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Abstract. E-commerce provides rich multimodal data that is barely
leveraged in practice. One aspect of this data is a category tree that is
being used in search and recommendation. However, in practice, during
a user’s session there is often a mismatch between a textual and a visual
representation of a given category. Motivated by the problem, we intro-
duce the task of category-to-image retrieval in e-commerce and propose a
model for the task, CLIP-ITA. The model leverages information from mul-
tiple modalities (textual, visual, and attribute modality) to create product
representations. We explore how adding information from multiple modal-
ities (textual, visual, and attribute modality) impacts the model’s perfor-
mance. In particular, we observe that CLIP-ITA significantly outperforms
a comparable model that leverages only the visual modality and a compa-
rable model that leverages the visual and attribute modality.

Keywords: Multimodal retrieval · Category-to-image retrieval ·
E-commerce

1 Introduction

Multimodal retrieval is a major but understudied problem in e-commerce [33].
Even though e-commerce products are associated with rich multi-modal infor-
mation, research currently focuses mainly on textual and behavioral signals
to support product search and recommendation. The majority of prior work
in multimodal retrieval for e-commerce focuses on applications in the fash-
ion domain, such as recommendation of fashion items [21] and cross-modal
fashion retrieval [6,14]. In the more general e-commerce domain, multimodal
retrieval has not been explored that well yet [10,18]. The multimodal problem
on which we focus is motivated by the importance of category information in
e-commerce. Product category trees are a key component of modern e-commerce
as they assist customers when navigating across large and dynamic product cat-
alogues [13,30,36]. Yet, the ability to retrieve an image for a given product
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category remains a challenging task mainly due to noisy category and product
data, and the size and dynamic character of product catalogues [17,33].

The Category-to-Image Retrieval Task. We introduce the problem of
retrieving a ranked list of relevant images of products that belong to a given
category, which we call the category-to-image retrieval task. Unlike image clas-
sification tasks that operate on a predefined set of classes, in the CtI retrieval
task we want to be able not only to understand which images belong to a given
category but also to generalize towards unseen categories. Consider the category
“Home decor.” A CtI retrieval should output a ranked list of k images retrieved
from the collection of images that are relevant to the category, which could be
anything from images of carpets to an image of a clock or an arrangement of dec-
orative vases. Use cases that motivate the CtI retrieval task include (1) the need
to showcase different categories in search and recommendation results [13,30,33];
(2) the task can be used to infer product categories in the cases when product
categorical data is unavailable, noisy, or incomplete [39]; and (3) the design of
cross-categorical promotions and product category landing pages [24].

The CtI retrieval task has several key characteristics:(1) we operate with
categories from non-fixed e-commerce category trees, which range from very
general (such as “Automative” or “Home & Kitchen”) to very specific ones
(such as “Helmet Liners” or “Dehumidifiers”). The category tree is not fixed,
therefore, we should be able to generalize towards unseen categories; and (2)
product information is highly multimodal in nature; apart from category data,
products may come with textual, visual, and attribute information.

A Model for CtI Retrieval. To address the CtI retrieval task, we propose a
model that leverages image, text, and attribute information, CLIP-ITA. CLIP-
ITA extends upon Contrastive Language-Image Pre-Training (CLIP) [26]. CLIP-
ITA extends CLIP with the ability to represent attribute information. Hence,
CLIP-ITA is able to use textual, visual, and attribute information for product
representation. We compare the performance of CLIP-ITA with several baselines
such as unimodal BM25, bimodal zero-shot CLIP, and MPNet [29]. For our
experiments, we use the XMarket dataset that contains textual, visual, and
attribute information of e-commerce products [2].

Research Questions and Contributions. We address the following research
questions: (RQ1) How do baseline models perform on the CtI retrieval task?
Specifically, how do unimodal and bi-modal baseline models perform? How does
the performance differ w.r.t. category granularity? (RQ2) How does a model,
named CLIP-I, that uses product image information for building product repre-
sentations impact the performance on the CtI retrieval task? (RQ3) How does
CLIP-IA, which extends CLIP-I with product attribute information, perform on
the CtI retrieval task? (RQ4) And finally, how does CLIP-ITA, which extends
CLIP-IA with product text information, perform on the CtI task?

Our main contributions are: (1) We introduce the novel task of CtI retrieval
and motivate it in terms of e-commerce applications. (2) We propose CLIP-ITA,
the first model specifically designed for this task. CLIP-ITA leverages multimodal
product data such as textual, visual, and attribute data. On average, CLIP-ITA
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outperforms CLIP-I on all categories by 217% and CLIP-IA by 269%. We share
our code and experimental settings to facilitate reproducibility of our results.1

2 Related Work

Learning Multimodal Embeddings. Contrastive pre-training has been shown
to be highly effective in learning joined embeddings across modalities [26]. By pre-
dicting the correct pairing of image-text tuples in a batch, the CLIP model can
learn strong text and image encoders that project to joint space. This approach
to learning multimodal embeddings offers key advantages over approaches that
use manually assigned labels as supervision: (1) the training data can be collected
without manual annotation; real-world data in which image-text pairs occur can
be used; (2) models trained in this manner learn more general representations that
allow for zero-shot prediction. These advantages are appealing for e-commerce, as
most public multimodal e-commerce datasets primarily focus on fashion only [2];
being able to train from real-world data avoids the need for costly data annotation.

We build on CLIP by extending it to category-product pairs, taking advan-
tage of its ability to perform zero-shot retrieval for a variety semantic concepts.

Multimodal Image Retrieval. Early work in image retrieval grouped images
into a restricted set of semantic categories and allowed users to retrieve images
by using category labels as queries [28]. Later work allowed for a wider variety
of queries ranging from natural language [11,34], to attributes [23], to combina-
tions of multiple modalities (e.g., title, description, and tags) [32]. Across these
multimodal image retrieval approaches we find three common components: (1)
an image encoder, (2) a query encoder, and (3) a similarity function to match
the query to images [7,26]. Depending on the focus of the work some components
might be pre-trained, whereas the others are optimized for a specific task.

In our work, we rely on pre-trained image and text encoders but learn a new
multimodal composite of the query to perform CtI retrieval.

Multimodal Retrieval in E-Commerce. Prior work on multimodal retrieval
in e-commerce has been mainly focused on cross-modal retrieval for fashion [6,16,
42]. Other related examples include outfit recommendation [15,19,21] Some prior
work on interpretability for fashion product retrieval proposes to leverage multi-
modal signals to improve explainability of latent features [20,38]. Tautkute et al.
[31] propose a multimodal search engine for fashion items and furniture. When it
comes to combining signals for improving product retrieval, Yim et al. [40] propose
to combine product images, titles, categories, and descriptions to improve prod-
uct search, Yamaura et al. [37] propose an algorithm that leverages multimodal
product information for predicting a resale price of a second-hand product.

Unlike prior work on multimodal retrieval in e-commerce that mainly focuses
on fashion data, we focus on creating multimodal product representations for the
general e-commerce domain.

1 https://github.com/mariyahendriksen/ecir2022 category to image retrieval.

https://github.com/mariyahendriksen/ecir2022_category_to_image_retrieval
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Fig. 1. Overview of CLIP-ITA. The category encoding pipeline is in purple; the cat-
egory information pipeline in green; fsim is a cosine similarity function. (Color figure
online)

3 Approach

Task Definition. We follow the same notation as in [41]. The input dataset
can be presented as category-product pairs (xc,xp), where xc represents a prod-
uct category, and xp represents information about product that belong to the
category xc. The product category xc is taken from the category tree T and is
represented as a category name. The product information comprises titles xt,
images xi, and attributes xi, i.e., xp = {xi,xt,xa}.

For the CtI retrieval task, we use the target category name xc as a query and
we aim to refturn a ranked list of top-k images that belong to the category xc.

CLIP-ITA. Figure 1 provides a high-level view of CLIP-ITA. CLIP-ITA
projects category xc and product information xp into a d-dimensional multi-
modal space where the resulting vectors are respectively c and p. The category
and product information is processed by a category encoding pipeline and prod-
uct information encoding pipeline. The core components of CLIP-ITA are the
encoding and projection modules. The model consists out of four encoders: a
category encoder, an image encoder, a title encoder, and an attribute encoder.
Besides, CLIP-ITA comprises two non-linear projection heads: the category pro-
jection head and the multimodal projection head.

While several components of CLIP-ITA are based on CLIP [26], CLIP-ITA
differs from CLIP in three important ways: (1) unlike CLIP, which operates on
two encoders (textual and visual), CLIP-ITA extends CLIP towards a category
encoder, image encoder, textual encoder, and attribute encoder; (2) CLIP-ITA
features two projection heads, one for the category encoding pipeline, and one
for the product information encoding pipeline; and (3) while CLIP is trained on
text-image pairs, CLIP-ITA is trained on category-product pairs, where product
representation is multimodal.

Category Encoding Pipeline. The category encoder (fc) takes as input cat-
egory name xc and returns its representation hc. More specifically, we pass the
category name xc through the category encoder fc:

hc = fc(xc). (1)

To obtain this representation, we use pre-trained MPNet model [29]. After pass-
ing category information through the category encoder, we feed it to the category
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projection head. The category projection head (gc) takes as input a query repre-
sentation hc and projects it into d-dimensional multi-modal space:

c = gc(hc), (2)

where c ∈ R
d.

Product Encoding Pipeline. The product information encoding pipeline rep-
resents three encoders, one for every modality, and a product projection head.
The image encoder (fi) takes as input a product image xi aligned with the
category xc. Similarly to the category processing pipeline, we pass the product
image xi through the image encoder:

hi = fi(xi). (3)

To obtain the image representation hi, we use pre-trained Vision Transformer
from CLIP model. The title encoder (ft) takes a product title xt as input and
returns a title representation ht:

ht = ft(xt). (4)

Similarly to the category encoder fc, we use pre-trained MPNet to obtain the
title representation ht. The attribute encoder (fa) is a network that takes as input
a set of attributes xa = {a1, a2, . . . , an} and returns their joint representation:

ha = fa(xa) =
1
n

n∑

i=1

fa(xai). (5)

Similarly to the category encoder fc and title encoder ft, we obtain represen-
tation of each attribute with the pre-trained MPNet model. After obtaining
title, image and attribute representations, we pass the representations into the
product projection head. The product projection head (gp) takes as input a con-
catenation of the image representation hi, title representation ht, and attribute
representation ha and projects the resulting vector hp = concat(hi,ht,ha) into
multimodal space:

p = gp(hp) = gp(concat(hi,ht,ha)), (6)

where p ∈ R
d.

Loss Function. We train CLIP-ITA using bidirectional contrastive loss [41].
The loss is a weighted combination of two losses: a category-to-product con-
trastive loss and a product-to-category contrastive loss. In both cases the loss
is the InfoNCE loss [25]. Unlike prior work that focuses on a contrastive loss
between inputs of the same modality [3,8] and on corresponding inputs of two
modalities [41], we use the loss to work with inputs from textual modality (cate-
gory representation) vs. a combination of multiple modalities (product represen-
tation). We train CLIP-ITA on batches of category-product pairs (xc,xp) with
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batch size β. For the j-th pair in the batch, the category-to-product contrastive
loss is computed as follows:

�
(c→p)
j = − log

exp(fsim(cj ,pj)/τ)
∑β

k=1 exp(fsim(cj ,pk)/τ)
, (7)

where fsim(ci,pi) is the cosine similarity, and τ ∈ R
+ is a temperature param-

eter. Similarly, the product-to-category loss is computed as follows:

�
(p→c)
j = − log

exp(fsim(pj , cj)/τ)
∑β

k=1 exp(fsim(pj , ck)/τ)
. (8)

The resulting contrastive loss is a combination of the two above-mentioned losses:

L =
1
β

β∑

j=1

(
λ�

(p→c)
j + (1 − λ)�(c→p)

j

)
, (9)

where β represents the batch size and λ ∈ [0, 1] is a scalar weight.

4 Experimental Setup

Dataset. We use the XMarket dataset recently introduced by Bonab et al. [2]
that contains textual, visual, and attribute information of e-commerce products
as well as a category tree. For our experiments, we select 38,921 products from
the US market. Category information is represented as a category tree and com-
prises 5,471 unique categories across nine levels. Level one is the most general
category level, level nine is the most specific level. Every product belongs to a
subtree of categories t ∈ T . In every subtree t, each parent category has only
one associated child category. The average subtree depth is 4.63 (minimum: 2,
maximum: 9). Because every product belongs to a subtree of categories, the
dataset contains 180,094 product-category pairs in total. We use product titles
as textual information and one image per product as visual information. The
attribute information comprises 228,368 attributes, with 157,049 unique. On
average, every product has 5.87 attributes (minimum: 1, maximum: 24).

Evaluation Method. To investigate how model performance changes w.r.t.
category granularity, for every product in the dataset, xp, and the corresponding
subtree of categories to which the product belongs, t, we train and evaluate the
model performance in three settings: (1) all categories, where we randomly select
one category from the subtree t; (2) most general category, where we use only
the most general category of the subtree t, i.e., the root; and (3) most specific
category, where we use the most specific category of the subtree t. In total, there
are 5,471 categories in all categories setup, 34 categories in the most general
category, and 4,100 in the most specific category setup. We evaluate every model
on category-product pairs (xc,xp) from the test set. We encode each category
and a candidate product data by passing them through category encoding and
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product information encoding pipelines. For every category xc we retrieve the
top-k candidates ranked by cosine similarity w.r.t. the target category xc.

Metrics. To evaluate model performance, we use Precision@K where K =
{1, 5, 10}, mAP@K where K = {5, 10}, and R-precision.

Baselines. Following [4,27,35] we use BM25, MPNet, CLIP as our baselines.

Four Experiments. We run four experiments, corresponding to our research
questions as listed at the end of Sect. 1. In Experiment 1 we evaluate the base-
lines on the CtI retrieval task (RQ1). We feed BM25 corpora that contain textual
product information, i.e., product titles. We use MPNet in a zero-shot manner.
For all the products in the dataset, we pass the product title xt through the
model. During the evaluation, we pass a category xc expressed as textual query
through MPNet and retrieve top-k candidates ranked by cosine similarity w.r.t.
the target category xc. We compare categories of the top-k retrieved candidates
with the target category xc. Besides, we use pre-trained CLIP in a zero-shot
manner with a Text Transformer and a Vision Transformer (ViT) [5] an config-
uration. We pass the product images xi through the image encoder. For evalu-
ation, we pass a category xc through the text encoder and retrieve top-k image
candidates ranked by cosine similarity w.r.t. the target category xc. We compare
categories of the top-k retrieved images with the target category xc.

In Experiment 2 we evaluate image-based product representations (RQ2).
After obtaining results with CLIP in a zero-shot setting, we build product rep-
resentations by training on e-commerce data. First, we investigate how using
product image data for building product representations impacts performance
on the CtI retrieval task. To introduce visual information, we extend CLIP in two
ways: (1) We use ViT from CLIP as image encoder fi. We add product projection
head gp that takes as an input product visual information xi ∈ xp. (2) We use
the text encoder from MPNet as category encoder fc; we add a category projec-
tion head gc on top of category encoder fc thereby completing category encoding
pipeline (see Fig. 1). We name the resulting model CLIP-I. We train CLIP-I on
category-product pairs (xc,xp) from the training set. Note that xp = {xi}, i.e.,
we only use visual information for building product representations.

In Experiment 3, we evaluate image- and attribute-based product represen-
tations (RQ3). We extend CLIP-I by introducing attribute information to the
product information encoding pipeline. We add an attribute encoder fa through
which we obtain a representation of product attributes, ha. We concatenate the
resulting attribute representation with image representation hp = concat(hi,ha)
and pass the resulting vector to the product projection head gp. Thus, the result-
ing product representation p is based on both visual and attribute product infor-
mation. We name the resulting model CLIP-IA. We train CLIP-IA on category-
product pairs (xc,xp) where xp = {xi,xa}, i.e., we use visual and attribute
information for building product representation.

In Experiment 4, we evaluate image- attribute-, and title-based product repre-
sentations (RQ4). We investigate how extending the product information process-
ing pipeline with the textual modality impacts performance on the CtI retrieval
task. We add title encoder ft to the product information processing pipeline and
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Table 1. Results of Experiments 1–4. The best performance is highligthed in bold.

Model P@1 P@5 P@10 MAP@5 MAP@10 R-precision

All categories (5,471)

BM25 [12] 0.01 0.01 0.01 0.01 0.01 0.01

CLIP [26] 0.01 0.02 0.02 0.03 0.04 0.02

MPNet [29] 0.01 0.06 0.06 0.07 0.09 0.05

CLIP-I (Ours) 3.3 3.8 3.79 6.81 7.25 3.67

CLIP-IA (Ours) 2.5 3.34 3.29 5.95 6.24 3.27

CLIP-ITA (Ours) 9.9 13.27 13.43 20.3 20.53 13.42

Most general category (34)

BM25 [12] 2.94 4.71 4.71 8.33 8.28 4.48

CLIP [26] 11.76 12.35 11.76 16.12 15.18 9.47

MPNet [29] 14.70 15.8 15.01 18.44 18.78 9.35

CLIP-I (Ours) 17.85 17.14 16.78 19.88 20.14 13.02

CLIP-IA (Ours) 21.42 21.91 22.78 25.59 26.29 20.74

CLIP-ITA (Ours) 35.71 30.95 30.95 35.51 34.28 25.79

Most specific category (4,100)

BM25 [12] 0.02 0.02 0.01 0.01 0.01 0.01

CLIP [26] 11.92 9.81 9.23 15.12 14.95 8.14

MPNet [29] 33.36 28.56 26.93 37.43 36.77 25.29

CLIP-I (Ours) 14.06 12.11 11.53 18.24 17.9 11.22

CLIP-IA (Ours) 35.3 30.21 29.32 39.93 39.27 28.86

CLIP-ITA (Ours) 45.85 41.04 40.02 50.04 49.87 39.69

use it to obtain title representationht.We concatenate the resulting representation
with product image and attribute representations hp = concat(hi,ht,ha). We
pass the resulting vector to the product projection head gp. The resulting model is
CLIP-ITA. We train and test CLIP-ITA on category-product pairs (xc,xp) where
xp = {xi,xa,xt}, i.e., we use visual, attribute, and textual information for build-
ing product representations.

Implementation Details. We train every model for 30 epochs, with a batch
size β = 8 for most general categories, β = 128—for most specific categories
and all categories. For loss function, we set τ = 1, λ = 0.5. We implement
every projection head as non-linear MLPs with two hidden layers, GELU non-
linearities [9] and layer normalization [1]. We optimize both heads with the
AdamW optimizer [22].
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5 Experimental Results

Experiment 1: Baselines. Following RQ1, we start by investigating how do
baselines perform on CtI retrieval task. Besides, we investigate how does the
performance on the task differs between the unimodal and the bimodal approach.

The results are shown in Table 1. When evaluating on all categories, all the
baselines perform poorly. For the most general category setting, MPNet out-
performs CLIP on all metrics except R-precision. The most prominent gain is
for Precision@10 where MPNet outperforms CLIP by 28%. CLIP outperforms
BM25 on all metrics. For the most specific category setting, MPNet performance
is the highest, BM25—the lowest. In particular, MPNet outperforms CLIP by
211% in Precision@10. Overall, MPNet outperforms CLIP and both models sig-
nificantly outperforms BM25 for both most general and most specific categories.
However, when evaluation is done on all categories, the performance of all models
is comparable. As an answer to RQ1, the results suggest that using information
from multiple modalities is beneficial for performance on the task.

Experiment 2: Image-Based Product Representations. To address RQ2,
we compare the performance of CLIP-I with CLIP and MPNet, the best-
performing baseline. Table 1, shows the experimental results for Experiment 2.
The biggest performance gains are obtained in “all categories” setting. However,
there, the performance of the baselines was very poor. For the most general cat-
egories, CLIP-I outperforms both CLIP and MPNet. For CLIP-I vs. CLIP, we
observe the biggest increase of 51% for Precision@1, for CLIP-I vs. MPNet—39%
in R-precision. In the case of the most specific categories, CLIP-I outperforms
CLIP but loses to MPNet. Overall, CLIP-I outperforms CLIP in all three set-
tings and outperforms MPNet except the most specific categories. Therefore,
we answer RQ2 as follows: the results suggest that extension of CLIP by the
introduction of product image data for building product representations has a
positive impact on performance on CtI retrieval task.

Experiment 3: Image- and Attribute-Based Product Representations.
To answer RQ3, we compare the performance of CLIP-IA with CLIP-I and the
baselines. The results are shown in Table 1. When evaluated on all categories,
CLIP-IA performs worse than CLIP-I but outperforms MPNet. In particular,
CLIP-I obtains the biggest gain relative of 32% on Precision@1 and the lowest
gain of 12% on R-precision. For the most general category, CLIP-IA outperforms
CLIP-I and MPNet on all metrics. More specifically, we observe the biggest gain
of 122% on R-precision over MPNet and the biggest gain of 59% on R-precision
for CLIP-I. Similarly, for the most specific category, CLIP-IA outperforms both
CLIP-I and MPNet. We observe the biggest relative gain of 138% over CLIP-I.
The results suggest that further extension of CLIP by the introduction of the
product image and attribute data for building product representations has a
positive impact on performance on CtI retrieval task, especially when evaluated
on most specific categories. Therefore, we answer RQ4 positively.

Experiment 4: Image-, Attribute-, and Title-Based Product Represen-
tations. We compare CLIP-ITA with both CLIP-IA, CLIP-I, and the baselines.
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Table 2. Erroneous CLIP-ITA prediction counts for “same tree” vs. “ different tree”
predictions per evaluation type.

Same tree Different tree

All categories 1,655 639

The most general category 2 21

The most specific category 127 1,011

Total 1,786 1,671

The results are shown in Table 1. In general, CLIP-ITA outperforms CLIP-I and
CLIP-IA and the baselines in all settings. When evaluated on all categories, the
maximum relative increase of CLIP-ITA over CLIP-I is 265% in R-precision, the
minimum relative increase is 183% in mAP@10. The biggest relative increase
of CLIP-ITA performance over CLIP-IA is 310% in Precision@1, the smallest
relative increase is 229% in mAP@10. For the most general categories, CLIP-
ITA outperforms CLIP-I by 82% and CLIP-IA by 38%. For most specific cat-
egories, we observe the biggest increase of CLIP-ITA over CLIP-I of 254% in
R-precision and the smallest relative increase of 172% on mAP@5. At the same
time, the biggest relative increase of CLIP-ITA over CLIP-IA is a 38% increase
in R-precision and the smallest relative increase is a 27% increase in mAP@5.
Overall, CLIP-ITA wins in all three settings. Hence, we answer RQ4 positively.

6 Error Analysis

Distance Between Predicted and Target Categories. We examine the per-
formance of CLIP-ITA by looking at the pairs of the ground-truth and predicted
categories (c, cp) in cases when the model failed to predict the correct category,
i.e., c �= cp. This allows us to quantify how far off the incorrect predictions lie
w.r.t. the category tree hierarchy. First, we examine in how many cases target
category c and predicted category cp belong to the same most general category,
i.e., belong to the same category tree; see Table 2. In the case of most general
categories, the majority of incorrectly predicted categories belong to a tree dif-
ferent from the target category tree. For the most specific categories, about 11%
of predicted categories belong to the category tree of the target category. How-
ever, when evaluation is done on all categories, 72% of incorrectly predicted cases
belong to the same tree as a target category.

Next, we turn to the category-predicted category pairs (c, cp) where the incor-
rectly predicted category cp belongs to the same tree as target category c. We com-
pute the distance d between a category used as a query c and a predicted cat-
egory cp. We compute the distance between target category c and a top-1 pre-
dicted category cp as the difference between their respective depths d(c, cp) =
depth(cp) − depth(c). The distance d is positive if the depth of the predicted cate-
gory is bigger than the depth of the target category, depth(cp) > depth(c), i.e., the
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(a) Most specific categories (b) All categories, d < 0 (c) All categories, d > 0

Fig. 2. Error analysis for CLIP-ITA. Distance between target category c and a pre-
dicted category cp when c and cp are in the same tree.

predicted category is more specific than the target category. The setup is mirrored
for negative distances. See Fig. 2. We do not plot the results for the most general
category because for this setting there are only two cases when target category c
and a predicted category cp were in the same tree. In both cases, predicted cat-
egory cp was more general than target category c with distance d(c, pc) = 2. In
cases when target category c was sampled from the most specific categories, the
wrongly predicted category cp belonging to the same tree was always more spe-
cific than the target category c with the maximum absolute distance between c
and cp, |d(c, cp)| = 4. In 68% of the cases the predicted category was one level
above the target category, for 21% d(c, cp) = −2, for 7% d(c, cp) = −3, and for 5%
d(c, cp) = −4. For the setting with all categories, in 92% of the cases, the predicted
category cp was more specific than the target category c; for 8% the predicted cat-
egory was more general.

Overall, for the most general category and the most specific category, the
majority of incorrectly predicted categories are located in a category tree differ-
ent from the one where the target category was located. For the “all categories”
setting, it is the other way around. When it comes to the cases when incorrectly
predicted categories are in the same tree as a target category, the majority of
incorrect predictions are 1 level more general when the target category is sampled
from the most specific categories. For the “all categories” setting, the majority of
incorrect predictions belonging to the same tree as the target category were more
specific than the target category. Our analysis suggests that efforts to improve
the performance of CLIP-ITA should focus on minimizing the (tree-based) dis-
tance between the target and predicted category in a category tree. This could
be incorporated as a suitable extension of the loss function.

Performance on Seen vs. Unseen Categories. Next, we investigate how
well CLIP-ITA generalizes to unseen categories. We split the evaluation results
into two groups based on whether the category used as a query was seen during
training or not; see Table 3. For the most general categories, CLIP-ITA is unable
to correctly retrieve an image of the product of the category that was not seen
during training at all. For the most specific categories, CLIP-ITA performs better
on seen categories than on unseen categories. We observe the biggest relative per-
formance increase of 85% in mAP@10 and the smallest relative increase of 57%
in R-precision. When evaluating on all categories, CLIP-ITA performs on unseen
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Table 3. CLIP-ITA performance on seen vs. unseen categories.

Model P@1 P@5 P@10 mAP@5 mAP@10 R-precision

All categories (5,471)

CLIP-ITA (unseen cat.) 13.3 18.56 15.55 19.7 19.65 18.52

CLIP-ITA (seen cat.) 10.48 13.95 14.08 21.65 21.65 14.07

Most general category (34)

CLIP-ITA (unseen cat.) 0.0 0.0 0.0 0.0 0.0 0.0

CLIP-ITA (seen cat.) 19.23 20.01 17.31 20.41 20.01 15.73

Most specific category (4,100)

CLIP-ITA (unseen cat.) 27.27 26.44 26.44 27.92 27.92 26.45

CLIP-ITA (seen cat.) 47.83 43.09 42.14 52.41 51.89 41.58

categories better when evaluated on Precision@k (27% higher in Precision@1,
33% higher in Precision@5, 10% increase in Precision@10) and R-precision (rel-
ative increase of 32%). Performance on seen categories is better in terms of
mAP@k (10% increase for both mAP@5 and mAP@10).

Overall, for the most general and most specific categories, the model performs
much better on categories seen during training. For “all categories” setting,
however, CLIP-ITA’s performance on unseen categories is better.

7 Conclusion

We introduced the task of category-to-image retrieval and motivated its impor-
tance in the e-commerce scenario. In the CtI retrieval task, we aim to retrieve
an image of a product that belongs to the target category. We proposed a model
specifically designed for this task, CLIP-ITA. CLIP-ITA extends CLIP, one of
the best performing text-image retrieval models. CLIP-ITA leverages multimodal
product data such as textual, visual, and attribute data to build product repre-
sentations. In our experiments, we contrasted and evaluated different combina-
tions of signals from modalities, using three settings: on all categories, the most
general, and the most specific categories.

We found that combining information from multiple modalities to build prod-
uct representation produces the best results on the CtI retrieval task. CLIP-ITA
gives the best performance both on all categories and on the most specific cat-
egories. On the most general categories, CLIP-I, a model where product repre-
sentation is based on image only, works slightly better. CLIP-I performs worse
on the most specific categories and across all categories. For identification of
the most general categories, visual information is more relevant. Besides, CLIP-
ITA is able to generalize to unseen categories except in the case of most general
categories. However, the performance on unseen categories is lower than the per-
formance on seen categories. Even though our work is focused on the e-commerce
domain, the findings can be useful for other areas, e.g., digital humanities.
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Limitations of our work are due to type of data in the e-commerce domain.
In e-commerce, there is typically one object per image and the background is
homogeneous, textual information is lengthy and noisy; in the general domain,
there is typically more than one object per image, image captions are more
informative and shorter. Future work directions can focus on improving the
model architecture. It would be interesting to incorporate attention mechanisms
into the attribute encoder and explore how it influences performance. Another
interesting direction for future work is to evaluate CLIP-ITA on other datasets
outside of the e-commerce domain. Future work can also focus on minimizing
the distance between the target and predicted category in the category tree.
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