∫

drψ∗(r)Vlatticeψ(r), and
(iv) the structure factor of the vortex lattice S(k) = 1

Nc

∑
i ni e

ik·ri . Here ni , ri , and
Nc are the winding number of individual vortices, the position of the i th vortex, and
the total winding number, respectively. We calculate the above mentioned physical
quantities for different optical lattice amplitude and observe the variation of them
with the strength of the lattice potential.

4 Results and Discussion

4.1 Effect of Square Optical Lattice on the Vortex Lattice

In this section, we present our numerical results for the vortex lattice structure of a
BECs in the presence of square optical lattice potential. In our numerical simula-
tions, we first fix the lattice constant a of the potential and then vary the potential
amplitude V0 for different angular velocities. Figure 1 depicts the density profile of
the condensate in real and Fourier space for lattice constant a = 2.2, at a constant
angular velocity � = 0.8 with increasing V0.

As we analyze the ground state density of the condensate, we find that in the
absence of optical lattice potential the single quantized vortices arranged in a Hexag-
onal pattern. These lattice structure is also known as Abrikosov lattice (AL) due to
its similarity with the vortex lattice structure obtained in the type-II superconduc-
tor [22]. This is also observed by several other groups [23].We notice slight distortion
from the Hexagonal lattice for a sufficiently small V0. At high pinning strength of the
potential, all the vortices get pinned to the antinodes of the optical lattice potential
and the vortex lattice gets transformed to the pinned lattice (PL) which is square
for our case. We find that as the pinning strength of the potential is increased the
resultant ground state of the vortex lattice gets transformed from AL state to the PL
state.

In the bottom panel of Fig. 1, we show the reciprocal lattice structure of the
vortex lattice for various pinning potential strength. In the absence of the optical
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Fig. 1 Upper panel: Density profile in real space with the variation of pinning potential strength:
V0 = 0.0, 0.8, 1.0, 2.0, 5.0 (increasing strength from left to right). BottomPanel: Fourier transform
of the above density profile in k space. The density profile at V0 = 0.0 shows the Abrikosov lattice
(AL) lattice structure and with increment of the V0 leads to pin the vortex lattice, for sufficient high
pinning strength pinned lattice (PL) formed. Here, we used lattice constant a = 2.2 and � = 0.8,
g = 1000

lattice potential(V0 = 0), the reciprocal lattice is hexagonal, as quite evident from
the density plot. Upon increase of the potential strength, we find that for low optical
lattice strength (V0) the vortex lattice gets distorted from the Hexagonal pattern at
V0 = 0.8. Upon further increase of V0 leads to the formation of distorted square
pattern which becomes perfect square at V0 = 2.0. The square lattice structure of the
vortex lattice becomes more pronounced at V0 = 5.

In order to quantify the potential strength at which the structural transformation in
the vortex lattice takes place, in Fig. 2,we show the variation of structure factor profile
and lattice energy with respect to V0 for different �. We notice that at small rotation
(� = 0.55, 0.58, 0.62), the structure factor profile and lattice energy show there
exists an intermediate state where it is difficult to determine the structure of vortex
lattice. This we term as the coexistence state (CS). We find that for � = 0.55 the CS
begins at V0 = 0.6 and the vortex structure is completely pinned above V0 = 1.4.
For � = 0.58 and � = 0.62, the CS starts from V0 = 0.4 and 0.8 respectively and
the vortex lattice gets fully pinned above V0 = 1.4 and 2.2, respectively.

The right panel of Fig. 2 shows the lattice energy and structure factor plots for
relatively higher rotations (� = 0.725, 0.8, 0.85) for the lattice constant a = 2.2. For
� = 0.725 we find that the lattice energy diminishes steadily upon increasing V0,
which suggests partial pinning of vortices. A sharp decrease in Elattice is noticeable
at V0 = 0.6 which indicates that the vortices are pinned above this pinning strength.
Similarly, the structure factor S(k) increases successively against V0 and exhibits
steady behavior above V0 = 0.6 where all vortices get attached to the pinning sites.
Similar trend has been observed for � = 0.8 and 0.85 (See Fig. 2e, f).

In Fig. 3a we plot the phases of the vortex lattice in � − V0 plane. We find that
at � = 0.725 the minimum strength of potential (Vmin) required to get the perfectly
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Fig. 2 Variation of structure factor S(k) and lattice energy Elattice with pinning strength V0 for
different rotational frequencies: a � = 0.55, b � = 0.58, c � = 0.62, d � = 0.725, e � = 0.8,
and f � = 0.85. The three regions are defined as Abrikosov lattice (AL), coexisting state (CS), and
pinned lattice (PL). The faster rotation of the condensate can decrease the coexisting region and
after a threshold value of � vortex lattice makes a sharp transition from Abrikosov lattice to pinned
lattice. Here, other parameters are same as Fig. 1

pinned square lattice of the vortices is 0.6. The rotation atwhich theminimumstrength
of the potential is required to perfectly pin the lattice depends upon the lattice constant
of the optical lattice.We vary the lattice constant between a = 1.8 − 2.2 and observe
that the transformation of the vortex lattice structure against V0 for different lattice
constant a. The phase diagrams for other lattice constants (a) (does not present here)
have the same nature as those for a = 2.2. In particular, there exists a rotational
angular velocity at which the strength of the potential is minimum to get the pinned
state. As we analyze the relation between the lattice constant a and the rotational
velocity � at which minimum pinning strength is required to get the pinned lattice,
we find that it follows

a = C�d (3)

where constant C = 1.76 and d is the exponent of � as shown in Fig. 3b. We find
that the magnitude of d obtained for the square lattice is ∼ −0.73. This implies that
the pinning strength V0 takes the least value when a fulfills the above relation.
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Fig. 3 a Phase diagram of different lattice structures depending upon the value of S(k) obtained
fromFig. 2 for different V0 at lattice constant a = 2.2. Here (yellow, green, orange) region illustrates
the AL, CS, and PL domains. Dashed line annotated for finding� corresponds to minimum pinning
strength(Vmin). b Optimum rotational frequencies � (obtained from phase diagram) for different
lattice constant. Here, the solid line represents the fitted curve with (3)

4.2 Effect of Random Impurities on Pinned Square Lattice
Structure

So far, we have presented the results in which the vortex lattice makes transformation
from the Hexagonal to the square pinned lattice upon varying the strength of the
potential. In this section, we present vortex latticemelting in BECs due to the random
impurities or disorder in the system. Disorder is introduced in the system by the
external potential associated with the random impurities. To introduce impurity, we
consider a square optical lattice potential

Vimpurity =
∑
n1

∑
n2

Vimp exp(− (x − n1aimp)
2 + (y − n2aimp)

2

(σ/2)2
). (4)

Here n1 and n2 denotes the number of lattice points, respectively and Vimp is the
strength of the impurity potential. aimp = 1 is the lattice constant of the impurity
potential, and σ = 0.65 is the width of the laser beam. For random impurities, the
impurity potential or disorder is defined by an independent random variable uni-
formly distributed over [−Vimp, Vimp] at each spatial position [18]. So the total lattice
potential is given by

VTotal = Vlattice + Vimpurity (5)

Here Vlattice is the square optical lattice potential.
In our numerical simulation, we consider rotational angular velocity as � = 0.8,

lattice constant a = 2.2, and nonlinearity g = 1000. We first fix the strength of the
lattice potential(V0 = 5), and then increase the strength of the impurity potential by
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Fig. 4 (Upper panel) Density profile in real space with the variation of impurity potential
strength (ε = 0.0, 3.2, 5.2, 9.2, 12). (lower panel) Fourier transform of the above density pro-
file in k space. The density profile at ε = 0.0 shows the square lattice (PL) lattice structure and with
increment of the ε leads to disorders in the vortex lattice, for sufficient high ε pinned lattice(PL)
shows melting behaviour. Here, we used lattice constant a = 2.2 � = 0.8, V0 = 5 and g = 1000

tuning the parameter ε. Here ε = Vimp

V0
is the relative increase in the impurity potential

strength with respect to the strength of square optical lattice potential.
In Fig. 4, we show the density profile in real and Fourier space for different ε.

We observe that in the absence of impurity potential, vortices are arranged in a
square pattern due to lattice potential, but the square geometry of the vortex lattice is
slightly distorted for a sufficiently small ε. Upon further increase in ε we find that the
lattice structure gets fully distorted and leads to the melting of the lattice structure.
The same phenomenon has been observed from the condensate density in the Fourier
space, where we can see that the periodic peaks of a square lattice distorted gradually
as ε is increased. The detailed studies related to effect of different concentration of
impurities (by varying the lattice constant of impurities) on the structure of the vortex
lattice are underway and will be reported somewhere else.

5 Conclusion

Using the mean field model of the rotating BECs trapped in the square optical lattice
we have obtained different form of vortex lattice structure like, Abrikosov, pinned
square lattice, coexistence of both Abrikosov and square as the pinning strength of
the potential and the rotational angular velocity of the condensate are varied. Using
the structure factor and the lattice energy, we have been able to identify the minimum
potential strength required to completely transform the vortex lattice from AL to PL
state. We have chosen different lattice constant (a = 2.2, 2.0 and 1.8) of the optical
lattice potential and different rotating speed (� = 0.55 − 0.95) of the condensate.
Our analysis indicate that the vortex lattice structure makes transition from the AL
to PL state directly beyond a critical pinning potential strength for high angular
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velocity (� � 0.725). However, for lower angular velocity we have the presence of
the AL, CL and PL state. This feature appears to be consistent with the fact that upon
increasing the angular velocity the density of the vortices increases which results in
perfectly pinning of the vortices. Further, we have obtained a phase of different vortex
lattices in the potential strength and angular velocity parameter space for different
lattice constant of the pinned potential. We find that the rotation at which minimum
potential strength is required to pin the vortex lattice depends on the lattice constant
of the pinned lattice. The angular velocity corresponding to that value is lowest for the
lattice constant (a = 2.2) which physically signifies that structural transformation
happens perfectly when the lattice constant of the vortex lattice matches with the
lattice constant of the pinning potential [12]. Finally we have investigated the effect
of the random impurities on the pinned lattice of the system. We have obtained that
the perfect pinned vortex lattice gets melted upon increase in the impurities strength.
Similar types of melting behaviour was shown to exist for the Abrikosov lattice. In
this paper we have restricted our study for the mean-field model. Using the analysis
performed in this paper in other direction it would be interesting to consider the effect
of the quantum fluctuation on the vortex lattice structure transformation where the
vortex lattice structure have the rich variety ranging from Abrikosov lattice, square,
stripped, etc. upon tuning the quantum fluctuation [24].
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Effect of Internal Damping
on the Vibrations of a Jeffcott Rotor
System

Raj C. P. Shibin, Amit Malgol, and Ashesh Saha

Abstract The vibration characteristics of a rotor system with a rigid disc mounted
in the middle of a flexible shaft are investigated in order to determine the influence of
the shaft’s internal damping. A well-known bulk parameter model known as the Jeff-
cott rotor system (JRS) is considered for the analysis. The dynamics of the system are
explored using time-displacement responses, phase-plane, and frequency response
graphs. The effect of rotor eccentricity and internal damping on the vibration charac-
teristics of JRS are analysed by numerically simulating the autonomous amplitude-
phase equations under simultaneous resonance conditions derived using the method
ofmultiple scales (MMS). Among the intriguing results reported from the amplitude-
frequency responses are the multiple solutions, jump events, and multiple loops. The
most important finding of this paper is the destabilizing effect of internal damping
beyond a critical frequency resulting in the increase of amplitude of vibrations.

Keywords Internal damping · Cubic nonlinearity · Jeffcott rotor system · Jump
phenomenon · Multiple solutions

1 Introduction

Rotors are used in a wide range of applications from toys to massive turbines.
Unavoidable eccentricity or mass unbalance causes rotor system to whirl along its
bearing axis. For the safe operation of the machinery it is necessary to study the
effects of different parameters in these lateral vibrations. Jeffcott [1] proposed the
most elementary discrete model for the study of rotor vibrations and found that
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system can be stable at frequencies higher than critical speed. Different parameters
like damping, bearing clearance, gyroscopic and hydrodynamic effects are found to
have considerable effect in shaft whirling in a rotor system [2].

Damping within the system itself, termed as internal damping was also found to
have an effect on the nature of vibrations of a rotor system. It is found to be stabilizing
the system while operating at speeds less than a critical speed and destabilizing at
higher speeds [3]. Kimball was the first to discuss the physics of internal damping in
his work [4]. Later on, different internal damping models are proposed by different
authors such as Dimentberg [5], Vatta and Vigilani [6] and many others. However,
an extensive analysis on the effect of internal damping on the vibrations of a rotor
systemwith different nonlinear effects is lacking in literature. Inclusion of an internal
damping model proposed by Yukio and Toshio [3] and analysing its effect on a
nonlinear Jeffcott rotor model is the major contribution of this paper. For performing
the nonlinear analysis, method of multiple scales (MMS) is used [7–9] to obtain the
autonomous amplitude and phase equations.

The rest of the paper is organized as follows. In Sect. 2, we go over the mathe-
matical model briefly. Section 3 describes the analytical procedure for getting closed
form solutions. Section 4 discusses some of the findings, while Sect. 5 concludes.

2 Mathematical Modeling

As illustrated in Fig. 1, the rotor model consists of a rigid disc mounted on a flexible
shaft supported by bearings. The disc’s geometric centre and the shaft axis passes
through point M, while the disc’s centre of gravity is represented by point G. The
eccentricity of the centre of gravity G away from the geometric centre M is e.

The governing equations of the rotor system for horizontal and vertical oscillations
considering the nonlinear restoring forces (Frx and Fry), internal hysteretic damping
forces (Dix and Diy) and external damping forces (Fdx and Fdy) are described as
[1–3]

Fig. 1 a Schematic diagram of Jeffcott Rotor System. b Cross-sectional view of disc. c Cross-
sectional view of the shaft
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mẍ + Fdx + Frx + Dix = meω2cos(ωτ) and (1a)

mÿ + Fdy + Fry + Diy = meω2sin(ωτ) − mg (1b)

respectively, where mg is the weight of the rotor and the overdots represent the
derivatives with respect to the time τ .

The internal hysteretic damping terms along the horizontal (x-axis) and vertical
directions (y-axis) are given by [3]

Dix = ζ ∗(ẋ + ωy), and (2a)

Diy = ζ ∗(ẏ − ωx) (2b)

respectively, where ω is the angular velocity of the shaft and ζ ∗ is internal damping
coefficent. The external damping forces along the horizontal (x-axis) and vertical
directions (y-axis) as assumed to be similar to viscous damping terms represented
by.

Fdx = cx ẋ, and (3a)

Fdy = cy ẏ (3b)

respectively, where cx and cy are the damping coefficients.
The nonlinear restoring forces along the horizontal (x-axis) and vertical directions

(y-axis) are expressed as [4]

Frx = k1x + k2x
(
x2 + y2

)
, and (4a)

Fry = k1y + k2y
(
x2 + y2

)
(4b)

respectively, where k1 is linear stiffness coefficient and k2 is the nonlinear stiffness
coefficient.

Substituting Eqs. (2a, 2b) to (4a, 4b) in Eq. (1), we get.

mẍ + cx ẋ + k1x + k2x
(
x2 + y2

) + ζ ∗ ẋ + ζ ∗ωy = meω2cos(ωτ), and (5a)

mÿ + cy ẏ + k1y + k2y
(
x2 + y2

) + ζ ∗ ẏ − ζ ∗ωx = meω2sin(ωτ) − mg (5b)

Substituting ẍ = ÿ = ẋ = ẏ = ω = 0 in Eqs. (5a, 5b), we obtain the static
equilibrium in x-direction as xst = 0 and the static equilibrium in y-direction (yst )
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is governed by the following nonlinear equation

k1yst + k2y
3
st = −mg. (6)

Shifting the coordinates to the static equilibrium states as x = x∗, y = yst + y∗,
we obtain the governing equations in the shifted coordinates (x∗, y∗) as.

mẍ∗ + (ζ ∗ + cx )ẋ
∗ + (k1 + k2yst

2)x∗ + k2x
∗(x∗2+y∗2) + 2k2x

∗y∗yst
+ζ ∗ω(yst + y∗) = meω2cos(ωτ), and (7a)

mÿ∗ + (cy + ζ ∗)ẏ∗ + (k1 + 3k2yst
2)y∗ + k2y

∗(x∗2+y∗2)

+2k2(x
∗2+3y∗2)yst − ζ ∗ωx∗ = meω2sin(ωτ). (7b)

Introducing the dimensionless parameters.

t = ω0τ , ω0 =
√

k1
m , u = x∗

yst
, v = y∗

yst
, ζ = ζ ∗√

k1m
, f = e

yst
, � = ω

ω0
, ω1

2 = 1 + λ,

ω2
2 = 1 + 3λ, μ1 = cx√

k1m
, μ2 = cy√

k1m
, λ = k2 yst 2

k1
,

the governing equations of the horizontally supported Jeffcott rotor system (JRS) for
the horizontal and the vertical oscillations given as.

u′′ + (ζ + μ1)u′ + u(1 + λ) + λu(u2 + v2) + 2λuv + ζ�(v + 1) =
f �2cos(�t), and (8a)

v′′ + (ζ + μ2)v
′ + v(1 + 3λ) + λv

(
u2 + v2

) + λ
(
u2 + 3v2

) + 2λuv − ζ� =
f �2sin(�t)

(8b)

where ‘t’ is dimensionless time, λ is the stiffness coefficient, ζ is an internal damping
factor, � is rotor speed ratio, and f is the eccentricity ratio. For the horizontal and
vertical directions, respectively, u and v are displacements of the JRS, μ1 and μ2 are
the linear damping coefficients, and ω1 and ω2 are the natural frequencies.

As mentioned earlier, the nonlinear analysis by the method of multiple scales
(MMS) is performed to obtain the autonomous amplitude and phase equations. This
MMS is performed in next section.
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3 Method of Multiple Scales (MMS) Analysis

In this section, amplitude and phase equations corresponding to the horizontal and
vertical oscillations of the rotor are derived using the method of multiple scales
(MMS). Simultaneous resonance condition is considered by defining two detuning
parameters σ1 and σ2 as

� = ω1 + σ1, σ2 = ω2 − ω1 (9)

Accordingly, σ1 represents the closeness of � to ω1, and σ2 represents the
difference between ω2 and ω1.

We seek a series of the following form in the MMS:

u(T0, T1, T2) = εu1(T0, T1, T2) + ε2u2(T0, T1, T2)

+ε3u3(T0, T1, T2) + O
(
ε4

)
, and (10a)

v(T0, T1, T2) = εv1(T0, T1, T2) + ε2v2(T0, T1, T2) + ε3v3(T0, T1, T2) + O
(
ε4

)
.

(10b)

In Eqs. (10a, 10b), T0 = t is the fast time and T1 = εt, T2 = ε2t , etc. are the slow
times, where 0 < ε � 1. The time derivatives then can be written in terms of fast
and slow times as:

d

dt
= ∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
,
d2

dt2
= ∂2

∂T 2
0

+ 2ε
∂

∂T0

∂

∂T1
+ ε2

(
∂2

∂T 2
1

+ 2
∂

∂T2

∂

∂T1

)
.

(11)

Other system parameters are scaled according to their orders as:

μ1 = ε2μh1, μ2 = ε2μh2, f = ε2 fh, ζ = ε2Dh (12)

Substituting Eqs. (10a, 10b) to (12) into Eqs. (8a, 8b) and collecting coefficients
of ε yield

O(ε) : ∂2u1
∂T 2

0

+ ω2
1u1 = 0 (13a)

∂2v1

∂T 2
0

+ ω2
2v1 = 0 (13b)

O
(
ε2

) : ∂2u2
∂T 2

0

+ ω2
1u2 = fh�

2cos(�T0) − 2
∂2(u1)

∂T0∂T1
− 2λu1v1 − �Dh (14a)
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∂2v2

∂T 2
0

+ ω2
2v2 = fh�

2sin(�T0) − 2
∂2(v1)

∂T0∂T1
− λu21 − 3λv2

1 (14b)

O
(
ε2

) : ∂2u3
∂T 2

0

+ ω2
1u3 = −∂2u1

∂T 2
1

− 2
∂2(u2)

∂T0∂T1
− 2

∂2(u1)

∂T0∂T2

+2λ(u1v2 + u2v1) + λu1(u
2
1 + v2

1) − �Dhv1 − Dh
∂u1
∂T0

− μh1
∂u1
∂T0

(15a)

∂2v3

∂T 2
0

+ ω2
1v3 = −∂2v1

∂T 2
1

− 2
∂2(v2)

∂T0∂T1
− 2

∂2(v1)

∂T0∂T2
+ 2λ(u1u2 + 3v2v1)

− λvb1(u
2
1 + v2

1) + �Dhu1 − Dh
∂v1

∂T0
− μh2

∂v1

∂T0
(15b)

The solutions of Eqs. (13a) and (13b) can be written as:

u1(T0, T1, T2) = A(T1, T2)e
iω1T0 + A(T1, T2)e

−iω1T0 , (16a)

v1(T0, T1, T2) = B(T1, T2)e
iω2T0 + B(T1, T2)e

−iω2T0 . (16b)

Substituting these solutions and eliminating secular terms by equating coefficient
of eiω1t to zero we get,

∂A(T1, T2)

∂T1
= − ieiT1σh1

4ω2
fh�

2, (17a)

∂B(T1, T2)

∂T1
= −eiT1(σ h1 − σh2)

4ω2
fh�

2. (17b)

The remaining equations after the elimination of the secular terms are solved for
u2 and v2. All the solutions foru1, v1, u2 and v2 are substituted in Eqs. (15a) and
(15b). Again we will get secular terms which are eliminated to get expressions for
∂A(T1,T2)

∂T2
and ∂B(T1,T2)

∂T2
. These expressions are quite large and not included in this work.

The time derivatives of A and B are determined using the following relations:

Ȧ = d A

dt
= ε

∂A(T1, T2)

∂T1
+ ε2

∂A(T1, T2)

∂T2
, (18a)

Ḃ = dB

dt
= ε

∂B(T1, T2)

∂T1
+ ε2

∂B(T1, T2)

∂T2
. (18b)

The final expressions for Ȧ and Ḃ are quite large and not shown here. The polar
forms of A and B are expressed as

A(T1, T2) = 1

2
a
∧

1e
iδ1 = 1

2ε
a1e

iδ1 , (19a)
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B(T1, T2) = 1

2
a
∧

2e
iδ2 = 1

2ε
a2e

iδ2 . (19b)

where a1 and a2 are the steady state amplitudes in the horizontal and vertical direc-
tions of the JRS, respectively. The corresponding phases are δ1 and δ2, respectively.
We can obtain the amplitude and phase equations from Eqs. (19a) and (19b) as

ȧ1 = da1
dt

= 2ε · Re( Ȧ)
e−iδ1 , δ̇1 = dδ1

dt
= 2ε

a1
· Im(

Ȧ
)
e−iδ1 , (20a)

ȧ2 = da2
dt

= 2ε · Re(Ḃ)
e−iδ2 , δ̇2 = dδ2

dt
= 2ε

a2
· Im(

Ḃ
)
e−iδ2 , (20b)

The final expressions for the amplitude and phase equations are obtained as

ȧ1 = −1

4

(−3ω1 + �) f �2

ω2
1

sin(φ1) + 1

2

(−ω2
1 + 2λ

)
ζa2�

ω3
1

sin(φ1 − φ2) (21a)

−λa22a1
(
4ω1λ − 6λω2 + 2ω1ω

2
2 − ω3

1

)

8ω1(2ω1 − ω2)ω
2
2

sin2(φ1 − φ2) − (μ1 + ζ )a1
2

,

φ̇1 = 1

4

(3ω1 − �)�2 f

ω2
1a1

cos(φ1) + 1

2

(−ω2
1 + 2λ

)
ζa2�

ω3
1a1

cos(φ1 − φ2) (21b)

−1

8

λa22
(−6λω2 + 4ω1λ + 2ω1ω

2
2 − ω3

1

)

ω1(2ω1 − ω2)ω
2
2

cos(2φ1 − 2φ2)

+ 1

8
(
4ω2

1 − ω2
2

)
a1ω2

2ω
3
1

⎛

⎝
16ω4

1a
3
1λ

2 − 12ω4
1a

3
1λω2

2 − 6ω2
1a

3
1λ

2ω2
2

+3ω2
1a

3
1ω

4
2λ + 48ω4

1a
2
2λ

2a1 + 2ω2
1λa

2
2ω

4
2a1

−8ω4
1λa

2
2ω

2
2a1 + ω2

1λa
2
2ω

4
2a1 − 4ω4

1a
2
2λ

2ω2
2a1

⎞

⎠

ȧ2 = 1

4

(� − 3ω2)�
2 f

ω2
2

cos(φ2) − 1

2

(
ω2
1 + 2λ

)
ζa1�

ω2ω
2
1

sin(φ1 − φ2) (21c)

−λa21a2
(−2λω2 + 8ω1λ − 4ω2ω

2
1 + ω3

2

)

8
(
4ω2

1 − ω2
2

)
ω2
2

sin(2φ1 − 2φ2) − 1

2
(μ2 + ζ )a2

φ̇2 = σ 1 − σ2 + λa21
(−2λω2 + 8ω1λ − 4ω2ω

2
1 − ω3

2

)

8
(
4ω2

1 − ω2
2

)
ω2
2

cos(2φ1 − 2φ2)

− (� − 3ω2)�
2 f

4ω2
2

sin(φ2) +
(
ω2
1 + 2λ

)
ζa1�

2ω2a2ω2
1

cos(φ1 − φ2) (21d)
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+ 1

8
(
4ω2

1 − ω2
2

)
ω3
1

⎛

⎝
120ω2

1a
2
2λ − 12ω2

1a
2
2ω

2
2 − 30a22λω2

2

−4a21ω
2
2λ − 8ω2

1a
2
1ω

2
2 + 2ω4

2a
2
1

3ω4
2a

2
2 + 48ω2

1λa
2
1

⎞

⎠

It is to be noted here that φ̇1 = σ1 − δ̇1, and φ̇2 = σ1 − σ2 − δ̇2.

4 Results and Discussion

All the results are discussed in this section. The following set of parameter values
[8] are used for all the forthcoming analysis μ1 = 0.0154 and μ2 = 0.0247.

4.1 Comparison of Numerical and Analytical Results

In Fig. 2, the MMS results obtained by numerically simulating the amplitude and
phase Eqs. (21a–21d) are compared with the numerical simulation results of the
original JRS model given by the governing Eqs. (8a, 8b). The time-displacement
responses and the phase-plane diagrams in Fig. 2 show that theMMS results correlate

Fig. 2 Time-displacement responses and phase plane plots of the Jeffcott rotor system for f =
0.025, ζ = 0.005 and λ = 0.05. (a) and (b) for horizontal oscillations and (c) and (d) for vertical
oscillations
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verywellwith the results obtained from the original JRSmodel. In all the forthcoming
analysis,wewill use the amplitude and phaseEqs. (21a–21d) to obtain the frequency–
response plots.

4.2 Non-Localised Oscillations

Non-Localized oscillations refer to the condition where a1 �= 0, φ1 �= 0 a2 �= 0 and
φ2 �= 0, i.e. both horizontal and vertical oscillations are coupled with each other.
In the case of non-localized oscillations, two amplitudes a1 and a2 are evaluated
simultaneously.

4.2.1 Influence of Eccentricity Ratio F

The influence of the eccentricity ratio f on the horizontal and vertical oscillations
of the JRS are shown in Figs. 3 and 4. In all of the figures, the limit point (LP)
represents a change in the nature of the system solutions from stable to unstable, or
vice versa. Blue colour indicates the stable solutions whereas red indicates unstable
solutions. As shown in Fig. 3, a single jump phenomenon is observed for f = 0.015.
The jump phenomena appears differently for horizontal and vertical oscillations.
For horizontal oscillations, jump occurs close to the resonance peak, whereas for
vertical oscillations, jumpappears before the system reaches the resonance frequency.
Furthermore,when compared to horizontal oscillations, this jump is substantially less
for vertical oscillations.

Multivalued solutions with multiple loops are observed in the frequency response
diagrams in Fig. 3 for the increased of the eccentricity ratio f = 0.05. The multi-
valued solutions and jump phenomena disspear for f = 0.015 with the addition

Fig. 3 Amplitude-frequency responses of the Jeffcott rotor system for different values of f , ζ = 0
and λ = 0.05
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Fig. 4 Amplitude-frequency responses of the Jeffcott rotor system for different values of f , ζ =
0.01 and λ = 0.05

of small amount of internal damping ζ = 0.01 as shown in Fig. 4. Moreover, the
multiple loops in the frequency response plots for f = 0.05 seem to disappear with
the inclusion of internal damping ζ = 0.01. However, the comparisons of Figs. 4 with
Figs. 3 for f = 0.05 show that the internal damping causes the resonance peaks to
shift towards higher frequencies with an increase in the amplitude at resonance peak.

4.2.2 Influence of Internal Damping Parameter

Frequency response diagrams for two different values of internal damping factor are
shown in Fig. 5 to analyse the effect of internal damping on the dynamics of the JRS.
Some complicated dynamics are observed from Fig. 5. For better clarity, the stable
and unstable solutions for ζ = 0 are shown by blue and red colors, and for ζ = 0.025

Fig. 5 Amplitude-frequency responses of the Jeffcott rotor system for different values of ζ , f =0.04
and λ=0.05
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by black and magenta colors, respectively. Also, zoomed views of multiple crossings
near σ1 = 0.1 are shown at the insets of Fig. 5. It is observed from Fig. 5 that the
multiple jump phenomenon and the multiple loops are eliminated with the increase
of the internal damping factor from ζ = 0 to ζ = 0.025. However, the amplitude of
oscillations at resonance peaks become larger with the inclusion of internal damping
in the JRS model.

It is discussed in [3] that the internal damping can have destabilizing effect on the
system after a threshold speed in a sense that the effective damping of the linearized
system becomes negative beyond that speed. The negative damping of the linearized
systemmight cause an increase in the amplitude of oscillations beyond that threshold
speed. A similar characteristic is shown in Fig. 5a for horizontal oscillations. For
lower frequencies, amplitude of horizontal oscillations is less for ζ = 0.025 than
that for ζ = 0. The internal damping factor causes positive damping effect in this
region by reducing the amplitudes of oscillations. However, with the increase in
frequency beyond a certain critical value, the amplitude of horizontal oscillations
become larger for ζ = 0.025. The internal damping appear to have destabilizing
effect beyond this critical value. The same conclusions cannot be drawn from the
vertical oscillations shown in Fig. 5b as the amplitude of oscillations for ζ = 0.025
appear to be larger in comparison to amplitude of oscillations for ζ = 0 for the range
of selected frequencies. It might happen that the critical frequency is already been
crossed below the lower frequency bound shown in Fig. 5b.

5 Conclusions

The effects of internal damping (internal damping term ζ ) on the vibration of a
horizontally supported Jeffcott rotor system (JRS) are analyzed in this paper. Non-
linear restoring force (with stiffness ratio λ) is also considered in the JRS model and
the effect of eccentricity ratio f is also analysed. The method of multiple scales is
used to derive autonomous amplitude-phase equations in the horizontal and vertical
directions. The accuracy of the MMS are verified by comparing with the results
produced from numerical simulation of the original JRS equations. The influence of
different parameters are analysed from the frequency response curves obtained by
numerically simulating the MMS equations in ‘Matcont’, a numerical bifurcation
toolbox based on ‘Matlab’.

Internal damping reduces the occurrence of multi-jump phenomena and multiple
loops in the frequency response curves. However, the peak amplitude of vibration
at resonance increases with the increase of ζ . The internal damping reduces the
amplitude of horizontal vibrations upto a certain critical frequency.Above that critical
frequency, the internal damping appears to be injecting energy into the systemcausing
an increase in the amplitude of vibrations.
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The Collective Behavior of Magnetically
Coupled Neural Network Under
the Influence of External Stimuli

T. Remi and P. A. Subha

Abstract We have analysed the collective behavior and synchronisation scenario
under the combined effect of themagnetic coupling and external stimuli on a network
of Hindmarsh Rose neurons. In the presence of constant input, the magnetic coupling
induces synchrony and stabilises the equilibrium state. The periodically varying
sinusoidal input enhances the synchrony in the network. The synchrony is inevitable
for the signal transmission in the neurons. The external stimulus in the form of square
wave has the capability to desynchronise the magnetically coupled network. The
suppression of synchrony may find its relevance in clinical procedures to alleviate
the symptoms of certain nervous system disorders.

Keywords Neural network · Linear chain · Memristor field effects · Different
external stimuli

1 Introduction

A great effort has been carried out in studying and controlling the complex oscilla-
tory networks in nonlinear science, with a number of practical applications [1–3].
The nonlinear models with high number of population is very common in Physics,
Chemistry and Biology [4–6]. One of the many applications of nonlinear systems
happens to be in neuro science as the brain comprises of several specialized areas
with different functions, each being a complex network by itself and thus, is a perfect
example of a complex dynamical system [7]. Different models have been proposed
for biological neuronal networks which are capable of explaining all the intrinsic
dynamics, response to external stimuli and collective behavior in different connec-
tion architectures [8].
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The use of memristors to represent the electromagnetic field induced by the flow
of ions in the neurons was proposed recently [9] and still continue to attract the
researchers [10–13]. The dynamics and energy aspects of HR neurons with quadratic
and cubic memrsitor effects have been analysed [14–16]. The impact of electromag-
netic field on individual and collective dynamics of neural system is studied recently
[17]. The utilisation of energy for the electrical activities in the presence of magnetic
coupling and external stimuli have been studied on Hodgkin-Huxleymodel [18]. The
hyperbolic tangent function was recognised to be easily implementable in electronic
circuits and effective in numerical simulations [19, 20].

The suppression of oscillations and eventual asymptotic stabilisation of equi-
librium, named as Amplitude Death (AD) has been achieved under the influence
of memristor [14]. AD has been observed both theoretically and experimentally in
neural networks [21, 22]. The dynamics of AD has been used to explain the tem-
poral activity in the olfactory bulb [23]. One of the major causes of attaining AD is
attributed to parameter mismatch [24–28].

The diverse firing patterns and synchronous oscillations are crucial features in
neural dynamics of brains. The physiological conditions have a great influence on the
electrical activity of nervous system. The collective synchrony plays an important
role in the generation of both vital and pathological biological conditions. Both
external and inherent stimuli constructively take part in the excitation of neural
activity [29]. Zhijun Li, et al. investigated the coexistence of multiple firing patterns
for different initial conditions and considering coupling strength as the sole control
parameter [30]. Different methods have been employed to enhance the synchrony in
the neural network owing to its vital role in signal transmission and signal processing
[31, 32]. However, the unwanted synchrony among neurons which ought to have
behaved independently, results in several pathological conditions [33–35]. Thus the
enhancement and suppression of this synchrony is very necessary [36]. The phase
synchrony in mean field coupled HR neurons with an external stimuli in form of
spikes has been studied recently [37]. The external stimuli has the capability of
controlling chaotic dynamics in neural network [38, 39]. However, the influence of
square input on neural network is unexplored. In this work, we have analysed the
capability of externally applied periodical inputs to enhance and suppress synchrony
in a linear chain of HR neurons, coupled magnetically by a hyperbolic function.

The paper is organised as follows: The model is described in Sect. 2. The phase
portraits and collective dynamics of the network with constant external stimulus is
explained in Sect. 3.1. The control of phase space trajectories and synchrony by
the combined effect of magnetic coupling and time varying external currents are
presented in Sect. 3.2. Section 3.3 has been devoted to quantifying synchrony in the
network with magnetic coupling and external stimuli. Section4 concludes the study.
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2 The Neural Network

The electromagnetic fields and externally applied stimuli are capable of altering
collective electrical activities and signal propagation in a neural network. The current,
induced by the change in magnetic flux across the membrane is represented by the
memristor and that, due to the external stimuli are considered under three cases. The
dynamical equations for a linear chain of HR neurons are described by [40, 41]

ẋi = yi + ax2i − bx3i − zi + I − k1ρ(φi )xi ,

ẏi = c − dx2i − yi ,

żi = r(s(xi − xe) − zi ),

φ̇i = k2xi − k3φi + D

⎛
⎜⎜⎝φi −

N∑
j=1
j �=i

W

|i − j |φ j

⎞
⎟⎟⎠ , i = 1, 2, . . . , N .

(1)

where, xi , yi and zi represent the membrane potential, spiking variable and bursting
variable of i th neuron, respectively. yi is constituted by the flow of Na+ and K+
ions and the flow of Ca+ ions constitute the zi term. The fast oscillations of xi and
yi correspond to spikes, whereas, the slow oscillations of the zi variable cause burst
[42]. Indices i , j and N , represent pre synaptic neuron, post synaptic neuron and total
number of neurons in the network, respectively. The external current, I , is considered
as a constant and two varying forms. The interaction betweenmembrane potential, xi
and magnetic flux, φi is realised with the help of memristor, k1ρ(φi )xi , where, k1 is
the magnetic coupling strength. We have considered the memory conductance term,
ρ(φi ) as a hyperbolic form, tanh(φi ) [19]. This function can be easily approximated
to linear or nonlinear forms. The term k2xi represents the change in magnetic flux
induced by membrane potential of the cell and k3φi denotes the leakage of the
magnetic flux. ‘D’ describes the field interaction between neurons. ‘W ’ represents the
intensity of the field effect associatedwith distance between neurons. The parameters
of the model are chosen as, a = 3.0, b = 1.0, c = 1, d = 5, r = 0.006, s = 4.0,
xe = −1.61 [43], k2 = 0.9, k3 = 0.4, D = 0.0001, W = 1 [14].

3 Collective Dynamics and Synchronisation Scenario

The changes in the firing pattern, phase portraits and synchrony level, under the
combined effect of magnetic coupling and external stimulus have been analysed. We
have chosen the external stimuli in different forms (i) a constant (I1) and (ii) as time
varying function. The time varying external inputs are considered in two different
forms: (a) sinusoidal wave, given as I2 = A(sin(ωt) + cos(ωt)) with frequency, ω
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and (b) square wave, represented as I3 =A H
(
sin

(
2π t
ρs

))
, with an interval, ρs . H is

the bi-valued Heaviside step function, whose value is zero, for negative arguments
and one, for positive arguments.

3.1 Constant External Current

In this section, the dynamics, phase portraits and the synchrony pattern have been
analysed under the memristor effect and constant external current. The dynamics
and collective behavior of the network are analysed numerically by solving Eq. (1)
for xi (t), yi (t), zi (t) and φi (t) using Runge–kutta method in step size of 0.1. Initial
conditions for different neurons are chosen as, x0(t), y0(t) and z0(t) in the range
[−0.5, 0.5] and φ0(t) in the range [0,1]. The study of variations in xi reveals the
dynamical change induced in each neuron under the influence of magnetic coupling
and external stimuli. The average of xi over the number of neurons in the network
reveals the collective behavior of the network. The average of membrane potentials
is given by

x̄(t) = 1

N

N∑
i=1

xi (t) (2)

The dynamical change induced in a single neuron and the collective synchrony
is analysed in the memristive network for different values of k1 in the presence of
constant external current (I1 = 2.9) and is as shown in Fig. 1.

For low values of k1, the system exhibits square wave bursting with five spikes per
burst as shown in Fig. 1a. The lack of synchrony is visible from difference of x̄ from
the individualmembranepotential.Wehavevalidated the presenceof plateaubursting
dynamics with increase in the value of k1, as shown in Fig. 1b. The dissimilarity in
average membrane potential from the individual values represent the absence of
synchrony. On further increasing the value of k1, Fig. 1c shows AD state with no
oscillations. From the studies, it is clear that magnetic coupling stabilises the system.
The system is in complete synchrony as visible from the convergence of x̄ with the
individual values. The memritor drives the system from square wave bursting to
plateau bursting and to AD state, where the system exhibits complete synchrony.

The synchrony pattern in the network is further justified by the phase portraits as
shown in Fig. 2. The phase space has been plotted with average membrane potential
x̄(t) on X-axis and membrane potential of a single neuron on Y-axis. In Fig. 2a, the
phase space is dense at k1 = 0.1, representing lack of synchrony. As the value of k1
is increased, the phase space becomes more controlled and synchronised as shown
in Fig. 2b. The phase space shrinks to a single point representing stabilisation of the
states, on further increase in k1, as in Fig. 2c. The enhancement in synchrony with the
increase in strength of magnetic coupling is visible from the control and shrinking
of phase space.
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Fig. 1 Time series of discrete and average membrane potential of the magnetically coupled neural
network with constant external current (I = 2.9). Here, i = 25 and the dynamics is consistent for
any neuron in the network. a k1 = 0.1, b k1 = 0.3 and c k1 = 1.5
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Fig. 2 Phase portraits of neural network with magnetic coupling and constant external current
(I = 2.9). The average membrane potential is plotted in X-axis and membrane potential of single
neuron on Y-axis. Here, i = 25. a k1 = 0.1, b k1 = 0.3 and c k1 = 1.5
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3.2 Time Varying External Currents

The variations in firing patterns and the collective dynamics of the network with
magnetic coupling, under the influence of time varying external stimuli is analysed
in this section. The time series of x̄(t) for the two different external stimulus is shown
in Fig. 3. In the presence of memristor and sinusoidal wave, the system exhibits
square wave bursting character, as shown in Fig. 3a, for low value of input frequency,
ω. The initial transients lack complete synchrony, whereas, with evolution of time,
the system attains synchrony. This is visible as the convergence of individual and
average values of the membrane potential. With increase in frequency ω, the number
of spikes per burst decreases to two as shown in Fig. 3b. But the synchrony pattern is
maintained. Figure3c shows the spiking behavior under the influence of memristor
and square wave. The spikes are induced in the quiescent state. The lack of synchrony
is visible from the figure, by the separation of individual membrane potential from
the average value. With decrease in interval of the square input, the synchrony level
is even reduced, which is visible from Fig. 3d.

The phase portraits of the system with magnetic coupling and the time varying
external stimulus is as shown in Fig. 4. The top and bottom panel shows the phase
space of the system with sinusoidal and square inputs, respectively. In both panels,
the value of k1 increases from left to right. The Fig. 4a present the influence of
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Fig. 3 Time series of discrete and average membrane potential of the magnetically coupled neural
network with time varying external stimuli. Here i = 25, k1 = 0.1. a sinusoidal input (A = 3,
ω = 0.05), b sinusoidal input (A = 3, ω = 0.2), c square input (A = 3, ρs = 10), d square input
(A = 3, ρs = 3)
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Fig. 4 Phase space with sinusoidal (top panel) and square input (bottom panel). Here, i = 25,
A = 3, ω = 0.2, ρs = 3. The value of k1 used are 0.1 for a and e, 0.3 for b and f, 0.7 for c and g,
1.5 for d and h

input I2 on a network with weak magnetic coupling. The phase space exhibits small
dispersion. On increasing the strength of magnetic coupling, k1, the phase space is
reduced to a beeline as shown in Fig. 4b. On further increase of k1, the synchrony in
the network is preserved by the combined effect of magnetic coupling and sinusoidal
input, (I2), observed as the straight line in phase portrait of Fig. 4c. The synchrony
attained is sustained at even higher value of magnetic coupling strength, as shown in
Fig. 4d. The dispersed phase portrait for low magnetic coupling strength and under
the influence of square input, I3, represents the lack of synchrony in the network, as
shown in Fig. 4e. With further increase in magnetic coupling, the phase portrait is
still dispersed, in the presence of square input, as shown in Fig. 4f. A slight control
in the phase portrait is visible for further increase in magnetic coupling strength, as
shown in Fig. 4g. At high value of magnetic coupling strength, the phase portrait is
reduced to a beeline in the presence of input, I3, as shown in Fig. 4h. Thus, it is found
that the magnetic coupling helps to control the phase space in the presence of time
varying external inputs. However, the control is faster in the presence of sinusoidal
input compared to the square input.
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3.3 Statistical Factor of Synchronisation

The synchrony induced by the magnetic coupling, in the presence of external stimuli
is quantified using statistical factor of synchronisation [41, 44], which has the form:

R = 〈x̄(t)2〉 − 〈x̄(t)〉2
1
N

∑N
i=1[〈x(t)2i 〉 − 〈x(t)i 〉2]

(3)

where, x̄(t) is given by Eq. (2) and ‘〈 〉’ represent the average of the variable over
time. The system attains complete synchrony when R = 1 and desynchrony when
R = 0.

The variation in R with k1 in the presence of different external stimuli is shown in
Fig. 5a. The synchronisation factor has been calculated using (3). The blue, red and
yellow lines represent the influence of constant, sinusoidal and square input on the
magnetically coupled network, respectively. The amplitude of the inputs are fixed at
A = 3.At lowvalues of k1, the value of R is about 0.5, representing partial synchrony.
The synchrony obtained by the network, under the influence of constant current is
found to be high compared to the square input. The high value of R obtained for
even low value of magnetic coupling in the presence of sinusoidal input, represents
the synchrony obtained by the network. For weakly coupled system, the synchrony
obtained by the constant input lies in between square and sinusoidal input and for
high values of k1, the magnetic coupling overrides the input effects.

The variations in the R with the amplitude of the inputs is presented in Fig. 5b.
The colour codes used for the inputs are similar to Fig. 5a. In the absence of any
external input, the synchrony level is obtained to be about R = 0.85, as the value of
k1 is fixed as 0.3. For low intensities of the inputs, the synchrony of the network is
reduced from the initial value in the presence of constant input. The synchrony is even
lowunder the influence of square input. The presence of sinusoidal input increases the
synchrony in the network.With increase in the intensities of the inputs, the differences
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Fig. 5 Variation of statistical factor of synchronisation with a magnetic coupling strength and b
amplitude of external input, under the influence of different external stimuli. The constant input,
sinusoidal and square inputs are represented by blue line, red and yellow colours respectively. a
A = 3 b k1 = 0.3. Here, ω = 0.2, ρs = 3
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Fig. 6 Statistical factor of synchronisation for different parameters of the time varying input. Here,
k1 = 0.3, A = 3

in synchrony becomes more visible. The results obtained are in perfect agreement
with the studies of Fig. 5a. At sufficiently high amplitudes of the external input, the
sinusoidal input is capable of enhancing synchrony compared to the constant input.
The desynchronising ability of the square input on the magnetically coupled network
is also visible.

The study of synchrony pattern has been extended by varying frequencies of the
inputs, I2 and I3. The variations in R with the frequency, ω of sinusoidal input is
shown in Fig. 6a. For low value of frequency, the synchrony is quantified to be about
R = 0.7. With further increase in ω, the synchrony is also increased. Thus, the input
with high frequency has a greater synchronising ability. The desynchronising abil-
ity of the square input is analysed for the variations in interval of the square input
as presented in Fig. 6b. For low values of the interval, ρ, (i.e.) high frequency, the
synchrony is drastically reduced. But on further increasing the interval (reducing fre-
quency), the synchrony is increasing, representing the inability of the low frequency
input to desynchronise. Thus, it is inferred that high frequency sinusoidal input and
square input has the capability to synchronise and desynchronise the magnetically
coupled network, respectively.

4 Conclusions

We have analysed a linear chain of HR neurons with magnetic coupling and external
stimuli of different forms. The magnetic coupling is capable of inducing plateau
bursting and amplitude death in the HR neurons with constant external input. The
phase space trajectories are controlled and shrinks to a single point with the increase
in magnetic coupling strength, representing synchrony and amplitude death. The
synchrony is quantified using statistical factor of synchrony. The HR neural network
with magnetic coupling is also analysed in the presence of sinusoidal and square
waves. The dynamics of the individual neurons are square wave bursting and spiking
in the presence of sinusoidal and square inputs, respectively. In the presence of time
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varying external inputs, the phase space trajectories of the system are reduced to
beeline, for highmagnetic coupling strength. The statistical factor of synchronisation
justifies the fact that, the sinusoidal input enhances synchrony and the square input
suppresses the synchrony in the network, compared to the constant input. The inputs
with high frequencies have greater ability to enhance and suppress the synchrony.
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Excitation Spectrum of Repulsive
Spin-Orbit Coupled Bose-Einstein
Condensates in Quasi-one Dimension:
Effect of Interactions and Coupling
Parameters

Sanu Kumar Gangwar, R. Ravisankar, and Pankaj K. Mishra

Abstract We investigate the stability of the repulsive spin-orbit (SO) coupled Bose-
Einstein condensates with linear Rabi mixing by employing the Bogoliubov-de-
Gennes theory. We analytically compute the eigenenergy spectrum for both non-
interacting and interacting cases. Themagnitude of the imaginary part of the eigenen-
ergy has been used to characterize the dynamical instability of the condensate. We
find that increase in the SO coupling (kL ) leads to the transformation from a stable
state to a single instability band then a multiple instability band. However, the effect
of increase in Rabi coupling (�) is the opposite, whichmakes the systemmore stable.
Further, we perform a systematic analysis to understand the effect of the variations
of the interaction parameters on the instability of the spectrum. Finally, a stability
phase diagram in the interspecies and intraspecies parameter plane and� − kL plane
has been obtained.

Keywords Bose-Einstein condensates · Bogliubov-de-Gennes theory · Spin-Orbit
coupling · Gross-Pitaevskii equation · Instability

1 Introduction

After the successful achievement of experimental realization of Bose-Einstein con-
densates (BECs) in the dilute atomic gases, with a lot of free parameters to control
the system, it has totally given a new direction to the research in ultracold Physics.
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In BEC, the nonlinear interaction evolves from the atomic interactions, which are
revealed as nonlinear terms in theGross-Pitaevskii equation (GPE) [1]. The nonlinear
interactions may be attractive or repulsive interatomic interactions.

In recent years the coupled BECs [2] have attracted the attention of the scien-
tific community owing to its unique features of having two internal atomic states,
which can be tuned to generate the multiple component BECs. Moreover, at ultralow
temperatures, quantum gases allow the realizations of multi-component BECs [2–4],
whose behavior is very different with respect to that of a single component BEC. The
possibility of tuning a number of system parameters makes such systems ideal for
studying the structure of the various phases and the nature of the phase transitions.
There are lots of studies in coupled BECs system that focus on the stability region [3,
5], chaotic and unstable cycle behavior [4], etc. However, after a breakthrough exper-
iment by Spielman and his group at NIST, who have been able to engineer a synthetic
spin-orbit (SO) coupling in BECs [6], the coupled BEC field has generated renewed
interests among the community. In this experiment, two Raman laser beams were
used to couple hyperfine states of BECs, where the momentum transfer between
atoms and lasers leads to the synthetic SO coupling [7].

In 1941, to explain the superfluid behaviour in 4He Landau developed the fun-
damental theory of elementary excitation. On similar line further Bogoliubov in
1947 [8] performed the analytical derivation of the excitation spectrum for the Bose
gases. The collective excitation spectrum of BECs gives the basic information about
the dynamics of the ultracold gases [9]. Roton-phonon-Maxon modes were found
in the quasi-1D SO coupled BECs experimentally [10], and analytically [11], also
the dynamical and energetic instability were investigated numerically [12]. Although
there are recentworks that highlight the stability/instability of the excitation spectrum
of SO coupled BECs in two dimension such analysis has been lacking for 1D system
where the systems exhibit interesting dynamical behaviour [13]. In this paper, we
focus on the instability regions for different SO and Rabi coupling parameters while
considering the repulsive inter-and intraspecies interactions between the components
of condensates.

We arrange the paper in the following sequence. In Sect. 2, we develop the math-
ematical model and corresponding coupled Gross-Pitaevskii equations for spin-1/2
BECs. In Sect. 3 we discussed the single-particle spectrum. Section 4 we divide in
three different subsections. We develop the analytical model to evaluate the excita-
tion spectrum in the first subsection. In the next subsection, we focus on the effect of
SO and Rabi couplings on the excitation spectrum of spin-1/2 BECs, and further, the
effect of intra- and interspecies interactions. In Sect. 5 we present the stability phase
diagrams for both cases as discussed in Sect. 4. Finally, we provide the summary of
our work in Sect. 6.
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2 The Model: Coupled Gross-Pitaevskii Equations

This section illustrates the mean-field model of spin-orbit (SO) coupled quasi-one-
dimensional pseudospin-1/2 BECs. Theoretically, we can study the properties of
these kinds of systems with the help of the coupled Gross-Pitaevskii equations given
below (as in dimensionless form) [13]:

i
∂ψ↑
∂t

=
[

− 1

2

∂2

∂x2
− ikL

∂

∂x
+ V (x) + α|ψ↑|2 + β|ψ↓|2

]
ψ↑ + �ψ↓, (1a)

i
∂ψ↓
∂t

=
[

− 1

2

∂2

∂x2
+ ikL

∂

∂x
+ V (x) + β|ψ↑|2 + α|ψ↓|2

]
ψ↓ + �ψ↑, (1b)

Here, ψ↑ and ψ↓ are the wavefunction corresponding to the spin-up and spin-down
component of the condensates, V (x) is the trapping potential, α and β are the intra-
and interspecies components of the condensates respectively, kL is SO coupling and
� is the Rabi coupling parameters. In the above equations (1), length is measured in
units of harmonic oscillator length a0 = √

�/(mω⊥), time in the units of ω−1
⊥ , and

energy in the units of �ω⊥, where ω⊥ is the transverse direction frequency of the
harmonic confinement. The SO coupling and theRabi coupling parameters have been
rescaled as kL = k ′

L/a0ω⊥ and � = �′/ω⊥, respectively, while the wave function
is rescaled as ψ↑,↓ = ψ↑,↓a

3/2
0 /

√
N . We consider the Rabi coupling as � = |�|eiθ

that minimizes the energy when � = −|�| for θ = π [13]. The wave functions are
subjected to the following normalization condition

∫ ∞
−∞

(|ψ↑|2 + |ψ↓|2) dx = 1.

3 Single-particle Spectrum

In this section, we study the single-particle spectrum of the spin-orbit coupled binary
BECs, which arises by solving the coupled trapless GP equations in the absence of
inter- and intraspecies interactions.

Let us consider the plane wave solution as ψ↑,↓ = φ↑,↓ei(kx x−ωt), and also α =
β = V = 0. Therefore we can write the eigenvalue problem as,

ω
(
φ↑ φ↓

)T = Lsp
(
φ↑ φ↓

)T
(2)

where,

Lsp =
( 1

2k
2
x + kLkx �

� 1
2k

2
x − kLkx

)
(3)

Which gives the single-particle spectrum as,
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Fig. 1 Single-particle spectrum for different combination of spin-orbit and Rabi coupling param-
eters a kL = 0.0, � = 0.0 b kL = 0.7, � = 0.0, c kL = 0.0, � = 0.5 d kL = 0.7, � = 0.5, e
kL = 0.7, � = 0.7 f kL = 1.0, � = 0.5

ω± = 1

2

(
k2x ± 2

√
k2xk

2
L + �2

)
(4)

The single-particle spectrum has two solutions positive branch (ω+) and negative
branch (ω−). The negative branch shows the transition from single minima to double
minima on the variation of SO coupling for finite Rabi coupling strength, while the
positive branch has single minima throughout. So mainly, in this part, we will focus
on the negative branch.

For zero spin-orbit (kL = 0) and Rabi (� = 0) couplings, the non-degenerate
parabolic spectrum occurs (see Fig. 1a). For further analysis, we introduce finite
value to kL = 0.7 in the absence of Rabi (� = 0), the negative branch of the spectrum
makes a transition from parabolic to double minima, which locates at the position
kx = ±kL (see Fig. 1b). Now we fix finite value to Rabi (� = 0.5) in the absence
of the SO coupling parameter (kL = 0), double minima disappears, and the depth of
the minima increases. We also investigate that the energy gap between negative and
positive branches is 2� (see Fig. 1c). Since we are looking forward to the effect of
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variation of SO (Rabi) with the other coupling termRabi (SO) at some finite value, on
the negative branch of the spectrum. On increasing Rabi term (see Fig. 1d and e) from
� = 0.5 to� = 0.7 at fix value of SO kL = 0.7, we analyze that the depth of minima
increases, this corresponds to lowering in the energy of the system. It indicates that
the system is more stable upon increase in �. Again on increasing SO term from
kL = 0.7 to kL = 1.0 at the fixed value of Rabi term � = 0.5, we observe that the
phase transition from single minimum to double minima in the negative branch of
the spectrum (see Fig. 1d and f). This observation confirms the phase transition, and
it will occur only when � < k2L .

4 Collective Excitation Spectrum

The excitation spectrum of the condensates provides an important clue about their
dynamical stability. In this section, first, we discuss the analytical results of the
eigenenergy of the excitation spectrum using Bogoliubov-de Gennes (BdG) theory.
It is followed by the effect of the coupling parameters on the stability of the energy
spectrum.

4.1 Analytical Study of Excitation Spectrum

In this section, we present the analytical study of the excitation spectrum of coupled
Binary BECs in the presence of SO and Rabi couplings by applying the BdG theory
given by Bogoliubov in 1947. Initially, we perturb our ground state wave function
φ↑,↓ by adding a small perturbation term δφ↑↓. After inserting this modified wave
function in the coupled GP Equation, we get four different branches of the excitation
spectrum.Out of four, two are positive, and two are negative.We analyze the behavior
of positive and negative energy branches in the presence of SO and Rabi coupling.
Elaborately, we vary the SO (Rabi) term at the fixed Rabi (SO) term. The excitation
wave function to get the BdG transformation matrix is given by,

ψ j = e−iμt [φ j + δφ j ] (5)

δφ j = u j e
i(kx x−ωt) + v∗

j e
−i(kx x−ω∗t) (6)

Where, φ j = √
n j eiϕ j , ( j =↑,↓) is the ground state wavefuction, u′

j s and v′
j s are

the BdG amplitudes. Also n j and ϕ j is the density and phase respectively. We could
calculate BdG amplitudes by substituting equation Eq. (5) in Eq. (1). Therefore,

ω
(
u↑ v↑ u↓ v↓

)T = L (
u↑ v↑ u↓ v↓

)T
(7)
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where the superscript T denotes the transpose of the matrix and L is given by,

L =

⎛
⎜⎜⎝

H1 − μ αn↑ β
√
n↑n↓ − � β

√
n↑n↓

−αn↑ −H2 + μ −β
√
n↑n↓ −β

√
n↑n↓ + �

β
√
n↑n↓ − � β

√
n↑n↓ H3 − μ αn↓

−β
√
n↑n↓ −β

√
n↑n↓ + � −αn↓ −H4 + μ

⎞
⎟⎟⎠

Where, the matrix element H1, H2, H3, H4 and μ (chemical potential) is given in
the Appendix. A. The normalization condition yields

∫
(|u j |2 − |v∗

j |2)dx = 1. The
Simplified form of the BdG equation can be obtain by substituting det (L) equal to
zero with n↑ = n↓ = 1/2. Therefore we get,

ω4 + aω2 + b = 0 (8)

where the coefficients of the dispersion relation a, b are given in Appendix. B.
We calculate the eigenvalue of the matrix L (see Eq. (7)). As discussed in the last

section, the single-particle spectrum (α = β = 0) generally has a positive branch
(ω+) and a negative branch (ω−). The positive branch exhibits singleminima through-
out, while the negative branch shows the phase transition from single minimum to
double minima upon the variation of spin-orbit coupling at some finite Rabi coupling
term. Here, we will focus on the negative branch. Note that the imaginary or complex
eigenenergies indicate the dynamical instability, while the negative eigenenergy of
the excitation spectrum implies that the system is energetically unstable [14]. As
we are interested in investigating the effect of the different interaction and coupling
parameters on the dynamical instability, we will be mainly interested in looking at
the nature of the negative branch of the eigenenergy. We define the instability factor
G = |	(ω−)|.

In the following, we present the effect of the couplings on the stability of the
excitation spectrum.

4.2 Effect of SO and Rabi Coupling Parameters
on the Stability of Spectrum

Recently, Ravisankar et al. [14] have analyzed the effect of the SO andRabi couplings
on the stability of the excitation spectrum for quasi two-dimension binary BECs. It
has been observed while the increase in SO coupling leads the instability, increment
in Rabi couplings brings the stability. In a similar line, we want to analyze the
effect of variation in the couplings for a quasi-one dimension where the SO coupling
acts in the same way. Figure2 exhibits the variation of the instability (G) along the
wavenumber for different kL with fixed α = β = � = 1.We find that the condensate
is stable for kL = 0 for all ranges of the wavenumber. For small kL (= 1.5, 1.75) the
instability appears for a band of the wavenumber. Such kind of phase transition will
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Fig. 2 Variation of the
imaginary part of the
eigenvalue of the excitation
spectrum with kx for
different kL with fixed
� = α = β = 1. The
instability region expands
along kx with increase in kL
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Fig. 3 Variation of the
imaginary part of the
eigenvalue of the BdG
spectrum with kx for
different � with fixed
kL = α = β = 1. The
instability region reduce
along kx with increase in �
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occur only for� > k2L in the weak repulsive BECs. In particular, when kL � 1.75 we
noticed the single instability band transforms to multi-band. Upon further increase in
kL (= 2.0, 2.5) leads to the generation of two or more wavenumber bands in which
the spectrum is unstable. Note that for simplicity here we have shown the instability
factor (G) for the positive wavenumber. The behavior is symmetric about kx = 0.

In Fig. 3 we show the variation of the instability factor (G) along the wavenumber
for different Rabi coupling (�) with fixed interaction parameters α = β = 1 and
kL = 1. For zero Rabi coupling (� = 0), the condensates lie in the stripe wave
regime; thus, it has an instability band [13]. Further increase in the Rabi coupling
to � = 0.3, we observed that the instability bandwidth gets reduced with enhanced
amplitude. However, increment in�(= 0.6, 0.9) resulted reduction in the bandwidth
as well as the amplitude of the instability. Finally, we obtained the stable regime for
� � 1. From the single-particle spectrum, when � > k2L , we have a plane-wave
phase which is a more stable one. Here we also confirm this through our stability
analysis.

In the next section, we discuss the effect of variations of interaction parameters
on the instability of the spectrum.
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4.3 Effect of Intra- And Interspecies Interactions
on the Stability of Spectrum

In the last subsection, we discussed the effect of SO and Rabi coupling parameters
on the stability of the excitation spectrum; here, we present our analysis attributed to
the effect of the intra- and interspecies nonlinear interaction strengths on the stability
of the excitation spectrum. First we analyze the effect of intraspecies interactions (α)
on the BdG spectrum for fixed SO coupling kL = 2, and� = β = 1 (see Fig. 4). For
kL = 1, and � = 1, we know that the system should be in the stable regime because
it is plane wave phase as discussed in Fig. 3. Here as we are interested in analyzing
the instability of the system, we choose the stripe wave regime, which is the more
unstable regime. Forα = 1, we find two instability bands, which aremaintained up to
α � 2.When α > 2, we noticed that the two instability bands converted into a single
band accompanied by a reduction in the instability amplitude. It is quite interesting
that we obtain the stable regime for more repulsive intraspecies interaction strength
α = 8 (see magenta thick solid line in Fig. 4). Overall we conclude that as we select
the unstable regime, increasing α makes the system enter into the stable regime.

Next, we analyze the role of interspecies interaction strength (β) on the stability
of the system with fixed parameters as kL = � = α = 1. Here we consider the plane
wave regime, which is the more stable regime, then we show the effect of increasing
β on the stability of the system. For finite repulsive intraspecies interaction strength,
we have a more stable regime (see red thick solid line in Fig. 5). When β > 1, we
observe the appearance of the instability band. Further, we notice that the single
instability band gets converted to multi-band when β > 5.

So far, we have discussed the effect of interactions and coupling parameters on
the stability of the quasi-1D SO coupled BECs. In the next section, we will present
the stability phase diagrams that we have obtained from our analysis.

Fig. 4 Variation of the
imaginary part of the
eigenvalue of the excitation
spectrum with kx for
different α with fixed
kL = 2, � = β = 1. The
instability region reduce
along kx with increase in α

0 1 2 3 4 5
kx
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1.0

G
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α = 4
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Fig. 5 Variation of the
imaginary part of the
eigenvalue of the BdG
spectrum with kx for
different β with fixed
kL = � = α = 1. The
instability region expands
along kx with increase in β
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5 Stability Phase Diagrams

For better visualization of the stability of the system, we plot two different stability
phase diagrams in Fig. 6. The left panel is in the α − β plane for � = kL = 1 and
right panel is in the � − kL plane for α = β = 1. Both phase diagram is for the
G value at kx = 1. First, let us consider the α − β stability phase diagram. When
β < 0.9, we found a stable regime for all ranges of the α. Afterward, we observed
that the increase in α with fixed β leads to the transformation of the unstable phase
to the stable phase. However, increment of β for fixed α results in the transformation
from stable to unstable. The α − β phase diagram clearly indicates the emergence
of the more stable regime for repulsive intraspecies interaction strengths (α). On
the other hand, the kL − � phase diagram shows the instability regimes (see right
side Fig. 6). For zero Rabi coupling (� = 0) as kL is increased initially, the stable

Fig. 6 Stability and instability phases in the α − β (left) and kL − � (right) parameter space.
The fixed parameters in the left are � = kL = 1 and in the left are α = β = 1. The pseudo colour
represents the G value
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phase is observed, which becomes unstable for 0.5 < kL < 1.0. For kL > 1.0, the
system returns back to the stable regime. In the same line, all range of Rabi coupling
behaves, which suggests that upon increasing SO coupling with fixed Rabi coupling
we will have some intermediate instability regime for a short range. Recently such
types of intermediate ground state phase is reported in the Ref. [15].

6 Conclusion

Using the Bogoliubov-de-Gennes analysis, we have analyzed the effect of the inter-
action and coupling parameters on the stability of the collective excitation spectrum
of the SO and Rabi coupled binary BECs in quasi-one dimension.We have computed
the single-particle aswell the collective excitation spectrum.The absolute value of the
imaginary part of the negative eigenenergy of the excitation spectrum has been used
to characterize the stability of the spectrum. Our analysis shows that the increase in
the SO coupling (kL ) leads to the conversion of the single and multi-instability bands
to the stable state. However, increase in Rabi coupling resulted the instability having
a single-band nature. The increase in α also changes the multiple instability band
into single band which finally converts into stable one for strong repulsion. However,
increase in β keeping other parameters fixed yields multiple unstable bands from a
stable state. Only the amplitude to instability increases. Finally, we have obtained a
stability phase diagram inα − β and� − kL parameter space.We found that increase
in β for a fixed value of α leads the system to enter from a stable to unstable region
while the effect of the increase in α for fixed β is opposite. Similarly, we find that
increase in kL for fixed � brings the system from stable to unstable phase while
behavior is opposite as � is increased for fixed kL . The essential observation is that
upon the increase in � and α alone makes the system more stable, however, increase
in kL and β transformed the system from stable to unstable one.

7 Appendix A: Elements of the BdG Matrix

H1 = k2x
2

+ kLkx + 2αn↑ + βn↓; H2 = k2x
2

− kLkx + 2αn↑ + βn↓

H3 = k2x
2

− kLkx + 2αn↓ + βn↑; H4 = k2x
2

+ kLkx + 2αn↓ + βn↑

and

μ = 1

2

[
αn + βn − �

n√
n↑n↓

]
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8 Appendix B: Coefficients of the BdG Excitation Spectrum

a = − k4x
2

− 2�

(
α − β + 2�

)
− k2x

(
α + 2(k2L + �)

)

b = 1

16
k2x

(
k2x + 2α − 2β − 4k2L + 4�

)(
k4x + 8(α + β)� + 2k2x (α + β − 2k2L + 2�)

)
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Empirical Models for Premiums
and Clustering of Insurance Companies:
A Data-Driven Analysis of the Insurance
Sector in India

Rakshit Tiwari and Siddhartha P. Chakrabarty

Abstract The article deals with the modeling of insurance premiums and their clus-
tering, from the paradigm of the Indian insurance sector, during a 15year period,
using data-driven regression and clustering techniques. Among three approaches
considered for the predictive modeling of insurance premiums, the most effective
method was determined to be the random forest approach. Interesting insights for
the pre and post 2008 (financial crisis) period, revealed distinct clustering character-
istics between the private and public sector insurance companies operating in India,
especially in terms of consumer behavior.

Keywords Insurance premium · Machine learning · Regression · Clustering

1 Introduction

Since the solvency of an insurance company is driven by its ability to generate premi-
ums, which must exceed the expected claims payout and other liabilities, therefore
it is essential to develop predictive models of both the premium receipts, as well as
the claims losses. Our analysis in this article is motivated by the somewhat minimal
literature available in case of the former, as compared to the latter. The role of actu-
aries, while developing pricing strategies, is to assess a fair price for the insurance
products they wish to sell. This however, has to be done in a manner so as to fulfill the
outstanding liabilities of the insurance company, while safeguarding its solvency and
reserve capital. Consequently, the actuaries must predict, with maximum possible
accuracy, the total amount required to meet the claims payout. These reserves form
the principal item on the insurance company’s balance sheet’s liability side and thus
have a significant economic impact.

R. Tiwari · S. P. Chakrabarty (B)
Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
e-mail: pratim@iitg.ac.in

R. Tiwari
e-mail: rakshit10@alumni.iitg.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Banerjee and A. Saha (eds.), Nonlinear Dynamics and Applications,
Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-99792-2_110

1299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99792-2_110&domain=pdf
http://orcid.org/0000-0001-5808-1737
http://orcid.org/0000-0001-9281-8587
mailto:pratim@iitg.ac.in
mailto:rakshit10@alumni.iitg.ac.in
https://doi.org/10.1007/978-3-030-99792-2_110


1300 R. Tiwari and S. P. Chakrabarty

In this article, we perform statistical and data analysis, on the premium data col-
lected from the website of the Insurance Regulatory Development Authority of India
(IRDAI) [1], with the objective of developing predictive models for the monthly pre-
miumcollectionof the insurance companies included in our dataset. Thedataset avail-
able on the website of IRDAI were for 13 different companies, namely, Royal Sun-
daram, Tata-AIG, Reliance General, IFFCO-Tokio, ICICI-lombard, Bajaj Allianz,
HDFC CHUBB, Cholamandalam, New India, National, United India, Oriental and
ECGC.

The data that we use in this article, consists of the monthly premium amounts
collected during the period of April 2003 to Dec 2017, for these 13 insurance com-
panies mentioned above. We note here, that more detailed data was not available.
Also, the issue of some anomalies and errors in some of the cells of the considered
dataset, was addressed, by removing the erroneous data, so as to achieve the best
possible results. Further, during the process of building a machine learning model,
we followed the standard practice of training and then back-testing the model on
the untrained part of the dataset. Accordingly, the training set comprised of 80%
of the total data points, while the remaining 20% of the data points was used for
back-testing the results, as well as finding the mean squared and root mean squared
error, for comparative analysis across several types of models. The key aspect in this
analysis is not just about building mathematical models, for finding results using the
same, but to explain those results with the help of real life comparisons which have
been discussed towards the end of the article.

Most of the modeling approaches in actuarial mathematics focus on the determi-
nation of the distribution that best fits the data. In a recent work [2], a dependent
modeling framework is adopted for predictive distribution with accuracy in case of
frequencies, as well as claims score, pertaining to insurance claims. In another dis-
tribution driven article [3], the authors make use of a tweedie compound Poisson
model to achieve a robust prediction performance for premiums. The classification
of applicants, for risk prediction in life insurance sector, is carried out by way of the
supervised learning approach in [4].

2 Predicting the Monthly Premium Amount

We will approach the problem of predicting the monthly premium amount received
by each insurance company, making use of three commonly used machine learning
models. Further, we implement the models in terms of its increasing level of com-
plexity, in order to understand whether this results in the concurrent improvement in
terms of the backtesting results. The eventual goal is to ascertain whether the models
and their predictive results obtained here, would be helpful in obtaining a viable pre-
diction mechanism, for forecasting the premium amounts in the future. Accordingly,
we will make use of three models, as outlined in the following subsections.
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2.1 Linear Regression

The basis for linear regression model is the assumption that there exists a linear
relationship between a dependent (output) variable y and several independent (input)
variables x1, x2, . . . , xn [5, 6]. A univariate or simple linear regression model is one
where there is only one input variable, while linear regression models with multiple
input variables is termed as multiple linear regression model. The most common
approach of obtaining a linear regression equation, from observed data is the method
of least squares regression. The coefficients in case of both multiple, as well single
regression model, can be obtained by minimizing the sum of the least squared errors,
which can be defined as εi = yi − ŷi , where the variable y has n observed (predicted)
values, say yi (ŷi ) , i = 1, 2, . . . , n. For the sake of brevity, we state the results for
multiple linear regression which can subsequently be used in case of polynomial
regression model. Accordingly, we let,

−→y =

⎛

⎜
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The multiple linear regression thus can be represented in the form,

−→y = X
−→
β + −→ε .

The least-squares regression approach is used to estimate the parameter
−→
β by min-

imizing,
n

∑

i=1

ε2i =
(−→y − X

−→
β

)� (−→y − X
−→
β

)

,

which then results in, −̂→
β = (

X�X
)−1

X�−→y .

Note that the methods of regularization, is used to modify the learning algorithm (so
as to achieve reduction in complexity of the regression models) by placing pressure
on the absolute size of the coefficients, thereby reducing some of the coefficients to
zero.

2.2 Polynomial Regression

We next, seek to address a key shortcoming of the linear model, namely the under-
fitting, by increasing the complexity of the model, and the natural choice for the
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same is to add higher powers, resulting in higher order equations [6]. Accordingly,
the linear model obtained above is now represented as,

yi =
m

∑

j=1

x j
i + εi , i = 1, 2, . . . , n.

Even though terms like x j
i are present in the model, the coefficients are still linear.

However, the curve we fit is going to be polynomial in nature. Therefore, polynomial
regression is a type of linear regression in which the relationship between the input
variable and output variable, is modeled as a polynomial ofm-th degree. Polynomial
regression matches a nonlinear relationship between the value of the input variable x
and the corresponding conditional mean of the output variable y, denoted as E (y|x).
An interesting point that was observed while working with polynomial regression
model, is the accuracy of the results (or equivalently, the reduction in absolute error)
while back-testing results, as we select higher degree polynomials. A naive approach
of selecting degree 2 polynomials till degree 10 polynomials was tested, and the same
was confirmed.

2.3 Random Forest Regression

Random forest, as the nomenclature suggests, comprises of a large collection of
decision trees which act collectively [7]. Each individual tree of the random forest
outputs a prediction of class, with the one gaining the most votes, taken as the
prediction of the model. The rationale for this impact is that the trees protect one
other from their individual incorrectness (provided they do not all fail in a concurrent
and consistent manner).While some treesmight be incorrect, many other trees would
be correct, and consequently, the trees will move in the correct direction, collectively.
In our case below, we started with 10 decision trees, since this is the default value
in sklearn.ensemble library [8] and slowly increased the value so that the model can
learn and adapt from the training set and make better decisions.

3 Procedure

In this Section, we present the approach for predicting the monthly premium as
elaborated in Sects. 2.1, 2.2 and 2.3.
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3.1 Predicting Monthly Premiums

We will discuss the methods that were used primarily to obtain the results reported
in this article. The first step was the filtering of data containing approximately 2000
data points, in order to remove the anomalies. Our main focus then was to judge
the fitness of models on the test data and to suggest ways that can be used by the
actuaries for projecting the growth of premiums received by the insurance firms in
the future. Three modeling methods have been used in this article as described above
in Sect. 2, with one of them distinctly emerging as the best choice, because of a
substantial difference obtained in the mean absolute error while back-testing. Some
of the standard practices of machine learning that have been used in this article are:

1. The data considered was divided in the ratio 4 : 1, between the training and the
testing sets which is the standard approach adopted for machine learning pro-
grams. Also, due to the lack of availability of extensive data, as well as for the
generation of a fully functional model, it is important to prioritize our limited
resources, for training the model first.

2. As already noted, the data provided, comprised of monthly premiums collected
across a span of 15 years. For regression purposes, we have taken the help of date
ordinals, which are the standard hashed values of dates used in machine learning.

3. One of the other challenges while modeling, pertained to the choice of the degree
of polynomial being used in the polynomial regression model. All polynomials
from degree 2 to degree 10, were chosen one by one, and the degree which gave
the least absolute error during back-testing was finally chosen.

4. Number of estimators/decision trees chosen in the random forest model was equal
to 1000.

3.2 Predicting the Optimum Number of Clusters
for Clustering

1. An appropriate data-frame of monthly premiums was formed to carry out the
basic K-Means clustering [9].

2. The purpose of going forward with a basic clustering algorithm and not any
advanced clustering algorithms, lies in our regression results. Since the data did
not exhibit any absurd patterns, it was an optimum choice for carrying out the
clustering experiment with basic algorithms.

3. In order to determine the optimumnumber of clusters, we used the standardElbow
Method [9]. The results obtained during this experiment can be seen in Sect. 4.
The value of optimum clusters obtained is 2.

4. Using the same result, going forward and applying K-Means algorithm, we
obtained 2 group of companies. The results obtained were on expected lines,
as it segregated the 13 companies into 2 groups primarily based on their positive
or negative growth of monthly premiums.
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5. In order to examine the results of this experiment in a more elaborate manner, we
worked around with cluster size of 3 and 4 also. This helped us in segregating
organizations even further on their growth/product quality.

4 Results

This Section is entirely dedicated to the presentation of the results that were obtained
from the data considered, and the models we have enumerated in Sect. 3. The results
of the regression modeling using the random forest algorithm are presented in
Fig. 1a–m, where the consistently superior performance of the random forest algo-
rithm can be easily observed.

Using K-Means Clustering and Elbow method for finding optimum number of
clusters, we were assured of that there are two optimum number of clusters present
in the dataset considered, into which, we can segregate the enumerated insurance
companies. Using the Elbow method, we obtained the first cluster comprising of
eight companies, namely, Royal Sundaram, Tata-AIG, Reliance General, IFFCO-
Tokio, ICICI-Lombard, Bajaj Allianz, HDFC CHUBB and Cholamandalam, all of
which are private sector companies. The second cluster comprises of the remaining
five companies, that is, New India, National, United India, Oriental and ECGC, all
of which are public sector companies. The sum of the squared distances against the
number of clusters are presented in Fig. 2.

When we experimented with the clustering of the companies, using different
cluster sizes, we observed that the existing partition of size two, in the preced-
ing paragraph, gets further sub-divided, on the basis of better/good performance or
better/worse performance. With the number of clusters being three, the first clus-
ter includes, Royal Sundaram, Tata-AIG, Reliance General, IFFCO-Tokio, ICICI-
Lombard, Bajaj Allianz, HDFCCHUBB and Cholamandalam. The eight companies,
included in the first list for three clusters, were all included in the first list for two
clusters. These eight are the group of companies, who have shown an impeccable
growth in period of 15 years that have been considered. The second cluster, now,
comprises of four companies, namely, New India, National, United India and Ori-
ental. These can be described as those players who suffered a major setback in 2008
but are showing signs of revival, since then. Finally, the third cluster in this case,
includes just one company, that is, ECGC. It is observed from the data, that ECGC
is the only company that has failed to achieve visible revival, after going through
setbacks as a result of the 2008 financial crisis.

In case of cluster of size four, the first cluster includes ICICI-Lombard and Bajaj
Allianz. These two companies are the ones who have an outstanding growth chart
when compared to the other six companies that are in the positive growth cluster.
The remaining six companies namely Royal Sundaram, Tata-AIG, Reliance General,
IFFCO-Tokio, HDFC CHUBB, Cholamandalam are now a part of the second cluster
out of the four clusters. The third cluster, comprises of the same cluster of public
comprises, that formed the second cluster in case of three clusters, namely, New
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Fig. 1 The fit to data of all the 13 insurance companies using the Random Forest Algorithm.



1306 R. Tiwari and S. P. Chakrabarty

Fig. 2 The sum of squared distances against the number of clusters using the Elbow Method

India, National, United India, Oriental. Consequently, ECGC is the only company
in the last of the four clusters. We observe that, the third and fourth cluster in this
case, is identical to the last two clusters for the previous case of three clusters.

5 Discussion

It is clear that in the 15 years, for which the data was considered, the first group of
companies (for the two-cluster case) have shown a tremendous growth, while the
opposite has happened in case of the second group of companies. There are several
reasons to which this happenings can be attributed to, which will be elaborated upon,
in the following discussion.

One of the things that we can look at, with the help of the models, is the accuracy
of our back-testing results which exhibits improvement with the increasing complex-
ity of the model. Table1 depicts the mean absolute error obtained using the Linear
Regression (LR), Polynomial Regression (PR) and theRandomForest (RF),model in
Crores.1 The error data obtained from the first eight companies confirms that random
forest is indeed the best model being used to predict premium amount collections
in our case. Meanwhile, when we first look at the error data of last five columns in
Table1, it suggests a completely different narrative, which is actually not the case. A
close look at Fig. 3 above for these companies itself, one can see a huge spike (down-
fall) right around the 2007–09 period, which results in the outliers. In the context of

1 1 Crore=10 Million.



Empirical Models for Premiums and Clustering of Insurance Companies … 1307

Table 1 Mean Square Error of the Three Regression Algorithms (in Crores) for all the thirteen
insurance companies

Company name Linear regression Polynomial regression Random forest

Royal Sundaram 14.15 14.13 10.33

Tata-AIG 38.09 14.895 17.89

Reliance General 40.09 26.25 23.07

IFFCO-Tokio 43.61 33.15 30.79

ICICI-lombard 77.86 41.51 40.54

Bajaj Allianz 52.93 47.88 30.14

HDFC CHUBB 92.70 32.47 37.43

Cholamandalam 25.52 12.05 11.57

New India 120.23 294.25 321.45

National 86.98 258.92 253.53

United India 105.25 197.25 197.71

Oriental 88.52 195.62 200.93

ECGC 243.73 261.99 313.92

Fig. 3 Comparison of the Mean Absolute Error using the three methods
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the discussion, outliers comprise of values which exhibit significant deviation from
the other data points. This deviation could be attributed to measurement inaccuracies
and flaws in the experimental design, among other considerations. An outlier can
be viewed as a deviation from the general trend. It is because of this reason, the
data analysis obtained provides an inaccurate picture and we should rather look the
graphs for judging the fitness of data, in the case of Random Forest. Accordingly,
the graphical comparison is shown in Fig. 3, which highlights the heavy downfall
experienced by the second group of companies (for the indices 9 − 13 in the figure),
where because of outliers (as discussed above), one can observe a large deviation
from truth. Also, the errors presented in Table1 looks large, when someone discusses
all these figures in Crores. The point that should be noted along with this, is that the
typical figures for the monthly premium being collected is in the range of 300 − 800
Crores (as provided in our dataset), which, consequently, gives us a relative error
close to 1 − 3%.

The purpose of this article is not only restricted to the determination of math-
ematical validity of the model to ascertain the best one, but also to effectively we
can correlate the right real world reasons with what can be ascribed to the dataset.
Talking first about the companies which belonged to the second cluster, one can note
that they are being differentiated from other companies primarily because of the lack
of growth in the last 15years. Once we started taking a deep dive into it, which in
our observation can be attributed to:

1. Marketing:For organizations that extensively require new customers andmaking
sure that old customers stay onboard, one can clearly see the companies in first
cluster spending extensively onmarketing especially in metropolitan states which
is a huge reason for their growth post the 2008 crisis. These organizations have
gone out of their way, post the financial crisis to instill a deep trust between the
people for using their insurance advisory.

2. Technology: The world is run on applications today. It is important for all the
banks and financial businesses to have an online presence. Those organizations
who are not having an application/website where customers can come and get the
job done in one click, have faced a huge downfall must similar to what is being
faced by the second cluster of companies. It may be noted that, ICICI Lombard
and Bajaj Allianz are leaders, when it came to adoption of technology into their
operation, especially the customer interface. In addition, both these organizations
have also invested substantially on social marketing to propel their businesses
online.
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Variations in the Scroll Ring
Characteristics with the Excitability
and the Size of the Pinning Obstacle
in the BZ Reaction

Puthiyapurayil Sibeesh , S V Amrutha , and T K Shajahan

Abstract We report the experimental results of the effects of excitability on thewave
characteristics of free rotating and pinned scroll rings in the Belousov-Zhabotinsky
(BZ) reaction. The experiments show that the stability of the scroll ring depends on
the excitability of the medium. At low excitability, the scroll ring becomes less stable
and eventually breaks up. As we increase the excitability of the medium, the time
period (T ) and wavelength (λ) of the excitation wave decrease while wave velocity
(v) increases. Properties of both free and pinned scroll rings change in the same way.
However, at a given excitability, both the λ and v of a pinned scroll ring increase with
the size of the obstacle. For the range of parameters chosen in our experiments, the
excitability changes brought by varying reactant concentrations have a higher impact
on the scroll ring properties than those induced by the size of the pinning obstacle.

Keywords BZ reaction · Scroll wave · Excitability · Pinning

1 Introduction

Excitable media support nonlinear waves that propagate as target, spiral, or scroll
waves. Suchwaves are observed inmany diverse systems including in the aggregation
of Dictyostelium discoideum amoeba [1], the chicken retina [2], the brain [3] and
the cardiac tissues [4], the Belousov-Zhabotinsky (BZ) chemical reaction [5], and
the oxidation of CO on Pt surfaces [6]. In physiological tissue such self sustained
spiral and scroll waves can lead to life-threatening dynamical diseases such as cardiac
arrhythmias[7] or epilepsy [8].

A scroll wave is a three-dimensional manifestation of a rotating spiral wave found
in the two-dimensional excitablemedia.While the spiral wave rotates around a single
point at the tip of the spiral, the scrollwave rotates around a one-dimensional filament.
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These filaments take the shape of a straight line or a circular ring. A scroll wave with
a straight filament is a stack of two-dimensional spiral waves in parallel [9, 10]. A
scroll wave with a circular closed loop as the filament is called a scroll ring. The
curvature of the ring induces motion of the filament such that its radius becomes
smaller and leads to the self-annihilation of the scroll ring. The collapse or shrinkage
of a free scroll ring can be delayed by modifying the medium parameters. In an
excitable medium, the life span of a scroll ring is short. Pinning the scroll filament
to medium heterogeneities can elongate the lifetime of scroll waves [11].

The BZ reaction is one of the simplest laboratory models used to the study
excitable media in which the excitation waves can be observed with naked eyes.
Despite the fact that the BZ reaction is far less complex than heart tissue or any other
excitable medium, they all possess similar dynamical behavior. Because of this sim-
ilarity in the dynamics of excitation waves, we employ the BZ reaction as a model
medium to investigate the dynamics of scroll rings. Previous studies reported that
the properties of a spiral wave in a two-dimensional BZ medium modify according
to the medium excitability [12], the size, and the shape of the pinning obstacle [13,
14]. The excitability of the BZ medium can be controlled by varying the initial con-
centrations of reactants [12]. Simulations with the Oregonator model have shown
that both wave period and wavelength of a scroll wave decrease with increasing the
excitability [15]. To the best of our knowledge, the dynamics of the scroll ring with
the excitability and the size of the pinning obstacle is not reported so far. This arti-
cle reports the dynamics of both free and pinned scroll rings in the BZ reaction by
varying the excitability and the size of the pinning obstacle. In our experiments, we
observed a breakup of a scroll ring filament at very low excitability. Our experimental
observations show that the frequency and the wave velocity of a scroll ring increase
with the excitability, whereas the wavelength decreases. As the size of the pinning
obstacle increases, the time period (T ), wavelength (λ), and wave velocity (v) of a
scroll ring increase for a given excitability.

2 Experimental Methods

Weconducted experiments in chemically identical double layers of ferroin - catalyzed
BZ reaction as given in [9]. Each layer of thickness 4 mm is embedded in 1.4 %
w/v of agar. We performed experiments with initial concentrations of reactants as
following: [H2SO4] = 0.25–0.75 M, [NaBrO3] = 1 M, [MA] = 1 M, [SDS] =
0.0245 M, [Ferroin] = 0.025 M. All the experiments were carried out at constant
room temperature.

Spherical glass beads of diameters varying from 2 mm to 5 mm were used to pin
the scroll waves. During the gelation of the first layer, two glass beads of the same
size were symmetrically inserted halfway into the surface. A half-spherical wave
was initiated at the center of the line joining the two glass beads by inserting the tip
of a properly cleaned silver wire for a few seconds. The second layer is added above
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Fig. 1 Schematic diagram
of the experiment setup: The
BZ reaction medium is
represented in red colour. A
charge-coupled device
camera kept above the
medium captures the images
of the reaction medium.
Light source placed below
enhances the imaging

the first layer when the wavefront touches the glass beads. The half-spherical wave
at the lower layer curl upwards and forms a scroll ring pinned to both the beads.

Ferroin indicator undergoes striking color difference during each excitation cycle,
which allows for the optical detection of the excitation waves. The experimental
medium was illuminated using a diffused white light placed below to monitor the
chemical waves. The images were captured by a charge-coupled device (CCD) cam-
era (mvBlueCougarx 120bc) positioned above the medium. A blue filter (MidOpt
BP470-27) was mounted on the camera to increase the contrast between the excita-
tion waves and the unexcited medium. The images were recorded onto a computer
at 2 frames/seconds with the help of LabVIEW and the data analyzed using software
developed in Python. Figure1 depicts the schematic representation of the experiment
setup.

3 Results and Discussion

We explored the behavior of free rotating and pinned scroll rings by increasing
the excitability of the BZ reaction medium. The excitability of the BZ reaction
medium can be controlled by varying the concentration of the reactants ([H2SO4]
or [NaBrO3]).

To vary the excitability of the medium in our experiments, we adjusted the con-
centration of H2SO4 from 0.25 M to 0.75 M while maintaining the concentrations of
the other reactants constant. According to the relationship suggested by Jahnke et al.
[16] the excitability of the medium increases with an increase in the concentration
of H+. In a low excitable medium with [H2SO4] = 0.25 M, the filament of a scroll
ring breaks up within a short duration of time. Figure2 represents the time evolution
of a free scroll ring induced in a low excitable medium. The scroll ring breaks by the
time t=1025s as shown in Fig. 2c.
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Fig. 2 Scroll ring break up at low excitability ([H2SO4] = 0.25 M): Snapshots of a free rotating
scroll ring. A complete scroll ring (a) at t= 0s (b) at t= 820s (c) the scroll ring breaks at t= 1025s
(d) the broken scroll ring at = 1500s

Fig. 3 Time evolution of Scroll rings and the space time plot of the free scroll ring in BZ reaction
medium ([H2SO4] = 0.7 5 M). (a)–(d) Free rotating, scroll ring (e)–(h) Scroll ring pinned to two
spherical glass beads of diameter 3.5 mm (i) Space-time plot generated for the free rotating scroll
ring along a vertical line at the center of each image in the experiment. It spans a time interval of
41min

Figure3a–d show the snapshots of the time evolution of a free rotating scroll ring
and Fig. 3e–f show snapshots of the time evolution of a scroll ring pinned to two
glass beads of diameter 3.5 mm at [H2SO4]= 0.75 M. Figure3i is a space-time plot
that is obtained for the free rotating scroll ring along the central vertical line (orange
line in a) of the captured images for a duration of 41min. T and wavelength λ of
the scroll rings are calculated from the corresponding space-time plot as described
in [12].

As shown in Fig. 4a (green diamond line), the frequency of the scroll rings
increases as the excitability increases, and that the wavelength of the scroll rings
decreases as shown in Fig. 5a (green diamond curve). Similar changes are also found
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(a) (b)

Fig. 4 Variation of scroll ring frequency with concentration of H2SO4 and obstacle size:
(a) Frequency of the scroll ring increases with excitability. Each line corresponds to scroll ring
pinned to different obstacles: free rotating scroll ring (green diamond), 2 mm glass bead (red trian-
gle), 3.5mmglass bead (purple star), 4.2mmglass bead (blue dot) and 5mmglass bead (cyan cross).
(b) Frequency of the scroll ring decreases with increase in obstacle size. Each line corresponds to
different excitability: 0.35 M (green diamond), 0.45 M (red triangle), 0.55 M (purple star), 0.65 M
(blue dot) and 0.75 M (cyan cross)

Fig. 5 Properties of scroll ring with concentration of H2SO4 and obstacle size: (a) Wavelength
(λ) of the scroll ring decreases and (b) wave velocity (v) increases. Both quantities increases with
increase in obstacle size for a particular excitability. Each curve corresponds to scroll ring pinned
to different obstacles: free rotating scroll ring (green diamond), 2 mm glass bead (red triangle), 3.5
mm glass bead (purple star), 4.2 mm glass bead (blue dot) and 5 mm glass bead (cyan cross)
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in two-dimensional spiral waves [12, 17]. The wave velocity is estimated as λ/T
[13]. As excitability increases, the wave velocity of the free scroll ring increases as
shown in Fig. 5b (green diamond curve). A numerical study on a scroll wave with
a straight filament pinned to a cylindrical obstacle with fixed diameter and length
shows a similar trend in wave characteristics [15].

The size of the pinning obstacle influences the scroll wave dynamics. According to
the experimental studies in the BZ reaction, the T , λ and v of a spiral wave increases
with the obstacle size [13, 14]. We used glass beads of different diameters to pin the
scroll rings.

As illustrated in Fig. 4 a and b, the frequency of the pinned scroll ring increases
with excitability for a certain bead size but decreases as the size of the obstacle
increases. For a given excitability, the λ and v of a pinned scroll wave increase in
proportion to the size of the obstacle. On the other hand, for a scroll ring attached to
a specific obstacle size, λ decreases as excitability rises, while v increases (Fig. 5a
and b). The change in frequency associated with the change in excitability for a given
bead size is more significant than the same observed with the change in bead size for
a given excitability.

4 Conclusions

We investigated the variations in the wave properties of the three-dimensional scroll
rings by varying the concentration of sulphuric acid. We looked at the dynamics of
free scroll rings and scroll rings pinned to various spherical glass beads. A scroll
ring is not stable in a low excitable medium as it breaks up within a short period of
time after wave initiation. When excitability increases, frequency and wave veloc-
ity increases, while wavelength decreases. Previous reports indicate that the wave
properties of the spirals in the two-dimensional BZ system are modified in the same
manner with changes in the concentrations of sulphuric acid and sodium bromate
[12]. We also studied the scroll ring properties by varying the size of the spherical
glass beads that serve as the pinning obstacle. With an increase in the size of the
glass beads, the scroll ring takes a longer time to complete one rotation. This delay
leads to a decrease in the frequency of the scroll ring. As a result, λ and v increase.
Our experiments reveal that the behavior of scroll rings with variations in excitability
and size of pinning obstacle is similar to that of spiral waves as previously observed.
However, compared to spiral waves, scroll rings are less stable in a low excitable
medium.A clear understanding and quantification of variations occurring in thewave
dynamics with medium inhomogeneities will have a wide range of applications in
different excitable media. Because of the similarity in the mathematical equations,
the excitation waves in a wide variety of excitable media behave in similar ways.
We believe our findings about scroll waves in chemical excitation waves are also
applicable to other excitation waves, including the excitation waves in the cardiac
tissue.
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Periodic Amplifications of Attosecond
Three Soliton in an Inhomogeneous
Nonlinear Optical Fiber

M. S. Mani Rajan , Saravana Veni , and K. Subramanian

Abstract We show the periodic amplification of attosecond three solitons in an
inhomogeneous optical fiber which is can be governed by nonlinear Schrödinger
equation with higher order linear and nonlinear effects. Through AKNS method,
we construct the Lax pair for higher order inhomogeneous nonlinear Schrödinger
equation. Based on Lax pair, three soliton solutions are attained bymeans of Darboux
transformation (DT) method. By properly tailoring the dispersion and nonlinear
profiles, periodic amplifications of three solitons are demonstrated through some
graphical illustrations. Especially, three soliton interactions are portrayed via 2D
and 3D plots. Results attained through this work will be potentially useful in the
field of soliton amplifications by soliton control and management. Also, we clearly
observed that the impact of variable coefficients on attosecond soliton dynamics.

Keywords Optical solitons · Attosecond soliton · Lax pair · Darboux
transformation · Soliton management · Amplification

1 Introduction

The controlling of optical solitons and their management in an inhomogeneous
optical fiber system have been received huge attention in both theoretical and experi-
mental research due to their enormous potential applications in long-haul communi-
cation and ultrafast signal routing systems [1–3]. The study on optical soliton shaping
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and management is very important because of rapid growth of modern communica-
tion technology. In the picosecond regime, optical soliton pulse propagation in an
optical fiber which governs the nonlinear Schrödinger (NLS) equation with constant
coefficients [4, 5]. NLS equations are most significant models in modern nonlinear
Science. However, real fiber cannot be a homogeneous in nature and because of
various factors such as variation in diameter of core and lattice points, fiber medium
becomes as inhomogeneous [6]. In such case, soliton propagation can be described
by generalized variable-coefficient NLS equation [7]. Furthermore, there have been
paid great attention on the investigation of generalized variable-coefficientNLSequa-
tions which contains dispersion, nonlinearity and some inhomogeneous terms with
varying nature along the propagation axis [8]. The rapid growth of computational
methods leads to the investigation for the bountiful models of nonlinear Schrödinger
(NLS) with inhomogeneous terms by several researchers in various aspects like
nonlinear fiber optics and nonlinear science [9, 10]. In a nonlinear fiber medium,
soliton control technique can be theoretically represented by nonlinear Schrödinger
model with dispersion, nonlinearity and gain or loss terms. Recently, this method of
soliton control is new and important developments in the application of optical soli-
tons for optical transmission systems which have been discussed in detail by Serkin
et al. [11]. On the other hand, attosecond soliton pulses has a better performance
on the transmission characteristics where higher-order linear and nonlinear effects
should be taken into consideration [12].

2 Inhomogeneous NLS Equation with Higher Order
Linear and Nonlinear Effects

To our knowledge, in real fiber systems, inhomogeneous nonlinear Schrödinger
models with higher order linear and nonlinear effects are considered to describe
the attosecond optical pulse transmission in an inhomogeneous fiber system. For
example, in modern optical fiber communication systems, inhomogeneous profiles
are varying with respect to propagation distance. Hence, we address the following
generalized higher order nonlinear Schrödinger equation with variable coefficients
as given below

i
∂E(z, t)

∂z
+ 1

2
D1 + χ(z)D

2
+ β(z)D3 − iγ (z)D4 + δ(z)D5 + iG(z) = 0 (1)

where

D1 = D(z)Ett + 2R(z)|E |2E

D2 = Ettt + 6|E |2Et
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D3 = Etttt + 8|E |2Ett + |E |4E + 4|Et |2E + 6Et
2E∗ + 2E2E∗

t t

D4 = Etttt t + 10|E |2Ettt + 10(|E |2E)t + 20E∗Et Ett + 6Et
2E∗ + 2E2E∗

t t

D5 = Etttt t t +
[
60E∗|Et |2 + 50

(
E∗)2Ett + 2E∗

t t t t

]
E2

+ E
[
12E∗Etttt + 8Et E

∗
t t t + 22|Ett |2

] + E
[
18Ettt E

∗
t + 70

(
E∗)2(Et )

2
]

+ 20(Et )
2E∗

t t + 10E3
[(
E∗
t

)2+2E∗E∗
t t

]
+ 20|E |6E

G(z) = 1

2

W [R(z), D(z)]
R(z), D(z)

W [R(z), D(z)] = R(z)
dD(z)

dz
− D(z)

dR(z)

dz

where E (z, t) denotes the complex envelope of incident light filed, the subscripts
z and t denote respectively the partial derivatives with respect to the normalized
propagation distance and retarded time. D(z) represents the GVD coefficient, R(z)
is arise due to Kerr nonlinearity especially self-phase modulation which is particu-
larly cubic nonlinearity coefficient and G(z) represents the loss (attenuation) or gain
(amplification) profile. D2, D3, D4 and D5 are inhomogeneous coefficients of higher
order dispersion and nonlinear terms. It should be emphasized that Eq. (1) not only
describing the attosecond soliton propagation but also soliton control and manage-
ment in an inhomogeneous fiber system. In different domain, various researchers
solved many kinds of NLS equations using some mathematical techniques. In the
present work, we aimed to solve inhomogeneous HNLS equations in attosecond
regime.

3 Lax Pair

With the aid of AKNS formalism [13], matrices M and N are constructed for the
Eq. (1) which can be derived from the zero-curvature equation. In order to apply
the Darboux transformation, the following 2 × 2 eigenvalue problem is considered.
In the obtaining of soliton solutions via Darboux transformation, Lax pair plays a
vigorous role.

ψt = M ψ (2)

ψz = N ψ
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M and N matrices are can be expressed as given below for the linear eigen value
problem (2)

M = i

(
λ E∗(z, t)

E(z, t) − λ

)
(3)

N =
6∑
j=0

λ j Vj

M j = i

(
A j B∗

j

B j − A j

)
(4)

A6 = 32 δ(z)

B6 = 0

A5 = 16 γ (z)

B5 = 32δ(z)E

A4 = −8γ (z) − 16δ(z)|E |2

B4 = 16γ (z)E + 16iδ(z)Et

A3 = −4χ(z) − 8γ (z)|E |2 − 8iδ(z)|E |2t

B3 = −8β(z)E + 8iγ (z)Et − 8Ett − 16δ(z)|E |2E

A2 = 1 + 4β(z)|E |2 + 4iγ (z)(E∗
t E − Et E

∗) + 12δ(z)|E |4 − 8δ(z)|Et |2
+ 4δ(z)(E∗

t E − EE∗)t

B2 = −4χ(z)E − 8γ (z)|E |2E − 24iδ(z)|E |2Et − 4iβ(z)Et − 4iγ (z)Ett − 4iδ(z)Ettt

A1 = 2χ(z)|E |2 + 6γ (z)|E |4 − 2iβ(z)(E∗
t E − Et E

∗) + 12iδ(z)|E |2(Et E
∗ − E∗

t E)

−2γ (z)|Et |2 + 2γ (z)(E∗
t t E + Ett E

∗) + 2iδ(z)(Et E
∗
t t − E∗

t Ett + E∗Ettt − E∗
t t t E)

B1 = E + 4β(z)|E |2E − 2iχ(z)Et − 12iγ (z)|E |2Et + 12δ(z)E∗E2
t + 16δ(z)|E |2Ett
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+ 4δ(z)E2E∗
t t − 2iγ (z)Ettt + 2β(z)Ett + 2δ(z)Etttt + 12δ(z)|E |4E + 8δ(z)|EEt |2

The Eq. (1) can be obtained directly from zero-curvature equation i.e.,Mz − Nt +
[M, N ] = 0. In Eq. (3), λ being the spectral parameter in Lax pair.

4 Three Soliton Solutions

Using Darboux matrixD= λ I− S in the process of Darboux transformation method
[14], explicit multi-soliton solutions can be obtained. To demonstrate the propagation
of three solitons in a real fiber system, three soliton solutions with arbitrary control
parameters are attained in this section. Consequently, three soliton solutions are
computed via Darboux transformation technique as described below

E (3) = 2i
N3

D3
(5)

N3 = e2i(θ1+ξ1t)+σ1 + e2i(θ2+ξ2t)+σ2 + e2i(θ3+ξ3t)+σ3

+ e2i(θ1+θ∗
1 +θ2+ξ1t+ξ∗

1 t+ξ2t)+λ123 + e2i(θ1+θ∗
1 +θ3+ξ1t+ξ∗

1 t+ξ3t)+λ132

+ e2i(θ1+θ2+θ∗
2 +ξ1t+ξ2t+ξ∗

1 t)+λ213 + e2i(θ1+θ3+θ∗
3 +ξ1t+ξ3t+ξ∗

3 t)+λ312

+ e2i(θ2+θ∗
2 +θ3+ξ2t+ξ∗

2 t+ξ3t)+λ231 + e2i(θ2+θ3+θ∗
3 +ξ2+ξ3t+ξ∗

3 t)+λ321

+ e2i(θ1+θ2+θ∗
3 +ξ1t+ξ2t+ξ∗

3 t)+υ123 + e2i(θ1+θ3+θ∗
2 +ξ1t+ξ3t+ξ∗

2 t)+υ312

+ e2i(θ2+θ3+θ∗
1 +ξ2t+ξ3t+ξ∗

1 t)+υ231

+ e2i(θ1+θ2+θ∗
2 +θ3+θ∗

3 +ξ1t+ξ2t+ξ∗
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By adopting particular profile for inhomogeneous functions that are present in the
obtained attosecond three soliton solutions, various transmission characteristics can
be investigated. Especially, with the expression of three soliton solutions (5), periodic
amplification properties of attosecond three solitons to be observed by adopting
periodic functions for inhomogeneous profiles in the next section.

5 Periodic Amplifications of Three Attosecond Solitons

The present study focused on three attosecond optical bright soliton transmission
with the periodic amplification characteristics under the dispersion and nonlinearity
management scheme (DNMS). Furthermore, by studying the three soliton interac-
tions in an inhomogeneous fiber system, we can enrich the capacity of optical fiber
communication system. In order to exemplify the behavior of three solitonswhich are
transmitted under periodic amplification system, we chose the variable coefficients
especially GVD parameter D(z) and Kerr nonlinearity parameter R(z) are adopted
as given in the references [15–18]

D(z) = 1

d0
exp (kz) R (z) (6)

R(z) = R0 + R1 sin (gz)

Here, R0, R1 and g are the control parameters describing Kerr nonlinearity and
d0 represent the initial peak power of the system, respectively. Here, for the sake
of simplicity, control parameters are considered as R0 = 0, d0 = 1 and g = 1.
Specifically, when k = 0 in the expression (6) which corresponds to the loss less
optical fiber medium (without any loss or gain).

As depicted in Fig. 1a, the evolution of three solitons is displayedwhich is obtained
through the adopting of dispersion and nonlinearity coefficients as periodic func-
tions. At the beginning of propagation along the z-axis, the period of oscillation is
small while it is increasing significantly during the transmission of optical solitons
in attosecond regime. Three solitons are got highly amplifications when propagation
distance is very long. From the density plot Fig. 1b, one can conclude that three
attosecond solitons are getting not only amplification but also the compressed and
broadened width periodically. The snake like propagation trajectory of optical soli-
tons is observed and this type of solitons are namely as “snake solitons”. In real optical
communication network, amplified solitons may be attained through the technique
of appropriately tailoring the dispersion and nonlinearity profiles which is called
dispersion and nonlinearity management (DNLM) scheme. Recently, in literature,
various periodic soliton amplification schemes through several methods have been
suggested for numerous applications [19–23].
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Fig. 1 a Intensity profile of attosecond three solitons. The parameters are μ1 = 0.07, μ2 = 0.01,
μ3 = 0.08, η1 = 0.08, η2 = 0.09, η3 = 0.07. b Corresponding contour plot for a

6 Conclusions

We proposed a theoretical model i.e., variable coefficient inhomogeneous NLS equa-
tion with the presence of higher order linear and nonlinear effects which governs
the propagation of attosecond soliton in an inhomogeneous nonlinear optical fiber
medium. Bright three soliton solutions are derived by employing the Darboux trans-
formationmethod based on the constructed Lax pair. Finally, three attosecond soliton
transmissions in an inhomogeneous fiber have been demonstrated graphically with
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the aid of Mathematica software tool. By careful choices of trigonometric func-
tions for GVD and nonlinearity parameters, periodic soliton amplification have been
attained. Moreover, we observed that one can control the soliton transmission and its
characteristics through adopting the dispersion—nonlinearity management scheme.

The study on simultaneous propagation of three attosecond solitons in an inhomo-
geneousfiber optic communication systemwill be used for the development of optical
soliton-based switching devices and soliton shaping or management by tailoring the
inhomogeneous profiles properly. The elastic interaction among three solitons offers
a new way for controllable optical soliton amplification in multi soliton transmis-
sion system where ultrahigh capacity can be easily achieved. Especially, this work is
useful in the study of propagation properties of attosecond soliton in an inhomoge-
neous fiber with the modulation of dispersion and nonlinearity.We realized that three
soliton interactions effectively controlled by properly tailoring the inhomogeneous
profiles in attosecond regime.
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Abstract Analysis of flexoelectricity in distinct piezoelectric (PE) materials bars
(PZT-7A, PZT-6B)with deformed interface in stick over Silicon oxide layer is studied
analytically with the help of Love-type wave vibrations. Using the numerical data
for PE material, then research achieves the noteworthy fallouts of flexoelectric effect
(FE) and PE. The effect of flexoelectricity is compared first between biomaterials
of piezoelectric ceramics. Dispersion expressions are procured logically for together
electrically unlocked/locked conditions under the influence of deformed interface
in the complex form which is transcendental. Fallouts of the research identify that
contexture consisting of FE has a noteworthy impact on the acquired dispersion
expressions. Existence of FE displays that the unreal section of the phase velocity
rises monotonically. Competitive consequences are displayed diagrammatically and
ratified with published outcomes. The outcomes of the present research done on both
the real and imaginary section of the wave velocity. The comparative study between
the two piezo-ceramics bars helps us to understand the properties of one piezo-
material over the another and as an outcomes the significance of the present study
helps in structural health monitoring, bioengineering for optimizing the detection
sensitivity in the smart sensors.

Keywords Flexoelectricity · PZT-7A · Vibrations · Deformed Interface ·
PZT-6B · Deformed Interface

Nomenclature

σ Stress tensor

A. Singhal (B) · J. Baroi · C. Singh
School of Sciences, Christ (Deemed to Be University) Delhi NCR, Ghaziabad 201003, India
e-mail: ism.abhinav@gmail.com

R. Tiwari
Department of Mathematics, Babasaheb Bhimrao Ambedkar Bihar University, Nitishwar college,
Muzaffarpur 842002, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Banerjee and A. Saha (eds.), Nonlinear Dynamics and Applications,
Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-99792-2_113

1329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99792-2_113&domain=pdf
mailto:ism.abhinav@gmail.com
https://doi.org/10.1007/978-3-030-99792-2_113


1330 A. Singhal et al.

τ Higher order stress (moment stress) tensor
ε Strain
Eo Electric field intensity
V o Electric field gradient
w Strain gradient
D Electrical displacement vector
Qo Electric quadrupole tensor
c Elastic tensors
a Permittivity tensors
e Piezoelectric tensors
f Direct piezoelectric tensors
d Converse piezoelectric tensors
u Particle displacements
φ Electric potential
ui Mechanical displacement
k = 2π/λ Wave number
λ Wavelength
i = √−1 Imaginary unit
ce44 Shear modulus of the lower plate
ρe Density of the lower plate
σ o Initial stress
ue Mechanical displacement of the lower plate
φe Electric potential of the lower plate

1 Introduction

The study of surface acoustic wave (SAW) propagation in piezoelectric materials
based smart devices has attracted significant attention due to its distinctive applica-
tions. The SAWdevices can be used as biosensors or for liquid sensing, for which the
sensing layer needs to be pairedwith a liquidmedium. To generate the SAW, an oscil-
lating electric signal is applied to the interdigital transducer (IDT) which is designed
on the surface of piezoelectric layer. Subsequently, piezoelectric crystal converts
the electric signal into mechanical vibration, which another IDT receives for further
processing. To fabricate metal electrodes in IDT’s, complex procedure involving
lithographic patterning and metal deposition along with other special equipment.
Chu et al. [1] studied the vibrations in smart materials following the structures of
MEMS. Singhal et al. [2] and Nathankumar kumar et al. [3] elobrated the research
of seismic wave vibrations in smart materials structure where the flexoelectricty and
piezoelectricity charachterstics and Sahu et al. [4] extend the study of dispresion
relation of wave transmission in intelligent structures.

Lately for designing composite structure, functional grading of the piezoelectric
material is preferred over conventional material of same thickness due to the brittle
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nature andmechanical stiffness of thematerial. Functional grading assists to avoid the
local stress concentration and increases the bonding strength due to smooth variation
of material properties. Now, currently, Othmani et al. [5] explored the results of
frequency equations following the legendres polynomial approach in the distinct
materials, Li et al. [6] extended the new results on the same materials and Barati [7]
studied the wave transference in the nonporous materials. Arani et al. [8] mentioned
the nonlinear analysis of vibrations of the microbeams rubbery soldered with a PE
beam using strain gradient theory. Moreover, Singhal et al. [9] covered and extended
the topic of PE material variables on shear horizontal (SH) waves continuance in
multiferroic structure.

The effect of various parameter such as material gradient parameter in electri-
cally open and short case has been studied for both FE and PE. Although several
modes existing in the given range have been shown through graphs for both the
dispersion and attenuation curve. The dispersion equation for considered structure
for electrically open and short circuit condition have also been obtained.

2 Mathematical Brief Implications

Governing material equations for piezoelectricity and flexoelectricity are:

σi j = ci jklεkl − di jklV
o
kl − ei jk E

o
k (1)

τi jm = − fi jkm E
o
k (2)

Di = ai j E
o
j + e jkiε jk + f jkilw jkl (3)

Qo
i j = dkli jεkl (4)

Here τi jm = τ j im, σi j = σ j i , andQo
i j = Qo

ji . The equation d = − f is used to
derive the results. Hence,

εi j = 1

2

(
ui, j + u j,i

)
(5)

Eo
i = −φ,i (6)

The Eqs. (2)–(6) are the main fundamental equations for the piezoelectric mate-
rials. The physical significance of the above equations inmechanical systems displays
the relationship between the elastic tensors, piezoelectric tensors, and inverse piezo-
electric tensors. The equilibrium is set up among all the above equations by electric
field intensity and electric potential. Now:
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w jkl = ε jk,l (7)

V o
i j = Eo

i. j (8)

Also, V o
i j = V o

ji , w jkl = wk jl, εi j = ε j i .

The assumption equations for the Love wave propagation are:

u p
1 = u p

2 = 0, u p
3 = u p

3 (x, y, t), φ
p = φ p(x, y, t), (9)

Following some considered circumstances the equation yields

∂

∂x

(
σ31 − ∂τ311

∂x
− ∂τ312

∂y

)
+ ∂

∂y

(
σ32 − ∂τ321

∂x
− ∂τ322

∂y

)
= ρ p ∂2u p

3

∂t2
(10)

∂

∂x

(
Do

1 − ∂Qo
11

∂x
− ∂Qo

12

∂y

)
+ ∂

∂y

(
Do

2 − ∂Qo
21

∂x
− ∂Qo

22

∂y

)
= 0 (11)

The most important strain–stress relations are for the considered materials:

ε23 = 1

2

(
∂u p

3

∂y

)
, ε31 = 1

2

(
∂u p

3

∂y

)
(12)

w231 = 1

2

(
∂2u p

3

∂x∂y

)
, w232 = 1

2

(
∂2u p

3

∂y2

)
, w311 = 1

2

(
∂2u p

3

∂x2

)
, w312 = 1

2

(
∂2u p

3

∂x∂y

)

(13)

Eo
1 = −∂φ p

∂x
, Eo

2 = −∂φ p

∂y
(14)

V o
11 = −∂2φ p

∂x2
, V o

12 = − ∂2φ p

∂x∂y
, V o

21 = − ∂2φ p

∂x∂y
, V o

22 = −∂2φ p

∂y2
(15)

Now using the Eqs. (12)–(15) in Eqs. (1)–(4), It is obtained:

σ31 − ∂τ311

∂x
− ∂τ312

∂y
= c44

∂u p
3

∂x
+ e15

∂φ p

∂x
(16)

σ32 − ∂τ321

∂x
− ∂τ322

∂y
= c44

∂u p
3

∂y
+ e15

∂φ p

∂y
− h41

∂2φ p

∂x2
+ h41

∂2φ p

∂y2
(17)

Do
1 − ∂Qo

11

∂x
− ∂Qo

12

∂y
= −a11

∂φ p

∂x
+ e15

∂u p
3

∂x
+ (h41 + h52)

∂2u p
3

∂x∂y
(18)

Do
2 − ∂Qo

21

∂x
− ∂Qo

22

∂y
= −a11

∂φ p

∂y
+ e15

∂u p
3

∂y
− h52

∂2u p
3

∂x2
− h41

∂2u p
3

∂y2
(19)
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Hence, the fundamental expressions of PE material bars are:

c44
∂2u p

3

∂x2
+ c44

∂2u p
3

∂y2
+ e15

∂2φ p

∂x2
+ e15

∂2φ p

∂y2
− h41

∂3φ p

∂x2∂y
+ h41

∂3φ p

∂y3
= ρ p ∂2u p

3

∂t2

(20)

−a11
∂2φ p

∂x2
− a11

∂2φ p

∂y2
+ e15

∂2u p
3

∂x2
+ e15

∂2u p
3

∂y2
+ h41

∂3u p
3

∂x2∂y
− h41

∂3u p
3

∂y3
= 0 (21)

The following equations are arrived in the absence of flexoelectric affect:

u p
3 (x, y, t) = U (x)eik(y−ct), φ p(x, y, t) = 
(x)eik(y−ct) (22)

So, by solving Eq. (22) with mentioned below boundary conditions, dispersion
relation is obtained.

3 Boundary Conditions (States) and Dispersion
Expressions

(1) Mechanically and electrically constraint for electrically unlocked alliance at
x = −h1

[(
σzx − τzxx,x − τzxy,y

) − τzyx,y
]
upperplate = 0

[(
Dx − Qxx,x − Qxy,y

) − Qyx,y
]
upperplate = 0

(2) Mechanically and electrically constraint for electrically locked alliance at x =
−h1

(a)
[(

σzx − τzxx,x − τzxy,y
) − τzyx,y

]
upperplate = 0

(b)
[
φP
1 (x, y)

]
upperplate = 0

(3) At the interface, the continuous conditions and impedance boundary condition
is given at x = 0 as follows

(a)
[(

σzx + ωZ1u
P
)]

upperplate = [(
τzx + ωZ1u

e
)]

lowerplate

(b)[Dx ]upperplate = [Dx ]lowerplate

(c)
[
u p
3

]
upperplate

= [
ue

]
lowerplate

(d)
[
φ p

]
upperplate

= [
φe

]
upperplate
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(4) Mechanically and electrically state for electrically unlocked condition at x =
−h2

(a)
[
σzx

]
lowerplate = 0(b)[Dx ]lowerplate = 0

(5) Mechanically and electrically state for electrically locked case at x = −h2

(a)
[
σzx

]
lowerplate = 0(b)

[
φe
1(x, y)

]
lowerplate = 0

3.1 Dispersion Expressions

The equation called dispersion relation is obtained

Det[�i ]i = 1, 2, . . . , 8, (23)

Therefore, to solve the Eq. (23), obtained equation can be equal to zero to deter-
mine the unknowns and hence the closed formof dispersion equation can be achieved.
The values of Eq. (23) are given in Appendix 2.

The equation called dispersion relation is obtained

Det[�i ]i = 1, 2, . . . , 8, (24)

Therefore, to solve the Eq. (24), obtained equation can be equal to zero to deter-
mine the unknowns and hence the closed formof dispersion equation can be achieved.
The values of Eq. (24) are given in Appendix 4.

4 Numerical Discussion

Present section gives the insight of Love propagation in the piezo-composite struc-
ture. The dispersion equation is obtained in closed form.Typically, dispersion relation
defines the relationship between phase velocity and wave number, but it also displays
the impact of material gradient parameters on the phase velocity and attenuation
(Table 1).

The consecutive Fig. 1a, b are plotted to study the results of material gradients
coefficients on the Love wave phase velocity. The dimensionless variation of Love-
type phase velocity increases with the increment of material gradient coefficients in
both electrically open and short cases in the Fig. 1a, b. Increment in thematerial gradi-
ents coefficients decreases monotonically with the angular frequency (ω = k1c). The
Fig. 1a, b shown the phase velocity increment in the electrically closed case, but there
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Table 1 Materials values are
given

PZT-6B PZT-7A

C44(109Nm−2) 2.71 25.4

ρ(103kgm−3) 5.8 76,000

ε11 = ε22(10−9Fm−1) 3.6 −2.1

μ11(10−6Ns2C−2) 5 5

e15(Cm−2) 4.6 9.2

Fig. 1 a and b Variation of dimensionless phase velocity against dimensionless wave number
for different values of material gradient of PE material gradient β under the influence of FE for
electrically open and short cases in PZT-6B and PZT-7A materials respectively

is a less phase velocity in the electrically open case under the increment of the piezo-
electric material gradient. This leads the main outcomes of the study which will be
very beneficial for the material engineering.

For varied material gradients bars, the graph lines in the dispersive curves are
shown in Fig. 2a, b. From the both the figs. It is concluded that the dispersive curves
run towards the right and the gap between the dispersive curves of mode increases as
the mode order increasing when both material gradients increase this will leads to the
difference between in PZT-6B and PZT-7A. Means, phase velocity curves rise with
the increase of thematerial plates gradients for selectedwavelength andwavenumber.
The graphs shown in present study quantitatively characterize the significance of
individual parameters of the liquid layer as well as other parameters of piezoelectric
composite on the propagation behaviour of the Love wave. It also allows the integra-
tion of SAW devices for Lab-on-chip systems. The present study may apply in the
theoretical study of acoustic wave-based smart materials and non-invasive analysis
of SAW devices. This model could be used in tailoring and analysing acoustic wave
sensors based on Love wave and piezoelectric materials. For designing the device,
the parameters like thickness of porous piezoelectric plate, the operating frequency
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Fig. 2 a and b Dispersive curves of Love-type wave number for different values PE material
gradient β under the influence of FE for electrically open and short cases in PZT-6B and PZT-7A
materials respectively

which depends on wave number, the interface of two medium of composite structure
are changed to optimize the structure.

5 Conclusions

The present article comprises the investigation of Love wave propagating in a piezo-
electric biomaterial. Present study primarily focuses on the flexoelectricity and piezo-
electricity, although the dispersion equation for the the materials is also established
for both electrically open and short circuit conditions. The conclusions based on
present study and graphical interpretation is encapsulated as follows:

• Flexoelectricity depends on the piezoelectric material gradient.
• Between piezoelectricity and flexoelectricity, from the results the flexoelectricity

depends more on the materials width. This will help in enchaining the efficiency
of piezo sensors.

• Higher is the material gradient value in the electric short case, higher is the phase
velocity.

• The finer the functional grading, the higher is the phase velocity.
• Phase velocity and attenuation portrays completely opposite trend pertaining to a

parameter when plotted against wave number.
• As an important remarks, waves phase velocity jumps high in the absence of

electricity.
• The obtained results may be useful to enhance the efficiencies of IDT and

Actuators.
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This model could be used in tailoring and analysing acoustic wave sensors based
on Love wave and piezoelectric materials. For designing the device, the parameters
like thickness of porous piezoelectric plate, the operating frequency which depends
on wave number, the interface of two medium of composite structure are changed to
optimize the structure.
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Appendix 1 Secular Equation for Electrically Open Case
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Appendix 2 Secular Expressions for Electrically Unlocked
Case
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of Point Machines in Railways
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Abstract Railways, being one of the most eminent modes of transportation used
worldwide. It requires proper maintenance ensuring maximum reliability to conduct
a safe journey for the passengers. Point Machines or Railway Turnouts are the vital
safety assets that play a critical role in maintaining the flexibility of the rail networks.
This paper provides an insightful review on the fault analysis, health monitoring and
reliability analysis of point machines. A detailed review of the different technologies
and algorithms proposed by the researchers, worldwide has been presented along
with their current modifications for the adaptation in modern technologies. This
review enables the researchers a basis for an enhanced quality and reliability in the
working of point machines.
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1 Introduction

Over the last few decades railway transport has evolved into a busiest network world-
wide. Vast growing railway networks and fast-moving railways has become a mass
transportation system, transporting billions of passengers and cargoes daily. Enor-
mous safety, reliability and stability is required within railway networks and trans-
portation keeping in view of its increasing demand. This vast grown railway network
requires a well driven railway traffic management system for its smooth working.
Point machines plays an effective role in railway trafficking that are operated in
railway turnouts and are critical elements in railway tracks. So, encountering faults
of point machines and its diagnosis is an important issue to guarantee safer train
journeys and has a remarkable sense in railway monitoring [1–6].

For the last few decades several researches have been done in the field of fault
detection and health monitoring processes on point machines in aspects of the
different railway system. The researchers from different countries of the world are
united to develop effective techniques and methodologies to increase the efficiency
of the reliability of a point machine. For the sake of simplicity in understanding this
paper has given a brief theory on point machines, its types and working principles
with technical detailing in Sect. 2. Section 3 of this paper focuses on different anal-
ysis methods of point machines which are classified into three categories: Reliability
analysis, Condition monitoring and Fault analysis of point machines.

In the reliability analysis of point machine wide range of methodologies and
approaches that has been proposed by the researchers worldwide are discussed. This
includes methodologies like Remote Condition Monitoring (RCM) system which
uses Kalman Filter method [1], Functional Redundancy Approach (FRA) for reli-
ability estimation and Monte Carlo simulation for model designing [3], Qualita-
tive Trend Analysis (QTA) for incipient fault detection [5], etc. The monitoring
and management of point machine gives brief survey of the sensors, actuators and
modelling methods used to monitor the health of point machines including condi-
tion monitoring using DiscreteWavelet Transform (DWT) [4], Principal Component
Analysis (PCA) technique etc. The fault detection of pointmachine provides different
technologies and advancements done in the field of failure detection which includes
Failure Mode and Effects Analysis (FMEA) [2], Autoregressive Integrated Moving
Average (ARIMA) andAutoregressiveKalman (AR-Kalman) to diagnosis and detect
faults [6], etc. Therefore, this paper presents a detailed and comprehensive survey
of some works done within a decade on point machine utilizing past and present
technologies.
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2 A Brief Theory About Point Machines Used in Railways

The point machine, a piece of electro-mechanical equipment with potential failure
mode, is commonly used in signaling systems combining crossings, cross-overs,
stock rails, rods, cranks, levers, and locking arrangements. For smooth changes in
railway tracks and avoiding hazardous accidents, the role of the point machine has
been considered as one of the main components in the context of the world railway
system.

In detail, the function of the point machine is to unlock and operate the point
switches in the exact position for detection of the correct setting of the point switch.
The systemmechanism includes various subsystems:motor unit including a contactor
control arrangement and a terminal area, gear unit including spur-gears, worm
reduction unit [7].

The inner parts of the point machine used in Railways is shown in the following
Fig. 1.

2.1 Types of Point Machines

Point machines are broadly classified on the basis of different parameters, are as
follows [7, 8]:

Fig. 1 Top view of inner portion of the point machine used in Railways
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i. Type of point machine on the basis of field arrangement:

a. Single field type point machine.
b. Split field type point machine.

ii. Types of point machine on the basis of voltage rating:

a. High voltage type (Operating voltage of 110 V DC).
b. Low voltage type (Operating voltage of 24 V/ 36 V).
c. High Voltage AC-380 AC.

iii. Type of point machine on the basis of speed:

a. High speed machine – Operating speed of 3 s.
b. Low speed machine – Operating speed of 5 s.

iv. Type of point machine on the basis of locking:

a. Clamp type point machine.
b. Rotary type point machine (Siemens).

v. Type of point machine on the basis of machine type:

a. Combined type point machine.
b. Separate type point machine.

vi. Type of point machine on the basis of machine type:

a. Electro-mechanical type.
b. Electro-pneumatic type.
c. Electro-hydraulic type.

The construction of the Point Machines is shown in Fig. 2.

2.2 Working Principles

A point machine is the device that moves and locks the points of turnout remotely. It
works under an interlocking mechanism. The electric point machine consists of two
parts:

i. One part is the point lock, which uses an electromagnet to release the lock.
ii. The other part is the motor which moves the point blades. Both parts are

electrically separated but mounted on same housing.

The sequence of operations from [7, 8] followed in the process of Railway
Turnouts are as follows:

i. When the control operator wants to change a certain switch from “straight” to
“thrown” or vice versa, a signal is sent to the signaling post.

ii. The electromagnet of the machine is energized and it releases the lock of it.
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Fig. 2 Components of the point machine in Railways

iii. The motor is powered in the desired direction and lets the points move.
iv. At the end position, the motor gets turned off.
v. The electromagnet gets de-energized and points in the machine gets locked.
vi. The control operator gets confirmation of success about the change in track

positions.

Henceforth, this Section briefly describes the point machines, its types and
working principles used in Railways. The following table shows the technical data
of motors used in different railway point machines in Table 1.

3 A Brief Theory About Point Machines Used in Railways

Different analyses carried out till now for the point machines are divided into the
following 3 categories. Apart from these 3 categories, there may be some more
categories but to keep this study simple only these three categories are considered.
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Table 1 Table consisting of
technical data of motors used
in different railway point
machines

Salient
features

Rotary type
point motor

Clamp type
point motor

Siemens
electric point
machine

Type of Motor DC Series
Split Field
Motor

DC Series
Split Field
Motor

DC Series Split
Field Motor

Voltage Rating 110 V (DC)
+ - 25%

110 V (DC) 110 V (DC)

Revolution
Speed (RPM)

1700 + -
15%

1700 + -
15%

1700 + - 15%

Current
Rating

5.3A (Max-
8.5A)

5.5A 5.3A

Time of
Operation

4 to 5 s 5 s Max 3–5 s

Power Rating 440 Watts 440 Watts 440 Watts

EPM Thrust 450 kg 450 kg -

Stroke 143 mm 220 mm 143 mm

Insulation 10 M Ohm 10 M Ohm 10 M Ohm

Gear oil SAE 30 - -

3.1 Reliability Analysis of Point Machines

Before developing any hardware or methods, the priority retains in the current
developments and methodology used in the twenty-first century models. In 2003,
researchers from Universidad de Castilla-La Mancha, Spain in collaboration with
the University of Sheffield, UK discussed a new detection technique of the gradual
failure in Railway Turnouts or Point Machines, which can be managed by a RCM
system, by the help of a methodology known as the Kalman Filter. By the usage of
the methodology, the faults from Reverse to Normal (RN) detected 100% of faults
whereas it showed 97.1% of faults in Normal to Reverse (NR) of a Point Machine
[1]. In 2012, researchers from Loughborough University, UK proposed a FRA to
estimate the increase in the reliability in the Railway Point Machines. The paper
mainly contributes to the usage of 2P-Weibull failure distributions for the collec-
tion of field data over a long period of time and using it to model engineering fault
tolerance into the existing systems [3]. In 2013, researchers from the University of
Nottingham, UK, introduces research that describes the obtaining the field data of
lifetime distributions of components of Switches and Crossings (S&C) and as well
as on the basis of historical failure data. The paper selected the Weibull distribution
as the suitable probabilistic model which was used for the collection of both time-
based and utilization-based failure data resulting in efficient and cost-effective asset
management [9].

In 2014, researchers from India proposed a parametric model for estimating the
probability of the reliability of the Point Machines in Railways which is capable of
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predicting the percentage of its failure rate. This paper frames the different types of
reliability models and the procedures in the context of parametric analysis which can
be applied in Indian Railway (IR) signaling systems [4]. In 2015, researchers from
theUniversity of Birmingham, UK introduces a novel algorithm that utilizes QTA for
the detection and diagnosis of various incipient faults in the Point Machines, proving
to be much reliable than the currently used commercial methods. The research aims
to introduce various methods which are capable of reducing 30% of track Life Cycle
Costs (LCCs) in the area of Condition Based Maintenance (CBM) where infras-
tructure operators aim to limit their maintenance costs as low as possible [5]. In
2021, researchers from the Institute of Engineering & Management, India in collab-
oration with the University of Greenwich, UK researched the rate of failures of
different components of signaling systems, including Point Machines using analyt-
ical methods. The signaling system components (Point Machine, Track Circuit, and
Signal Unit) was analyzed and developed with the help of mathematical modeling
that required to increase the reliability of the signaling systems and to achieve the
optimal interval inspection for the system [10].

3.2 Case Studies on the Monitoring and Management
of Point Machines

In 2002, researchers fromOxford University discussed about the various sensors that
are used formeasuringmotor driving force, driving current and voltage, temperatures
and state changes etc. The data are directly collected from the sensors and processed
through the operating system which remotely monitors, control and calibrates the
extracted data [11]. In 2007, a paper describes about the remote conditionmonitoring,
reliability, safety of the point machine using the Kalman filter approach. This special
type of filter was basically a recursive data processing algorithm that is executed in
the form of an equation. The main purpose of the Kalman filter is to filter the linear
discrete data using the current sensor data in a point condition monitoring system
[12]. In 2010, the authors of the paper mainly focus on the railway infrastructure
and more specifically on railways point machines. By using smart techniques of the
monitoring system, the problems can be predicted and be able to recover quickly.
By using Artificial Intelligence (AI) and signal processing, the faults can be used
to detect the faults of the point machines [13]. In 2011, [4] shows a new approach
for the fault detection and diagnosis of the AC point machines used in Railways,
from the University of Birmingham, UK. As electric active power can be shown as
a parameter for the condition monitoring system of the AC point machines i.e., by
means of the DWT. By using DWT, the original waveform is converted to multiple
levels of resolution, sustaining local time information in each level of resolution.
In 2012, a paper focuses on health management and condition monitoring of the
point machine in the Railway [3]. This paper shows different strategies and technical
architectures for the health management of the electro-mechanical point machine.
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The Principal Component Analysis (PCA) was used to access the health of the
point machine. In 2013, unique approach has been presented for fault detection and
diagnosis for electric DC point machines operated on the railways in the UK. Here,
the electric current is used as a main parameter for analyzing and acquiring for the
DC point machine. The proposed method is dependable upon wavelet transform and
Support Vector Machine (SVM). The DWT is used for feature extraction and SVM
is used for the classifiers.

In 2015, a group of researchers from China had presented the improvement of the
reliability, availability and maintainability, which necessitates the development of a
predictive monitoring system for the fleet of point machines in the Railway industry.
In the proposed monitoring system, the appropriate signals had been included and
the advanced pattern was used to recognize for finding the primary indication of
the point machine degradation, and a user interface for displaying and reporting the
health results of the point machine [14]. In 2017, a paper describes electric current
shape analysis used for condition detection of the point machine in Railway [15].
After analyzing the replacement data and labelling the shape of each replacement
data, any further procedures can be undertaken. On the basis of replacement results
with field replacement data, we can find the accuracy. In 2018, a paper represents
a unique degradation detection method that can be used for mining and identifying
the degradation state of the point machine used in Railways, researched in China.
Power data is to be processed for extracting the set of features which can be used
to describe the point machine properties effectively. Basically, a SVM was used to
build the state classifier which can be used to identify the degradation state of the
point machine in a combination with a featured map known as Self-Organizing Map
(SOM). In this paper, time– frequency-based featured data were mined and a few of
themwere used to detect and diagnose faults based on a SVMclassifier, which is used
to build a preferable autonomous fault detection method, where prior knowledge of
the data in CM is not vital [16]. Again, within that same year, the authors of [17]
had shown their contribution by proposing a methodology known asMachine Health
Assessment (MHA), which comprises both offline and online segments, for the anal-
ysis of sliding-chair degradation of Point Machines in Railways. In the offline phase,
the extraction and data labeling methods were developed for diagnosing the feature
selection and time-series segmentation-based fault severity whereas, in the online
phase, a sliding-chair fault severity classification was studied by using supervised
machine learning tools. Nevertheless, the proposed approach is only applicable if
the monitoring data is readily available and if not, appropriate data imputation algo-
rithms are to be used for the extraction of the complete data before using them
for further fault detection and severity extraction. In 2019, a research paper was
published that discussed the proposal of an initial fault diagnosis method of Railway
PointMachines which emphasizes themining of non-fault data and recognizing them
from the assigned degradation states under diverse fault modes. Based upon extrac-
tion of data, a self-organizing feature map (SOM)-based degradation state mining
method and a Particle Swarm Optimization (PSO)-SVM based classification model
was proposed for various degradation conditions and to accurately identify different
degradation states respectively. From the application of the esteemed method and
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model on the ‘SIEMENS S700K’ Point Machine, it is found that the method can
be used to mine different degradation level states under various fault modes and the
model can easily identify the types of states with an accuracy of 97.73% [18]. In
2020, a researcher from Embedded Systems Group, CMC Americas, Inc from the
United States of America discussed a new method for maintenance and diagnosis of
Railway Point Machines. The method results in the reduction of costs in the exam-
ination of manual checks. Also, the method utilizes various sensors to monitor the
applicable parameters of Point Machines which can be used to understand and iden-
tify the cause of a fault by studying the current situation and comparing its problems
from the history of faults that occurred in it [19].

3.3 Case Studies on the Fault Detection of Point Machines

As continuous growth in railways demands target of performance with proper main-
tenance and failure management. In 2007, to fulfil the demand a group of researchers
had published a paper focusing on maintenance and diagnosis of failure in railway
track side components especially on M63 type Point Machine in the UK. They had
analysed fault by signal analysis by Kalman filter model and moving average filter
and constructed a comparative study about it. This study would come to a decision
that moving to the average filter is a more preferable method to the Kalman filter
model [12]. In 2009, researchers from Kolkata, India had developed research work
on failure mode and effect analysis (FMEA) of the railway signaling systems in
working mode to avoid hazardous accidents that occurred in railway tracks. This
analysis would cause gradual improvements in design, classifications on a ten-grade
scale had been developed in the research [2]. In 2016, a methodology had been
proposed to detect the fault in point operating equipment (POE) machine in advance
by measuring the current consumption of point motor. One-class Support Vector
Machine (SVM) method was used in the technique to get more accuracy than other
threshold-based techniques [5]. In 2016, researchers had proposed a datamining solu-
tion using audio data to diagnose and detect faults to avoid accidents. This process
had gone through four different modules- two online modules and another is offline.
The online module includes feature extraction and fault detection; attribute subset
selection and vector machines (SVM) training are included in the offline module. To
detect the fault and classify it by audio analysis, two SVM had been used and this
results in cost-effectiveness and automatic detection [14].

In 2018, a group of researchers from Iran had proposed a new methodology using
Stacked Autoencoders (SAE) to analyse the fault. Initially, integration of feature
extraction was performed, followed by failure detection. To diagnose the fault, a
trained SAE had gone through the phase of final tuning [20]. In the same year, a new
method using ARIMA and AR-Kalman had been presented to diagnose and detect
the faults in the point machine (S700K). In this method, signal processing including
wavelet transform and statistical analysis had been presented to acquire the related
data of faults in the point machine [6]. In 2019, a group of researchers from China
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had presented a methodology using current signals and feature extraction approach
based on locally connected autoencoder. The proposed methodology automatically
acquires the informative features from raw electrical signals. For reducing the impact
of the non-informative information in raw electrical signals a weighting strategy had
been proposed to develop the usefulness and robustness in different features [21].
In the same year, using data from Centralized Traffic Control (CTC) systems, along
with meteorological data, a methodology had been proposed to diagnose the risk
factor in Point machine. In this methodology, extracting information from railway
logs, presented a compact numerical representation alongwith algorithms ofmachine
learning [22]. In the year 2020, a group of researchers from the UK had proposed
a methodology utilizing unlabeled signal sensor data. It was claimed that it can
deal with real-time faults using data pre-processing; also suitable for smart city
infrastructure [19].

Henceforth, this Section describes about the existing technologies used in Point
Machines in Railways in the recent decade, on the basis of Reliability, monitoring
and the fault detection methods.

4 Conclusions

As Point Machines or Railway Turnouts are vital safety assets that play a critical role
in maintaining the flexibility of rail networks, hence requiring proper maintenance
procedures for reliable productivity in the field of Railways. There are different
technologies developed and used currently as discussed in this paper to overcome the
problem of reliability of PointMachines in Railways. In this paper the current, as well
as past research, works on point machine is carefully reviewed.More specifically, the
paper presents and reviews the previously published works based on the technologies
implemented, application of various technologies, algorithms and methodologies,
surveyed for the detection of faults, allow feasible condition monitoring and is used
for increasing the reliability of the point machine.
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Application of a Measure
of Noncompactness in cs-Solvability
and bs-Solvability of an Infinite System
of Differential Equations

Niraj Sapkota , Rituparna Das, and Santonu Savapondit

Abstract The theory of measure of noncompactness has been a very helpful tool
in non-linear functional analysis over the years. In this paper we have examined the
solvability of an infinite system of third order differential equations in the sequence
space of convergent series and sequence space of bounded series using the Hausdorff
measure of noncompactness.We have also used the concept ofMeir-Keeler condens-
ing operator to utilize the fixed point theory in our approach and have analysed the
approach for each sequence space with suitable examples.

Keywords Infinite system of third-order differential equations · Measures of
noncompactness · Convergent and bounded sequences

1 Introduction

The concepts of measure of noncompactness (MNC), in the non-linear functional
analysis is used in various applications of operator theory, fixed point theory and
extensively to investigate the theories of differential equations, functional inte-
gral equations and in characterizing compact operators between sequence spaces.
Kuratowski [1] was first to introduce the concept of measure of noncompactness in
1930. Later Darbo [2] used this in generalising the classical schauder fixed point
principle and Banach’s contraction mapping principle(special variant) for condens-
ing operators. Goldens̆tein and Markus [3] gave Hausdorff MNC and Istrăţescu [4]
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provided the Istrăţescu MNC. It was only in 1980 that Banás and Goebel [5] gave
the axiomatic definition of the measure of noncompactness. Over the years mea-
sure of noncompactness has proven itself to be a great tools in various branches of
mathematics.

In the literature, Infinite system of differential equations has been introduced by
Persidskii in 1959 [6], in 1961 [7] and in 1976 [8]. Here he has coined the term
“Countable systems of Differential equations”. Following this, series of other works
came into existence for the solvability and existence theorems for different kinds of
infinite system of calculus equations in line with our work (see, [9–16, 20–22]).

In 2011Yueli Chen, Jingli Ren andStefan Siegmund [17] showed the “existence of
positive periodic solutions of third-order differential equations”. For this they have
established a particular array of Green’s functions. The equation used here was a
single equation. Borrowing the same later R. Saadati, E. Pourhadi and M. Mursaleen
in 2019 [16] showed solvability for infinite set of equations of type used by Chen et
al. [17] occurring simultaneously. Solvability of that infinite system was established
in c0 space. Our aim is to establish the solvability conditions in the sequence space of
convergent series (cs) and bounded series (bs) for the infinite system of third-order
differential equations (ISTODE) define in section (2). For various concepts and types
of MNCs one can refer to [11].

2 Infinite System of Third-Order Differential Equations

We introduce the following ISTODE for further work

d3kn(θ)

dθ3
+ p

d2kn(θ)

dθ2
+ q

dkn(θ)

dθ
+ rkn(θ) = hn(θ, k1(θ), k2(θ), ...), (n ∈ N)

(1)
Here we take hn ∈ C(R × R

∞,R) as family of ω-periodic functions with respect to
θ ; p, q, r ∈ R are constants and r �= 0. In this paperwewill investigate the solvability
conditions for ω-periodic solutions of ISTODE (1) in cs and bs space (for definition
see Sect. 3 and Sect. 4 below).

Homogeneous equations for the system (1) is d3kn(θ)

dθ3 + p d2kn(θ)

dθ2 + q dkn(θ)

dθ +
rkn(θ) = 0, (n ∈ N) and the corresponding characteristic equation is

α3 + pα2 + qα + r = 0. (2)

The eigen value for the Polynomial Eq. 2 can have following four possibilities.
(given r �= 0): (i) α1 �= α2 �= α3, (ii) α1 = α2 �= α3, (iii) α1 = α2 = α3 = α, (iv)
α1 = u + iv, α2 = u − iv, α3 = α, for u, v, α ∈ R. We shall seek the solvability
for each case. Further, with the concept of Green’s functions one can claim that
k ∈ C3(R,R∞) serves as a solution of infinite system of differential equations (1) if
and only if k ∈ C(R,R∞) acts as a solution of following integral equations
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kn(θ) =
θ+ω∫

θ

K(θ, η)hn(η, k(η))dη (n ∈ N). (3)

Equation (3) is an infinite system of integral equations. Here K(θ, η) is a Green’s
function which takes up different form in different cases of eigen values. For the
varying behaviour of K(θ, η) for each case one may refer to [17].

3 Solvability of the Infinite System of Differential
Equations in cs Space

cs :=
{
k = {(ki )}∞i=0 : lim

n→∞
∑n

i=0 ki < ∞
}

.By definition cs is a space of sequences

with BK and AK and also is equipped with monotone norm ||k||cs = supn
∣∣∑n

i=0 ki
∣∣

(see Sect. 7.3. [19]). Thus with the application of formula given by Banaś and
Mursaleen [11] we see that the Hausdorff measure of noncompactness for cs is

χ(Q) = lim
n→∞

{
sup
k∈Q

(
sup
m

∣∣∣∣∣
m∑
i=n

ki

∣∣∣∣∣
)}

, m ≥ n

for any Q ∈ Mcs . Further, let us state two hypothesis under which solvability of
system (1) can be established:

(H1) The operator h : R × cs → cs defined as
(θ, k) � (hk)(θ) = (h1(θ, k), h2(θ, k), ...) constitutes a family {(hk)(θ)}θ∈R
which is equi-continuous at each point in cs space, given that, each hn : R ×
R

∞ → R is ω-periodic with respect to θ .
(H2) The inequality: |hn(θ, k1, k2, · · · )| ≤ φn(θ) + ψn(θ).kn(θ) holds pertaining to

following conditions onφn(θ) andψn(θ);φn(θ) � R andψn(θ) � R are con-
tinuous, and φ(θ) defined by φ(θ) = ∑

k≥1 φk(θ) for each θ , is uniformly con-
vergent to a function that vanishes identically inR.And the family {(ψn(θ))}n∈N
in R is equibounded.

Consequent upon 	 := sup{φ(θ) : θ ∈ R} and Ψ := sup{ψn(θ) : n ∈ N, θ ∈ R}
exists.
In the following subsections we shall utilise hypothesis (H1)–(H2) as a conditions
for solvability in each cases.
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3.1 Solvability in cs for Case (i)

For investigating solvability of the solution of the system 1 for the condition α1 �=
α2 �= α3 the Green’s function appearing in 3 is given by [17], for η ∈ [θ, θ + ω]

K1(θ, η) = exp(α1(θ + ω − η))

(α1 − α2)(α1 − α3)(1 − exp(α1ω))

+ exp(α2(θ + ω − η))

(α2 − α1)(α2 − α3)(1 − exp(α2ω))
+ exp(α3(θ + ω − η))

(α3 − α1)(α3 − α2)(1 − exp(α3ω))
(4)

Further, considering 0 ≤ θ + ω − η ≤ ω and relations between αi , for i = 1, 2, 3
we get, supη∈[θ,θ+ω](exp(αi )(θ + ω − η)) = max{1, exp(ω|αi |)} = exp(ω|αi |), and
hence we can deduce

sup
η∈[θ,θ+ω]

|K1(θ, η)| = (let)Q1 = exp(ω|α1|)
|(α1 − α2)(α1 − α3)(1 − exp(α1ω))|

+ exp(ω|α2|)
|(α2 − α1)(α2 − α3)(1 − exp(α2ω))| + exp(ω|α3|)

|(α3 − α1)(α3 − α2)(1 − exp(α3ω))| (5)

Theorem 1 The ISTODE of the form given in Eq.1 satisfying (H1)-(H2) falling in
case α1 �= α2 �= α3 has at least one ω-periodic solution k(θ) = (ki (θ)) ∈ cs when-
ever 0 < ωQ1Ψ < 1, for all θ ∈ R.

Proof From the relation (3), (4), (5) and the conditions (H2), for any θ ∈ R we get

||k(θ)||cs = sup
n

∣∣∣∣∣∣
n∑

i=0

θ+ω∫

θ

K1(θ, η)hi (η, k(η))dη

∣∣∣∣∣∣

≤ sup
n

θ+ω∫

θ

|K1(θ, η)|
n∑

i=1

(φi (η) + ψi (η).ki (η))dη ≤ ωQ1(	 + Ψ ||k||cs).

Hence, we get ||k||cs ≤ ωQ1	
1−ωQ1Ψ

= l0.
Let k0(θ) = (k0i (θ))where k0i (θ) = 0. Then a closed ballU0 = U (k0, l0) contains

k. Now, let us consider the operator T = (Ti ) on C(R,U0) defined as follows: For
θ ∈ R,

(T k)(θ) = (Tik)(θ) =
⎧⎨
⎩

θ+ω∫

θ

K1(θ, η)hi (η, k(η))dη

⎫⎬
⎭ , (6)

where k(θ) = (ki (θ)) ∈ U0 and ki (θ) ∈ C(R,R), θ ∈ R. Since, (hi (θ, k(θ))) ∈ cs
for each θ ∈ R, so we have
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sup
n→∞

(
n∑

i=0

(Tik)(θ)

)
≤ ωQ1(	 + Ψ ||k||cs) < ∞.

Therefore, (T k)(θ) = {(Tik)(θ)} ∈ cs for all θ ∈ R. Also,

(Tik)(θ + ω) =
θ+2ω∫

θ+ω

K1(θ + ω, η)hi (η, k(η))dη

=
θ+ω∫

θ

K1(θ + ω, ζ + ω)hi (ζ + ω, k(ζ + ω))dζ

=
θ+ω∫

θ

K1(θ, ζ )hi (ζ, k(ζ ))dζ = (Tik)(θ).

i.e., each (Tik)(θ) is ω-periodic whenever k(θ) is ω-periodic. Since ||(T k)(θ) −
k0(θ)||cs = ||(T k)(θ)||cs ≤ l, thus T self maps on U0. Also, by (H1), T and hence
T k is continuous. Now, to establish T as a Meir-Keeler condensing operator we do
the following. Firstly, for any given ε > 0, we need to find δ > 0 such that

ε ≤ χ(U0) < ε + δ =⇒ χ(TU0) < ε.

Using Eq. (4), (3), (3), we get

χ(TU0) = lim
n→∞

⎧⎨
⎩ sup

k(θ)∈U0

∣∣∣∣∣∣
∑
k≥n

θ+ω∫

θ

K1(θ, η)hk(η, k(η))dη

∣∣∣∣∣∣

⎫⎬
⎭

≤ Q1 lim
n→∞

⎧⎨
⎩ sup

k(θ)∈U0

∑
k≥n

θ+ω∫

θ

(|φk(η)| + |ψk(η)||kk(η)|)
⎫⎬
⎭

≤ ωQ1Ψ lim
n→∞

{
sup

k(θ)∈U0

∑
k≥n

|kk |
}

= ωQ1Ψ χ(U0)

Thus, we get χ(TU0) < ωQ1Ψ χ(U0) < ε =⇒ χ(U0) < ε
ωQ1Ψ

.

Taking δ = (1−ωQ1Ψ )

ωQ1Ψ
ε, we get ε ≤ χ(U0) < ε + δ. Thus T is a Meir-Keeler con-

densing operator defined on a setU0 ⊂ cs. T also satisfies all the hypothesis of Fixed
point Theorem given by Aghajani et al. [18]. This shows that T has a fixed point in
U0, which is a solution of the system (1). �

K1(θ, η) may have different bounds depending upon the constraints on the value of
αi , for i = 1, 2, 3. as described in [17]. Then,
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(E1) If f1 < g1, and eitherα1 > α2 > α3 > 0orα3 < α2 < 0 < α1 holds, then F3 ≤
K1(θ, η) ≤ G3 < 0.

(E2) If f2 > g2, and either α3 < α2 < α1 < 0 or α3 < 0 < α2 < α1 holds, then 0 <

F3 ≤ K1(θ, η) ≤ G3.

We can easily refine our Theorem 1 using the above conditions (E1)–(E2) and
hypothesis (H1)–(H2) by referring to the results by Chen et al. [17] as follows:

Theorem 2 The ISTODE of the form given in equation (1) satisfying assumptions
(H1)–(H2) alongwith hypothesis (E1) (resp. (E2)) has atleast oneω-periodic solution
k(θ) = (ki (θ)) ∈ cs whenever ωΨ |F3| < 1 (resp. ωΨG3 < 1), for all θ ∈ R.

3.2 Solvability in cs for Case (ii)

For the second case where α1 = α2 �= α3, Green’s functionK(θ, η) = K2(θ, η) (let)
appearing in equation (3) for investigating solvability of the solution of the system
(1) is given by [17]

K2(θ, η) = exp(α1(θ + ω − η))[(1 − exp(α1ω))((η − θ)(α3 − α1) − 1) − (α3 − α1)ω]
(α1 − α3)

2(1 − exp(α1ω))2

+ exp(α3(θ + ω − η))

(α1 − α3)
2(1 − exp(α3ω))

, η ∈ [θ, θ + ω] (7)

Then following conditions holds true

(E3) If α3 < 0 < α1 = α2, then 0 < F4 ≤ K2(θ, η) ≤ G4.
(E4) If α1 = α2 < 0 < α3, then F4 ≤ K2(θ, η) ≤ G4 < 0.
(E5) If 0 < α1 = α2 < α3, exp(α1ω) < 1 + (α3 − α1)ω then F5 ≤ K2(θ, η) ≤

G5 < 0.
(E6) If α1 = α2 < α3 < 0, and f3 > 1 then 0 < F4 ≤ K2(θ, η) ≤ G4.
(E7) If 0 < α3 < α2 = α1, and g4 < 1 then F6 ≤ K2(θ, η) ≤ G6 < 0.

For, each notations refer to [17].
We refine our Theorem 1 for case (ii) using the above conditions (E3)–(E5) and
hypothesis (H1)–(H2) by referring to the results by Chen et al. [17] as follows:

Theorem 3 The ISTODE of the form given in Eq. (1) satisfying assumptions (H1)-
(H2) along with hypothesis (E3) (resp. (E4), (E5), (E6), (E7)) has atleast one ω-
periodic solution k(θ) = (ki (θ)) ∈ cs whenever ωΨG4 < 1 (resp. ωΨ |F4|) < 1,
ωΨG4 < 1, ωΨ |F6| < 1), for all θ ∈ R.
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3.3 Solvability in cs for Case (iii)

For the third case where α1 = α2 = α3 = α the Green’s function K(θ, η) =
K3(θ, η)(let) is represented by.

K3(θ, η) = [(η − θ) exp(αω) + ω − η + θ ]2 + ω2 exp(αω)

2(1 − exp(αω))3
exp(α(θ + ω − η)),

η ∈ [θ, θ + ω] (8)

Then

(E8) If α > 0, then F7 ≤ K3(θ, η) ≤ G7 < 0.
(E9) If α < 0, then 0 < F7 ≤ K3(θ, η) ≤ G7.

Theorem 4 The ISTODE of the form given in Eq. (1) satisfying assumptions (H1)–
(H2) along with hypothesis (E8)(resp. (E9)) has atleast one ω-periodic solution
k(θ) = (ki (θ)) ∈ cs whenever ωΨ |F7| < 1(resp. ωΨG7 < 1), for all θ ∈ R.

3.4 Solvability in cs for Case (iv)

For the fourth case where α1 = u + iv, α2 = u − iv, α3 = α the Green’s function
K(θ, η) = K4(θ, η) (let) is represented by.

K4(θ, η) = exp(u(θ + ω − η))[(u − α)B2(θ) − vA2(θ)]
v[(u − α)2 + v2](1 + exp(2uω) − 2 cos(vω) exp(uω))

+ exp(α(θ + ω − η))

(1 − exp(αω))[(u − α)2 + v2] for η ∈ [θ, θ + ω] (9)

Then following conditions holds true.

(E10) If α < 0 < u, v and 1+exp(2uω)−2 cos(vω) exp(uω)

exp(2uω)
>

[(u−α)2+v2](1−exp(αω))2

v2 exp(2αω)
, then

0 < F8 ≤ K4(θ, η) ≤ G8.
(E11) If u, α < 0 < v and 1 + exp(2uω) − 2 cos(vω) exp(uω) >

[(u−α)2+v2](1−exp(αω))2

v2 exp(2αω)
, then 0 < F9 ≤ K4(θ, η) ≤ G9.

(E12) Ifu, v, α > 0 and 1+exp(2uω)−2 cos(vω) exp(uω)

exp(2uω)
>

[(u−α)2+v2](1−exp(αω))2

v2
, then F8 ≤

K4(θ, η) ≤ G8 < 0.
(E13) If u < 0 < v, α and 1 + exp(2uω) − 2 cos(vω) exp(uω) >

[(u−α)2+v2](1−exp(αω))2

v2
, then F9 ≤ K4(θ, η) ≤ G9 < 0.

We refine our Theorem 1 for case (iv) using the above conditions (E10)-(E13) and
hypothesis (H1)-(H2) by referring to the results by Chen et al. [17] as follows:
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Theorem 5 The ISTODE of the form given in Eq. (1) satisfying assumptions
(H1)–(H2) along with hypothesis (E10) (resp. (E11), (E12), (E13)) has atleast
one ω-periodic solution k(θ) = (ki (θ)) ∈ cs whenever ωΨG8 < 1 (resp. ωΨG9 <

1, ωΨ |F8| < 1, ωH |F9| < 1), for all θ ∈ R.

4 Solvability of the Infinite System of Diiferential
Equations in bs Space

bs :=
{
k ′ = {(k ′

i )}∞i=0 : sup
n

∣∣∑n
i=0 k

′
i

∣∣ < ∞
}

. By definition bs is a sequence space

of bounded series also equippedwith the norm ||k ′||bs = supn | ∑n
i=1 k

′
i |whichmakes

it a Banach space. Also, comparing the definition between cs and bs space it becomes
clear that cs is a closed subspace of bs. For the sake of clarity we shall add superscript
∗′ for anything related to bs space that are equivalent to functions and elements related
to cs space.
We again state the following two conditions so as to show the solvability of the
system (1) in bs space:

(H3) The operator h = h′ : R × bs → bs defined as
(θ, k) � (h′k)(θ) = (h′

1(θ, k), h′
2(θ, k), · · · ) constitutes a family

{(h′k)(θ)}θ∈R which is equi-continuous at each point in bs space, given that,
each h′

i : R × R
∞ → R is ω-periodic with respect to θ .

(H4) The inequality:
∣∣h′

n(θ, k1, k2, . . .)
∣∣ ≤ φ′

n(θ) + ψ ′
n(θ).k ′

n(θ) holds pertaining
to following conditions on φ′

n(θ) and ψ ′
n(θ); φ′

n(θ) � R and ψ ′
n(θ) � R

are continuous, and φ′(θ) defined by φ′(θ) = ∑
k≥1 φ′

k(θ) for each θ , is uni-
formly convergent to a function that vanishes identically inR. And the family{
(ψ ′

n(θ))
}
n∈N in R is equibounded.

Consequent upon 	′ := sup{φ′(θ) : θ ∈ R} and Ψ ′ := sup{ψ ′
n(θ) : n ∈ N, θ ∈ R}

exists. Do take note that the conditions for solvability in bs space is analogous to cs
space. This is due to the fact that cs and bs enjoys the same norm. This fact greatly
helps in shortening of proof for all the solvability cases below.

4.1 Solvability in bs for Different Cases

We shall reuse all the notations that we have used to shown solvability in cs. Hence,
we will go straight to the theorem.

Theorem 6 The ISTODE of the form given in Eq.1 satisfying (H1)-(H2) falling in
case α1 �= α2 �= α3 has at least one ω-periodic solution k ′(θ) = (k ′

i (θ)) ∈ bs when-
ever 0 < ωQ1Ψ < 1, for all θ ∈ R.
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As mentioned earlier norm for both cs and bs spaces are same and hence it becomes
obvious that the proofwill look similar to proof in theorem (1).Only thing noteworthy
here is that the set of all solutions in cs space is also a subset of the set of all solutions in
bs space.K1(θ, η) may have different bounds depending upon the constraints on the
value of αi for i = 1, 2, 3 as described in Chen et al. [17]. By using those conditions
and the hypothesis (H3)-(H4) we will refine our theorem for each case as follows:

Theorem 7 The ISTODE of the form given in equation (1) satisfying assumptions
(H1)-(H2) along with hypothesis (E1)(resp. (E2)) has atleast oneω-periodic solution
k ′(θ) = (k ′

i (θ)) ∈ bs whenever ωΨ ′|F3| < 1 (resp. ωΨ ′G3 < 1), for all θ ∈ R.

Theorem 8 The ISTODE of the form given in Eq.1 satisfying assumptions (H1)-
(H2) along with hypothesis (E3) (resp. (E4), (E5),(E6),(E7)) has atleast one ω-
periodic solution k ′(θ) = (k ′

i (θ)) ∈ bs whenever ωΨ ′G4 < 1 (resp. ωΨ ′|F4|) < 1,
ωΨ ′G4 < 1, ωΨ ′|F6| < 1), for all θ ∈ R.

Theorem 9 The ISTODE of the form given in Eq. (1) satisfying assumptions (H1)-
(H2) along with hypothesis (E8)(resp. (E9)) has atleast one ω-periodic solution
k ′(θ) = (k ′

i (θ)) ∈ bs whenever ωΨ ′|F7| < 1(resp. ωΨ ′G7 < 1), for all θ ∈ R.

Theorem 10 The ISTODE of the form given in Eq. (1) satisfying assumptions
(H1)-(H2) along with hypothesis (E10)(resp. (E11), (E12), (E13)) has atleast one
ω-periodic solution k ′(θ) = (k ′

i (θ)) ∈ bs whenever ωΨ ′G8 < 1 (resp. ωΨ ′G9 <

1, ωΨ ′|F8| < 1, ωΨ ′|F9| < 1), for all θ ∈ R.

5 Examples

Let us take examples and contrast the result that we got from two different spaces cs
and bs space.

Example 1 Consider the differential equation for (n ∈ N) and θ ∈ R :

d3kn(θ)

dθ3
− 2.1

d2kn(θ)

dθ2
+ 5.2

dkn(θ)

dθ
− 0.5kn(θ) = sinn(θ)

(n + 1)3
+

∞∑
j=n

cosn(θ)k j (θ)

( j2 + n2)(nj + π2)
,

(10)

Solution 1 With the application of theory of differential equations we can find the
roots of the homogeneous equation associated with equation (10) are α1 = 1 + 2i ,
α2 = 1 − 2i , α3 = 0.1. Now we will check hn(θ, k) of Eq.10, Here, hn(θ, k) =
sinn(θ)

(n+1)3 + ∑∞
j=n

cosn(θ)k j (θ)

( j2+n2)(nj+π2)
. Considering k = (kn) ∈ cs, we get

sup
n

∣∣∣
n∑
j=1

h j (θ, k(θ))

∣∣∣ ≤ π2

6
+ π4

180
||k||cs .
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Further, check that (H1) holds by letting ε > 0 arbitrarily. Take k ′(θ) = (k ′
n(θ)) ∈ cs

that satisfies ||k(θ) − k ′(θ)||cs ≤ δ(ε) = 2(1 + π2)ε, then

|h(θ, k(θ)) − h(θ, k ′(θ))| ≤ 1

2
(1 + π2)−1δ

This ensures the continuity in accord with (H1).
Conditions of (H2): |hn(θ, k1, k2, . . .)| ≤ φn(θ) + ψn(θ).kn(θ) can be established

by taking φn(θ) = (n + 1)−3 and ψn(θ), the series sum from j from 1 to ∞ of the
function 1

( j2+n2)(nj+π2)
. Ofcourse, the series for ψn(θ) is convergent for each n.

|hn(θ, k(θ))| ≤ 1

(n + 1)3
+

∞∑
j=n

|k j (θ)|
( j2 + n2)(nj + π2)

≤ φn(θ) + ψn(θ)|kn(θ)|

Further, series
∑

n≥1 φn(θ) converges to −1 + ζ(3) and each {ψn(θ)}n is indepen-
dent of θ and hence the equiboundedness. Also Ψ = sup{ψn(θ) : n ∈ N, θ ∈ R} ≈
0.0606 With these results both conditions (H1) and (H2) is satisfied.

Now as mentioned earlier, roots of characteristic equations associated with
homogeneous equation pertaining to differential equation (10) are α1 = 1 + 2i ,
α2 = 1 − 2i , α3 = 0.1. This implies that u, v, α > 0. Consequently, given example
falls under case (iv)(given in Sect. 3.4). i.e., Green’s function related to this example
is given by Eq. (9). Further, since u, v, α > 0 and ω = 2π satisfies all the conditions
of (E12), we get F8 ≤ K4(θ, η) ≤ G8 < 0 (for all notations ref. Section 3.4). Also,
it is clear that hn(θ, k) is (ω =)2π -periodic with respect to θ .

Upon certain approximations we also get ωΨ |F8| ≈ 0.48897 < 1. This would
mean that all the conditions of Theorem (5) is being satisfied, and hence the infinite
system of differential equations (10) has at least one ω-periodic solution k(θ) =
(x j (θ)) ∈ cs.

Now, we are going to consider a example for bs space.

Example 2 For bs space we consider an ISTODE as follows: for (n ∈ N) and θ ∈ R

d3kn(θ)

dθ3
+ 4.5

d2kn(θ)

dθ2
− 3

dkn(θ)

dθ
− 2.5kn = e(sin(2θ+1))

(n + 1)2
+ sin(cos(2θ))

∞∑
j=n

k j (θ)

j3
.

(11)

Solution 2 In this example we have hn(θ, k) = e(sin(2θ+1))

(n+1)2 + sin(cos(2θ))
∑∞

j=n
k j (θ)

j3

Ofcourse, k = (kn) ∈ bs here. Now, Checking for hn(θ, k) we get,

sup
n

∣∣∣∣∣
n∑

i=1

hi (θ, k(θ))

∣∣∣∣∣ ≤ π2

6
(r1 + r2||k||bs)
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Here, r1 = sup
θ

∣∣e(sin(2θ+1))
∣∣ ≈ 2.718 and r2 = sup

θ

|sin(cos(2θ))| ≈ 0.841 are con-

stants. One more thing to notice here is that hn(θ, k(θ)) is π -periodic with respect
to θ . Now, take ||k(θ) − k ′(θ)||bs ≤ δ(ε) = [r2ζ(3)]−1ε, where, both k(θ) and k ′(θ)

belongs to bs space, then |h(θ, k(θ)) − h(θ, k(θ))| ≤ r2ζ(3)δ(ε) < ε. Again, for
|hn(θ, k(θ))|, we get

|hn(θ, k(θ))| ≤ r1(n + 1)−2 + r2

∞∑
j=n

1

j3
|k j (θ)| ≤ φn(θ) + ψn(θ)|kn|

By taking φn(θ) = r1(n + 1)−2 and family (ψn(θ)) equibounded by r2ζ(3) we get a
series

∑
n≥1 φn(θ) convergent to a limit π2r2

6 and eachmember of (ψn(θ)) continuous
and in fact a constant.

Summarizing all the results achieved so far we have hn(θ, k(θ)) ∈ bs aπ -periodic
functions with respect to first coordinate and also satisfies conditions (H3) and (H4).
Now, we look upon the homogeneous equations associated with infinite system of
differential equations (11). We get roots as α1 = 1, α2 = −0.5 and α3 = −5. I.e., the
examples falls under case (i)(ref. Sect. 4.1). Thismakes clear that theGreen’s function
of concern is given by equation (4). Also 37.206 = f1 < g1 = 42.079, i.e., α1, α2, α3

satisfies (E1). Hence, F3 ≤ K1(θ, η) ≤ G3 < 0. Upon certain approximation we get
ωΨ |F3| = 0.9627 < 1. All results combined together assures that all the conditions
for theorem (7) are satisfied, which in turn ensures that there exist atleast one π -
periodic solution k(θ) = (k j (θ)) ∈ bs for infinite system (11).

Remark Infinite systems of differential equations, system of Eq. (10) and system of
Eq. (11) is interchangeable as an example for cs and bs space, if associated k(θ) ∈(cs
or bs) in hn(θ, k) is interchanged accordingly.
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Instabilities of Excitation Spectrum
for Attractive Spin-Orbit Coupled
Bose-Einstein Condensates in Quasi-one
Dimension

Sonali Gangwar, R. Ravisankar, and Pankaj K. Mishra

Abstract In the paper, we present our analytical results to investigate the effect of
spin-orbit (SO) and Rabi couplings on the excitation spectrum of attractive quasi-one
dimensional binary Bose-Einstein condensates. We use Bogoliubov-de Gennes the-
ory to analytically derive the spectrum for the non-interacting and interacting cases.
The eigenvalues of the spectrum are used to identify the stability of the spectrum.
First, we analyze the effect of attractive nonlinear interactions on the instability by
fixing other coupling parameters. We obtain the appearance of multiple instabil-
ity bands upon increase of intraspecies interaction. Similar observation is made as
SO coupling strengths are increased for fixed Rabi coupling strength as � < �c.
For � > �c we have a phase transition from unstable state to stable state. While
increase in Rabi coupling with fixed kL , the multi-band instability gets transformed
to single-band instability. However, the effect of variation of interspecies interaction
does not yield multiple bands. Finally, we obtain a stability phase diagram of the
excitation spectrum in the coupling parameters space.

Keywords Bose Einstein condensates · Bogoliubov-de Gennes theory ·
Spin-Orbit coupling · Instability

1 Introduction

Since its first realization in the laboratory experiment in 2011 [1], the spin-orbit (SO)
coupled Bose- Einstein condensates (BECs) have triggered unprecedented growth
in the research in ultracold matter [2–4]. Owing to its highly controllable nature of
the experiment it has also opened new avenues for exploration for the other fields of
Physics. One of the interesting question in the field is to ascertain the different kind of
excitations of the condensates which characterize the overall nature and dynamical
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behaviour of the ground state of the system. The stability of the coupled BECs could
be well understood by analyzing the elementary excitation spectrum. For exam-
ple, the Bogoliubov-de Gennes (BdG) elementary excitation spectrum, much related
to macroscopic quantum phenomena, namely, superfluidity and superconductivity,
provides the fundamental information about the condensate dynamics. Excitation
spectrum for the equal combination of Rashba-Dresselhaus 1D SO coupling [5, 6]
in BECs gives rise roton-maxon structures theoretically [7, 8] and experimentally
(see [9–11]). Effective study on SO coupling has played an important role in many
exotic phenomena such as superfluidity [12], flat band structure in optical lattice
potential [13] and ground state phase diagram. There are some works that indicate
the presence of zero momentum phase [14] in quasi-1D SO coupled BECs. So far
there are few studies of collective excitation study on SO coupled BEC in 2D [15].
However, such detailed studies are lacking for quasi-1D system. In this paper, we
present the excitation spectrum of SO coupled BECs in quasi-1D.

SO coupled BECs can be described by coupled Gross-Pitaevskii equations. Using
this we can find the single particle dispersion relation. It has two different distinct
structures those are single minimum and double minima of parabola. We find that
single minimum represents plane wave phase, while, the double minima corresponds
to the stripe wave phase. These minima can be achieved with the help of free param-
eters namely SO and Rabi coupling strengths. Excitation spectrum is different from
the single particle spectrum. We vary the contact inter- and intraspecies interactions
and analyze their effect on the excitation spectrum. In this paper, we focus on solving
the excitation spectrum and analyze its phase transition from stable to unstable state
upon variation of several parameters.

The paper is organized as follows. In Sect. 2 we begin by describing the theoretical
model, coupledGross-Piteavskii equations. In Sect. 3wepresent the analytical results
of the Bogoliubov-de Gennes matrix and explain its excitation spectrum. The effect
of interactions and coupling parameters on the stability of the excitation spectrum is
demonstrated in Sect. 4, which is followed by the discussion on the stability phase
diagram in Sect. 5. Finally, we conclude our paper in Sect. 6.

2 The Model

In this sectionwe illustrate themean-fieldmodel of pseudo spin-1/2 BECs in a quasi-
one dimensional setting with strong transverse trap confinement. In experiments, the
spin-orbit coupled BECs are created, for instance, by choosing two internal spin
states of 87Rb atoms within the 5S1/2, F = 1 ground electronic manifold, which are
designated as pseudo spin-up, |↑〉 = |F = 1,mF = 0〉 and spin-down, |↓〉 = |F =
1,mF = −1〉. Then a pair of counter propagatingRaman laserswith strength� (Rabi
coupling) is used to couple the two states. The properties of such SO coupled BECs
can be described by a set of coupled Gross-Pitaevskii equations (in dimensionless
form) as [16]:
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i
∂ψ↑
∂t

=
[

− 1

2

∂2

∂x2
− ikL

∂

∂x
+ V (x) + α|ψ↑|2 + β|ψ↓|2

]
ψ↑ + �ψ↓, (1a)

i
∂ψ↓
∂t

=
[

− 1

2

∂2

∂x2
+ ikL

∂

∂x
+ V (x) + β|ψ↑|2 + α|ψ↓|2

]
ψ↓ + �ψ↑, (1b)

Here, ψ↑ and ψ↓ are the wavefunction corresponding to the spin-up and spin-down
component of the condensates, V (x) is the one dimensional harmonic trapping poten-
tial,α andβ are the intra- and respectively interspecies nonlinear interaction strengths
respectively, kL is spin-orbit and� is theRabi couplingparameters. In the above equa-
tions (1), length is measured in units of harmonic oscillator length a0 = √

�/(mω⊥),
time in the units of ω−1

⊥ , and energy in the units of �ω⊥, where ω⊥ is the transverse
direction frequency of the harmonic confinement. The SO and Rabi coupling param-
eters have been rescaled as kL = k ′

L/a0ω⊥ and � = �′/ω⊥, respectively, while the
wave function is rescaled as ψ↑,↓ = ψ↑,↓a

3/2
0 /

√
N . We consider the Rabi coupling

as � = |�|eiθ that minimizes the energy when � = −|�| for θ = π [16]. The wave
functions are subjected to the following normalization condition,

∞∫
−∞

(|ψ↑|2 + |ψ↓|2) dx = 1, (2)

3 Excitation Spectrum

The excitation spectrum provides the information about the dynamics of the con-
densates [15]. In this section, we present our analytical analysis of the stability of
the SO coupled BECs with help of excitation spectrum. Here to understand the sta-
bility of different phases, we wish to study the excitation spectrum of plane wave
solutions. This will be done by applying Bogoliubov theory. For this purpose, we
assumed that homogeneous BECs with the total density of the system n = n↑ + n↓
is conserved and the chemical potential μ is same for the both components [15].
Then the stationary state evolves as


 j = e−iμt
[
ψ j + u j e

i(kx x−ωt) + v∗
j e

−i(kx x−ω∗t)] , (3)

where ψ j = √
n jeiφ j , j = (↑,↓) is the ground state wave functions and u j , v j are

the amplitudes of the two plane waves, n j , φ j are density and phase respectively of
ground state wave function. The Bogoliubov coefficients u’s and v’s are obtained by
substituting Eq. (3) in Eq. (1) and written as
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L

⎛
⎜⎜⎝
u↑
v↑
u↓
v↓

⎞
⎟⎟⎠ = �ω

⎛
⎜⎜⎝
u↑
v↑
u↓
v↓

⎞
⎟⎟⎠ , (4)

where,

L =

⎛
⎜⎜⎝

f1(n↑, n↓) αn↑ β
√
n↑n↓ − � β

√
n↑n↓

−αn↑ − f2(n↑, n↓) −β
√
n↑n↓ −β

√
n↑n↓ + �

β
√
n↑n↓ − � β

√
n↑n↓ f2(n↓, n↑) αn↓

−β
√
n↑n↓ −β

√
n↑n↓ + � −αn↓ − f1(n↓, n↑)

⎞
⎟⎟⎠ , (5)

where,

f1(n↑, n↓) = k2x
2

+ kLkx + 2αn↑ + βn↓ − 1

2

[
αn + βn − n�√

n↑n↓

]
,

f2(n↑, n↓) = k2x
2

− kLkx + 2αn↑ + βn↓ − 1

2

[
αn + βn − n�√

n↑n↓

]
, (6)

We consider n↑ = n↓ = 1/2. So using n = n↑ + n↓ = 1, the above quantities can
be written as

f1 = k2x
2

+ kLkx + α

2
+ �, f2 = k2x

2
− kLkx + α

2
+ �,

The simplified form of the Bogoliubov-de Gennes equation can be obtained by sub-
stituting det L equal to zero and written as

ω4 + �ω2 +  = 0. (7)

where,

� =1

2

[
− k4x − 4�(α − β + 2�) − 2k2x

(
α + 2

(
k2L + �

)) ]
(8)

 = 1

16
k2x

(
k2x + 2α − 2β − 4k2L + 4�

) (
k4x + 8 (α + β)� + 2k2x

(
α + β − 2k2L + 2�

))
(9)
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4 Stability Analysis of the Excitation Spectrum

The single-particle spectrum (α = β = 0) generally have a positive branch (ω+) and
a negative branch (ω−). Positive branch exhibits single minima throughout, while,
the negative branch shows the transition from single minima to double minima upon
the variation of spin-orbit coupling at some finite Rabi coupling term. We calculate
the eigenvalue of the matrixL (Eq. (5)). we have two positive and two negative eigen
energy spectrum.

Here, we will focus on the negative branch of the elementary excitation spectrum,
which plays a vital role in the transition between the different phases of the con-
densates. Note that the imaginary or complex eigenenergies indicate the dynamical
instability, while, negative eigenenergy of the excitation spectrum implies that the
system is energetically unstable [15]. As we are interested in investigating the effect
of the different interaction and coupling parameters on the dynamical instability,
we will be mainly interested in looking at the nature of the negative branch of the
eigenenergy. We define G = |
(ω−)|, where 
 represents the imginary part of the
variable.

4.1 Effect of Interactions on the Stability of Excitation
Spectrum

First, we begin our discussion by analyzing the effect of the variation of the attractive
nonlinear interaction on the excitation spectrum stability. In Fig. 1 we show the
variation of the imaginary part of the negative branch of the eigenspectrum (G =
|
(ω−)|) along the wavenumber by fixing the other parameters as kL = � = 1 and
β = −1 for different attractive intraspecies (α) interactions. For lower α (α < −4)
the spectrum is stable (as G = 0) at kx = 0, however, for α = −4 the spectrum
shows instability at kx = 0. The instability of the spectrum even for kx = 0 can

Fig. 1 Variation of the
imaginary part of the
eigenvalue (G = |
(ω−)|)
with kx for different range of
α with fixed kL = � = 1
and β = −1. Multiple
unstable bands starts
appearing upon increase of
attractive interaction

0 1 2 3 4 5

k x

0

1

2

G

kL = Ω = 1, β = −1 α = −1
α = −2
α = −3
α = −4
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Fig. 2 Variation of the
imaginary part of the
eigenfrequency (G) with kx
for different range of β with
fixed kL = � = 1 and
α = −1. The instability
bands become more wider
upon increase in β
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kx

0

2

4

G

kL = Ω = 1, α = −1β = −1
β = −2
β = −3
β = −4

be attributed to the collapsing nature of condensates at higher attractive value of
α. At lower α(= −1,−2) the system have single instability band while for higher
α(= −3,−4) multiple instability band seems to appear in along the wavenumber.
Note that the instability band is symmetric about kx = 0. However, as we analyze the
effect of variation in the interspecies interaction (β) on the stability of the excitation
spectrum we find that for all the values of β the system have one instability band.
The wavenumber range of the instability band width and amplitude becomes wider
upon increase in β for kL = � = 1 and α = −1 (See Fig. 2). So we find that effect
of change in α and change in β on the stability of the excitation is different.

After discussing the effect of the interactions of the stability of the excitation
spectrum now in the following we will present the effect of SO and Rabi couplings
on the instability band of the excitation spectrum.

4.2 Effect of Coupling Parameters on the Stability
of Excitation Spectrum

In Fig. 3 we show the plots of the instability strength G in the wavenumber space for
different kL(= 0, 1, 2, 4) by keeping the other coupling and interaction parameters
fixed (� = 0.25, α = β = −1). We find the presence of single instability at kL = 0.
At finite kL(= 1, 2, 4) the spectrum showsmultiple instability bands. However, as we
analyze the effect of the Rabi coupling on the instability bands, we find that the multi
band instability gets modified into single instability band that exhibits expansion
along the wave number upon increase of�. They do not split into multiple instability
bands (See Fig. 4). Overall we find that the effect of Rabi coupling on the instability
is opposite to those due to the SO coupling.

After discussing both interactions and coupling parameters effects on the stability
of the excitation spectrum, next we move to obtain a full stability phase diagrams in
interactions and coupling parameters plane.
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Fig. 3 Variation of the
imaginary part of the
eigenfrequency (G) with kx
for different range of kL with
fixed α = β = −1 and
� = 0.25
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Fig. 4 Variation of the
imaginary part of the
eigenfrequency (G) with kx
for different range of � with
fixed α = β = −1 and
kL = 1
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5 Stability Phase Diagrams

In order to get a complete picture of the stability of excitation spectrum for the
different ranges of the coupling parameters in Fig. 5 we show the imaginary part of
the eigenfrequency (G) in the α − β plane (in left panel) and in the � − kL plane
(right panel). For the left panel we fixed the parameters � = kL = 1 and for right
panel α = β = −1. We have chosen kx = 1. We have the notion that the system in
the strong attractive regime of condensates gets collapsed, however, here we find the
presence of a small narrow stable regime in the α − β plane, which may be quite
interesting for the experimental research. As we analyze the phase diagram in the
� − kL we find that at lower kL(∼ 0) the excitation spectrum exhibits instability for
all the ranges of �. However, for kL � 1 the spectrum is unstable for small �(∼ 0).
We find that the condensates become unstable upon increasing � for a fixed kL .
However, the effect of increase in kL for a fixed � (� 0.3) shows the transition from
unstable to the stable phase. Overall, we find that the effect of kL and � on the
excitation spectrum is quite opposite to those observed in quasi-two dimension [15].
This is due to the SO coupling present in the same components of the quasi-1D binary
BECs.
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Fig. 5 Stability phase diagram of the BdG spectrum: (left) in the α − β plane the parameters
are fixed as � = kL = 1, (right) in the �-kL plane with fixed α = β = −1. Note that the phase
diagrams are obtained for the mode kx = 1. α = β = −1

6 Conclusion

In this paper, we have presented an analytical investigations of the effect of the inter-
action strengths and coupling parameters on the excitation spectrum of the attractive
SO coupled binary BECs. We have used the Bogoliubov-de Gennes theory to ana-
lyze the excitation spectrum. The dynamical instability is characterized using the
imaginary part of the negative eigenspectrum. We have obtained that the increase of
intraspecies interaction leads to the formation of multiple instability bands while the
increment in the interspecies interaction show the presence of only one instability
band. The increase in the Rabi coupling for a fixed SO coupling (kL) brings multi-
band instability to single-band instability in the condensates. However, the effect of
kL is opposite those of �. Increase in kL makes the condensates more stable when
� � 0.3. However, for� � 0.3we observedmulti-band instability from single-band
instability upon increase in kL and we do not have any stable state. In this paper,
we have not analyzed the nature of dynamics and the eigenevector of the eigenspec-
trum which give the information about the detailed correlation between the spin and
density of the condensate. The study is underway.

Acknowledgements Supported by DST-SERB (Department of Science and Technology - Science
and Engineering Research Board) for the financial support through Project No. ECR/2017/002639.

References

1. Lin, Y.-J., Jiménez-García, K., Spielman, I.B.: Spin-orbit-coupled Bose-Einstein condensate.
Nature 471, 83 (2011). https://doi.org/10.1038/nature09887

https://doi.org/10.1038/nature09887


Instabilities of Excitation Spectrum for Attractive Spin-Orbit Coupled … 1373

2. Stanescu, T.D.,Anderson, B., Galitski, V.: Spin-orbit coupledBose-Einstein condensates. Phys.
Rev. A 78, 023616 (2008). https://doi.org/10.1103/PhysRevA.78.023616

3. Galitski, V., Spielman, I.B.: Spin-orbit coupling in quantum gases. Nature 494, 49 (2013).
https://doi.org/10.1038/nature11841

4. Zhai, H.: Degenerate quantum gases with spin-orbit coupling: a review. Rep. Prog. Phys. 78,
026001 (2015). https://doi.org/10.1088/0034-4885/78/2/026001

5. Bychkov, Y.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in
inversion layers. J. Phys. C: Solid State Phys. 17, 6039 (1984)

6. Dresselhaus, G.: Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580
(1955). https://doi.org/10.1103/PhysRev.100.580

7. Martone, G.I., Li, Y., Pitaevskii, L.P., Stringari, S.: Anisotropic dynamics of a spin-orbit-
coupled Bose-Einstein condensate. Phys. Rev. A 86, 063621 (2012). https://doi.org/10.1103/
PhysRevA.86.063621

8. Li, Y., Martone, G.I., Pitaevskii, L.P., Stringari, S.: Superstripes and the excitation spectrum of
a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. Lett. 110, 235302 (2013). https://
doi.org/10.1103/PhysRevLett.110.235302

9. Khamehchi, M.A., Zhang, Y., Hamner, C., Busch, T., Engels, P.: Measurement of collective
excitations in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. A 90, 063624 (2014).
https://doi.org/10.1103/PhysRevA.90.063624

10. Ha, L.-C., Clark, L.W., Parker, C.V., Anderson, B.M., Chin, C.: Roton-maxon excitation spec-
trum of Bose condensates in a shaken optical lattice. Phys. Rev. Lett. 114, 055301 (2015).
https://doi.org/10.1103/PhysRevLett.114.055301

11. Ji, S.-C., Zhang, L., Xu, X.-T., Wu, Z., Deng, Y., Chen, S., Pan, J.-W.: Softening of roton and
phonon modes in a Bose-Einstein condensate with spin-orbit coupling. Phys. Rev. Lett. 114,
105301 (2015). https://doi.org/10.1103/PhysRevLett.114.105301

12. Zhu, Q., Zhang, C., Wu, B.: Exotic superfluidity in spin-orbit coupled Bose-Einstein conden-
sates. Europhys. Lett. 100, 50003 (2012). https://doi.org/10.1209/0295-5075/100/50003

13. Zhang, Y., Zhang, C.: Bose-Einstein condensates in spin-orbit-coupled optical lattices: flat
bands and superfluidity. Phys. Rev. A 87, 023611 (2013). https://doi.org/10.1103/PhysRevA.
87.023611

14. Yu, Z.-Q.: Ground-state phase diagram and critical temperature of two-component Bose gases
with Rashba spin-orbit coupling. Phys. Rev. A 87, 051606(R) (2013). https://doi.org/10.1103/
PhysRevA.87.051606

15. Ravisankar, R., Fabrelli, H., Gammal, A., Muruganandam, P., Mishra, P.K.: Effect of Rashba
spin-orbit and Rabi couplings on the excitation spectrum of binary Bose-Einstein condensates.
Phys. Rev. A 104, 053315 (2021). https://doi.org/10.1103/PhysRevA.104.053315

16. Ravisankar, R., Sriraman, T., Salasnich, L., Muruganandam, P.: Quenching dynamics of the
bright solitons and other localized states in spin-orbit coupled Bose-Einstein condensates. J.
Phys. B: At. Mol. Opt. Phys. 53, 195301 (2020). https://doi.org/10.1088/1361-6455/aba661

https://doi.org/10.1103/PhysRevA.78.023616
https://doi.org/10.1038/nature11841
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRevA.86.063621
https://doi.org/10.1103/PhysRevA.86.063621
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.1103/PhysRevA.90.063624
https://doi.org/10.1103/PhysRevLett.114.055301
https://doi.org/10.1103/PhysRevLett.114.105301
https://doi.org/10.1209/0295-5075/100/50003
https://doi.org/10.1103/PhysRevA.87.023611
https://doi.org/10.1103/PhysRevA.87.023611
https://doi.org/10.1103/PhysRevA.87.051606
https://doi.org/10.1103/PhysRevA.87.051606
https://doi.org/10.1103/PhysRevA.104.053315
https://doi.org/10.1088/1361-6455/aba661


The Dynamics of COVID-19 Pandemic



Mapping First to Third Wave Transition
of Covid19 Indian Data via Sigmoid
Function

Supriya Mondal and Sabyasachi Ghosh

Abstract Understanding first and second wave of covid19 Indian data along with its
few selective states, we have realized a transition between two Sigmoid pattern with
twice larger growth parameter and maximum values of cumulative data. As a result
of those transition, time duration of second wave shrink to half of that first wave with
four times larger peak values. Realizing first and second wave Sigmoid pattern due to
covid19 virus and its mutated variant—δ virus respectively, third wave was mapped
by another Sigmoid pattern with three times larger growth parameter than that of
first wave. After understanding the crossing zone among first, second and third wave
curves due to covid19, δ and omicron respectively, a hidden Sigmoid pattern due to
mutated δ+ virus is identified in between δ and omicron. It is really interesting that
entire covid19 data of India can be easily (offcourse grossly) understood by simple
algebraic expressions of Sigmoid function and we can identify 4 Sigmoid patterns
due to covid19 virus and its 3 dominant variants.

Keywords Covid19 · Omicron · Sigmoid function · 3rd Wave

1 Introduction

Spreading of the novel coronavirus, covid19, from China to entire globe become
so alarming that the World Health Organization (WHO) declared it as a pandemic
disease on 11thMarch 2020 [1, 2]. The data of covid infected, recovered and death are
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maintained by different countries in their government based websites. Reference [3]
is citing the corresponding website for India. From 2020 to now, a huge amount of
works are attempted to fit the covid infected daily cases and cumulative data for
predicting the their pattern. One of the successful model is SIR model [4–6], on
which a large number of works can be found. Few selective works are Refs. [7–13],
which focus on SIR model application for explaining Indian covid19 data as well as
other countries, e.g. Ref. [14]. SIR type interaction based alternative methodologies
can be found in recent Refs. [15–17]. Since the lock down is one of the preventive
measurement of this epidemic spreading, so some Refs. [9, 18–23] are focused
to explore this fact mathematically. Alternative methods [24–30] like regression
analysis [24], population ecology [25], machine learning [26], deep learning [27] etc.
This modeling estimation helps different preventive measurement related qualitative
research like Refs. [31–35]. Recently, Refs. [10, 36] work on second wave data and
third wave prediction. Present work is intended towards similar aims

Though SIR model is quite well cultivated model for epidemic prediction, but
a simple logistic function description like Sigmoid function [37–39] can also be
an easy-dealing tools to understand the same epidemic outbreak. In our earlier
works [40–42], we have used this Sigmoid function framework for predicting first
wave of India data. This framework is also used for understanding epidemic size of
other countries, for example Refs. [38, 39, 43].

Covid19 first wave growing is initiated in India from March, 2020 and peak was
noticed in Sep, 2020. Then around Jan, 2021 the daily case data quietly went down
but after that a second wave growing started, whose peak was noticed around May,
2021. It was more deadly than first wave due to mutated variant - δ virus. It also went
down around June, 2021. Next, another mutated variant δ+ came into the picture
with a mild spreading coverage, but another mutated variant omicron create the next
level rapid growth from Jan, 2022, which can be considered as actual third wave.
Present work is aimed to explain the these first, second and third waves covid19
infection data due to 3 different variants with the help of three different Sigmoid
functions.

The article is organized as follows. Starting with brief formalism part of Sigmoid
function, we have discussed about the steps of generating curves in the Sect. 2. Next,
in results section, we have described the first and second wave curves including our
third wave predicted curves. After analyzing those results, at the end we summarized
our work.

2 Mathematical Framework

In this framework part, we will discuss quickly about the Sigmoid function which
will be used to interpret covid 19 data. Then we will discuss about the steps, through
which we proceed.
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The form of Sigmoid function is

N (t) = N0e
λt/

(
N0eλt

Nm
+ 1

)
, (1)

where N0 is initial number of cases, λ is growth parameter, Nm is the maximum
values, where cumulative case N (t) will be saturated. Here t represents number of
days. Now, the time derivative of Sigmoid function is

dN

dt
= λN0e

λt/
(Noeλt

Nm
+ 1

)2
, (2)

which is the number of new cases per day aswe see in covid 19 data. Sigmoid function
shows exponential behaviour in low values of t but it will saturate to a maximum
values (Nmax ) at high values of t . When we analyze its derivative or slope, then we
will get first increasing and then decreasing trends after showing a peak. The peak
structure of daily cases depends on three parameters Nm , N0, λ. The peak time tp,
when daily cases reach its highest value, can be expressed as

tp = ln(Nm/N0)

λ
. (3)

At t = tp daily cases and cumulative cases are respectively

(
dN

dt

)
p

= λNm

4
. (4)

and
Np = Nm/2 . (5)

Above simple formalism can be useful to describe covid 19 data pattern. In India we
found two waves whose cumulative and daily cases data patterns can expressed in
terms of two consecutive Sigmoid functions and their time derivatives.

From the first wave of Covid 19 Indian data [3] we find out the values of tp1,
(dN/dt)p1 and Nm1. These values are used in Eqs. (3) and (4) to find out the values
of λ1 and N01. Subscript 1 is added in the notations of different parameters to assign
first wave case. For India and some selective states—(1) Maharashtra (MH), (2)
Kerala (KL), (3) Karnataka (KA), (4) Tamil Nadu(TN), (5) Andhrapradesh (AP), (6)
West Bengal(WB), those parameters are tabulated in Table 1.

Next, when we will go for corresponding second wave data, we will not get Nm2

as it is not till finished and we can not see the second saturated cumulative values.
However, we can see the Np2 values from data and by using Eq. (5), we can guess
Nm2 by making twice of Np2. Here, subscript 2 is added in the notations of different
parameters to assign second wave case. Another important point for cumulative data
of second wave is that we will redefine it by subtracting first wave maximum values
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Table 1 Different parameters of Sigmoid functions, which can grossly describe covid19 first wave
data of India and selective states—MH, KL, KA, TN, AP, WB

State λ1 Nm1 N01 tp1

(
dN
dt

)
p1

MH 0.05 19 × 105 142 190 25 × 103

KL 0.027 10 × 105 549 278 9 × 103

KA 0.048 8.6 × 105 37 209 10 × 103

TN 0.035 8 × 105 1469 148 7 × 103

AP 0.04 8.8 × 105 606 182 10 × 103

WB 0.029 5.5 × 105 522 240 4 × 103

India 0.045 94 × 105 1000 192 94 × 103

Table 2 Same as Table 1 for second wave

State λ2 Nm2 N02 tp2
(
dN
dt

)
p2

Np2 + Nm1

MH 0.05 46 × 105 350 84 67 × 103 42 × 105

KL 0.078 20 × 105 648 103 39 × 103 20 × 05

KA 0.11 16.8 × 05 43 96 49 × 103 17 × 105

TN 0.085 16 × 105 151 109 34 × 103 16 × 105

AP 0.09 10 × 105 74 106 24 × 103 14 × 105

WB 0.08 9 × 105 257 102 20 × 103 10 × 105

India 0.08 2 × 107 8579 96 4 × 105 2 × 105

Nm1. It means that Eqs. (1) and (2) for second waves will be

N2(t) = N02e
λ2t/

(
N02eλ2t

Nm2
+ 1

)
, (6)

and
dN2

dt
= λ2N02e

λ2t/
(N02eλ2t

Nm2
+ 1

)2
, (7)

where Nm2 = (Np2 − Nm1) × 2. So knowing Nm1, Np2 from data, we can guess
about Nm2. Although, we should keep in mind that Nm1 + Nm2 is actual saturated
values of second wave case, when we compare it with actual data. The parameters
of second waves for India and the selective states are given in Table 2.
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3 Results

We have described the steps, through which we have find the parameters of first and
second wave of covid 19 spreading. Figure 1 shows the Sigmoid function nature of
cumulative N and daily case dN/dt data of India. In the left and right panels of Fig. 1
represents the data points (squares and circles) and corresponding Sigmoid fitted
curves (dotted and solid lines) in first and second waves respectively. We consider
3 main data points of daily and cumulative cases at t = (tp − 2/λ), tp, (tp + 2/λ),
within which spreading becomemost dominant. We have taken three different values
of λ = 0.04, 0.045 and 0.05 to fit the three data points of first wave. In another aspect,
Second wave is well fitted with one λ = 0.08. First waves is saturated in Nm1 = 107

and second waves is saturated in Nm2 = 2 × 107 which are already seen in covid
19 data. They are implemented as important inputs to build corresponding Sigmoid
curves.

Next, we will generate similar graphs in Figs. 2 and 3 for 6 selective states - MH,
AP, WB, TN, KL and KA. In Fig. 2 we noticed that the daily cases data of MH, AP
and TN in first wave are well fitted by (time derivative of) Sigmoid function but the
same for WB, KA and KL are not so well fitted by Sigmoid function. On the other
hand in second wave all those data are favouring the Sigmoid function, which can
be seen in Fig. 3. In first wave there was no sharp peak for few states where as peak
was clearly seen during second wave almost in every states. This is most probably
because of rapidly growing of daily cases in second wave which was lacking for few
states in first wave.

In first wave, we find the range of growth parameter λ1 = 0.03 − 0.05 and peak

value
(
dN
dt

)
p1

= (0.04 − 0.25) × 105. The state level range of growth parameter

is quite close to the range of λ1 = 0.04 − 0.05 for entire country. Being added

of state level peak values, we find
(
dN
dt

)
p1

≈ 1 × 105 for India. Different states
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Fig. 1 Left panel: Cumulative (squares) and daily cases (circles) data, fitted in Sigmoid curves
(dotted line) and their derivatives (solid lines) for first wave. Right panel: Same for second wave
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Fig. 2 Sigmoid curves (dotted lines) and their derivatives (solid lines) for first wave in MH, AP,
WB, TN, KL, KA
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Fig. 3 Same as Fig. 2 for second wave

shown peak value at different time points tp1 which are in the range of tp1 = 5 − 9
months. India data shows the peak value around tp1 = 6.5 months. If we ana-
lyze second wave then state level ranges are λ2 = 0.078 − 0.1 (excluding MH

λ2 = 0.05),
(
dN
dt

)
p2

= (0.2 − 0.67) × 105, tp2 = 2.8 − 3.5 months and India data

shows at λ2 = 0.08,
(
dN
dt

)
p2

≈ 4 × 105, tp2 = 3.2 months. If we compare first and

second wave data of India and its different states, then we can notice their ratios
as λ2/λ1 ≈ 2, tp2/tp1 ≈ 1/2, Nm2/Nm1 ≈ 2. Although ratio between peak values
of two waves for different states are not quite stable. As example, it is approxi-
mately 4 for India, 5 for WB, TN and 13 for KL etc. Considering India data as
collective effect, we may conclude that first to second wave transition was just tran-
sition of parameters λ1 → λ2 = 2λ1, tp1 → tp2 = tp1/2, Nm1 → Nm2 = 2Nm1 and(
dN
dt

)
p1

→
(
dN
dt

)
p2

= 4
(
dN
dt

)
p1
.

Now let us come to the question whether we can identify the reason for occurring
second wave after the first wave? Single answer of this question is really difficult but
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mutation of virus might be considered as a dominating point. Here, we will try to
understand graphically but reader should considered that quantitative message with
a very flexible way. In Fig. 4, we have drawn first and second wave daily cases curves
in one portrait andwe can see an overlapping/crossing zone of them around February,
2021. This is also observed in data (circles) as one can notice that second wave rising
is started after Feb, 2021. We have put few selective daily cases data at tp1 − 2

λ1
, tp1,

tp1 + 2
λ1
, tp1 + 4

λ1
, tp1 + 6

λ1
, tp2 − 6

λ2
, tp2 − 4

λ2
, tp2 − 2

λ2
, tp2, tp2 + 2

λ2
. One can notice

that our Sigmoid curves for first and second waves are well fitted within tp1,p2 ± 2
λ1,2

.
Outside those zones, the trends of data points and curves are going similar although
bit of differences in numerical strengths are noticed. Now, assuming mutated virus
as a dominating cause of second wave, let us try to describe the data as follows. After
entering covid19 virus into India from March, 2020, first wave has received its peak
around Sep, 2020 and then it went down until Feb, 2021. This imported covid19 virus
are started to be mutated and among the different variant, delta virus [44] become
more contagious than previous. We may consider this delta virus as a dominating
reason for second wave, which is appeared to be started from Feb, 2021 and received
peak around first week ofMay, 2021. Interestingly, first confirmed case of delta virus
in India is observed around Oct, 2020, [45] which is quite earlier than Feb, 2021,
fromwhen second wave seems to grow. So it is quite interesting fact that the growing
pattern of delta virus was hidden from Oct, 2020 to Feb, 2021. We can only see the
decay pattern of first wave curve. If we extend our secondwave Sigmoid curve before
Feb, 2021, then we get N0 ≈ 1 around Oct, 2020. Recovering this empirical point
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by the simple logistic function is really very interesting fact. So if we crudely assign
our first and second wave as the outcome of covid19 virus and mutated/delta virus
spreading, then we can find recognize their overlapping zone.

After realizing the transition from first to second wave, we can use the idea for
predicting third wave. After mutation of delta virus, recently delta plus (δ+) virus
is first reported in India around June, 2021. Initially it was expected to be 1.5 − 2
times contagious [46, 47] than delta virus. On the basis of that speculation, a sudden
grow was expected for δ+ around mid Aug-Oct, 2021 and get a peak value within
Sep-Nov, 2021. Although an opposite guess was suspected in parallel [48]. In real
data, we see that δ+ don’t show any growing pattern within the duration June-
Dec, 2021 and our hope was going toward end of the pandemic. A drastic change
in data is appeared due to new variant omicron, which rapidly grows from first
week of January, 2022 and reach its peak at the end of January, 2022 (guessed
from data pattern). From June, 2021 to Dec, 2021, cumulative value was roughly
saturated around 3.5 × 107 but due to omicron, at the end of Jan, 2022, when peak
value in daily cases is reached, it cumulative value reaches around 4 × 107. So,
Np3 = (4 − 3.5) × 107 and Nm3 = 2Np3 ≈ 1 × 107. Also, data show the peak value

around
(
dN
dt

)
p3

≈ 3.3 × 105, fromwhere we can guess the λ3 ≈ 0.12 and tp3 ≈ 134

days by using the relations

(dN
dt

)
p

= λNm

4
,

tp3 = ln(Nm3/N03)

λ3
(8)

respectively. This omicron Sigmoid profiles along with those of earlier variants are
sketched in single graph—Fig. 4. We are getting tp3 ≈ 134 days assuming 103 daily
cases in the beginning of Dec, 2021. Hence, our covid data with 3 waves can be
expressed in terms of three Sigmoid functions for 3 variants—covid19, δ and omi-
cron, which are nicely sketched in Fig. 4. Their parameter transformation can be
expressed in a single equation:

λ1 ≈ 0.04 → λ2 ≈ 0.08 → λ3 ≈ 0.12

Nm1 ≈ 1 × 107 → Nm2 ≈ 2 × 107 → Nm3 ≈ 1 × 107

tp1 ≈ 192 Days → tp2 ≈ 96 Days → tp3 ≈ 134 Days(dN
dt

)
p1

≈ 1 × 105 →
(dN
dt

)
p2

≈ 4 × 105 →
(dN
dt

)
p3

≈ 3.3 × 105 . (9)

with a hidden Sigmoid profile of δ+ virus, whose parameters are roughlyλδ+
3 = 0.04,

N δ+
m3 = 0.3 × 107. We have used index 3 with δ+ for assigning as pseudo 3rd wave

by δ+, which was actually hidden in between δ and omicron variants due to its mild
properties (probably). However, reader should notice that its presence keep the daily
case data as constant during June to Dec, 2021.
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4 Summary

In summary, present work is intended to explain the existing first, second and third
waves of covid19 infection data with the help of simple logistic function, called
Sigmoid function. From the data points of peak values and peak positions for daily
cases of India and its selective states MH, KL, KA, TN, WB, AP, we have found
the required input parameters of the Sigmoid functions. Our results grossly indicates
a transition between two Sigmoid pattern with twice larger growth parameter and
maximumvalues of cumulative data during first to secondwave transition. In parallel,
time duration of second wave shrink to half of that first wave and peak values of daily
cases becomes four times larger. From the basic properties of Sigmoid functions,
those changes can be easily realized. Realizing these first and second waves are
because of Sigmoid-type spreading of coviod19 and its mutated variant—δ virus,
there was a speculation of third wave due to next level mutated variant δ+ virus but
it shows a mild growing Sigmoid profile, for which daily cases data from June to
Dec, 2021 remain almost constant. In the beginning of January, a rapid growing of
third wave profile is initiated due to another mutated variant—omicron. Our guess
Sigmoid profile for third wave carry 3 times larger growth parameter than first wave
but its saturate cumulative value remain almost same as that of first wave. Novelty of
present work may be the finding 4 different Sigmoid profiles for 4 variants to explain
roughly the actual covid19 data.
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Progression of COVID-19 Outbreak
in India, from Pre-lockdown
to Post-lockdown: A Data-Driven
Statistical Analysis

Dipankar Mondal and Siddhartha P. Chakrabarty

Abstract In order to analyze the progression of COVID-19 outbreak in India, we
present a data-driven analysis, by the consideration of four different metrics, namely,
reproduction rate, growth rate, doubling time and death-to-recovery ratio. The inci-
dence data of theCOVID-19 (during the period of 2ndMarch 2020 to 11th September
2021) outbreak in India was analyzed, based on the estimation of time-dependent
reproduction. The analysis suggested effectiveness of the lockdown, in arresting the
growth and this continued for the post-lockdown period, except for the period of the
setbacks resulting for the second wave. The approach adopted here would be useful
in future monitoring of pandemics, including its progression.

Keywords Lockdown · Effective reproduction number · Estimation · COVID-19

1 Introduction

As of 31st October 2021, the coronavirus disease 2019 (COVID-19), first reported in
Wuhan, China [1], has resulted inmore than 246million confirmed cases and nearly 4
million causalities [2]. The global pandemic resulting from the COVID-19 outbreak,
was preceded by two other outbreaks of human coronavirus, in the 21st century itself,
namely, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections [3]. The
index case for the COVID-19 outbreak in India was reported on 30th January 2020,
in case of an individual with a travel history fromWuhan, China [4]. The data avail-
able on [4], suggests that during the early stages, the COVID-19 positive cases in
India, was limited to individuals with a travel history involving the global hotspots of
the outbreak. However, subsequently, the detected cases indicated the possibility of
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community outbreak, which resulted in the Government of India announcing a lock-
down across the country, driven by the necessity of crucial step towards curbing the
growth of COVID-19 in densely populated country, like India. However, given the
cost of the lockdown, from both the epidemiological as well as the economic perspec-
tive, the lockdown was withdrawn in a phased manner (contingent on the situation at
the local level). Accordingly, this paper presents a data-driven analysis to examine
the effectiveness of the lockdown, and the dynamics of post-lockdown spread of the
pandemic. In order to accomplish this, we empirically analyze four different met-
rics, namely, reproduction number, growth rate, doubling time and death-to-recovery
ratio, which quantify the transmission rate, the growth rate, the curvature of epidemic
curve, and the improvement of health care capacity, respectively.

We now give a brief summary of some of the available literature on quantita-
tive approaches to the modeling of transmission of COVID-19 outbreak. A system
of ordinary differential equation (ODE) driven model for phasic transmission of
COVID-19, was analyzed for calculating the transmissibility of the virus in [5].
Kucharski et al. [1] considered a stochastic transmission model on the data for cases
in Wuhan, China (including cases that originated there) to estimate the likelihood
of the outbreak taking place in other geographical locations. A literature survey by
Liu et al. [6], summarized that the reproductive number (and hence the infectivity)
in case of COVID-19, exceeded that of SARS. A Monte-Carlo simulation approach
to assess the impact of the COVID-19 pandemic in India, was carried out in [7]. In
a series of recent articles, the modeling of various aspects of the outbreak in India,
have been studied from the perspective of fractal based prognosis assessment [8],
a prediction approach for the second and third waves [9], and the vital question of
achieving herd immunity in India [10].

A key identifier for the transmissibility of epidemiological diseases such as
COVID-19 is the basic reproduction number R0, which is defined as the average
number of secondary infections resulting from an infected case, in a population
whose all members are susceptible. However, we seek to determine the (data-driven)
time-dependent reproduction number Rt , for better clarity on the time-variability of
the reproduction number, particularly in the paradigm of its dynamics, both during
the phases of nationwide pre-lockdown, lockdown and post-lockdown in India. In
addition, we also estimate and analyze the statistical performance of growth rate,
doubling time and death-to-recovery ratio. Therefore, the paper is organized as fol-
lows. In Sect. 2, we detail the source of the data as well as the statistical approaches
used for the estimation of R0 and Rt . This will be followed by the presentation of
the data-driven analysis of the pre-lockdown to the post-lockdown period in Sect. 3.
And finally, in the concluding remarks in Sect. 4, we highlight the main takeaways
for this analysis.
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2 Methodology for Estimating Reproduction Rate

The data of incidences used for the analysis reported in this paper was obtained from
the website of India COVID 19 Tracker [4], and used for the purpose of estimation
of R0. This estimation was carried out making use of the R0 package [11] of the
statistical packageR. The standardized approach included in theR0package, includes
the implementation of the Exponential Growth (EG), Maximum Likelihood (ML)
estimation, Sequential Bayesian (SB) method, and estimation of time dependent
reproduction (TD) numbers, used during the H1N1 pandemic of 2009. The package
is designed for the estimation of both the “initial” reproduction number, as well as the
“time-dependent” reproduction number. Accordingly, we present a brief summary
of the four approaches used in the paper.

1. Exponential Growth (EG):As observed in [12], the reproduction number can be
indirectly estimated from the rate of the exponential growth. In order to address
the disparity in the different differential equation models, the authors observed
that this disparity can be attributed to the assumptions made about the shape
of the generation interval distribution. Accordingly, the choice of the model,
used for the estimation of the reproduction number, is driven by the shape of the
generation interval distribution.Based on the assumption that themean is equal to
the generation intervals, the authors obtained the important result of determining
an upper bound, on the possible range of values of the reproduction number, for
an observed rate of exponential growth, which manifests into the worst case
scenario for the reproductive number. Let the function g(a) be representative of
the generation interval distribution. If the moment generating function M(z) of

g(a) is given by M(z) =
∫ ∞

0
ezag(a)da, then the reproduction number is given

by R = 1

M(−r)
, subject to the condition that

1

M(−r)
exists. In particular, the

Poisson distribution can be used in the analysis of the integer valued incidence
data [13, 14], for (discretized) generation time distribution. An important caveat
is that this approach is applicable to the time window in which the incidence
data is observed to be exponential [11].

2. Maximum Likelihood (ML) Estimation: The maximum likelihood model as pro-
posed in [15] is based on the availability of incidence data N0, N1, . . . , NT ,
with the notation Nt , t = 0, 1, 2, . . . , T denoting the count of new cases at time
t . In practice, we take the index t in days, while noting that this indexing is
applicable for other lengths of time intervals. This approach is driven by the
assumption that the Poisson distribution models the number of secondary infec-
tions from an index case, with the average providing the estimate for the basic
reproduction number. If we denote the number of observed incidences for con-
secutive time intervals by n1, n2, . . . , nT and if pi denotes the probability of the
serial interval of a case in i days (which can be estimated apriori), then the like-

lihood function is the thinned Poisson: L (R0,p) =
∏T

t=1

e−μtμ
nt
t

nt ! . Note that
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here μt = R0

∑min(k,t)

i=1
nt−i pi and p = (p1, p2, . . . , pk). The absence of data

from the index case can lead to an overestimation of the initial reproduction
number, and accordingly a correction needs to be implemented [11].

3. Sequential Bayesian (SB) Method: A SIR model driven sequential estimation
of the initial reproduction number was carried out by the sequential Bayesian
method in [16]. It is based on thePoisson distribution driven estimate of incidence
nt+1 at time t + 1, with the mean of nte

γ (R−1). In particular, the probability
distribution for the reproduction number R, based on the observed temporal

data is given by P
[
R|n1, n1, . . . , nt+1

] = P
[
n1, n1, . . . , nt+1|R

]
P [R]

P
[
n1, n1, . . . , nt+1|R

] , where

P [R] is the prior distribution of R and P
[
n1, n1, . . . , nt+1

]
is independent of R.

4. Estimation of Time Dependent (TD) Reproduction: The TD method is amenable
to the computation of the reproduction numbers through the averaging over all
networks of transmission, based on the observed data [17]. Let i and j be two
cases, with the respective times of onset of symptoms being ti and t j . Further,
let pi j denote the probability of i being infected by j . If g(a) denotes the dis-

tribution of the generation interval, then pi j = g
(
ti − t j

)
∑

i �=k w (ti − tk)
. Accordingly,

the effective reproduction number is given by R j =
∑

i
pi j , whose average is

then given by Rt = 1

nt

∑
t j=t

R j . In absence of observed secondary cases, a

correction can be made to the time dependent estimation [18].

3 Data Driven Analysis of the Outbreak

The nationwide lockdown was imposed, on 25th March, 2020, with the goal of
arresting the spread of infection, through strict restrictions on mass movement and
encouraging social distancing, and it was expected that the spread rate would come
down, along with the reduction in the possibility of community transmission. Thus,
the first phase of lockdown until 14th April 2020, was extended to two more phases
till 31st May, 2020. Subsequently, taking into account the economic cost of the
lockdown, against the backdrop of community spread of the outbreak, a phasewise
withdrawal of the lockdown was implemented, by taking into account the state of
the pandemic at the local level. Accordingly, this section discusses various epidemi-
ological aspects of the progression of the pandemic in India, from the pre-lockdown
to post-lockdown, by analyzing four metrics, namely, the effective reproduction rate,
the growth rate, the doubling time and the death-to-recovery ratio.
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3.1 Analysis of Effective Reproduction Rate

One of the key mathematical indicator relied upon, in the paradigm of the spread of
COVID-19 pandemic and consequent policy decisions is the effective reproduction
rate (ERR) or the time-varying reproduction number. As ERR provides the infor-
mation of time varying transmission rate, it would be a natural choice to measure
its behaviour from the pre-lockdown, lockdown and the post-lockdown period. An
analysis showed that the TD model fits well, for the Indian epidemic curve and
accordingly, we discuss the results in the context of the TD-based Rt .

Figure1a depicts the seven-day rolling ERR. It is clearly observed that, before the
lockdown, the Rt was unsteady and high, but it started to decline after the commence-
ment of the lockdown. In the first lockdown period, the overall average seven-day
ERR was 1.64, which means that, during this period, if 100 individuals had COVID-
19, they would have infected 164 people on an average. In the second lock-down
period, the average ERR came down to 1.29, and then in the third lockdown period,
the ERR furthers dropped to 1.21. Therefore, from the first lockdown to the end of
third lockdown, the overall rate of reduction of ERR was 26%. However, after the
lockdown period, the number of cases decreased gradually at first, and then increased
unexpectedly. Accordingly, a sharp rise of ERR (of upto 1.14) was observed during
the early March 2021 to early June 2021 (coinciding with the devastating second
wave). Figure1b displays the phase-wise1 average Rt . The descriptive statistics of
Rt and the corresponding confidence intervals are presented in Table1. From these
results, it can be observed that, there was a significant reduction of ERR, which
continued to the early days after the lockdown was eased. But eventually, when after
most of the restriction were lifted, a rise in ERR (consistent with the second wave)
was observed, followed by a gradual decline.

3.2 Analysis of Growth Rate

The reduction of ERR should further reduce the growth rate of daily incidences.
In order to see the growth rate, in a particular time period, we calculate the seven-
day rolling growth rate in that period, and then take the average. Suppose that we
have the daily incidence numbers, D(t), t = 1, 2, 3, . . . , 20, for a period of 20

days. We first compute the seven-day rolling growth rates,
D(i + 7) − D(i)

D(i)
, where

i = 1, 2, 3, . . . , 13, and we get a dataset of 13 points. Finally, the simple mean of
the dataset is calculated. If the seven-day average growth is 30% in a month, then
the average weekly number of positive cases would have increased from 100 to 130
in that month.

1 L0, L1, L2 and L3 imply pre-lockdown, lockdown 1, lockdown 2 and lockdown 3, respectively.
PL means post-lockdown period and each PL consists of approximately 100days.
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Fig. 1 Analysis of effective reproduction rate. a Rt using TD, b Average seven-day Rt

Table 1 Effective reproduction rate during different periods

Period Max Min Mean

1 L0 + L1 2.40 1.21 1.64

2 L2 1.43 1.16 1.29

3 L3 1.30 1.16 1.21

4 PL1 1.23 1.08 1.16

5 PL2 1.10 0.87 0.99

6 PL3 1.14 0.86 0.95

7 PL4 1.43 0.74 1.14

8 PL5 1.16 0.74 0.94

The seven-day moving average of the growth rate during the period considered is
presented in Fig. 2a. Figure2b illustrates the average weekly growth rate in different
time periods. In the first lockdown period (L0 + L1), the growth rate was 97%. It
means that the weekly number of positive cases, increased drastically from 100 to
197 in the pre-lockdown period. The growth rate then decreased to 42% in lockdown
2 (L2). It further reduced to 22% and 32% in lockdown 3 (L3) and post-lockdown 1
(PL1), respectively. Therefore, we can conclude, that the implementation of nation-
wide lockdown has resulted in slowing down the growth rate of COVID-19 positive
cases. With the easing of lockdown curbs, this trend continued, but then in concur-
rence with the second wave there was period (PL4), when the rate again showed an
upward trend.

3.3 Analysis of Doubling Time

One of the key indicator to observe the spread of any pandemic is the doubling time.
It is referred to as the time (usually counted in number of days) it takes for the total
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number of cases to double. The doubling time of n days means that if there were
100 cases at day 0, then, on day n, the number of cases would be 200. The more the
doubling time is, the more the possibility of achieving a flattened epidemic curve.

Figure3a displays the doubling rate for five-day moving averages. The escalation
in doubling time is easily seen from the figure. The doubling time during the third
lockdown period is about 15.6 days, up from 6.7 days at the beginning of lockdown.
The phase-wise average doubling timings are shown in Fig. 3b. It further increases
(upto 176) in the second post-lockdown period and then falls down to 69 at the end.
The increment in doubling time is clearly visible from this figure. Therefore, from
these results, we infer that the doubling time has improved significantly after the
enforcement of nationwide lockdown, a trend which continued until the arrival of
the second wave, when the doubling time showed a steady trend of decline.
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3.4 Analysis of Death-to-Recovery Ratio

In a pandemic, the performance of any nation’s health care system, is measured
ultimately in terms of deaths and recoveries. This segment discuses the effect of
lockdown on death-to-recovery ratio (DTR). The DTR is defined as a ratio between
total number of deaths and total number of recoveries:

DT Rt = Total number of deaths upto time t

Total number of recoveries upto time t
.

TheDTR stipulates the clinicalmanagement ability or the efficiency of health system.
It is highly important to keep the value of theDTRas low as possible.Mathematically,
the closer this value is to zero, the better the efficiency of healthcare system, in dealing
with the pandemic. For example, DT Rt = 0.5 implies that, for every 100 recoveries,
50 infected patients would have died. The seven-day rollingDTR is plotted in Fig. 4a.
It is clearly seen that the DTR has declined significantly as time has progressed. The
phase-wise bar chart (Fig. 4b) also depicts the reduction of DTR over the period
considered. In the pre-lockdown (L0) and the lockdown 1 (L1) periods together,
the average DTR was 0.28. It was reduced to 0.12 in lockdown 2 (L2) and further
declined to 0.07 in lockdown 3 (L3), which shows that, in this short period, the Indian
health care system has shown significant improvement in its preparedness to tackle
the COVID-19 pandemic. This trend continued well into the post-lockdown periods,
not withstanding the second wave, which is a highly encouraging sign.
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4 Conclusion

In this paper, we have discussed the statistical analysis of the progression of COVID-
19 pandemic in India, through a data-driven analysis. The goal was to ascertain the
impact of the lockdown and the progression in the post-lockdown period, in terms of
the intensity of the infection. Accordingly, we empirically analyzed different metrics
thatmainlymeasure the spread of infectious disease, like COVID-19. Themetrics are
effective reproduction rate, growth rate, doubling time and death-to-recovery ratio.
For case of effective reproduction rate, it is seen that the lockdown has reduced the
reproduction rate bymore than 20%. The growth rate has also substantially decreased
from the initial period to the end of lockdown. On the other hand, the doubling time
has largely improved over the three month period. The rate of increment from pre-
lockdown to lockdown3 is nearly 123%.Finally,wedescribed the impact ondeath-to-
recovery ratio,which quantifies the number of death against the number of recoveries.
We observed significant downfall of death-to-recovery ratio from the month of April.
On average, the initial death-to-recovery of 0.28 has dipped downward to 0.08 at the
third phase of lockdown. Therefore, despite rising cases of COVID-19 infection in
India, the lockdown has managed to curb the spread to a great extent. Further, for the
post-lockdown period, it is observed that the desirable trend for all the four metrics
continued, except an adversarial trend observed, concurrently, with the devastating
second wave.
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Analysis of Fuzzy Dynamics of SEIR
COVID-19 Disease Model

B. S. N. Murthy , M N Srinivas , and M A S Srinivas

Abstract The objective of this article is to build an SEIR epidemic system for
episode COVID-19 (novel crown) with fuzzy numbers. Mathematical models might
assist with investigating the transmission elements, forecast and control of Covid-19.
The fuzziness in the infection rate, increased death owing toCOVID-19, and recovery
rate from COVID-19 were all deemed fuzzy sets, and their member functions were
used as fuzzy parameters in the SEIR system. The age lattice technique is used in
the SEIR system to calculate the fuzzy basic reproduction number and the system’s
stability at infection-free and endemic equilibrium points. Computer simulations are
provided to comprehend the subtleties of the proposed SEIR COVID-19 model.

Keywords SEIR · Fuzzy parameter · Fuzzy basic reproduction number ·
Transmission rate · Stability

1 Introduction

COVID-19 infection has turned into a worldwide irresistible disease and more indi-
viduals are influenced. It is spread by a COVID-19-infected person through direct
interaction with another individual or through minute precipitations from a COVID-
19-infected individual’s mouth that are moved by another person. Almost 2.27 mil-
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lion individuals have been diseased with the virus around the biosphere, with 0.46
million of them succumbing to it in approximately 193 nations. The best and trouble-
some assignment for people is to control a similar climate which they have occupied.
For this reason, notwithstanding, a few rules have been given or provided and cut
off points have been static that past that landscape/climate shouldn’t be upset. The
execution of strategies to stop the communication of the infection has been viewed
as a significant test. Consequently, as we realize that numerical models are useful
assets to comprehend the communication elements of irresistible infections and to
kind future arranging. Various universal and virus models have been examined in
previous writing, allowing us to better examine and manage the feast of transferrable
diseases [1–3].

Epidemiology, the SIR model is notable, and numerous extraordinary accom-
plishments have been complete on that [4–6]. However, the COVID-19 disease exists
an inert stage throughout which the individual is contaminated however not so far
suggestive. Another portion E is acquainted in the SEIR model with portray the
non-suggestive yet contaminated stage. The SEIR model has numerous renditions,
and numerical medicines can be found, for example, in Diekmann [7], Hethcote [8],
among others. The scientific arrangement of the SEIR model is read for the unre-
stricted feast of the COVID-19 contagion in [9]. A multi draining SEIR pestilence
system is set up for the COVID-19 contagion with universal prevalence charges in
[10]. The objective of this analysis was to create an altered SEIR compartmental
numerical classical for forecast of novel corona pandemic elements considering dis-
similar intercession situationswhichmay stretch experiences on the finestmediations
to lessen the plague hazard. The COVID-19 model introduced in this paper depends
on a past pandemic model announced in [11–13]. Mwalili et al. [14] investigated
on SEIR pandemic system for COVID-19 contamination where the resistance of the
populace assumes a significant part in recovering from hatching stage to the defense-
less compartment. Shikha et al. [15] concentrated on the impact of regular resistance
in the SEIS pestilence system. The above examinations has made some incredible
accomplishments in exploring the COVID-19 disease.

The parameters used to communicate natural systems in a numerical manner are
for the most part taken as certain. A couple of endeavours have been finished by the
analysts to consider the natural vulnerability in their exploration works. Because of
the reasonable circumstance, fuzzy parameters in natural demonstrating ought to be
utilized more every now and again than the new endeavors. The usage of fuzzy sense
and fuzzy sets in organic classifications has a lot of probables, but there aren’t many
of them [16–19] contains a few examples of fuzzy science applications. Mishra and
Pandey [20] devised and implemented a plague model with fuzzy parameters to a PC
network system. A few researchers [21–23] were concentrated on the fuzzy scourge
models for human irresistible disease. As of late, fuzzy hypothesis stands out enough
to be noticed. Therefore, the vulnerability in this SEIR system is portrayed by fuzzy
statistics.
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Fig. 1 A Schematic diagram of SEIR epidemic disease COVID-19

In this article, we construct a SEIR mathematical model in regularized system
in Sect. 2, we try to investigate the spread of the COVID-19 virus from a fuzzy
powerful structure perspective. Because of COVID-19, the infection rate, recovery
rate, and death rate due to Covid-19 are all viewed as fuzzy parameters that are based
on specific infection loads. In Sect. 3, we derive fuzzy basic reproduction number
and existence conditions of fuzzy SEIR were discussed. In Sect. 4, we intended the
stability of SEIR fuzzy system at these equilibrium points. In Sect. 5, numerical
recreations have been accessible to exemplify the investigative results. Finally, a
brief conversation and inferences have been assumed in Sect. 6.

2 Mathematical Formulation of Proposed SEIR Model

In the present article, we recommend a SEIR Covid-19 disease system to describe
the following differential equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS
dt = N − C I S (1 + μI ) − DS
dE
dt = C I S (1 + μI ) − (D + ψ) E
dI
dt = P + ψE − (D + Cd + δ) I
dR
dt = δ I − DR

(1)

where Δ = N − Pis the total population. Let S is proportion of susceptible class,
E is the proportion of exposed class, I is the proportion of infected class, R is the
proportion of recovered class, Let N, P is the total population, who test is negative and
positive; C is the proportionality constant; D is the natural death rate of individual
class; μ is the individual lose of immunity. Figure1 depicts transmission flow of
SEIR epidemic COVID-19 disease model.
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Assuming that the individuals are infected according to their Covid-19 virus load.
So, in this manner the infection rate, death rate due to virus and recovery rate has
been considered as fuzzy sets which rest on the corona virus consignment. Therefore,
the Covid-19 virus consignment in an individual, the advanced the fortuitous of the
Covid-19 virus spread in a contact interface. Let Θ is the corona virus load class.
By considering the corona virus load Θ in each class, the parameters Cd (Θ) is the
death due to corona, ψ (Θ) is the infection rate, δ (Θ) is the recovery rate can be
regarded as a purpose of the corona virus consignment. Thus, the system (1) can be
stretched to fuzzy SEIR classical, represented as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS
dt = N − C I S (1 + μI ) − DS
dE
dt = C I S (1 + μI ) − (D + ψ (Θ)) E
dI
dt = P + ψ (Θ) E − (D + Cd (Θ) + δ (Θ)) I
dR
dt = δ (Θ) I − DR

(2)

3 Analysis of Fuzzy SEIR Covid-19 Model

Only two levels of headings should be numbered. Lower level headings remain
unnumbered; they are formatted as run-in headings.

3.1 Fuzzy Basic Reproduction Number

The fuzzy basic reproduction number R0 (Θ)for system (2), is calculated using the
next generation matrix technique [21].

R0 (Θ) = Cψ (Θ) N

D2 (Cd (Θ) + D + δ (Θ))

3.2 Existence of Equilibrium Points

The system (2) has two points of equilibrium, such as (i) Ed f (S0, 0, 0, 0)(Infection
free equilibrium point), (ii) Eee (S∗, E∗, I∗, R∗) (Endemic equilibrium point)

(i) Infection free equilibrium point Ed f (S0, 0, 0, 0)
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The disease-free equilibrium point of system (2) is found by putting I = I0 = 0. As
a result, the SEIR fuzzy system (2) has a disease-free equilibrium point
Ed f

(
N
D , 0, 0, 0

)

(ii) Endemic equilibrium point Eee (S∗, E∗, I∗, R∗)
The possibility of spread of COVID-19 at the endemic equilibrium point
Eee (S∗, E∗, I∗, R∗)
where S∗ = N

C(1+μI∗)I∗−D ;E∗ = NC(1+μI∗)I∗
[C(1+μI∗)I∗−D][ψ(Θ)+D] ; R∗ = δ(Θ)

D I∗

I∗ = − (D + Cd (Θ) + δ (Θ) + P (Θ) (ψ (Θ) + D) + ψ (Θ) NC) + √
�

2N (ψ (Θ) + D) (P (Θ) + 1)
;

where
� = [D + Cd (Θ) + P (ψ (Θ) + D) + ψ (Θ) NC]2

−4μ (ψ (Θ) + D) (P + 1)

(
Cd (Θ) + δ (Θ) − D−
P (ψ (Θ) + D) D

)

4 Stability Analysis

Theorem 1 At the disease-free equilibrium point Ed f (S0, 0, 0, 0), system (2) is
asymptotically stable locally, if (Cd (Θ) + δ (Θ) + D) D2 − CNψ (Θ) > 0 i.e.,
R0 < 1 then the Ed f (S0, 0, 0, 0) and if (Cd (Θ) + δ (Θ) + D) D2 − CNψ (Θ) < 0
i.e., R0 > 1, then the disease free equilibrium point Ed f (S0, 0, 0, 0) of the system
(2) is unstable.

Proof The Jacobian matrix (J) is written as follows based on system (2)

J =

⎡

⎢
⎢
⎣

−C I (1 + μI ) − D 0 − CS − 2μCSI 0
C I (1 + μI ) − D CS + 2μCSI 0

0 ψ (Θ) − Cd (Θ) − δ (Θ) − D 0
0 0 δ (Θ) − D

⎤

⎥
⎥
⎦

At infection free equilibrium point Ed f (S0, 0, 0, 0), the characteristic equation is in
the form of

(D + λ)2
(

λ2 + λ (Cd (Θ) + δ (Θ) + 2D) + (Cd (Θ) + δ (Θ) + D) D − NC

D
ψ (Θ)

)

= 0

(3)
Obviously, all the roots of an equation (3) are negative if (Cd (Θ) + δ (Θ) + D) D2 −
CNψ (Θ) > 0
(i.e., if R0 (Θ) < 1).As a result, at the disease-free equilibriumpoint Ed f (S0, 0, 0, 0),
system (2) is locally asymptotically stable if Cψ(Θ)N

D2(Cd (Θ)+D+δ(Θ))
< 1. Or else, the sys-

tem (2) is unstable.
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Theorem 2 At the endemic equilibrium pointEee (S∗, E∗, I∗, R∗), system (2) is
asymptotically stable locally if Cψ(Θ)N

D2(Cd (Θ)+D+δ(Θ))
> 1(i.e.,R0 (Θ) > 1)

Proof At endemic equilibrium pointEee (S∗, E∗, I∗, R∗), the characteristic equation
is

λ4 + ζ1λ
3 + ζ2λ

2 + ζ3λ + ζ4 = 0 (4)

Here
ζ1 = − (

σ11 + σ22 + σ33
) ; ζ2 = σ11σ22 + σ11σ33 + σ11σ44 + σ22σ33 + σ22σ44 +

σ33σ44 − σ23σ32; ζ3 = −σ11σ22σ33 − σ11σ22σ44 − σ11σ33σ44 − σ22σ33σ44 − σ13σ21

σ32 + σ11σ23σ32 + σ23σ32σ44; ζ4 = σ11σ22σ33σ44 + σ13σ21σ32σ44 − σ11σ23σ32σ44

where σ11 = −C I∗ (1 + μI∗) ; σ13 = −CS∗ (1 + μI∗) ; σ21 = C I∗ (1 + 2μI∗) ;
σ22=−D − ψ (Θ) ; σ23= CS∗ (1 + 2μI∗) ; σ32= ψ (Θ) ; σ33 = −D − ψ (Θ) − δ

(Θ) ; σ43 = δ (Θ) ; σ44 = −D.Clearly it is evident that ζ1 > 0, ξ3 > 0 , ξ4 > 0, ζ1ζ2
− ζ3 > 0 and ζ1ζ2ζ3 − ζ 2

3 − ζ 2
1 ζ4 > 0 if NCψ (Θ) − (Cd (Θ) + δ (Θ) + D) D2 <

0 (i.e.,R0 (Θ) > 1). The roots of an equation (4) have negative roots or negative real
parts as per Routh-Hurwitz criteria [24]. Hence the system (2) is locally asymptoti-
cally stable at Eee (S∗, E∗, I∗, R∗)

5 Numerical Simulation

The parameters that define the rates at which individuals progress from one stage to
the next, such as infection rate, death rate owing to corona virus, and recovery rate,
are directly dependent on the numerical analysis of the fuzzy SEIR system. The novel
corona eruption in the inhabitants will never go away (i.e. R0 (Θ) < 1), but it will be
smaller than those who have been infected with COVID-19. The numerical simula-
tion of Covid-19 model usages statistics on the number of Covid-19 cases in India.
The initial population (S0, E0, I0, R0) = (1405, 821, 0.034, 0.008609) (inmillions)
and the corresponding parameters in the system (2) are N = 0.76; D = 0.02; C =
0.08960; P = 0.07112;μ = 0.00009;Cd = 0.0004 − 0.0009;Ψ = 0.00002 −
0.00004; δ = 0.01 − 0.05

The following are the observations from the above figures: Fig. 2a shows that
the time series evaluation of susceptible, exposed, infected, recovered population.
Figure3a represent the variations in susceptible populations of india along with time
for various values of δ. we conclude that variation in susceptible population is more
as δvaries and which says that δ plays a significant role on susceptible population
of India. Figure3b shows the variations in exposed populations of India for various
values of δ. We can conclude that variation in exposed population of India is more as
δ varies. So δ variations effect the exposed of India. Figure3c represents the infected
population of variations along time for India. From this figure we conclude that
variations in infected populations in India is less as δ varies. So δ plays a significant
role as dynamic sensitive parameter on the infected populations of India. Figure3d
represents the recovered populations of India for various values of δ. we conclude
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Fig. 2 Time series evaluation of population w.r.t the above set of parameter values

(a) (b)

(c) (d)

Fig. 3 a–d Time series evaluation of susceptible, exposed infected and recovered population of
India where delta is varying with initial values from the above set of parameter values
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(a) (b)

(c)

Fig. 4 a Time series evaluation of susceptible population of India where Ψ (Θ) is varying with
initial values of above parameters. b, c Time series evaluation of exposed and infected population
of India where Ψ (Θ) is varying with initial values of above parameters

that variations in recovered populations of India are less as δ varies. So δ acts as a
dynamic attribute on recovered population of India. Figure4a shows the variations
in susceptible populations in India as ψ varies from 0.00003 to 0.00009. We can
conclude that variations in susceptible population in India is very less. We also
conclude that the attribute ψ is less dynamic in nature as it effects the susceptible
populations of India. Figure4b shows that the variation in exposed populations of
India as ψ varies. We can conclude that variations in the exposed population in
India almost high variations over a particular period of time in the population as
we saw rapid spread of virus in a particular period. So, we conclude that ψ acts as
highly dynamic on both exposed populations of India over a period of time. Figure4c
shows the variations in infected population of India as ψ varies. We conclude that
the variations in infected population in India are slightly less as ψ varies. Hence we
conclude that acts as a less dynamic on variations in infected population of India. As
δ is increasing susceptible population is increasing slightly but infected and exposed
are decreasing because of awareness in society about precautions such as social
distancing, sanitizing and usage of herbs or home medicines. Vaccination awareness
and drives also place a major role in reducing number of infected population. Also
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as there is less exposure of infection in society, recovered is effectively improving.
Figure4a–c shows the dynamics of susceptible, exposed and infected against time for
different values ofψ . Also, it is observed that susceptible is increasing asψ increases
whereas infected and exposed are reducing because number of recoveries are going
up with the help of growing immunities due to vaccination and prevention measures.

6 Conclusions and Remarks

The transmission dynamics of the COVID-19 outbreak are modeled with a SEIR
fuzzy system in this paper. The parameters Ψ, δ and Cd are represented as fuzzy
parameters in this study and are considered as association purposes of fuzzy numbers.
These factors are dependent on the corona virus load Θ , and their fuzzy member-
ship functions are specified by them. For R0 (Θ) < 1 and R0 (Θ) > 1, respectively,
together the infection-free and the endemic equilibrium points are asymptotically
stable locally.
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Covid-19 Vaccination in India: Prophecy
of Time Period to Immune 18+
Population

Anand Kumar, Agin Kumari, and Rishi Pal Chahal

Abstract In the present paper, we have prophesied how much time will be required
to vaccinate 18+ population of India with at least one dose of COVID-19 vaccines.
We have used non-linear extrapolation technique to prophecy, for this polynomial
function is used for extrapolation. We have Fitted a non-linear polynomial of degree
six to the cumulative vaccination data from 16 January 2021 to 24 July 2021 to esti-
mate the required time period. Non-linear extrapolation results are depicted through
the graphs, shows that the entire 18+ population will be vaccinated with at least 1
dose by mid of December of this year and 25% population will be fully vaccinated.

Keywords Covid-19 · Vaccination · India · Prophecy · Extrapolation

1 Introduction

Indian government has started vaccination drive for COVID-19 on 16 January 2021,
as of 24 July 2021 over 3403.87 lacs (24.9%) population is vaccinated with at least
1 dose and over 927.63 lacs (6.8%) population is fully vaccinated with presently
permitted vaccines.

Non-linear extrapolation is more reliable and inexpensive for statistical forecasts
by using previous trend of data. This methodology estimates the dependent function
for independent variable by interpolating a smooth nonlinear curve through all values
of independent variable, using this nonlinear curve, extrapolates dependent values
beyond available data. Polynomial function or rational function are used in this
methodology.
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Gowrisankar et al. [1] used multifractal formalism to analyse COVID-19 data,
assuming that infection rates in different countries follow a power law growth pattern.
Radiom and Berret [2] constructed two models to explain the epidemic’s fast-growth
phase and to interpret the complete data set. Han et al. [3] studied a two-part frame-
work, one to show repeated worldwide breakouts of COVID-19 and the other to
investigate the underlying causes of recurrent outbreaks. Kavitha et al. [4] studied
the SIR and fractalmodels on daily positive COVID-19 cases in India in order to fore-
cast the outbreak’s future trajectory. Moghadas et al. [5] constructed an agent-based
model of SARS-CoV-2 transmission, and was parameterized using US statistics and
COVID-19 age-specific results.

In the present paper, we have estimated how much time will be required to vacci-
nate 18+ population of India with at least one dose of COVID-19 vaccines. We have
used non-linear extrapolation technique to prophecy, for this polynomial function
is used for extrapolation. Nonlinear extrapolation method is used to prophecy as
casual factors related to this kind of situation are expected to remain constant [6,7].
A non-linear polynomial of degree six is fitted to the cumulative vaccination data
(vaccinated with at least 1 dose) from 16 January 2021 to 24 July 2021. A non-linear
polynomial of degree five is fitted to the cumulative vaccination data (fully vacci-
nated) from 16 January 2021 to 24 July 2021. Non-linear extrapolation results are
depicted through the graphs, shows that the entire 18+ population will be vaccinated
with at least 1 dose by mid of December of this year and 25% population will be
fully vaccinated.

Because COVID-19 vaccines stimulate a wide immune response including a
variety of antibodies and cells, they should give some protection against new viral
types. Vaccines should not be rendered fully ineffective due to changes or muta-
tions in the virus. If any of these vaccinations prove ineffective against one or more
variants, the vaccines’ composition can be changed to defend against these variants.
Even with minimal protection against infection, vaccination can have a significant
influence on preventing COVID-19 outbreaks. To accomplish this benefit, however,
ongoing adherence with non-pharmaceutical measures is required.

2 Modeling of Data and Fitting of Polynomial

In this section, we have constructed a table of vaccination data and fitted a suitable
nonlinear polynomial for extrapolation. Table-1 contains cumulative vaccination data
[8] of 18+ population of India observed on weekends for study. Figure 1 shows that
a six-degree polynomial suited to the cumulative vaccination data (vaccinated with
at least 1 dose) from 16 January 2021 to 24 July 2021 and a five-degree polynomial
is suited to the cumulative vaccination data (fully vaccinated) from 16 January 2021
to 24 July 2021. Fitted polynomials are as follows;

y(x) = − 0.0005x6 + 0.0437x5 − 1.4101x4 + 21.153x3 − 142.29x2
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Fig. 1 Fitting of polynomial to the vaccination data

+ 405.41x − 321.95

z(x) = 0.0011x5 − 0.0715x4 + 1.6626x3 − 14.666x2 + 52.181x − 52.142

With the help of Table 1 and Fig. 1 it is observed that in the 2nd weekend of
vaccination drive the data of population vaccinated with one dose is 15 times of
1st weekend. Gradual increment in 3rd to 7th weekends, moderate increment in
8th to 10th weekends, major increment in 11th–19th weekends, significantly great
increment in 20th–28th weekends, in the data of population vaccinated with one dose
is observed. Gradual increment in the data of Population fully vaccinated is observed.

3 Extrapolation Method

In this section, we have prophesied how much population will be vaccinated with 1
or 2 dose by method of nonlinear polynomial extrapolation. We have extrapolated
the values of y and z with respect to x with confidence interval 95%, i.e. weekly
estimation of population vaccinated with at least 1 dose and fully vaccinated.

With the help of vaccination data given in Table 1, The extrapolated values of
population vaccinated with at least 1 dose and 2 dose are obtained. From Figs. 2 and
3 and Table 2, it is observed that up to 11th December over 80 crores (almost all 18+
population) population will be vaccinated with at least 1 and about 20 crores (25%
of 18+ population) population will be fully vaccinated.
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Table 1 Vaccination data at a glance in India (cumulative data observed at weekends from 16
January 2021 to 24 July 2021)

Data observed on weekends (date) (x) Population vaccinated
with at least 1 dose

Population fully
vaccinated

in lacs (y) in % in lacs (z) in %

1 (16 January) 1.99 0.0 0 0.0

2 (23 January ) 15.82 0.1 0 0.0

3 (30 January ) 37.44 0.3 0 0.0

4 (6 February) 57.75 0.4 0 0.0

5 (13 February ) 80.45 0.6 0.07 0.0

6 (20 February ) 99.64 0.7 8.73 0.1

7 (27 February ) 117.88 0.9 24.54 0.2

8 (6 March) 171.68 1.3 37.54 0.3

9 (13 March) 243.07 1.8 54.31 0.4

10 (20 March) 371.25 2.7 74.79 0.5

11 (27 March) 514.41 3.8 88.28 0.6

12 (3 April) 657.39 4.8 102.40 0.7

13 (10 April) 888.86 6.5 127.09 0.9

14(17 April) 1064.31 7.8 161.91 1.2

15(25 April) 1177.95 8.6 213.90 1.6

16 (1 May) 1263.28 9.2 272.97 2.0

17 (8 May) 1333.66 9.8 341.27 2.5

18 (15 May) 1411.32 10.3 404.12 3.0

19 (22 May) 1492.19 10.9 416.22 3.0

20 (29 May) 1641.58 12.0 429.30 3.1

21 (5 June) 1809.72 13.2 445.99 3.3

22 (12 June) 1996.55 14.6 465.32 3.4

23 (19 June) 2214.93 16.2 494.15 3.6

24 (26 June) 2602.53 19.0 545.88 4.0

25 (3 July) 2822.31 20.7 620.69 4.5

26 (10 July) 3031.71 22.2 728.61 5.3

27 (17 July) 3218.93 23.6 830.37 6.1

28 (24 July) 3403.87 24.9 927.63 6.8

4 Discussion

In the present paper, we have obtained estimated time period to vaccinate the 18+
population in India in view of current vaccination rate. Extrapolated values of popu-
lation vaccinated with at least 1 dosage and 2 dose are determined using vaccination
data from Table 1 by a six-degree polynomial suited to the cumulative vaccination
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Fig. 2 Weekly Forecast of population vaccinated with at least 1 dose from 31 July 2021 to 11
December 2021

Fig. 3 Weekly Forecast of population fully vaccinated from 31 July 2021 to 11 December 2021

data (vaccinated with at least 1 dose) from 16 January 2021 to 24 July 2021 and
a five-degree polynomial is suited to the cumulative vaccination data (fully vacci-
nated). Figures 2 and 3 represents the weekly extrapolated forecast values of popu-
lation vaccinated with 1 or full dose from 31 July 2021 to 11 December 2021 along
with confidence interval. From the Table-2, It is observed that over 80 crore popu-
lation will be vaccinated with at least 1 dose up to 11 December 2021 i.e. almost all
population will be covered and 25% population will be fully vaccinated. COVID-
19 vaccinations will provide some resistance against new virus strains since they
stimulate a broad immune response that includes a variety of antibodies and cells.
Vaccines should not be rendered completely ineffective as a result of virus mutations
or modifications. If any of these vaccines are shown to be ineffective against one or
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Table 2 Weekly estimation of vaccinated population from 31 July 2021 to 11 December 2021
along with confidence interval

Weekends (x) Estimated
population will be
vaccinated with at
least 1 dose in lacs
(y)

Confidence
Interval (y)

Estimated population
will be fully
vaccinated in lacs (z)

Confidence
Interval (z)

29 (31 July) 3566.17 424.00 980.31 57.15

30 (7 August) 3805.25 437.05 1033.10 84.83

31 (14 August) 4044.33 459.33 1085.88 108.94

32 (21 August) 4283.41 492.13 1138.67 131.70

33 (28 August) 4522.48 535.85 1191.45 153.93

34 (4
September)

4761.56 590.18 1244.24 175.99

35 (11
September)

5000.64 654.38 1297.02 198.12

36 (18 Sept) 5239.72 727.55 1349.81 220.44

37 (25
September)

5478.80 808.81 1402.59 243.02

38 (2 October) 5717.87 897.35 1455.38 265.92

39 (9 October) 5956.95 992.48 1508.16 289.18

40 (16 October) 6196.03 1093.62 1560.95 312.81

41 (23 October) 6435.11 1200.29 1613.73 336.84

42 (30 October) 6674.19 1312.10 1666.52 361.27

43 (6
November)

6913.26 1428.71 1719.30 386.10

44 (13
November)

7152.34 1549.84 1772.09 411.36

45 (20
November)

7391.42 1675.26 1824.87 437.03

46 (27
November)

7630.50 1804.77 1877.66 463.11

47 (4
December)

7869.58 1938.19 1930.44 489.60

48 (11
December)

8108.65 2075.36 1983.23 516.51

more variants, the vaccine’s composition can be altered to protect against these vari-
ants. Vaccination, even if it provides only rudimentary protection against infection,
can help avoid COVID-19 epidemics.
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COVID-19 Detection from Chest X-Ray
(CXR) Images Using Deep Learning
Models

Mithun Karmakar, Koustav Chanda, and Amitava Nag

Abstract Due to the tremendous rise in COVID cases around the world, early detec-
tion of Covid-19 has become critical. Deep learning technology has recently sparked
a lot of attention as a means of detecting and classifying diseases quickly, auto-
matically, and accurately. The goal of this study is to develop a deep learning
based automatic COVID-19 detection system for better, faster, and more accu-
rate COVID-19 detection from chest X-Ray (CXR) images. In our work, we have
used pre-trained deep learning models such as VGG16, ResNet50, DenseNet201,
InceptionV3 and Xception utilizing openly accessible dataset. Experimental results
show that the DenseNet201 model performs the best with more than 97% accuracy.
Moreover, in terms of size, DenseNet121 is beating the rest of the models. As a
results, DenseNet201 is most suitable Deep Convolutional neural networks (CNN)
architecture for developing an automatic covid-19 detection tool.

Keywords COVID-19 · Deep learning · Deep CNN · Chest X-ray images

1 Introduction

In recent years, a novel coronavirus (COVID-19) arising from the coronavirus SARS-
COV2 has become a global epidemic. COVID-19 was declared a pandemic by the
World Health Organization (WHO) on March 11, 2020, after it had spread to over a
hundred countries [1]. A novel SARS-CoV-2 variant was reported to the WHO on
November 24, 2021, from South Africa. As a variant of concern, the new variant
(B.1.1.529) has been officially called Omicron. As compared to the other SARS-
CoV-2 variants: Alpha, Beta, Gamma, and Delta, Omicron emerges as the most
noticeable and different variant among the millions of SARS-CoV-2 genomes [2].
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Timely and accurate detection of Coronavirus diseases is of great importance for
controlling COVID-19. Because of its high transmissibility, COVID-19 can easily
be transmitted from asymptomatic to vulnerable groups. Fever, dry cough, myalgia,
dyspnea, and headache are the most common symptoms of the COVID-19 [3]. In
rare cases, no symptoms are also visible (asymptomatic) which makes the disease
an even greater hazard to public health. The diagnosis of coronavirus is performed
by conducting a reverse-transcription polymerase chain reaction (RT-PCR) test with
a patient’s respiratory tract or blood samples [4]. The RT-PCR is a laboratory-based
COVID-19 detection procedure and takes 2–3 days to get the results, which is a long
period in comparison to COVID-19’s quick spread rate [5].

An alternative to RT-PCR is the rapid antigens test (RAT) which is mostly
employed for large-scale testing. However, both RT-PCR and RAT have false nega-
tive rates in some cases. A useful supplement to both RT-PCR test and RAT is chest
X-Rays (CXR) for the diagnosis of COVID-19 infection. The accuracy of CXR-
based COVID-19 diagnosis is dependent on manual analysis and interpretation by
radiologists, which can lead to inaccurate analyses due to expert radiologists and
doctors who can accurately detect COVID-19 infection from chest X-Rays are in
short supply in the context of the pandemic.

Based on the foregoing facts, it is essential to develop alternative, complementary,
and low-cost technologies for speedy and accurate diagnosis of COVID-19. Artificial
Intelligence (AI), a rapidly evolving technology, is now being used for speedy and
precise diagnosis of a variety of ailments, including brain tumour detection, breast
cancer detection, and so on. Deep learning, a type of artificial intelligence, has been
a natural choice for use in healthcare applications such as medical image analysis
in recent years. As a result, building deep learning-based computer-aided diagnostic
(CAD) tools for better, faster, andmore accurate COVID-19 diagnosis is worthwhile.

Advances in image processing provide an opportunity to expand its application
in all areas of healthcare [6]. Applications of deep learning to medical imaging for
automatic diagnosis of various diseases are growing rapidly [7, 8]. As a result, these
methodologies are widely used for COVID-19 research [9]. The aim of this work is to
develop a deep learning-based system for better, faster, and more accurate detection
of COVID-19 from chest X-Ray (CXR) images.

The rest of the paper is organized as follows: The state-of-the-art deep Convolu-
tional networks and the other materials and methodologies including dataset collec-
tion and preparation, required to accomplish this work are described in Sect. 2. The
experimental setup as well as the results and performance analysis are provided in
Sect. 3. Section 4 concludes the paper.

2 Materials and Methods

Deep Convolutional Neural Network (CNN) models are used in this study to reveal
patterns in chest X-ray images that are imperceptible to the naked eye. The CNN
is a class of Deep Learning (DL) techniques that is used to identify useful and
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Fig. 1 A typical Convolution Neural Network (CNN) architecture

distinctive representations of images. A typical CNN is depicted in Fig. 1. However,
the fundamental issue that a deep CNN model encountered during training was a
large volume of image data. This problem has been addressed using a technique
known as transfer learning (TL) which is designed for the CNNs. Several pre-trained
models with transfer learning that have already trained on a huge annotated image
library have been designed.

Recently, a number of CNN Architectures have been proposed which are used
for COVID-19 diagnosis such as VGG16 [10], ResNet50 [11], DenseNet201 [12],
InceptionV3 [13] and Exception[14], etc.

We used three different classes in our work (i.e., COVID-19, pneumonia, and
healthy). Figure 2 depicts the entire detection process for COVID-19. In this work,
first images of chest X-rays are collected from public datasets [15]. Then, image
preprocessing was done. The only preprocessing used in this study was a simple
rotation of the X-ray images (from 0 to 12° clockwise or anticlockwise). Finally, pre-
trained CNN models with weights from ImageNet and with the proper fine-tuning
are used for classification (Fig. 3).

2.1 X-ray Image DataSet

In our study, we have used anterior-to-posterior (PA)/posterior-to-anterior (AP) view
of CXR images as this view of radiography is widely used by radiologists in clinical
diagnosis. The dataset used in our work is collected from Kaggle [15]. It consists of
12,443 images and these images are divided into three different classes- ‘Normal’,
‘Covid positive’ and ‘Viral Pneumonia’. There are 906 Covid positive images, 1345
viral pneumonia images and 10,192 normal images. These images are further split
into training and testing data with a percentage ratio of 80% training data and 20%
testing data.
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Fig. 2 Architecture of deep learning based COVID-19 diagnosis system

Covid Normal Pneumonia

Fig. 3 Sample of X-ray images from dataset
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Since the dataset is not uniform, therefore, first we have to resize the image to
224 × 224 for Vgg16, ResNet50, DenseNet201 architecture, and 299 × 299 for
InceptionV3 and Xception architecture.

2.2 Pretrained CNN Models with Fine-Tuning

Training deep CNNmodels from scratch is complex as well as demand large amount
of data in order to converge the model. Fine-tuning on a pre-trained CNN model
can be an alternate solution. In this work, fine-tuning was performed on pre-trained
CNN models such as VGG16, ResNet50, DenseNet201, Inception V3 and Xception
architecture with CRX dataset [15]. The models were pre-trained with weights from
ImageNet. Furthermore, the top layer of all models are truncated and a new fully-
connected softmax layer is addedon the top layer that used stochastic gradient descent
(SGD) algorithm.

3 Results

Using the datasets given in Sect. 2.1, the classification ofCOVID-19 against the pneu-
monia and normal classes is performed. The CNN models described in the Sect. 2.2
was evaluated for COVID-19 detection from CRX images. In the experiment, the
dataset was divided into two halves for training and testing: 80% for training and
20% for testing.

3.1 Tools Used

We used TensorFlow 2.2.0, Python 3.7, and Google Colab graphics processing units
(GPU). The CNN models used in this work are implemented using the TensorFlow
2.2.0 deep learning framework, and the training and testing procedures are carried
out on the Google Colab platform.

3.2 Performance Evaluation

The performance has been evaluated in terms of classification accuracy (CA). The
classification accuracy is defined as follows:

Classification accuracy (CA): It is defined as the proportion of right predictions
to the total number of predictions made on a given set of data:
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Classi f ication Accuracy (CA) = Number of unerring predictions

T otal number of predictions made

3.3 Results Analysis

In this work, various state-of-the-art deep CNN models such as VGG16, ResNet50,
DenseNet201, InceptionV3 and Xception are used for COVID-19 identification. The
results for the performance of all evaluated models are provided in Table 1. As shown
in Table 1, the size of the VGG16 trained dataset weight is the largest, which is
512 MB. As a result, the VGG16 model consumes a significant amount of storage
space and bandwidth,making it inefficient. TheDenseNet201modelwas evaluated to
be the most efficient in terms of both size and performance among all the five models
we trained and tested. The training and test detection accuracy are also shown in
Fig. 4.

Table 1 Experimental results of different models

Size (MB) Training accuracy Test accuracy Training loss Test loss

VGG16 512 0.9667 0.9537 0.0920 0.1072

ResNet50 98 0.7998 0.9086 0.5369 0.2484

DenseNet201 80 0.9702 0.9704 0.2371 0.3435

InceptionV3 92 0.9398 0.9408 0.6222 0.7738

Xception 88 0.9592 0.9459 0.5204 1.0678

Fig. 4 COVID-19 detection accuracy
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4 Conclusions

The wave of Covid-19 and the continued struggle to test the patients have led to
increased cases. Effective screening and early medical attention for infected patients
are required to combat the covid-19. The methods that are being used are mostly
manual, and thus there is a delay in testing and inaccuracy of data, and as a result,
most of the time, the patient will interact with, leading to the spread of the disease.
The use of deep learning to help diagnose the diseases is amechanism that would help
ensure the diagnosis aremore accurate and on time. In this work, various state-of-the-
art deep CNN models for COVID-19 detection classification are used. The models
evaluated include VGG 16, ResNet50, DenseNets121, InceptionV3 and Xception.
The experimental results show that the best performing model is DenseNets121
followed by VGG16, Xception, InceptionV3 and Resnet50. Moreover, in terms of
size, DenseNet121 is beating the rest of the models. DenseNets is, therefore, a good
architecture for the development of computer-aided diagnostic tools.
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Pre-covid and Post-covid Situation
of Indian Stock Market-A Walk Through
Different Sectors

Antara Roy, Damodar Prasad Goswami, and Sudipta Sinha

Abstract Sudden and unexpected outbreak of covid-19 has left a serious impression
on Indian as well as global economy. A simple way of investigating and verifying this
impact is to mind themovement of stock values and consequent market swing. In this
piece of work, we tried to figure out the movement pattern of stock prices in different
sectors. We carefully picked some representative stocks from each of the sectors and
tried to perceive their beat to beat and overall movement in the pandemic period
and express through mathematical language. This study offered some interesting,
valuable and to some extent ‘counter-intuitive’ insights.

Keywords Covid · Indian stock market · Pandemic · Stock values

1 Introduction

Recently, the entire world has gone through a very tough situation due to the sudden
outbreak of deadly virus covid-19. India is not an exception. We have witnessed
two consecutive waves till now and a third wave is likely to occur according to the
scientists. More or less 190 countries have been affected by the pandemic situation.
Economic structure around the world has abruptly been impacted for the sudden
advent of corona virus. Indian stock exchange has also been more or less affected
during the pandemic situation. A simple way of measuring this impact on economy
is to study the stock market behavior indifferent sectors. Some similar studies have
already been performed. Buszko M studied utilization of an asymmetric exponential
generalized autoregressive model to reflect the asymmetric effect on conditional
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volatility [1]. Sahoo, M. collected evidence from the Indian stock market of covid-
19 impact from Nifty 50, Nifty 50 Midcap, Nifty 100, Nifty 100 Midcap, Nifty 100
small cap, and Nifty 200 [2]. Awadhi et al. investigates whether infectious diseases
affect stockmarket returns [3].Khaled studied the impact of theCOVID-19 pandemic
on retailer performance [4]. Stefano R. et al. illustrated how anticipated real effects
from the health crisis, a rare disaster were amplified through financial channels [5].
MdAkhtaruzzaman examined the impact of financial contagion throughfinancial and
non-financial firms between China and G7 countries during the COVID–19 period
[6]. Naveen Donthu’s paper covers different industrial sectors (e.g., tourism, retail,
higher education) investigating the changes in consumer behavior, businesses, ethical
issues, and aspects related to employees and leadership [7]. Dayong Zhanga. et al.
[8] aimed to the mapping the general patterns of country-specific risks and systemic
risks in the global financial markets. It also analyzed the potential consequences of
policy interventions. The article developed byOkorie et al. [9] investigated the fractal
contagion effect of the COVID-19 pandemic on the stock markets. Martin Scheicher
[10] studied the regional and global integration of stock markets in Hungary, Poland,
and the Czech Republic.

In this paper we have considered five different sectors like automobile sector,
banking sector, construction sector, finance sector, tourism sector and some corre-
sponding stocks picked up from these sectors which are mentioned below.

2 Materials and Methods

We have collected dataset of individual stocks from four different sectors, the Auto-
mobile, Banking, Finance and the construction sector starting from 1st November,
2019 up to 28th December, 2021. ‘Yahoo finance’ has been used as the data source.
The opening value of the stocks on each day has been used in this studywe plotted the
stock values sector-wise and observed the nature. Finally, to compare these graphs
with the covid situation, we also kept an eye on the covid graph of India built from
count of daily infected persons. We demonstrate the graphs of each of the sectors
one by one and quantify them with Pearson’s Product Moment Correlation.

2.1 Automobile Sector

Figure 1 shows six representative stocks in the automobile sector likeAshokLayland,
TVS motors, Mahendra & Mahendra, Hero Motor and Maruti. Here, x-axis denotes
time and y-axis denotes the opening share price on each day. Being in different scale,
they are not clearly visible in a single graph. So, we have normalized the values to
[0,1] with the formula x−xmin

xmax−xmin
where x represents the time series values of stocks

and plotted individual graphs in Fig. 2.
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Fig. 1 Normal graph of automobile companies

Fig. 2 Normalized graph of automobile sector

Now the graphs become comparable. This graph shows that different companies
we chose, behave in a similar fashion to some extent.

To quantify this behavior, we calculated the correlation coefficients between each
pair and tabulated them in Table 1.

We can observe that most of the coefficients are highly positive which explains
their similar movements over time.

2.2 Banking Sector

The following graph presents the performance of different banks like Axis bank,
Canara bank, Indian Bank, PNB, SBI and UCO bank during pandemic. Again,
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Table 1 Correlation values between automobile companies

Ashok Layland TVS motors HeroMoto crop Mahindra &
Mahindra

Maruti

Ashok
Layland

1 0.935084 0.5475 0.922055 0.722622

TVS motors 0.935084 1 0.561567 0.921826 0.733054

HeroMoto
crop

0.5475 0.561567 1 0.731019 0.683864

Mahendra &
Mahendra

0.922055 0.921826 0.731019 1 0.760863

Maruti 0.722622 0.733054 0.683864 0.760863 1

we normalized the graph as before for visual comparison and quantified through
correlation coefficients presented in Table 2 (Fig. 3).

Table 2 shows a good agreement among the stocks except PNB and UCO. They
also have positive correlation with others.

Fig. 3 Normalized graph in banking sector

Table 2 Correlation values between banks

Axis bank Canara bank Indian bank SBI PNB UCO

Axis bank 1 0.809175 0.869678 0.881935 0.591333 0.453348

Canara bank 0.809175 1 0.797292 0.767385 0.820716 0.654859

Indian bank 0.869678 0.797292 1 0.970295 0.43443 0.402588

SBI 0.881935 0.767385 0.970295 1 0.364925 0.310351

PNB 0.591333 0.820716 0.43443 0.364925 1 0.744481

UCO 0.453348 0.654859 0.402588 0.310351 0.744481 1
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Fig. 4 Normalized graphs in construction sector

2.3 Construction Sector

We follow the same protocol here and plot the normalized values of different stocks
like Larsen & Toubro ltd, NCC, Jaiprakash Associated ltd, Punj Lloyd, Hindusthan
Construction Company and Reliance infrastructure Ltd and finally calculate the
correlation coefficients for the quantification purpose (Fig. 4 and Table 3).

High positive correlation values indicate their similar behavior.

2.4 Finance Sector

Here, we plot the normalized values of different stocks like Bajaj, LIC, Muthoot,
Rhfl.NS and finally calculate the correlation coefficients for the quantification
purpose (Fig. 5).

Correlation values between stocks of different finance companies are given in
Table 4.

Correlation values show that except the Muthoot Finance all are in good
agreement. Muthoot Finance also have positive correlation with others.

2.5 Travel and Tourism Sector

We follow the same protocol here and plot the normalized values of different stocks
like Expedia, Mahindra Holidays and Resorts India ltd, Thomas cook India ltd,
Tripand finally calculate the correlation coefficients for the quantification purpose.

Correlation values between stocks of different travel companies are given in Table
5
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Fig. 5 Normalized graph of finance sector

Table 4 Correlation values between finance companies

Bajaj LIC Muthoot Rhfl

Bajaj 1 0.714902 0.760984 0.712494

LIC 0.714902 1 0.36199 0.647185

Muthoot 0.760984 0.36199 1 0.58674

Rhfl 0.712494 0.647185 0.58674 1

Correlation values are all positive but the correlation between EXPE and
MHRILNS, THOMAS and EXPE, TRIP and THOMAS, MHRILNS and TRIP are
less than 0.5 (Fig. 6).

Fig. 6 Normalized graph of travel and tourism sector
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Table 5 Correlation values between tourism companies

EXPE MGM MHRILNS THOMAS TRIP

EXPE 1 0.6699114 0.354058 0.442404 0.773126

MGM 0.6699114 1 0.702177 0.773681 0.550526

MHRILNS 0.354058 0.702177 1 0.7666008 0.404562

THOMAS 0.442404 0.773681 0.766008 1 0.317964

TRIP 0.773126 0.550526 0.404562 0.317964 1

3 Covid Graph

Finally, we look at the covid graph of India to have a comparison.
Figure 7 represents the typical covid curve representing daily confirmed cases,

familiar to all of us having two peaks corresponding to the first and second wave of
the pandemic. The first peak occurs in the middle of September and these condone
occurs at the first week of May. The pandemic though started a little bit earlier,
becomes clearly visible from March, 2020.

Fig. 7 Covid graph of India



Pre-Covid and Post-Covid Situation of Indian Stock … 1433

4 Result and Discussion

In the automobile sector, all the stock values move in a similar fashion and reaches
a low value in the April, 2020. Then they start to increase and peaks in February,
2021. After that, the curves become nearly flat. This indicates that the pandemic
has no impact on the automobile sector. The initial dip is probably due to ongoing
recession in Indian economy which is not connected with the pandemic. The bank
stocks are low in April, 2020 and journey towards this low value started long before
the pandemic. They reach high in April, 2021 and then continue to increase very
slowly. Both the Finance sector and the construction sector reach at minimum in
April, 2020 and then start to increase. So, pandemic effect could not be found here.

5 Conclusion

Among the five sectors covered in this study, the Automobile, Banking, Finance and
the construction sector have not been grossly influenced by the ongoing pandemic.
A one-line inference can be drawn as ‘the second wave has no impact and the first
wave also has a very little impact’ on these sectors. On the contrary, the travel and
tourism sector have been grossly influenced in this time period. From 2020 march
throughout the year tourism sector faced a challenging time as it experienced the
lowest stock market growth. This small and illustrative study shows that different
sectors behave differently in this time period. Some of them win the battle and some
lose. Deeper and extensive research is necessary to find out the economic, social and
behavioral counterpart behind this behavior and these parameters should be linked
with the observation.

6 Future Research Directions

A through, elaborate and comprehensive study is necessary with large number of
sample stocks chosen from diverse sectors to have an insight on the movement of
stock values during the pandemic and before it. A detailed and explorative study
in this regard may reveal the reasons behind the ups and downs in these sectors.
If any pattern can be determined, this may reveal a causality connection among
observations.
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AMathematical Analysis on Covid-19
Transmission Using Seir Model

Sandip Saha, Apurba Narayan Das, and Pranabendra Talukdar

Abstract The current work describes the scenario of Covid-19wave by SEIRmodel
with the aid ofmathematical analysis. The SEIRmodel describes the present scenario
using a stability point of view, namely Disease-free equilibrium (DFE) and endemic
(EE) equilibrium with the aid of the next-generation matrix, to predict the possible
outcomes of recovery rate, infectious growth rate, and death rate and reproduction
number.

Keywords COVID-19 epidemic · Equilibrium state · Stability analysis

1 Introduction

For the first time, the novel corona virus is found in Wuhan, Hubei Province, China,
in the month of December 2019 [1, 2]. The transmission of the SARS-COV-2 virus
caused the pandemic and it has become the most serious issue in the present world. It
spreads rapidly across the globe in a very short span of time.Now,COVID-19 become
a major research object in different branches, including Biology, chemical sciences,
applied mathematics, economics, and even the living space, far outside the reach of
medical science. In January 30, 2020,WHO [3, 4] declared an outbreak with an inter-
national public health crisis and finally, announced a pandemic situation on March
11, 2020. Some common symptoms of COVID-19 patient are fever, shortness of
breath, exhaustion and lack of smell. However, some COVID-19 patients developed
pneumonia and in some cases, acute respiratory distress syndrome has been found.
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According to the medical research, the general symptoms of sick people appear after
five to six days. Some COVID-19 patient suffered shortness of breath quickly due
to the lack of oxygen, hence chest X-rays, and CT scans become incompatible. The
entire research community is still now trying to reveal the original fact that is going on
inside the body of affected patients. Some recent investigations reported that Corona
is a particular type of hypercoagulable state, which allows blood clotting in blood
vessels. Kermack et al. [5], mathematically studied the characteristics of infectious
diseases by employing the epidemiological statistical models and following in the
works of Kermack and McKendrick [5], some eminent models to present the trans-
missionmechanisms of someparticular diseases have been proposed, such as theHIV
model [6], Heathcote andYorke [7]model to disseminate gonorrhea [8], Ronald Ross
model for controlling malaria [9], Glass network [10, 11] etc. Currently, researchers
are extensively involved to develop a statistical model for identifying COVID-19.
Easwar Moorthy et al. [12] analyze the fractal-based prognostic model for second
wave of COVID-19. In addition, [13, 14] researchers analyzed the predication of
“when will the pandemic be culminated and immunity against covid-19 in India” At
this situation, it is difficult to forecast the negative impact of COVID19 by applying a
single model. Shahrear et al. [15] mathematically analyzes the pandemic of COVID
transmission in Bangladesh using SEQIRP model and concluded that the infection
rate is proportional to the number of infected populations. In addition, it was also
studied that if an effective vaccine is not available to the populations, then the rate of
death percentage will rise sharply, consequently recovery rate will diminish remark-
ably. Based on the Russia real-time data, Tomchin et al. [16] studied the pandemic
scenario of COVID-19 using SEIRmodel. The calculations show that the peak in the
number of infected in Russia should occur no earlier than the end of May. In 2021,
Hamdi et al. [17] mathematically performed the pandemic of COVID transmission in
Saudi Arabia using the SEIR model with the aid of next generation matrix and stated
that if the rate of transmission, β ≤ 0.0000000112, then the number of infected cases
will reduce moderately. The devastating COVID-19 pandemic situation in the whole
world claims a need to develop scientificmodels for improving amedical preparation
and monitoring the pandemic in a long-term course. From the literature survey, it has
been clear that in the view ofmathematical perspectives, the number of researchwork
on COVID-19 is very less. Most of the works performed are based on SEIR model,
which provides us the enough confidence to find the research gap in that field. In
the present article, the impact of Covid-2nd wave is analyzed using SEIR model. For
numerical understanding, several authors have utilized different software [18–21],
but here, we only use the symbolic computational MATLAB software. Presently,
the COVID-2nd wave not only causes the falling of health issues but also affect the
social, economic, and cultural issues. The prime objective of this investigation is to
narrate the pandemic situation due to COVID in the wholeWorld. Here, SEIR model
forecast some prediction with the aid of stable and unstable equilibrium states and
local and global stability analysis. Based on the reproduction number [21–23], the
study of the model would reveal the stable and unstable situations. At the end, sensi-
tivity analysis for the SEIRmodel have been introduced with some basic phenomena
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of Covid-19 such as low growth face, moderate growth face, transition face, steady
and unsteady equilibrium face.

2 SEIR Model

The SEIR model can be treated as an extended version of the SIR model that are
utilized by several authors [14–19, 24] to investigate the epidemic outbreaks. SEIR
(susceptible-exposed-infectious-removed) model (Fig. 1) assumes the following
relations,

a. Susceptible (S) persons have never been infected by the microorganism but
considered as infected person,

b. Exposed (E) persons is infected by a microorganism that causes to create
disease, but they are not considered as infectious, due to the passing over of
the latent period of the disease,

c. Infectious (I ) persons are infected and they can transmit the disease to others,
d. Removed (R) persons are not able to transmit that microorganism. This group

contains the recovered individuals as well as the fatalities.

COVID-19 is one of the devastating pandemic that the entire human civilization has
never been experienced before. In this model, it is assumed that the entire population
initially belongs to a susceptible compartment. Contact rates in between the infected
and suspected individuals in the population are utilized to compute the probability that
a susceptible and an infectious people is in contact for a finite time and get infected.
The prime difference between the SIRmodel and the SEIRmodel is that the inclusion
of the exposed group to the SEIR model. The exposed group actually is a class that
lies in between the susceptible group and the infectious group. It includes the people
who are exposed to be infected but still are not infectious. In this model, four groups
have been considered instead of three and thus, four differential equations required
to describe the spread of pandemic. Susceptible class means those individuals who
are at risk to be infected with the COVID-19 wave virus. The exposed group means
group of those people who have been already infected with the COVID-19 virus but
they have no symptoms (asymptomatic). Infectious groups are the individuals who
are infected with the COVID-19 wave and also able to pass infection to susceptible
persons. Finally, the recovered group are the individuals who have been already
recovered. In this model, we consider that births and deaths occurred at the same rate

Fig. 1 Schematic diagram of SEIR model
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and all the newborn are susceptible (that is, they have no inherited immunity). It is
confirmed that the total population, N means that the sum of all the variables. Thus,
we write

S(t) + E(t) + I (t) + R(t) = N (1)

The Eq. (1) can be written in the following form:

s(t) + e(t) + i(t) + r(t) = 1, (2)

where

s(t) = S(t)

N
, e(t) = E(t)

N
, i(t) = I (t)

N
, r(t) = R(t)

N
. (3)

Now, we assume that the population blends homogeneously, irrespective of age,
mobility or the other social factors. Thus, the following set of ODEs is considered to
represent this model:

dS

dt
= AN − AS − ϑ I S (4)

dE

dt
= ϑ I S − (A + χ)E (5)

d I

dt
= χE − (A + ϕ)I (6)

dR

dt
= ϕ I − AR (7)

We consider the parameters A, AS, ϑ I S, χE, ϑ > 0, χ > 0, ϕ > 0, ψ > 0,
which respectively denote average birth and death rate, rate at which individuals
are born into the susceptible class with no passive, rate at which susceptible enters
into the exposed class without being infected, the rate at which an exposed person
becomes infectious, rate at which an infected individual may recover fully trans-
mission coefficient, latency coefficient, recovery coefficient and capital death rate
respectively. Initially, we assume (S(t = 0), E(t = 0), I (t = 0), R(t = 0)) ∈
{(S, E, I, R) ∈ [0, N ]4 : S > 0, E > 0, I > 0, R > 0}.

The equations (4)-(7) formed as

dS

dt
+ dE

dt
+ dl

dt
+ dR

dt
= AN − AS (8)

Equations (2) and (3) are plug in the equations ((4)–(7)), we find the following
ODEs.
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ds

dt
= A − (A + ϑi)s (9)

de

dt
= ϑ I e − (A + χ)e (10)

di

dt
= χe − (A + ϕ)i (11)

The above ODEs possess a disease-free equilibrium (DFE) and an endemic
equilibrium (EE).

2.1 Calculation of R0

The Jacobian method employed for the SEIR model gives a biologically reasonable
result but thismethod cannot provide good result in a complex compartmental model,
i.e., model having large number of infected compartments, as it depends on the
algebraic Routh Hurwitz conditions for stability of the Jacobian matrix. Diekmann
et al. [16] proposed an alternative method and later on, it is modified by van den et al.
[17], which gives a new way to determine R0 in the case of ODE compartmental
model employing the next generation matrix. In this work, the method is briefly
introduced and for details, readers are referred Van den et al. [19].

Let x = (x1, x2, · · ·, xn)T denotes people present in each of the compartments
with firstm < n compartments containing infected people. We assume the existence
and stability of the DFE x0 in absence of disease and the equations for x1, x2, · · ·, xn
at the DFE effectively disassociates from the rest of the equations. For detailed
discussions on the basic assumptions, see the references mentioned above. Consider
the equation

dxi
dt

= Fi (x) − Vi (x), f or i = 1, 2, · · ·,m (12)

where Fi (x) denotes the rate of increase infections in the i th compartment and Vi (x)
expresses the rate of transitions between the i th compartment and other infected
compartments in other way with the assumption that Fi and Vi ∈ ζ 2, and Fi = 0 if
i ∈ [m + 1, n]. Now we define

F =
[
∂Fi (x0)

∂x j

]
(13)

V =
[
∂Vi (x0)

∂x j

]
f or1 ≤ i, j ≤ m (14)
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Biologically, F and V represent the entry wise non-negativity and a non-singular
M-matrix (see Berman and Plemmons (1994)) respectively, so V−1 also shows the
entry wise non-negativity. If the number of infectious at the initial level be denoted
by �(0), then FV−1 �(0) defines the entry wise non-negative vector and gives
the expected number of newly infected people. The (i, j)th entry of the matrix
FV−1 denotes the expected number of secondary infections in the i th compart-
ment supposing that infected person is introduced in j th compartment. Thus, FV−1

is claimed to be the next generation matrix

R0 = ρ(FV−1), (15)

where ρ signifies the spectral radius. The linear stability of the DFE is confirmed by
s(F −V ), where s is the maximum of the real part of the eigenvalues of the Jacobian
matrix and s often known as spectral bound. Considering the notations stated above,
the interrelationship between this quantity and R0 is described below in brief (for
details, see the above cited references).

Theorem 1 If x0 is a DFE of the system

dxi
dt

= Fi (x)Vi (x),

then x0 is locally asymptotically stable if R0 = ρ(FV−1), but unstable if R0>1.

The next generation matrix is expressed using the Eqs. (9)–(11) and (18) of the
SEIR Model. Here E and I represent the infected compartments. F and V are
described in the DFE matrices as

F =
[
0 ϑs0
0 0

]
, andV =

[
A + χ 0
−χ A + φ

]
,

So FV−1 has the eigenvalues 0 and R0, where

R0 = χϑs0
(A + χ)(A + ϕ)

(16)

as derived biologically by the Eq. (18). Here ϑs0 is the rate of infection population
of susceptible, χ

A+χ
represents the fraction transferring from E to I , 1

A+ϕ
is the mean

time in I , thus the (1, 1) entry of FV−1 shows expected number of the secondary
infections created in compartment E by an infected people in E .
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2.2 Local Stability

Considering the transformed sub-systems in ((4)-(6)), the local-stability is analyzed
to find the disease-free equilibrium (DFE):

LDFE = (s, e, i), (17)

and endemic equilibrium (DFE):

LEE = (s1, e1, i1). (18)

2.3 Disease-Free Equilibrium (DFE)

The conditions for constructing DFE is given by

(s0, e0, i0, r0) =
(γ

α
, 0, 0, 0

)
. (19)

There exist two infected compartments (e and i), and it is found that the equations
in two variables decide the stability of the DFE. The Eqs. (10) and (11), the Jacobian
matrix at the DFE provides the characteristic equation:

l2 + (2A + χ + ϕ)l + ((A + χ)(A + ϕ) − χϑs0) = 0. (20)

All the roots of the equation will contain negative real parts (thus the DFE is
linearly stable) if and only if each of the coefficient is positive, i.e., χϑs0

(A+χ)(A+ϕ)
< 1.

Here, χ

A+χ
is showing the progression from exposed to infectious, and 1

A+ϕ
defines

the average infectious time for taking death. In the biological understanding, the
fraction is considered as reproduction number (R0),

R0 = χϑs0
(A + χ)(A + ϕ)

. (21)

If R0 ≤ 1 ⇒ lim
t→∞(s(t), e(t), i(t), r(t)) = DFE, and for R0 > 1 ⇒

lim
t→∞(s(t), e(t), i(t), r(t)) = EE. From the Eq. (9)–(11) we find,

A − (A + ϑi)s = 0, (22)

ϑis − (A + χ)e = 0, (23)
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χe − (A + ϕ)i = 0. (24)

Therefore, the Jacobian matrix is defined as follows:

J =
⎡
⎣−(A + ϑ i) 0 ϑs

ϑ i −(A + χ) ϑs
0 χ −(A + ϕ)

⎤
⎦

.
Using Eq. (22)–(24), we find the DFE (s, e, i) = (1, 0, 0), if we set i = 0, and

the Jacobian matrix can be written as,

JDFE =
⎡
⎣ A 0 ϑs

ϑ i −(A + χ) ϑs
0 χ −(A + ϕ)

⎤
⎦

.
Therefore from,

det(JDFE − λId) = λ3 + b1λ
2 + b2λ + b3

,

where

b1 = 3A + ϕ + χ, (25)

b2 = [(A + χ)(A + ϕ) − ϑχ + A(2A + ϕ + χ)], (26)

b3 = A[(A + χ)(A + ϕ) − ϑχ ]. (27)

The stability criteria, given in [17, 18] suggest that if b1, b3 > 0, andb1b2−b3 > 0,
then every roots of the characteristic equationwill have negative real part that signifies
a stable equilibrium. Therefore, R0 < 1 signifies a stable DFE otherwise, it becomes
unstable.

2.4 Endemic Equilibrium (EE)

To conclude the endemic equilibrium state from the Eq. (20), we find

e = (A + ϕ)i

χ
. (28)
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Putting the above value of e in Eq. (19), we get

s1 = (A + χ)(A + ϕ)

ϑχs0
= 1

R0
. (29)

Putting the value of s in Eq. (18), we find

i1 = A

ϑ
(R0 − 1), (30)

and considering the Eqs. (24)–(26), we find

e1 = (R0 − 1)A

R0(A + χ)
(31)

Therefore, we find the endemic equilibrium points as,

(s1, e1, i1) =
(

1

R0
,

(R0 − 1)A

R0(A + χ)
,
A

ϑ
(R0 − 1)

)
.

The Jacobian matrix is written as

JEE =
⎡
⎣ −AR0 0 − (A+χ)(A+ϕ)

ϑ

A(R0 − 1) −(A + χ)
(A+χ)(A+ϕ)

ϑ

0 χ −(A + ϕ)

⎤
⎦

Thus,

det(JEE − λId) = λ3 + b1λ
2 + b2λ + b3,

where

b1 = (2 + R0)A + ϕ + χ, (32)

b2 = AR0(2A + ϕ + χ), (33)

b3 = A(R0 − 1)
[
A2 + A(ϕ + χ) + ϑϕ

]
. (34)

From the stability criteria of Routh-Hurwitz (2013), if b1, b3 > 0, and b1b2−b3 >

0, then the roots posses negative real part which means the occurrence of stable
equilibrium. The first two conditions remain true for R0 > 1 as b1, b3 > 0, and
b1b2 − b3 > 0. Therefore, endemic state equilibrium becomes stable if R0 > 1,
otherwise unstable. It causes the occurrence of an outbreak and the epidemic grows.
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The epidemic criteria in R0,given in (21) presents the basic reproduction value,which
is the most important factor for analyzing any epidemiological model. R0, especially
shows whether an epidemic appears due to the spread of infectious diseases because
R0 represents the average number of secondary infections created by one infected
people during the mean period of infection in a susceptible population. If R0 ≤ 1,
then on average, new infections created by one infected people over the mean course
of the pandemic is less than unity, which implies the diseasewill disappear in no time.
On the other hand, when R0 > 1, the number of new infectious created by infected
people becomes greater than unity, that causes the spread of infectious disease as an
epidemic.

Algebraic analysis of R0: If a plan for controlling the disease is considered for entire
population, then Herd immunity is found. On the other hand, when the population
contains several host types, then the strategy to control pandemic only found for one
host population. For example, we consider a vector-host model of malaria where
spray is applied to the mosquito vectors. To propose this Roberts et al. [18, 19]
introduced a particular type of reproduction number, R0. This type of controlling
strategy influences single column/row of the next generation matrix, depending on
control of impressing susceptibility or infectivity. Shuai et al. [20] recentralized this
idea by singling out the entries to control and defined a target reproduction number.
For example, shorten of contacts among the children can be taken as a reduction
strategy for breaking out Cholera. Let us assume K = [

ki j
]
be an nth order next

generation matrix (i.e., K = FV−1) and the entries for a set s are taken as a control
strategy (this may be treated either in a decreasing or an increasing manner in the
entries of s. The (i, j)th element of the target matrix Ks is defined as ki j , if entry
(i, j) ∈ s, and 0 otherwise. For ρ(K − Ks) < 1, the target reproduction number is
denoted as Fs and defined by

Fs = ρ
(
Ks(Id K + Ks)−1

)
(35)

where Id represents an nth order unit matrix. When all the entries in a particular
row/column or more rows/columns of K are selected, then the selected reproduction
number is reduced to the reproduction number as narrated by Roberts et al. [14, 15].
If a fraction,1 − 1

Fs
of total population can be prevented then the disease will no

longer exist.

Theorem 2 The solutions of SEIR model together with the initial condition become
a subset in the interval [0,∞) and {s(t), e(t), i(t), r(t)} ≥ 0 for 0 ≤ t < ∞.

The right-hand sides of the SEIR model is totally continuous and locally Lips-
chitzian on t . The solutions {s(t), e(t), i(t), r(t)} together with its initial conditions
also exist and become unique in the interval [0,∞). From the Eq. (9), we have
[A − ϑi(t)s(t)] ≥ 0, then, we find valid inequality

ds

dt
≥ −As(t). (36)
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By solving the above inequality, we find

s(t) ≥ s0e
−As(t) ≥ 0. (37)

Hence, s(t) becomes a non-negative function for all t such that, t ∈ [0,∞).
In the similar way, form the Eqs. (10) and (11), we find

e(t) ≥ e0e
−(A+χ)t ≥ 0, (38)

i(t) ≥ i0e
−(A+ϕ)t ≥ 0, (39)

r(t) ≥ r0e
−At ≥ 0. (40)

Thus, e(t), i(t) and r(t) are all non-negative functions for all values of t such that,
t ∈ [0,∞) and hence the proof.

Lemma 1 All of the solutions of SEIR model that initiate in the zone [0,∞) are
bounded inside the domain�, given by�={(s, e, i, r) ∈ [0,∞) : 0 ≤ N (t) ≤ Aϑ}
ast → ∞.

2.5 Uniqueness Theorem for DFE and EE Conditions:

The general condition of DFE is given by

(s0, e0, i0, r0) =
(γ

α
, 0, 0, 0

)
(41)

Therefore, |JDFE | �= 0 means that the equilibrium is isolated, which means there
is a disk around it that does not contain other equilibrium. |JEE | �= 0, where R0 =

χϑs0
(A+χ)(A+ϕ)

, Therefore, R0 is unique, hence the proof.

2.6 Global Stability of Equilibrium of the SEIR Model
(Lyapunov’s Stability Theorem)

The Lyapunov functions represent the scalar functions that may be utilized in order
to prove the state of global stability of equilibrium. Lyapunov reports that if the
function V (x) is globally positive definite as well as radially unbounded, and time
derivative of V (x) is globally negative, V (x) < 0 for all x = x∗ then the equilibrium,
x∗ becomes globally stable in an autonomous system
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dx

dt
= f (x), (42)

and V (x) is called the Lyapunov’s function.

Lemma 2 In the SEIR model, DFE (e0) = (
A
ϑ
, 0, 0, 0

)
stands for globally stable of

the DFE under the state R0 < 1.

Lemma 3 When R0 ≤ 1 the DFE(e0) becomes globally attractive.

3 Conclusion

1. From the SEIR epidemiological model, it has been concluded that if the repro-
duction number R0 > 1, then the disease will spread like an outbreak. The
sensitivity analysis revealed that whenever the transmission rate is increased or
the recovery rate is reduced, the disease will spread, but whenever the trans-
mission rate is reduced or the recovery rate is increased, the disease will dies
out.

2. Every roots of the characteristic equation contains negative real part that signifies
a stable equilibrium and for R0<1 signifies a stable DFE, otherwise it becomes
unstable. If R0≤ 1, then on average, new infections created by one infected
people over the mean course of the pandemic is less than unity that implies the
infectious disease will vanish. On the contrary, when R0 > 1, the number of new
infections people created by one infected people becomes greater than unity,
that causes the spread of infectious disease as an epidemic.
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Dynamics of Coronavirus and Malaria
Diseases: Modeling and Analysis

Attiq ul Rehman and Ram Singh

Abstract COVID-19 has been declared a pandemic by the WHO on the 11th of
Mar. 2020. This virus is believed to be born in China in 2019. The study of this
disease is very complicated and challenging. In this manuscript, a fractional-order
epidemic model to study the impact of COVID-19 and malaria disease has been
proposed and analysed. The model is formulated with the help of fractional order by
using the Caputo-Fabrizio derivative. The model is solved numerically with the help
of the ABM method. The parameters which characterize the disease transmission
are taken from real data of India [1]. The qualitative and quantitative behaviour of
the proposed model is examined. The numerical work is performed to authenticate
the analytic solutions. It is observed that the malaria disease acts as a launching pad
for the COVID-19 dynamics as it weakens of humans immune system.
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C Caputo
CF Caputo-Fabrizio

ABC Atangana Baleanu in Caputo sense
DFE Disease Free Equilibrium
EE Endemic Equilibrium

LAS Locally Asymptotically Stable
GAS Global Asymptotically Stable
ODE Ordinary Differential Equation
FDE Fractional Differential Equation
VIE Volterra Integral Equation
PE Predict Evaluate
CE Correct Evaluate
PV Predictor Value
CE Corrector Value

1 General Introduction

The mathematical modeling of disease has been attracting the attention of many
epidemiologists. COVID-19 was revealed to be supervised for a substantial number
of pneumonia cases from China, in Dec. 2019. The number of cases has exploded in
China, and then all over the world. On Dec. 31, 2019, the disease was first reported
to the WHO, and on Jan. 30, 2020, this outbreak was declared a GHE, followed by
a global pandemic on Mar. 11, 2020.

Fever, dry cough, and Fatigue are the most prevalent symptoms of COVID-19.
Runny nose, nasal congestion, loss of taste, pains, rashes on the skin, and smell
are all possible side effects. These symptoms usually appear and are modest over
time. The majority of patients recover from the ailment without the need for medical
treatment. All stages of people with underlying medical problems like respiratory
or heart difficulties, diabetes, or weakened immune systems should be given special
attention [2].

When someone with coughs, speaks, and minute droplets from the nose are trans-
mitted fromperson to person, especially in improperly congested interior areaswhere
the short-range aerosol transmission cannot be ruled out. It can also be contracted
by contacting contaminated things or surfaces and then touching the eyes, nose, or
mouth [3]. People who have no symptoms can to some accounts, spread the virus.
But, the frequency of such transmissions is unknown.

Likewise COVID-19, malaria is a parasitic infection, transmitted by Anopheles
vectors and caused by genus plasmodium parasites, that gives a notable worldwide
health threat and leads to a long life-threatening illness. This disease increases mor-
tality and mobility in these areas, causing a toxic impact on their economies and
their health structures [4]. About 229 million cases of malaria and approx. 5,00,000
deaths have been reported by WHO, displaying the largest fraction of cases and the
highest death [5].
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It is critical to control the spread of malaria by implementing long-term and
targeted interventions. These two actions should be sufficient to halt the spread of
malaria [6]. Insecticide-treated fabrics, most likely vector nets, have been utilized
to combat malaria. In addition, data suggest that anopheline vectors have begun to
develop resistance to the pyrethroids used to treat vector nets. Indoor residual DDT
pesticides and insect reflecting creams are two other options.

Drainage of standing waters is beneficial to human health. Chemoprophylaxis is
applied as a prophylactic measure in endemic areas. This reduces the risk of severe
maternal anemia and low birth weight in babies. However, due to a lack of Plas-
modium falciparum tolerance, chemoprophylaxis is only marginally successful [7].
In circumstances of limited transmission, microgametocyte medicines may play a
substantial role in malaria prevention. It lowers the rate of transmission. But, trans-
genic vectors become available, they may provide more benefits in the fight against
malaria.

While both diseases can present similarly, the same symptoms they share include,
but aren’t controlled to, breathing problems, fever, head pain, and tiredness, that can
give to a mistreat of both and vice versa, especially if the clinician data solely on
signs [8]. Coronavirus had a big field of clinical signs from asymptomatic. Headache,
myalgia, and vomiting are all possible symptoms.Malaria patients, on the other hand,
commonlywith fever, headache, and sweating, aswell as fatigue, arthralgia, myalgia,
nausea, and vomiting [9].

Malaria-affected people may be mistreated as COVID-19 due to the similarity
of symptoms between both diseases, particularly difficulty breathing, fever, acute
onset headache, and fatigue. Furthermore, both malaria and COVID-19 can cause
complications such asARDS, septic shock, aswell asmulti-organ failure. Dry cough,
headache, and fever such as health protector patients and workers along with a long
time of contact with a number of the COVID-19 peoples, is the first step in identifying
a COVID-19 patient [10].

In terms of alertness locally, regionally, and internationally, a top-level of sus-
picion is demonstrated towards the COVID-19. Humans with fever are currently
tested for COVID-19 and then return if the result is non-positive, siding the chance
of malaria. The malaria consequences are toxic if a case of malaria is overlooked.
Patients who are feverish and have a COVID-19 disease, on the other hand, may
be screened for malaria. A single instance of the COVID-19 has the ability to show
impact on 3.58 people [11]. The third situation is that a patient has both malaria and
COVID-19, and the treatment, as well as diagnosis of one of these, leads to the other
being missed.

The widespread utilization of CQ, HCQ, and other anti-malarial medications in
malaria-positive regions, according to some researchers, explains the reverse con-
nection between COVID-19 and malaria. It’s worth noting that the ability of CQ and
HCQ for the medication of COVID-19 disease has been examined since the initial
SARS outbreak [12]. Some older studies elaborated on the usefulness of HCQ in the
medication of SARS-CoV-2 and stated that a daily dose of four hundred milligrams
of HCQ for ten days was the best treatment option. But, subsequent clinical data
have recommended that HCQ for COVID-19 be given at a loading medicine of four
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hundred milligrams twice on the first day, followed by two hundred milligrams every
12 hours for the next 4 days.

In this manuscript, we have presented an epidemic model of COVID-19 and
malaria. As there are very few papers in which the dynamics of both diseases are
studied. It is important to study the dynamics of these epidemics.

The paper organization is as follows. Basic preliminaries are in Sect. 2. The
mathematical epidemic model is described in Sect. 3. Existence and positiveness are
proved in Sect. 4. Stability analysis is discussed in Sect. 5. The numerical work are
presented in Sect. 6. At last, the conclusion is drawn in Sect. 7.

2 Basic Preliminaries

Since the fractional-order derivative is the generalization of the integer-order deriva-
tive. The basic concepts and definitions of Caputo, Caputo-Fabrizio, and Atangana-
Baleanu-Caputo. The Caputo derivative has been derived with the power-law type
of singular non-local kernel, CF with a non-singular kernel, and ABC with Mittag-
Leffler kernel memory. But in this paper, we used only the CF fractional operator
since it has a non-singular kernel.

Definition 1 For a function f from Cn space, the Caputo fractional derivative of
order α ∈ (n − 1, n] with n ∈ Z

+ is given as follow:

C
0 D

α
t ( f (t)) = 1

�(n − α)

t∫

0

1

(t − ϕ)α−n+1
f (n)(ϕ)dϕ,

The above Caputo fractional derivative approaches the ordinary derivative when
order α is one.

Definition 2 For a < 0, α ∈ (0, 1], the fractional derivative with a non singular
kernel, for a function f (t) of C1 space is given as follow:

CF
0 Dα

t f (t) = M(α)

1 − α

t∫

a

( f (t) − f (ϕ))exp

[
− α

t − ϕ

1 − α

]
dϕ.

Definition 3 If f (t) is differentiable then, the new derivative is called the Atangana-
Baleanu in the Caputo sense as follow:

ABC
a Dα f (t) = B(α)

1 − α

t∫

a

Dα
t f (ϕ)Eα

[
− α

(t − ϕ)α

1 − α

]
dϕ,
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with B(α) is the normalization mapping s.t. B(0) = B(1) = 1, in which B(α) =
1 − α + α/�(α).

Definition 4 For order α ∈ (0, 1), the unchangeable point x∗ is called the critical
point of the below Caputo fractional-order function:

C
0 D

α
t (x(t)) = f (t, x(t)) ⇐⇒ f (t, x∗) = 0. (1)

To show the stability of the non-linear fractional-order systems in the insight through
Lyapunov way we firstly think of the afterward results from [13].

3 Fractional-Order Mathematical Model Formulation

To express the epidemic model, we split the COVID-19 affected host population into
four sub-classes, namely susceptible, infectious, vaccinated, and discharged indi-
viduals. The complete host population is constituted by �1 = Sh + Ih + Vh + Dh ,
where Sh is COVID-19 susceptible host, Ih is COVID-19 infectious host, Vh is the
COVID-19 vaccinated host and Dh is COVID-19 discharge host population. Like-
wise, �2 is the complete number of vectors which are further split into susceptible
vectors Sm , and infected vectors Im . So that�2 = Sm + Im . The mathematical model
of six FDEs to relate the mechanism of the dynamical transmission of both disease
as follow:

CF
0 Dα

t Sh = (1 − σ)Zh − βh Sh Im + ρL0h − xh Sh,
CF
0 Dα

t Ih = βh Sh Im − (η + κh + xh)Ih,
CF
0 Dα

t Vh = σ Zh + ξκhDh − (ρ + xh)Vh,

CF
0 Dα

t Dh = ηIh − (ξκh + xh)Dh,

CF
0 Dα

t Sm = Zm − βmSm Ih − xmSm,

CF
0 Dα

t Im = βmSm Ih − xm Im, (2)

with i.c.’s Sh(0) = Sh0, Ih(0) = Ih0, Vh(0) = Vh0, Dh(0) = Dh0, Sm(0) = Sm0, and
Im(0) = Im0 ≥ 0.

The exceeding proposed epidemic model Zh and Zm show the new upcoming rate
of host and vector populations. The proportion of vaccination during the new coming
host population is represented by σ . βh is the transmission rate between humans to
mosquitoes and βm is the transmission rate between mosquito to human respectively.
Also, In COVID-19 affected human population class η represent the discharge rate,
κh represent disease-induced death rate, ρ represent the loss of vaccination-induced
immunity, and ξ is the parameter with modifies disease death rate of discharge hosts.
The natural mortality of the host individuals is denoted by xh and for vector xm
respectively.
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Fig. 1 Flowchart diagram of COVID-19 and malaria disease

In susceptible host population (1 − σ)Zh , vaccination host σκh and susceptible
vector Zm is the new upcoming rates. The rate βh Sh Im is flowing from the susceptible
human individual to the infected human individual, and βmSm Ih is flowing from the
susceptible mosquito individual to the infected mosquito individual, respectively.
The rate ρ is the flow from vaccinated host to susceptible host, η is flow from Ih to
Dh , and κh is from Ih to Dh . The natural death rate xh is going out of each class of
host population and xm is going out of each class of vector population respectively.
All these mentioned flowing rates of biological parameters are elaborated in Fig. 1.

4 Existence and Positiveness

To show the positivity of the dynamical system solution, we have R6+ = {v ∈ R
6 :

v ≥ 0} and v(t) = (
Sh(t), Ih(t), Vh(t), Dh(t), Sm(t), Im(t)

)T
. To move further, we

have generalized mean value theorem.

Lemma 1 Suppose that φ ∈ [a, t], ∀ a < t < b, f (t) ∈ C[a, b] and a <CF
0

Dα
t f (t) ≤ b, with α(0, 1], then f (t) = f (a) + 1

�(α)

(
CF
0 Dα

t f
)
(φ)(t − a)α.

Now we consider the following results.

Theorem 1 The solution v(t) of the system (2) is exists, non-negative and will stay
in R6+.
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Proof The existence as well as uniqueness of the fractional model can be easily
demonstrated. Now to show the positive solution, it is compulsory that on each
hyperplane bounding the positive orhant space toR6+. Therefore, the proposed system
(2), gives

CF
0 Dα

t Sh |Sh=0 = (1 − σ)Zh + ρL0h ≥ 0,
CF
0 Dα

t Ih |Ih=0 =βh Sh Im ≥ 0,
CF
0 Dα

t Vh |Vh=0 = σ Zh + ξκh Dh ≥ 0,
CF
0 Dα

t Dh|Dh=0 = ηIh ≥ 0,
CF
0 Dα

t Sm |Sm=0 = Zm ≥ 0,
CF
0 Dα

t Im |Im=0 = βmSm Ih ≥ 0. (3)

Hence, by Lemma 1, the solution will stay in R
6+, and so the biological feasible

solution is given as:

� = {(
Sh, Ih, Vh, Dh, Sm, Im

) ∈ R
6
+ : Sh, Ih, Vh, Dh, Sm, Im ≥ 0

}
.

Afterward, we will evaluate the equilibrium points and basic reproduction number
R0 of the proposed model (2) in the below subsection.

4.1 Equilibrium Points and Estimation of R0

The equilibria of the system (2) are acquired by solving the system as follows.

CF
0 Dα

t Sh = CF
0 Dα

t Ih = CF
0 Dα

t Vh = CF
0 Dα

t Dh = CF
0 Dα

t Sm = CF
0 Dα

t Im = 0.

Thus, we evaluated the proposed epidemic model and found two types of critical
points. The DFE point is obtained as

E1 = (
S1h , I

1
h , V 1

h , D1
h, S

1
m, I 1m

) =
(

(1 − σ)Zh

xh
, 0,

σ Zh

ρ + xh
, 0,

Zm

xm
, 0

)
.

Next, the EE point is obtained as E2 = (
S2h , I

2
h , V 2

h , D2
h, S

2
m, I 2m

)
, with
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S2h = (1 − σ)Zh + ρV 2
h

βh I 2m + xh
,

I 2h = (1 − σ)Zh Zmβhβm − xh
(
η + κh + xh

)
x2m

βm
(
η + κh + xh

)(
Zmβh + xhxm

) ,

V 2
h = σ Zh + ξκh D2

h

ρ + xh
,

D2
h = ηI 2h(

ξ Zh + xh
) ,

S2m = Zm

βm I 2h + xm
,

I 2m = βm Zm Ih
(βm I 2h + xm)xm

. (4)

The EE point E∗, exist only if R0 > 1. The R0 for the non-integer COVID-19 and
malaria disease models is determined by using the next-generation technique. R0

is biologically very essential and determines the global dynamical transmission of
the model. The corresponding diseases matrices F(without infection) and V (with
infection) are given by

F =
⎡
⎢⎣

0
(1 − σ)Zhβh

xh
Zmβm

xm
0

⎤
⎥⎦ , V =

[
η + κh + xh 0

0 xm

]
.

The inverse of infected matrix V is

V−1 =
⎡
⎢⎣

1

η + κh + xh
0

0
1

xm

⎤
⎥⎦ , FV−1 =

⎡
⎢⎢⎣

0
(1 − σ)Zhβh

xhxm
Zmβm

xm
(
η + κh + xh

) 0

⎤
⎥⎥⎦ .

This above spectral radius is called the basic reproduction number of the model, and
after some simplification, we have

R0 =
√

(1 − σ)Zh Zmβhβm

xhx2m
(
η + κh + xh

) .

5 Stability Analysis

In this section, we have presented the stability analysis of DFE results in both local
as well as global stability. The Variational of the model (2) is as follows.
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JE1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−xh 0 ρ 0 0
−(1 − σ)βh Zh

xh

0 η + κh + xh 0 0 0
(1 − σ)βh Zh

xh
0 0 −(ρ + xh) ξκh 0 0
0 η 0 ξκh − xh 0 0

0
−βm Zm

xm
0 0 −xm 0

0
βm Zm

xm
0 0 0 −xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 2 For q1, q2 ≥ 0 such that q1 and q2 are primitive root. Let m1 = α =
q1
q2

> 0, and Q = q2, then E1 is LAS if |arg(λ)| > π
2Q , with λ is the possible roots

of the characteristic equation of the Variational matrix at E1 as follows:

det
(
diag[λm1 , λm1 , λm1 , λm1 , λm1 , λm1 ] − JE1

) = 0. (5)

Proof By the expansion of Eq. (5) we get the below equation in terms of λ,

(−xm − λ)(−ρ − xh − λ)(ξκh − xh − λ)(−xh − λ)
[
λ2 + r1λ + r2

]
, (6)

with the coefficents are as follows:

r1 = (η + κh + xh + xm), r2 = xm(η + κh + xh)(1 − R0).

The arguments for the roots of the equation (−xm − λ) = 0 are as below:

arg(λl) = π

m1
+ l

2π

m1
>

π

Z
>

π

2Z
, wi th l = 0, 1, 2, . . . , (m1 − 1). (7)

Likewise, the pattern, it can be demonstrated by the arguments for the roots of
other equations, and all are greater than π

2Q . Also, if R0 < 1, then the condition
|arg(λ)| > π

2Q is proved for all the roots of the polynomial Eq. (6). But if R0 > 1,
then by the Descartes sign’s rule, there exists single root of characteristic equation
with |arg(λ)| < π

2Q . Hence, if R0 < 1 then DFE point is LAS and if R0 > 1 then
DFE point is unstable.

For the case of global stability of the DFE point, we have the following theorem.

Theorem 3 If R0 < 1 then DFE point is GAS and if R0 > 1 then DFE point is
unstable.

Proof In order to obtain our result, we have the following Lyapunov function:
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V (t) = N1

(
Sh − S1h − S1h

Sh
S1h

)
+ N2 Ih + N3

(
L0h − V 1

h − V 1
h

L0h

V 1
h

)

+N4Dh + N5

(
Sm − S1m − S1m

Sm
S1m

)
+ N6 Im, (8)

with N1, N2, N3, N4, N5, N6 are arbitrary positive constant. By Eqs. (5) and (8),
along with the system of Eq. (2) we have

CF
0 Dα

t V (t) = N1

(
Sh − S1h

Sh

)
CF
0 Dα

t Sh + N2
CF
0 Dα

t Ih + N3

(
Vh − V 1

h

Vh

)
CF
0 Dα

t L0h

+N4
CF
0 Dα

t Dh + N5

(
Sm − S1m

Sm

)
CF
0 Dα

t Sm + N6
CF
0 Dα

t Im

= xm(η + κh + xh)(R0 − 1). (9)

Thus, ifR0 < 1 then CF
0 Dα

t V (t) < 0. Hence, E1 is GAS in �.

6 Numerical Work

In this section, we employed theABMmethod to solve the dynamical system (2). The
main mathematical explanation steps that occur in the mechanism are demonstrated
here for the order α ∈ (0, 1]. This is the generalization of the ordinary ABMmethod
applied to solve numerically the first order ODEs. This appears in the category of the
so-called PE and CE type because it contains calculation of the PV which is further
utilization to find the CV. This aforesaid numerical method and its behaviour are well
known in the area of fractional calculus as well as in applied areas [14]. To find the
approximate solution to this analogy, take the below non-linear FDE.

Dα f (t) =H(t, f (t)), t ∈ [0, T ] & f (l) = f l0 , l = 0, 1, . . . , n − 1, f or n = 	α

(10)

The Eq. (10) is equivalent to the VIE:

f (t) =
n−1∑
l=0

f (l)
0

t l

l! + 1

�(α)

t∫

0

1

(t − s)1−α
H(s, f (s))ds. (11)

By utilizing this algorithm on the proposed model (2), Eq. (11) can be discretized as
below [15].
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Kn+1 = K0 + hα

�(α + 2)

[(
(1 − σ)Zh − βhK

p
n+1P

p
n+1 + ρMp

n+1 − xhK
p
n+1

)

+
n∑
j=0

a j,n+1
(
(1 − σ)Ph − βhK j Pj + ρMj − xhK j

)]
,

Ln+1 = L0 + hα

�(α + 2)

[(
βhK

p
n+1P

p
n+1 − (η + κh + xh)L

p
n+1

)

+
n∑
j=0

a j,n+1
(
βhK j Pj − (η + κh + xh)L j

)]
,

Mn+1 = M0 + hα

�(α + 2)

[(
σ Zh + ξκhN

p
n+1 − (ρ + xh)M

p
n+1

)

+
n∑
j=0

a j,n+1
(
σ Zh + ξκh N j − (ρ + xh)Mj

)]
,

Nn+1 = N0 + hα

�(α + 2)

[(
ηL p

n+1 − (ξκh + xh)X
p
n+1

)

+
n∑
j=0

a j,n+1
(
ηL j − (ξκh + xh)N j

)]
,

On+1 = O0 + hα

�(α + 2)

[(
Zm − βmO

p
n+1L

p
n+1 − xmO

p
n+1

)

+
n∑
j=0

a j,n+1
(
Zm − βmO j L j − xmO j

)]
,

Pn+1 = P0 + hα

�(α + 2)

[(
βmO

p
n+1L

p
n+1 − xm P

p
n+1

)

+
n∑
j=0

a j,n+1
(
βmO j L j − xm Pj

)]
, (12)

where

K p
n+1 = K0 + 1

�(α)

n∑
j=0

b j,n+1
(
(1 − σ)Zh − βhK j Pj + ρMj − xhK j

)
,

L p
n+1 = L0 + 1

�(α)

n∑
j=0

b j,n+1
(
βhK j Pj − (η + κh + xh)L j

)
,

Mp
n+1 = M0 + 1

�(α)

n∑
j=0

b j,n+1
(
σ Ph + ξκh N j − (ρ + xh)Mj

)
,
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N p
n+1 = N0 + 1

�(α)

n∑
j=0

b j,n+1
(
ηL j − (ξκh + xh)N j

)
,

Op
n+1 = O0 + 1

�(α)

n∑
j=0

b j,n+1
(
Pm − βmO j L j − xmO j

)
,

P p
n+1 = P0 + 1

�(α)

n∑
j=0

b j,n+1
(
βmO j L j − xm Pj

)
, (13)

inwhicha j,n+1 =

⎧⎪⎨
⎪⎩
nα+1 − (n + 1)(n − α), j = 0,

(n − j)α+1 − 2(n − j + 1)α+1 + (n − j + 2)α+1, j = [1, n],
1, j = n + 1,

and b j,n+1 = hα

α

[
(n − j + 1)α − (n − j)α

]
, j ∈ [0, n].

Figures2 and 3 demonstrate that Ih(t) decreases significantly with time t . In
Fig. 2 it has been observed that for α = 0.75, the graph of Ih increase from t = 10
to t = 50 and then decline significantly. Likewise for α = 0.65 and α = 0.55 we
have the behaviour of Ih versus time t . This graph indicates that for large value of α

have shown good impact on state variables. Since α has a reciprocal impact on Ih(t)
and Im(t). In order to find a stable and convergent solution, the value of α should
be as small as possible and should be greater than zero. Afterwards, Fig. 4 shows
the effects of η on Ih(t). Since, as we increase the value of η the graph of Ih(t) also
increases. In Fig. 5 we observe the effect of ρ on Sh(t) class. On increase of ρ, Sh(t)

Fig. 2 Effect of α on Ih
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Fig. 3 Effect of α on Im

Fig. 4 Effect of η on Ih
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Fig. 5 Effect of ρ on Sh

Fig. 6 Effect of βh on Ih
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Fig. 7 Effect of βm on Im

get decrease. Next, in Fig. 6 demonstrates the impact of βh on the Ih(t) class. As we
increase the value of βh , the curves of Ih are increased. Finally, Fig. 7 shows the effect
of βm on Im(t). On the increase of βm , the curves of the Im(t) class are decreased. In
Fig. 7 it has been seen that for βm = 0.83, 0.85, 0.87, the graph of Im increase from
t = 10 to t = 40. This show the realistic fact. As the transmission rate increase the
number of infectious mosquitoes get increased in the population.

7 Conclusion

Malaria andCoronavirus are odd infectious diseases that wreak havoc over theworld,
and their route of transmission is still a mystery. We studied the dynamics of malaria
and COVID-19 disease mathematically in this investigation. We computed the R0

and established a stability analysis using several key theorems. Figures demonstrate
the impact of non-integer order α and various transmission rates graphically. Our
findings are consistent with those that suggest malaria serves as a launchpad for the
SARS-CoV-2 virus and causes death [16]. In the spirit of CF, we compared these
several models. In the numerical work, CF is found to have even better outcomes in
terms of stability than the other operators like Riemann-Liouville and Caputo.

Concluded remark:
• It is observed that DFE is LAS when R0 < 1, and unstable ifR0 > 1.
• It is also observed that for the disease model, the traditional condition of R0 < 1
is not sufficient for eradication of the COVID-19 and malaria.
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Future direction:
The future direction of the study will incorporate the optimization of medical treat-
ment for COVID-19 and malaria.
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Design of Imidazole-Based Drugs
as Potential Inhibitors of SARS-Cov-2
of the Delta and Omicron Variant

An in Silico Approach

Peter Solo and M. Arockia Doss

Abstract 30 imidazole-based drugs were designed, prepared and optimized using
Gaussian 09, andwere screened for drug-likenesswithSWISS-ADMEserver.Molec-
ular docking was performed using MOE 09, where the designed drugs were docked
with the spike glycoprotein of the Delta (B.1.617.2) and Omicron (B.1.1.529) variant
of SARS CoV-2. Nafamostat and Hydroxychloroquine were used as standards in
comparing the docking results. Among the designed drugs, those drugs which used
Benzil and Hyroxy/methoxy-benzaldehyde as the starting compound exhibited good
binding scores, and can be potential inhibitors of the Delta and Omicron variant of
SARS CoV-2.

Keywords SARS-CoV-2 · Imidazole-based drug design ·Molecular docking

1 Introduction

The outbreak of severe acute respiratory syndrome corona virus 2 (SARS CoV-2)
continues to prevail. The detection of the new omicron variant (B.1.1.529) in south
Africa has ignited fresh concern over the already contagious delta variant (B.1.617.2).
On 26 November 2021, WHO has designated omicron as a variant of concern which
has now spread across the entire globe [1]. Unlike the other variants, omicron has
large number of mutation with 32 mutations in the spike glycoprotein [2] and 15
mutations in the receptor-binding domain (RDB) alone [3]. Computational studies
have affirmed that the Omicron variant had a higher affinity for human angiotensin-
converting enzyme 2 (ACE2) as compared to the delta variant due to the significant
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of mutations in the RBD regions of the spike protein [4]. Initial modelling suggests
that the omicron variant is 2.8 times more infectious than the delta variant [5]. Most
monoclonal antibodies are not effective against the omicron variant as they target the
spike protein which has significant mutations [6].

Imidazole and its derivatives forms a prominent class of hetero cyclic compounds,
displaying diverse applications especially with regards to its biological and phar-
macological activities. Many substituted Imidazole are found to exhibit anti-
inflammatory [7, 8], anti-fungal [9, 10], anti-bacterial [11], anti-epileptic, anti-
microbial [12], anti-cancer [13, 14] and anti-tubercular activities [15]. They are also
found to have analgesic properties [16]. Imidazole is the main structural feature in
many drugs found in the markets, namely isoconazole, ketoconazole, clotrimazole,
miconazole, econazole, fluconazole, sertaconazole, eprosartan, losartan, olmesartan,
metronidazole, etc. [17]. The study aims at designing imidazole-based drug in search
for potential inhibitor against SARS CoV-2 using in silico approach.

2 Materials and Methods

2.1 Designing of Ligands

The Ligands were designed based on a published work [18] where the heterocyclic
imidazole ring forms an important structural feature with regard to its pharmaco-
logical activity as antimicrobial and antifungal (Fig. 1). Alpha-diketone, aromatic
aldehyde, 2-(piperazin-1-yl) ethanamine and ammonium acetate are the reactants in
the synthesis of the drugs. From a synthetic point of view various derivatives of the
drug were designed by replacing various substituents at R1, R2 and R3 positions. R1
and R2 are replaced by alkyl or aromatic groups using diacetyl or benzyl as reactants
respectively. R3 groups can have the most number of variations as it is formed by
an aromatic aldehyde. All the drugs/ligands were designed using Gaussian 09 [19].
Optimization was performed with DFT/B3LYP method using 6-31G(d,p) level of
theory. The optimized structures were saved in both MOL and SDF format.

Fig. 1 Framework for
imidazole-based drug design
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2.2 Screening of Ligands for Drug-Likeness

The designed ligands were screened for drug-likeness with SWISS-ADME server
[20],which analysesmany important aspects of the drug, namelyLipophilicity,Water
Solubility, Pharmacokinetics, Drug-likeness and medicinal properties of the drug.
The screening for drug-likeness with Lipinski, Ghose, Veber, Egan and Muegge are
all included in the SWISS-ADME server. The SDF structures of the designed-drugs
were fed into the SWISS-ADME server and were converted into SMILES format
which were then screened for drug-likeness.

2.3 SARS CoV-2 Spike Glycoprotein Target Selection
and Homology Modelling

The 3D structure for the spike glycoprotein of the delta variant (B.1.617.2), with
PDB ID:7so9, was downloaded from RCSB protein data bank (https://www.rcsb.
org/structure/7SO9). All other chains and water molecules were deleted, and only
chains A, F and K of the spike glycoprotein was retained. The 3D structure for the
spike glycoprotein for the Omicron variant (B.1.1.529) was not available at RCSB
protein data bank, therefore, it was constructed with homology modelling using
Swiss Model server [21]. The target sequence of the Omicron variant with GenBank
ID UFO69279.1 (https://www.ncbi.nlm.nih.gov/protein/UFO69279.1) was down-
loaded in FASTA format from NCBI website and was pasted in Swiss Model server
for the construction of 3Dmodel. Blast and HHblits methods were used to search for
template structure in the SWISS-MODEL template library. The template with PDB
ID 7n1u.1.A was selected for building the 3D model. The details of the template and
homology modelling results are given in Table 1.

2.4 Protein and Ligand Preparation

MOE 09 docking tools [22] was used to prepared both the target proteins and all the
ligands. Structure preparation of the target proteins was executed and all corrections
were performed for the PDB structures of the two target proteins, i.e., Delta variant
and Omicron variant. Energy minimization of the structures were performed using
Amber12:EHT Force field where hydrogens and charges were added. A database
of ligand containing all the 30 compounds were prepared in MDB format. Each
ligand in SDF format was entered into the database after 3D protonation and energy
minimization with Amber12:EHT Force field.

https://www.rcsb.org/structure/7SO9
https://www.ncbi.nlm.nih.gov/protein/UFO69279.1
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3 Results and Discussion

In this study, 30 imidazole-based drugs were designed in search for potential antiviral
candidate for the prevailing SARS CoV-2 pandemic using in silico method. The
drugs were designed based on published literature where the imidazole ring forms
an essential structural feature for its pharmacological activity as antimicrobial and
antifungal drugs. Designing and optimization of the 3D structures of the drugs were
performed efficiently using Gaussian 09.

Most compounds performed very well in the screening for drug-likeness with
SWISS-ADME server and there were no serious violations or alerts (S.1). The alerts
were due to higher molecular mass and higher lipophilicity of some compounds to
the presence of aromatic rings. All compounds showed high GI absorption and there
was no Lipinski’s violation. All the 30 compounds were selected to be docked with
the target proteins.

The docking analysis with MOE 09 reveals that most of the designed drugs binds
quite well to the target spike glycoprotein as compared to the standards (S. 1). The
top 3 ligand with the best binding energy are displayed in Table 2. The designed
drugs with alkyl substituents at R1 and R2 Positions (Fig. 1) did not top the list,
which suggest that aromatic substituents at these positions increases ligand affinity
for the target spike proteins. Ligand number 28 binds very well to both the target
spike proteins exhibiting a binding affinity of −8.06753635 kcal/mol for the Delta
variant and −7.19685173 kcal/mol for the Omicron variant.

In most of the interactions of the ligands with the active site, the imidazole ring
is actively involved either through Conventional Hydrogen bond, Carbon Hydrogen
bond, alkyl interactions or pi-alkyl interactions with the residues of the target site.
In the docking with omicron spike protein the imidazole ring is involved in pi-
alkyl interaction with ILE A:192 (ligand 20) and ILE B:192 (ligand 22) residues
(Fig. 2). In the docking with delta spike protein the imidazole ring is involved in
alkyl interaction with PHE K:377 residue of the target protein (ligand 23). It is also
involved in convention hydrogen bond and amide pi-stacked interactions with ARG
A:408 and SER K:375 residues respectively (Fig. 3). Interaction of ligand 20 with
omicron variant is mainly stabilized with three conventional hydrogen bonding with
THR B:390, SER B:511 and ASN B:391, and carbon hydrogen bond with THR
B:390 (Fig. 2). On the other hand, interaction of ligand 28 with the delta variant is
mainly stabilized by five carbon hydrogen bonds with GLYA:404, ASP F:405, GLU
F:406 and PHE A:374 (Fig. 3).

Drugs which were prepared using Benzil and hydroxy/methoxy-benzaldehyde as
starting compound aided the bindingof the drugswithmultiple favorable interactions.
The hydroxyl group (ligand 20) in complex with the omicron variant is involved in
two conventional hydrogen bond with SER B:511 and ASN B:391 residues (Fig. 2).
In the complex with delta variant, the methoxy-groups of ligand 28 is involved in
two carbon hydrogen bond with GLU F:406 and PHE A:374 residues, and alkyl
interaction with LYS F:417 (Fig. 3).



1470 P. Solo and M. A. Doss

Table 2 Docking scores of the top 3 ligands with the standards

Top hits ligands docking with
Omicron variant (B.1.1.529)

Docking score
(kcal/mol)

Top hits ligands Docking with
delta variant (B.1.617.2)

Docking score
(kcal/mol)

N

N

N

HN

OH

Ligand no: 20
−7.22973061

N

N

N

HN

OCH3H3CO

Ligand no: 28
−8.06753635

N

N

N

HN

OCH3H3CO

Ligand no: 28

−7.19685173

N

N

N

HN N

Ligand no: 23

−7.96867609

N

N

N

HN

N

Ligand no: 22
−7.17171955

N

N

N

HN O

Ligand no: 25
−7.96448946

Hydroxychloroquine −6.51112795 Hydroxychloroquine −6.40599966

Nafamostat −7.13362694 Nafamostat −6.89814949

The common amino acids at the binding site of the ligands with the Omicron
variant are ASP B976, LEU C543, LEU C514 and LEU C515 (Fig. 2 and S. 2). At
the active site of the binding of the ligands with the Delta variant, ARG A408, LYS
A417, GLUA406, PHE K374, PHE K377, SER K375 and ARGK408 (Fig. 3 and S.
2), are the common amino acids. The difference in the common amino acid residues
at the binding sites of the two spike protein variants reflects the enormous difference
in their structure at the active site.

All common amino acids residues, accept for ASP B976, are in the receptor
binding domain (RBD) which initiates viral entry into the host by binding to the
cell receptor ACE2 in the aminopeptidase N [23]. Therefore, we can theoretically
conclude that the designed drugs can inhibit the viral binding to ACE2 receptor.
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Fig. 2 3D and 2D structure of the docking results of ligands 20, 28, 22 and Nafamostat with
Omicron (B.1.1.529) spike glycoprotein



1472 P. Solo and M. A. Doss

Fig. 3 3D and 2D structure of the docking results with ligands 28, 23, 25 and Nafamostat with
Delta (B.1.617.2) spike glycoprotein
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4 Conclusion

The study reports potential inhibitors for the SARS-CoV-2 main protease, through
designing of Imidazole-based drugs and computational analysis. All the designed
drugs were screened for drug-likeness using SWISS-ADME web based server.
Gaussian 09 was used to design the drugs and optimization was performed using
DFT/B3LYP method with 6-31G(d,p) level of theory. All the designed drugs were
docked with the target spike proteins at the receptor binding domain using MOE
09. The docking results identified ligand 28 with good binding affinity for both the
target proteins. The study also reports the active participation of the imidazole in the
binding pockets of all the docked structures.

In silico approach for new drug discovery as potentials inhibitor against the
prevailing contagious SARS CoV-2, can be a great contribution in the search for
antiviral drugs for the virus, as theworld is pushed to its limit with time and resources.
Computational resources and software with user friendly interface are available in
many open sources which can be easily utilized by those interested.

In conclusion the study reports that Imidazole-based drugs are found to bind quite
effectively to the target spike proteins ofDelta andOmicron variant.More Imidazole-
based drugs can be designed in search for more efficient inhibitor for SARS CoV-2.
In general, most heterocyclic-based drugs would display amazing pharmacological
activities and hence, there are huge avenues in heterocycle-based drug designing.
Further in vivo and in vitro analysis can be performed to support the conclusion
made by the study.
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