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Abstract. Graph neural networks (GNNs), as a group of powerful tools
for representation learning on irregular data, have manifested supe-
riority in various downstream tasks. With unstructured texts repre-
sented as concept maps, GNNs can be exploited for tasks like document
retrieval. Intrigued by how can GNNs help document retrieval, we con-
duct an empirical study on a large-scale multi-discipline dataset CORD-
19. Results show that instead of the complex structure-oriented GNNs
such as GINs and GATs, our proposed semantics-oriented graph func-
tions achieve better and more stable performance based on the BM25
retrieved candidates. Our insights in this case study can serve as a
guideline for future work to develop effective GNNs with appropriate
semantics-oriented inductive biases for textual reasoning tasks like doc-
ument retrieval and classification. All code for this case study is available
at https://github.com/HennyJie/GNN-DocRetrieval.

Keywords: Document retrieval · Graph neural networks · Concept
maps · Graph representation learning · Textual reasoning.

1 Introduction

Concept map, which models texts as a graph with words/phrases as vertices
and relations between them as edges, has been studied to improve information
retrieval tasks previously [10,14,46]. Recently, graph neural networks (GNNs)
attract tremendous attention due to their superior power established both in
theory and through experiments [6,12,16,20,32]. Empowered by the structured
document representation of concept maps, it is intriguing to apply powerful
GNNs for tasks like document classification [38] and retrieval [45]. Take Fig. 1 as
an example. Towards the query about “violent crimes in society”, a proper GNN
might be able to highlight query-relevant concept of “crime” and its connection
to “robbery” and “citizen”, thus ranking the document as highly relevant. On
the other hand, for another document about precaution, the GNN can capture
concepts like “n95 mask” and “vaccine”, together with their connections to “pre-
vention”, thus ranking it as not so relevant.
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Fig. 1. An overview of GNN-based document retrieval.

Present work. In this work, we explore how GNNs can help document retrieval
with generated concept maps. The core contributions are three-fold:

• We use constituency parsing to construct semantically rich concept maps
from documents and design quality evaluation for them towards document
retrieval.

• We investigate two types of graph models for document retrieval: the
structure-oriented complex GNNs and our proposed semantics-oriented graph
functions.

• By comparing the retrieval results from different graph models, we provide
insights towards GNN model design for textual retrieval, with the hope to
prompt more discussions on the emerging areas such as IR with GNNs.

2 GNNs for Document Retrieval

2.1 Overview

In this section, we describe the process of GNN-based document retrieval. As is
shown in Fig. 1, concept maps G = {V,E} are first constructed for documents.
Each node vi ∈ V is a concept (usually a word or phrase) in the document,
associated with a frequency fi and an initial feature vector ai from the pretrained
model. The edges in E denote the interactions between concepts. GNNs are then
applied to each individual concept map, where node representation hi ∈ R

d is
updated through neighborhood transformation and aggregation. The graph-level
embedding hG ∈ R

d is summarized over all nodes with a read-out function.
For the training of GNN models, the widely-used triplet loss in retrieval

tasks [22,37,42] is adopted. Given a triplet (Q,Gp, Gn) composed by a relevant
document Gp (denoted as positive) and an irrelevant document Gn (denoted as
negative) to the query Q, the loss function is defined as:

L(Q,Gp, Gn) = max {S(Gn | Q) − S(Gp | Q) + margin, 0} . (1)
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The relevance score S (G | Q) is calculated as hG·hQ

‖hG‖‖hQ‖ , where hG is the learned
graph representation from GNN models and hQ is the query representation
from a pretrained model. In the training process, the embeddings of relevant
documents are pulled towards the query representation, whereas those of the
irrelevant ones are pushed away. For retrieval in the testing phrase, documents
are ranked according to the learned relevance score S(G | Q).

2.2 Concept Maps and Their Generation

Concept map generation, which aims to distill structured information hidden
under unstructured text and represent it with a graph, has been studied exten-
sively in literature [3,39,40,45]. Since entities and events often convey rich
semantics, they are widely used to represent core information of documents
[5,18,21]. However, according to our pilot trials, existing concept map construc-
tion methods based on name entity recognition (NER) or relation extraction
(RE) often suffer from limited nodes and sparse edges. Moreover, these tech-
niques rely on significant amounts of training data and predefined entities and
relation types, which restricts the semantic richness of the generated concept
maps [34].

To increase node/edge coverage, we propose to identify entities and events by
POS-tagging and constituency parsing [23]. Compared to concept maps derived
from NER or RE, our graphs can identify more sufficient phrases as nodes and
connect them with denser edges, since pos-tagging and parsing are robust to
domain shift [26,43]. The identified phrases are filtered via articles removing
and lemmas replacing, and then merged by the same mentions. To capture the
interactions (edges in graphs) among extracted nodes, we follow the common
practice in phrase graph construction [17,27,31] that uses the sliding window
technique to capture node co-occurrence. The window size is selected through
grid search. Our proposed constituency parsing approach for concept map gener-
ation alleviates the limited vocabulary problem of existing NER-based methods,
thus bolstering the semantic richness of the concept maps for retrieval.

2.3 GNN-based Concept Map Representation Learning

Structure-Oriented Complex GNNs. Various GNNs have been proposed
for graph representation learning [12,16,32,36]. The discriminative power of
complex GNNs mainly stems from the 1-WL test for graph isomorphism,
which exhaustively capture possible graph structures so as to differentiate non-
isomorphic graphs [36]. To investigate the effectiveness of structured-oriented
GNNs towards document retrieval, we adopt two state-of-the-art ones, Graph
isomorphism network (GIN) [36] and Graph attention network (GAT) [32], as
representatives.

Semantics-Oriented Permutation-Invariant Graph Functions. The
advantage of complex GNNs in modelling interactions may become insignificant
for semantically important task. In contrast, we propose the following series of
graph functions oriented from semantics perspectives.
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Table 1. The similarity of different concept map pairs.

Pair Type # Pairs NCR (%) NCR+ (%) ECR (%) ECR+ (%)

Pos-Pos 762,084 4.96 19.19 0.60 0.78

Pos-Neg 1,518,617 4.12 11.75 0.39 0.52

(t-score) – (187.041 ) (487.078 ) (83.569 ) (105.034 )

Pos-BM 140,640 3.80 14.98 0.37 0.43

(t-score) – (126.977 ) (108.808 ) (35.870 ) (56.981 )

– N-Pool: independently process each single node vi in the concept map by
multi-layer perceptions and then apply a read-out function to aggregate all
node embeddings ai into the graph embedding hG, i.e.,

hG = READOUT
(
{MLP(ai) | vi ∈ V }

)
. (2)

– E-Pool: for each edge eij = (vi, vj) in the concept map, the edge embedding
is obtained by concatenating the projected node embedding ai and aj on its
two ends to encode first-order interactions, i.e.,

hG = READOUT
(

{cat (MLP(ai),MLP(aj)) | eij ∈ E}
)
. (3)

– RW-Pool: for each sampled random walk pi = (v1, v2, . . . , vm) that encode
higher-order interactions among concepts (m = 2, 3, 4 in our experiments),
the embedding is computed by the sum of all node embeddings on it, i.e.,

hG = READOUT
(
{sum (MLP(a1),MLP(a2), . . . ,MLP(am)) | pi ∈ P}

)
. (4)

All of the three proposed graph functions are easier to train and generalize.
They preserve the message passing mechanism of complex GNNs [11], which is
essentially permutation invariant [15,24,25], meaning that the results of GNNs
are not influenced by the orders of nodes or edges in the graph; while focusing
on the basic semantic units and different level of interactions between them.

3 Experiments

3.1 Experimental Setup

Dataset. We adopt a large scale multi-discipline dataset from the TREC-
COVID1 challenge [29] based on the CORD-192 collection [33]. The raw data
includes a corpus of 192,509 documents from broad research areas, 50 queries
about the pandemic that interest people, and 46,167 query-document relevance
labels.
1 https://ir.nist.gov/covidSubmit/.
2 https://github.com/allenai/cord19.

https://ir.nist.gov/covidSubmit/
https://github.com/allenai/cord19
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Experimental Settings and Metrics. We follow the common two-step prac-
tice for the large-scale document retrieval task [7,19,28]. The initial retrieval is
performed on the whole corpus with full texts through BM25 [30], a traditional
yet widely-used baseline. In the second stage, we further conduct re-ranking on
the top 100 candidates using different graph models. The node features and
query embeddings are initialized with pretrained models from [4,44]. NDCG@20
is adopted as the main evaluation metric for retrieval, which is used for the
competition leader board. Besides NDCG@K, we also provide Precision@K and
Recall@K (K=10, 20 for all metrics).

3.2 Evaluation of Concept Maps

We empirically evaluate the quality of concept maps generated from Sect. 2.2.
The purpose is to validate that information in concept maps can indicate query-
document relevance, and provide additional discriminative signals based on the
initial candidates. Three types of pairs are constructed: a Pos-Pos pair consists
of two documents both relevant to a query; a Pos-Neg pair consists of a relevant
and an irrelevant one; and a Pos-BM pair consists of a relevant one and a top-20
one from BM25. Given a graph pair Gi and Gj , their similarity is calculated
via four measures: the node coincidence rate (NCR) defined as |Vi∩Vj |

|Vi∪Vj | ; NCR+
defined as NCR weighted by the tf-idf score [1] of each node; the edge coincidence
rate (ECR) where an edge is coincident when its two ends are contained in both
graphs; and ECR+ defined as ECR weighted by the tf-idf scores of both ends.

It is shown in Table 1 that Pos-Neg pairs are less similar than Pos-Pos
under all measures, indicating that concept maps can effectively reflect doc-
ument semantics. Moreover, Pos-BM pairs are not close to Pos-Pos and even
further away than Pos-Neg. This is because the labeled “irrelevant” documents
are actually hard negative ones difficult to distinguish. Such results indicate the
potential for improving sketchy candidates with concept maps. Besides, student’s
t-Test [13] is performed, where standard critical values of (Pos-Pos, Pos-Neg)
and (Pos-Pos, Pos-BM) under 95% confidence are 1.6440 and 1.6450, respec-
tively. The calculated t-scores shown in Table 1 strongly support the significance
of differences.

3.3 Retrieval Performance Results

In this study, we focus on the performance improvement of GNN models based
on sketchy candidates. Therefore, two widely-used and simple models, the fore-
mentioned BM25 and Anserini3, are adopted as baselines, instead of the heavier
language models such as BERT-based [8,9,41] and learning to rank (LTR)-based
[2,35] ones. The retrieval performance are shown in Table 2. All the values are
reported as the averaged results of five runs under the best settings.

3 https://git.uwaterloo.ca/jimmylin/covidex-trec-covid-runs/-/tree/master/round5,
whichisrecognizedbythecompetitionorganizersasabaselineresult.

https://git.uwaterloo.ca/jimmylin/covidex-trec-covid-runs/-/tree/master/round5, which is recognized by the competition organizers as a baseline result
https://git.uwaterloo.ca/jimmylin/covidex-trec-covid-runs/-/tree/master/round5, which is recognized by the competition organizers as a baseline result
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Table 2. The retrieval performance results of different models.

.5
Type

.5
Methods

Precision (%) Recall (%) NDCG (%)

k = 10 k = 20 k = 10 k = 20 k = 10 k = 20

Traditional
BM25 55.20 49.00 1.36 2.39 51.37 45.91

Anserini 54.00 49.60 1.22 2.25 47.09 43.82

Structure-Oriented
GIN 35.24 34.36 0.77 1.50 30.59 29.91

GAT 46.48 43.26 1.08 2.00 42.24 39.49

Semantics-Oriented

N-Pool 58.24 52.20 1.38 2.41 53.38 48.80

E-Pool 59.60 53.88 1.40 2.49 56.11 51.16

RW-Pool 59.84 53.92 1.42 2.53 56.19 51.41

For the structure-oriented GIN and GAT, different read-out functions includ-
ing mean, sum, max and a novel proposed tf-idf (i.e., weight the nodes using the
tf-idf scores) are experimented, and tf-idf achieves the best performance. It is
shown that GIN constantly fails to distinguish relevant documents while GAT is
relatively better. However, they both fail to improve the baselines. This perfor-
mance deviation may arise from the major inductive bias on complex structures,
which makes limited contribution to document retrieval and is easily misled
by noises. In contrast, our three proposed semantics-oriented graph functions
yield significant and consistent improvements over both baselines and structure-
oriented GNNs. Notably, E-Pool and RW-Pool improve the document retrieval
from the initial candidates of BM25 by 11.4% and 12.0% on NDCG@20, respec-
tively. Such results demonstrate the potential of designing semantics-oriented
GNNs for textual reasoning tasks such as classification, retrieval, etc.

3.4 Stability and Efficiency

We further examine the stability and efficiency of different models across runs.
As is shown in Fig. 2(a), GIN and GAT are less consistent, indicating the diffi-

(a) Stability comparison (b) Efficiency comparison

Fig. 2. Stability and efficiency comparison of different graph models.
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culty in training over-complex models. The training efficiency in Fig. 2(b) shows
that GIN can hardly improve during training, while GAT fluctuates a lot and suf-
fers from overfitting. In contrast, our proposed semantics-oriented functions per-
form more stable in Fig. 2(a), and improve efficiently during training in Fig. 2(b),
demonstrating their abilities to model the concepts and interactions important
for the retrieval task. Among the three graph functions, E-Pool and RW-Pool are
consistently better than N-Pool, revealing the utility of simple graph structures.
Moreover, RW-Pool converges slower but achieves better and more stable results
in the end, indicating the potential advantage of higher-order interactions.

4 Conclusion

In this paper, we investigate how can GNNs help document retrieval through a
case study. Concept maps with rich semantics are generated from unstructured
texts with constituency parsing. Two types of GNNs, structure-oriented complex
models and our proposed semantics-oriented graph functions are experimented
and the latter achieves consistently better and stable results, demonstrating the
importance of semantic units as well as their simple interactions in GNN design
for textual reasoning tasks like retrieval. In the future, more textual datasets
such as news, journalism and downstream tasks can be included for validation.
Other types of semantics-oriented graph functions can also be designed based
on our permutation-invariant schema, such as graphlet based-pooling.
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32. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

33. Wang, L.L., Lo, K., Chandrasekhar, Y., et al.: CORD-19: the COVID-19 open
research dataset. In: Proceedings of the 1st Workshop on NLP for COVID-19 at
ACL (2020)

34. Wang, X., Yang, C., Guan, R.: A comparative study for biomedical named entity
recognition. Int. J. Mach. Learn. Cybern. 9(3), 373–382 (2015). https://doi.org/
10.1007/s13042-015-0426-6

35. Wu, Q., Burges, C.J.C., Svore, K.M., Gao, J.: Adapting boosting for information
retrieval measures. Inf. Retr. 13, 254–270 (2010)

https://doi.org/10.1007/978-3-030-45442-5_79
https://doi.org/10.1007/978-3-030-45442-5_79
https://doi.org/10.1007/978-3-642-14267-3_14
https://doi.org/10.1007/978-3-642-14267-3_14
http://arxiv.org/abs/1901.04085
https://doi.org/10.1007/s13042-015-0426-6
https://doi.org/10.1007/s13042-015-0426-6


Graph Neural Networks for Document Retrieval 83

36. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

37. Yang, C., et al.: Multisage: empowering GCN with contextualized multi-
embeddings on web-scale multipartite networks. In: KDD, pp. 2434–2443 (2020)

38. Yang, C., Zhang, J., Wang, H., Li, B., Han, J.: Neural concept map generation for
effective document classification with interpretable structured summarization. In:
SIGIR, pp. 1629–1632 (2020)

39. Yang, C., et al.: Relation learning on social networks with multi-modal graph edge
variational autoencoders. In: WSDM, pp. 699–707 (2020)

40. Yang, C., Zhuang, P., Shi, W., Luu, A., Li, P.: Conditional structure generation
through graph variational generative adversarial nets. In: NeurIPS (2019)

41. Yilmaz, Z.A., Wang, S., Yang, W., Zhang, H., Lin, J.: Applying BERT to document
retrieval with birch. In: EMNLP, pp. 19–24 (2019)

42. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: KDD, pp.
974–983 (2018)

43. Yu, J., El-karef, M., Bohnet, B.: Domain adaptation for dependency parsing via
self-training. In: Proceedings of the 14th International Conference on Parsing Tech-
nologies, pp. 1–10 (2015)

44. Zhang, Y., Chen, Q., Yang, Z., Lin, H., Lu, Z.: Biowordvec, improving biomedical
word embeddings with subword information and mesh. Sci. Data 6, 1–9 (2019)

45. Zhang, Y., Zhang, J., Cui, Z., Wu, S., Wang, L.: A graph-based relevance matching
model for ad-hoc retrieval. In: AAAI (2021)

46. Zhang, Z., Wang, L., Xie, X., Pan, H.: A graph based document retrieval method.
In: CSCWD, pp. 426–432 (2018)


	How Can Graph Neural Networks Help Document Retrieval: A Case Study on CORD19 with Concept Map Generation
	1 Introduction
	2 GNNs for Document Retrieval
	2.1 Overview
	2.2 Concept Maps and Their Generation
	2.3 GNN-based Concept Map Representation Learning

	3 Experiments
	3.1 Experimental Setup
	3.2 Evaluation of Concept Maps
	3.3 Retrieval Performance Results
	3.4 Stability and Efficiency

	4 Conclusion
	References




