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Abstract. E-commerce provides rich multimodal data that is barely
leveraged in practice. The majority of e-commerce search mechanisms
are uni-modal, which are cumbersome and often fail to grasp the cus-
tomer’s needs. For the Ph.D. we conduct research aimed at combining
information across multiple modalities to improve search and recommen-
dations in e-commerce. The research plans are organized along the two
principal lines. First, motivated by the mismatch between a textual and
a visual representation of a given product category, we propose the task
of category-to-image retrieval, i.e., the problem of retrieval of an image
of a category expressed as a textual query. Besides, we propose a model
for the task. The model leverages information from multiple modali-
ties to create product representations. We explore how adding infor-
mation from multiple modalities impacts the model’s performance and
compare our approach with state-of-the-art models. Second, we consider
fine-grained text-image retrieval in e-commerce. We start off by consid-
ering the task in the context of reproducibility. Moreover, we address the
problem of attribute granularity in e-commerce. We select two state-of
the-art (SOTA) models with distinct architectures, a CNN-RNN model
and a Transformer-based model, and consider their performance on var-
ious e-commerce categories as well as on object-centric data from gen-
eral domain. Next, based on the lessons learned from the reproducibility
study, we propose the model for the fine-grained text-image retrieval.

1 Motivation

Multimodal retrieval is an important but understudied problem in e-
commerce [48]. Even though e-commerce products are associated with rich multi-
modal information, research currently focuses mainly on textual and behavioral
signals to support product search and recommendation [1,15,42]. The majority of
prior work in multimodal retrieval for e-commerce focuses on applications in the
fashion domain, such as recommendation of fashion items [34] and cross-modal
fashion retrieval [13,25]. In the more general e-commerce domain, multimodal
retrieval has not been explored that well yet [17,31]. Motivated by the knowl-
edge gap, we lay out two directions for the research agenda: category-to-image
retrieval, and fine-grained text-image retrieval (Fig. 1).
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Fig. 1. Dissertation overview.

Category-to-Image Retrieval. First, we focus on the category information in
e-commerce. Product category trees are a key component of modern e-commerce
as they assist customers when navigating across large product catalogues [16,
24,46,50]. Yet, the ability to retrieve an image for a given product category
remains a challenging task mainly due to noisy category and product data, and
the size and dynamic character of product catalogues [28,48]. Motivated by this
challenge, we introduce the task of retrieving a ranked list of relevant images of
products that belong to a given category, which we call the category-to-image
(CtI) retrieval task. Unlike image classification tasks that operate on a predefined
set of classes, in the CtI retrieval task we want to be able not only to understand
which images belong to a given category but also to generalize towards unseen
categories. Use cases that motivate the CtI retrieval task include (1) the need to
showcase different categories in search and recommendation results [24,46,48];
(2) the task can be used to infer product categories in the cases when product
categorical data is unavailable, noisy, or incomplete [52]; and (3) the design of
cross-categorical promotions and product category landing pages [39].

Fine-Grained Text-Image Retrieval. Second, we address the problem of
fine-grained text-image retrieval. Text-image retrieval is the task of finding simi-
lar items across textual and visual modalities. Successful performance on the task
depends on the domain. In the general domain, where images typically depict
complex scenes of objects in their natural contexts information across modalities
is matched coarsely. Some examples of such datasets include MS COCO [33], and
Flick30k [53]. By contrast, in the e-commerce domain, where there is typically
one object per image, fine-grained matching is more important. Therefore, we
focus on fine-grained text-image retrieval. We define the task as a combination
of two subtasks: 1. text-to-image retrieval : given a noun phrase that describes an
object, retrieve the image that depicts to the object; 2. image-to-text retrieval :
given an image of an object, retrieve the noun phrase that describes an object.

We start off by examining the topic in the context of reproducibility. Repro-
ducibility is one of the major pillars of the scientific method and is of utmost
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importance for Information Retrieval (IR) as a discipline rooted in experimen-
tation [10]. One of the first works that touch upon reproducibility in IR is the
study by Armstrong et al. [2] where the authors conducted a longitudinal anal-
ysis of papers published in proceedings of CIKM and SIGIR between 1998–2008
and discovered that the ad-hoc retrieval was not measurably improving. Later
on, Yang et al. [51] provided a meta-analysis of results reported on the TREC
Robust04 and found out that some of the more recent neural models were out-
performed by strong baselines. Similar discoveries were made in the domain of
recommender systems research [5,6]. Motivated by the findings, we explore the
reproducibility of fine-grained text-image retrieval results. More specifically, we
examine how SOTA models for fine-grained text-image fashion retrieval gener-
alize towards other categories of e-commerce products. After analyzing SOTA
models in the domain, we plan to improve upon them in a subsequent future
work.

2 Related Work

Category-to-Image Retrieval. Early work in image retrieval grouped images
into a restricted set of semantic categories and allowed users to retrieve images
by using category labels as queries [44]. Later work allowed for a wider variety
of queries ranging from natural language [20,49], to attributes [37], to combina-
tions of multiple modalities (e.g., title, description, and tags) [47]. Across these
multimodal image retrieval approaches we find three common components: (1)
an image encoder, (2) a query encoder, and (3) a similarity function to match
the query to images [14,40]. Depending on the focus of the work some compo-
nents might be pre-trained, whereas the others are optimized for a specific task.
In our work, we rely on pre-trained image and text encoders but learn a new
multimodal composite of the query to perform CtI retrieval.

Fine-Grained Text-Image Retrieval. Early approaches to cross-modal map-
ping focused on correlation maximization through canonical correlation analy-
sis [18,19,45]. Later approaches centered around convolutional and recurrent
neural networks [11,22,23,29]. They were further expanded by adding attention
on top of encoders [29,35,38]. More recently, inspired by the success of trans-
formers [8], a line of work centered around creating a universal vision-language
encoder emerged [4,30,32,36]. To address the problem of attribute granularity in
the context of cross-modal retrieval, a line of work proposed to segment images
into fragments [27], use attention mechanisms [26], combine image features across
multiple levels [13], use pre-trained BERT as a backbone [12,54]. Unlike prior
work in this domain that focused on fashion, we focus on the general e-commerce
domain.

3 Research Description and Methodology

The dissertation comprises two parts. Below, we describe every part of the thesis
and elaborate on the methodology.
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Category-to-Image Retrieval. Product categories are used in various con-
texts in e-commerce. However, in practice, during a user’s session, there is often
a mismatch between a textual and a visual representation of a given category.
Motivated by the problem, we introduce the task of category-to-image retrieval
in e-commerce and propose a model for the task.

We use the XMarket dataset recently introduced by Bonab et al. [3] that
contains textual, visual, and attribute information of e-commerce products as
well as a category tree. Following [7,21,43] we use BM25, MPNet, CLIP as
our baselines. To evaluate model performance, we use Precision@K where K =
{1, 5, 10}, mAP@K where K = {5, 10}, and R-precision.

RQ1.1 How do baseline models perform on the CtI retrieval task? Specif-
ically, how do unimodal and bi-modal baseline models perform? How does the
performance differ w.r.t. category granularity?

To answer the question, we feed BM25 corpora that contain textual product
information, i.e., product titles. We use an MPNet in a zero-shot manner. For
all the products in the dataset, we pass the product title through the model.
During the evaluation, we pass a category expressed as textual query through
MPNet and retrieve top-k candidates ranked by cosine similarity w.r.t. the tar-
get category. We compare categories of the top-k retrieved candidates with the
target category. Besides, we use pre-trained CLIP in a zero-shot manner with
a text transformer and a vision transformer (ViT) [9] configuration. We pass
the product image through the image encoder. For evaluation, we pass a cate-
gory through the text encoder and retrieve top-k image candidates ranked by
cosine similarity w.r.t. the target category. We compare categories of the top-k
retrieved image candidates with the target category.

RQ1.2 How does a model, named CLIP-I, that uses product image infor-
mation for building product representations impact the performance on the CtI
retrieval task?

To answer the question, we build product representations by training on e-
commerce data. We investigate how using product image data for building prod-
uct representations impacts performance on the CtI retrieval task. To introduce
visual information, we extend CLIP in two ways: (1) We use ViT from CLIP
as an image encoder. We add a product projection head that takes as an input
product visual information. (2) We use the text encoder from MPNet as cate-
gory encoder; we add a category projection head on top of the category encoder.
We name the resulting model CLIP-I. We train CLIP-I on category-product
pairs from the training set. We only use visual information for building product
representations.

RQ1.3 How does CLIP-IA, which extends CLIP-I with product attribute
information, perform on the CtI retrieval task?

To answer the question, we extend CLIP-I by introducing attribute informa-
tion to the product information encoding pipeline. We add an attribute encoder
through which we obtain a representation of product attributes. We concate-
nate the resulting attribute representation with image representation and pass
the resulting vector to the product projection head. Thus, the resulting product
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representation p is based on both visual and attribute product information. We
name the resulting model CLIP-IA. We train CLIP-IA on category-product pairs
and we use visual and attribute information for building product representation.

RQ1.4 And finally, how does CLIP-ITA, which extends CLIP-IA with prod-
uct text information, perform on the CtI task?

To answer the question, we investigate how extending the product infor-
mation processing pipeline with the textual modality impacts performance on
the CtI retrieval task. We add a title encoder to the product information pro-
cessing pipeline and use it to obtain title representation. We concatenate the
resulting representation with product image and attribute representations. We
pass the resulting vector to the product projection head. The resulting model
is CLIP-ITA. We train and test CLIP-ITA on category-product pairs. We use
visual, attribute, and textual information for building product representations.
The results are to be published in ECIR’22 [16]. The follow-up work is planned
to be published at SIGIR 2023.

Fine-Grained Text-Image Retrieval. The ongoing work is focused on fine-
grained text-image retrieval in the context of reproducibility. For the experi-
ments, we select two SOTA models for fine-grained cross-modal fashion retrieval,
each model with distinctive architecture. One of them is based on Transformer
while another one is CNN-RNN-based. The Transformer-based model is Kaleido-
BERT [54], that extends BERT [8]. Another model is a Multi-level Feature app-
roach (MLF) [13]. Both models claim to deliver SOTA performance by being able
to learn image representations that can better represent fine-grained attributes.
They were evaluated on Fashion-Gen dataset [41] but, to the best of our knowl-
edge, were not compared against each other.

In the work, we aim to answer the following research questions:
RQ2.1 How well Kaleido-BERT and MLF perform on data from an e-

commerce category that is different from Fashion?
RQ2.2 How well both models generalize beyond e-commerce domain? More

specifically, how do they perform on object-centric data from the general domain?
RQ2.3 How Kaleido-BERT and MLF compare to each other w.r.t perfor-

mance?
The results are planned to be published as a paper at SIGIR 2022. The

follow-up work is planned to be published at ECIR 2023.
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