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Abstract. Information extraction (IE) is a common sub-area of natu-
ral language processing that focuses on identifying structured data from
unstructured data. The community of Information Retrieval (IR) relies
on accurate and high-performance IE to be able to retrieve high quality
results from massive datasets. One example of IE is to identify named
entities in a text, e.g., “Barack Obama served as the president of the
USA”. Here, Barack Obama and USA are named entities of types of
PERSON and LOCATION, respectively. Another example is to identify
sentiment expressed in a text, e.g., “This movie was awesome”. Here,
the sentiment expressed is positive. Finally, identifying various linguis-
tic aspects of a text, e.g., part of speech tags, noun phrases, depen-
dency parses, etc., which can serve as features for additional IE tasks.
This tutorial introduces participants to a) the usage of Python based,
open-source tools that support IE from social media data (mainly Twit-
ter), and b) best practices for ensuring the reproducibility of research.
Participants will learn and practice various semantic and syntactic IE
techniques that are commonly used for analyzing tweets. Additionally,
participants will be familiarized with the landscape of publicly available
tweet data, and methods for collecting and preparing them for analy-
sis. Finally, participants will be trained to use a suite of open source
tools (SAIL for active learning, TwitterNER for named entity recogni-
tion3, and SocialMediaIE for multi task learning), which utilize advanced
machine learning techniques (e.g., deep learning, active learning with
human-in-the-loop, multi-lingual, and multi-task learning) to perform
IE on their own or existing datasets. Participants will also learn how
social context can be integrated in Information Extraction systems to
make them better. The tools introduced in the tutorial will focus on the
three main stages of IE, namely, collection of data (including annota-
tion), data processing and analytics, and visualization of the extracted
information. More details can be found at: https://socialmediaie.github.
io/tutorials/.
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1 Introduction

1.1 Aims and Learning Objectives

In this hands-on tutorial (details and material at: https://socialmediaie.github.
io/tutorials/), we introduce the participants to working with social media data,
which are an example of Digital Social Trace Data (DSTD). The DSTD abstrac-
tion allows us to model social media data with rich information associated with
social media text, such as authors, topics, and time stamps. We introduce the
participants to several Python-based, open-source tools for performing Informa-
tion Extraction (IE) on social media data. Furthermore, the participants will be
familiarized with a catalogue of more than 30 publicly available social media cor-
pora for various IE tasks such as named entity recognition (NER), part of speech
(POS) tagging, chunking, super sense tagging, entity linking, sentiment classifi-
cation, and hate speech identification. We will also show how these approaches
can be expanded to word in a multi-lingual setting. Finally, the participants
will be introduced to the following applications of extracted information: (i)
combining network analysis and text-based signals to rank accounts, and (ii)
correlation between sentiment and user-level attributes in existing corpora. The
tutorial aims to serve the following use cases for social media researchers: (iii)
high accuracy IE on social media text via multi-task and semi-supervised learn-
ing, including the recent transformer-based tools which work across languages,
(iv) rapid annotation of new data for text classification via active human-in-the-
loop learning, (v) temporal visualization of the communication structure in social
media corpora via social communication temporal graph visualization technique,
and (vi) detecting and prioritizing needs during crisis events (e.g., COVID19).
(vii) Furthermore, the participants will be familiarized with a catalogue of more
than 30 publicly available social media corpora for various IE tasks, e.g., named
entity recognition (NER), part of speech (POS) tagging, chunking, super sense
tagging, entity linking, sentiment classification, and hate speech identification.
We propose a full day tutorial session using Python based open-source tools.
This tutorial builds upon our previous tutorials on this topic at ACM Hypertext
2019, IC2S2 2020, WWW 2021.

1.2 Scope and Benefit to the ECIR Community

Information extraction (IE) is a common sub-area of natural language processing
that focuses on identifying structured data from unstructured data. While many
open source tools are available for performing IE on newswire and academic
publication corpora, there is a lack of such tool when dealing with social media
corpora, which tends to exhibit very different linguistic patterns compared to
the other corpora. It has also been found that publicly available tools for IE,
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which are trained on news and academic corpora do not tend to perform very
well on social media corpora. Topics of interest include: (i) Machine learning for
social media IE (ii) Generating annotated text classification data using active
human-in-the-loop learning (iii) Public corpora for social media IE (iv) Open
source tools for social media IE (v) Visualizing social media corpora (vi) Bias in
social media IE systems.

Scholars in Information Retrieval community who work with social media
text can benefit from the recent machine learning advances in information extrac-
tion and retrieval in this domain, especially the knowledge of its difference from
regular newswire text. This tutorial will help them learn state-of-the-art methods
for processing social media text which can help them improve their information
retrieval systems on social media text. They will also learn how social media
text has a social context, which can be included as part of the analysis.

1.3 Presenter Bios

Shubhanshu Mishra , Twitter, Inc. Shubhanshu Mishra is a Machine Learn-
ing Researcher at Twitter. He earned his Ph.D. in Information Sciences from the
University of Illinois at Urbana-Champaign in 2020 His thesis was titled “Infor-
mation extraction from digital social trace data: applications in social media
and scholarly data analysis”. His current work is at the intersection of machine
learning, information extraction, social network analysis, and visualizations. His
research has led to the development of open source tools of open source infor-
mation extraction solutions from large scale social media and scholarly data. He
has finished his Integrated Bachelor’s and Master’s degree in Mathematics and
Computing from the Indian Institute of Technology, Kharagpur in 2012.

Rezvaneh (Shadi) Rezapour , Department of Information Science at Drexel’s
College of Computing and Informatics, USA Shadi is an Assistant Professor in
the Department of Information Science at Drexel’s College of Computing and
Informatics. Her research interests lie at the intersection of Computational Social
Science and Natural Language Processing (NLP). More specifically, she is inter-
ested in bringing computational models and social science theories together,
to analyze texts and better understand and explain real-world behaviors, atti-
tudes, and cultures. Her research goal is to develop “socially-aware” NLP models
that bring social and cultural contexts in analyzing (human) language to better
capture attributes, such as social identities, stances, morals, and power from lan-
guage, and understand real-world communication. Shadi completed her Ph.D.
in Information Sciences at University of Illinois at Urbana-Champaign (UIUC)
where she was advised by Dr. Jana Diesner.

Jana Diesner , The iSchool at University of Illinois Urbana-Champaign, USA
Jana is an Associate Professor at the School of Information Sciences (the iSchool)
at the University of Illinois at Urbana-Champaign, where she leads the Social
Computing Lab. Her research in social computing and human-centered data sci-
ence combines methods from natural language processing, social network analysis
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and machine learning with theories from the social sciences to advance knowledge
and discovery about interaction-based and information-based systems. Jana got
her PhD (2012) in Societal Computing from the School of Computer Science at
Carnegie Mellon University.

2 Tutorial Details

– Duration of the tutorial: 1 day (full day)
– Interaction Style: Hands-on-tutorial with live coding session.
– Target audience: We expect the participants to have familiarity with

python programming and social media platforms like Twitter and Facebook.

Setup and Introduction (1 h) (i) Introducing the differences between social
media data versus newswire and academic data, (ii) Digital Social Trace Data
abstraction for social media data, (iii) Introduction to information extraction
tasks for social media data, e.g., sequence tagging (named entity, part of speech
tagging, chunking, and super-sense tagging), and text classification (sentiment
prediction, sarcasm detection, and abusive content detection).

Applications of information extraction (1 h) (i) Indexing social media cor-
pora in database, (ii) Network construction from text corpora, (iii) Visualizing
temporal trends in social media corpora using social communication temporal
graphs, (iv) Aggregating text-based signals at the user-level, (v) Improving text
classification using user-level attributes, (vi) Analyzing social debate using sen-
timent and political identity signals otherwise, (vii) Detecting and Prioritizing
Needs during Crisis Events (e.g., COVID19), (viii) Mining and Analyzing Public
Opinion Related to COVID-19, and (ix) Detecting COVID-19 Misinformation
in Videos on YouTube.

Collecting and distributing social media data (30 min) (i) Overview on
available annotated tweet datasets, (ii) Respecting API terms and user privacy
considerations for collecting & sharing social media data, (iii) Demo on collecting
data from a few social media APIs, such as Twitter and Reddit.

Break 30 min

Improving IE on social media data via Machine Learning (2 h 30
min) (i) Semi-supervised learning for Twitter NER, (ii) Multi-task learning
for social media IE, (iii) Active learning for annotating social media data for
text classification via SAIL (another version pySAIL to be released soon), (iv)
Finetuning transformer models for monolingual and multi-lingual social media
NLP tasks. (v) Biases in social media NER. (vi) Utilizing Social Context for
improving NLP Models.

Conclusion and future directions (10 min) (i) Open questions in social
media IE, (ii) Tutorial feedback and additional questions.

https://github.com/napsternxg/TwitterNER
https://socialmediaie.github.io
https://github.com/uiuc-ischool-scanr/SAIL
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