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Preface

The 44th European Conference on Information Retrieval (ECIR 2022) was held in
Stavanger, Norway, during April 10–14, 2022, and brought together hundreds of
researchers from Europe and abroad. The conference was organized by the University
of Stavanger, in cooperation with the British Computer Society’s Information Retrieval
Specialist Group (BCS IRSG).

These proceedings contain the papers related to the presentations, workshops, and
tutorials given during the conference. This year’s ECIR program boasted a variety of
novel work from contributors from all around the world. In total, 395 papers from
authors in 53 countries were submitted to the different tracks.

The final program included 35 full papers (20% acceptance rate), 29 short papers
(22% acceptance rate), 12 demonstration papers (55% acceptance rate), 11 repro-
ducibility papers (61% acceptance rate), 12 doctoral consortium papers (71% accep-
tance rate), and 13 invited CLEF papers. All submissions were peer-reviewed by at
least three international Program Committee members to ensure that only submissions
of the highest relevance and quality were included in the final program. The acceptance
decisions were further informed by discussions among the reviewers for each submitted
paper, led by a senior Program Committee member.

The accepted papers cover the state of the art in information retrieval: advances in
ranking models, applications of entities and knowledge graphs, evaluation, multimodal
retrieval, recommender systems, query understanding, user simulation studies, etc. As
in previous years, the ECIR 2022 program contained a high proportion of papers with
students as first authors, as well as papers from a variety of universities, research
institutes, and commercial organizations.

In addition to the papers, the program also included three keynotes, four tutorials,
five workshops, a doctoral consortium, the presentation of selected papers from the
2021 issues of the Information Retrieval Journal, and an industry day. Keynote talks
were given by Isabelle Augenstein (University of Copenhagen), Peter Flach (University
of Bristol), and this year’s BCS IRSG Karen Spärck Jones Award winner, Ivan Vulić
(University of Cambridge & PolyAI). The tutorials covered a range of topics including
high recall retrieval, incrementally testing for online advertising, information extraction
from social media, and keyphrase identification, while the workshops brought together
participants to discuss algorithmic bias in search and recommendation (BIAS), bib-
liometrics (BIR), online misinformation (ROMCIR), narrative extraction (Text2Story),
and technology-assisted review systems (ALTARS).

The success of ECIR 2022 would not have been possible without all the help from
the team of volunteers and reviewers. We wish to thank all the reviewers and
meta-reviewers who helped to ensure the high quality of the program. We also wish to
thank the reproducibility chairs: Faegheh Hasibi and Carsten Eickhoff; the demo chairs:
Theodora Tsikrika and Udo Kruschwitz; the workshop chairs: Lucie Flek and Javier
Parapar; the tutorial chairs: Nazli Goharian and Shuo Zhang; the industry chairs: Jiyin



He and Marcel Worring; the doctoral consortium chairs: Asia Biega and Alistair
Moffat; and the awards chair: Maarten de Rijke. We would like to thank our local
administration chair, Russel Wolff, along with all the student volunteers who helped to
create an excellent online and offline experience for participants and attendees.

ECIR 2022 was sponsored by Amazon, Bloomberg, Cobrainer, Elsevier, Google,
the L3S Research Center, MediaFutures, the Norwegian University of Science and
Technology, NorwAI, Schibsted, SIGIR, Signal AI, Spotify, Springer, Textkernel,
Thomson Reuters, the University of Stavanger, Vespa AI, and Wayfair. We thank them
all for their support.

Finally, we wish to thank all the authors and contributors to the conference.

April 2022 Matthias Hagen
Suzan Verberne

Craig Macdonald
Christin Seifert
Krisztian Balog
Kjetil Nørvåg
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Supercalifragilisticexpialidocious: Why
Using the “Right” Readability Formula

in Children’s Web Search Matters

Garrett Allen1(B) , Ashlee Milton3 , Katherine Landau Wright2 ,
Jerry Alan Fails1 , Casey Kennington1 , and Maria Soledad Pera1
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Abstract. Readability is a core component of information retrieval (IR)
tools as the complexity of a resource directly affects its relevance: a resource
is only of use if the user can comprehend it. Even so, the link between
readability and IR is often overlooked. As a step towards advancing knowl-
edge on the influence of readability on IR, we focus on Web search for chil-
dren. We explore how traditional formulas–which are simple, efficient, and
portable–fare when applied to estimating the readability of Web resources
for children written in English. We then present a formula well-suited for
readability estimation of child-friendly Web resources. Lastly, we empir-
ically show that readability can sway children’s information access. Out-
comes from this work reveal that: (i) for Web resources targeting children,
a simple formula suffices as long as it considers contemporary terminology
and audience requirements, and (ii) instead of turning to Flesch-Kincaid–
a popular formula–the use of the “right” formula can shape Web search
tools to best serve children. The work we present herein builds on three pil-
lars: Audience, Application, and Expertise. It serves as a blueprint to place
readability estimation methods that best apply to and inform IR applica-
tions serving varied audiences.

Keywords: readability · web search · information retrieval · relevance

1 Introduction

Readability, or “the overall effect of language usage and composition on readers’
ability to easily and quickly comprehend the document” [58], has a rich history
of research surrounding its methods of estimation. These methods range from
traditional formulas to advanced lexical and semantic models [16,31,58]. Tradi-
tional formulas, based on shallow features and developed using highly-curated
printed materials like novels and journal articles [31], are routinely applied in
real-world environments [15,26]. They target varied audience groups [43,71],
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languages [35,39,72], and content domains [75]. State-of-the-art counterparts
leverage complex models [16,37,62] based on feature engineering and/or neural-
network architectures. They can also adopt a featureless design approach [55,62].
Yet, how non-traditional models estimate readability is not intuitively under-
stood, nor are these models as easy to deploy as the traditional formulas.

Readability plays a prominent role in Information Retrieval (IR) for children.
In the literature focused on studying and facilitating information access for chil-
dren, readability is strongly intertwined with the concept of relevance. Children
must be able to read and understand resource content for it to be deemed rele-
vant, i.e., children must comprehend the text presented to them to extract infor-
mation that satisfies their needs [10,56,68]. The relationship between relevance
and readability is discernible in the design of search and recommendation tools
that explicitly target children, such as EmSe [32], Read-X [61], and Rabbit [66].
This association is not limited to informing algorithm design but also serves as a
perspective for exploratory studies. For instance, a recent study uses readability
as a performance measure when inspecting how Web search engines respond to
children’s queries in the classroom [14]. Bilal et al. [17,18] rely on readability
to examine search result snippets generated by commercial search engines, i.e.,
Google or Bing, for children’s queries. These are meaningful explorations in view
of works showing that materials retrieved in response to Web search tasks are
inaccessible to many users [28,83]. In general, top-ranked Web pages retrieved
by Google are easier to read than those ranked lower [13]. Still, the average read-
ability of top pages is around the 12th grade [13,14], which exceeds children’s
reading skills. This is a concern, as children often browse Search Engine Result
Pages (SERP) from top to bottom [41]. Despite how interconnected readability
and IR for children are, there is no consensus as to what formula to use for
readability estimation, nor is there careful consideration about the link between
IR applications and the formulas they use.

In this paper, we examine the connection between readability and IR to
deepen understanding among researchers and practitioners. We anchor our explo-
ration on three pillars that enable us to study the natural interactions of users
with differing skill-sets and the IR applications they use to access information: (i)
Target Audience, (ii) Application, and (iii) Expertise. Among other traits,
resource relevance depends on the requirements of a user. The diversity in read-
ing ability among children in Kindergarten–12th grade allows them to serve as
an opportune demographic for our Target Audience.1 Due to the ubiquitous
presence of search engines like Google and the fact that children commonly turn
to these tools to access online information [14], we designate Web search tools
as our Application. For Expertise we use readability. We favor traditional for-
mulas for estimation of English texts, as opposed to neural methods, due to their
simplicity of calculation, portability, prevalence among IR tools [32,36,50,70],
and use in real-world general settings [15,26,74]. With the analysis presented in
this paper, we seek to answer two research questions.

1 Grade levels according to the United States’ educational system.
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RQ1: Do traditional formulas effectively estimate the readability of
resources targeting children? To answer this question, we undertake an
empirical exploration to gauge the applicability of ten traditional formulas on
resources written in English targeting children. We first compare and contrast
the performance of these formulas across grade levels when applied to books,
the medium they were intended to assess. Given our Application we further
analyze the performance of these formulas when applied to digital resources,
not print. We find that the effectiveness of these formulas greatly varies across
grades and that lexicon-based formulas fare better than the most popular ones,
e.g., Flesch-Kincaid [43], when predicting the readability of Web resources for
children. This leads us to another question.
RQ2: Does the choice of readability formula impact the performance
of Web search? We investigate if and how readability influences different
scenarios related to Web search. We quantify the differences in performance
observed by solely exchanging formulas when (i) estimating the readability of
children’s queries and snippets generated by search engines in response to chil-
dren’s inquiries, (ii) providing query suggestions for children, and (iii) re-ranking
resources retrieved in response to children’s queries to prioritize those suitable to
them. Results from this analysis showcase that the choice of readability formula
has the potential to affect children’s online information discovery.

The findings emerging from our study highlight the importance of choosing
the “right” formula for readability estimation when dealing with children’s Web
resources, and how that decision exerts influence on Web search for children. The
study also results in Spache-Allen, a new formula that extends Spache [71] by
explicitly considering terminology familiar to children.2 With our three pillars,
we create a foundation for the investigation of the interaction between readabil-
ity and IR; particularly the need to appraise the readability formulas used when
designing information access tools and how to do so. These tools should be archi-
tected to provide user-friendly versions of resources, particularly for domains that
use advanced technical jargon. This work has implications for the future develop-
ment of fair and equitable resource access tools serving all users [38] and reinforces
research on IR applications that leverage different readability approaches. Bur-
geoning research features (multi-modal) conversational applications that interact
with users to clarify their information needs [6]. We envision readability playing a
role in equipping these applications to formulate response utterances fitting dis-
parate users’ skills. In the spirit of accessibility [7,59], these applications could sup-
port users beyond children who may have issues comprehending text, e.g., users
with dyslexia or English language learners.

2 Background and Related Work

Readability has been a heavily-investigated area within the last century. Earlier
works focused on traditional formulas that take a statistical approach considering
2 The script used for analysis purposes, along with the Spache-Allen itself can be found

at https://github.com/BSU-CAST/ecir22-readability.

https://github.com/BSU-CAST/ecir22-readability
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shallow features like the number of complex words, the number of syllables, or
the length of sentences [31]. Among the many formulas in this group, the more
well-known include the Flesch-Kincaid Reading Ease [43], the Coleman-Liau
Index [24], the Dale-Chall Readability Formula [22,27], the Gunning Fog Index
[40], and the Spache Readability Formula [71]. With the advent of machine
learning and neural networks, readability formulas transitioned to readability
models, incorporating lexical, semantic, and even multilingual features alongside
traditional shallow features to produce estimations [16,37,51,62]. At the same
time, we would be remiss not to mention existing commercial efforts, such as
Wizenoze Readability Index [80,81] and Lexile [1]. Unfortunately, there is a lack
of standardization of reading levels used for estimations, with differing “scales”
in readability prediction. For instance, some use grade levels, others binary labels
(simple vs. complex), or varied categorical labels [43,55,84]. Consequently, it is
increasingly difficult to explore which formula works best and why. Even with
recent advancements, traditional formulas tend to be the ones most used in real-
world scenarios [15,26]. Still, traditional formulas are not without flaws. They
can produce results that are inaccurate when assessing text that contains many
simple, short terms that are highly technical in nature or build a complex, or
subtle, story [21,51,72,79]. Further, a critical evaluation of the predicted reading
levels of passages used in academic readiness exams revealed that estimations
yielded by traditional formulas were 1–3 grades higher than the intended grade
levels [73,74].

Works related to readability and IR that also align with our Target
Audience and Application of interest include that of Bilal et al. [18] and
Anuyah et al. [14], who study the complexity of resources retrieved by search
engines in response to children’s queries. Both agree that the reading levels of
snippets and resources are too high for children to comprehend. Still, both explo-
rations base their findings on traditional formulas, which can offer misleading
estimations and might not be suitable for analyzing Web resources. The impact
of readability is not constrained to IR for children. Literature shows that read-
ability is far-reaching within IR. Lately, we see readability support a broad range
of IR-related applications, from easing information access [36] and helping teach-
ers locate news articles aligning with the readability levels of their students, to
supporting classroom instruction [34] and fake news detection [64]. Through a
Firefox plugin, Yu and Miller [85] provide readability support for Asian users
who are not fluent in English by enhancing the readability of Web pages. Focus-
ing on recommendation systems, researchers have considered readability as a
trait for determining helpful reviews [70] as well as influencing algorithms that
recommend books [5,66,82] and learning resources [50]. Readability also benefits
question answering (QA). For example, researchers have used readability esti-
mated via traditional formulas to identify high-quality developer chats [23] and
educational answers in community QA [48], as well as aid detection of the “best”
answers to questions in health QA communities [49], and the ranking of answers
in community QA sites [29]. Concerning Web search, readability is a trait that
has been considered to predict knowledge gain during Web search [65]. It has
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also been used as a means to personalize retrieved resources [25,61] and assess
learning as a result of engaging with Web search tasks [69].

This brief overview exhibits the pervasive nature of readability within IR,
making the pursuit of understanding its impact a must. With the analysis we
discuss in this manuscript, we take initial steps towards that goal.

3 The Fit of Readability Formulas on Web Text

The lack of consensus around which readability formula to use on IR tools
makes it uncertain which formula best suits complexity estimation of general
Web texts, let alone those intended for young searchers (Target Audience). To
address this concern, we examine the efficacy of readability formulas for their
originally intended purpose: estimating the reading levels of published texts. We
then probe their performance when applied to Web resources (Application). We
study popular traditional formulas (Expertise): (i) DC - New Dale-Chall [22];
(ii) SMOG [57]; (iii) GF - Gunning-FOG Index [4]; (iv) LIX [20]; (v) RIX
[12]; (vi) CL - Coleman-Liau Index [24], designed for digital texts; (vii) FK
- Flesch-Kincaid [43], due to its widespread adoption; (viii) Spache - Spache
Readability Formula [71], meant for texts targeting grades 1st–3rd; and (ix) SS
- Spache-Sven [52], an enhanced version of Spache that augments its vocabulary
with terms that frequently occur on children’s websites. For formula details, see
[16,31]. It is apparent in traditional formulas which and how shallow features
impact estimation. Instead, neural solutions often lack interpretability on how
estimations are produced. Thus, traditional formulas, which are broadly adopted
for research and mainstream applications alike, are the focus of this exploration.

For this empirical exploration we use two datasets built using existing cor-
pora. We explicitly examine printed and digital mediums. DSBook is com-
prised of 235 book excerpts extracted from the appendices of the Common Core
State Standards3 [42], each associated with a range of grade levels. We use the
minimum grade level from these ranges as the label, as children reading below
their level experience less difficulty with comprehension versus when reading
above their level [11]. DSBook also includes 2,084 books from Reading A-Z
(RAZ) labeled with their corresponding reading level4. DSWeb is made up of
22,689 resources. It includes resources from the WeeBit corpus [77], which con-
sists of samples extracted from WeeklyReader (an educational newspaper), each
labeled with their corresponding grade level, and the NewsELA corpus [63], a
set of curated news articles with their corresponding grade labels. Given the
few resources targeting Kindergarten and 1st graders, DSWeb also incorporates
Web resources expertly curated from sites offering content for younger children.

In our experiment, we use Python’s Textstat library [2] to estimate the read-
ability of resources in DSBook and DSWeb. We quantify performance via Mean
Error Rate (MER) and Root Mean Squared Error (RMSE). RMSE and MER
3 A set of learning outcomes to inform curriculum for schools in the United States.
4 RAZ uses a 26-letter scale assigned by experts for readability [47]. To enable fair

comparison, we map letter labels to grade labels, using RAZ’s conversion table [46].
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exhibited similar trends, thus we omit detailed discussions on the former for
brevity. To enable fair assessment for those formulas that provide a score rather
than a grade, i.e., LIX, RIX, and DC, we map their outputs to a grade according
to conversion tables from their original publications [12,20,27]. Through com-
parison of the results in each medium, we can discern disparities in performance
and identify the formulas that better suit estimation of text difficulty of online
resources for children. Significance of results are determined using the Kruskal-
Wallis H-test [44] with a p< 0.05. Unless otherwise stated, results reported in
this section are significant.

Fig. 1. MER across grades for readability formulas applied to DSBook and DSWeb.
Resources in DSBook are labeled with a grade range indicating the corresponding
target audience, so we take the lowest grade as ground truth.
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We first investigate the capabilities of readability formulas using DSBook.
As shown in Fig. 1, Spache and SS tend to produce lower MER towards the
middle grades, whereas the other formulas yield lower MER for the later grades.
CL exhibits the lowest MER at the 9th grade and above. Interestingly, even
though it is commonly used [17], FK is one of the formulas that produces the
highest MER, as compared to Spache and DC. Overall, Spache and SS are the
least error-prone for resources intended for grades K–6th.

To see if this performance translates to Web resources, we repeat the exper-
iment using DSWeb. As illustrated in Fig. 1, the results for Web resources are
similar to those obtained for books in that Spache and SS are the least error-
prone formula for resources targeting younger readers. With the exception of
Spache and SS, traditional formulas are inconsistent when estimating the com-
plexity of texts for earlier grades (K–6th). Outcomes from the presented analysis
serve as an indication of Spache and SS being formulas particularly well-suited
for estimating the readability of Web resources for young readers.

Regardless of its effectiveness for our audience and resource type, Spache’s
static vocabulary–consisting of 1,064 words that are considered “easy” for chil-
dren to comprehend [3]–is limited and includes terminology from the 1970s. As
language changes over time [67], an outdated vocabulary may not capture easy
terms for children in today’s world, potentially pushing the formula to misleading
text complexity estimations. The benefit of changing the 1940s vocabulary used
in the original Dale-Chall formula [27] to the one used by the DC formula, more
aligned to the 1990s, is apparent [22]. Similar boosts are seen with SS [52], which
augments Spache’s original vocabulary list through the inclusion of a dictionary
of 48,000 non-stop lemmatized terms the authors extracted from children-related
websites. Nevertheless, this enhancement relies on word frequency analysis and
assumes that terms added to the vocabulary are understood by children, which
may not always be the case.

To include vocabulary that children learn through instruction, we take advan-
tage of the Age of Acquisition (AoA) dataset. This dataset contains acquisition
ratings in the form of ages, ranging from 1–17 years, for ∼30,000 English words
[45]. We posit that there is a benefit to simultaneously accounting for terminol-
ogy that children have been exposed to through websites as well as terminology
that has been taught. Thus, we merge the original Spache vocabulary with the
terms from AoA and the dictionary from [52]; we call this updated formula
Spache-Allen (SA), which is computed as in Eq. 1.

Spache-Allen(R) = (0.141 × wR/sR) + (0.086 ∗ dif(R)) + 0.839 (1)

where R is a resource, wR and sR are the number of words and sentences in R,
respectively. The function dif(R) determines the percentage of difficult words
in R, where a word is deemed difficult if it does not appear in the “easy”
vocabulary–in this case it includes 65,669 unique terms that children learn
through instruction and/or are exposed to online, in addition to the original
Spache’s term list.

Regardless of the dataset considered, augmenting Spache’s original vocabu-
lary has a positive effect on readability estimation as it leads to decreases in MER
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(Fig. 1). SA consistently outperforms all other investigated traditional formulas
through grade 5; it’s performance is comparable to that of Spache and SS on
higher grades. For grades 9 and above, formulas like CL yield the lowest MER,
which is anticipated, given that Spache, SS, and SA have the express purpose of
determining the difficulty of texts targeting younger readers.

With RQ1, we aimed to answer: Do traditional formulas effectively estimate
the readability of resources targeting children? From trends in MER and RMSE,
it is evident that the reliability of some formulas differs upon the source material
they are applied to (e.g., DC averages a MER of 6.88 for books vs. 4.12 for Web
resources). We see that, on average, book resources result in larger errors than
Web resources; this is also prevalent among material targeting early readers, i.e.,
grades K–4th. Interestingly, the MER and RMSE per formula varies depending
on the grade of the text being assessed. This is particularly salient among early
readers, both numerically and visibly in Fig. 1. Even more so in Fig. 2, when
contrasting performance on the DSBook and DSWeb versus respective subsets
of the datasets consisting of materials till the 4th grade. The RMSE reported in
Fig. 2(b) is particularly telling as it doubles for CL and more than triples for GF,
and FK, when contrasting overall performance for K–4th grade resources. In the
end, the Spache, SS, and SA formulas are the least error-prone when applied
to Web resources targeting younger audiences. Though these three formulas
perform similarly, the differences across them are significant (Kruskal-Wallis H-
test, p< 0.05). Therefore, the formula we see as most suitable to support tasks
related to Web search for children is SA.

4 The Effect of Readability on Web Search for Children

It emerges from Sect. 3 that readability formulas do falter. With readability
playing a prominent role in Web search for children, we investigate the cascading
effect that the choice of readability formula can have on Web search. To do so,
we consider four scenarios that spotlight different stages of the search process. In
each scenario, we quantify the fluctuations in performance that result from using
traditional readability formulas. As in Sect. 3, we use Python’s Textstat library
for readability estimation. A cursory search (on ACM Digital Library and Google
Scholar) for recent literature focused on readability and IR applications reveal a
plethora of recommender systems, QA, search, and text simplification strategies,
to name a few, that depend upon readability as one of their components. Many
of these applications default to FK as the readability formula of choice. For this
reason, in each scenario, we treat performance based on FK as a baseline. For
significance, we use a two-tailed student t-test with a Bonferroni correction (with
α = 0.05 and the number of tests N = 10, which is the number of formulas) with
p< 0.05; all results are significant unless reported otherwise.

Scenario 1. In this scenario, we consider readability as a means to facilitate
personalization, e.g., filtering and/or prioritizing retrieved resources. We posit
that the readability of a query could serve as a proxy for the reading skills of
the user initiating the search. In turn, this information can be used as a signal
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(a) MER. (b) RMSE.

Fig. 2. Error rate analysis by source and formula. We pay special attention to errors
yielded by traditional formulas when applied to material targeting early readers.

Table 1. Fluctuations in performance observed in scenarios related to Web search for
children when applying traditional readability formulas. Bold denotes best perform-
ing formula for the corresponding scenario, and ‘*’ indicates significant w.r.t. Flesch-
Kincaid (FK), a formula that is often used as a component of IR applications.

Scenario Metric Formulas

DC SMOG GF LIX RIX CL FK Spache SS SA

1 MER 5.94* 4.68* 4.37* 4.49* 2.1* 3.84 3.72 2.74* 2.3* 2.34*

2 MRR 0.39 0.38 0.39 0.36 0.39 0.38 0.36 0.4 n/a 0.37

3 MER 4.08* 5.23* 3.49 3.09 3.02* 3.61 3.31 2.85* 3.0* 3.02*

4 MRR 0.36* 0.2* 0.27* 0.3* 0.27* 0.27* 0.42 0.43 0.3* 0.29*

4 (K–4) MRR 0.26* 0.14* 0.26* 0.22* 0.22* 0.14* 0.49 0.48 0.50 0.48

to filter and/or re-rank retrieved resources to match the users’ inferred skills
[25,53,76]. We use the 168 queries made available by the authors in [8,52], each
labeled with the grade of the child formulating the corresponding query. We
estimate the readability of each query using the formulas in Sect. 3 and then
compare their estimations with respect to the ground truth. For evaluation, we
use MER (excluding RMSE for brevity, given similar trends). We are aware that
the nature of traditional formulas makes them less suitable for short texts such
as queries. Nevertheless, this is a limitation that affects all formulas (possibly
with the exception of SS, which has been proven successful in identifying if a
query was child-like [52]), therefore reported observations are not affected.

As reported in Table 1, it is clear that the choice of the formula used to
estimate the readability of queries has the potential to skew the inference of the
users’ reading skills [76]. For example, formulas like RIX, Spache, SS, and SA
lead to a MER of approximately ±2 grades, whereas DC or SMOG can predict
up to 4 grades above or below the grade of the child who initiated the query.
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While we expected discrepancy w.r.t. ground truth given that queries are short,
if readability is used to enable personalization, the latter would be a concern as
the tool would not be adequately supporting the target user.

Scenario 2. Children struggle with formulating queries when searching online
[54]. Therefore, in this scenario, we examine the impact that readability has on
query suggestion as a means to alleviate children’s query formulation issues. We
study the performance of ReQuIK [52], a state-of-the-art strategy that offers
suggestions targeted at children. As ReQuIK utilizes both FK (popularity) and
SS (Web applicability), we first observe fluctuations in its performance when
exchanging FK for each of the remaining formulas. Motivated by the outcomes
reported in Sect. 3, we also retain FK but instead replace SS with SA. In this
experiment, we rely on ReQuik’s implementation provided by the authors, and
also use the 95 queries used in the original experiments [52]. To generate candi-
date query suggestions for each of the aforementioned queries, we use an N − 1
approach: in each case, we use the prefix of each query (consisting of N − 1
terms) to trigger Google’s query suggestions via its API. Treating the origi-
nal query as the ground truth, i.e., what should be ranked first, we calculate
the Mean Reciprocal Rank (MRR) of the top-10 query suggestions ranked by
ReQuIK.

Based on the results reported for Scenario 1, we expected the wide range
of estimation errors to impact query suggestion generation. However, from the
analysis of results reported in row 2 of Table 1, as well as the experiment using
SA and FK to power ReQuIK (MRR of 0.37), it emerges that variations on
ReQuIK’s performance caused by swapping traditional formulas are not sig-
nificant. Upon in-depth inspection, we attribute this to ReQuIK’s design that
incorporates neural architectures. Even though readability is an important trait
considered in the wide model component of ReQuIK, it is the deep neural model
component that most contributes to ReQuIK’s overall success (cf. [52]).

Scenario 3. Snippets are meant to offer children a glimpse into the resources
retrieved as they navigate a SERP. For the snippets to facilitate relevant resource
selection, they must offer content that children can comprehend. We conduct a
new experiment following the procedure outlined in Scenario 1, but on snippets
instead of queries. We consider the snippets generated using Google’s Custom
Search API for a sample of 395 NewsELA resource titles acting as queries. We
estimate snippet readability using the formulas in Sect. 3. Treating the origi-
nal grade label for the corresponding NewsELA resource as ground truth, we
compute the respective MER for assessment purposes.

As reported in row 3 of Table 1, there are significant performance fluctuations.
As anticipated, Spache, SS, and SA lead to the lowest errors in estimation. On
the other hand, SMOG and DC lead to more erroneous estimations. If SERP
were to be personalized to ensure children could comprehend presented snippets,
then the misleading readability estimations caused by some formulas could result
in a SERP that excludes relevant resources. Additionally, as snippets act as
proxies for resource content, they could be used in lieu of Web page content
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for the purpose of re-ranking SERP for children and thus the use of misleading
formulas could cause unhelpful changes to the SERP.

Scenario 4. Readability is a key relevance trait informing ranking, particu-
larly given that children have different expectations and needs when it comes to
retrieved resources [19]. In this scenario, we examine the effect that readability
has on the performance of KORSCE [60], a re-ranking strategy that prioritizes
resources for children in the classroom setting. Following the experimental pro-
tocol of Scenario 2, we exchange FK, the formula originally used by KORSCE,
with each of the formulas under study enabling us to gauge potential perfor-
mance implications. In this experiment, we sample 193 NewsELA resources and
use their titles as queries. Using Google’s Custom Search API, we collect the
top-10 corresponding resources per query. We re-rank the resources associated
with each query using KORSCE, treating the original resource as ground truth.
To quantify performance, we use MRR.5

The results reported in row 4 of Table 1 show that just by interchanging
the readability formula embedded in KORSCE’s architecture, relevant resources
move from position 5 in the ranking (i.e., SMOG’s MRR is 0.2) to position ∼2
(based on MRR for Spache and FK, which are 0.43 and 0.42, respectively).6

This is even more evident among rankings of resources for early readers, who
would need the most help from tools when pursuing online information discovery
tasks (row K–4 in Table 1). In their case, the relevant resources could move from
position 7 in the ranking to 2, simply by exchanging SMOG or CL with Spache,
SS, SA, or FK. As children tend to linearly examine SERP [41], the choice of
readability formula could prompt the ranking algorithm to inadvertently position
higher on the SERP resources children are unable to read or understand, thus
negatively affecting their search experience.

With RQ2, we sought to answer: Does the choice of readability formula impact
the performance of Web search? From the findings discussed in this section, we
can surmise that yes, the choice of readability formula affects in a meaningful
manner Web search for children. Altering the formula used leads to variations in
performance across most of the scenarios examined for Web search for children.
Variations were not significant for Scenario 2. We attribute this to ReQuIK’s
deep model dominating its wide counterpart. Overall, the shift in performance
caused by the choice of formula matters, as retrieving resources at appropri-
ate reading levels positively impacts user satisfaction [25,33]. A further concern
related to this shift is that searchers could be deterred from engaging with query
suggestions or resources that are assumed to be above searchers’ skills when
the queries and resources could very well be comprehensible and hence rele-
vant. Formulas underestimating difficulty could mistakenly direct searchers to
query suggestions or prioritize resources that are far beyond what searchers can
comprehend, thus unintentionally setting them up for a failed search.

5 We use KORSCE’s implementation made available by the authors.
6 In Scenario 4, FK’s performance is not unexpected as KORSCE is optimized for FK.
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5 Conclusion and Future Work

In this paper, we aimed to highlight the natural connection between readability
and IR tools. In particular, we focused our analysis on the impact readability has
on Web search for children. We gauged the performance of traditional formulas
when applied to estimate the readability of printed and digital material targeting
children. Moreover, through different scenarios intended to draw attention to
different stages of the search process, we studied performance fluctuations that
are a direct consequence of exchanging readability formulas.

Analysis of the experimental results suggests that even though Flesch-Kincaid
is commonly used to determine the readability of Web resources, it is not the one
that best captures their level of difficulty, especially when these Web resources tar-
get younger audiences. We have shown that variations of the well-known Spache
formula, which explicitly considers terminology children are exposed to online
and/or learn as they grow, are better suited to estimate the readability of Web
resources for young searchers (RQ1). Of note, we introduced Spache-Allen, which
emerged as a result of the explorations conducted in pursuit of RQ1. The effect of
readability on algorithms empowering information discovery for young searchers
also became apparent during our explorations; making it imperative for developers
and researchers to consider using the “right” formula, one best serving the target
audience and application, as it directly translates to performance improvements
(RQ2). From reported findings we surmise that (i) the performance of IR applica-
tions can indeed change based on the readability formula used and (ii) by carefully
considering which readability formula supports the target audience of interest, IR
applications can be optimized for performance or personalization with respect to
an audience (echoing the reports in [78] on general Web resources, not just those
targeting children).

Lessons learned from this work inform ongoing efforts related to better
enabling children’s information discovery through Web search. These include
algorithmic solutions that rely on readability as one of their components to sug-
gest queries [52], determine search intent [30], identify resources that are relevant
to children [25,60], aid teachers seeking texts for their classrooms [34], or offer
teachers insights on students’ abilities via search [9]. As decisions related to
readability impact all areas of IR, the applicability of this work is far reaching.
Further, the pillars introduced can serve as a blueprint that researchers can turn
to as a guide for their own explorations towards finding a well-suited readability
estimation solution for their intended tasks and audiences.

We limited our examination to traditional formulas applied to Web resources
written in English. In the future, we plan to extend our analysis to state-of-the-
art counterparts to identify the benefits and constraints inherent to dealing with
these more complex models. As a step towards making information accessible
worldwide, and given the rise of multilingual strategies for readability estimation,
we will extend our exploration to written languages beyond English [56].
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Abstract. Dense passage retrieval (DPR) models show great effectiveness gains
in first stage retrieval for the web domain. However in the web domain we are
in a setting with large amounts of training data and a query-to-passage or a
query-to-document retrieval task. We investigate in this paper dense document-
to-document retrieval with limited labelled target data for training, in particu-
lar legal case retrieval. In order to use DPR models for document-to-document
retrieval, we propose a Paragraph Aggregation Retrieval Model (PARM) which
liberates DPR models from their limited input length. PARM retrieves docu-
ments on the paragraph-level: for each query paragraph, relevant documents are
retrieved based on their paragraphs. Then the relevant results per query paragraph
are aggregated into one ranked list for the whole query document. For the aggre-
gation we propose vector-based aggregation with reciprocal rank fusion (VRRF)
weighting, which combines the advantages of rank-based aggregation and topi-
cal aggregation based on the dense embeddings. Experimental results show that
VRRF outperforms rank-based aggregation strategies for dense document-to-
document retrieval with PARM. We compare PARM to document-level retrieval
and demonstrate higher retrieval effectiveness of PARM for lexical and dense
first-stage retrieval on two different legal case retrieval collections. We investi-
gate how to train the dense retrieval model for PARM on limited target data with
labels on the paragraph or the document-level. In addition, we analyze the differ-
ences of the retrieved results of lexical and dense retrieval with PARM.

1 Introduction

Dense passage retrieval (DPR) models brought substantial effectiveness gains to infor-
mation retrieval (IR) tasks in the web domain [14,19,39]. The promise of DPR models
is to boost the recall of first stage retrieval by leveraging the semantic information for
retrieval as opposed to traditional retrieval models [31], which rely on lexical matching.
The web domain is a setting with query-to-passage or query-to-document retrieval tasks
and a large amount of training data, while training data is much more limited in other
domains. Furthermore we see recent advances in neural retrieval remain neglected for
document-to-document retrieval despite the task’s importance in several, mainly pro-
fessional, domains [24,28–30].
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In this paper we investigate the effectiveness of dense retrieval models for
document-to-document tasks, in particular legal case retrieval. We focus on first stage
retrieval with dense models and therefore aim for a high recall. The first challenge for
DPR models in document-to-document retrieval tasks is the input length of the query
documents and of the documents in the corpus. In legal case retrieval the cases tend to be
long documents [35] with an average length of 1269 words in the COLIEE case law cor-
pus [29]. However the input length of DPR models is limited to 512 tokens [19] and the-
oretically bound of how much information of a long text can be compressed into a single
vector [25]. Furthermore we reason in accordance with the literature [7,33,37,38] that
relevance between two documents is not only determined by the complete text of the
documents, but that a candidate document can be relevant to a query document based
on one paragraph that is relevant to one paragraph of the query document. In the web
domain DPR models are trained on up to 500k training samples [6], whereas in most
domain-specific collections only a limited amount of hundreds of labelled samples is
available [13,15,29].

In this paper we address these challenges by proposing a paragraph aggrega-
tion retrieval model (PARM) for dense document-to-document retrieval. PARM lib-
erates dense passage retrieval models from their limited input length without increas-
ing the computational cost. Furthermore PARM gives insight on which paragraphs the
document-level relevance is based, which is beneficial for understanding and explaining
the retrieved results. With PARM the documents are retrieved on the paragraph-level:
the query document and the documents in the corpus are split up into their paragraphs
and for each query paragraph a ranked list of relevant documents based on their para-
graphs is retrieved. The ranked lists of documents per query paragraph need to be aggre-
gated into one ranked list for the whole query document. As PARM provides the dense
vectors of each paragraph, we propose vector-based aggregation with reciprocal rank
fusion weighting (VRRF) for PARM. VRRF combines the merits of rank-based aggre-
gation [10,16] with semantic aggregation with dense embeddings. We investigate:
RQ1 How does VRRF compare to other aggregation strategies within PARM?

We find that our proposed aggregation strategy of VRRF for PARM leads to the
highest retrieval effectiveness in terms of recall compared to rank-based [10,34] and
vector-based aggregation baselines [21]. Furthermore we investigate:
RQ2 How effective is PARM with VRRF for document-to-document retrieval?

We compare PARM with VRRF to document-level retrieval for lexical and dense
retrieval methods on two different test collections for the document-to-document task
of legal case retrieval. We demonstrate that PARM consistently improves the first
stage retrieval recall for dense document-to-document retrieval. Furthermore, dense
document-to-document retrieval with PARM and VRRF aggregation outperforms lexi-
cal retrieval methods in terms of recall at higher cut-off values.

The success of DPR relies on the size of labelled training data. As we have a limited
amount of labelled data as well as paragraph and document-level labels we investigate:
RQ3 How can we train dense passage retrieval models for PARM for document-to-
document retrieval most effectively?

For training DPR for PARM we compare training with relevance labels on the para-
graph or document-level. We find that despite the larger size of document-level labelled
datasets, the additional training data is not always beneficial compared to training DPR
on smaller, but more accurate paragraph-level samples. Our contributions are:



PARM: A Paragraph Aggregation Retrieval Model 21

– We propose a paragraph aggregation retrieval model (PARM) for dense
document-to-document retrieval and demonstrate higher retrieval effectiveness for
dense retrieval with PARM compared to retrieval without PARM and to lexical
retrieval with PARM.

– We propose vector-based aggregation with reciprocal rank fusion weighting
(VRRF) for dense retrieval with PARM and find that VRRF leads to the highest
recall for PARM compared to other aggregation strategies.

– We investigate training DPR for PARM and compare the impact of fewer, more
accurate paragraph-level labels to more, potentially noisy document-level labels.

– We publish the code at https://github.com/sophiaalthammer/parm

2 Related Work

Dense Passage Retrieval. Improving the first stage retrieval with DPR models is a
rapidly growing area in neural IR, mostly focusing on the web domain. Karpukhin et
al. [19] propose dense passage retrieval for open-domain QA using BERT models as
bi-encoder for the query and the passage. With ANCE, Xiong et al. [39] train a DPR
model for open-domain QA with sampling negatives from the continuously updated
index. Efficiently training DPR models with distillation [17] and balanced topic aware
sampling [18] has demonstrated to improve the retrieval effectiveness. As opposed to
this prior work, we move from dense passage to dense document-to-document retrieval
and propose PARM to use dense retrieval for document-to-document tasks.

Document Retrieval. The passage level influence for retrieval of documents has been
analyzed in multiple works [7,22,37,38] and shown to be beneficial, but in these works
the focus lies on passage-to-document retrieval. Cohan et al. [9] present document-
level representation learning strategies for ranking, however the input length remains
bounded by 512 tokens and only title and abstract of the document are considered.
Abolghasemi et al. [1] present multi-task learning for document-to-document retrieval.
Liu et al. [40] propose similar document matching for documents up to a length of 2048
however here the input length is still bounded and the computational cost of training and
using the model is increased. Different to this prior work, the input length of PARM is
not bounded without increasing the computational complexity of the retrieval.

Aggregation Strategies. Aggregating results from different ranked lists has a long his-
tory in IR. Shaw et al. [20,34] investigate the combination of multiple result lists by
summing the scores. Different rank aggregation strategies like Condorcet [26] or Borda
count [36] are proposed, however it is demonstrated [10,41] that reciprocal rank fusion
outperforms them. Ai et al. [2] propose a neural passage model for scoring passages
for a passage-to-document retrieval task. Multiple works [3,4,11,42] propose score
aggregation for re-ranking with BERT on a passage-to-document task ranging from
taking the first passage of a document to the passage of the document with the high-
est score. Different to rank/score-based aggregation approaches, Li et al. [21] propose
vector-based aggregation for re-ranking for a passage-to-document task. Different to
our approach they concatenate query and passage and learn a representation for binary
classification of the relevance score. The focus of score/rank aggregation is mainly
on federated search or passage-to-document tasks, however we focus on document-
to-document retrieval. We have not seen a generalization of aggregation strategies for

https://github.com/sophiaalthammer/parm
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the query and candidate paragraphs for document-to-document retrieval yet. Different
to previous work, we propose to combine rank and vector-based aggregation methods
for aggregating the representation of query and candidate documents independently.

3 Paragraph Aggregation Retrieval Model (PARM)

In this section we propose PARM as well as the aggregation strategy VRRF for PARM
for dense document-to-document retrieval and training strategies.

3.1 Workflow

We use the DPR model [19] based on BERT [12] bi-encoders, of which one encodes
the query passage q, the other one the candidate passage p. After storing the encoded
candidate passages p̂ in the index, the relevance score between a query q and a candidate
passage p is computed by the dot-product between the encoded query passage q̂ and p̂.

As the input length of BERT [12] is limited to 512 tokens, the input length for
the query and the candidate passage for DPR [19] is also limited by that. The length
of query and candidate documents for document-to-document tasks exceeds this input
length. For example the average length of a document is 1296 words for the legal case
retrieval collection COLIEE [29]. We reason that for document-to-document tasks a
single paragraph or multiple paragraphs can be decisive for the relevance of a document
to another one [7,22,37,38] and that different paragraphs contain different topics of a
document. Therefore we propose a paragraph aggregation retrieval model (PARM),
in order to use DPR models for dense document-to-document retrieval. PARM retrieves
relevant documents based on the paragraph-level relevance.

The workflow of PARM is visualized in Fig. 1. For the documents in the corpus we
split each document d into paragraphs p1, ..., pmd

with md the number of paragraphs
of document d. We take the paragraphs of the document as passages for DPR. We
index each paragraph pj , j ∈ 1, ...,md of each document d in the corpus and attain a
paragraph-level index containing the encoded paragraphs p̂j for all documents d in the
corpus. At query time, the query document q is also split up into paragraphs q1, ..., qnq

,

Fig. 1. PARM workflow for query document q and retrieved documents d1, .., d7
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where nq is the number of paragraphs of q. For each query paragraph qi with i ∈
1, ..., nq the top N most relevant paragraphs are retrieved from the paragraph-level
corpus. The result is a ranked list ri with i ∈ 1, ..., nq per query paragraph qi with N
relevant paragraphs. The paragraphs in the ranked lists ri with i ∈ 1, ..., nq are replaced
by the documents that contain the paragraphs. Therefore it is possible that one document
occurs multiple times in the list. In order to attain one ranked list for the whole query
document q, the ranked paragraph lists of retrieved documents r1, ..., rnq

of each query
paragraph qi with i ∈ 1, ..., nq need to be aggregated to one ranked list.

3.2 Vector-Based Aggregation with Reciprocal Rank Fusion Weighting (VRRF)

Multiple works have demonstrated the benefit of reciprocal rank fusion [10,16,27] for
rank-based aggregation of multiple ranked retrieved lists. Using dense retrieval with
PARM we have more information than the ranks and scores of the retrieved paragraphs:
we have dense embeddings, which encode the semantic meaning of the paragraphs, for
each query paragraph and the retrieved paragraphs. In order to make use of this addi-
tional information for aggregation, we propose vector-based aggregation with recip-
rocal rank fusion weighting (VRRF), which extends reciprocal rank fusion for neural
retrieval. VRRF combines the advantages of reciprocal rank fusion with relevance sig-
nals of semantic aggregation using the dense vector embeddings.

In VRRF we aggregate documents using the dense embeddings p̂i of the passages
pi, which are from the same document d and which are in the retrieved list ri with
i ∈ 1, ..., nq , with a weighted sum, taking the reciprocal rank fusion score [10] as
weight. The dense embeddings q̂i of each query paragraph qi with i ∈ 1, ..., nq are
aggregated by adding the embeddings without a weighting:

q̂ =
nq∑

i=1

q̂i d̂ =
nq∑

i=1

∑

p∈d,d∈ri

rrf(qi, pi) p̂i

We compute the relevance score between query and candidate document with the
dot-product between the aggregated embedding of query q̂ and candidate document d̂.

To confirm the viability of VRFF aggregation, we propose simple baselines:
VRanks and VScores, where the paragraph embeddings p̂i of d are aggregated with
the rank or the score of the passage pi as weight.

3.3 Training Strategies

As we have a limited amount of labelled target data, we examine how to effectively
train a DPR model for PARM with the training collections at hand. We assume that we
have test collections consisting of documents with clearly identifiable paragraphs, with
relevance assessments on either the paragraph or the document-level.

Paragraph-Level Training. For the paragraph-level labelled training we take the relevant
paragraphs in the training set as positives and sample random negatives from the para-
graphs in the corpus. Here we sample as many negatives as we have positive samples
for each query paragraph, thereby balancing the training data.
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Document-Level Training. For the document-level labelled training the collection con-
tains query documents and a corpus of documents with relevance assessments for each
query document. We sample negative documents randomly from the corpus. In order
to use the document-level labelled collection for training the DPR model, we split up
the query document as well as the positive documents into its paragraphs and consider
each paragraph of the query document relevant to each paragraph of each positive doc-
ument. Equivalently we consider each paragraph of a negative document irrelevant to
each query paragraph. As on average each document in the COLIEE dataset [29] con-
tains 42.44 paragraphs, one relevant document leads to 42 · 20 = 840 paragraph-level
labels containing one positive and one negative sample to a query paragraph. Therefore
this method greatly increases the number of paragraph-level annotations, however this
comes with the risk of potentially noisy labels [5].

4 Experiment Design

4.1 Training and Test Collections

We focus on the document-to-document task of legal case retrieval because of the
importance for the legal domain [23,24,32,33] which facilitates the availability of train-
ing collections with relevance annotations on the paragraph and the document-level
[29]. For training the DPR models, we introduce paragraph and document-level labelled
collections. For the evaluation we use the document-level collections.

Paragraph-Level Labelled Collections. COLIEE [29] is a competition for legal infor-
mation extraction and retrieval which provides datasets for legal case retrieval and case
entailment. Task 2 of COLIEE 2020 [29] provides a training and test collection for legal
case entailment. It contains relevance labels on the legal case paragraph level, given a
query claim, a set of candidate claims to the query claim as well as relevance labels for
the candidate claims. We denote these sets with COLIEEPara train/test.

Document-Level Labelled Collections. In Task 1 of COLIEE 2021 [29], the legal case
retrieval task, query cases with their relevance judgements on the document-level are
provided together with a corpus of candidate documents. We divide the training set of
COLIEEDoc into a training and validation set. The validation set contains the last 100
queries of the training set from query case 550 to 650. We will denote the training, vali-
dation and test collection with COLIEEDoc train/val/test. For a broader evaluation, we
evaluate our models additionally on the CaseLaw collection [24]. It contains a corpus
of legal cases, query cases and their relevance judgements for legal case retrieval.

Data Pre-processing. For COLIEEDoc, we remove the French versions of the cases, we
divide the cases into an introductory part, a summary, if it contains one, and its claims,
which are indicated by their numbering. As indicated in Table 1, the paragraphs have an
average length of 84 words and 96.2% of the paragraphs are not longer than 512 words.
The CaseLaw dataset is split along the line breaks of the text and merged to paragraphs
by concatenating sentences until the paragraphs exceed the length of 200 words.
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4.2 Baselines

As baseline we use the lexical retrieval model BM25 [31]. For BM25 we use Elas-
ticSearch1 with parameters k = 1.3 and b = 0.8, which we optimized on COLIEE-
Docval. VRRF aggregation for PARM (RQ1). In order to investigate the retrieval effec-
tiveness of our proposed aggregation strategy VRFF for PARM, we compare VRRF to
the commonly used score-based aggregation strategy CombSum [34] and rank-based
aggregation strategy of reciprocal rank fusion (RRF) [10] for PARM. As baselines for
vector-based aggregation, we investigate VSum, VMin, VMax, VAvg, which are origi-
nally proposed by Li et al. [21] for re-ranking on a passage-to-document retrieval task.
In order to use VSum, VMin, VMax, VAvg in the context of PARM, we aggregate
independently the embeddings of both, the query and the candidate document. In con-
trast to Li et al. [21] we aggregate the query and paragraph embeddings independently
and score the relevance between aggregated query and aggregated candidate embedding
after aggregation. The learned aggregation methods of CNN and Transformer proposed
by Liu et al. [21] are therefore not applicable to PARM, as they learn a classification on
the embedding of the concatenated query and paragraph.

Table 1. Statistics of paragraph- and document-level labelled collections.

Labels Dataset Train/
Test

Statistics

# queries ∅ # docs ∅ # rel
docs

∅ para
length

% para <
512 words

∅ # para

Para COLIEEPara Train 325 32.12 1.12 102 95.5% -

COLIEEPara Test 100 32.19 1.02 117 95.2% -

Doc COLIEEDoc Train 650 4415 5.17 84 96.2% 44.6

COLIEEDoc Test 250 4415 3.60 92 97.8% 47.5

CaseLaw Test 100 63431 7.2 219 91.3% 7.5

PARM VRRF for Dense Document-to-Document Retrieval (RQ2). In order to investi-
gate the retrieval effectiveness of PARM with VRRF for dense document-to-document
retrieval, we compare PARM to document-level retrieval on two document-level collec-
tions (COLIEEDoc and CaseLaw). Because of the limited input length, the document-
level retrieval either reduces to retrieval based on the First Passage (FirstP) or the pas-
sage of the document with the maximum score (MaxP) [3,42]. In order to separate the
impact of PARM for lexical and dense retrieval methods, we also use PARM with BM25
as baseline. For PARM with BM25 we also investigate which aggregation strategy leads
to the highest retrieval effectiveness in order to have a strong baseline. As BM25 does
not provide dense embeddings only rank-based aggregation strategies are applicable.

1 https://github.com/elastic/elasticsearch.

https://github.com/elastic/elasticsearch
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Paragraph and Document-Level Labelled Training (RQ3). We train a DPR model on
a paragraph- and another document-level labelled collection and compare the retrieval
performance of PARM for document-to-document retrieval. As bi-encoders for DPR we
choose BERT [12] and LegalBERT [8]. We train DPR on the paragraph-level labelled
collection COLIEEPara train and additionally on the document-level labelled collec-
tion COLIEEDoc train as described in Sect. 3.3. We use the public code2 and train DPR
according to Karpukhin et al. [19]. We sample the negative paragraphs randomly from
randomly sampled negative documents and take the 20 paragraphs of a positive docu-
ment as positive samples, which have the highest BM25 score to the query paragraph.
This training procedure lead to the highest recall compared to training with all positive
paragraphs or with BM25 sampled negative paragraphs. We also experimented with the
DPR model pre-trained on open-domain QA as well as TAS-balanced DPR model [18],
but initial experiments did not show a performance improvement. We train each DPR
model for 40 epochs and take the best checkpoint according to COLIEEPara test/COL-
IEEDoc val. We use batch size of 22 and a learning rate of 2 ∗ 10−5, after comparing
three commonly used learning rates (2 ∗ 10−5, 1 ∗ 10−5, 5 ∗ 10−6) for [19].

5 Results and Analysis

We evaluate the first stage retrieval performance with nDCG@10, recall@100,
recall@500 and recall@1k using pytrec eval. We focus our evaluation on recall because
the recall performance of the first stage retrieval bounds the ranking performance after
re-ranking the results in the second stage for a higher precision. We do not compare our
results to the reported state-of-the-art results as they rely on re-ranked results and do
not report evaluation results after the first stage retrieval.

5.1 RQ1: VRRF Aggregation for PARM

As we propose vector-based aggregation with reciprocal rank fusion weighting (VRRF)
for PARM, we first investigate:

(RQ1) How does VRRF compare to other aggregation strategies within PARM?
We compare VRRF, which combines dense-vector-based aggregation with rank-based
weighting, to score/rank-based and vector-based aggregation methods for PARM. The
results in Table 2 show that VRRF outperforms all rank and vector-based aggregation
approaches for the dense retrieval results of DPR PARM with BERT and LegalBERT.
For the lexical retrieval BM25 with PARM, only rank-based aggregation approaches are
feasible, here RRF shows the best performance, which will be our baseline for RQ2.

2 https://github.com/facebookresearch/DPR.

https://github.com/facebookresearch/DPR


PARM: A Paragraph Aggregation Retrieval Model 27

Table 2. Aggregation comparison for PARM on COLIEEval, VRRF shows best results for dense
retrieval, stat. sig. difference to RRF w/ paired t-test (p< 0.05) denoted with †, Bonferroni cor-
rection with n= 7. For BM25 only rank-based methods applicable.

Aggregation BM25 DPR BERT DPR LegalBERT

R@100 R@500 R@1K R@100 R@500 R@1K R@100 R@500 R@1K

Rank-based

CombSum [34] .5236 .7854 .8695 .4460 .7642 .8594 .5176 .7975 .8882

RRF [10] .5796 .8234 .8963 .5011 .8029 .8804 .5830 .8373 .9049

Vector-based

VAvg [21] - - - .1908† .4668† .6419† .2864† .4009† .7466†

VMax [21] - - - .3675† .6992† .8273† .4071† .6587† .8418†

VMin [21] - - - .3868† .6869† .8295† .4154† .6423† .8465†

VSum [21] - - - .4807 .7496† .8742 .5182† .8069 .8882

Vector-based with rank-based weights (Ours)

VScores - - - .4841 .7616† .8709 .5195† .8075† .8882†

VRanks - - - .4826 .7700† .8804 .5691† .8212 .8980

VRRF - - - .5035 .8062† .8806 .5830† .8386† .9091†

Table 3. Document-to-document retrieval results for PARM and Document-level retrieval. No
comparison to results reported in prior work as those rely on re-ranking, while we evaluate only
first stage retrieval evaluation. nDCG cutoff at 10, stat. sig. difference to BM25 Doc w/ paired
t-test (p< 0.05) denoted with † and Bonferroni correction with n = 12, effect size> 0.2 denoted
with ‡.

Model Retrieval COLIEEDoc test CaseLaw

nDCG R@100 R@500 R@1K nDCG R@100 R@500 R@1K
BM25

BM25 Doc .2435 .6231 .7815 .8426 .2653 .4218 .5058 .5438

PARM RRF .1641†‡ .6497†‡ .8409†‡ .8944†‡ .0588†‡ .3362†‡ .5716†‡ .6378†‡

DPR

BERT para Doc FirstP .0427†‡ .3000†‡ .5371†‡ .6598†‡ .0287†‡ .0871†‡ .1658†‡ .2300†‡

Doc MaxP .0134†‡ .1246†‡ .5134†‡ .6201†‡ .0000†‡ .0050†‡ .4813†‡ .4832†‡

PARM RRF .0934†‡ .5765†‡ .8153†‡ .8897†‡ .0046†‡ .1720†‡ .5019†‡ .5563†

PARM VRRF .0952†‡ .5786†‡ .8132†‡ .8909†‡ .1754†‡ .3855†‡ .5328†‡ .5742†‡

LegalBERT para Doc FirstP .0553†‡ .2447†‡ .4598†‡ .5657†‡ .0397†‡ .0870†‡ .1844†‡ .2248†‡

Doc MaxP .0073†‡ .0737†‡ .3970†‡ .5670†‡ .0000†‡ .0050†‡ .4846†‡ .4858†‡

PARM RRF .1280†‡ .6370 .8308†‡ .8997†‡ .0177†‡ .2595†‡ .5446†‡ .6040†‡

PARM VRRF .1280†‡ .6396 .8310†‡ .9023†‡ .0113†‡ .4986†‡ .5736†‡ .6340†‡

LegalBERT doc Doc FirstP .0682†‡ .3881†‡ .6187†‡ .7361†‡ .0061†‡ .0050†‡ .4833†‡ .4866†‡

Doc MaxP .0008†‡ .0302†‡ .2069†‡ .2534†‡ .0022†‡ .0050†‡ .4800†‡ .4833†‡

PARM RRF .1248†‡ .6086† .8394†‡ .9114†‡ .0117†‡ .2277†‡ .5637†‡ .6265†‡

PARM VRRF .1256†‡ .6127† .8426†‡ .9128†‡ .2284†‡ .4620†‡ .5847†‡ .6402†‡
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5.2 RQ2: PARM VRRF vs Document-Level Retrieval

As we propose PARM VRRF for document-to-document retrieval, we investigate:
(RQ2) How effective is PARM with VRRF for document-to-document retrieval?
We evaluate and compare PARM and document-level retrieval for lexical and dense
retrieval methods on the two test collections (COLIEEDoc and CaseLaw) for document-
to-document retrieval in Table 3. For BM25 we find that PARM-based retrieval outper-
forms document-level retrieval at each recall stage, except for R@100 on CaseLaw.

For dense retrieval we evaluate DPR models with BERT trained solely on the
paragraph-level labels and with LegalBERT trained on the paragraph-level labels
(denoted with LegalBERT para) and with additional training on the document-level
labels (denoted with LegalBERT doc). For dense document-to-document retrieval
PARM consistently outperforms document-level retrieval for all performance metrics
for both test collections. Furthermore PARM aggregation with VRRF outperforms
PARM RRF in nearly all cases. Overall we find that LegalBERTdoc-based dense
retrieval with PARM VRRF achieves the highest recall at high ranks. When comparing
the nDCG@10 evaluation we find that PARM lowers the nDCG@10 score for BM25 as
well as for dense retrieval. Therefore we suggest that PARM is beneficial for first stage
retrieval, so that in the re-ranking stage the overall ranking can be improved.

Fig. 2. Recall at different cut-off values
for PARM-VRRF (DPR) and PARM-RRF
(BM25) and Document-level retrieval with
BM25 and DPR for COLIEEDoc test.

Fig. 3. Number of relevant documents
retrieved in comparison between PARM
and Doc-level retrieval for COLIEEDoc and
CaseLaw with BM25 or LegalBERT doc-
based DPR.

In Fig. 2 we show the recall at different cut-off values for PARM-VRRF with DPR
(based on LegalBERTdoc) and PARM-RRRF with BM25 compared to document-level
retrieval (Doc FirstP) of BM25/DPR. When comparing PARM to document-retrieval,
we can see a clear gap between the performance of document-level retrieval and PARM
for BM25 and for DPR. Furthermore we see that dense retrieval (PARM-VRRF DPR)
outperforms lexical retrieval (PARM-RRF BM25) at cut-off values above 500.
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In order to analyze the differences between PARM and document-level retrieval
further, we analyze in Fig. 3, how many relevant documents are retrieved with PARM
or with document-level retrieval with lexical (BM25) or dense methods (DPR). Fur-
thermore we investigate how many relevant documents are retrieved by both PARM
and document-level retrieval (PARM ∩ Doc), and how many relevant documents are
retrieved only with PARM and not with document-level retrieval (PARM\Doc) and
vice versa (Doc\PARM). When comparing the performance of PARM and document-
level retrieval, we find that PARM retrieves more relevant documents in total for both
test collections. PARM retrieves 142–380 of the relevant documents that did not get
retrieved with document-level retrieval (PARM\Doc), which are 15–52% of the total
number of relevant documents. This analysis demonstrates that PARM largely retrieves
many of relevant documents that are not retrieved with document-level retrieval. We
conclude that PARM is not only beneficial for dense but also for lexical retrieval.

5.3 RQ3: Paragraph-Level vs Document-level Labelled Training

As labelled in-domain data for document-to-document retrieval tasks is limited, we
ask: (RQ3) How can we train dense passage retrieval models for PARM for document-
to-document retrieval most effectively? We compare the retrieval performance for
BERT-based and LegalBERT-based dense retrieval models in Table 4, which are either
trained solely on the paragraph-level labelled collection or additionally trained on the
document-level labelled collection. The upper part of the table shows that for BERT
the additional training data on document-level improves the retrieval performance for
document-level retrieval, but harms the performance for PARM RRF and PARM VRRF.
For LegalBERT the additional document-level training data highly improves the perfor-
mance of document-retrieval. For PARM the recall is improved at higher cut-off values
(@500, @1000) for a cut-off. Therefore we consider the training on document-level
labelled data beneficial for dense retrieval based on LegalBERT. This reveals that it is
not always better to have more, potentially noisy data, for BERT-based dense retrieval
the training with fewer, but accurate paragraph-level labels is more beneficial for overall
document-to-document retrieval with PARM.

5.4 Analysis of Paragraph Relations

With our proposed paragraph aggregation retrieval model for dense document-to-
document retrieval we can analyze on which paragraphs the document-level relevance
is based. To gain more insight in what the dense retrieval model learned to retrieve on
the paragraph-level with PARM, we analyze which query paragraph retrieves which
paragraphs from relevant documents with dense retrieval with PARM and compare it
to lexical retrieval with PARM. In Fig. 4, a heatmap visualizes which query paragraph
how often retrieves which paragraph from a relevant document with PARM BM25 or
PARM DPR on the COLIEEDoc test set. As introduced in Sect. 4.1, the legal cases
in COLIEEDoc contain an introduction, a summary and claims as paragraphs. For the
introduction (I) and the summary (S) we see the paragraph relation for lexical and dense
retrieval that both methods retrieve also more introductions and summaries from the rel-
evant documents. We reason this is due to the special structure of the introduction and
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Table 4. Paragraph- and document-level labelled training of DPR. Document-level labelled train-
ing improves performance at high ranks for LegalBERT.

Model Retrieval Train COLIEEDoc val

Labels R@100 R@200 R@300 R@500 R@1K

DPR Retrieval

BERT Doc FirstP para .3000 .4018 .4566 .5371 .6598

Doc FirstP + doc .3800 .4641 .5160 .6054 .7211

PARM RRF para .5765 .6879 .7455 .8153 .8897

PARM RRF + doc .5208 .6502 .7100 .7726 .8660

PARM VRRF para .5786 .6868 .7505 .8132 .8909

PARM VRRF + doc .5581 .6696 .7298 .7970 .8768

LegalBERT Doc FirstP para .2447 .3286 .3853 .4598 .5657

Doc FirstP + doc .3881 .4665 .5373 .6187 .7361

PARM RRF para .6350 .7323 .7834 .8308 .8997

PARM RRF + doc .6086 .7164 .7561 .8394 .9114

PARM VRRF para .6396 .7325 .7864 .8310 .9023

PARM VRRF + doc .6098 .7152 .7520 .8396 .9128

Fig. 4. Heatmap for PARM retrieval with BM25 or DPR visualizing which query paragraph how
often retrieves which paragraph from a relevant document. I denotes the introduction, S the sum-
mary, 1.–10. denote the claims 1.–10. of COLIEEDoc test.

the summary which is distinct to the claims. For the query paragraphs 1.–10. we see that
PARM DPR seems to focus on to the diagonal different to PARM BM25. This means
for example that the first paragraph retrieves more first paragraphs from relevant doc-
uments than they retrieve other paragraphs. As the claim numbers are removed in the
data pre-processing, this focus relies on the textual content of the claims. This paragraph
relation suggests that there is a topical or hierarchical structure in the claims of legal
cases, which is learned by DPR and exhibited with PARM. This structural component
can not be exhibited with document-level retrieval.
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6 Conclusion

In this paper we address the challenges of using dense passage retrieval (DPR) in first
stage retrieval for document-to-document tasks with limited labelled data. We pro-
pose the paragraph aggregation retrieval model (PARM), which liberates dense passage
retrieval models from their limited input length and which takes the paragraph-level
relevance for document retrieval into account. We demonstrate on two test collections
higher first stage recall for dense document-to-document retrieval with PARM than with
document-level retrieval. We also show that dense retrieval with PARM outperforms
lexical retrieval with BM25 in terms of recall at higher cut-off values. As part of PARM
we propose the novel vector-based aggregation with reciprocal rank fusion weighting
(VRFF), which combines the advantages of rank-based aggregation with RRF [10] and
topical aggregation with dense embeddings. We demonstrate the highest retrieval effec-
tiveness for PARM with VRRF aggregation compared to rank and vector-based aggre-
gation baselines. Furthermore we investigate how to train dense retrieval models for
dense document-to-document retrieval with PARM. We find the interesting result that
training DPR models on more, but noisy document-level data does not always lead to
overall higher retrieval performance compared to training on less, but more accurate
paragraph-level labelled data. Finally, we analyze how PARM retrieves relevant para-
graphs and find that the dense retrieval model learns a structural paragraph relation
which it exhibits with PARM and therefore benefits the retrieval effectiveness.
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Abstract. Recommendation in the fashion domain has seen a recent
surge in research in various areas, for example, shop-the-look, context-
aware outfit creation, personalizing outfit creation, etc. The majority
of state of the art approaches in the domain of outfit recommendation
pursue to improve compatibility among items so as to produce high qual-
ity outfits. Some recent works have realized that style is an important
factor in fashion and have incorporated it in compatibility learning and
outfit generation. These methods often depend on the availability of fine-
grained product categories or the presence of rich item attributes (e.g.,
long-skirt, mini-skirt, etc.). In this work, we aim to generate outfits con-
ditional on styles or themes as one would dress in real life, operating
under the practical assumption that each item is mapped to a high level
category as driven by the taxonomy of an online portal, like outdoor, for-
mal etc. and an image. We use a novel style encoder network that renders
outfit styles in a smooth latent space. We present an extensive analysis
of different aspects of our method and demonstrate its superiority over
existing state of the art baselines through rigorous experiments.

Keywords: complete the look · neural networks · outfit
compatibility · style

1 Introduction

Recommendation of outfits having compatible fashion items is a well studied
research topic in the fashion domain [1,3,19,22,23,32,38]. Recent research in
this regard explores graph neural networks (GNN) to connect users, items and
outfits [6,21,26,37,39,42] based on historical purchases as well as personalization
[4,5,11,16,25,27,28] and explainability [7,8,24,40]. An apparent shortcoming of
the current research on compatibility learning is the complete disregard for the
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explicit style associated with an outfit. However in real life, a person, say a
user on an e-commerce platform, would typically have an explicit style in mind
while choosing items for an outfit. The main objective of this paper is to learn
compatibility between items given a specific style which in turn helps to generate
style-specific outfits.

We illustrate the importance of style-guided outfit generation through an
example figure. Three sets of outfits are shown in Fig. 1 with a white top-wear,
an item that a user likes but is doubtful about making the final purchase (the
reader is requested to ignore the values at the bottom of the figure for the time
being). The platform may have the capability to showcase or to provide the
user an option of generating outfits specific to various styles (this example show-
cases Athleisure, Formal and Casual). Given this setup, a style-guided algorithm
has two advantages: (a) it can generate compatible outfits from different styles,
hence, providing the choice to the user, and (b) it will not generate an out-
fit which may be otherwise compatible but not in accordance with the desired
style. The concept of jointly modelling for explicit style and compatibility is
lacking in the area of fashion recommendation and current research have mostly
treated them in separate silos. Having said this, one should be mindful of the
fact that a style-independent compatibility algorithm followed by a style classi-
fication method, say Style2Vec [17], can allocate outfits to their relevant styles
post the generation step. Thus in principle it is possible to combine existing work
to generate the outfits in Fig. 1. It is however easy to see that such a technique
is not efficient, since a large set of outfits need to be generated of which only a
subset will be relevant to a particular style.

Fig. 1. Given a top-wear liked by a user, a style-guided method is able to create outfits
conditional on various styles (athleisure, formal and casual) while a style-independent
compatibility model will typically generate outfits from dominant style. The values
indicate the style-conditional compatibility scores for each item. Note that for a given
style, the bottom-wear corresponding to that style gets the highest score.

In recent times there have been some attempts at connecting style and outfit
recommendation. Kuhn et al. [14] does not consider the presence of explicit styles
and rather learn compatibility while inferring the presence of latent style associ-
ated with each item. Jeon et al. [12] use extracted fashion attributes of full-body
outfit images for modelling style classification, ignoring compatibility learning in
the process. Learning outfit level theme or style from item descriptions, done by Li
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et al. [20] is a weak approach and fails when the descriptions do not exhaustively
cover different styles. Singhal et al. [33] models style between item pairs using an
autoencoder, thus treating style as an implicit idea. A common deficiency in all
of these works is the ability to generate style guided outfits. Theme Matters [15],
authored by Lai et al. is an archived work which comes closest to our model. It pro-
poses a supervised approach that applies theme-aware attention to item pairs hav-
ing fine-grained category tags (e.g., long-skirt, mini-skirt, etc.). The main handi-
cap of their approach is that the size of the model increases exponentially with the
number of fine-grained categories which was validated by our experiments.

We propose a Style-Attention-based Compatible Outfit Recommen-
dation (SATCORec) framework that uses high-level categories like top-wear,
bottom-wear etc. (general e-commerce taxonomy) and explicit outfit-level style
information (formal, casual, sporty etc.) to learn compatibility among items in an
outfit. It consists of two components, namely a Style-Compatibility-Attention Net-
work (SCA Net) [23] and a novel Style Encoder Network (SE-Net). SE-Net consid-
ers an outfit to be a set of items and makes use of the Set Transformer [18] archi-
tecture to model a style specific distribution for each outfit. We believe that we are
the first to adopt the set transformer, which is state-of-the-art technique to model
data points that have the properties of a set, in a framework to project an outfit
into a latent style space. Several variations of extracting a style representation from
the learnt distribution have been investigated. We make use of this representation
to estimate style-specific subspace attention within SCA Net which helps to learn
compatibility conditional on style. Finally, we use the beam search approach [2] to
generate outfits based on a parent item, a template and a style.

We have created an in-house dataset of size approx. 100k corresponding to
women’s western wear outfits, taking items from an e-commerce portal. Various
experiments have been performed on this data, comparing compatibility and
style-specific metrics between baseline methods and SATCORec. Our method
has been found to excel in compatibility learning, even when outfits are generated
conditional on style. Most importantly, SATCORec is seen to outperform all the
baselines in style metrics by a large margin.

2 Methodology

SATCORec is a deep learning model, developed to learn the compatibility
between lifestyle items present within an outfit, contingent on the style to which
the outfit belongs. The model first infers the style of the outfit which is subse-
quently used to learn compatibility between items within it.

We start with proposing a novel Style Encoder Network (SE-Net) which
learns a parametric probability distribution representing outfit style using the
set transformer [18], followed by a style classification task further downstream.
We extend the compatibility framework of Lin et al. [23] to allocate differential
importance to features extracted from the image of an item not just based on
category information but also on the outfit style, thus complementing SE-Net.
We have further modified the compatibility loss in [23] to incorporate style. The
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Fig. 2. Architecture of SATCORec. The lower module combines the SE-Net and Style
classifier and is trained separately. Item images of an outfit are fed to a CNN to
extract visual features which are subsequently passed onto a Set transformer to output
a Gaussian distribution. The style classifier is trained using either a random sample
or the parameters of the Gaussian. A linear combination of these two along with the
parameters of style-specific pooled Gaussian is passed as a feature in the SCA Net
module which learns compatibility via attention.

entire architecture is shown in Fig. 2. Details of SE-Net and the Style Classifier
are provided in Sects. 2.1 and 2.2 respectively. SCA Net and the modified com-
patibility loss are explained in Sect. 2.3. We explain the generation of outfits
based on individual or mixture of style in Sect. 2.4.

To introduce the notations, let us assume that m explicit styles, say S ≡
{s1, s2, . . . , sm}, are defined in an online portal recommending complete outfits
for a user. For an outfit Oi belonging to style sk (say Oi|sk), we assume one
of the items within the outfit to be the anchor item and the rest is defined as
query set. We call this <anchor item, query set> as a positive example of
compatibility. A negative instance is one where the anchor item is changed so
that it no longer stays compatible with the query set.

2.1 Style Encoder Network

The process of encoding style of an outfit starts with acknowledging the fact that
denoting an outfit as an ordered sequence of items, as is done in some recent
work [9,30], can be seen to be unrealistic. In this paper, we portray an outfit as
a set of items which serves two important properties, (i) items within an outfit
can be termed as permutation invariant, and (ii) an outfit is allowed to be of
varying length. This characterization makes the set transformer approach [18]
an appropriate candidate for our style encoder job. This approach consists of an
encoder and a decoder, both of which rely on attention mechanisms to produce
a representative output vector.
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The idea of representing an individual outfit style by a specific embedding is
apt for compatibility training but found to be lacking in the generation context.
Since outfit generation is hinged on a single parent item, a pre-defined template
and a style, we may not be able to pass any reference outfit to the style encoder.
To circumvent this problem, we make the assumption that each Oi|sk, is gener-
ated from some parametric continuous probability distribution thus representing
a latent style space. In this paper, we assume that this distribution is Gaussian,
although we acknowledge that it can be any other continuous distribution. The
parameters of this Gaussian distribution is estimated by the set transformer.
In this framework, as can be seen in Fig. 2, the images of an outfit are passed
through a pre-trained ResNet18 [10] and the corresponding visual feature vectors
(∈ IRds) are fed into the set transformer to provide estimates for the mean vector
and co-variance matrix (we assume this to be diagonal). To summarise, the set
transformer produces an unique Gaussian distribution for each outfit Oi|sk,

Oi|sk ∼ N (μi,sk , Ωi,sk ), where Ωi,sk = diag(σ2
il,sk

), l = 1, . . . , ds and μ ∈ IRds .

Here, we additionally impose the restriction that the inferred Gaussian dis-
tributions are close to the unit Normal N (0,1), so that the learnt style space
is smooth across the various styles. We achieve this via the KL divergence loss
defined in Eq. 1.

LStyle = KL(N (μ̂i,sk
, Ω̂i,sk

) || N (0,1)) (1)

Figure 3 demonstrates a t-SNE visualisation of random samples drawn from
outfit specific Gaussians for 4 different styles. A common and smooth represen-
tation space is formed after introducing the KL-loss even though clusters are
maintained. A smooth space is necessary particularly in the generation of outfits
with style mixing, as we will see later.

Fig. 3. t-SNE plots of the sample vectors (sOi,sk ) for 4 styles (Casual, Formal, Summer,
Party).The plot on the left iswhen these vectors are generatedwithout theKL-divergence
loss. Existence of a smooth yet identifiable style latent space is evident in the plot on the
right when we introduce the loss. Best viewed in colour. (Color figure online)

The output emanating from the set transformer is passed on for a style
classifier job. Depending on the specific variation, an outfit Oi|sk, we pass either
the parameters of the Gaussian (θi,sk

≡ [μ̂i,sk
, Ω̂i,sk

]) or a random sample from
the Gaussian sOi,sk

∼ N (μ̂i,sk
, Ω̂i,sk

) to the style classifier. We have elaborated
on the exact process in Sect. 2.2.
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2.2 Style classifier

The SE-Net output vector is passed as a feature to an MLP used to classify the
style of the outfit. This supervision ensures that SE-Net captures specific and
correct information about the outfit style. The style classification module solves
an m-class classification problem using an MLP with N layers. The classification
loss is thus,

Lclassif = −
m∑

i=1

ysk
log(p̂(Oi | sk)) (2)

where ysk
= 1, if outfit Oi has style sk and p̂(Oi | sk) = MLP(sOi,sk

or θi,sk
).

The SE-Net and style classifier are trained jointly as a separate module. Post
training, we extract a vector (rOi,sk

) from this module as style representation of
the outfit Oi|sk to be passed as a feature to SCA Net. Further, a global style rep-
resentation for a style sk is given by a pooled Gaussian distribution, aggregating
over the parameters of all outfits belonging to that style: ˆ̂μsk

= 1
nsk

∑nsk
i=1 μ̂i,sk

and ˆ̂
Ωsk

= diag(
ˆ̂
σ2

l ) where ˆ̂σ2
l = 1

n2
sk

∑nsk
i=1 σ̂2

il. These global distribution parame-

ters will be used again in the outfit generation step. Equation (3) shows a generic
form of style representation vector,

rOi,sk
≡

[
λ1 sOi,sk

+ λ2 μ̂i,sk
+ λ4

ˆ̂μsk
, λ3Ω̂i,sk

+ λ5
ˆ̂
Ωsk

]
. (3)

SATCORec variations, defined in Table 1, are created by setting values for
each λj . Also note that, we pass sOi,sk

to the style classifier for SATCORec-
r, SATCORec-( pm+gm) and SATCORec-(r+gm) and θi,sk

for the rest. It is
possible to set λ as unknown and learn it.

Table 1. Variations of SATCORec that have been experimented with.

λ1 λ2 λ3 λ4 λ5 λ1 λ2 λ3 λ4 λ5

SATCORec-r 1 0 0 0 0 SATCORec-p 0 1 1 0 0

SATCORec-(pm+gm) 0 λ 0 1 0 SATCORec-(p+g) 0 λ λ 1 1

SATCORec-(r+gm) λ 0 0 1 0

2.3 SCA Net

We have extended the CSA-Net framework developed by Lin et al. in [23] to
incorporate the concept of style while learning item-item compatibility. In [23],
the image of an anchor item (Ia) within an outfit is passed through a ResNet18,
which acts as the CNN backbone. The embedding output vector (x) of size 64
is multiplied by k learnt masks (m1, . . . ,mτ ) that help to learn the subspaces.
The anchor item category (ca) and a query set item (referred to as target) cat-
egory (ct) information are consumed as 1-hot encoded vectors to estimate a set
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of subspace attention weights (ω1, . . . , ωτ ). A weighted average of the masked
embeddings results in the final embedding of the anchor item.

We simply extend the CSA-Net algorithm by providing the style representa-
tion (rOi,sk

) from SE-Net as an additional input in the estimation of attention
weights. Thus, we define the final embedding as,

fsk

Oi,a
= ψ(Ia, ca, ct, rOi,sk

) =
τ∑

j=1

(x � mj) × ωj,rOi,sk
.

Here, ψ(·) represents the SCA network.
The SCA net uses the triplet loss for learning compatibility, similar to some

current methods [35,36]. We represent the average distance between a positive
item and remaining items in the outfit as Dsk

p , same as CSA-Net. The multiple
distances corresponding to the negatives are aggregated as Dsk

N . The overall
compatibility loss conditional on style is thus defined as,

Lcompat = max(0,Dsk
p − Dsk

N + m), (4)

We introduce one more loss function to account for penalisation when the
wrong style is specified for an outfit. Given Oi|sk, we pass the style representation
vector corresponding to a different style sq, and compute the same distance
metrics as above, and use them in the following loss function:

Lstylecompat = max(0,Dsk
p − Dsq

p + m). (5)

The overall loss is defined as the weighted sum of these four individual losses:

Loverall =
∑

p

αp Lp, p ∈ {KL, classification, compatibility, style-compatibiliy}

2.4 Outfit Generation

A globally optimal outfit generation task is non-trivial since it is infeasible to
look into all possible combinations. An approximate solution based on the well
known beam search method [43] is provided in this case. Note that to create an
outfit for a user based on a chosen parent item, a given template and a specific
style, we need a style representation vector to rank compatible items. If there
is a reference outfit present, then this job is trivial. In the alternative case, we
assume the pooled parameters to be representative of style for all the variations
within SE-Net. To generate an outfit based on mixing of styles, we simply pass
a linear combination of style representation vectors (αrOi,sk

+βrOi,sl
) and rank

compatible items.

3 Experimental Evaluation

In this section, we elaborate the dataset, metrics, baselines, implementation
details and the different results testing the compatibility as well as style preser-
vation power of the algorithms.
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Dataset Creation and Metrics: We have annotated ∼100K outfits in two
stages. At first, we worked with fashion experts to get approximately 5000 out-
fits curated with 8 style annotations, namely [party, outdoor, summer, formal,
athleisure, winter, causal, celeb]. Each annotated outfit consists of the images of
individual items and and its style. There 6 high level item categories, [top-wear,
bottom-wear, foot-wear,accessory, clothing-accessory, wholebody]. In the
second stage, we augmented the outfit set using a simple attribute based simi-
larity algorithm, where we used attributes like brand, colour, pattern, sleeve, etc.
to get top-k similar products for an item in an outfit. Given an outfit, we removed
one item from the original outfit and gave approx. top-10 similar candidates as
options for replacement to human taggers for verification of compatibility and
style of the new outfit. We repeated this for all item in an outfit and for all outfits
in the outfit set. This operation expanded the data to ∼100K outfits, which are
then divided into train, test and validation splits in 70:20:10 ratio. The overall
frequency for each style type is given in Table 2.

Fill-in-the-blank (FITB) [36] and Compatibility AU-ROC are well known
metrics used to evaluate an outfit compatibility model [9,29]. Both these
approaches involve creating negative items corresponding to each item of an
outfit. To test performance at various levels of difficulty, we generate two types
of negative items, soft negatives where negative sampling is done from existing
categories; and hard negatives where we sample negatives from more fine-grained
categories such as tops, t-shirts, heels etc. For each outfit, 5 replications for neg-
ative sampling are done and the mean metric values are reported. Note that the
fine-grained category information is not used for training.

Table 2. Distribution of curated outfits across different styles

Party Outdoor Summer Formal Athleisure Winter Casual Celebrity Total

# of Train Outfits 8183 6280 7061 5136 16232 16028 5194 5424 69538

# of Valid Outfits 1174 1001 1204 840 1981 2135 791 808 9934

# of Test Outfits 3018 1937 2551 1648 2506 4695 2034 1480 19869

Implementation Details: We used ResNet18 as the CNN backbone to extract
visual features in both the modules of SATCORec. We do not train the entire
ResNet18 but instead only the last convolutional block and an additional fully
connected layer. Embeddings are of size 64 as is conventional in other state-of-
the-art compatibility learning methods [23,36].

Inside SE-Net, we use the SAB Set Transformer [18] with hidden dimension
dz = 32 and 2 heads. We use 2 fully connected MLP layers for classification.
An Adam optimizer [13] with mini batches of 128 outfits and a learning rate
of 5 × 10−5 is used. Note that, we have trained and frozen the SE-Net module
separately. We used the Adam optimizer again to train SCA Net with a mini-
batch size of 32 triplets, learning rate of 1×10−5 and 5 subspaces. The Attention
network first transforms the concatenated one-hot-encoded category and the
style representations to 32 dimensions each using a single fully connected layer
and then concats the two to pass it to 2 fully connected layers which output the
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5 subspace attention weights. The margin within the triplet loss was set to 0.3
and the weights for Lcompat,Lstylecompat and LStyle were set to 1, 0.5 and 0.05
respectively.

Baselines: We compare the performance of SATCORec against that of state-
of-the-art techniques on the basis of the multiple metrics to demonstrate its
efficacy in style conditional outfit generation and compatibility learning. Note
that we use the same CNN backbone and embedding size for all the baselines.
Additionally, the same 6 categories have been used for all the methods, even
for those requiring fine-grained category information. The following are used as
baselines (a). CSA-Net [23], (b). Type Aware [36], (c). TransNFCM [41],
(d). Theme Matters [15], (e). BPR-DAE [34]. For each of the methods we
follow the same architecture parameters which the paper specifies. Except Type
aware, whose code was available, we have implemented all of the baselines from
scratch. For Theme Matters we have first taken the type aware code and built
upon it as is defined in the paper. In BPR-DAE, the method is specified for
only for 2 categories, and we extend it for outfits with multiple items.

Table 3. Comparison of compatibility learning for the baselines and SATCORec vari-
ations. We compute FITB and compatibility AU-ROC with hard and soft negatives
separately. The style entropy for each methods are also tabulated. Using parameters
or random sample from outfit style specific Gaussian is clearly the leader with respect
to compatibility measures.

Method FITB Compat. AU-ROC Entropy

HN SN HN SN

TypeAware 30.7 ± 0.17 34.85 ± 0.25 52.62 ± 0.06 55.51 ± 0.21 0.49

BPR-DAE 31.16 ± 0.15 31.21 ± 0.12 55.83 ± 0.09 55.76 ± 0.08 0.43

TransNFCM 31.53 ± 0.17 36.47 ± 0.33 51.84 ± 0.07 57.78 ± 0.08 0.50

Theme Matters 38.53 ± 0.17 63.2 ± 0.21 85.4 ± 0.15 93.85 ± 0.1 0.61

CSA-Net 53.14 ± 0.17 67.05 ± 0.25 94.42 ± 0.03 96.3 ± 0.03 0.48

SATCORec-r 53.32 ± 0.18 66.63 ± 0.15 94.47 ± 0.02 95.99 ± 0.04 1.09

SATCORec-p 52.06 ± 0.10 67.31 ± 0.14 94.78 ± 0.02 96.47 ± 0.02 0.97

SATCORec-(p+g) 46.56 ± 0.05 61.03 ± 0.17 88.41 ± 0.02 90.10 ± 0.02 0.78

SATCORec-(r+gm) 47.61 ± 0.12 60.70 ± 0.06 88.88 ± 0.06 91.34 ± 0.02 0.12

SATCORec-(pm+gm) 49.73 ± 0.05 63.02 ± 0.11 90.96 ± 0.05 92.25 ± 0.02 0.63

3.1 Compatibility Experiment

FITB and compatibility AU-ROC are computed separately on the hard and soft
negative datasets for variations of SATCORec and the baselines and presented in
Table 3. A preliminary sweep of the results clearly differentiates the performance
of Theme Matters, CSA-Net and SATCORec variations from the rest. CSA-Net
is based on subspace based attention mechanism, which is the state-of-the-art
in learning outfit item compatibility, and SATCORec makes use of the same
framework. It is surprising that Theme Matters performs better than TypeAware
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since both have the same compatibility learning framework. This performance
bump is caused due to these methods incorporating complete outfit loss in their
learning [23].

SATCORec-p is the best performing model in the group, winning in 3 out of
4 cohorts. We think that the outfit-level Gaussian parameters capture sufficient
information about the parent style of the outfit as well as variations within.
The random sampling of the space can also capture the basic information of a
style category, resulting in the healthy performance of SATCORec-r. The other
variations do not perform well, probably because of ignoring individual or overall
uncertainty.

3.2 Style Experiments

Given that our methods show better performance than others in compatibility
learning, we now compare their performance vis-a-vis style. We look at two spe-
cific style comparison metrics and discuss a characteristic that our method has,
but is absent in style-independent methods. Statistical comparisons for our met-
rics and further qualitative results will be added over time in this link: https://
harshm121.github.io/project pages/satco rec.html.

Style Entropy: A user would get maximum utility if her top-wear can be part of
outfits belonging to a large number of style categories, i.e. the portal is able to rec-
ommend from a wide range of styles. Say given an anchor item, we want to recom-
mend a total of n outfits from k styles. SATCORec, using the style-handle, can pro-
duce a ranked lists of outfits conditioned on each of the k styles. We choose the top
�n/k� or �n/k	 outfits from each style specific list. Style independent methods will
get its top-n outfits as per the general compatibility rank, thus oblivious to their
reference styles. We use the entropy measure on style to compare the final lists.
A higher entropy would mean that the compatibility framework is not restrictive
to a single or small number of styles. For this, we select the list of all those outfits
which have the same anchor item, but belong to different styles. From this list, we
pick those instances where SATCORec is able to correctly predict the items of an
outfit given a style. We then choose the top outfit from each each style, thus forcing
n = k = 6, and present the result in Table 3, column Entropy. Again, SATCORec-
r (slighlty better) and SATCORec-p outperform all other methods, implying that
they are able to recommend outfits corresponding to most of the styles feasible
for the anchor item. On manual inspection we also find that style-independent
methods are biased towards the most prevalent style in the training data set.
Henceforth, we will consider only the top performing variations, SATCORec-r and
SATCORec-p.

Style-Specific Selection Accuracy and Ranking: SACTORec-r is also seen
to be superior in some other metrics we compute like MRR, Avg rank etc. Table 4
- Metric captures this for the three style-dependent methods. Given a method,
we have taken each outfit and calculated the compatibility scores conditional

https://harshm121.github.io/project_pages/satco_rec.html
https://harshm121.github.io/project_pages/satco_rec.html
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on all the available styles. We record the outfit rank corresponding to the style
it actually belongs compute the metrics based on them. Figure 1 presents an
example for an anchor top-wear and the style conditional compatibility scores
for each of the outfits comprising only of bottom-wear. We see that the scores
are highest (top ranked) for the style in which the outfit actually belongs.

OtherMetrics: We make use of the list of outfits used in the calculation of style
entropy again to understand the efficacy of the algorithms. Note that this list has
outfits from different styles but common anchor item. For each such anchor item,
conditional on the style, we check the top-1 accuracy of selecting the right child
item in the outfit. To understand accuracy, we refer again to Fig. 1, where accuracy
for Bottomwear1 equals 1 since the inferred rank corresponding to actual style is
lowest. Table 4 - Parent-Child shows the results for various parent-child category
combinations. Here SATCORec-p performs much better, although when we were
checking column-wise ranking, it was behind SATCORec-r.

Table 4. The upper section of the table contains metrics on outfit ranks conditional on
style while the lower section provides the percentage of correct selection of compatible
item for anchor items with outfits across various styles.

SATCORec-r SATCORec-p Theme Matters

Metric MRR of correct style 0.8844 0.7676 0.6213

Correct style on 1st rank 80.94 59.36 42.37

Correct style in top 3 ranks 95.00 95.10 76.51

Avg rank of the correct style 1.4 1.7 2.5

Parent-child Topwear - Bottomwear 66.74 77.33 50.32

Bottomwear - Topwear 72.02 86.65 57.92

Topwear - Footwear 65.79 75.97 59.73

Bottomwear - Footwear 69.81 80.13 62.79

Style-Specific Fine-Grained Category Selection in Outfit Generation:
For each style, there can be multiple child-items which may match an anchor
item, however, a good recommendation system would mostly output the items
which differentiate the outfit from other styles. To check this phenomenon, for
each style, we determine the most discriminating child-items [31], in terms of
fine-grained categories e.g. skirt is a fine-grained category in bottomwears which
most prominently shapes a casual style. Note that this is different from the most
popular item across styles, say for example jeans. We posit that a superior algo-
rithm would more frequently output such discriminative categories as a likely-
match for a style. Style specific and overall results are shown in Table 5, we see
in almost all the cases, SATCORec’s output chooses discriminative fine-grained
categories significantly higher number of times than the other baselines.
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Table 5. Comparison of style-specific fine-grained categories chosen by different meth-
ods.

Method Party Outdoor Summer Formal Athleisure Winter Casual Celeb Overall

TypeAware 28.33 29.22 10.24 33.54 19.52 18.10 2.67 15.92 19.30

BPR-DAE 28.19 17.07 17.74 36.26 31.64 29.05 23.42 19.05 25.64

TransNFCM 12.78 25.72 3.09 23.84 30.01 21.21 0.00 27.86 18.36

CSA-Net 34.63 26.79 13.98 35.44 28.69 26.94 11.00 27.11 25.38

Theme Matters 34.26 24.20 7.48 24.68 14.21 30.05 18.00 9.95 21.39

SATCORec-r 50.56 32.12 19.84 45.78 38.65 39.31 18.17 25.62 34.27

SATCORec-p 38.59 21.89 23.06 47.26 37.18 40.92 24.09 28.09 32.96

Blending of Styles: We have also checked the ability of SATCORec to generate
outfits that are a linear combinations of different styles. We observe a smooth
blending of the styles, also a higher (lesser) weight of a particular style (in the
linear combination) results in the presence of more (less) items resembling that
style in the generated outfits (Fig. 4). We will provide an web-based app along
with the final version of the paper if accepted where a user would be able to
explore different such combinations.

Fig. 4. Here we demonstrate the ability of our method to mix styles in outfit generation.
Given the anchor item from top-wear, the top and bottom rows correspond to outfits
generated from the two very separate styles: Party and Formal. The outfits in between
them are generated by passing a weighted style vector for each of those two styles,
thereby creating a nice blend.
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4 Conclusion

The novelty of the paper lies in developing a Style-Attention-based Compat-
ible Outfit recommendation and generation framework, SATCORec, utilizing
high-level categories. SATCORec employs a Style-Compatibility-Attention Net-
work - SCA Net and a Style Encoder Network - SE-Net. The SE-Net uses the Set
Transformer to extract outfit style features, which is used to provide style-specific
sub-space attention to individual items. The extensive style experiments estab-
lish the power of SATCORec in recommending with high accuracy a broader
collection of compatible outfits across different styles to users. More interest-
ingly, SATCORec chooses items which can make a pronounced style statement.
Since in this paper we have focused on compatibility and employed a traditional
beam search for outfit generation, an immediate future work would be to explore
more sophisticated generation algorithms.
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Abstract. We propose the task of automatically identifying papers used as base-
lines in a scientific article. We frame the problem as a binary classification task
where all the references in a paper are to be classified as either baselines or non-
baselines. This is a challenging problem due to the numerous ways in which a
baseline reference can appear in a paper. We develop a dataset of 2, 075 papers
from ACL anthology corpus with all their references manually annotated as one
of the two classes. We develop a multi-module attention-based neural classifier
for the baseline classification task that outperforms four state-of-the-art citation
role classification methods when applied to the baseline classification task. We
also present an analysis of the errors made by the proposed classifier, eliciting the
challenges that make baseline identification a challenging problem.

Keywords: Baseline recommendation · Dataset search · Scientific documents ·
Faceted search

1 Introduction

One of the common criticisms received by the authors of a scientific article during the
paper review is that the method proposed in the submitted paper has not been com-
pared with appropriate baselines. The reviewers often suggest a list of existing papers
which, according to them, should have been used as baselines by the submitted work.
Oftentimes, the authors find the suggestions unexpected and surprising as they have
never encountered these papers before. The reasons behind the lack of awareness of the
state-of-the-art of a specific research area are two-fold – (i) the authors have not done
due diligence to explore the field completely, and/or (ii) due to the exponential growth
of the number of papers published per year, many relevant papers get unnoticed. Both
these problems can be addressed if we have a recommendation system that collects all
the papers published in a certain field, analyzes them, and recommends a set of selected
papers for a given topic/task that needs to be considered for the purpose of compari-
son. The current work is the first step towards the goal of building such an intelligent
baseline recommendation system that can assist the authors to find and select suitable
baselines for their work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 51–64, 2022.
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With the availability of online tools such as CiteSeerX [33], Google Scholar [16],
and Semantic Scholar [15], it has become convenient for researchers to search for
related articles. However, these search engines provide flat recommendations and do
not distinguish between the recommended papers based on how and why the recom-
mendations are relevant to the query. For example, if the query is ‘citation classification
models’, how do we know, among the set of recommendations returned by the search
engines, which one would be used to understand the background of the area, which one
to explore to know the datasets used in the past to address the problem, which one to
use for the purpose of comparison, etc. In short, the existing systems do not provide
faceted recommendations where a facet can determine the role of a recommendation
with respect to the query.

In order to build an intelligent baseline recommendation system, the first require-
ment is the capability to automatically identify the references in a given paper used by
the paper as baselines. This capability allows creating the training corpus as well as
automatically process the ever-growing stream of new papers. One may think that this
problem of automatic baseline identification is trivial as a baseline reference is likely to
be cited in the experiment and/or the result sections of the paper; therefore, the position
information of a reference may give a precise cue about its usage in the paper. Sur-
prisingly, we observe that this assumption does not work satisfactorily – out of 2, 075
papers we analyze in this work, the probability of a baseline citation to appear in the
experiment section is 0.73. It indicates that around 30% baseline references lie in some
other sections of the paper. More importantly, only 23% of the references placed in the
experiment section are actually used as baselines in the paper. We further observe that
only 7.13% papers have keywords such as ‘baseline’, ‘state-of-the-art’, ‘gold standard’
present in the headings of different sections or subsections (see discussion on error anal-
ysis in Sect. 5 for the other challenges). These obstacles make the problem of accurately
classifying references of a given paper into baselines or non-baselines non-trivial.

The problem of baseline classification is closely related to the task of citation role
classification studied extensively in the literature. Notable contributions include the
works by Chakraborty et al. [5] who proposed a faceted scientific paper recommenda-
tion system by categorizing the references into four major facets; Dong and Schfer [12]
who proposed an ensemble model to figure out different roles of references in a paper; ;
Jurgens et al. [18] who unfolded the evolution of research in a scientific field by under-
standing why a paper is being cited; Cohan et al. [7] who outperformed the methods
developed by Jugens et al. [18] in the task of citation role classification. (See Sect. 2
for more details of the related literature.) However, none of these methods are explic-
itly developed to address the problem of baseline recommendation. Our experiments
(Sect. 5) reveal that these methods do not work well to distinguish the baseline refer-
ences from other references in a given paper.

In this paper, we consider the ACL Anthology dataset, select a subset of papers and
employ human annotators to identify the references corresponding to the baselines used
in the papers (Sect. 3). We present a series of issues encountered during the annotation
phase that illustrate the non-trivial nature of the problem. We then develop a multi-
module attention (MMA) based neural architecture to classify references into baselines
and non-baselines (Sect. 4). We also adopt state-of-the-art approaches for citation role
classification for a fair comparison with our methods. A detailed comparative analysis
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shows that the neural attention based approach outperforms others with 0.80 F1-score.
We present a thorough error analysis to understand the reasons behind the failures of the
proposed models and identify challenges that need to be addressed to build better base-
line identification systems (Sect. 5). The dataset developed and code for our proposed
model is available at https://github.com/sumit-research/baseline-search.

2 Related Work

Understanding the Role of Citations. Stevens et al. [25] first proposed that papers are
cited due to 15 different reasons. Singh et al. [24] presented the role of citation context
in predicting the long term impact of researchers. Pride and Knoth [22] and Teufel et
al. [28] attempted to classify the roles of citations. Chakraborty and Narayanam [6] and
Wan and Liu [32] argued that all citations are not equally important for a citing paper,
and proposed models to measure the intensity of a citation. Doslu and Bingol [13] anal-
ysed the context around a citation to rank papers from similar topics. Cohen et al. [8]
showed that the automatic classification of citations could be a useful tool in systematic
reviews. Chakraborty et al. [5] presented four reasons/tags associated with citations of
a given paper – ‘background’ (those which are important to understand the background
literature of the paper), ‘alternative approaches’ (those which deal with the similar prob-
lem as that of the paper), ‘methods’ (those which helped in designing the model in the
paper) and ‘comparison’ (those with which the paper is compared). Therefore, one can
simply assume that the citations with ‘comparison’ tag are the baselines used in the
paper. Dong and Schfer [12] classified citations into four categories i.e., ‘background’,
‘fundamental idea’, ‘technical basis’ and ‘comparison’. They employed ensemble learn-
ing model for the classification. We also consider this as a relevant method for our
task assuming that the citations tagged as ‘comparison’ are the baselines of the paper.
Chakraborty and Narayanam [6] measured how relevant a citation is w.r.t the citing
paper and assigned five granular levels to the citations. Citations with level-5 are those
which are extremely relevant and occur multiple times within the citing paper. We treat
this work as another competing method for the current paper by considering citations
tagged with level-5 as the baselines of the citing paper. Jurgens et al. [18] built a clas-
sifier to categorize citations based on their functions in the text. The ‘comparison or
contrast’ category expresses the similarity/differences to the cited paper. This category
might include some citations which are not considered for direct comparison, but they
are the closest category to be considered as baseline. However, we have not compared
with this method as as the proposed approach by Cohan et al. [7], which is a baseline
for the current work, already claimed to achieve better performance than this classifier.
Su et al. [26] used a single-layer convolutional neural network to classify citations and
showed that it outperforms state-of-the-art methods. We also consider this as a baseline
for our work. Cohan et al. [7] used a multi-task learning framework (using BiLSTM and
Attention) and outperformed the approach of Jurgens et al. [18] on the citation classifi-
cation task. Their ‘results comparison’ category can be thought of as equivalent to the
baseline class. This model achieved state-of-the-art performance on citation classifica-
tion and we consider it as another baseline for our work.

Recommending Citations for Scholarly Articles. A survey presented by Beel et al. [1]
showed that among 200 research articles dealing with citation recommendation, more

https://github.com/sumit-research/baseline-search
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than half used content-based filtering on authors, citations and topics of the paper. Few
such models include topic-based citation recommendation [27] and content-based rec-
ommendation [3,11] that work even when the metadata information about the paper
being queried is missing. Yang et al. [34] used the LSTM model to develop a context-
aware citation recommendation system. Recently, Jeong et al. [17] developed a context-
aware neural citation recommendation model. While there are a lot of new methods
coming in the domain of citation recommendation systems, the problem of identifying
and recommending baselines of a paper has been untouched. Citation recommendation
can help researchers to efficiently write a scientific article, while baseline recommen-
dation can further enable to get a glance at the work done in a particular domain.

3 Dataset for Baseline Classification

We used ACL Anthology Reference Corpus (ARC) [4] as the base data source for
preparing the annotated dataset for our study. The ARC corpus consists of scholarly
papers published at various Computational Linguistics up to December 2015. The cor-
pus consists of 22, 875 articles and provides the original PDFs, extracted text and logical
document structure (section information) of the papers, and parsed citations using the
ParsCit tool [9].

The complete ARC corpus contains all types of papers presented at various confer-
ences under the ACL banner such as long and short research papers, system and demon-
stration papers, workshop and symposium papers. We noted that a significant fraction
of short and workshop papers, and system and demonstration papers are not useful for
our purpose as these papers often do not contain rigorous comparative evaluation. They
generally are position papers, describe tools/systems, or work in progress. Therefore,
we discarded such articles from the dataset by removing papers having keywords such
as short papers, workshops, demo, tutorial, poster, project notes, shared task, doctoral
consortium, companion volume, and interactive presentation in the title/venue fields of
the papers. This filtering resulted in a final set of 8, 068 papers.

We recruited two annotators, A1 and A2, for annotating the references of papers as
baseline references.A1 was a senior year undergraduate student, andA2was a graduate
student. Both the annotators were from the Computer Science discipline and had a good
command of the English language (English being the primary medium of education).

Table 1. Summary of the annotated dataset. Annotators A1 and
A2 provided annotations for a total of 1, 200 and 1, 000 papers,
respectively.

# Papers # Baseline
references

# Non-baseline
references

Annotator 1 (A1) 1,200 3,048 29,474
Annotator 2 (A2) 1,000 2,246 24,831
Common Papers 125 305 3,252
Unique Papers 2,075 4,989 51,053

A1 provided annotations
for a total of 1, 200 docu-
ments selected randomly
from the filtered list of
8, 068 papers.A2 worked
independently of A1 and
provided annotations for
a total of 1, 000 papers.
The set of documents
annotated by A2 had 875
randomly selected new
documents from the filtered ARC corpus and 125 documents chosen randomly from
the documents annotated by A1. We used this set of 125 papers annotated by both A1
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Table 2. Distribution of papers in the dataset across different time periods.

1980–2000 2001–2005 2006–2010 2011–2015

# Papers 125 179 589 1,182

# References 2,339 3,534 13,976 36,193

# Baselines 192 406 1,295 3.096

Mean references per paper 18.71 19.74 23.73 30.62

Mean baselines per paper 1.53 2.27 2.20 2.62

and A2 to measure the inter-annotator agreement between them. The value of Cohen’s
Kappa was found to be 0.913 indicating near-perfect agreement between the two anno-
tators.

We now discuss some of the challenges faced and observations made by the anno-
tators while examining the assigned papers. The annotators noted that there were no
associated citations for the baseline methods in the paper in many cases. This often
happens when a well-established technique (such as tf-idf for document retrieval) or a
simple method (such as a majority class baseline, a random classifier, a heuristic as a
baseline) is used as a baseline. Second, there were cases where the authors reported that
it was difficult for them to compare their methods with other published techniques due
to the novelty of the problem making published techniques unsuitable for their task.
Finally, there were many cases where ideas from multiple papers were combined to
create a suitable baseline for the task considered, making it hard and challenging to
identify the baseline reference.

Table 1 summarizes the statistics of the annotated dataset. The final dataset consists
of 2, 075 unique papers. These papers have a total of 56, 052 references, out of which
4, 989 references were marked as baselines, and the remaining 51, 053 references were
non-baseline references.

3.1 Observations and Characteristics of the Dataset

Year-wise Distribution of Annotated Papers: Table 2 presents the year-wise distri-
bution of the 2, 075 papers in the final dataset. The oldest paper in the dataset is from
1980, and the latest paper is from 2015. Table 2 shows that papers published in the
period 2011− 2015 cite more papers and have more baselines on an average compared
to the papers published in the earlier years. This observation is consistent with the trend
of an increased number of citations in papers [30] and the increased focus on empirical
rigor and reproducibility.

Section-wise Distribution of Baseline Citations: We now present the distribution of
baseline references in different sections of papers in the dataset. Due to the diversity
of writing styles and author preferences, there are no standardized section headers that
are used in literature, and it is common to use simple rules, regular expressions [10],
or simple feature-based classification methods [29] to identify section headers from
document text. We use a simple keyword-based approach to group all the sections into
five categories – Introduction, Related Work, Methods and Results, Conclusions, and
Others. A section of a paper containing a keyword as specified in Table 3 would be
mapped to its corresponding section category.
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Table 3. List of keywords used to identify the five section categories.

Section Heading Keywords

Introduction introduction

Related Work related work; background; previous work; study

Methods and Results method; approach; architect; experiment; empiric; evaluat; result;
analys; compar; perform; discussion

Conclusion conclusion; future work

Other sections everything else

Table 4 reports the distribution of baseline citations in different sections of the
papers in our dataset. Note that a paper can be cited multiple times in the citing
paper. Thus, a given citation can occur in multiple sections in a paper. We provide
both the statistics, i.e., the total number of baseline citations in a section and the
number of baseline citations that appear exclusively in the section in parenthesis.

Table 4. Distribution of baselines and non-
baselines in different sections. Numbers in
parentheses are the count of baselines appearing
exclusively in the section.
Section # baselines #non-baselines
Introduction 2,138 (117) 13,930 (7,360)
Related 1,755 (105) 14,917 (9,217)
Experiment 3,664 (534) 11,939 (6,173)
Conclusion 203 (3) 873 (360)
Other Sections 1,769 (181) 13,283 (7,646)

Interestingly, we note that there are
a few cases where the baseline cita-
tions appear exclusively in the Introduc-
tion (117) and Conclusion (3) sections.
One would expect the baseline citations
not to appear exclusively in these sec-
tions. However, it turned out that the cita-
tions occurring exclusively in the con-
clusion section were part of a compari-
son table placed at the end of the paper.
Therefore, they were counted under the conclusion section. Further, the citations
in the Introduction and Related Work section were given an alias name when
they were first mentioned in the paper (e.g. LocLDA for location based LDA, see
Table 8 for example) and were referred to by the aliases in other sections. There-
fore, their presence in other sections of the paper could not be easily counted.

Table 5. Precision and recall values obtained by
a naı̈ve classifier that considers all citations in a
specific section or table as baseline citations.

Section Heading Precision Recall
Introduction 0.13 0.42
Related 0.10 0.35
Experiment 0.234 0.734
Conclusion 0.18 0.040
Other Sections 0.11 0.35
Table 0.72 0.18

From Table 4, we observe that most
of the baseline citations appear in the
experiment section. Therefore, classify-
ing a reference as a baseline if it occurs
in the experiment section may be con-
sidered as a naive solution and a very
simple baseline. In Table 5, we present
the results obtained by hypothetical clas-
sifiers that classify all the citations in a
given section as a baseline. Note that we
also report numbers for a classifier that considers all citations appearing in a Table as
baselines.

We note that while such a simple classifier will be able to recover a large number of
baselines from the Experiment section (high recall value of 0.734), it will miss out on
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Fig. 1. Our proposed multi-module attention based neural classification model for the baseline
classification task.

about 30% baselines and will suffer from a very high number of false positives (very
low precision of 0.234). An opposite trend can be observed in the case of Tables – most
citations in Tables are baseline references (high precision of 0.72); however, due to a
very low recall (0.18), most of the baselines are missed by this simple classifier.

4 Multi-module Attention Based Baseline Classifier

We now describe our approach for classifying the citations of a paper as baselines. Our
model utilizes contextual and textual signals present in the text around a citation to
classify it as a baseline. We use Transformer encodings [31] to capture the nuances of
the language and uses neural attention mechanisms [31,35] to learn to identify key
sentences and words in the citation context of a citation. Further, given the vagaries of
the natural language and varied writing styles of different authors, we also utilize non-
textual signals such as popularity of a paper (in terms of its overall citations) to have a
more robust classifier.

Figure 1 describes our proposed neural architecture for the baseline classification
task. The proposed architecture is designed to capture different context signals in which
a paper is cited to learn to differentiate between baselines and non-baseline citations.
The proposed model utilizes a Transformer-based architecture consisting of three mod-
ules to handle different signals and uses the representations obtained from these mod-
ules together to classify a citation into a baseline.

The first module (top row in Fig. 1) tries to capture the intuition that the context
around a citation in the paper can help in determining if the cited paper is being used as
a baseline or not. Therefore, we take a fixed size context window and pass it through a
hierarchical attention network [35] that learns to identify and focus on sentences in the
context window that can provide contextual clues about the cited paper being a baseline
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Table 6. Cue words (after stemming) from the baseline contexts.

among base origin precis modifi highest implement extend
signific maximum metric higher experi baselin fscore strategi
accord compar overal perform best previou model evalu correl
recal result calcul standard stateoftheart achiev figur
accuraci gold comparison method top yield procedur obtain
outperform score significantli increas report

or not. Note that while selecting the context window, we ensure that all the sentences
lie in the same paragraph as the citation under consideration. We select the size of the
context window to be 10 sentences and for each sentence in the context window, we
consider the sentence length to be 50 tokens. In case there are fewer sentences in a
paragraph, we apply padding to ensure that the input to the network is of the same
length. Similarly, we apply padding or pruning if the individual sentences are shorter or
longer, respectively than 50 tokens. The citation context window thus obtained is then
converted to a vector representation using SciBERT embeddings [2] that provide word
embeddings trained specifically for NLP applications using scholarly data.

The input vector representations thus obtained are fed to the hierarchical attention
based encoder that outputs the hidden model representation of the context window after
applying a series of localized attentions to learn the significance of constituent sen-
tences and words in the input context vector. We show an example of the sentence level
attention in Fig. 2. The sentence containing the baseline citation (the middle sentence of
the document) obtains the highest attention scores with rest of the attention distributed
towards the other important sentences in the paragraph. This finally produces a bet-
ter semantic understanding for the model in order to correctly classify it as a baseline.
The output of the hierarchical attention encoder model is then passed through a bidi-
rectional LSTM encoder in order to capture any sequential relationships present in the
citation context. This yields the final learned representation of the context surrounding
the citation under consideration.

The second module (middle row in Fig. 1) is designed to capture the semantic sim-
ilarity and relations between a given citation and the overall content of the citing paper.
We consider the title and abstract of the citing paper as a concise summary of the citing
paper. For a given citation, we take the title and abstract of the citing paper and the
citation sentence and pass them through the pre-trained SciBERT language model that
outputs a fine-tuned representation for the concatenated text. Further, we consider all
the output hidden states for all the thirteen hidden layers in SciBERT. Different layers
learn different feature representations of the input text. These representations from all
the hidden layers, thus obtained are then passed through an attention module that learns
attention weights for different hidden states. The resulting attention-weighted represen-
tation is then passed through a Transformer encoder layer1 to capture any sequential
dependencies between input tokens yielding the final representation capturing relations
between the cited paper and the title and abstract of the citing paper.

1 We use a six layer Transformer encoder with eight attention heads. This was found to be the
best performing configuration.



Identifying Papers for Use as Baselines 59

Note that the two modules discussed so far can capture the linguistic variations
in the citation context and semantic relations between the cited and citing papers. In
the third module (bottom row in Fig. 1), we utilize the following three additional non-
textual signals that might indicate whether a paper is being cited as a baseline.

1. Reference location: Intuitively, if a paper is used as a baseline, it is more likely to
be discussed (and cited) in the experiment section of the paper. Hence, we define
five features that record the number of times a given reference is cited in each of the
five sections defined in Table 3. In addition, we also define a feature to capture if a
reference is cited in one of the tables as many times, baseline papers are also (and
often exclusively) mentioned in the result-related tables.

2. Cue words: There are certain cue words and phrases that authors frequently use
while discussing the baseline methods. Thus, their presence (or absence) in citation
contexts can help differentiate between baseline and non-baseline references. We
create a list of such cue words (as shown in Table 6) by manually inspecting the
citation contexts of baseline references in 50 papers (separate from the papers in
the dataset). Thus, the cue word features capture the presence (or absence) of each
cue word in the citation context of a reference. Further, each cue word w present
in the citation context is assigned a weight w = 1/dw, where dw is the number
of words between w and the citation mention. Thus, cue words that appear near
the citation mention are given a higher weight. If a cue word appear multiple times
in the citation context, we consider its nearest occurrence to the citation mention
(maximum weight).

3. Citation count: We use the total number of citations received by a paper as a fea-
ture to capture the intuition that highly-cited (and hence, more popular and impact-
ful) papers have a higher chance of being used as a baseline than papers with low
citations.

Each of these features is then passed through a linear layer followed by a feature
level attention module that yields the final attention weighted representation of all the
features.

The output of the three modules described above provides three different represen-
tations capturing different information signals that can help the network classify the
given citation as baseline. The three representations thus obtained are passed through a
module-level attention unit that learns attention weights to be given to the output of the
three representations and outputs a 128 dimensional attention-weighted representation
which is then passed through a linear classifier that outputs if the input citation is a
baseline citation or not.

5 Empirical Results and Discussions

Baselines for Citation Classification: We select following methods for citation clas-
sification and adopt them for the task of baseline classification. We use author provided
source-code where available; otherwise, we implement the methods using details and
parameter settings as provided in the respective papers.
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Table 7. Performance on baseline classification task for the different methods. We report overall
precision, recall, and F-1 values as well as the numbers for each class.

Models Baselines Non-baselines Overall

Precision Recall F-1 precision Recall F-1 Precision Recall F-1

Dong and Schäfer [12] 0.33 0.67 0.44 0.96 0.87 0.91 0.65 0.77 0.68

Chakraborty and Narayanam [6] 0.26 0.74 0.39 0.96 0.78 0.86 0.61 0.76 0.62

Su et al. [26] 0.69 0.16 0.26 0.63 0.95 0.76 0.66 0.55 0.51

Cohan et al. [7] 0.47 0.48 0.47 0.96 0.95 0.95 0.71 0.71 0.71

Proposed MMA classifier 0.69 0.57 0.63 0.96 0.98 0.97 0.82 0.78 0.80

1. Dong and Schäfer [12] proposed an ensemble-style self-training classifier to classify
the citations of a paper into four categories – background, fundamental idea, techni-
cal basis and comparison. We implemented their classifier (using their feature set)
and used it for baseline classification task.

2. Chakraborty and Narayanam [6] proposed a method for measuring relevance of a
citation to the citing paper on a five point scale with level-5 citations being the most
relevant. We consider the citations identified as level-5 as the baselines of the citing
paper.

3. Su et al. [26] proposed a CNN based architecture for citation function classification
that we use for our binary classification task.

4. Cohan et al. [7] proposed a multi-task learning framework for the citation classifica-
tion task. We implement the model using the settings as recommended in the paper
and use it for baseline classification.

Experimental Settings: For evaluating different classification methods, we split the
developed dataset (Sect. 3) into training, development, and test sets in 70 : 10 : 20
ratio. Different hyper-parameters involved are fine-tuned using the development set.
Consequently, the size of the input citation context vectors is set to 768, the size of
the hidden layer for the BiLSTM layer is 64 and the dropout rate is set to 0.2. The
Transformer encoder has 6 layers and 8 attention heads. The batch size and learning
rate are set to 32 and 0.001, respectively. The model was trained for 20 epochs. For our
proposed model, we used cross-entropy loss and Adam Optimizer [19] to minimize the
overall loss of the model. As our dataset is unbalanced, we incorporated class weights
in our loss function fine-tuned the class weights.

Results and Discussions: Table 7 summarizes the results as achieved by different
methods on the test set. We note that four state-of-the-art methods for citation classifi-
cation achieve only moderate performance on the baseline classification task indicating
their inadequacy at this task, and hence, the need for developing specialized methods
for baseline classification. Our proposed model, outperforms the state-of-the-art cita-
tion role classifiers in terms of F-1 measure. Further, note that the performance of the
proposed Multi-module Attention based model is more balanced with relatively high
recall (0.57) and the highest precision(0.69) among all the methods studied.
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Fig. 2. Example of a sentence-level attention distribution (Red) obtained from the Attention
Encoder. (Color figure online)

Fig. 3. Illustrative example of an attention weight distribution (red) from the Attention Encoder
in the semantic similarity module of the proposed network. (Color figure online)

Table 8. Example of false positives treated as baselines by the classifier. Paper IDs are the IDs
used in the dataset.

Paper Id Citation text

N12-1051 We evaluated our taxonomy induction algorithm using McRae et al.’s (2005) dataset which
consists of for 541 basic level nouns.

P08-1027 For each parameter we have estimated its desired range using the (Nastase and
Szpakowicz 2003) set as a development set.

D13-1083 In the future work, we will compare structural SVM and c-MIRA under decomposable
metrics like WER or SSER (Och and Ney 2002).

E09-1027 For comparison purposes, we plan to implement other features that have been used in
earlier readability assessment systems. For example, Petersen and Ostendorf (2009)
created lists of the most common words from the Weekly Reader articles,

P10-1116 This is in line with results obtained by previous systems (Griffiths et al. 2005; Boyd-
Graber and Blei 2008; Cai et al. 2007). While the performance on verbs can be increased
to outperform the most frequent sense baseline.

D10-1006 This is the model used in (Brody and Elhadad 2010) to identify aspects, and we refer to
this model as LocLDA.

D11-1115 we compare Chart Inference to the two baseline methods: Brute Force (BF), derived from
Watkinson and Manandhar, and Rule-Based (RB), derived from Yao et al.

Figure 2 shows an illustrative example of the hierarchical attention module in the
proposed network. The figure shows the citation context as extracted from the paper by
Qazvinian et al. [23] where the LexRank method by Erkan and Radev [14] is being used
as a baseline. The attention given to different sentences in the context window is illus-
trated by shades of red where a sentence in darker shade is given a higher weight. We
note that the sentence which the LexRank paper is cited, is given the highest weight and
other sentences that talk about the task of summarization are also given some weights
whereas the fourth sentence (“Generally we expect...”) is being given no weight as the
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network did not find it to be useful for the classification task. Likewise, Fig. 3 presents
an example of the role of the attention encoder in the semantic similarity module in the
proposed network. The figure shows the concatenated title and abstract of the paper by
Nguyen and Vogel [21] that uses the MOSES decoder [20] for machine translation (last
sentence in the figure is the citation sentence). Note that the network is able to identify
keywords like reordering, distance-based, translation, and lexicalized that indicate the
similarity between the content of the citing paper with the citation context.

Error Analysis: We now present representative examples of hard cases and the types
of errors made by the classifiers.

Confusion with Datasets: We observed that often the citation for datasets used in
the experiments were classified as baselines by the classifier. Such citations are often
made in the experiment section, and the language patterns in their citation contexts are
often very similar to contexts of baseline citations (rows 1 and 2 in Table 8).

Citations for Future Work: Often, authors discuss the results of papers that are not
explicitly used as baselines in the current work but are discussed for the sake of com-
pleteness and could be used as baselines as part of the future work. One could argue
that such citations should be easy to classify as they must be part of the Conclusions
and Future Work sections. However, as we observed, this does not always hold true.
Such citations could be found in the Experiment or Other custom section headers (e.g.
rows 3, 4 in Table 8).

Context Overlap of Multiple Citations: The key assumption that the methods studied
in this work make is that the baseline and non-baseline citations differ in the language
patterns in their respective citation contexts. However, we noted that multiple papers
are often cited together, and thus, share the same citation contexts (and other properties
represented by different features). For instance, row 5 in Table 8 presents an example
of non-baseline citations sharing the context with baseline (Cai et al. 2007).

Citation Aliases and Table Citations: Often, authors give an alias to a particular
method (as shown in rows 6, 7 in Table 8) and then use the alias to refer to that method
in the rest of the paper. As a result, it becomes challenging to capture the context around
the alias mentions in the text. Further, many errors were made in cases where the base-
line references are not cited and discussed extensively in the running text but are men-
tioned directly in the results table. Hence, we lose out on the context for such baseline
citations.

6 Conclusions

We introduced the task of identifying the papers that have been used as baselines in
a given scientific article. We framed the task as a reference classification problem and
developed a dataset out of ACL anthology corpus for the baseline classification task. We
empirically evaluated four state-of-the-art methods for citation classification and found
that they do not perform well for the current task. We then developed custom classifiers
for the baseline classification task. While the proposed methods outperformed the state-
of-the-art citation classification methods, there is still a significant performance gap that
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needs to be filled. We further presented error analysis illustrating the challenges and
examples that the proposed systems found difficult to classify.
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16. Jacsó, P.: Google scholar: the pros and the cons. Online information review (2005)
17. Jeong, C., Jang, S., Shin, H., Park, E., Choi, S.: A context-aware citation recommendation

model with bert and graph convolutional networks. arXiv preprint arXiv:1903.06464 (2019)
18. Jurgens, D., Kumar, S., Hoover, R., McFarland, D., Jurafsky, D.: Measuring the evolution of

a scientific field through citation frames. TACL 6, 391–406 (2018)

http://arxiv.org/abs/1802.08301
https://doi.org/10.1007/978-3-319-31750-2_42
http://arxiv.org/abs/1904.01608
http://www.lrec-conf.org/proceedings/lrec2008/
http://www.lrec-conf.org/proceedings/lrec2008/
https://doi.org/10.1007/s11192-016-1982-6
https://doi.org/10.1613/jair.1523
http://arxiv.org/abs/1903.06464


64 M. Bedi et al.

19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. Koehn, P., et al.: Moses: open source toolkit for statistical machine translation. In: Proceed-
ings of the 45th Annual Meeting of the Association for Computational Linguistics Compan-
ion Volume Proceedings of the Demo and Poster Sessions, pp. 177–180 (2007)

21. Nguyen, T., Vogel, S.: Integrating phrase-based reordering features into a chart-based
decoder for machine translation. In: Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics, Vol. 1, Long Papers, pp. 1587–1596 (2013)

22. Pride, D., Knoth, P.: An authoritative approach to citation classification. In: JCDL (2020)
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Abstract. In this paper, we approach a recent and under-researched
paradigm for the task of event detection (ED) by casting it as a question-
answering (QA) problem with the possibility of multiple answers and the
support of entities. The extraction of event triggers is, thus, transformed
into the task of identifying answer spans from a context, while also focus-
ing on the surrounding entities. The architecture is based on a pre-trained
and fine-tuned language model, where the input context is augmented with
entities marked at different levels, their positions, their types, and, finally,
their argument roles. Experiments on the ACE 2005 corpus demonstrate
that the proposed model properly leverages entity information in detect-
ing events and that it is a viable solution for the ED task. Moreover, we
demonstrate that our method with different entity markers is particularly
able to extract unseen event types in few-shot learning settings.

Keywords: Event detection · Question answering · Few-shot learning

1 Introduction

Event extraction (EE) is a crucial and challenging task of information extraction
(IE) that aims at identifying the instances of specified types of events in a text,
generally referred to as event detection (ED), and the detection and classification
of the corresponding arguments (participants). For instance, according to the
ACE 2005 annotation guidelines1, an event is described as having the following
characteristics:

– the event mention is an occurrence of an event with a particular type. This
is usually a sentence or a phrase that describes an event; the event trigger is
the word that most clearly expresses the event mention, e.g. Attack ;

1 https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-
guidelines-v5.4.3.pdf.
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– the event argument is an entity mention or temporal expression (e.g., Crime,
Job-Title) that serves as a participant with a specific role in an event mention.
Event arguments have an entity type, e.g. persons (PER), locations (LOC),
organizations (ORG), etc.; and the argument role that is the relationship
between an argument and the event in which it participates.

Following this description, from the sentence “Police have arrested four people
in connection with the killings.”, an event extraction system should be able to
recognize the word killings as a trigger for an event of type Die, with the person
(PER) entity Police as an argument with the role of an Agent and the person
four people as an argument of type Person, and the word arrested as a trigger
for an Arrest-Jail event type with no arguments.

In this paper, we approach the task of event detection (ED) by studying the
usage of entities in a recent and under-researched paradigm for the task of event
detection (ED) by casting it as a question-answering (QA) problem.

There have been several deep learning-based major techniques applied for
approaching the ED task while taking advantage of entity or argument information
in the literature. First, systems extensively utilized linguistic analysis, entity infor-
mation, entity coreference, and other knowledge resources to capture the discrete
structures for ED, focusing on the combination of these discriminative features
to build statistical models [7,11,13]. Next, neural-based approaches were based
on convolutional and recurrent neural networks (CNNs and RNNs) that utilized
effective feature representations from entity type embeddings [4,16,21–25].

Recent approaches adopt the usage of pre-trained language models [28]. Since
BERT [5] broke records for several natural language processing (NLP) tasks
(part-of-speech tagging, named entity recognition, etc.) and received a lot of
attention, recent advances in ED imply architectures based on fine-tuning this
type of models [2,8,29,31], these methods holding the state of the art for ED.

Differently from these Transformer-based methods, where event and argu-
ment detection were considered as classification tasks, a new paradigm was
introduced [6,15] formulating EE as a question answering (QA)/machine reading
comprehension (MRC2) task, where events can be extracted by responding to
the 5W1H questions (who did what, when, where, why, and how). While these
recent advances claim to cast the EE task as an MRC task [6,15], they mostly
focus on argument extraction as QA, while for ED, the models remain formu-
lated as a sequential classification problem that aims at detecting event triggers
of specific types.

Thus, in this paper, we focus on the event detection task, and we first cast
it as a QA task with the possibility of multiple answers, in the case where more
than one event is present in the text. By approaching it as a QA model, not
only are we able to leverage the recent advances in MRC, we also avoid the
classification based-methods that can either require lots of training data and are
challenged by the annotation cost or data scarcity.

2 In one view, the recent tasks titled MRC can also be seen as the extended tasks of
question answering (QA).
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Second, we take advantage of the presence of entities for extracting the
events3, considering that informative features can be brought by additional entity
markers for better distinguishing the event triggers. We agree that “Entities of
the consistent type normally participate in similar events as the same role.” [7].

In addition, modeling the task as QA can improve the ED task in regard to
this challenge due to the fact that the answers are only considered in relation to
the context and the question, which could reduce trigger ambiguity. Furthermore,
compared to classification based-methods [4,6,12,15,15] that generally lack this
ability, we demonstrate that our proposed QA models are more effective in few-
shot scenarios by showing that they are able to extract unseen event types. The
work of [9] is distinguished in the literature, where the authors prove that zero-
shot learning for detecting events can be possible and efficient. They proposed to
leverage existing human-constructed event schemas and manual annotations for
a small set of seen types, and transfer the knowledge from the existing event types
to the extraction of unseen event types. We consider this paper as our reference
method for the few-shot learning setting, and we prove that modeling the ED
task as QA with entity information can obtain higher performance results.

Our proposed method with entity information obtains state-of-the-art results
when compared with previous models that utilize entity or argument informa-
tion. Moreover, these methods could foster further research and help to study
transfer learning from QA models to boost the performance of existing informa-
tion extraction systems. Furthermore, compared to classification based-methods
that lack this ability, we demonstrate that our proposed QA models are more
effective in few-shot scenarios by showing that they are able to extract unseen
event types.

Next, we continue with the related work in Sect. 2, and we detail the QA
model with entity markers in Sect. 3. The experimental setup and the results
are presented in Sect. 4. We provide a discussion of the results by analyzing the
output in Sect. 5 and we draw conclusions in Sect. 6.

2 Related Work

Event Detection with Entity Information. In the context of event detec-
tion, some works made use of gold-standard entities in different manners. Higher
results can be obtained with gold-standard entity types [23], by concatenating
randomly initialized embeddings for the entity types. A graph neural network
(GNN) based on dependency trees [25] has also been proposed to perform event
detection with a pooling method that relies on entity mentions aggregation.
Arguments provided significant clues to this task in the supervised attention

3 We note here that event extraction generally depends on previous phases as, for
example, named entity recognition, entity mention coreference, and classification.
Thereinto, the named entity recognition is another hard task in the ACE evaluation
and not the focus of this paper. Therefore, we will temporarily skip the phase and
instead directly use the entities provided by ACE, following previous work [4,7,10,
12,14,15].
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mechanism proposed to exploit argument information explicitly for ED proposed
by [17]. Other methods that took advantage of argument information were joint-
based approaches.

The architecture adopted by [18] was jointly extracting multiple event trig-
gers and event arguments by introducing syntactic shortcut arcs derived from
the dependency parsing trees. [7]’s cross-entity feature-based method extracted
events by using gold standard cross-entity inference in order to take advantage
of the consistency of entity mentions while achieving efficient sentence-level trig-
ger and argument (role) classification. [13] utilized the contextual entities in a
joint framework based on a structured prediction that extracted triggers and
arguments together so that the local predictions can be mutually improved.

Approaches presented by [23] and [4] experimented with the integration of
entities in ED models based on CNNs. These models utilized effective feature
representations from pre-trained word embeddings, position embeddings as well
as entity type embeddings. [24] improve the previous model proposed by [23]
by taking into account the possibility to have non-consecutive n-grams as basic
features instead of continuous n-grams.

A different technique was explored by [1] and it consisted in marking the enti-
ties in the relation extraction task and by studying the ability of the Transformer-
based neural networks to encode relations between entity pairs. They identified
a method of representation based on marking the present entities that outper-
form previous work in supervised relation extraction. [20] also explored the use
of pre-trained neural models into the relation validation problem by explicitly
using a triplet-sentence representation with marked entities, proving that the
relation extraction performance could be further improved by using this addi-
tional information. Furthermore, [2] also proposed the use of pre-trained neural
models in a BERT-based classification-based architecture for detecting events.

Event Detection as Question Answering. While QA for event detection is
roughly under-researched, Transformer-based models have led to striking gains
in performance on MRC tasks recently, as measured on the SQuAD v1.14 [27]
and SQuAD v2.05 [26] leaderboards.

A recent work proposed by [6] introduced this new paradigm for event extrac-
tion by formulating it as a QA task, which extracts the event triggers and argu-
ments in an end-to-end manner. For detecting the event, they considered an
approach based on BERT that is usually applied to sequential data. The task
of ED is a classification-based method where the authors designed simple fixed
templates as in what is the trigger, trigger, action, verb, without specifying the
event type. For example, if they chose verb template, the input sequence would
be: [CLS] verb [SEP] sentence [SEP]. Next, they use a sequential fine-tuned
BERT for detecting event trigger candidates.

4 SQuAD v1.1 consists of reference passages from Wikipedia with answers and ques-
tions constructed by annotators after viewing the passage.

5 SQuADv2.0 augmented the SQuAD v1.1 collection with additional questions that
did not have answers in the referenced passage.
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Another recent paper [15] also approaches the event extraction task as a ques-
tion answering task, similar to the [6] method. The task remains classification-
based (instead of the span-based QA method) for trigger extraction, jointly
encode [EVENT] with the sentence to compute an encoded representation, as in
the approach proposed by [6] where the special token was verb or trigger.

3 Event Question Answering Model with Entity
Positions, Types, and Argument Roles

We formulate the ED task as a QA task, where, for every sentence, we ask if a
particular event type is present, and we expect a response with an event trigger,
multiple event triggers, or none. Our model extends the BERT [5] pre-trained
model which is a stack of Transformer layers [28] that takes as input a sequence of
subtokens, obtained by the WordPiece tokenization [30] and produces a sequence
of context-based embeddings of these subtokens.

To feed a QA task into BERT, we pack both the question and the reference
text into the input, as illustrated in Fig. 1. The input embeddings are the sum
of the token embeddings and the segment embeddings. The input is processed
in the following manner: token embeddings (a [CLS] token is added to the input
word tokens at the beginning of the question and a [SEP] token is inserted at
the end of both the question and the reference text) and segment embeddings
(a marker indicating the question or the reference text is added to each token).
This allows the model to distinguish between the question and the text.

Fig. 1. Example of input modification to fit the QA paradigm for a sentence that
contains an event of type Attack. The question is separated by [SEP] token from the
reference text that contains the event trigger war.

To fine-tune BERT for a QA system, a start vector and an end vector are
introduced. A linear layer is added at the top of BERT layers with two outputs
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for the start and end vectors of the answer. The probability of each word being
the start or end word is calculated by taking a dot product between the final
embedding of the word and the start or end vector, followed by a Softmax over
all the words. The word with the highest probability value is considered. This
method differs from the event detection approaches presented by [6] and [15]
where the models are classification-based, instead of the span-based QA.

Next, for every type of event [Event Type] (Demonstrate, Die, Attack, etc.),
we formulate the question by automatically generating them using the following
template:

What is the [Event Type] ?

An example for a sentence containing an Attack event is illustrated in Fig. 1.
We also consider questions that do not have an answer in the case where an event
of a specific type is not present in the sentence. When there is more than one
event of the same type in a sentence, we consider that the question has multiple
answers. From the n best-predicted answers, we consider all those that obtained
a probability higher than a selected threshold (established on the development
set). When the predicted chunks are self-contained, we consider only the first
predicted event trigger. For example, if the noun chunks assault and air assault
are predicted, only assault is considered.

Next, for adding entity information, we augment the input data with a series
of special tokens. Thus, if we consider a sentence x = [x0, x1, . . . , xn] with n
tokens, we augment x with two reserved word pieces to mark the beginning and
the end of each event entity or argument mention in the sentence.

Next, we propose three types of markers: (1) Entity Position Markers, e.g.
<E> and </E> where E represents an entity of any type, (2) Entity Type
Markers, e.g. <PER> and </PER> where PER represents an entity of type
Person, and (3) if the event argument roles are known beforehand, Argument
Role Markers, e.g. <Agent>, </Agent> where Agent is an event argument role.
Thus, we modify the following sentence:

“Police have arrested four people in connection with the killings.”
where killings is a trigger for a Die event, and arrested is a trigger for an

Arrest-Jail event, Police is one of the participants, a person (PER) with the
argument role of an Agent, and four people is also a person entity (PER) with the
Person argument role. The modified sentences with the three types of markers
are:

(1) “< E > Police < /E > have arrested < E > four people < /E > in
connection with the killings.”

(2) “< PER > Police < /PER > have arrested < /PER > four people
< /PER > in connection with the killings.”

(3) “< Agent > Police < /Agent > have arrested < Person > four people
< /Person > in connection with the killings.”

Further, an ED system should detect in the presented sentence, the trigger
word killings for an event of type Die (this event has two arguments Police and
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four people) and arrested for an event of type Arrest-Jail (this event has no
arguments). For the Argument Role Markers, if an entity has different roles in
different events that are present in the same sentence, we mark the entity with
all the argument roles that it has.

4 Experiments

Table 1. Evaluation of our models and comparison with state-of-the-art systems for
event detection on the blind test data. The models with ♣ utilized gold standard entity
mentions. The models with ♥ utilized gold standard arguments. Statistical significance
is measured with McNemar’s test. * denotes a significant improvement at p ≤ 0.01.

Approaches P R F1

MaxEnt with local features♣ [12] 74.5 59.1 65.9

Cross-entity♣ [7] 72.9 64.3 68.3

DMCNN♣ [4] 75.6 63.6 69.1

Word CNN♣ [23] 71.8 66.4 69.0

Joint RNN♣ [21] 66.0 73.0 69.3

BERT-QA-base-uncased 68.4 70.5 69.5

BERT-base [6] 67.1 73.2 70.0

Non-Consecutive CNN♣ [22] – – 71.3

Attention-based♣♥ [16] 78.0 66.3 71.7

BERT QA Trigger [6] 71.1 73.7 72.3

Graph CNN♣ [25] 77.9 68.8 73.1

BERT-QA-base-uncased + Entity Position Markers♣ 78.0 70.7 74.2*

RCEE ER♣ [15] 75.6 74.2 74.9

BERT-QA-base-uncased + Entity Type Markers♣ 78.5 77.2 77.8*

BERT-QA-base-uncased + Argument Role Markers♥ 83.2 80.5 81.8*

The evaluation is conducted on the ACE 2005 corpus provided by ACE pro-
gram6. For comparison purposes, we use the same test set with 40 news articles
(672 sentences), the same development set with 30 other documents (863 sen-
tences) and the same training set with the remaining 529 documents (14,849
sentences) as in previous studies of this dataset [10,14]. The ACE 2005 corpus
has 8 types of events, with 33 subtypes (e.g. the event type Conflict has two
subtypes Attack, Demonstrate). In this paper, we refer only to the subtypes of
the events, without diminishing the meaning of main event types.

Evaluation Metrics. Following the same line of previous works, we consider that a
trigger is correct if its event type, subtype, and offsets match those of a reference
trigger. We use Precision (P), Recall (R), and F-measure (F1) to evaluate the
overall performance.
6 https://catalog.ldc.upenn.edu/LDC2006T06.

https://catalog.ldc.upenn.edu/LDC2006T06
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Hyperparameters. We used the Stanford CoreNLP toolkit7 to pre-process the
data, including tokenization and sentence splitting8. For fine-tuning the BERT-
based models, we followed the selection of hyperparameters presented by [5].
We found that 3 × 10−5 learning rate and a mini-batch of dimension 12 for the
base models provided stable and consistent convergence across all experiments
as evaluated on the development set. The maximum sequence length is set to
384 and the document stride of 128. For selecting the event triggers, we generate
n = 10 candidates, and we use the same threshold for all the experiments, with
a value of 0.2 that was decided on the development set.

General Evaluation. In Table 1, we present the comparison between our model
and state-of-the-art approaches that utilised entity or argument information.

We compare with the MaxEnt-based model with local features in [12], the
cross-entity feature-based method extracted events by using gold standard cross-
entity inference [7] and the models proposed by [4,22,23], and the joint frame-
work with bidirectional RNNs [21] that experimented with the integration of
entities in ED models based on a CNN-based architectures.

We also compare with the method proposed by [16] that also exploited entity
information explicitly for ED via supervised attention mechanisms, and the
graph CNN by [25] that investigated a CNN based on dependency trees for ED
with pooling method that relied on entity mentions to aggregate the convolution
vectors.

We also compare with the models where the task has been approached as a
QA task but still formulated as a sequential classification problem that aims at
locating trigger candidates, the fine-tuned baseline BERT-base-uncased and the
BERT QA Trigger [6], and the RCEE ER (Reading Comprehension for Event
Extraction, with ER that denotes that the model has golden entity refinement)
[15].

When compared with the previous state-of-the-art models that included
entity information, except for the RCEE ER method, our models that use either
the positions or the types of the entities bring a considerable improvement in
the performance of trigger detection. It is clear that further marking the entities
with their types can increase both precision and recall, balancing the final scores.

It is noteworthy that, while entities can be present in the entire document,
arguments can only surround event triggers. Knowing the argument roles before-
hand brings further improvements, we assume that an important reason for this
is that, since the arguments are present only around event triggers, this could
help the language model to be more aware of the existence of an event or multiple
events in a sentence.

7 http://stanfordnlp.github.io/CoreNLP/.
8 The code is available at https://github.com/nlpcl-lab/ace2005-preprocessing as it

consists of the same pre-processing as utilized in several other papers [21,23].

http://stanfordnlp.github.io/CoreNLP/
https://github.com/nlpcl-lab/ace2005-preprocessing
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Fig. 2. An example for the Die event triggered by killings with three types of markers:
Entity Position, Entity Type, and Argument Role Markers.

5 Discussion

5.1 Trigger Ambiguity Analysis

For a deeper analysis of the impact of entity information, we leverage the gradi-
ents in our proposed models to efficiently infer the relationship between the ques-
tion, context, and the output response. [3] studied the identifiability of attention
weights and token embeddings in Transformer-based models. They show that the
self-attention distributions are not directly interpretable and suggest that simple
gradient explanations are stable and faithful to the model and data generating
process.

Thus, as applied by [19], to get a better idea of how well each model memo-
rizes and uses memory for contextual understanding, we analyze the connectivity
between the desired output and the input. This is calculated as:

connectivity(t, t̃) =
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where t is the time index, t̃ the output time index, and the result is the magnitude
of the gradient between the logits for the desired output yt̃

k and the input xt. The
connectivity is computed with respect to both start position and end position
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Fig. 3. An example of a sentence that contains two events: Die event triggered by the
word killings and Arrest-Jail event triggered by arrested. The model used is BERT-
QA-base-uncased.

Fig. 4. [CLS] representation of each sentence in the test set that contains at least
an event for BERT-QA-base-uncased, BERT-QA-base-uncased + Entity Position
Markers+, BERT-QA-base-uncased + Entity Type Markers+, and BERT-QA-base-
uncased + Argument Role Markers.

of the answer, then it is normalized, and it is visible as saliency maps for every
word in Figs. 3 and 29.

By looking at the gradients in Fig. 3, where two events of different types
are present, we can observe, in the upper part of the figure, that while the
model sees the word killings and arrested as impactful, it also sees the words
police, connection as impactful and selects an answer in that neighborhood.
Even though both trigger candidates killings and arrested have a clear impact
due to their gradient values, by looking at the probability values, killings is
recognized with a 99.4% probability, while arrested obtained a probability of
2.3× 10−7, value that is lower than our selected threshold 0.2. In the lower part
of the figure, for the question What is Arrest-Jail?, the words die, police, killings
clearly influence the choice of the answer arrested.

9 The sentence is lowercased for the uncased models.
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In Fig. 2, we present the same sentence with the three types of input mod-
ifications: Entity Position Markers, Entity Type Markers, and Argument Role
Markers, with the What is Die? question and the correct answer killings. In the
upper part of the figure, where the sentence has been augmented with the entity
position markers <E> and </E>, we notice that the words that impact the
most in the result are killings along with die, arrested, and police. In this case,
one can also see that the end marker </E> contributed too.

In the middle part of the figure, where the sentence has been augmented with
the entity position markers <PER> and </PER> for the two entities police and
four people, the influence of other words as in die, arrested, and police slightly
decreased. In the bottom part of the image, the gradients of these words are
visibly reduced.

When the sentence is augmented with argument roles, <Agent>, </Agent>,
<Person> and </Person>, the noise around the correct answer has notice-
ably diminished, being reduced by the additional markers. The most impactful
remaining words are the word die in the question and the correct answer killings.

In order to analyze the quality of the sentence representations, we extract
the [CLS] representation of each sentence for BERT-QA-base-uncased and for
BERT-QA-base-uncased + Argument Role Markers. Then, we plot these repre-
sentations in two spaces where the labels (colors of the dots) are the event types,
as illustrated in Fig. 4. On the right-hand side of the figure, where argument role
markers are used, it is clear that the sentence representations clusters are more
cohesive than when no entity information is considered (left-hand side), thus
confirming our assumption regarding the importance of the entity informative
features in a QA system.

5.2 Evaluation on Unseen Event Types

In the first scenario, we follow the same strategy as [6] where we keep 80%
of event types (27) in the training set and 20% (6) unseen event types in the
test set. More exactly, the unseen event types were chosen randomly, and they
are: Marry, Trial-Hearing, Arrest-Jail, Acquit, Attack, and Declare-Bankruptcy.
Table 2 presents the performance scores of our models for the unseen event types.

Table 2. Evaluation of our models on unseen event types. The models with ♣ utilized
gold standard entity mentions. The models with ♥ utilized gold standard arguments.

Approaches P R F1

BERT-QA-base-uncased (not trained on ACE 2005 ) 0.7 8.3 1.3

BERT-QA-base-uncased 47.7 26.7 31.1

BERT-QA-base-uncased + Entity Position Markers♣ 44.0 47.5 37.3

BERT-QA-base-uncased + Entity Type Markers♣ 53.6 54.4 50.4

BERT-QA-base-uncased + Argument Role Markers♥ 83.3 47.4 53.6
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We compare with BERT-QA-base-uncased which is our baseline that selects
an event trigger in a sentence without being trained on ACE 2005 data. Since the
majority of the models in Table 1 are classification-based in a sequential manner,
they are not capable of handling unseen event types, and thus, we were not able
to obtain performance values. From the results, without any event annotation,
the BERT-QA-base-uncased obtains a low F1 value (1.38%). We observe that
the performance values increase proportionally to the specificity of the markers.
Thus, it is not surprising that the highest values are obtained when the argument
roles are marked, also obtaining the highest precision.

In a second scenario, we consider larger amounts of unseen events, and we
follow the strategy proposed by [9], where out of the total number of event
types (33), we select the top-N most popular event types as seen, while the rest
remain unseen. N is set as 1, 3, 5, 10 respectively. We perform experiments in
four settings (A, B, C, and D). Table 3 shows the types that were selected for
training in each experiment setting.

Table 3. Seen types in each experiment setting as proposed by [9].

Setting N Seen Event Types

A 1 Attack

B 3 Attack, Transport, Die

C 5 Attack, Transport, Die, Meet, Arrest-Jail

D 10 Attack, Transport, Die, Meet, Sentence, Arrest-Jail, Transfer-Money,
Elect, Transfer-Ownership, End-Position

Table 4. Evaluation of our models on unseen event types (Hit@1 as in [9]). The models
with ♣ utilized gold standard entity mentions. The models with ♥ utilized gold standard
arguments.

Approaches Settings

A B C D

Huang et al. [9] 3.9 7.0 20.0 33.4

BERT-QA-base-uncased + Entity Positions Markers♣ 2.3 4.9 18.8 21.7

BERT-QA-base-uncased + Entity Type Markers♣ 2.3 8.8 21.8 25.8

BERT-QA-base-uncased + Argument Role Markers♥ 2.4 10.0 26.2 32.0

Table 4 presents the performance scores of our models for the unseen event
types. We focus on showing the effectiveness of our methods juxtaposed with
the results of [9]. We first observe, for each model, that the performance values
improve as the number of seen events types. Second, one can notice that the
scores also increase proportionally to the specificity of the markers.
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6 Conclusions and Perspectives

In this paper, we utilized a recent and under-researched paradigm for detecting
events by modeling the ED as a QA task with the addition of entity and argument
information. The questions were simplified to a pre-defined list with a question
for every type of event present in the dataset, which allows the model to predict
multiple events in a sentence. The additional informative features brought by
the presence of entities and the argument roles in the same context of the events
considerably increased the performance of the model, achieving state-of-the-art
results. Moreover, this type of model that utilizes the entity information lever-
aged the ambiguity of the event triggers and demonstrate potential in detecting
unseen event types.

In future work, we will focus on approaching the entity and argument detec-
tion tasks, in order to analyze the influence of the predicted event arguments
and the error propagation from this task to the downstream event detection task.
Furthermore, we will consider approaching both event extraction sub-tasks (ED
and argument detection and classification) in a joint QA-based architecture for
alleviating the aforementioned issue concerning the diffusion of detection errors.
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Abstract. System-oriented IR evaluations are limited to rather abstract
understandings of real user behavior. As a solution, simulating user inter-
actions provides a cost-efficient way to support system-oriented experi-
ments with more realistic directives when no interaction logs are avail-
able. While there are several user models for simulated clicks or result list
interactions, very few attempts have been made towards query simula-
tions, and it has not been investigated if these can reproduce properties of
real queries. In this work, we validate simulated user query variants with
the help of TREC test collections in reference to real user queries that
were made for the corresponding topics. Besides, we introduce a simple
yet effective method that gives better reproductions of real queries than
the established methods. Our evaluation framework validates the simu-
lations regarding the retrieval performance, reproducibility of topic score
distributions, shared task utility, effort and effect, and query term simi-
larity when compared with real user query variants. While the retrieval
effectiveness and statistical properties of the topic score distributions as
well as economic aspects are close to that of real queries, it is still chal-
lenging to simulate exact term matches and later query reformulations.

Keywords: Query Simulation · Dynamic Test Collection ·
Reproducibility

1 Introduction

In accordance with the Cranfield paradigm, the underlying user model of system-
oriented IR evaluations is an abstract representation of real search behavior. The
simplified understanding of users is limited to a single query and the examination
of the result list in its entirety. Real search behavior is more complex: search-
ing is normally an iterative process with query reformulations, and not every
search result is examined but rather picked out after judging its snippet text. To
compensate for this shortcoming, it is common practice to include (logged) user
interactions in the evaluation process. Industrial research is often supported by
large datasets of user interactions that, unfortunately, cannot be shared pub-
licly, e.g., due to privacy concerns [14]. Carterette et al. address the lack of user
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interaction data available to academic research by introducing the concept of
Dynamic Test Collections [12]. Their framework expands test collections with
simulated interactions comprising the entire sequence of interactions, including
the simulation of queries, clicks, dwell times, and session abandonment.

Our work can be seen in the light of Dynamic Test Collections, but with a
special focus on simulating user query variants (UQVs). While previous work
on simulating interactions either focused on the completeness of interaction
sequences [12,34,47], click interactions [13], or stopping rules [34,37], work on
simulating queries is underrepresented [20]. To the best of our knowledge, the
degree to which query simulators reproduce real user queries has not yet been
analyzed with TREC test collections. As opposed to previous work in this regard,
it is not our primary goal to generate the most effective queries but rather to
validate simulated queries, since the query formulation is one of the first user
interactions with the search system and as such it is a critical component for any
subsequent simulated interactions like clicks and others. More specifically, our
evaluations answer (RQ1) How do real user queries relate to simulated queries
made from topic texts and known-items in terms of retrieval effectiveness? and
(RQ2) To which degree do simulated queries reproduce real queries provided that
only resources of the test collection are considered for the query simulation?

Our contributions are as follows. (1) We introduce an evaluation framework
that is used to analyze to which extent simulations reproduce real queries and
that reveals current limitations, (2) we compare and analyze conventional query
simulation methods that do not rely on large-scale interaction logs, (3) we pro-
pose a new simulation method and hereby show that the parameterized query
reformulation behavior results in a better approximation of real queries and
resembles those of specific users, (4) we publish the code of the experiments and
provide the simulated queries for follow-up studies.

2 Related Work

Carterette et al. introduced Dynamic Test Collections [12] by enriching test col-
lections with simulated user interactions. Their outlined interaction sequences
included the simulation of queries, clicks, dwell times, and session abandonment.
Even though they implemented some specific simulators as part of their exper-
iments, they intended to provide a general framework that covers all elements
of user interactions which can also be implemented with various methods. More
recently, similar frameworks were introduced by Pääkkönen et al. as Common
Interaction Model [37] and Zhang et al. [47].

Most of the current methods for query simulations follow a two-stage app-
roach including the term candidate generation and the query modification strat-
egy. Usually, the term candidates are derived from a language model. Jordan
et al. introduced Controlled Query Generation (CQG) [28] that exploited the
relative entropy of a language model for query term generation. Azzopardi et al.
applied CQG when generating queries for known-item search [3,4]. In a similar
vein, Berendsen et al. used annotations to group documents [9] and Huurnik
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et al. simulated queries for purchased items [24]. When query term candidates
are available, there exist some commonly used query modification strategies
[2,5,28,29], which were also applied in follow-up studies [34,35,41] and followed a
principled way resulting in controlled query reformulation patterns (cf. Sect. 3.1).

If large-scale user logs are available, different approaches propose, for
instance, learning to rewrite queries [22], model syntactic and semantic changes
between query reformulations [23], or replace old query terms with new phrases
with the help of the point-wise mutual information [27]. In contrast to these
examples, the query simulations analyzed in this study do not rely on large-scale
user logs but make use of test collections, i.e., topics and relevance judgments.

As part of follow-up studies related to the TREC Session Track, Guan et
al. improved session search results by introducing the Query Change Model
(QCM) [19,44] according to which the session search is modeled as a Markov
Decision Process that considers transitions between states, i.e., queries and other
interactions, to improve search results for query reformulations. Van Gysel et al.
found that QCM is especially effective for longer sessions while being on par with
term-frequency based approaches for shorter sessions [21]. Our query simulation
method draws inspiration from QCM, but generates queries instead of improving
retrieval results throughout a session.

Simulated UQVs contribute to more diverse and more realistic user-oriented
directives as part of system evaluations. Besides the actual simulation of ses-
sion search, applications for simulated queries are manifold. For instance, UQVs
enhance the pooling process [36], make rank fusion approaches possible [8], are
used for query performance prediction [18], or assist users with query suggestions
that improve the recall [42]. In this work, we compare simulated to real UQVs.

3 Approach

In this section, we introduce the analyzed approaches for query simulations
(Sect. 3.1) featuring conventional methods of term candidate generation and
query modification strategies and our new method. Furthermore, the evaluation
framework (Sect. 3.2) and details about the datasets and implementations (Sect.
3.3) are described.

3.1 Query Simulation

Term Candidate Generation. Simulating queries based on topics of test col-
lections most likely complies with exploitation search tasks [32], where users
normally have a very concrete understanding of their information needs. Pro-
vided that real users have read the topic, they are very likely to include key terms
of the topic texts when formulating queries. As a simplified implementation, the
TREC Topic Searcher (TTS) considers only terms of the set Ttopic = {t1, ..., tn}
composed of the topic’s title, description and narrative with t1, ..., tn being the
term sequence in the concatenated text. For upper bound performance esti-
mates, we simulate a Known-item Searcher (KIS). Here, we assume the simu-
lated users to be familiar with the document collection. When reading the topics,
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they recall key terms of the relevant documents in the collection and use these
as their query terms. In this case, the term candidates Trel = {t1, ..., tn} are
derived from a language model based on CQG by Jordan et al. [28] according
to P (t|Drel) = (1 − λ)Ptopic(t|Drel) + λPbackground(t), where the topic model
Ptopic(t|Drel) is made from the relevant documents Drel for a given topic, while
the background model Pbackground(t) is derived from the vocabulary of the entire
corpus. λ is used to model the influence of the background model, and it is set to
0.4 to be consistent with previous work [16,28]. In this case, t1, ..., tn are ordered
by the decreasing term probabilities of the underlying language model.

Query Modification Strategy. We make use of the query generation tech-
niques proposed by Baskaya et al. [5], that were also used in previous simula-
tion studies [28,34,35,37,41]. More specifically, the following strategies are con-
sidered and used in combination with the term candidates of Ttopic and Trel: the
strategy S1 outputs single term queries qi following the ordering of term candi-
dates (q1 = {t1}; q2 = {t2}; q3 = {t3}; ...); S2 keeps the first candidate term
fixed and composes query strings by replacing the second term for reformulations
(q1 = {t1, t2}; q2 = {t1, t3}; q3 = {t1, t4}; ...); S2′ is similar to S2, but keeps
two candidate terms fixed (q1 = {t1, t2, t3}; q2 = {t1, t2, t4}; q3 = {t1, t2, t5}; ...);
S3 starts with a single term query and incrementally adds query terms for refor-
mulations (q1 = {t1}; q2 = {t1, t2}; q3 = {t1, t2, t3}; ...); S3′ is similar to S3,
but starts with two candidate terms (q1 = {t1, t2, t3}; q2 = {t1, t2, t3, t4}; q3 =
{t1, t2, t3, t4, t5}; ...). In total, we analyze ten different query simulators that result
from the two term candidate generators that are combined with five query modifi-
cation strategies, denoted as TTSS1−S3

′ and KISS1−S3
′ , respectively. We hypothe-

size, that the system performance of real queries should range somewhere between
those queries of the naive approach of TTS and those queries of KIS.

Controlled Query Generation Combined with Query Change Model.
Compared to the previous query simulators, this approach adds an additional
scoring stage for the generated query string candidates. These candidates are
generated by considering every possible combination of n-grams made from a
term set. The corresponding terms are either taken from Trel or Ttopic+rel =
(Ttopic ∩Trel)∪ (Trel \Ttopic)k, whereas (Ttopic ∩Trel) contains topic terms in Trel

and (Trel \ Ttopic)k denotes the top k terms of Trel that are not in the topic text.
In this regard, k models the user’s vocabulary and domain knowledge. Having a

set of different query string candidates, we rank the queries by
∑|q|

j=1 Θj

|q| , which is
the sum over all query terms normalized by the query length |q|, whereas Θj is
a term-dependent score inspired by QCM [19,44] and is implemented as follows.

Θj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α(1 − P (tj |Drel)), tj ∈ qtitle

1 − βP (tj |Drel), tj ∈ +Δq ∧ tj ∈ Ttopic

ε idf(tj), tj ∈ +Δq ∧ tj /∈ Ttopic

−δP (tj |Drel), tj ∈ −Δq

(1)
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whereas qtitle is the set of topic title terms and +/ − Δq denotes added
or removed terms of a query reformulation that is made in reference to the
previously simulated query, except for the first query formulation q1 for which
the topic title is used as a reference. In our experiments, we analyze 3-,4-,5-gram
term candidates and analyze three different parametrizations of the simulators,
which are defined as follows. First, we analyze the strategy S4 (α = 2.2, β =
0.2, ε = 0.05, δ = 0.6), which tends to prefer topic terms and mostly keeps
terms of previous queries. Second, we analyze the strategy S4′ (α = 2.2, β =
0.2, ε = 0.25, δ = 0.1), which mostly keeps terms of previous queries, but tends
to include terms that are not in the topic text. Finally, we analyze the strategy
S4′′ (α = 0.2, β = 0.2, ε = 0.025, δ = 0.5), which tends to stick to the topic
terms, but does not necessarily keep terms of previous query formulations. In
sum, we analyze six different instantiations of these simulators, which are either
based on Trel (denoted as KISS4−S4

′′ ), or based on Ttopic+rel with k = 4 (denoted
as TTSS4−S4

′′ ).

3.2 Evaluation Framework

In the following, we outline our evaluation framework used to validate the sim-
ulations in reference to real queries in different aspects. It includes evaluation
of the average retrieval performance, shared task utility, effort and effect, and
query term similarity between simulated and real queries.

Retrieval Performance. As shown by Tague and Nelson, simulated queries
fall behind real queries in terms of retrieval performance [40]. For this reason,
we evaluate the Average Retrieval Performance (ARP) as it is common practice
in system-oriented IR experiments. The ARP is determined by the average of
a measure over all topics in a test collection. Beyond comparing the averaged
means of different queries, we propose a more in-depth analysis of the topic
score distributions. Recently, the Root Mean Square Error (RMSE) and paired
t-tests were introduced as reproducibility measures [10]. The RMSE measures
the closeness between the topic score distributions, and low errors indicate a
good reproduction. When using t-tests as a reproducibility measure, low p-values
result from diverging score distributions and indicate a higher probability of
failing the reproduction.

Shared Task Utility. According to Huurnik et al. [24], the ARP of the sim-
ulated queries alone is not an appropriate indicator of how well the simula-
tions resemble the real queries since useful query simulators should identify
the best system. As proposed by Huurnik et al., we analyze how the simulated
queries reproduce relative system orderings by comparing them with the help of
Kendall’s τ as it is common practice as part of shared task evaluations [43]. We
compare the simulated and real queries by determining how well the ordering
of systems with different parametrizations (and different retrieval performance)
can be reproduced by simulated queries.
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Effort and Effect. In order to account for a more user-oriented evaluation,
we simulate sessions and evaluate them with regards to the effort (number of
queries) that has to be made and the resulting effects (cumulated gain). First, we
simulate sessions using ten simulated queries and an increasing number of doc-
uments per query and evaluate the results by the sDCG measure [26], whereas
the cumulated gain is discounted for each result and query. Second, we evaluate
the simulation quality from another more economical point of view. Azzopardi
applies economic theory to the retrieval process [2] and demonstrates that for a
pre-defined level of cumulated gain, query reformulations can be compensated
by browsing depth (or vice versa browsing depth by more query reformulations).
Furthermore, he illustrates this relationship with isoquants - a visualization tech-
nique used in microeconomics. Thus, we evaluate the closeness between isoquants
of simulated and real queries by the Mean Squared Logarithmic Error (MSLE).

Query Term Similarity. It is not the primary goal of this study to simulate
query strings with exact term matches. Instead, simulated UQVs should result in
diverse query strings for a fixed information need (topic). Nonetheless, it is worth
analyzing the term overlap between the simulated and real queries. As Liu et al.
[31] or Mackenzie and Moffat [33] propose, we determine the Jaccard similarity
between the sets of unique terms made from the query reformulations. When
compared with the other evaluations, the term similarities add more insights
about the simulated UQVs. For instance, if it is possible to simulate query refor-
mulations that adequately relate to the properties of real queries, but with other
terms.

3.3 Datasets and Implementation Details

In our experimental setup, we use the user query variant (UQV) dataset provided
by Benham and Culpepper [6]1. Given the topic texts, eight users formulated
up to ten query variants for each topic. Each user formulated at least one query
for each topic, and the fifth user (denoted as UQV5) formulated ten queries
for each topic. More details about the query collection process are provided
by Benham et al. [7]. Accordingly, we evaluate the system runs with The New
York Times Annotated Corpus and the topics of TREC Common Core 2017
[1]. As part of our experiments, we exploit the interactive search possibilities
of the Pyserini toolkit [30]. We index the Core17 test collection with the help
of Anserini [45] and the default indexing options as provided in the regression
guide2. Unless stated otherwise, all results were retrieved with the BM25 method
and Anserini’s default parameters (b = 0.4, k = 0.9). We evaluate the results
with the repro eval toolkit [11] that is a dedicated reproducibility framework
featuring bindings to trec eval measures. The source code of the experiments
and the simulated queries are available in a public GitHub repository3.
1 https://culpepper.io/publications/robust-uqv.txt.gz.
2 https://github.com/castorini/anserini/blob/master/docs/regressions-core17.md.
3 https://github.com/irgroup/ecir2022-uqv-sim.

https://culpepper.io/publications/robust-uqv.txt.gz
https://github.com/castorini/anserini/blob/master/docs/regressions-core17.md
https://github.com/irgroup/ecir2022-uqv-sim
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4 Experimental Results

Retrieval Performance. Regarding RQ1, we validate the retrieval perfor-
mance of real (UQV) and simulated (TTS/KIS) queries. Table 1 shows the ARP
including nDCG and AP scores that are determined by averaging results with
1000 documents per topic and P@10 scores over all queries, the first4, or the best
query of a topic. Our assumptions are confirmed. The retrieval performance of
real queries ranges between that of the TTSS1-S3

′ and KISS1-S3
′ simulators. Espe-

cially, the performance of the TTSS1-S3
′ queries stays below that of real queries.

For instance, the average nDCG scores of the UQV queries range between 0.3787
and 0.4980, whereas the maximum score of the TTSS1-S3

′ queries is 0.3499 and
the nDCG scores of KISS2

′
-S3

′ lie above those of UQV. Similarly, the nDCG
scores averaged over the first UQV queries reach 0.3979 at a minimum, whereas
the maximum score of the TTSS1-S3

′ queries is 0.3895. When averaging over the
best queries, most nDCG scores of TTS fall into the range of real queries, but
there is also a higher probability of finding a good performing query since more
TTS than UQV queries are available. Except for single term queries (S1), all
KIS scores outperform the UQV queries when averaging over the best queries.
With regard to the simulated queries based on the TTSS4-S4

′′ approach, most
of the nDCG, P@10, and AP scores fall into the range of the real queries, while
KISS4-S4

′′ queries outperform UQV queries. Thus, we have a specific focus on
TTSS4-S4

′′ .
Figure 4 shows the RMSEnDCG between queries with conventional query

modification strategies (TTSS1-S3
′ /KISS1-S3

′ ) and the real queries (UQV). Espe-
cially for the TTS queries, the strategy S2′ has the lowest RMSE scores and
acceptable scores for the KIS queries. In the following experiments, we primarily
use the strategy S2′ for both the TTS and KIS queries since their term length
complies with the typical length of real queries [25] and they serve as estimates
of lower and upper bound retrieval performance. Additionally, we evaluate the
TTSS4-S4

′′ queries with the help of the RMSE and simulations in reference to
the ten queries per topic of UQV5. For each query reformulation, 100 documents
are retrieved and contribute to the final ranking list of a topic if a previous query
has not retrieved them. Figure 1 shows the RMSE instantiated with P@1000,
nDCG, and AP along with an increasing number of documents retrieved with ten
queries. For all measures, the error increases when more documents per query
are retrieved. With regard to P@1000 and nDCG, the TTSS2

′ and KISS2
′ queries

have the largest error, while KISS2
′ has a lower RMSEAP than TTSS4

′ . For all
measures, the TTSS4-S4

′′ queries have the lowest error, which means they are
the best approximation of UQV5 among all analyzed query simulations.

Finally, we compare the topic score distributions of the simulated queries and
all UQV queries by paired t-tests5. Since some users formulated no more than
one query per topic, we limit our evaluations to the first query of each simulator.

4 S1 and S3, as well as S2 and S3′, do not differ when averaging over the first queries.
5 Applying the Bonferroni correction adjusts the alpha level to α = 0.05

64
≈ 0.0008

(considering eight users and eight query simulators for an alpha level of 0.05).
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Fig. 1. RMSE instantiated with P@1000, nDCG, and AP

It means that each of the p-values shown in Fig. 5 is determined by t-tests with
nDCG score distributions that result from 50 UQV and 50 simulated queries. The
TTSS2

′ queries have the highest p-values when compared with UQV{2,3,8}. These
results align with the ARP scores reported in Table 1. The nDCG scores of UQV2

(0.4096), UQV3 (0.3979), and UQV8 (0.4046) are the most similar to the nDCG
score of TTSS3 (0.3895) in comparison to other simulators. In contrast, the p-
values of KISS2

′ queries are low for all UQV queries, which complies with the
ARP scores in Table 1. The KISS2

′ scores averaged over the first queries are sub-
stantially higher compared to the UQV scores (e.g., nDCG(KISS2

′ )=0.5474 com-
pared to the best UQV query with nDCG(UQV7)=0.4980). The UQV{1,4,5,6,8}
queries have comparably higher p-values with the TTS{S4,S4

′′ } queries which
align with similar ARP scores. Interestingly, the t-test with UQV7 and TTSS4

′

results in the highest overall p-value of 0.9901 and similarly high p-values with
KISS4-S4

′′ . This lets us assume that the corresponding user of the UQV7 queries
diverged from the terms in the topic texts and had some prior knowledge about
adequate queries for at least some of the topics. In sum, not only the ARP can
be reproduced with the simulated TTSS4-S4

′′ and KISS4-S4
′′ queries, but also

statistical properties of the topic score distributions.

Shared Task Utility. Regarding RQ2, we validate to which degree the sim-
ulated queries reproduce properties of the real queries in several regards. First,
we evaluate if the simulated queries can preserve the relative system order-
ings. To be consistent with Huurnik et al., we evaluate five systems and differ-
ent parametrizations (μ = 50, 250, 500, 1250, 2500, 5000) of the query likelihood
model with Dirichlet smoothing (QLD) [46], but other retrieval methods and
variations thereof can be reasonable as well. For each query formulation qi, we
determine the correlation by Kendall’s τ averaged over all topics (cf. Fig. 2 (left))
in comparison to the UQV5 queries. The TTSS2

′ queries do not preserve the rel-
ative system ordering. Especially for the first five query reformulations, there is
a low correlation with the relative system orderings of the real queries. Interest-
ingly, the KISS2

′ queries result in acceptable Kendall’s τ scores [43], while the
scores beyond the sixth query formulation show low correlations. Similarly, the
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Fig. 2. Kendall’s τ between system orderings of query reformulations in reference to
UQV5 (left). Jaccard similarity between unique terms of the queries (right).

TTSS4-S4
′′ queries correlate with the system orderings of UQV5 queries fairly

well, even reaching the maximum score of 1.0. Beyond the sixth query reformu-
lation, the correlation falls off. While it is out of this study’s scope to reach any
definitive conclusions, we assume that this is related to query drifts - an issue
that is also known from term expansions as part of pseudo-relevance feedback
[15,38].

Effort and Effect. Since most of the experiments validated single queries only,
we simulate search sessions and evaluate these by sDCG (instantiated with b=2,
bq=4). We compare sessions with 3, 5, or 10 queries and an increasing number
of documents per query. Figure 3 (top) compares the queries of UQV5 (made by
a single user [7]) to ten simulated queries of TTSS2

′ , KISS2
′ , and TTSS4-S4

′′ . As
expected, the cumulative gain increases faster when more queries per session are
used. Likewise, the TTSS2

′ and KISS2
′ queries deliver lower and upper bound

limits, respectively. In between, there are the cumulative gains by the UQV5

and TTSS4-S4
′′ queries. These results show that it is possible to fine-tune and

to reproduce the cumulative gain close to that of real queries, in this particular
case with TTSS4

′′ .
Figure 3 (bottom) shows the isoquants and illustrates how many documents

have to be examined by a simulated user to reach pre-defined levels of nDCG (0.3,
0.4, 0.5). More queries compensate browsing depth, and as expected, the least
documents have to be examined with KISS2

′ queries and the most with TTSS2
′

queries. The TTSS2
′ isoquants lie above the others, which can be explained by

the poorer retrieval performance as already shown in Table 1. As shown by the
MSLE, the TTSS4 isoquant has the lowest error for all values of nDCG. Again, we
see a better approximation of the UQV5 isoquant with the TTSS4-S4

′′ strategies
and that it is possible to reproduce economic properties through parameterizing
the query reformulation behavior.
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Fig. 3. Simulations with 3, 5, or 10 queries per session evaluated by sDCG (top).
Isoquants and MSLE between simulations and UQV5 with fixed nDCG (bottom).

Query Term Similarities. Figure 2 (right) shows the Jaccard similarities
between the concatenated query strings. More specifically, only normalized
unique terms are compared, and depending on the number of available queries
for a specific topic, we include an equal number of simulated queries to avoid
low Jaccard similarities when less than ten UQV queries are available. As the
results show, the highest similarities are between the simulated queries. While
the similarities between conventional strategies S1 to S3′ and the strategies S4
to S4′′ are rather low for the TTS queries, there are higher similarities for the
KIS queries. Compared to UQV and TTS queries, the KIS queries have the low-
est similarities, which indicates that descriptive terms of relevant documents are
very different from those used in real queries and the topic texts. Interestingly,
the UQV{2,3,8} queries do not have a remarkably high Jaccard similarity with
TTSS2

′ queries, despite the high p-values that are shown in Fig. 5. This shows
that it is possible to simulate UQVs with different query terms than in the real
queries, but with comparable statistical properties as indicated by the p-values
even with the rather naive approach of TTSS2

′ . There are slightly higher sim-
ilarities between KIS queries and the TTSS4-S4

′′ queries. In particular, there is
a higher similarity between TTSS4

′ and the KIS queries since the simulator is
parameterized to diverge from the topic terms. Overall, we conclude that the
analyzed simulation methods do not result in query strings that exactly match
the terms of real queries in this specific UQV dataset [6].
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5 Discussion

Referring to our research questions posed earlier, we answer them as follows.

RQ1 How do real user queries relate to simulated queries made from
topic texts and known-items in terms of retrieval effectiveness? It is
possible to use the TTSS1-S3

′ and KISS1-S3
′ queries, which follow conventional

simulation methods, as lower and upper bound estimates between which the
retrieval performance of real user query variants (UVQ1−8) ranges. Simulations
based on our new method (TTSS4

′′ ) provide better approximations of real query
effectiveness, and the parametrization allows the simulation of different query
formulation behaviors and a retrieval performance better resembling real queries.

RQ2 To which degree do simulated queries reproduce real queries
provided that only resources of the test collection are considered for
the query simulation? Our experiments show that the simulated TTSS4-S4

′′

queries reproduce the real UQV queries reasonably well in several regards.
Beyond a similar ARP, they also reproduce statistical properties of the topic
score distributions as shown by the RMSE and p-values. Furthermore, it is shown
that the simulated queries also reproduce economic aspects of the real queries
as evaluated with the sDCG experiments and the isoquants that compare trade-
offs between the number of query reformulations and the browsing depth for
a fixed level of gain. Furthermore, when evaluating the shared task utility, the
queries of our new parameterized simulation approach preserve the relative sys-
tem orderings up to the fifth reformulation, while the correlations fall off for
later reformulations. We assume that this is related to topic drifts, and further
analysis in this direction is required. Finally, even though it is not the primary
goal to simulate exact term matches with UQVs, the analysis of the query term
similarity showed that there is only a slight overlap between terms of simulated
and real queries, and a more dedicated approach is required to reproduce exact
term matches.

6 Conclusion

In this work, we present an evaluation framework and a new method for simu-
lated user query variants. Our experiments showed that the retrieval performance
of real queries ranges between that of simulated queries from conventional meth-
ods based on topic texts and known-items. As a better approximation of user
queries, we introduce a simulation method that allows parameterizing the query
reformulation behavior and thus better reproduces real queries from specific
users. One limitation of our simulations is the exclusion of relevance feedback
from previous search results. Users normally include terms of documents or snip-
pets they consider as relevant [17,39] in their query reformulations. Likewise, the
experiments neglect click simulations. We leave it for future work to complement
and analyze simulations in this regard.
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A Appendix

Table 1. Average retrieval performance over q queries

All queries First queries Best queries
q nDCG P@10 AP q nDCG P@10 AP q nDCG P@10 AP

UQV1 150 .3787 .4507 .1581 50 .4293 .5040 .2003 50 .4969 .6320 .2429
UQV2 52 .4221 .5058 .2020 50 .4096 .4880 .1894 50 .4103 .4900 .1896
UQV3 68 .3922 .4353 .1780 50 .3979 .4560 .1813 50 .4117 .4800 .1878
UQV4 123 .4126 .4894 .1888 50 .4469 .5220 .2099 50 .5146 .6300 .2644
UQV5 500 .3922 .4330 .1649 50 .4447 .4920 .2043 50 .5353 .7240 .2807
UQV6 136 .4030 .4713 .1843 50 .4488 .5080 .2197 50 .4980 .5980 .2515
UQV7 50 .4980 .5720 .2418 50 .4980 .5720 .2418 50 .4980 .5720 .2418
UQV8 156 .3814 .4545 .1645 50 .4046 .4500 .1799 50 .4556 .5620 .2193
TTSS1 500 .0479 .0306 .0127 50 .1705 .1280 .0541 50 .3066 .2360 .0971
TTSS2 500 .1964 .1716 .0688 50 .3592 .3900 .1604 50 .4391 .5100 .2097
TTSS2′ 500 .3387 .3426 .1413 50 .3895 .4020 .1821 50 .4639 .5940 .2283
TTSS3 500 .3323 .3632 .1388 50 .1705 .1280 .0541 50 .4776 .6080 .2383
TTSS3′ 500 .3499 .3874 .1474 50 .3592 .3900 .1604 50 .4709 .6060 .2311
TTSS4 500 .4493 .5168 .2088 50 .4409 .4920 .2072 50 .5945 .7620 .3282
TTSS4′ 500 .4788 .5626 .2288 50 .4976 .5940 .2429 50 .6207 .8040 .3554
TTSS4′′ 500 .3780 .4224 .1644 50 .4393 .4860 .2065 50 .5812 .7680 .3222
KISS1 500 .1334 .1044 .0314 50 .2836 .2040 .0813 50 .4087 .4400 .1492
KISS2 500 .3969 .3972 .1615 50 .5096 .5400 .2535 50 .5988 .7460 .3429
KISS2′ 500 .5114 .5666 .2507 50 .5474 .6220 .2870 50 .6336 .7980 .3762
KISS3 500 .5598 .6336 .3009 50 .2836 .2040 .0813 50 .6907 .8620 .4299
KISS3′ 500 .5941 .6882 .3285 50 .5096 .5400 .2535 50 .6922 .8620 .4337
KISS4 500 .5216 .5976 .2604 50 .5146 .5960 .2630 50 .6461 .8200 .3902
KISS4′ 500 .5008 .5888 .2416 50 .5033 .5980 .2400 50 .6269 .8080 .3703
KISS4′′ 500 .4859 .5584 .2293 50 .5191 .6020 .2644 50 .6401 .8360 .3781

Fig. 4. RMSE between TTSS1-S3
′ and KISS1-S3

′ queries and the UQV queries.
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Fig. 5. p-values of paired t-tests between UQV and simulated queries.
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Abstract. The pre-trained language model (eg, BERT) based deep
retrieval models achieved superior performance over lexical retrieval
models (eg, BM25) in many passage retrieval tasks. However, limited
work has been done to generalize a deep retrieval model to other tasks
and domains. In this work, we carefully select five datasets, including
two in-domain datasets and three out-of-domain datasets with different
levels of domain shift, and study the generalization of a deep model in
a zero-shot setting. Our findings show that the performance of a deep
retrieval model is significantly deteriorated when the target domain is
very different from the source domain that the model was trained on.
On the contrary, lexical models are more robust across domains. We thus
propose a simple yet effective framework to integrate lexical and deep
retrieval models. Our experiments demonstrate that these two models
are complementary, even when the deep model is weaker in the out-of-
domain setting. The hybrid model obtains an average of 20.4% relative
gain over the deep retrieval model, and an average of 9.54% over the
lexical model in three out-of-domain datasets.

Keywords: deep retrieval · lexical retrieval · zero-shot learning ·
hybrid model

1 Introduction

Traditionally, search engines have used lexical retrieval models (eg, BM25) to
perform query-document matching. Such models are efficient and simple, but are
vulnerable to vocabulary mismatch when queries use different terms to describe
the same concept [4]. Recently, deep pre-trained language models (eg, BERT)
have shown strong ability in modeling text semantics and have been widely
adopted in retrieval tasks. Unlike lexical retrievers, deep/dense retrievers1 cap-
ture the semantic relevance between queries and documents in a lower dimen-
sional space, bridging the vocabulary mismatch gaps. Deep retrievers have been
successful in many retrieval benchmarks. For instance, the most recent five win-
ners in MS-MARCO passage [2] ranking leaderboard adopt deep retrievers as
their first-stage retrieval model.
1 While we recognize that in some cases the deep retrievers are not necessarily dense,

and vice versa, we loosely use these two terms interchangeably throughout the paper.
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However, training a deep retrieval model is computationally expensive and a
sizable labeled dataset to guide model training is not always available. A natural
question then arises, can we train a deep retrieval model in one domain, and
then directly apply it to new datasets/domains in a zero-shot setting with no in-
domain training data? To answer this question, we carefully select five datasets,
including two in-domain, and three out-of-domain datasets with different levels of
domain shift. Through comprehensive experiments, we find that a deep retriever
model performs well on related domains, but deteriorates when the target domain
is distinct from the model source domain. On the contrary, lexical models are
rather robust across datasets and domains. Our further analysis shows that
lexical and deep models can be complementary to each other, retrieving different
sets of relevant documents.

Inspired by this, we propose a zero-shot hybrid retrieval model to combine
lexical and deep retrieval models. For simplicity and flexibility, we train a deep
retrieval model and a lexical model separately and integrate the two (or more)
models via Reciprocal Rank Fusion. This non-parametric fusion framework can
be easily applied to any new datasets or domains, without any fine-tuning. Our
experiments demonstrate the effectiveness of the hybrid model in both in-domain
and out-of-domain datasets. In particular, though the zero-shot deep model is
weaker in out-of-domain datasets, the hybrid model brings an average of 20.4%
of relative recall gain over the deep retrieval model, and an average of 9.54% gain
over lexical model (BM25) in three out-of-domain datasets. It also outperforms
a variety of stronger baselines including query and document expansion.

To summarize, in this paper we explore the following research questions:

– RQ 1: Can deep retrieval generalize to a new domain in a zero-shot setting?
– RQ 2: Is deep retrieval complementary to lexical matching and query and

document expansion?
– RQ 3: Can lexical matching, expansion, and deep retrieval models be com-

bined in a non-parametric hybrid retrieval model?

To the best of our knowledge, this paper is the first to propose a hybrid
retrieval model that incorporates lexical matching, expansion and deep retrieval
in a zero-shot setup. We demonstrate that the proposed hybrid model is simple
yet effective in a variety of datasets and domains.

2 Related Work

Information retrieval systems usually contain of two main stages: (a) candidate
retrieval (b) candidate re-ranking. The retrieval stage is aimed at optimizing the
recall of relevant documents, while the re-ranking stage optimizes early precision
metrics such as NDCG@k or MRR. Prior research (eg, [3]) found that the two
stages are complementary – gains in retrieval recall often lead to better early
precision. Therefore, in this paper, we focus on retrieval recall optimization, with
the assumption that the findings can benefit the re-ranking stage as well.



Out-of-Domain Semantics to the Rescue 97

Lexical Retriever. Traditionally, the first-stage retrieval has been a lexical
based model such as BM25 [35], to capture the exact lexical match between
queries and documents. Such simple and effective lexical models were the state-
of-the-art for decades, and are still widely used in both academia and industry.
One key issue with lexical models is the vulnerability to vocabulary mismatch,
where queries and documents mention the same concept with different terms.
One popular line to alleviate this is to expand terms in queries from pseudo
relevance feedback (eg, [15] and [1]) or expand terms in documents from related
documents (eg, [37]). As a result, queries and documents have a higher chance
to match each other at the surface form.

Deep LM Augmented Lexical Retriever. More recently, pre-trained deep
language models (LM) such as BERT [10] have been shown to be powerful in
many natural language understanding tasks. The very first application of such
models in IR is to augment lexical retrieval models. Dai et al. [7,9] proposed
to learn context-aware term weights by BERT to replace the term frequencies
used by lexical models. To remedy the vocabulary gap between queries and
documents, Nogueira and Lin [28,29] employed seq2seq model transformer [39]
and later T5 [33] to generate document expansions, which brings significant gains
for BM25. In the same vein, Mao et al. [27] adopted seq2seq model BART [20]
to generate query expansions, which outperforms RM3 [15], a highly performant
lexical query expansion method.

Deep Retriever. In a separate line of research, deep neural retrieval models
adopt LMs to build a new paradigm for first-stage retrieval: instead of performing
exact lexical match, they aim at capturing the relevance of queries and docu-
ments in a lower dimensional semantic space. This paradigm can largely bridge
the vocabulary gap between queries and documents. Since cross-attention mod-
els are cost-prohibitive for first-stage retrieval, most works adopt a dual-encoder
architecture to learn two single vector representations for the query and the
document separately, and then measure their relevance by a simple scoring func-
tion (eg, dot product or cosine similarity). In this way, finding most relevant
documents can be formulated as a nearest neighbor search problem and can be
accelerated with quantization techniques [14,16].

For model training, it is often the case that positive (query, document) pairs
are available, while negative pairs need to be sampled from the dataset. Nega-
tive sampling strategy plays a crucial role for model performance. Earlier works
adopt simple in-batch negative sampling [18,45], or mine negative pairs from top
BM25 results [17]. Recent works propose more sophisticated sampling strate-
gies to identify high-quality hard negatives, such as cross-batch negatives [32],
demonised hard negatives [32] and semantic similarity based negatives [23].

Deep retriever model has shown superior performance over lexical models in
several passage retrieval tasks (eg, MS-MARCO passage ranking [2]). However,
training a deep model is expensive computationally but also in terms of labeled
data creation. A simple remedy is to directly apply a trained deep retriever model
to new domains in a zero-shot setting. However, little work has been conducted
to uncover the generalization ability of deep retrievers. One exception is by
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Thakur et al. [38] who introduce BEIR, an IR benchmark of 18 datasets with
diverse domains and tasks, and evaluate several trained deep models in a zero-
shot setup. They found that deep models exhibit a poor generalization ability,
and are significantly worse than BM25 on datasets that have a large domain
shift compared from what they have been trained on. In our work, we conduct
similar studies, and observe the same performance deterioration for a deep model
in zero-shot setting. We additionally propose a hybrid model to utilize a lexical
model to alleviate the domain shift.

Hybrid Retriever. Deep retrievers are good at modeling semantic similarity,
while could be weaker at capturing exact match or could have capacity issues
when modeling long documents [24,42]. A few recent works attempt to build
a hybrid model to take the strength of both deep and lexical retrievers. Most
works train a deep model separately and then interpolate its score with a lexical
model score [17,21,22,24,25,42], or use RM3 built on the top lexical results to
select deep retriever results as the final list [18], or simply combine the results
of the two models in an alternative way [45]. Gao et al. [13] is the only work
that explicitly trains a deep model to encode semantics that lexical model fails
to capture. In model inference, they interpolate the scores of deep and lexical
models and generate the top retrieval results. While insightful, these prior works
limit the model evaluation to a single task and a single domain. It is unclear how
such hybrid model performs in a cross-domain setting, without any fine-tuning.
Our work aims to fill this research gap, and demonstrates that a zero-shot hybrid
retrieval model can be more effective than either of the two models alone.

3 Method

In this section, we describe our zero-shot hybrid retrieval model. For simplicity
and flexibility, we train deep and lexical retrieval models separately, and propose
a simple yet effective non-parametric framework to integrate the two.

3.1 Hybrid Retrieval Model

Both traditional lexical retrieval models [1,30,35], as well as deep neural retrieval
models [13,18,41] represent queries and documents using vectors q,d ∈ R

N , and
score candidates based on the dot product <q,d>. Thus, the difference between
deep and lexical models stems from how these vectors are constructed.

Lexical models represent queries and documents using sparse weight vectors
qsparse,dsparse ∈ R

V , respectively (where V denotes the vocabulary size). The
vectors are sparse such that all the entries for vocabulary terms that do not
appear in query and document are zeroed out. To combat issues of term mis-
match, lexical models often include additional terms in queries and document
through some form of expansion (eg, based on pseudo-relevance feedback [19]).
However, the resulting vectors are still highly sparse, due to the high dimension-
ality of vocabulary size V .
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In contrast, deep neural retrieval models represent queries and documents
using dense embedding vectors qdense,ddense ∈ R

E , where E<<V . While theo-
retically dense embeddings overcome the term mismatch problem, they do have
several shortcomings. First, they require large amounts of data and resources
for training [32], and thus may not be directly trained over collections with
fewer queries and relevance judgments. Second, they do not capture exact query-
document matches as well as the sparse lexical scores. Therefore, a lexical and
deep model combination is likely to yield the optimal relevance scores.

Most prior works [17,23,24,42] model this combination as a linear interpo-
lation of the scores of deep and lexical retrieval models. This fusion method is
sensitive to the score scales and the weights assigned to the different models [42],
which needs careful score normalization and weight tuning, especially when mul-
tiple models are combined. We expect that the raw scores of the models can vary
from one domain/dataset to another, and likewise the interpolation weights.

Since our goal is to build a hybrid model which can be easily applied to a
new domain in a zero shot setting (with no in-domain training data), we would
like to eliminate such domain-specific normalization and tuning. Therefore, we
adopt Reciprocal Rank Fusion (RRF) [5] to generate the final ranking results
by considering the ranking positions of each candidate generated by different
models, instead of fusing their scores. RRF demonstrates robust and effective
ensembles in prior works [3,5] and our experiments. Assuming a set of lexical
and deep retrieval models M , we define πm(q, d) as the rank for document d,
induced by its score for query q assigned by model m ∈ M . The RRF score is
then defined as:

RRF (q, d,M) =
∑

m∈M

1
k + πm(q, d)

(1)

where k = 60, following the definition in the original paper [5].
In the remainder of this paper we demonstrate that this simple non-

parametric approach generalizes well across domains, and can make an effective
use of out-of-domain semantics of retrieval models trained on a different collec-
tion. In the remainder of this section, we describe the lexical and deep retrieval
models used to instantiate Eq. 1.

3.2 Lexical Retrieval Model

We adopt BM25 as the base lexical retrieval model, as it is widely used and
shown to be robust [38]. To alleviate the vocabulary mismatch issue, we addi-
tionally apply popular query expansion and document expansion techniques to
expand the query and the document, forming enhanced lexical models.

BM25+Query Expansion. Most conventional query expansion approaches
follow the pseudo-relevance feedback (PRF) paradigm. It assumes the top K
ranked documents for the original query to be relevant, and generates query
expansions from these documents. In our work, we experiment with RM3 [15]
(a relevance-based language model) and Bo1 [1] (a variant of Divergence From
Randomness term weighting model), to obtain query expansions from PRF.
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BM25+Document Expansion. Recently, generative models like T5 were
shown to generate high-quality document expansions, and bring large gains to
the BM25 model on retrieval tasks [28,29,31]. Following the docT5query app-
roach [28,31], we fine-tune T5-base with identical setting as the prior works on
(query, relevant passage) pairs from the MS-MARCO passage ranking training
set, where the query is considered as pseudo document expansion. We adopt
the top-k sampling decoder [11] to generate N (a tunable parameter) queries
per passage. For each document, we append the expansions to each passage and
aggregate them as the document expansion.

3.3 Deep Retrieval Model

We adopt NPR [23], a neural passage retrieval model with improved negative
contrast as the deep retrieval model in our framework. Note that our framework is
flexible, and NPR can be replaced with any other deep model. Aligned with many
popular deep retrievers [17,32,43], NPR adopts a dual encoder architecture,
learning dense embedding vectors representations, computing the relevance using
the dot product <qdense,ddense>. The training of this model is enhanced with
several negative sampling strategies, aiming at obtaining hard and high-quality
negative (query, passage) pairs. This model is trained on MS-MARCO passage
dataset (detailed in Sect. 4.1), and achieves a very competitive performance.
To adapt NPR to document retrieval setting, we split documents into passages
by applying sliding overlapping sentence windows. Following work by Dai and
Callan [8], we use the max passage retrieval score as the document level score.

4 Experimental Setup

4.1 Datasets

As we are interested in exploring the performance of the deep retrieval model
in a variety of out-of-domain settings, we choose to specifically focus on five
datasets in our evaluation (summarized in Table 1).

1. MS-MARCO passage [2] dev set is the dataset we use for the in-domain
model evaluation, as the NPR deep retrieval model, and the docT5query
model are trained using the training portion of this dataset (see Sect. 4.2 for
more details). The queries in this dataset are all questions.

2. MS-MARCO doc [2] is derived from MS-MARCO passage, but instead the
retrieval is done using documents. We use the queries in dev set for evaluation
(a subset of MS-MARCO passage dev set). This evaluates the generalization
of the model to document retrieval.

3. ORCAS [6] is a click dataset based on an intersection of Bing search engine
logs and the documents in MS-MARCO dataset. Compared to MS-MARCO,
queries in ORCAS exhibit wider topics (not limited to questions) and shorter
length (76% of queries have no more than 3 tokens after removing stopwords).
Since it has a very large number of queries (10M), we evaluate our model using
a stratified sample of 10k queries, based on query length.
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Table 1. The five datasets used for model evaluation. “Avg. D/Q” denotes the average
number of relevant docs per query.

Dataset Domain Task #Query #Corpus Avg. D/Q

MS-MARCO passage [2] Misc. Passage retrieval 6980 8.8M 1.1

MS-MARCO doc [2] Misc Doc retrieval 5193 3.2M 1.1

ORCAS [6] Misc. Doc retrieval 9670 1.4M 1.8

Robust04 [40] News Doc retrieval 250 528K 69.9

TREC-COVID [34] Bio-medical Doc retrieval 50 191K 493.5

4. Robust04 [40] is a dataset comprising 528K news stories and 250 queries.
Each query consists of three fields, including title (keywords), description
(a sentence-length statement of the information needs) and narrative (a
paragraph-length text explaining what makes a document relevant). It eval-
uates how well the retrieval model generalizes to the news domain.

5. TREC-COVID [34] is based on the CORD19 [41] collection – PubMed
articles and preprints about the COVID-19 pandemic. Each query contains a
few keywords, along with a more specific natural language version of question,
and a narrative which adds additional clarifications of user intent. As shown
by Thakur et al. [38], it is quite distinct from the MS-MARCO dataset, and
provides a good test case for whether an out-of-domain retrieval system can
be useful in a bio-medical domain.

4.2 Data Processing and Benchmarking

In following, we detail our experimental setup to ensure the reproducibility of
all the reported results.

Deep Retrieval Model. As described in Sect. 3, we train NPR on the training
set of MS-MARCO passage dataset, and apply this model to the other four
datasets without any fine-tuning. The documents in the other four datasets are
long and may exceed the 512 token length limitation. Following prior work [31],
we use a sliding window of ten sentences with a stride of five to split each
document into passages. We run NPR on each passage, perform the nearest
neighbor search via SCaNN [14] at passage-level and consider the best passage
score as its document score. The query used for each dataset is the same as
BM25 based lexical model (detailed in Table 2).

Lexical Retrieval Models. For implementing our lexical models, we use the
Terrier search engine [26], and apply the default options for stemming and stop
word removal provided by Terrier. We employ three fully lexical benchmarks.
We carefully tune the parameters, and detail the settings in Table 2.

– BM25 is a commonly used bag-of-words retrieval method. We use the default
parameters provided by Terrier, and verify that our results (in terms of
MAP) are comparable to other previously reported BM25 benchmarks [44].
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Table 2. The best setup for lexical retrieval models. “des./narr./ques.” denotes descrip-
tion/narrative/question field and “#fk docs/terms” denotes the number of feedback
documents/terms.

Model (→) BM25 Bo1 docT5query

Dataset (↓) index query #fk doc #fk terms #expansions

MS-MARCO passage full text query 5 10 40

MS-MARCO doc full text query 5 5 20/passage

ORCAS full text query 10 10 20/passage

Robust04 full text query+des.+narr. 5 10 10/passage

TREC-COVID abstract query+ques.+narr. 20 40 10

We experiment with a few indexing options: 1) full text, 2) passage and 3)
abstract for TREC-COVID only.

– Bo1 is a query expansion package implemented in Terrier. For each dataset,
we carefully tune the number of feedback documents ([5, 10, ..., 50]) and the
number of feedback terms (ie, expansions; [5, 10, ..., 60]). We also experiment
with RM3 query expansion package by Terrier and carefully tune the two
parameters. However, it yields lower performance than Bo1 in all the five
datasets. We thus only report the results of Bo1 in the Sect. 5.

– docT5query is a T5 based document expansion model. As described in Sect. 3,
we fine-tune T5 model on the MS-MARCO passage training set by strictly
following the setup of prior works [28,31]. We feed each passage length text,
namely, passage in the MS-MARCO passage collection, the abstract in TREC-
COVID, or split passages of other three datasets, to T5 model and generate
N (a tunable parameter; [10, 20, 40]) numbers of expansions. We append the
expansions for all the passages to a document.

5 Evaluation

As our work focuses on the first stage retrieval, in this section we adopt
Recall@1K as the primary evaluation metric and additionally report MAP score.
In our evaluation, we aim to address the research questions posed in Sect. 1.

5.1 Generalization of the Deep Retrieval Model

We first focus on the results on two in-domain datasets (Table 3). As expected,
the deep retrieval model NPR performs very well on MS-MARCO passage on
which it is trained. It substantially beats BM25 by an absolute 10.77 (relative
12.35%) and 16.15 (relative 83.59%) in terms of Recall@1K and MAP, respec-
tively. In MS-MARCO doc (the in-domain document retrieval task), NPR also
performs well, and betters BM25 by 4.55 (5.0%) and 3.86 (14.57%) at Recall@1K
and MAP, respectively. This indicates that a well-trained deep passage retrieval
model generalizes well to an in-domain document retrieval task.
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Table 3. Experimental results on two in-domain datasets. The improvements (R@1K)
of all hybrid models (5-8) over baselines (1-4) are statistically significant via a paired
two-tailed t-test (p < 0.05).

Dataset (→) MS-MARCO passage MS-MARCO doc

Model (↓) R@1K MAP R@1K MAP

1. BM25 87.18 19.32 90.91 26.50

2. BM25+Bo1 88.27 17.95 91.64 22.69

3. BM25+docT5query 94.07 26.09 93.18 30.28

4. NPR 97.95 35.47 95.46 30.36

5. RRF(1, 4) 98.31 29.46 96.80 32.09

6. RRF(2, 4) 98.36 28.62 96.90 31.48

7. RRF(3, 4) 98.65 32.89 96.86 33.50

8. RRF(2, 3, 4) 98.48 29.58 96.96 32.48

Table 4. Experimental results on three out-of-domain datasets. The improvements
(R@1K) of all hybrid models (5-8) over baselines (1-4) are statistically significant via
a paired two-tailed t-test (p < 0.05), except 5/7 vs. 2 in Robust04 and TREC-COVID.

Dataset (→) ORCAS Robust04 TREC-COVID

Model (↓) R@1K MAP R@1K MAP R@1K MAP

1. BM25 77.52 27.1 72.84 26.91 49.29 27.86

2. BM25+Bo1 78.85 23.53 79.02 30.83 52.58 30.98

3. BM25+docT5query 79.62 30.28 74.64 28.01 50.66 28.77

4. NPR 81.18 28.29 70.28 28.39 37.58 17.14

5. RRF(1, 4) 85.95 30.33 79.62 33.19 52.32 30.38

6. RRF(2, 4) 86.18 28.36 82.82 34.60 54.63 32.21

7. RRF(3, 4) 86.44 31.39 79.81 33.34 53.01 30.64

8. RRF(2, 3, 4) 86.49 29.74 82.65 34.51 55.66 34.22

In Table 4, we discuss the results of three out-of-domain document retrieval
datasets. Compared to MS-MARCO doc, ORCAS dataset has the least domain
shift (as the candidate documents stem from MS-MARCO doc albeit with dif-
ferent queries), followed by Robust04 (news domain). TREC-COVID contains
COVID-19 specific topics and has the largest domain shift. We observe that
NPR has a clear performance drop with the increased domain shift. NPR per-
forms reasonably on ORCAS, and betters BM25 by relative 4.72% and 4.39%
at Recall@1K and MAP, respectively. However, it still has an absolute drop of
14.28 and 2.07 in terms of Recall@1K and MAP, compared to its performance
on MS-MARCO doc. In the news domain (Robust04 dataset), the performance
of NPR is mixed: it outperforms BM25 by 5.5% of relative MAP improvement,
but underperforms by relative 3.51% at Recall@1K. In TREC-COVID dataset,
BM25 significantly beats NPR by 11.71 (23.76%) and 10.72 (38.48%) in terms
of Recall@1K and MAP. This demonstrates that the generalization ability of
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deep retrieval models is poor, especially when the target domain is dramatically
different from its training domain.

5.2 Utility of Query and Document Expansion

Lexical retrieval models are prone to vocabulary mismatch between queries and
documents. We examine whether query and document expansion models could
bridge this gap. From Table 3 and Table 4, we see that Bo1 query expansion
model consistently brings recall gains, with 1% relative gain on MS-MARCO
passage/doc and ORCAS, 8.48% on Robust04 and 6.67% on TREC-COVID.

Recall that docT5query document expansion model is trained on the training
set of MS-MARCO passage dataset. In this dataset, it brings very large gains to
BM25. In the other four datasets, docT5query shows a consistent, albeit smaller,
improvement over BM25 (above 2.5% recall gain), similar to the analysis by
Thakur et al. [38].

5.3 Complementarity of Lexical and Deep Retrieval Models

As with query/document expansion, deep retrieval model can narrow the vocab-
ulary gap between queries and documents. One natural question is, are these
models still complementary to each other? To answer this, we plot the unique
relevant documents retrieved by BM25+Bo1, BM25+docT5query and NPR and
their overlaps in Fig. 1 for Robust04 and TREC-COVID (other three datasets
only have around one relevance document per query, ref Table 1). We see that
each method is complementary to each other. In general, NPR retrieves the
largest number of unique relevant results, though it retrieves less relevant results
than the other two methods.

5.4 Effectiveness of the Proposed Hybrid Model

Our proposed hybrid framework provides a flexible mechanism for fusing mul-
tiple lexical or deep retrieval models. In Table 3 and Table 4 (row 5–8), we
demonstrate the performance of our hybrid model which consistently outper-
forms either the lexical or deep retrieval model alone. In in-domain MS-MARCO
passage dataset, the best performing hybrid model of BM25+docT5query and
NPR (#7) obtains a Recall@1K of 98.65, betters BM25 and NPR by relative
12.94% and 0.52%, respectively. This hybrid model outperforms coCondenser
(Recall@1K = 98.4) [12], the current MS-MARCO leaderboard winner (as of
2021/08/09) in the passage retrieval task.2 In the in-domain document retrieval
task, the best performing hybrid model is the one with all the three methods
(Bo1, docT5query and NPR).

In three out-of-domain datasets, the advantage of hybrid model is more evi-
dent, given that NPR is weakened in datasets with a large domain shift (i.e.,

2 Note that we focus solely on recall, since we do not apply a second re-ranking stage
for optimizing early precision.
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TREC-COVID). It consistently improves over BM25 by almost 10% relatively for
the three datasets, and substantially outperforms NPR by 6.11%, 14.16% and
44.25% in ORCAS, Robust04, and TREC-COVID, respectively. This demon-
strates that our proposed zero-shot hybrid retrieval model is effective and robust
across different tasks and domains.

6 Discussion

Our zero-shot hybrid model has demonstrated its effectiveness in the exper-
iments. For comparison, we implement the linear interpolation method that
most prior works adopted [17,23,24,42], though such model is not zero-shot,
and requires weight tuning. As weight tuning complexity increases with the
number of models, we only interpolate BM25 and NPR as a case study:
s(d) = α × sBM25(d) + (1 − α) × sNPR(d). We perform min-max score nor-
malization and carefully tune the weight α ∈ [0.1, . . . , 0.9] via grid search for
out-of-domain datasets Robust04 and TREC-COVID.

Fig. 1. A Venn diagram of relevant results by the Bo1, docT5query, and NPR.

Fig. 2. The comparisons of our hybrid model, oracle system and interpolation.
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Table 5. Mean R@1K result by query length for ORCAS dataset (best result bolded).

Model \ Query Length 1 2 3 4 5 6 7 8 9 10

1. BM25 35.0 74.2 80.2 82.0 82.3 82.9 81.1 87.8 85.6 87.5

2. BM25+Bo1 39.5 76.6 81.3 83.1 83.3 83.0 82.6 88.1 86.3 87.9

3. BM25+docT5query 36.9 77.8 83.0 84.1 86.2 84.9 83.8 88.6 85.8 87.8

4. NPR 59.8 82.5 85.8 86.6 87.6 85.6 82.8 83.3 80.1 75.9

Figure 2 (bottom curve), shows that interpolation is weight-sensitive, and fur-
thermore even the best setting underperforms our simple non-parametric hybrid
model RRF(BM25, NPR) by a relative 3% in both datasets. The differences are
even larger, when compared with the full RRF model (dashed line). We also
explore the hybrid upper bound by fusing the retrieval results of BM25+Bo1,
BM25+docT5query and NPR via an oracle, ie, merging all relevant results from
each method regardless of their ranking positions. Figure 2 (dotted top line) illus-
trates the large potential headroom for designing an even better fusion model.

Similarly to us, Wang et al. [42] found that setting an oracle per-query weight
yields better performance than optimizing a global weight. Inspired by this, we
hypothesize that the performance of retrieval models relate to query length. We
bin the ORCAS queries into 10 groups, based on the number of non-stopword
tokens, and show the breakdown results in Table 5. When the queries are very
short, NPR largely beats BM25, even with query and document expansion. How-
ever, its performance deteriorates for longer queries, with 7 or more tokens.

To gain more insights, we spot-check wins and losses. For single token queries,
BM25 performs badly when the query is misspelled (eg, “ihpone6”) or a com-
pound word (eg, “tvbythenumbers”). These words are very likely to be out-of-
vocabulary (OOV) in lexical retrieval models. On the contrary, deep retrieval
model NPR adopts wordpiece tokenizer, which could still capture the semantics
of the OOV from its sub-units. For long queries, NPR performs poorly for those
employing complex logic and seeking very specific information, eg, “according
to piaget, which of the following abilities do children gain during middle child-
hood?”. In this example query, BM25 successfully retrieves relevant documents
containing the identical query sentence, while NPR fails. This may indicate that
NPR is worse at capturing exact match, consistently with prior work [24,42].

7 Conclusion

Compared to traditional lexical retrieval models, a deep retrieval model mitigates
the vocabulary mismatch by modeling semantic relevance between queries and
documents, and has a great success in many retrieval tasks. We show that a deep
retrieval model poorly generalizes to a new domain with large domain shift, while
lexical matching and expansion models are robust across domains. To address
this, we propose a simple non-parametric zero-shot hybrid model to integrate
lexical matching, expansion, and deep retrieval models. Our proposed model
demonstrates its effectiveness in both in-domain and out-of-domain datasets.
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A recent work [36] found that deep retrieval models underperform lexical
models for rare entities in an entity-centric QA task. As a future work, we plan to
investigate the effectivenss of our hybrid model in this task. Additionally, we plan
to parameterize the hybrid retrieval model using query structure, query length,
the degree of domain shift, and other signals that may reflect the performance
of each individual model. Finally, we plan to explore techniques that improve
the utility of out-of-domain deep retrieval models via domain adaptation.
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Abstract. Ranking context has been shown crucial for the performance
of learning to rank. Its use for the BERT-based re-rankers, however,
has not been fully explored. In this work, an end-to-end BERT-based
ranking model has been proposed to incorporate the ranking context by
modeling the interactions between a query and multiple documents in
the same ranking jointly, using the pseudo relevance feedback to adjust
the relevance weightings. Extensive experiments on standard TREC test
collections confirm the effectiveness of the proposed model in improving
the BERT-based re-ranker with low extra computation cost.

1 Introduction

Recent advances in information retrieval have shown promising performance
gain by utilizing large-scale pre-trained transformer-based language models like
BERT [12,27,40,57]. Most of these models, however, consider query-document
pairs independently. Actually, unlike in ordinal classification, the main goal of a
ranking problem is to optimize ranking lists given queries, making the considera-
tion of the context of the ranking important, such as the local ranking context in
terms of cross-document interactions [2,43,44]. There have been many successful
attempts to incorporate the ranking context, mostly in learning-to-rank-based
methods. In early works, loss functions have been proposed to optimize on top
of a pair or a list of documents [5,28,31,55], modeling the cross-document inter-
actions at loss level, achieving superior performance on L2R benchmark [46]. In
addition, a groupwise ranking framework for multivariate scoring functions is
proposed [2] to determine the relevance scores of a group of documents jointly,
taking handcrafted learning-to-rank features as query-document presentations
and using stack of dense layers to evaluate the relevance. More recently, a neu-
ral learning-to-rank model named SetRank [43] is proposed to directly learn a
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ranking model defined on document sets, employing a stack of multi-head self-
attention blocks to learn the embedding for all documents jointly, successfully
incorporating the local ranking context and leading to promising improvements.

To the best of our knowledge, however, such ranking context has not been
successfully used to enhance the state-of-the-art neural ranking models based on
pre-trained language models, like BERT. Indeed, as mentioned in [45], using pair-
wise loss when employing BERT for re-ranking does not lead to improvements.
Beyond single query-document pairs, duoBERT [41] concatenates two documents
and the query before feeding into BERT layers, and the output from BERT is
trained to learn pairwise comparisons between two documents. However, there
exists no straightforward extension to incorporate the full local ranking context
using duoBERT as BERT model can not encode very long sequence. Inspired by
the success of SetRank [43], in this work, we aim to develop a novel model that
could incorporate the ranking context on top of the BERT-based contextualized
ranking models, advancing the state-of-the-art BERT-ranker. In a nutshell, com-
paring with SetRank, BERT-based ranker requires the learning of the encoder
during the incorporation of the ranking context, requiring novel framework to
enable the end-to-end training. Besides, due to the complexity and huge size of
the BERT model [13], special designs are desired to enable the joint modeling
of hundreds or even thousands of documents.

To bridge this gap, we propose a groupwise BERT-based ranking model,
Co-BERT, which is equipped to consider the ranking context. In the groupwise
scorer, inspired by [43], candidate documents are grouped together and their
interaction representations are passed through several BERT layers to model
the ranking context, before projecting the outputs into ranking scores. This
groupwise scorer and the BERT encoder for individual query-document pairs
are trained end-to-end with pointwise loss. Therein, the groupwise scorer should
be able to incorporate the ranking context for hundreds or even thousands of
documents; however, individual batch can only include a limited number of docu-
ments due to the huge amount of parameters in BERT. To mitigate this dilemma,
a ranking list is divided into groups of documents from the same ranking, and
pseudo-relevance feedback (PRF) is exploited to capture the query-specific infor-
mation, calibrating the relevance weightings among different groups.

Contributions in this paper are threefold. 1) We propose an end-to-end
groupwise BERT-based ranking model, enabling the joint learning of the query-
document interactions and the intra-documents ranking context over BERT. 2)
A light-weight PRF-based calibration method is proposed to incorporate rank-
ing context for long list of documents, further boosting the groupwise scorer
with small extra computational cost. 3) Extensive evaluation demonstrates that
Co-BERT can advance the effectiveness of the state-of-the-art BERT re-ranker.
Besides, while providing improvements in ranking effectiveness, the extra com-
putation cost of Co-BERT during inference is as least as 0.3% compared with
a standard BERT re-ranker. Source code and data are publicly available at
https://github.com/VerdureChen/Co-BERT.

https://github.com/VerdureChen/Co-BERT
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2 Related Work

BERT-Based Ranking and Pseudo Relevance Feedback (PRF). Many
existing works have attempted to apply BERT for ranking from different aspects,
including training models with large amounts of data [40], scoring documents
with sentence-level or passage-level information [12,20,27,54,57], multi-stage
fine-tuning with BERT [41], pre-training BERT with various external signals [32–
34], as well as combining BERT with existing neural models [37] or LTR meth-
ods [18]. Beyond that, two-tower retrievers [22,47,56], ColBERT [23], EPIC [36],
TK [21], as well as PreTTR [35] pre-compute the passage representations to
reduce query-time latency, and are further improved by TAS-Balanced [19],
PAIR [48] and JPQ [60]. As can be seen, most of the mentioned BERT-
based ranking models consider query-document pairs independently or use time-
consuming pairwise loss, ignoring the ranking context based on more than two
documents. There are also works that exploit PRF information to boost ranking.
Padaki et al. [42] investigate several traditional keyword expansion approaches
and find that they are not necessarily beneficial. Zheng et al. [62] propose BERT-
QE that expands the original query by text snippets, instead of individual key-
words, selected by a fine-tuned BERT ranker. Based on Transformer-XH [61], Yu
et al. [58] propose the graph-based PGT model that utilizes a configurable num-
ber of feedback documents. PRF mechanism and query expansion approaches
are also incorporated with dense retrievers to boost IR performances [50,53,59].
Unlike Co-BERT, the motivation of these works is to expand the queries to
mitigate the vocabulary mismatch between queries and documents. Instead, Co-
BERT aims to use the PRF signals to calibrate the relevance weightings for
documents in different groups but from the same ranking, supplementing the
groupwise scorer component in a light-weight fashion.

Incorporating Ranking Context. In early works, pairwise or listwise losses
were used to learn from multiple documents [5,28,31,55]. Recently, the cross-
document interactions are further incorporated into the ranking models. Ai et
al. [1] employ a recurrent neural network to encode the top-ranked results, from
which a context model learns to incorporate the query-specific feature distribu-
tions. They further develop a general framework for multivariate scoring func-
tions, in which the relevance score of a document is determined by considering
multiple other documents in the list [2]. Pasumarthi et al. [44] leverage the cross-
document interaction by a self-attention based neural network, showing improved
effectiveness and efficiency on several learning to rank (L2R) datasets. Pang et
al. [43] propose a transformer-based L2R approach, SetRank, that directly learns
a permutation-invariant ranking model defined on document sets. Very recently,
Chen et al. [7] propose a listwise learning framework combining four pooling-
based losses over three neural retrieval models. Feng et al. [14] apply Bi-LSTM
and self-attention mechanism to model the contextual information to guide the
generation of the recommendation results. Among these works, evaluation on
learning to rank datasets shows performance gain of SetRank [43] over strong
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Fig. 1. Model architecture of Co-BERT.

baselines. SetRank uses FNN to encode document features, and feeds the rep-
resentations into Set-Transformer [26] to capture the local context information
from cross-document interactions, jointly scoring retrieved documents. However,
when using cross-encoders, it becomes infeasible to put the BERT representa-
tions of the entire ranking list in the memory at one time. To the best of our
knowledge, these existing models are built upon handcrafted features and do not
have straightforward extensions to make uses of the recent pre-trained language
models, e.g. BERT. This work extends this research direction for the state-of-
the-art BERT-based re-ranker, proposing an end-to-end model that jointly learns
the interaction representation and the ranking context.

3 Method

In this section, we present the Co-BERT model for document re-ranking, wherein
the query-document interaction representations and the ranking context are
learned jointly. The model architecture is summarized in Fig. 1.

3.1 Overview

Given a query q and k ranked documents, e.g., from BM25, a re-ranking method
aims to provide each document d a relevance score rel(q, d) that estimates to
what degree document d satisfies the query q. As shown in SetRank [43], referring
to other candidate documents from the same ranking is important, wherein the
query-document representations are in the form of handcrafted feature vectors
before modeling the ranking context. Inspired by this, an end-to-end framework
is proposed to boost the ranking of these k documents by learning the query-
document encoding and the ranking context together. The proposed model is
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composed of the cross-documents interaction encoder named groupwise scorer,
and the components to calibrate the relevance weighting among different batches
for the same ranking using pseudo relevance feedback (PRF).

Recall that, when using cross attention to model the relevance with BERT [29],
the token sequence from a query q and from a document d are first concate-
nated into [CLS]Query[SEP ]Document[SEP ] before passing through multiple
self-attention layers, and the interaction representation for [CLS] is used to encode
the relevance between the query and the document [13]. In the groupwise scorer,
inspired by [2,43], instead of independently evaluating the relevance of individ-
ual documents, n documents are considered together using a four-layers BERT
model, and the relevance of these n documents are evaluated jointly. Due to the
huge amount of the trainable parameters in BERT, a ranking is split into multiple
groups and a groupwise scorer models the documents within each group indepen-
dently. To calibrate the relevance weighting among these groups, similar to [1], the
top-m out of the top-k documents are used as pseudo relevance feedback (PRF)
set, providing the query-specific context. When evaluating the relevance of a docu-
ment, beyond directly using the interaction presentation [CLS] between the token
sequence from a document-query pair, we first use the m interaction representa-
tions from PRF documents to calibrate it. Likewise in [12], since a document could
be too long to be encoded using BERT model, we split a document into overlapped
passages with the same length. Similar to BERT-QE [62], a BERT checkpoint pre-
trained on MS MARCO [40] is used to score each passage relative to the query, and
the passage with the highest score in each document is actually used in place of
the original document in both training and inference. For brevity, we use the term
“document” in the following.

3.2 End-to-End Groupwise Scorer

Given a query-document pair, the [CLS] vector from the last layer of BERT is
used as the query-document interaction representation. We denote the k interac-
tion vectors for the top-k documents as rj where j ∈ [1 · · · k], each corresponds to
one document to be evaluated, and rj is a l-dimension dense vector, e.g., l = 768
when using BERT-Base. As mentioned in [2], scoring individual documents inde-
pendently could lead to sub-optimal ranker due to the comparing natural in the
ranking problem. Inspired by SetRank [43], we propose a groupwise relevance
scorer using BERT, hoping to evaluate the document relevance more effectively
by encoding the cross-documents interactions from the same ranking. Due to
the size of the BERT encoder, e.g., 110M parameters in BERT-Base, we group
n candidate documents (n ≤ k) together, before modeling the relevance of these
n documents jointly. To maintain the cross-references among different groups,
we employ a straightforward method by allowing an overlap with o documents,
in between neighbouring groups from the initial ranking. For the n documents
in a single group, their interaction representations are stacked into a sequence
with length n, namely, r1, r2, r3, · · · , rn. Thereafter, this sequence of interaction
representations are passed through multiple layers of BERT, before being pro-
jected into n relevance scores, which are used to rank the documents. Herein,
a BERT model named uncased L-4 H-768 A-12, with four layers, the hidden



116 X. Chen et al.

size of 768, and, 12 attention heads, is used. We initialise this four-layers BERT
model using pre-trained checkpoint from Google [16]. The choice of n is up to the
maximum batch size that is allowed by the hardware. Different from the exist-
ing ranking model incorporating ranking context, like SetRank [43], groupwise
encoder takes the [CLS] from the query-document encoding as input, enabling
the end-to-end training of the query-document interaction representation and
the ranking context modeling.

Recall that the transformer model [51] relies on the positional embedding to
encode the position information. According to our pilot experiments, we do not
configure the positional embedding within a group, and simply generate different
groups following the initial ranking.

3.3 Light-Weight Pseudo Relevance Feedback

As mentioned, there exist multiple groups when modeling the ranking including
many documents, namely, n ≤ k. In this section, we further introduce a novel
building block using PRF information to calibrate relevance weighting among
different groups from the same ranking.

The top-m documents are selected as the pseudo relevance feedback (PRF)
set, which are used to provide the query-specific context among different groups.
We first construct prototype representation for the interaction representations
using these m PRF documents. Similar to the computation of each rj , the m
output embedding of the token [CLS] from BERT, each for one of the PRF doc-
uments, encode the interaction between the query and the corresponding PRF
set. In favor of the description, we denote these m [CLS] vectors as ti instead of
using r., where i ∈ [1, · · · ,m]. Thereafter, the k interaction vectors from Sect. 3.2
are calibrated using these m prototypes ti with a shallow BERT model of two
layers before passing through the groupwise scorer. In particular, the interaction
prototype ti and each interaction representation rj are stacked into a sequence
with two tokens, namely, tirj , before passing through the two-layer BERT. The
calibrated interaction representation corresponding to rj using prototype ti from
the two-layers BERT output sequence is denoted as rtij . Thereby, for each rj ,
there are m calibrated representations. Ultimately, we combine these m cali-
brated presentations into one using a simple weighted average, where the weight
is the relevance of the prototype ti, as in Eq. 1, and Wt and bt are trainable
weights for the projection. Similar to the residual connection in the multi-head
attention [51], as shown in Eq. 2, we average the calibrated interaction repre-
sentation and the origin presentation and use the resulting vector as the inputs
for the follow-up scorer. We show that this residual connection is important to
the effectiveness in Sect. 5. In this work, for the two-layers BERT model in the
calibration, we employ the configuration named uncased L-2 H-768 A-12, which
is with two layers, hidden size equaling 768, and 12 attention heads. We use the
pre-trained BERT checkpoint from Google [15] to initialise this model.

r′
j =

∑

i∈[1·m]

softmax(Wtti + bt) · rtij (1)



Incorporating Ranking Context for End-to-End BERT Re-ranking 117

r̂j =
rj + r′

j

2
(2)

3.4 End-to-End Training of the Model

Given a query q and k documents, we first select m PRF documents using BERT
ranker pre-trained on MS Marco [40]. Thereafter, the batch size is determined
based on the constrains of GPU hardware. Therein, in each batch, n candidate
documents, together with the m PRF documents are batched together. During
training, cross-entropy loss is computed for individual documents as in Eq. 3,
where Ipos and Ineg denote the sets of indexes for relevant and non-relevant
documents, respectively, and prj is the probability of the document j being
relevant according to the model. The probability is computed using a softmax
function, namely, prj = softmax (rel(q, d)), where rel(q, d) is the relevance score
of d given by Co-BERT.

L(Ipos, Ineg, q, dj) = −
∑

j∈Ipos

log(prj) −
∑

j∈Ineg

log(1 − prj) (3)

Note that, we use pointwise loss as in Eq. 3 to train the groupwise scorer and
leave the study of other losses to future work. The cross-documents interaction
is implemented using the four-layers BERT-based groupwise scorer described in
Sect. 3.2 and the two-layers BERT-based calibrator in Sect. 3.3.

4 Experiment Setup

4.1 Dataset and Metrics

We experiment on the widely-used Robust04 [52], GOV2 [8], and ClueWeb09-
B [9] datasets. We employ 249 title queries for Robust04, 150 title queries for
GOV2, and 200 title queries for ClueWeb09-B. Since we have similar observations
on NDCG@20 and P@20, we report P@20 to enable the comparisons on the
shallow pool; and MAP@1K is reported for deep pool. All statistical tests are
based on the paired t-tests at p < 0.05 with corrections [6].

4.2 Baselines and Co-BERT Variants

DPH+KL, the unsupervised DPH retrieval model [4] with Rocchio’s query
expansion using KL divergence [3,49] is used to generate the initial ranking of
top-1k documents. The implementation from Terrier [38] has been adopted.
BM25+RM3 is another unsupervised ranking model using pseudo relevance
feedback signals [25]. We follow the experimental settings from [57], and the
implementation from Anserini [30] with default settings is used.
BERT-Base is the BERT-Base ranker boosted by transfer learning. The model
is initialised using a checkpoint that has been trained on MS Marco [40], before
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being fine-tuned on target datasets using the top-1 passage from each relevant
document as positive examples as in [62].
BERT-Groupwise is a multi-stage training method. Since there has been no
existing work trying to integrate pre-trained language model encoders and group-
wise methods, we implement the model by directly combining a SetRank [43]
like groupwise model of four-layers BERT with a BERT-based encoder. Text
representation of BERT-Base is saved before training groupwise scorer. Due to
the pre-storage of text representation, the batch size of training is expanded to
500. Other configurations are similar to Co-BERT.
duoBERT [41] is a pairwise BERT re-ranker initialised using a BERT-Base
checkpoint trained on MS Marco, which follows the default setting of the top-30
BERT-Base re-ranking and 512 sequence length.
PGT [58] is a pseudo relevance feedback method that uses a graph-based Trans-
former. In addition to the results on TREC 19&20 Deep Learning Track [10,11]
as in Table 3, we also report our implementation on the other datasets.
BERT-QE [62] is a BERT re-ranking model exploiting the PRF signals. Unlike
Co-BERT, BERT-QE is an inference framework and has not been trained end-
to-end. In this work, to enable comparisons, we use the BERT-QE variances
using three BERT-Base components (namely, BERT-QE-BBB), each for one
of its phases. For fair comparisons, we re-implement BERT-QE with the same
passage slicing and the same max sequence length as Co-BERT.
The following variants of Co-BERT are included for comparisons.
Co-BERT is the model as described in Sect. 3 using BERT-based groupwise
scorer on top of the calibrated interaction representations based on PRF.
Co-BERT with PRF calibrator only is a variant of Co-BERT. The relevance
of documents are evaluated independently using Eq. 4 without passing the batch
of calibrated interaction representations into the groupwise scorer. In particular,
we simply project individual r̂j from Eq. 2 into a relevance score using a shared
trainable weights Wrel and brel for each of the k documents, as in Eq. 4.

rel(q,Rm, dj) = Wrelr̂j + brel (4)

Co-BERT with groupwise scorer only is another variant of Co-BERT with-
out using the PRF calibration, and only use the groupwise scorer described in
Sect. 3.2. This means we do not use any feedback signals in the re-ranking, but
still use the groupwise scorer for training and inference.

Note that, the efficient design in dense retrieval and contrastive learning [47,
56] are deemed orthogonal to the use of the ranking context, and the dense
retrieval models thus have not been included for comparisons. Moreover, the
results for the baselines and the Co-BERT variants are based on the standalone
ranking models without the interpolation with the unsupervised ranking score.

4.3 Model Training and Inference

Data Preparation. Both training and inference are based on the top-1k doc-
uments from DPH+KL. Akin to [12], for BERT-Base, PGT, BERT-QE and
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Table 1. Effectiveness of Co-BERT relative to baseline models. The gain/loss is
reported relative to BERT-Base, on top of which the Co-BERT network architecture
is established. The statistical significance at 0.05 relative to (PRF only), (groupwise
only), and Co-BERT are denoted as †, ‡ and §, respectively.

Model Robust04 Gov2 ClueWeb09-B

P@20 MAP@1k FPs P@20 MAP@1k FPs P@20 MAP@1K FPs

BM25+RM3 [30] 0.3821 0.2903 - 0.5634 0.3350 - 0.2669 0.1819 -

DPH+KL [38] 0.3924 0.3046 - 0.5896 0.3605 - 0.2962 0.2019 -

BERT-Base 0.4430§ 0.3407§ +0% 0.5725‡§ 0.3531‡§ +0% 0.3285§ 0.2171‡§ +0%

BERT-Groupwise 0.4436§ 0.3408§ +0.3% 0.5889‡§ 0.3567‡§ +0.1% 0.3343 0.2223‡§ +0.5%

duoBERT [41] 0.4293†‡§ 0.3173†‡§ +14.6% 0.5923‡§ 0.3553‡§ +3.5% 0.3323§ 0.2163‡§ +10.3%

PGT [58] 0.4131†‡§ 0.3085†‡§ +50.1% 0.5859‡§ 0.3144†‡§ +12.0% 0.2833†‡§ 0.1736†‡§ +35.4%

BERT-QE [62] 0.4614 0.3555 +86.1% 0.6198§ 0.3662‡§ +20.5% 0.3152‡§ 0.2131‡§ +60.7%

(PRF only) 0.4526 0.3480 +1.3% 0.5802 0.3550 +0.3% 0.3273 0.2153 +1.0%

(+2.2%) (+2.1%) - (+1.3%) (+0.5%) - (−0.4%) (−0.8%) -

(groupwise only) 0.4500 0.3530 +0.3% 0.6493 0.3993 +0.1% 0.3457 0.2418 +0.5%

(+1.6%) (+3.6%) - (+13.4%) (+13.1%) - (+5.2%) (+11.4%) -

Co-BERT 0.4629 0.3631 +1.3% 0.6668 0.4022 +0.3% 0.3598 0.2463 +1.0%

(+4.5%) (+6.6%) - (+16.5%) (+13.9%) - (+9.5%) (+13.5%) -

Co-BERT, the documents are chunked using sliding windows of 150 words with
an overlap of 75 words. As mentioned in Sect. 3.1, for all four models, the most
relevant passage is selected using a BERT ranker pre-trained on MS Marco [40]
to represent individual documents. To feed individual query-paragraph (i.e. the
text chunk with 150 words) pairs into the model, query and paragraph are con-
catenated with a maximum sequence length of 256.

Batching and Loss Function. We train BERT-Base and Co-BERT using
cross-entropy loss as in Eq. 3 for five epochs with a batch size of 64 on one
NVIDIA TITAN RTX 24G. For Co-BERT, according to preliminary results, we
configure the number of PRF documents for calibration as m = 4, the number
of candidate documents in individual group as 60 (n = 60), and the overlap
between the neighbouring groups is set to four (o = 4). During training, we
randomly shuffle the batches before feeding them into the model. The Adam
optimizer [24] is used with the learning rate schedule from [40]. We configure
the initial learning rate as 3e−6, and the warming up steps are set to the 10%
of the total training steps.

Cross-Validation. Similar to the configuration in DRMM [17], we use 5-fold
cross-validation to report the results with a 3-1-1 split. The query partition on
Robust04 follows the settings from [12]. On GOV2 and ClueWeb09-B, queries
are partitioned by the order of TREC query id in a round-robin manner. The
average performance on the test splits from all folds is reported.

5 Results

In this section, we examine the effectiveness and efficiency of Co-BERT relative
to baseline models, before studying how groupwise mechanism and PRF calibra-
tor work with BERT. Finally, we report the results on the TREC Deep Learning
track query sets [10,11] for further comparisons.
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Table 2. Impacts of the residual connections in Eq. 2. Two alternative feeding orders
of batches during training are also investigated. Relative comparison in terms of per-
centage (in bracket) in comparisons with BERT-Base is also reported. Statistical sig-
nificance at levels 0.05 is denoted with † and ‡, relative to BERT-Base and Co-BERT,
respectively.

Model Robust04 Gov2

P@20 NDCG@20 MAP@1K P@20 NDCG@20 MAP@1K

BERT-Base 0.4430 0.5109 0.3407 0.5725 0.5040 0.3531

Co-BERT (Random training) 0.4629 0.5213 0.3631 0.6668 0.5781 0.4022

(w/o residual connection in Eq. 2) 0.4554 0.5102 0.3567† 0.6326†‡ 0.5484†‡ 0.3951†

(−1.6%) (−2.2%) (−1.9%) (−6.0%) (−5.9%) (−2.0%)

(Train following initial ranking) 0.4422 0.5029 0.3457‡ 0.6211†‡ 0.5308†‡ 0.3728†‡

(−4.7%) (−3.6%) (−5.1%) (−8.0%) (−9.4%) (−8.3%)

(Train reversing initial ranking) 0.4454 0.5026 0.3429‡ 0.6322†‡ 0.5429†‡ 0.3799†‡

(−4.0%) (−3.7%) (−5.9%) (−6.0%) (−7.0%) (−6.3%)

5.1 Overall Performance of Co-BERT

Given a query, different BERT-based ranking models, including the variants of
Co-BERT model described in Sect. 4, are used to re-rank the top-1k documents
from DPH+KL. We also include two classical unsupervised ranking models,
namely, BM25+RM3 and DPH+KL, for references. The ranking effectiveness
are summarised on both shallow (P@20) and deep pool (MAP@1K) in Table 1.

Effectiveness of Co-BERT. According to Table 1, Co-BERT outperforms all
of the unsupervised baselines. As both BERT-Base and Co-BERT have been
initialised using the ranking model pre-trained on MS Marco [40], and are fine-
tuned in the same way. Thereby, we are assured that the performance difference
between Co-BERT and BERT-Base comes from the novel model architecture
introduced in Sect. 3. Actually, Co-BERT also achieves better results than the
most recent transformer-based ranking models using PRF signals and query
expansion such as PGT [58] and BERT-QE [62], confirming the superior effec-
tiveness of the complete Co-BERT, especially on the deep pool.

Efficiency of Co-BERT. The FLOPs, i.e. the number of floating point opera-
tions, of various BERT-based models are reported in Table 1, in the form of the
relative comparisons to BERT-Base. From Table 1, comparing with BERT-Base,
it can be seen that Co-BERT only requires an extra 1.3% computation overheads
when significantly boosting the effectiveness on both shallow (4.5%) and deep
pool (6.6%) on Robust04; meanwhile, with only 0.3% extra computation cost,
Co-BERT could provide more than 13% boosts on both shallow and deep pools
on GOV2. Remarkably, though being able to outperform BERT-Base in most
cases, the extra computation cost of Co-BERT is actually limited.
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5.2 Study of Groupwise Ranking

End-to-End Training Plays an Important Role. As shown in Table 1,
although the batch size is large, the detached groupwise architecture of BERT-
Groupwise shows little benefit on Robust04 when compared to BERT-Base, and
can only achieve marginal improvements on GOV2 and ClueWeb09-B. How-
ever, Co-BERT with groupwise scorer only, using the same model component
as BERT-Groupwise but with end-to-end training, can significantly improve the
performances compared to BERT-Base. On the deep pool in terms of MAP@1K,
more than 13% boosts have been observed on both GOV2 and ClueWeb09-B. On
shallow pool, the end-to-end training method can also improve P@20 by 1.6%,
13.4% and 5.2%, on the three datasets used, respectively. Recall that BERT-
Groupwise attempts to apply groupwise scorer directly to the text representa-
tion using a SetRank-like approach. When the query-document representation
pre-generated by a fine-tuned BERT ranker is used for groupwise scorer training,
the effectiveness of groupwise ranking is limited, demonstrating the importance
of the end-to-end training for the BERT-based groupwise ranker.

Impacts of Feeding Order. As mentioned in Sect. 3.4, when the total number
of documents for ranking (namely, k) is too large to be fed into single batch,
we have to group n < k documents into batches during training and inference,
and then feed the data for training after random shuffling. We investigate two
alternative ways for the feeding order of training data, namely, training following
initial ranking and training reversing initial ranking. Training following initial
ranking means when feeding training batches for the same query, the batches are
ordered following the initial ranking. On the contrary, when training following
the reversed order in initial ranking, the batches are fed in the reversed order of
the initial ranking. Note that, among different epochs, the training data is still
shuffled among queries to avoid over-fitting. For brevity, we only report results
from Robust04 and Gov2, as results obtained on ClueWeb09-B and Gov2 lead
to similar observations. According to the results in Table 2, it can be seen that,
with the alternative feeding order for the training data, Co-BERT could still out-
perform BERT-Base on GOV2. Such alternative order, however, leads to at least
3.5% drops among all different metrics on both dataset and the resulting models
are significantly worse than Co-BERT trained using fully shuffled batches.

5.3 Study of Light-Weight PRF Calibrator

As can be seen in Table 1, when only using the PRF calibrator without the
groupwise scorer, on Robust04, the PRF-calibrator-only variant can outper-
form BERT-Base with up to 2% margin on two metrics. While on GOV2 and
ClueWeb09-B, Co-BERT does not show advantage over BERT-Base. However,
when being used with groupwise scorer, namely the full Co-BERT, the PRF
calibrator is able to further enhance the effectiveness, although groupwise has
already made a significant improvement over BERT-Base. Recall that the pur-
pose of the PRF calibrator is to provide a lightweight performance boost to the
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Table 3. Effectiveness of Co-BERT on TREC DL query sets.

Model TREC DL 19 TREC DL 20

MRR@10 NDCG@10 MAP@1K MRR@10 NDCG@10 MAP@1K

BERT-Base 0.9280 0.6999 0.4715 0.7847 0.6776 0.4553

PGT [58] 0.9297 0.6938 0.4232 0.8108 0.6818 0.4184

Co-BERT 0.9581 0.6996 0.4838 0.8391 0.6992 0.4505

groupwise BERT scorer. The above findings confirm the ability of the PRF cal-
ibrator in improving the groupwise BERT ranker with relatively low extra com-
putational overhead as shown in Sect. 5.1. Moreover, as described in Sect. 3.3,
the averaging operation in Eq. 2 adds back the origin interaction representation
after the PRF calibration, providing more direct connections between early lay-
ers and the scorer layers. In Table 2, we report the results of Robust04 and Gov2
without the averaging operation, the performances of Co-BERT drops on all
metrics of the results. The same phenomenon is also observed on ClueWeb09-B.
This highlights the importance to add this skip connection after calibrating the
interaction representation using pseudo relevance feedback.

5.4 Effectiveness on TREC DL

We additionally report the results on the TREC Deep Learning track query
sets [10,11] using the MS MARCO passage corpus [39]. TREC DL 19 & 20 con-
tains 43 and 54 queries respectively, which are manually annotated by NIST
on a four-point scale. As the MS Marco document set is similar to the passage
set in nature, we only report on the latter for brevity. BM25 is used as the
initial ranker and the official metrics, MRR@10, NDCG@10 and MAP@1k, are
reported. We compare our model with BERT-Base and PGT [58] by re-ranking
the top-1000 documents from BM25. According to the results in Table 3, Co-
BERT obtains higher scores than PGT in all metrics, however, Co-BERT’s per-
formance is overall comparable to BERT-Base. A likely cause for the insignificant
difference between Co-BERT and BERT-base is the QA-oriented nature of the
MS Marco dataset, which normally has only one prototype answer for a given
question. Due to the lack of diversity in the relevant passages for each query,
groupwise ranking may not benefit from highlighting different relevant content
by the cross-attention.

6 Conclusion

In this paper, we propose an end-to-end BERT-based re-ranking models, named
Co-BERT, wherein the relevances of a group of documents are modeled jointly.
Evaluation on three standard TREC test collections, namely, Robust04, GOV2,
and Clueweb09-B, demonstrates that the proposed Co-BERT could advance the



Incorporating Ranking Context for End-to-End BERT Re-ranking 123

state-of-the-art BERT-based ranking model by a considerable margin. In addi-
tion, the results highlight the importance of the end-to-end training of a group-
wise BERT ranker, as opposed to the groupwise ranking over the pre-trained
text representation using a SetRank-like approach. Finally, the lightweight PRF
calibrator is shown to be able to provide a further performance boost over the
groupwise ranker with small extra computation overhead.
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Abstract. Search relevance is an important performance indicator used
to evaluate search engines. It measures the relationship between users’
queries and products returned in search results. E-commerce sites use
search engines to help customers find relevant products among millions
of options. The scale of the data makes it difficult to create relevance-
focused evaluation datasets manually. As an alternative, user click logs
are often mined to create datasets. However, such logs only capture a slice
of user behavior in the production environment, and do not provide a
complete set of candidates for annotation. To overcome these challenges,
we propose a systematic and effective way to build a discriminative,
reusable, and fair human-labeled dataset, Wayfair Annotation DataSet
(WANDS), for e-commerce scenarios. Our proposal introduces an impor-
tant cross-referencing step to the annotation process which significantly
increases dataset completeness. Experimental results show that this pro-
cess is effective in improving the scalability of human annotation efforts.
We also show that the dataset is effective in evaluating and discrimi-
nating between different search models. As part of this contribution, we
also released the dataset. To our knowledge, it is the biggest publicly
available search relevance dataset in the e-commerce domain.

Keywords: Product search · Search Relevance · Dataset · Evaluation

1 Introduction

Search engines are a big part of our day-to-day lives. They are behind many
applications we have come to rely on daily, from web retrieval to e-commerce.
Thus, it is hardly a surprise that a lot of research has been poured into improving
and evaluating search engines. Search relevance is a measure of the accuracy of
the relationship between the search query and the search results. It is commonly
used to assess the performance of search engines.

Evaluating search relevance is inherently tricky. It is a common practice to
use annotators to indicate the relevancy of a query-result pair. However, on a
large scale, it is not possible to ensure the completeness of the evaluation set. The
purpose and use case of queries also vary significantly, which makes discerning the
intent of the query a challenge. This, in turn, makes it hard to pinpoint the exact
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search results that are expected. For example, if a user is interested in finding
induction cooktops, and attempts to search for them using the query cooktop, it
poses an interesting annotation challenge - how do we discern between results
which include only induction cooktops from those which return all cooktops?

In this paper, we introduce and describe WANDS, an open-source e-commerce
product dataset that can be used to fairly and accurately evaluate the relevancy of
e-commerce product search engines. We will explain our data collection method-
ology, as well as share experiments that we have conducted to validate the efficacy
and value of WANDS. The key contributions of this paper include:

– releasing a public dataset, which is built on top of real-world e-commerce
production data. To the best of our knowledge, this is the biggest search
relevance dataset in the e-commerce domain.

– detailing the methodology used to construct the dataset to allow for trans-
parency and reproducibility.

– proposing an iterative product mining technique called “cross-referencing” to
improve the completeness of our annotations while keeping the annotation
problem tractable.

2 Related Work

There has been a sizable body of work created on the problem of evaluating
search relevance. We partition this prior work into Web Search Relevance and
Product Search Relevance.

Web Search Relevance deals with retrieving unstructured search responses
from large web-scale datasets. The best-known body of work around web-scale
relevance evaluation is from the Text REtrieval Conferences (TREC), a series of
evaluation workshops conducted for several years. TREC 2007 and 2008 featured
the million query track [5,6] which involved searching over the GOV2 dataset [2].
The dataset used is a collection of web pages from within the .gov domain, and
includes around 25 million documents. Part of the track’s goal was to investigate
whether multiple shallow judgments might be a better alternative to using fewer,
more thorough judgments. The 2009 run of this track [9] used a new ClueWeb09
dataset [3] instead of GOV2. This is a much larger dataset of one billion web
pages in 10 languages.

Besides academia, multiple enterprises in the tech industry have also shared
their research in this space. Google released a sample of their internal annotation
guidelines1. While it provides a useful peek at how they define relevance, the guide-
lines do not shed sufficient insights into what Google defines as a “best” match.
Microsoft Bing made available a package of benchmark dataset LETOR [18] for
learning to rank, which contains standard features, data, and evaluation tools.

1 https://static.googleusercontent.com/media/guidelines.raterhub.com/en//
searchqualityevaluatorguidelines.pdf.

https://static.googleusercontent.com/media/guidelines.raterhub.com/en//searchqualityevaluatorguidelines.pdf
https://static.googleusercontent.com/media/guidelines.raterhub.com/en//searchqualityevaluatorguidelines.pdf
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Sogou, a Chinese search engine, released SOGOU-SRR (Sogou Search Result Rel-
evance) [27] and SOGOU-QCL [29]. These are large and high-quality datasets.
However, these datasets would not be the most appropriate for evaluating product
search relevance, since their ranking target is web pages instead of products.

Product Search Relevance focuses on retrieving items from datasets of prod-
ucts and merchandise. The community has adopted two main approaches to
build product search relevance datasets: mining user click logs and annotating
via crowdsourcing.

Mining user click logs is a popular way to build up significantly sized datasets
for large enterprises which have ready access to these logs. The rising popularity
of embedding-based product retrieval [15,24–26,28] is facilitated by datasets
assembled from these web-scale search logs. However, these datasets can be noisy
as users can click on irrelevant but popular products, and also because non-
clicks are difficult to interpret in terms of relevance. Moreover, such datasets are
proprietary and have not been released to the public domain.

Datasets in the public domain tend to be crowdsourced datasets that do
not leak proprietary and important data. The two following datasets are closely
related to WANDS.

– Home Depot2 released the “Home Depot Product Search Relevance
Dataset” [1,10] on Kaggle. It contains 75K training data samples and 166K
evaluation samples. Queries are sampled from Home Depot’s search logs.
Ground truth labels, between 1 (not relevant) to 3 (highly relevant), are
created via crowdsourcing. Each annotation was evaluated by at least three
human raters, and the final relevance score is defined to be the average of
these human ratings.

– Crowdflower also released a dataset [4] that contains relevance annotations
from several e-commerce sites. This is a smaller dataset than the Home Depot
one, including 261 search terms and a list of products for each of these terms.
Annotations are based on a sliding scale from 1 to 4, where 4 indicates that
the product fully satisfies the search query, and 1 indicates that the product
does not match a query.

Both of these datasets only provide relevance scores or labels for their training
samples, but not for testing samples. This reduces the usability of these datasets
for benchmarks and comparison purposes.

Compared to the Home Depot and Crowdflower datasets, WANDS is signifi-
cantly larger in terms of annotated query and product pairs. It includes relevance
labels for both training and evaluation datasets to facilitate benchmarking and
comparisons. Unlike the two existing datasets, with our WANDS dataset we will
also release the full annotation guidelines we used, to ensure reproducibility and
also to share best practices for future data collectors. WANDS also innovates on
the annotation process to improve the number of relevant products per query
(i.e., the cross-referencing process described in Sect. 4).

2 Major U.S.A. home improvement retailor: http://www.homedepot.com.

http://www.homedepot.com
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3 Annotation Guidelines Design

3.1 Design Principles

In this section, we will detail the design of our annotation guidelines. We design
the WANDS dataset to meet the following criteria:

Reusable. Our dataset should apply to a wide variety of systems, and provide
reproducible results. The most straightforward way to annotate an evaluation
dataset is to present a particular Information Retrieval (IR) system’s outputs to
the annotators and to obtain human judgement specific to the IR system outputs.
However, such annotation is not suitable for judging a different IR system. We
aim to design a relevance dataset that can be used to evaluate multiple systems.

Fair [17]. It should be agnostic to the systems to be evaluated, and be able to
evaluate product search engines fairly and objectively. As discussed in Sect. 2,
user behavioral data becomes an increasingly popular choice as relevance evalu-
ation datasets [15,24–26,28]. User behavior log data suffer from positional biases
and would favor the rankings similar to the production system. We will alleviate
positional bias issues by presenting pair-wise query and product information for
annotators to judge.

Discriminative. It should have the power to discern the performance of differ-
ent product search engines given a robust and discriminative evaluation metrics
such as nDCG [14,19–21]. In order to design a dataset that can differentiate
great search algorithms from the good ones, we make sure to include hard neg-
atives, the products are almost relevant to a query but not quite. We mined the
hard negatives both arithmetically and from user behavior logs.

Completeness. As a core element in the Cranfield paradigm [11], completeness
has been a debated quality of a relevance dataset since then [23]. Completeness
refers to the property that within a relevance dataset, all relevant documents for
a given query are known. Indeed, modern relevance datasets have mostly prior-
itized dataset size over completeness [22], and various evaluation metrics have
been proposed to deal with incompleteness of evaluation datasets [7,19]. How-
ever, as we will show in Sect. 6, incompleteness in Product Search dataset does
negatively impact the discriminative power of the evaluation. Incompleteness
in Product Search evaluation data also contributes to the problem that offline
evaluation results cannot predict online metrics [13]. While we acknowledge that
absolute completeness is impossible to achieve for a dataset the size of WANDS,
we take measures to minimize the impact of incompleteness.

To understand why completeness is important, let’s assume that we have a
target query, which is expected to return 3 products (p1, p2, p3) out of a set of
10. Let’s assume that we have two versions of the dataset, A, and B. A includes
2 “relevant” annotations for p1 and p2. B includes 3 “relevant” annotations
for p1, p2, p3. Suppose also that we have two search engines that we want to
evaluate, α and β. α is able to return two results (p1, p2), while β returns all
three relevant products. When evaluated on dataset A, the two search engines
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Fig. 1. Screenshot of Annotation Web UI.

will perform identically. It is not possible to tell them apart. However, we will
be able to tell using dataset B that β is the better search engine, because it is
able to return a better set of results than α.

3.2 Query-Product Annotation

We had three dedicated annotators from the data annotation agent working
on this project. Each query, qk, and its set of candidate products, θqk =
{ik1, ik2, ..., ikn}, are sent to the three annotators. The annotators see one query-
product pair at a time and judge each query-product pairing with one of these
possible annotations3:

– Exact match: The surfaced product fully matches the search query.
– Partial match: The surfaced product does not fully match the search query.

It only matches the target entity of the query, but does not satisfy the mod-
ifiers for the query.

– Irrelevant: The product is not relevant to the query.

The annotators are given access to a web-based annotation tool to perform the
labeling tasks as shown in Fig. 1.

4 Annotation Process

The overview of the annotation process is illustrated in Fig. 2. We started by
stratified-sampling of search queries from a pool of historical customer queries
stored in the e-commerce customer behavior logs. We then collected the prod-
ucts potentially relevant to one or more of the selected queries and constructed
a Product Pool. Once the query and product pools were constructed, we per-
formed Iterative Product Mining to identify the query-product pairs to be anno-
tated. Three annotators then provided independent judgments on the selected
3 Please refer to our Annotation Guidelines released as a supplement to the dataset.
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Fig. 2. Overview of the Annotation Process

query-product pairs, according to the Annotation Guidelines. To reduce dataset
incompleteness, we introduce the Iterative Product Mining process as described
in Sect. 4.3. In the remainder of this section, we will discuss in detail each step
of the annotation process.

4.1 Query Sampling

Our e-commerce website serves millions of queries every day. A good search
relevance dataset should represent the diversity of real-world queries. To this
end, we performed stratified sampling over tens of millions of customer search
queries from the 2021 first quarter search log at our U.S. website. This resulted
in a total of 480 English search queries.

Specifically, we stratified search queries along the following dimensions: 1) on-
site organic searches vs. marketing-redirected searches, 2) searches that resulted
in customer engagement (e.g., added products to cart) vs. searches that didn’t
result in customer engagement, and 3) popularity over the past two years. Within
each stratified query group, we picked queries from both the head (frequent) and
the tail (infrequent) of the frequency distribution. This approach improves the
diversity of the queries in the query pool. Figure 3 illustrated the diverse query
distribution over the popularity and engagement dimensions.

4.2 Constructing the Product Pool

Our product catalog contains tens of millions of products. For this annotation
task, we need to sample a small subset of our product catalog, such that the
resulting relevance data set can differentiate great search models from good
ones. This means that for the selected queries, we not only need to include
clearly relevant products and clearly irrelevant products, but also need to ensure
that there are hard-to-determine, almost-relevant products.

To mimic the real-world difficulty of a product search engine, we adopted
two strategies to construct the product pool: using customer engagement data,
and using a combination of lexical and neural retrieval systems:
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Fig. 3. Query Distributions on Add to Cart and Search Volume.

1. We leveraged user engagement data, and included the products that users
clicked on or added to shopping cart during a search experience. Our hypoth-
esis is that the user’s added-to-cart products are good approximation of poten-
tially relevant products4, and their clicked-on (but not added-to-cart) prod-
ucts could be hard negatives, or almost-relevant products.

2. We further mine our product catalog using an open source lexical search
engine Solr5, and a neural product retrieval system inspired by Nigam et
al. [16]. The two systems provide different ways to approximate relevant prod-
uct retrieval. Neither system is perfect thus providing us more chances to
include almost-relevant products in additional to relevant products.

3. We didn’t attempt to sample easy negative samples (i.e. clearly irrelevant
products). We assume that some of the selected products for certain queries
will become negative samples for other queries.

4.3 Iterative Product Mining for Dataset Completeness

The query-product pairs resulting from the Product Pool Construction step were
sent to the annotators as the first batch of annotation data. Pooling products
related to different queries can cause dataset incompleteness [23]. In an ideal
world, we would ask our annotators to judge every product and query pairs
but that would be intractable - to do so in WANDS would require 60 million
annotation judgements (480 queries x 42,994 products x 3 passes). To reduce
the number of unjudged but relevant query-product pairs, we iteratively mined
the entire product pool for unjudged but potentially relevant products for each
query as cross-referencing. We presented the mined product-query pairs to the
annotators in batches of decreasing likelihood of containing relevant pairs, and
monitored the percentage of exact match query-product pairs in the annotation
results. Once the percentage of exact match labels dropped to a predetermined
level (5%), we would stop the product mining step and assume that the majority
of relevant products had been found.
4 Users purchasing irrelevant products in search results is a well documented phe-

nomenon [8], however, it is not a concern in our case.
5 https://solr.apache.org/.

https://solr.apache.org/
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Table 1. Summaries of WANDS and other open-source datasets.

Feature WANDS Home Depot Crowdflower

Query

Counts 480 11,795 261

Predicted Class ✓ ✗ ✗

Product

Counts 42,994 54,682 29,790

Primary Class ✓ ✗ ✗

Title ✓ ✓ ✓

Description ✓ ✓ ✓

Attributes ✓ ✓ ✗

Category Hierarchy ✓ ✗ ✗

Average Rating ✓ ✗ ✗

Number of Reviews ✓ ✗ ✗

Annotated Query-Product Relevance Labels

Counts 233,448 74,067 22,513

Specifically, we applied the lexical and neural retrieval systems described
in Sect. 4.2 to discover more potentially relevant products. We further utilized
a proprietary deep learning query classification model, which won during A/B
test, to predict the product type that a certain query refers to (e.g. query “tex-
tured cotton throw pillow” was classified to “accent pillow” product class), and
collected all the items in the product pool that belonged to this product class.
After the iterative mining, we have reduced the chance of having unjudged but
related query-product pairs in our dataset, and improved dataset completeness.

5 Dataset

The main contribution of this paper is the WANDS dataset6 itself. We collected
a total of 480 queries, 42,994 products, and 233K annotated query-product rele-
vance labels. Table 1 shows a summary of WANDS relative to the Home Depot
and Crowdflower datasets. WANDS contains the largest number of relevance
labels for query-product pairs. It also contains the richest descriptions of the
products and queries in the English language. It includes details such as: product
title, product description, primary classes that product belongs to (i.e., chair),
product category hierarchy, various product attributes such as size and color,
average customer ratings, and review numbers.

Each entry in the dataset maps a (query-product) pair to a single relevance
label, which could be one of 1) exact match, 2) partial match, or 3) irrelevant.
This label is obtained by aggregating up to 3 entries from our annotators, using
the majority vote strategy.

6 https://github.com/wayfair/WANDS.

https://github.com/wayfair/WANDS
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Table 2. Change in inter-annotator agreement over time.

Months 1 & 2 Month 3 Month 4

Cohen’s Kappa 0.467 0.664 0.826

OPA 0.688 0.812 0.916

Quality Assurance is a common challenge for human-annotated datasets.
Without a rigorous quality control strategy, annotators would produce an abun-
dance of poor judgments. To ensure the quality of the annotations, we tracked
changes in inter-annotator agreement over time. We do this using two objective
quality metrics: 1) Cohen’s Kappa [12] and 2) the overlap percentage of agree-
ment (OPA). Both metrics measure the agreement between raters, based on the
judgments they make. OPA describes how frequently annotators agree with each
other. For example, if 3 annotators all come to the same conclusion, then the
inter-annotator agreement is 100%. If 2 out of 3 of them have the same conclu-
sion, then the agreement is 66%. Table 2 shows the changes in inter-annotator
agreement over a period of several months. The annotators started with mod-
erate agreement, which steadily increased over the period of 4 months to an
almost perfect agreement. Overall, there is a high level of agreement between
our annotators leading to the high-quality dataset. We identified four reasons
that contribute to significantly improved agreement: 1) Daily routine to discuss
the conflicting annotations can help our annotators get calibrated to the annota-
tion guidelines. 2) Regular audits and reviews help to train and align annotators.
3) With the input from annotators, we refine and fine-tune annotation guide-
lines. 4) Each query-product pair from a new annotator is also labeled by the
other two annotators. This ensures data quality and facilitates future alignment.
As annotators get trained and are more effective at the task, the overlapped
examples are reduced to improve throughput.

Throughput is an important practical aspect of data collection. To determine
the initial throughput, we piloted an annotation exercise with four team mem-
bers. Following our annotation guidelines, we could achieve an initial throughput
of 200 query-product pairs per hour, with an OPA of over 90%. The annotators
performed consistently for the observed period of time. The throughput after 4
months is at around 190 query-product pairs per hour.

6 Experimental Evaluation

Datasets. Publicly available datasets are used to evaluate performance of search
models. We prefer a dataset that provides statistically significant separation
between competing search models. We designed an experiment to compare dis-
criminative power of WANDS with other two public datasets. Home Depot [1]
and Crowdflower [4] are public e-commerce product search datasets consisting of
query and product pairs from popular e-commerce websites. Table 1 summarizes
the differences between each of these datasets.
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Table 3. Mapping of labels across each dataset to a standardized set of scores for
metric computation.

Home Depot Dataset Crowdflower Dataset WANDS Relevance Score

≥ 2.5 1 exact match 1.0

≥ 1.5 and < 2.5 2 partial match 0.5

3

≤ 1.5 4 irrelevant 0.0

Fig. 4. nDCG@10 with varying β.

Search Models. For the experiment, we also needed to select a set of search
models that by design, have known retrieval performance. Note that we are not
evaluating the models themselves, but rather how well the dataset can differ-
entiate between two similar models. We chose the following search models with
known performance properties:

– Random ranking (RANDOM). This is a naive baseline that generates a
random list of products as the result to a query.

– Okapi BM25 (BM25). That is a probabilistic retrieval ranking model which
is integrated into Apache Solr. It is based on a bag-of-words representation
and uses TF-IDF to estimate the relevance between query and products.
This is a widely used and very popular unsupervised search algorithm. In our
experiments, we make use of product titles and descriptions in each of the
different dataset for ranking.

– Linear combination of RANDOM and BM25 (LINEAR-β). This com-
bines both RANDOM and BM25 linearly. The score of a product is computed
as follows: β ∗ SRANDOM + (1 − β) ∗ SBM25, where Sx denotes the score
assigned to a product by system x and β is a parameter that defines mixing
ratio between two base algorithms.

We use nDCG@10 [20] to evaluate the performance of different search models.
To compute the metric, we have to resolve the differences in labels used across
all three datasets. We map them to the relevance score as shown in Table 3.
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Table 4. Label Distribution for different sampling sources.

exact match partial match irrelevant

User click logs 8,420 (62.47%) 4,624 (34.31%) 434 (3.22%)

Open-source ranking systems 12,040 (30.95%) 24,797 (63.74%) 2,066 (5.31%)

Results. We ran RANDOM, BM25 and LINEAR-β on three datasets, while
varying the values of β from 0.0 to 1.0. Each experiment was repeated 5 times
and values averaged. Note that performance of LINEAR-0.0 is equivalent to
BM25 and LINEAR-1.0 is equivalent to RANDOM. Figure 4 shows a plot of the
nDCG@10 scores for varying levels of β on each of the experimental datasets.

Observations. The first observation is that nDCG@10 remains nearly constant
across all values of β for the Home Depot dataset. This indicates the dataset is
not able to differentiate between search engines in terms of performance, even
though RANDOM is expected to under-perform BM25. In fact, we could not
differentiate between any LINEAR-β on Home Depot dataset (one-sided T-test,
p < 0.01). On the other hand, on the Crowdflower and WANDS datasets, we
can see an expected gradual decrease in nDCG@10 scores as the value of β
increases. The graph is monotonically decreasing, with the highest nDCG@10
score for BM25 (i.e. β = 0.0), and the lowest for RANDOM (i.e. β = 1.0). When
comparing Crowdflower and WANDS, we can see that WANDS is more discrim-
inative of the two. We can reject the null hypothesis that LINEAR-0.0 and
LINEAR-0.3 have the same performance (one-sided T-test, p < 0.01). However,
we cannot statistically separate LINEAR-0.0 and LINEAR-0.3 when using the
Crowdflower dataset. For Crowdflower, we only see the same level of statistical
significance for LINEAR-0.0 and LINEAR-0.5. Thus, we conclude that WANDS
has the highest discriminative power as compared to other datasets.

7 Discussion

7.1 Effectiveness of Sampling Sources

Constructing the product pool step uses two candidate sources: user click logs, and
open-source ranking systems (e.g. Solr). Using user click logs is a popular way
to gather query-product pairs and provide a valuable relevance signal. However,
relying solely on click logs can lead to an incomplete dataset. This approach
misses out on a lot of relevant items that users do not interact with. We augment
this with results using open-source ranking systems. While these systems are
imperfect, they do greatly expand the possible query-product pairings.

Table 4 shows the breakdown of the distribution of our annotation labels for
each of these two sources. We see that the exact match labels mined from user
click logs are relatively high at 62.47%, and irrelevant candidates only account
for 3.22% of all labels. For open-source ranking systems, we achieve around 31%
of exact match labels and 64% partial match labels.
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The high proportion of relevant matches from both approaches suggests that
our sampling step is working as it was intended - to help narrow down a good list
of candidates so that our annotators can pick out relevant matches efficiently.

7.2 Iterative Product Mining for Dataset Completeness Step

We analyzed iterative annotation process to understand how much value it
added. After completing the step Constructing the product pool, for 49,390 query-
product candidates and 480 queries, we obtained a set of 46,875 relevant (e.g.
either exact match or partial match) query-product annotations. After itera-
tive mining, the number of relevant matches increased to 172,247 out of a total
of 233,448 annotations. This represents a 3x increase and shows that Step 2 is
critical to the annotation process.

Table 5. Distribution of labels across annotation steps 1 and 2.

exact match partial match irrelevant

Step 1 18,018 (36.48%) 28,857 (58.43%) 2,515 (5.09%)

Step 2 7,596 (4.12%) 117,776 (63.99%) 58,686 (31.88%)

Table 5 lists the differences in distribution of labels we obtained in both steps.
We can see that we get a higher proportion of exact match for Step 1 than Step
2 (i.e. 36% vs 4%). Step 2 produces a higher proportion of partial match labels
(i.e. 64% vs 58%).

This second step is important, since it can give us more exact match labels.
And also we can view these partial match labels as a possible reflection of the
harder-to-score/debatable items on the decision boundary. This increases the
difficulty of the dataset to further the discriminative power of the dataset.

8 Conclusions and Future Work

Search engines are critical to the success of e-commerce platforms. Much of the
work around the evaluation of these systems tends to be proprietary. We hope
that the release of WANDS will spur continued research in this domain. In
this paper, we described the annotation process we have used in detail, as well
as shared evaluation results to showcase the discriminative power of WANDS.
To recap, our key contributions include: 1) making the dataset available in the
public domain, 2) introducing the annotation process and releasing the anno-
tation guidelines we used for reproducibility, and 3) sharing our proposal of
cross-referencing as a way to improve dataset completeness while keeping the
annotation problem tractable. To the best of our knowledge, WANDS is the
largest search relevance dataset targeted at e-commerce applications.
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Looking ahead, we plan to investigate and compare more approaches for
cross-referencing. We also want to confirm our hypothesis that the guidelines
we have refined through our annotator training process are sufficient to allow
less-trained crowdsourced annotators to produce similarly high-quality datasets.
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Abstract. Complex search tasks—such as those from the Search as
Learning (SAL) domain—often result in users developing an information
need composed of several aspects. However, current models of searcher
behaviour assume that individuals have an atomic need, regardless of
the task. While these models generally work well for simpler informa-
tional needs, we argue that searcher models need to be developed fur-
ther to allow for the decomposition of a complex search task into multi-
ple aspects. As no searcher model yet exists that considers both aspects
and the SAL domain, we propose, by augmenting the Complex Searcher
Model (CSM), the Subtopic Aware Complex Searcher Model (SACSM)—
modelling aspects as subtopics to the user’s need. We then instantiate
several agents (i.e., simulated users), with different subtopic selection
strategies, which can be considered as different prototypical learning
strategies (e.g., should I deeply examine one subtopic at a time, or shal-
lowly cover several subtopics? ). Finally, we report on the first large-scale
simulated analysis of user behaviours in the SAL domain. Results demon-
strate that the SACSM, under certain conditions, simulates user behaviours
accurately.

1 Introduction

Over the years, a series of models1 that describe searcher behaviour have been
defined [7,8,23]. These often provide a post-hoc explanation of—and reasoning
behind—the actions of a searcher during information seeking. One of the main
drawbacks of such models is their lack of predictive capabilities: we can neither
use these models to investigate what is likely to occur in different instantiations
of a retrieval system; nor can we use them for simulating user behaviour.2

Indeed, models examining searcher behaviours with predictive power [2,3,17]
have only recently been explored in the field of Interactive Information Retrieval
(IIR). Such models enable us to relate changing costs (e.g., the cost of examining
a document) to changing searcher behaviours. Prior works employing these mod-
els have investigated how searchers interact with ranked lists [35], the impact of
different browsing costs on a searcher’s behaviour [5,22], and stopping behaviours

1 In this paper, we refer to a model as a model of user behaviour .
2 This research has been supported by NWO projects SearchX (639.022.722) and
Aspasia (015.013.027).
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on Search Engine Results Pages (SERPs) [31,56]. Search topics are usually con-
sidered atomic in all of these prior works, with a simple information need. That
is, over a search session3, a single topic is considered—with retrieved documents
considered to be either relevant or non-relevant to that one topic. These works do
not consider the different aspects that may constitute a wider topic. In this work,
we introduce the first model of user behaviour that incorporates such think-
ing. More specifically, we take as a starting point the Complex Searcher Model
( CSM) [30], a model that considers a user’s interactions throughout a search
session (over multiple queries), and extend it to yield the Subtopic-Aware Com-
plex Searcher Model ( SACSM)—which, by considering the aspects as subtopics
of a larger information need, models: (i) subtopic selection; and (ii) subtopic
switching steps in the search process.

With the SACSM, we explore the effect of different subtopic switching strate-
gies for multiple types of users within a particular domain to ground our work.
We consider Search as Learning (SAL), defined by Marchionini [26], as an iter-
ative process whereby learners engage by reading, scanning and processing a
large number of documents retrieved by a search system. Here, the goal is to
gain knowledge about a specific learning objective. With web search engines hav-
ing become an essential resource for learners [15], it is therefore vital to provide
support to learners (e.g., through the form of novel interface designs [10,45,47]
or rankers optimised for human learning [49]) that help improve their learning
efficiency while searching. As a learner’s complex information needs can often
be decomposed into several subtopics, a natural question to ask is how searchers
should tackle the different subtopics to learn efficiently.

To answer this question, we present an exploratory study of the SACSM where
we simulate different types of learners as agents4, and compare these to each
other, examining the effect their search behaviour has on their ability to dis-
cover documents containing important keywords, as well as how they navigate
throughout the subtopic space. We instantiate a series of agents that subscribe
to the SACSM—with four tunable parameters that control their simulated search-
ing behaviour: (i) learning speed (λ), or how fast agents incorporate novel
terms into their vocabulary; (ii) exploration (ξ), or how willing agents are to
explore each subtopic; (iii) tolerance (τ), or how willing an agent is to click on
a search result snippet; and (iv) subtopic switching (ϕ), the strategy that
agents employ to navigate through subtopics. As such, we present the first SAL
study that employs simulation to examine the search behaviours of learners.
By grounding a series of simulated agents with interaction data from a prior
user study, we run extensive simulations of interaction to address the following
research question:

RQ How do subtopic switching (ϕ) strategies for learning-oriented search
tasks affect the search behaviour of simulated agents?

3 We consider a search session as interactions with a search interface, which can
include the issuing of multiple queries—and the examination of multiple documents.

4 Agents are simulated users that are able to make judgements as to the rele-
vancy/attractiveness of information without recourse to relevance information [29].
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To answer RQ, we measure behaviours by tracking how specific measures—
the number of keywords found, the order of keywords found, and subtopic explo-
ration—evolve over an agent’s search sessions. We argue that to be considered
effective, a strategy should allow an agent to: (i) discover as many keywords as
possible in the early stages of the session; and (ii) help the agent to complete
the subtopic space exploration in as few steps as possible.

The main findings of our work are: (i) subtopic switching strategies that
prioritise ordering in the subtopic picking process yield improved discovery of
keywords and exploration of subtopics; and (ii) the SACSM is enough to instanti-
ate agents that display behaviour similar to real-world learners in a SAL context.
Findings suggest that the SACSM is a high-quality model that provides a solid
step in approximating searcher behaviours in the SAL domain. This is vital for
works that rely on large-scale simulations, such as reinforcement learning for
training new rankers optimised for human learning, as well as quickly evaluating
new interfaces and algorithmic changes cheaply—all in a simulated environment.

2 Related Work

Models of Searcher Behaviour. Models of searcher behaviour typically fall
into one of two categories: (i) descriptive models [7,16,20,23,43], allowing us to
gain an intuition about the search process; and (ii) models that are expressed
in more formal (mathematical) language [2,6,11,17,52,53]. The latter category
of model provides predictive power about why users behave in a certain way.
As such, they can be used as the basis of simulations of interaction [4]. Here,
a model of searcher behaviour that provides a credible approximation of reality
can be used to ground simulations to examine what may happen under given cir-
cumstances. Despite the advantages that simulations provide, formulating such
descriptive models is non-trivial. Contemporary SERPs for example are complex
user interfaces, with new components (e.g., entity cards [37]) added all the time.
In contrast, searcher models typically assume a simple SERP in the format of
the traditional ten blue links [18]. Numerous studies have been undertaken on
this more simplistic design, such as the cost of scrolling [1,5,42], typing [12,40]
or response time lag [28,48].

Subtopics. The Information Retrieval (IR) community primarily considers the
notion of subtopics from a system-centred point of view, with prior works focus-
ing on ranking functions optimised for subtopic retrieval and result diversifica-
tion [13,21,38,57,58]. Automatic subtopic (structure) extraction has also been
investigated, generally based on a given starting query or document [19,51]. The
influence of subtopic characteristics on users has not been frequented in IIR. One
exception is by Câmara et al. [10], who provided study participants with a list of
subtopics and (visual) indicators about the extent of their subtopic exploration.
The impact of subtopic ordering on users was not investigated.
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SAL. We ground our work in the domain of learning which has attracted con-
siderable attention in recent years. Beyond studies investigating how learning-
oriented searches are conducted [15,36] and how to measure learning occur-
ring in search sessions [9,15,55], multiple recent studies have investigated the
impact of certain user characteristics and user actions on learning during search
sessions—examples include the impact of domain knowledge [39,54], source selec-
tion strategies [25], and the cognitive abilities of users [41]. While observational
studies are numerous, works proposing novel retrieval algorithms [49] and novel
interface elements [10,47] to support learning whilst searching remain sparse.

3 Subtopic-Aware Complex Searcher Model (SACSM)

For our study, we augment the CSM [32,33] to be subtopic-aware, turning it into
the SACSM. The CSM is a conceptual model of the IIR process (or a search session),
describing the flow of activities and decisions that a searcher undertakes when
interacting with a search engine. The CSM is built on the work of other conceptual
models of the IIR process, such as the models of Baskaya et al. [6] and Thomas et
al. [52]. Conceptual models provide us with the necessary scaffolding from which
we can expand and develop the model further for a SAL context—and instantiate
the model in such a way that we can run our simulations of interaction [4].

The SACSM is illustrated in Fig. 1; it includes a series of additional activities
and decision points (compared to CSM) pertaining to the idea of subtopic selec-
tion, with novel components highlighted in blue. Key activities are represented
as boxes , with key decision points undertaken by subscribing agents repre-
sented as diamonds . Upon starting at , a user (or, in the case of a simulation,
an agent) following the SACSM will first examine the given topic A . SACSM then
directs the agent to examine a list of the provided subtopics B for the given
topic, before then deciding what subtopic C to examine in detail. From here,
the agent will consider a number of potential queries D to issue pertain-
ing to the selected subtopic, before selecting a query E to issue F . The
agent will then obtain an ‘overview’ of the SERP G , and decide whether to
enter it [31] H —and if they do, they begin to examine a snippet I . If the
present snippet is sufficiently attractive J , the agent will click the associ-
ated link K , and assess the document L for usefulness and/or relevancy,
before deciding to continue on the SERP M (and examining further snip-
pets if so). If not, the decision to continue with the current subtopic N
is then made. If this is the case, further queries are issued E —meaning that
the snippet and document examination activities are repeated for the results of
the new query. This also means that subtopic exploration can entail multiple
queries. If the agent instead decides to abandon the subtopic N , they must
then decide whether to stop the search session O altogether. This process is
repeated until all subtopics have been exhausted by the agent P , or some other
condition is met—such as running out of session time.



146 A. Câmara et al.

Fig. 1. The Subtopic-Aware Complex Searcher Model ( SACSM). Changes from the CSM

are highlighted in blue. Refer to Sect. 3 for more about the sequence and shapes.

Note that compared to previous instantiations of the CSM [30–33], we have
removed activities and decision points about assessing documents for relevance.
Unlike simple search sessions, with atomic information needs, a SAL task gener-
ally has a more complex and nuanced need [15]. Therefore, we are interested in
examining the content of retrieved documents (and thus learning from them)—
not simply whether the documents themselves are considered relevant, as has
been the norm for prior simulations of interaction [27].

In order to keep track of terms/concepts that are examined by agents sub-
scribing to the SACSM (as vocabulary learning is a typical manner to mea-
sure learning gains in SAL [10,46,50]), we must also incorporate some type
of state within it. This state model was considered in the study by Maxwell and
Azzopardi [30, Fig. 3] through the User State Model (USM), which “represents
the user’s cognitive state”. Instead of representing the USM as a global, session-
based model accumulating state and knowledge of the information examined, we
consider a state model for the individual subtopics examined by agents. Each
subtopic state consists of a representation of the terms observed by the agent
to help them identify fundamental terms about the subtopic, which is used for
query generation and determining what snippets (based on the snippet text
provided by the underlying retrieval system) should be clicked on, with the cor-
responding document examined in more detail. Agents following this model only
accrue knowledge when examining documents in full, deterministically deduc-
ing whether a document is worth examining without recourse to any relevance
judgements. The state model is updated at points represented by in Fig. 1.
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4 Experimental Method

In this section, we describe the details of our instantiation of the SACSM and our
simulations. We start by defining how we instantiate each of the components of
the SACSM from Fig. 1, dividing them between fixed (i.e., no difference between
agents) and variable components (i.e., changes between each agent). By tweaking
the variable components, we can instantiate agents that simulate users with
different characteristics. For example, an agent with a high λ (how fast am I at
learning new terms?), low ξ (how much content should I explore?) and low τ
(how liberal am I at clicking links?) simulates a learner that can quickly absorb
new concepts, while only skimming through documents and clicking on almost all
documents presented to them. We also outline our search setup, our simulation
setup, as well as the datasets, and topics (and subtopics!) used.

4.1 Fixed SACSM Components

We instantiate the SACSM in various ways to evaluate how different subtopic
switching strategies performed for different types of users. Although the SACSM
has many activities and decision points to instantiate, we fixed a number of these
to reduce the space that we were required to examine.

Query Generation. We use the QS3+ querying strategy proposed by Maxwell
and Azzopardi [30], where three query terms are selected from a language model
learned from the documents the agent has already explored (plus the topic
description). Previous user studies in the SAL domain [10,47] have shown that
three query terms per query is reasonable, and close to what real-world searchers
use.

SERP Examination. Considered by Maxwell and Azzopardi [31], SERP exam-
ination strategies provide users with the ability to survey a SERP before com-
mitting to examining it in detail. Here, We choose to reduce the complexity of
our agents (and explored space) and use the Always Examine approach—agents
always enter the SERP and examine at least one result snippet.

User Interaction Costs. To realistically mimic how long agents should spend
on each phase of their search process, we present in Table 1 the costs (in seconds)
from the interaction data of a prior user study [10]. Note the high document
examination cost—as participants of the user study were attempting to formulate
ideas about concepts, they spent on average longer on documents when compared
to other, non-SAL based studies (e.g., [31]). We also note that the total session
times influence the stopping behaviours of agents since, when agents reach the
time limit of their sessions, they automatically stop—regardless of the number
of remaining queries to be issued, as generated by the QS3+ strategy.

Snippet-Level Stopping Strategies. Different snippet-level stopping strategies
can be employed, generally classified between fixed (i.e., the agent will evaluate
snippets until a certain depth) or adaptive strategies (i.e., the number of snippets
evaluated may change depending on factors like agent state, presented snippet
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Table 1. Interaction costs grounding our agents, as derived from Câmara et al. [10].

Time required to... Value (in seconds)

...issue a query 9.42

...examine a SERP 2.00

...examine a result snippet 3.00

...examine a document 80.00

Total session time 2400

content, etc.). For our agents, we use only a fixed snippet-level stopping strategy,
where agents examine snippets to a depth of 10. This is a reasonable depth to
examine to, and avoids issues with SERP pagination.

4.2 Variable SACSM Components

For this study, agents can be instantiated using four variables, according to the
type of user to be simulated. An overview of these variables is presented in Fig. 2.

Subtopic Switching (ϕ). We propose four different strategies for agents to
select and switch between subtopics during their search sessions. These imple-
ment the Select Subtopic decision point, as shown in Fig. 1. To determine
whether agents have explored a subtopic sufficiently, we use a method similar to
the approach outlined by Câmara et al. [10] for tracking subtopic exploration.
Each clicked document is embedded using SBERT [44] and compared—using the
dot product—to pre-computed embeddings for each subtopic of the current topic,
as extracted from their Wikipedia articles5. Therefore, each document clicked by
an agent will update an internal state tracker for each subtopic, summing how
much the agent ‘explored’ each subtopic. We evaluate four strategies.

– Greedy For this strategy, an agent examines each subtopic in turn, according
to the order provided by the respective Wikipedia article, only deciding to
move to the next subtopic when they have achieved a certain level of progress.
Intuitively, this would be the most rational type of user, since they follow a
subtopic ordering that is optimised for human understanding (i.e., the order
comes from a Wikipedia page). In other words, they will attempt to master
one subtopic before moving to the next (prescribed) topic.

– Greedy-Skip Instead of the above, an agent subscribing to Greedy-Skip
moves to the next subtopic with the next lowest completion value. This instan-
tiated agent attempts to minimise the number of documents to be read by
querying in a domain with lesser knowledge.

– Reverse This strategy is similar to Greedy, but the agent examines the
subtopics in reverse order as presented from the corresponding Wikipedia
article. The rationale here is that an agent attempts to game the system by
first learning the most complex subtopics before moving to easier ones.

5 Refer to Sect. 4.3 for more information on the use of Wikipedia articles.
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Fig. 2. Overview of the four variable parameters for instantiating simulated agents.

– Random This strategy randomly selects a new subtopic after each query,
with no predefined order. This strategy models a non-rational learner, and
serves as a lower bound for our experiments.

Learning Speed (λ). This parameter is the same λ from the language model
proposed by Maxwell and Azzopardi [30]. It controls how much an agent relies on
their acquired knowledge (i.e., novel terms) when considering if a given snippet
should be clicked or not. The language model is updated every time the agent
clicks on a relevant snippet. In addition, a Maximum Likelihood Estimator [34]
is used for deciding if a given snippet is attractive or not. An agent with a low λ
gives lower weights to terms learned during the session, simulating a slow learner.
An agent with a higher λ, in turn, mimics a user that quickly incorporate new
terms, being a fast learner. In our simulations, we use λ ∈ [0.1, 0.4, 0.8].

Exploration (ξ). This parameter controls how much the agent should explore
a subtopic before being satisfied by what it has ‘learnt’. A lower number implies
that such an agent that is only ‘skimming’ trough the topic, inspecting only a few
documents per subtopic. In contrast, a higher value implies that such an agent
is willing to explore deeper within each subtopic. For the simulations reported
in this paper, we trial ξ ∈ [2.0, 6.0, 10.0].

Tolerance (τ). Finally, this parameter is the threshold that controls how attrac-
tive a snippet should be to be clicked [34]. An agent with low τ is a strict clicker,
clicking on fewer, ‘safer’ snippets, while a higher τ implies a liberal clicker agent,
more willing to explore. In our simulations, we trial τ ∈ [0.0, 1.0, 3.0, 5.0].

4.3 Simulation Setup

The setup of our experiments follows that of the user study presented by
Câmara et al. [10]. Here, we use the same eight topics extracted from the TREC
CAR 2017 dataset [14], as shown in Table 2. Subtopics were also derived from
the TREC CAR dataset: they were extracted from first-level headings of the
respective Wikipedia articles as they were in December 2017—the dataset’s cre-
ation.
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Table 2. # of subtopics and distinct keywords (KW) for each topic. For each subtopic,
we determine the ten KWs with higher TF-IDF on the respective subtopic section on
Wikipedia. A KW may appear in the top ranks of several subtopics. KW difficulty is
given by the age-of-acquisition, as proposed by Kuperman et al. [24].

Topic #Subtopics #Unique KWs KW Difficulty

Ethics 6 49 10.85

Genetically Modified Organism 5 33 9.97

Noise-Induced Hearing Loss 8 56 8.85

Subprime Mortgage Crisis 8 52 9.81

Radiocarbon Dating 4 35 9.77

Business Cycle 4 32 10.70

Irritable Bowel Syndrome 10 72 9.88

Theory of Mind 8 67 9.63

Our study uses the Bing Search API to provide a ranking for queries issued by
real-world users and our simulated agents. We used a manually curated blocklist6

of URLs serving Wiki -style clones to filter results returned from the Bing API
to prevent agents from encountering a single page that would give them all
the information on all subtopics at once. This encourages agents to examine
multiple documents and issue multiple queries to find information pertinent to
their learning task. To match with our stopping strategy (see Sect. 4.1), 10 results
per page were presented to agents.

5 Results

By combining all values of ξ, λ, τ and ϕ, we instantiate 144 unique agents
(using a modified version SimIIR [30]), and run each agent over all of the top-
ics shown in Table 2. Our version of SimIIR—together with the raw outputs
of our simulations—are available at https://github.com/ArthurCamara/simiir
subtopics/. With some methods being non-deterministic, each agent was run ten
times—with the average reported. In total, we ran a total of 11, 520 simulations.
We show representative examples for each set of measures. In all plots, the x
axes denote how many documents the agent examined during a search session.
While values on y axes may seem low, they are averaged over a large number of
simulations with varying degrees of complexity.

Table 3 shows the average value for key measures over all agents of each
ϕ, over the eight topics. In the first row, we also show the measures from the
FEEDBACKSC cohort from Câmara et al. [10]. Our simulated agents are similar
on these measures compared to how real-world learners would behave, with a
similar number of queries, snippets examined, and documents clicked. While a
high deviation is expected, recall that this is an average of 288 agents with a large
6 https://github.com/ArthurCamara/CHIIR21-SAL-Scaffolding/blob/master/data/

blocklist.txt (All URLs last accessed January 18th, 2022.).

https://github.com/ArthurCamara/simiir_subtopics/
https://github.com/ArthurCamara/simiir_subtopics/
https://github.com/ArthurCamara/CHIIR21-SAL-Scaffolding/blob/master/data/blocklist.txt
https://github.com/ArthurCamara/CHIIR21-SAL-Scaffolding/blob/master/data/blocklist.txt
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Table 3. Overview of (average) measures across agents and subtopic switching strate-
gies, and real learners extracted from the FEEDBACKSC cohort from Câmara et al. [10].

Strategy (ϕ) #Queries Issued #Snippets Examined #Documents Clicked

FEEDBACKSC (N=36) 11.86(±7.60) 152.44(±84.23) 18.50(±9.56)

Greedy 13.05(±14.93) 133.37(±176.29) 21.32(±7.60)

Greedy-Skip 13.05(±15.13) 133.23(±177.26) 21.44(±8.88)

Reverse 12.01(±14.55) 123.28(±173.34) 21.42(±8.78)

Random 13.03(±16.07) 117.61(±155.80) 21.82(±8.30)

Fig. 3. Accumulated percentage of the keywords seen for two different agents (averaged
over all topics, weighted by number of keywords) with varying ξ, λ and τ .

variation on their parameters (compared to only 36 real-world learners). Results
show that our agents are indeed similar to real-world learners. To address RQ,
we break down our analysis further into three sub-questions.

How Many Keywords Can the Agents Find? To measure how well the
agents can find documents with a high concentration of potentially valuable
keywords7, we extracted ten keywords for each subtopic from their respective
paragraphs from the topic’s Wikipedia article.8 To do this, we begin by rank-
ing all terms from their portions of the articles (excluding stopwords) by their
TF-IDF, with the IDF computed over the whole TREC CAR Wikipedia dump—
and selecting the top 10 terms as keywords. We use this subtopic-wise approach
(instead of extracting keywords from the whole article) to ensure a fair distribu-
tion of keywords over all subtopics, providing a less biased overview of how the
agent is performing over the topic. Therefore, each topic has a different number
of keywords, reflected by the number of subtopics it contains. Table 2 shows how
many subtopics and unique keywords each topic contains. This setup is similar
to previous SAL user studies [10,46,47], where study participants were asked to

7 As noted in Sect. 3, we do not have explicit relevance judgements.
8 As an example, the following are extracted keywords for the topic Ethics: ethical,
ontology, propositions, consequentialism, normative and principles.
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Fig. 4. Fraction of fully explored (i.e. agent reached ξ value) for two different agents
(averaged over all topics, weighted by number of keywords) with varying ξ, λ and τ .

define a list of concepts before and after their search session to evaluate their
knowledge gain. We can mimic this setup throughout the entirety of an agent’s
search session by requiring the keyword to appear at least a few times (in our
case, five) in the documents ‘read’ by the agent.

For two agents, Fig. 3 shows how many keywords each approach for ϕ dis-
covers during their search sessions after reading a certain number of documents.
At the beginning of the search sessions, we observed that agents instantiated
with Greedy and Greedy-Skip strategies found keywords faster than agents
with Random or Reverse. However, this difference diminishes over time. This
is expected, since the subtopics ordering comes from Wikipedia articles, which
are optimised for human understanding. Therefore, an agent that searches for
subtopics in order has a higher probability of encountering documents with a
higher number of keywords earlier in the session when compared with one that
does not. We can also note that Random with higher τ found more unique
keywords in total, given their high probability of clicking in any document.

Are the Agents Exploring Enough of the Subtopics? Another way to mea-
sure how the agents behave is by investigating how their internal Subtopic Track-
ers evolve during the session (as explained in Sect. 3). If an agent can reach ξ
for a given subtopic in a few documents, we can infer that they could quickly
find documents related to that subtopic. Figure 4 shows a similar trend to that
observed previously, with agents using Greedy and Greedy-Skip strategies
clicking on documents that advance their internal tracking faster. This implies
that these strategies effectively lead the agents towards better documents faster.

Are the Agents Following the Order of the Subtopics? While the previous
measures show that the agents are indeed effective in finding documents related
to the topic, they fail to incorporate another essential learning feature, namely
that keywords have dependencies between them. We assume that, for an agent
to comprehend what a keyword means entirely, they have to comprehend at
least some other, more basic concepts related to the topic at hand. Therefore,
an agent that can find documents so that they will encounter more primary
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Fig. 5. Fraction of keywords properly ‘learned’ by two different agents (averaged over
all topics, weighted by number of keywords) with varying ξ, λ and τ .

keywords for the topic (i.e., that appear earlier in the Wikipedia article) earlier
in the session before facing more complex keywords (i.e., that appear later in
the Wikipedia article) is more desirable for a SAL environment. As an example,
consider the keyword consequentialist for the topic Ethics. Before an agent
can adequately understand what it means in this context, they probably need to
understand other concepts, like virtue and morality. Therefore, for this analysis,
we consider a keyword to be ‘learned’ after the agent has already encountered
a certain number of keywords that appear prior to it in the original Wikipedia
article. To account for possible noises in our keyword extraction method, we
define this number as 50% of the keywords seen prior to the current one (e.g.,
the keyword consequentialist is the 19th out of 49 keywords to appear in the
list of extracted terms for the topic Ethics). Therefore, we only consider a given
keyword as learned after the agent has learned at least 30% of the prior terms.9

As seen in Fig. 5, we see similar behaviour to the one observed above, with
Greedy and Greedy-Skip outperforming Random and Reverse, with the
difference slowly disappearing throughout the search session. Again, almost all
agents repeat this behaviour. These results show that our simulations are close
to real users and that there is a clear difference between strategies, with Greedy
and Greedy-Skip following the logical structure of the subtopics, and generally
being better strategies for agents exploring the subtopic space. Consequently,
these should be taken into account when simulating agents for SAL scenarios.

6 Conclusions

We have proposed a novel user model for simulating agents focused on SAL
tasks: the Subtopic-Aware Complex Searcher Model, SACSM. Recalling our origi-
nal research question which considered how different subtopic switching strate-
gies (ϕ) affected the behaviour or simulated agents, we show that strategies that
9 This number was decided experimentally, as it showed to be the best to distinguish

between the different methods trialled.
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mimic a rational user (i.e., Greedy and Greedy-Skip) are more effective at
finding keywords, exploring subtopics and following subtopic structure when com-
pared to other strategies. With 1, 520 simulations, our study is the first (to the
best of our knowledge) that focuses on simulated agents for Search as Learning,
enabling future works in both SAL and IIR that may require large quantities of
user data, such as Reinforcement Learning models and studies on how changes in
the search system may impact the behaviour of learners. To further help research
efforts, we also make public our implementation of the SACSM, built on top of
the already established SimIIR framework.
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Abstract. Applications that involve streams of documents require a
mechanism for search over the newest arrivals. In this paper we explore
provision of immediate indexing and fast search of recent documents
only, in contrast to focus on dynamic construction of an index of all
observed material. Our contribution is a new structure, an apoptosic
index, that operates in a fixed volume of memory and in which expired
index entries vanish without significant overhead; there is neither explicit
removal of old data nor explicit memory management. We demonstrate
the practicality of apoptosic indexes with a straightforward implementa-
tion and experiments on microblog and newswire data, showing dramat-
ically faster performance than observed with alternatives.
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1 Introduction

Fast or streaming data is ubiquitous, and includes text sources such as microblogs
and newswire data. Streams can produce data more quickly than can be reason-
ably stored or analysed using classical approaches, and in some applications it
is attractive to be able to access it immediately [14].

In the context of streaming, it can be desirable to search across the most
recent documents [19], which must be available as soon as is feasible. This paper
concerns methods for such search, where only recent material is of interest and
only fixed resources are available, and in particular indexing must take place in a
specified volume of memory. It is also desirable that time spent doing housework
– garbage collection and so on – is kept to a minimum so that the structure does
not intermittently stall while being locked for removal of expired material.

More formally, for a stream of documents the sliding-window search prob-
lem is to find matches in recent material from a stream and to ensure that new
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material is immediately available to the search process. Such a process could,
for example, be run in parallel with a separate process for building a permanent
index, thus allowing new material to be searched while older material is made
available through existing indexing processes. In such a context it is only nec-
essary to ensure that sufficient memory is available to keep material until it is
available through the longer-term process.

The key challenge is to maintain an index over the most recent observed
documents to support similarity search. An inverted index associates each word,
or term, with a posting list of documents that contain that term. Similarity
queries, which score and rank the documents best matching a list of query terms,
can be easily answered by traversing the posting list for each term.

For the sliding-window search problem, a point of comparison is exhaustive
search – which is often regarded as an unrealistic reference point because it is
so obviously flawed for large collections, but is of relevance here, and moreover
has been found to be not excessively slow compared to indexed search in some
contexts [20]. Static indexing admits heuristics that reduce the costs of indexed
search to times that are not much greater than constant [24], but even without
such heuristics, indexed search is far more efficient than is exhaustive search.

However, index construction is in general super-linear in time and size, and
a dynamic index needs to be maintained, with non-trivial costs for locating and
removing out-of-date material: factors that might overwhelm the advantage over
exhaustive search. The core challenge for sliding-window search is to efficiently
maintain an index structure that allows expired material to be removed quickly,
allowing memory to be reclaimed. An assumption in this work is that memory
is bounded and that solutions that make use of external storage are too slow, so
that all material must be stored in memory.

Contribution. We have developed an apoptosic inverted index, where new docu-
ments can be immediately added and old material is expired without any explicit
memory or structure management. This transient structure, which is continu-
ally rewritten, operates in a fixed volume of memory and, as we show, allows
newswire documents to be continually added in less than a tenth of a millisecond
– and microblog entries in a microsecond or so – on a basic server (or, indeed, a
commodity laptop). While we do not experimentally explore refinements, it is,
e.g., straightforward to organise the index as a series of compacted blocks, with
the trade-off of a brief stall while compaction takes place.

The basis of this index is our new, general method for efficient management of
lists of recent items, which we call apoptosic lists. The core element of these lists
is that they are stored in a fixed circular array, with material added cyclically so
that the address of a pointer corresponds to its age and, while traversing a list,
it can be determined implicitly that a pointer is no longer valid. Apoptosis can
be applied to any data structure based on a linked list, including for example
applications where age of an item implies exponential decay.

As a demonstration, we report experiments on processing streams while
supporting simple ‘most similar recent document’ queries, on newswire and
microblogs, across a range of memory volumes. These show that search with
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apoptosic indexes is significantly faster than is exhaustive search – which was
not a certainty in this context – and in particular gives a speed improvement
of a factor of twenty on the Twitter data. Encouragingly, search times for the
data volumes we are concerned with are about the same as with a static index
using a public-domain tool. Although significant refinement is possible, apopto-
sis is already competitive and suitable for recency searches on text. It could for
example be used alongside methods that create enduring indexes by batching.

2 Background

Text search is a key component in a wide range of contexts, from the early
applications in collections of library materials to Web and site search, personal
collections, and microblogs. Efficiency demands an index, though the require-
ments are set by context; a key differentiator is static versus dynamic indexing.

Text Indexing. Research on indexes for text search has a long history [24], and
continues to yield advances even for the longest-standing challenges. However,
the value of past methods to our application is unclear; static indexes are obvi-
ously unsuitable. Many dynamic methods [10,21,24] build an index over all
observed data, without deletions, which conflicts with our goal of using fixed
space. These approaches typically include a buffer of recent data that is accu-
mulated until full and then indexed, and a fresh buffer commenced, meaning
that it is not immediately available except by exhaustive search.

Other methods do allow deletions [11], but with some penalty. At the cost
of stalling while the index is locked to remove old postings, offline methods can
rebuild the index, in full or (if the index is in blocks) partially. Online deletions
require a mechanism for identifying the end of each postings list, checking the
ends to see which postings have expired, and then freeing the expired postings
for future memory allocation and updating pointers that have been invalidated.
This implies significant overhead in either space, for additional structures, or
repeated traversal of all lists. Deletion has not been widely considered in the
text search literature.

Search in Microblogs. The problem of indexing a fast stream of tweets for text
search is addressed by Twitter’s Earlybird system [3]. In a fixed amount of
memory, Earlybird maintains an index over the most recent tweets. However
this memory is a latched, rather than sliding, window. Once the fixed memory is
full, the data structure allocates a new, empty block of memory and compresses
the full block to add to an archive – that is, there is a delay before new material
is available, which is the essence of the challenge that we wish to address. (This
is different from, but as inconvenient as, the stalling caused by housekeeping.)
Earlybird provides fast update time and admits querying of data soon – but
not immediately – after it has been received; it does not offer a sliding window
or give an obvious way to manage the decaying relevance of data points. An
alternative solution by Chen et al. [6] builds a real-time index only on tweets
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considered likely to be returned by popular search queries, while the remaining
tweets are batch-indexed in the background.

In their approach to microblogs, Wu et al. [21] adapt the log-structure merge
tree [16] for real-time search, providing a sequence of indexes with exponentially-
increasing capacity. New documents are added to the smallest index; when an
index reaches its capacity it is merged into the next level and emptied. This
is similar to the grow-by-exponent approach described by Lester et al. [10],
and both make use of buffering of new material. Magdy et al. [13] describe a
micro-blog search that returns items within a fixed recency and physical loca-
tion bound. The cost of removing old items is piggybacked onto insertions, and
a periodic clean-up phase is needed, creating possible stalls.

Motivating such work, Teevan et al. [19] studied Twitter search logs and
found that the vast majority of searches targeted recent posts. Mishne et al. [15]
showed that traditional big data approaches are not well suited to solving fast
data problems. While they address the issue of maintaining an index over recent
data given an infinite stream, none of the data structures above provide an
implicit, efficient way to remove old data, or to manage memory fragmentation.

An approach to immediate search is described by Wang and Lin [20], who
describe approaches to exhaustive search of microblog streams. With a focus on
immediate search, it is the most comparable previous work to our own, though its
efficiency relies on the number of query terms being small (making it unsuitable
for ‘like document’ searches) and makes use of specialised hardware. With these
optimisations and constraints, they find that exhaustive search can require only
a small multiple of the time required for indexed search.

Locality-Sensitive Hashing. The intent of locality-sensitive hashing (LSH) [8] is
to hash similar items to common locations. LSH represents each item by a small,
fixed number of hash values, with each being a hash of a subpart of the item, such
that each pair of sufficiently similar items is likely to have at least one common
hash value. The most common hash families for text documents are MinHash [2]
and SimHash [5]. LSH methods are well suited to detecting duplicate or very
similar short items, but for general text-search problems, the number of hash
functions required, or necessary level of similarity, makes LSH ineffective.

Petrovic et al. [17] use a LSH-based index to solve first-story detection over
tweet data. They manage space over an infinite stream by setting a maximum
posting list length, and removing the oldest posting from any list which reaches
its capacity. This means that some lists refer to much older data than do others.

Kraus et al. [9] describe an approach to applying LSH to a general data
stream. Their LSH-based index finds similar items over an infinite stream, ran-
domly removing some postings at every insertion. Items deemed significant are
inserted multiple times to reduce the probability they are deleted, thus adding
to the space consumption, and in effect increasing the cost of deletion, while
also creating some likelihood of false misses. Sundaram et al. [18] had a similar
method, with a temporary index called a delta table for the most recent data,
which then gets merged into a read-only index, and grows indefinitely; query
resolution via the delta table requires exhaustive search.
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Circular Array. Building a data structure on top of a circular array to maintain
sliding window information, while retaining fast update times, appears in a recent
paper by Assaf et al. [1]. However their goal is to maintain summary statistics
of the data, such as item frequency and the number of distinct items; they do
not support richer data structures that an index would require.

3 Apoptosic Structures

We now describe an apoptosic list, a kind of linked list designed to allow per-
petual insertion in a fixed-memory setting, which we have developed to support
operations on streams. We then describe how apoptosic lists are a key component
of an index for text search over recent data.

Apoptosic Lists. Our fixed-memory setting comprises a circular array, of size n,
and a write pointer. New data is inserted at the write pointer, overwriting older
data, and the write pointer is advanced.

Consider inserting a linked list into memory by prepending a node at a time,
possibly with other, unrelated data in memory between each node. We re-index
the array such that the write pointer has the largest index, this is just a rotation
of the indices modulo n. Then following the linked list from head to tail yields a
strictly decreasing sequence of indexes. If a node ever points to a next node with
a larger index than its own, the linked list must have wrapped around past the
write pointer, and hence the pointer refers to data which has been overwritten;
we describe such a pointer as dead. An illustration is in Fig. 1. The head pointer
of a list can become dead if the list is not updated through a complete cycle.
Below, we show that these are the only two circumstances under which a pointer
may point to overwritten, expired data. Therefore, by ensuring that both kinds of
dead pointers are never accessed, an automatically expiring, apoptosic, linked list
can be maintained in fixed memory with no explicit housework such as garbage
collection or deletions.

Apoptosic Indexes. We now describe the construction of our principal index
structure, and how the apoptosic technique maintains the data structure’s cor-
rectness. We allocate a contiguous, circular block of memory, M, comprising n
cells, to be used as list nodes: each can store a document id, a term frequency
and a pointer to another cell in M. Let w be an index in M representing the
current end of the circular array; we call this the write pointer because it marks
where new postings will be inserted. We also allocate a hash table H of m slots
that maps terms to cells in M.

We divide M into b blocks of equal size; we do this solely to provide a point
at which housework (cleaning of the hash table) takes place. The hash table is
small relative to total memory allocated and in practice this process is expected
be fast, say a few milliseconds; the frequency of clean-up depends on b.

We hash all terms on input to a fixed universe of size m. For simplicity, the
term strings are not considered further and each term is represented only by an
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Fig. 1. Above: an apoptosic list inside a fixed-size slice of memory. The pointer out
of x4 is dead because it crosses the write pointer, and refers to data which has been
overwritten. Below: the same memory, rotated so the write pointer takes the maximum
value. We can see the pointer from x4 is dead because it points to an index which is
larger than its own; all living pointers point to smaller indices.

integer. This introduces some error due to hash collisions, but this is mitigated
by choosing sufficiently large m.

We allocate document ids sequentially, modulo d, where d is twice the max-
imum (estimated) number of documents in memory at any given time. This
quantity will only appear in the logarithm, so we can over-estimate without
significant cost. If required we may use a separate lookup table mapping our
sequential document ids to some other reference (e.g., locations on disk, DoIs).

Operations. To insert a document,

– Hash each distinct term, t, in the document to a value in the range [0..m− 1]
and record its within-document frequency ft,d.

– For each term, create a node with a next-node pointer, the document ID,
and ft,d; insert at the start of the list for that term’s hash value, t.

– When a block is full, the oldest block must be expired. Clean up by making
a linear pass through the hash table; if the pointer from a hash-table slot
points to a node in the block that is expiring, set that slot to NULL.

Query processing is straightforward. Each term in the query document is hashed
– recall that the task in this demonstration implementation is to find similar
documents, not to support ad hoc queries – and the list for each hash value is
processed in turn. Similarity calculation is described in more detail later.

The list of postings for a term can be accessed by looking up the term in H
and following the pointer stored there to the head of a linked list of term postings.
Because the postings are inserted sequentially in memory, each always points to
lower memory addresses than its own address (when viewed circularly, with
the write pointer as the largest address in the array). As the links are in a
consistent direction, the list is somewhat cache-friendly, though not as much so
as contiguous storage; this can be improved as noted under ‘Compression’ below.

A pointer whose target has a larger address than itself is pointing to some-
thing on the other side of the write pointer, i.e., something that has fallen out



Immediate Text Search on Streams Using Apoptosic Indexes 163

Fig. 2. There are two ways a pointer can become dead. There are currently four post-
ings for “sport”, but the pointer from M15 to M6 is dead because it crosses the write
pointer, the posting at M6 has been overwritten and no longer contains “sport”. This
can be detected at query time. The pointer for “news” from H6 to M11 is dead because
it is a top-level pointer which points into the block currently being overwritten. How-
ever, this pointer would have been removed by the clean-up phase when block 3 was
started, and so this situation will never occur.

of the sliding window and has been overwritten. When such a dead pointer is
encountered during a query, it is not followed. See Fig. 2 for an illustration.

We do not need to explicitly delete old items at update time and, since items
are removed in a deterministic way, we can make precise guarantees about when
each item will be removed from memory.

Correctness. A critical issue is whether pointers that refer to memory that
has been overwritten are always recognised as dead pointers and, therefore, not
accessed. Because of the housekeeping phase, applied when a block is expired,
a hash table slot cannot contain a dead pointer: blocks are expired in turn, at
which step pointers into the expiring block are NULL’ed. Similarly, adjacent
postings of a term cannot be more than n insertions apart. Therefore a pointer
is living if and only if it begins a linked list, or its value is (circularly) smaller
than the pointer before it in the linked list. Since we can detect these situations
at query time, we never access a dead pointer and our structure is always correct.

Compression. Our data structure does not naturally compress the index, which
risks losing the memory and (in some circumstances) speed improvements that
compression can provide. Adding compression is not difficult, however, because
of the block arrangement of the data structure. Once b terms have been inserted,
that is, a block is full, that block can be compressed and pointers from H into the
block from the hash table updated to the new locations. There are no linked-list
pointers into the block because it has only just been created. The next block is
then started as before.

Such blockwise compression would not be as effective as would be compres-
sion of a complete index, but it could yield significant gains. We believe that
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achievement of 16–20 bits per node should be straightforward, but we leave
details for further work. Moreover, the creation of contiguous sequences of entries
from each linked list would improve cache performance. That is, there would be
capacity and query-time efficiency gains, at the cost of increased stalling while
the index is locked at the end of processing of a block.

3.1 Text Search

We explore the behaviour of apoptosic indexes with an application designed to
answer the query ‘which document in the sliding window is the most similar to
the document that was just observed?’

Lists are processed in turn, and an array of accumulators is used to record
per-document partial similarities. Here, the number of query terms means that
there is tolerance for hash collisions, and thus we chose to not retain the terms
themselves. It would however be straightforward, for example, to replace the
hash table with a compact trie with minimal effect on space consumption.

The lists can be processed in increasing order of length, potentially allowing
early termination when the largest partial similarity sufficiently exceeds the next-
largest (a pair of values that can trivially be maintained during accumulator
update), but we do not make use of this optimisation in our experiments.

For our similarity measure we use the form of Cosine similarity as described
by Zobel and Moffat [24], but any such measure has similar costs and thus
this is an arbitrary choice, as we are not measuring search effectiveness. This
formulation uses the frequency fd,t of term t in document d, the number N of
documents in memory, and the number ft of documents in memory containing t.

Maintaining a value for N is straightforward: when a new document is
inserted, N is incremented. Whenever a posting is removed from memory by
being overwritten by a new posting, its document id is compared against the
document id of the next most recently removed posting, which is stored for this
purpose; if they are different then a document has been entirely removed and N
is decremented. This requires storing only a counter and a document id.

There are several ways of keeping track of ft. If each posting stores the term
for which it is a posting, then the total number of postings for each term can
be maintained by increasing a counter when a posting is created and decreasing
it when a posting is overwritten. This requires O(m log n) space to store the
counters and O(n logm) space to store the term with each posting. Alternatively
the posting list for each term in the query can be traversed at the start of the
query to compute each relevant ft, which approximately doubles the query time
in practice. A middle ground is to cache values of ft using O(m log n) space and
only occasionally recalculate them, for example cyclically, so that each value is
visited once per k document insertions; inaccuracy in values should have only a
limited impact on the reliability of calculation of ‘most similar’. We store true ft
values in our experiments, noting that this has an impact on update time.

Document lengths are easily calculated on insertion. Similarities can be calcu-
lated term-at-a-time, thus using accumulators, or document-at-a-time [4], strate-
gies that have been widely explored in the context of standard inverted indexes.
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Table 1. Summary statistics of the evaluation data sets.

Dataset Raw size
(MB)

Parsed
size (MB)

Documents Postings Postings
per doc

NYT 1668 1018 314,452 117,986,501 375

NYT Stopped 1668 899 314,452 99,065,711 315

Twitter 355 259 2,155,912 22,482,484 10

The latter would allow early termination of processing for some query types,
such as finding the recent document whose similarity exceeds some threshold.

All the space overheads above are fixed, used during the entire operation of
the data structure, except for the document lengths, which we store separately.
These are expected to be small relative to the remaining data; the documents
themselves need to be retained separately in a production implementation.

4 Experiments

We have implemented our apoptosic index in C. Our experiments are performed
on a basic server with a 2.5 GHz Intel Xeon CPU in a single thread. Memory
usage is fixed, and approximately n times 16 bytes.

Data Sources. We use two different types of text document data, newswire
and microblog data, which represent typical streaming document applications.
Except in average document length, the two sources are similar; since we are
using the documents for similarity queries this also determines query length.

Our data source for newswire documents comes from the TREC AQUAINT
collection [7], consisting of 1.6 GB of New York Times (NYT) articles. With
metadata and formatting removed, this totals 1 GB of ASCII-encoded data,
314,452 documents, 117,986,501 postings and an average of 375 postings per
document. After stopping, the documents are shortened to 315 words on average.

Our source for microblog data is a 355 MB collection of tweets taken from
Twittter’s sampled stream API.1 With metadata removed this leaves 259 MB of
data, consisting of 2, 155, 912 documents, 22, 482, 484 postings and an average
of 10 postings per document.

These are summarised in Table 1. We note that these are small data sets by
the usual standards of text indexing experiments, but our work is focused on
small sets of recent data. The critical factor is that these sets are much larger
than our sliding windows.

Experimental Design. We use two tasks to evaluate the performance of our data
structure. First, we stream 1 GB of data into our data structure and measure
the average time to insert a document a term at a time. This measures the

1 https://developer.twitter.com/en/docs/twitter-api/tweets/sampled-stream.

https://developer.twitter.com/en/docs/twitter-api/tweets/sampled-stream
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Fig. 3. Left: Memory size plotted against operation time across the datasets for search
with apoptosic indexes; as expected, insertion time is unaffected by memory size and
query time scales linearly. Right: the same data with log-log axes.

throughput of our data structure and the time delay before data is available to
query. Second, by querying the index, we find the most similar recent document
to each document as it is inserted, using Cosine as discussed above.

We vary n (the number of nodes) from 216 to 224. For the NYT data this
is an average of about 2,800 documents indexed per million nodes, for Twitter
it’s approximately 100,000 documents per million nodes. We vary b (block size
in nodes) from 212 to 220, and fix m = 216. By representing each term via its
hash, we ensure that the index fits within a fixed memory allocation. Although
collisions are now possible, they are of little impact on our experiments. First,
this hashed representation is also used for the comparator methods. Second, as
each query contains a significant number of terms, the likely number of collisions
is low, observing that we have also applied stopping.

Results. Once our data structure has filled and is ‘warm’, query and insertion
times are highly consistent. Average results are shown in Fig. 3. For the NYT
data, each insertion takes less than 0.1 ms regardless of n. Query times scale
linearly with n, at around 17 ms per query per 220 nodes. For the Twitter data,
each insertion takes roughly 0.002 ms, with query times of around 3.5 ms per
query per 220 nodes. Similar results were observed on a commodity laptop.

Small block sizes trigger the cleanup (stall) more often, which slows down
responsiveness; however, as the per-block cleanup phase only takes 0.3 ms on
average – around the time to insert four NYT articles – the cost is small.

We have not explored querying effectiveness, but in principle expect the
performance of the query type considered here to be like that of a conventional
index because of the number of terms, even though some accuracy is (marginally)
lost due to the use of hashing. Some effectiveness would also be lost due to the
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fact that the volume of material being indexed is small; it is well known that
larger collections have smoother statistics. However, in our anticipated use-case
– of the apoptosic structure being an ancillary index that holds recent data while
an enduring index is built – the statistics held in the enduring index would be
available during search, thus ensuring that effectiveness is not degraded.

Standard Indexing Using Anserini. We compare our approach against searching
the same data using Anserini,2 a toolkit built on top of Apache Lucene3 to sup-
port reproducible information retrieval research [12,22,23]. We regard Anserini
as a reasonable representative of the existing approaches. It is written in a com-
bination of Java and Python, and thus is not directly comparable to our C
implementation, but, unlike our code, it is highly optimised.

Using the pyserini interface4, we index the New York Times collection in 191
seconds, at a rate of 0.60 ms per document, several times slower than our data
structure. Indexing the Twitter collection takes 0.02 ms per document, ten times
slower than our data structure. Although precise timings are tricky for smaller
collections, such as the 2800 NYT documents that require n = 220 postings in
our structure, for that value of n time per document is close to 1 ms. However,
this does not consider the cost of deleting old items from the Anserini index
to maintain fixed memory, which would add considerably to index management
time.

As a baseline, we measure query time on a static index built on a window
of our data. Since pyserini does not support dynamic index construction and
querying while the index is being built, we instead use a separate sample of 500
documents as queries, and take the average query time. For NYT, up to n = 220

query times are stable in the neighbourhood of 20 ms, but grow (somewhat
sublinearly) thereafter. By n = 224, Anserini search is significantly faster than
within apoptosic indexes, but, noting again that this is a static index, implying
a delay (stall) of allowing around 45,000 NYT documents or 1.6 million tweets
to arrive before an index is built, or 5 seconds of arrivals at the rate at which
the apoptosic index can manage.

Linear Scan Through Documents in Memory. An alternative approach is to keep
a sliding window of the most recent documents in memory and find matches
via exhaustive search. The expectation is that this method allows fast updates
and data availability, at the cost of slower queries. In our implementation, each
document is read, one distinct term at a time in sort order, and added as a hash
value to a circular array; the hashing is used to provide constant space per term
and comparability with our apoptosic-list search demonstrator. Older entries in
the array are automatically overwritten, in the same style as apoptosic lists.

At query time, query terms are sorted and then linear-merged at the doc-
ument level to compute similarities. We use the same Cosine formulation as in
our apoptosic-index experiments.
2 http://anserini.io/.
3 https://lucene.apache.org/.
4 http://pyserini.io/.

http://anserini.io/
https://lucene.apache.org/
http://pyserini.io/
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Surprisingly, update – addition of a document to the circular array – is no
faster than with the apoptosic index, so for management of a stream of infor-
mation the lack of an index provides no advantage. Query processing requires
about roughly 40 ms per 220 nodes for both NYT and Twitter data, so exhaus-
tive search is slower by a factor of 2 for the long documents (which have a large
number of query terms) and a factor of more than 10 for the shorter queries. We
note that ad hoc queries are typically only three terms or so, and thus would be
a further 3 times faster than even the Twitter queries, showing that the index
could give a factor of 30 speed improvement for that task. However, this speed
rests on the use of a circular array and apoptosis; a more traditional implemen-
tation would be significantly slower.

5 Conclusions

Our apoptosic index addresses the need for low-memory data structures that
provide fast search over recent documents without sacrificing throughput or
stalling for maintenance. A simple implementation, not significantly optimised,
has insertion time competitive with maintaining an unindexed buffer of recent
documents, while offering fast query times. Our index cannot answer queries as
quickly as an optimised static index, but, for small volumes of indexed data,
processes documents faster and does not require rebuilding; and the documents
are immediately available for search.

We have demonstrated that apoptosis is a viable principle for design of
special-purpose indexes. Combining apoptosis with other heuristics and opti-
misations from the document search literature, such as pruning or compression,
is likely to give significant further improvements in performance. A particular
application is to run an apoptosic index for recent data in parallel with a more
traditional indexing system that provides ongoing access to historical data.

Similarly, apoptosis may prove to be a useful technique for more general
problems on streaming data. A common difficulty in streaming data structure
research is removing items from a sliding window without affecting the update
time. Apoptosis provides a solution to this problem for any data structure that
uses linked list-style pointer chains. It is immediately applicable to maintaining
hash maps and exact recency queries, for example.

Several models of data decay are considered in the data stream literature.
We have focused on a sliding window because it is conceptually simple. Another
common model is exponential decay, where the weight, or significance, of an item
decays exponentially with its age, and items with weight below a threshold are
no longer considered. Our apoptosic index can operate in this model without
modification: an exponential decay implies only a fixed window of items need to
be considered, and in our index the age of an item is given by its pointer address,
so a decay can be applied whenever an item is accessed. Apoptosis can also be
applied to related problems such as most recent occurrence and time-weighted
occurrence frequency. We plan to explore such applications in future work.
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Abstract. The dramatic proliferation of location-based social networks
have resulted in a significant amount of data. This has led to the develop-
ment of location-based recommendation tools that assist users in discov-
ering attractive Points-of-Interest (POIs). Next POIs recommendation is
of great importance for not only individuals but also group of users since
group activities have become an integral part of our daily life. However,
most existing methods make recommendations through aggregating indi-
vidual predictive results rather than considering the collective features
that govern user preferences made within a group. This insufficiency can
directly affect the completeness and semantic accuracy of group features.
For this reason, we propose a novel approach which accommodates both
individual preferences and group decisions in a joint model. More specif-
ically, based on influencing users in a group, we device a hybrid deep
architecture model built with graph convolution networks and attention
mechanism to extract connections between group and personal prefer-
ences and then capture the impact of each user on the group decision-
making, respectively. We conduct extensive experiments to evaluate the
performance of our model on two well-known real large-scale datasets,
namely, Gowalla and Foursquare. The experimental results show its supe-
riority over the state-of-the-art methods.

Keywords: POIs prediction · Minimum Graph Code · User
Influence · Deep Learning · Group Recommendation

1 Introduction

Location-based social networks (LBSNs) such as Yelp, Foursquare, Gowalla,
Facebook Place and GeoLife have enabled users to share their experiences and
locations via check-ins for Points-Of-Interest (POIs), e.g., restaurants, stores,
tourists spots, etc. With the exponential increase in the amount of geo-tagged
data collected from the LBSNs, POIs recommendation has attracted wide atten-
tion from both academia and industry [15,17]. POIs recommendation is useful
for both service providers and users by (i) estimating the number of users that
may visit the POI and (ii) helping users discover various POIs for social activities
occurring in the near future close to their current locations, respectively. As a
natural extension of general POIs recommendation, next POIs recommendation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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aims at predicting the POIs that are most likely to be visited next by analyzing
the users’ behaviors and mobility given their check-in history. Compared with
the general POIs recommendation, next POIs recommendation focuses more on
exploiting user movement patterns hidden in the historical check-in data for
individuals. However, individuals tend to have several group activities reflecting
their social life, e.g. friends often dine out and see a movie and families often
watch TV programs, attend parties or travel together. For this reason, it is highly
critical to develop group recommender systems to suggest relevant POIs for a
group of users, known as group recommendation.

Various heuristic aggregation strategies such as average, least misery and
maximum pleasure, have focused on exploring a consensus among group mem-
bers on an item [1,11]. However, all these predefined aggregation strategies are
too simplistic to model the real and complex process of the next POIs problem
since they fail to capture the non-linear and complex structure of the related
features, leading to sub-optimal group recommendation performance. In recent
times, deep learning techniques have shown a great success in capturing non-
linear correlations. Meanwhile, several recent studies have shown the utility of
deep learning in the area of recommendation systems and information retrieval
as well [16]. For group recommendation, attention-based approaches [2,14] have
achieved the state of-the-art performance. That is because through an attention
mechanism [5,13], the impact of each member in a group is efficiently captured
and therefore the final recommendation effectiveness can be improved. Although
the above-mentioned attention-based approaches [2,14] have the best perfor-
mance at present, they ignore the preference interactions between a group and
its members and thus fail to consider the correlation between each user influence
and the group preferences. These models lack the capability to build a good
representation of the group preference as well as group members’ preferences,
which we believe are crucial to the success of group recommendation systems.
This insufficiency can directly affect the completeness and semantic accuracy
of group features. To overcome the above-mentioned deficiency, in this paper,
we propose an efficient group recommendation model for next POIs prediction
called Know Your Destination (KYD) based on a hybrid deep learning model to
(1) Build a new representation for the group profile: a user may exhibit different
influences and have different weights in different groups. The same user may
have a high influence degree in a given group but not in another group, i.e., his
personal preferences may influence the preferences of some groups but not all.
Thus, considering the preferences of the non influencing members may bias the
prediction results. Therefore, we measure the influence of each group member
to propose a representative group profile including only its influencing members
and (2) Learn connections between group preferences and personal preferences
of the members forming the group: for the same POI, each member of a group
may have different opinions, so the main challenge is to find correlations between
group preferences and the group members with diverse preferences to satisfy each
member and the group as a whole.
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In this paper, inspired by the success of the attention mechanism architecture
in learning group members interactions, we investigate how to apply a hybrid
deep learning model by proposing a representation of the different factors and
integrate them smoothly in a shared latent space. We propose a high-quality
representation for POIs, groups and its members. We then propose our hybrid
deep learning model KYD to predict the next POIs for a set of groups exploring
and analysing the influence of their members.

2 Problem Definition

Following the convention, we use bold capital letters (e.g., X) to represent both
matrices and graphs, and use squiggle capital letters (e.g., X ) to denote sets.
We use lowercase letters with superscript → (e.g., �x) to denote vectors. We
employ normal lowercase letters (e.g., x) to denote scalars. Assume a set of
POIs P = {p1, p2, . . . , p|P|} and a set of users U = {u1, u2, . . . , u|U|} belonging
to a LBSN N and a set of groups G = {g1, g2, . . . , g|G|}. The k-th group gk ∈ G
is a set of users and we use Ugk to denote this set. We make use of the following
graphs that reflect the interactions between the different sets U , P and G. We
use bipartite graphs GUP and GGP as shown in Fig. 1, to represent three kinds of
interactions: (i) User-POIs Interaction: called also a user check-in activity,
is a visit of the user u to the POI p at a time t denoted by xu,t, i.e., xu,t is
the POI visited by the user u at time t. A sequence of historical user check-ins
over time (from t-n to t) is called a user check-in profile and represented by the
vector �xu. A given POI p is characterised by the geographical coordinates in
terms of longitude and latitude coordinates denoted by lp and its content (e.g.,
food, shop, service, etc.) denoted by cp, (ii) Group-POIs Interaction: it is
the group check-in activity related to the group g and the POI p at a time t
denoted by xg,t. The vector �xg represents the group profile over time, i.e., a set
of POIs visited by the group g over a sequence of historical time-slots and (iii)
User-User Interaction: it is the relation related to a set of users visiting a
given POI at the same time forming an active group gk ∈ G.

Fig. 1. Illustration of the input data: A set of users visiting a set of POIs and a set of
groups interacting with the POIs set.
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Problem 1 (Next POIs Prediction). Given a set of groups G, each comprises a
set of users, our task is to predict the next POIs of all groups G in a given LBSN
N that they would be interested in at a future time T where T = t + z and z
is the number of the future time-slots to be predicted. More formally, given �xgk

and �xu/u ∈ gk, we want to predict xgk,t+i for all gk ∈ G where 1 ≤ i ≤ z and
1 ≤ k ≤ |G|.

3 Methodology

In our framework, the bipartite graphs GUP and GGP and interactions between
users in a given LBSN N are the data containing information about all interac-
tions. A baseline method for predicting the next POIs for a set of users forming
a group is to learn the preferences of the group by aggregating the personal
preferences of its members. This method may have a high computational cost
with (i) larger graphs N and thus a large number of groups K where K = |G|
and (ii) larger number of users forming the groups gk ∈ G,∀k ∈ [1,K]. However,
when analysing the group behaviour, we have observed that the group decision is
related to the preferences of some group members, that we call influencers, but
not all. Thus, introducing the preferences of the non influencers into the aggre-
gation process may bias the results in terms of accuracy. As shown in Fig. 2, our
framework proposes the concept of “the minimum graph code” which replaces
the original input graph data considering the preferences of the influencers and
neglecting the non acting users. Then, we introduce a representation process
which consists of modeling the different interactions between the entities users,
groups and POIs sets (as shown in Sects. 3.1 and 3.2). To make the problem
learnable, the graph interactions should be either represented as a sequence of
visited POIs, or a series of adjacent matrices and vertex features. For sequence
inputs we can use CNNs [9], RNNs such as LSTM [19], or Transformers [13] to
extract high-level features and learn interactions between the different entities. If
the inputs are modeled as series of adjacent matrices and vertex features, we can
use convolution GNN to learn vertex representations with message passing from

Fig. 2. KYD Framework: it consists of mainly three components: (i) Minimum Graph
Code Process, (ii) Representation Process and (iii) Interaction Learning Process.
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neighborhoods. After obtaining the representations of our entities, we feed them
into an interaction learning module to extract the correlated features from each
side. Then we feed the output into fully-connected layers to make predictions.

In the following, we give the representations of both sets Users and Groups.
We then model the interactions between these two entities and the POIs set.

3.1 User Representation

The User-POI interaction at a given time denoted by xu,t is the POI visited by
the user u at time t. For each user, we create a profile which is a set of User-POIs
interactions. A user Profile is a sequence of check-in activities in chronological
order from t−n to t. Formally, the check-in sequence of a user u up to time-slot
t is represented by the vector �xu as follows.

�xu = [xu,t−n, xu,t−(n−1), . . . , xu,t−2, xu,t−1, xu,t] (1)

In a given social network N , we model the check-ins of all users in U by designing
the user check-in matrix XU recording the check-ins sequences of all users in U
with n historical time-slots. Formally, the user check-in matrix XU is represented
as follows.

XU =

⎡
⎢⎢⎢⎢⎢⎣

xu1,t−n . . . xu1,t−1 xu1,t

xu2,t−n . . . xu2,t−1 xu2,t

...
. . .

...
...

xu|U|−1,t−n . . . xu|U|−1,t−1 xu|U|−1,t

xu|U|,t−n . . . xu|U|,t−1 xu|U|,t

⎤
⎥⎥⎥⎥⎥⎦

(2)

Each row vector in XU contains check-in data for the same user from continuous
time slots from t − n up to t, while each column contains check-in data for all
users at the same time slot.

3.2 Group Representation

A group is a set of users visiting together one POI at the same time. The
Group-POI interaction at a given time denoted by xg,t is the POI visited by
the group g at time t. A group may have a check-in profile which is a set of
Group-POIs interactions over time from t − m to t. Formally, the check-in pro-
file of the group g up to time-slot t is represented by the vector �xg such as
�xg = [xg,t−m, xg,t−(m−1), . . . , xg,t−2, xg,t−1, xg,t].

In a given social network N , we model the check-ins of all groups gk in
G,∀k ∈ [1,K] where K = |G| by designing the group check-in matrix XG record-
ing the check-ins sequences of all groups in G with m historical time-slots. For-

mally, the group check-in matrix XG is represented such as XG =

⎡
⎢⎢⎢⎣

�xg1

�xg2
...

�xgK

⎤
⎥⎥⎥⎦. In

location-based group recommender, we can consider only XG as an input to
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learn the mobility behaviour from the historical check-ins of the group as one
individual. However, the group preferences may be affected by the personal pref-
erences of its members. Thus, integrating the preferences related to the group
members is of great importance for more accurate prediction. However, some of
the group members may not be active in the group decision making and some
of them, may have more influence than others, i.e., they affect more the group
preferences. For this reason, we measure in the following the influence degree of
each group member. We then propose the minimum graph code by discarding
the non influencing users from the learning module.

The User Influence Modeling. The personal preferences of a user u are
represented by the vector �xu (See Eq. 1), extracted from the matrix XU and
reflecting the user check-in profile over time, i.e., all visited POIs, alone or as a
group member. Similarly, the vector �xg records the group check-ins over time.
Let φ(�xu) and φ(�xg) be the sets of distinct check-ins visited by the user u and
the group g, respectively.

Definition 1 (Influence Degree). Given a group gk in G where k ∈ [1, |G|].
A set of users forming the group gk is called Ugk . The influence degree for each
user u in Ugk , denoted by ϕ(u)u∈Ugk

, is defined as follows

ϕ(u)u∈Ugk
=

φ(�xu)u∈Ugk
∩ φ(�xgk)

|φ(�xgk)| (3)

The intuition behind the influence degree is to measure the impact of the
personal preferences of the user u in Ugk on the preferences of the group gk. The
more the user u has similar preferences to those of the group gk, the more the
user influenced the group behaviour.

In the following, we model the group representation by proposing the mini-
mum group code.

The Minimum Group Code. Given a group gk in G where k ∈ [1, |G|].
We assume that the users u in Ugk are either influencers or followers. A group
influencers are the group members having the power to affect the decisions of
others which are the followers. The set of influencing users i in the group gk ∈ G
according to an influence threshold α, is called Igk and defined as Igk = {u ∈
Ugk/ϕ(u) ≥ α} where α ∈ [0, 1].

The code of the group gk contains the check-in profiles of all users u in Ugk .
Since personal preferences can affect the group decision and thus improving the
prediction accuracy, we integrate into the learning module, the check-in profiles
of the users, but not all. The minimum group code is the representation of only

its influencing members i in Igk such as |Igk | ≤ |Ugk | and XIgk
=

⎡
⎢⎢⎢⎣

�xi1

�xi2
...

�x|Igk
|

⎤
⎥⎥⎥⎦
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where �xim/m ∈ [1, |Igk |] is the check-in profile of the influencer im in Igk . The
minimum group code is the code with the minimum group members with the
highest influence according to an influence threshold α. Finally, each group can
be represented by the corresponding minimum code, and vice versa. The input of
our learning module is the group check-in profile as well as the check-in profiles
of all its influencers. More formally, we design the matrix X such as

X = XG ⊕ XIgk
/k∈[1,K] =

⎡
⎢⎢⎢⎣

�xg1 ,XIg1

�xg2 ,XIg2
...

�xgK ,XIgK

⎤
⎥⎥⎥⎦ (4)

where K = |G|. This representation allows the integration of the group check-in
profiles as well as the influencing check-in profiles to be analysed. In the following,
given the matrix X, we propose a learning module to extract the hidden features
behind the group behaviour.

3.3 The Interaction Learning Module

After obtaining the representations of both users and groups interactions, we
propose a hybrid deep learning model which comprises three major components:
(1) Learning the group mobility from XG and then by extracting the hidden
patterns of the embedded influencing users using a convolution GNN, (2) a time-
series learning using the attention mechanism to model the temporal dependency
and (3) the POIs content extraction layer modeling the impact of POIs content.

The learning module proceeds as follows: First, we extract the hidden pat-
terns from the group behaviour over time, i.e., features from historical group
check-ins. Then, the influencing users are extracted and embedded into the
matrix X. To learn the patterns hidden in the influencing preferences as well
as the group preferences, KYD employs GCN as shown in Fig. 3 since it has a
very deep structure that can effectively capture the dynamics behind neighbor
nodes, i.e., influencing users. Then, we reshape these features to be suitable for
time-series learning. Since the group mobility is directly affected by periodicity
features, i.e., the mobility behavior during the week-ends may be similar on con-
secutive week-ends, we feed the group check-in vectors of periodic time intervals
into an attention layer, a deep variant sequence modeling, to capture such tem-
poral dynamics. We then employ a fully connected (FC) layers to extract the
semantic features that describe the POIs content.

Group Encoding. In graph models, each node has a feature vector, and each
edge is used to pass information from its source to its target. GNNs do not need
node ids and edge ids explicitly because the adjacency information is included
in an adjacent matrix. i.e., interactions between users, groups and POIs. Given
that a group is represented as a set of influencing users and thus defined by a
minimum graph code, the next encoding step is to transform each influencing
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Fig. 3. Interaction Learning Module Architecture.

user into a vector. As explained in Sect. 3.2, we can vectorize node labels into
multi-hot vectors represented by the input matrix X as shown in the Eq. 4.
In such representation, the adjacent information of the group influencers can
be stored in a sparse matrix (XIgk

/k∈[1,|G|]) to reduce the memory usage and
improve the computation speed.

Graph Convolutional Network. After obtaining the input representations,
we feed them as inputs of interaction layers to extract the correlated behaviour
between the group preferences and those of the group members. Graph Convo-
lutional Network (GCN) [12] is developed specifically to handle multi-relational
data in realistic knowledge bases. GCN is acting as an embedding operation or
a look-up operation (LK) to integrate the influencing users. A stack of convolu-
tions (CNN) is used to understand the connections between group preferences
and user preferences. We employ the Batch Normalization (BN) after the con-
volution layer for faster training speed. The input of the convolution layer is
the check-in profiles of groups as well as the embedded influencing user check-in
profiles X (l). The output layer is to generate the prediction result. At an arbi-
trary l-th layer, we use f (l) filters to convolve and concatenate all matrices to get
X (l+1). The f -th matrix convolved by the f -th filter can be formulated as fol-
lows: X l,f = [xl,f

1 , . . . , xl,f
k , . . . , xl,f

|G|] where xl,f
k = F

(
LK(X(l−1)

G , I)∗W l,f +bl,f
)
.

Here, ∗ denotes the convolution operation which uses the f -th filter W l,f , F is an
activation function, e.g. the rectifier ReLU F (x) = max(0, x) which has achieved
a training effectiveness in reducing the problem of gradient vanishing, W l,f and
bl,f are the learnable parameters in the l-th layer with the f -th filter. This filter
aims at emphasizing the correlated features of influencing users.

Attention Mechanism. In addition to the impact of the influencing users
on the group preferences, the group check-in movement may have temporal
and sequential patterns, i.e., a visited POI at a given time interval (12:00 pm–
02:00 pm) on Monday can be similar to the next following weekdays for a given
group. For learning such patterns, our experimental results show that the atten-
tion mechanism outperforms LSTM, GRU and RNN in the benchmark datasets.
We thus employ the attention mechanism [13] that has shown great success in
capturing such sequential patterns. After C convolution units, we use the atten-
tion model to learn the long-term temporal patterns considering the influencing
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group members. On top of the C convolution units, we get the output tensor
XC ∈ R

pd×|G|×fC where fC is the number of the convolution filters at the last
C-th Conv layer and pd is the period (the number of days/weeks). We reshape
XC in the way of time sequence to feed into the attention layer. We get a tensor
X ′ ∈ R

|G|×n×fC representing the group check-in profile vectors for all n time-
slots, where X ′

k,t = XC [t, k, :]. We train the group profile vector X ′
k,t which

records the check-ins for group gk ∈ G for n time-slots. The final output of
the transformer layers can be represented by the sequential vector YS in which
the last element is the predicted check-in for the next time iteration such as
YS = [Yk,t−n, . . . , Yk,t, Yk,t+1].

Content Learning. Groups at lunchtime tend to go to restaurants for food
rather than going to a cinema or any other entertainment points. We thus extract
POIs content features by a fully connected layer (FC) as shown in Fig. 3. The
output is denoted by YC . The predicted POI at the t-th time interval, denoted by
ỸT , is defined as ỸT = tanh(WS ◦ YS + WC ◦ YC) where ◦ is Hadamard product
(i.e., element-wise multiplication), WS and WC are the learnable parameters
in the sequential and the content learning component, respectively. The model
output is a probability distribution on all POIs calculated by ỸT . And then
we take a gradient step to optimize the loss based on the output and one-hot
representations of POIs.

4 Experimental Evaluation

To evaluate the performance of our hybrid deep learning model KYD, we conduct
series of experiments on two real large-scale LBSNs datasets1: (i) Foursquare
Data-set: a public data-set, on which we extract social relationships between
users forming groups and content features. This data-set contains more than
450,000 check-in records from 2009 to 2011 generated by 2114 users living in
USA. For each user, we acquired her POI attendance list and social friend list.
For each POI, its visiting time and its content were also collected. Each check-in
contains a user, a timestamp and a POI, indicating the user visited the POI at
that time; users having relationships visiting the same POI at the same time
are considered as a group, and (ii) Gowalla Data-set: This data-set contains
6,442,892 check-in historical records from 2009 to 2010 which is much more than
the Foursquare data-set. However, it does not contain the content information
about POIs. Therefore, each check-in record has the same format with the above
Foursquare data-set except for POI-content.

Pre-processing. Given a group profile �xg in terms of a collection of group
check-in records, we first sort them according to their check-in time-slot order.
We then use the 80th percentile as the cut-off point so that check-ins before

1 https://sites.google.com/site/dbhongzhi/.

https://sites.google.com/site/dbhongzhi/
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this point will be used for training and the rest are for testing. For POIs con-
tent information, a binary vector is given by one-hot coding to transform and
represent the content for the visited POIs. We use Tanh in the output of the
KYD model as our final activation. We train our network with the following
hyper-parameters setting: mini-batch size (48), learning rate (0.01) with adam
optimizer, a variant of Stochastic Gradient Descent (SGD). Afterwards, we con-
tinue to train the model on the full training data for a fixed number of epochs
(e.g., 20, 50, 100, 200 epochs). A transformer includes L transformer blocks. The
hyper-parameters of the transformer are d, k, m, H, and L. The settings of these
hyper-parameters are d = 512, k = 64, m = 2048, H = 8 and L = 6.

Benchmarks. Several prevailing algorithms are chosen for comparisons with
our proposed model KYD. (1) PRME-G [6]: It uses the metric embedding
method to embed users and POIs into the same latent space; (2) STGCN
[18]: Used to predict next POIs, it is a variant of recurrent neural networks; (3)
RNN [7]: This method leverages the temporal dependency in user’s behavior
sequence; (4) FPMC-LR [3]: It uses the Markov chains to model the user
movement in a given region; (5) ST-RNN [10]: Based on the standard RNN
model, ST-RNN replaces the single transition matrix in RNN with time-specific
transition matrices and distance specific transition matrices to model spatial and
temporal contexts of next POIs problem; (6) LSTM [19]: This is a variant of
RNN model; (7) HST-LSTM [8]: It introduces Spatio-Temporal preferences
for location prediction into gate mechanism in LSTM and (8) GRU [4]: This
is a variant of RNN model, which is equipped with two gates to control the
information flow. Some of the baselines were used only to predict the next POIs
for individuals. To test these methods on groups, we consider a group as a virtual
individual. The performance of our KYD model is evaluated by using two metrics
Accuracy@K (Acc@K) and Mean Average Precision (MAP).
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Fig. 4. Minimum Graph Code Evaluation.
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Effectiveness of the Minimum Graph Code. In addition to KYD, we
design two other algorithms KY D′′ and KY D′ to show the effectiveness of
the minimum graph code approach: (i) KY D′′ considers the input X ′′ = XG to
learn the mobility behaviour from the historical check-ins of the group as one
individual, (ii) KY D′ considers the input X ′ representing the group check-ins
as well as all its members check-ins where X ′ = XG ⊕ XUgk

/k∈[1,|G|] since the
group preferences may be affected by the personal preferences of its members.
However, KYD employs the minimum graph code and has the input X where
X = XG ⊕ XIgk

/k∈[1,|G|] as described in the Sect. 3.2. As shown in the Fig. 4,
KY D′ performs better than KY D′′ which proves that including the preferences
of the group members captures more patterns and thus improves the prediction
accuracy. However, KYD outperforms KY D′ since non influencing group mem-
bers can bias the prediction results. The Fig. 5 shows that the optimal value of
α is 0.5. For this reason, we use 0.5 as the default value for all experiments.
We can also observe that when α = 0 (α = 1), the prediction results are sim-
ilar to those of KY D′ (KY D′′) which is expected since in this case, we have
Igk = Ugk ,∀k ∈ [1, |G|] (G = Igk ,∀k ∈ [1, |G|], respectively).
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Table 1. Evaluation of next POIs Prediction in terms of Accuracy@K and MAP

Method Ref Foursquare Gowalla

Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP

FPMC-LR [3] IJCAI, 2013 0.216 0.228 0.285 0.251 0.163 0.247 0.276 0.271

PRME-G [6] IJCAI, 2015 0.181 0.253 0.321 0.301 0.211 0.222 0.251 0.251

RNN [7] ACM SIGIR, 2018 0.241 0.345 0.395 0.352 0.301 0.342 0.359 0.365

STGCN [18] AAAI, 2019 0.481 0.501 0.512 0.502 0.391 0.421 0.439 0.442

LSTM [19] IJCAI, 2017 0.382 0.395 0.421 0.430 0.256 0.278 0.314 0.321

ST-RNN [10] AAAI, 2016 0.452 0.473 0.491 0.486 0.332 0.351 0.392 0.398

GRU [4] EMNLP, 2014 0.296 0.325 0.391 0.404 0.218 0.251 0.289 0.312

HST-LSTM [8] IJCAI, 2018 0.471 0.492 0.519 0.498 0.365 0.398 0.412 0.419

ST-KYD 0.508 0.521 0.541 0.539 0.441 0.453 0.468 0.459

KYD 0.589 0.603 0.657 0.695 0.461 0.473 0.498 0.490
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Next POIs Prediction on Foursquare. From the experimental results shown
in Table 1, we can see the following observations: RNN performs better than
Markov chain, i.e., FPMC-LR and PRME-G, thanks to its capability in mod-
eling sequential data and user interests using RNN cell. Both LSTM and GRU
slightly improve the performance compared with RNN thanks to their advan-
tages in capturing short-term as well as long-term temporal features. The state-
of-the-art method ST-RNN improves the standard RNN method because the
single transition matrix in RNN cell is replaced by two matrices representing
both time and distance features to model the temporal and spatial contexts of
the next POIs problem, respectively. STGCN and HST-LSTM perform better
than ST-RNN. It proves the effectiveness of the idea of combining spatial and
temporal factors with gates mechanism. Since existing state-of-the-art methods
only consider the spatial and temporal factors, we propose for comparative pur-
poses, a simplified version of KYD called ST-KYD which also models the spatial
and temporal factors and removes the content learning module. ST-KYD variant
performs better than STGCN, HST-LSTM and ST-RNN. This is because these
state-of-the-art methods capture the spatial and temporal features by modeling
new gates in RNN-based methods. However, ST-KYD uses a new representation
to model the mobility of the group members by employing the convolution neu-
ral networks which has shown good performance in capturing spatial features. In
addition, ST-KYD employs attention mechanism to capture temporal patterns.
A combination of these two learning blocks has resulted in a significant improve-
ment in terms of performance comparing to existing state-of-the-art methods.
Our proposed KYD, including spatial, temporal and content learning, is signifi-
cantly better than existing state-of-the-art methods evaluated on the Foursquare
dataset considering all metrics. Specifically, KYD outperforms the Markov chain
based methods considerably by a large margin. In addition, KYD consistently
outperforms five RNN-based methods: RNN, LSTM, GRU, ST-RNN, and HST-
LSTM. The significant improvement indicates that the mechanism to model
temporal and spatial, in addition to the content learning in KYD can better
catch the user’s behaviors and are effective for the task of next POIs prediction.

Next POIs Prediction on Gowalla. Table 1 also reports the performance
of the prediction models on Gowalla dataset. We can see that the trend of
comparison result is similar to that presented for Foursquare data-set. A slight
change is reported and is seen when some methods slightly outperform others
on Foursquare dataset while they do not on Gowalla. This is because Gowalla
dataset has no content information.

5 Conclusion

In this paper, GCN-attention based network named KYD, was proposed for
group next POIs prediction. In KYD model, a new representation of the group
preferences is introduced and given by the minimum graph code. A hybrid archi-
tecture is employed to capture the hidden patterns considering the social rela-
tions connecting users in a group. An attention mechanism is then employed
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to extract the sequential features. We evaluate our model on two real location-
based networks, Foursquare and Gowalla, achieving performances which are sig-
nificantly beyond eight existing methods.
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Abstract. The rapid growth in the number and complexity of conver-
sational agents has highlighted the need for suitable evaluation tools to
describe their performance. The main evaluation paradigms move from
analyzing conversations where the user explores information needs fol-
lowing a scripted dialogue with the agent. We argue that this is not a
realistic setting: different users ask different questions (and in a diverse
order), obtaining distinct answers and changing the conversation path.
We analyze what happens to conversational systems performance when
we change the order of the utterances in a scripted conversation while
respecting temporal dependencies between them. Our results highlight
that the performance of the system widely varies. Our experiments show
that diverse orders of utterances determine completely different rankings
of systems by performance. The current way of evaluating conversational
systems is thus biased. Motivated by these observations, we propose a
new evaluation approach based on dependency-aware utterance permu-
tations to increase the power of our evaluation tools.

1 Introduction

The conversational search domain has recently drawn increasing attention from
the Information Retrieval (IR) community. A conversational agent, by definition,
is expected to interact seamlessly with the user through natural language, either
written (i.e. text chat-bots) or spoken (i.e. vocal assistants). Following the devel-
opment of conversational systems, the evaluation of such systems is receiving a
lot of attention. Following the best practices proposed by TREC CAsT [6,7],
the principal evaluation campaign in the conversational domain, the evaluation
process is very similar to the one used in ad-hoc retrieval. It follows the Cranfield
paradigm, with a corpus of passage documents, a set of conversations represent-
ing various information needs, and a set of relevance judgements. Each conversa-
tion is a sequence of utterances – i.e., phrases issued by the user during the con-
versation – and the relevance judgements are collected for each utterance. Several
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works [1,9,19–21,26,38] have already recognized the drawbacks of using tradi-
tional evaluation approaches in a (multi-turn) conversational setup. Among the
difficulties that make traditional evaluation techniques hardly applicable in the
conversational domain, we can list the following: – Lack of generalizability [19]:
conversations in the current evaluation collections represent a single interaction
between a user and the ideal system. Therefore, when we evaluate using a con-
versation represented as a sequence of utterances, we consider a snapshot of
reality. Since we have a unique sequence of utterances, we cannot generalize to
conversations on the same topic that could have happened between the user and
the system but are not in the collection. – Lack of comparability [19]: conver-
sations have different lengths, they can contain chains of anaphoras or might
have multiple self-contained utterances. Evaluation procedures should account
for such diversity. – Interdependency between utterances [9]: utterances in con-
versational search are intrinsically dependent, differently from topics in ad-hoc
retrieval. Therefore, cannot be treated as independent and identically distributed
events. This work aims at providing a new perspective on the first aspect: low
generalizability. We show a series of experiments meant to demonstrate the poor
generalizability of results obtained using offline evaluation collections. Our work
can be formalized with the following research questions:

RQ1 How can we shuffle utterances of a conversation by maintaining their orig-
inal meaning and inter-dependencies?

RQ2 What is the effect of including dependency-aware permuted conversations
in the comparison between systems?

RQ3 Can we improve conversational agents evaluation using permuted dia-
logues?

By answering the first question, we obtain a sound process to permute utter-
ances of a conversation, producing new conversations to test conversational sys-
tems. We, therefore, use such conversations to compare models under the current
evaluation paradigm, highlighting and measuring its flaws. Finally, we propose a
new strategy to include the permuted conversations in the evaluation methodol-
ogy. We do not propose a new evaluation measure – as done for example in [9,19]
– but show how, by adapting our current instruments, we could partially miti-
gate the limitations associated with the evaluation of the conversational systems.
Our main contributions are the following. We show that:

– Modeling a conversation using a single sequence of utterances only favours
some systems, while penalizing others;

– If we consider multiple valid permutations of the conversations, the perfor-
mance of conversational agents moves from point estimations to distributions
of performance (in which the default sequence is an arbitrary point);

– By including multiple permutations in the evaluation, we obtain more reliable
and generalizable statistical inference.

Our work is organized as follows: Sect. 2 describes the current state in con-
versational evaluation. In Sect. 3 we describe our experimental methodology.
Section 4 details on the experimental results observed. Finally, Sect. 5 describes
the insights of our and outlines the next steps.
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2 Related Work

Conversational agents are commonly divided into chit-chat bots [36,37] and
task-oriented systems [3,14,26]. Chit-chat bots are used to entertain the users,
while the latter guide them to satisfy a goal, such as buy or discover something,
through a dialogue. Task-driven conversational systems can be categorized into
systems that retrieve and rank answers [14,31,35] and systems that build them
through summarization techniques such as T5 [27]. While the latter are tradi-
tionally evaluated through traditional NLP and machine translation measures,
such as BLEU [25] or METEOR [2], the former still relies on traditional IR eval-
uation measures such as Precision or Normalized Discounted Cumulated Gain
(nDCG) [15], with typically a very small cutoff [6]. Finally, conversational sys-
tems can be divided into single-answer systems and multi-turn conversational
systems. Among the former, we can list current commercial vocal assistants, han-
dling very short - often scripted - sequences of interactions. The latter should
ideally deal with a sequence of interactions of unspecified length. One of the
most peculiar aspects related to the multi-turn conversational task is the role
played by the concept of “context” [18,23,33]. The context corresponds to the
system’s internal representation of the conversation state that evolves through
time. Correctly maintaining and updating such internal beliefs is essential to app-
roach effectively the multi-turn conversational task. In this work, we focus on
the evaluation of Multi-turn Task-driven Conversational search systems. Multi-
turn conversational search is also the main focus of the TREC Conversational
Assistance Track (CAsT) campaign [6,7]. Currently, the track has reached its
third edition: a further demonstration of the interest shown by the community.
The evaluation aspect of conversational agents is consequently drawing increas-
ing interest [1,9,19–21,26,38]. Even though several efforts aimed at developing
proper techniques to evaluate conversational systems [9,38], there is a consensus
on the fact that we still lack the properer statistical tools to correctly evaluate
such systems. [9] propose to model a conversation through a graph: utterances in
a conversation are linked if they concern the same entities. Authors argue that
current evaluation approaches introduce biases on systems comparison, by con-
sidering utterances as independent events. [10] do not tackle the problem linked
to the low generalizability, due to predefined conversations available in current
offline collections. [19] start the low generalizability that affects the current offline
evaluation of conversational systems. [19] propose to simulate users through a
stochastic process, similarly to what done in [38]. In particular, each topic is
modelled as a set of subtopics (collected manually and using the available exper-
imental collections). Using crowd assessors, [19] define a Markov chain process
that should model how users present utterances to the system when interacting
with a conversational agent. This allows producing new simulated conversations.
Such a solution partially solves the low generalizability problem. Nevertheless,
the need for online data makes it infeasible for purely offline scenarios, where no
users are available.
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3 Methodology

In this section, we describe the experimental methodology to answer the research
questions. In Sect. 3.1 we describe a permutation process capable of preserving
the dependencies between utterances (RQ1). Finally, Sect. 3.2 defines a method-
ology to use ANOVA to evaluate conversational systems, using permuted con-
versation utterances (RQ3).

3.1 RQ1: A Dependence-Aware Utterance Permutation Strategy

Several works [9,19,26,38] recognize the need of increasing the variety of con-
versations to improve the generalizability of offline conversational evaluation. As
observed by [19], when conversing with a system about a specific topic, distinct
users tend to traverse subtopics in different orders. Generalization would ask
to observe how distinct users interact with the systems to investigate a specific
topic: this is not possible in an offline scenario. A possible approach to simulate
how users would experience a system would be permuting the utterances of a
given conversation, and measuring how it performs. We cannot however permute
utterances completely randomly. In fact, we might lose temporal dependency
between the moment the entity is mentioned in an utterance for the first time
and referenced later. To solve this limitation, we would have to re-gather the
relevance judgements to fit the newly defined anaphoras in the randomly built
conversation. This is prohibitive and not suited to an offline evaluation scenario.
A better permutation strategy consists in permuting utterances by respecting
the temporal dependencies. To this end, we could rely on classification labels
(we dub this approach class-based permutation) to identify such dependen-
cies. Similarly to what done in [24], we can manually annotate the data using
three classes of utterances:

– Self-Explanatory (SE) utterances: utterances that do not contain any semantic
omission. Non-contextual retrieval systems can answer such utterances.

– Utterances that depend on the First Topic of the conversation (FT): they
contain an - often implicit - reference to the general topic of the conversation,
subsumed by the first utterance.

– Utterances that depend on a Previous Topic (PT): the previous SE utterance
contains the entity to solve the semantic omission in the current one.

Using this utterance classification, we define a sampling process to randomly
permute utterances of a conversation, while preserving temporal dependencies.
We define the following rules for the generation of utterance permutations:

– The first utterance in any conversation expresses the main topic of the con-
versation. It cannot be moved to other positions.

– SE utterances, being independent by definition, can appear in any order inside
the conversation.
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– PT utterances have to appear immediately after their SE utterance. More in
detail, after a SE utterance, in CAsT 2019 conversations, we have an arbitrary
number of PT utterances (usually between 0 and 4): such utterances can
appear in any order, as long as they occur after the associated SE utterance.

– FT utterances, depending on the global topic of the dialogue can be issued at
any moment, since the first utterance cannot be moved.

3.2 RQ3: Exploiting Permuted Conversation Utterances

As a final methodological remark, we show how to embed utterances permu-
tations in the evaluation. To have a common ground with current evaluation
strategy, we consider to compare different retrieval models using ANalysis Of
VAriance (ANOVA). If we were to apply ANOVA in the current evaluation
setup, we would likely rely on the following model:

yik = μ.. + τi + αk + εik (MD0)

Where yik is the mean performance of all utterances for the conversation i,
using the retrieval model k. μ.. is the grand mean, τi is the contribution to the
performance of the i-th conversation, while αk is the effect of the k-th system.
Finally, εik is the unexplained portion of the performance variation using the
ANOVA model MD0. This is the traditional two-way ANOVA model used on
IR data to recognize statistical differences between systems [5,13,34].

If we also include multiple permutations for each conversation, Model MD0
cannot be applied satisfactorily anymore. The different permutations behave
as a nested factor. We need to resort to a three-way ANOVA, that includes
the different permutations. A specific permutation is, trivially, a permutation
only of one conversation: we cannot treat it as a permutation of others. The
variation in the performance due to a permutation should contribute only to the
variation in performance of the conversation it represents. Including multiple
permutations, which behave as replicates [28], allows computing the interaction
factor between retrieval models and conversations in the ANOVA model. In ad-
hoc retrieval, such interaction has a medium-to-large size effect [4,12,34] and,
if included, allows more powerful inferential analyses. We leave this analysis for
future works. We use the following ANOVA model:

yi(j)k = μ.. + τi + νj(i) + αk + εijk (MD1)

Where, compared to Model MD0, νj(i) represent the effect of the j-th per-
mutation of the i-th conversation.

4 Experimental Analysis

In our experimental analysis, we consider the Conversational Assistance Track
(CAsT) 2019 [6]. Such collection contains 50 multi-turn conversations, each com-
posed of 9 utterances on average. The utterances in their original formulation
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contain semantic omissions - anaphoras, ellipsis and co-references. Among the
50 conversations, 30 were used for training and have smaller pools of relevance
judgements. The remaining 20 are the test set. In our subsequent analyses, we
consider only test conversations, being their relevance judgements much more
significant. The corpus is composed of approximately 38 million paragraphs from
the TREC Complex Answer Retrieval Paragraph Collection (CAR) [8] and the
MS MARCO collection1. Regarding the relevance judgements, CAsT 2019 con-
tains graded judgements on a scale from 0 to 4. We adopt nDCG with cutoff at 3,
being the most widely diffused evaluation measure for this specific scenario [6].
To ease the reproducibility the code is publicly available2.

4.1 Conversational Models

As commonly done [10,11,19], we select as baselines a set of models that repre-
sent different families of approaches to the multi-turn conversational task. Notice
that, for all the rewriting strategies, we used BM25 as ranker.

Non-contextual Baseline Models. We consider three non-contextual baseline
models, used as a comparison with other approaches. We compute the runs using
the okapi BM25 model with default terrier parameters (k = 1.2 and b = 0.75).
The second baseline is Query Language Model with Bayesian Dirichlet smooth-
ing and μ = 2500. Finally, we include results from a Pseudo-Relevance feedback
RM3 rewriting model [22], which considers the 10 most popular terms of the 10
documents ranked the highestd.

Concatenation-Based Models. A simple approach to enrich utterances with con-
text to address the multi-turn conversational challenges consists in concatenating
them with one (or more) of the previous ones. We propose three concatenation-
based strategies, previously adopted as baselines in the literature [24]:

– First Utterance (FU): each utterance uj is concatenated with u1, the first
utterance of the conversation.

– Context Utterance (CU): each utterance uj is concatenated with u1 and uj−1,
the previous utterance.

– Linear Previous (LP): we concatenate uj with uj−1 linearly weighting the
terms: qj = λ ∗ uj + (1 − λ) ∗ uj−1, with λ ∈ [0, 1]. In particular, we observed
empirically the best results for λ = 0.6.

Pseudo-Relevance Feedback Based Models. We consider two approaches based on
pseudo-relevance feedback (PRF) that account for the “multi-turn” aspect:

– RM3-previous (RM3p): it concatenates the current utterance and the RM3
expansion of the previous one (using BM25 as first stage retrieval model).

1 http://www.msmarco.org/.
2 https://github.com/guglielmof/utterance permutations.

http://www.msmarco.org/
https://github.com/guglielmof/utterance_permutations
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Table 1. Number of unique permutations that can be observed for each conversation
in CAsT 2019, according to the class-based permutation.

Conv. id 31 32 33 34 37 40 49 50 54 56

unique perm. 72 15184 720 720 240 120 5039 120 25676 720

Conv. id 58 59 61 67 68 69 75 77 78 79

unique perm. 720 121 720 289 4996 480 721 48 48 241

– RM3-sequential (RM3s): it takes the relevance feedback considering the ranked
list retrieved for the previous utterance, and uses it to expand the current.

The difference between the two models is that, for RM3p, the ranked list depends
only on the previous utterance and the one at hand. Conversely, the latter con-
siders the sequence of utterances observed up to the current one. In both cases,
for the first query, we apply directly BM25, without rewriting it.

Language Model-Based Models. Among the neural language models , we consider
coref-spanBERT (anCB). This method relies on the Higher-order Coreference
Resolution model, as defined in [17], but employs the spanBERT [16] embed-
dings to represent the words. In particular, we use the pre-trained version of the
approach available in the AllenNLP framework3.

4.2 RQ1: Permuting Conversations

Following the sampling process described in Sect. 3.1 we randomly permute the
CAsT 2019 conversations. Table 1 reports the number of unique permutations
obtained for each of the conversations in CAsT 2019.

The majority of the conversations have the class-based permutations in
the order of tens to thousands. There are two main exceptions: conversations
54, 32. The larger number of permutations is due to the different structures
of such conversations. For example, conversation 54 contains 3 SE utterances
plus the first utterance and 5 FT utterances. Given these characteristics, we
need to enforce only the first and third constraints to obtain valid class-based
permutations, producing a larger space of valid permutations4.

4.3 RQ2: Conversational Systems Performance on Permuted
Conversations

Table 2 reports the nDCG@3 observed for the different archetypal conversational
retrieval baselines either by considering only the original order of the utterances

3 https://docs.allennlp.org.
4 If we consider all the random permutations, for an average 9-utterances conversa-

tion, we would have approximately 3.6 × 105 permutations: 10 times more than the
maximum number of permutations observed using the class-based strategy.

https://docs.allennlp.org
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Table 2. Performance measured with nDCG@3 for the baselines and PRF conversa-
tional models. Baselines results do not depend on the order of the utterances. We report
the mean for both standard order of the utterances, and over all permuted conversa-
tions. Concerning permuted conversations, we also report the minimum and maximum
mean over all conversations that can be observed, using different permutations.

nDCG@3

orig. order permutations

model min. mean max.

baselines BM25 0.0981 0.0981 0.0981 0.0981

DLM 0.0794 0.0794 0.0794 0.0794

RM3 0.1064 0.1064 0.1064 0.1064

concatenation-based FU 0.1692 0.1692 0.1692 0.1692

CU 0.1687 0.1185 0.1481 0.1809

LP 0.1464 0.0906 0.1279 0.1671

PRF-based RM3p 0.1451 0.1019 0.1353 0.1709

RM3s 0.1639 0.1108 0.1482 0.1857

neural LM based anCB 0.1640 0.1410 0.1553 0.1645

as defined in CAsT 2019 or considering the average over multiple permutations
for each conversation. To grant a fair comparison between different conversations,
since they can have a different number of valid class-based permutations, we
sample only 100 permutations for each of them. The most interesting insight
that Table 2 is that the best performing system is the “First Utterance” (FU).
We explain this because the first utterance of the original conversation is often
the most generic. If we concatenate it with other utterances it can boost their
recall, helping them obtain better results. The FU approach obtains the same
results even when we permute conversations. Since we forced the first utterance
to remain in its position, the order does not influence this algorithm. There-
fore, we do not include it in subsequent analyses that measure the impact of
permutations on conversational models. If we consider the result achieved with
permuted conversations, we observe a general decrease in the average perfor-
mance, due to the increased variance caused by the permutations. If we consider
the maximum performance achievable, interestingly, all the methods can out-
perform the results achieved with the original order, indicating that there are
situations in which different orders are preferable. The change in performance
occurs due to the different information flow. The conversational models selected
– as the majority of common conversational strategies – exploit the context to
solve the anaphoras and rewrite the utterances. Such context derives from pre-
vious turns. By changing the previous turns, we also change the context, and
thus the information used by the system. This aims at mimicking a real-world
scenario, where we do not know if previous utterances provided good context.
Furthermore, such context might change depending on the path followed by the
user.
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Fig. 1. Distributions of the average systems performance over different permutations
of the conversations, considering original CAsT 2019 utterances. The yellow diamond is
the average performance achieved using the original order of utterances. Observe that,
in most cases the original order of the utterances does not have the best performance.
(Color figure online)

Table 3. Maximum distance observed between models, using different permutations.
On the diagonal, the maximum average distance from all other systems. The absence
of negative numbers indicates that it is always possible to make any model “the best”.

model CU LP RM3p RM3s anCB

CU 0.0727 0.1030 0.0958 0.0810 0.0882

LP 0.0644 0.0432 0.0460 0.0470 0.0805

RMp 0.0646 0.0577 0.0396 0.0476 0.0803

RMs 0.0955 0.1226 0.1147 0.0937 0.1148

anCB 0.0420 0.0668 0.0593 0.0402 0.0250

Figure 1 plots, for each CAsT 2019 conversation, the distribution over the
permutations of the average performance of all systems. The yellow diamond
represents the mean performance using the default order of the utterances. It is
insightful noticing that the default order rarely gives the best performance: using
a different order of utterances strongly influences performance. Such a pattern
is also observable for each system singularly5.

To further investigate the effect of permutations, we select the permutation
that maximizes the difference in nDCG@3 between each pair of systems. We
repeat this for each conversation. We also select the permutation that max-
imizes the average difference in performance between a system and all the
others. Table 3 reports the results of such analysis. It is always possible to
cherry-pick conversations permutations to make any model the best in a pairwise

5 We do not report the figure for each system, to avoid clutter.
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Fig. 2. Conversation-wise comparisons between pairs of systems. Number of times
the row system is preferred over the column one, over different permutations of the
conversation. Permuting the utterances order changes what system is deemed better:
limiting ourselves to only one permutation might lead us to wrong conclusions. 12 out
of 20 Conversations have been randomly selected, for the sake of presentation.

comparison. When using a collection with a single sorting of the utterances for
each conversation, we need to ask ourselves: is a system better than another or is
it an artefact of the collection at hand? Can we trust our results to be generaliz-
able on previously unseen conversations? The difference can be as large as 12%:
it is huge if we consider the scale of our performance - see Table 2. Not only it is
possible to make any model the best in a pairwise comparison, but we are also
able to maximize the distance in terms of performance from any other model, to
make an arbitrary system the best in absolute (see diagonal of Table 3). Figure 2
describes how often, conversation by conversation, we would change our opin-
ion over which system is the best, if we present them with different utterances
permutations. More in detail, for each conversation, in each cell we report how
often the row system is deemed better than column one, over different utterances
permutations. When we consider pairwise comparisons between systems, there
is seldom a clear winner. For example, consider Conversation 59; in the majority
of the pairwise comparisons, there is a 50% chance that one model is better than
the other if we select a specific permutation of the utterances. A system wins
over another on every permutation only in a few cases.
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Table 4. Summary statistics for ANOVA MD0. This models considers only one per-
mutation for each conversation (the original one, presented in CAsT 2019). Different
models do not show significant differences. ω2

model is not reported, being ω2 ill-defined
for non-significant factors.

Source SS DF MS F p-value ω̂2
〈fact〉

topic 1.052 19 0.055 17.454 0.0000 0.758

model 0.010 4 0.002 0.762 0.5532 –

Error 0.241 76 0.003

Total 1.302 99

4.4 RQ3: Comparing Systems via ANOVA

Relying on the methodology proposed in Sect. 3.2, we now describe the ANOVAs
on different conversational models, when either we consider or not multiple per-
mutations of the utterances for each conversation. Notice that, since we are
interested in evaluating the effect of the permutations and FU is not influenced
by them, we exclude it from subsequent analyses.

Table 4 reports the summary statistics for ANOVA when applied to CAsT
2019 conversations, using the Model MD0. For each factor, we report the Sum
of Squares (SS), the Degrees of Freedom (DF), the Mean Squares (MS), the F
statistics, the p-value and the Strength of Association (SOA), measured accord-
ing to the ω2 measure.

We observe that the effect of the “conversation” factor is significant and
large-sized (ω2 ≥ 0.14). This pattern is often observed in many IR scenarios,
such as ad-hoc retrieval [4,13,34] or Query Performance Prediction (QPP) [10].
Conversely, the effect of the Model factor is not significant: none of the models
is significantly the best. We are not particularly surprised by that: both Table 3
and Fig. 2 have shown that considering only a single permutation of the utter-
ances, we would likely say something false by saying that a specific system is the
best! This indicates the low discriminative power associated with this evaluation
approach. If we were to consider state-of-the-art systems, possibly even more
complex (and similar) than the ones we used, would we be able to state which
system is statistically the best? Being able to discriminate between systems is a
fundamental requirement for any evaluation approach [29,30,32]: could we deem
ourselves satisfied with what we can achieve with the current evaluation setup
in multi-turn conversational search?

Table 5 reports the summary statistics for ANOVA with model MD1. By
looking at Table 5 we can see the first huge advantage of including permutations
in our evaluation framework: the Model factor is now significant - although small
(0.01 < ω2 < 0.06). As a side note, Tukey’s post-hoc analysis shows that anCB is
the best model, followed by RM3s which belong to the same tier. Subsequently, we
have RM3p and CU, which again are statistically not different from each other, but
worse than the previous ones. Finally, LP is the only member of the worst-quality
tier. We have moved from having all models equal in Table 4 to a four-tiers
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Table 5. Summary statistics for ANOVA MD1. This models considers 100 unique
permutations for each conversation plus the original one. Observe that now all the
factors have a significant effect.

Source SS DF MS F p-value ω̂2
〈fact〉

topic 38.594 19 2.031 657.983 >1e−3 0.722

perm (topic) 2.438 940 0.003 0.840 0.999 –

model 0.472 4 0.118 38.230 >1e−3 0.030

Error 11.842 3836 0.003

Total 53.347 4799

sorting of the models in Table 5. The Permutation factor is not significant. This
suggests that there is not a single permutation that allows every system to work
better, but rather there is an interaction between the systems and permutations:
distinct models behave differently according to the permutation at hand. Table 5
shows that, if we use the permutations as additional evidence of the quality of
a model, we discriminate better between them. Furthermore, we do not know in
which order the user will pose their utterances. Including permutations allows
us to model better the reality: what we observe in our offline experiment is
likely to generalize more to a real-world scenario. Permutations allow robust
statistical inference, without requiring to gather new conversations, utterances
and relevance judgements.

5 Conclusions and Future Works

In this work, we showed that traditional evaluation is seldom reliable when
applied to the conversational search. We proposed a methodology to permute the
utterances of the conversations used to evaluate conversational systems, enlarg-
ing conversational collections. We showed that it is hard to determine the best
system when considering multiple conversation permutations. Consequently, any
system can be deemed the best, according to specific permutations of the conver-
sations. Finally, we showed how to use permutations of the evaluation dialogues,
obtaining by far more reliable and trustworthy systems comparisons.

As future work, we plan to study how to estimate the distribution of systems
performance without actually having the permutations and the models at hand.
We plan to investigate how to use the performance distributions to compare
multi-turn conversational models.
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Abstract. Multimodality in conversations has become critical for gain-
ing a complete grasp of the user’s intention and providing better replies to
satisfy the requirements of the customers. Existing multimodal conversa-
tional systems suffer from contradictions and generic responses. User senti-
ments upon the different aspects of a product/service are essential to com-
prehend the needs of the user and respond in an informative and interac-
tive manner. In this regard, we propose the novel task of sentiment-guided
aspect controlled response generation. This task is introduced to ensure
consistency and coherence with the sentiments of the users for the aspects
mentioned in the ongoing dialogue for generating better responses. In our
work, we design a generative framework that utilizes the sentiment infor-
mation of the previous utterances in a reinforced hierarchical transformer-
based network. The decoder is provided the aspect knowledge explicitly
for generation. We devise task-specific rewards that guide the generation
process in an end-to-end manner. The multi-domain multi-modal conver-
sation (MDMMD) dataset, which includes both text and images, is used
to validate our proposed architecture. Quantitative and qualitative anal-
yses show that the proposed network generates consistent and diverse
responses, and performs superior to the existing frameworks.

Keywords: Multimodality · Aspect · Sentiment · Generation

1 Introduction

Multimodality in dialogues has helped in bridging the gap between the different
fields of artificial intelligence (AI) like natural language processing (NLP) and com-
puter vision (CV). The complementary sources, in the form of video and audio,
assists in building robust conversational systems that provide complete under-
standing to the user. With the advancement in Artificial Intelligence (AI), the
dependency of humans on technology has increased exponentially. From booking
movie tickets, to reserving tables at restaurant, to online ordering of products has
been made easy in today’s world. To be able to look at the products and make an
informed decision about the things to be bought with the help of multimodality
conversational systems [14,35] has been of the running goals of AI.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Sentiment annotated examples from the Multi-domain Multi-modal Dia-
logue(MDMMD) dataset

Task-oriented conversational agents are majorly based on the unimodal (tex-
tual) information. Growing requirements in various fields such as travel, enter-
tainment, retail, etc. require conversational agents to communicate by incor-
porating information from the different modalities to build a robust system.
In response generation, we take a step ahead by proposing the task of sen-
timent guided aspect controlled response generation for multimodal dialogue
systems. Aspect denotes an attribute or a property of the task-oriented sys-
tems. For example, a customer interested in purchasing a laptop considers all
the product elements, such as the price, weight, storage, color, etc. Hence, a
conversational agent having the capability of generating responses conditioned
on different aspect information is essential for building a robust goal-oriented
multimodal system. Most of us have had a negative experience and also shared
frustration at automated customer service systems. Unfortunately, none of the
existing goal-oriented conversational systems can recognise and let alone, act
upon the user opinion. Researchers have focused on identifying sentiments in
dialogues [23,30,31,51,52] using various deep learning techniques. However, no
work has tried to incorporate sentiment information for different aspects for
response generation in a multimodal dialogue system in order to create senti-
ment guided response generation framework. Users are the ultimate evaluators of
dialogue systems. Therefore, we think that research on the dialogue framework
should aspire for greater user satisfaction.

In Fig. 1, we present example from the MDMMD dataset [14]. It is evident
that the data is dependent on images for complete knowledge of the products for
assisting the user in a better manner. Simultaneously, it can also be seen that
the user’s opinion about different aspects of the product is crucial for providing
correct and necessary assistance. Therefore, in this work, we not only include
user sentiment information as an additional context feature in an end-to-end
supervised generation model, but also uses the aspects for which a particular
sentiment has been expressed for increasing customer satisfaction and retention.
We believe that providing extra feedback from the user in the form of senti-
ment would guide the model to adapt to user behaviour and assist in generating
appropriate and accurate responses according to the user requirements.

The major contributions and/or attributes of our current work are as fol-
lows: (i). We propose the task of sentiment guided aspect controlled response
generation in a multimodal dialogue system. (ii). We annotate MDMMD
dataset with sentiment labels using a semi-supervised approach. (iii). We design
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hierarchical transformer based end-to-end framework for sentiment-aware aspect
conditioned response generation. (iv). The proposed model for both automatic
and human evaluation shows its effectiveness over several baselines and the exist-
ing approaches.

2 Related Work

Dialogue generation is an essential task in every conversational system. To cap-
ture the context of previous queries by the user, the authors in [36–38] proposed a
hierarchical framework capable of preserving the past information. Lately, mem-
ory networks [22] have been intensely investigated for capturing the contextual
information in dialogues for the generation of responses infusing pointer net-
works. The meta-learning approach [25,32] has been applied to different datasets
to increase the domain adaptability for generating the responses. To increase
the ability to memorize the dialogue context, authors in [49] used a memory-to-
sequence framework along with the pointer generator for response generation. A
multi-task framework to enhance the performance of natural language generation
(NLG) was investigated in [54].

The research reported in [9,10,12,16,26] has been useful in narrowing the
gap between vision and language. With the release of the Multimodal Dialog
(MMD) dataset [35], having conversations on the fashion domain incorporating
information from both text and images has facilitated response generation in
multimodal setup. Several works on the MMD dataset reported in [1,2,13,19]
used the hierarchical encoder-decoder model to generate responses by capturing
information from text, images, and the knowledge base. Recently, [4] proposed
attribute-aware and position-aware attention for generating textual responses.
Our present work distinguishes from the prior works of multimodal dialog sys-
tems in a sense that we focus here on the task of generating responses conditioned
on different aspects of the product or service in accordance with the conversa-
tional history and user’s sentiments. We use the MDMMD dataset [14] having
multi-domain dialogues with both textual and visual information, and extend it
by annotating sentiment information for our proposed task.

3 Methodology

We address the task of generating sentiment guided textual responses in
a multimodal dialogue system by providing the desired aspect(s) informa-
tion for constructing informative and interactive responses in our present
research. For a given utterance Uk = (wk,1, wk,2, ..., wk,n), a set of images Ik
= (ik,1, ik,2, ..., ik,j), corresponding sentiment labels Sk, conversational history
Hk = ((U1, I1), . . . , (Uk−1, Ik−1)) along with the aspect terms Ak the task is to
generate the next textual response Y = (y1, y2, ....., yn′), where n and n′ are the
given input utterance and response length, respectively.

The Transformer network [44], as shown in Fig. 2, is the basis of our
proposed architecture. We use a hierarchical multimodal transformer network
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with two encoders: an utterance encoder that transforms the textual utterance
Ui = (wk,1, wk,2, . . . , wk,n) and a context encoder at the dialogue level that
learns the complete utterance representation (that includes both visual and tex-
tual knowledge) provided the prior utterances as context.

Textual Encoder: To learn the representation of a given utterance Ui, we first
map Ui = (wk,1, wk,2, ..., wk,n) into a continuous space by the following equation:

Eu = (ei1, e
i
2, . . . , e

i
|Ui|);where[eij = e(wi

j) + pj ] (1)

where e(wi
j) and pj are the word and positional embedding of every word wi

j

in an utterance, respectively. Glove embeddings are used to represent words
along with sine-cosine positional embedding [44] as it achieves better and has
fewer trainable parameters. We use the last hidden representation hi

|Ui| (i.e. the
representation at the EOS token) as the textual representation of the utterance
Ui. The utterance position is also taken into consideration hence, the final textual
representation of the utterance Ui is:

htxt
i = hi

|Ui| + pi (2)

Note that the positional embedding matrix for words and sentences is the same.

Fig. 2. Architectural diagram of our proposed framework

Visual Encoder: For visual representation, we use the pre-trained VGG-16
[40] having 16-layer deep convolutional network in a similar manner as [14,35].
The global visual context representation is formed by passing the image vector
through the linear layer, as shown here:

Ik,i = V GG(Ik,i);Tk = Concat(Tk,1, Tk,2, . . . , Tk,j);h
img
I,k = ReLU(WITk + bI)

(3)
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where, WI and bI are the trainable weight matrix and biases, respectively. In
every turn, the maximum number of images i ≤ 6, in the case of only text,
vectors of zeros are used instead of image representation.

Context Encoder: For sentiment guided response generation, we concate-
nate the sentiment label Sk with the final utterance representation ĥi hav-
ing both textual and visual representation. The context transformer takes the
sequence of utterance representation (having both textual and visual informa-
tion) ĥ1, ĥ2, . . . , ĥ|D| as input, to obtain the context-sensitive utterance repre-
sentations D̂ = (d̂1, d̂2, . . . , d̂|D|).

Aspect Conditioned Decoder: We use an RNN decoder, as illustrated in
Fig. 2, to construct the next textual reply using the specified aspect embed-
ding. We use GRU to generate the response in a sequential fashion relying on
the hierarchical transformer’s contextual representation and the words decoded
previously. We use the input feeding decoding along with the attention [21]
mechanism for enhancing the performance of the model. Using the decoder state
hdec
d,t as the query vector, we apply self-attention on the hidden representation of

the context-level encoder. The decoder state, the context vector and the aspect
term embedding Va (the aspect embeddings are pre-trained Glove embeddings)
are used to calculate a final distribution of the probability over the output tokens.

hdec
d,t = GRUd(yk,t−1, [hd,t−1, Va]); ct =

k∑

i=1

αt,iD̂;αt,i = softmax(D̂TWfhd,t)

(4)
where, Wf are the trainable weight matrices.

Training and Inference: As used in [28], we jointly use reinforcement learning
(RL) and machine learning (ML) to train our model in a similar manner as [18].
If ỹ = {ỹ1, ỹ2, . . . , ỹn′} is the gold output tokens for the given generic response
tokens hs

i and conversation history D̂, the maximum-likelihood objective using
teacher forcing is given by:

LMLE = −
n′∑

t=1

log p(ỹt|ỹ1, . . . , ỹt−1, h
s
i , D̂) (5)

We utilise reinforcement learning to learn by maximising discrete metrics
that are task-specific in addition to maximum likelihood error training (which
we design as the rewards). We use the self-critical policy gradient algorithm sug-
gested in [34] for training the network. The reward obtained by the inference time
algorithm (which performs greedy decoding) is baselined for the REINFORCE
[47] algorithm, without the need for training a “critic” network for estimating
the value functions. During training, two output sequences are produced: ys,
obtained by sampling p(ys

t |ys
1, . . . , y

s
t−1, x) probability distribution, and yg, the

baseline output, obtained by greedily maximizing the output probability distri-
bution at each time step.
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LRL = (r(yg) − r(ys))
n′∑

t=1

log p(ys
t |ys

1, . . . , y
s
t−1, h

s
i , D̂) (6)

Our reward function r(y), used for evaluating y against the gold standard
output is

r(y, ỹ) = λ1 · r1(y, ỹ) + λ2 · r2(y, ỹ) + λ3 · r3(y, ỹ) (7)

The final reward function is the weighted mean of the three terms as given
below:

(i). BLEU metric r1: Ensures the content matching between the generated
response and the ground-truth response to avoid loss of information.

(ii). Sentiment consistency r2: Measured by the cosine similarity of the senti-
ment prediction distribution of the user utterance and generated responses
(using pre-trained BERT classifier). It ensures that the sentiment states of
the generated response is consistent with the user sentiment.

(iii). Fluency r3: The above rewards do not assess if the response content
expressed is linguistically fluent. To promote linguistic quality, r3 employs
a language model (LM) fine-tuned on a set of utterances to evaluate the
language quality of response. To do so, we use the Negative Log-Likelihood
(NLL) loss obtained by this LM:

r3 =
α − NLL(r)

α
(8)

where parameter α is used to map any value of NLL that is greater than α to α
so that the output of r3 will be between 0 and 1. r3 is not biased to the length
of a response as NLL is already normalized by response length.

Finally, we first pre-train using the maximum likelihood (ML) objective and
then using a mixed objective function with a reduced learning rate for training
the model in an end-to-end manner:

Lgen = ηLRL + (1 − η)LMLE , (9)

Model Variations: We compare our proposed hierarchical transformer frame-
work with some of the existing unimodal (i.e., text) and multimodal (text and
image) baselines.

The unimodal baselines are: (i) Seq2Seq + Attn: The first framework is the
vanilla sequence-to-sequence network with attention [41]. (ii) HRED: We employ
a hierarchical encoder-decoder (HRED) RNN framework [37] as one of the base-
lines. (iii) HVMN: The hierarchical variational memory network (HVMN) [5] has
been used to capture the dialogue context to obtain the enhanced representation
for generation. (iv) GCN: We also compare our framework with graph convo-
lutional network (GCN) as proposed in [3]. (v) Global-to-local: We similarly
employ a pointer memory network to [50] as one of our comparative methods.
(vi) Working Memory: The working memory framework investigated in [7] is
used as one of the baselines.
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The multimodal baselines are as follows: (i) MHRED: We devise the multi-
modal hierarchical encoder-decoder framework as one of the baselines analogous
to [35]. (ii) OAM: We compare our proposed framework to the existing multimodal
attention based framework proposed in [4]. (iii) M-GCN + Aspect: We compare
our proposed network with multimodal GCN framework as proposed in [14].

4 Dataset

Our work is built upon the Multi Domain Multi Modal Dialogue (MDMMD)
dataset [14] that comprises of 130k chat sessions between the customer and sales
agent. Domain-specific knowledge having text and image information for the
restaurant, electronics and furniture domain was captured during the series of
customer-agent interactions. We take a step forward by including the sentiments
of the user for providing coherent and consistent responses and in accordance to
the user opinions. In order to do so we re-annotate the MDMMD dataset.

Data Annotation: Due to the absence of sentiment labels in the MDMMD
dataset, we propose a semi-supervised approach for labeling it with sentiments
for which we annotate a portion of the dataset. We create a balanced dataset
(MDMMD-annotated) by manually annotating 10k dialogues for all the three
domains. We label every utterance in a dialogue with three sentiment labels, viz.
positive, negative, and neutral. Three annotators were employed to label each
utterance of a given dialogue. We observe a multi-rater Kappa [24] agreement
ratio of approximately 80%, which can be considered reliable. Majority voting
is applied to decide the final label of the utterance.

Sentiment Classifier: We apply a semi-supervised approach for annotating the
entire MDMMD dataset with sentiment labels in a similar manner as [13,53].
We first divide the labeled MDMMD-annotated dataset (10k dialogues) into
training, validation, and test set in the ratio of 7:1:2. In addition, we also use
the BERT based sequence classification model proposed in [48] for sentiment
classification. Evaluation results of the various classifiers are demonstrated in
Table 1. Finally, for labeling the entire MDMMD dataset, we use the best-
performing classifier, RoBERTa.

Table 1. Classification scores of sentiment on the MDMMD dataset. Here, S-F1
denotes the weighted average F1 score of sentiment

Model S-F1

LSTM 57.06

CNN 64.90

Bi-LSTM 61.87

BERT [11] 78.94

RoBERTa [20] 83.89
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5 Experiments

Implementation Details. All the implementations were done using the
PyTorch1 framework. For all the models, including baselines, the batch size is
set to 32. We use the dropout [42] with probability 0.45. During decoding, we use
a beam search with beam size 10. The model is initialized with the parameters
randomly using a Gaussian distribution with the Xavier scheme [17]. The hidden
size for all the layers is 512. We employ AMSGrad [33] as the optimizer for model
training to mitigate the slow convergence issues. We use uniform label smoothing
with ε = 0.1 and perform gradient clipping when the gradient norm is above 5.
We use 300-dimensional word-embedding initialized with Glove [29] embedding
pre-trained on Twitter. For image representation, FC6 (4096 dimension) layer
representation of the VGG-19 [40], pre-trained on ImageNet is used. Previous
3 turns are considered for the dialogue history, and maximum utterance length
is set to 50. We use η = 0.99 (similar to [28]) for the joint loss. For the reward
function, the values of λ1, λ2 and λ3 are 0.34, 0.33 and 0.33, respectively. We
ran for 15 epochs, and the proposed model took about 3 days on a Titan X GPU
machine.

Evaluation Metrics: To evaluate the model at relevance and grammatical
level, we report the results using the standard metric like perplexity [6]. We
also report the results using standard metrics like BLEU-4 [27] to measure the
ability of the generated response for capturing the correct information. Success
F1 measures the completion of the tasks and is modified from the rate of success
in [45,46]. Instead, we here use Aspect F1 to balance both recall and precision.
It is defined as the F1 score of the requested aspects present in the generated
response. We also compute sentiment accuracy of the generated responses to
check if the user opinion has been expressed in the generated responses using
the classifier used for annotating the MDMMD dataset.

We randomly sample 500 responses from the test set for human evalua-
tion. For a given input along with aspect information, six annotators with
post-graduate exposure were assigned to evaluate the quality of the generated
responses by the different approaches in a similar manner as that of the existing
works [4,7,8,39,43]. First, we evaluate the quality of the response on three con-
ventional criteria: Fluency, Relevance and Informativeness. These are rated on
a five-scale, where 1, 3, 5 indicate unacceptable, moderate, and excellent perfor-
mance, respectively, while 2 and 4 are used for unsure. Secondly, we evaluate the
aspect inclusion in a response in terms of Aspect Consistency metric and Senti-
ment Appropriateness to judge whether the response generated is in consonance
to the specified aspects (e.g., cuisine, color, type, etc.) and is also coherent to
the sentiment of the user utterance and the conversational history. In the case of
aspect consistency and sentiment appropriateness, 0 indicates irrelevant or con-
tradictory aspects in the response and contradictory sentiment, and 1 represents
the consistent response to the specified aspects and user sentiments.

1 https://pytorch.org/.

https://pytorch.org/
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The Fleiss’ kappa [15] score for fluency, relevance and informativeness are
0.75, 0.68 and 0.71, respectively, indicating “reliable agreement” while for aspect
consistency and sentiment appropriateness are 0.77 and 0.78, indicating “sub-
stantial agreement”.

6 Results and Analysis

In Table 2, we present the results of all the existing baselines and the proposed
framework for all the automatic metrics discussed in the previous section. From
the table, it is clear that the proposed approach outperforms all the existing
baseline models (both unimodal and multimodal). As lower perplexity scores
establish the fact that the generated response’s quality is better, hence from
the table, it can be inferred that the proposed M-HierTrans + RL + A + S
model with a remarkably lower perplexity of 1.0043 is effective in generating
high-quality responses than all the other baselines. This superior performance
of the proposed framework can be attributed to the fact that Transformers pro-
vide better-contextualized representation in comparison to other deep learning
frameworks such as Recurrent Neural Network (RNN) [37,41], memory net-
work [5,7,50], graph convolutional network [3], etc. Additionally, we compute
the BLEU-4 score for all the comparative methods and our proposed approach.
It is evident that there is an improvement of more than 12 points from the best
performing baseline approach [14]. The proposed network significantly improves
the responses generated as opposed to all the unimodal and multimodal base-
lines. The performance of the unimodal baselines is not at par with the proposed
framework. This might be attributed to the additional knowledge available with
the images. Also, the Rl training helps in improving the performance of the
framework. Despite the fact that the multimodal baselines contain image infor-
mation, the BLEU-4 scores are indeed lower than our proposed network. This
confirms that hierarchical transformers, as opposed to hierarchical RNN frame-
works, are better at obtaining context representation (with feed-forward and
multi-head attention). The explicit information provided to the decoder aids in
the generation of informative replies. This is illustrated by the results in Table
2, as the baseline networks with no aspect information have lower aspect F1
scores in comparison to our proposed framework. Also, sentiment accuracy for
the proposed framework with additional sentiment information is higher signify-
ing the fact that sentiment knowledge helps in making the responses better and
consistent to the user demands.

The results of the ablation study in case of all measures are presented in Table
2. It is critical to capture both utterance-level and dialogue-level information for
better context representation. Hierarchical networks can be used to accomplish
this. From the table, it can be shown that the hierarchical HierTrans framework
outperforms the non-hierarchical Transformer network by approximately 3%.
In contrast to a single transformer network, it validates the concept that hier-
archically combining two transformers gives better dialogue representation for
superior response generation (at utterance-level). Because the studies are based
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Table 2. Evaluation results with automatic evaluation metrics of different baselines
and proposed model on the MDMMD dataset. Here, A: Aspect and S: Sentiment

Model description Modality Perplexity BLEU-4 SA Aspect F1

U M

Existing baselines Seq2Seq + Attn [41]
√

– 1.0341 0.4378 45.36 51.59

HRED [37]
√

– 1.0293 0.5206 48.33 56.83

HVMN [5]
√

– 1.0189 0.5453 50.14 60.26

GCN [3]
√

– 1.0119 0.5821 53.75 64.53

Global-to-local [50]
√

– 1.0169 0.5785 54.66 64.29

Working Memory [7]
√

– 1.0173 0.5692 55.27 63.78

MHRED [35] –
√

1.0142 0.5537 57.48 61.86

OAM [4] –
√

1.0136 0.5746 58.35 65.71

M-GCN + A [14] –
√

1.0112 0.6014 62.85 67.71

Proposed approach M-HierTrans + RL + A + S –
√

1.0043 0.7287 72.58 80.55

Ablation study Transformer
√

– 1.0123 0.6077 54.69 66.18

Transformer + A
√

– 1.0117 0.6198 57.42 69.34

Transformer + A + S
√

– 1.0111 0.6295 62.18 71.32

M-Transformer –
√

1.0085 0.6534 56.78 68.43

M-Transformer + A –
√

1.0077 0.6748 61.39 71.59

M-Transformer + A + S –
√

1.0069 0.6927 66.83 73.45

HierTrans
√

– 1.0116 0.6382 57.23 69.11

HierTrans + A
√

– 1.0111 0.6577 65.11 73.87

HierTrans + A + S
√

– 1.0096 0.6825 69.47 76.36

M-HierTrans –
√

1.0058 0.6890 59.37 73.69

M-HierTrans + A –
√

1.0053 0.7033 67.84 77.51

M-HierTrans + A + S –
√

1.0049 0.7101 70.56 78.83

on a multimodal conversation dataset, the integration of another modality (in
the form of images) aids in establishing a holistic view of the product and pro-
vides a better knowledge of the underlying conversation. The multimodal systems
M-Transformers, M-HierTrans, which incorporate both text and images infor-
mation, score higher than the unimodal architectures Transformers, HierTrans
as shown in the table.

While the most significant objective of our current effort is to incorporate
the desired aspect in accordance to the sentiment in the responses, therefore we
study different frameworks having no aspect (Transformers, M-Transformers,
HierTrans, M-HierTrans), aspect (Transformer + A, M-Transformers + A,
HierTrans + A, M-HierTrans + A) and aspect with sentiment (Transformers +
A + S, M-Transformer + A + S, HierTrans + A + S) information for response
generation. It is evident from the table that the sentiment aware aspect models
performs superior to the no aspect and aspect only models, as a result, in the
case of all automatic evaluation measures, the responses become more engaging
and conversational. The scores of aspect F1 for models with no aspect is obvi-
ously lower than the models having aspect information explicitly. In the case of
aspect F1, frameworks with no aspect information, the scores are lower than the
aspect controlled frameworks. It shows that aspect information helps in bringing
specificity in responses and the ongoing dialogue. While the aspect framework
performs considerably better than the frameworks with no aspect information,



Sentiment Guided Aspect Conditioned Dialogue Generation 209

Table 3. Evaluation results using human evaluation metrics of different baselines and
proposed model on MDMMD dataset. Here, AC: Aspect Consistency; SA: Sentiment
Appropriateness; F: Fluency; R: Relevance; I: Informativeness

Model description Modality AC SA F R I

U M

Existing baselines Seq2Seq + Attn [41]
√

– 25.9% 27.1% 2.17 2.21 2.19

HRED [37]
√

– 34.1% 28.3% 2.54 2.63 2.69

HVMN [5]
√

– 37.3% 30.1% 2.69 2.71 2.82

GCN [3]
√

– 44.5% 31.7% 2.75 2.83 3.02

Global-to-local [50]
√

– 47.1% 33.5% 2.88 2.91 3.19

Working Memory [7]
√

– 46.5% 33.2% 2.86 2.90 3.15

MHRED [35] –
√

53.9% 36.1% 3.15 3.07 3.32

OAM [4] –
√

57.8% 38.2% 3.38 3.25 3.51

M-GCN + A [14] –
√

58.2% 38.7% 3.74 3.69 3.93

Proposed approach M-HierTrans + RL + A + S –
√

68.7% 52.2% 3.95 3.86 4.12

Ablation study Transformer
√

– 49.1% 37.8% 2.91 3.02 3.37

Transformer + A
√

– 51.3% 38.3% 2.94 3.06 3.41

Transformer + A + S
√

– 53.5% 40.1% 2.97 3.08 3.47

M-Transformer –
√

59.4% 39.5% 3.70 3.59 3.69

M-Transformer + A –
√

61.2% 40.9% 3.73 3.63 3.75

M-Transformer + A + S –
√

63.7% 43.2% 3.78 3.66 3.83

HierTrans
√

– 55.3% 41.3% 3.25 3.34 3.51

HierTrans + A
√

– 57.9% 43.8% 3.28 3.37 3.56

HierTrans + A + S
√

– 61.1% 46.4% 3.33 3.40 3.63

M-HierTrans –
√

65.3% 45.3% 3.80 3.79 3.99

M-HierTrans + A –
√

67.2% 48.3% 3.83 3.81 4.05

M-HierTrans + A + S –
√

67.7% 50.1% 3.87 3.83 4.07

yet it scores lower than the sentiment guided aspect frameworks. This can be
attributed to the fact that sentiment guided aspect frameworks generate more
engaging responses.

For complete evaluation, we also present human evaluation results in Table 3.
The responses are grammatically fluent compared to the baselines and existing
frameworks that ensures the efficacy of the model to generate better responses.
With the help of reinforcement learning, the entire framework has been trained to
generate interactive and informative responses. The responses are highly relevant
ensuring consistency in the responses as the score is the highest for the proposed
network having aspect and sentiment information. The ablation study shows
that the frameworks with the additional knowledge of sentiment and aspect has
better scores for the informativeness metric along with the aspect consistency.
This proves the hypothesis of our work to be correct that the attributes help to
enhance the performance of the entire network.

We provide the instances of the generated responses in Fig. 3. We provide
a few examples to illustrate how the model with aspect and sentiment informa-
tion generates responses compared to the model without these attributes. The
errors detected belong to the following types: (i). Incorrect image: Sometimes
incorrect images are selected due to the presence of multiple images. (ii) Aspect
inconsistency: The generated responses sometimes generate responses that are
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Fig. 3. Generated examples with aspect and sentiment knowledge

inconsistent to the given aspects mainly because of the less number of training
samples of such aspects and mostly due to the presence of more than one aspect
in the conversational history. (iii) Sentiment disparity: The baseline frameworks
and the proposed method sometimes generate responses that are not in accor-
dance to the user’s sentiment, thereby, causing breaks/errors in conversations.

7 Conclusion and Future Work

In this paper, we have concentrated upon sentiment guided aspect conditioned
response generation using the textual and visual information for conversational
systems. We designed a reinforced transformer based framework that captures
the contextualized representation for better generation. The sentiment informa-
tion is provided during encoding while the desired aspect knowledge is explic-
itly provided during decoding. Task-specific rewards helps to generate informa-
tive, fluent and sentiment consistent responses. In this regard, we annotate the
MDMMD dataset with sentiments. Quantitative and qualitative analysis show
that the proposed framework performs better than the existing baselines.

In the future, we would investigate more efficient fusion techniques to effec-
tively combine different modalities to enhance the generation framework. Also,
we would like to focus on aspect based sentiment knowledge in the case of mul-
tiple aspects for better dialogue generation.
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Abstract. A query performance predictor estimates the retrieval effec-
tiveness of a system for a given query. Query performance prediction
(QPP) algorithms are themselves evaluated by measuring the correla-
tion between the predicted effectiveness and the actual effectiveness of a
system for a set of queries. This generally accepted framework for judg-
ing the usefulness of a QPP method includes a number of sources of
variability. For example, “actual effectiveness” can be measured using
different metrics, for different rank cut-offs. The objective of this study
is to identify some of these sources, and investigate how variations in the
framework can affect the outcomes of QPP experiments. We consider
this issue not only in terms of the absolute values of the evaluation met-
rics being reported (e.g., Pearson’s r, Kendall’s τ), but also with respect
to the changes in the ranks of different QPP systems when ordered by
the QPP metric scores. Our experiments reveal that the observed QPP
outcomes can vary considerably, both in terms of the absolute evaluation
metric values and also in terms of the relative system ranks. We report
the combinations of QPP evaluation metric and experimental settings
that are likely to lead to smaller variations in the observed results.

Keywords: Query Performance Prediction · Variations in QPP
Results · QPP Reproducibility

1 Introduction

The problem of query performance prediction (QPP) [5,7–9,12,16,19,20,28,29]
has attracted the attention of the Information Retrieval (IR) community over a
number of years. QPP involves estimating the retrieval quality of an IR system.
A diverse range of pre-retrieval (e.g. avgIDF [9]) and post-retrieval approaches
(e.g. WIG [29], NQC [20], UEF [19]) have been proposed for the task of QPP.

The primary use case of QPP can be described as follows: “If we could deter-
mine in advance which retrieval approach would work well for a given query,
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then hopefully, selecting the appropriate retrieval method on a [per] query basis
could improve the retrieval effectiveness significantly” [6]. In other words, the
objective of QPP would be to predict how easy or difficult a given query is for
an IR system. This prediction could either be a categorical label (e.g., easy,
moderate, hard), or a numerical estimate of a standard IR evaluation metric
(which generally lies in [0, 1]).

QPP is a challenging problem, however, and this eventual objective has
remained elusive thus far. Given a query and an IR system, well-known QPP
methods simply compute a real-valued score that is meant to be indicative of
the effectiveness of the system for the given query. While this score is typically
not interpreted as a statistical estimate of a specific evaluation metric (e.g. AP
or nDCG [11]), it is expected to be highly correlated with a standard evaluation
measure. Indeed, the quality of a QPP method is usually determined by mea-
suring the correlation between its predicted effectiveness scores and the values
of some standard evaluation metric for a set of queries.

Consider a proposed QPP algorithm P. Given an IR system S, and a set of
queries Q = {Q1, Q2, . . . , Qn}, S is used to retrieve a ranked list Li of documents
for each Qi ∈ Q. For each Li, P computes a predicted effectiveness score φi.
Using available relevance assessments as ground-truth, a standard IR metric
gi is also computed for Li. The correlation between the lists {φ1, φ2, . . . , φn}
and {g1, g2, . . . , gn} is taken to be a measure of how effective P is as a query
performance predictor.

In this study, we analyse the above approach for evaluating and comparing
different QPP methods. We identify the sources of variability within this gener-
ally accepted framework, and show that these variations can lead to differences
in the computed correlations. This, in turn, can lead to differences in

– the absolute values of reported QPP evaluation measures (e.g., the ρ value
for NQC [20] measured with AP@100 as the target metric and LM-Dirichlet
as the retrieval model can be substantially different from that measured with
AP@1000 as the target metric and BM25 as the retrieval model on the same
set of queries); and also in

– the comparative effectiveness of a number of different QPP measures (e.g.,
NQC turns out to be better than WIG with AP@100, whereas WIG outper-
forms NQC when QPP effectiveness is measured using nDCG@10).

Thus, these variations can lead to difficulties in reproducing QPP results, both
at the level of the correlation values being reported, and also in terms of the
relative performance of different competing methods on standard datasets.

Contributions. We conduct a range of experiments to analyze the potential
variations in QPP effectiveness results under different experimental conditions.
Specifically, we consider different combinations of IR metrics and IR models (as
well as rank cut-off values). The experiments described in Sect. 5 reveal that the
results of QPP depend significantly on these settings. Thus, it may be difficult
to reproduce QPP experiments without a precise description of the experimental
context. While variations in other factors, such as the choice of indexing imple-
mentation and set of pre-processing steps, may also matter, we recommend that



An Analysis of Variations in the Effectiveness of QPP 217

any empirical study of QPP include a precise description of at least the above
experimental settings in order to reduce variations in reported results. More
importantly, our findings suggest that it may even be worthwhile to systemati-
cally revisit reported comparisons between competing QPP approaches.

2 Related Work

Analyzing the sensitivity of reported results on the experiment settings is impor-
tant for an empirical discipline such as IR. Buckley and Voorhees while exam-
ining the stability of commonly used evaluation measures in IR [3], reported
observations, such as P@30 has about twice the average error rate as compared
to average precision (AP), or that a stable measurement of P@10 requires an
aggregation of over 50 queries etc.

Previous studies have investigated the sensitivity of relative ranks of IR sys-
tems to the pooling depth used for relevance assessments. It is reported that
smaller samples of the relevance ground-truth obtained with smaller pool depths
usually do not lead to significant changes in the relative performance of IR sys-
tems [2,4,23,24]. In relation to pooling, Buckley et al. demonstrated that pools
created during the TREC 2005 workshop exhibit a specific bias in favor of rele-
vant documents, specifically contain the title words.

The study in [17] analyzed the sensitivity of variations in embeddding vectors
used for IR models. The work in [1] stressed the importance of reproducibility in
IR research by noting that most of the improvements reported over the years were
not statistically significant over their predecessors. Recently, this observation
has also been reinforced for neural models by arguing that most of the neural
approaches have compared their results against relatively weak baselines [14,22].

Somewhat similar to our investigation of the stability of QPP results relative
to IR models and evaluation metrics, an inconsistency in QPP evaluation with
respect to IR models and variations in query formulation was shown in [18,21].

3 Anatomy of a QPP Evaluation Framework

In this section, we formally define the various components in a standard QPP
evaluation framework. As we demonstrate later, variations in these components
can potentially lead to different experimental outcomes.

Definition 1. The context, C(Q), of a QPP experiment on a query Q, is a 3-
tuple of the form of (θ,S, κ), where κ is a positive integer; the function S :
Q × D �→ R is a scoring function that computes query-document similarities,
and is used to retrieve L = (D1, . . . , Dκ), the list of κ top-ranked documents
for Q from a collection; and θ : L �→ [0, 1] is an evaluation metric function
that, given a query Q, a list L of top-ranked documents, and R(Q), the relevance
assessments for Q, outputs a measure of usefulness of L.

Definition 2. The ground-truth or reference value of retrieval effectiveness of
a query Q in relation to a QPP context, C(Q) of Definition 1, is a function of
the form g : C(Q) �→ [0, 1].
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Definition 3. A QPP method is a function of the form φ(Q,D1, . . . , Dk) �→
[0, 1], which, given a query Q and a list of top-k retrieved documents1, outputs
a number that is indicative of how relevant the retrieved list is. In other words,
the output of the predictor φ(Q) is some measure of the ground-truth retrieval
effectiveness measure g(C(Q)) from Definition 2.

For example, NQC [20] or WIG [29] compute φ(Q) based on a set of k top-ranked
documents2 and estimating how distinct it is from the rest of the collection. The
intuition behind NQC and WIG is that the higher the distinctiveness, the higher
the likelihood of finding more relevant documents in the retrieved list.

The next step in QPP evaluation is to measure the correlation between the
predicted retrieval effectiveness, φ(Q), and the ground-truth retrieval effective-
ness, g(C(Q)) over a set of benchmark queries Q, using a correlation function,
χ : (Φ,G(C)) �→ [0, 1], where Φ =

⋃
Q∈Q φ(Q) and G(C) =

⋃
Q∈Q g(C(Q))). Com-

mon choices for χ are Pearson’s r, which computes a correlation between the
values themselves, and rank correlation measures, such as Spearman’s ρ, which
compute the correlation between the ordinals of the members of Φ and G(C).

It is clear from Definitions 1–3 that the QPP outcome, χ(Φ,G)(C), depends
on the context C(Q) used for each Q ∈ Q. Our first objective is to quantify
the relative changes in QPP outcomes χ with changes in the context C(Q). In
other words, we wish to compute the relative changes of the form |χ(Φ,G(Ci)) −
χ(Φ,G(Cj))|, for two different instances of QPP contexts Ci = (θi,Si, κi) and
Cj = (θj ,Sj , κj). Thus, our first research question is the following:

RQ1: Do variations in the QPP context, C, in terms of the IR metric
(θ), the IR model (S) and the rank cut-off (κ) used to construct the QPP
evaluation ground-truth, g(C), lead to significant differences in outcome
of a QPP method φ?

Next, instead of computing the relative change in the outcome values (correla-
tions) of individual QPP methods, we seek to measure the relative change in
the rankings (in terms of effectiveness) of a number of different QPP methods.
Formally, given a set of m QPP functions {φ1, . . . , φm}, we compute the effec-
tiveness of each with respect to a number of different QPP contexts, χ(Φi,G(Cj))
for j = 1, . . . , n. The objective is to investigate whether or not the ranking of
QPP systems computed with different contexts is relatively stable. For instance,
if NQC is the best method for a context that used LM-Dirichlet as retrieval
model and AP@100 as evaluation metric, we might wish to investigate whether it
remains the best method for a different QPP context, say, BM25 as the retrieval
model and nDCG@10 as the evaluation metric. Stated explicitly,

RQ2: Do variations in the QPP context, C, in terms of the IR metric (θ),
the IR model (S) and the rank cut-off (κ) used to construct the QPP eval-
uation ground-truth, g(C), lead to significant differences in the relative
ranks of different QPP methods φ1, . . . , φm? (Table 1).

1 For pre-retrieval QPP approaches, (D1, . . . , Dk) = ∅.
2 k is a parameter of a post-retrieval QPP method, and can be different from κ, the

number of top documents used for QPP evaluation.
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Table 1. Characteristics of the TREC-Robust dataset used in our QPP experiments.
‘Avg.|Q|’ and ‘Avg.#Rel’ denote the average number of terms in a query, and the
average number of relevant documents for a query, respectively.

Collection #Docs Topic Set #Queries Avg.|Q| Avg.#Rel

Disks 4,5 (w/o CR) 528,155 TREC-Robust 249 2.68 71.21

4 Experimental Setup

To investigate the research questions from the last section, we conduct QPP
experiments3 on a widely-used dataset, the TREC Robust dataset, which con-
sists of 249 queries. To address RQ1 and RQ2, we first define the set of possible
QPP contexts that we explore in our experiments.

IR Evaluation Metrics Investigated. As choices for the IR evaluation met-
ric (i.e., the function θ), we consider ‘AP’, ‘nDCG’, ‘P@10’, and ‘recall’. The
evaluation functions explored represent a mixture of both precision- and recall-
oriented metrics. While AP and nDCG address both the aspects of precision and
recall (leaning towards favouring precision), P@10 is a solely precision-oriented
metric. To investigate RQ1, we set the cut-off for AP, nDCG, and recall to 100,
as is common in the literature on QPP [20,25,26].

IR Models Investigated. IR models represent the second component of a
QPP context as per Definition 1. We explore three such models: a) language
modeling with Jelinek-Mercer smoothing (LMJM) [10,27], b) language modeling
with Dirichlet smoothing (LMDir) [27], and c) Okapi BM25 [15]. The values of
the IR model parameters were chosen after a grid search to optimize the MAP
values on the TREC-Robust queries. Unless otherwise specified, for LMJM, we
used λ = 0.6, the value of k1 and b in BM25 were set to 0.7 and 0.3, respectively,
and the value of the smoothing parameter μ for LMDir was set to 1000.

QPP Methods Tested. To compare the relative perturbations in preferential
ordering of the QPP systems in terms of the evaluated effectiveness, we employ
a total of seven different QPP methods, as outlined below:

– AvgIDF [9] is a pre-retrieval QPP method that uses the average idfs of the
constituent query terms as the predicted query performance estimate.

– Clarity [7] estimates a relevance model (RLM) [13] distribution of term
weights from a set of top-ranked documents, and then computes its KL diver-
gence with the collection model.

– WIG [29] uses the aggregated value of the information gain of each document
in the top-retrieved set as a specificity estimate.

– NQC [20] or normalized query commitment estimates the specificity of a
query as the standard deviation of the RSVs of the top-retrieved documents.

– UEF [19] assumes that information from some top-retrieved sets of docu-
ments are more reliable than others. A high perturbation of a ranked list

3 Implementation available at: https://github.com/suchanadatta/qpp-eval.git.

https://github.com/suchanadatta/qpp-eval.git
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after feedback indicates a poor retrieval effectiveness of the initial list. This,
in turn, suggests that a smaller confidence should be associated with the QPP
estimate of such a query. Formally,

UEF(Q,φ) = ξ(RM (Q), RM (θQ))φ(Q) (1)

where φ(Q) is the predicted score of a base QPP estimator (e.g. WIG or
NQC), RM (θQ) denotes the re-ranked set of documents post-RLM feedback,
the RLM being estimated on RM (Q) - the top-M documents, and ξ is a
rank correlation coefficient of two ordered sets, for which we specifically use
Pearson’s-ρ, as suggested in [19]. We experiment with three specific instances
of the base estimators, namely Clarity, WIG and NQC for UEF, which we
denote as UEF(Clarity), UEF(WIG) and UEF(NQC), respectively.

Parameters and Settings. The standard practice in QPP research is to opti-
mize the common hyper-parameter - the number of top documents of post-
retrieval QPP approaches (denoted as k in Definition 3). This hyper-parameter
is tuned via a grid search on a development set of queries and the optimal set-
ting is used to report the performance on a test set. A common approach is to
employ a 50:50 split of the set of queries into development and test sets. This
process is usually repeated 30 times and the average results over the test folds
are reported [20,26,29].

The focus of our research is different, however, in the sense that we seek
to analyze the variations caused due to different settings for constructing the
QPP ground-truth, instead of demonstrating that a particular QPP method
outperforms others. Moreover, an optimal tuning of the hyper-parameters for
each QPP method would require averaging over 30 different experiments for
a single way of defining the QPP context for constructing the ground-truth.
Hence, to keep the number of experiments tractable, we set k = 20, as frequently
prescribed in the literature [7,20,26,29]. Another hyper-parameter, specific to
UEF, is the number of times a subset of size k is sampled from a set of top-K
(K > k) documents. We use a total of 10 random samples of k = 20 documents
from the set of K = 100 top documents, as prescribed in [19].

5 Results

5.1 RQ1: Variations in QPP Evaluations

Table 2 reports the standard deviations in the observed values for the QPP
experiments4. In Tables 2a–d, the value of σ(θ) in each row indicates the standard
deviation of the QPP outcome values observed in that row, i.e., these values
indicate the standard deviation resulting from the use of different IR metrics
for QPP evaluation. Similarly, the value of σ(S) in each column is the standard
deviation of the r, ρ or τ values reported in that column, i.e., this value denotes

4 Tables 2, 3, 4, 5 and 6 are best viewed in color.
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Table 2. Sensitivity of QPP results with variations in the IR evaluation metric (θ)
and the IR model (S) for the QPP methods a) AvgIDF, b) NQC, c) WIG and d)
UEF(WIG). The metrics - AP, nDCG and recall (R) are measured on the top-100
retrieved documents using retrieval models LMJM(λ = 0.6), BM25(k1 = 0.7, b = 0.3)
and LMDir(μ = 1000) respectively. The lowest (highest) standard deviations for each
group of QPP correlation measure are shown in green (red). The lowest and the highest
across different correlation measures are shown bold-faced.

IR Evaluation Metric (θ)

Model(S) AP nDCG R P@10 σ(θ)

LMJM 0.3795 0.3966 0.3869 0.3311 0.0291

r BM25 0.5006 0.4879 0.4813 0.2525 0.1190

LMDir 0.5208 0.5062 0.4989 0.2851 0.1121

σ(S) 0.0764 0.0587 0.0602 0.0395

LMJM 0.4553 0.4697 0.4663 0.3067 0.0788

ρ BM25 0.4526 0.4700 0.4736 0.2842 0.0911

LMDir 0.4695 0.4848 0.4893 0.3017 0.0902

σ(S) 0.0091 0.0086 0.0118 0.0114

LMJM 0.3175 0.3285 0.3278 0.2193 0.0529

τ BM25 0.3144 0.3162 0.3319 0.2040 0.0589

LMDir 0.3307 0.3407 0.3440 0.2155 0.0617

σ(S) 0.0087 0.0123 0.0084 0.0120

(a) AvgIDF

IR Evaluation Metric (θ)

Model(S) AP nDCG R P@10 σ(θ)

LMJM 0.3652 0.4169 0.4503 0.2548 0.0855

r BM25 0.3563 0.4118 0.4495 0.2707 0.0777

LMDir 0.4354 0.4583 0.4854 0.2842 0.0901

σ(S) 0.0433 0.0255 0.0205 0.0147

LMJM 0.4545 0.4843 0.5248 0.2918 0.1022

ρ BM25 0.4618 0.4887 0.5137 0.3308 0.0814

LMDir 0.5024 0.5260 0.5453 0.3340 0.0969

σ(S) 0.0258 0.0229 0.0160 0.0235

LMJM 0.3100 0.3319 0.3657 0.2061 0.0688

τ BM25 0.3170 0.3370 0.3551 0.2374 0.0519

LMDir 0.3539 0.3713 0.3828 0.2379 0.0668

σ(S) 0.0236 0.0214 0.0140 0.0182

(b) NQC

IR Evaluation Metric (θ)

Model(S) AP nDCG R P@10 σ(θ)

LMJM 0.4056 0.4071 0.3971 0.3054 0.0491

r BM25 0.4488 0.4563 0.4386 0.3485 0.0502

LMDir 0.4908 0.4798 0.4632 0.3423 0.0688

σ(S) 0.0426 0.0371 0.0334 0.0233

LMJM 0.3716 0.3794 0.3790 0.3120 0.0325

ρ BM25 0.4520 0.4601 0.4505 0.3586 0.0480

LMDir 0.4582 0.4688 0.4667 0.3528 0.0561

σ(S) 0.0483 0.0493 0.0467 0.0254

LMJM 0.2514 0.2567 0.2607 0.2209 0.0181

τ BM25 0.3116 0.3181 0.3125 0.2549 0.0297

LMDir 0.3194 0.3267 0.3259 0.2493 0.0375

σ(S) 0.0372 0.0382 0.0344 0.0182

(c) WIG

IR Evaluation Metric (θ)

Model(S) AP nDCG R P@10 σ(θ)

LMJM 0.4746 0.4763 0.4646 0.3573 0.0575

r BM25 0.5386 0.5476 0.5263 0.4182 0.0603

LMDir 0.5693 0.5566 0.5373 0.3971 0.0797

σ(S) 0.0483 0.0440 0.0392 0.0309

LMJM 0.4385 0.4477 0.4472 0.3682 0.0384

ρ BM25 0.5334 0.5429 0.5316 0.4231 0.0567

LMDir 0.5407 0.5532 0.5507 0.4163 0.0662

σ(S) 0.0570 0.0582 0.0551 0.0300

LMJM 0.3017 0.3080 0.3128 0.2651 0.0217

τ BM25 0.3677 0.3754 0.3688 0.3008 0.0351

LMDir 0.3833 0.3920 0.3911 0.2992 0.0450

σ(S) 0.0433 0.0445 0.0303 0.0202

(d) UEF(WIG)

the standard deviations in QPP correlations across different IR models. The
lowest standard deviations for each QPP correlation type are shown bold-faced.
We now discuss the observations that can be made from Table 2.
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Table 3. Each cell in the table indicates the correlation (Kendall’s τ) between QPP
systems ranked in order by their evaluated effectiveness (measured with the help of
Pearson’s r for the results of this table) for two different IR metrics corresponding
to the row and the column name of the cell. A total of 7 QPP systems were used in
these experiments, namely AvgIDF, Clarity, WIG, NQC, UEF(Clarity), UEF(WIG)
and UEF(NQC). The lowest correlation value for each group is marked in red, and the
lowest correlations, overall, are bold-faced.

Model Metric AP@100 AP@1000 R@10 R@100 R@1000 nDCG@10 nDCG@100 nDCG@1000

LMJM

AP@10

0.4286 0.3333 0.9048 0.2381 −0.1429 1.0000 0.2381 0.3333

BM25 1.0000 0.9048 1.0000 0.9048 0.4286 1.0000 1.0000 0.7143

LMDir 1.0000 0.9048 1.0000 0.9048 0.4286 1.0000 1.0000 0.7143

LMJM

AP@100

0.9048 0.5238 0.8095 0.4286 0.4286 0.8095 0.9048

BM25 0.9048 1.0000 0.9048 0.4286 1.0000 1.0000 0.7143

LMDir 0.9048 1.0000 0.9048 0.4286 1.0000 1.0000 0.7143

LMJM

AP@1000

0.4286 0.8095 0.5238 0.3333 0.9048 1.0000

BM25 0.9048 0.8095 0.3333 0.9048 0.9048 0.8095

LMDir 0.9048 0.8095 0.5238 0.9048 0.9048 0.8095

LMJM

R@10

0.3333 −0.0476 0.9048 0.3333 0.4286

BM25 0.9048 0.4286 1.0000 1.0000 0.7143

LMDir 0.9048 0.4286 1.0000 1.0000 0.7143

LMJM

R@100

0.6190 0.2381 1.0000 0.9048

BM25 0.5238 0.9048 0.9048 0.6190

LMDir 0.5238 0.9048 0.9048 0.6190

LMJM

R@1000

−0.1429 0.6190 0.5238

BM25 0.4286 0.4286 0.5238

LMDir 0.4286 0.4286 0.5238

LMJM

nDCG@10

0.2381 0.3333

BM25 1.0000 0.7143

LMDir 1.0000 0.7143

LMJM

nDCG@100

0.9048

BM25 0.7143

LMDir 0.7143

Variations Due to IR Evaluation Metric. The first set of observations,
listed below, is in relation to the absolute differences between two different QPP
evaluations involving two different QPP contexts.

– Substantial absolute differences in the QPP outcomes: Variations in
the IR evaluation metric (i.e., the θ component of a QPP context C(Q) of
Definition 1) while keeping the other two components fixed (i.e., retrieval
model and cut-off) yields considerable absolute differences in the values. As
an example, compare the QPP evaluation of 0.5006 with AP@100 in Table
2a to that of 0.2525 with P@10 obtained with BM25, showing that these
absolute differences can be high.

– Lower variations with τ : In general, we observe that each QPP method
(e.g. NQC, WIG etc.) exhibits considerable differences in measured outcomes
specially between AP@100 and P@10. Moreover, the variations, in general,
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Table 4. Results of relative changes in the ranks of QPP systems (similar to Table 3),
the difference being that the QPP outcomes were measured with τ (instead of r).

Model Metric AP@100 AP@1000 R@10 R@100 R@1000 nDCG@10 nDCG@100 nDCG@1000

LMJM

AP@10

0.5238 0.3333 0.8095 0.4286 0.2381 0.8095 0.4286 0.3333

BM25 0.9048 0.7143 0.8095 0.8095 0.5238 1.0000 0.9048 0.5238

LMDir 0.9048 0.8095 1.0000 1.0000 0.8095 1.0000 0.9048 0.7143

LMJM

AP@100

0.8095 0.5238 0.9048 0.7143 0.3333 0.9048 0.8095

BM25 0.8095 0.9048 0.9048 0.6190 0.9048 1.0000 0.6190

LMDir 0.9048 0.9048 0.9048 0.7143 0.9048 1.0000 0.8095

LMJM

AP@1000

0.3333 0.9048 0.7143 0.1429 0.9048 1.0000

BM25 0.7143 0.7143 0.6190 0.7143 0.8095 0.8095

LMDir 0.8095 0.8095 0.8095 0.8095 0.9048 0.9048

LMJM

R@10

0.4286 0.2381 0.8095 0.4286 0.3333

BM25 1.0000 0.7143 0.8095 1.0000 0.5238

LMDir 1.0000 0.8095 1.0000 0.9048 0.7143

LMJM

R@100

0.8095 0.2381 1.0000 0.9048

BM25 0.7143 0.8095 0.9048 0.5238

LMDir 0.8095 1.0000 0.9048 0.7143

LMJM

R@1000

0.0476 0.8095 0.7143

BM25 0.5238 0.6190 0.8095

LMDir 0.8095 0.7143 0.9048

LMJM

nDCG@10

0.2381 0.1429

BM25 0.9048 0.5238

LMDir 0.9048 0.7143

LMJM

nDCG@100

0.9048

BM25 0.6190

LMDir 0.8095

are lower when correlation is measured with the help of Kendall’s τ (e.g.,
compare σ(θ) = 0.0181 measured with τ vs. σ(θ) = 0.0491 measured with
r on documents retrieved with LMJM). The fact that τ exhibits a lower
variance in QPP evaluation is likely because the correlation is measured in
a pairwise manner (τ being a function of the number of concordant and
discordant pairs). As a result, τ depends only on the agreements between the
true and the predicted order (of query difficulty) between a query pair, and
not on the absolute values of the predicted scores or the reference values of
the IR evaluation metric (as in Pearson’s r or Spearman’s ρ).

– Lower variances with LMJM: Similar to our earlier observation that τ
should be the preferred QPP evaluation measure (with an objective to mini-
mize the variances in observed results due to changes in IR evaluation metric),
we observe from Table 2 that LMJM, in most cases, result in low variances
in QPP experiment outcomes.

Variations Due to IR Models. The second set of observations from Table 2
relates to variations in the observed QPP results with respect to variations in
IR models. The standard deviations of these values correspond to column-wise
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Table 5. Each cell in the table indicates the correlation (Kendall’s τ) between QPP
systems ranked in order by their evaluated effectiveness (measured with the help of
Pearson’s r for the results presented in this table) for each pair of IR models for 7
different QPP systems. The lowest correlation value for each group is marked in red.
The lowest correlation in the table is bold-faced.

Metric Model LMJM BM25 BM25 BM25 LMDir LMDir LMDir

(0.6) (0.7, 0.3) (1.0, 1.0) (0.3, 0.7) (100) (500) (1000)

AP@100 1.0000 0.9048 1.0000 0.9048 0.9048 0.9048 0.9048

nDCG@100 LMJM 1.0000 0.8095 0.9048 0.9048 0.9048 0.8095 0.8095

R@100 (0.3) 0.9048 0.8095 0.9048 1.0000 1.0000 0.9048 0.9048

P@10 1.0000 0.8095 1.0000 0.8095 0.7143 0.7143 1.0000

AP@100 0.9048 1.0000 0.9048 0.9048 0.9048 0.9048

nDCG@100 LMJM 0.8095 0.9048 0.9048 0.9048 0.8095 0.8095

R@100 (0.6) 0.9048 1.0000 0.9048 0.9048 1.0000 1.0000

P@10 0.8095 1.0000 0.8095 0.7143 0.7143 1.0000

AP@100 0.9048 0.9048 1.0000 1.0000 1.0000

nDCG@100 BM25 0.9048 0.9048 0.9048 1.0000 1.0000

R@100 (0.7, 0.3) 0.9048 0.8095 0.8095 0.9048 0.9048

P@10 0.8095 1.0000 0.9048 0.9048 0.8095

AP@100 0.9048 0.9048 0.9048 0.9048

nDCG@100 BM25 1.0000 1.0000 0.9048 0.9048

R@100 (1.0, 1.0) 0.9048 0.9048 1.0000 1.0000

P@10 0.8095 0.7143 0.7143 1.0000

AP@100 1.0000 1.0000 1.0000

nDCG@100 BM25 1.0000 0.9048 0.9048

R@100 (0.3, 0.7) 1.0000 0.9048 0.9048

P@10 0.9048 0.9048 0.8095

AP@100 1.0000 1.0000

nDCG@100 LMDir 0.9048 0.9048

R@100 (100) 0.9048 0.9048

P@10 0.8095 0.7143

AP@100 1.0000

nDCG@100 LMDir 1.0000

R@100 (500) 1.0000

P@10 0.7143

calculation of standard deviations and are shown as the σ(S) values. Again,
similar to the σ(θ) values, the lowest (highest) values along each row of σ(S) are
colored in green (red) to reflect the situation of lower the better. The best values
across different QPP correlations are bold-faced. We summarise our observations:

– Lower variations with τ : Similar to the σ(θ) values it is again observed
that mostly measuring QPP outcomes with τ results in the lowest variances
in QPP results. Consequently, for better reproducibility it is more useful to
report results with Kendall’s τ .
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Table 6. The difference of this table with Table 5 is that the QPP effectiveness is
measured with Kendall’s τ (instead of Pearson’s r as in Table 5).

Metric Model LMJM BM25 BM25 BM25 LMDir LMDir LMDir

(0.6) (0.7, 0.3) (1.0, 1.0) (0.3, 0.7) (100) (500) (1000)

AP@100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

nDCG@100 LMJM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R@100 (0.3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

P@10 0.9048 1.0000 0.9048 0.8095 0.9095 1.0000 1.0000

AP@100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

nDCG@100 LMJM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R@100 (0.6) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

P@10 0.9048 1.0000 0.7143 0.7143 0.9048 0.9048

AP@100 1.0000 1.0000 1.0000 1.0000 1.0000

nDCG@100 BM25 1.0000 1.0000 1.0000 1.0000 1.0000

R@100 (0.7, 0.3) 1.0000 1.0000 1.0000 1.0000 1.0000

P@10 0.9048 0.8095 0.8095 1.0000 1.0000

AP@100 1.0000 1.0000 1.0000 1.0000

nDCG@100 BM25 1.0000 1.0000 1.0000 1.0000

R@100 (1.0, 1.0) 1.0000 1.0000 1.0000 1.0000

P@10 0.7143 0.7143 0.9048 0.9048

AP@100 1.0000 1.0000 1.0000

nDCG@100 BM25 1.0000 1.0000 1.0000

R@100 (0.3, 0.7) 1.0000 1.0000 1.0000

P@10 0.6190 0.8095 0.8095

AP@100 1.0000 1.0000

nDCG@100 LMDir 1.0000 1.0000

R@100 (100) 1.0000 1.0000

P@10 0.8095 0.8095

AP@100 1.0000

nDCG@100 LMDir 1.0000

R@100 (500) 1.0000

P@10 1.0000

– Lower variations in the QPP outcomes: Compared to variations across
IR evaluation metrics, we observe that the variations occurring across IR
models is lower (compare the bold-faced green σ(S) values with those of σ(θ)
ones). This entails that experiments need to put more emphasis on a precise
description of the IR metrics used for QPP evaluation.

– Lack of a consistency on which combination of QPP method with
IR evaluation context yields least the variance: While WIG and
UEF(WIG) exhibit lowest variances for a precision oriented evaluation of
ground-truth retrieval effectiveness, for AvgIDF and NQC methods, the least
variations are noted for recall.
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5.2 RQ2: Variations in the Relative Ranks of QPP Methods

We now report results in relation to the second research question, where the
intention is to measure how stable are QPP system ranks (ordered by their
evaluated effectiveness measures) for variations in the QPP context.

Variation Due to IR Metrics. Tables 3 and 4 present the pairwise contin-
gency table for different combinations of IR metrics for three different IR models.
The following observations can be made from the results.

– LMJM leads to the most instability in the relative QPP system
ranks: This behaviour, most likely, can be attributed to the fact that this
model has a tendency to favour shorter documents in the top-retrieved in
contrast to LMDir or BM25.

– Some evaluation metrics are more sensitive to rank cut-off values:
For instance, the QPP ground-truth measured with Recall@10 yields consid-
erably different results when the ground-truth corresponds to Recall@1000.

– Relative ranks of QPP systems more stable with τ : A comparison
between the values of Tables 3 and 4 reveals that a rank correlation measure
such as τ leads to better stability of QPP experiments than when r is used
to measure the relative effectiveness of QPP models.

Variations Due to IR Models. Tables 5 and 6 present the pairwise contin-
gency between retrieval similarity scores from different evaluation metrics. For
this set of experiments, the intention is also to investigate the stability of QPP
system ranks with respect to changes, not only to the retrieval model itself, but
also for different parameter settings on the same model, e.g. BM25(0.7,0.3)5 vs.
BM25(1,1). We observe the following:

– Relative ranks of QPP systems are quite stable across IR models:
The correlation values of Tables 5 and 6 are higher than those of Tables 3
and 4, which shows that the QPP experiments are less sensitive to variations
in the set of top documents retrieved by different similarity scores.

– LMJM leads to more instability in the QPP outcomes: LMJM shows
the lowest correlation with other retrieval models. Parameter variations of an
IR model usually lead to relatively stable QPP outcomes. For instance, see
the correlations between LMDir(500) and LMDir(1000).

– Relative ranks of QPP systems are more stable with τ : This obser-
vation (a comparison between the values of Tables 5 and 6) is similar to the
comparison between Tables 3 and 4. However, the differences between the cor-
relation values are smaller in comparison to those observed between Tables 3
and 4.

5 Values of k1 and b, respectively, in BM25 [15].
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6 Concluding Remarks

We have shown via extensive experiments that QPP outcomes are indeed sen-
sitive to the experimental configuration used. As part of our analysis, we have
found that certain factors, such as variations in the IR effectiveness measures,
has a greater impact in terms of QPP outcomes than other factors, such as
variations in the choice of IR models. An important outcome arising from this
study is that further research on QPP should place greater emphasis on a clear
specification of the experimental setup to enable better reproducibility. In future
we plan to expand our evaluations beyond the TREC Robust dataset. A natural
question that we would like to explore concerns the impact of varying Q (the set
of benchmark queries) on relative QPP outcomes.
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Abstract. Proactively asking clarifications in response to search queries
is a useful technique for revealing the intent of the query. Search clarifi-
cation is important for both web and conversational search. This paper
focuses on the clarification selection task. Inspired by the fact that a
good clarification should clarify the query’s different intents, we propose
a graph attention-based clarification selection model that can exploit
the relations among a given query, its intents, and its clarifications via
constructing a query-intent-clarification attention graph. The compar-
ison with competitive baselines on large-scale search clarification data
demonstrates the effectiveness of our model.

Keywords: Search Clarification · Clarification Selection ·
Conversational Search

1 Introduction

Search queries are often short, and users’ information needs are complex. This
makes it challenging for search engines to predict potential user intents and
give satisfactory retrieval results. As a consequence, users may need to browse
multiple result pages or reformulate their queries. Alternatively, search engines
can proactively ask clarifications to the user instead of just giving “ten blue links”
[2,4]. Figure 1 shows an example of clarifications in the Bing search engine. Each
clarification consists of a clarifying question and a set of candidate answers in
response to the query. Users can click on one of the answers to indicate their
intents. Zamani et al. [25] show that users enjoy seeing clarifications due to their
functional and emotional benefits. Aliannejadi et al. [2] show that asking only
one good question can improve the retrieval performance significantly. Moreover,
search clarification has been recognized as a critical component of conversational
search systems [3,7,15].

Although there is significant progress in exploring the search clarification
[2,8,13,19,25,27,28], selecting clarifications is underexplored. In this paper, we

The work described in this paper is substantially supported by a grant from the
Research Grant Council of the Hong Kong Special Administrative Region, China
(Project Code: 14200620).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 230–243, 2022.
https://doi.org/10.1007/978-3-030-99736-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99736-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-99736-6_16


Search Clarification Selection via Query-Intent-Clarification Graph Attention 231

Fig. 1. A query and its three clarifications. Each clarification is associated with an
engagement level which is an integer between 0 and 10 based on click-through rates.
Higher click-through rates correspond to higher engagement levels.

focus on the clarification selection task, which is a fundamental task in search
clarification because: (1) search engines can generate multiple clarifications and
then select one of them [2], and (2) search engines can generate new clarifica-
tions based on existing clarifications through some operations such as adding or
deleting answers, and judge whether the new clarifications are better. The aim
of clarification selection is to select the clarification with the highest engagement
level for each query.

A good clarification should clarify different intents of the query [27]. There
are two challenges for clarification selection: (1) how to estimate the query’s
intents; (2) how to utilize the query’s intents. To address the first challenge,
we observe that the candidate answers in the query’s clarifications can capture
some reasonable intents. For example, as shown in Fig. 1, the answers a1 to a7
can reflect the intents of “hair coloring” to a certain extent. To overcome the
second challenge, we propose a Graph Attention-based Clarification Selection
(GACS) model, which constructs a query-intent-clarification (QIC) attention
graph to exploit the relations among a given query, its intents, and its clarifi-
cations. Afterwards, it transforms the graph into a sequence, inputs it to the
Transformer [22], and outputs a score to measure how the clarification reflects
the query’s intents.

We design several different graphs and evaluate the model on two search
clarification datasets. Experimental results show that by properly designing the
graph structure, GACS can outperform competitive baselines, and the intent
can improve the model’s performance, especially in scenarios where there are
negative clarifications.

2 Related Work

2.1 Conversational Search

The conversational search paradigm aims to satisfy information needs within
a conversational format [3]. A key property of conversational search systems
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that is different from traditional search systems is the mixed-initiative interac-
tion, which has the potential to increase user engagement and user satisfaction.
Radlinski and Craswell [15] propose a theoretical framework for conversational
search. They define a conversational search system as a system for retrieving
information that permits a mixed-initiative back and forth between a user and
agent, where the agent’s actions are chosen in response to a model of current
user needs within the current conversation, using both short-term and long-term
knowledge of the user. Qu et al. [14] introduce the MSDialog dataset and analyze
user intent distribution, co-occurrence, and flow patterns in information-seeking
conversations. In the Dagstuhl seminar report [3], a conversational search sys-
tem is defined as either an interactive information retrieval system with speech
and language processing capabilities, a retrieval-based chatbot with user task
modeling, or an information-seeking dialogue system with information retrieval
capabilities. Rosset et al. [17] study conversational question suggestion, which
aims to proactively engage the user by suggesting interesting, informative, and
useful follow-up questions. Ren et al. [16] develop a pipeline for conversation
search consisting of six sub-tasks: intent detection, keyphrase extraction, action
prediction, query selection, passage selection, and response generation.

In this paper, we focus on search clarification selection, which differs from
most existing work in conversational search. Therefore, we review the related
work on asking clarifications in the next section.

2.2 Asking Clarifications

Asking clarifications is important in conversational systems since they can only
return a limited number of results [2]. Kiesel et al. [9] focus on ambiguous voice
queries and conduct a user study for a better understanding of voice query
clarifications and their impact on user satisfaction. Aliannejadi et al. [2] propose a
workflow for asking clarifying questions in an open-domain conversational search
system. Moreover, they build a dataset called Qulac based on the TREC Web
Track 2009-2012 collections and develop an offline evaluation protocol. Hashemi
et al. [8] propose a Guided Transformer model that can use multiple information
sources for document retrieval and next clarifying question selection. Krasakis et
al. [10] investigate how different aspects of clarifying questions and user answers
affect the quality of document ranking. Previous work ignores the possibility
that conversational search systems may generate off-topic clarifying questions
that may reduce user satisfaction. Therefore, Wang and Ai [23] propose a risk-
aware model to balance the risk of answering user queries and asking clarifying
questions. Their system has a risk decision module which can decide whether
the system should ask the question or show the documents directly. Tavakoli
et al. [21] investigate the characteristics of useful clarifying questions and show
that useful clarifying questions are answered by the asker, have an informative
answer, and are valuable for the post and the accepted answer. Sekulić et al. [18]
propose a facet-driven approach for generating clarifying questions.

For the clarification in web search, Zamani et al. [25] develop a taxonomy of
clarification based on large-scale query reformulation data sampled from Bing
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Fig. 2. Overall architecture of GACS.

search logs. Then they propose a rule-based model, a weakly supervised model
trained using maximum likelihood, and a reinforcement learning model which
maximizes clarification utility for generating clarifications. Later, Zamani et
al. [27] analyze user engagements based on different attributes of the clarifi-
cation and propose a model called RLC for clarification selection. RLC encodes
each query-answer-intent triple separately and uses Transformer [22] to capture
the interaction between these representations. Compared with RLC, our GACS
model exploit the relations among the query, intent, and clarification via con-
structing a QIC attention graph and is more efficient. To promote research in
search clarification, Zamani et al. [26] further introduce a large-scale search clar-
ification dataset called MIMICS, which can be used for training and evaluating
various tasks such as generating clarifications, user engagement prediction for
clarifications, and clarification selection. In a follow-up study [19], ELBERT is
proposed for user engagement prediction. It treats the user engagement predic-
tion task as supervised regression and jointly encodes the query, the clarification,
and the SERP elements for predicting the engagement levels. By comparison,
we use the intent and its interaction with the query and clarification and focus
on clarification selection.

3 Our Proposed Framework

3.1 Model Architecture

Figure 2 depicts the overall structure of GACS. There are four main compo-
nents, namely, QIC attention graph, embedding layer, attention layer, and Mask-
Transformer. The graph is fed into the embedding layer and the attention layer to
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Fig. 3. Illustration of QIC attention graph G1. In the QIC attention graph, a directed
edge from A to B means that A can attend to B when updating its representation. All
elements can attend to themselves.

obtain its embeddings and attention mask matrix, respectively. The aim of these
two layers is to transform the graph into a sequence while retaining its structural
information. The Mask-Transformer takes the embeddings and attention mask
matrix as input and uses the mean of output embeddings as the graph’s repre-
sentation, which will be fed into a two-layer feedforward neural network (FNN)
to compute the score.

QIC Attention Graph. There are three types of nodes in the QIC atten-
tion graph, i.e., query, intent, and clarification. We consider the following four
different graphs:

G1: When updating the representation, the query can attend to itself and
its intents, but not the clarification. Thus, the query can focus on its own rep-
resentation that is independent of a specific clarification. The clarification only
needs to attend to itself and the query because the query can absorb its intents’
information. For each intent, it can attend to itself, the query, and the clarifi-
cation, but not other intents. In this way, it can associate itself with the query
and determine whether it is reflected in the clarification. Figure 3 provides an
illustration of G1.

G2: Based on G1, G2 considers the fact that each clarification usually only
covers some intents. Therefore, G2 adds edges from the clarification to multiple
intents, which allows GACS to model the fact explicitly.

G3: G3 is a fully connected graph. It does not impose any special restrictions
on the relation among the query, intent, and clarification and has the strongest
expressive power.

G4: Unlike the previous three graphs, G4 does not contain the intent, i.e., only
the query and clarification are available in this graph. The query and clarification
can attend to each other. G4 is a special case of the QIC attention graph, where
intents are masked. The purpose of using this graph is to explore whether the
intent is useful or not.

Generally, the more complex the graph is, the stronger its expressiveness
is, but the model is more difficult to train. In addition, by designing the graph
structure, we can introduce task-related prior knowledge to the model. Therefore,
different graphs may be suitable for different situations.



Search Clarification Selection via Query-Intent-Clarification Graph Attention 235

Fig. 4. Illustration of embedding layer of GACS. (1) The tokens in the QIC attention
graph are flattened into a sequence by their hard-position indices. (2) The soft-position
embedding is used as position embedding. (3) For the type embedding, type “0”, “1”,
and “2” represent the query, intent, and clarification, respectively.

Embedding Layer. The function of the embedding layer is to convert the QIC
attention graph into embeddings that can be fed into the Mask-Transformer.
As shown in Fig. 4, the input embedding is the sum of the token embedding,
soft-position embedding, and type embedding. The token embedding is consis-
tent with Google BERT [6]. Inspired by [11], we use soft-position embeddings
instead of hard-position embeddings because the soft position can reflect the
graph structure. As in [20], we use type embeddings to indicate the three types
of nodes in the graph. Precisely, type “0”, “1”, and “2” represent the query,
intent, and clarification, respectively.

Attention Layer. The attention layer preserves the structure information of
the QIC attention graph via constructing an attention mask matrix. Different
graphs have different attention mask matrices. The attention mask matrix of G1

is shown in Fig. 5. Given the embeddings of the tokens X ∈ R
n×d, where n is

the number of tokens and d is the dimension of embeddings, the attention mask
matrix M ∈ R

n×n is defined as

Mij =

{
0 xi � xj

−∞ Otherwise
(1)

where xi � xj means that xi and xj are in the same graph node or there is a
directed edge from the node where xi is to the node where xj is. i and j are
hard-position indices.

Mask-Transformer. The Mask-Transformer follows the Transformer [22]
encoder structure. Given the token embeddings X and the attention mask matrix
M , the Mask-Transformer uses masked self-attention as shown below:

Q,K,V = XWQ,XWK ,XW V (2)
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Fig. 5. Attention mask matrix of G1. The cell at row i, column j is pink means that
token i can attend to token j.

Attn(Q,K,V ) = Softmax(
QK�
√
dk

+ M)V (3)

where WQ,WK ,W V ∈ R
d×dk are learnable parameters. The Mask-

Transformer can control the information flow according to the attention mask
matrix.

3.2 Loss Function

We use a loss function similar to Attention Rank [1]. For each query q and its
k clarifications c1 to ck, we first compute the best attention allocation ae and
compute the attention allocation as with the ranking score s:

ae = Softmax(e), as = Softmax(s) (4)

where e and s are k-dimensional vectors. ei is the engagement level of ci and si
is the score of ci. Then we use the cross entropy between ae and as as the loss:

L = −
k∑

i=1

(ae
i log(as

i ) + (1 − ae
i ) log(1 − as

i )) (5)

The loss function is a listwise function. It does not predict the engagement level
of each clarification but focuses on the relative importance of each element in
the ranked list.
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4 Experiments

4.1 Dataset

We evaluate the model on MIMICS [26], a large-scale dataset collected from the
Bing search engine for search clarification. In MIMICS, the engagement level is
an integer between 0 and 10 based on click-through rates. The engagement level
0 means that there is no click on the clarification.

MIMICS consists of three subdatasets: MIMICS-Click, MIMICS-
ClickExplore and MIMICS-Manual. In this work, we mainly focus on MIMICS-
ClickExplore because each query has multiple clarifications in this dataset, but
not in the other two datasets. Thus, it can be directly used for evaluating clari-
fication selection models. However, some queries in MIMICS-ClickExplore have
several identical clarifications, but their engagement levels are different. We
delete such inconsistent data as follows:

– For each query q and its clarifications c1 to cn, 1 ≤ i, j ≤ n, i �= j, if ci and
cj are identical but their engagement levels are different, we delete both of
them;

– Afterwards, if the number of clarifications of q is less than 2 or the engagement
levels of all its clarifications are 0, we delete the query q.

Finally, 2.44% of queries in MIMICS-ClickExplore are deleted. We call the
processed dataset D1. There are 62446 queries in D1, and each query is associated
with 2.57 clarifications on average. We divide D1 into training, development, and
test sets with a ratio of 8:1:1 based on the query.

The average number of clarifications per query in D1 is small, we construct a
dataset D2 based on D1. For each query in D1, we randomly sample 10 negative
clarifications (i.e., clarifications from other queries) from the set to which it
belongs. This ensures that the training, validation, and test sets of D2 have no
intersection. Note that there are negative clarifications when testing the model
on D2, which is different from testing the model on D1. We set the engagement
levels of all negative clarifications to −1. Intuitively, it does not make sense to set
the click-based engagement level to −1. However, our purpose is to distinguish
between positive and negative clarifications. Because the engagement level of a
positive clarification may be 0, it is inappropriate to set the engagement level of
a negative clarification to 0.

4.2 Baselines

We use the following four baselines:

– Random. For each query, it selects one from the query’s clarifications ran-
domly.

– RankNet [13]. We use the BERT embedding of the query and clarification,
the number of characters in the query and question, the number of answers,
and the average number of characters in the answers as features and minimize
the loss function in Eq. 5.
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Table 1. Experimental results on D1. Best results are in bold. Superscripts 1–4 indi-
cate statistically significant improvements over Random, RankNet, RLC and ELBERT,
respectively.

Hits@1 MRR nDCG@1 nDCG@2

Random 0.423 0.683 0.494 0.721

RankNet 0.4601 0.7041 0.5231 0.7371

RLC 0.4531 0.7011 0.5271 0.7421

ELBERT 0.480123 0.716123 0.547123 0.751123

GACS-G1 0.4991234 0.7261234 0.5631234 0.7591234

GACS-G2 0.485123 0.719123 0.555123 0.7571234

GACS-G3 0.485123 0.719123 0.552123 0.753123

GACS-G4 0.4931234 0.7241234 0.5601234 0.7591234

– RLC [27]. RLC is composed of an intent coverage encoder and an answer
consistency encoder. Because the answer consistency encoder requires the
answer entity type data which is not available in MIMICS, we implement the
intent coverage encoder of RLC as one baseline. In the original paper, they
use the query reformulation data and the click data to estimate the intent.
However, the two kinds of data are also not available in MIMICS. Therefore,
we use the candidate answers to estimate the query’s intents as in GACS.

– ELBERT [19]. ELBERT shows state-of-the-art performance on the user
engagement prediction task. Since we can rank the clarifications according
to their predicted engagement levels and select the best one, we implement
ELBERT as one baseline. For a fair comparison, we use BERT to encode the
query and clarification.

4.3 Evaluation Metrics

For the query q, we denote its clarification with the highest engagement level as
cbest. We use the following three evaluation metrics:

– Hits@1: the percentage of test queries with cbest ranking first.
– MRR: the mean reciprocal rank of cbest of all the test queries.
– nDCG@p: the normalized discounted cumulative gain, which is computed

as:

nDCG@p =

∑p
i=1

ei

log(i+1)∑|E|
i=1

ei

log(i+1)

(6)

where ei is the engagement level of the i-th clarification in the ranked list and
E is the clarification list ordered by their engagement levels up to position p.

Higher Hits@1, MRR, or nDCG@p indicates better performance.
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Table 2. Experimental results on D2. Best results are in bold. Superscripts 1–4 indi-
cate statistically significant improvements over Random, RankNet, RLC and ELBERT,
respectively.

Hits@1 MRR nDCG@1 nDCG@2

Random 0.075 0.245 −0.119 −0.177

RankNet 0.4411 0.6731 0.4881 0.6541

RLC 0.4451 0.69412 0.51612 0.73112

ELBERT 0.465123 0.703123 0.51812 0.71712

GACS-G1 0.4851234 0.7181234 0.5531234 0.7521234

GACS-G2 0.4891234 0.7221234 0.5561234 0.7581234

GACS-G3 0.4891234 0.7211234 0.5561234 0.7541234

GACS-G4 0.466123 0.703123 0.52012 0.71412

Table 3. Cohen’s d and its 95% confidence interval (CI) which indicate the standard-
ized difference between the performance of GACS-G1 and ELBERT on D1 and D2.

Hits@1 MRR nDCG@1 nDCG@2

D1 Cohen’s d 0.04 0.04 0.03 0.03

95% CI [0.01, 0.07] [0.01, 0.06] [0.01, 0.06] [0.01, 0.05]

D2 Cohen’s d 0.04 0.05 0.07 0.11

95% CI [0.01, 0.07] [0.03, 0.08] [0.04, 0.10] [0.08, 0.13]

4.4 Implementation Details

The Transformer encoders of GACS and baselines are initialized with BERTBASE

[6]. We use the implementation of HuggingFace’s Transformer [24]. For training
these models, we use the AdamW [12] optimizer with an initial learning rate of
10−5 and a linear learning rate decay scheduler. We fine-tune for 5 epochs and
choose the best hyperparameters according to MRR on the development set.

4.5 Experimental Results

Table 1 and Table 2 report the experimental results of our GACS using different
graphs and the baselines on D1 and D2, respectively. Statistical significance
is tested using the paired student’s t-test with p < 0.05. Due to the multiple
comparisons problem [5], we use the Benjamini-Hochberg procedure to adjust p
to control the false discovery rate. Moreover, we report the effect size Cohen’s d
and its 95% confidence interval to compare the performance of GACS-G1 and the
best baseline ELBERT, as shown in Table 3. We have the following observations:

– All other models perform significantly better than the Random model, which
shows that the engagement level is a reasonable proxy for the usefulness of
the clarification.
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Table 4. Performance of GACS-G3 with different engagement levels of negative clari-
fications on D2.

0 −1 −2 −3 −4

Hits@1 0.477 0.489 0.489 0.483 0.483

MRR 0.715 0.721 0.720 0.717 0.718

Table 5. Experimental results of GACS trained on D2 and evaluated on D1.

Hits@1 MRR nDCG@1 nDCG@2

GACS-G1 0.486 0.720 0.555 0.755

GACS-G2 0.489 0.722 0.556 0.760

GACS-G3 0.489 0.721 0.556 0.756

GACS-G4 0.485 0.720 0.552 0.755

– Our framework generally outperforms all the baselines, which is statistically
significant and demonstrates the effectiveness of our framework.

– As shown in Table 1, when trained with only positive clarifications, GACS
using G2 or G3 performs worse than GACS using G1 or G4. Although G2

and G3 are reasonable and have stronger expressive power, they increase
the model’s complexity and are more difficult to train, especially considering
that there are only 2.57 clarifications per query in D1. Moreover, GACS-G1

performs better than GACS-G4, showing that the intent can improve the
model’s performance but requires that the graph structure is reasonable and
suitable for the dataset.

– As shown in Table 2, when introducing negative clarifications, GACS using
G2 or G3 can outperform GACS using G1 or G4, which is different from
the model’s performance on D1. This is because negative clarifications can
bring some new information and help train the model. In addition, GACS
models that use the intent perform obviously better than those that do not,
indicating that the intent can help the model distinguish between positive
and negative clarifications.

– Combining the observation from Table 1 and Table 2, we can see that different
graphs are suitable for different scenarios. We expect that as the average
number of clarifications per query increases, the benefits of the intent will be
more obvious.

Effect of Negative Clarifications. According to Eq. 4, the smaller the engage-
ment level of negative clarifications, the lower the importance of them. Table 4
reports the performance of GACS-G3 with different engagement levels of nega-
tive clarifications on D2. We can see that when the engagement level is −1 or
−2, the model performs the best. Moreover, setting the engagement level to 0
performs worse than setting it to a negative value.
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Table 6. Experimental results of GACS on D1.

Hits@1 MRR nDCG@1 nDCG@2

GACS-G1 0.499 0.726 0.563 0.759

w/o st 0.486 0.719 0.553 0.756

GACS-G2 0.485 0.719 0.555 0.757

w/o st 0.481 0.717 0.546 0.752

GACS-G3 0.485 0.719 0.552 0.753

w/o st 0.484 0.718 0.549 0.752

GACS-G4 0.493 0.724 0.560 0.759

w/o st 0.486 0.719 0.554 0.756

To further investigate the effect of negative clarifications, we evaluate the
GACS models trained on D2 on D1. The results are shown in Table 5. First, we
can see that models trained on D2 have very similar performance on D1 and D2,
indicating that it is much easier to distinguish between positive and negative
clarifications than to rank the positive clarifications. Thus, although negative
clarifications can help train the model, the benefits they can provide are limited
compared with positive clarifications. Second, after adding negative clarifications
for training, the performance of GACS using G1 and G4 does not get better, but
slightly worse. This is because the graphs they use are relatively simple and
negative clarifications may also bring some incorrect information because they
are treated equally.

Effect of Soft-Position Embedding and Type Embedding. In Table 6,
“w/o st” refers to using the hard-position embedding instead of the soft-position
embedding and no type embedding to distinguish between the three types of
nodes in the QIC attention graph. Experimental results show that removing
them will reduce the performance of GACS with different graphs. This indicates
that the soft-position embedding and the type embedding are important for
preserving the structure information in the QIC attention graph, which is crucial,
especially for relatively simple graphs.

5 Conclusion

This paper proposes a graph attention-based model GACS for clarification selec-
tion. It can effectively exploit the relations among the query, intent, and clar-
ification by constructing the QIC attention graph and outperform competitive
baselines. The graph structure information is critical to the model’s performance.
Moreover, we show that negative clarifications can help train GACS using com-
plex graphs but their benefits are limited compared with positive clarifications.
A better estimation of the intent may further improve the model’s performance.
In the future, we will explore how to better estimate the intent.
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18. Sekulić, I., Aliannejadi, M., Crestani, F.: Towards facet-driven generation of clari-
fying questions for conversational search. In: Proceedings of the 2021 ACM SIGIR
International Conference on Theory of Information Retrieval, pp. 167–175 (2021)

19. Sekulić, I., Aliannejadi, M., Crestani, F.: User engagement prediction for clarifica-
tion in search. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M.,
Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 619–633. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72113-8 41

20. Sun, T., et al.: CoLAKE: contextualized language and knowledge embedding. In:
Proceedings of the 28th International Conference on Computational Linguistics,
pp. 3660–3670 (2020)

21. Tavakoli, L., Zamani, H., Scholer, F., Croft, W.B., Sanderson, M.: Analyzing clarifi-
cation in asynchronous information-seeking conversations. J. Assoc. Inf. Sci. Tech-
nol. 73, 449–471 (2021)

22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

23. Wang, Z., Ai, Q.: Controlling the risk of conversational search via reinforcement
learning. In: Proceedings of the Web Conference 2021, pp. 1968–1977 (2021)

24. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language pro-
cessing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45 (2020)

25. Zamani, H., Dumais, S., Craswell, N., Bennett, P., Lueck, G.: Generating clarifying
questions for information retrieval. In: Proceedings of the Web Conference 2020,
pp. 418–428 (2020)

26. Zamani, H., Lueck, G., Chen, E., Quispe, R., Luu, F., Craswell, N.: MIMICS:
a large-scale data collection for search clarification. In: Proceedings of the 29th
ACM International Conference on Information and Knowledge Management, pp.
3189–3196 (2020)

27. Zamani, H., et al.: Analyzing and learning from user interactions for search clar-
ification. In: Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1181–1190 (2020)

28. Zou, J., Kanoulas, E., Liu, Y.: An empirical study on clarifying question-based
systems. In: Proceedings of the 29th ACM International Conference on Information
and Knowledge Management, pp. 2361–2364 (2020)

https://doi.org/10.1007/978-3-030-72113-8_41


Continual Learning of Long Topic
Sequences in Neural Information

Retrieval

Thomas Gerald(B) and Laure Soulier

CNRS-ISIR, Sorbonne University, Paris, France
{gerald,soulier}@isir.upmc.fr

Abstract. In information retrieval (IR) systems, trends and users’ inter-
ests may change over time, altering either the distribution of requests or
contents to be recommended. Since neural ranking approaches heavily
depend on the training data, it is crucial to understand the transfer capac-
ity of recent IR approaches to address new domains in the long term. In this
paper, we first propose a dataset based upon the MSMarco corpus aiming
at modeling a long stream of topics as well as IR property-driven controlled
settings. We then in-depth analyze the ability of recent neural IR models
while continually learning those streams. Our empirical study highlights in
which particular cases catastrophic forgetting occurs (e.g., level of similar-
ity between tasks, peculiarities on text length, and ways of learning mod-
els) to provide future directions in terms of model design.

Keywords: Continual learning · Information retrieval · Neural
ranking models

1 Introduction

The information Retrieval (IR) field has seen a keen interest in neural approaches
these last years [12,14,24,27] thanks to recent advances in semantic and language
understanding. However, these approaches are heavily data dependent, often lead-
ing to specialization for a certain type of corpus [28,32]. If document retrieval
remains a core task, many challenges revolve around, such as news detection [37],
question answering [43] or conversational search [8]. In all these tasks, users’ needs
or document content might evolve through time; leading to evolving queries and/or
documents and shifting the topic distribution at the inference step [3,26,37]. It is,
therefore, crucial to understand whether IR models are able to change their rank-
ing abilities to new topics/trends, but also to be still able to perform on previ-
ous topics/trends if these ones remain up to date. Accumulating and preserving
knowledge is thus an important feature in IR, allowing to continuously adapt to
new domains or corpora while still being effective on the old ones. This require-
ment refers to an emerging research field called Continual learning [17,34,40]. In
practice, continual learning proposes to learn all tasks sequentially by guarantee-
ing that previous knowledge does not deteriorate through the learning process; this
phenomenon is called catastrophic forgetting. To solve this issue, one might con-
sider multi-task learning [30] in which models learn together all the sets of tasks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 244–259, 2022.
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Another approach would consists in learning a model for each task, but, in this
case, the knowledge is not transferred between previous and current tasks. These
two last settings are not always realistic in IR, since they consider that all tasks
are available at the training step. In practice, content and users’ needs may evolve
throughout the time [3,26].

To the best of our knowledge, only one previous work has addressed the con-
tinual learning setting in IR [22], highlighting the small weakness of the studied
neural models to slightly forget knowledge over time. However this work has
two limitations: 1) it only considers few tasks in the stream (2 or 3 successive
datasets) and does not allow to exhibit neural model abilities in the more real-
istic scenario of long-term topic sequences (i.e., a larger number of users and
topics implying evolving information needs/trends). 2) Although authors in [22]
use datasets of different domains, there is no control of stream properties (e.g.,
language shift [1,3], information update [26]) allowing to correlate the observed
results with IR realistic settings, as done in [40] for classification tasks.

The objective of this paper is thus to provide a low-level analysis of the learn-
ing behavior of neural ranking models through a continual setting considering
long sequences and IR-driven controlled topic sequences. In this aim, we propose
to study different neural ranking models and to evaluate their abilities to pre-
serve knowledge. To this end, we consider neural rankers successively fined tuned
on each task of the sequence. More particularly, our contribution is threefold:

• We design a corpus derived from the MSMarco Passage ranking dataset [29]
to address long sequences of topics for continual learning and IR-driven con-
trolled topic sequences (Sect. 4).

• We compare the different neural ranking models in a long-term continual IR
setting (Sect. 5.1) and the controlled settings (Sect. 5.3).

• We in-depth investigate the impact of task similarity level in the continual
setting on the learning behavior of neural ranking models (Sect. 5.2).

2 Related Works

Neural Information Retrieval. Deep learning algorithms have been introduced
in IR to learn representations of tokens/words/texts as vectors and compare
query and document representations [5,10,12,13,27,42]. With the advance of
sequence-to-sequence models, semantic matching models have grown in popu-
larity, particularly due to the design of new mechanisms such the well-known
self-attention in transformer networks [39] or language models such as Bert [6].

Many IR approaches benefit from those advances as CEDR [24] that com-
bines a Bert language model with relevance matching approaches including
KNRM [42] and PACRR [12]. Moreover, recent works addressed ranking with
sequence-to-sequence transformers based approach as the Mono-T5 model [31]
for re-ranking documents returned by a BM25 ranker. Using a weak initial ranker
such as BM25 may be the bottleneck of reaching higher performances, some
approaches are thus reconsidering dense retrieval [7,14,15,44]. All these mod-
els are data-dependent, relying on word/topic/query distribution in the train-
ing dataset and their application to new domains is not always straightforward
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[28,32]. While previous works addressed this issue by leveraging for instance fine-
tuning techniques [23,43], one can wonder whether these models are still effective
on the word/topic/query distribution of the training dataset. This condition is
particularly crucial for open-domain IR systems (e.g., public search engines or
future conversational search systems) since they should be able to face multiple
users and solve both persistent information needs and event-related ones.

Continual Learning. Continual learning generally defines the setting in which
a model is trained consecutively on a sequence of tasks and need to adapt
itself to new encountered tasks. One main issue of continual learning is that
models need to acquire knowledge throughout the sequence without forgetting
the knowledge learnt on previous tasks (catastrophic forgetting). To solve the
catastrophic forgetting issue, three main categories can be outlined [18]. First,
regularisation approaches continually learn to address new tasks using soft or
hard preservation of weights [17,21,41]. For instance, the Elastic Weight Con-
solidation model [17] softly updates weights for a new task according to their
importance in the previous one. Second, replay approaches [2,25,34] (or rehearsal
approaches), replay examples of previous tasks while training the model on a new
one. Third, architecture-based approaches [4,20,40] rely on the decomposition
of the inference function. For instance, new approaches leveraging techniques of
neural architecture search [20,40] have been proposed.

Recently some works have addressed the continual learning setting for NLP
tasks. LAMOL [38] for continual language modelling, [19] for conversational
systems or [9] for translations tasks. While it exists IR approaches to perform
on different domains such as using batch balanced topics [11], at the best of our
knowledge, only one study addresses IR in the continual setting [22], comparing
neural ranking models on three successive tasks (MSMarco, TREC-Microblog,
and TREC CORD19). Our work follows this line by providing an analysis of the
behavior of neural ranking models on longer sequences of topics. We also design
IR-driven controlled sequences to highlight to what extent neural models face
IR-specific divergences, such as language drift or documents collection update.

3 Research Design for Continual Learning in IR

We address in this paper the following research questions aiming at analyzing
the resilience of IR models to catastrophic forgetting:

• RQ1: How to design a sequence of tasks for continual learning in IR?
• RQ2: What are the performance of neural ranking models while learning

long sequences of topics? Can we perceive signals of catastrophic forgetting?
• RQ3: Does the similarity level of tasks in the sequence impact the model

effectiveness and their robustness to catastrophic forgetting?
• RQ4: How do neural ranking models adapt themselves to queries or docu-

ments distribution shifts?
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3.1 Continual Learning Setting and Metrics

We propose a continual learning setting based on long sequences. The latter
consists in fine-tuning a model on different tasks successively. Following [22], we
instantiate tasks by topics/domains, but we rather focus on long sequences of
tasks with the perspective that such setting can be connected with long-term
trends/changes of user interests. In practice, we consider a sequence of n tasks
S = {T1, . . . , Ti, . . . , Tn}, each task Ti corresponds to a set of queries and their
associated relevant documents. We suppose that each task relies on different
properties or distributions as in [33]. Neural ranking models are successively
fine-tuned over the long sequence S of topics. The objective is to track each task
and evaluate each of them at different timestep of the sequence (i.e., after the
successive fine-tuning) to measure the model’s abilities to adapt to new tasks
and their resilience to catastrophic forgetting.

In practice, we propose to track in each sequence a subset of 5 randomly
selected tasks (tracking whole tasks throughout the whole sequence is too com-
putationally expensive). For each of these tasks, we will measure at each step
of the topic sequence the MRR@K. To measure the catastrophic forgetting mf
for a given task Ti at a training step θj (associated to task Tj), we identify the
maximum value obtained by the model along the sequence S and compare its
performances at each training step θj with the maximum value:

mf(i, θj) =
(

max
k∈1,2,...,|S|

score(i, θk)
)

− score(i, θj) (1)

where score(i, θj) refers to a ranking metric for the task Ti using the model
obtained training the jth task Tj in the sequence. Looking to mf(i, θj) for all j
in the sequence allows observing which tasks have a significant negative transfer
impact on Ti (high value) and which have a low negative impact (low value).

3.2 Neural Ranking Models and Learning

We evaluate two different state-of-the-art neural IR models:

• The vanilla Bert [6] (noted VBert) estimating a ranking score based on
a linear layer applied on the averaged output of the last layer of the Bert
language model.

• The Mono-T5-Ranker [31] (noted MonoT5) based on a T5-base model fine-
tuning and trained to generate a positive/negative token.

Implementation Details: All models are trained with Adam optimizer [16], the
optimizer state is not reinitialized for each task of the sequence. Indeed, re-
initializing the optimizer will lead to observe a spike in the loss function whether
addressing a same or a different task due to the state of Adam optimizer parame-
ters. As previous work in IR [6,22,31], we perform sparse retrieval by re-ranking
top-1000 most relevant documents retrieved by the BM25 model [36].
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For MonoT5 we start with the t5-base1 model with a learning rate of 10−3
and batch size of 16. For the VBert model,2 the batch size is 16 with a learning
rate of 2 × 10−5 for Bert parameters and 10−3 for scoring function parameters.

4 MSMarco Continual Learning Corpus

Our continual learning framework is based on learning from a long sequence of
tasks. One main difficulty is to create this sequence considering the availability
of IR datasets. One method would be to build a sequence of datasets of different
domains as in [22], but the number of datasets adapted to neural IR (with a
sufficiently large number of queries and relevance judgments) is not sufficient for
long sequences setting. We propose to model the task at a lower granularity level,
namely topics, instead of the dataset granularity. In what follows, we present our
methodology for creating long sequences of topics using the MSMarco dataset.
Once this dataset is validated, it serves as a base for designing controlled settings
related to particular IR scenarios (all settings and models are open-sourced3).

4.1 RQ1: Modeling the Long Topic Sequence

To create the long sequence, we consider the MSMarco dataset [29]. Such dataset
is based on real users’ questions on Bing. Our intuition is that several queries
might deal with the same user’s interest (e.g., “what is the largest source of
freshwater on earth?” or “what is water shortage mitigation”). These groups
of queries denote what we call in the remaining paper topics. To extract top-
ics, we propose a two-step method: extracting clusters from randomly sampled
queries and populating those clusters with queries from the whole dataset. We
use a similarity clustering4 based on query representations obtained using the
sentence-BERT model [35]. The clustering is based on a sample of 50,000 ran-
domly picked queries and estimates the similarity cosine distance according to
a threshold t to build clusters of a minimum size of s. We then populate clus-
ters using other queries from the dataset according to threshold t. Finally, we
produce the sequence of topics by randomly rearranging clusters to avoid bias
of cluster size. Another sequencing method might be envisioned for future work,
for instance considering a temporal feature by comparing topic trends in real
search logs. In practice, the value of the threshold t differs in each step of clus-
tering and populating, leading to the threshold t1 and t2 (with t2 < t1) to obtain
clusters of reasonable size to be used for neural models. Depending on the value
of those hyper-parameters (t1, t2, s), we obtain three datasets of topic sequences
of different sizes (19, 27, and 74), resp. called MS-TS, MS-TM and MS-TL (for
small, medium, large).

1 https://huggingface.co/transformers/model doc/t5.html.
2 Using bert-base-uncased pretrain.
3 https://github.com/tgeral68/continual learning of long topic.
4 https://www.sbert.net/examples/applications/clustering∼(fast∼clustering).

https://huggingface.co/transformers/model_doc/t5.html
https://github.com/tgeral68/continual_learning_of_long_topic
https://www.sbert.net/examples/applications/clustering~(fast~clustering)
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Statistics of these three topic sequences are described in Table 1. To build
the train/validation/test sets, we constraint the validation and the test set to be
composed of approximately 40 queries by topic. Notice that we do not use the
original split as it remains difficult to consider enough testing examples falling
into the created topics.

4.2 Evaluating the Long Topic Sequence

To verify the relevance of the clusters, we aim at measuring retrieval evidence
within and between clusters (i.e., queries within clusters might have similar
retrieval evidence and queries between clusters might have different ones). As
retrieval evidence, we use the retrieved documents for each query using the
BM25 model with default parameters.5 Our intuition is that similar queries
should share retrieved documents (and vice versa). To compare queries within
and between clusters, we randomly select two pools (noted Ai and Bi) of 250

Table 1. Parameters and statistics of the generated dataset and their inter/intra task
similarity metric (c− score). The intra-score is the mean c− score when comparing a
task with itself, and the inter score when comparing different tasks.

Name t1 s t2 |T | #queries by topics inter intra

MS-TS 0.7 40 0.5 19 3, 650 ± 1, 812 3.8% 31.4%

MS-TM 0.75 20 0.5 27 3, 030 ± 1, 723 4.1% 32.1%

MS-TL 0.75 10 0.55 74 1, 260 ± 633 3.3% 34.6%

MS-RS - - - 19 3, 650 ± 1, 812 10.3% 10.2%

MS-RM - - - 27 3, 030 ± 1, 723 9.9% 9.8%

MS-RL - - - 74 1, 260 ± 633 8.7% 8.8%

Fig. 1. Matrix of similarities between topics for 8 tasks of MS-S (1a) and MS-RL
(1b) datasets. The c-score (×100) is processed on all topic pairs, a high value (yellow)
denotes the level of retrieved document overlap between queries of topics.

5 Implemented in pyserini: https://github.com/castorini/pyserini.

https://github.com/castorini/pyserini
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queries within each cluster associated to task Ti. Let DAi = {Dq|q ∈ Ai} (resp.
DBi = {Dq|q ∈ Bi}) the documents returned by the ranker for the queries in Ai

(resp. Bi).
We thus compute the c − score which measures the ratio of common docu-

ments between two tasks Ti, Tj (or same task if i = j) as follows:

c − score(Ti, Tj) =
|DAi ∩ DBj |

|DAi | (2)

This score is then averaged over pairs of topics within the sequence (intra when
comparing topics with their-selves and inter when comparing different topics).

To evaluate our topic sequence methodology, for each of the three datasets we
create a long topic sequence baseline in which clusters are extracted randomly
from the queries of topics based corpora. We obtain three randomized datasets
denoted MS-RS, MS-RM and MS-RL.

Table 1 reports for each of the generated datasets the intra and inter c-
scores. By comparing the inter metric between both corpus settings (around
3/4% for the clustering-based ones and around 9/10% for randomized ones),
one can conclude that our long topic sequence includes clusters that are more
different than the ones created in the randomized corpus. The trend is opposite
when looking at the intra, meaning that our sequence relies on clusters gathering
similar queries but dissimilar from each other. This statement is reinforced in
Fig. 1 which depicts the c − score matrix for all couples (i, j) ∈ {1, 2, . . . , |S|}2
for a subset of 8 tasks (for clarity) of the MS − S and MS − RS corpora. We
observe that for the randomized matrix (Fig. 1(b)), the metric value is relatively
uniform. In contrast, in the matrix obtained from our long topic sequence based
on clustering (Fig. 1(a)), the c-score is very small when computed for different
topic clusters (low inter similarity) and higher in the diagonal line (high intra
similarity).

4.3 IR-Driven Controlled Stream-Based Scenario

In this section, we focus on local peculiarities of the long topic sequence by
analyzing IR-driven use cases, such as documents or queries distribution shifts.
Typically, the available documents may change over time, or even some can be
outdated (for instance documents relevant at a certain point in time). Also,
it happens that the queries evolve, either by new trends, the emergence of new
domains, or shifts in language formulation. To model those scenarios, we propose
three different short topic streams to fit the local focus. Topics are based on our
long topic sequence S = {T1, . . . , Ti, . . . , Tn} built on MSMarco (Sect. 4.1). For
each scenario, we consider an initial setting Tinit modeling the general knowledge
before analyzing particular settings. In other words, it constitutes the data used
for the pre-training of neural ranking models before fine-tuning on a specific
sequence. The proposed controlled settings are:

– Direct Transfer [40]: The task sequence is (Tinit, T +
i , Tj , T −

i ) where tasks
T +
i and T −

i belong to the topic task Ti and have different sizes (|T −
i | � |T +

i |).
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Fig. 2. Both Information Update (IU) and Language Drift (LD) scenarios. The circle
of documents or queries represent the pair of documents or queries of different clusters,
mapped using the closest neighborhood algorithm. This mapping is used to infer query-
relevant documents of different clusters (dotted lines). Solid lines correspond to original
query-relevant documents pairs. The red arrows build the training sets of tasks T ′ and
T ∗ while blue arrows compose the one of tasks T ′′ and T ∗∗. (Color figure online)

This setting refers to the case when the same topic comes back in the stream
with new available data (new queries and new relevant documents).

– Information Update: The task sequence is (Tinit, T ′
i , T ′′

i ) where T ′
i and

T ′′
i have dissimilar document distributions and a similar query distribution.

Intuitively, it can be interpreted as a shift in the required documents, such
as new trends concerning a topic or an update of the document collection.

– Language Drift: The task sequence is (Tinit, T ∗
i , T ∗∗

i ) where T ∗
i and T ∗∗

i

have similar document distributions and a dissimilar query distribution. This
can correspond to a change of query formulation or focus in a same topic.

To build those sequences, the initial task Tinit aggregates k different tasks
available in the original sequence topics S. We set k = 5 which is a good balance
between considering enough tasks for the pre-training and considering not too
many tasks to allow an impact of model fine-tuning on our controlled settings.

For the Direct Transfer, we randomly select a set of three topics (metrics
are then averaged), 75% of the queries are used for T +

i and 25% for T −
i . Tj is a

topic selected randomly.
For Information Update, we consider that, for persistent queries, relevant

documents might evolve. To do so, we randomly select three topics Ti. For each
topic Ti, we cluster the associated relevant documents using a constrained 2-
means algorithm6 based on the cosine similarity metric of Sentence Bert embed-
dings (used in the Sect. 4.1). We obtain two document sets Di1 and Di2: the
initial and final information distribution. Since queries in MSMarco passages
have in a vast majority one relevant document,7 we can easily obtain the set of
queries Qi1 and Qi2 associated to document sets Di1 and Di2 (see Fig. 2(a) -

6 https://pypi.org/project/k-means-constrained/.
7 If not the case, we sample one document to build the query-relevant document pairs.

https://pypi.org/project/k-means-constrained/
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Fig. 3. General performance of neural ranking models on the long topic sequence.

solid lines being the query-document relevance pairs). To model the information
update, we map documents Di2 relevant for queries in Qi2 (final distribution)
to most similar documents in Di1 (initial distribution) in the embedding space
(circles in Fig. 2(a)). The task T ′

i considers the whole set of queries Qi1 and Qi2

but only the document set Di1 as initial information (red arrows in Fig. 2(a)).
The task T ′′

i corresponds to the update of the information (namely, documents).
We thus only consider the query set Qi2 for persistent queries with the docu-
ment set Di2 as information update (blue arrows in Fig. 2(a)). We expect that
Qi1 performs similarly after information update if models do not suffer from
catastrophic forgetting and that Qi2 improves its performance with the infor-
mation update. We also consider the reversed setting in which we first consider
Di2 as the initial information and then update the information with Di1, Qi1

(persistent queries).
For the Language Drift scenario, we use a similar protocol by clustering

queries instead of documents to obtain the sets of queries Qi1 and Qi2, and then
the associated relevant document sets Di1 and Di2. To model the language drift
in queries, we consider that one query set will change its query formulation. To
do so, let consider that sets Qi1 and Qi2 reflect resp. the initial and final language
distribution of same information needs, and thus, requiring same/similar relevant
documents. To observe the language drift, we map pairs of queries (qi1, qi2) ∈
Qi1 × Qi2 according to their similarity in the embedding space (circles in Fig.
2(b)). Thus, we can associate documents of Di2 (document relevant for queries
of Qi2) to the query set Qi1: qi1 has two relevant documents (di1 and di2) (red
arrows in Fig. 2(b)). The T ∗

i is composed of the query set Qi1 and the associated
relevant documents belong to both Di1 and Di2 (red arrows). The T ∗∗

i is based
on the query set Qi2 (new language for similar information needs) associated to
the relevant documents Di2 (blue arrows). We also consider the reversed setting
in which query sets Qi2 and Qi1 are resp. used for the initial and final language.

For those two last scenarios (information update and language drift), metrics
are respectively averaged over initial and reversed settings.
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5 Model Performance and Learning Behavior on Long
Topic Sequences

In this section, we report the experiments on the continual settings proposed in
Sect. 4. We first analyze the overall retrieval performance of the different models
applied on long topic sequences. We then present a fine-grained analysis of the
different models with a particular focus on catastrophic forgetting regarding the
similarity of topics in the sequence. Finally, we analyze specific IR use cases
through our controlled settings.

5.1 RQ2: Performances on the MSMarco Long Topic Sequence

We focus here on the global performance of neural ranking models after hav-
ing successively been fine-tuned on topics in our MSMarco-based long sequence
setting (Fig. 3a). For comparison, we use different sequence settings (i.e., the
randomized and the topic clustering ones) of different sizes (i.e., small, medium,
and large). We also run the multi-task baseline in which models are trained on
all the tasks of the sequence jointly (without sequence consideration). At a first
glance, we can remark that, in a large majority, neural models after fine-tuning
on random sequences or multi-task learning obtain better results than after the
fine-tuning on our long topic sequences. This can be explained by the fact that,
within our setting, the topic-driven sequence impacts the learning performance:
a supplementary effort is needed by the model to adapt to new domains, which is
not the case in the random setting. In this latter, the diversity is at the instance
level. This trend is depicted in Fig. 3b, highlighting peaks in the clustering-based
setting (blue line) referring to topic/cluster changes. This result confirms that
catastrophic forgetting might occur with neural ranking models.

5.2 Fine-Grained Analysis

To get a deeper understanding of model behavior, we aim here to analyze the
model performance throughout the learning of the sequence. We are particularly
interested in explaining the possible behavior of catastrophic forgetting according
to the similarity level between tasks in the sequence. For computational reasons,
we were not able to track all tasks throughout the whole sequence, we thus
considered 5 randomly selected tasks (as described in Sect. 3.1). For each of
these 5 tasks Ti, we estimate the catastrophic forgetting using the mf score
(Eq. 1) regarding each task Tj of the sequence (with i �= j). For the similarity
metric, we use the c − score (Eq. 2) computed between both tasks Ti and Tj .
In Fig. 4a, we group together similarity by quartiles and estimate the average
of the mf score for tracked tasks in each similarity quartile. We first remark
that the mean similarity values of quartiles are relatively small (except the 4th

quartile), reinforcing the validation of our dataset building methodology. Also,
we observe the following general trends. First, neural ranking models suffer from
catastrophic forgetting (positive mf score), particularly the MonoT5 model. The
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difference in terms of model on both the global effectiveness (Fig. 3(a)) and the
similarity analysis suggests that MonoT5 is more sensible to new domains than
the VBert model. This can also explain by the difference in the way of updating
weights (suggested in the original papers [6,31]). In VBert, two learning rates are
used: a small one for the Bert model and a larger for the scorer layer; implying
that the gradient descent mainly impacts the scorer. In contrast, the MonoT5 is
learnt using a single learning rate leading to modify the whole model. Second,
more tasks are similar (high c − score), less neural ranking models forget (low
mf). In contrast to continual learning in other application domains [17,34] in
which fine-tuning models on other tasks always deteriorates task performance,
our analysis suggests that tasks might help each other (particularly when they
are relatively similar), at least in lowering the catastrophic forgetting. Moreover,
as discussed in [10], relevance matching signals play an important role in the
model performance, often more than semantic signals. The task sequence may
lead to a synergic effect to perceive these relevance signals. Figure 4b shows the
VBert performance for three tasks located at different places in the sequence
(circle point). To perceive catastrophic forgetting, we look at one part of the
curve after the point. One can see that task performances increase after their
fine-tuning (higher increase when the task is at the beginning of the sequence),
highlighting this synergic effect. In brief, continual learning in IR differs from
usual classification/generation lifelong learning setting. It is more likely to have
different tasks allowing to “help” each other, either by having closely related
topics or by learning a similar structure in the query-document matching.

Fig. 4. Fine-grained analysis of neural ranking model in the long topic sequence.
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Fig. 5. Model performances on IR-driven controlled settings. B stands for the baseline.

5.3 RQ3: Behavior on IR-Driven Controlled Settings

In this section we review the different scenario described in the Sect. 4.3: Direct
Transfer (DT), Information Update (IU) and Language Drift (LD). For all
the different settings, we estimate the average metric of the different tracked
tasks after each sequence step.

Figure 5a reports the effectiveness of neural models on task Ti (T +
i and T −

i

being subsets of Ti) after each fine-tuning step in the Direct Transfer scenario.
One can see that fine-tuning on a foreign domain (T2), the performance of both
models on task Ti drop, highlighting a behavior towards catastrophic forgetting.
However, both models are able to slightly adapt their retrieval performance after
the fine-tuning of task T −

i . This final performance is however lower than the
baseline model (training on both Tinit and Ti) and for the VBert model lower
than its initial performance in the beginning of the learning sequence. These
two last statements suggest the ability of neural models to quickly reinject a
part of the retrained knowledge learnt in the early sequence to adapt to new
query/document distributions in the same topic.

Figure 5b reports the average effectiveness metrics for both Information
Update (IU) and Language Drift (LD) scenarios on different sets, QikDi (k =
1,2) denoting the sets used to build relevant pairs of query-document (see Sect.
4.3). In IU scenario, relevant documents of certain queries (Qi2) evolve over
time (Di1 → Di2). For both Qi1Di1 and particularly Qi2Di2 whose queries have
encountered the information update, evaluation performances increase through-
out the fine-tuning process over the sequence. This denotes the ability of models
to adapt to new document distributions (i.e., new information in documents).
The adaptation is more important for the MonoT5 model (7.75 vs. 26.0 for
the Qi2Di2 set), probably explained by its better adaptability to new tasks (as
discussed in Sect. 5.2). Interestingly, the performance at the end of the learning
sequence overpasses the result of the baseline (fine-tuning on Ti): contrary to the
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direct transfer scenario, this setting has introduced pseudo-relevant documents
in task T ′

i which might help in perceiving relevance signals.
For the Language Drift LD scenario, the behavior is relatively similar

in terms of adaptation: performances increase throughout the sequence and
MonoT5 seems more flexible in terms of adaptation. However, it seems more
difficult to sufficiently acquire knowledge to reach the baseline performance
(although pseudo-relevant documents have also been introduced). This might
be due to the length of queries, concerned by the distribution drift: when the
vocabulary changes in a short text (i.e., queries), it is more difficult to capture
the semantics for the model and to adapt itself in terms of knowledge retention
than when the change is carried out on long texts (i.e., documents as in the
information update).

6 Conclusion and Future Work

In this paper, we proposed a framework for continual learning based on long
topic sequences and carried out a fined-grained evaluation, observing a catas-
trophic forgetting metric in regards to topic similarity. We also provided specific
stream of tasks, each of them addressing a likely scenario in case of IR contin-
ual learning. Our analysis suggests different design implications for future work:
1) catastrophic forgetting in IR exists but is low compared to other domains
[17,40], 2) when designing lifelong learning strategy, it is important to care of
task similarity, the place of the task in the learning process and of the type of
the distribution that needs to be transfered (short vs. long texts). We are aware
that results are limited to the experimented models and settings and that much
remains to be accomplish for more generalizable results. But, we believe that our
in-depth analysis of topic similarity and the controlled settings is a step forward
into the understanding of continual IR model learning.
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Abstract. We investigate novel SoC-FPGA solutions for fast and
energy-efficient ranking based on machine-learned ensembles of decision
trees. Since the memory footprint of ranking ensembles limits the effec-
tive exploitation of programmable logic for large-scale inference tasks,
we investigate binning and quantization techniques to reduce the mem-
ory occupation of the learned model and we optimize the state-of-the-art
ensemble-traversal algorithm for deployment on low-cost, energy-efficient
FPGA devices. The results of the experiments conducted using pub-
licly available Learning-to-Rank datasets, show that our model compres-
sion techniques do not impact significantly the accuracy. Moreover, the
reduced space requirements allow the models and the logic to be repli-
cated on the FPGA device in order to execute several inference tasks
in parallel. We discuss in details the experimental settings and the fea-
sibility of the deployment of the proposed solution in a real setting.
The results of the experiments conducted show that our FPGA solution
achieves performances at the state of the art and consumes from 9× up
to 19.8× less energy than an equivalent multi-threaded CPU implemen-
tation.

Keywords: Learning to Rank · Model Compression · Efficient
Inference · SoC FPGA

1 Introduction

This work investigates the use of cost-effective SoC-FPGA (System on Chip -
Field Programmable Gate Arrays) devices for speeding-up inference tasks based
on complex machine-learned ensemble models. Latency and throughput at infer-
ence time are critical aspects in many applications of machine learning where
the rate of incoming requests is high and tight constraints on prediction qual-
ity impose the adoption of computationally-expensive models. In these cases,
quality-of-service requirements entail the optimization of the accuracy of the
models subject to performing inference in near real-time or within a limited
time budget. As a use case where finding the best trade-off between model accu-
racy and inference time is definitely important and challenging, we consider the
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task of ranking documents according to their relevance for user queries. Indeed,
ranking for ad-hoc retrieval entangles challenging effectiveness and efficiency
constraints in many online services deployed in large-scale Web search engines,
e-Commerce platforms and online social networks [6].

We specifically study techniques for performing document ranking with SoC-
FPGA devices at a competitive level of quality and speed with respect to the
state of the art, but using a fraction of the energy. SoC-FPGA technology pro-
vides an energy-efficient alternative to traditional computing due to the possi-
bility of adapting the design of the logic to a specific architecture optimized for
the task addressed. The cost and power/performance competitiveness of SoC
FPGA makes this technology very attractive for specific tasks such as ranking,
where the high cost and power consumption of GPUs make their adoption pro-
hibitive [27]. We claim that SoC-FPGA architectures can provide an efficient and
sustainable solution for large-scale query-processing since they can offer efficient
ranking capabilities based on state-of-the-art solutions at a fraction of the energy
cost incurred by CPU-based or GPU-based solutions. Recently, Molina et al. fol-
lowed the same research line and proposed SoC-FPGA solutions for speeding-up
inference based on Learning-to-rank (LtR) ensembles of decision trees [26]. The
study identifies in the memory footprint the main issue limiting the computa-
tional performance. In this paper, we address this limitation by investigating the
use of binning and quantization techniques for reducing the memory occupation
of both the ranking model and the feature vectors representing the document-
query pairs to be scored. Reducing the memory footprint of the model allows
to replicate the ranking logic on the FPGA device to execute several inference
tasks in parallel. Furthermore, by compressing the document-query feature vec-
tors, we minimize the transmission costs incurred for transferring them to the
FPGA device. We discuss the feasibility of the deployment of the proposed solu-
tion in a real setting and evaluate its performance using publicly available LtR
datasets. The experiments conducted show that our solution does not impact
the quality of the ranking and it provides highly competitive computational
performance with very low energy consumption.

The remainder of the paper is organized as follows. Section 2 discusses the
related work. Section 3 describes SoC-FPGA technologies. Section 4 introduces
ensemble models and the challenges related to their use in the learning to rank
scenario. It then discusses the use of binning and quantization for reducing the
memory footprint and effectively deploying the ranking process on SoC-FPGA
devices. Section 5 discusses the efficiency and effectiveness of the SoC-FPGA
deployment compared to the traditional CPU one. It then details an evaluation
of the latency introduced by transferring data from the host machine to the SoC-
FPGA device. Moreover, it also reports an analysis of the energy consumption
provided by both SoC FPGA-based and CPU-based scoring solutions. Finally,
Sect. 6 concludes the paper and draws some future work.
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2 Related Work

Several effective LtR algorithms and libraries have been proposed in the last
years to train complex models able to precisely rank the documents matching
a query [9,16,19]. State-of-the-art LtR models include those based on additive
ensembles of regression trees learned by Mart [11] and λ-Mart [3,31] gradient
boosting algorithms. Since such ranking models are made of hundreds of addi-
tive regression trees, the tight constraints on query response time require suit-
able solutions able to provide an optimal trade-off between efficiency and ranking
quality [6]. Among the main contributions in the area of efficient ranking, we cite
the algorithms for the efficient traversal of tree ensembles [1,10,20,34]. Alterna-
tive methods are concerned with: i) strategies for pruning the ensemble during
or after the training phase [21,22,24], ii) budget-aware LtR algorithms [1,30],
and iii) end-to-end learning of multi-stage LtR pipelines [8,12]. Furthermore,
researchers investigated early termination heuristics aimed to reduce, on a doc-
ument or query-level basis, the cost of the ensemble traversal process without
(or minimally) impacting quality [4,5,25]. An analogous strategy was recently
proposed to reduce the computational cost of neural re-ranking based on bi-
directional transformer networks [32].

Previous work showed that SoC-FPGA devices can handle the complex com-
putation of LtR training algorithms and provide high computing efficiency with
low power consumption. Xu et al. describe the design of a FPGA accelerator for
a LtR algorithm to reduce training time [33]. Gao and Hsu evaluate a LtR algo-
rithm deployed on a FPGA and explore the design space of the implementation
choices [13]. Similar to our work, Qiang et al. present a fixed-point quantization
approach for LtR algorithms on FPGA [18]. Experimental results show that the
FPGA-based algorithm achieve a 4.42× speedup over a GPU implementation
but with 2% accuracy loss. Differently from these previous works focusing on
the offline, LtR training phase, we are interested in the online inference phase,
where the machine-learned model is deployed in a large infrastructure and used
under tight latency constraints. To the best of our knowledge, only Molina et al.
previously investigated this important aspect and highlighted the memory usage
on the FPGA device as the main issue limiting the computational performance.
This work addresses this limitation by exploiting binning and quantization to
compress the ranking model and the feature vectors.

3 Using Programmable Logic for Ranking

The features of current SoC-FPGA devices allow their adoption for high-
performance computing tasks such as inference under tight time constraints
where they can provide an efficient and energy-efficient solution. A SoC-FPGA
device integrates on the same chip a general-purpose Processing System (PS) and
a Programmable Logic (PL) unit. The PS includes a processor and a memory of
greater capacity than the memory available in the PL. The PL includes blocks
of memories (BRAM), control and logic components like the Flip Flop (FF) or
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Fig. 1. Hardware design inside the IP block of the FPGA device.

the LookUp Table (LUT). These components are used to implement Intellec-
tual Property (IP) blocks which actually execute the algorithms on the FPGA.
The amount of components available in the FPGA is limited and this limitation
in turn constrains the design and the deployment of the algorithm which usu-
ally involves a trade-off between processing speed and resource utilization. To
take full advantage of FPGA logic, we need to process data in parallel, possi-
bly avoiding jumps and recursive calls. To this end, High Level Synthesis (HLS)
tools are used to create hardware from a high-level description, using directives
to specify concurrency and pipelining opportunities. The HLS tool translates the
code to a Register Transfer Level (RTL) specification of the hardware and also
returns an estimation of execution latency and resource utilization. In this way,
the designer is able to broadly evaluate the performance of different implemen-
tation strategies before actually deploying them on the hardware. In this phase
the designer is also asked to detail the data communication occurring between
the PS and PL. To exploit SoC-FPGA characteristics for ranking, we rely on
QuickScorer (QS), the state-of-the-art algorithm for the traversal of large
tree ensembles [10,20]. QS exploits a representation of the tree ensemble based
entirely on linear arrays accessed with high locality. This characteristic permits a
very fast traversal of the tree ensemble at inference time by effectively exploiting
features and peculiarities of modern processors and memory hierarchies [17,23].

To estimate resource consumption and execution times several directives are
inserted in theQSC++ code. Unrolling techniques are used to parallelize the exe-
cution of loop constructs such as for, while, do...while, repeat. These loops can
be synthesized if and only if the loops bounds and the condition expression can
be calculated during compilation time. In other words, the condition expression
determining loop exiting cannot dynamically change at run-time. To tackle this
problem, the QS algorithm has been modified by removing any dynamic condi-
tion expression from the loops and by including additional if-else statements to
split the loops into sub-loops of fixed size which can be processed in parallel.

We propose a FPGA hardware design composed of a single Direct Memory
Transfer (DMA) and one IP block responsible for accelerating the QS algorithm.
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Both the IP and the DMA belong to the PL. In Fig. 1, we show how the QS
algorithm is replicated into different Processing Elements (PE) inside the IP
block to perform inference in parallel on different instances. To avoid off-chip
memory transactions, the input of the IP is a stream composed of batches of
instances (i.e., query-document feature vectors) to be predicted and the output
is a stream formed by the actual predictions (i.e., the query-document scores pro-
ducing the final ranking of the documents for a given query). We implement an
array demultiplexer and apply the ARRAY PARTITION directive to distribute
the input feature vectors among the PEs.

We also implement task-level pipelining, allowing functions and loops to
overlap in their operation, increasing the overall throughput of the design. The
PIPELINE directive optimizes the insertion (push) and extraction (pop) of data
from the stream. After inference, the final predictions are packed into an output
stream adding the corresponding control signals. The PIPELINE directive is also
used to speed-up the execution of the function admitting new inputs.

4 Ranking Model Compression

Ensembles of decision trees are among the most successful Machine Learning
(ML) models and the winning solutions in many ML competitions.1 However,
inference with ensemble-based models can be computationally expensive since it
requires the complete traversal of the tree ensemble, aimed at identifying all the
tree leaves contributing to the prediction. To this end, each tree of the ensemble
is visited from its root to a leaf by evaluating the splitting conditions (i.e.,
a test over a single feature with a learned threshold) associated with internal
nodes. The contributions of all the leaves reached (i.e., a class label in case of a
classification task or a numeric value in case of a regression task) are aggregated
to compute the final prediction. This process has a complexity proportional to
the number T of trees in the ensemble multiplied by the average depth d of
the decision trees. For document ranking, the use case considered in this paper,
typical LtR ensembles are made up of hundreds or even thousands of regression
trees usually having each from 5 to 9 levels (corresponding to a number of leaves
ranging from 32 to 512) [6]. For example, the winning solution of the Yahoo!
Learning to Rank challenge used a linear combination of 12 ranking models, 8 of
which were λ-Mart boosted tree models each composed of about 3,000 trees for
a total of 24,000 trees [7]. Since the traversal has to be repeated for each one of the
K candidate documents to be scored for a user query, we have that the per-query
ranking cost is proportional to T ·d ·K. Also the amount of memory needed for a
LtR ensemble is quite large even if we do not consider the data structures needed
to support the inference process. We can roughly estimate a lower bound for the
space required to store an ensemble by considering the compact representation
of each tree obtained by implicitly encoding its structure (parent/child nodes)
in a linear array using a breadth-first order. Internal nodes require 8 bits for the
feature identifier (assuming to have at most 256 features) and 32 bits for the
1 https://dataaspirant.com/xgboost-algorithm/.

https://dataaspirant.com/xgboost-algorithm/
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threshold value, summing up to 40 bits per node. Leaf nodes, on the other hand,
are usually represented with 32-bit floating-point values. In the LtR case, these
values represent the additive contribution of the specific tree to the ranking score
predicted for the query-document pair. Let us consider for example an ensemble
with T = 1, 000 and d = 9: its compact representation requires about 4.4 MB of
memory. Such size surely fits in the memory available on a low-cost FPGA device
but reducing the memory requirements provides an interesting opportunity to
fully exploit the FPGA logic and increase the number of inference tasks processed
concurrently. To this regard, in this work we investigate the use of two popular
techniques, namely binning and quantization, to lower the memory occupation
of ensemble models and to parallelize the inference on FPGA devices.

– Binning consists in bucketing continuous feature values into discrete bins and
representing each value with the index of its bin. It is commonly used to speed
up training [16], but, at the best of our knowledge its usage for model com-
pression at inference time has not been previously investigated. Specifically,
we used binning to encode each internal node of the trees with only 16 bits: 8
bits for the feature identifier and 8 bits for the identifier of the bin associated
with one of the possible 256 threshold values. Another advantage of binning
the thresholds is that it allows to represent similarly with only 8 bit instead
of 32 also the elements of the feature vectors representing the instances to be
predicted. The splitting condition in the internal nodes of each decision trees
moves than from feature[i] <= threshold to binned feature[i] <= bin, with
feature vectors values that can now be represented with a single byte storing
the bin identifier in place of 32 bits. Let us consider one of the LtR datasets
used for the experiments (Istella-S) where each query-document pair to be
predicted is represented by 220 real-valued features for a memory occupation
of 880 bytes. Binning these values into 256 bins results in a 3/4 reduction of
the space needed, thus impacting both the number of instances that can be
predicted in parallel on the FPGA and the cost of memory transfers.

– Quantization, on the other hand, consists in mapping continuous real values
into a discrete set of finite values. This technique is popular for example
to compress deep neural network models [14]. We apply quantization to the
leaf values of each tree of the ensemble, so as to further lower the memory
footprint. Specifically, we represent the 32-bits real value stored in each leaf
of the original model with a 8-bits unsigned integer by mapping the min/max
among the actual leaf values to the min/max in the range [0, 255]. This
reduces of 3/4 also the space needed for storing the leaves of the ensemble.

The combination of the above binning and quantization techniques permit to
represent the ensemble model previously mentioned by using only 1/3 of the
original space. In Sect. 5, we will show experimentally that such compression
does not introduce significant degradation in the resulting ranking effectiveness.
On the other hand, we will show the benefits of compression in lowering the
FPGA resources used and the data transmission time.
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5 Experiments

We evaluate the impact of the proposed binning and quantization techniques for
compressing ensemble models on two publicly available LtR datasets, namely
MSLR-WEB30K-F1 (Fold 1)2 [19], hereinafter simply abbreviated as MSN30K,
and Istella-S3 [22]. Both datasets contain more than 30K queries and about
3,5M query-document pairs, where each pair is represented with 136 features
on MSN30K and 220 features on Istella-S. The query-document pairs in both
datasets are labeled by relevance judgments ranging from 0 (irrelevant) to 4
(perfectly relevant). While the two datasets are comparable in size, they differ
in the proportion between positive (label > 0) and negative (label = 0) examples.
Indeed, in the MSN30K dataset about 48% of the documents are labeled with a
positive judgement, while in the Istella-S dataset this proportion lower to 11%.
The detailed characteristics of the two datasets are listed in Table 1.

Table 1. Characteristics of the two datasets used.

Dataset MSN30K Istella-S

queries 31,351 33,018

query-document pairs 3,771,125 3,408,630

features 136 220

positive examples 48.53% 11.39%

Each dataset is split in train, validation and test set according to a 60%-
20%-20% scheme. We use training and validation sets to train ensemble models
with the λ-Mart [3,31] algorithm, while the test set is used for evaluating the
performance of the model. The learning process of λ-Mart is controlled by sev-
eral hyper-parameters, some of them controlling the generalization power and
the training speed of the learning phase, while others controlling the shape of
the trees. Since our objective is to fasten the inference time by exploiting pro-
grammable SoC devices, which are limited in the amount of available resources,
we start by finding the most compact model providing state-of-the-art perfor-
mance, i.e., we investigate the optimal trade-off between model size and ranking
effectiveness. To this end, we performed several grid searches by varying the
hyper-parameters controlling the shape of the final model and allowing each
grid exploits the remaining ones. In particular, we varied the number of leaves
in {64, 128, 256, 512} by keeping fixed the maximum number of trees to 800. We
used the implementation of λ-Mart available in the LightGBM library [16] for
training and the HyperOpt library [2] for tuning the hyper-parameters. When
comparing the performance of different models, we also evaluated statistical sig-
nificance by using the randomization test with 10,000 permutations and p-value
≤ 0.05 [29].
2 http://research.microsoft.com/en-us/projects/mslr/.
3 http://quickrank.isti.cnr.it/istella-dataset/.

http://research.microsoft.com/en-us/projects/mslr/
http://quickrank.isti.cnr.it/istella-dataset/
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Table 2. Efficiency/effectiveness trade-off: NDCG@10 vs. model size in MB.

Dataset Model Version per-tree leaves

64 128 256 512

MSN30K Full Precision 0.524 (0.30) 0.526 (0.87) 0.527 (1.59) 0.528 (2.73)

Bin. + Quant. 0.524 (0.10) 0.526 (0.29) 0.527 (0.53) 0.528 (0.91)

Istella-S Full Precision 0.771 (0.44) 0.775 (0.87) 0.779 (1.74) 0.781 (3.38)

Bin.+ Quant. 0.770 (0.14) 0.776 (0.29) 0.779 (0.58) 0.782 (1.12)

5.1 Effectiveness Assessment

We report on the effectiveness of the resulting fine-tuned models on the MSN30K
and Istella-S datasets as a function of the size of the models, with and without
model compression. It is worth noting that only quantization can affect effec-
tiveness. Binning in fact, even if not exploited previously for model and feature
compression, is natively used by the LightGBM library to speed-up model train-
ing and has no impact on the quality of the model trained. Table 2 reports the
value of NDCG@10 [15] and the size in MB of the full precision and compressed
models trained on the two datasets. In terms of absolute effectiveness, the fine-
tuned model with 64 leaves achieves a NDCG@10 equal to 0.524 on MSN30K
(0.771 on Istella-S), while the best performing model with 512 leaves reaches 0.528
(0.781). We note that with a quality loss lower than 1% on MSN30K and 1.3%
on Istella-S the models with 64 leaves are about 9× smaller than the ones with
512 leaves. Thus, these models largely offer the best effectiveness/space trade-off
and are most suited for an efficient FPGA deployment in presence of strict mem-
ory constraints. By looking at the NDCG@10 values reported in each column of
the table, we see that the impact of quantization on the ranking performance
is limited. In most case we do not have differences in the NDCG@10 measured
on the test set and in all the cases the differences are not statistically signifi-
cant. To further investigate the impact of quantization on effectiveness, Fig. 2
reports the NDCG@10 of the ranking models with 64 leaves as a function of the
number of trees. Each one of the plots in the figure shows three curves: one for
the original, full precision models where the values associated with tree leaves
are represented as 32-bit floating point values, and two for models exploiting
quantization with 8 and 4-bit representations. The curves plotted confirm that
quantization using 8-bit representations does not introduce performance penalty
despite it permits to reduce of 4× the space needed for coding the leaves. On the
other hand, the models using 4-bit representations perform slightly worse than
the full precision ones, showing also a statistically significant difference. Consid-
ering the difficulties in working with binary representations smaller than a single
byte, hereinafter we will consider models with 64 leaves and 8-bit quantization
only. These fine-tuned models have 559 and 649 trees (out of the 800 maximum
trees), for the MSN30K and Istella-S datasets, respectively.
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MSN30K Istella-S

Fig. 2. Impact of quantization on NDCG@10 of λ-Mart models.

5.2 Efficiency Assessment

We assess the impact of the proposed binning and quantization techniques on the
efficiency of the scoring process by using two versions of QS: the original version
[20] and a new one supporting binned and quantized models. Both the versions
have been deployed on a high-end multi-core CPU and a SoC-FPGA device. The
multi-threaded CPU version [17] runs on a server machine running Ubuntu 20.04
LTS and equipped with two Intel Xeon CPU E5-2630 v3 clocked at 2.40 GHz,
120 GB of RAM. The CPU exploits three levels of cache: 32 KB + 32 KB of L1
cache (data + instructions), 256 KB of L2 cache, and 20,480 KB of L3 cache. The
code was compiled with GCC 7.5 with the -O3 optimization flag. We also imple-
mented the same two versions of QS on our SoC-FPGA device by using Vivado
HLS 2019.2.1 to directly convert the annotated and optimized C++ code into
Register Transfer Level (RTL) code for the FPGA logic.4 We tested the FPGA
implementation on a Zynq UltraScale+MPSoC ZCU102 device with a quad-
core ARM CortexTM-A53 processor, dual-core Cortex-R5 real-time processor
and Mali-400 MP2 graphics processing unit. The UltraScale FPGA consists of
a PS and a PL block integrated on a single die and running independently.

We present the efficiency achieved by our QS deployments on CPU and
FPGA for the MSN30K and Istella-S datasets in Table 3. Results are reported
in terms of per-instance average inference time measured in µsecs by varying
the replication factor (up to 12). In the case of the FPGA this indicates how
many times we replicate the PEs inside the IP block (see Fig. 1). For the CPU
implementation, it indicates instead the number of parallel threads used to pre-
dict the scores. In both cases the execution time is measured on the whole test

4 Code available at https://github.com/hpclab/model compression for ranking on
fpga.

https://github.com/hpclab/model_compression_for_ranking_on_fpga
https://github.com/hpclab/model_compression_for_ranking_on_fpga
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Table 3. Per-instance average inference time (µsec).

Dataset QS version Replication Factor

1 2 4 8 12

MSN30K FPGA-FP 944 502.8 252.4 - -

FPGA-BQ 10.8 9.1 4.4 3.3 3.1

CPU-FP 14.2 7.16 4.15 2.29 1.23

CPU-BQ 12.8 6.45 3.88 2.15 1.10

Istella-S FPGA-FP 1072 601.5 338.2 - -

FPGA-BQ 9.9 6.7 4.9 4.1 3.8

CPU-FP 17.5 8.79 5.13 2.87 1.34

CPU-BQ 16.1 8.11 4.71 2.63 1.24

set and then divided by the number of instances in the test set. The FPGA
Full-Precision version (FPGA-FP in Table 3), i.e., the one that do not exploit
binning and quantization, obtains an average instance scoring time of 252.4 µs
for the MSN30K and 269.2 µs for the Istella-S with 4 replicas. We are not able to
increase further the replication factor due to the over-utilization of the resources.
The model compression techniques detailed in Sect. 4 allow instead to increase
the number of replicas of the scoring logic up to 12. Moreover, the QS version
exploiting binning and quantization also improve significantly the inference time
due to the many optimizations introduced.

We report the results achieved with the optimized version (FPGA-BQ), which
includes loop unrolling and additional if-else statements splitting the QS loops
in fixed-size blocks of instructions processed in parallel by the FPGA hardware.
By introducing all these optimizations, QS shows a significantly improved aver-
age scoring time ranging from 10.8 to 3.1 µs for MSN30K and from 9.9 µs to 3.8
µs for Istella-S. In both cases with 12 replicas we measure a resource utilization
exceeding 82%. On the other side, the multi-threaded CPU version of QS that
uses binning and quantization (CPU-BQ) techniques also outperforms the ver-
sion implemented without these techniques (CPU-FP), thus proving that model
compression is advantageous even on traditional hardware. Overall, with 8 or
more threads running on different cores, the CPU-BQ version obtains lower scor-
ing time than the optimized FPGA-BQ version. However, these slightly higher
inference times are counterbalanced by a much lower power consumption as dis-
cussed in Sect. 5.4.

5.3 Data Transfer Assessment

The experimental evaluation reported in Table 3 does not include the time
needed to transfer data from the host machine performing the retrieval of the
candidate documents to the SoC-FPGA device aimed at re-ranking the list of
candidates to produce the final results. We experimentally evaluated the impact
of the data transfer by conducting additional tests with the MSN30K dataset on
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an instance of Amazon AWS EC2 F1 node equipped with Xilinx UltraScale+
VU9P FPGAs. These devices are in fact connected to the host machine via a ded-
icated PCIe Gen3 ×16 bus supporting data transfer with a maximum bandwidth
of up to 16 GB/s. We used the AWS instance above for running a simulation
measuring the actual bandwidth available when transferring: i) batches of query-
document feature vectors from the AWS Amazon EC2 node to the SoC-FPGA,
and ii) the resulting scores back from the FPGA to the server.

The result of this simulation shows that the PCIe interface connecting the
host machine and the SoC-FPGA device allows to transfer each vector of 136
features, represented with only 136 bytes thanks to our lossless binning tech-
nique, with an average latency of 0.24 µs. This latency, although very low, is
not an additional overhead to be included in the whole query processing sys-
tem. Indeed, in a real-world scenario the host device and the SoC-FPGA device
operate in pipeline. The host is aimed at retrieving candidate documents from
the index and computing query-document feature vectors. The FPGA is instead
responsible of inferring the final score to be assigned to each document by using
the compressed ensemble model and the QS algorithm. The two operations can
be easily pipelined. The resulting scores packed and returned back to the host
device can be managed in a similar way. All these query processing operations
can be thus overlapped during execution, and the final throughput is given by
the slower stage of the pipeline. Since the data transfer time is one order of
magnitude lower than the inference on the FPGA (0.24 µs � 3.1 µs) we can
conclude that the impact of transferring data from the host to the FPGA and
viceversa is negligible on the total latency in a real-world production system.

5.4 Energy Consumption Assessment

We present the results of our energy consumption analysis for running on CPU
and FPGA the inference task in Table 4. We report the results as the average
energy (in μJoule) spent by the QS algorithm for scoring one single instance.
For CPU implementations, we perform the analysis by employing the Mammut5

library [28]. We use Mammut to read the total energy consumption of the CPU
exposed by means of hardware energy counter registries available on Intel CPU
architectures. All energy measures obtained are discounted by the energy spent
by cores not used by the scoring process. For the FPGA implementation, we
employ the Maxim Power Tool USB-to-PMBus Interface Dongle.6 All energy
measures obtained include the energy spent by all components in the PS and
in the PL. The PL frequency is set at 200 MHz. Results in Table 4 show that
the FPGA-BQ deployment significantly reduces on both datasets the energy
consumption measured with respect to the CPU implementations. Specifically,
on FPGA we measure an energy consumption for inference that is from 9× up
to 19.8× lower than on the CPU. This large difference, consistent with measures

5 https://github.com/DanieleDeSensi/mammut.
6 https://www.maximintegrated.com/en/products/power/switching-regulators/

maxpowertool002.html.

https://github.com/DanieleDeSensi/mammut
https://www.maximintegrated.com/en/products/power/switching-regulators/maxpowertool002.html
https://www.maximintegrated.com/en/products/power/switching-regulators/maxpowertool002.html
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Table 4. Per-instance average energy consumption (μJoule).

Dataset QS version Replication Factor

1 2 4 8 12

MSN30K FPGA-BQ 37 35 16 14 13

CPU-BQ 492 316 239 180 173

Istella-S FPGA-BQ 31.1 22 17.2 17.6 16.9

CPU-BQ 616 398 294 224 217

reported in literature for other computing tasks [27], show that an accurate
design of the most demanding components of the ranking pipeline with FPGA
technology can impact significantly web-scale systems where energy is a major
source of cost.

6 Conclusions and Future Work

Modern programmable logic provide an interesting energy-aware alternative to
traditional servers for several high-performance tasks. In this paper we tackled
the exploitation of SoC-FPGA devices for demanding inference tasks based on
complex machine-learned models. We proposed to use binning and quantiza-
tion to compress additive ensemble of decision trees and increase the number of
inference tasks processed in parallel on the FPGA logic. The use case considered
was ad-hoc retrieval with fully-optimized LtR models, where finding the best
trade-off between accuracy and efficiency is definitely important. Reproducible
experiments show that our model compression techniques do not impact the pre-
diction accuracy in a statistically significant measure and that the deployment of
a ranking solution based on state-of-the-art algorithms on a low-cost SoC-FPGA
device achieves scoring times comparable to those measured on high-end multi-
core CPUs. We also showed that the data transfer supplied by the PCIe interface
connecting the FPGA to the host machine contribute with a negligible latency
with respect to the one of the scoring. On the other hand, the SoC-FPGA solu-
tion consumes one order of magnitude less energy in performing the inference.
This result can impact significantly large-scale systems where inference is a key
task and energy is a major source of cost.

As future work we will investigate the exploitation of SoC-FPGA architec-
tures in the design of optimized algorithms for other inference tasks possibly
benefiting from programmable logic. Specifically for the IR domain, we will study
the feasibility of this technology for neural ranking.
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Abstract. The goal of local citation recommendation is to recommend
a missing reference from the local citation context and optionally also
from the global context. To balance the tradeoff between speed and accu-
racy of citation recommendation in the context of a large-scale paper
database, a viable approach is to first prefetch a limited number of rel-
evant documents using efficient ranking methods and then to perform
a fine-grained reranking using more sophisticated models. In that vein,
BM25 has been found to be a tough-to-beat approach to prefetching,
which is why recent work has focused mainly on the reranking step.
Even so, we explore prefetching with nearest neighbor search among
text embeddings constructed by a hierarchical attention network. When
coupled with a SciBERT reranker fine-tuned on local citation recom-
mendation tasks, our hierarchical Attention encoder (HAtten) achieves
high prefetch recall for a given number of candidates to be reranked.
Consequently, our reranker requires fewer prefetch candidates to rerank,
yet still achieves state-of-the-art performance on various local citation
recommendation datasets such as ACL-200, FullTextPeerRead, RefSeer,
and arXiv.

Keywords: Local citation recommendation · Hierarchical attention ·
Document reranking

1 Introduction

Literature discovery, such as finding relevant scientific articles, remains challeng-
ing in today’s age of information overflow, largely arising from the exponential
growth in both the publication record [15] and the underlying vocabulary [13].
Assistance to literature discovery can be provided with automatic citation rec-
ommendation, whereby a query text without citation serves as the input to a
recommendation system and a paper worth citing as its output [9].

Citation recommendation can be dealt with either as a global retrieval prob-
lem [2,26,33] or as a local one [12,14,16]. In global citation recommendation,
the query text is composed of the title and the abstract of a source paper [2]. In
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Fig. 1. Overview of our two-stage local citation recommendation pipeline.

contrast, in local citation recommendation, the query consist of two sources of
contexts [12,24]: 1) the text surrounding the citation placeholder with the infor-
mation of the cited paper removed (the local context); and 2) the title and
abstract of the citing paper as the global context. The aim of local citation
recommendation is to find the missing paper cited at the placeholder of the local
context. In this paper we focus on local citation recommendation.

It is important for a local citation recommendation system to maintain a
balance between accuracy (e.g., recall of the target paper among the top K rec-
ommended papers) and speed in order to operate efficiently on a large database
containing millions of scientific papers. The speed-accuracy tradeoff can be flexi-
bly dealt with using a two-step prefetching-reranking strategy: 1) A fast prefetch-
ing model first retrieves a set of candidate papers from the database; 2) a more
sophisticated model then performs a fine-grained analysis of scoring candidate
papers and reordering them to result in a ranked list of recommendations. In
many recent studies [4,6,21,24], either (TF-IDF) [29] or BM25 [30] were used as
the prefetching algorithm, which were neither fine-tuned nor taken into consid-
eration when evaluating the recommendation performance.

In this paper, we propose a novel two-stage local citation recommendation
system (Fig. 1). In the prefetching stage, we make use of an embedding-based
paper retrieval system, in which a siamese text encoder first pre-computes a
vector-based embedding for each paper in the database. The query text is then
mapped into the same embedding space to retrieve the K nearest neighbors of
the query vector. To encode queries and papers of various lengths in a memory-
efficient way, we design a two-layer Hierarchical Attention-based text encoder
(HAtten) that first computes paragraph embeddings and then computes from
the paragraph embeddings the query and document embeddings using a self-
attention mechanism [34]. In the reranking step, we fine-tune the SciBERT [1]
to rerank the candidates retrieved by the HAtten prefetching model.

In addition, to cope with the scarceness of large-scale training datasets in
many domains, we construct a novel dataset that we distilled from 1.7 million
arXiv papers. The dataset consist of 3.2 million local citation sentences along
with the title and the abstract of both the citing and the cited papers. Exten-
sive experiments on the arXiv dataset as well as on previous datasets including
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ACL-200 [24], RefSeer [6,24], and FullTextPeerRead [16] show that our local cita-
tion recommendation system performs better on both prefetching and reranking
than the baseline and requires fewer prefetched candidates in the reranking step
thanks to higher recall of our prefetching system, which indicates that our system
strikes a better speed-accuracy balance.

In total, our main contributions are summarized as follows: 1) We propose a
competitive retrieval system consisting of a hierarchical-attention text encoder
and a fine-tuned SciBERT reranker. 2) In evaluations of the whole pipeline, we
demonstrate a well-balanced tradeoff between speed and accuracy. 3) We release
our code and a large-scale scientific paper dataset1 for training and evaluation
of production-level local citation recommendation systems.

2 Related Work

Local citation recommendation was previously addressed in He et al. [12] in
which a non-parametric probabilistic model was proposed to model the relevance
between the query and each candidate citation. In recent years, embedding-based
approaches [10,19] have been proposed to more flexibly capture the resem-
blance between the query and the target according to the cosine distance or
the Euclidean distance between their embeddings. Jeong et al. [16] proposed
a BERT-GCN model in which they used Graph Convolutional Networks [18]
(GCN) and BERT [5] to compute for each paper embeddings of the citation
graph and the query context, which they fed into a feed-forward network to esti-
mate relevance. The BERT-GCN model was evaluated on small datasets of only
thousands of papers, partly due to the high cost of computing the GCN, which
limited its scalability for recommending citations from large paper databases.
Although recent studies [4,6,21,24] adopted the prefetching-reranking strategy
to improve the scalability, the prefetch part (BM25 or TF-IDF) only served for
creating datasets for training and evaluating the reranking model, since the tar-
get cited paper was added manually if it was not retrieved by the prefetch model,
i.e. the recall of the target among the candidate papers was set to 1. Therefore,
these recommendation systems were evaluated in an artificial situation with an
ideal prefetching model that in reality does not exist.

Supervised methods for citation recommendation rely on the availability of
numerous labeled data for training. It is challenging to assemble a dataset for
local citation recommendation due to the need of parsing the full text of papers
to extract the local contexts and finding citations that are also available in
the dataset, which eliminates a large bulk of data. Therefore, existing datasets
on local citation recommendation are usually limited in size. For example, the
ACL-200 [24] and the FullTextPeerRead [16] contain only thousands of papers.
One of the largest datasets is RefSeer used in Medić and Šnajder [24], which
contains 0.6 million papers in total, but this dataset is not up-to-date as it
only contains papers prior to 2015. Although unarXive [31], a large dataset for
1 Our code and data are available at https://github.com/nianlonggu/Local-Citation-

Recommendation.

https://github.com/nianlonggu/Local-Citation-Recommendation
https://github.com/nianlonggu/Local-Citation-Recommendation
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citation recommendation, exists, this dataset does not meet the needs of our
task because: 1) papers in unarXive are not parsed in a structured manner.
For example, the abstract is not separated from the full text, which makes it
difficult to construct a global context in our experiments; 2) the citation context
is usually a single sentence containing a citation marker, even if the sentence
does not contain sufficient contextual information, e.g., “For details, see [#]”.
These caveats motivate the creation of a novel dataset of high quality.

3 Proposed Dataset

We create a new dataset for local citation recommendation using arXiv papers
contained in S2ORC [22], a large-scale scientific paper corpus. Each paper in
S2ORC has an identifier of the paper source, such as arXiv or PubMed. Using
this identifier, we first obtain all arXiv papers with available titles and abstracts.
The title and abstract of each paper are required because they are used as the
global context of a query from that paper or as a representation of the paper’s
content when the latter is a candidate to be ranked. From the papers we then
extract the local contexts by parsing those papers for which the full text is
available: For each reference in the full text, if the cited paper is also available
in the arXiv paper database, we replace the reference marker such as “[#]” or
“XXX et al.” with a special token such as “CIT”, and collect 200 characters
surrounding the replaced citation marker as the local context. Note that we
“cut off” a word if it lied on the 200-character boundary, following the setting
of the ACL-200 and the RefSeer datasets proposed in Medić and Šnajder [24].

Table 1. Statistics of the datasets for local citation recommendation.

Dataset
Number of local contexts Number of

papers publication years
Train Val Test

ACL-200 30, 390 9, 381 9, 585 19, 776 2009 – 2015
FullTextPeerRead 9, 363 492 6, 814 4, 837 2007 – 2017
RefSeer 3, 521, 582 124, 911 126, 593 624, 957 – 2014
arXiv (Ours) 2, 988, 030 112, 779 104, 401 1, 661, 201 1991 – 2020

Table 1 shows the statistics of the created arXiv dataset and the comparison
with existing datasets used in this paper. As the most recent contexts available
in the arXiv dataset is from April 2020, we use the contexts from 1991 to 2019
as the training set, the contexts from January 2020 to February 2020 as the
validating set, and the contexts from March 2020 to April 2020 as the test set.
The sizes of the arXiv training, validating, and testing sets are comparable to
RefSeer, one of the largest existing datasets, whereas our arXiv dataset contains
a much larger number of papers, and there are more recently published papers
available in the arXiv dataset. These features make the arXiv dataset a more
challenging and up-to-date test bench.
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4 Approach

Our two-stage telescope citation recommendation system is similar to that of
Bhagavatula et al. [2], composed of a fast prefetching model and a slower
reranking model.

4.1 Prefetching Model

The prefetching model scores and ranks all papers in the database to fetch a
rough initial subset of candidates. We designed a representation-focused ranking
model [11] that computes a query embedding for each input query and ranks
each candidate document according to the cosine similarity between the query
embedding and the pre-computed document embedding.

Transformer Encoder Layer

Multi-Head Pooling

Paragraph tokens

Positional Encoding

Word Embedding

paragraph
embedding

(a) Paragraph Encoder.

Multi-Head Pooling

document
embedding

Type 
of
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Type Embedd-
ing Matrix

(b) Document Encoder.

Fig. 2. The Hierarchical-Attention text encoder (HAtten) used in the prefetching step
is composed of a paragraph encoder (a) and a document encoder (b).

The core of the prefetching model is a light-weight text encoder that effi-
ciently computes the embeddings of queries and candidate documents. As shown
in Fig. 2, the encoder processes each document or query in a two-level hierarchy,
consisting of two components: a paragraph encoder and a document encoder.

Paragraph Encoder. For each paragraph pi in the document, the paragraph
encoder (Fig. 2a) takes as input the token sequence pi = [w1, . . . , wni ] composed
of ni tokens (words) to output the paragraph embedding epi

as a single vec-
tor. In order to incorporate positional information of the tokens, the paragraph
encoder makes use of positional encoding. Contextual information is encoded
with a single transformer encoder layer following the configuration in Vaswani
et al. [34], Fig. 2a. To obtain a single fixed-size embedding ep from a variably
sized paragraph, the paragraph encoder processes the output of the transformer
encoder layer with a multi-head pooling layer [20] with trainable weights. Let
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xk ∈ R
d be the output of the transformer encoder layer for token wk in a para-

graph pi. For each head j ∈ {1, . . . , nhead} in the multi-head pooling layer, we
first compute a value vector vj

k ∈ R
d/nhead as well as an attention score âj

k ∈ R

associated with that value vector:

vj
k = Linearjv(xk), aj

k = Linearja(xk), âj
k =

exp aj
k∑ntoken

m=1 exp aj
m

, (1)

where Linear() denotes a trainable linear transformation. The weighted value
vector v̂j then results from the sum across all value vectors weighed by their
corresponding attention scores: v̂j =

∑npar
m=1 âj

mvj
m. The final paragraph embed-

ding ep is constructed from the weighted value vectors v̂j of all heads by a ReLU
activation [25] followed by a linear transformation:

ep = Linearp(ReLU(Concat(v̂1, . . . , v̂nhead))). (2)

Document Encoder. In order to encode documents with two fields given by
the title and the abstract, or to encode queries given by three fields: the local
context, the title, and the abstract of the citing paper, we treat each field (local
context, title, and abstract) as a paragraph. For a document of npar paragraphs
d = [p1, . . . , pnpar ], we first compute the embeddings of all paragraphs pi.

Not all fields and paragraphs are treated equally in our document encoder.
To allow the document encoder to distinguish between fields, we introduce a
paragraph type variable, which refers to the field type from which the paragraph
originates. We distinguish between three paragraph types: the title, the abstract,
and the local context. Each type is associated with a learnable type embedding
that has the same dimension as the paragraph embedding. Inspired by the BERT
model [5], we produce a type-aware paragraph embedding by adding the type
embedding of the given paragraph to the corresponding paragraph embedding
(Fig. 2b). All type-aware paragraph embeddings are then fed into a transformer
encoder layer followed by a multi-head pooling layer (of identical structures as
the ones in the paragraph encoder), which then results in the final document
embedding ed.

Prefetched Document Candidates. The prefetched document candidates
are found by identifying the K nearest document embeddings to the query
embedding in terms of cosine similarity. The ranking is performed using a brute-
force nearest neighbor search among all document embeddings as shown in Fig. 1.

4.2 Reranking Model

The reranking model performs a fine-grained comparison between a query q (con-
sisting of a local and a global context) and each prefetched document candidate
(its title and the abstract). The relevance scores of the candidates constitute the
final output of our model. We design a reranker based on SciBERT [1], which is
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Fig. 3. Structure of our SciBERT Reranker.

a BERT model [5] trained on a large-scale corpus of scientific articles. The input
of the SciBERT reranker has the following format: “[CLS] Sentence A [SEP]
Sentence B”, where sentence A is the concatenation of the global context (title
and abstract of the citing paper) and the local context of the query, and sentence
B is the concatenation of the title and the abstract of the candidate paper to be
scored, Fig. 3. The SciBERT-encoded vector for the “[CLS]” token is then fed
into a feed-forward network that outputs the relevance score s ∈ [0, 1] provided
via a sigmoid function.

4.3 Loss Function

We use a triplet loss both to train our HAtten text encoder for prefetching and
to finetune the SciBERT reranker. The triplet loss is based on the similarity
s(q, d) between the query q and a document d. For the prefetching step, s(q, d)
is given by the cosine similarity between the query embedding vq and the docu-
ment embedding vd, both computed with the HAtten encoder. For the reranking
step, s(q, d) is given by the relevance score computed by the SciBERT reranker.
In order to maximize the relevance score between the query q and the cited doc-
ument d+ (the positive pair (q, d+)) and to minimize the score between q and
any non-cited document d (a negative pair (q, d )), we minimize the triplet loss:

L = max[s(q, d ) − s(q, d+) + m, 0] (3)

where the margin m > 0 sets the span over which the loss is sensitive to the
similarity of negative pairs.

For fast convergence during training, it is important to select effective triplets
for which L in Eq. (3) is non-zero [32], which is particularly relevant for the
prefetching model, since for each query there is only a single positive document
but millions of negative documents (e.g., on the arXiv dataset). Therefore, we
employ negative and positive mining strategies to train our HAtten encoder,
described as follows.

Negative Mining. Given a query q, we use HAtten’s current checkpoint to
prefetch the top Kn candidates excluding the cited paper. The HAtten embed-
ding of these prefetched non-cited candidates have high cosine similarity to the
HAtten embedding of the query. To increase the similarity between the query
and the cited paper while suppressing the similarity between the query and these
non-cited candidates, we use the cited paper as the positive document and select
the negative document from these Kn overly similar candidates.
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Positive Mining. Among the prefetched non-cited candidates, the documents
with objectively high textual similarity (e.g. measured by word overlapping, such
as the Jaccard index [2]) to the query were considered relevant to the query, even
if they were not cited. These textually relevant candidate documents should
have a higher cosine similarity to the query than randomly selected documents.
Therefore, in parallel with the negative mining strategy, we also select posi-
tive documents from the set of textually relevant candidates and select negative
documents by random sampling from the entire dataset.

The checkpoint of the HAtten model is updated every Niter training itera-
tions, at which point the prefetched non-cited and the textually relevant candi-
dates for negative and positive mining are updated as well.

In contrast, when fine-tuning SciBERT for reranking, the reranker only needs
to rerank the top Kr prefetched candidates. This allows for a simpler triplet
mining strategy, which is to select the cited paper as the positive document and
randomly selecting a prefetched non-cited papers as the negative document.

5 Experiments

Implementation Details. In the prefetching step, we used as word embeddings
of the HAtten text encoder the pre-trained 200-dimensional GloVe embeddings
[28], which were kept fixed during training. There are 64 queries in a mini-batch,
each of which was accompanied by 1 cited paper, 4 non-cited papers randomly
sampled from the top Kn = 100 prefetched candidates, and 1 randomly sampled
paper from the whole database, which allow us to do negative and positive
mining with the mini-batch as described in Sect. 4.3. The HAtten’s checkpoint
was updated every Niter = 5000 training iterations.

In the reranking step, we initialized the SciBERT reranker with the pre-
trained model provided in Beltagy et al. [1]. The feed-forward network in Fig. 3
consisting of a single linear layer was randomly initialized. Within a mini-batch
there was 1 query, 1 cited paper (positive sample), and 62 documents (nega-
tive samples) randomly sampled from the top Kr = 2000 prefetched non-cited
documents. In the triplet loss function the margin m was set to 0.1.

We used the Adam optimizer [17] with β1 = 0.9 and β2 = 0.999. In the
prefetching step, the learning rate was set to α = 1e−4 and the weight decay
to 1e−5, while in the reranking step these were set to 1e−5 and to 1e−2 for
fine-tuning SciBERT, respectively. The models were trained on eight NVIDIA
GeForce RTX 2080 Ti 11 GB GPUs and tested on two Quadro RTX 8000 GPUs.

Evaluation Metrics. We evaluated the recommendation performance using
the Mean Reciprocal Rank (MRR) [35] and the Recall@K (R@K for short),
consistent with previous work [8,16,24]. The MRR measures the reciprocal rank
of the actually cited paper among the recommended candidates, averaged over
multiple queries. The R@K evaluates the percentage of the cited paper appearing
in the top K recommendations.
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Baselines. In the prefetching step, we compare our HAtten with the following
baselines: BM25, Sent2vec [27], and NNSelect [2]. BM25 was used as the prefetch-
ing method in previous works [6,21,24]. Sent2vec is an unsupervised text encoder
which computes a text embedding by averaging the embeddings of all words in
the text. We use the 600-dim Sent2vec pretrained on Wikipedia. NNSelect [2]
computes text embeddings also by averaging, and the trainable parameters are
the magnitudes of word embeddings that we trained on each dataset using the
same training configuration as our HAtten model.

In the reranking step, we compare our fine-tuned SciBERT reranker with
the following baselines: 1) a Neural Citation Network (NCN) with an encoder-
decoder architecture [6,7]; 2) DualEnh and DualCon [24] that score each can-
didate using both semantic information and bibliographic information and 3)
BERT-GCN [16]. Furthermore, to analyze the influence on ranking performance
of diverse pretraining corpuses for BERT, we compared our SciBERT reranker
with a BERT reranker that was pretrained on a non-science specific corpus [5]
and then fine-tuned on the reranking task.

For a fair performance comparison of our reranker with those of other works,
we adopted the prefetching strategies from each of these works. On ACL-200
and RefSeer, we tested our SciBERT reranker on the test sets provided in Medić
and Šnajder [24]. For each query in the test set, we prefetched n (n = 2000
for ACL-200 and n = 2048 for RefSeer) candidates using BM25, and manually
added the cited paper as candidate if it was not found by BM25. In other words,
we constructed our test set using an “oracle-BM25” with R@n = 1. On the
FullTextPeerRead dataset, we used our SciBERT reranker to rank all papers in
the database without prefetching, in line with the setting in BERT-GCN [16].
On our newly proposed arXiv dataset, we fetched the top 2000 candidates for
each query in the test set using the “oracle-BM25” as introduced above.

6 Results and Discussion

In this section, we first present the evaluation results of our prefetching and
reranking models separately and compare them with baselines. Then, we evaluate
the performance of the entire prefetching-reranking pipeline, and analyze the
influence of the number of prefetched candidates to be reranked on the overall
recommendation performance.

6.1 Prefetching Results

Our HAtten model significantly outperformed all baselines (including the strong
baseline BM25, Table 2) on the ACL-200, RefSeer and the arXiv datasets, eval-
uated in terms of MRR and R@K. We observed that, first, for larger K, such as
K = 200, 500, 1000, 2000, the improvement of R@K with respect to the baselines
is more pronounced on all four datasets, where the increase is usually larger than
0.1, which means that the theoretical upper bound of the final reranking recall
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will be higher when using our HAtten prefetching system. Second, the improve-
ments of R@K on large datasets such as RefSeer and arXiv are more prominent
than on small datasets such as ACL-200 and FullTextPeerRead, which fits well
with the stronger need of a prefetching-reranking pipeline on large datasets due
to the speed-accuracy tradeoff.

Table 2. Prefetching performance. For Tables 2, 3 and 4, the asterisks “*” indicate
statistical significance (p < 0.05) in comparison with the closest baseline in a t-test.

The red color indicates a large (> 0.8) Cohen’s d effect size [3].

Dataset Model avg. prefetch time (ms) MRR R@10 R@100 R@200 R@500 R@1000 R@2000

ACL-200

BM25 9.9± 20.1 0.138 0.263 0.520 0.604 0.712 0.791 0.859
Sent2vec 1.8± 19.5 0.066 0.127 0.323 0.407 0.533 0.640 0.742
NNSelect 1.8± 3.8 0.076 0.150 0.402 0.498 0.631 0.722 0.797
HAtten 2.7± 3.8 0.148* 0.281* 0.603* 0.700* 0.803* 0.870* 0.924*

FullText-
PeerRead

BM25 5.1± 18.6 0.185* 0.328* 0.609 0.694 0.802 0.877 0.950
Sent2vec 1.7± 19.6 0.121 0.215 0.462 0.561 0.694 0.794 0.898
NNSelect 1.7± 4.8 0.130 0.255 0.572 0.672 0.790 0.869 0.941
HAtten 2.6± 4.9 0.167 0.306 0.649* 0.750* 0.870* 0.931* 0.976*

RefSeer

BM25 216.2± 84.9 0.099 0.189 0.398 0.468 0.561 0.631 0.697
Sent2vec 6.0± 20.9 0.061 0.111 0.249 0.306 0.389 0.458 0.529
NNSelect 4.3± 5.5 0.044 0.080 0.197 0.250 0.331 0.403 0.483
HAtten 6.2± 7.3 0.115* 0.214* 0.492* 0.589* 0.714* 0.795* 0.864*

arXiv

BM25 702.2± 104.7 0.118 0.222 0.451 0.529 0.629 0.700 0.763
Sent2vec 11.3± 13.6 0.072 0.131 0.287 0.347 0.435 0.501 0.571
NNSelect 6.9± 4.6 0.042 0.079 0.207 0.266 0.359 0.437 0.520
HAtten 8.0± 4.5 0.124* 0.241* 0.527* 0.619* 0.734* 0.809* 0.871*

The advantage of our HAtten model is also reflected in the average prefetch-
ing time. As shown in Table 2, the HAtten model shows faster prefetching than
BM25 on large datasets such as RefSeer and arXiv. This is because for HAtten,
both text encoding and embedding-based nearest neighbor search can be accel-
erated by GPU computing, while BM252 benefits little from GPU acceleration
because it is not vector-based. Although other embedding-based baselines such
as Sent2vec and NNSelect also exhibit fast prefetching, our HAtten prefetcher
has advantages in terms of both speed and accuracy.

6.2 Reranking Results

As shown in Table 3, the SciBERT reranker significantly outperformed previous
state-of-the-art models on the ACL-200, the RefSeer, and the FullTextPeerRead
datasets. We ascribe this improvement to BERT’s ability of capturing the seman-
tic relevance between the query text and the candidate text, which is inherited
from the “next sentence prediction” pretraining task that aims to predict if two
sentences are consecutive. The SciBERT reranker also performed significantly

2 We implemented the Okapi BM25 [23], with k = 1.2, b = 0.75.
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better than its BERT counterpart, suggesting that large language models pre-
trained on scientific papers’ corpus are advantageous for citation reranking.

Table 3. Comparison of reranking performance on four datasets.

Model
ACL-200 FullTextPeerRead RefSeer arXiv

MRR R@10 MRR R@10 MRR R@10 MRR R@10

NCN - - - - 0.267 0.291 - -
DualCon 0.335 0.647 - - 0.206 0.406 - -
DualEnh 0.366 0.703 - - 0.280 0.534 - -
BERT-GCN - - 0.418 0.529 - - - -
BERT Reranker 0.482 0.736 0.458 0.706 0.309 0.535 0.226 0.399
SciBERT Reranker 0.531* 0.779* 0.536* 0.773* 0.380* 0.623* 0.278* 0.475*

6.3 Performance of Entire Recommendation Pipeline

Table 4. The performance of the entire prefetching-reranking pipeline, measured in
terms of R@10 of the final reranked document list. We varied the number of prefetched
candidates for reranking. For the RefSeer and arXiv datasets, we evaluated performance
on a subset of 10K examples from the test set due to computational resource limitations.

Dataset
Recommendation Pipeline Number of reranked candidates
Prefetch Rerank 100 200 500 1000 2000

ACL-200
BM25 SciBERTBM25 0.457 0.501 0.549 0.577 0.595
HAtten SciBERTHAtten 0.513* 0.560* 0.599* 0.619* 0.633*

FullText-
PeerRead

BM25 SciBERTBM25 0.527 0.578 0.639 0.680 0.720
HAtten SciBERTHAtten 0.586* 0.651* 0.713* 0.739* 0.757*

RefSeer
BM25 SciBERTBM25 0.305 0.332 0.365 0.380 0.383
HAtten SciBERTHAtten 0.362* 0.397* 0.428* 0.443* 0.454*

arXiv
BM25 SciBERTBM25 0.333 0.357 0.377 0.389 0.391
HAtten SciBERTHAtten 0.374* 0.397* 0.425* 0.435* 0.439*

The evaluation in Sect. 6.2 only reflects the reranking performance because the
prefetched candidates are obtained by an oracle-BM25 that guarantees inclu-
sion of the cited paper among the prefetched candidates, even though such an
oracle prefetching model does not exist in reality. Evaluating recommendation
systems in this context risks overestimating the performance of the reranking
part and underestimating the importance of the prefetching step. To better
understand the recommendation performance in real-world scenarios, we com-
pared two pipelines: 1) BM25 prefetching + SciBERT reranker fine-tuned on
BM25-prefetched candidates, denoted as SciBERTBM25; 2) HAtten prefetching
+ SciBERTHAtten reranker fine-tuned on HAtten-prefetched candidates. We eval-
uated recommendation performance by R@10 of the final reranked document list
and monitored the dependence of R@10 on the number of prefetched candidates
for reranking.
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Fig. 4. The reranking time of the SciBERT reranker linearly increases with the number
of reranked candidates Kr, tested on arXiv. In comparison, the prefetching time is
invariant of Kr, as the prefetcher always scores and ranks all documents in the database
to fetch the candidates to be reranked.

As shown in Table 4, the HAtten-based pipeline achieves competitive perfor-
mance, even when compared with the oracle prefetching model in Sect. 6.2. In
particular, on the FullTextPeerRead dataset, using our HAtten-based pipeline,
we only need to rerank 100 prefetched candidates to outperform the BERT-GCN
model (Table 3) that reranked all 4.8k papers in the database.

Compared to the BM25-based pipeline, our HAtten-based pipeline achieves
significantly higher R@10 for any given number of prefetched candidates. Our
reranker needs to rerank only 200 to 500 candidates to match the recall score of
the BM25-based pipeline needing to rerank 2000 candidates. For large datasets
like RefSeer and arXiv, such improvements are even more pronounced. Our
pipeline achieves a much higher throughput. For example, on the arXiv dataset,
in order to achieve an overall R@10 = 0.39, the BM25-based pipeline takes 0.7 s
(Table 2) to prefetch 2000 candidates and it takes another 13.4 s (Fig. 4) to rerank
them, which in total amounts to 14.1 s. In contrast, the HAtten-based pipeline
only takes 8 ms to prefetch 200 candidates and 1.4 s to rerank them, which
amounts to 1.4 s. This results in a 90% reduction of overall recommendation
time achieved by our pipeline.

These findings provide clear evidence that a better-performing prefetching
model is critical to a large-scale citation recommendation pipeline, as it allows
the reranking model to rerank fewer candidates while maintaining recommenda-
tion performance, resulting in a better speed-accuracy tradeoff.

7 Conclusion

The speed-accuracy tradeoff is crucial for evaluating recommendation systems in
real-world settings. While reranking models have attracted increasing attention
for their ability to improve recall and MRR scores, in this paper we show that it is
equally important to design an efficient and accurate prefetching system. In this
regard, we propose the HAtten-SciBERT recommendation pipeline, in which our
HAtten model effectively prefetches a list of candidates with significantly higher
recall than the baseline, which allows our fine-tuned SciBERT-based reranker to
operate on fewer candidates with better speed-accuracy tradeoff. Furthermore,
by releasing our large-scale arXiv-based dataset, we provide a new testbed for
research on local citation recommendation in real-world scenarios.
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Abstract. E-commerce provides rich multimodal data that is barely
leveraged in practice. One aspect of this data is a category tree that is
being used in search and recommendation. However, in practice, during
a user’s session there is often a mismatch between a textual and a visual
representation of a given category. Motivated by the problem, we intro-
duce the task of category-to-image retrieval in e-commerce and propose a
model for the task, CLIP-ITA. The model leverages information from mul-
tiple modalities (textual, visual, and attribute modality) to create product
representations. We explore how adding information from multiple modal-
ities (textual, visual, and attribute modality) impacts the model’s perfor-
mance. In particular, we observe that CLIP-ITA significantly outperforms
a comparable model that leverages only the visual modality and a compa-
rable model that leverages the visual and attribute modality.

Keywords: Multimodal retrieval · Category-to-image retrieval ·
E-commerce

1 Introduction

Multimodal retrieval is a major but understudied problem in e-commerce [33].
Even though e-commerce products are associated with rich multi-modal infor-
mation, research currently focuses mainly on textual and behavioral signals
to support product search and recommendation. The majority of prior work
in multimodal retrieval for e-commerce focuses on applications in the fash-
ion domain, such as recommendation of fashion items [21] and cross-modal
fashion retrieval [6,14]. In the more general e-commerce domain, multimodal
retrieval has not been explored that well yet [10,18]. The multimodal problem
on which we focus is motivated by the importance of category information in
e-commerce. Product category trees are a key component of modern e-commerce
as they assist customers when navigating across large and dynamic product cat-
alogues [13,30,36]. Yet, the ability to retrieve an image for a given product
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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category remains a challenging task mainly due to noisy category and product
data, and the size and dynamic character of product catalogues [17,33].

The Category-to-Image Retrieval Task. We introduce the problem of
retrieving a ranked list of relevant images of products that belong to a given
category, which we call the category-to-image retrieval task. Unlike image clas-
sification tasks that operate on a predefined set of classes, in the CtI retrieval
task we want to be able not only to understand which images belong to a given
category but also to generalize towards unseen categories. Consider the category
“Home decor.” A CtI retrieval should output a ranked list of k images retrieved
from the collection of images that are relevant to the category, which could be
anything from images of carpets to an image of a clock or an arrangement of dec-
orative vases. Use cases that motivate the CtI retrieval task include (1) the need
to showcase different categories in search and recommendation results [13,30,33];
(2) the task can be used to infer product categories in the cases when product
categorical data is unavailable, noisy, or incomplete [39]; and (3) the design of
cross-categorical promotions and product category landing pages [24].

The CtI retrieval task has several key characteristics:(1) we operate with
categories from non-fixed e-commerce category trees, which range from very
general (such as “Automative” or “Home & Kitchen”) to very specific ones
(such as “Helmet Liners” or “Dehumidifiers”). The category tree is not fixed,
therefore, we should be able to generalize towards unseen categories; and (2)
product information is highly multimodal in nature; apart from category data,
products may come with textual, visual, and attribute information.

A Model for CtI Retrieval. To address the CtI retrieval task, we propose a
model that leverages image, text, and attribute information, CLIP-ITA. CLIP-
ITA extends upon Contrastive Language-Image Pre-Training (CLIP) [26]. CLIP-
ITA extends CLIP with the ability to represent attribute information. Hence,
CLIP-ITA is able to use textual, visual, and attribute information for product
representation. We compare the performance of CLIP-ITA with several baselines
such as unimodal BM25, bimodal zero-shot CLIP, and MPNet [29]. For our
experiments, we use the XMarket dataset that contains textual, visual, and
attribute information of e-commerce products [2].

Research Questions and Contributions. We address the following research
questions: (RQ1) How do baseline models perform on the CtI retrieval task?
Specifically, how do unimodal and bi-modal baseline models perform? How does
the performance differ w.r.t. category granularity? (RQ2) How does a model,
named CLIP-I, that uses product image information for building product repre-
sentations impact the performance on the CtI retrieval task? (RQ3) How does
CLIP-IA, which extends CLIP-I with product attribute information, perform on
the CtI retrieval task? (RQ4) And finally, how does CLIP-ITA, which extends
CLIP-IA with product text information, perform on the CtI task?

Our main contributions are: (1) We introduce the novel task of CtI retrieval
and motivate it in terms of e-commerce applications. (2) We propose CLIP-ITA,
the first model specifically designed for this task. CLIP-ITA leverages multimodal
product data such as textual, visual, and attribute data. On average, CLIP-ITA
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outperforms CLIP-I on all categories by 217% and CLIP-IA by 269%. We share
our code and experimental settings to facilitate reproducibility of our results.1

2 Related Work

Learning Multimodal Embeddings. Contrastive pre-training has been shown
to be highly effective in learning joined embeddings across modalities [26]. By pre-
dicting the correct pairing of image-text tuples in a batch, the CLIP model can
learn strong text and image encoders that project to joint space. This approach
to learning multimodal embeddings offers key advantages over approaches that
use manually assigned labels as supervision: (1) the training data can be collected
without manual annotation; real-world data in which image-text pairs occur can
be used; (2) models trained in this manner learn more general representations that
allow for zero-shot prediction. These advantages are appealing for e-commerce, as
most public multimodal e-commerce datasets primarily focus on fashion only [2];
being able to train from real-world data avoids the need for costly data annotation.

We build on CLIP by extending it to category-product pairs, taking advan-
tage of its ability to perform zero-shot retrieval for a variety semantic concepts.

Multimodal Image Retrieval. Early work in image retrieval grouped images
into a restricted set of semantic categories and allowed users to retrieve images
by using category labels as queries [28]. Later work allowed for a wider variety
of queries ranging from natural language [11,34], to attributes [23], to combina-
tions of multiple modalities (e.g., title, description, and tags) [32]. Across these
multimodal image retrieval approaches we find three common components: (1)
an image encoder, (2) a query encoder, and (3) a similarity function to match
the query to images [7,26]. Depending on the focus of the work some components
might be pre-trained, whereas the others are optimized for a specific task.

In our work, we rely on pre-trained image and text encoders but learn a new
multimodal composite of the query to perform CtI retrieval.

Multimodal Retrieval in E-Commerce. Prior work on multimodal retrieval
in e-commerce has been mainly focused on cross-modal retrieval for fashion [6,16,
42]. Other related examples include outfit recommendation [15,19,21] Some prior
work on interpretability for fashion product retrieval proposes to leverage multi-
modal signals to improve explainability of latent features [20,38]. Tautkute et al.
[31] propose a multimodal search engine for fashion items and furniture. When it
comes to combining signals for improving product retrieval, Yim et al. [40] propose
to combine product images, titles, categories, and descriptions to improve prod-
uct search, Yamaura et al. [37] propose an algorithm that leverages multimodal
product information for predicting a resale price of a second-hand product.

Unlike prior work on multimodal retrieval in e-commerce that mainly focuses
on fashion data, we focus on creating multimodal product representations for the
general e-commerce domain.

1 https://github.com/mariyahendriksen/ecir2022 category to image retrieval.

https://github.com/mariyahendriksen/ecir2022_category_to_image_retrieval
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Fig. 1. Overview of CLIP-ITA. The category encoding pipeline is in purple; the cat-
egory information pipeline in green; fsim is a cosine similarity function. (Color figure
online)

3 Approach

Task Definition. We follow the same notation as in [41]. The input dataset
can be presented as category-product pairs (xc,xp), where xc represents a prod-
uct category, and xp represents information about product that belong to the
category xc. The product category xc is taken from the category tree T and is
represented as a category name. The product information comprises titles xt,
images xi, and attributes xi, i.e., xp = {xi,xt,xa}.

For the CtI retrieval task, we use the target category name xc as a query and
we aim to refturn a ranked list of top-k images that belong to the category xc.

CLIP-ITA. Figure 1 provides a high-level view of CLIP-ITA. CLIP-ITA
projects category xc and product information xp into a d-dimensional multi-
modal space where the resulting vectors are respectively c and p. The category
and product information is processed by a category encoding pipeline and prod-
uct information encoding pipeline. The core components of CLIP-ITA are the
encoding and projection modules. The model consists out of four encoders: a
category encoder, an image encoder, a title encoder, and an attribute encoder.
Besides, CLIP-ITA comprises two non-linear projection heads: the category pro-
jection head and the multimodal projection head.

While several components of CLIP-ITA are based on CLIP [26], CLIP-ITA
differs from CLIP in three important ways: (1) unlike CLIP, which operates on
two encoders (textual and visual), CLIP-ITA extends CLIP towards a category
encoder, image encoder, textual encoder, and attribute encoder; (2) CLIP-ITA
features two projection heads, one for the category encoding pipeline, and one
for the product information encoding pipeline; and (3) while CLIP is trained on
text-image pairs, CLIP-ITA is trained on category-product pairs, where product
representation is multimodal.

Category Encoding Pipeline. The category encoder (fc) takes as input cat-
egory name xc and returns its representation hc. More specifically, we pass the
category name xc through the category encoder fc:

hc = fc(xc). (1)

To obtain this representation, we use pre-trained MPNet model [29]. After pass-
ing category information through the category encoder, we feed it to the category
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projection head. The category projection head (gc) takes as input a query repre-
sentation hc and projects it into d-dimensional multi-modal space:

c = gc(hc), (2)

where c ∈ R
d.

Product Encoding Pipeline. The product information encoding pipeline rep-
resents three encoders, one for every modality, and a product projection head.
The image encoder (fi) takes as input a product image xi aligned with the
category xc. Similarly to the category processing pipeline, we pass the product
image xi through the image encoder:

hi = fi(xi). (3)

To obtain the image representation hi, we use pre-trained Vision Transformer
from CLIP model. The title encoder (ft) takes a product title xt as input and
returns a title representation ht:

ht = ft(xt). (4)

Similarly to the category encoder fc, we use pre-trained MPNet to obtain the
title representation ht. The attribute encoder (fa) is a network that takes as input
a set of attributes xa = {a1, a2, . . . , an} and returns their joint representation:

ha = fa(xa) =
1
n

n∑

i=1

fa(xai). (5)

Similarly to the category encoder fc and title encoder ft, we obtain represen-
tation of each attribute with the pre-trained MPNet model. After obtaining
title, image and attribute representations, we pass the representations into the
product projection head. The product projection head (gp) takes as input a con-
catenation of the image representation hi, title representation ht, and attribute
representation ha and projects the resulting vector hp = concat(hi,ht,ha) into
multimodal space:

p = gp(hp) = gp(concat(hi,ht,ha)), (6)

where p ∈ R
d.

Loss Function. We train CLIP-ITA using bidirectional contrastive loss [41].
The loss is a weighted combination of two losses: a category-to-product con-
trastive loss and a product-to-category contrastive loss. In both cases the loss
is the InfoNCE loss [25]. Unlike prior work that focuses on a contrastive loss
between inputs of the same modality [3,8] and on corresponding inputs of two
modalities [41], we use the loss to work with inputs from textual modality (cate-
gory representation) vs. a combination of multiple modalities (product represen-
tation). We train CLIP-ITA on batches of category-product pairs (xc,xp) with



294 M. Hendriksen et al.

batch size β. For the j-th pair in the batch, the category-to-product contrastive
loss is computed as follows:

�
(c→p)
j = − log

exp(fsim(cj ,pj)/τ)
∑β

k=1 exp(fsim(cj ,pk)/τ)
, (7)

where fsim(ci,pi) is the cosine similarity, and τ ∈ R
+ is a temperature param-

eter. Similarly, the product-to-category loss is computed as follows:

�
(p→c)
j = − log

exp(fsim(pj , cj)/τ)
∑β

k=1 exp(fsim(pj , ck)/τ)
. (8)

The resulting contrastive loss is a combination of the two above-mentioned losses:

L =
1
β

β∑

j=1

(
λ�

(p→c)
j + (1 − λ)�(c→p)

j

)
, (9)

where β represents the batch size and λ ∈ [0, 1] is a scalar weight.

4 Experimental Setup

Dataset. We use the XMarket dataset recently introduced by Bonab et al. [2]
that contains textual, visual, and attribute information of e-commerce products
as well as a category tree. For our experiments, we select 38,921 products from
the US market. Category information is represented as a category tree and com-
prises 5,471 unique categories across nine levels. Level one is the most general
category level, level nine is the most specific level. Every product belongs to a
subtree of categories t ∈ T . In every subtree t, each parent category has only
one associated child category. The average subtree depth is 4.63 (minimum: 2,
maximum: 9). Because every product belongs to a subtree of categories, the
dataset contains 180,094 product-category pairs in total. We use product titles
as textual information and one image per product as visual information. The
attribute information comprises 228,368 attributes, with 157,049 unique. On
average, every product has 5.87 attributes (minimum: 1, maximum: 24).

Evaluation Method. To investigate how model performance changes w.r.t.
category granularity, for every product in the dataset, xp, and the corresponding
subtree of categories to which the product belongs, t, we train and evaluate the
model performance in three settings: (1) all categories, where we randomly select
one category from the subtree t; (2) most general category, where we use only
the most general category of the subtree t, i.e., the root; and (3) most specific
category, where we use the most specific category of the subtree t. In total, there
are 5,471 categories in all categories setup, 34 categories in the most general
category, and 4,100 in the most specific category setup. We evaluate every model
on category-product pairs (xc,xp) from the test set. We encode each category
and a candidate product data by passing them through category encoding and
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product information encoding pipelines. For every category xc we retrieve the
top-k candidates ranked by cosine similarity w.r.t. the target category xc.

Metrics. To evaluate model performance, we use Precision@K where K =
{1, 5, 10}, mAP@K where K = {5, 10}, and R-precision.

Baselines. Following [4,27,35] we use BM25, MPNet, CLIP as our baselines.

Four Experiments. We run four experiments, corresponding to our research
questions as listed at the end of Sect. 1. In Experiment 1 we evaluate the base-
lines on the CtI retrieval task (RQ1). We feed BM25 corpora that contain textual
product information, i.e., product titles. We use MPNet in a zero-shot manner.
For all the products in the dataset, we pass the product title xt through the
model. During the evaluation, we pass a category xc expressed as textual query
through MPNet and retrieve top-k candidates ranked by cosine similarity w.r.t.
the target category xc. We compare categories of the top-k retrieved candidates
with the target category xc. Besides, we use pre-trained CLIP in a zero-shot
manner with a Text Transformer and a Vision Transformer (ViT) [5] an config-
uration. We pass the product images xi through the image encoder. For evalu-
ation, we pass a category xc through the text encoder and retrieve top-k image
candidates ranked by cosine similarity w.r.t. the target category xc. We compare
categories of the top-k retrieved images with the target category xc.

In Experiment 2 we evaluate image-based product representations (RQ2).
After obtaining results with CLIP in a zero-shot setting, we build product rep-
resentations by training on e-commerce data. First, we investigate how using
product image data for building product representations impacts performance
on the CtI retrieval task. To introduce visual information, we extend CLIP in two
ways: (1) We use ViT from CLIP as image encoder fi. We add product projection
head gp that takes as an input product visual information xi ∈ xp. (2) We use
the text encoder from MPNet as category encoder fc; we add a category projec-
tion head gc on top of category encoder fc thereby completing category encoding
pipeline (see Fig. 1). We name the resulting model CLIP-I. We train CLIP-I on
category-product pairs (xc,xp) from the training set. Note that xp = {xi}, i.e.,
we only use visual information for building product representations.

In Experiment 3, we evaluate image- and attribute-based product represen-
tations (RQ3). We extend CLIP-I by introducing attribute information to the
product information encoding pipeline. We add an attribute encoder fa through
which we obtain a representation of product attributes, ha. We concatenate the
resulting attribute representation with image representation hp = concat(hi,ha)
and pass the resulting vector to the product projection head gp. Thus, the result-
ing product representation p is based on both visual and attribute product infor-
mation. We name the resulting model CLIP-IA. We train CLIP-IA on category-
product pairs (xc,xp) where xp = {xi,xa}, i.e., we use visual and attribute
information for building product representation.

In Experiment 4, we evaluate image- attribute-, and title-based product repre-
sentations (RQ4). We investigate how extending the product information process-
ing pipeline with the textual modality impacts performance on the CtI retrieval
task. We add title encoder ft to the product information processing pipeline and



296 M. Hendriksen et al.

Table 1. Results of Experiments 1–4. The best performance is highligthed in bold.

Model P@1 P@5 P@10 MAP@5 MAP@10 R-precision

All categories (5,471)

BM25 [12] 0.01 0.01 0.01 0.01 0.01 0.01

CLIP [26] 0.01 0.02 0.02 0.03 0.04 0.02

MPNet [29] 0.01 0.06 0.06 0.07 0.09 0.05

CLIP-I (Ours) 3.3 3.8 3.79 6.81 7.25 3.67

CLIP-IA (Ours) 2.5 3.34 3.29 5.95 6.24 3.27

CLIP-ITA (Ours) 9.9 13.27 13.43 20.3 20.53 13.42

Most general category (34)

BM25 [12] 2.94 4.71 4.71 8.33 8.28 4.48

CLIP [26] 11.76 12.35 11.76 16.12 15.18 9.47

MPNet [29] 14.70 15.8 15.01 18.44 18.78 9.35

CLIP-I (Ours) 17.85 17.14 16.78 19.88 20.14 13.02

CLIP-IA (Ours) 21.42 21.91 22.78 25.59 26.29 20.74

CLIP-ITA (Ours) 35.71 30.95 30.95 35.51 34.28 25.79

Most specific category (4,100)

BM25 [12] 0.02 0.02 0.01 0.01 0.01 0.01

CLIP [26] 11.92 9.81 9.23 15.12 14.95 8.14

MPNet [29] 33.36 28.56 26.93 37.43 36.77 25.29

CLIP-I (Ours) 14.06 12.11 11.53 18.24 17.9 11.22

CLIP-IA (Ours) 35.3 30.21 29.32 39.93 39.27 28.86

CLIP-ITA (Ours) 45.85 41.04 40.02 50.04 49.87 39.69

use it to obtain title representationht.We concatenate the resulting representation
with product image and attribute representations hp = concat(hi,ht,ha). We
pass the resulting vector to the product projection head gp. The resulting model is
CLIP-ITA. We train and test CLIP-ITA on category-product pairs (xc,xp) where
xp = {xi,xa,xt}, i.e., we use visual, attribute, and textual information for build-
ing product representations.

Implementation Details. We train every model for 30 epochs, with a batch
size β = 8 for most general categories, β = 128—for most specific categories
and all categories. For loss function, we set τ = 1, λ = 0.5. We implement
every projection head as non-linear MLPs with two hidden layers, GELU non-
linearities [9] and layer normalization [1]. We optimize both heads with the
AdamW optimizer [22].
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5 Experimental Results

Experiment 1: Baselines. Following RQ1, we start by investigating how do
baselines perform on CtI retrieval task. Besides, we investigate how does the
performance on the task differs between the unimodal and the bimodal approach.

The results are shown in Table 1. When evaluating on all categories, all the
baselines perform poorly. For the most general category setting, MPNet out-
performs CLIP on all metrics except R-precision. The most prominent gain is
for Precision@10 where MPNet outperforms CLIP by 28%. CLIP outperforms
BM25 on all metrics. For the most specific category setting, MPNet performance
is the highest, BM25—the lowest. In particular, MPNet outperforms CLIP by
211% in Precision@10. Overall, MPNet outperforms CLIP and both models sig-
nificantly outperforms BM25 for both most general and most specific categories.
However, when evaluation is done on all categories, the performance of all models
is comparable. As an answer to RQ1, the results suggest that using information
from multiple modalities is beneficial for performance on the task.

Experiment 2: Image-Based Product Representations. To address RQ2,
we compare the performance of CLIP-I with CLIP and MPNet, the best-
performing baseline. Table 1, shows the experimental results for Experiment 2.
The biggest performance gains are obtained in “all categories” setting. However,
there, the performance of the baselines was very poor. For the most general cat-
egories, CLIP-I outperforms both CLIP and MPNet. For CLIP-I vs. CLIP, we
observe the biggest increase of 51% for Precision@1, for CLIP-I vs. MPNet—39%
in R-precision. In the case of the most specific categories, CLIP-I outperforms
CLIP but loses to MPNet. Overall, CLIP-I outperforms CLIP in all three set-
tings and outperforms MPNet except the most specific categories. Therefore,
we answer RQ2 as follows: the results suggest that extension of CLIP by the
introduction of product image data for building product representations has a
positive impact on performance on CtI retrieval task.

Experiment 3: Image- and Attribute-Based Product Representations.
To answer RQ3, we compare the performance of CLIP-IA with CLIP-I and the
baselines. The results are shown in Table 1. When evaluated on all categories,
CLIP-IA performs worse than CLIP-I but outperforms MPNet. In particular,
CLIP-I obtains the biggest gain relative of 32% on Precision@1 and the lowest
gain of 12% on R-precision. For the most general category, CLIP-IA outperforms
CLIP-I and MPNet on all metrics. More specifically, we observe the biggest gain
of 122% on R-precision over MPNet and the biggest gain of 59% on R-precision
for CLIP-I. Similarly, for the most specific category, CLIP-IA outperforms both
CLIP-I and MPNet. We observe the biggest relative gain of 138% over CLIP-I.
The results suggest that further extension of CLIP by the introduction of the
product image and attribute data for building product representations has a
positive impact on performance on CtI retrieval task, especially when evaluated
on most specific categories. Therefore, we answer RQ4 positively.

Experiment 4: Image-, Attribute-, and Title-Based Product Represen-
tations. We compare CLIP-ITA with both CLIP-IA, CLIP-I, and the baselines.
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Table 2. Erroneous CLIP-ITA prediction counts for “same tree” vs. “ different tree”
predictions per evaluation type.

Same tree Different tree

All categories 1,655 639

The most general category 2 21

The most specific category 127 1,011

Total 1,786 1,671

The results are shown in Table 1. In general, CLIP-ITA outperforms CLIP-I and
CLIP-IA and the baselines in all settings. When evaluated on all categories, the
maximum relative increase of CLIP-ITA over CLIP-I is 265% in R-precision, the
minimum relative increase is 183% in mAP@10. The biggest relative increase
of CLIP-ITA performance over CLIP-IA is 310% in Precision@1, the smallest
relative increase is 229% in mAP@10. For the most general categories, CLIP-
ITA outperforms CLIP-I by 82% and CLIP-IA by 38%. For most specific cat-
egories, we observe the biggest increase of CLIP-ITA over CLIP-I of 254% in
R-precision and the smallest relative increase of 172% on mAP@5. At the same
time, the biggest relative increase of CLIP-ITA over CLIP-IA is a 38% increase
in R-precision and the smallest relative increase is a 27% increase in mAP@5.
Overall, CLIP-ITA wins in all three settings. Hence, we answer RQ4 positively.

6 Error Analysis

Distance Between Predicted and Target Categories. We examine the per-
formance of CLIP-ITA by looking at the pairs of the ground-truth and predicted
categories (c, cp) in cases when the model failed to predict the correct category,
i.e., c �= cp. This allows us to quantify how far off the incorrect predictions lie
w.r.t. the category tree hierarchy. First, we examine in how many cases target
category c and predicted category cp belong to the same most general category,
i.e., belong to the same category tree; see Table 2. In the case of most general
categories, the majority of incorrectly predicted categories belong to a tree dif-
ferent from the target category tree. For the most specific categories, about 11%
of predicted categories belong to the category tree of the target category. How-
ever, when evaluation is done on all categories, 72% of incorrectly predicted cases
belong to the same tree as a target category.

Next, we turn to the category-predicted category pairs (c, cp) where the incor-
rectly predicted category cp belongs to the same tree as target category c. We com-
pute the distance d between a category used as a query c and a predicted cat-
egory cp. We compute the distance between target category c and a top-1 pre-
dicted category cp as the difference between their respective depths d(c, cp) =
depth(cp) − depth(c). The distance d is positive if the depth of the predicted cate-
gory is bigger than the depth of the target category, depth(cp) > depth(c), i.e., the
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(a) Most specific categories (b) All categories, d < 0 (c) All categories, d > 0

Fig. 2. Error analysis for CLIP-ITA. Distance between target category c and a pre-
dicted category cp when c and cp are in the same tree.

predicted category is more specific than the target category. The setup is mirrored
for negative distances. See Fig. 2. We do not plot the results for the most general
category because for this setting there are only two cases when target category c
and a predicted category cp were in the same tree. In both cases, predicted cat-
egory cp was more general than target category c with distance d(c, pc) = 2. In
cases when target category c was sampled from the most specific categories, the
wrongly predicted category cp belonging to the same tree was always more spe-
cific than the target category c with the maximum absolute distance between c
and cp, |d(c, cp)| = 4. In 68% of the cases the predicted category was one level
above the target category, for 21% d(c, cp) = −2, for 7% d(c, cp) = −3, and for 5%
d(c, cp) = −4. For the setting with all categories, in 92% of the cases, the predicted
category cp was more specific than the target category c; for 8% the predicted cat-
egory was more general.

Overall, for the most general category and the most specific category, the
majority of incorrectly predicted categories are located in a category tree differ-
ent from the one where the target category was located. For the “all categories”
setting, it is the other way around. When it comes to the cases when incorrectly
predicted categories are in the same tree as a target category, the majority of
incorrect predictions are 1 level more general when the target category is sampled
from the most specific categories. For the “all categories” setting, the majority of
incorrect predictions belonging to the same tree as the target category were more
specific than the target category. Our analysis suggests that efforts to improve
the performance of CLIP-ITA should focus on minimizing the (tree-based) dis-
tance between the target and predicted category in a category tree. This could
be incorporated as a suitable extension of the loss function.

Performance on Seen vs. Unseen Categories. Next, we investigate how
well CLIP-ITA generalizes to unseen categories. We split the evaluation results
into two groups based on whether the category used as a query was seen during
training or not; see Table 3. For the most general categories, CLIP-ITA is unable
to correctly retrieve an image of the product of the category that was not seen
during training at all. For the most specific categories, CLIP-ITA performs better
on seen categories than on unseen categories. We observe the biggest relative per-
formance increase of 85% in mAP@10 and the smallest relative increase of 57%
in R-precision. When evaluating on all categories, CLIP-ITA performs on unseen
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Table 3. CLIP-ITA performance on seen vs. unseen categories.

Model P@1 P@5 P@10 mAP@5 mAP@10 R-precision

All categories (5,471)

CLIP-ITA (unseen cat.) 13.3 18.56 15.55 19.7 19.65 18.52

CLIP-ITA (seen cat.) 10.48 13.95 14.08 21.65 21.65 14.07

Most general category (34)

CLIP-ITA (unseen cat.) 0.0 0.0 0.0 0.0 0.0 0.0

CLIP-ITA (seen cat.) 19.23 20.01 17.31 20.41 20.01 15.73

Most specific category (4,100)

CLIP-ITA (unseen cat.) 27.27 26.44 26.44 27.92 27.92 26.45

CLIP-ITA (seen cat.) 47.83 43.09 42.14 52.41 51.89 41.58

categories better when evaluated on Precision@k (27% higher in Precision@1,
33% higher in Precision@5, 10% increase in Precision@10) and R-precision (rel-
ative increase of 32%). Performance on seen categories is better in terms of
mAP@k (10% increase for both mAP@5 and mAP@10).

Overall, for the most general and most specific categories, the model performs
much better on categories seen during training. For “all categories” setting,
however, CLIP-ITA’s performance on unseen categories is better.

7 Conclusion

We introduced the task of category-to-image retrieval and motivated its impor-
tance in the e-commerce scenario. In the CtI retrieval task, we aim to retrieve
an image of a product that belongs to the target category. We proposed a model
specifically designed for this task, CLIP-ITA. CLIP-ITA extends CLIP, one of
the best performing text-image retrieval models. CLIP-ITA leverages multimodal
product data such as textual, visual, and attribute data to build product repre-
sentations. In our experiments, we contrasted and evaluated different combina-
tions of signals from modalities, using three settings: on all categories, the most
general, and the most specific categories.

We found that combining information from multiple modalities to build prod-
uct representation produces the best results on the CtI retrieval task. CLIP-ITA
gives the best performance both on all categories and on the most specific cat-
egories. On the most general categories, CLIP-I, a model where product repre-
sentation is based on image only, works slightly better. CLIP-I performs worse
on the most specific categories and across all categories. For identification of
the most general categories, visual information is more relevant. Besides, CLIP-
ITA is able to generalize to unseen categories except in the case of most general
categories. However, the performance on unseen categories is lower than the per-
formance on seen categories. Even though our work is focused on the e-commerce
domain, the findings can be useful for other areas, e.g., digital humanities.
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Limitations of our work are due to type of data in the e-commerce domain.
In e-commerce, there is typically one object per image and the background is
homogeneous, textual information is lengthy and noisy; in the general domain,
there is typically more than one object per image, image captions are more
informative and shorter. Future work directions can focus on improving the
model architecture. It would be interesting to incorporate attention mechanisms
into the attribute encoder and explore how it influences performance. Another
interesting direction for future work is to evaluate CLIP-ITA on other datasets
outside of the e-commerce domain. Future work can also focus on minimizing
the distance between the target and predicted category in the category tree.
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Abstract. The task of automatic text summarization has gained a lot of
traction due to the recent advancements in machine learning techniques.
However, evaluating the quality of a generated summary remains to be an
open problem. The literature has widely adopted Recall-Oriented Under-
study for Gisting Evaluation (ROUGE) as the standard evaluation metric
for summarization. However, ROUGE has some long-established limita-
tions; a major one being its dependence on the availability of good quality
reference summary. In this work, we propose the metric WIDAR which
in addition to utilizing the reference summary uses also the input doc-
ument in order to evaluate the quality of the generated summary. The
proposed metric is versatile, since it is designed to adapt the evaluation
score according to the quality of the reference summary. The proposed
metric correlates better than ROUGE by 26%, 76%, 82%, and 15%,
respectively, in coherence, consistency, fluency, and relevance on human
judgement scores provided in the SummEval dataset. The proposed met-
ric is able to obtain comparable results with other state-of-the-art metrics
while requiring a relatively short computational time (Implementation
for WIDAR can be found at - https://github.com/ Raghav10j/WIDAR).

Keywords: Summarization · Evaluation metric · ROUGE

1 Introduction

Accessibility of internet has led to massive increase in content available to a user,
making it difficult to obtain the required information. This seemingly perpetual
growth of information necessitates the need for automatic text summarization
tools. Text summarization can be described as the task of generating fluent and
human readable summary while preserving the essence of the original text docu-
ments. Evaluation of these automatically generated summaries has been actively
explored by the research community for over 5 decades [8]. Since then, various
attempts have been made to quantify the effectivenes of the summarization sys-
tems; however the evaluation task still remains an open problem till this day.

The most widely adopted evaluation metric for text summarization in the
community is Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [25]
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which is mainly based on the n-gram overlap between the generated summary
and reference summary. However, ROUGE’s dependency on a good quality ref-
erence summary is one of it’s biggest drawback. Fabbri et al. [10] highlighted the
inconsistency in quality of some reference summaries in the CNN/DailyMail
dataset [26] by describing the summaries consisting of clickbaits instead of
being truthful and informative with respect to the input article (refer to Fig. 1).
Kryscinski et al. [21] also reported this issue of reference summaries containing
irrelevant information such as links to other articles or factual inconsistency in
the Newsroom dataset [14]. Even if a reference summary is of satisfactory qual-
ity, it is highly unlikely that it is the only acceptable summary of that document
as different people tend to produce different summaries for the same document
[27,34]. Therefore, all the above-mentioned claims imply that sole dependence
on reference summary for an evaluation metric is not optimal. Therefore, we pro-
pose an evaluation metric that also considers an input source document while
evaluating the quality of its summary.

Input Document 1:

Last week she was barely showing - but Demelza Poldark is now the proud mother to the show’s latest addition. Within ten minutes of 
tomorrow night’s episode, fans will see Aidan Turner’s dashing Ross Poldark gaze lovingly at his new baby daughter. As Sunday night’s 
latest heartthrob, women across the country have voiced their longing to settle down with the brooding Cornish gentleman - but 
unfortunately it seems as if his heart is well and truly off the market. Scroll down for video Last week she was barely showing - but 
Demelza Poldark is now the proud mother to the show’s latest addition He may have married his ……...

Reference Summary:

SPOILER ALERT: Maid gives birth to baby on Sunday's episode. Only announced she was pregnant with Poldark's baby last week.

Generated Summary:

demelza poldark is now the proud mother to the show’s latest addition . fans will see aidan turner’s dashing ross poldark gaze lovingly at 
his new baby daughter . sunday night’s latest heartthrob , women across the country have voiced their longing to settle down with the 
brooding cornish gentleman .

Input Document 2:

Eight Iranian border guards have been killed in clashes with militants near the border with Pakistan, Iranian state media reported. Three of 
the militants were killed by Iranian forces in the fighting Monday in the southeastern town of Negur, the state-run news agency IRNA 
reported. The news agency cited Ali Asghar Mirshekari, the deputy governor of Iran's Sistan-Baluchestan province, who said the militants 
crossed into the country from Pakistan. Iranian officials ……...

Reference Summary:

The Pakistani government says its security agencies are investigating. A group believed to be based in Pakistan's Balochistan province
claims responsibility.

Generated Summary:

three of the militants were killed by iranian forces in the southeastern town of negur . a militant group called jaish al adal claimed 
responsibility for the attack . jaish al adal has also claimed responsibility for attacks on iranian territory .

Fig. 1. Examples from DailyMail/CNN dataset [26] where ground truth is unsatisfac-
tory either due to clickbaits (Eg.-1), or information incompleteness (Eg.-2).

In order to design an evaluation metric, it is important to study what com-
prises of a good summary. Ideally, a summary must be coherent, non-redundant,
fluent, consistent and relevant to the input article [6]. Using these character-
istics, recent works have attempted to quantify and compare the performance



306 R. Jain et al.

of existing evaluation metrics [1,10]. These works highlight the limitations of
existing metrics and offer various resources for conducting further research on
the evaluation task. One such work is the SummEval dataset [10] that provides
human annotation scores for - coherence, consistency, fluency and relevance.

In this paper, we propose an evaluation metric WIDAR (Weighted Input
Document Augmented ROUGE) in an attempt to overcome the above-mentioned
limitations of ROUGE (refer to Fig. 2). The proposed metric utilizes the refer-
ence summary and input document to measure the quality of a generated sum-
mary. WIDAR introduces the idea of weighted ROUGE that relies on weighting
sentences in reference summary based on information coverage and redundancy
within the summary. Through experiments, we illustrate that WIDAR is able to
outperform ROUGE by a large margin, and is able to obtain comparable results
with other state-of-the-art metrics while requiring relatively short computational
time.

Fig. 2. Model figure for WIDAR.

2 Related Works

The approaches to text summarization can be broadly classified into two cate-
gories, extractive methods [22,29,35] and abstractive methods [4,16,38]. Sum-
marization research today has expanded into more complex problems like multi-
lingual summarization [15,36], multi-modal summarization [17–20], across-time
summarization [7] etc.

Numerous evaluation metrics have been proposed to assess summarization
systems. Some of them are based on text matching between predicted sum-
mary and reference summary such as Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) [25], ParaEval [46], ROUGE 2.0 [11], Metric for Evalua-
tion of Translation with Explicit ORdering (METEOR) [24], Bilingual Evalu-
ation Understudy (BLEU) score [30], Character n-gram F-score (CHRF) [33],
Consensus-based Image Description Evaluation (CIDEr) [43] etc. There are also
evaluation metrics that try to capture semantic similarity including word embed-
dings based techniques such as Word Mover similarity (WMS) [23], Mover-
Score [45], Sentence Mover Similarity (SMS) [5], ROUGE-WE [28], ELMo-m
[41], automated pyramid metric [31] and graph based techniques such as graph
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based ROUGE (ROUGE-G) [39] and AUTOmatic SUMMary Evaluation based
on N-gram Graphs (AutoSummENG) [13]. Other than these, there are also
model based learned metrics such as Supervised Summarization Scorer (S3) [32],
BERTScore [44], NeuralTD [2], Support Vector Regression (SVR) [40] and ques-
tion answering based metrics such as Answering Performance for Evaluation of
Summaries (APES) [9] and Semantic QA [3]. In unsupervised settings where
evaluation is carried out on the basis of input document rather than depending
on a reference summary, SummaQA [37], summarization evaluation with pseudo
references and BERT (SUPERT) [12] and BLANC [42] are some of the most
recent and state-of-the-art metrics.

3 WIDAR Evaluation Metric

We propose WIDAR (Weighted Input Document Augmented ROUGE), an eval-
uation metric that utilizes both reference summary (R) and input document
(D) to judge the quality of a generated summary (S). For better understand-
ing, we divide our approach into two steps: 1) calculation of Weighted ROUGE
(Sect. 3.1), and 2) combination of Weighted ROUGE with similarity score com-
puted between generated summary and input document to obtain WIDAR
(Sect. 3.2). Table 1 lists the notations used in the remainder of this paper.

Table 1. Notation of each variable and its corresponding meaning.

Notation Meaning

D input document

R reference summary

S generated summary

di ith input document’s sentence

ri ith input reference summary’s sentence

si ith input generated summary’s sentence

wcovi coverage weight assigned to ith generated summary sentence

wredi redundancy weight assigned to ith generated summary sentence

wi overall weight assigned to ith generated summary sentence

3.1 Weighted ROUGE

As discussed in Sect. 1, ROUGE is highly dependent on the quality of reference
summary to perform effectively. However, in real world scenarios, high quality of
reference summary is not assured. Therefore, we introduce two special weights
for each reference summary sentence to penalize/reward the quality of informa-
tion present in this sentence. Each reference summary sentence ri is assigned
two scores: 1) Coverage weight (wcovi) - based on the input document informa-
tion that is covered by ri, and 2) Redundancy weight (wredi

) - based on the
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uniqueness of information presented by ri in the reference summary. We use
Algorithm 1 to compute the redundancy weights and coverage weights for all
sentences in the reference summary. We then obtain the overall weight1 (wi) for
ri by computing the average of wcovi and wredi

.

wi =
(wcovi + wredi

)
2

× |R| (1)

Algorithm 1: Calculating the coverage and redundancy weights. (Here θ1
and θ2 are ROUGE-L thresholds for coverage and redundancy respectively.)
Input: R = {ri}, D = {dj}
Output: Wcov = {wcovi} Wred = {wredi

}
Wcov, Wred ← emptyList;
for ri in R do

wcovi = 0;
for dj in D do

if ROUGE-Lr(ri,dj)≥ θ1 then
wcovi++;

end
end
Wcov ← wcovi/|D|;

end
for ri in R do

wredi
= 0;

for rj in R do
if ri �= rj & ROUGE-Lr(ri,rj) ≥ θ2 then

wredi
++;

end
end
Wred ← 1-(wredi

/ |R|);
end

We propose sentence-level ROUGE-N (ROUGE-NSL) and sentence-level
ROUGE-L (ROUGE-LSL), variations of ROUGE in order to incorporate the
sentence-level redundancy and coverage weights (Eq. 1), respectively.

Sentence-Level ROUGE-N: Typically, ROUGE-N measures the number of over-
lapping n-grams between the reference summary and the generated summary.
However, to compute the sentence-level ROUGE-N (ROUGE-NSL) we take into
account sentence level n-grams for the overlap count, viz. we discard the bridge
n-grams (that share words from two or more sentences)2. We use the following

1 We multiply the final weights by the number of sentences in the reference summary
|R| to ensure that the sum of weights remains the same as in plain ROUGE, i.e.,∑

i wi = |R|.
2 Note that ROUGE-1 and ROUGE-1SL denote the same metrics.
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equations to measure the precision (ROUGE-Np
SL), recall (ROUGE-Nr

SL), and
f-score (ROUGE-Nf

SL), respectively.

ROUGE-Nr
SL =

∑
s-grami

∑
r-gramj

count(s-grami, r-gramj)
∑

r-gramj
|r-gramj | (2)

ROUGE-Np
SL =

∑
s-grami

∑
r-gramj

count(s-grami, r-gramj)
∑

s-gramj
|s-gramj | (3)

ROUGE-Nf
SL =

2 × (ROUGE-Nr
SL) × (ROUGE-Np

SL)
(ROUGE-Nr

SL) + (ROUGE-Np
SL)

(4)

where s-grami and r-grami denote the sentence-level n-grams for ith sen-
tence in the generated summary and in the reference summary, respectively;
count(s-grami, r-gramj) calculates the number of overlapping n-grams in
s-grami and r-grami, and |.| denotes the cardinality of a set.

Sentence-Level ROUGE-L: ROUGE-L computes the longest common sub-
sequence of words between the generated summary and the reference summary.
Sentence-level ROUGE-L (ROUGE-LSL) is computed as follows:

ROUGE-Lr
SL =

∑
ri∈R UnionLCS(ri, S)

|R| (5)

ROUGE-Lp
SL =

∑
ri∈R UnionLCS(ri, S)

|S| (6)

ROUGE-Lf
SL =

2 × (ROUGE-Lr
SL) × (ROUGE-Lp

SL)
(ROUGE-Lr

SL) + (ROUGE-Lp
SL)

(7)

where UnionLCS(ri, S) is the union of the longest common sub-sequence com-
puted between a reference summary sentence (ri ∈ R) and each sentence of
generated summary (si ∈ S), and |R| and |S| denote the number of sentences in
reference summary and generated summary, respectively.

We integrate into these sentence-level ROUGE metrics the weights (Eq. 1)
to obtain Weighted ROUGE-N (ROUGE-NW ) and Weighted ROUGE-L
(ROUGE-LW ) scores. ROUGE-NW is obtained by multiplying wi in each sum-
mation term in Eqs. 2 to 4, and ROUGE-LW is obtained by multiplying wi in
each summation term in Eqs. 5 to 7.

3.2 Combining Weighted ROUGE with Input Document Similarity

Input Document Similarity Score (IDSS). We incorporate information overlap
of generated summary with input document to make the proposed metric more
robust and applicable to the real-world situations where the quality of reference
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summary might be sometimes inadequate. For simplicity, we use ROUGE-L F-
score as the similarity measure, because it performed better than other ROUGE
variants in our experiments (refer to Sect. 4.3). Therefore,

IDSS = ROUGE-Lf (S,D) (8)

The last step of the evaluation process is to combine the ROUGEW and
IDSS scores in such a way that the final score retains the individual character-
istic of both the individual scores. We define WIDAR as follow:

WIDARX
K = (1 − λ) × IDSS + λ × ROUGE-KX

W (9)

where x ∈ {r, p, f} and K ∈ {1, 2, L}; λ is a hyper-parameter directly proportional
to the quality of coverage in reference summary3.

4 Experiments

4.1 Dataset

For all the experiments conducted in this work, we have used the SummEval
dataset [10]. It contains the summaries generated by 23 recent summarization
models trained on CNN/DailyMail dataset [26]. The dataset contains human
annotation scores for 16 generated summaries of 100 source news articles giving
us 1600 summary-text pairs. Each summary is annotated by 3 experts and 5
crowd-source annotators to evaluate the quality of a summary on a range of 1–5
across 4 different characteristics: 1) Coherence: measures the quality of smooth
transition between different summary sentences such that sentences are not com-
pletely unrelated or completely same, 2) Consistency: measures the factual cor-
rectness of summary with respect to input document, 3) Fluency: measures the
grammatical correctness and readability of sentences, 4) Relevance: measures the
ability of a summary to capture important and relevant information from the
input document. Apart from human annotation scores, 11 reference summaries
for each example, and evaluation scores for generated summaries across different
evaluation metrics are also made available in the dataset repository4.

4.2 Evaluation of Evaluation Metric

In order to measure the performance of the proposed evaluation metric, we calcu-
late the correlation between the scores of that metric and the average annotation

3 λ is a fixed hyper-parameter, which is set to 0.5 in our final experiments. We
attempted to make λ a data-driven parameter by setting λ = max(wcovi) or
λ = mean(wcovi), but this setting was not able to outperform the fixed λ = 0.5
value (refer to Sect. 4.3).

4 https://github.com/Yale-LILY/SummEval.

https://github.com/Yale-LILY/SummEval
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scores for each characteristic of each summary for 1600 summary-text examples
provided in the SummEval dataset [10] (described in Sect. 4.1). We have used
the average of expert annotation scores for our experiments because of the incon-
sistency between expert and crowd-source scores reported by Fabbri et al. [10].
We use the Kendall’s tau correlation coefficient as the correlation metric in our
experiments. Kendall’s tau correlation between two sequences X = {xi} and
Y = {yi} is defined as follows:

τ =
C − D

C + D
(10)

where C is the number of all those pairs that are concordant and D is the number
of all those pairs that are discordant in sequences, X and Y .

4.3 Experimental Settings

In this section, we discuss various hyperparameters used in the proposed method-
ology, along with the tuning experiments carried out to justify them5.

Weighted sum of IDSS and ROUGEW (λ) : λ is used to get the weighted sum
of information overlap of the generated summary with the input document
(IDSS) and the reference summary (ROUGEW ). We attempted to investigate
the optimal value of λ using a data-driven technique. To be more precise, since
λ indicates the balance between the degree of attention given to the input doc-
ument and the reference summary, we hypothesize that making λ adapt to the
information shared in reference summary and input document should give us
better performance since the higher the overlap, the better the quality of sum-
mary, and the higher the λ should be. Hence we perform two different experi-
ments with λ = max(wcovi) and λ = mean(wcovi). To compare performance of
a fixed λ value with the defined data-driven strategy, we plot performance of
the proposed technique with fixed values of λ ∈ {0.0, 0.1, 0.2, ..., 1.0} (see Fig. 3).
Even though both of these λ defining strategies outperform the baseline met-
ric ROUGE, we notice that the d value of λ = 0.5 is able to outperform these
data-driven strategies as well as most of the fixed λ values6.

5 All the hyperparameter tuning experiments were performed using ROUGE-Lf

unless stated otherwise.
6 It was also noticed that λ = mean(Wcov) outperforms λ = max(Wcov) in fluency and

consistency; while the opposite happens for coherence and relevance. The reason for
this can be explained by the fact that mean(Wcov) < max(Wcov); therefore the λ =
mean(Wcov) variation always gives more weight to the input document similarity,
giving higher fluency and consistency scores because input document consists of all
the informationally rich and grammatically correct sentences.
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Fig. 3. Correlation plots of WIDAR with human judgement scores (from SummEval
dataset [10]) for different λ values.

Thresholds for wcovi and wredi
: θ1 and θ2 are the hyperparameters used in the

calculation of coverage weights (wcovi) and redundancy weights (wredi
) (Algo-

rithm1), respectively. To obtain the optimal range of these hyperparameters; we
first performed an individual search for both θ1 and θ2 (see Fig. 4). As per these
experiments, θ1 = 0.0 or 0.1 and θ2 = 0.4 yielded the best results when analyzed
individually. However, on further experimentation, it was found that the best
performance was obtained at θ1 = 0.1 and θ2 = 0.3.

Similarity Function for IDSS : In order to find the most suitable similarity func-
tion to compute the information overlap between input document and generated
summary, we performed an isolated experiment where correlation coefficient of
similarity function candidates was computed with the human judgement scores
(Table 2). ROUGE-Lf score was the best performing model, and hence chosen
as the similarity function.
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Fig. 4. Correlation plots of WIDAR with human judgement scores (from SummEval
dataset [10]) with varying θ1 values (on left) and θ2 (on right) values.

Table 2. Various ROUGE-based similarity functions for IDSS.

IDSS Coherence Consistency Fluency Relevance

ROUGE-1r 0.033 0.101 0.050 0.123

ROUGE-1f 0.035 0.108 0.055 0.117

ROUGE-2r 0.066 0.183 0.111 0.149

ROUGE-2f 0.072 0.194 0.118 0.153

ROUGE-Lr 0.088 0.187 0.112 0.158

ROUGE-Lf 0.097 0.202 0.122 0.164

5 Results and Discussions

We evaluate the performance of our metric with other state-of-the-art techniques
using correlation coefficient described in Sect. 4.2. Table 37 lists the correlation
of WIDAR and other state-of-the art-metric scores available in SummEval with
human judgement scores8. These scores illustrate the superiority of WIDAR over
its predecessor, ROUGE, by a wide margin in all the three variants.

It can be deduced from the results that we need a way to combine these scores
to better evaluate the performance of each metric, since a metric like SMS [5]
performs well in aspects like consistency and fluency, yet it gives mediocre per-
formance in coherence and relevance. Therefore, we also provide the average
of these four scores in an attempt to ascertain the overall performance of each
metric. We find out that all three variants of WIDAR are able to perform sat-
isfactory, as they appear as 2nd, 3rd and 4th in the overall rankings; as opposed
to their ROUGE counter-parts that end up in the middle-bottom section of the
rankings.

7 In case a metric has more than one variation, the version that corresponds to f-score
was used.

8 All the reported metrics in Table 3 have been computed in a multi-reference setting
using 11 reference summaries per generated summary.
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Table 3. Evaluation of the proposed metric WIDAR against other state-of-the-art
methods using Kendall’s Tau correlation coefficient over human judgement scores of
individual summary components described in SummEval dataset [10]. Average denotes
the average score over coherence, consistency, fluency and relevance. (.) denotes the
rank of metric for the corresponding column.

Metric Coherence Consistency Fluency Relevance Average

Text matching-based metrics

ROUGE-1 [25] 0.137 (8) 0.111 (14) 0.067 (13) 0.228 (4) 0.135 (9)

ROUGE-2 [25] 0.110 (13) 0.107 (15) 0.054 (15) 0.184 (13) 0.113 (15)

ROUGE-L [25] 0.109 (14) 0.090 (16) 0.067 (13) 0.216 (8) 0.120 (14)

BLEU [30] 0.119 (11) 0.126 (9) 0.104 (8) 0.185 (12) 0.133 (10)

METEOR [24] 0.112 (12) 0.118 (12) 0.079 (12) 0.210 (10) 0.129 (12)

CHRF [33] 0.168 (1) 0.121 (10) 0.086 (11) 0.242 (3) 0.154 (7)

CIDEr [43] -0.003 (18) 0.006 (18) 0.037 (17) -0.019 (18) 0.005 (18)

Embedding-based metrics

MoverScore [45] 0.154 (4) 0.134 (7) 0.117 (4) 0.224 (6) 0.157 (6)

SMS [5] 0.144 (6) 0.188 (2) 0.133 (2) 0.177 (14) 0.160 (5)

ROUGE-WE [28] 0.087 (15) 0.065 (17) 0.012 (18) 0.176 (15) 0.085 (17)

Model-based metrics

BERTScore [44] 0.126 (10) 0.121 (10) 0.113 (6) 0.213 (9) 0.143 (8)

S3 [32] 0.166 (2) 0.113 (13) 0.044 (15) 0.227 (5) 0.125 (13)

BlANC [42] 0.084 (16) 0.181 (4) 0.099 (10) 0.168 (16) 0.133 (10)

SUPERT [12] 0.130 (9) 0.259 (1) 0.167 (1) 0.204 (11) 0.190 (1)

SummaQA [37] 0.062 (17) 0.128 (8) 0.101 (9) 0.107 (17) 0.099 (16)

Proposed Metric

WIDAR1 0.160 (3) 0.178 (5) 0.114 (5) 0.254 (1) 0.176 (2)

WIDAR2 0.138 (7) 0.188 (2) 0.108 (7) 0.221 (7) 0.163 (4)

WIDARL 0.149 (5) 0.176 (6) 0.119 (3) 0.250 (2) 0.167 (3)

The fact that SUPERT [12] is a model-based metric that evaluates the qual-
ity of a summary by taking as input the generated summary and the input
document might be the reason for it having high correlation scores with consis-
tency and fluency. Since input document comprises of grammatically correct and
factually rich sentences, high performances on fluency and consistency are to be
expected. CHRF [33] and S3 [32] on the other-hand perform well in coherence
and relevance; which can be somewhat credited to their evaluation strategy that
computes information overlap between generated summary and reference sum-
mary. Since reference summary contains only the most significant information
from the input document put together in a presentable manner, it results in high
relevance and coherence scores. We believe that since WIDAR uses information
overlap of generated summary with both the input document and the reference
summary efficiently, it performs optimally in all the four characteristics.
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5.1 Computational Time Analysis

Table 4 shows the comparison of computational time taken by WIDAR with
respect to 5 state-of-the-art models or embedding based metrics computed using
a single reference summary. The experiment is conducted for 100 randomly cho-
sen summaries for all the metrics9. It is noticed that WIDAR takes about 0.6%
of the computational time as compared to the average time taken by all these 5
metrics, while giving similar performance.

Table 4. Computation time taken by WIDAR and various model-based metrics.

Metric Time-taken

BLANC [42] 1076.35 s

SUPERT [12] 30.40 s

MoverScore [12] 37.60 s

BERTScore [44] 1410.37 s

SummaQA [37] 910.26 s

Average 692.99 s

WIDARL 3.96 s

Table 5. Ablation Study.

Metric Coherence Consistency Fluency Relevance

WIDARL 0.149 0.176 0.119 0.250

ROUGE-LW 0.129 0.108 0.083 0.239

−Wred 0.105 0.075 0.064 0.201

−Wcov 0.119 0.115 0.087 0.218

ROUGE-LSL 0.102 0.087 0.062 0.204

ROUGE-L 0.109 0.090 0.067 0.216

IDSS 0.097 0.202 0.122 0.164

5.2 Ablation Study

WIDAR comprises of two key-components: (1) weighted ROUGE (ROUGEW )
between reference summary and generated summary and (2) similarity overlap
(IDSS) between input document and generated summary. In order to establish
the necessity of both of these components, we conduct an ablation study. When
we consider only ROUGE-LW , we notice a major drop in correlation with consis-
tency (38%) and fluency (30%) (refer to the top two rows in Table 5). We reason

9 This experiment was conducted on a Tyrone machine with Intel’s Xeon W-2155
Processor having 196 Gb DDR4 RAM and 11 Gb Nvidia 1080Ti GPU. GPU was
only used for BLANC, SUPERT, BERTScore and SummaQA evaluation metrics.
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that consistency being the measure of factual correctness in the summary justifies
the decrease in consistency scores. An argument can be made regarding fluency
that since WIDAR is effectively a string-matching based technique; the input
document usually comprises of sentences which are more grammatically sound
than ones in reference summary [10,21]) could explain the drop in fluency scores.
This argument can be further bolstered when comparing the correlation scores
obtained for ROUGE-L and IDSS. IDSS uses ROUGE-L to compute informa-
tion overlap between generated summary and input document, and ROUGE-L
is used to compute information overlap between generated summary and refer-
ence summary. We can see that IDSS outperforms ROUGE-L in consistency (by
124%) and fluency (by 82%), supporting the previously mentioned argument.

If we remove Wred from weighted ROUGE, we observe drops in coherence
(by 18%) and relevance (by 15%) as expected; but we also observe that without
these redundancy weights, correlation with consistency and fluency also drop
by 30% and 22%, respectively. Removing Wcov however yields mixed results in
an isolated setting. Yet, together with Wred, the weighted ROUGE is able to
outperform the sentence-level baseline. This can be noticed from the relevance
scores in Table 5; ROUGE-LSL attains 0.204 score, while adding Wred yields an
increase to 0.218 (shown in row −Wcov) and adding Wcov drops the score to 0.201
(shown in row −Wred). However, combining these two to obtain ROUGE-LW

attains 0.239 score, better than in the case of the individual components.

5.3 Study of Human Judgement Scores

To analyze how humans have perceived these four characteristics of a summary,
we compute and study the Kendall’s Tau correlation coefficient between them.
The results (refer to Table 6) revealed that coherence and relevance are mod-
erately correlated, while other characteristic pairs do not yield any significant
correlation score. This high correlation between coherence and relevance can be
attributed to the fact that both relevance and coherence are related to non-
redundancy. Coherence explicitly captures the non-redundancy in a summary,
since a coherent summary must not have high information overlap across the
sentences. Relevance on the other hand implicitly captures the notion of non-
redundancy, since a summary that is highly relevant will cover up a major por-
tion of input document, which is not achievable for a redundant summary. This
reasoning can also be backed by the results from the ablation study (refer to
Table 5), where removing the redundancy weight (Wred) from weighted ROUGE
affects both the relevance and the coherence scores, implying that humans
directly or indirectly consider redundancy of sentences within summary while
providing these scores.
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Table 6. Kendall’s Taus correlation between various summary characteristics.

Coherence Consistency Fluency Relevance

Coherence 1.00 0.25 0.27 0.53

Consistency 0.25 1.00 0.38 0.27

Fluency 0.27 0.38 1.00 0.23

Relevance 0.53 0.27 0.23 1.00

6 Conclusion

We propose a novel evaluation metric WIDAR that utilizes both input document
and reference summary to estimate the quality of the generated summary. We
discuss why metrics like ROUGE, METEOR, BLUE etc. that solely depend on
reference summary for evaluation do not perform well in real-world situations.
We illustrate how the proposed metric is able to outperform its predecessor,
ROUGE, by a large margin, and is also able to achieve performance compa-
rable to huge model-based metrics like BERTScore, S3, SUPERT etc. We also
perform an ablation study to establish the necessity of each component in the
proposed metric. We believe that the community needs computationally fast and
lightweight metrics like WIDAR that can work well in real-world situations.
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summarization using sequence-to-sequence RNNs and beyond. In: CoNLL (2016)

27. Nenkova, A.: Summarization evaluation for text and speech: issues and approaches.
In: INTERSPEECH (2006)

28. Ng, J.P., Abrecht, V.: Better summarization evaluation with word embeddings
for ROUGE. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, Lisbon, Portugal, September 2015, pp. 1925–1930.
Association for Computational Linguistics (2015). https://doi.org/10.18653/v1/
D15-1222. https://aclanthology.org/D15-1222

29. Paice, C.D.: Constructing literature abstracts by computer: techniques and
prospects. Inf. Process. Manag. 26, 171–186 (1990)

30. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: ACL (2002)

31. Passonneau, R.J., Chen, E., Guo, W., Perin, D.: Automated pyramid scoring of
summaries using distributional semantics. In: Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers),
Sofia, Bulgaria, August 2013, pp. 143–147. Association for Computational Lin-
guistics (2013). https://aclanthology.org/P13-2026

https://doi.org/10.18653/v1/D19-1051
https://doi.org/10.18653/v1/D19-1051
https://aclanthology.org/D19-1051
https://doi.org/10.1145/215206.215333
https://doi.org/10.1145/215206.215333
https://proceedings.mlr.press/v37/kusnerb15.html
https://proceedings.mlr.press/v37/kusnerb15.html
https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/D15-1222
https://doi.org/10.18653/v1/D15-1222
https://aclanthology.org/D15-1222
https://aclanthology.org/P13-2026


320 R. Jain et al.

32. Peyrard, M., Botschen, T., Gurevych, I.: Learning to score system summaries
for better content selection evaluation. In: Proceedings of the Workshop on New
Frontiers in Summarization, Copenhagen, Denmark, September 2017. Associ-
ation for Computational Linguistics (2017). https://doi.org/10.18653/v1/W17-
4510. https://aclanthology.org/W17-4510
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Abstract. Answer Retrieval is a task of automatically retrieving rele-
vant answers towards a specific question. The recent studies, in this field,
have witnessed the vast success of non-factoid QA methods which lever-
age the large pre-trained models. The findings in intensive experiments
have shown that the existing large and deep models can be enhanced by
the utilization of adversarial examples, the ones which effectively chal-
lenge encoders during training and enable them to generalize well during
test. However, the majority of adversarial training methods still suffer
from two limitations: 1) they separately take into consideration single-
granularity adversarial examples (e.g. character, token or sentence-level
examples), resulting in a monotonous mode that easily make encoders
get accustomed to such examples, and 2) they fail to actively detect
and apply the truly challenging adversarial examples for training. In this
paper, we propose a Bi-granularity Adversarial Training (BAT) app-
roach. It not only involves multiple perturbation into the generation of
adversarial examples, but selectively utilizes them in terms of perturba-
tion strength. A self-adaptive adversarial training method is developed
for recognizing perturbative examples. We conduct experiments on the
WikiPassageQA and TREC-QA benchmarks. Experimental results show
that BAT substantially improve the answer retrieval performance, reach-
ing the MAP score of about 80.05% and MRR of 86.27% for WikiPas-
sageQA, MAP of 93.99% and MRR of 97.55% for TREC-QA.

Keywords: Answer Retrieval · Adversarial Attack · Pre-trained model

1 Introduction

Answer retrieval aims to acquire the most relevant answer from a set of can-
didates for a specific question. It stands for the crucial component of the cur-
rent Question Answering (QA) systems [1]. There are mainly two categories
of retrieval-based QA systems: factoid and non-factoid QA. Factoid QA pursues
short and definite answers, such as the entity-level answer “William Shakespeare”
of the WHO-type question “Who writes Hamlet?”. By contrast, non-factoid QA
is more challenging, which tackles descriptive questions like WHY, WHAT and
HOW-type questions. The answers of such questions generally appear as long-
winded all-encompassing and well-grounded descriptions. In this paper, we con-
centrate on the issue of answer retrieval in the scenario of non-factoid QA.
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Fig. 1. Fakes that were generated by conducting synonym attack and gradient attack
(the gradient one is carried out upon the output of the fine-tuned basic BERT).

Due to the contribution to linguistic representation learning, the pre-trained
language models such as BERT [5] have been utilized for answer retrieval. The
existing state-of-the-art methods perform perfectly to some extent when deep
insights need to be gotten into the semantics of questions and answers. How-
ever, the robustness is still less strong. It is not difficult to puzzle the current
neural answer retrieval models [31] with some negligible disturbance. Figure 1
shows a couple of fake candidate answers, one of which is obtained by synony-
mous substitution (titled as “Synonym Attack”), while the other results from
the slight migration of word embeddings in the semantic space (“Gradient-based
Attack”). Both barely cause the semantic change, though they result in negative
predictions. Dialectically, the previous work proposes to use such fakes as the
adversarial examples to challenge neural models during traning (called adver-
sarial training), so as to improve their robustness.

The recent studies of adversarial training concentrate on the generation of
adversarial examples, which have been proven effective. However, the resultant
adversarial examples are of single granularity, appearing as character [7], token [9]
or sentence-level [8] examples, separately. The embedded linguistic units are of
less-diverse granularity and, therefore, they fail to bring into severe challenges. As
a result, a neural model easily get accustomed to the challenge mode.

To address the issue, we propose a simple but effective method BAT, a
self-adaptive method of applying bi-granularity adversarial samples to challenge
retrieval models during training. In BAT, the adversarial examples are raised in
both the focal visible attack process and general invisible attack. Specifically, the
visible attack performs synonyms replacement conditioned on an external knowl-
edge base, generating token-level adversarial examples, where the falsified words
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are visible for human. Besides, the invisible attack imposes the gradient-based
disturbance upon the sentence-level embeddings, where the caused changes are
invisible. Moreover, we develop a self-adaptive training strategy which tends to
select the most challenging examples for training.

The experiments on TREC-QA and WikiPassageQA show that BAT yields
noticeable improvements regardless of whether the basic BERT, large BERT [5]
or RoBERTa [15] are taken as the baseline encoders. The potential contributions
of this paper are concluded as follows:

1) We utilize token-level and sentence-level adversarial examples to enforce a com-
prehensive attack towards the answer retrieval models. Experimental results
prove that the model enduring such attack during training changes to be
stronger and achieves better performance no matter in long or short text
scenario.

2) We develop a self-adaptive adversarial training strategy which contributes
to the selection of challenging examples. All components are proven effective
through our detailed experiments.

2 Related Work

We briefly overview the previous work regarding both answer retrieval and adver-
sarial attack as below.

Answer Retrieval. The previous work on answer retrieval was mainly based on
statistical methods such as BM25 and TF-IDF. Recent work has investigated the
models based on deep neural networks. According to Rűcklé et al.’s survey [26],
the models can be classified into two categories. The first kind of models were
based on the semantic similarity calculation, such as that of LSTM-DSSM [22],
which calculated sentence-level similarity scores between the representations of
interrogative sentences and candidate answers. The second ones were focusing on
relevance measurement. The most representative model is MatchPyramid [23].
It determines relevance level conditioned on the interaction intensity between
questions and candidate answers. Nowadays, the vast success has been achieved
by using pre-trained language models, the ones which were obtained through
masking mechanism, as well as learning to encode on a large amount of data.
From here on, researchers take into account data augmentation. Gary et al. [10]
built a large scale dataset, so as to facilitate transfer learning over the dataset.
More importantly, they propose a Transfer and Adapt Model (TANDA) to con-
duct fine-tuning on a larger training data. This method not only improves the
answer retrieval performance, but allows the retrieval model to generalize well.

Adversarial Attack. Adversarial attack has recently received keen attention.
It is useful for detecting the possible weaknesses of models. More importantly, it
generates adversarial examples, so as to enforce neural models to accommodate
to pragmatic diversity. Jia and Liang et al. [13] create adversarial examples using
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manually defined templates. Automatic methods [12] have also been proposed to
generate adversarial examples through paraphrasing. These works revealed how
neural network systems trained on a large corpus can easily break when facing
carefully designed unseen adversarial patterns. However, most previous work on
adversarial attack concentrates on a single granularity attack (e.g., character [7],
token [9] or sentence [8]). This raises a question of whether multi-granularity
linguistic units can be involved into a comprehensive attack. Note that the above
remarkable research aims to challenge neural models as competitively as possible.
By contrast, we tend to generate and select beneficial adversarial examples for
data augmentation, so as to improve performance, instead of reducing it.

3 Methodology

3.1 Task Definition

We define a question set as Q = {q1, q2, ...qn}. Given a question qi ∈ Q, there is
a candidate set of answers Ci = {ci1, ci2, ...cim} for qi. We suppose to rank the
answers in the candidate set Ci for a given question qi according to their scores.
We evaluate an answer retrieval model by verifying whether the answer is highly
ranked. We formulate the question-answer pairs with (qi, cik, yik), where yik is
a binary label indicating whether a candidate cik occurs as the answer for the
question qi. Our goal is to estimate the probability p(yik|qi, cik) of yik in terms
of the semantic representations of qi and cik, and use it for ranking cik.

3.2 Basic Answer Retrieval Model (Baseline)

Two standard pre-trained models are employed to build the baseline retrieval
model respectively, including BERT [5] and RoBERTa [15]. In our experiments,
the pre-trained models are verified on both basic and large configurations. Towards
an instance X = (q, c, p(y)), we denote Inputbert=[[CLS], q, [SEP], c, [SEP]] as the
input of BERT, while Inputroberta=[<s>, q, </s>, c, </s>] as that of RoBERTa.
[CLS] and [SEP] refer to special tokens in BERT, <s> and </s> are the ones of
RoBERTa. The final hidden state obtained for the first token ([CLS] or <s>) is
used as the joint representation of the question q and candidate c. It aggregates
interactively-attentive latent information of both q and c. We feed the representa-
tion into a fully-connected neural layer (i.e., classification layer) with the sigmoid
function to compute the probability p(y). Figure 2 (a) shows the baseline archi-
tecture in the point-wise ranking scenario, while (b) the pair-wise. We discuss the
scenarios in the experimental settings (Sect. 4.2).

Let Sent = {x1, x2, ...xn} denotes the input sequence Inputbert or
Inputroberta, F (·) is the neural retrieval model mentioned above, and Loss(·)
denotes the loss produced by F (·). In our case, the probability of y and Loss(·)
is computed as follows (where σ is the sigmoid function and ŷ denotes the pre-
diction):

p(ŷ|q, c) = σ(F (Sent)), (1)

Loss(Sent, y) = −(y ∗ log(p(ŷ|q, c)) + (1 − y) ∗ log(1 − p(ŷ|q, c))), (2)
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3.3 Adversarial Examples Generation Strategy

Toward the basic retrieval model, we carry out a bi-granularity adversarial attack
during training, which comprises the steps of saliency-based word sorting, token
synonym replacement and gradient-based attack. We first falsify the original
examples by replacing the top n percent influential words with their synonyms
in token-level. On the basis, we keep on disturbing the examples by gradient-
based attack in sentence-level. The generating process is shown in Fig. 2(c). From
here on, we separately present our methods in the three attacking steps.

Saliency-Based Word Sorting. Echoing the discovery in [21], we suggest that
the pre-trained models BERT and RoBERTa overly indulge themselves into (viz.,
effectively encode) some dominant words (e.g., verbs), the ones which reveal the
skeletal semantics of a linguistic sequence. By contrast, they barely embrace
other words (e.g., conjunctions). Thus, no matter whether their performance is
better or worse, it results from the encoding of the dominant words. Accordingly,
falsifying the dominant words helps to produce challenging adversarial examples.
To detect the dominant words, we calculate saliency score Ixi

for each of them,
and pick up the ones holding a higher Ixi

. The score Ixi
is computed as follow:

Ixi
= Loss(Sent �xi

, y) − Loss(Sent, y), (3)

where Sent �xi
= {x1, · · · , xi−1, xi+1, · · · , xn}. In terms of Eq. 3, the saliency score

of the candidate word xi is estimated by the difference of loss which emerges
after deleting xi itself. We verify saliency during training, and select and falsify
top-n most salient words by synonym replacement.
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Synonym Replacement. As mentioned in [19], the recent adversarial attack-
ing methods pursue the success rate of distracting the neural learning models,
regardless of whether the adversarial examples they produced are utterly oppose
to the semantic principles or even break the grammatical rules. Retraining with
such examples may mislead the learning process thoroughly instead of strength-
ening it. Different from the previous work, we produce adversarial examples by
synonym replacement, where the salient words are considered. This contributes
to the preservation of original semantics and grammar, to some extent.

Given a list L of the most salient words, we iteratively replace them with
appropriate synonyms. We initialize a synonym candidate set for each word wi

in L. WordNet [17,35] is used to obtain the synonyms. POS-based filtering is
applied to filter out the synonym candidates that are of inconsistent POS tags
with wi. Utilizing the rest words in L for replacement, more or less, reduces of
the risk of grammatical errors.

We apply a greedy searching method to select a single synonym for sub-
stitution, where the nearest neighbor of the considered salient word wi in the
embedding space will be selected. Counter-fitting embedding space [20] is used.
In the space, synonyms can be gathered together, while antonyms are anchored
apart from each other. Word similarity calculation within the counter-fitting
embedding space has achieved the state-of-the art performance on the bench-
mark dataset SimLex-999 [11]. Given a synonym ck, we project it and wi into the
counter-fitting space. On the basis, we calculate the semantic distance of their
embeddings by cosine similarity. We follow Morris et al. [19] to set the threshold
to 0.9. If a synonym has the smallest semantic distance to wi, and meanwhile
the distance is smaller than threshold, it will be selected to substitute the wi.

Gradient-Based Adversarial Training. Gradient-based sentence-level
adversarial attack helps to strengthen the modeling of the continuously dis-
tributed representations. Chakraborty et al. [2] utilize it in image processing.
Considering that the representations generated by pre-trained models (e.g.,
BERT) are of successive distribution mode, we utilize gradient-based attack in
dealing with the sentence-level BERT-based (and RoBERTa-based) encoding.

The direction of the gradient ascent can lead to the rise of loss quickly and
accurately [2]. Therefore, we follow Chakraborty et al. [2] to conduct directional
attack, bringing minor perturbations into the sentence-level embeddings along
the direction of gradient ascent, which is shown as below:

gemb = ∇embeddingLoss(F (Xadv), y), (4)

Xadv ← embedding(Xadv) + r ∗ (gemb/||gemb||2), (5)

where y denotes the label for adversarial example Xadv = [q′; a′] generated by
us, embedding(·) denotes the input embedding, and r is the intensity of gradient
attacking, which is used to determine how far the input embedding changes along
the direction of gradient ascent. The gradient gemb of the loss to the embedding
layer is calculated via Eq. 4. On this basis, we perturb the embedding layer based
on the gradient value by Eq. 5 to enforce a sentence-level attack.
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Algorithm 1: Self-Adaptive Adversarial Training Method
Input: original example X = [q; a], adversarial example Xadv = [q′; a′]

generated by X, label y, target model F (·), loss function Loss(·), loss
increase ratio ε, loss weight α

Output: None
1 lossclean = Loss(F (X), y);
2 lossadv = Loss(F (Xadv), y);
3 if lossadv < ε ∗ lossclean then
4 Xadv ← Sentence Gradient Attack(X) via Eq. 4 - 5;
5 lossadv = Loss(F (Xadv), y);

6 end
7 loss = α ∗ lossclean + (1 − α) ∗ lossadv;
8 loss.backward();

3.4 Self-adaptive Adversarial Training

We define the challenging adversarial examples as the ones which not only effec-
tively confuse a learning model but provide novel knowledge to raise the well-
generalized learning. Otherwise, the examples are redundant. The use of redun-
dant examples not only reduces the training efficiency but fails to strengthen the
learning model. In order to reduce the redundancy, we develop a self-adaptive
adversarial training algorithm, where the challenging adversarial examples are
recognized and adopted at every step of training (as mentioned in Algorithm1).

We pursue the challenging adversarial examples at the word-level attack
stage. Give an example that is created by synonym replacement, we adopt the
increase ratio ε of loss as the measure to determine whether the example is chal-
lenging enough. If the rate ε is high enough, we keep it, otherwise we discard
the synonym replacement. Note that the sentence-level gradient-based attack
is carried out behind the word-level attack stage, and no matter whether the
word-level attack is discarded, the sentence-level attack won’t be canceled ever.

4 Experimentation

4.1 Data and Evaluation

We experiment on two publicly-available benchmark datasets, including TREC-
QA [30] and WikiPassageQA [4]. TREC-QA is a popular benchmark corpus that
is selected from the TREC Question-Answering tracks, containing 1,362 ques-
tions. Both the positive and negative answers in TREC-QA are of short sen-
tences. WikiPassageQA are selected from 863 Wikipedia documents by crowd-
sourcing, containing 4,165 groups of non-factoid questions and passages which
are composed of no less than 6 sentences. The candidate answers of each question
derive from the same passage and, in general, the positive and negative answers
are highly similar in pragmatics (meanwhile, they often share similar context).
The statistics in the sets are shown in Table 1. Mean Average Precision (MAP)
and Mean Reciprocal Rank (MRR) are used as the evaluation metrics.
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Table 1. Benchmark statistics (Q denotes a question, while A refers to an answer)

Benchmark WikiPassageQA TREC-QA

Properties Train Dev Test Total Train Dev Test Total

Questions 3,332 417 416 4,165 1,229 65 68 1,362

Candidate Answer 194,314 25,841 23,981 244,136 53,313 1,117 1,442 55,872

Positive Answer 5,560 707 700 6,967 6299 205 248 6752

Average Length of Q 9.52 9.69 9.44 9.53 8.33 8.01 8.59 8.31

Average Length of A 133.09 134.13 132.65 133.16 28.97 24.89 25.60 26.48

Fig. 3. Comparison between pair-wise and point-wise ranking of candidates (Experi-
ments are conducted on WikiPassageQA, and the BERT-based baseline is used).

4.2 Hyperparameter Settings and Ranking Scenario

We set our experiments on the HuggingFace’s Transformers Library [32] with
PyTorch version. We use an Adam optimizer with a learning rate of 1.8 × 10−6

and epsilon of 1 × 10−8, 5 fine-tuning epochs for base configuration and 3 fine-
tuning epochs for large configuration. The hyperparameters are set to default
values, where set token attack percent n of 1, sentence attack intensity r of
0.25, loss increase ratio ε of 1 for base models and 2 for large models, semantic
similarity threshold β of 0.9 and loss weight α of 0.5. The number of hidden
units is set to 768 for the base configurations of BERT and RoBERTa (1024 for
the large configurations). The dropout rate is set to 0.1.

We follow the previous work [16] to examine two sorts of Learning-To-
Rank processes, including the point-wise and pair-wise ranking. In the point-
wise case, each candidate answer is scored independently of others, which is
trained by minimizing the cross-entropy loss via Eq. 2. The BERT-based point-
wise ranking architecture is shown in Fig. 2(a). By contrast, the pair-wise app-
roach conducts ranking in terms of contrasting effects among pairs of candidates.
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The BERT-based pair-wise ranking architecture is shown in Fig. 2(b). Figure 3
shows that the point-wise ranking approach outperforms the pair-wise, where
the vertical axis denotes the number of questions that corresponds to a non-zero
recall rate in top-n (n ∈1,...10) retrieval results. In all the other experiments,
accordingly, we carry out point-wise answer ranking.

Table 2. Test results of the BERT-base answer retrieval (Baseline) and that achieved
after using TextFooler, BAE, PWWS and our SATtkn (Adversarial training models).

Methods MAP MRR

Baseline 68.73(0%) 76.06(0%)

+TextFooler 64.02 (↓6.85%) 72.38 (↓4.48%)

+PWWS 63.57 (↓7.51%) 72.00 (↓5.34%)

+BAE 64.44 (↓6.24%) 72.71 (↓4.40%)

+SATtkn 70.74 (↑2.92%) 78.40 (↑3.08%)

5 Results and Discussion

5.1 Utility of Token-Level Adversarial Examples

First of all, we verify the effects of the single-granularity word-level adversarial
training, where the counterfeit examples are generate by synonym replacement
conditioned on saliency-based word sorting (Sect. 3.3). Further, we compare it
to other congeneric models, including TextFooler [14], BAE [9], PWWS [25]. All
the models generate adversarial examples using TextAttack [18] framework. It is
noteworthy that, in this comparison experiment, we merely select 40K question-
answer pairs from the WikiPassageQA training set for adversarial training. The
involvement of all the training instances into all the models leads to the unaf-
fordable computing resources and time.

In this experiment, we take the BERT-base retrieval model as the baseline
(Fig. 2 (a)), which is trained on the original training set. The refined model
using our word-level Single-granularity Adversarial Training method is denoted
as SATtkn. Table 2 shows the test results. It can be observed that defiantly
retraining the baseline by TextFooler, BAE and PWWS causes performance
degradation. By contrast, SATtkn yields substantial performance improvement.

This proves that the generated adversarial examples by SATtkn are propul-
sive. In this case, the selective synonym replacement (based on saliency) con-
tributes to the generation of effective adversarial examples. By contrast, the
competitors (TextFooler, BAE and PWWS) tend to enlarge the intensity level
of adversarial training, at the expense of disordering the canonical grammatics
and syntactic rules, with less restrictions and without selective adoption. As a
result, the obtained adversarial examples do distract the encoder severely during
training, though the cases are far from natural [19] and will be met rarely during
test. Therefore, they fail to effectively strengthen the robustness.
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5.2 Effect of Bi-granularity Adversarial Training (BAT)

We verify the effect of combining the word-level and sentence-level adversarial
training, where synonym replacement and gradient-based directional represen-
tation refinement are carried out sequentially for each training instance (one
joint attack per instance). We conduct a series of ablation experiments in which
the BERT-based answer retrieval model is considered as the baseline, and the
variants SATtkn, SATsnt, BATcmb and BATall are obtained by challenging the
baseline with 1) single-granularity token-level adversarial examples, 2) single-
granularity sentence-level ones (Sect. 3.3), 3) the combined BAT examples as
mentioned above, as well as 4) the combined BAT examples that are regulated
by self-adaptive filtering (Sect. 3.4). In the experiments, all the training instances
are considered for adversarial attacking. That is the reason why SATtkn has a
different performance from that in Table 2.

Table 3. Ablation study on BERT-base retrieval model.

Benchmark WikiPassageQA TREC-QA

Models MAP MRR MAP MRR

BERT(baseline) 74.90(0%) 82.03(0%) 85.70(0%) 93.70(0%)

+SATtkn 75.69(↑1.05%) 82.85(↑1.00%) 88.47(↑3.23%) 94.61(↑0.97%)

+SATsnt 75.84(↑1.20%) 82.82(↑0.98%) 88.19(↑2.91%) 94.12(↑0.45%)

+BATcmb 76.73(↑2.44%) 83.18(↑1.40%) 89.84(↑4.83%) 95.34(↑1.75%)

+BATall 77.31(↑3.21%) 84.28(↑2.74%) 90.99(↑6.17%) 96.08(↑2.54%)

Table 3 shows the ablation experiment results. It can be observed that either
SATtkn or SATsnt obtains slightly better performance than the baseline. By con-
trast, BATcmb achieves significant improvements, and outperforms both SATtkn

and SATsnt. This illustrates that different-granularity adversarial examples are
mutually complementary, and the sequential utilization of them contributes to
the rising of performance. In addition, the redundancy elimination by adaptive
filtering (in all) improves the performance further.

5.3 Comparison to State of the Art

We compare our answer retrieval models to the previous work that were evalu-
ated on WikiPassageQA and TREC-QA. Let us overview the models separately.

On WikiPassageQA. The recently-reported work on WikiPassageQA com-
prises different LSTM (Long-Short Term Memory)-based retrieval models (AP-
BiLSTM [27], CA-Wang [24] and COALA [26]), as well as BERT-PR [33] and
BERTlets[16]. BERT-PR strengthens BERT by a voting mechanism and statistic
strategies. BERTlets applies different encoding modes (conditioned on point-wise
and pairwise sentence-level representations) with different length constraints.
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On TREC-QA. The earlier study on TREC-QA proposes aNMM [34] and
KABLSTM [28]. The models develop different kinds of attention-based struc-
tures for enhancing the interaction between question and candidate answers. In
addition, HyperQA [29] and SD [3] utilize the siamese neural network structure
to aggregate the similarity between questions and candidate answers. Besides,
TANDA [10] applies the pre-trained transformer for encoding the relationship
between questions and candidate answers, and it additionally uses transfer learn-
ing that enables pre-finetuning on the external dataset. To the best of our knowl-
edge, TANDA achieves the best performance on TREC-QA.

Table 4. Comparison to the previous work on WikiPassgaeQA and TREC-QA.

WikiPassageQA TREC-QA

Models MAP MRR Models MAP MRR

AP-BiLSTM [27] 46.98 55.20 aNMM [34] 75.00 81.10

CA-Wang [24] 48.71 56.11 KABLSTM [28] 80.40 88.50

COALA [26] 60.58 69.40 HyperQA [29] 78.40 86.50

BERT-PR [33] 73.55 80.87 SD [3] 78.30 87.80

BERTlets [16] 73.60 81.00 TANDA [10] (SOTA) 91.20 95.10

BERT-base 74.90 82.03 BERT-base 85.70 93.70

+BATall 77.31 84.28 +BATall 90.99 96.08

RoBERTa-base 76.01 82.96 RoBERTa-base 88.16 94.12

+BATall 79.03 86.08 +BATall 91.61 96.32

BERT-large 76.78 82.59 BERT-large 90.40 94.60

+BATall 79.01 84.89 +BATall 93.37 97.55

RoBERTa-large 78.13 85.46 RoBERTa-large 91.50 95.22

+BATall 80.05 86.27 +BATall 93.99 97.55

Our Models on both Benchmarks. One of our baselines in the compar-
ative experiments is a single BERT-based retrieval model. It couples BERT
with a perceptron. Considering that RoBERTa is more robust than BERT, we
use RoBERTa to develop another baseline by replacing the Bert-based encoder
with RoBERTa. Both the basic and large configurations are considered in the
experiments. Accordingly, there are four baselines constructed, including the
retrieval models that are based on BERT-base, BERT-large, RoBERTa-base and
RoBERTa-large, respectively. In addition, we enhance the baselines by retrain-
ing them using both the original and adversarial examples, where the adversarial
examples are generated by our BATall. This results in four refined models.

Results of Comparative Experiments. Table 4 shows the test results of all
the models mentioned above. It can be observed that all baselines are strength-
ened by BATall. And the resultant new retrieval models outperform the state-
of-the-art models. In particular, BATall cooperates with RoBERTa better than
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BERT, yielding considerable improvements. Over the recently-reported supe-
rior models like BERTlets and TANDA, the performance gaps we reached are
about 6.5% (MAP) and 5.3% (MRR) for WikiPassageQA, and 2.8% (MAP) and
2.5% (MRR) for TREC-QA. It’s noteworthy that, in the case of comparing to
TANDA, our models neither perform transfer learning nor utilize external data.

5.4 Statistical and Practical Significance Test

According to Zhu’s advice [36], we report statistical significance and practical
significance with evaluation metrics of P-value and Cohen’s d, respectively. The
P-value which is lower than the threshold (usually 0.05) indicates a significant
improvement, otherwise insignificant [6]. Besides, Cohen’s d is used to measure
the effect size of our results, and higher value represents larger effect size.

Table 5. The statistical and practical significance test analysis of all tested models on
both benchmarks.

Benchmark WikiPassageQA TREC-QA

T-test P-value Cohen’s d P-value Cohen’s d

(Metrics) (MAP/MRR) (MAP/MRR) (MAP/MRR) (MAP/MRR)

BERTbase VS.
5.88e−4/2.34e−4 5.08/4.20 1.81e−8 /1.44e−4 4.98/2.75

BERTbase+BATall

BERTlarge VS.
4.50e−3/2.25e−3 7.85/4.03 3.13e−4 /8.35e−5 2.29/3.43

BERTlarge+BATall

RoBERTabase VS.
8.19e−4/5.15e−5 3.37/3.35 2.82e−4 /1.21e−3 5.08/4.54

RoBERTabase+BATall

RoBERTalarge VS.
1.22e−3/1.08e−3 3.76/2.61 1.03e−3 /3.02e−2 4.98/1.97

RoBERTalarge+BATall

The P-values and Cohen’s d of the t-test for TREC-QA and WikiPassageQA
are shown in Table 5. It can be observed that the P-values are far below the
threshold and the values of Cohen’s d show great effect size on both corpora.
This demonstrates that BATall produces significant improvement and, therefore,
it can be utilized as a reliable training method for both long and short text
retrieval scenarios.

6 Conclusion

We propose a bi-granularity adversarial attacking method to strengthen the
current answer retrieval model. Moreover, a self-adaptive strategy is developed
to select informative adversarial examples for retraining. Experiments prove the
effectiveness of BAT on both BERT and RoBERTa based retrieval models in
both long text and short text scenarios.
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Although the proposed method has achieved a higher performance, the effi-
ciency of generating adversarial examples isn’t high enough. This reduces the
utility over a larger-scale dataset. In order to improve the efficiency, we will
explore a transferable multi-task adversarial attacking technique, where all the
reliable adversarial behaviors will be shared among the homogeneous data.
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Abstract. Evaluation of user simulators is needed in order to use them
for evaluating Interactive Information Retrieval (IIR) Systems. Previous
work has proposed a tester-based approach to evaluate user simulators,
but it has not addressed the important question about the reliability
of the testers themselves, nor has it studied how to generate a single
reliability score for a user simulator based on multiple testers. In this
paper, we address these two limitations and propose a novel Reliability-
Aware Tester-based Evaluation (RATE) framework for evaluating the
reliability of both User Simulators and testers. In this framework, the
reliability of Testers and that of Simulators are jointly learned through
unsupervised learning using iterative propagation of reliability. We pro-
pose and evaluate two algorithms for unsupervised learning of reliabil-
ities. Evaluation results using TREC data sets show that the proposed
RATE framework is effective in measuring the reliability of simulators
and testers, thus serving as a foundation for potentially establishing a
new paradigm for evaluating IIR systems using user simulation.

Keywords: Reliability of User Simulator · Tester · IIR Systems

1 Introduction

How to evaluate an information retrieval (IR) system has always been an impor-
tant, yet challenging research topic in IR. Since IR is in general an interactive
process, investigation of how to evaluate interactive IR (IIR) systems is espe-
cially important. The recent growth of interest in conversational search systems
makes it even more urgent to study IIR evaluation. Without an appropriate
evaluation methodology, it would be impossible to make solid research progress.

The Cranfield evaluation methodology established in 1960s [9] has so far been
the standard methodology for evaluating IR systems [21]. However, because of
the static nature of the test collections, such a methodology is inadequate for
evaluating IIR systems, which requires involving users in the process of eval-
uation. Current solutions such as evaluation using user studies [12] or online
A/B test [21] are not only expensive but also non-reproducible due to the learn-
ing effect of a user. However, reproducible experiments are needed to accurately
measure research progress and enable long-term comparison of old methods with
new methods.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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A user simulator simulates one or many user actions in a search process such
as query formulation, click simulation, reformulating query, ending the session
and so on, thus a user simulator can interact with an IIR system and the result
is a simulated session with which we can compute the performance of the IIR
system throughout the session [27]. User simulators enable reproducible experi-
ments with IIR systems, previous work has proposed to use user simulators to
evaluate IIR systems [2,5,8,27]. Many user simulation methods are proposed in
literature [1,3–5,13,16] and user simulation has already been applied to evaluate
conversational search systems[20,26] and IIR systems using relevance feedback
algorithms or query suggestion [11,24].

However, user simulators have variable reliability and utility for evaluating IIR
systems [15] and if a user simulator is not reliable, we cannot trust the evaluation of
IIR systems based on it. Therefore, before we can confidently use user simulators to
evaluate IIR systems, we must first be able to evaluate the reliability of user simu-
lators themselves. Evaluation of user simulation itself has multiple challenges such
as variance in user behaviour, unavailability of ground truth, and dependency on
the intended use of a user simulator. So far user simulators have been mostly eval-
uated by assessing how similar a simulator is to a real user using multiple strate-
gies, including comparing simulated and real user session data [16,18], compar-
ing retrieval performance of IR systems with the real user queries and simulated
queries [1,3,4,13], comparison of search session data [5,7], log-likelihood and per-
plexity [7]. However, almost all of these evaluation methods require real user search
interaction data which is expensive to acquire. Further, those evaluation methods
do not directly assess whether the simulator is reliable for comparing IIR systems.

To address these limitations, a Tester-based evaluation (TBE) framework
has been proposed recently by Labhishetty et al. [15] to evaluate the reliability
of a simulator, specifically for the purpose of comparing IIR systems, by using
multiple Testers. A Tester constitutes a set of IR systems with an expected
performance pattern (e.g., one system is expected to be perform better than
another), which can be either obtained analytically or empirically using real
user data. Thus while TBE also benefits from having real user data available,
but it does not necessarily require real user data. A detailed introduction to the
TBE framework is given in Sect. 2.

However, the work [15] has not addressed the important question about the
reliability of the Testers themselves. Indeed, all Testers are not equally reliable
because the expected performance pattern of a Tester may not always be true
when generalized to different experiment setups and the variable reliability of
a few specific Testers has already been reported in [15]. The reliability issue
of Testers must be addressed to make TBE practically useful since without
distinguishing reliable Testers from unreliable Testers, there is a risk of using
unreliable Testers, making it unable to generate a reliable single reliability score
for a user simulator when aggregating its scores on different Testers.

In this work, we study how to quantify the reliability of Testers and extend
the previous work [15] by proposing a new Reliability-Aware Tester based
Evaluation (RATE) framework. In RATE , we define the reliability of a Tester
as the probability that its expected performance pattern would be satisfied when
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tested with a population of users. We define and formulate both the reliability
of the Tester and the reliability of the Simulator such that they can be jointly
learned in an unsupervised manner. We propose two formulations namely Sym-
metric formulation and Difference formulation for learning both the reliability
of Testers and Simulators as a fixed point solution. These algorithms enable the
RATE framework to not only assess the reliabilities of Testers but also directly
generate reliability scores for user simulators, facilitating the use of user simu-
lation for evaluating IIR systems.

Evaluation of RATE shows that the framework can meaningfully differenti-
ate Testers and quantify their reliabilities. Furthermore, the results show that
the algorithms based on Symmetric formulation, the reliability scores and the
ranking of Testers or simulators according to reliability are mostly stable against
perturbation in the list of simulators and testers, thus indicating the robustness
of the framework.

2 Tester-Based Evaluation (TBE)

As our work is an extension of the Tester-based Evaluation (TBE) framework
proposed in [15], we first provide a brief overview of TBE in this section and then
present our proposed new framework in the next section. The TBE framework
was proposed to evaluate the reliability of a user simulator from the perspective
of evaluating IIR systems i.e., it is evaluating predictive validity (as described
in [25]) of a simulator in differentiating different IIR systems. The framework
introduces a component called Tester to evaluate Simulators.

Tester T : A Tester is a set of IR systems along with an expected performance
pattern of the IR systems which is generally an expected order of the performance
of the IR systems (e.g., the order of the NDCG scores produced by the two IR
systems). To evaluate a user simulator using a Tester, the user simulator first
interacts with each of the IR systems in the Tester and the retrieval performance
(like NDCG score) of each IR system is measured with the simulator. The pattern
of the performance of all the systems in a Tester can then be compared with the
expected performance pattern. The reliability score of the simulator is computed
using a measure quantifying how close the two performance patterns are.

For example, if A and B are two IR systems, where an IR system is defined to
include three components: Retrieval method, Document collection, and Topics
(Information needs). If we have knowledge that system A performs better than
system B, a Tester t can be built as follows: (A,B,A > B) which denotes that
A, B are two systems and A > B is the expected performance pattern which
means A is expected to perform better than B.

Reliability of Simulator: The reliability score of a simulator S as measured
using a Tester T (denoted by F (S, T )) is computed as an evaluation measure
quantifying how close the obtained performance pattern of S with T and the
expected performance pattern of T are. In [15], the reliability score F (S, T ) is
computed in two ways, Success rate(Sr) and Failure rate(Fr). It is considered
as success or failure if the order of the IR systems given by the simulator is
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correct or incorrect according to the expected performance pattern of the Tester.
Continuing our example, if a simulator s interacts with the IR systems in Tester
t, and the resultant performance of the system A and system B with s are
computed as pA, pB for all the topics. If pA > pB then it is considered as success
(because the expected pattern is also A > B); otherwise it is a failure. Finally,
a Success rate (Sr) and a Failure rate (Fr) are computed by aggregating all
successes and failures across multiple test cases (multiple information needs). In
this work, we continue using Sr and Fr as two different measures for F (S, T ).

Limitations of TBE: A major limitation of TBE is that the Testers themselves
can be unreliable because the expected performance pattern of a Tester may not
be always correct [15]. Indeed, the expected performance pattern is hypothesized
using domain knowledge or empirical results of the IR systems, thus the expected
performance pattern may not be true when generalized to different information
needs, different types of users, or different document collections.

The lack of a way to distinguish reliable from unreliable Testers means that
TBE cannot yet be applied to accurately measure the reliability of user simu-
lators. It also makes it hard to generate a reliable single reliability score for a
simulator when tested with multiple Testers with different reliability.

In the next section, we address these limitations by proposing a novel
Reliability-aware Tester-based Evaluation (RATE) framework.

3 Reliability-Aware Tester-Based Evaluation (RATE)

The main idea of our proposed new framework, named Reliability-Aware Tester-
based Evaluation (RATE), is that we evaluate the reliability of the user simu-
lators using Testers which are themselves associated with reliability. We define
and formulate both the reliability of the Tester and the reliability of the Simu-
lator such that they can be jointly learned in an unsupervised manner, making
it possible to apply the framework to any Testers and any Simulators without
requiring any human supervision.

3.1 Reliability of a Tester

How can we compute the reliability of a Tester? Logically, the reliability of a
Tester is determined by the certainty of the expected performance pattern. If
we have high confidence in the expected pattern of a Tester, we would also have
high confidence in saying that a user simulator is not reliable if it fails such a
Tester (i.e., fails to show the expected performance pattern), which suggests that
the Tester is reliable; in contrast, if our confidence in the expected performance
pattern of a Tester is not high, we would be less sure whether a user simulator
is unreliable even if it fails such a Tester.

Now, how can we assess the certainty of the expected performance pattern
of a Tester? One possibility is to empirically answer this question by running
the Tester on real users to see whether the same pattern is always observed.
However, an IR system may have different performance when interacting with
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different types of users or search behaviours. Thus the certainty of the perfor-
mance pattern, also the reliability of a Tester, inevitably depends on the specific
users used to estimate it. Thus the definition of reliability of a Tester is with
respect to a group of users. We define the reliability of a Tester as follows.

Reliability of a Tester R(T ): The Reliability of a Tester T is the reliability
of the expected performance pattern of that Tester, i.e., the probability that the
expected performance pattern is satisfied when tested with a population of users
U . Average reliability R(T ) is obtained by aggregating reliability scores from dif-
ferent populations of users.

Formally, if F (U, T ) is the probability that the expected performance pattern
of T is consistent with the observed performance pattern when the Tester T is
applied to a real user U in a population group G. The reliability of T (denoted
by R(T )) can be defined as the average F (U, T ) over all the users in the group.

R(T ) =
1

|G|
∑

U∈G

F (U, T ) (1)

From Eq. 1, one of the solutions to compute F (U, T ) by testing the Tester using
real user experiments. But obtaining F (U, T ) using real user experiments for each
Tester T is very expensive and generally infeasible. Thus a solution we propose
is to approximate a group of real users with a group of user simulators G′. As
simulators have variable reliability, we also need to consider each simulator’s
reliability, i.e., how well a simulator S approximates a real user U , which we
denote by p(U |S). Naturally, when S is a real user, this probability would be 1.
With this approximation, we have

R(T ) =
1

|G|
∑

U∈G

1
|G′|

∑

S∈G′
F (S, T )p(U |S) (2)

=
1

|G′|
∑

S∈G′
F (S, T )

1
|G|

∑

U∈G

p(U |S) (3)

Without additional knowledge of specific users that we are interested in
simulating, we can reasonably assume that p(U |S) can simply be approxi-
mated by p(Ũ |S), where Ũ denotes an “average” user. With this assumption,∑

U∈G p(U |S) = |G|p(Ũ |S), thus we have

R(T ) =
1
G′

∑

S∈G′
F (S, T )p(Ũ |S) (4)

As the Reliability of the simulator is also evaluating the quality of the simu-
lator in terms of whether it can compare IR systems correctly as real users, we
propose that P (Ũ |S) is proportional to the reliability of the simulator S, i.e.,
R(S). Therefore Reliability of the Tester is dependent on the reliability of the
simulators in the following way,

P (Ũ |S) ∝ R(S), R(T ) ∝
∑

S∈G′
F (S, T )R(S) (5)
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3.2 Reliability of User Simulator

We now discuss how we can define the reliability of a user simulator R(S). One
solution is to compare the behavior of the user simulator with that of a real
user and use the similarity to estimate R(S), but we are interested in studying
whether it is still possible to define it in some meaningful way even without
access to real user data.

One way to achieve the goal is to assume that a simulator is reliable if it
gives the expected performance pattern correctly with a reliable Tester, i.e., it
has a high success rate, F (S, T ), when tested with Tester T . The simulator can
be assumed to be even more reliable if it can pass multiple reliable Testers with
high success rates. Logically, this is a quite reasonable assumption as it just
means that a reliable simulator passes many reliable Testers with high success
rates. This heuristic can be potentially implemented in multiple ways. Below we
describe two of them.

Symmetric Formulation: In this formulation, we compute R(S) as a weighted
mean of success rate F (S, T ) over a set of Testers, where the weights are the
reliability of the Testers.

R(S) =
∑

T F (S, T ) ∗ R(T )∑
T R(T )

(6)

We refer to this formulation as symmetric formulation because note that the
reliability of Tester and reliability of simulator are both defined in terms of
each other as per Eq. 5 and Eq. 6 respectively. Both formulations are similar and
symmetric. The symmetric formulation gives a simulator a high reliability score
if it passes many highly reliable Testers (high R(T )) with high success rates
(high F (S, T )). Note that F (S, T ) and R(T ) both range from 0 and 1, therefore
R(S) is also between 0 and 1.

Difference Formulation. An alternative method to compute R(S) is by using
the definition of reliability of Tester. The reliability of a Tester is the extent
to which the Tester expected pattern is satisfied by the real user. We can thus
assume that a simulator S is more reliable if it best approximates an average
user (Ũ) in its behavior on Testers. That is, the score of F (S, T ) should be close
to F (Ũ , T ) for all Testers. With this notion of reliability, we define R(S) as being
proportional to the difference between F (S, T ) and F (Ũ , T ) where F (Ũ , T ) is
R(T ) from Eq. 1 when all users in G are approximated to Ũ . We refer to this as
Difference formulation. Formally,

R(S) ∝ 1/
∑

T

(F (S, T ) − R(T )) (7)

R(S) =
2∑

T (F (S, T ) − R(T )) + 1
− 1 (8)

R(S) in Eq. 8 is scaled such that the value is between zero and one. Unlike
Symmetric formulation, Difference formulation implies that a simulator should
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have a higher score with highly reliable Testers along with a lower score with
less reliable Testers, because the difference F (S, T ) − R(T ) in such cases will be
smaller and R(S) will be higher.

Circular Dependence of Reliability of Tester and Simulator: In the
RATE framework, there is a circular dependency between the reliability of a
simulator and the reliability of a Tester which is somewhat similar to the HITS
algorithm [14]. In Symmetric formulation of R(S) (Eq. 6), the principle is that a
simulator has higher reliability when it satisfies reliable Testers and a Tester has
high reliability when it is satisfied by reliable simulators obtained from Eq. 5.
The principle in the Difference formulation of R(S) (Eq. 8) is that a simulator
has higher reliability if it satisfies reliable Testers and does not satisfy unreliable
Testers and a Tester has high reliability if it is satisfied by reliable simulators.

The circular dependency between R(S) and R(T ) captures their relations
intuitively and directly suggests constraints that can be interpreted as defining
a fixed point solution for R(S) and R(T ) jointly. Thus it enables us to learn
both reliabilities from all the test values F (S, T ) in an iterative way until they
converge. Algorithm 1 and Algorithm 2 are the two iterative algorithms for com-
puting R(S) and R(T ) based on Symmetric formulation and Difference formu-
lation respectively. In both algorithms, we start by considering that all Testers
are reliable or R(T ) = 1 which is the assumption of baseline TBE evaluation
approach.

Algorithm 1 Iterative algorithm for Symmetric Formulation:
Step1: for each S, for each T , Obtain F (S, T )
Step2: Initialize R(T )1 = 1, n = 1

Step3: R(S)n =
∑

T F (S,T )∗R(T )n
∑

T R(T )n

Step4: R(T )n+1 =
∑

S F (S,T )∗R(S)n
∑

S R(S)n

Step5: n = n + 1
Step6: Repeat from Step2 until convergence condition is met.

Algorithm 2 Iterative algorithm for Difference formulation
Step1: for each S, for each T , Obtain F (S, T )
Step2: Initialize R(T )1 = 1, n = 1
Step3: R(S)n = 2

(
∑

T |F (S,T )−R(T )n|∗ 1
|T | )+1

− 1

Step4: R(T )n+1 =
∑

S F (S,T )∗R(S)n
∑

S R(S)n

Step5: n = n + 1
Step6: Repeat from Step2 until convergence condition is met.

4 Evaluation

In our experiments, we want to do a preliminary study of the empirical behaviour
of the RATE framework and whether RATE can reasonably identify reliable
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simulators and Testers. Specifically, the following questions are answered through
the experiments: RQ1) Can RATE results distinguish unreliable Testers from
reliable ones? RQ2) Which of the two formulations, Symmetric or Difference
formulation is more effective and robust? RQ3) How sensitive are reliability
scores learnt from the iterative algorithm? How sensitive are the rankings of
reliable simulators when the list of simulators to evaluate is changed?

4.1 Experiment Design

We used the same experiment setup as in [15]. We used the same Testers and
Simulators utilized in [15], which we briefly describe below.

1. Testers:
Query History (QH) Tester : The Tester compares two IR systems where
one of them is baseline BM25 and the other is an IIR system that uses previous
queries in a session to do query expansion using the method proposed in [22] and
improves on the baseline. The expected pattern is that the IIR system should
perform better than the baseline. The Tester is denoted by (M, M+QH[α]) where
α is the parameter of the query expansion controlling the weight on the current
query compared to previous queries. Click History (CH) Tester : Similar
to QH Tester, this Tester compares the baseline with an IIR system that uses
previously clicked documents to do query expansion and improve ranking over
the baseline using the method proposed in [19,23]. The Tester is denoted by
(M, M+CH[β]) where β controls the weight of the current query compared to
the clicked history terms. The expected pattern is similar to QH Tester, M +
CH[β] > M . BM25 Ablation Testers: This Tester contains standard BM25
(M) compared with BM25 without TF weighting (M\TF ) or IDF weighting (M\
IDF ). As the TF and IDF weighting are important components in BM25, the
expected pattern for these Testers are M > M \TF , M > M \IDF respectively.
We used Whoosh [6] library to implement all the Testers.

2. Simulators: We experiment with all the four simulators studied in [15] using
SimIIR toolkit [17] to implement these simulators: Smart Ideal TREC user (SIT),
Smart Stochastic TREC user (SST), Single Term Stochastic TREC user (STST),
and Random User (RU). The detailed configurations of the simulators are not
shown to save space, they can be found in [15]. To summarize, Random user(RU)
simulates actions randomly and is the worst simulator and SIT and SST are
more effective simulators with better query formulations and click simulation
techniques.

3. Dataset: The Information needs and document collection are selected from
the TREC AQUAINT dataset. A subset of 50000 documents are used as the
document collection and the TREC topics are used as Information needs. The
simulators use the TREC topic description and topic judgements as input to
simulate the user actions to generate a search session.

4. Evaluation Measure: We measure retrieval performance of an IR system
with a simulator by computing session-based DCG measure (sDCG/q) [10] of
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the resultant simulated search session. The order of (sDCG/q) scores of two IR
systems in the Tester will give whether the simulator has success or not which
leads to computing success rate (F (S, T )) across multiple topics(Information
needs).

5. Experiment Process: We use six Testers which are also used in [15] to
conduct our experiments. We first reproduced the results in the paper [15] by
using same parameter settings for the Testers. We use two QH Testers α = 0.5,
α = 0.01 denoted by (M, M+QH[0.5]), (M, M+QH[0.01]), and two CH testers
with β = 0.5, β = 0.8 denoted by (M, M+CH[0.8]), (M, M+CH[0.5]). And the
final two testers are (M, M\ TF), (M, M\ IDF). We evaluate the four simulators,
by computing success rate F (S, T ) using the six Testers, Table 1 shows the results
of the success rate scores. From the results in Table 1, it is clear that different
Testers give different scores for the simulators. The ablation testers (M, M\TF),
(M, M\IDF) do not perform as expected and are argued as potentially unreliable
in [15].

Table 1. Success rate of the 4 Simulators
with six Testers

F(S,T) SIT SST STST RU
(M,M+QH[0.5]) 0.766 0.745 0.809 0.021
(M,M+QH[0.01]) 0.723 0.723 0.872 0.021
(M,M+CH[0.8]) 0.787 0.723 0.638 0.021
(M,M+CH[0.5]) 0.809 0.638 0.575 0
(M,M\TF) 0.34 0.383 0.362 0
(M,M\IDF) 0.532 0.426 0 0

By applying the RATE framework,
we can now compute the reliability
scores of these Testers. Using Table 1
results, we apply the iterative algo-
rithm to compute R(S) and R(T ). The
convergence condition for the algo-
rithm is when the change in R(S)
and R(T ) is less than 0.00001. We
observe that the convergence condition
is always met before 10 iterations and therefore choose n = 10 for both Algo-
rithm1 and Algorithm 2.

4.2 Experiment Results

Tables 2 and 3 shows the resultant R(T) and R(S) scores with Symmetric and
Difference formulation respectively. We initialized all R(T ) to 1 in Iteration 0.
We show the reliability scores of Simulators after 10 iterations and similarly for
Testers. We can make several interesting observations from the tables.

First, we see that both Symmetric and Difference formulations were able to
correctly identify (M, M\TF) and (M, M\IDF) as relatively unreliable Testers,
consistent with the conclusions drawn in [15]. Although these two ablation testers
are reasonable, depending on the set of information needs and document collec-
tion it is possible that the Tester’s expected pattern might be incorrect. In the
previous work [15], these two BM25 Ablations testers are argued as potentially
unreliable; the RATE framework enables us to quantify their reliability with
reasonable scores. We also see that the relative order of the Testers accord-
ing to R(T ) scores is the same with both Symmetric and Difference formu-
lations although the absolute values are different, suggesting that the itera-
tive algorithm is generally robust. Moreover, although we started with R(T)
as 1.0 for all the testers, the framework learns different reliability scores for
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each tester and distinguishes unreliable Testers. We can observe that the Testers
with different parameters also have different reliabilities i.e., (M, M+QH[0.5]),
(M, M+QH[0.01]) have slightly different R(T) scores and (M, M+CH[0.8]), (M,
M+CH[0.5]) have a larger difference in their reliability scores. Thus we can
answer RQ1 by concluding that the RATE framework can distinguish reliable
Testers from unreliable ones and assign meaningful reliability scores to them.

Table 2. R(S) and R(T) using RATE
using Symmetric Formulation of R(S)

Reliability of

Simulators

Reliability of Testers

Simulators R(S) Testers R(T)

SIT 0.70551 (M,M+QH[0.5]) 0.76777

SST 0.65107 (M,M+QH[0.01]) 0.76519

STST 0.62699 (M,M+CH[0.8]) 0.71432

RU 0.01308 (M,M+CH[0.5]) 0.67446

(M,M\TF) 0.3587

(M,M\IDF) 0.32689

Table 3. R(S) and R(T) using RATE
using Difference Formulation of R(S)

Reliability of

Simulators

Reliability of Testers

Simulators R(S) Testers R(T)

SIT 0.77963 (M,M+QH[0.5]) 0.68797

SST 0.868 (M,M+QH[0.01]) 0.68726

STST 0.80399 (M,M+CH[0.8]) 0.63722

RU 0.31133 (M,M+CH[0.5]) 0.59603

(M,M\TF) 0.3216

(M,M\IDF) 0.28395

Second, from the results in Table 2 and 3, we observe that the reliability scores
of Simulators learnt using Symmetric and Difference formulations are very dif-
ferent. Both the formulations correctly identify the random user by giving it the
lowest reliability, but the Difference formulation gives a relatively higher score
to RU which seems undesirable. This is likely because, in Difference formula-
tion, the Random user (RU) is rewarded for lower scores on the two less reliable
Testers, (M, M\IDF) and (M, M\TF). Indeed, the difference formulation com-
putes the difference between the simulator score F (S, T ) and reliability of Tester
R(T ) as given in Eq. 8. Since R(T ) is a weighted average of success rates of all
simulators, the difference algorithm essentially scores a simulator approximately
based on how close it is to the average success rates of all simulators. This makes
the algorithm more sensitive and less robust to the list of simulators that are
considered. As there is a random user (RU) in our list of simulators, the RU user
lowers the average success rates and therefore has a higher score for reliability.

In contrast, Symmetric formulation scores the simulator approximately based
on the average success rate of that simulator with the testers, so if a simulator
has a higher success rate with all testers, it likely has higher reliability. This
principle enables it to identify the random user correctly. It is also more robust
with respect to the list of simulators that are evaluated as we will show later.

Overall, compared with the Difference formulation, the Symmetric formula-
tion scores appear to be more meaningful, not only identifying the unreliable
random user correctly but also identifying SIT as the best simulator, which is
quite reasonable as SIT uses smart queries and clicks.
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Fig. 1. R(S) - Symmetric formulation Fig. 2. R(S) - Difference formulation

Figures 1 and 2 show the convergence graphs of both algorithms in comput-
ing the reliability scores of the four simulators. The values converge fast because
there are only a few data points (4 simulators and 6 testers). The convergence
graphs further show the difference between both Symmetric and Difference for-
mulations, like the order of the simulators is different in both and RU gains
reliability with Difference formulation in Fig. 2.

To further analyze the robustness of Symmetric and Difference formulations
and RATE framework overall, we modify the experiment by adding a large num-
ber of random testers (RUs). An important question we study is that: Would
simulator ranking be affected much by the set of simulators considered?. We
repeat the experiment with 6 Testers and 50 RU simulators along with SIT,
SST, STST simulators. The results are shown in Tables 4 and 5. The Symmetric
formulation gives almost the same R(S) scores as in Table 2, but the Differ-
ence formulation scores are completely changed where the Random user is now
given the highest reliability scores and the other simulators have low reliability.
Clearly, the Difference formulation is not robust against changes in the set of
simulators especially when more bad user simulators are added. We thus con-
clude that Symmetric formulation is more effective and robust, answering RQ2
and partially answering RQ3.

Table 4. Reliability scores with mul-
tiple Random Testers - Symmetric for-
mulation

Reliability of

Simulators

Reliability of Testers

Simulators R(S) Testers R(T)

SIT 0.70582 (M,M+QH[0.5]) 0.58312

SST 0.65153 (M,M+QH[0.01]) 0.58119

STST 0.62784 (M,M+CH[0.8]) 0.54287

RU 0.01313 (M,M+CH[0.5]) 0.50766

RU 0.01313 (M,M\TF) 0.27001

RU 0.01313 (M,M\IDF) 0.24599

... 0.01313

Table 5. Reliability scores with mul-
tiple Random Testers - Difference for-
mulation

Reliability of

Simulators

Reliability of Testers

Simulators R(S) Testers R(T)

SIT 0.2196 (M,M+QH[0.5]) 0.03275

SST 0.26046 (M,M+QH[0.01]) 0.03284

STST 0.31187 (M,M+CH[0.8]) 0.03168

RU 0.98194 (M,M+CH[0.5]) 0.01028

RU 0.98194 (M,M\TF) 0.00565

RU 0.98194 (M,M\IDF) 0.00448

... 0.98194
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Finally, to address RQ3, we study the behaviour of the RATE framework by
altering the list of Simulators or Testers, including removing one simulator (e.g.,
3 Simulators (SIT, STST, RU), 6 Testers) and removing two Testers (e.g., (4 Sim-
ulators, 4 Testers (QH testers, Ablation testers)) or (4 Simulators, 4 Testers(QH
testers, CH testers)). We only use Symmetric formulation for computing R(S) in
all these experiments as it is the preferred formulation. The results are shown in
Table 6, Table 7 and Table 8. From the results, we observe that the reliability of a
tester is not affected much by changing the set of testers, and similarly, the reli-
ability of a simulator is not affected much by changing the set of simulators. For
example, R(T) scores of the QH Testers are same in Table 2, Table 6 and Table 7;
the R(T) scores of CH Testers are also almost the same in Table 2 and Table 7;
and similar results are observed for Ablation testers. Further, the reliability of
the simulators SIT, STST and RU is the same as in Table 8 and Table 2. We also
experimented with more such configurations and found similar results. Thus we
conclude that RATE is stable and robust in the sense that adding or removing
unreliable or random simulators does not affect the evaluation of simulators, and
adding or removing testers does not affect the evaluation of the testers. That is,
the simulator ranking is not affected much by the set of simulators considered in
the RATE framework. This implies that once we have a benchmark set of Testers
with their learnt reliabilities, we can evaluate any number of simulators using
the RATE framework without much worry about the sensitivity of the simulator
reliability scores to the number of simulators participating in the evaluation.

However, we observe that changing the list of simulators affects the reliability
of Testers, and changing the list of testers affects the reliability of simulators.
This is expected as the computation of R(T ) itself is proportional to the average
success rate of all the simulators when interacting with T , and vice versa. Thus,
the average gets affected when the list of simulators or testers change respec-
tively. Interestingly, although the absolute scores are affected, the ranking of
Testers is unaffected with the set of simulators which is a positive result indicat-
ing the robustness of RATE. Overall, the robustness results indicate that RATE
is not highly sensitive to small changes in the list of simulators or Testers.

Table 6. Robustness test - Reliability
scores after removing CH Testers

Reliability of

Simulators

Reliability of Testers

Simulators R(S) Testers R(T)

SIT 0.64228 (M,M+QH[0.5]) 0.76779

SST 0.63287 (M,M+QH[0.01]) 0.7671

STST 0.64228 (M,M\TF) 0.35877

RU 0.0145 (M,M\IDF) 0.31708

Table 7. Robustness test - Reliability
scores after removing BM25 Ablation
Testers

Reliability of

Simulators

Reliability of Testers

Simulators R(S) Testers R(T)

SIT 0.76973 (M,M+QH[0.5]) 0.768

SST 0.70922 (M,M+QH[0.01]) 0.76678

STST 0.72997 (M,M+CH 0.8) 0.71215

RU 0.01617 (M,M+CH 0.5) 0.67185
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5 Conclusion

Table 8. Robustness test - Reliability by
removing SST simulator

Reliability of
Simulators

Reliability of Testers

Simulators R(S) Testers R(T)
SIT 0.70977 (M,M+QH[0.5]) 0.77888
STST 0.63823 (M,M+QH[0.01]) 0.786
RU 0.0133 (M,M+CH[0.8]) 0.70966

(M,M+CH[0.5]) 0.69139
(M,M\TF) 0.34699
(M,M\IDF) 0.27738

In this work, we proposed a new eval-
uation framework called Reliability-
Aware Tester based Evaluation frame-
work(RATE) to evaluate User Simu-
lators for their reliability in compar-
ing IIR systems. Previous work pro-
posed Testers to evaluate simulators
but did not consider the reliability of
the Testers themselves. In the RATE
framework, we defined and formulated
reliability of Tester and consequently reliability of simulator where both have
circular-dependence between them. We propose two methods to compute R(S),
Symmetric and Difference formulation and propose an iterative algorithm to
learn both reliability scores. Our experiments show that RATE is effective in
distinguishing unreliable Testers from reliable Testers and also can distinguish
reliable and unreliable simulators effectively. Between the two formulations, Sym-
metric formulation is found to be more effective and stable to compute R(S). We
further observe that RATE is robust in that the reliability score of a simulator
is robust against the list of simulators considered and similarly for testers.

RATE provides a foundation for potentially establishing a new paradigm for
evaluating IIR systems using user simulation. As an immediate future work, we
envision to leverage RATE to establish a novel open evaluation platform where
the research community can regularly add more Testers and simulators (which
will naturally happen as researchers develop novel Testers and simulators), and
the reliabilities of both the testers and the simulators can then be computed
using the Symmetric formulation algorithm. Such a RATE platform will, for the
first time, enable the use of potentially many user simulators to evaluate IIR
systems with reproducible experiments.

Although we have only used unsupervised learning to learn reliability scores,
the framework also allows semi-supervised learning, exploration of which is an
interesting future direction. For example, if some of the Testers have the suc-
cess rate scores when tested with real users (F (U, T )), these scores can be used
as initial R(T ) scores and they can be used to learn the reliability of other
Testers and simulators through propagating reliability using the iterative algo-
rithms proposed in the framework. Similarly, if real user data is available to
assess the reliability of some simulators, such reliability scores can also be easily
incorporated into the framework.
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Abstract. HC4 is a new suite of test collections for ad hoc Cross-
Language Information Retrieval (CLIR), with Common Crawl News doc-
uments in Chinese, Persian, and Russian, topics in English and in the
document languages, and graded relevance judgments. New test collec-
tions are needed because existing CLIR test collections built using pool-
ing of traditional CLIR runs have systematic gaps in their relevance judg-
ments when used to evaluate neural CLIR methods. The HC4 collections
contain 60 topics and about half a million documents for each of Chinese
and Persian, and 54 topics and five million documents for Russian. Active
learning was used to determine which documents to annotate after being
seeded using interactive search and judgment. Documents were judged
on a three-grade relevance scale. This paper describes the design and
construction of the new test collections and provides baseline results for
demonstrating their utility for evaluating systems.

Keywords: Test Collection · Cross-Language Information Retrieval ·
CLIR · Evaluation

1 Introduction

Ad hoc Cross-Language Information Retrieval (CLIR) has been studied for
decades. Yet until the advent of high-quality machine translation, the usefulness
of CLIR has been limited. Easy access to inexpensive or free machine translation
has altered this landscape. If one can find a document of interest in a language
one cannot read, machine translation is now often sufficient to make the major-
ity of the document’s content accessible. Thus, the breadth of the audience for
CLIR has increased dramatically in a short period of time.

As machine translation has increased the usefulness of CLIR, recently intro-
duced deep neural methods have improved ranking quality [4,29,43,45,47]. By
and large, these techniques appear to provide a large jump in the quality of
CLIR output. Yet the evidence for these improvements is based on small, dated
test collections [14,15,27,36,37]. Problems with existing collections include:
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– Some CLIR test collections are no longer available from any standard source.
– They are typically small, often 100,000 or fewer documents, and some have

few known relevant documents per topic.
– Judgment pools were retrieved using older systems. New neural systems are

thus more likely to systematically identify relevant unjudged documents [38,
40,46].

– Many of the early test collections have only binary judgments.

The increased importance of CLIR thus argues for the creation of new ad hoc
CLIR collections that ameliorate these problems. A new CLIR collection should
contain a large number of recent documents in a standard encoding, with dis-
tribution rights that foster broad use, sufficient numbers of relevant documents
per topic to allow systems to be distinguished, and graded relevance judgments.

To this end, we have created HC41 – the HLTCOE Common Crawl CLIR
Collection. In addition to addressing the shortcomings described above and facil-
itating evaluations of new CLIR systems, this suite of collections has a few unique
aspects. First, to mimic well contextualized search sessions, topics are generally
inspired by events in the news and written from the perspective of a knowledge-
able searcher familiar with the background information on the event. Each topic
is associated with a date, and in most cases the topic is linked to Wikipedia
page text written immediately prior to that date, generally contemporaneous
with the event. This page serves as a proxy for a report that might have written
by a searcher prior to their search, reflecting their knowledge at that time. It is
included in the collection to enable exploration of contextual search. Second, to
maximize recall in the judged set, instead of pooling, active learning identified
the documents to be judged [1]. This approach reduces judgment bias toward
any specific automated retrieval system.

2 Related Work

The first CLIR test collection was created for Salton’s seminal work on CLIR in
1970, in which English queries were manually translated into German [35]. Rele-
vance judgments were exhaustively created for those queries for several hundred
abstracts in both languages. In 1995, the first instance of a large-scale CLIR
test collection in which documents were selected for assessment using pooling
translated Spanish queries from the Fourth Text Retrieval Conference’s (TREC-
4) Spanish test collection into English for CLIR experimentation [12]. The next
year, TREC organizers provided standard English versions of queries for Span-
ish and Chinese collections [37]. The following year, CLIR became the explicit
focus of a TREC track, with collections in German, French, and Italian; that
track continued for three years [36]. One enduring contribution from this early
work was recognition that to be representative of actual use, translations of topic
fields in a test collection should not be made word-by-word, but rather should
be re-expressions fluently written in the query language.

1 HC4 can be downloaded from https://github.com/hltcoe/HC4.
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With the start of the NACSIS Test Collection Information Retrieval
(NTCIR) evaluations in Japan in 1999 [34], the Cross-Language Evaluation
Forum (CLEF) in Europe in 2000 [15], and the Forum for Information Retrieval
Evaluation (FIRE) in India in 2008 [27], the center of gravity of CLIR evaluation
moved away from TREC. Over time, the research in each of these venues has
become more specialized, so although CLIR tasks continue, the last large-scale
CLIR test collection for ad hoc search of news that was produced in any of the
world’s four major information retrieval shared-task evaluation venues was cre-
ated in 2009 for Persian [14]. The decline in test collection production largely
reflected a relative stasis in CLIR research, which peaked around the turn of
the century and subsequently tailed off. Perhaps the best explanation for the
decline is that the field had, by the end of the first decade of the twenty-first
century, largely exhausted the potential of the statistical alignment techniques
for parallel text that had commanded the attention of researchers in that period.

One consequence of this hiatus is that older test collections do not always
age gracefully. As Lin et al. point out, “Since many innovations work differ-
ently than techniques that came before, old evaluation instruments may not
be capable of accurately quantifying effectiveness improvements associated with
later techniques” [25]. The key issue here is that in large test collections, rele-
vance judgments are necessarily sparse. TREC introduced pooling as a way to
decide which (typically several hundred) documents should be judged for rele-
vance to each topic, with the remaining documents remaining unjudged. Pools
were constructed by merging highly ranked documents from a diverse range of
fully automated systems, including some of the best systems of the time, some-
times augmented by documents found using interactive search. Zobel found,
using evaluation measures that treat unjudged documents as not relevant, that
relevance judgments on such pools result in system comparisons not markedly
biased against other systems constructed using similar technology that had not
contributed to the pools [48]. Contemporaneously, Voorhees found that com-
parisons between systems were generally insensitive to substituting judgments
from one assessor for those of another [39]. A subsequent line of work found that
some newly designed evaluation measures produced system comparisons robust
to random ablation of those pools [5,28,33,44]. However, these conclusions do
not necessarily hold when new technology finds relevant documents that were
not found by earlier methods, as can be the case for neural retrieval methods [25].
In such cases, three approaches might be tried:

1. Re-pool and rejudge an older collection, or create a new collection over newer
content using pooling.

2. Select documents to be judged in a manner relatively insensitive to the search
technology of the day, without necessarily judging all relevant documents.

3. Use an approach that simply does a better job of finding most of the relevant
documents, thus reducing the risk of bias towards any class of system.

We used the third of these approaches to select documents for judgment
in HC4. Specifically, we used the HiCAL system [10] to identify documents for
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judgment using active learning. HiCAL was originally developed to support Tech-
nology Assisted Review (TAR) in E-Discovery, where the goal is to identify the
largest practical set of relevant documents at a reasonable cost [3,9,31,42]. Sim-
ilar approaches have been used to evaluate recall-oriented search in the TREC
Total Recall and Precision Medicine tracks [17,22,32]. The key idea in HiCAL
is to train an initial classifier using a small set of relevance judgments, and then
to use active learning with relevance sampling to identify additional documents
for review. As Lewis found, relevance sampling can be more effective than the
uncertainty sampling approach that is more commonly used with active learn-
ing when the prevalence of relevant documents in the collection being searched
is low [24]. This low prevalence of relevant documents is often a design goal
for information retrieval test collections, both because many real information
retrieval tasks exhibit low relevance prevalence, and because (absent an oracle
that could fairly sample undiscovered relevant documents) accurately estimating
recall requires reasonably complete annotation of the relevant set. One concern
that might arise with HiCAL is that if the document space is bifurcated, with
little vocabulary overlap between two or more sets of relevant documents, then
HiCAL could get stuck in a local optimum, exploiting one part of the document
space well but missing relevant documents in another. Experience suggests that
this can happen, but that such cases are rare.2 In particular, we expect such
cases to be exceptionally rare in the news stories on which our HC4 test collec-
tions are built, since journalists typically go out of their way to contextualize
the information that they present.

Early TREC CLIR test collections all included binary relevance judgments,
but the introduction of the Discounted Cumulative Gain (DCG) measure in
2000 [20], and the subsequent broad adoption of Normalized DCG (nDCG),
increased the demand for relevance judgments with more than two relevance
grades (e.g., highly relevant, somewhat relevant, and not relevant). Some of the
early CLIR work with graded relevance judgments first binarized those judg-
ments (e.g., either by treating highly and somewhat relevant as relevant, or by
treating only highly relevant as relevant) [21]. However, Sakai has noted that
using graded relevance in this way can rank systems differently than would more
nuanced approaches that award partial credit for finding partially relevant doc-
uments [34]. In our baseline runs, we report nDCG using the graded relevance
judgments, then binarize those judgments to report Mean Average Precision
(MAP) by treating highly and somewhat relevant as relevant.

3 Collection Development Methodology

We adopted several design principles to create HC4. First, to develop a multi-
lingual document collection that was easy to distribute, we chose the Common
Crawl News Collection as the basis for the suite of collections. We applied auto-
matic language identification to determine the language of each document.3 We
2 Personal communication with Gordon Cormack.
3 https://github.com/bsolomon1124/pycld3.
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then assembled Chinese, Persian, and Russian documents from August 2016 to
August 2019 into ostensibly4 monolingual document sets. Finally, we automati-
cally identified and eliminated duplicate documents.

The second design principle was to create topics that model the interests of a
knowledgeable searcher who writes about world events. Such topics enable CLIR
research that addresses complex information needs that cannot be answered
by a few facts. Key attributes of a knowledgeable searcher include a relative
lack of ambiguity in their information need and an increased interest in named
entities. To support this goal, we used events reported in the Wikipedia Current
Events Portal (WCEP)5 as our starting point for topic development. To support
exploration of how additional context information could be used to improve
retrieval, each topic was associated with a contemporaneous report.

A third design principle was to include topics with relevant documents in
multiple languages. Once a topic was developed in one language, it was vetted
for possible use with the document sets of other languages.

3.1 Topic Development

Starting from an event summary appearing in WCEP, a topic developer would
learn about that event from the English document that was linked to it, and
from additional documents about the event that were automatically identified as
part of the WCEP multi-document summarization dataset [16]. Topic developers
were bilingual, so they could understand how an English topic related to the
event being discussed in the news in another language. After learning about the
event, the topic developer searched a non-English collection to find documents
about the event. After reading a few documents in their language, they were
asked to write a sentence or question describing an information need held by
the hypothetical knowledgeable searcher. They were then asked to write a three-
to-five word summary of the sentence. The summary became the topic title,
and the sentence became the topic description. Next, the topic developer would
investigate the prevalence of the topic in the collection. To do this they would
issue one or more document-language queries and judge ten of the resulting
documents. Topic developers answered two questions about each document: (1)
How relevant is the most important information on the topic in this document?;
and (2) How valuable is the most important information in this document?
Relevance was judged as central , tangential , not-relevant , or unable-to-
judge . The second question was only posed if the answer to the first question
was central . Allowable answers to the second question were very-valuable ,
somewhat-valuable , and not-valuable .

To develop topics with relevant documents in more than one language, the
title and description, along with the event that inspired the topic, were shown to
a topic developer for a different language. The topic developer searched for the
presence of the topic in their language. As with the initial topic development,

4 Language ID failure caused some documents in each set to be of the wrong language.
5 https://en.wikipedia.org/wiki/Portal:Current events.

https://en.wikipedia.org/wiki/Portal:Current_events
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ten documents were judged to evaluate whether the document set supported the
topic. Topic developers were allowed to modify the topic, which sometimes led
to vetting the new topic in the initial language.

3.2 Relevance Judgments

After topic development, some topics were selected for more complete assess-
ment. The titles and descriptions of selected topics were vetted by a committee
comprising IR researchers and topic developers. The committee reviewed each
topic to ensure that: (a) the title and description were mutually consistent and
concise; (b) titles consisted of three to five non-stopwords; (c) descriptions were
complete, grammatical sentences with punctuation and correct spelling; and (d)
topics were focused and likely to have a manageable number of relevant docu-
ments. Corrections were made by having each committee member suggest new
phrasing, then a topic developer selecting a preferred alternative.

Given the impracticality of judging millions of documents, and because most
documents are not relevant to a given topic, we followed the common practice
of assessing as many relevant documents as possible, deferring to the evaluation
measure decisions on how unassessed documents should be treated. Because we
did not build this collection using a shared task, we did not have diverse sys-
tems to contribute to judgment pools. Thus, we could not use pooling [41,48].
Instead, we used the active learning system HiCAL [10], to iteratively select
documents to be judged. HiCAL builds a classifier based on the known relevant
documents using relevance feedback. As the assessor judges documents, the clas-
sifier is retrained using the new assessments. To seed HiCAL’s classifier, we used
ten documents judged during topic development. Because the relevance assessor
is likely not the person who developed the topic, and because the topic might
have changed during topic vetting, those documents are re-judged. At least one
document must be judged relevant to initialize the classifier.

Once assessment was complete, assessors provided a translation of the title
and description fields into the language of the documents, and briefly explained
(in English) how relevance judgments were made; these explanations were placed
in the topic’s narrative field. In contrast to the narrative in a typical TREC ad
hoc collection, which is written prior to judging documents, these narratives were
written after judgments were made; users of these collections must therefore be
careful not to use the narrative field as part of a query on the topic.

Our target time for assessing a single topic was four hours. We estimated
this would allow us to judge about one hundred documents per topic. According
to the designers of HiCAL,6 one can reasonably infer that almost all findable
relevant documents have been found if an assessor judges twenty documents
in a row as not relevant. From this, we estimated that topics with twenty or
fewer relevant documents were likely to be fully annotated after viewing 100
documents. Treating both central and tangential documents as relevant would
have led to more than twenty relevant documents for most selected topics. Thus,

6 Personal communication with Ian Soboroff.
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Fig. 1. Annotation interface for relevance judgments.

to support topics that went beyond esoteric facts, we treated only documents
deemed central to the topic as relevant.

We established three relevance levels, defined from the perspective of a user
writing a report on the topic:

Very-valuable Information in the document would be found in the lead para-
graph of a report that is later written on the topic.

Somewhat-valuable The most valuable information in the document would be
found in the remainder of such a report.

Not-valuable Information in the document might be included in a report foot-
note, or omitted entirely.

To map graded relevance values to the binary relevance required by HiCAL,
documents judged as very-valuable or somewhat-valuable were treated as
relevant, while documents judged not-valuable , and those that were not central
to the topic, were considered not-relevant . The final collection maps the not-
valuable category to not-relevant . This means that a document can mention
a topic without being considered relevant to that topic if it lacks information
that would be included in a future report. Because an assessor could judge a
topic over multiple days, assessors took copious notes to foster consistency.

To more quickly identify topics too broad to be annotated under our annota-
tion budget, assessors were instructed to end a task early (eliminating the topic
from inclusion in the collection) whenever:

– more than five very-valuable or somewhat-valuable documents were
found among the first ten assessed;

– more than fifteen very-valuable or somewhat-valuable documents were
found among the first thirty assessed;

– more than forty very-valuable or somewhat-valuable documents were
found at any point; or

– relevant documents were still being found after assessing 85 or more docu-
ments.
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Table 1. Collection statistics.

Chinese Persian Russian

Train Eval Train Eval Train Eval

Documents 646,305 486,486 4,721,064

Topics 10 50 10 50 4 50

Judged documents 466 2,751 486 2,522 265 2,970

Partially relevant documents 30 192 46 215 67 411

Highly relevant documents 62 282 54 206 12 262

Once assessment was completed, we dropped any topic with fewer than three rele-
vant documents. We subsequently sought to refocus dropped topics to ameliorate
the problems encountered during assessment; if this was deemed likely to produce
a conforming topic, the refocused topic was added back into the assessment queue.
Thus, a few similar but not identical topics are present in different languages.

We used the process described above to develop the topics in each of the
three languages. Figure 1 shows the interface used to annotate the collection.
Key features include: hot keys to support faster judgment; next document and
previous document navigation; identification of near-duplicate documents that
were not identified during deduplication; the ability to save progress and return
to annotation in another session; counts of how many documents have been
judged in different categories; and a button to end the annotation early.

3.3 Contemporaneous Reports

Contemporaneous reports are portions of Wikipedia page text written before
a particular date. Each topic was associated with a date, which either came
from the date of the event in WCEP that inspired the topic or, if after topic
development there was no such event, from the earliest relevant document. The
assessor was instructed to find the Wikipedia page most related to the topic and
use the edit history of that page to view it as it appeared on the day before the
date listed in the topic. The assessor selected text from this page to serve as the
contemporaneous report. Because of the date restriction, some contemporaneous
reports are less closely related to the topic, since a specific Wikipedia page for
the event may not have existed on the day before the event.

Table 2. Multilingual topic counts.

Chinese+Persian Chinese+Russian Persian+Russian All languages

Train 6 2 2 1

Eval 12 14 10 4
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Table 3. Document annotation time in minutes with median of each class and Spear-
man’s ρ correlation between assessment time and the resulting binarized label.

Language # Doc. (Rel/Not) Median (Rel/Not) ρ Total time

Chinese 1,094/3,863 1.33/0.75 0.1900 8,730.65

Persian 1,576/4,444 1.35/0.80 0.1617 11,807.66

Russian 2,746/5,525 0.79/0.69 0.0584 11,561.20

4 Collection Details

This section introduces collection details, discusses the annotation cost in terms
of time, and reports on inter-assessor agreement. Table 1 describes the size of
the collection in documents and topics, and presents counts of the number of
annotations used in the final collection. Disjoint subsets of Train and Eval top-
ics are defined to encourage consistent choices by users of the test collections.
As in most information retrieval collections, the vast majority of the unjudged
documents are not relevant. However, because we used active learning to sug-
gest documents for assessment, and because of our desire to create topics with
relatively few relevant documents, on average there are only about 50 judged
documents per topic. This number ranges from 28 (when no additional relevant
documents were discovered during the second phase) to 112 documents (when
an assessor used the “Essentially the same” button shown in Fig. 17). Some of
the topics have judged documents in multiple languages. Table 2 displays the
number of topics with judgments in each pair of languages, and the subset of
those with judgments in all three languages. While we sought to maximize the
number of multilingual topics, we were constrained by our annotation budget.

The people who performed topic development and relevance assessment were
all bilingual. A majority of them were native English speakers, although a few
were native speakers in the language of the documents. While some were profi-
cient in more than two languages, none was proficient in more than one of Chi-
nese, Persian or Russian. Highly fluent topic developers verified that the human
translations of topics were expressed fluently in the non-English language.

4.1 Development and Annotation Time

As a proxy for the cost of creating these test collections, we report the time spent
on topic development and relevance assessment. The total time for developing
candidate topics, including those not included in the final collection, is shown
in Table 4. A total of about 570 h were spent by 30 developers to create the 559
topics in the three languages. The median time to develop a topic was about
36 min, with an average of about an hour, suggesting a long tail distribution.
7 This button applies the previous relevance judgment without increasing the counter;

it was typically used when several news sources picked up the same story, but mod-
ified it sufficiently to prevent its being automatically labeled as a near duplicate.
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Table 4. Topic development time in
minutes.

Language Topics Average Median

Chinese 240 56.49 30.57

Persian 148 52.63 36.02

Russian 181 81.60 46.58

Fig. 2. Document annotation time.

As mentioned in Sect. 3.2, developed topics were filtered before assessment.
As shown in Table 3, a total of about 540 h were spent by 33 assessors.8 These
figures include documents rejudged for quality assurance, and topics with incom-
plete assessments. The median annotation time per document suggests that rel-
evant documents took longer to judge. Here, we aggregated very-valuable and
somewhat-valuable as relevant, and the remaining categories as not relevant.
Despite this consistent observation across all three languages, Spearman’s ρ sug-
gests only a weak correlation between the judgment time and relevance due to the
long tail distribution shown in Fig. 2. There are more not-relevant documents
that took a shorter time to assess, but as we observe in Fig. 2 the distribu-
tions are similar, and the differences are thus not statistically significant by an
independent samples t-test.

4.2 Inter-assessor Agreement

Although all topics were assessed by a single assessor for consistency, several
were additionally assessed by one or two other assessors for quality assurance.
In Table 6 we report the raw agreement (i.e., proportion of the documents all

Table 5. Example for intersection and union agreement

Assessor\Document D1 D2 D3 D4 D5

A1 � � �
A2 � � �
A3 � � �

(I)ntersection/(U)nion I/U I I/U I

8 We replaced the longest 5% of assessment times with the median per language, since
these cases likely reflect assessors who left a job unfinished overnight.
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Table 6. Inter-assessor agreement on binarized labels.

Language # of topics Intersection Union

Agreement Fleiss’ κ Agreement Fleiss’ κ

Chinese 5 0.85 0.69 0.84 0.62

Persian 4 0.73 0.40 0.69 0.35

Russian 3 0.69 0.33 0.69 0.33

assessors agreed upon) and the Fleiss’ κ (i.e., the agreement after chance cor-
rection for multiple assessors). Because active learning is path-dependent, each
assessor judged a somewhat different set of documents; we thus evaluate agree-
ment on both the intersection and the union of the documents for a complete
picture. Unjudged documents were considered not-relevant for the union agree-
ments. Table 5 shows an example, where only D1 and D4 are in the intersection,
judged by all three assessors. D3 was not judged by any assessor, and is thus is
not in the union.

All three languages demonstrate at least fair agreement (κ between 0.20
and 0.40 [23]), with Chinese topics having a substantial agreement (κ between
0.60 and 0.80), for both the intersection and the union. The raw agreement
indicates that 69% to 85% of the judged documents have the same binarized
judgments. The small gap between intersection and union agreements supports
our assumption that unjudged documents are not relevant.

5 Baseline Runs

To demonstrate the utility of HC4 for evaluating CLIR systems, we report
retrieval evaluation results for a set of baseline CLIR systems on the Eval sets in
Table 7. Three retrieval approaches, implemented by Patapsco [11], human query
translation, machine query translation, and machine document translation, use
BM25 (k1 = 0.9, b = 0.4) with RM3 pseudo relevance feedback on title queries.
Translation models are trained in-house using the Sockeye toolkit [18].

As examples of neural CLIR models, we evaluated vanilla reranking mod-
els [26] fine-tuned with MS-MARCO-v1 [2] for at most one epoch with various
multi-language pretrained models, including multilingual-BERT (mBERT) [13],
XLM-Roberta-large (XLM-R) [8], and infoXLM-large [6]. Model checkpoints
were selected by nDCG@100 on HC4 dev sets. Each trained model reranks the
top 1000 documents retrieved by the machine query translation BM25 model9

in a zero-shot fashion [30].
For both nDCG and MAP, human query translation tends to provide the

most effective results, usually indistinguishable from machine document transla-
tion and from XLM-R (both of which are effective but computationally expen-
sive). In contrast, machine query translation is efficient. Title queries are unlikely
9 Hence, the input of the reranking models is still English queries with documents in

the target language.
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Table 7. Baseline results of title queries using BM25 with RM3 on Eval sets, QT/DT :
query/document translation.

Language Method nDCG@100 MAP@100 R@1000 Judged@10

Mean p-value Mean p-value Mean p-value Mean p-value

Chinese Human QT 0.473 – 0.317 – 0.825 – 0.544 –

Machine QT 0.362 0.009 0.231 0.023 0.708 0.036 0.408 0.010

Machine DT 0.502 0.566 0.336 0.704 0.871 0.345 0.542 0.968

mBERT 0.348 0.008 0.205 0.011 0.708 0.036 0.302 0.000

infoXLM 0.541 0.155 0.369 0.297 0.708 0.036 0.504 0.428

XLM-R 0.536 0.168 0.368 0.318 0.708 0.036 0.500 0.376

Persian Human QT 0.428 – 0.277 – 0.858 – 0.520 –

Machine QT 0.355 0.004 0.223 0.006 0.768 0.035 0.460 0.062

Machine DT 0.411 0.549 0.260 0.489 0.863 0.866 0.476 0.319

mBERT 0.324 0.009 0.179 0.004 0.768 0.035 0.314 0.000

infoXLM 0.514 0.040 0.366 0.015 0.768 0.035 0.520 1.000

XLM-R 0.499 0.078 0.349 0.042 0.768 0.035 0.504 0.741

Russian Human QT 0.373 – 0.239 – 0.760 – 0.448 –

Machine QT 0.335 0.237 0.217 0.386 0.710 0.154 0.366 0.285

Machine DT 0.348 0.533 0.213 0.424 0.756 0.923 0.402 0.324

mBERT 0.199 0.000 0.087 0.000 0.710 0.154 0.156 0.000

infoXLM 0.353 0.602 0.233 0.874 0.710 0.154 0.342 0.015

XLM-R 0.377 0.906 0.249 0.743 0.710 0.154 0.414 0.384

to be grammatically sound though, so machine translation quality is lower,
resulting in lower retrieval effectiveness. We report p-values for two-sided pair-
wise statistical significance tests. As expected with this number of topics [7],
some differences that would be significant at p < 0.05 are observed.10

The similar levels of Judged at 10 (the fraction of the top 10 documents that
were judged) among the highest-scoring systems by nDCG and MAP suggest
that our relevance judgments are not biased toward any of those systems, despite
their diverse designs. mBERT yields specifically lower Judged at 10 due to the
significantly worse effectiveness, which has also been found by others [19].

6 Conclusion

Our new HC4 test collections provide a basis for comparing the retrieval effec-
tiveness of both traditional and neural CLIR techniques. HC4 allows for wide
distribution since documents are distributed as part of the Common Crawl and
the topics and relevance judgments are being made freely available for research
use. HC4 is among the first collections in which judged documents are principally
identified using active learning. In addition to providing titles and descriptions in

10 Bonferonni correction for 5 tests yields p < 0.01 for significance.
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English and in the language of the documents, English contemporaneous reports
are included to support research into using additional context for retrieval. HC4
will thus help enable development of next generation CLIR algorithms.
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Abstract. With the proliferation of fake news in the last few years,
especially during the COVID-19 period, combating the spread of misin-
formation has become an urgent need. Although automated fact-checking
systems were proposed recently, they leave much to be desired in terms
of accuracy and explainability. Therefore, involving humans during ver-
ification could make the process much easier and more reliable. In this
work, we propose an automated approach to detect claims that have been
already manually-verified by professional fact-checkers. Our proposed
approach uses recent powerful BERT variants as point-wise rerankers.
Additionally, we study the impact of using different fields of the verified
claim during training and inference phases. Experimental results show
that our proposed pipeline outperforms the state-of-the-art approaches
on two English and one Arabic datasets.

Keywords: Claim Retrieval · Fact Checking · Reranking · Verification

1 Introduction

The massive spread of misinformation has a negative impact on many govern-
ments, public figures, and organizations, among others [15]. That created an
urgent need to combat the spread of misinformation. As a response, many fact-
checking organizations, e.g., Politifact1 and FullFact,2 arose in the last few years.
However, most of these organizations perform fact-checking manually, which is
indeed time-consuming, and hence cannot cope with the rapid spread of misinfor-
mation over social media. To this end, several research directions were pursued
to develop automated systems that identify check-worthy claims and investi-
gate their factuality [23,35,39,41]. However, the immature nature of the cur-
rent automated systems sparked concerns about their credibility. Additionally,
fact-checkers and journalists need an explanation for the verdict obtained from
automated systems for reliability purposes, which is lacking in current systems.

Many viral claims are indeed dormant news, which show up repeatedly at
different time periods, such as those appearing during COVID-19 period. Recog-
nizing that those claims have been already verified by professional fact-checkers
1 https://www.politifact.com/.
2 http://fullfact.org/.
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Fig. 1. Example of the claim retrieval problem: tweet (left) and verified claim (right).

has several advantages. It helps mitigate the negative effect of spreading fake
news on both society and individuals. Furthermore, it helps journalists put their
interviewees on the spot in real-time. It also allows more time for the automated
and manual verification systems to focus on verifying unchecked claims.

To that end, in this paper, we tackle the problem of claim retrieval over
Twitter, defined as follows: given a tweet that includes a claim (denoted as
the query) and a collection of previously-checked claims, we aim to retrieve all
relevant previously-checked claims with respect to the input tweet. We frame
the problem as a ranking problem over a collection of previously-verified claims.
Figure 1 illustrates an example tweet and corresponding verified claim.

The problem is challenging from two aspects. First, tweets are typically
informal and lack context due to the length limitations. Second, claims can
be phrased in different forms, calling for semantic matching. To address the
problem, we propose a three-step pipeline. First, tweets are preprocessed and
expanded with extracted information from embedded URLs, images, and videos.
A recall-oriented retrieval step follows, where a classical light-weight retrieval
model is used to retrieve an initial set of potentially-relevant claims. Finally, the
set is re-ranked by a precision-oriented neural model. In each of the three steps,
several alternative models were considered. We conducted our experiments on
three datasets that are commonly used in the literature, two English datasets,
namely CheckThat! 2020 English (CT2020-En) [5] and CheckThat! 2021 English
(CT2021-En) [33], and one in Arabic, namely CheckThat! 2021 Arabic (CT2021-
Ar) [33]. Overall, our contributions are three-fold:
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– Our proposed approach outperforms the state-of-the-art approaches for both
English and Arabic claims.

– We compare several point-wise BERT-based learning-to-rank techniques.
– We examine the effect of using different fields of a given verified claim during

both training and inference phases.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents our proposed methodology. Section 4 illustrates the
experimental setup. Section 5 details our experimental evaluation. Section 6 pro-
vides concluding remarks and suggested future directions.

2 Related Work

There are two lines of research that target the claim retrieval problem. The first
line is concerned with matching a given query with the body of a fact-checking
article [32,34,40]. Shaar et al. [32] used BM25 for initial ranking, then utilized
the BM25 scores and sentence-BERT for training a RankSVM reranker. Vo and
Lee [40] suggested a framework that uses both text and images to search for
fact-checking articles. Sheng et al. [34] proposed a transformer-based reranker
that captures the key sentences within a fact-checked article, then exploits them
to estimate the relevance score. Although the system proposed by Sheng et al.
[34] outperformed proposed systems in [32,40], it is more complex and requires
multiple steps to identify the key sentences.

The second line aims to link the given query with previously fact-checked
claims. The Verified Claim Retrieval shared tasks in the CheckThat! lab 2020 and
2021 [5,24] are clear representatives of that line. The goal is to detect whether
a claim-containing tweet was previously checked among a collection of verified
claims. Our focus is directed toward this category of solutions as they are self-
explainable and can be used in real-life scenarios. While the task was proposed in
English language only in 2020 [5], it was also proposed in Arabic in 2021 [24,33].
Detecting already verified claims for a given claim in political debates is another
variation of this task, proposed by Shaar et al. [31]. To capture the context of
the claims made in a debate, Shaar et al. [31] used Transformer-XH to model the
local and global contexts. They found that modeling the context of the debate
is more important than modeling the context of a fact-checking article.

Multiple teams participated in the shared task of the CheckThat! lab 2020 [5]
and 2021 [24,33] and followed different strategies in preprocessing and ranking.
Bouziane et al. [7], the winning team in CheckThat 2020, utilized multi-modal
data and augmented the data with a similar dataset. After that, they fine-tuned
the pre-trained RoBERTa model with adversarial hard negative examples to
rerank the tweet-verified-claim pairs. We adopt this approach as a strong baseline
to compare against for the 2020 dataset.

Passaro et al. [26] adopted a two-phase strategy. In the first phase, they
used sentence-BERT [27] to produce a high cosine similarity score to gold pairs.
In the second phase, they fine-tuned a sentence-BERT model to achieve the
classification task in which the model gives 1 as an output if the pair constitutes
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a correct match and 0 otherwise. Finally, they rerank the pairs based on the
classification score.

McDonald et al. [22] chose the features to be a combination of scores of TF-
IDF, BM25, and cosine similarity, similar to [32]. After that, they employed the
extracted features in training multiple machine learning models such as Logis-
tic Regression, Random Forest, Gradient Boosted Trees, and Linear SVM. The
machine learning models served as scoring models for reranking.

Chernyavskiy et al. [9], the winning team in the CheckThat! lab 2021, made
some modifications to the system proposed by Shaar et al. [32]. They utilized
the scores of TF.IDF and fine-tuned sentence-BERT as features vector to train
LambdaMART reranker. Their system outperformed the other teams and the
organizers’ baseline by a large margin. We select this system as a competitor
baseline for the 2021 dataset.

bigIR team [33] was the first and only team to build a system for Arabic.
They exploited AraBERT model as a reranker for an initial set retrieved by
BM25. Their proposed system outperformed the organizers’ baseline by more
than ten points. We consider this work as a baseline for Arabic experiments.

Recently, Kazemi et al. [17] created a dataset of 2343 pairs in five languages
(English, Hindi, Bengali, Malayalam, and Tamil) for claim matching. Their work
focused on identifying the matching between either pairs of verified claims or
pairs of social media posts (namely, WhatsApp messages). However, only 7% of
their dataset are pairs of social media content and fact-checked claims.

Most of these methods did not consider the importance of extracting the
information of URLs within a tweet, replacing user handles with their usernames,
or which BERT variant is the most suitable for this kind of task.

Finally, it is worth mentioning that Google has launched its Fact Check
Explorer tool [14] that enables users to search through trusted fact-checking
websites for a specific topic or claim. However, this tool cannot address complex
claims and has poor performance when used with Arabic text.

3 The Proposed Pipeline

Our proposed approach is a simple three-step pipeline: preprocessing, initial
retrieval, and reranking. In this section, we present each of them in detail.

3.1 Preprocessing

Tweets are typically short and usually contain components that are references
rather than textual content, such as URLs, user mentions, images, or videos,
which might introduce noise to our task. To add more context to the tweets,
we expand those components as follows: we convert URL links to their corre-
sponding Web page titles, replace the mentions with their corresponding user
names, get the title for the embedded images [7], and add a short description of
the embedded videos using reverse image search. As illustrated in Fig. 2, more
contextual information is added to the tweet after expanding the user mention
and embedded image.
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Fig. 2. Example of a tweet before and after preprocessing. Notice the expanded user
mention and embedded image.

3.2 Initial Retrieval

The second step in the pipeline retrieves an initial short list of potentially-
relevant claims. The goal is to retrieve as many of them, i.e., maximize the recall
in the cheapest way, to prepare for the reranking step that aims to push the
relevant ones to the top of the list. To achieve that, we leverage the classical
retrieval models that are lexical-based, relying on term overlap, such as BM25.

3.3 Reranking

The last step of the pipeline aims to improve the effectiveness of the initial
retrieved list using a more expensive reranker that is applied to the initial list.
Since transformer-based models, e.g., BERT [11], have shown great success in
the information retrieval field, we choose to employ BERT-variants models, e.g.,
monoBERT [25]. The model takes a query (i.e., the tweet in our context) and
a document (i.e., a retrieved verified claim) and classifies the claim based on its
relevance to the tweet using a classification layer on top of the neural architec-
ture. The relevance score provided by the classifier is eventually used to rerank
the retrieved claims. This is an example of point-wise learning-to-rank models.

The use of BERT as a reranker is not new; however, the novelty in our
contribution is mainly characterized by the way we construct the training set,
and how the reranker is trained and tested. We choose the negative pairs in the
training set so that they cover what the model will be exposed to at inference
time. We noticed that many methods in the literature adopt the sampling of
“hard” pairs (i.e., the ones that are potential false positives) for tuning the
reranker. However, that exposes the model only to hard pairs, with no exposure
to other potentially easy ones; which may not necessarily represent what is faced
during inference. Alternatively, we choose the negative pairs randomly from the
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top-k documents of the initial retrieved list since the reranker will only consider
the top-k documents.

Each of the verified claims has two different fields, namely “VClaim” and
“Title”, where the former is a well-formed textual version of the original claim,
and the latter is the title of the article that fact-checks the claim. We test
different combinations of the two fields during training and testing to study
their effectiveness on retrieval performance. From Table 1, we can notice that
“Title” can add more context and synonyms to the “VClaim”.

Table 1. Example VClaim and Title fields of verified claims.

# VClaim Title

1 Coca-Cola is an effective
contraceptive

Can Coca-Cola Prevent Pregnancy?

2 Coins left on military graves denote
visits from living soldiers

Why Are Coins Left on Gravestones
in Cemeteries?

3 Officials at Ramapo College forced
students to change an “offensive”
patriotic barbecue event.

College Threatened to Cancel
‘Offensive’ America-Themed BBQ
Event?

4 Experimental Setup

In this section, we introduce strategies we followed in our experiments. We
explain the used datasets, adopted retrieval models and baselines, and the
selected BERT variants. Moreover, we elaborate on the applied evaluation mea-
sures, tools used for preprocessing, and the method of building the training set.

Datasets. We conducted experiments on three claim retrieval datasets, namely
CheckThat! 2020 English (CT2020-En), CheckThat! 2021 English (CT2021-En),
and Arabic (CT2021-Ar) datasets. CT2020-En [5] is the official dataset for the
CheckThat! 2020 lab. The verified claims are collected from Snopes, a well-
known fact-checking website, and the queries are crawled tweets that were cited
in articles debunking rumors. CT2021-En [33] is an extension of CT2020-En,
with increasing the number of verified claims and queries. CT2021-Ar [33] is
the official Arabic dataset for the CheckThat! 2021 lab. The set of verified claims
was collected from AraFacts dataset [2] and a translated version of ClaimsKG
English dataset [38]. Table 2 shows the statistics of the three datasets. We notice
that a query in CT2021-Ar can have more than one relevant verified claim.

Baselines. We chose the top-performing teams in the CheckThat! lab as strong
baselines to compare against. For the English models, they are Buster.AI [7]
and Aschern [9] teams from CheckThat! 2020 and 2021, respectively. For Ara-
bic, it is bigIR team [33] from CheckThat! 2021.
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Table 2. Size of the datasets we used in our experiments. Values in parentheses indicate
the average number of relevant verified claims per query.

Dataset Train Validation Test Verified claims

CT2020-En 800 (1) 197 (1) 200 (1) 10,375

CT2021-En 999 (1) 200 (1) 202 (1) 13,835

CT2021-Ar 512 (1.2) 85 (1.2) 261 (1.3) 30,329

Preprocessing. We employed Twitter API to get usernames out of user han-
dles. Besides, we utilized Meta Reverse Image Search API (MRISA) [36] to
perform a reverse image search for pictures and videos.

Initial Retrieval. For initial retrieval, we experiment with multiple classi-
cal models, namely, BM25, uni-gram language model with Jelinek-Mercer (JM)
smoothing, RM3, and DPH. We used PyTerrier [21] for indexing and retrieval.

BERT Variants and Fine-Tuning. After BERT was introduced [11], many
transformer-based pre-trained language models were proposed in the literature
to address specific tasks, albeit several were not tried for the claim retrieval
task. For English experiments, we studied multiple variants, namely, BERT [11],
MPNet [37],3 RoBERTa [20],4 Multinligual-MPNet [37], and MiniLM [42].5 Apart
from vanilla BERT, the choice of other models is attributed to their reported per-
formance within SBERT leaderboard6 on diverse tasks from different domains.

For Arabic experiments, we surveyed several Arabic transformer-based mod-
els compared by a recent study [13], namely, Arabic BERT [30], GigaBERT [18],
MARBERT [1], AraBERT [4], QARiB [10], and Arabic-ALBERT [29]. For all
BERT variants, we chose the base version due to our limited GPU capacity.
For all experiments, we tuned the following hyper-parameters on the dev set:
number of epochs (2, 3, or 4), learning rate (2e−5 or 3e−5), and dropout on
the classification layer (0.3 or 0.4). We employed one classification layer on top
of BERT variants with two output nodes. We fine-tuned each model five times
with different random seeds and reported the median performance of those runs.

Evaluation Measures. We follow the evaluation procedure adopted by Check-
That! lab, which considers Mean Average Precision at depth 5 (MAP@5) as the
main evaluation measure. Furthermore, for the English experiments, we report
Precision@1 (P@1) and Mean Reciprocal Rank (MRR) since the average num-
ber of relevant documents for a query in these datasets is 1. However, for Arabic
experiments, we add the R-Precision (RP) measure to account for queries that
have multiple relevant documents. Finally, Recall at depth 100 (R@100) is also
reported to show an upper bound performance for the initial retrieval stage.
3 We specifically use STSb-MPNet and Paraphrase-MPNet.
4 https://huggingface.co/sentence-transformers/msmarco-roberta-base-v2.
5 https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2.
6 https://www.sbert.net/docs/pretrained models.html.

https://huggingface.co/sentence-transformers/msmarco-roberta-base-v2
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2
https://www.sbert.net/docs/pretrained_models.html
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Significance Test. To establish statistical significance for the reported results,
we applied paired t-test significance test on MAP@5 measures. Since we per-
formed multiple tests, we applied Benjamini-Hochberg [6] correction over the
p-values to avoid the multiple comparisons problem. We report all corrected
p-values and underline the ones that satisfy the 5% significance level. As the
computation of the test requires per-query results, we contacted the authors of
the adopted baselines to get their submitted runs to CheckThat! lab. We man-
aged to get the runs of the winning teams in CT2021-EN and CT2021-Ar, but
missed the winning team run for CT2020-En. To alleviate this problem, we con-
sider the model that is closest in performance to the missing run as a proxy
baseline for the purpose of conducting the significance test.

Building the Training Set. To fine-tune BERT-based models, we constructed
a balanced training set of positive and negative query-document pairs. The pos-
itive pairs are formed by pairing the query with its relevant verified claim and
also the title of the verified claim (which constitutes a summary of it). The nega-
tive pairs are chosen randomly from the top-k documents of the initial retrieved
list, as explained in Sect. 3.3.

5 Experimental Evaluation

In our experiments, we aim to answer the following research questions:

RQ1 What is the effect of the preprocessing steps on the performance of the
initial retrieval stage? (Sect. 5.1)
RQ2 Does a monoBERT reranker improve the performance over the initial
retrieval stage? What is the best BERT variant for the task? (Sect. 5.2)
RQ3 How can we effectively leverage the title and description of verified
claims in training and inference? (Sect. 5.3)
RQ4 What will the performance of the proposed approach be on Arabic
data? (Sect. 5.4)

5.1 Initial Retrieval with Preprocessing (RQ1)

To answer RQ1, we apply preprocessing with multiple classical retrieval models,
namely BM25 [28], uni-gram language model with Jelinek-Mercer (JM) smooth-
ing [16], DPH [3], and RM3 [19]. We conducted the experiment on both CT2020-
En and CT2021-En. Table 3 shows the performance of each of those models
before and after applying preprocessing over the dev-set of CT2020-En. We omit
the results on CT2021-En as they exhibit very similar performance. The results
show that BM25 is superior to the other models for our task. More importantly,
the table clearly shows the effectiveness of applying the preprocessing step, as
the performance improves for all models over all measures. The p-value for all
models except RM3 indicates that preprocessing leads to roughly significant
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enhancements. Therefore, for the rest of experiments, we adopt BM25 with pre-
processing for the initial retrieval. We also notice that the best performance
reaches P@1 of about 61%, which leaves a large room for potential improvement
for the reranking stage. Furthermore, reaching 95% recall at depth 100 indicates
that the improvement is indeed possible by an effective reranker.

Table 3. Performance of the initial retrieval stage on CT2020-En-dev before and after
applying preprocessing (PreP).

Model MAP@5 P@1 MRR R@100 p-value

BM25 0.710 0.594 0.717 0.949 baseline

BM25+PreP 0.733 0.609 0.739 0.954 0.076

DPH 0.685 0.563 0.692 0.939 baseline

DPH+PreP 0.721 0.599 0.727 0.954 0.008

JM 0.687 0.558 0.695 0.944 baseline

JM+PreP 0.712 0.579 0.719 0.944 0.066

RM3 0.692 0.594 0.697 0.898 baseline

RM3+PreP 0.713 0.609 0.719 0.914 0.141

Table 4. Performance of multiple BERT variants on CT2020-En-dev with varying
depth of the initial retrieval stage. We report MAP@5 measure.

Depth S-MPNet RoBERTa P-MPNet MiniLM

10 0.845 0.850 0.859 0.846

20 0.851 0.857 0.868 0.846

30 0.844 0.851 0.863 0.837

50 0.845 0.847 0.864 0.832

100 0.842 0.844 0.862 0.824

5.2 MonoBERT for Reranking (RQ2)

As rerankers are more complex, thus expensive, it is critical to first choose a
short but effective depth of the initial retrieved list of claims to be reranked. We
conducted an experiment to tune the depth using four variants of BERT, namely,
STSb-MPNet (S-MPNet), MSMarco-RoBERTa (RoBERTa), paraphrase-MPNet
(P-MPNet), and Paraphrase-MiniLM (MiniLM). Table 4 illustrates the perfor-
mance of each model as a monoBERT reranker for different depth values of
the initial retrieved list (10, 20, 30, 50, and 100). For all models, the experi-
ment shows that depth of 20 exhibits the best performance among the different
experimented values; therefore, we stick to it in the rest of experiments. More-
over, we observe that reranking using a BERT-based model gives a considerable
improvement over the performance of the initial retrieval models (85% vs. 61% in
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P@1), as illustrated earlier in Table 3, which highlights the importance of using
contextualized models for this task.

We next turn to answer RQ2 by comparing the performance of multiple
BERT-based models with the adopted baselines on the two English datasets.
Tables 5 and 6 present the performance of the models over the test sets of
CT2020-En, and CT2021-En respectively. The results show that two models,
namely S-MPNet and P-MPNet, outperform the best team over CT2020-En, and
four models, namely S-MPNet, P-MPNet, RoBERTa, and MiniLM outperform
the best team over CT2021-En, as indicated over all measures. Furthermore,
the improvement of S-MPNet over the baseline is statistically significant over
CT2020-En, but not CT2021-En. We also notice that the vanilla BERT model
exhibited poor performance on both datasets compared to other models.

Table 5. Performance of monoBERT models on the test set of CT2020-En.

Model MAP@5 P@1 MRR p-value

Buster.AI (Best at CheckThat! 2020) 0.929 0.895 0.927

Multilingual-MPNet 0.666 0.553 0.650 0.000

BERT 0.741 0.618 0.735 0.000

MiniLM 0.920 0.884 0.920 0.593

RoBERTa 0.926 0.894 0.926 baseline

P-MPNet 0.944 0.925 0.944 0.160

S-MPNet 0.955 0.950 0.955 0.005

Table 6. Performance of monoBERT models on the test set of CT2021-En.

Model MAP@5 P@1 MRR p-value

Aschern (Best at CheckThat! 2021) 0.883 0.861 0.884 baseline

Multilingual-MPNet 0.742 0.644 0.749 0.000

BERT 0.834 0.757 0.835 0.100

MiniLM 0.904 0.871 0.906 0.371

RoBERTa 0.916 0.876 0.917 0.147

P-MPNet 0.922 0.886 0.923 0.100

S-MPNet 0.929 0.901 0.929 0.089

5.3 Leveraging Verified Claim Fields (RQ3)

In earlier experiments, we used both VClaim and Title fields of the verified claims
separately as training examples, and performed inference using VClaim only,
similar to [26]. However, in this experiment, we probe the effect of using other
combinations of those fields on the performance. To answer RQ3, we experiment
with training using VClaim only, Title only, and both VClaim and Title. We
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also experiment using both VClaim and Title at inference, where the relevance
score of a claim is the average score of tweet-VClaim and tweet-Title pairs.

We conducted such an experiment over CT2021-En. We chose three differ-
ent models among the top-performing ones in the previous experiment, namely,
S-MPNet, RoBERTa, and MiniLM. We excluded P-MPNet as it is the same
model of S-MPNet but trained on a different dataset. Table 7 presents the per-
formance using the different combinations. We notice that using both VClaim
and Title for training and inference yields the best performance in all models,
with a statistically-significant difference with respect to the title-only baselines.
We believe training on both increases the model’s understanding of the claim
context. Moreover, the training set size is doubled when we add Title in training.

Table 7. Performance using different fields of the verified claim on CT2021-En.

Model Training Inference MAP@5 P@1 MRR p-value

MiniLM Ttl Ttl 0.863 0.822 0.867 baseline

VClaim VClaim 0.870 0.817 0.871 0.682

VClaim+Ttl VClaim 0.904 0.871 0.906 0.050

VClaim+Ttl VClaim+Ttl 0.906 0.866 0.907 0.048

RoBERTa Ttl Ttl 0.840 0.762 0.841 baseline

VClaim VClaim 0.882 0.837 0.883 0.024

VClaim+Ttl VClaim 0.916 0.876 0.917 0.000

VClaim+Ttl VClaim+Ttl 0.920 0.881 0.920 0.000

S-MPNet Title Title 0.884 0.842 0.886 baseline

VClaim VClaim 0.908 0.876 0.909 0.095

VClaim+Ttl VClaim 0.929 0.901 0.929 0.009

VClaim+Ttl VClaim+Ttl 0.936 0.911 0.936 0.005

5.4 Performance on Arabic Data (RQ4)

To answer RQ4, we examine the effectiveness of the proposed pipeline by apply-
ing the attained conclusions from English experiments on the Arabic dataset.
More specifically, we performed the following steps: (1) We conducted the same
preprocessing steps applied to English. We then experimented with multiple
classical models for the initial retrieval phase. Here again, BM25 is found to be
the best-performing model. (2) We chose AraBERT (as it is the used model by
the top team in CheckThat! 2020 [33]) to tune the depth of the initial retrieval
set. The best performance is observed when the depth is set to 30. (3) We exper-
imented with the top-performing Arabic BERT-based models as monoBERT
rerankers. For all models, we exploited both VClaim and Title fields during
training and inference.

Table 8 shows the performance of different BERT-based Arabic models on
the test set of CT2021-Ar. Each of AraBERT and GigaBERT outperforms
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the top team at CheckThat! 2021 in all measures, with statistically-significant
improvement in MAP@5. Moreover, two additional models, Arabic-ALBERT
and Arabic-BERT, exhibit better performance over the baseline.

Table 8. Evaluation of BERT-based Arabic models on CT2021-Ar.

Model MAP@5 P@1 MRR RP Corrected p-value

bigIR (Best at CheckThat! 2021) 0.908 0.908 0.924 0.895 baseline

MARBERT 0.767 0.743 0.813 0.707 0.000

QARiB 0.903 0.885 0.924 0.861 0.711

Arabic-ALBERT 0.921 0.923 0.948 0.898 0.417

Arabic BERT 0.932 0.935 0.956 0.910 0.110

GigaBERT-v3 0.939 0.939 0.956 0.918 0.047

AraBERT 0.940 0.946 0.959 0.927 0.047

6 Conclusion and Future Work

In this paper, we proposed a pipeline to retrieve previously fact-checked claims
with high effectiveness. We converted the ambiguous content in the queries to
more informative data. Additionally, we employed a powerful BERT-variant as
a point-wise reranker. We also studied the effect of using different fields of the
verified claim during the training and testing processes. The experiments showed
that the proposed pipeline outperforms the state-of-the-art by a noticeable mar-
gin and yet with a simpler approach. Not only does the proposed method out-
performs the state-of-the-art in English, but also in Arabic, indicating that it is
a promising setup for this task in multiple languages.

One of our future plans is to build a periodically updated collection of fact-
checked claims from multiple authorized sources. We also plan to deploy our
proposed system in a real-time setup, which in turn utilizes that collection and
provides up-to-date predictions. Moreover, we aim to test our methodology on
languages other than English and Arabic, and expand the reranking method to
pair-wise and list-wise approaches.

Acknowledgments. This work was made possible by NPRP grant# NPRP11S-1204-
170060 from the Qatar National Research Fund (a member of Qatar Foundation). The
statements made herein are solely the responsibility of the authors.
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Abstract. The advent of transformer-based models such as BERT has
led to the rise of neural ranking models. These models have improved
the effectiveness of retrieval systems well beyond that of lexical term
matching models such as BM25. While monolingual retrieval tasks have
benefited from large-scale training collections such as MS MARCO and
advances in neural architectures, cross-language retrieval tasks have
fallen behind these advancements. This paper introduces ColBERT-X,
a generalization of the ColBERT multi-representation dense retrieval
model that uses the XLM-RoBERTa (XLM-R) encoder to support cross-
language information retrieval (CLIR). ColBERT-X can be trained in
two ways. In zero-shot training, the system is trained on the English MS
MARCO collection, relying on the XLM-R encoder for cross-language
mappings. In translate-train, the system is trained on the MS MARCO
English queries coupled with machine translations of the associated MS
MARCO passages. Results on ad hoc document ranking tasks in several
languages demonstrate substantial and statistically significant improve-
ments of these trained dense retrieval models over traditional lexical
CLIR baselines.

Keywords: CLIR · ColBERT · ColBERT-X · Dense Retrieval

1 Introduction

BERT-style neural ranking models that use cross-attention between query and
document terms [7,16] define the state of the art for monolingual English
retrieval. Such models are typically used as rerankers in a retrieve-and-rerank
pipeline, due to the quadratic time and space complexity of self-attention in the
transformer architecture [30]. Reranking using these models is effective but time-
consuming, so the number of documents to be reranked must be tuned to balance
the trade-off between effectiveness and efficiency. In contrast to the reranking
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approach, dense retrieval models encode query and document representations
independently and match them with custom similarity functions (e.g., cosine
similarity). Dense retrieval complements the lexical first phase retrieval by using
an approximate nearest neighbor search over contextualized representations.

While the retrieve-and-rerank framework has been adapted and explored
in cross-language information retrieval (CLIR) [3,11,36–38], most approaches
translate queries into the language of the documents and perform monolin-
gual retrieval [28,29]. Dense retrieval models, on the other hand, remain under-
explored in CLIR. In this work, we develop an effective dense retrieval model for
CLIR.

Dense retrieval models can be broadly categorized into two variants:
single-representation and multi-representation [15]. Single-representation models
encode queries and documents separately to create a single aggregate representa-
tion. However, that can lead to loss of information. Multi-representation models
use multiple representations of queries and documents to predict relevance. One
such model is ColBERT [13], which computes a similarity between each query
term representation and each document term representation. Yet ColBERT is
exclusively monolingual. This paper presents ColBERT-X, a generalization of
the ColBERT approach that supports CLIR. ColBERT-X uses a translate and
train fine-tuning approach to exploit existing CLIR training resources.

This generalization poses two challenges: enabling the encoders to process
multiple languages, and identifying appropriate resources with which to train the
model. To address the former, we adapt XLM-R [5], a multilingual pretrained
transformer language model, to initialize the dense retrieval model. For the latter
challenge, we use translations of MS MARCO [2], a widely-used passage ranking
collection for training monolingual neural retrieval models.

We evaluate ColBERT-X on ad hoc document ranking tasks using English
queries to retrieve documents in other languages, exploring two ways to cross the
language barrier. In the zero-shot setting, where we lack cross-language training
resources, we train the model only on English MS MARCO. In the translate-train
setting, the model is trained on machine-generated translations of MS MARCO
passages paired with English queries. This paper additionally investigates the
effect of machine translation on ColBERT-X retrieval results.

Our main contributions can be summarized as follows:

– We generalize ColBERT to support CLIR and develop a fine-tuning task that
leverages translations of existing monolingual retrieval collections.

– We demonstrate significant effectiveness gains over query translation baselines
on news in several languages, showing the ability of term-level Approximate
Nearest Neighbor (ANN) search to overcome vocabulary mismatch.

– We analyze components of ColBERT-X and techniques to improve effective-
ness, including effects of different machine translation models, alternative
multilingual encoders, and relevance feedback.

– We release our code to train and evaluate ColBERT-X, and our new machine
translations of MS MARCO into Chinese, Persian and Russian.1

1 https://github.com/hltcoe/ColBERT-X.

https://github.com/hltcoe/ColBERT-X
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2 Related Work

In this section, we briefly review related work on neural retrieval and its exten-
sion to cross-lingual settings. For many years, sparse retrieval models such as
BM25 [26] and Query Likelihood [24] were the dominant models for ad hoc
retrieval tasks. Only in recent years, with the rise of BERT [7] and the availabil-
ity of large scale retrieval collections such as MSMARCO [2] for training, have
neural information retrieval (neural IR) models emerged as the state of the art.

Similar to sparse retrieval models, neural IR models take as input the query
and documents, and produce a relevance score. For each query and document
pair, matching mechanisms, such as DRMM [9], KNRM [6] or PACCR [10],
construct the interaction matrix between the distributed term representations
of the query and the documents, and aggregate them into a relevance score.
Alternatively, the BERT passage pair classification model [7] considers the query
and the document as the input pair, and uses the final classification score as the
relevance score [35]. CEDR [18] incorporates contextualized embeddings such
as ELMo [23] or BERT [7] into the matching, providing significant effectiveness
improvements by taking advantage of contextualization. However, due to the
high computational cost, these models are used to rerank top-ranked documents
from a sparse retrieval system.

ColBERT [13] further improves efficiency by keeping separate the query-
document interaction until the end of the neural architecture. This is called late
interaction. As opposed to matching mechanisms that require both the query
and the document to be present simultaneously, late interaction allows offline
encoding of the documents into bags-of-vectors. Document representations are
combined with query representations by an efficient MaxSim operator, which
significantly reduces computation at inference time. This decoupling enables the
documents to be encoded offline and indexed to support approximate nearest
neighbor search. Further details are discussed in Sect. 3.

Cross-language transfer learning is important for CLIR. Due to the lack of
training data for ad hoc neural retrieval models other than in English, prior
work explored zero-shot model transfer to other languages, trained with only
English retrieval examples [17,28]. Model initialization with a multilingual lan-
guage model such as mBERT [7] has been shown to be effective in zero-shot
evaluations. However, this approach requires both queries and documents to
be in the same language, resulting in evaluation based either on monolingual
non-English retrieval [17], or on query translation into the target language [28].

With the availability of translations of the widely-used English ad hoc
retrieval resource MS MARCO [4], translate-train (training the retrieval model
on a translated collection) using large ad hoc retrieval collections becomes fea-
sible. Prior work explored a dense retrieval approach to translate-train, showing
effectiveness gains on monolingual non-English retrieval tasks [29]. However,
this approach relied on a single-representation dense retrieval model with an
mBERT encoder, combined with sparse retrieval methods such as BM25. Lack-
ing an end-to-end CLIR dense retrieval model that does not require the help of a
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sparse retrieval system, we bridge the gap by generalizing ColBERT to support
directly querying non-English documents with English queries.

3 ColBERT-X

ColBERT is a multi-stage dense retrieval model that uses monolingual BERT [7]
to encode both query and document terms. It employs a late-interaction mech-
anism, MaxSim, that computes the similarity between the encoded query and
document term representations. Computing MaxSim for every query and doc-
ument term pair in the collection is not feasible, so ColBERT has two ways
to reduce the number of required similarity comparisons: reranking or end-to-
end retrieval. In reranking, a retrieval system such as BM25 generates an initial
ranked list, which is then reranked using ColBERT’s MaxSim operation. The
disadvantage of such a cascaded pipeline is that the overall recall of the system
is limited to the recall of the initial ranked list. In the context of CLIR systems,
we face the additional complexity of crossing the language barrier that further
affects recall. We thus restricted our work to end-to-end (E2E) retrieval.

In the first stage of the E2E setting, a candidate set of documents is generated
by ANN search using every query term. Specifically, the k nearest document
tokens are retrieved from the ANN index for every query term representation.
These tokens are mapped to document IDs, and the union of these IDs creates
the final set of candidate documents. In the next stage, these documents are
reranked using the late-interaction “MaxSim” operation. For every query term,
MaxSim finds the closest document token using the dot product of the encoded
query and document term representation. The final score of the document is the
summation of individual query term contributions, as shown in Eq. 1. η denotes
the monolingual BERT encoder.

sq,d =
|q|∑

i=1

max
j=1..|d|

η(qi) . η(dj)T (1)

To generalize ColBERT to CLIR, we replaced monolingual BERT with XLM-
R. We call the resulting model ColBERT-X. Initializing the encoder to a mul-
tilingual model allows retrieval in any language supported by the embeddings.
However, these models must be trained before they can be used for CLIR.

3.1 CLIR Training Strategies

ColBERT was trained using pairwise cross-entropy loss on MS MARCO [2]
triples, which consist of an English query, a relevant English passage, and a
non-relevant English passage. To train ColBERT-X for CLIR, we explored two
strategies from the cross-language transfer learning literature:

1. Zero-Shot: This is a common technique in which a multilingual model (e.g.,
mBERT or XLM-R) is trained in a high-resource language (usually English)
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Zero-Shot Translate-Train

Fig. 1. Two ColBERT-X Transfer Learning Pipelines: Zero-Shot (left) and Translate-
Train (right). Dashed boxes denote components used during the training step. In zero-
shot, ColBERT-X trained on English MS MARCO is applied on the machine translated
queries. With translate-train, the training set consists of translated passages to enable
ColBERT-X to cross the language barrier.

and then applied to the document language. In this paper, we first train
a ColBERT-X model initialized with an XLM-R encoder on English MS
MARCO passage ranking triples. At query time, we use machine transla-
tion (MT) to translate the English query to the document language, and
use the trained ColBERT-X model to perform retrieval in the document lan-
guage using Eq. 2. q̂ is the translated query. Multilingual language models
have demonstrated good cross-language generalization in many other natural
language processing tasks; we hypothesized it would also work well for CLIR.

sq̂,d =
|q̂|∑

i=1

max
j=1..|d|

η(q̂i) ∗ η(dj) (2)

2. Translate-Train: In this setting, an existing high-resource language (e.g.,
English) collection is translated to the document language. As in zero-shot
training, we choose training triples from the MS MARCO passage ranking
collection and use a trained MT model to translate them. Since our focus
here is using English queries to retrieve content in non-English languages,
we pair the original English queries with machine translations of relevant
and non-relevant MS MARCO passages to form new triples.2 We then train
ColBERT-X on these newly constructed triples in the same manner as Col-
BERT.

2 If we had wanted to experiment with using non-English queries to find English
content, we could have instead translated only the MS MARCO queries.
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Table 1. Test collection statistics for the CLEF and HC4 newswire collections.

Collection HC4 HC4 CLEF CLEF CLEF CLEF CLEF

Chinese Persian French German Italian Russian Spanish

#documents 646K 486K 129k 294k 157k 16k 454k

#passages 3.6M 3.1M 0.7M 1.6M 0.8M 0.1M 2.7M

#queries 50 50 200 200 200 62 160

Figure 1 shows these two pipelines. The key difference is that in the zero-shot
setting we have a single ColBERT-X model for a given query language (in this
case English) that is used for retrieval in multiple document languages. In the
translate-train setting, we train a ColBERT-X model for each query-document
language pair. We might also combine translations in multiple languages to train
a single multilingual ColBERT-X model, but we leave that for future work.

3.2 Retrieval

While we train ColBERT-X on passages, our goal is to rank documents. We split
large documents into overlapping passages of fixed length with a stride. During
indexing, we use the trained ColBERT-X model to generate term representations
from these passages. These representations are stored in a FAISS-based ANN
index [12] and are saved to disk for subsequent MaxSim computation. At query
time, we use the trained ColBERT-X model to generate a ranked list of passages
for each query using the approaches discussed in the section above and then use
a document’s maximum passage score as its document score.

4 Experiments

Collection Statistics. Table 1 provides details for the test collections used
in our experiments. We worked with several languages from the 2000 to 2003
Cross-Language Evaluation Forum (CLEF) evaluations [22], using ad hoc news
collections for French, German, Italian, Russian and Spanish. We also conducted
experiments using the new CLIR Common Crawl Collection (HC4) [14], where
the documents are newswire articles from Common Crawl in Chinese or Persian.
Throughout, English queries are used to search a collection in a non-English
language. We experiment with title and description queries. The MS MARCO
[2] passage ranking dataset, which we use for training ColBERT-X, consists of
roughly 39M training triples, spanning over 500k queries and 8.8M passages.
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ColBERT-X Training and Retrieval. Our two ColBERT-X model strate-
gies, zero-shot (ZS) and translate-train (TT), are trained using mostly the same
hyperparameters used to train the original ColBERT model.3 We replaced the
BERT encoder with the XLM-RoBERTa (large) encoder provided by the Hug-
gingFace transformers [33] library (but see Sect. 5.2 for mBERT results). To
generate passages from documents, we use a passage length of 180 tokens with
a stride of 90 tokens. We index these passages using the trained ColBERT-X
model in the same way as the original ColBERT model in the E2E setting.4

Machine Translation. For CLEF languages, we use MS MARCO passage
translations5 from Bonifacio et al. [4], and the same MT model to translate
queries. For the HC4 languages, we use directional MT models built on top of
a transformer base architecture (6-layer encoder/decoder) using Sockeye [8]. To
produce translations of MS MARCO, the original passages were split using ersatz
[32], and sentence-level translation was performed using the trained MT model.

Baselines. We compare these strategies with several baselines:

– Human Translation: Monolingual retrieval using Anserini BM25 [34] with the
document-language queries provided in the test collection.

– Query Translation: BM25 retrieval using translated queries produced by a
specific MT model and original documents in the target language.6

– Reranking: We rerank query translation baseline results using the public mT5
reranker7 trained on translated MS MARCO in 8 languages [4].

Evaluation. We evaluate ranking using Mean Average Precision (MAP). Dif-
ferences in means are tested for significance using a paired t-test (p<0.05) with
Holm-Bonferroni multiple test correction.

Results. Table 2 compares the effectiveness of our models to the baselines. Our
main finding is that both ColBERT-X variants perform better than BM25 query
translation in general. ColBERT-X trained using English MS MARCO alone per-
forms better than query translation and fine-tuning ColBERT-X on translated
MS MARCO data helps improve effectiveness further. These gains are statisti-
cally significant in both HC4 collections, and for many CLEF collections.

We also compare the ColBERT-X variants to the multilingual T5 reranker
that reranks the query translation baseline output. In each collection, ColBERT-
X performs consistently and significantly better than the reranker. This is
particularly interesting in CLEF collections since both the mT5 reranker and
ColBERT-X (TT) were trained on the same MS MARCO translations. How-
ever, the reranker was trained on a combined dataset in 8 languages, which
might point to the curse of multilinguality [5].
3 We increase our batch size from 32 to 128.
4 https://github.com/stanford-futuredata/ColBERT#indexing.
5 https://github.com/unicamp-dl/mMARCO.
6 To compare the retrieval models fairly, we use the same MT model to translate the

queries as the one used to translate the MS MARCO passages.
7 https://huggingface.co/unicamp-dl/mt5-base-multi-msmarco.

https://github.com/stanford-futuredata/ColBERT#indexing
https://github.com/unicamp-dl/mMARCO
https://huggingface.co/unicamp-dl/mt5-base-multi-msmarco
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Table 2. Effectiveness results (mean average precision) for CLIR HC4 and CLEF
collections using title queries. Statistically significant improvements over the query
translation and reranking baselines are marked with ∗ and † respectively. Bold indicates
best MAP among the query translation and reranking methods.

Collection(→) HC4 HC4 CLEF CLEF CLEF CLEF CLEF

Model(↓) Chinese Persian French German Italian Russian Spanish

human translation

BM25 0.301 0.276 0.403 0.304 0.350 0.452 0.452

ColBERT-X (ZS) 0.510 0.343 0.401 0.360 0.328 0.479 0.418

query translation

BM25 0.237 0.211 0.387 0.263 0.275 0.377 0.405

reranker

BM25+mT5-multi 0.312 – 0.333 0.297 0.279 0.303 0.370

our methods

ColBERT-X (ZS) 0.450∗† 0.297∗ 0.382† 0.328∗† 0.272 0.418† 0.379

ColBERT-X (TT) 0.408∗† 0.310∗ 0.422† 0.397∗† 0.339∗† 0.410† 0.415†

When we compare the two variants of ColBERT-X, we observe that on aver-
age translate-train often does better than zero-shot, but these differences are
only significant in CLEF collections except Russian and not in HC4 collections.
The difference is likely a result of using different MT models in CLEF and HC4
collections, so we conduct further analysis in the next section.

5 Detailed Analysis

This section considers several aspects of ColBERT-X. First, different machine
translation models are compared using both MT and CLIR measures. Sec-
ond, effects of different multilingual encoders are explored. Third, the impact
of pseudo-relevance feedback is examined. Then the influence of query length on
performance is considered. Finally, ColBERT-X costs in terms of index size are
noted.

5.1 Effect of Machine Translation

ColBERT-X utilizes machine translation in two different ways depending on
whether it is trained using the zero-shot strategy or the translate-train strategy.
In the zero-shot strategy, the queries are translated to the document language at
query time, while the translate-train strategy requires an MT system to translate
the monolingual training corpus (in this case, the MS MARCO passages) to the
document language. The MT systems used to produce translations include:
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Table 3. BLEU scores for translation systems using WMT’19 newstest for Chinese
and Russian, and TICO-19 (from OPUS1) for Persian. These are computed on test sets
distinct from the CLIR collections, so absolute BLEU score is not an exact reflection
of quality of translations in CLIR experiments. Nevertheless, relative comparison of
BLEU scores among MT systems is meaningful.

Language Russian Chinese Persian

benchmark newstest’19 newstest’19 tico-19

OpusMT 26.3 14.6 –

SockeyeMT1 32.1 25.8 4.4

SockeyeMT2 35.9 38.6 20.2
1https://opus.nlpl.eu/

– OpusMT – bidirectional MT model(s) with MarianNMT as the base archi-
tecture,8 released by the Helsinki NLP group from Bonifacio et al. [4].

– SockeyeMT1 – MT model built on top of a transformer base architecture
(6-layer encoder/decoder) trained on bitext. Depending on language, these
include publicly available bitext such as OpenSubtitles, UN Corpus, Europarl,
and WMT. The model is trained using AWS Sockeye v2 [8].

– SockeyeMT2 – identical model to SockeyeMT1 but trained with 2x–3x more
bitext. The number of training sentence pairs for MT1 vs MT2 are 51M vs
120M for Russian, 36M vs 85M for Chinese, and 6M vs 11M for Persian.

Table 3 provides an intrinsic comparison of the systems translating from
English on a translation task using BLEU scores [21]. For Russian and Chi-
nese we evaluated using a recent WMT shared task (newstest’19); for Persian
we evaluated with a collection of around 3000 sentences about COVID-19, as no
WMT test is available. Scores were calculated with sacrebleu [25] using the -lc
setting. The table reveals that SockeyeMT outputperforms OpusMT and that
exposing SockeyeMT to more training data improves the BLEU score.

Table 4 shows that improving BLEU scores likely leads to improvements
in CLIR for both training strategies. Table 4a shows the results of translating
queries in the zero-shot strategy. While BLEU improvements tend to be realized
downstream, this is not seen for HC4 Chinese where OpusMT has better MAP
than SockeyeMT1. Note that asking MT to translate keyword queries may not
align well with how the systems were trained with complete sentences.

Table 4b shows results for using different translation models on MS MARCO
triples, and the effect this has on ColBERT-X retrieval as measured using MAP.
Again, we see that the MAP scores tend to improve with improved BLEU;
however, in this case the improvement in Russian BLEU from Table 3 between
SockeyeMT1 and SockeyeMT2 does not carry over to ColBERT-X, where the
performance is essentially the same. Generally, one can expect that improving
MT quality will lead to improved effectiveness of ColBERT-X.

8 https://huggingface.co/Helsinki-NLP.

https://opus.nlpl.eu/
https://huggingface.co/Helsinki-NLP
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Table 4. MAP using different MT models for ColBERT-X.

MT

model

CLEF

Russian

HC4

Chinese

HC4

Persian

OpusMT 0.418 0.411 –

SockeyeMT1 0.442 0.391 0.230

SockeyeMT2 0.461 0.450 0.297

(a) ColBERT-X zero-shot

MT

model

CLEF

Russian

HC4

Chinese

HC4

Persian

OpusMT 0.410 0.365 –

SockeyeMT1 0.459 0.389 0.287

SockeyeMT2 0.456 0.408 0.310

(b) ColBERT-X translate-train

Table 5. MAP scores for ColBERT-X initialized with the mBERT and XLM-R
encoders, and trained on SockeyeMT1 MS MARCO translations.

Multilingual CLEF HC4 HC4

Model Russian Chinese Persian

mBERT 0.341 0.284 0.173

XLM-R 0.459∗ 0.389∗ 0.287∗

5.2 Effect of Multilingual Language Models

Comparing different multilingual encoders to initialize ColBERT-X, we observe
that XLM-R performs significantly better than mBERT, as shown in Table 5.
While this might be unsurprising given that the XLM-R model is twice as
large and was pretrained on more data than mBERT, tokenization differs across
the languages. Considering the case of Chinese, mBERT tokenization produces
character-level tokens, whereas the XLM-R tokenizer generates subwords (sen-
tencepieces). This also implies that mBERT indexes are larger than XLM-
R indexes, resulting from the term-level storage requirements of ColBERT-X
model.

5.3 Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF) is a form of query expansion that adds discrim-
inative terms extracted from retrieved documents. While PRF has been explored
for pre and post translation query expansion [19], here we choose cross-language
expansion terms using the ColBERT-X term representation, as suggested by
Wang et al. [31]. First, feedback documents (fb-docs) are selected from the top
of a ColBERT E2E ranked list. Next, embeddings of terms from the feedback
documents are clustered into k clusters. The top ranked centroids of these k clus-
ters9 by token IDF are used as feedback embeddings (fb-embs). These fb-embs
are added to the original query and ColBERT E2E is run again to produce the
final ranked list. We extend this approach to the ColBERT-X CLIR setting.

9 Each centroid is mapped to the nearest document token using the ANN index.
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Table 6. MAP for query translation BM25 and ColBERT-X translate-train. ∗ or †

denote significant improvement over BM25+PRF or ColBERT-X respectively

Retrieval CLEF CLEF CLEF CLEF

model French German Italian Spanish

baseline

BM25 0.387 0.263 0.275 0.405

ColBERT-X 0.422 0.397 0.339 0.415

with PRF

BM25 0.410 0.321 0.320 0.438

ColBERT-X 0.459∗† 0.406∗† 0.371∗† 0.436†

To better understand the effect of PRF, we compare ColBERT-X translate-
train and query translation BM25, with and without PRF. For BM25, we use
Anserini’s RM3 to perform PRF, with default hyperparameters. For ColBERT-X
PRF, we extend Terrier’s [20] implementation10 with default hyperparameters.
Table 6 shows the effect of PRF on ColBERT-X translate-train MAP. Except
in Spanish, applying PRF to ColBERT-X significantly improves effectiveness
compared to ColBERT-X without PRF or compared to BM25 with PRF.

5.4 Effect of Longer Queries

Table 7 analyzes the effect of query type on ColBERT-X translate-train. We
compare three representations: title (t), which is a short Web-like query;
description (d), a well-formed sentence describing the information need, and
title+description (td), the concatenation of the two. Longer queries pose a prob-
lem for ColBERT-X, however, since the model only supports queries up to 32
tokens long. To mitigate this problem, we use a list of “stop structures” [1] con-
sisting of phrases (e.g., find documents on, reports of, etc.), which have been
shown to work in the past, removing them from the td queries. We observe that
td with stop structures removed leads to significant improvements over t or d
alone.

5.5 Indexing Footprint

In addition to the FAISS-based ANN index, ColBERT-X requires access to the
representation of each term to compute MaxSim. With each term embedded as
a 128-dimensional vector and each dimension using 16-bits, that’s 256 bytes per
term. These are onerous requirements, with index size increasing with collec-
tion size. Table 8 provides statistics on storage requirements. ColBERTv2 [27]
addresses this issue by clustering token embeddings. That approach could be
extended to ColBERT-X for CLIR; we leave it for future work. An artifact
10 https://github.com/terrierteam/pyterrier colbert.

https://github.com/terrierteam/pyterrier_colbert
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Table 7. MAP results for ColBERT-X (TT) model using different query representa-
tions. ∗ and † denote significant improvements over t and d queries respectively.

Query CLEF CLEF CLEF CLEF

representation French German Italian Spanish

Title 0.422 0.397 0.339 0.415

description 0.434 0.410 0.380 0.456

Title+description 0.507∗† 0.466∗† 0.424∗† 0.500∗†

Table 8. Collection-specific memory footprint.

Collection
HC4 HC4 CLEF CLEF CLEF CLEF CLEF

Chinese Persian French German Italian Russian Spanish

#passages 3.6M 3.1M 0.7M 1.6M 0.8M 0.1M 2.7M

Disk space 154 GB 134 GB 33 GB 70 GB 36 GB 4.7 GB 117 GB

of our design that affects index size is how passages are generated. We use a
sliding window of document tokens, so most tokens have two representations.
In the future, we will explore the effects of alternative document segmentation
approaches.

6 Conclusion

We have developed ColBERT-X, a cross-language generalization of ColBERT
that uses a multilingual query and document encoder to improve CLIR beyond
what traditional systems such as BM25 can achieve. Using MT systems to trans-
late MS MARCO, we create CLIR collections for training ColBERT-X. We addi-
tionally analyze the effect of MT on the CLIR task. In the future, we would like
to create a single multilingual model that is trained on the data from many
languages, and compare that with a separate models for each language. For
pseudo-relevance feedback, it is important to understand which type of queries
benefit from it; a per-query comparison could shed some light on that question.
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Abstract. Heavily pre-trained transformers for language modeling,
such as BERT, have shown to be remarkably effective for Informa-
tion Retrieval (IR) tasks, typically applied to re-rank the results of a
first-stage retrieval model. IR benchmarks evaluate the effectiveness of
retrieval pipelines based on the premise that a single query is used to
instantiate the underlying information need. However, previous research
has shown that (I) queries generated by users for a fixed information
need are extremely variable and, in particular, (II) neural models are
brittle and often make mistakes when tested with modified inputs. Moti-
vated by those observations we aim to answer the following question:
how robust are retrieval pipelines with respect to different variations in
queries that do not change the queries’ semantics? In order to obtain
queries that are representative of users’ querying variability, we first cre-
ated a taxonomy based on the manual annotation of transformations
occurring in a dataset (UQV100) of user-created query variations. For
each syntax-changing category of our taxonomy, we employed different
automatic methods that when applied to a query generate a query vari-
ation. Our experimental results across two datasets for two IR tasks
reveal that retrieval pipelines are not robust to these query variations,
with effectiveness drops of ≈ 20% on average. The code and datasets are
available at https://github.com/Guzpenha/query variation generators.

1 Introduction

Heavily pre-trained transformers for language modeling such as BERT [17] have
been shown to be remarkably effective for a wide range of IR tasks [40,43,55].
Commonly, IR benchmarks organized as part of TREC or other evaluation cam-
paigns, evaluate the effectiveness of ranking models—neural or otherwise—based
on small sets of topics and their corresponding relevance judgments. Importantly,
each topic is typically represented by a single query1. However, previous research
has shown that queries created by users given a fixed information need may vary
widely [6,60]. In the UQV100 [5] dataset for instance, crowd workers on average

1 While TREC topics usually consist of three parts (title, description and narrative),
commonly only the TREC topic title is considered as query.
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created 57.7 unique queries for a given information need as instantiated via a
backstory.

We thus argue that it is necessary to investigate the robustness of retrieval
pipelines in light of query variations (i.e., different expressions of the same infor-
mation need) that are likely to occur in practice. That different query variations
lead to vastly different ranking qualities is anecdotally shown in Table 1 for
a vanilla BERT model for ranking [40]. If, for example, the word order of the
original query from TREC-DL-2019 right pelvic pain causes is changed to causes
pelvic pain right, the retrieval effectiveness of the resulting ranking drops by 46%.
Similarly, paraphrasing define visceral to what is visceral reduces the retrieval
effectiveness by 38%.

Table 1. Examples of BERT effectiveness drops (nDCG@10 Δ) when we replace the
original query from TREC-DL-2019 by an automatic (except for the first two lines
that were produced manually) query variation. We focus here on transformations that

change the query syntax , but not its semantics .

Original Query Query Variation nDCG@10 Δ

popular food in switzerland popular food in zurich gen./specialization

cost of interior concrete flooring concrete flooring finishing aspect change

what is theraderm used for what is thrraderm used for misspelling -1.00 (-100%)

anthropological definition of environment anthropological definition of environment

naturality

-0.15 ( -26%)

right pelvic pain causes causes pelvic pain right ordering -0.18 ( -46%)

define visceral what is visceral paraphrasing -0.26 ( -38%)

In our work, we quantify the extent to which different retrieval models are
susceptible to different types of query variations as measured by their drop in
retrieval effectiveness. In contrast to prior works that either analyze behaviour
of models when faced with modifications to the documents [31], analyze models
through the lens of IR axioms [12,47] or analyze NLP models via general natural
language text adversarial examples [21,48], we instantiate our query variations
based on user-created data. Concretely, we manually label a large fraction of
UQV100 queries2 and extract six types of frequently occurring query transi-
tions: gen./specialization, aspect change, misspelling , naturality , ordering and
paraphrasing—an example of each is shown in Table 1. The last four of these
categories change the query syntax but not its semantics. For each of the four
syntax-changing categories, we develop automated approaches that enable us
to generate query variations of each category for any input query. With these

2 To our knowledge, UQV100 is the only publicly available dataset that contains a
large number of query variations for a set of information needs.
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query variation generators in place, we conduct extensive empirical work on the
TREC-DL-2019 [15] and ANTIQUE [23] datasets to answer the question: Are
retrieval pipelines robust to different variations in queries that do not change its
semantics? To this end we consider seven ranking approaches: two lexical models
(BM25 [49] and RM3 [1]), two neural re-ranking approaches that do not make
use of transformers (KNRM [54] and cKNRM [16]) and three transformer-based
re-ranking approaches (EPIC [32], BERT [40] and T5 [41]).

We find that the four types of syntax-changing query variations differ in the
extent to which they degrade retrieval effectiveness: misspellings have the largest
effect (with an average drop of 0.25 nDCG@10 points across seven retrieval
models for TREC-DL-2019) while the word ordering has the least effect (with
an average drop of nDCG@10 smaller than 0.01 for TREC-DL-2019).

Our work indicates that more research is required to improve the robustness
of retrieval pipelines. Evaluation benchmarks should aim to have multiple query
variations for the same information need; we provide here a number of methods
to automatically generate such query variations for any dataset.

2 Related Work

Query Variation. A number of studies have argued that evaluation in IR tasks
should take into account multiple instantiations of the same information need, i.e.
query variations, due to their impact on the effectiveness of ranking models [4–7,
11,36,50,60]. Zuccon et al. [60] proposed a mean-variance framework to explicitly
take into account query variations when comparing different IR systems. Bailey
et al. [6] argued that a model should be consistent to different query variations,
and proposed a measure of consistency which gives additional information to
effectiveness measurements.

Besides a better evaluation of models, query variations can also be employed
to improve the overall effectiveness of ranking models, for instance by combining
the different rankings obtained from them [8,10] or by modelling relevance of
multiple query variations [28]. They have also shown to been helpful for the
problem of query performance prediction [57].

Different methods to automatically generate query variations have been pro-
posed. Benham et al. [9] proposed to obtain query expansions through a relevance
model which is built by issuing the original query against an external corpora and
expanding it with additional terms from the set of external feedback documents.
Lu et al. [28] employed a query-url click graph and generated query variations
automatically using a two-step backward walk process. Chakraborty et al. [13]
generated query variations based on an external knowledge base with a prior
term distribution and by building a relevance model in an iterative manner.

Our work differs from previous work in the following ways: (I) our methods
do not require access to external corpora, a relevance model or a query-url click
graph; (II) we are not concerned with generating queries with the sole purpose of
improving effectiveness, but in generating queries that are likely to occur in prac-
tice; and (III) each of our generator methods follows a category of our taxonomy
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of query variations which allows us to diagnose ranking models’ effectiveness by
analyzing what types of variations are more detrimental to what ranking models.

Model Understanding. The success of pre-trained transformer-based language
models such as BERT [17] and T5 [46] on several IR benchmarks—a comprehen-
sive account of the effectiveness gains can be found in [27]—has lead to research
on understanding their behaviour and the reasons behind their significant gains
in ranking effectiveness [12,31,42,45,58].

Câmara and Hauff [12] showed that BERT does not adhere to IR axioms,
i.e., heuristics that a reasonable IR model should fulfill, through the use of
diagnostic datasets. MacAvaney et al. [31] expanded on the axiomatic diagnos-
tic datasets [47] with ABNIRML, a framework to understand the behaviour of
neural ranking models using three different strategies: measure and match (con-
trolling certain measurements such as term frequency and changing another),
manipulation of the documents’ text (e.g., by shuffling words) and through the
transfer of Natural Language Processing (NLP) datasets (e.g., by comparing
documents that are more/less formal). We expand on [31] by proposing tex-
tual manipulations—unlike previous methods we are inspired by user-created
variations—to the queries instead of the documents and examine the robustness
in terms of effectiveness of ranking models to such manipulations.

A different direction of research in NLP has challenged how well current
evaluation schemes are actually evaluating the desired capabilities of the models
through the use of held-out test sets. For example, Gardner et al. [21] pro-
posed the manual creation of contrast sets—small perturbations that preserve
artifacts but change the true label—in order to evaluate the models’ decision
boundaries for different NLP tasks. They showed that the model effectiveness
on such contrast sets can be up to 25% lower than on the original test sets.
Inspired by behavioral testing, i.e. validating input output behaviour without
knowledge about internal structure, from software engineering tests, Ribeiro et
al. [48] proposed to test NLP models with three different types of tests: mini-
mum functionality tests (simple examples where the model should not fail), label
(such as positive, negative and neutral in sentiment analysis) invariant changes
to the input, and modifications to the input with known outcomes. With such
tests at hand they were able to find actionable failures in different commercial
NLP models that had already been extensively tested. It has also been shown
that neural models developed for different NLP tasks can be tricked by adversar-
ial examples [2,20,22], i.e. examples with perturbations indiscernible by humans
which are misclassified by the model. In terms of query modifications, [53,59]
found typos to be detrimental to the effectiveness of neural rankers. Ma et al. [29]
showed that contrastive fine-tuning improves the robustness of ranking models
to paraphrased and perturbed queries. Wu et al. [53] analyzed the robustness
of neural rankers with respect to three dimensions: difficult queries from similar
distributions, out-of-domain cases, and defense against adversarial operations.
Our work differs from the adversarial line of research by evaluating the robust-
ness of models to query modifications that could be generated by humans, i.e.
transformations that naturally occur, and not modifications optimized to trick
neural models.
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3 Automatic Query Variations

We now first describe how we arrived at our query variation categories in a data-
driven manner by annotating a large set of user-created query variations from
UQV100. We end up with six categories: four that change the syntax (but not the
semantics) and two that change the semantics. In our work, we focus on the
four syntax-changing categories. We subsequently describe our methods to
automatically generate the four types of syntax-changing query variations.

3.1 UQV Taxonomy

In order to better understand how queries differ when we compare different
query variations for the same information need, we resort to analyzing vari-
ations from the UQV100 dataset. UQV100 contains query variations for 100
(sub)-topics from the TREC 2013 and 2014 web tracks, written by crowd work-
ers who received a “backstory” for each topic as a starting point. On average,
UQV100 contains 57.7 spelling corrected (corrected by the UQV100 authors
using the spelling service of the Bing search engine) query variations per topic.
We consider a query variation pair {qi, qj} to be a set of two queries qi and qj
that were provided in UQV100 for the same backstory. In total, 365K such pairs
exist; Table 2 (4th column) contains a number of {qi, qj} examples. We sampled
100 query variation pairs for manual annotation. Three authors of this paper
(the “annotators”) performed an open card sort [52]. The annotators indepen-
dently sorted the query variation pairs into different piles and named them, each
representing a transformation T that can be applied to qi and then leads to qj ,
i.e. T (qi) = qj . Multiple transformations might be applied to qi in order to yield
qj , e.g. T2(T1(qi)) = qj .

After the independent sorting step, the different piles were discussed and
merged where necessary, which yielded five categories of transformations. Since
the UQV100 data used had already been spelling-corrected by its authors, we
added the category misspellings. The resulting taxonomy can be found in Table 2.
It contains a concrete definition and examples for each of our—in total—six cat-
egories: (I) generalization or specialization, (II) aspect change, (III) misspelling,
(IV) naturality, (V) word ordering and (VI) paraphrasing. We observed two broad
types of transformations: transformations that change the semantics of the query
and transformations that do not change the semantics. The gen./specialization
and aspect change transformations fall into the former type, whereas all other
categories fall into the latter. We highlight here that unlike previous catego-
rizations that describe how users revise queries in e-commerce [3,24], how to
generate better queries to substitute the original query [26], how users reformu-
late queries in a session [25], we study here how to categorize query variations
for the same information need which is a related but different problem.

Having arrived at our six categories, our annotators then labeled an addi-
tional set of 550 {qi, qj} randomly sampled pairs from UQV100 in order to deter-
mine the distribution of these categories in UQV100. Each {qi, qj} was labelled
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Table 2. Taxonomy of query variations derived from a sample of the UQV100 dataset.
Last column is the count of each query variation found on UQV100 based on manual
annotation of tuples of queries for the same information need. Categories in grey change
the semantics. * typos were already fixed for the UQV100 pairs.

Category Definition {qi, qj} from UQV100 Count

Gen./specialization Generalizes or specializes

within the same information

need.

american civil war ↔ number of battles in

south carolina during

civil war

172

Aspect change Moves between related but

different aspects within the

same information need.

what types of spiders

can bite you while

gardening

↔ signs of spider bite 111

Misspelling Adds or removes spelling

errors.

raspberry pi ↔ raspeberry pi *

Naturality Moves between keyword

queries and natural language

queries.

how does zinc relate

to wilson’s disease

↔ zinc wilson’s disease 118

Ordering Changes the order of words carotid cavernous fis-

tula treatment.

↔ treatment carotid

cavernous fistula

37

Paraphrasing Rephrases the query by mod-

ifying one or more words.

cures for a bald spot ↔ cures for baldness 215

as belonging to one (or more) of the five categories (with the exception of mis-
spelling which, as already stated, had already been corrected by the UQV100
authors). In order to determine the inter-annotator agreement, 25 {qi, qj} pairs
were labelled by all three annotators, and 175 pairs were each labelled by a single
annotator. The inter-annotator agreement [14] was moderate (Cohen’s κ = 0.42);
the disagreements were highest for the naturality and paraphrasing categories.
We found that a total of 56 {qi, qj} pairs had more than one category assigned to
it3. The resulting distribution is shown in Table 2 (right-most column); the cate-
gories of query variations that change the query without changing its semantics
account for 57% of all the transformations. In contrast, 43% of query variations
are semantic changes. Among the syntax-changing categories, we found natu-
rality to be the most common with 33% of all transformations falling into this
category. Having observed that query variations change the syntax, but not the
semantics for the majority of cases, we focus in the remainder of our work
on syntax-changing query variations. We leave the exploration of query
variation generators for gen./specialization and aspect change as future work.

3.2 Query Generators

For each of the four syntax-changing categories, we explored different meth-
ods that generate query variations of the specified category. After an initial
3 For example, the pair {“what is doctor zhivago all about”, “dr zhivago synopsis”}

had both paraphrasing and naturality labels, as it goes from a natural language
question to a keyword-base question and also paraphrases “doctor [...] all about” to
“dr [...] synopsis”.
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exploration of different query generator methods for each category, and filtering
approaches that did not generate valid variations for the category and approaches
that have high correlation with each other, we employed a total of ten different
methods. These methods are listed in Table 3, each with an example transforma-
tion. We explain each one in more detail in this section. A method MC receives as
input a query q and outputs a query variation q̂ for the category C: MC(q) = q̂.

Table 3. Example of applying each query generation method M for the query ‘what is
durable medical equipment consist of ’ from TREC-DL-2019. Rightmost columns indi-
cate the total percentage of valid queries by automatic query variation method based
on manual annotation of queries from the test sets of TREC-DL-2019 and ANTIQUE.

C Method name M(‘what is durable medical
equipment consist of ’)

TREC ANT

Misspelling NeighbCharSwap what is durable medical equipment
consist of

100.00% 99.50%

RandomCharSub what is durable medical equipment
consist of

97.67% 91.00%

QWERTYCharSub what is durable medical equipment
consist of

97.67% 98.50%

Naturality RmvStopWords what is durable medical equipment
consist of

86.05% 99.50%

T5DescToTitle what is durable medical equipment
consist of

81.40% 68.00%

Ordering RandOrderSwap medical is durable what equipment
consist of

100.00% 100.00%

Paraphrasing BackTransl what is sustainable medical
equipment consist of

53.49% 46.50%

T5QQP what is durable medical equipment
consist of

60.47% 52.50%

WEmbedSynSwap what is durable medicinal
equipment consist of

62.79% 62.00%

WNetSynSwap what is long lasting medical
equipment consist of

37.21% 35.50%

While most of the methods can generate multiple variations for a single input
query (for example by replacing different words of the same query by synonyms
or by including several spelling mistakes), for the experiments in the paper we
resort to using a single query variation per method which already yields enough
data for analysis (see §4). Inspired by adversarial examples, we aim to make
minimal perturbations to the input text when possible, e.g. replace only one
word by a synonym, thus increasing the chances of obtaining valid variations.

Misspelling. The three methods in this category add one spelling error to the
query; the query term an error is introduced in is chosen uniformly at random.
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NeighbCharSwap Swaps two neighbouring characters from a random query term
(excluding stopwords4).

RandomCharSub Replaces a random character from a random query term (exclud-
ing stopwords) with a randomly chosen new ASCII character.

QWERTYCharSub Replaces a random character of a random query term (excluding
stopwords) with another character from the QWERTY keyboard such that
only characters in close proximity are chosen, replicating errors that come
from typing too quickly.

Naturality. The two methods in this category transform natural language
queries into keyword queries.

RmvStopWords Removes all stopwords from the query.
T5DescToTitle Applies an encoder-decoder transformer model (here we employ

T5 [46]) that we fine-tuned on the task of generating the title of a TREC
topic based on the TREC topic description (an example title and description
tuple from trec-robust04 is ‘Evidence that rap music has a negative effect on
young people.’ → ‘Rap and Crime’). We collect pairs of title and description
from eleven datasets available through the IR datasets library [33].5 Overall,
we fine-tuned our model on 1322 such description/title tuples.

Ordering. In this category, we employ only one method to shuffle words as done
by previous research on the order of words [31,44].

RandOrderSwap Randomly swap two words of the query.

Paraphrasing. The four methods in this category change one or more query
terms in the process of paraphrasing.

BackTransl Applies a translation method to the query to a pivot language,
i.e. an auxiliary language, and from the pivot language back to the original
language of the query (in our case: English). In our experiments we employ the
M2M100 [18] model, a multilingual model that can translate between any pair
of 100 languages, and we use ‘German’ as the pivot language, which yielded
better results—shown by manual inspection of the generated variations—than
the other two languages for which the model had the most data for training
(‘Spanish’ and ‘French’ ). This technique has been used before as a way to
generate paraphrases [19,35].

4 We use the NLTK english stopwords list for all the methods; it is available at https://
www.nltk.org/.

5 Concretely, we made use of trec-robust04, trec-tb-2004, aquaint/trec-robust-2005,
gov/trec-web-2002, ntcir-www-2, ntcir-www-3, trec-misinfo-2019, cord19/trec-covid,
dd-trec-2015, dd-trec-2016 and dd-trec-2017.

https://www.nltk.org/
https://www.nltk.org/


Query Variations 405

T5QQP Applies an encoder-decoder transformer model (T5 [46]) that was fine-
tuned on the task of generating a paraphrase question from the original ques-
tion6. The model employs the Quora Question Pairs7 dataset for fine-tuning,
which has 400k pairs of questions like the following: ‘How do you start a bak-
ery? ’ → ‘How can one start a bakery business? ’. We also tested T5 models
fine-tuned for PAWS [56] and the combination of PAWS and Quora Ques-
tion Pairs, but the manual inspection of the generated queries revealed that
T5 fine-tuned for Quora Question Pairs generated a higher number of valid
variations.

WEmbedSynSwap Replaces a non-stop word by a synonym as defined by the near-
est neighbour word in the embedding space according to a counter fitted-
Glove embedding which yields better synonyms than standard Glove embed-
dings [38].

WNetSynSwap Replaces a non-stop word by a the first synonym found on Word-
Net8. If there are no words with valid synonyms it will not output a variation.

4 Experimental Setup

Datasets. We consider the following datasets: TREC-DL-2019 [15] for the pas-
sage retrieval task and ANTIQUE [23] for the non-factoid question answering
task. They have 367,013/5,193/43 and 2,426/-/200 instances respectively for
training, validation and test. The queries from TREC-DL-2019 are smaller on
average: 5.51 terms vs 10.51 from ANTIQUE. For each of the test set queries, we
generate one query variation by each generator method, and we use only the valid
query variations in our experiments (according to manual annotation), leading
to 334 and 1,706 valid query variations for TREC-DL-2019 and ANTIQUE.

Ranking Models. We use different ranking models that range from traditional
lexical models, such as BM25, to neural ranking models, such as KNRM and
neural ranking models that employ transformer-based language models, such
as BERT. For all of our experiments, we apply BM25 as a first stage retriever
and re-rank the top 100 results with the neural ranking models, which is an
established and efficient approach [27].

For BM25 [49] and RM3 [1] we resort to the default hyperparameters
and implementation provided by the PyTerrier toolkit [34]. We trained the
kernel-based ranking models KNRM [54] and cKNRM [16] on the train-
ing sets of TREC-DL-2019 and ANTIQUE using default settings from the
OpenNIR [30] implementation. For the BERT-based methods EPIC [32], an
efficiency focused model that encodes query and documents separately, and
BERT [40], also known as monoBERT, which concatenates query and docu-
ment and makes predictions based on the [CLS] token representation, we fine-
tune the bert-base-uncased model for the train datasets. For T5 [46] we use
6 As available here https://huggingface.co/ramsrigouthamg/t5 paraphraser.
7 https://www.kaggle.com/c/quora-question-pairs.
8 https://wordnet.princeton.edu/.

https://huggingface.co/ramsrigouthamg/t5_paraphraser
https://www.kaggle.com/c/quora-question-pairs
https://wordnet.princeton.edu/
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the monoT5 [41] implementation of the PyTerrier T5 plugin9 which has the
pre-trained weights for MSMarco [39] by the authors of monoT5.

Query Generators Implementation. As for our methods of generating
query variations, for T5DescToTitle and T5QQP we rely on pre-trained T5
models (t5-base) and we fine-tune them using the Huggingface transformers
library [51]. For BackTransl we use the facebook/m2m100 418M pre-trained
model from the transformers library10. For all other methods, we use the imple-
mentations from the TextAttack [37] library.

Quality of Query Generators. Given the automatic nature of the methods
we introduced, we need to evaluate their quality. To this end, we consider two
properties of the generated queries: (I) q̂ maintains the same semantics as q, and
(II) the syntax difference between q and q̂ can be attributed to the category. All
pairs of q and q̂ = M(q) from the test sets of TREC-DL-2019 (43 queries) and
ANTIQUE (200 queries) for each of the 10 automatic variation methods went
through the following process. First, we automatically set the variations from
misspelling11 and ordering as valid, since they are rule based transformations to
the input. Then all transformations that generate a variation that is identical to
the input query (q̂ = M(q) = q) was automatically set to invalid. Three authors
then annotated independently the remaining 1,371 pairs of {q, q̂} for the two
mentioned properties (binary labels). The percentage of queries that are valid
(i.e. they have both desired properties) are displayed in the right-most columns of
Table 3 for the 10 automatic variation methods used in the paper and all 2,430
combinations of {q, q̂}. We find the methods in the paraphrasing category to
yield the largest percentage of invalid query variations: fewer than 38% of query
variations generated via WNetSynSwap are valid. A manual inspection of the
invalid queries reveal the following insights: (I) T5DescToTitle at times removes
query terms that are important for the query and thus change its semantics (e.g.
‘if i had a bad breath what should i do’ → ‘if i had a’ ), (II) BackTransl and
T5QQP methods can generate an identical copy of the input query which was
automatically labelled as invalid and (III) transformations that replace words
by their presumed synonyms (WEmbedSynSwap and WNetSynSwap) at times adds
words that are not in fact synonymous in the query context (e.g. ‘what is dark
energy ’ → ‘what is blackness energy ’ and ‘what is a active margin’ → ‘what is
a active border ’).

To evaluate the robustness of the ranking models, we resort to
using only the valid queries as defined by the manual annotations.
Overall, we have thus 2,040 valid queries for datasets TREC-DL-2019 and
ANTIQUE that we employ in the experiments that follow.

9 https://github.com/terrierteam/pyterrier t5.
10 https://huggingface.co/facebook/m2m100 418M.
11 misspelling methods can generate invalid queries when all words of the query are

stop-words (e.g. ‘how is it being you’ from ANTIQUE would generate the same query
as output since there is no non stop-words to modify).

https://github.com/terrierteam/pyterrier_t5
https://huggingface.co/facebook/m2m100_418M
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5 Results

To explore the robustness of our three types of ranking models we compare the
effectiveness of our models when we replace the original query with the respective
query variation. The results of this experiment are displayed in Table 4 for both
the TREC-DL-2019 and ANTIQUE datasets. Each row shows the effectiveness
of the ranking models (columns) when using the queries obtained from each
automatic query variation method. The last column (#Q) displays the number
of valid queries generated by each query variation method; the invalid queries
are replaced with the original ones12.

The results show that for most of the query variations and ranker combina-
tions we observe a statistical significant effectiveness drop (49 out of 70 times
for TREC-DL-2019 and 54 out of 70 times for ANTIQUE), and that no set
of query variations improves statistically over using the original query. If we
look into the percentage of overall effectiveness decreases considering only the
valid queries, we see on average that the models become 20.62% and 19.21% less
effective for TREC-DL-2019 and ANTIQUE respectively. This answers our
research question indicating that retrieval pipelines are not robust to
query variations. This confirms previous empirical evidence that query vari-
ations induce a big variability effect on different IR systems [6,60]. We show
that even with newer large-scale collections such as TREC-DL-2019, retrieval
pipelines are not robust to such variations.

There are several potential explanations for this drop in effectiveness besides
the lack of robustness of neural rankers. The first-stage ranker may be the point
of failure, being unable to retrieve sufficiently many relevant documents for the
neural rankers to re-rank. It is also possible that the query variations lead to
unjudged documents being ranked highly by the retrieval pipelines, which in the
standard retrieval evaluation setup are considered non-relevant. We now present
two experiments to show that these alternative explanations are not the cause
in drop of retrieval effectiveness.

Let’s focus first on the first-stage ranker. We first calculated the average drop
in effectiveness when we increase the re-ranking threshold. While the number of
documents in the re-ranking set increases13, neural models still struggle, e.g.
for BERT the nDCG@10 decreases on average by 40%, 34% and 31%14. This
indicates that even if we increase the number of relevant documents to be re-
ranked, neural rankers still fail when faced with query variations.

To further isolate the effect of the first-stage retrieval module, we analyzed
whether the effectiveness of the pipelines would not degrade in case the first-
stage retrieval was performed on the original query. In this experiment only the
re-ranker models use the query variations and we check whether the effective-
ness drops persist. The results reveal that there are still statistically significant

12 While rows are directly comparable, methods with fewer valid queries are a lower
bound of the potential decreases in effectiveness.

13 BM25 has R@10, R@100 and R@1000 of 0.06, 0.25 and 0.48 for misspelling .
14 Similar results are obtained for other neural rankers.
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Table 4. Effectiveness (nDCG@10) of different methods for TREC-DL-2019 and
ANTIQUE when faced with different query variations. Bold indicates the highest
values observed for each model and ↓/↑ subscripts indicate statistically significant
losses/improvements, using two-sided paired Student’s T-Test at 95% confidence inter-
val with Bonferroni correction when compared against the model with original queries.
#Q is the number of valid query variations (invalid query variations are replaced by
the original query).

TREC-DL-2019

Category Variation BM25 RM3 KNRM cKNRM EPIC BERT T5 #Q

– original query 0.480 0.516 0.502 0.493 0.624 0.645 0.700 43

Misspelling NeighbCharSwap 0.275↓ 0.275↓ 0.316↓ 0.309↓ 0.389↓ 0.416↓ 0.495↓ 43

RandomCharSub 0.231↓ 0.233↓ 0.236↓ 0.226↓ 0.295↓ 0.328↓ 0.396↓ 42

QWERTYCharSub 0.244↓ 0.250↓ 0.267↓ 0.297↓ 0.351↓ 0.387↓ 0.446↓ 42

Naturality RmvStopWords 0.478 0.511 0.484 0.476 0.621 0.639 0.687 37

T5DescToTitle 0.421 0.434↓ 0.392 0.393 0.506↓ 0.536↓ 0.571↓ 35

Ordering RandOrderSwap 0.480 0.516 0.502 0.471 0.623 0.635 0.697 43

Paraphrasing BackTransl 0.396 0.420↓ 0.393 0.361↓ 0.530 0.547↓ 0.606 23

T5QQP 0.472 0.504 0.454 0.461 0.605 0.640 0.705 26

WEmbedSynSwap 0.353↓ 0.354↓ 0.382↓ 0.368↓ 0.475↓ 0.472↓ 0.560↓ 27

WNetSynSwap 0.349↓ 0.365↓ 0.381↓ 0.361↓ 0.449↓ 0.447↓ 0.545↓ 16

ANTIQUE

Category Variation BM25 RM3 KNRM cKNRM EPIC BERT T5 #Q

– original query 0.229 0.217 0.218 0.207 0.266 0.421 0.334 200

Misspelling NeighbCharSwap 0.156↓ 0.148↓ 0.159↓ 0.145↓ 0.184↓ 0.287↓ 0.251↓ 199

RandomCharSub 0.162↓ 0.159↓ 0.156↓ 0.148↓ 0.189↓ 0.280↓ 0.249↓ 182

QWERTYCharSub 0.161↓ 0.153↓ 0.160↓ 0.155↓ 0.192↓ 0.299↓ 0.266↓ 197

Naturality RmvStopWords 0.227 0.216 0.222 0.215 0.269 0.383↓ 0.320 199

T5DescToTitle 0.167↓ 0.165↓ 0.160↓ 0.167↓ 0.200↓ 0.270↓ 0.240↓ 136

Ordering RandOrderSwap 0.229 0.217 0.218 0.198 0.267 0.413↓ 0.325↓ 200

Paraphrasing BackTransl 0.162↓ 0.155↓ 0.160↓ 0.144↓ 0.204↓ 0.305↓ 0.258↓ 93

T5QQP 0.220 0.207 0.210 0.196 0.261 0.393↓ 0.321 105

WEmbedSynSwap 0.176↓ 0.172↓ 0.190↓ 0.169↓ 0.214↓ 0.325↓ 0.283↓ 124

WNetSynSwap 0.179↓ 0.175↓ 0.196↓ 0.177↓ 0.212↓ 0.324↓ 0.273↓ 71

effectiveness drops when only the re-ranker models use the query variations,
although in smaller magnitude. While the drops in effectiveness of the pipelines
when using query variations for the entire pipeline are on average of ≈ 20% in
nDCG@10, when using the query variations only for re-ranking they are ≈ 9%.
This indicates that not only the first stage retrieval module is not
robust to query variations, but also the neural re-rankers.

Let’s now focus on the matter of unjudged documents. It is possible that
we are underestimating the effectiveness of the retrieval pipelines when facing
query variations if (I) the number of unjudged documents in the top-10 ranked
lists increases and (II) they turn out to be relevant. When counting the amount
of judged documents in the top-10 ranked lists of the retrieval pipelines, we
find that on average the number actually increases (4.30% for TREC-DL-2019
and 0.36% for ANTIQUE), meaning that the performance drops of the
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retrieval pipelines cannot be attributed to unjudged documents being
brought up in the ranking by the query variations.

6 Conclusions

We first described a taxonomy of transformations between two queries for the
same information need that characterizes how exactly a query is modified to
arrive at one of its variants. We found six different types of transformations,
and focused on the ones that do not change the query semantics: misspelling ,
naturality , ordering and paraphrasing . They account for 57% of observed varia-
tions in the UQV100 dataset. For each category, we proposed different methods
to automatically generate query variations. We studied the quality of the gener-
ated query variations, and analyzed how robust retrieval pipelines are to them.
Our results on two datasets quantify how much each model is affected by each
type of query variation, demonstrating large effectiveness drops of 20% on aver-
age when compared to the original queries. As future work, we believe that it
is important to study (I) how to automatically generate valid query variation
generators for categories that do change the semantics of the query and (II)
techniques to improve the robustness of existing ranking pipelines.

Acknowledgements. This research has been supported by NWO projects SearchX
(639.022.722) and NWO Aspasia (015.013.027).
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E., Magalhães, J., Castells, P., Ferro, N., Silva, M.J., Martins, F. (eds.) ECIR 2020.
LNCS, vol. 12035, pp. 699–713. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45439-5 46

http://arxiv.org/abs/2010.06467
http://arxiv.org/abs/2105.12932
http://arxiv.org/abs/2011.00696
http://arxiv.org/abs/1603.00892
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/2003.06713
http://arxiv.org/abs/1905.01758
https://doi.org/10.1007/978-3-030-45439-5_46
https://doi.org/10.1007/978-3-030-45439-5_46


412 G. Penha et al.

44. Pham, T.M., Bui, T., Mai, L., Nguyen, A.: Out of order: How important is the
sequential order of words in a sentence in natural language understanding tasks?
arXiv preprint arXiv:2012.15180 (2020)

45. Qiao, Y., Xiong, C., Liu, Z., Liu, Z.: Understanding the behaviors of Bert in rank-
ing. arXiv preprint arXiv:1904.07531 (2019)

46. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683 (2019)

47. Rennings, D., Moraes, F., Hauff, C.: An axiomatic approach to diagnosing neural
IR models. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D.
(eds.) ECIR 2019. LNCS, vol. 11437, pp. 489–503. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-15712-8 32

48. Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S.: Beyond accuracy: behavioral testing
of NLP models with checklist. arXiv preprint arXiv:2005.04118 (2020)

49. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson
model for probabilistic weighted retrieval. In: SIGIR 1994, pp. 232–241. Springer,
Cham (1994). https://doi.org/10.1007/978-1-4471-2099-5 24

50. Spark-Jones, K.: Report on the need for and provision of an ‘ideal’ information
retrieval test collection. Computer Laboratory (1975)

51. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics, Online, October 2020. https://www.aclweb.org/anthology/2020.emnlp-
demos.6

52. Wood, J.R., Wood, L.E.: Card sorting: current practices and beyond. J. Usabil.
Stud. 4(1), 1–6 (2008)

53. Wu, C., Zhang, R., Guo, J., Fan, Y., Cheng, X.: Are neural ranking models robust?
arXiv preprint arXiv:2108.05018 (2021)

54. Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-hoc ranking
with kernel pooling. In: Proceedings of the 40th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 55–64 (2017)

55. Yang, W., Zhang, H., Lin, J.: Simple applications of Bert for ad hoc document
retrieval. arXiv preprint arXiv:1903.10972 (2019)

56. Yang, Y., Zhang, Y., Tar, C., Baldridge, J.: PAWS-X: a cross-lingual adversarial
dataset for paraphrase identification. In: Proceedings of EMNLP (2019)

57. Zendel, O., Shtok, A., Raiber, F., Kurland, O., Culpepper, J.S.: Information needs,
queries, and query performance prediction. In: Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 395–404 (2019)

58. Zhan, J., Mao, J., Liu, Y., Zhang, M., Ma, S.: An analysis of Bert in document
ranking. In: Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1941–1944 (2020)

59. Zhuang, S., Zuccon, G.: Dealing with typos for Bert-based passage retrieval and
ranking. arXiv preprint arXiv:2108.12139 (2021)

60. Zuccon, G., Palotti, J., Hanbury, A.: Query variations and their effect on comparing
information retrieval systems. In: Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pp. 691–700 (2016)

http://arxiv.org/abs/2012.15180
http://arxiv.org/abs/1904.07531
http://arxiv.org/abs/1910.10683
https://doi.org/10.1007/978-3-030-15712-8_32
https://doi.org/10.1007/978-3-030-15712-8_32
http://arxiv.org/abs/2005.04118
https://doi.org/10.1007/978-1-4471-2099-5_24
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/2108.05018
http://arxiv.org/abs/1903.10972
http://arxiv.org/abs/2108.12139


Exploiting Document-Based Features
for Clarification in Conversational Search

Ivan Sekulić1(B), Mohammad Aliannejadi2, and Fabio Crestani1
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Abstract. Asking clarifying questions in order to elicit user’s informa-
tion need is becoming an integral part of modern conversational search
systems. Current work heavily relies on pre-collected clarifying questions
or large-scale query logs. However, such work is very limited given that
collecting all possible clarifying questions on a collection is not feasible.
Moreover, modeling clarification based on query reformulation limits a
model only to head queries with several occurrences in the log. In this
work, we aim to address these limitations by exploiting several document-
and ranking-based features to generate clarifying questions. We hypoth-
esise that we can acquire enough evidence about different aspects of a
query and extract useful facets to generate clarifying questions about.
Specifically, we utilise Part-Of-Speech tagging, entity linking, and topic
modelling in order to extract features from the ranked list of documents.
Among the extracted features, we then extract potentially useful facets
based on three different strategies, aimed to capture feature distinctive-
ness across documents. We then construct clarifying questions based on
the extracted facets that are given to crowdsourcing workers to be eval-
uated in terms of usefulness. Moreover, our findings show significant
improvements (+38% nDCG@3) in document retrieval performance with
facet-expanded queries.

Keywords: Conversational search · Facet extraction · Clarifying
questions generation

1 Introduction

Users often express their information need using short queries. Whether it is
via web interface, smartphone, or conversational assistants, this often leads to
incomplete search queries that are open to various interpretations by the search
system [11,23]. Search result diversification aimed to address this issue by provid-
ing a diverse set of results to cover various aspects of the same query [14]. Given
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that the interface of most conversational systems (e.g., chat bots or voice-based
systems) is considerably more limited than web interfaces, these systems can only
return a few results to the user which bear additional cost depending on their
number [1]. Therefore, more recently, the research on conversational systems
has diverged more towards mixed-initiative [27]. A mixed-initiative paradigm
of conversational search allows the system to take initiative of the conversation
and ask the user clarifying questions [5], or issue other requests. Clarifying the
user information need has been shown to be beneficial to both the user and the
conversational search system [5,19,44], providing a strong motivation for such
mixed-initiative systems.

The current research line on search clarification relies either on an available
question bank [5] or large-scale query logs [44]. In their proposed offline evalua-
tion methodology, Aliannejadi et al. [4] suggested the use of pre-collected clari-
fying questions for a limited set of topics. While providing a practical ground for
the development and offline evaluation of conversational systems, their assump-
tion of having a set of clarifying questions for all possible topics is not realis-
tic. Zamani et al. [44], on the other hand, proposed a generative model that
learns to generate template-based questions, mining a large-scale query logs
from Bing.com. Mining query reformulations of various sessions provides cru-
cial insights into how and why a query can be incomplete and what questions
can be asked for clarification. However, it is limited to the existence of such
large-scale logs. Moreover, it is not applicable to long-tail queries, or queries
with very diverse set of reformulations.

Exploiting the top-N retrieved results has proved to be an effective way
of approaching several IR tasks, such as pseudo-relevance feedback [10], query
performance prediction [15], and query facet extraction [20]. Pseudo-relevance
feedback studies lie on the basic assumption of taking the top-k retrieved results
in response to a user query as relevant. It has been shown that these documents
contain useful domain knowledge that helps the system specialise the user’s
query and improve the performance [10]. Also, a large body of research on query
performance prediction [15,46] estimates the difficulty of a given query based on
the top-k retrieved documents and their predicted relevance scores.

In this work, we aim to experiment and analyse the effectiveness of top-
k retrieved documents in generating clarifying questions. As such, we conduct
a set of extensive experiments where we systematically study the effectiveness
of various feature sets from different aspects, as well as facet extraction tech-
niques. First, we extract three sets of features, namely, part-of-speech (POS)
tags, knowledge graph entities, and Latent Dirichlet Allocation (LDA) topics.
In the next step, given that each document would have various features, we
propose three approaches to analyse the extracted features on a ranking-based
manner and extract a few keywords that describe a facet. We call this step facet
extraction. We propose the three following techniques for facet extraction: (i) a
random selection of features; (ii) selecting the features based on entropy of each
extracted features; and (iii) selection based on variance of feature’s tf-idf values
across the top-N documents.
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Regarding the evaluation, we firstly follow [33] in simulating users that pro-
vide non-cooperative answers to the systems (i.e., only yes and no with no
additional information). By doing so, we are able to test the effectiveness of
the predicted facets for each query in terms of document retrieval. Hence, we
always assume that a user would respond with a “yes” to the system’s posed
question. Therefore, following [5], we re-rank the documents by combining the
language models of the original query and the extracted facet and evaluate the
effectiveness of a facet in terms of how much it improves the document ranking
performance. Moreover, we construct template-based questions with the selected
facets and evaluate their usefulness with a crowdsourcing study. Furthermore,
we discuss how the retrieval and human-annotation results provide new insights
on extraction and selection of ranking-based features.

Among the various findings, we find that facet extraction is a critical part
of the process of generating clarifying questions. Comparing the results of the
random, entropy-based, and TF-IDF-based facet extraction methods, we observe
a difference between the three methods and a margin in performance, indicating
the significance of the facet extraction technique where we find that the entropy-
based method achieves the best performance. Based on the human annotation,
we see that LDA-based and entity-based features lead to more useful questions,
compared to POS-based questions.

Our contributions can be summarised as follows:

• We perform detailed experiments on clarifying question generation with
document-based features;

• We propose novel facet extraction techniques with the aim of generating clar-
ifying questions;

• We conduct an extensive automatic and human evaluation of our approach.

Our findings show that significant improvements in document retrieval per-
formance can be achieved when the retrieval is performed with a facet-expanded
query. This finding, combined with the usefulness assessments of the facet-based
clarifying questions, support the usefulness of using entity-based and LDA-based
facets for clarification in conversational search.

2 Related Work

Recent advances in conversational agents, and in general in automatic voice
recognition, have caused an increase interest in the area of conversational search.
However, one of the first works in conversational Information Retrieval (IR)
dates back to 1987 when Croft and Thomson [12] proposed I3R, which served as
an expert intermediary system by interacting with the user during a search
session. Another one of the early works on the topics studies information-
seeking strategies for conversational search, utilising case-based reasoning for
offering choices in a search session [6]. Conversational search has since then
became an integral part of both the field of IR and natural language processing
(NLP) [2,16,25,41,43]. More recently, Radlinski and Craswell [27] proposed a
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theoretical framework for conversational search where they stressed the impor-
tance of multi-turn interactions between the system and users, with a goal of
narrowing down their specific information needs. Moreover, Trippas et al. [40]
studied conversations of real users to identify important aspects of the interac-
tions with a goal of improving the design of a conversational search system.

Clarification in search has been shown to be beneficial and an integral part of
conversational search system. For example, Kiesel et al. [19] studied the impact
of clarifications on user satisfaction in a voice-only search and found that users
like to be asked for clarification. Clarification is even more important in a mixed-
initiative paradigm of conversational search, where the system can take initiative
and prompt the user for clarification, or other engaging content, at any point
of the conversation [5,27]. To foster research in the area of asking clarifying
questions to the users, Aliannejadi et al. [5] created an offline evaluation setting
where questions are selected from a pre-defined pool, with a goal of elucidat-
ing user’s need. An extra step was done by Zamani et al. [44], who proposed a
supervised, reinforcement learning approach for generating clarifying questions
from weak supervision data, which eliminates the shortcoming of pre-defined
pool of questions. Moreover, Sekulic et al. [34] proposed GPT-2 based model
for generating facet-driven clarifying questions. Researchers further aimed at
predicting user engagement on the clarification panes for web search based on
various features [21,35]. On the other hand, Ren et al. [31] proposed the task
of conversations with search engines, where the system needs to summarise a
response to the user, based on the retrieved passages. Other work on the clari-
fication in conversational search includes user simulation for generating answers
to the questions [36] and user intent classification [26].

In the area of NLP, studies include various aspects of the topic, such as
question ranking [28] and generation [29,42] in conversations. The proposed
models often rely on large-scale data from industrial chatbots [42], QA web-
sites [28,29,39], and query logs [30]. Unlike the aforementioned works, we study
the task of extracting facets with a goal of construing clarification questions in
an IR setting, where the user’s request is expressed with a short query and the
IR system is expected to return a ranked list of relevant documents.

Facet extraction has previously been studied in the IR field. Notably, Kong
and Allan [20] developed a graphical-based model for extracting facets from
the set of candidate terms. The candidate set is extracted from the documents
retrieved in response to a query. Furthermore, Deveaud et al. [13] proposed a
Latent Concept Modeling (LCM) method that aims to understand the concep-
tual view of user’s information need through modelling the search concepts in
a latent space. They base their method on LDA model that identifies specific
query-related topics from the top K documents retrieved, where the topics are
latent variables. In this paper we take ideas from the described LDA-based app-
roach, with a difference that our topic representation needs to become explicit,
rather than latent, in order to serve as grounding for clarifying questions. So, we
explore various ranking- and document-based features for facet extraction and
question generation. Unlike the past work, we rely on neither human-generated
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question banks nor large-scale query logs, but generate clarifying questions auto-
matically from the extracted features. Inspired by the related work on facet
extraction, we examine the effect of LDA-based features, as well as others such
as noun phrases and entities that appear on the top of the ranked list.

3 Methodology

3.1 Feature Extraction from Retrieved Documents

In order to extract useful features from the documents and explore their potential
in clarifying question generation, we first retrieve a ranked list of relevant docu-
ments for the user’s initial queries. For that purpose, we utilise Chatnoir [7] – a
freely accessible Elasticsearch-based search engine with indexes of ClueWeb and
CommonCrawl corpora. The Chatnoir service uses BM25 as its main document
retrieval model.

For each query, we extract several content-based features from the retrieved
list of documents relevant to that query. Formally, for each document Di in
the ranked list of documents D = [D1,D2, . . . , DN ], where N is the maximum
number of top ranked documents to consider, we apply a feature extraction
function g, yielding a list of features Fg = [F 1

g , F 2
g , . . . , FN

g ]:

F i
g = g(Di) (1)

Extracted features for the i-th document in the ranking are represented as feature
terms F i = [f i

1, . . . , f
i
j , . . . , f

i
Mi

], where Mi is the number of extracted features
for Di. Notice that we removed the subscript g from F to simplify the notation.

We experiment with different feature extraction methods, aiming to discover
which content-based features best capture the essence of clarification in conver-
sational search. More specifically, for each document we extract: 1) nouns; 2)
noun phrases; 3) verbs; 4) named entities; 5) entities in a knowledge base; 6)
topics with topic modelling. We utilise spaCy [17] for text processing and iden-
tifying features 1 through 4. Moreover, in each document, we link the present
entities to the ones in the English Wikipedia knowledge base (feature 5 ) with
Radboud Entity Linker (REL) [18]. The entities acquired by entity linking are
expected to yield more precise and reliable entities than spaCy’s named entity
recogniser. Finally, we employ LDA [8] for topic modelling over the document
list. We set the number of topics to extract to 5, as it showed the most promising
results in the initial experiments of the study. We base our LDA implementation
on Stanford’s Mallet topic modelling toolkit [22].

3.2 Facet Extraction

Given the extracted feature list for each retrieved document w.r.t. a single query,
the Facet Extraction module aims to select a feature that could be used to
generate a useful clarifying question. Such feature would act as a query facet, and
should ideally be informative and allow us to filter out the retrieved document
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list, advancing towards satisfying the user’s information need. We find motivation
for constructing the Facet Extraction module by analysing precision and recall
of the extracted raw facets, as described in Sect. 4.2. We experiment with three
different Facet Extraction methods. Namely: random, entropy-based, and tf-idf-
based selection. Each of the methods, given a list of extracted features from the
document list F , selects the most discriminative ones based on different criteria
to act as a facet.

More specifically, the random selection method simply randomly selects any
of the features f j

i from any of the N retrieved documents.
The entropy-based selection method computes the entropy for each of the

fj features by taking into account their term-frequency distribution over the
documents:

scoreE(fj) = H([TF (fj)1, TF (fj)2, . . . , TF (Fj)N ]) (2)

where TF (fj)i is the term frequency count of the feature j in the i-th document.
By computing the entropy of each of the potential facets fj , we capture their
level of uncertainty and amount of carried information [37]. This means that
features with a balanced probability distribution across the retrieved document
list will have a higher scoreE , making them more likely to be extracted as facets.

The score based on term frequency-inverse document frequency (tf-idf) is
computed as the standard deviation of tf-idf values for the feature fj in each of
the documents:

scoreT (fj) = σ([
TF (fj)1

log DF (fj)
,

TF (fj)2

log DF (fj)
, . . . ,

TF (fj)N

log DF (fj)
] (3)

where the DF (fj) represents the document frequency of the feature fj . The
score is based on the proved fact that features with a high tf-idf value in a doc-
ument are highly discriminative for that document. Thus, features with high
variance between tf-idf scores across documents should capture that notion of
single-document discriminativeness. Intuitively, we want the facet to be discrim-
inative and help in filtering out the result list to tailor it according to the user’s
information need, but at the same time be closely related to the topic.

Finally, the facet is selected by taking the one with the maximum score, for
each of the methods separately, that is:

facet{E,T} = argmax
fj

score{E,T}(fj) (4)

with an additional requirement that the feature fj must appear in at least 3
different documents, to avoid overestimation by the entropy-based and tf-idf-
based methods.

3.3 Facet-Based Question Generation

As reviewed in the related work section, several methods exist for question gener-
ation. However, options are scarce for facet-guided question generation. Recently,
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Sekulić et al. [34] proposed a GPT-2 based method for facet-grounded clarifying
question generation. Nevertheless, the questions generated by their model are
not always about the specific facet, as they can also focus on the query alone.
In order to have more control over the experiments, we resort to widely used
template-based question construction [44,45]. Specifically, we substitute the slot
in the question pattern “Are you interested in {facet}?”, with facet extracted
through Eq. 4.

4 Evaluation Setting

In this section, we describe the user data and explain the evaluation framework
of our three-step methodology described in the previous section. Specifically,
we describe the precision- and recall-based evaluation of extracted features by
computing overlap with the human-generated clarifications. Next, we describe
the evaluation of facet extraction methods through a document retrieval-based
experiment. Finally, we detail the crowdsourcing-based evaluation of the clari-
fying questions generated based on the extracted facets.

4.1 Evaluation Dataset

For the purpose of evaluating our approach, we focus on the ClariQ dataset
[3], an extension of the Qulac dataset [5], aimed at fostering research in the
field of asking clarifying questions in open-domain conversational search. ClariQ
was created on top of the TREC Web Track 2009-12 collection, which contains
ambiguous and faceted queries that often require clarification when addressed
in a conversational setting. Given a topic from the dataset, clarifying questions
were collected via crowdsourcing. Then, given a topic and a specific facet of the
topic, crowdsource workers were employed to gather answers to these clarifying
questions. ClariQ contains more than 200 topics, each associated with an initial
user query and the relevant document list for each of the query facets. We extract
the feature set F for each of the topics from the ranked list of documents retrieved
in response to the initial query for the specific topic.

4.2 Evaluation of Document-Level Features

In order to estimate the effectiveness of various feature extraction methods,
we propose a simple, yet informative evaluation procedure based on human-
generated clarifying questions in ClariQ. As the human-generated questions cap-
ture a large range of query facets, it is justified to evaluate our feature extrac-
tion methods by identifying the proportion of the extracted features present in
the ClariQ questions. Specifically, for each query, we compute the overlap of
the extracted features from the top N ranked documents with the generated
questions. Formally, given the feature set F , extracted by one of the meth-
ods g from D, we compute the precision and recall with the feature set FCQ
extracted from the set of clarifying questions in the ClariQ dataset, as follows:
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Precision = |F∩FCQ|
|F| and Recall = |F∩FCQ|

|FCQ| . We compute precision and recall
for a varying numbers of top documents N , aiming to gain insight into the
behaviour of different feature extraction methods depending on the number of
considered documents. The results of this study are presented in Sect. 5.1.

4.3 Evaluation of Facet Extraction

In order to evaluate the facet selection methods described in Sect. 3.2, we adopt
the document retrieval-based evaluation methodology used in the Conv-AI3
shared task [3]. Specifically, we perform document retrieval with an initial query
and evaluate its performance. Then, the initial query is expanded by concate-
nating the facet terms selected by any of the facet extraction methods, and the
retrieval is performed again. We then compare the two retrieval performances,
with an assumption that if the selected facet terms are useful for identifying
the underlying information need, the retrieval performance will improve with
the query expanded with those terms. We analyse the results in terms of tradi-
tional IR metrics, namely nDCG@k, precision@1, and MRR. The results of the
experiment are presented in Sect. 5.2.

4.4 Evaluation of the Usefulness of Facet-Based Clarifying
Questions

The impact of facets selected from various feature extraction methods on the
clarifying questions is evaluated in terms of question usefulness. Rosset et al. [32]
define a conversation-leading clarifying question as useful, arguing that questions
can be relevant to the user’s query, but not necessarily useful. For example, given
a query “Tell me about hotels in Las Vegas.”, a question such as “Would you like
to know about Las Vegas?” is arguably relevant to the query, but not useful, as
it is too broad and does not help pin-pointing the underlying user’s information
need. Notice that Usefulness can be related to adequacy [9,38] and informa-
tiveness [24], and has previously been used to evaluate clarifying questions in
conversational search [34].

We perform a crowdsourcing study to assess the usefulness of the generated
facet-based clarifying questions. We use Amazon MTurk for acquiring workers,
based in the US, with at least 95% task approval rate. The study was done in a
pair-wise setting, i.e., each worker was presented with a number of question pairs,
where each question in a pair was generated based on different facet extraction
methods. Their task was then to provide judgement on which question is more
useful, with regard to the context, i.e., the initial query.

We compare clarifying questions based on the three different feature extrac-
tion methods in a pairwise setting, namely noun phrases-based, entity-based,
and LDA-based features. These features are selected based on their performance
in previous experiments in order to reduce the number of pairwise comparisons
that grows exponentially with the number of methods to compare. Additionally,
we compare the questions based on the facet keywords taken from the ClariQ
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Fig. 1. Precision and recall measured as overlap of the proposed features and the
human-generated clarifying questions from ClariQ.

in a similar manner as described in [34], resulting in four methods to compare,
i.e., six pairwise experiments. For each pairwise comparison, we annotate 100
question pairs in terms of usefulness, with each pair judged by two crowdsource
workers. The questions in pairs have been randomly shuffled to mitigate posi-
tion bias. We define a win for model A if both annotators voted the question
generated based on model A as more useful, and loss for model A if both voted
the question generated by model B as more useful. In case the two workers voted
differently on a single question pair, it was defined as a tie.

5 Results and Discussion

In this section, we aim to answer two main research questions: RQ1: Which
features yield high-quality facets is useful for clarifying questions?; RQ2: Which
facet extraction methods result in facets useful for clarification? We discuss RQ1
throughout all of the experiments, while we focus on RQ2 in Sect. 5.2.

5.1 Precision and Recall of Extracted Feature Sets

The results in terms of precision and recall of various feature extraction methods,
computed as described in Sect. 4.2, are presented in Fig. 1. The performance is
shown as a function of the top N documents the top k features were extracted
from. Several observations can be made from the experiment. First, as expected,
the precision of all of the methods is declining as the number of documents con-
sidered increases. Higher number of documents naturally leads to higher number
of extracted features, which harms the precision, but improves the recall, as seen
in the figure. Also, it suggests that the higher ranked documents lead to more
precise set of features, while considering a deeper ranked list provides a broader
set of features that improve the recall.

Moreover, we see that the LDA-based extraction method yields higher-
precision features overall. However, the high precision comes from the limited
number of predicted topics, leading to a low recall. As the number of topics
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Table 1. Impact on retrieval performance of feature extraction and facet extraction
methods. Symbol † indicate statistically significant difference compared to the query-
only baseline. The significance is reported under two-sided t-test with p < 0.05.

Features FacetExtraction P@1 MRR nDCG@3 nDCG@10

– Query-only 0.1800 0.2761 0.1199 0.1412

Nouns Random 0.2200 0.2957 0.1359 0.1449

Tf-idf 0.2000 0.2965 0.1500† 0.1341

Entropy 0.1867 0.2852 0.1416 0.1260

Verbs Random 0.2333 0.2987 0.1360 0.1552

Tf-idf 0.2000 0.2907 0.1384 0.1302

Entropy 0.2067 0.2920 0.1401† 0.1394

NEs Random 0.1800 0.2751 0.1362 0.1460

Tf-idf 0.2067 0.3073 0.1493† 0.1429

Entropy 0.2467† 0.3370† 0.1519† 0.1591†
NounPhrases Random 0.2000 0.2853 0.1153 0.1343

Tf-idf 0.1733 0.2750 0.1326 0.1194

Entropy 0.1933 0.2816 0.1419 0.1244

Entities Random 0.1733 0.2486 0.1135 0.1266

Tf-idf 0.2302† 0.3205† 0.1609† 0.1539

Entropy 0.2276† 0.3247† 0.1574† 0.1652†
LDA Random 0.1667 0.2666 0.1239 0.1342

Tf-idf 0.2500† 0.3131† 0.1441 0.1543

Entropy 0.1667 0.2889 0.1657† 0.1420

and extracted topic representation terms do not change with the increase of the
number of considered documents N , the recall stagnates.

The trend of generally high recall and low precision across all of the methods
suggests the need of an additional filtering step in order to identify potentially
interesting facets from the large set of features. Obviously, depending on the
facet extraction method, one can study the trade-off between recall and precision
depending on the depth of the ranked list that a model can take as input, and
its effect on the generated questions. These results strongly motivate the facet
extraction module described in Sect. 3.2 in our pipeline.

5.2 Facet-Based Retrieval

The results of facet extraction evaluation through document retrieval are pre-
sented in Table 1. The first row indicates the performance of the initial query
only, while other rows show the performance of queries expanded by various facet
extraction methods over the acquired document features. The results reported
are for the overall best performing facet for each of the topics. This is to mimic
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Table 2. Pairwise comparisons between clarifying questions generated based on dif-
ferent feature extraction methods, as judged by crowdsourcing workers. The * sign
indicates statistical significance with p < 0.05, calculated by a trinomial test.

Method A Method B A Wins B Wins Ties p-value

Entities HumanF 22% 24% 44% 0.1334

Entities* NounPhrase 47% 27% 26% 0.0487

LDA* Entities 46% 14% 40% 0.0076

LDA* HumanF 42% 21% 37% 0.0181

LDA NounPhrase 30% 26% 44% 0.7844

NounPhrase HumanF* 17% 52% 31% < 10−4

the scenario where the extracted facet would indeed be in line with user’s infor-
mation need. We observe several patterns in the results. First, queries expanded
by facets from facet extraction-based methods outperform query-only baseline
in most cases. The exception is random-based facet extraction method, which,
perhaps unsurprisingly, often even hurts the performance. Second, entity-based
features, where entities are linked to a Wikipedia knowledge graph (Entities in
the table), and LDA-based features seem to perform the best in terms of several
metrics presented. We hypothesis this is due to the fact that these type of fea-
tures are much less noisy, as they are precision oriented, as opposed to recall ori-
ented like noun- or noun phrases-based features. The tf-idf - and entropy-based
facet extraction methods consistently outperform the baselines for those fea-
tures. However, we note that, after Bonferroni multiple-comparison corrections,
neither the tf-idf - nor the entropy-based method yielded statistically significant
improvements over the random-based method (with p of 0.05). Similarly, no sta-
tistically significant difference was found between features extracted from the
text after the Bonferroni correction. This calls for a future study on the addi-
tional filtering step aimed towards informed selection of the appropriate facet
terms.

Regarding the RQ1, analysis of the results in this experiment suggests that
entity- and topic modelling-based features yield the most useful facets. To
address the RQ2, both tf-idf - and entropy-based facet extraction methods show
promising results, but they are heavily dependent on the type of input features.
Future work will aim to provide a more detailed analysis of relationships between
feature and facet extraction methods, as the presented results do not show which
method is consistently the best.

5.3 Usefulness of Clarifying Questions

Table 2 shows the results of the crowdsourcing study aimed at estimating the
usefulness of clarifying questions generated based on selected facets. All of the
facets were extracted with an entropy-based method described in Sect. 3.2, but
based on different features. The statistical significance is indicated by * sym-
bol and calculated by the trinomial test – a modification of the sign test that
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takes into account the ties as well. Paired with manual qualitative analysis of
the clarifying questions, we make several observations from the acquired results.
First, LDA-based facets outperform all of the other methods, even the facets
based on human-curated clarifying questions HumanF. This phenomenon could
be explained by the fact that LDA-based features have the lowest level of noise
among all of the considered methods. Second, noun phrase-based features are
outperformed by all other facet extraction methods. We attribute the poor per-
formance to the high level of noise in the phrases extracted by spaCy from the
retrieved documents. Finally, a large number of ties across all of the comparisons
suggests both the challenge of the annotation task and the similarity between the
extracted facets. However, it is clear that useful questions should be grounded
in low-noise-level facets.

Similarly to the previous experiment, we observe the dominance of entity-
and topic modelling-based features over POS-based features. Future work on the
topic involves the analysis of larger variety of facet-guided clarifying question
generation models.

6 Conclusions

In this paper, we have explored various methods for feature extraction from the
list of documents relevant to user’s query and their impact on clarifying question
generation. We have identified the importance of the facet extraction module,
as the experiments have showed low precision of the initial feature extraction
methods and can not be considered useful facets without an appropriate filter-
ing. Thus, we experimented with two facet selection methods, namely, entropy-
and tf-idf-based. The results suggest improvements in document retrieval per-
formance, when the retrieval is performed with the facet-expanded query. In
particular, our proposed method achieved 38% relative improvement in terms of
nDCG@3. This finding, combined with the usefulness assessments of the facet-
based clarifying questions, indicate the adequacy of entity- and LDA-based facets
for clarification in conversational search. However, relatively modest improve-
ments call for an additional facet filtering step, in order to help and pin-point
the exact terms representing user’s underlying information need.

Overall, we observe that document-based feature extraction, together with
ranking-based facet extraction can lead to significant improvements when used
for generating clarifying questions. Compared to the existing work on ques-
tion selection [4] and generation based on query logs [44], we conclude that
the proposed method for facet extraction and question generation is effective.
Our results can be used to inform question generation models with a final goal
of an improved end-to-end document retrieval.

Future work encapsulates modelling facet extraction over multi-turn conver-
sations and generating multi-faceted clarifying questions. Also, we plan to eval-
uate our proposed question generation in a conversational setup with a human-
in-the-loop setup and compare with the existing techniques such as question
selection.
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35. Sekulić, I., Aliannejadi, M., Crestani, F.: User engagement prediction for clari-
fication in search. In: Proceedings of the European Conference on Information
Retrieval (ECIR) (2021)
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Abstract. Automatic identification of consumer complaints about
products or services purchased can be crucial for businesses and online
merchants since they can utilize this knowledge to address the needs of
their clients, including handling and resolving complaints. Previous stud-
ies on complaint detection do not consider sarcasm, which is often used
to express a breach of expectation without directly stating the com-
plaint. Furthermore, since every speech act is influenced by emotions,
the customer’s emotional state has a considerable impact on the com-
plaint expression. In this paper, we hypothesize that sarcasm, along with
two closely related tasks of sentiment and emotion, could aid the pro-
cess of complaint identification and thereby propose a deep multi-task
framework to solve the four problems jointly. We manually annotate the
recently released Complaints dataset with the emotion, sentiment, and
sarcasm classes. We present an attention-based adversarial multi-task
deep neural network model for complaint detection. Experimental results
on the extended version of the Complaints dataset show the effectiveness
of our proposed approach for complaint detection over the existing state-
of-the-art system. The evaluation also demonstrates that the proposed
multi-task system improves performance for the primary task, i.e., com-
plaint detection, with the assistance of the three auxiliary tasks, emotion
recognition, sentiment analysis, and sarcasm detection.

Keywords: Complaint Detection · Emotion Recognition · Sentiment
Analysis · Sarcasm Detection · Adversarial Multi-task learning · Deep
learning

1 Introduction

Complaining is a speech act that generally conveys unpleasant emotions that are
caused by a disparity between reality and expectations regarding an entity or event
[20]. Complaints are fundamental ways of expressing displeasure in human com-
munication. The expression of complaints varies from person to person depend-
ing on the complainers’ temperament and specific situations [35]. Presently, social
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media platforms and online commercial agencies allow customers to voice their
thoughts and observations about a product, service, or event. As a result, commer-
cial and retail organizations perceive product reviews as a valuable source of infor-
mation that they can utilize to develop their advertising campaigns and address
any product-related issues. Additionally, this benefits the customers by providing
suggestions on the quality of items or services they plan to purchase. Identifying
complaint texts in natural language is crucial for developers of recommendation
systems, chatbots [16]; enhancing customer service by acknowledging the level of
dissatisfaction [34]; analyzing and solving product-related issues [6].

Sarcasm is frequently employed to convey barely disguised dissatisfaction
in a satirical manner. The following example demonstrates this: “I just loved
how this product didn’t work at all!”. The sentence starts on a positive note
regarding a product. However, careful observation of the entire context as well as
sentiment and emotion of the customer help in comprehending that the customer
is dissatisfied with the product and has a negative opinion while expressing the
complaint. Here’s where emotion and sentiment come into question.

An individual’s emotional state and sentiment have a considerable impact
on the intended content [17]. In general, sentiment and emotion are regarded
as distinct tasks [8,19] although sentiment and emotion are intrinsically linked.
Specifically, emotion recognition is a significantly more nuanced and fine-grained
analysis than sentiment analysis [15]. Together with emotion and sentiment, sar-
casm offers a greater insight into the customer’s frame of mind. Emotion, sen-
timent, and sarcasm are all associated tasks, and each contributes to a clearer
understanding of others. We take advantage of these correlations and use senti-
ment, emotion, and sarcasm tasks to identify complaints in a multi-task setting.
The key contributions of our proposed work are outlined as follows:

– We propose an intra-modal attention-based adversarial multi-task deep neu-
ral network model to optimize complaint, emotion, sentiment, and sarcasm
tasks jointly. Complaint Identification (CI) is treated as the primary task in
our multi-task framework. In contrast, Emotion Recognition (ER), Sentiment
Analysis (SA), and Sarcasm Detection (SD) are considered supplementary
(i.e., auxiliary) tasks. The proposed multi-task framework for CI shows its
efficacy over the existing state-of-the-art system and surpasses the single-task
CI considerably.

– We manually annotate the recently released Complaints dataset [24] with emo-
tion, sentiment, and sarcasm classes.

– We evaluate the proposed model on the extended version of Complaints data.
Experimental results indicate that the multi-tasking complaint identification
outperforms single task variants and other baselines.

2 Related Work

In linguistic studies, complaints were classified into different categories based on
intensity and directness. The authors in [33] introduced four primary intensity
levels: no specific reproach, disapproval, allegation, and blame. Quite recently,
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[13] categorized complaints into three levels of directness: very direct, moder-
ately direct, and indirect. Direct or moderately direct complaints include clear
violations of expectation. In contrast, indirect complaints either do not explicitly
mention or could infer a violation of expectation.

Furthermore, detecting complaints on social media necessitates detecting
complaints from fragmented and noisy text snippets with character limits, usage
of random acronyms, and colloquialism. In this context, text-based complaints
have been previously analyzed based on semi-supervised strategies [31], feature
engineering-based machine learning methods [24], feedback likelihood [38], and
deep learning models [12], [29]. The authors in [24] developed a logistic regression
model with hand-crafted features for identifying complaints. In [29], the authors
explored the influence of emotion and sentiment in identifying complaints on a
small number of test cases without considering the use of sarcasm when express-
ing breach of expectation.

In the area of emotion and sentiment recognition in human conversations,
attention-based multi-task models have proved to be successful [1,26]. The
authors in [2] proposed a multi-task ensemble framework for emotion and sen-
timent analysis. In another work, [23] employed sentiment and emotion fea-
tures obtained from pre-trained sentiment, emotion, and personality models on
a Twitter-based dataset to predict sarcasm using Convolutional Neural Net-
work. This research has motivated us to investigate the significance of emotion,
sentiment, and sarcasm tasks in identifying complaints in tweets.

We first extend the Complaints dataset [24] by manually annotating each
tweet with emotion, sentiment, and sarcasm labels in our current study. Sub-
sequently, we propose an adversarial multi-task strategy integrated with an
intra-modal attention mechanism (Aintra) to utilize emotion, sentiment, and
sarcasm for predicting complaints. Furthermore, to our knowledge, this is the
first attempt to solve the complaint detection problem in an adversarial multi-
task framework. Through a detailed experimental analysis, we illustrate that
combining knowledge of emotion, sentiment, and sarcasm using an appropriate
multi-task framework can help boost complaint detection.

3 Dataset

For our experiments, we used the Complaints dataset that consists of 2214 non-
complaint and 1235 complaint tweets in English. We chose this dataset since it is
publicly available and contains annotated complaints/non-complaints accumu-
lated from Twitter. We manually re-annotated this dataset to introduce emotion,
sentiment, and sarcasm labels in addition to complaint labels.

3.1 Data Annotation

For the emotion annotation of the Complaints dataset, we consider Ekman’s [9]
six basic emotions (anger, disgust, fear, happiness, sadness, and surprise). Other
than these six basic emotions, we add a category out-of-scope (OS) to represent
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such tweets that do not fall under the scope of above mentioned six emotion
classes. For the sentiment annotation, we consider three sentiment classes (neg-
ative, neutral, positive). The distribution of tweets across the emotion classes is
as follows: 844 tweets belong to ‘anger’, 7 tweets belong to ‘disgust’, 8 tweets
belong to ‘fear’, 473 tweets belong to ‘joy’, 1479 tweets belong to ‘out-of-scope’,
626 tweets belong to ‘sadness’, and 12 tweets belong to ‘surprise’. Furthermore,
the distribution of tweets across the sentiment classes is 1041 tweets belong to
‘negative’, 1198 tweets belong to ‘neutral’, and 1210 tweets belong to ‘positive’.
For the annotation of sarcasm task, the tweets were labeled with a specific cate-
gory, i.e., sarcastic or non-sarcastic. However, on evaluation of the annotation, we
found that there were 98% non-sarcastic and 2% sarcastic tweets in the Com-
plaints dataset. Due to the highly skewed distribution of these two classes in
the dataset, we utilized a more balanced publicly available Twitter-based sar-
casm dataset, SPIRS Sarcasm Dataset [28] for the training of the sarcasm task.
The SPIRS Sarcasm Dataset1 includes 15,000 non-sarcastic and 15,000 sarcastic
tweets. It is a collection of both intended sarcasm and perceived sarcasm.

Table 1. Sample sentences with their complaint, emotion, sentiment and sarcasm labels
from the extended version of Complaints dataset. Non-Com : Non-Complaint, Com :
Complaint

Sentence Classes Emotion Sentiment Sarcasm

BTW @crantraf @blackanddecker did

me right and replaced my two failed

batteries under warranty. I’m happy:) Non-Com Joy Positive Non-sarcastic

Thanks @blackanddecker!

Thanks to @NVIDIAQuadro’s

incompetence, I now can’t work till Com Sadness Negative Sarcastic

October4th, when the ATI card arrives

@TommyHilfiger Dramatic shopping

exp. Ordered 6 jeans same size (30/32) Com Sadness Neutral Non-sarcastic

2 fits/ 2 too large/2 too slim

:same brand & different sizing

3.2 Annotation Specifications

We assigned three graduate students fluent in English to annotate the reviews
with appropriate emotion, sentiment, and sarcasm tags (Table 1). Before com-
mencing the annotation process, the requirements for annotation, as well as some
examples, were provided to the annotators. The annotators were asked to ini-
tially annotate the tweets with the sarcastic/non-sarcastic tags without knowing
the sentiment and emotion labels. The majority voting technique selected the
final emotion, sentiment, and sarcasm labels. Reviews with no common emotion
1 https://github.com/bshmueli/SPIRS.

https://github.com/bshmueli/SPIRS
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or sentiment label (as determined by the three annotators) were excluded from
the final annotated dataset. On the annotated dataset2, we computed the Cohen-
Kappa [5] scores to assess inter-rater agreement among the three annotators. We
achieve agreement scores of 0.68, 0.82, and 0.71, respectively, indicating that the
annotations are of good quality on the emotion, sentiment, and sarcasm tasks.

4 Proposed Methodology

In this section, we outline our problem and discuss the details of the proposed
framework. The major components of the architecture are discussed in the fol-
lowing sub-sections. Figure 1 depicts the overall framework.

4.1 Problem Definition

We intend to learn four closely related tasks at the same time, named as, com-
plaint identification (main task), emotion recognition, sentiment analysis, sar-
casm detection (auxiliary tasks). Let (xi, ei, si,mi, ci)

X
i=1 be a set of X instances

where ei, si, mi and ci represent the matching emotion, sentiment, sarcasm
and complaint labels for xth

i tweet, respectively. Here, xi ε X, ei ε E (emo-
tion classes), si ε S (sentiment classes), mi ε M (sarcasm classes) and ci ε C
(complaint classes).

Our multi-task learning framework’s objective is to maximize the function f
(Eq. 1) that draws a new instance xi to its fitting emotion label ei, sentiment
label si, sarcasm label mi and complaint label ci simultaneously.

argmax(ΠR
k=0P (mi, si, ei, ci|xi; θ)), (1)

where xi is the input sentence whose complaint label (ci), emotion label (ei),
sentiment label (si) and sarcasm label (mi) are to be predicted. θ denotes the
model’s parameters we aim to optimize.

4.2 Multi-task Model for Emotion, Sentiment, and Sarcasm Aided
Complaint Detection (MTLAll)

The proposed framework consists of four principal components: (i) Feature
extraction with the help of Bidirectional Encoder Representations from Trans-
formers (BERT) [25], (ii) Encoding model, which essentially takes the textual
features (extracted above) as input and returns the encoded representations
as output, (iii) Intra-modal attention relating the distinct positions of a single
instance to compute the final representation of the given instance. (iv) Adver-
sarial Loss ensures that shared layers and task-specific feature space remain
mutually exclusive. (v) Output Layer consists of output medium for the four
tasks to obtain a generalized representation throughout all the tasks.
2 Dataset available at https://www.iitp.ac.in/∼ai-nlp-ml/resources.html#Complaints-

ESS.

https://www.iitp.ac.in/~ai-nlp-ml/resources.html#Complaints-ESS
https://www.iitp.ac.in/~ai-nlp-ml/resources.html#Complaints-ESS
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Fig. 1. Adversarial multi-task model for complaint identification. smax : softmax acti-
vation function, GRL: gradient reversal layer, Aintra: intra-modal attention

4.3 Feature Extraction

We utilized the BERT-BASE pre-trained model for the word embeddings3

(Uncased: 12-layer, 768-hidden, 12-heads, 110 M parameters). BERT is a multi-
layer bidirectional Transformer encoder [7] based on the original work shown
in [36].

4.4 Encoding Model

The obtained BERT encoder representation is then passed through four differ-
ent Bi-directional Gated Recurrent Units (BiGRUs) [3] layers (256 neurons) to
sequentially encapsulate these representations into hidden states and learn differ-
ent contextual dependency-based features associated with various tasks that are
CI, ER, SA, and SD. These four BiGRUs learn individual characteristics for each
task that are unaffected by features learned from other tasks. The BiGRU layer
retains contextual information from both forward (

−−−→
GRU) and backward (

←−−−
GRU)

time steps and produces a hidden representation (hi) of each word in the sen-
tence. The overall hidden state matrix is represented as: H = [h1, h2, h3,..., hn],
where, H ∈ R

nX2d, n is the dimension of text length, and d is the number of hid-
den units in each BiGRU. Hence, the final four hidden state matrices correspond
to four Bi-GRUs, namely H1, H2, H3, and H4, respectively. These representa-
tions are then forwarded to four fully-connected layers, each of di dimensions to
learn the attention of different tasks.
3 We also additionally experimented with Sentence Encoding with Multilingual Uni-

versal Sentence Encoder (SBERT) [25], but the results were not satisfactory.
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4.5 Intra-model Attention

This attention mechanism is motivated by the work in [27]. We apply intra-
modal attention (Aintra) to each of the separate tasks to learn the dependencies
between the present words and the previous portion of the tweet in respect to
the specific task. Here, we obtain four Aintra scores (Ai ∈ R

nXd) for each of the
four tasks in the model. We perform the mean operation over the outputs from
the task-specific Aintra layers (T1, T2, T3, and T4) which is then passed to a
shared dense layer (100 units).

4.6 Adversarial Loss

The adversarial loss function’s objective is to tweak the weights of the shared
layer so that it learns a representation that manipulates the task discriminator.
The adversarial loss strives to mutually exclude the feature space of shared
and task-specific layers. We use a similar methodology to [18], in which a task
discriminator (Z) maps the shared feature to its primary task. As a result, for
an accurate prediction, as the loss at the shared layer decreases, there is an
increment in the adversarial loss and vice versa. Conversely, the shared layer can
be adjusted to operate in an adversarial manner, making it impossible for the
discriminator to recognize one of the four tasks. The adversarial loss is calculated

as: Ladv = min(max(
U∑

u=1

V∑

v=1
(iuv ∗ log[I(E(xu

v ))])). Where U denotes the type of

tasks, iuv signifies the actual label amongst U, and xu
v is the vth example for task

u. The gradient reversal layer (GRL) [10] handles the min-max optimization
problem.

4.7 Output Layer

As depicted in Fig. 1, the final predictions for complaint, emotion, sentiment and
sarcasm tasks are obtained by linearly concatenating the task-specific outputs
(Ct, Et, St and Mt), the shared outputs (Csh, Esh, Ssh and Msh) and the GRL
layer outputs (Cadv, Eadv, Sadv and Madv), respectively.

Calculation of Loss: For the complaint (C), emotion (E), sentiment (S) and
sarcasm (M) tasks, we compute the categorical-cross entropy (LCE) losses. The
integrated loss function (L) of our proposed MTLAll system is realized as follows:
L = p ∗ LC

CE + q ∗ LE
CE + r ∗ LS

CE + t ∗ LM
CE . We aggregate the weighted sum

of the losses from the four tasks to compute the overall loss. Here, p, q, r, and
t constants ranging from 0 to 1 determine the loss weights representing the
per-task loss-share to the overall loss, respectively.

5 Experiments, Results, and Analysis

In this section, experimental results have been described.
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5.1 Baselines

For a comprehensive evaluation of the proposed MTLAll model, we compare its
performance with the following baselines:

– Single-task systems: We develop a single-task deep learning model for CI
based on BERT (STLCI). The output of the BiGRU layer goes through the
dense layer, followed by the attention and the outer layer.

– Multi-task systems: Based on recent works in CI, we develop Baseline1 [29]
and Baseline2 [30] models for multi-task baselines. The Baseline1 is a shared
private multi-task model for complaint, emotion, and sentiment classification.
The authors utilized three different sources of input for training the model.
Baseline2 [30] is commonsense knowledge augmented model for simultaneous
learning of complaint and sentiment. To generate the sentiment labels, they
make use of Valence Aware Dictionary and sEntiment Reasoner (VADER)4

sentiment analysis tool. We also develop MTLglv model where the textual
embeddings are generated from the pre-trained GloVe5 [22]. The embedding
layer’s output is forwarded to the word sequence encoder, which analyzes it to
extract contextual knowledge from the sentence. The remaining architecture
remains the same.

– Ablation models: To understand the importance of emotion, sentiment and
sarcasm tasks individually and in different combinations on the complaint
task, we build dual-task (MTLCI+ER, MTLCI+SA, MTLCI+SD) and tri-task
variants (MTLCI+ER+SA, MTLCI+ER+SD, MTLCI+SA+SD) of our proposed
framework (MTLAll).

5.2 Experimental Setup

To implement our proposed framework and all the baselines we use the Python-
based libraries, namely TensorFlow6, Scikit-learn7 [21]. We report the accuracy
and macro F1-score for the complaint identification task using the metrics mod-
ule from sklearn. 85% of the Complaints dataset was used as training and vali-
dation (10%) data, and the rest 15% was used as testing data on all the exper-
imental models. To ensure a fair comparison of the models, a seed value of 42
was chosen, which allowed the models to encounter the same training and testing
data. After each of the BiGRU layers (256 units), we apply a dropout [32] of 20%
each to reduce the chance of overfitting. The output of the task-specific Aintra

layers are fed to the softmax layers (smax) for shared outputs. In the dense layers
(100 units), we employ ReLU activation [11]. Softmax activation with 2, 7, 3,
and 2 neurons are used for the output layers for complaint, emotion, sentiment,
and sarcasm classification tasks, respectively. Categorical cross-entropy is used
as the loss function to train across all the channels. The epoch size is set to 30.

4 https://github.com/cjhutto/vaderSentiment.
5 GloVe: http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip.
6 https://www.tensorflow.org/.
7 https://scikit-learn.org/stable/.

https://github.com/cjhutto/vaderSentiment
http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
https://www.tensorflow.org/
https://scikit-learn.org/stable/
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Adam [14] with a learning rate of 0.001 is used as the optimizer. The above val-
ues are chosen after thorough hyperparameter tuning using the RandomSearch
tuner of the Keras tuner API. The EarlyStopping module was used from Keras8

[4], with the patience set equal to 10, to restore weights from the epoch that
gave the best accuracy on the Complaints validation set. Furthermore, for the
ablation experiment, the loss weights9 for the complaints, emotion, sentiment,
and sarcasm tasks are set as 1, 0.5, 0.5, and 0.3, respectively.

5.3 Results and Discussion

Please note that the current work aims to improve the performance of CI with
the help of the other three supplementary tasks (ER, SA and SD). Therefore, we
state the results and analysis with CI strictly serving as the pivotal task in all
the task combinations.

Table 2 depicts the classification results from the various experiments. As can
be observed, incorporating all the related tasks such as sentiment, emotion, and
sarcasm significantly enhance the performance over the single-task, dual-task,
and tri-task variants. This enhancement validates the proposed architecture’s
efficient usage of interaction among the four tasks. This also emphasizes the
significance of including the intra-modal attention mechanism in the proposed
model. As seen in Table 2, the proposed approach, which includes all four tasks
(CI, ER, SA, and SD), outperforms the single-task complaint variant (STLCI).
MTLCI+ER outperforms MTLCI+SA and MTLCI+SD in the dual-task variants.
This can be driven by the fact that sentiment alone is often insufficient to con-
vey complete information about the user’s state of mind. For example, various
emotions such as anger, fear, sadness, etc., can lead to negative sentiments about
a product. As a result, the distinctive or subtle differences in the state of mind
cannot be properly determined and expressed by sentiment alone. In the tri-task
variants, MTLCI+ER+SA performs better than the other two tri-task variants.
One of the possible reasons for the lower performance of MTLCI+ER+SD and
MTLCI+SA+SD could be sarcasm detection being a highly nuanced task that
relies heavily on context and does not contribute much in the multi-task archi-
tecture as compared to emotion and sentiment, which are more correlated tasks.

Significance of Adversarial Multi-task Architecture. In terms of all the
multi-task baselines (Baseline1, Baseline2), these approaches do not take into
account the adversarial loss. Whereas the proposed model, MTLAll, incorpo-
rates the adversarial loss, which enhances the performance of the multi-task
model. Moreover, we also report the results by replacing the BERT embedding
model with Glove embeddings [22] (MTLglv). The results suggest that each of

8 https://keras.io/.
9 To fine-tune the loss weights for all of the tasks, we utilize the Grid Search method

from the Scikit-learn module.

https://keras.io/
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Table 2. Results of all multi-task baselines, ablation studies conducted and the pro-
posed MTLAll model in terms of macro average F1-score and Accuracy value; ±: stan-
dard deviation. The maximum scores attained are represented by bold-faced values.
The * signifies that these findings are statistically significant.

Model Accuracy (%) F1-score (%)

SOTA [12] 88 ± .03 87.1 ± .03

Baseline1 [29] 86.78 ± 1.02 85.44 ± 1.05

Baseline2 [30] 82.45 ± 1.03 81.0 ± 1.02

Single-task baseline

STLCI 78 80.5

Dual-task baselines

MTLCI+ER 83.89 ± 1.07 81.64 ± 1.33

MTLCI+SA 83.58 ± 1.12 81.21 ± 1.06

MTLCI+SD 83.20 ± 1.04 80.98 ± 1.11

Tri-task baselines

MTLCI+ER+SA 84.56 ± 1.17 82.54 ± 1.05

MTLCI+ER+SD 82.62 ± 1.23 81.79 ± 1.18

MTLCI+SA+SD 83.39 ± 1.02 80.89 ± 1.06

MTLglv 81.21 ± 1.32 80.55. ± 1.21

Proposed approach

MTLAll 88.89* ± .06 87.5* ± .23

these factors considerably boosted the performance of the proposed MTLAll

framework. All of the results presented here are statistically significant10 [37].

Comparison with State-of-the-art Technique (SOTA): We also compare
our proposed approach with the existing state-of-the-art technique [12] for single-
task CI. SOTA utilizes an array of neural language models boosted by the use
of transformer networks. We state the results in Table 2. The proposed model
outperforms the SOTA technique.

Figure 2 depicts the heatmap visualization of the learned weights of individual
words for a sample case for the STLCI and the MTLALL to emphasise the
relevance of including emotion, sentiment, and sarcasm as auxiliary tasks. The
attention is focused on appropriate disapproval indicating phrases in the multi-
task approach; however, in the single-task approach, attention is laid on positive
terms such as thanks, which has been used sarcastically to express a complaint.

5.4 Error Analysis

Other than the skewed distribution (complaint: 35.8%, non-complaint: 64.2%)
of the dataset, the following are some possible explanations for the errors in the
complaint prediction:
10 We performed Student’s t-test for the test of significance. The results are found to

be statistically significant when testing the null hypothesis (p-value < 0.04).



438 A. Singh et al.

Fig. 2. The visualization of the learned weights for a tweet from Attintra layer- x1:
“thanks @VW for your fantastic car seizing up while driving causing me to spin out
and almost die” for STLCI (baseline), and MTLAll. The actual label of the tweet is
complaint.

Subtle Complaints: Complaints that are conveyed in an implied or subtle man-
ner are wrongly predicted as non-complaint. One of the reasons behind this could
be the absence of direct accusation or blame by the complainant. For example,
‘Expired beer that we bought today? Whuuuut? @budlight’. The predicted class is
non-complaint whereas, the actual class for the instance is complaint. The tweet
does not directly accuse a specific person or company except the negative term
(expired) for the beer quality, so the model mispredicts it.

Composite Sentences: Many of the tweets in the dataset consist of multi-
ple short sentences with mixed emotions (more than one emotion) for a single
tweet. In such scenarios, learning specific complaint features becomes challeng-
ing. For example, ‘@BlackandDecker I need a phone number or an email address
to receive assistance about a product. Thank you! Sent 2 emails but I did not
receive any notifications back.’; predicted class: non-complaint. The correct class
for the preceding example is complaint, but because of the statement’s composite
nature and contrasting context, it is misclassified as a non-complaint.

Interrogative Complaints: It was also observed that the model misclassi-
fies instances which convey weak dissatisfaction with questioning tone as non-
complaints. For example, ‘@CBSNews @Dodge @ChryslerCares My driver side
air bag has been recalled and replaced, but what about the passenger side?’. The
appropriate class for the preceding example is complaint; because there is no
explicit criticism and the statement is interrogative, the model labels it as non-
complaint. The system requires contextual understanding and learning the key
features in a sentence to accurately classify such cases.

Table 3 shows some sample predictions from the proposed model and the sin-
gle task (complaint variant) model. For the 1st and 2nd instances in Table 3 the
proposed MTLAll system correctly predicts the instances as complaints, even
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Table 3. Sample sentences with their predicted labels for the best performing multi-
task (MTLAll) model and its single task CI counterpart (STLCI). Non-Com: Non-
Complaint, Com: Complaint

Sentence MTLAll STLCI Actual label

Very nice @BestBuy was placed on a

48 minute hold just to get hung Com Non-Com Com

up on. Great customer service

Wow. Nice work @UPS. Days late

AND smashed. Awesome @UPSHelp Com Non-Com Com

@divinecomely @derickmdillard Don’t come

around here with your facts and Non-Com Com Non-Com

common sense. Derick doesn’t like that

Who needs a gym when you can work

retail during the holidays Non-Com Com Non-Com

though instances express complaint in a sarcastic manner that conveys disap-
proval humorously. Whereas, in the case of 3rd and 4th instances, even though
the cases are satirical in nature, the MTLAll model recognizes that there is no
breach of expectation. These examples demonstrate the significance of sentiment,
emotion, and sarcasm awareness in identifying complaints.

6 Conclusion and Future Work

This work proposes an attention-based, adversarial multi-task framework for
simultaneous optimization of complaint classification, emotion recognition, senti-
ment analysis, and sarcasm detection. We extend an existing Complaints dataset
by manually annotating emotion, sentiment, and sarcasm labels because no rel-
evant labeled data was available for this problem. Empirical evaluation results
on the extended version of the Complaints dataset illustrate the effectiveness of
our proposed approach for complaint detection over the existing state-of-the-art
system. The evaluation also revealed that the proposed adversarial multi-tasking
framework yields better performance for the primary task, complaint detection,
with the support of emotion recognition, sentiment analysis, and sarcasm detec-
tion, the three secondary tasks in our setting.

In the future, we plan to analyze other key contributing factors in complaint
identification, such as aspect-based analysis and text politeness markers.

Acknowledgement. This publication is an outcome of the R&D work undertaken
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of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, 28 July – 2 August 2019, vol. 1: Long Papers, pp. 5008–5019.
Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/
p19-1495

25. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR abs/1908.10084 (2019), http://arxiv.org/abs/1908.10084

26. Saha, T., Patra, A., Saha, S., Bhattacharyya, P.: Towards emotion-aided multi-
modal dialogue act classification. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 4361–4372 (2020)

27. Saha, T., Upadhyaya, A., Saha, S., Bhattacharyya, P.: Towards sentiment and
emotion aided multi-modal speech act classification in Twitter. In: Proceedings
of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 5727–5737 (2021)

28. Shmueli, B., Ku, L.W., Ray, S.: Reactive supervision: a new method for collect-
ing sarcasm data. In: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 2553–2559. Association for Com-
putational Linguistics, November 2020. https://doi.org/10.18653/v1/2020.emnlp-
main.201, https://www.aclweb.org/anthology/2020.emnlp-main.201

29. Singh, A., Saha, S.: Are you really complaining? A multi-task framework for com-
plaint identification, emotion, and sentiment classification. In: Lladós, J., Lopresti,
D., Uchida, S. (eds.) ICDAR 2021, Part II. LNCS, vol. 12822, pp. 715–731.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86331-9 46

30. Singh, A., Saha, S., Hasanuzzaman, M., Dey, K.: Multitask learning for complaint
identification and sentiment analysis. Cogn. Comput. 14(1), 1–16 (2021)

http://arxiv.org/abs/1704.05742
http://arxiv.org/abs/1610.08815
https://doi.org/10.18653/v1/p19-1495
https://doi.org/10.18653/v1/p19-1495
http://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2020.emnlp-main.201
https://doi.org/10.18653/v1/2020.emnlp-main.201
https://www.aclweb.org/anthology/2020.emnlp-main.201
https://doi.org/10.1007/978-3-030-86331-9_46


442 A. Singh et al.

31. Singh, A., Saha, S., Hasanuzzaman, M., Jangra, A.: Identifying complaints based
on semi-supervised mincuts. Expert Syst. Appl. 186, 115668 (2021)

32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

33. Trosborg, A.: Interlanguage Pragmatics: Requests, Complaints, and Apologies, vol.
7. Walter de Gruyter, Berlin (2011)

34. Van Noort, G., Willemsen, L.M.: Online damage control: The effects of proactive
versus reactive Webcare interventions in consumer-generated and brand-generated
platforms. J. Interact. Mark. 26(3), 131–140 (2012)

35. Vásquez, C.: Complaints online: The case of TripAdvisor. J. Pragmat. 43(6), 1707–
1717 (2011)

36. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762
(2017)

37. Welch, B.L.: The generalization of ‘student’s’problem when several different pop-
ulation varlances are involved. Biometrika 34(1–2), 28–35 (1947)

38. Yang, W., et al.: Detecting customer complaint escalation with recurrent neural
networks and manually-engineered features. In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, vol. 2 (Industry Papers), pp. 56–63 (2019)

http://arxiv.org/abs/1706.03762


Joint Personalized Search and
Recommendation with Hypergraph

Convolutional Networks

Thibaut Thonet1(B), Jean-Michel Renders1, Mario Choi2, and Jinho Kim2

1 NAVER LABS Europe, Meylan, France
{thibaut.thonet,jean-michel.renders}@naverlabs.com

2 NAVER Corporation, Seongnam, South Korea
{mar.io,jinho.kim}@navercorp.com

Abstract. Traditionally, the search and recommendation tasks are per-
formed separately, by distinct models. Having a unique model for the two
tasks is however particularly appealing for platforms that offer search and
recommendation services to a shared user base over common items. In this
paper, we study this unification scenario denoted as Joint Personalized
Search and Recommendation (JPSR). To tackle this problem, we intro-
duce HyperSaR, an hypergraph convolutional approach for search and rec-
ommendation. From the interaction data, we first build an hypergraph
composed of user, item and query keyword nodes in which recommen-
dation instances form user-item edges and search instances define user-
item-query hyperedges. We then propagate user, item and query keyword
embeddings using hypergraph convolution, and train HyperSaR with the
combination of two complementary losses. The first one amounts to assess-
ing the probability of an interaction, while the second one aims at predict-
ing the query of a search interaction given a (user, item) pair. The proposed
method is evaluated on the JPSR task using three datasets: a real-world,
industrial dataset, and the public MovieLens and Lastfm datasets, which
have been adapted to the task. Our experiments demonstrate the superior
effectiveness of HyperSaR over competing approaches.

Keywords: Recommendation · Graph Neural Networks · Information
retrieval · Personalized search · Hypergraph

1 Introduction

While Information Retrieval (IR) and Recommender Systems (RS) have long been
regarded as two distinct facets of the information filtering problem, nowadays this
distinction is becoming increasingly blurred. For instance, numerous e-commerce
platforms offer users hybrid ways of exploring a large base of heterogeneous items,
by deploying a combination of search and recommendation tools to accurately
identify what users need or prefer in this vast maze of possibilities. The emergence
of mixed-initiative conversational agents and chatbots is another example of appli-
cations where IR and RS steps are intimately connected to solve a joint session-
based objective [30]. Roughly speaking, IR and RS tasks mainly differ by the pres-
ence of a query: IR methods are essentially content-based methods and rely on a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 443–456, 2022.
https://doi.org/10.1007/978-3-030-99736-6_30
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query understanding or query representation step, in order to effectively match
the query with the indexed items. RS methods do not use any query information,
but rely on the knowledge of the recommendation context and past user history to
score the indexed items. In this paper, we propose to solve a single, unified task,
namely “Joint Personalized Search and Recommendation” (JPSR), which consists
in ranking a list of items by decreasing order of relevance to user needs or prefer-
ences in a given context. For this task, some instances are triggered by a given query
(search instances, initiated by the user), while others are not associated with any
query (recommendation instances, initiated by the system).

Recently, Graph Neural Networks (GNNs) have been successfully applied to
recommendation tasks [9,22,24,26], especially to Collaborative Filtering (CF)
problems, where only the interactions between users and items are considered
(ratings, clicks, views, purchases, etc.). They basically combine the expressive
power of deep neural networks with the exploitation of the structural information
given by an underlying graph, by propagating and smoothing node information
through convolution operations. This results in graph-contextualized, multihop-
aware node embeddings that are then used to solve the final task. Standard CF
problems involve two-way interactions, i.e., interactions over (user, item) pairs.
Naturally, these interactions can be represented as edges, possibly weighted,
in a bipartite graph, and that is the approach followed by most GNN-based
recommendation methods. However, when considering n-way interactions with
n > 2, such as search instances where the outcome of the interaction over a (user,
item, query) triplet is observed, bipartite graphs can no longer be adopted. A
natural extension is to rely on hypergraphs, where hyperedges precisely capture
these n-way interactions, for any possible n ≥ 2. For that purpose, we introduce
in this work HyperSaR, an hypergraph convolution network approach to solve
the JPSR problem. The contributions of this paper can be summarized as follows:

– We introduce and formalize the Joint Personalized Search and Recommenda-
tion (JPSR) problem.

– We propose HyperSaR, an hypergraph convolutional network approach, to
address JPSR.

– We empirically validate HyperSaR and compare it against existing methods
on three datasets: a real-world, industrial dataset collected from a commercial
search engine widely used in South Korea, and two public datasets, MovieLens
and Lastfm, which have been adapted to the JPSR task.

– To foster research on this new problem, we publicly release the code of our
approach and baselines, along with the adapted public datasets.1

The paper is organized as follows. We first discuss how existing research
is related to this work (Sect. 2). We then formally define the JPSR problem
(Sect. 3), and describe our proposal HyperSaR to address this problem (Sect.
4). The subsequent sections detail the experimental setup (Sect. 5) and present
the results (Sect. 6). Finally, we conclude the paper and propose extra directions
to investigate (Sect. 7).

1 https://github.com/naver/hypersar.

https://github.com/naver/hypersar
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2 Related Work

Personalized Search and Recommendation. The research line that is most
relevant to this work pertains to unification of search and recommendation
through a single model [25,27,28]. [25] investigates the problem of transferring
learned knowledge from a recommender system to a search engine defined over
a common item base. Although the motivation is similar to ours – i.e., sharing
data across search and recommendation tasks – the approach devised in [25]
only allows transfer in the recommendation-to-search direction and thus cannot
be used for joint personalized search and recommendation. Closer to our work,
[27,28] also investigate a joint search and recommendation (JSR) problem. In
[28], items are associated with text descriptions that are used along with user-
item interactions to train the model. In that regard, the JSR model proposed
by [28] is closer to an hybrid recommendation model – combining collaborative
filtering and content-based filtering based on item text descriptions – as it was
not designed to be trained on both search and recommendation instances. More-
over, [27,28] ignore the dependency between users and queries, which is crucial
to provide personalized results. On the other hand, existing personalized search
works [1–3,11] often rely heavily on text features to match queries and items,
or are not explicitly designed to address the empty query case (i.e., recommen-
dation instance). In contrast, the proposed HyperSaR approach links user, item
and (possibly empty) query through an hypergraph formulation, thus naturally
enabling the integration of both search and recommendation interactions.

Graph Neural Networks for Recommendation. Our work is also grounded
in research on graph neural networks which recently received much attention in
the recommendation field, due to their ability to capture multihop relationships
between users and items. Given the large body of work on this topic, we will
only review here selected papers and let the reader refer to [24] for a more
exhaustive survey of the literature. One of the early GNN-based recommenda-
tion models is NGCF [22], which relies on a message passing architecture and a
complex graph propagation operation. Later, the LightGCN [9] model was pro-
posed, advocating for a simpler and more lightweight architecture than the one
introduced in NGCF. Such architecture resulted in improved effectiveness over
NGCF, thus questioning common GNN practices in recommendation. In the pro-
posed HyperSaR model, we follow the recommendations made in [9] to simplify
graph convolutions to their bare minimum: a weighted sum aggregation. While
most GNN approaches for recommendation operate on standard graphs, some
recent works also devised hypergraph-based approaches to capture item correla-
tion over different time periods [20,21]. These two works are however specifically
designed for next-item recommendation and cannot be easily adapted to JPSR.

3 Problem Definition

Before defining the problem we seek to tackle, we first detail the notations used
throughout the paper. Let U and I be the set of users and items, respectively.
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Fig. 1. Illustration of the HyperSaR approach.

We define as X = XS ∪ XR the set of training interactions, where XS and XR

respectively denote the search instances and recommendation instances. Each
search instance x ∈ XS is a tuple composed of a user ux ∈ U , a query qx
formulated by this user, and an item ix ∈ I which the user interacted with for this
query. A recommendation instance x ∈ XR is a pair made of a user ux ∈ U and
an interacted item ix ∈ I. Although the nature of interactions considered in this
framework is not constrained, we typically consider here implicit feedback (e.g.,
clicks on items, check-ins for points-of-interest, video views) as this constitutes
the most widely available signal in a realistic setting. The problem of Joint
Personalized Search and Recommendation (JPSR) then consists in learning a
model from the search and recommendation instances in X which maps items
to their relevance scores given a user and a (potentially empty) query.

4 Method

To address the JPSR problem, we propose HyperSaR – an Hypergraph con-
volutional network approach for Search and Recommendation, illustrated in
Fig. 1. As we will detail in the remainder of this section, HyperSaR defines an
hypergraph-based formulation of the problem to effectively integrate heteroge-
neous (search and recommendation) interactions in a unified framework.

4.1 Hypergraph Construction

The HyperSaR approach relies on an undirected hypergraph composed of user
nodes, item nodes, and query keyword nodes. In this hypergraph, a search
instance gives an hyperedge linking a user, an item and one or several query
keywords, while a recommendation instance becomes an hyperedge between
a user and an item. Formally, let H = (V, E) denote the hypergraph with
nodes (or vertices) V and hyperedges E . The set V contains user nodes U , item
nodes I, and query keyword nodes W, and E includes the search hyperedges
ES ⊂ ⋃+∞

k=1(U × I × Wk) and the recommendation hyperedges ER ⊂ U × I. The
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hyperedges ES and ER are respectively built from the search instances XS and
recommendation instances XR. Given a search instance x = (ux, ix, qx) ∈ XS

and the keywords (wx,1, . . . , wx,k) ∈ Wk extracted2 from the query qx, we create
a (k + 2)-degree hyperedge e = {ux, ix, wx,1, . . . , wx,k} ∈ ES . Similarly, a recom-
mendation instance x = (ux, ix) ∈ XR yields a 2-degree hyperedge (i.e., ordinary
edge) e = {ux, ix} ∈ ER. An example of such hypergraph is illustrated in Fig. 2.

w1 w2

w3

u1
u3

u2

i1

i2 i3

i4

Search instances Rec. instances
(u1, i1, q1 = (w1, w2))

(u2, i2, q2 = (w2))

(u3, i4, q3 = (w3))

(u2, i3)

(u2, i4)

(u3, i1)

search
hyperedge rec. edge

Hypergraph

Fig. 2. Example of hypergraph built
from search and recommendation
instances. Nodes u∗, i∗ and w∗ denote
users, items and query keywords.

Similarly to the characterization of a
graph by an adjacency matrix, an hyper-
graph is uniquely identified by its inci-
dence matrix [4,6,7,20]. The incidence
matrix H of the hypergraph H is a |V|×|E|
binary matrix defined as follows:

Hij =

{
1 if vi ∈ ej ,
0 otherwise.

where vi is the node with index i ∈
{1, . . . , |V|} and ej is the hyperedge with
index j ∈ {1, . . . , |E|}. Intuitively, a row
in matrix H indicates all the hyperedges
a node is part of, and a column conversely
gives all the nodes an hyperedge connects.

4.2 HyperSaR Convolution Operation

We now move on to describing the propagation mechanism of HyperSaR, which
aims to smooth node representations based on their neighborhood in the hyper-
graph detailed in Sect. 4.1. We first associate each node i with a base embedding
E

(0)
V,i – its ‘layer-0’ embedding. An hypergraph convolution operation can then

be decomposed in two steps [6]: (i) the node embeddings are propagated to the
hyperedges they belong to and aggregated as the hyperedge embeddings, (ii)
the hyperedge embeddings are propagated back to the nodes and aggregated
to form the new node embeddings. In this work, we apply to hypergraphs the
methodology demonstrated in recent GNN research [23], and in particular on rec-
ommendation [5,9], which observed that the GNN aggregation operators need
not contain any non-linearity, nor trainable weight matrix but often prove to be
more effective as a simple weighted sum.

Formally, we denote as E
(k)
V,i and E

(k)
E,j the layer-k embeddings of node i

and hyperedge j, respectively. Adopting the sum aggregation operator, along
with standard normalization based on node and hyperedge degrees [4,7,20], the
HyperSaR convolution operation is defined as follows:

2 In practice, query keywords are obtained by retaining frequent query terms and
discarding stop words (see Sect. 5.3). One could alternatively extract intents using
query intent understanding techniques (e.g., [29]) but this is beyond the scope of
this work.
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E
(k)
E =

(
D

−1/2
E HTD

−1/2
V

)
E

(k−1)
V (node-to-hyperedge propagation)

E
(k)
V =

(
D

−1/2
V HD

−1/2
E

)
E

(k)
E (hyperedge-to-node propagation)

(1)

where H is the incidence matrix of the hypergraph, DE = diag
(|N E

j | : j ∈ E) ∈
R

|E|×|E| is the hyperedge degree matrix, and DV = diag
(|N V

i | : i ∈ V) ∈ R
|V|×|V|

is the node degree matrix. N E
j and N V

i denote respectively the set of nodes
connected by hyperedge j and the set of hyperedges node i is part of. In summary,
the core specificities of hypergraph convolution in comparison to standard graph
convolution (e.g., that of LightGCN [9]) lie in (i) the use of the incidence matrix
instead of the adjacency matrix, and (ii) the two-step propagation mechanism
with a node-to-hyperedge step and an hyperedge-to-node step.

After L layers of propagation in the hypergraph, we obtain the node embed-
dings of each layer {E

(0)
V , E

(1)
V , . . . , E

(L)
V }. Each E

(k)
V can be decomposed into

(E(k)
U , E

(k)
I , E

(k)
W ) which correspond respectively to the user embeddings, item

embeddings and query keyword embeddings at layer k. We aggregate the embed-
dings at different layers using a convex combination [9] with hyperparameter
weights αU , αI and αW whose practical choice is further discussed in Sect. 5.3.

EU =
L∑

k=0

αU
k E

(k)
U , EI =

L∑

k=0

αI
kE

(k)
I , EW =

L∑

k=0

αW
k E

(k)
W . (2)

4.3 Model Training and Inference

Given the final user embeddings EU , item embeddings EI , and query keyword
embeddings EW obtained from the propagation in the hypergraph, we now define
the loss used to train the HyperSaR model’s parameters – which solely consist
of the layer-0 embeddings E

(0)
V . Our training loss is in fact the combination of

two losses: the context-item matching loss and the query likelihood loss.

Context-Item Matching Loss. For a given interaction, the purpose of this
loss is to bring the embeddings of the user and query keywords (in the case of
search interactions) closer to the embedding of the interacted item. We designate
here the user and the query as the context. To match the context and the item
embeddings, we adopt a dot product because of its demonstrated effectiveness
in comparison to more complex scoring operations, and efficiency at inference
time [15]. Formally, given an interaction x consisting of a user ux, an item ix
and a (potentially empty) query qx, the context-item matching (CIM) score is
then computed as the sum of dot products between pairs of embeddings:

ŷux,ix,qx = EU,ux

TEI,ix + EU,ux

TEW,qx + EI,ix
TEW,qx . (3)

The query embedding EW,qx is defined as the sum of its terms’ embeddings
∑k

i=1 EW,wx,i
if the query qx = (wx,1, . . . , wx,k) is non-empty and 0 otherwise.

We adopt here a sum operator instead of a mean operator to use the number of
keywords as a ‘confidence’ factor in the loss by modulating the score magnitude.
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The CIM score is finally integrated in the pairwise Bayesian Personalized
Ranking (BPR) loss [14], yielding the context-item matching loss:

LCIM = − 1
|X |

∑

x∈X

∑

in∈I\{ix}
log σ(ŷux,ix,qx − ŷux,in,qx) + λ ‖E

(0)
V ‖2F (4)

where in ∈ I \{ix} denotes a negative item, σ is the sigmoid function, and λ

balances the strength of the L2 regularization on the model parameters E
(0)
V .

Query Likelihood Loss. We combine the CIM loss with a query likelihood
loss, which was shown to help making the embeddings more suitable for the
retrieval task [28]. The proposed loss defined on search instances measures to
what extent a user and an item are likely to ‘produce’ the query keywords.
It then complements the CIM loss by considering query keywords in isolation
rather than aggregated in the query embedding. First, we define user-specific
and item-specific probability distributions over query keywords using a softmax
formulation as follows:

p(w |u) =
exp(EU,u

TEW,w)
∑

w′∈W exp(EU,u
TEW,w′)

, p(w | i) =
exp(EI,i

TEW,w)
∑

w′∈W exp(EI,i
TEW,w′)

(5)

Intuitively, the probability p(w |u) is large when user u and query keyword w
are close in the embedding space, and similarly for p(w | i). The query likelihood
loss is then obtained from the sum of the likelihood according to p(w |ux) and
the likelihood according to p(w | ix) for all search interaction x ∈ XS :

LQL = − 1
|XS |

∑

x∈XS

1
|qx|

∑

w∈qx

log p(w |ux) − 1
|XS |

∑

x∈XS

1
|qx|

∑

w∈qx

log p(w | ix) (6)

Note that the loss is computed separately from p(w |ux) and p(w | ix), instead
of using a single (user, item)-specific distribution p(w |ux, ix). The motivation
for this is to avoid conflating the contribution of the user and that of the item
to the query reconstruction, which we found to be detrimental in practice.

Ultimately, the two losses are linearly combined using a balancing hyperpa-
rameter η as L = LCIM+ηLQL. The model parameters – the layer-0 embeddings
E

(0)
V – are then learned by minimizing L using stochastic gradient descent.

Model inference. At inference time, an interaction x consists of either a user-
query pair (ux, qx) (search case) or a user ux and an empty query qx = ∅ (recom-
mendation case). The goal is for the trained model to produce an item ranking
that maximizes utility with respect to the user’s information needs and profile.
To that end, all items i ∈ I are scored based on Eq. 3. This yields the set of
context-item matching scores {ŷux,i,qx}i∈I , which are then sorted in descending
order to form the final item ranking returned to the user.
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Table 1. Statistics of the datasets used in the experiments.

Dataset # users # items

# search

interactions

# recommendation

interactions

train valid test train valid test

POI 22,110 20,376 171,028 50,060 52,132 315,932 97,483 95,411

MovieLens 14,478 18,332 549,517 232,426 223,915 1,328,341 383,884 392,392

Lastfm 1,892 18,022 113,266 36,662 36,551 56,441 18,196 18,197

5 Experimental Setup

5.1 Datasets

Our experiments are performed on three datasets whose statistics are shown in
Table 1: an industrial dataset based on a Point-of-Interest search engine (denoted
as POI), as well as two public datasets, MovieLens and Lastfm, which have
been adapted to our JPSR task due to the lack of existing datasets.3

POI. This dataset was collected from the South-Korean search engine Naver4

between 01/09/2020 and 07/09/2020. Items correspond to South-Korean POIs.
Interactions consist of clicks and are either search interactions (user, clicked
item, and query) or recommendation interactions (user and clicked item, without
query information). Queries are in Korean and were tokenized using KoNLPy
[12]. Core-20 filtering was applied to discard low-activity users and items.

MovieLens. The MovieLens-25M5 dataset contains two types of interactions:
rating interactions (a user assigns a rating to a movie), and tagging interactions
(a user adds a tag to a movie). The former are used as recommendation inter-
actions, and the latter as search interactions by assimilating tags and queries.
Rating interactions were binarized, considering 4+ ratings as relevant. Users
without tagging interactions were discarded, and core-10 filtering was applied.

Lastfm. In Lastfm6, items are musical artists that users listen to. This dataset
consists of listening interactions and tagging interactions. As on MovieLens, we
consider the former as recommendation interactions and the latter as search
interactions. No core filtering was needed for this already dense dataset.

5.2 Baselines

In our experiments, we compare the proposed HyperSaR model against several
competitive baselines. We first considered recommendation approaches – which
3 Some previous works [1–3,11,27,28] used Amazon datasets for product search. How-

ever the common practice [19] is to define synthetic queries from product categories,
which do not result from a user-specific expression. Therefore, we advocate that such
datasets are not suitable for personalized search and, a fortiori, for JPSR.

4 https://www.naver.com/.
5 https://grouplens.org/datasets/movielens/25m/.
6 https://grouplens.org/datasets/hetrec-2011/.

https://www.naver.com/
https://grouplens.org/datasets/movielens/25m/
https://grouplens.org/datasets/hetrec-2011/


Joint Personalized Search and Rec. with HCN 451

Table 2. Comparison of the model traits for the baselines and proposed approach.

Model trait MF [10] LGCN [9] FM [13] DeepFM [8] JSR [28] BM25 [17] DREM [2] HyperSaR

(Hyper)graph

propagation
✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Query

exploitation
✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Result

personalization
✓ ✓ ✓ ✓

✓ (rec.)

✗ (search)
✗ ✓ ✓

do not exploit query information – to show that such approaches are insufficient
for the JPSR task:7 the widely-adopted Matrix Factorization (MF) [10]; and the
state-of-the-art recommendation model LightGCN (LGCN) [9] based on graph
neural networks. We also experimented with recommendation approaches that
can integrate queries in their modeling: the Factorization Machine (FM) [13]
which extends matrix factorization by enabling the integration of context fea-
tures (here, the query keywords); the DeepFM model [8] which is a deep
learning-based extension of FM; and JSR [28]8 which was the first approach
to unify search and recommendation in a single model. The word embeddings
used in JSR are from FastText9. Finally, we include search approaches in the
comparison: BM25 [17]10 is a simple yet strong retrieval baseline; and DREM
[2] is a recent personalized search approach. Note that BM25 can only be eval-
uated on search instances and not on recommendation instances, which have no
query. The traits of the different baselines are summarized in Table 2.

To ensure a fair comparison with our approach and due to the unavailability
of a public implementation for JSR, we re-implemented all baseline methods in
PyTorch for our experiments. We publicly release their code with HyperSaR’s.11

5.3 Hyperparameter Setting

We used the Adam optimizer and we set the embedding size to 64 (as in [9,22]),
the batch size to 1024, the learning rate to 0.001 and the number of nega-
tive samples to 1. Negative items are sampled uniformly from the whole set of
items I. The L2 regularization weight was simply fixed to 0 due to its limited

7 For these approaches, the search instances are simply considered as user-item pairs
by ignoring queries. The same interaction set is then used as for other methods.

8 Originally, JSR is based on text descriptions attached to items; we adapt the app-
roach to the JPSR task by using the queries in replacement of item descriptions and
by linking each query to its interaction instead of its item.

9 https://fasttext.cc/.
10 In our setting, items are not associated with text documents, preventing the usage of

standard retrieval methods. To apply BM25, we form documents by concatenating
training queries pertaining to the same item, and use them for retrieval on test
queries.

11 https://github.com/naver/hypersar.

https://fasttext.cc/
https://github.com/naver/hypersar


452 T. Thonet et al.

impact in our preliminary experiments. For the models which exploit queries
(FM, DeepFM, JSR, BM25, DREM, and HyperSaR), we use as query keywords
the 2000 most frequent terms which occur in less than 10% of all the queries.
The impact of the query keyword vocabulary size is further discussed in §6.2.
We set the layer weights (see Eq. 2) αU and αI to uniform, i.e., 1/(L + 1), as
in [9]. As to αW , we found that allocating more mass to earlier layers was more
beneficial in practice and we thus simply set αW

0 = 1 and αW
k = 0 for k > 0.

Additionally, we selected on the validation set the following hyperparame-
ters based on the HitRate@20 score: edge dropout rate [16] (for LGCN, Hyper-
SaR), weight dropout rate [18] (for JSR, DeepFM), number of layers (for LGCN,
DeepFM, JSR, HyperSaR) and loss balancing weight η (for JSR, HyperSaR).
To avoid a costly grid search, we first keep η = 0 for JSR and HyperSaR while
searching for the dropout rate and number of layers, and then optimize η using
the optimal dropout rate and number of layers. The range for the dropout rate,
number of layers and weight η is defined as {0.0, 0.1, 0.2, 0.3}, {0, 1, 2, 3}, and
{0.0, 0.001, 0.01}, respectively.

6 Experiment Results

This section presents the results of the evaluation, which is performed on a per-
interaction basis – at test time models predict an item ranking for each inter-
action. Based on the groundtruth consisting of the single interacted item, this
ranking is then evaluated in terms of HitRate@20 and NDCG@20 (abbreviated
as H@20 and N@20), and results are reported separately on search and recom-
mendation instances. In this section, we first compare the proposed HyperSaR
against baselines (Sect. 6.1), and then study the impact of its hyperparameters
(Sect. 6.2).

6.1 Evaluation on the JPSR Task

The results of the evaluation on JPSR are presented in Table 3. We performed
5 runs per approach on each dataset with different seeds and report the average
performance for each metric. To detect significant differences between our app-
roach’s and the best baseline’s results, we conducted an unpaired Student t-test
with a significance level of 0.01. We also report the p-value and effect size.

Overall, we observe that HyperSaR significantly outperforms all baselines on
every (dataset, metric) pair and for both recommendation and search instances,
with very large effect size. On recommendation instances, the fact that HyperSaR
outperforms the state-of-the-art recommendation approach LGCN shows that
the query signal from the search data helped our model to learn more accurate
user and item representations. Baselines’ performance vary across datasets: on
POI, FM was the second-best approach, while on MovieLens and Lastfm LGCN
obtained the second-best results. This confirms that LGCN is still a strong con-
tender on recommendation instances, and only the proposed HyperSaR was able
to outperform it on the three datasets.
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Table 3. Results in % on recommendation and search instances (mean over 5 runs).
Best (resp. second-best) result is in bold (resp. underlined). The mark † denotes a
statistically significant improvement of the proposed HyperSaR over the best baseline
according to an unpaired Student t-test (p < 0.01).

Model POI MovieLens Lastfm

Rec. Search Rec. Search Rec. Search

H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20 H@20 N@20

MF [10] 8.72 3.30 7.20 2.87 4.88 1.81 2.75 1.02 23.42 10.36 17.03 7.91

LGCN [9] 9.24 3.52 8.21 3.34 5.74 2.17 3.30 1.23 26.32 12.09 20.34 9.94

FM [13] 9.46 3.59 48.23 26.43 5.08 1.89 12.91 5.57 25.07 11.10 27.35 12.80

DeepFM [8] 9.35 3.54 48.71 26.70 5.33 1.99 13.39 5.88 24.56 10.95 26.82 12.56

JSR [28] 9.05 3.42 59.67 36.76 4.95 1.87 12.35 4.82 24.33 10.68 5.01 1.92

BM25 [17] – – 60.23 33.89 – – 11.06 3.99 – – 3.20 1.16

DREM [2] 9.28 3.53 24.37 11.37 4.09 1.47 6.84 2.63 23.45 10.32 23.58 10.95

HyperSaR 10.04† 3.84† 63.17† 39.26† 5.93† 2.27† 21.87† 11.04† 27.11† 12.38† 30.05† 14.76†

p-value 6e-7 1e-6 2e-14 1e-12 6e-6 5e-7 1e-14 4e-15 4e-5 1e-4 4e-7 4e-8

Effect size 6.30 5.68 56.89 33.12 4.69 6.48 60.83 67.29 3.66 3.04 6.71 8.86

Turning to the results on the search instances, we can see as expected that the
approaches which exploit query information (FM, DeepFM, JSR, BM25, DREM,
HyperSaR) markedly outperformed the purely collaborative filtering approaches
(MF, LGCN) in most cases. This was indeed predictable as having access to the
test-set interaction query constitutes a great advantage to identify the relevant
item. Here again, HyperSaR obtained the best performance, by a good margin on
MovieLens and Lastfm, and followed closely by JSR and BM25 on POI. We note
that the search performance of BM25 and JSR dropped slightly on MovieLens
and severely on Lastfm. This could be due to their lack of personalization in the
search results: unlike the POI dataset which includes actual queries, MovieLens
and Lastfm instead contain tags which may be insufficient to identify the relevant
items without considering the tastes of the user who wrote the tag.

6.2 Hyperparameter Impact

After validating HyperSaR’s recommendation and search performance in com-
parison to baselines in Sect. 6.1, we turn to analyzing how hyperparameters
impact the model’s results. In particular, we study here three hyperparameters:
(i) the number of layers, (ii) the size of the query keyword vocabulary, and (iii)
η which controls the weight of the query likelihood loss over the context-item
matching loss. We investigate their effect on the POI and MovieLens datasets –
we omit Lastfm for space reasons and due to its similarity with MovieLens. The
results are summarized in Fig. 3. Each plot shows the performance of HyperSaR
in terms of H@20 (in %) as a function of a given hyperparameter’s value, based
on one run. The tested values for the number of layers, the query intent vocabu-
lary size, and the loss balancing weight η correspond to {0, 1, 2, 3}, {1000, 2000,
5000, 10000}, and {0.0, 0.001, 0.005, 0.01, 0.05, 0.1}. Unless an hyperparameter
is varied, we use the ‘default’ value identified on the validation set (see Sect. 5.3)
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Fig. 3. Results for HyperSaR in H@20 (%) on POI and MovieLens with varied hyperpa-
rameters (number of layers, query keyword vocabulary size, and loss balancing weight).
Best viewed in color. (Color figure online)

for the number of layers (2 for POI, 3 for MovieLens) and loss balancing weight
(0.01 for both), and 2000 for the number of unique query keywords.

We first find that the number of layers is more impactful on recommenda-
tion instances than on search instances, although in both cases increasing the
number of layers improves performance. On both datasets, a plateau seems to
be reached around 2 or 3 layers, which is consistent with the findings of previous
works [9,20]. In contrast, the query keyword vocabulary size has greater impact
on search instances than on recommendation instances. This is not surprising, as
considering a larger vocabulary implies a greater coverage of the query content.
We nonetheless observe a plateau at 5000 or 10000 query keywords, suggesting
that further increasing the vocabulary size is not beneficial. Finally, regarding the
loss balancing weight η, we note different behaviors across the POI and MovieLens
datasets. On POI, a value around 0.01 seems to be optimal for both search and rec-
ommendation performance. However, on MovieLens, increasing η overall results in
improved search performance and degraded recommendation performance. This
disparity could be due to the different nature of the datasets – one is based on ‘true’
search and recommendation interactions, while the other contains rating and tag-
ging interactions. In a nutshell, these latter results confirm that the query likeli-
hood loss can benefit the HyperSaR model even though it may in some cases imply
trading off between search and recommendation performance.

7 Conclusion

This work introduces a novel problem referred to as Joint Personalized Search and
Recommendation (JPSR), which consists in learning a unique model from search
and recommendation interactions. To address JPSR, we proposed the HyperSaR
model based on an hypergraph containing user, item and query keyword nodes
built from search and recommendation interactions. Node embeddings are propa-
gated using hypergraph convolution and trained on the combination of a context-
item matching objective and a query likelihood objective. HyperSaR is validated
on three datasets and shown to significantly outperform baselines.
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This work can be extended along several directions. First, we plan to investi-
gate how pre-trained word embeddings could be effectively leveraged in Hyper-
SaR to better capture query keyword semantics, similarly to [28]. We also wish
to explore how the temporality of the interactions can be integrated in the hyper-
graph, as in prior work on next-item recommendation [20,21]. Finally, we are
interested in exploiting HyperSaR to develop explainable search and recommen-
dation systems by leveraging the intent revealed by the query keywords.

References

1. Ai, Q., Vishwanathan, S.V., Hill, D.N., Bruce Croft, W.: A zero attention model
for personalized product search. In: CIKM, pp. 379–388 (2019)

2. Ai, Q., Zhang, Y., Bi, K., Bruce Croft, W.: Explainable product search with a
dynamic relation embedding model. ACM Trans. Inf. Syst. 38(1) (2020)

3. Ai, Q., Zhang, Y., Bi, K., Chen, X., Bruce Croft, W.: Learning a hierarchical
embedding model for personalized product search. In: SIGIR, pp. 645–654 (2017)

4. Bai, S., Zhang, F., Torr, P.H.: Hypergraph convolution and hypergraph attention.
Pattern Recognit. 110, 1–30 (2021)

5. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collabo-
rative filtering: a linear residual graph convolutional network approach. In: AAAI,
pp. 27–34 (2020)

6. Dong, Y., Sawin, W., Bengio, Y.: HNHN: hypergraph networks with hyperedge
neurons. arXiv:2006.12278 (2020)

7. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In:
AAAI, pp. 3558–3565 (2019)

8. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. In: IJCAI, pp. 1725–1731 (2017)

9. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying
and powering graph convolution network for recommendation. In: SIGIR, pp. 639–
648 (2020)

10. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recom-
mender systems. Computer 42(8), 30–37 (2009)

11. Liu, S., Gu, W., Cong, G., Zhang, F.: Structural relationship representation learn-
ing with graph embedding for personalized product search. In: CIKM, pp. 915–924
(2020)

12. Park, E.L., Cho, S.: KoNLPy: Korean natural language processing in Python. In:
HCLT (2014)

13. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2010)
14. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian

personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)
15. Rendle, S., Krichene, W., Zhang, L., Anderson, J.: Neural collaborative filtering

vs. matrix factorization revisited. arXiv:2005.09683 (2020)
16. Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: towards deep graph convolu-

tional networks on node classification. In: ICLR (2020)
17. Sparck Jones, K., Walker, S., Robertson, S.E.: A probabilistic model of information

retrieval: development and comparative experiments - Part 2. Inf. Process. Manage.
36(6), 809–840 (2000)

http://arxiv.org/abs/2006.12278
http://arxiv.org/abs/2005.09683


456 T. Thonet et al.

18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

19. Van Gysel, C., de Rijke, M., Kanoulas, E.: Learning latent vector spaces for product
search. In: CIKM, pp. 165–174 (2016)

20. Wang, J., Ding, K., Hong, L., Liu, H., Caverlee, J.: Next-item recommendation
with sequential hypergraphs. In: SIGIR, pp. 1101–1110 (2020)

21. Wang, J., Ding, K., Zhu, Z., Caverlee, J.: Session-based recommendation with
hypergraph attention networks. In: SDM, pp. 82–90 (2021)

22. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: SIGIR, pp. 165–174 (2019)

23. Wu, F., Zhang, T., de Souza, A.H., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying
graph convolutional networks. In: ICML, pp. 11884–11894 (2019)

24. Wu, S., Zhang, W., Sun, F., Cui, B.: Graph neural networks in recommender
systems: a survey. arXiv:2011.02260 (2020)

25. Wu, T., et al.: Zero-shot heterogeneous transfer learning from recommender sys-
tems to cold-start search retrieval. In: CIKM, pp. 2821–2828 (2020)

26. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: KDD, pp.
974–983 (2018)

27. Zamani, H., Croft, W.B.: Joint modeling and optimization of search and recom-
mendation. In: DESIRES, pp. 36–41 (2018)

28. Zamani, H., Croft, W.B.: Learning a joint search and recommendation model from
user-item interactions. In: WSDM, pp. 717–725 (2020)

29. Zhang, R., Guo, J., Fan, Y., Lan, Y., Cheng, X.: Query understanding via intent
description generation. In: CIKM, pp. 1823–1832 (2020)

30. Zhang, Y., Chen, X., Ai, Q., Yang, L., Croft, W.B.: Towards conversational search
and recommendation: system ask, user respond. In: CIKM, pp. 177–186 (2018)

http://arxiv.org/abs/2011.02260


Topic Aware Contextualized Embeddings
for High Quality Phrase Extraction

V. Venktesh(B), Mukesh Mohania, and Vikram Goyal

Indraprastha Institute of Information Technology, Delhi, India
{venkteshv,mukesh,vikram}@iiitd.ac.in

Abstract. Keyphrase extraction from a given document is the task of
automatically extracting salient phrases that best describe the document.
This paper proposes a novel unsupervised graph-based ranking method
to extract high-quality phrases from a given document. We obtain the
contextualized embeddings from pre-trained language models enriched
with topic vectors from Latent Dirichlet Allocation (LDA) to represent
the candidate phrases and the document. We introduce a scoring mecha-
nism for the phrases using the information obtained from contextualized
embeddings and the topic vectors. The salient phrases are extracted using
a ranking algorithm on an undirected graph constructed for the given
document. In the undirected graph, the nodes represent the phrases,
and the edges between the phrases represent the semantic relatedness
between them, weighted by a score obtained from the scoring mechanism.
To demonstrate the efficacy of our proposed method, we perform several
experiments on open source datasets in the science domain and observe
that our novel method outperforms existing unsupervised embedding
based keyphrase extraction methods. For instance, on the SemEval2017
dataset, our method advances the F1 score from 0.2195 (EmbedRank)
to 0.2819 at the top 10 extracted keyphrases. Several variants of the
proposed algorithm are investigated to determine their effect on the
quality of keyphrases. We further demonstrate the ability of our pro-
posed method to collect additional high-quality keyphrases that are not
present in the document from external knowledge bases like Wikipedia
for enriching the document with newly discovered keyphrases. We eval-
uate this step on a collection of annotated documents. The F1-score at
the top 10 expanded keyphrases is 0.60, indicating that our algorithm
can also be used for ‘concept’ expansion using external knowledge.

Keywords: Automatic Keyphrase Extraction (AKE) · contextualized
embeddings · unsupervised methods · summarization

1 Introduction

Keyphrases are the salient terms in a document that serve as summaries of the
document. They play an important role in many text processing applications like
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document clustering, classification, information retrieval [13,15] and text gen-
eration. Automatic Keyphrase Extraction (AKE) task is a crucial component
of these applications to obviate the need for manual extraction of keyphrases.
In addition to the above-mentioned applications, we are primarily interested in
the applications of AKE in online learning platforms. Learning contents in such
learning platforms are tagged at the topic level for accessibility. However, a topic
can be further divided into concepts that enable linking of related learning con-
tent and easy navigation through the learning contents. In this paper, concepts
are characterized as keyphrases as they describe the content of a document. We
posit that the Automatic Keyphrase Extraction (AKE) from learning contents
can help to index the massive collection of learning contents in online learn-
ing platforms enabling better accessibility of the learning contents. Automatic
Keyphrase Extraction is a well studied problem [10]. Unlike the supervised meth-
ods, the unsupervised methods do not require annotated documents and rely
on in-corpus statistical information for extracting keyphrases. In most of the
unsupervised keyphrase extraction methods [6,16–18] the candidate phrases are
represented by a word graph formed based on a co-occurrence window and then
ranked. Recent unsupervised methods like EmbedRank [2] leverage representa-
tion learning methods that help to capture the semantic relatedness between the
phrases and the document.

We propose a novel unsupervised method to automatically extract keyphrases
from a given document. In this method, the candidate phrases and the given
document are represented in a continuous vector space by combining the con-
textual embeddings and the topical information from LDA [3] to strengthen the
associations between phrases that occur in similar contexts and also represent
similar topics. Then a graph based ranking algorithm where the nodes are rep-
resented by phrases than words is employed to rank the phrases. The proposed
unsupervised method helps to capture two important characteristics needed for
keyphrases: coherence and informativeness. We posit that the selected phrases
are coherent if they convey a consistent idea [11] and they are informative if
they convey the core ideas discussed in the document. In the proposed method,
coherence is captured as the cosine similarity computed between the embed-
dings of the candidate phrases. The informativeness of a phrase is captured as
the cosine similarity computed between the embeddings of the candidate phrase
and the document. The proposed algorithm outperforms existing unsupervised
AKE methods. For instance, on SemEval2017 dataset our method advances the
F1 score from 0.2195 (EmbedRank) to 0.2819.

Following are the core technical contributions of our paper:

– We propose a new topic aware representation method to represent the phrases
and the document. To the best of our knowledge, this representation method
has not been applied to the task of keyphrase extraction.

– We propose a graph based ranking method with a new scoring mechanism that
captures the informativeness and coherence measures by using the proposed
representation method.
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– We apply our algorithm on the task of enriching the set of extracted
keyphrases with new keyphrases which are not present in the source doc-
ument by using external knowledge sources like Wikipedia.

The code and data can be found at https://github.com/VenkteshV/Unsupervised
keyphrase extraction CoTagRank ECIR 2022.

2 Related Work

In this section, we discuss the existing unsupervised AKE methods [21] and also
the current advancements in the vector representation methods.

2.1 Unsupervised Keyphrase Extraction

Graph based ranking methods are the most popular among the unsupervised
AKE algorithms. Graph based AKE methods were introduced in the seminal
work TextRank [18]. It constructs a uniformly weighted graph for the given
text where an edge connects word types only if they co-occur within a window
of specified size. The SingleRank [26] algorithm was an extension to the Tex-
tRank algorithm where the edges were assigned a weight equal to the number
of times word types co-occur. The WordAttractionRank [27] algorithm is simi-
lar to SingleRank with one difference. It incorporates the distance between the
word embeddings into the weighting scheme for the edges between the words.
As keyphrases usually appear at the beginning of the document, the Position-
Rank [9] algorithm and the MultiPartiteRank [5] algorithm assigns weights to
nodes (words and phrases respectively) favouring the terms appearing at ini-
tial positions in the text. One of the shortcomings of these approaches (except
MultiPartiteRank) is that they rank the phrases by aggregating the scores of
the constituent words. This can lead to uninformative candidate phrases being
ranked higher just because one of the constituent words has a higher score.

Several existing approaches like TopicRank [6] have leveraged topical infor-
mation for ranking phrases. Another algorithm that leverages the topical infor-
mation is the TopicalPagerank (TPR) [16] algorithm. The TPR method runs
TextRank for each topic where the topics are obtained using LDA [3]. Another
extension to TPR is the Salience Rank algorithm [24] which introduces word
salience metric to balance between topic and corpus specificity of words.

In contrast to the graph based methods, the EmbedRank [2] algorithm is an
embedding based AKE method that represents both documents and candidate
phrases as vectors using document embedding methods like Sent2Vec [20]. The
vector representations help to rank candidates by computing cosine similarity
between the phrase vectors and the document vector.

2.2 Contextualized Vector Representations

Distributed representations that capture the semantic relationships [19] have
helped to advance many NLP tasks. But all the classical embedding methods

https://github.com/VenkteshV/Unsupervised_keyphrase_extraction_CoTagRank_ECIR_2022
https://github.com/VenkteshV/Unsupervised_keyphrase_extraction_CoTagRank_ECIR_2022
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like fasttext [4], GloVe [22] generate fixed vectors for even polysemous words
irrespective of the context in which they occur.

The Bidirectional Encoder Representation from Transformers (BERT) [8] is
one of the current state of the art methods that uses a mechanism called attention
[25]. The attention mechanism helps to encode a word using other positions in
the input sequence that would lead to a better representation for the word. The
Sentence BERT [23] model was proposed to generate useful sentence embeddings
by fine-tuning BERT. Another transformer based sentence encoding model is
the Universal Sentence Encoder (USE) [7] that has been specifically trained on
semantic textual similarity task. In our experiments, we demonstrate that our
novel representation using topic distribution based vectors from LDA (Latent
Dirichlet Allocation) and USE embeddings performs better than USE or BERT
embeddings in isolation.

3 Methodology

In this section, we describe the proposed extraction algorithm, CoTagRank.
First, the candidate phrases are extracted based on the Part Of Speech (POS)
tags using the pattern < NN. ∗ |JJ > ∗ < NN.∗ > [26]. Then the phrases and
the document are projected to a continuous vector space and phrases are ranked
as discussed in the following sections.

3.1 Vector Representations for the Phrases and the Document

The primary goal of our algorithm is to extract the candidate phrases that best
describe the document. We define two measures for achieving this goal namely
coherence and informativeness. The coherence measure can be seen as an indica-
tor that the candidate phrases represent a consistent idea. The informativeness
measure can be seen as an indicator as to whether the phrases convey the core
ideas discussed in the document. We posit that the above two measures can be
captured by leveraging the topical information. Hence, we give a novel vector
representation mechanism that combines topical information with the embed-
dings obtained from the state of the art contextualized embedding methods. We
leverage contextualized embeddings to handle polysemous words. An example
of polysemy can be seen in the following two sentences : “Consider an imagi-
nary box”, “An imaginary number is a complex number”. In the above two
sentences, the word “imaginary” has different meanings. Contextualized embed-
dings capture the context of usage of the word and hence produce different vector
representations for the same word depending on the context.

The phrase representations are obtained by combining the contextualized
embeddings of the phrases with the topic vectors of their constituent words
obtained from LDA. The LDA is a generative probabilistic model in which each
word in document d is assumed to be generated by sampling a topic from d ’s
topic distribution θd and then sampling a word from the distribution over words
denoted by φt of a topic. We use pre-trained Universal Sentence Encoder (USE)
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to obtain contextualized embeddings for both the phrases and the sentences as
it has been pre-trained on the Semantic Text Similarity (STS) task. This rep-
resentation method helps in bringing the phrases that are semantically related
and having similar topic distributions closer in the vector space. This implies
that the phrases that are both semantically related and represent similar topics
would have a higher coherence measure (cosine similarity between phrase repre-
sentations). The phrase representations are obtained in the following manner:

LE(CP ) =
∑

w∈CP

[p(w|t1), p(w|t2)...]

CPE = concat(LE(CP ), CE(CP )) (1)

where LE represents LDA embeddings, CP represents a candidate phrase, CE
represents contextualized embeddings, and CPE represents candidate phrase
embeddings. The vector [p(w|t1), p(w|t2)...] represents the word-topic probabil-
ities that are derived from the word distributions φt over the topics. Similarly
the document representation can be obtained by combining topic distribution of
the document with the contextualized embeddings of the document sentences.
The document representation is obtained as follows:

LE(doc) = [p(t1|d), p(t2|d)...]

DE = concat(LE(doc), CE(doc)) (2)

where, the vector [p(t1|d), p(t2|d)...] represents the document-topic probabilities
and DE represents the document embedding. Latent Dirichlet Allocation (LDA)
is run only once on the corpus of documents and not for every document. The
vector representations obtained as described are leveraged in the graph based
ranking step to compute final scores for the candidate phrases.

3.2 Graph Based Ranking

In this subsection, we explain our graph based candidate phrases ranking method
in detail.

It differs from traditional methods like TextRank, SingleRank and Position-
Rank. We construct an undirected graph with the candidate phrases as the
vertices instead of words. Constructing the graph in this manner circumvents
the overgeneration errors that occur when the phrases are ranked by aggregat-
ing the scores of the top ranked words. Hence using word graph based AKE
methods may result in an uninformative phrase being assigned a high score just
because one of the constituent words has a higher score. The edges connecting the
phrases are weighted by the semantic relatedness (cosine similarity) computed
between the vector representations of the phrases. The vector representations for
the phrases are obtained as described in the previous subsection. The edges are
formed between the phrases (nodes) that co-occur in the original text within a
specified window size (tunable parameter). We demonstrate that when the win-
dow size is set to the maximum value for forming a complete graph, we get the



462 V. Venktesh et al.

maximum performance. The completeness nature of the graph has the benefit
of connecting phrases together that may not co-occur together but having sim-
ilar topic distributions. As mentioned in the previous subsection, our goal is to
rank those phrases higher that are coherent and informative for the document.
The coherence measure is represented by the edge weights of the graph. The
informativeness measure for each phrase (Pa) is the normalized cosine similarity
between the document and the phrase representations computed as follows:

n Sim(Pa, doc) =
Sim(Pa, doc) − minPb∈P (Sim(Pb, doc))

maxPb∈P (Sim(Pb, doc))
(3)

where n Sim is normalized cosine similarity, Sim is the cosine similarity
function and doc represents the document. Then the similarity metric is obtained
as :

F Sim(Pa, doc) =
n Sim(Pa, doc) − μ(n Sim(P, doc))

σ(n Sim(P, doc))
(4)

where P is the set of phrases. The F Sim function returns the final cosine
similarity metric obtained after normalization and standardization of cosine sim-
ilarities. The function n Sim given a set of embeddings of the phrases and a
document embedding as inputs returns a vector of normalized cosine similar-
ities. Each element in the output vector is the normalized similarity between
the corresponding embedding in the set and the document embedding. In Eq.
(3), n Sim(Pa, doc), Pa denotes a set of embeddings having only one element.
Whereas in Eq. (4), n Sim(P, doc), P has multiple embeddings.

The goal is to find the phrases that maximize the objective:

Obj = λScoh(P ) + (1 − λ)Sinf (P, doc)

where, Sinf denotes the function that returns the informativeness measure com-
puted using Eq. 4.

The Scoh is the function that computes the coherence measure. The Scoh

denotes a function that takes a set of embeddings of phrases (P) and outputs a
vector of cosine similarities computed between embeddings of all possible pairs
of distinct phrases in the set. The parameter λ balances the importance given
for Scoh and Sinf factors.

Iteratively optimizing the above objective is similar to random walk based
approaches. Hence maximizing the above objective can be done as follows:

Every candidate phrase in the graph is ranked by:

R(pi) = λ
∑

j:pj−>pi

e(pi, pj)
OutDeg(pj)

R(pj) + (1 − λ)Sinf (pi) (5)

where e(pi, pj) denotes the weight of the edges between the phrases (pi and
pj) (coherence) and Sinf (pi) is the informativeness score that helps in biasing
the random jump to phrases (vertices) that are closer to the document in the
vector space.

We explore several variants of CoTagRank in Sect. 4.
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Table 1. Statistics of the datasets used

Dataset Domain # of docs # of tokens/doc # of gold keys # of gold keys/doc

Inspec Science 2000 128.20 29230 14.62

SemEval2017 Science 493 178.22 8969 18.19

SemEval2010 Science 243 8332.34 4002 16.47

4 Experiments and Results

This section, discusses the experimental setup and results.

4.1 Datasets

We evaluate our algorithm on standard datasets like Inspec [12], SemEval 2017
[1] and SemEval 2010 [14] for keyphrase extraction. We choose SemEval2017
and Inspec as they contain documents of short length resembling the learning
content in e-learning platforms. We also show the performance of our method on
a dataset containing long documents such as SemEval2010. The statistics of the
datasets are shown in Table 1. Since our algorithm is completely unsupervised,
we evaluate on all the documents in each of these datasets.

4.2 Baselines and Variants of the Proposed Method

In this section, we describe the variants of the proposed CoTagRank algorithm
and other baselines. In the proposed CoTagRank algorithm, a complete graph
is formed from the phrases. The phrases and the document are represented
by combining the contextualized embeddings from Universal Sentence Encoder
(USE) (512-dimensional) [7] and topical vectors from Latent Dirichlet Allocation
(LDA)1. The number of topics K was set at 500 when running LDA.
We compare CoTagRank with several variants such as:

– CoTagRankWindow: This algorithm is a variant of CoTagRank where only
the phrases that co-occur in the text within a window of the specified size
are connected in the graph. While CoTagRank forms a complete graph of
phrases, CoTagRankWindow provides a tunable parameter, the window size
w, which determines the edges formed between phrases. The vector represen-
tation and the ranking method is the same as explained in Sect. 3.2.

– CoTagRanks2v: This algorithm is similar to CoTagRank with respect to com-
plete graph formation and ranking using Eq. 5. However, in CoTagRanks2v
the static sentence representation method like Sent2Vec [20] is used to project
the phrases and the document to a continuous vector space.

– CoTagRankSentenceUSE: A variant of the CoTagRank where the docu-
ment and phrase are encoded using only Universal Sentence Encoder yielding
512-dimensional representations.

1 We leveraged the sklearn implementation for LDA https://scikit-learn.org/.

https://scikit-learn.org/
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Table 2. Performance comparison. † indicates significance at 0.01 level (t-test). ‡

indicates that effect size > 0.2.

Dataset Method P@10 R@10 F1@10

SemEval2017 TopicalPageRank 0.3523 0.2098 0.2543

MultiPartiteRank 0.2972 0.1758 0.2133

SingleRank 0.3428 0.2040 0.2474

TextRank 0.1848 0.1069 0.1326

WordAttractionRank 0.2566 0.1482 0.1815

EmbedRank 0.3061 0.1801 0.2195

EmbedRankSentenceBERT 0.3329 0.1982 0.2404

EmbedRankSentenceUSE 0.3286 0.1965 0.2381

CoTagRank (our algorithm) 0.3911†‡ 0.2324†‡ 0.2819†‡
CoTagRankSentenceUSE (our algorithm) 0.3860 0.2290 0.2779

CoTagRanks2v (our algorithm) 0.3379 0.1990 0.2424

CoTagRankWindow (w=10) (our algorithm) 0.3797 0.2253 0.2734

CoTagRankWindowpositional (our algorithm) 0.3793 0.2250 0.2731

Inspec TopicalPageRank 0.2724 0.2056 0.2260

MultiPartiteRank 0.2210 0.1710 0.1865

SingleRank 0.2694 0.2044 0.2239

TextRank 0.1408 0.1020 0.1234

WordAttractionRank 0.1778 0.1437 0.1516

EmbedRank 0.2732 0.2034 0.2259

EmbedRankSentenceBERT 0.2663 0.1970 0.2188

EmbedRankSentenceUSE 0.2748 0.2049 0.2267

CoTagRank (our algorithm) 0.2984†‡ 0.2213†‡ 0.2454†‡
CoTagRankSentenceUSE (our algorithm) 0.2881 0.2150 0.2377

CoTagRanks2v (our algorithm) 0.2372 0.1807 0.1983

CoTagRankWindow (w=10) (our algorithm) 0.2747 0.2062 0.2275

CoTagRankWindowpositional (our algorithm) 0.2750 0.2062 0.2276

SemEval2010 TopicalPageRank 0.0477 0.0293 0.0359

MultiPartiteRank 0.1757†‡ 0.1118†‡ 0.1352†‡
SingleRank 0.0457 0.0277 0.0341

TextRank 0.0321 0.0199 0.0243

WordAttractionRank 0.0835 0.0531 0.0641

EmbedRank 0.0128 0.0082 0.0099

EmbedRankSentenceBERT 0.0230 0.0137 0.0170

EmbedRankSentenceUSE 0.0379 0.0241 0.0292

CoTagRank (our algorithm) 0.0695 0.0434 0.0530

CoTagRankSentenceUSE (our algorithm) 0.0671 0.0418 0.0511

CoTagRanks2v (our algorithm) 0.0267 0.0169 0.0204

CoTagRankWindow (w=10) (our algorithm) 0.1337 0.0867 0.1042

CoTagRankWindowpositional (our algorithm) 0.1494 0.0970 0.1165

SemEval2010 TopicalPageRank 0.1745 0.1100 0.1336

(abstract and MultiPartiteRank 0.1646 0.1044 0.1263

intro) SingleRank 0.1580 0.0998 0.1211

TextRank 0.1140 0.0719 0.0872

WordAttractionRank 0.1481 0.0949 0.1145

EmbedRank 0.0654 0.0407 0.0496

EmbedRankSentenceBERT 0.0844 0.0521 0.0638

EmbedRankSentenceUSE 0.1243 0.0760 0.0933

CoTagRank (our algorithm) 0.1811 0.1134 0.1380

CoTagRankSentenceUSE (our algorithm) 0.1786 0.1121 0.1363

CoTagRanks2v (our algorithm) 0.0852 0.0518 0.0636

CoTagRankWindow (w=10) (our algorithm) 0.1856 0.1170 0.1419

CoTagRankWindowpositional (our algorithm) 0.1909†‡ 0.1203†‡ 0.1459†‡
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We also consider two variants of EmbedRank such as EmbedRankSentence-
BERT and EmbedRankSentenceUSE where bert-base-nli-stsb-mean-tokens from
sentence-transformers2 and Universal Sentence Encoder are used respectively as
vector representation methods. We compare the performance of the proposed
algorithms with strong baselines such as EmbedRank (Sent2Vec)3, SingleRank
and other unsupervised AKE methods4.

4.3 Results and Discussion

The performance comparison of the algorithms are as shown in Table 2. The
measures used to evaluate the algorithms are Precision, Recall and F1-score.
The metrics were computed using trec-eval5. Since the original implementation
of EmbedRank did not provide an evaluation script, we use trec-eval to compute
the metrics for EmbedRank and we observe different results from those reported
in the original EmbedRank paper6.

As shown in Table 2, the CoTagRank outperforms existing graph based and
embedding based unsupervised methods on two of the three datasets and on
the third dataset, we get comparable results to the MultiPartiteRank algorithm.
The performance gain obtained using CoTagRank over EmbedRankSentence-
BERT, EmbedRankSentenceUSE and CoTagRankSentenceUSE demonstrates
the advantage of fusing topical information with the contextualized embeddings
rather than leveraging just contextualized embeddings for phrase and document
representations.

However, on long documents, the MultiPartiteRank outperforms all other
methods. The MultiPartiteRank algorithm leverages the position of the candi-
date phrases in the document as a feature that leads to the gain in F1-score on
long documents. This result is similar to the result reported in the EmbedRank
paper [2]. To overcome this limitation, the authors of EmbedRank propose a vari-
ant EmbedRankpositional, which includes the position of the candidate phrases
as a feature to increase the performance on long documents. In contrast to the
EmbedRankpositional method, we were able to achieve a gain in performance
by just tuning the window size in the CoTagRank algorithm. The results in
Table 2 show that the performance of a variant of our proposed algorithm,
CoTagRankWindow with a window size of 10, is close to the performance of
MultiPartiteRank. We also verify the intuition of positional bias by proposing
CoTagRankWindowpositional where we multiply the node weights by the inverse
of the start position of the phrase in the input document. We observe that
the performance with the positional bias is close to the MultiPartiteRank algo-
rithm. Additionally, we leverage the common knowledge that most keyphrases

2 https://huggingface.co/sentence-transformers/bert-base-nli-stsb-mean-tokens.
3 https://github.com/swisscom/ai-research-keyphrase-extraction.
4 https://bit.ly/369Ycg7.
5 https://github.com/usnistgov/trec eval.
6 Our results are close to the implementation in the project https://bit.ly/2IbbyjT

which also uses trec-eval and the original EmbedRank implementation.

https://huggingface.co/sentence-transformers/bert-base-nli-stsb-mean-tokens
https://github.com/swisscom/ai-research-keyphrase-extraction
https://bit.ly/369Ycg7
https://github.com/usnistgov/trec_eval
https://bit.ly/2IbbyjT
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Fig. 1. Performance comparison for different hyperparameters

are located at the beginning of the document and hence perform keyphrase
extraction only on “Abstract” and “Introduction” sections of every document in
SemEval 2010, as shown in Table 2, which advances the F1 scores of CoTagRank
and CoTagRankpositional to 0.1380 and 0.1459 respectively surpassing Multi-
PartiteRank confirming the positional bias intuition. On average, this reduced
version of the SemEval 2010 dataset still contains 550 tokens when compared to
the number of tokens in Inspec and SemEval 2017, as observed in Table 1.

However, since online learning contents like questions and video transcripts
are usually short text documents, the expected performance of CoTagRank on
such documents is closer to the results observed for Inspec and SemEval 2017.
We also perform statistical significance tests and observe that our results are
significant at (p < 0.01) with effect sizes of 0.37, 0.30 and 0.83 for F1 scores
on SemEval2017, Inspec and SemEval2010 (abstract and intro) respectively.

4.4 Effects of Different Hyperparameters

In this section, we discuss the effect of varying hyperparameters such as window
size (w), damping factor (λ) and number of topics in LDA (LDA embeddings
dimension) of the CoTagRank algorithm and its variants. We vary the window
size hyperparameter w with values 5, 10, 15, 20 and 25. The graphs in the
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Fig. 2. Keyphrase expansion results for an academic learning content

Fig. 1a and 1b show that the F1-score increases with the increase in window
size for the CoTagRankWindow algorithm. The window size can be set to the
maximum value encompassing all phrases in the document forming a complete
graph. This validates our claim that running the biased PageRank algorithm on
a complete graph of phrases helps in producing high quality phrases. However,
the same assumption may not hold good for longer documents, as evident from
Fig. 1c. We observe that the performance of CoTagRankWindow on SemEval
2010 (abstract and intro) increases with increase in window size drops a little
at w = 25. This indicates that forming a complete graph may not lead to the
highest performance on longer documents. We also vary the damping factor λ in
Eq. 5. The values we experiment with are 0, 0.15, 0.45, 0.75, 1.0. The graphs in
the Fig. 1d and 1e show that in the proposed CoTagRank algorithm and in the
variant CoTagRankWindow the performance declines with an increase in the
damping factor. When damping factor is set to 1, the Sinf component in Eq. 5
that contributes to informativeness of the phrase becomes zero resulting in a
drop in F1-score. The decrease in F1-score observed in the plots as the damping
factor increases supports our claims of informativeness and coherence measures.
However, we do not observe this trend in CoTagRanks2v. This may be due to
the representation method used for the phrases, which do not contribute to the
informativeness measure defined in this paper. From Fig. 1f, we can observe that
on SemEval2010 (abstract and intro) dataset, when λ is set to 1, there is a drop
in F1-score. However, when compared to the previous two graphs, we observe
that the relative drop in F1-score is low. This maybe due to the length of the
documents in this dataset when compared to short length documents in Inspec
and SemEval 2017.

We also vary the number of topics (LDA embeddings dimension) and observe
that CoTagRank and CoTagRankWindow achieves the highest performance
when number of topics is set to 500. This is similar to the observation made
in the TopicalPageRank paper [16] where the authors show that setting the
number of topics to 500 gives the highest performance on the Inspec dataset.
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4.5 Keyphrase Expansion Results

We further apply our algorithm to the task of keyphrase expansion to enrich
the document with new keyphrases with the help of external knowledge sources
like Wikipedia. This would help in linking related learning content in online
platforms.

The keyphrases extracted from the source document using the CoTagRank
algorithm serve as seed set for the keyphrase expansion task.

We use the wrapper over MediaWiki API7 to extract relevant Wikipedia
article titles for each keyphrase in the seed set. Then the expanded phrases are
ranked using Eq. 5.

Table 3. Performance comparison at top-10 expanded keyphrases

Dataset Method Precision Recall F1

Lecture transcripts CoTagRank (our algorithm) 0.5448 0.7270 0.6096

(Khan academy) CoTagRanks2v 0.2483 0.3424 0.2956

CoTagRankSentenceUSE 0.5207 0.6950 0.5949

To demonstrate the effectiveness of this algorithm, we applied it for keyphrase
expansion on 30 lecture transcripts collected from Khan academy in the science
domain. The extracted phrases were given to two annotators who were under-
graduate students in the Computer Science department familiar with the con-
cepts. The task was to annotate the phrases as relevant to the document (1) or
not relevant to the document (0).

The degree of agreement on relevance of keyphrases between the two anno-
tators was measured using Cohen’s kappa κ. We obtained a κ of 0.535 denoting
moderate agreement between the annotators. A phrase is considered as a ground
truth label only if both the annotators consider it to be relevant. We com-
pute the Precision, Recall and F1 metrics as shown in Table 3. The F1 score
of 0.6096 indicates that the proposed algorithm was able to retrieve relevant
keyphrases from external knowledge sources. We observe that CoTagRanks2v
and CoTagRankSentenceUSE do not perform well in this task, indicating that
the combination of contextualized embeddings and topic representations help in
extracting better keyphrases from external knowledge sources.

Figure 2 shows the results of running the proposed algorithm on an academic
content from Khan academy. We observe that our algorithm was able to dis-
cover interesting phrases like Archimedes principle though it was not present in
the source document. The new keyphrases can help in linking related learning
content, where the given question in Fig. 2 can be linked with a video explain-
ing Archimedes principle. We observed that none of the other algorithms were
able to retrieve Archimedes principle. This further reinforces the idea that apart

7 https://pypi.org/project/wikipedia/.

https://pypi.org/project/wikipedia/
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from semantic relatedness between phrases that occur in similar contexts, their
topic relatedness is also captured through our representation mechanism. The
evaluation of the proposed algorithm on this corpus demonstrates that our algo-
rithm could also enrich the existing set of keyphrases with new keyphrases using
external knowledge sources like Wikipedia.

5 Conclusions

In this paper, we proposed a novel representation and graph based ranking
algorithm, CoTagRank, for keyphrase extraction. The algorithm is currently
deployed to extract academic concepts from learning content in an online learn-
ing platform. We showed that our method outperforms existing state-of-the-art
unsupervised keyphrase extraction methods in shorter texts and comparable
performance on longer texts. In addition, forming a complete graph of phrases
outperforms window based graph formation methods on short documents. We
also demonstrated that including a simple positional bias helps further advance
the performance of the algorithm on longer documents. In the future, we aim to
incorporate positional embeddings and verify the performance on long texts.
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Abstract. Podcasts have emerged as a massively consumed online con-
tent, notably due to wider accessibility of production means and scaled
distribution through large streaming platforms. Categorization systems
and information access technologies typically use topics as the primary
way to organize or navigate podcast collections. However, annotating
podcasts with topics is still quite problematic because the assigned edi-
torial genres are broad, heterogeneous or misleading, or because of data
challenges (e.g. short metadata text, noisy transcripts). Here, we assess
the feasibility to discover relevant topics from podcast metadata, titles
and descriptions, using topic modeling techniques for short text. We also
propose a new strategy to leverage named entities (NEs), often present
in podcast metadata, in a Non-negative Matrix Factorization (NMF)
topic modeling framework. Our experiments on two existing datasets
from Spotify and iTunes and Deezer, a new dataset from an online ser-
vice providing a catalog of podcasts, show that our proposed document
representation, NEiCE, leads to improved topic coherence over the base-
lines. We release the code for experimental reproducibility of the results
(https://github.com/deezer/podcast-topic-modeling).

Keywords: Podcasts · Short-text · Topic modeling · Named entities

1 Introduction

Podcasts is an audio content listened to on-demand for educational, entertain-
ment, or informational purposes. Known as the “spoken” version of blog posts,
they have evolved towards a wide variety of formats (e.g. monologues, multi-
party conversations, narratives) spanning a wide range of categories (e.g. busi-
ness, true crime). Podcasts have been massively popularised in the recent years
due to increased use of streaming platforms and availability of underlying tech-
nology for information access, recording and publishing [11,20,35]. As of summer
2021, the number of available podcasts in the world exceeds 2M and over 48M
episodes [32]. Likewise, the podcast listening audience has grown massively: 50%
of the American population has listened to at least a podcast in 2019 and over
32% have listened to podcasts monthly (compared to 14% in 2014) [25].

Given the sharp growing interest in podcasts, researchers and industry play-
ers have searched for more suitable ways to enable listeners to effectively nav-
igate these overwhelming collections [3,8,20,35]. Topics are central to any of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 472–486, 2022.
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the adopted podcast information access technology such as automatic catego-
rization, search engines or recommender systems. However, annotating podcasts
with topics is still quite problematic. First, although podcast metadata entails
topic-related genres, manually assigned by creators or providers, in reality these
are often noisy and unreliable [11,28]: genres could be too heterogeneous or broad
(e.g. Kids & Family includes both sleep meditation and parenting advice); and
podcast providers may misleadingly label their shows with unrelated genres for
broadening exposure. Second, using topic modeling has its limitations inher-
ited from the input text associated with podcasts: 1) metadata, such as title
or description, is typically a short text of varying quality; 2) the automatically
transcribed speech is noisy having a high word-error-rate especially for NEs and
requires the engagement of more resources [3,8,11].

In the current work, we revisit the feasibility of discovering relevant topics
from podcast metadata, titles and descriptions, usually documented by podcast
providers, creators, or editors. While previous work [3] found podcast meta-
data less promising for topic-informed search compared to when using podcast
transcripts, we hypothesize that it could still be a very useful data source for
topic modeling when exploited with appropriate technology. If proven feasible,
topic modeling on podcast metadata can be a more economic alternative than
automatically extracting and exploiting transcripts of a rapidly growing podcast
corpus. Additionally, the discovery of topics directly from metadata offers many
opportunities for improved podcast retrieval. Identifying podcast categories at
different granularity levels could help editors evolve manually created podcast
taxonomies and automatically annotate podcasts with these categories. The dis-
covered topics could also support the consolidation of podcast knowledge graphs
[2,11], recently exploited in recommendation, by adding new edges that capture
topic-informed podcast similarity based on metadata.

First, we take advantage of advancements in topic modeling, and benchmark
multiple algorithms designed for short text on three podcast datasets. Two of
these datasets are public: one from Spotify [8] and one from iTunes [23]. We have
built a third dataset using Deezer1, an online service providing a large podcast
catalog. This dataset is the largest with both titles and descriptions available
at the podcast level. Second, we propose a strategy to leverage NEs, frequently
present in podcast titles and descriptions, in a NMF topic modeling framework.
As we can see in the following example: Shields Up! Podcast: Join Chris and
Nev as they talk about their favourite Star Trek episodes covering everything
from TOS to Lower Decks, the metadata contains multiple NEs regarding the
name of the speakers (Join Chris and Nev), but also the podcast topic (Star
Trek, TOS and Lower Decks). By injecting cues from NEs in topic modeling,
we improve over state-of-the-art (SOTA) methods using plain word embeddings,
and show that the data sparsity (very low co-occurrences of semantically related
terms) due to short text can be further alleviated.

To sum up the contributions of this work are: a) the most extensive study to
date of topic modeling on podcast metadata, covering popular SOTA algorithms

1 https://www.deezer.com/us/.

https://www.deezer.com/us/
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for short text and datasets from major podcast streaming platforms; b) NEiCE,
a new NE-informed document representation for topic modeling with NMF, as
an extension of CluWords [31]—our approach improves topic coherence over
baselines in most evaluated cases; c) a new podcast dataset entailing English-
language titles and descriptions from Deezer, an online service providing a pod-
cast catalog, that is the largest in terms of the number of podcasts/shows.

2 Related Work

Topic modeling on short text faces the challenge of severe data sparsity due to the
nature of this type of input [7]. Short text, as it consists of only few words, can be
ambiguous and noisy and, in general, has limited context. This means that pairs
of words that are topic-related do not or rarely co-occur in the same contexts,
leading to conventional topic modeling techniques such as LDA [6] to perform
poorly. Various topic modeling techniques have been designed to address this
issue. Models can be classified in four groups: pseudo-documents-based [24,38],
probabilistic [15], neural [17,33], and NMF-based [29,31]. We further review each
group and some representative models.

The principle of pseudo-documents is to aggregate connected short texts in
longer documents, which are further used as input to conventional topic modeling
[15]. Initial aggregation methods leveraged metadata such as hashtags in tweets
[16]. However, this proved limiting for other types of short texts (e.g. search
queries) and led to self-aggregation methods, able to aggregate using topic cues
based on the corpus only [24,38]. An issue identified with this type of methods is
overfitting [38]. Also, they appear overall less competitive than the other groups
of topic modeling techniques for short text [29,31], discussed further.

The second group entailing probabilistic models is the most related to con-
ventional topic modeling (LDA) that represents documents and topics as multi-
nomial distributions over topics, respectively words. The adaptation of these
models to short text is to assume that each document is sampled only from a
single topic, thus restricting document-topic distribution to a mixture of uni-
grams [22,36,37]. GPU-DMM [15], an effective and fast model in this group, is
based on Dirichlet Multinomial Mixture (DMM) model and uses a Generalized
Pólya Urna (GPU) as a sampling process to promote topic-related words. The
word association is estimated by exploiting pre-trained word embedding [19].
This allows to alleviate data sparsity as it extends the context to words that are
semantically related but they do not necessarily co-occur in the same text.

The third group has become popular in the last years with the rise of deep
learning. Neural topic modeling is based on Variational Auto-Encoders (VAE)
[4,17,30,33]. Typically, an encoder such as a MultiLayer Perceptron (MLP) com-
presses the Bag-of-Words (BoW) document representation into a continuous
vector. Then, a decoder reconstructs the document by generating words inde-
pendently [4,17]. Negative sampling and Quantization Topic Model (NQTM)
[33], the latest topic modeling technique on short texts brings two contributions
which yielded the current SOTA results. The first is a new quantification method
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applied to the encoder’s output whose goal is to generate peakier distributions
for decoding. The second is to replace the standard decoder with a negative
sampling algorithm that proves better at discovering non-repetitive topics.

The NMF-based group learns topics by decomposing the term-document
(BoW) matrix representation of the corpus into two low-rank matrices, one
corresponding to document representations over topics and the other to topic
representations over words [14]. Given the limited contextual information, the
Semantics-assisted Non-negative Matrix Factorization (SeaNMF) model [29]
adjusts NMF to short texts by integrating into it word-context semantic correla-
tions learnt from the skip-gram view of the input corpus. In contrast to SeaNMF
which focuses on the learning part, CluWords [31] enhances the corpus represen-
tation before being factorized with standard NMF. The matrix is obtained with
a proposed custom TF-IDF strategy that exploits pre-trained word embeddings.

The existing works include in their benchmark, datasets consisting of ques-
tion or news titles, web snippets, review comments, or tweets [9,15,29,31,33].
Podcast metadata compared to these datasets exhibits a much higher frequency
of NEs, which we exploit with the goal to further address data sparsity. To our
knowledge, we are the first to assess existing models on podcast metadata and
to explicitly consider NE-related cues in short-text topic modeling.

3 Methods

The topic modeling algorithms we benchmark are GPU-DMM [15], NQTM [33],
SeaNMF [29] and CluWords [31]. By noticing the high frequency of NEs in pod-
cast titles and descriptions, we also include in the benchmark another standard
NMF-based model for which we design a new NE-informed document represen-
tation as input. The underlying hypothesis is that NEs convey the main topic
information. Thus, we propose to promote vocabulary words related to these
NEs by associating them with pseudo-term frequencies as presented in Sect. 3.2.
For this, but also to capture word-to-word topic relatedness shown beneficial
against data sparsity, we use pre-trained word and NE embeddings [34].

Finally, the rationale behind choosing to explore NE promotion in a NMF
framework is twofold. Compared to probabilistic models, NMF-based ones have
yielded better results on short text [7,29,31]. Then, the integration of background
NE and word information in NMF topic modeling is more straightforward than
in deep neural networks. Current autoencoders [30,33] are designed to exploit
only the corpus, which we find insufficient by itself to exhibit NE-word relations,
especially if these corpora are small or each NE mention is infrequent.

3.1 Notations and Preliminaries

Table 1 summarizes the notations used in the rest of the section. As outlined
above, we obtain topics by factorising the short-text corpus representation. For-
mally, given the corpus D, the vocabulary V consisting of unique words in D,
A the matrix corresponding to BoW representations of each document in D,
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and the target number of topics K, A can be approximated by the product of
two low-rank matrices A « HW . Each row Wj,: represents one of the K top-
ics expressed in terms of words from V and each row Hi,: represents an input
document in terms of the learnt K topics.

Table 1. Notations used to present the topic modeling technique.

Name Description

K, k Number of topics, the identifier of a single topic

D, d Short-text documents found in the corpus, a single document

V, t, t′, vt Vocabulary set, individual terms, the embeddings of term t

E, e, ve Set of linked NEs, a NE term, the embedding of a NE e

A P N
|D|ˆ|V| Term-document matrix with BoW corpus representation

C P R
|V|ˆ|V| Word similarity matrix computed with pre-trained embeddings

W P R
Kˆ|V| Latent low-rank word-topic matrix

H P R
|D|ˆK Latent low-rank document-topic matrix

A∗ P R
|D|ˆ|V| Word-document matrix for CluWords corpus representation

ANE P R
|D|ˆ|V| Word-document matrix for NE-informed corpus representation

αword, αent P [0, 1) Minimum cosine similarity between words, or words and NEs

While this is the basic frameworks for NMF-based topic modeling, in practice
there are more effective corpus representations than the simple BoW matrix (A),
proven to lead to better topics. CluWords [31] is such an example and is based on
two components: 1) one that correlates each word, not only with those with which
co-occurs in the corpus, but also with other semantically related words, identified
with the help of external pre-trained embeddings; 2) another one that derives a
novel document representation, inspired by TF-IDF, which is able to incorporate
information from the first component regarding word-to-word relatedness. In
our work, we choose to extend CluWords document representations to explicitly
prioritize NE cues. We further present the original CluWords, followed by the
introduced changes in the next Subsect. 3.2.

The first step of CluWords is to compute a matrix C where each element
Ct,t′ is the cosine similarity (cos) of the embeddings corresponding to the pair
of terms t, t′ P V. C is constrained to be non-negative as it is used to compute
A∗, which is the input to NMF. Thus, a positive cutoff αword is used to select
only the most similar term pairs, and nullify the rest of the matrix:

Ct,t′ “
{

cos(vt, v′
t) if cos(vt, v′

t) ą αword

0 otherwise (1)

Then, the BoW representation is replaced by a TF-IDF-inspired one. Stan-
dard TF-IDF uses the corpus statistics to decrease the weight of very frequent
terms and give more weight to terms that appear only in some contexts, thus
judged more discriminative, while also accounting for term popularity in a doc-
ument. Equation 2 shows how the TF-IDF score is computed for a term t and a
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document d, where tf(t, d) “ Ad,t is the number of times t appears in d and nt

is the number of documents in D where t appears:

tf idf(t, d) “ tf(t, d) · log
( |D|

nt

)
(2)

CluWords replaces t by Ct,: in order to avoid obtaining a very sparse repre-
sentation matrix due to the limited context of each word in short text. Thus, it
redefines the tf and idf (the log ratio) from Eq. 2 to be computed over vector-
based term representations instead of individual frequencies. The new tf∗ and
idf∗ in Eq. 3 incorporate information about semantically similar words to the
term t of a given document d in order to expand the term’s context:

A∗
d,t “ tf∗(d, t) · idf∗(t) “ (AC)d,t · log

( |D|∑
dPD μ(t, d)

)
(3)

μ(t, d) is the mean cosine similarity between the term t and its semantically
related terms t′ in document d denoted Vd,t “ {t′ P d|Ct,t′ �“ 0}, or 0 when the
ratio in the first branch of Eq. 4 is undefined (t is not in d, thus |Vd,t| “ 0):

μ(t, d) “
{ 1

|Vd,t| · ∑
t′PVd,t Ct,t′ if |Vd,t| ą 0

0 otherwise
(4)

Let us note that in the limit case where C is the identity matrix, i.e. each term
is only similar to itself which can be obtained by taking αword “ maxt�“t′ Ct,t′ ,
Eq. (3) becomes equivalent to Eq. (2).

3.2 NE-informed Corpus Embedding (NEiCE)

Our approach NEiCE consists of a preprocessing step followed by a computation
step which creates a new corpus representation matrix ANE leveraging NEs.

Preprocessing Step. We identify NE mentions in podcast titles and descrip-
tions and link them to Wikipedia entities using the Radboud Entity Linker
(REL) system [10]. The REL system is based on multiple modules in pipeline
specific to different sub-tasks: 1) the detection of NE mentions using Flair [1], a
SOTA Named Entity Recognition (NER) framework using contextualized word
embeddings; 2) the disambiguation of the identified entity against a list of pos-
sible Wikipedia candidates and its linking to the final candidate. In this final
linking phase, REL [10] uses Wikipedia2Vec embeddings [34].

The Wikipedia2Vec embeddings that we also leverage in our solution, com-
pared to other embeddings targeting words only [18,19], are learnt jointly for
words and NEs from Wikipedia text. Their learning entails the optimization of
three skip-gram sub-models [34]: 1) a regular word skip-gram; 2) an anchor con-
text model—for each NE mention appearing as a hyperlink in text its surround-
ing words become context; and 3) a link graph model—the entities connected
to a NE in the Wikipedia graph become context. From all the information REL
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returns given a specific input, we use: the Wikipedia page of the disambiguated
NE and the confidence score that helps us to choose if we treat a span of text
as a NE or favour instead to process its words separately.

Finally, when NEs are processed as separate words instead of being linked to
Wikipedia entities, we apply an extra vocabulary cleaning step. As we noticed
that in podcast metadata mentions of actors, athletes, or celebrities were very
common and we want to avoid the extraction of topics focused on names, we
remove these concerned words using the package NameDataset2.

Computation Step. We derive a new corpus representation matrix ANE as
explained next. If NEs are identified in a document with high confidence, then we
exploit this information as the main topic-related cues. One strategy to achieve
this from previous work on regular text [13] is to favour NEs among the top
words to describe topics. Specifically, during preprocessing NEs are treated as
n-gram terms and included in the vocabulary. Then, re-weighting approaches are
applied to these terms before being served as input to a standard or variations
of LDA. The idea behind re-weighting is to associate a larger pseudo-frequency
(tf) to NEs such that they are more likely to be picked as topic descriptors.

Contrary to the above-mentioned approach, our goal is to take into account
NEs without including them in the vocabulary. While indeed humans will find
NEs very expressive to convey topics, this only happens if they already know
them. For popular NEs which typically appear in news data exploited in [13], this
would not necessarily pose a problem. However, the NEs from podcast metadata
tend to be less common or very specific to certain domains, hence less informative
for humans trying to associate a topic label. For instance, “That Peter Crouch
Podcast” requires knowing that Peter Crouch is a footballer before being able
to relate this podcast to football or sport.

The approach we propose is to still use re-weighting to boost NEs importance,
but, instead of directly targeting NEs, focus on their semantically-related words.
Let Ee “ {t|cos(ve, vt) ≥ αent,∀t P V ´ E} be the set of non-NE words from V
most similar to a NE e. Similar to when we computed C, a threshold αent is
applied to fix a minimum cosine similarity value between a pair of Wikipedia2Vec
embeddings involving a NE (e P E) and a word (t P V). Then, we still compute
ANE with Eq. 3, but replace tf∗ with tfNE as follows:

tfNE
d,t “

{
(AC)d,t ` maxt′PVd,t(AC)d,t′ , if t P Ee, e in d and |Vd,t| ą 0
(AC)d,t otherwise (5)

We chose to apply the NE-related re-weighting to the tf factor because we wanted
to use NE-related words as the main signal for topics and the direct frequencies
allowed us to have more control on it, as also emphasized by [13]. Second, there
are two branches depending on whether t is a term very similar to a NE e present
in d. If that is the case, a pseudo-frequency is computed by taking into account

2 https://github.com/philipperemy/name-dataset.

https://github.com/philipperemy/name-dataset
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the maximum in the CluWords tf matrix (tf∗) for a document d. This means
that the words related to a NE e become either as important as the term with
the largest weight (t′) or more important if the word t already appeared in d.

4 Datasets

We start with describing the existing podcast datasets from iTunes [23] and
Spotify [8]. Then, we introduce our newly collected dataset, Deezer, which is
the largest one among the three as shown in Table 2. All these datasets con-
tain podcast metadata, titles and descriptions, in English-language. Metadata is
documented by providers or creators in an RSS feed, used by podcast aggrega-
tors and streaming platforms to make podcasts available to listeners. Although
metadata exists for both podcasts (shows) and episodes within shows, we cur-
rently focus on shows as their information seemed more reliable. By manually
analysing episode metadata in the podcast catalog to which we had access, we
noticed they often lacked description or inherited show description.

The iTunes dataset [23] consists of 10 155 podcasts, popular at the moment
of creation. The Spotify dataset [8] has 105 360 episodes sampled uniformly at
random from podcasts proposed by professional creators (about 10%) and by
amateur creators (about 90%). The metadata of each episode contains the title
and description of the parent show which we extract to create the final dataset
used in the experiments. From these two datasets, we keep podcasts with unique
titles and with the concatenations of title and description longer than 3 terms.
Additionally, for Spotify we select only the podcasts associated with the language
identifiers “en” and “en-US”.

Table 2. Summary of podcast datasets: the number of podcasts, the vocabulary size,
the total number of NE mentions, the total number of podcasts with NEs in metadata,
the mean number of words per title, and the mean number of words per description.

Dataset |D| |V| #NE mentions #podc. with NE #w/title #w/descr.

Spotify 17 456 7 336 20 885 9 198 3.5 38.2

iTunes 9 859 7 331 24 973 6 994 4.9 56.4

Deezer 29 539 14 322 67 083 19 969 4.0 62.6

Deezer differs from the others in that it is the largest. It covers 18 genres
(Culture & Society, Business, Films & Games, Music & Audio Commentary,
Comedian, Sports, Education, Spirituality & Religion, Information & Politics,
Health & Fitness, Art, Entertainment, Lifestyle & Entertainment, Stories &
Fiction, Science, Child & Family, True Crime, and History), with a minimum of
300 podcasts per genre. Although these categories are related to topics, as we
previously discussed in Sect. 1, they tend to be broad and not always reliable.
We could notice a significant overlapping (e.g. Entertainment with Lifestyle &
Entertainment, Stories & Fiction with True Crime, or Sports with Health &
Fitness), but also how a single category gathers multiple topics.
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To create the dataset we randomly sampled from the accessed collection,
public podcasts which had titles and descriptions, and the language identifier
“en”. As the language provided in the metadata was not always reliable, we
also used two automatic language detectors, fastText [12] and CLD3 [27]. We
filtered out podcasts which were not found to be in English by both detectors.
Additionally, we also removed podcasts from unpopular genres (ă300 shows).
Finally, we applied the same preprocessing as for the other two datasets.

Table 2 presents additional statistics of the used datasets. All datasets contain
a large number of NEs and we can find NE mentions in 50%–70% of the podcasts
per dataset. We can also observe that the average number of words per title is
quite similar for all datasets, while the descriptions in Spotify tend to be shorter.

5 Experimental Setup

We describe next the evaluation metric, the detailed preprocessing and experi-
mental setup, and the environment we used for running the models.

We evaluated topic quality by relying on the widely used topic coherence [26].
A set of facts are said to have high coherence if they could support each other. In
topic modeling, this translates into mapping terms on facts and measuring the
extent to which these terms tend to co-occur in corpora. While the spectrum of
word co-occurrence metrics for topic coherence is quite large [21], the exhaustive
search performed in [26] shows that CV correlates best with human judgement
of topic ranking. Thus, we decided to report CV scores in our evaluation. Given
a topic k defined by its T top words t1, t2, ..., tT , CV is defined as:

CV (k) “ 1
T

T∑
i“1

cos(vNPMI(ti), vNPMI(t1:T )) (6)

vNPMI(ti) and vNPMI(t1:T ) yield two vectors computed with the Normalized
Pointwise Mutual Information (NPMI) metric as follows:

vNPMI(ti) “ (
NPMI(ti, tj)

)
j“1,..,T

(7)

vNPMI(t1:T ) “
(

T∑
i“1

NPMI(ti, tj)

)

j“1,..,T

(8)

NPMI(ti, tj) “ log p(ti,tj)
p(ti)p(tj)

´ log(p(ti, tj))
(9)

where p is the probability of a term occurrence or co-occurrence in an external
corpus. We use Palmetto [26] to compute CV for each topic k on Wikipedia as
external corpus, and average over all K topics to obtain an aggregated value.

In all the reported experiments, we fix the number of top words T to 10 and
vary the number of topics K between 20, 50, 100 and 200. During preprocessing,
we keep all the linked NEs whose REL confidence score is higher than 0.9 even
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if they only appear once in the corpus. For normal words, same as in [33], we
filter out from vocabulary those that appear less than 5 times. We also remove
stop words using NLTK [5]. The same preprocessing is applied before each topic
modeling baseline. We evaluate GPU-DMM [15], NQTM [33], SeaNMF [29] and
CluWords [31] with their default hyper-parameters. We assess the original Clu-
Words with both fastText and Wikipedia2Vec embeddings [18].

As discussed in Sect. 3, NEiCE requires two parameters αword and αent. [31]
motivates the choice of αword between 0.35 and 0.4 in CluWords as it allows to
select top 2% of most similar pairs of words. Compared to this approach which
assumes αword mainly dependent on the pre-trained embeddings, we investigate
if it varies per dataset. Thus, we test αword with multiple values (0.2, 0.3, 0.4,
0.5), where larger the value is, fewer words are selected as being semantically-
related to a given term. We proceed similarly for αent. We run the experiments
on an Intel Xeon Gold 6134 CPU @ 3.20 GHz with 32 cores and 128 GB RAM.

6 Results and Discussion

The topic coherence scores obtained by the different topic modeling techniques
for short text are presented in Table 3. First, we could notice that NMF-based
methods (SeaNMF and CluWords) obtain the best scores in most of the cases.
Second, when comparing individual techniques, the ranking depends on the case
(number of topics and dataset), but few trends emerge. SeaNMF yields best
topic coherence for the lowest number of topics (20) on two datasets. Aligned
with the previous literature [31,33], the SOTA models, NQTM and CluWords,
obtain very often the best or second best scores, with CluWords ranking first
in most cases (7/12). These observations support our choices to work in a NMF
framework and devise NEiCE as a CluWord extension, but informed by NEs.

Table 3. Topic coherence scores (CV in %) obtained by baselines on the three podcast
datasets for 20, 50, 100 or 200 topics. CluWords is used with fastText embeddings and
the default αword “ 0.4. Best scores are in bold and second best scores are underlined.

Model Dataset

Deezer Spotify iTunes

20 50 100 200 20 50 100 200 20 50 100 200

GPU-DMM 39.0 38.3 37.6 40.1 39.5 39.4 39.7 40.1 39.6 38.5 42.0 41.1

NQTM 38.5 42.2 42.9 45.8 42.9 41.6 39.3 40.2 48.4 46.6 38.2 42.8

SeaNMF 47.7 40.5 37.3 39.0 45.5 36.4 36.6 35.7 42.2 41.8 35.1 36.9

CluWordsft 39.7 44.0 46.3 54.5 40.2 42.3 43.4 39.5 42.7 40.1 48.6 47.9

Table 4 shows the results for CluWords with Wikipedia2Vec words embed-
dings for different values of αword. As mentioned in Sect. 5, previously [31] this
parameter was fixed depending on the source of embeddings to 0.4 for fast-
Text and 0.35 for word2vec. However, no parameter sensitivity analysis was
conducted, which we do now per dataset. We can see that the choice of αword:
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1) has a significant impact on the results which could vary up to almost 12 per-
centage points for Spotify, K “ 50; 2) is dependent on the assessed case (dataset,
K) which previously was not considered; and 3) some values appear to emerge
as better choices per dataset (e.g. 0.4 for iTunes or 0.5 for Deezer).

Table 4. Topic coherence scores (CV in %) obtained by CluWords for different αword

values (0.2, 0.3, 0.4, 0.5) with Wikipedia2Vec embeddings on the three podcast datasets
for K P {20, 50, 100, 200} topics. Best scores are in bold.

Dataset Deezer Spotify iTunes

20 50 100 200 20 50 100 200 20 50 100 200

CluWordswk(0.2) 41.3 42.8 42.0 45.9 43.2 49.0 41.9 43.0 46.6 46.8 36.6 40.9

CluWordswk(0.3) 39.8 41.3 45.6 44.1 42.8 37.8 46.4 37.8 44.6 40.7 39.0 40.3

CluWordswk(0.4) 40.2 48.7 42.5 44.4 48.4 39.3 41.8 39.9 52.9 48.5 49.6 40.0

CluWordswk(0.5) 43.0 49.1 47.7 41.6 47.3 37.2 49.9 42.7 45.3 40.4 41.1 44.9

Further, we present in Table 5 the topic coherence scores obtained with our
proposed document representation, NEiCE, and different values of αword and
αent. First, we could notice that the introduction of NE cues has a positive
impact and NEiCE obtains larger coherence scores than the baselines in most
cases (datasets and numbers of topics). The average of NEiCE increase over
the best baseline scores is of 15.7% for our best choice of parameters αword and
αent, with a maximum increase of 37.7% on Deezer and K “ 50. Additionally, the
underlined scores in Table 5, which represent scores larger than those obtained
by the baselines, show that, no matter the choice of αword and αent, NEiCE still
yields better topic coherence in a majority of cases (85.4%). The most challenging
case remains Deezer and K “ 200 in which only αword “ 0.5 and αent “ 0.3
lead to a larger score than the best baseline, although the increase is small so
most likely not significant statistically.

Table 5. Topic coherence scores (CV , in %) obtained by NEiCE, our document embed-
ding strategy, for different values of (αword, αent) using Wikipedia2Vec embeddings on
the three podcast datasets. Best scores per dataset and number of topic are in bold.
Scores larger than all baselines presented in Table 3 are underlined.

Dataset Deezer Spotify iTunes

20 50 100 200 20 50 100 200 20 50 100 200

NEiCE (0.2, 0.3) 50.2 48.9 51.4 48.4 51.7 49.0 45.2 46.5 49.3 43.3 49.5 47.0

NEiCE (0.2, 0.4) 53.1 49.2 50.8 50.6 48.7 48.7 43.5 41.7 47.2 49.5 50.7 51.3

NEiCE (0.3, 0.3) 48.5 52.1 51.5 49.8 52.2 49.0 47.5 47.6 50.3 52.5 49.0 48.2

NEiCE (0.3, 0.4) 53.3 50.9 55.3 51.6 50.1 48.5 51.1 49.8 52.5 49.5 49.2 49.8

NEiCE (0.4, 0.3) 53.2 51.5 52.2 50.0 53.2 49.5 50.5 45.9 52.8 50.1 50.6 51.1

NEiCE (0.4, 0.4) 56.4 52.6 48.1 49.0 51.0 48.2 47.3 47.8 52.4 51.9 49.9 47.4

NEiCE (0.5, 0.3) 52.5 56.3 50.8 55.4 51.3 47.7 45.6 45.4 50.6 46.5 46.7 49.0

NEiCE (0.5, 0.4) 56.3 60.6 54.9 53.3 55.0 49.9 46.7 45.0 50.5 52.0 48.7 46.1
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From Tables 4 and 5, we can notice that the best αword in CluWords is not
necessarily the best in NEiCE. For instance, on iTunes, αword “ 0.4 was the best
choice in Table 4, while in Table 5 αword “ 0.2 appears a better choice. Also, the
best pair of values for these parameters seems to depend largely on the case
(dataset and K). Thus, a grid search on a hold-out set is advisable with NEiCE.

Table 6. Topics obtained with NEiCE or NQTM on Deezer and K “ 50.

k NEiCE NQTM

1 mindfulness, yoga, meditation, psychotherapist, beirut, displays,

psychotherapy, psychotherapist, remixes, weddings, adversity, namaste,

hypnotherapy, psychoanalysis, hypnosis, kimberly agenda introducing

therapist, psychology

2 fiction, nonfiction, novel, author, avenues, werewolf, criminal, pure,

book, novelist, horror, cyberpunk, imaginative, strategies, demand,

anthology, fantasy agree, oldies, hang

3 republican, senator, senate, libertarian, hour, sudden, key, genres, keeps,

election, candidate, nonpartisan, round, neighbor, conservatives,

conservative, caucus, liberal realize, fulfillment

We selected some examples of topics obtained with NEiCE and NQTM3

for Deezer and K “ 50 in Table 6. We selected these topics considering the
18 genres introduced in Sect. 4 and assumed them likely related to Health &
Fitness (1), Stories & Fiction or True Crime (2), and Information & Politics (3).
Although NQTM yields more diverse top words, their association with a topic is
less straightforward compared to NEiCE. However, topic 2 in NQTM is clearly
about True Crime, while in NEiCE could be also about Stories & Fiction.

Finally, a qualitative analysis of the topics obtained with NEiCE on Deezer
also revealed that many topics were related to world regions which, although
easy to interpret, may be noisy if too frequent. These results may be related to
the podcasts’ topics, but a more likely explanation is that region-related NEs are
overweighted. Thus, a detailed study of NE weighting in NEiCE is still needed.

7 Conclusion

We presented a detailed study of topic modeling on podcast metadata covering
popular SOTA techniques for short text. Moreover, we proposed NEiCE, a new
NE-informed document representation exploited in a NMF framework, and we
showed it was more effective in terms of topic coherence than the baselines in
various evaluation scenarios including three datasets (one of which, the largest,
being newly released). Future work aims to extend the study at the episode level,
assess the document representation in downstream tasks, gain more insights into
NEiCE especially in relation to the pre-trained embeddings and the choices of
αs, and conduct expert studies with editors to further validate mined topics.
3 CluWords has similar top words as NEiCE for topics 1&2 and did not find topic 3.
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Abstract. We propose a new sentiment information-based attention
mechanism that helps to identify user reviews that are more likely to
enhance the accuracy of a rating prediction model. We hypothesis that
highly polarised reviews (strongly positive or negative) are better indica-
tors of the users’ preferences and that this sentiment polarity information
helps to identify the usefulness of reviews. Hence, we introduce a novel
neural network rating prediction model, called SentiAttn, which includes
both the proposed sentiment attention mechanism as well as a global
attention mechanism that captures the importance of different parts of
the reviews. We show how the concatenation of the positive and nega-
tive users’ and items’ reviews as input to SentiAttn, results in different
architectures with various channels. We investigate if we can improve
the performance of SentiAttn by fine-tuning different channel setups.
We examine the performance of SentiAttn on two well-known datasets
from Yelp and Amazon. Our results show that SentiAttn significantly
outperforms a classical approach and four state-of-the-art rating predic-
tion models. Moreover, we show the advantages of using the sentiment
attention mechanism in the rating prediction task and its effectiveness
in addressing the cold-start problem.

1 Introduction

Rating prediction is a classical recommendation task [22], where the recommen-
dation system aims to accurately predict the user rating of an unseen item,
so as to better estimate which items to recommend to a user. The predictions
are typically based on the existing ratings by users. The rating prediction task
remains a challenging and open problem. Indeed, the effectiveness of existing
rating prediction-based recommendation systems is still limited, suffering from
various types of challenges, including accuracy, data sparsity and the cold-start
problem [4,32]. Therefore, many approaches have been proposed to leverage user
reviews [16,28] – including the sentiment of the reviews [11,17] – to improve
the rating prediction accuracy. Users’ reviews can enrich both user and item
representations, while sentiment information is often useful for extracting user
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preferences [11]. However, not all reviews are useful to enhance the rating predic-
tion performance, since they may convey varying actionable information about
the users’ preferences [1]. Recently, a number of approaches have made use of
the attention mechanism to estimate the usefulness of reviews [1,24]. Attention
mechanism focuses on the parts of review content that contribute to the rat-
ing prediction. While these existing approaches demonstrate that the attention
mechanism can improve the rating prediction performance, they (i.e. [1,24]) do
not leverage the sentiment information actually captured by the reviews.

Given the effectiveness of sentiment information in extracting user prefer-
ences, we hypothesise that sentiment information should also be used in esti-
mating the usefulness of reviews, so as to further improve the rating prediction
performance. Indeed, reviews with a clear polarised sentiment (i.e. positive or
negative) typically convey richer information about items and are more likely
to influence the users’ decision making when interacting with the correspond-
ing items [11]. In the literature, several approaches focused on leveraging the
sentiment information as an additional feature to address the rating predic-
tion task [6,28], while ignoring the potential relationship between the sentiment
polarity and the usefulness of reviews in users’ decision making. In this study, we
propose instead to directly leverage the sentiment scores of reviews to address
the aforementioned limitation. Inspired by Wang et al. [28], the sentiment score
of a review is estimated as the probability of the review having a clear pos-
itive or negative polarity as determined by a sentiment classifier. These sen-
timent scores are then used in a customised attention mechanism to identify
informative reviews with rich user preferences. Hence, SentiAttn assumes that
reviews with clearly pronounced user preferences are useful for effective rating
prediction. In addition, SentiAttn adds another attention mechanism (i.e. global
attention [14]) to capture and model the importance of the parts of reviews that
are likely to enhance the rating prediction performances. On the other hand,
previous works on neural architecture search [7,13] showed that fine-tuning a
neural model architecture could have a marked positive impact on the model’s
performance. To leverage the advantage of fine-tuning the neural models’ archi-
tectures, in this paper, we propose a strategy where we first concatenate the
users’ and items’ positive and negative reviews as input to SentiAttn, result-
ing in different SentiAttn architectures with various number of channels (e.g. if
we concatenate all reviews for both users and items, then this leads to a single
channel-based SentiAttn model). Next, we fine tune the architecture variants of
our proposed SentiAttn model with different channel setups on the validation
sets of two datasets from Yelp and Amazon, so as to optimise the performances
of SentiAttn on different datasets.

Our contributions in this paper are as follows: (1) We propose a new sen-
timent information-based attention mechanism, which weights the usefulness of
reviews by their corresponding sentiment scores. These scores reflect the user
preferences since they convey a clear sentiment. To the best of our knowledge,
this is the first model to directly encode sentiment information for identify-
ing review usefulness in rating prediction; (2) We examine the impact of the
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resulting SentiAttn model architectures using different channels on their rating
prediction performances. This examination is conducted by fine tuning the archi-
tectures on the validation sets of the Yelp and Amazon datasets; (3) We show
that SentiAttn achieves a significantly better rating prediction accuracy than one
classical (NMF [10]) and four existing state-of-the-art rating prediction models
(namely, ConvMF [8], DeepCoNN [32], D-Attn [24] and NARRE [1]) over two
datasets; (4) We show that SentiAttn is particularly effective in addressing the
cold-start problem in comparison to the existing baselines.

2 Related Work

In this section, we briefly discuss two bodies of related work.
Review-based Rating Prediction: Several studies have exploited user
reviews to improve rating predictions [27,29,32]. Many earlier studies used
topic modeling techniques (e.g. Latent Dirichlet Allocation (LDA)) to model
user reviews [12,17]. However, with the emergence of word embedding [18]
techniques, it has been shown that rating prediction models based on word
embeddings can outperform such topic modelling-based approaches. For exam-
ple, Zheng et al. [32] proposed a deep learning model that initialised both the
user and item matrices with word embeddings before jointly modelling the users
and items to make rating predictions. However, not all user reviews provide
useful information to enhance the rating prediction performance. With this in
mind, some previous studies, e.g. [1,24], have applied an attention mechanism
to identify useful reviews to improve rating predictions. Seo et al. [24] devel-
oped two attention mechanisms to learn review usefulness, i.e. local and global
attention mechanisms to generate explainable and better-learned review repre-
sentation latent vectors. Chen et al. [1] initialised user/item latent vectors with
review embedding vectors and the corresponding identification information. The
authors used a typical attention mechanism to model the latent vectors. However,
although the attention mechanism can be effective for modelling the usefulness
of reviews, the attention mechanism does not consider the sentiment information
of reviews. Sentiment information has been shown to enhance the rating predic-
tions in many studies [15,26,31] (we discuss in the remainder of this section).
In this paper, unlike prior work, we propose to directly leverage the sentiment
information within a customised attention mechanism when addressing the rat-
ing prediction task.
Sentiment-enhanced Recommendation: Recently, sentiment-enhanced rec-
ommendation approaches have benefited from deep-learning techniques. For
example, Wang et al. [28] examined the performance of different state-of-the-
art sentiment classification approaches (e.g. CNN [9] and LSTM [5]) to generate
review sentiment polarity scores, and then validated the usefulness of sentiment
information by replacing user ratings with such sentiment scores for making rec-
ommendations. Chen et al. [1] used a convolution operation to convert reviews
into latent vectors to represent review sentiment information, thereby enhancing
the rating prediction performance. These studies validated the usefulness of using



490 X. Wang et al.

sentiment information to identify user preferences in user reviews. Therefore, we
postulate that sentiment information can also be useful for identifying useful
reviews. To the best of our knowledge, our proposed SentiAttn model is the first
sentiment-enhanced recommendation approach to use sentiment information to
weight review usefulness in an attention neural network architecture.

3 The SentiAttn Model

In this section, we first state the rating prediction task and the notations used.
Next, we illustrate the motivation of using sentiment information to identify
useful reviews and describe our proposed SentiAttn rating prediction model.

Table 1. Review examples with sentiment information.

Positive and High Sentiment Score

Rating: 5
Sentiment Score: 0.9726
Category: grocery and gourmet food

Review 1: This beverage is so delicious.
I would like to order more in the future.
I drink it to relax

Positive but Low Sentiment Score

Rating: 5
Sentiment Score: 0.1783
Category: grocery and gourmet food

Review 2: My husband insists on making
his own yogurt and won’t use any other
starter. This assures the same consistency
month after month

Fig. 1. The architecture of the SentiAttn model

3.1 Task Definition

The rating prediction task aims to predict the ratings of unseen items. Consider
a set of users U and items I (of size m and n, respectively). We also have the
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one-hot embedding vectors EU and EI , which map users and items to different
randomly initialised vectors. User ratings can be encoded in a rating matrix
R ∈ R

m×n, where entries ru,i ∈ R represent the previously observed ratings
with a range from 1 to 5. In rating prediction, we aim to accurately predict the
rating ru,i of an unseen item i for user u. Moreover, each rating ru,i is associated
with a textual review cu,i. As discussed in Sect. 1, for each review cu,i, we also
estimate a corresponding sentiment score su,i, which indicates the probability of
the review being polarised, i.e. being strongly positive or strongly negative.

3.2 Review Sentiment Information Analysis

To motivate the use of sentiment information in identifying useful reviews, we
provide two illustrative review examples in Table 1. The sentiment score corre-
sponds to the probability of a given review being polarised, as further explained
in Sect. 3.3. These two reviews are both positive and 5 star-rated. However, when
we compare these two reviews, Review 1 better conveys the user’s preferences,
while Review 2 simply describes a personal event, making it hard for the model
to capture the user’s preferences. Therefore, Review 1 is deemed more useful
than Review 2. In particular, the sentiment scores of Reviews 1 and 2 clearly
mirror their usefulness difference (Review 1 is scored 0.9726 as being strongly
positive while Review 2 is scored 0.1783 only). Therefore, we propose to leverage
the relationship between the sentiment scores and the usefulness of reviews in
SentiAttn. Our model identifies useful reviews via a novel sentiment information-
based attention mechanism to improve the rating prediction performance.

3.3 Model Architecture

To encode the review usefulness information through their sentiment scores,
SentiAttn first uses a customised sentiment attention mechanism to embed the
review usefulness information. Next, it integrates another global attention mech-
anism [14] to capture the parts of reviews that are likely to enhance the rating
prediction performance. The architecture of SentiAttn (Fig. 1) comprises eight
layers from the input to the rating prediction layer, described further below:

Input and Embedding Layers: In the input layer, users are represented
by the reviews they have posted for items while items are represented by the
reviews given by users. In particular, the input layer groups reviews into positive
and negative reviews according to their corresponding rating values. If the rating
ru,i ≥ 4, the review cu,i is positive, else, if the rating ru,i ≤ 2, the review cu,i
is negative. A review cu,i with a rating of ru,i = 3 or with no provided rating
is classified as positive or negative according to a CNN-based binary sentiment
classifier (described further in Sect. 4.3). Therefore, our SentiAttn model can be
divided into four parallel networks (i.e. four channels), which model the positive
and negative reviews for users and items. The architecture of our SentiAttn
model is flexible and can possibly have two additional variants (i.e. one channel
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Fig. 2. Architectures of the original SentiAttn four channels-based model and its vari-
ants (i.e. one and two channels-based) .

or two channels-based). As shown in Fig. 2, instead of modelling the polarised
reviews for user and items individually, we can concatenate all the reviews for
the user or the item, resulting in the two channels-based SentiAttn model vari-
ant. Moreover, if we further concatenate all the reviews of the user and the
item together, we can obtain the one channel-based SentiAttn model variant.
In particular, for each resulting channel, its review modelling pipeline remains
the same as each individual channel depicted in Fig. 1. It is of note that the
one channel-based model variant can only be leveraged by a model that uses
a value mapping-based predictor (e.g. the factorisation machine and the multi-
layer perceptron) and not an interaction-based predictor (e.g. the dot product
function), which needs at least two inputs. In this paper, we investigate which
SentiAttn model variant exhibits the best performances on the used datasets.
Next, following [1,32], in the embedding layer, we convert the reviews text into
embedding vectors, denoted as X, which are then given as input to the next
layer.
Sentiment Attention Layer: In this layer, we customise a sentiment atten-
tion mechanism to encode the usefulness of reviews. Our sentiment attention
mechanism is inspired by the dot-product attention function [25], which learns
the importance (weight) of different embedding vectors. Then, it multiplies the
resulting weighting vectors with the initial word embedding vectors to apply the
attention mechanism. Unlike the dot-product attention function, our sentiment
attention mechanism obtains the weighting vectors from the sentiment scores
of the reviews. These sentiment scores can enrich the user’s information and
might be helpful in addressing the cold start problem. First, the reviews have
been labeled as positive or negative in the previous layer. After that, we pro-
cess these reviews with a given sentiment classifier and obtain the corresponding
probabilities of the positive reviews being positive or the negative reviews being
negative (denoted as pu,i, which naturally ranges from 0 to 1). The correspond-
ing sentiment scores for the positive reviews are su,i = pu,i. Conversely, we use
su,i = 1 − pu,i for the negative reviews. Hence, the sentiment score indicates the
probability of a given review being polarised (positive or negative), and a review
is deemed more useful if its sentiment score is closer to 1. Next, with a given
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review embedding vector X, and its sentiment score vector S, the converted
vector X ′ is calculated as X ′ = ((SXT )T ⊕X), where ⊕ is a residual connector.
Convolutional Layer Our SentiAttn model applies the convolution operation,
as in [24,32], on the latent vector X ′ with g neurons to generate feature vectors
for the next layer. Each neuron applies the convolution operation to a sliding
window t over latent vectors with width T . The convolution operation of neu-
ron e is obtained as follows: ze = f(X ′

1:T ∗ Ke + be), where f(.) indicates an
activation function to filter the output of the convolution operation, ∗ is the
convolution operator of neuron e on the corresponding window of vectors and be
is a bias parameter [8]. After applying the convolution operation, we apply the
max pooling function over the output feature vectors, denoted as Z, and obtain
the resulting vector o for each neuron (i.e. o = max(z1, z2, ..., zT−t+1

e )). Next,
the outputs of the g neurons are concatenated together into the latent vector
Xc.
Global Attention Layer: Apart from the proposed sentiment attention layer,
we also use the global attention mechanism from [14]. Accordingly, we add the
global attention layer to SentiAttn to model the parts of review content that are
likely to contribute to enhancing the rating prediction performances. In partic-
ular, the global attention mechanism considers all review embeddings as input
and calculates the global attention score vector G of the embedding input Xc:
G = SoftMax(WgXc). The embedding input Xc is then further weighted by the
global attention score vector G as Xg = (GXT

c )T . After the global attention
layer, we add another convolutional layer, which is the same as the one above
the sentiment attention layer, to process the review embeddings. We use the
outputs from the convolutional layer as the final latent feature vectors for each
channel.
Concatenation and Prediction Layer: In the concatenation layer, we con-
catenate the latent vectors from two groups of inputs: (1) the resulting latent
feature vector from the last convolutional layer of the review modelling chan-
nels; (2) the one-hot embedding vectors of each user and item. We refer to
the concatenated vector as o. Next, in the prediction layer, we use a two-
order factorisation machine [20] as the rating predictor, which is capable of
capturing the patterns in data to improve the model’s performance [30]. This
predictor has also been widely used in the literature to address the rating
prediction task [2,3,21]. Each predicted rating r̂u,i is calculated as follows:
r̂u,i = w0+bu+bi+(

∑|o|
j=1 wjoj)+(

∑|o|
j=1

∑|o|
k=j+1 ojokwj,k). This equation has

five summands: w0 is the global bias parameter [20]; next, bu and bi correspond
to the bias parameters for user u and item i, respectively; in the fourth sum-
mand, wj models the weight of the jth variable in o; the final summand models
the interactions between pairs of variable vectors oj and ok in o, weighted by
a factorised parameter wj,k ≈ 〈vj ,vk〉 as in [20]. SentiAttn is trained by min-
imising the prediction error between the true rating value ru,i and the predicted
rating value r̂u,i with the MSE function.
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4 Experimental Setup

We now examine the performance of SentiAttn through experiments on two real-
world datasets, in comparison to a number of classical and state-of-the-art rat-
ing prediction models. In particular, we address three research questions: RQ1:
Which architecture variant of the SentiAttn model (based on 1, 2 or 4 channels)
performs the best on the two used datasets? RQ2: Does SentiAttn outper-
form other state-of-the-art models in addressing the rating prediction task and
how much does it benefit from (i) the proposed sentiment attention mechanism
and (ii) the global attention mechanism? RQ3: Does SentiAttn outperform the
existing baselines when making rating predictions for cold-start users?

4.1 Datasets

To perform our experiments, we use two popular real-world datasets [17,24]: (i) a
Yelp1 dataset, and (ii) an Amazon Product dataset2. The Yelp dataset contains a
large number of reviews on venues located in Phoenix, USA. The Amazon dataset
contains reviews on products among six categories3. The statistics of these two
datasets are in Table 2. Following a common setup [1,32], these two datasets are
randomly divided into 80% training, 10% validation and 10% testing sets. More-
over, we follow [6] and denote those users with less than 5 reviews in the training
dataset as the cold-start users. Table 2 shows that the Yelp dataset is more sparse
(i.e. has a lower density4) than the Amazon dataset. This observation suggests
that the data sparsity’s influence might be amplified in a given model’s perfor-
mance when experimenting with the Yelp dataset. Moreover, as per the positive
rating percentages in Table 2, most user reviews are positive in both datasets.

Table 2. Statistics of datasets.

Dataset #Users #Cold-start Users #Items #Reviews % Density % Positive ratings

Yelp 45,981 33,306 11,537 229,907 0.043 67.88

Amazon 26,010 7,874 16,514 285,644 0.066 81.24

4.2 Baselines and Evaluation Metrics

We compare our SentiAttn model5 to the following 5 baselines: (1) NMF [10]:
NMF is a widely used classical baseline, which characterises users and items with

1 https://kaggle.com/c/yelp-recsys-2013.
2 http://jmcauley.ucsd.edu/data/amazon/.
3 ‘amazon instant video’, ‘automotive’, ‘grocery and gourmet food’, ‘musical instru-

ments’, ‘office products’ and ‘patio lawn and garden’.
4 % Density = #interactions / (#users × #items)).
5 Our source code is available at: https://github.com/wangxieric/SentiAttn.

https://kaggle.com/c/yelp-recsys-2013
http://jmcauley.ucsd.edu/data/amazon/
https://github.com/wangxieric/SentiAttn
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their rating pattern-based latent vectors. (2) ConvMF [8]: ConvMF extends
the latent feature vectors in NMF with the embedding vector of reviews. (3)
DeepCoNN [32]: DeepCoNN jointly models reviews to characterise users and
items with latent vectors. This approach has been widely used as a strong review-
based rating prediction model. (4) D-Attn [24]: D-Attn is another review-based
rating prediction model that includes two global and local attention mechanisms.
D-Attn is another review-based rating prediction model. It includes two global
and local attention mechanisms, to improve the explainability and rating predic-
tion accuracy of a rating prediction model. (5) NARRE [1]: NARRE is a recent
state-of-the-art attention-based rating prediction model. It weights reviews by
its learned review usefulness scores. These scores are estimated through the use
of an attention mechanism. Moreover, we examine the effectiveness of using our
proposed sentiment attention mechanism in comparison to three further base-
lines derived from SentiAttn as follows: One baseline removes both attention
layers in the SentiAttn model (denoted by ‘Basic’), while ‘+Glb’ and ‘+Sent’
add the global attention layer and the sentiment attention layer to the Basic
model, respectively. As for the evaluation metrics, we use Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) to measure the performances of
SentiAttn and the baselines, which are the commonly used metrics to evaluate
rating prediction models [1,11,32]. In order to examine the statistical signifi-
cance of the models’ performances, we leverage both the paired t-test, with a
significance level of p < 0.05, and the post-hoc Tukey Honest Significant Differ-
ence (HSD) [23] test at p < 0.05 to account for the multiple comparisons with
the t-tests6.

4.3 Model Setting

In the input layer, we use an existing CNN-based binary sentiment classifier
to group reviews into positive and negative reviews, which has been shown to
have a strong accuracy (>95%) for sentiment classification [28]. Other sentiment
classifiers could have been used, but the investigation of such classifiers is beyond
the scope of this paper. For the used CNN-based binary sentiment classifier, we
follow the same experimental setup as [28] and train it on 50,000 positive and
50,000 negative review instances that were sampled from a separate dataset,
namely the Yelp Challenge Round 12 dataset7.

Moreover, the classifier provides each review with its probability pu,i of car-
rying a strong polarised sentiment, so as to generate a sentiment score su,i in
the sentiment attention layer, as explained in Sect. 3.3. Next, in the embedding
layer, we use the pre-trained GloVe [19] word embedding dictionary8, follow-
ing [28], and map each word into an embedding vector with 100 dimensions. In

6 Since RMSE is a non-linear aggregation of squared absolute errors, a significance
test cannot be conducted with this metric.

7 https://www.yelp.com/dataset/challenge.
8 We also apply the pre-trained GloVe word embeddings within the baseline

approaches, which ensures fair performance comparisons between approaches.

https://www.yelp.com/dataset/challenge
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the convolutional layer, following [24], we set the kernel size to 100 and the acti-
vation function to ReLU. In particular, we use the Adam optimiser with a 10−4

learning rate. Moreover, it is of note that, to answer RQ1, which investigates
the performances of the considered SentiAttn architecture variants, we conduct
experiments on the validation sets from the Yelp and Amazon datasets to select
the best SentiAttn architecture – thereby mimicking the use of the validation
sets for model selection.

(a) Amazon-MAE (b) Amazon-RMSE

(c) Yelp-MAE (d) Yelp-RMSE

Fig. 3. Validation performances of the SentiAttn variants with different #channels.

5 Results

Next, we report and analyse our obtained results:
Performances of Architecture Variants (RQ1). We investigate which of
the SentiAttn model architecture variants leads to the best rating prediction
performances. In Fig. 3, we report the performances of the three considered archi-
tecture variants of the proposed SentiAttn model (namely the one, two and four
channels-based SentiAttn architectures). Since we are using the MAE and RMSE
error-based evaluation metrics, the lower the metrics’ values, the higher is the
model’s rating prediction performance. First, we compare the performances of
the SentiAttn variants on the Amazon dataset in Fig. 3(a) and Fig. 3(b). For
both MAE and RMSE, the three variants show similar trends and performances
and are overall comparable. However, on the Yelp dataset, Fig. 3(c) and Fig. 3(d)
show that the SentiAttn model with one-channel consistently outperforms both
the original SentiAttn model with four channels and the two channels-based
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variant. Using the six components of the Amazon dataset corresponding to each
of the categories in Footnote 3, we conducted a further analysis to examine the
correlation between a given dataset’s statistics and the performances of Senti-
Attn with different number of channels. The results of our analysis suggest that
the higher the density of interactions in a dataset, the better a variant of Senti-
Attn with a larger number of channels performs9. Overall, in answer to RQ1, we
conclude that a higher number of channels is preferred for datasets with high
density of interactions. As per these results, we select the overall best variant
model, namely the one channel-based SentiAttn model for the remaining exper-
iments.

Table 3. Rating prediction accuracy; * denotes a significant difference in MAE with
SentiAttn with respect to both the paired t-test and the Tukey HSD test, p < 0.05.

All Users Cold-Start Users

Yelp Dataset Amazon Dataset Yelp Dataset Amazon Dataset

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
NMF 0.9866* 1.2630 0.8240* 1.0881 NMF 1.1690* 1.5025 0.9040* 1.1843
ConvMF 0.9748* 1.2329 0.7964* 1.0371 ConvMF 1.0785* 1.3812 0.8565* 1.1154
DeepCoNN 0.9247* 1.1885 0.7233* 0.9929 DeepCoNN 1.0462* 1.3506 0.7882* 1.0749
D-Attn 1.0040* 1.2106 0.8316* 1.0627 D-Attn 1.0154* 1.2394 0.8738* 1.1029
NARRE 0.9163* 1.1781 0.7065* 0.9783 NARRE 1.0289* 1.3481 0.7613* 1.0587
Basic 0.9084* 1.1769 0.7060* 0.9769 Basic 1.0003* 1.3602 0.7451* 1.0520
+Glb 0.8947 1.1734 0.6960 0.9723 +Glb 0.9867 1.3544 0.7253 1.0460
+Sent 0.8932 1.1476 0.6957 0.9685 +Sent 0.9817 1.2408 0.7190 1.0375
SentiAttn 0.8888 1.1463 0.6841 0.9668 SentiAttn 0.9736 1.2327 0.7090 1.0273

Comparison to the Baselines (RQ2). Table 3 presents the rating predic-
tion errors of both the baseline models and SentiAttn. First, in the obtained
results for both the Yelp and Amazon datasets, SentiAttn significantly outper-
forms the baselines according to both the paired t-test and the Tukey HSD test.
In particular, while D-Attn, NARRE and SentiAttn all use an attention mech-
anism to weight reviews with their estimated usefulness, our SentiAttn model,
which relies on a novel sentiment attention and a global attention mechanism
returns significantly smaller prediction errors in comparison to competitive base-
lines on both the Yelp and Amazon datasets. We also evaluate the usefulness of
the global attention layer and the proposed sentiment attention layer in Senti-
Attn by comparing the performances of SentiAttn with the Basic, +Glb, and
+Sent models (introduced in Sect. 4.2). Table 3 shows that SentiAttn signifi-
cantly ( according to both the paired t-test and the Tukey HSD test, p < 0.05)
outperforms the Basic model on both used datasets, which demonstrates the
effectiveness of using the attention mechanisms. Moreover, the results show that
the sentiment attention mechanism outperforms the global attention mecha-
nism since it results in lower MAE and RMSE scores (0.8932 vs. 0.8947 (MAE)

9 Due to the page limit, we do not include these experimental results in the paper.
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and 1.1476 vs. 1.1734 (RMSE) for +Sent vs. +Glb in Table 3). In particular, we
observe that the sentiment attention mechanism is especially effective in decreas-
ing the variance of the rating prediction errors. Indeed, +Sent outperforms both
Basic and +Glb providing lower RMSE scores with wide margins on both used
datasets.

To further examine the effectiveness of the proposed sentiment attention
mechanism, we conducted further analysis on the results of both datasets. We
averaged the sentiment scores of the reviews posted by a given user. We group
users into two groups: ‘sentiment-polarised’ vs. ‘sentiment-neutral’ users. On the
Yelp dataset, the sentiment-polarised users have average review scores > 0.88,
while the sentiment-neutral users have average scores ≤ 0.8810. This leads to
25155 sentiment-polarised and 20826 sentiment-neutral users. We would expect
the proposed sentiment attention mechanism to mostly benefit the sentiment-
polarised users since these users have more reviews that clearly convey their pref-
erences. Next, we compare performances between the global attention ‘+Glb’ and
the sentiment attention ‘+Sent’ models. The results on Yelp show that ‘+Sent’
significantly outperforms ‘+Glb’ for 51.6% of the sentiment-polarised users and
43.3% of the sentiment-neutral users (using a paired t-test on users with the
MAE metric). Contrastingly, ‘+Glb’ significantly (paired t-test) outperforms
‘+Sent’ for 38.3% of the sentiment-polarised users and 48.1% of the sentiment-
neutral users. These results indicate that the proposed sentiment attention mech-
anism can indeed help the sentiment-polarised users, but does not exhibit better
performances than using the global attention mechanism if most of the users’
reviews do not contain highly polarised reviews (i.e. sentiment neutral users).
We observed similar conclusions on the Amazon dataset. To answer RQ2, we
conclude that the obtained results empirically validate the effectiveness of our
SentiAttn model in addressing the rating prediction task in comparison to strong
baseline models. The results also show the effectiveness of using the sentiment
attention mechanism – which weights the review input according to the corre-
sponding review sentiment scores – thereby outperforming the global attention
mechanism.
Cold-Start Users (RQ3). We now evaluate the rating prediction performance
of SentiAttn on cold-start users. As introduced in Sect. 4.1, we consider users in
the training dataset with less than 5 reviews as cold-start users. Table 3 provides
the rating prediction performances of SentiAttn and the various baseline models
on both the Yelp and Amazon datasets for cold-start users. The results show
that our SentiAttn model obtains a good cold-start performance by significantly
outperforming all the strong baseline approaches from the literature on the Yelp
and Amazon datasets. Comparing the rating prediction results in Table 3 on the
Yelp dataset, we note that as expected from the statistics of this dataset, the
rating prediction performances of all models suffer from the cold-start problem.
However, the cold-start problem appears to have only a small negative influence
on the D-Attn model. To investigate the reasons behind the relative effectiveness
of D-Attn in addressing the cold-start problem, we plot the predicted rating

10 The threshold (0.88) is the mean value of the reviews’ sentiment score distribution.
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(a) Target (b) D-Attn (c) SentiAttn

Fig. 4. Cold-start user rating prediction performance comparison (D-Attn vs. Senti-
Attn) on the Yelp dataset.

value frequency distribution of the cold-start users on the Yelp dataset using
both D-Attn and our SentiAttn model in Figs. 4(b) and 4(c), respectively. These
distributions are compared with the target rating distribution in Fig. 4(a). In
Fig. 4(b) of the D-Attn model, the predicted rating values shrink between around
3.55 and 3.80, which are all close to the average of the target rating value (i.e. R =
3.7609). This distribution shows that the performance of D-Attn is less reliable
in distinguishing the actual user preferences. On the contrary, in Fig. 4(c), the
predicted rating value frequency distribution of our SentiAttn model ranges from
0 to 5 and its shape better aligns with the actual rating distribution of the Yelp
dataset in Fig. 4(a).

We also compare the impact of using two attention mechanisms in addressing
the cold-start problem. According to the results in Table 3, our sentiment attention
mechanism outperforms the global attention mechanism in improving the rating
prediction accuracy of the Basic model (e.g. 1.0003 → 0.9817 vs. 1.0003 → 0.9867
on the Yelp dataset) and lowers the variances of the rating prediction errors with
a wider margin. For example, on the Yelp dataset, the Basic model benefits from
using the global attention mechanism and lowers the RMSE score from 1.3602 to
1.3544. However, when applying the sentiment attention mechanism, the RMSE
score of the Basic model is decreased from 1.3602 to 1.2408, indicating a higher
improvement than when applying the global attention mechanism. Therefore, in
answer to RQ3, our SentiAttn model is particularly effective for the cold-start users
compared with the five strong baselines from the literature. Our sentiment atten-
tion mechanism also shows its usefulness in improving the rating prediction accu-
racy, especially lowering the variance of the rating prediction errors for cold-start
users. In particular, SentiAttn is more reliable than D-Attn in identifying user pref-
erences, as illustrated by the predicted rating distributions.

6 Conclusions

In this paper, we proposed the SentiAttn model, which leverages user reviews
as input and deploys a new sentiment attention mechanism. The latter encodes
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user preferences by initialising the weights of different reviews with their sen-
timent scores. SentiAttn also integrates a global attention mechanism, which
captures the importance of different parts of the review’s content. We investi-
gated the effect of using different architecture variants for our SentiAttn model
and concluded that a higher number of channels is preferred for datasets with a
higher density of interactions. Our results on two real-world datasets showed
that SentiAttn significantly and consistently outperformed four existing state-of-
the-art rating prediction models. Moreover, we demonstrated the effectiveness of
the proposed sentiment attention layer within SentiAttn. We showed that it out-
performs the global attention layer in improving the rating prediction accuracy,
resulting in a lower variance of the rating prediction errors. Furthermore, we
showed that SentiAttn provides a significantly effective rating prediction accu-
racy and a reliable indication of user preferences for cold-start users. As future
work, we plan to consider other review properties (e.g. such as review age) as
additional features within SentiAttn to more accurately measure the usefulness
of reviews.
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Abstract. Technology-assisted review (TAR) refers to iterative active
learning workflows for document review in high recall retrieval (HRR)
tasks. TAR research and most commercial TAR software have applied
linear models such as logistic regression to lexical features. Transformer-
based models with supervised tuning are known to improve effectiveness
on many text classification tasks, suggesting their use in TAR. We indeed
find that the pre-trained BERT model reduces review cost by 10% to 15%
in TAR workflows simulated on the RCV1-v2 newswire collection. In
contrast, we likewise determined that linear models outperform BERT
for simulated legal discovery topics on the Jeb Bush e-mail collection.
This suggests the match between transformer pre-training corpora and
the task domain is of greater significance than generally appreciated.
Additionally, we show that just-right language model fine-tuning on the
task collection before starting active learning is critical. Too little or too
much fine-tuning hinders performance, worse than that of linear models,
even for a favorable corpus such as RCV1-v2.

1 Introduction

High recall retrieval (HRR) tasks (also called annotation tasks) involve identify-
ing most or all documents of interest in a large collection. HRR tasks include elec-
tronic discovery in the law (eDiscovery) [3], systematic review in medicine [22–
24,47], document sensitivity review [34], online content moderation [55], and
corpus annotation to support research and development [60].

Technology-assisted review (TAR) refers to the automated methods to reduce
the number of documents reviewed in HRR projects [36]. Iterative, pool-based
active learning of predictive models for review prioritization is the most com-
monly applied workflow [9,10]. Linear models such as logistic regression and
support vector machines (SVMs) applied to lexical and metadata features are
the most common supervised learning approaches. Unlike in classification and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 502–517, 2022.
https://doi.org/10.1007/978-3-030-99736-6_34
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adhoc retrieval tasks, the supervised learning model in TAR is typically dis-
carded after use. This is because each legal case or other project has its own
retrieval objective, and because of concerns of leaking confidential information.
Therefore, the cost of training the supervised learning model in TAR often can-
not be amortized over future data or across tasks.

Pre-trained transformers [46] such as BERT [12], GPT-3 [5], and T5 [38]
are effective at a variety of natural language processing tasks. These models
learn linguistic patterns from very large corpora in an unsupervised fashion
(pre-training) and can be tuned to language characteristics of a particular task
data set (LM fine-tuning) [12,19]. They can then be applied to a task on that
data set by zero-shot transfer learning [32,49] or by task fine-tuning to labeled
training data [20,58]. Transformers have improved effectiveness at tasks related
to HRR such as document classification [1], entity extraction [12], and adhoc
retrieval [33]. This has inspired initial commercial use of transformers by eDis-
covery providers, though not yet in an active learning context.1

We are not aware of published studies of transformers in TAR workflows.
Several studies have evaluated task fine-tuning using active learning [30,44],
including for text classification tasks [13,59]. These studies, however, have eval-
uated generalization to new data using training/test splits. HRR, like relevance
feedback in adhoc search [42], is a transductive setting: evaluation is on the same
task corpus from which the training data is selected by active learning.

The transductive setting makes of less importance a key advantage of trans-
formers over traditional methods: their inclusion of language-wide linguistic reg-
ularities that might be present in unseen test data. It has already been demon-
strated by Gururangan et al. [18] that BERT is more effective when the target
task domain is similar to the ones on which BERT was trained (English language
books [61] and English Wikipedia). Active learning also reduces transformer
advantage, by reducing the labeling cost to learn corpus-specific vocabulary and
regularities. Finally, the short useful life of TAR models means limited opportu-
nity to amortize training cost, raising questions about the large computational
cost of task fine-tuning for transformers.

The recent TREC-COVID evaluation provides evidence both in favor and
against transformers. A SciBERT-based zero-shot reranker of BM25-based text
retrieval topped several of the Round 1 evaluation measures [31,32]. On the other
hand, another transformer-based effort (which omitted language model fine tun-
ing) struggled [29], a number of other deep learning efforts had mediocre effec-
tiveness, and classic linear models based on lexical features and trained by active
learning were highly competitive (leading on one measure) [31,48]. Recently,
Ioannidis [21] evaluated BERT and PubMedBERT [17] on CLEF eHealth Tech-
nology Assisted Reviews in Empirical Medicine Task [22,23]. Despite the claim,
Ioannidis [21] considered a simple ranking and classification setting instead of
an iterative task.

Against this context, we provide the first demonstration of fine-tuned
transformer-based models in the TAR transductive active learning setting. We

1 https://www.nexlp.com/blog/nexbert-story-engine-cloud.

https://www.nexlp.com/blog/nexbert-story-engine-cloud
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use BERT [12] as a representative transformer. We fine-tune the language model
to each of two (unlabeled) task corpora using a masked language modeling objec-
tive, kick off each prioritization task on that corpus with a single positive exam-
ple, and do task fine-tuning of BERT on each TAR active learning iteration.

Surprisingly, despite the past success stories of BERT in dramatically advanc-
ing the retrieval effectiveness, in our work, we found that it only performs on
par with the simple logistic regression model due to the transductivity of HRR.
On the contrary, under certain scenarios, the BERT model reduces the total
reviewing cost, which is the primary objective of HRR tasks. Given its data-
hungry property, this cost reduction is counterintuitive but yet very favorable.
We highlight our contributions in the following,

– First, we find that language model fine-tuning to the task corpus before active
learning is critical, but also that too much of it can be done.

– Second, we find language model fine-tuning is not a cure-all for domain mis-
match. Our fine-tuned BERT model beats linear models on a data set (RCV1-
v2) similar to the text types on which BERT was trained, but falls short when
operating with very different textual characteristics.

– Finally, we provide a running time analysis to demonstrate the computational
overhead for applying BERT.

2 Background

HRR projects typically balance thoroughness versus cost by setting a recall tar-
get that is high, but below 100%. Targets such as 80% recall are common in
eDiscovery [41] and are sometimes encoded in legal agreements [54]. System-
atic review often shoots for 95% recall (on smaller and more homogeneous col-
lections) [22,23]. Recall is defined as the number of relevant documents found
among the reviewed documents, divided by the number of relevant documents in
the defined collection of interest (e.g., all emails from a set of employees relevant
to a legal case, or all biomedical research papers that have passed a keyword
screening).

TAR workflows reduce costs by using iterative active learning to prioritze
batches of documents for review. One-phase TAR workflows continue this process
until a stopping rule indicates that the reviewed documents have met the recall
target [9]. Two-phase workflows have a training phase followed by a classification
phase (on the same data set), with review done in both phases [34,54]. Designing
stopping rules that determine as early as possible that a recall target has been
reached is an active research area [6,10,11,26,28,43,47,53], but we design our
evaluation to avoid the selection and the error incurred by the stopping rule
based on the prior studies in TAR cost evaluation [54].

Evaluation for HRR emphasizes a recall/cost tradeoff rather than the related
recall/precision tradeoff. In eDiscovery, Depth for recall (DFR@x) is the propor-
tion of the collection reviewed to hit a recall target x.2 Systematic review uses
2 https://www.gibsondunn.com/wp-content/uploads/documents/publications/

Evans-Metrics-that-Matter-Inside-Counsel-1.2015.pdf.

https://www.gibsondunn.com/wp-content/uploads/documents/publications/Evans-Metrics-that-Matter-Inside-Counsel-1.2015.pdf
https://www.gibsondunn.com/wp-content/uploads/documents/publications/Evans-Metrics-that-Matter-Inside-Counsel-1.2015.pdf
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Work saved over sampling (WSS@x), which subtracts DFR@x from the expected
cost to hit the recall target by random sampling: WSS@x = x − DFR@x [8].
Some early HRR studies also use R-Precision (precision at R where R is the
number of relevant documents) [16,41] to capture the effectiveness to lower part
of the rank as opposed to Precision at 5 or 10 in adhoc retrieval.

However, these evaluation metrics do not consider the cost of obtaining the
labels for training documents. In this study, we adapt the cost evaluation of TAR
proposed by Yang et al. [54] to jointly evaluate the effectiveness and the cost of
the retrieval results. The total cost of TAR consists of the cost of reviewing (1)
the training documents and (2) the minimum number of unreviewed documents
ranked by the current classification model for fulfilling the recall target. This
cost evaluation approach allows documents in different classes and phases to
cost differently, facilitating a more practical HRR evaluation and emphasizing
the cost of training the one-time classification model.

Commercial TAR technology relies on traditional text classification
approaches such as logistic regression and support vector machines (SVMs) [4,
50], that have been widely studied in both active learning and transductive
contexts [9,26,34,53,54]. However, the state of the art in text classification has
moved to transformer-based models such as BERT [12] whose properties in these
contexts are less well-understood. This gap in understanding motivates the cur-
rent study.

3 Adapting BERT for TAR

In this section, we describe the adaption of the BERT model to TAR. On a high
level, the BERT language model is fine-tuned on the collection of the retrieval
interest. At each active learning iteration, we select a set of documents based on
the predictions from the model for human review. The acquired labels are fed
to the BERT model to perform classification fine-tuning for learning relevancy.

Since the entire task corpus is available before training in TAR, our first step
in applying BERT to TAR was language model fine tuning to that corpus. We
used the same unsupervised masked language modeling task originally used to
train BERT: randomly masking 15% of the tokens in each sequence and tuning
BERT’s parameters to predict the missing tokens [12]. The key question is how
much to move BERT’s parameters (encoding the linguistic regularities explicit
in a mammoth broad domain corpus) toward the task-specific, but less complete,
explicit regularities of the task corpus. Our experiments study this by varying the
number of epochs (passes through training set) in language model fine-tuning.

TAR workflows use an active learning method such as relevance feedback [40]
or uncertainty sampling [25], where the model trained by supervised learning on
iteration k − 1 is used to the select the batch of documents to be labeled in
iteration k. The union of labeled batches for iterations 1...k − 1 is the training
set for iteration k. One random relevant document was selected at the beginning
of the process as the seed document to initiate the active learning. All labeled
documents are used for classification fine-tuning of the BERT model. Documents
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labeled in earlier iterations are visited more by the model based on this classifica-
tion fine-tuning process. However, based on our pilot study on only fine-tuning
model on the newly labeled documents at each iteration, the results were far
worse than on all labeled documents. We use a cross-entropy loss on the binary
class label by adding a dense layer on the [CLS] token on top of BERT. We train
for a fixed number of epochs, which previous work on active learning for BERT
suggests works as well as choosing epoch number using a validation set [13].

For simple models, training can be done to convergence from scratch on each
iteration (as we do for logistic regression and SVMs in our experiments). Classi-
fication fine tuning for a transformer is computationally expensive, so we instead
use the model trained on iteration k − 1 as the starting point for optimization
on iteration k. While this potentially gives more influence to examples selected
on the first iteration, adaptive example selection by active learning reduces this
effect.

4 Experiment Setup

4.1 Data Sets

We simulate TAR reviews on two fully labeled collections widely used in HRR
studies [10,11,16,35,41,51,52,56]: RCV1-v2 [27] and the Jeb Bush emails [16,
41].

RCV1-v2 consists of 804,414 news stories with coding for 658 economic news
categories. We use the 45 categories subset established by previous high recall
retrieval study [54] that spans across three prevalence and three difficulty bins.
Text from the title and body was concatenated and tokenized using WordPiece.
Documents are truncated with 512 WordPiece tokens as the leading passages
of the news documents usually convey the most important aspects of the news
articles [7]. The collection is also downsampled to 20% (160,833 documents) for
computational efficiency.

The Jeb Bush collection consists of 274,124 unique emails between the for-
mer governor of Florida and his colleagues and constituents. The collection was
annotated for 44 political topics for the 2015 and 2016 TREC Total Recall
Tracks [16,41]. Text from the subject line and body were concatenated. As with
RCV1-v2, documents with more than 512 WordPiece tokens were truncated,
similar to the preprocessing steps used in prior works in email classification [45].
Since the most recent replies and content are presented at the beginning of the
email and the trailing parts are often duplicated from other emails, including
only the leading passages are usually sufficient. A 50% random sample of the
remainder (137,062 documents) was used. All 44 topics are used in the experi-
ment. For consistency, we refer to these topics as categories in the later sections.

The RCV1-v2 news articles are professionally written texts with topics and
vocabulary well covered by the book and encyclopedic text used to train BERT.
We view HRR on it as an in-domain task for BERT. The Jeb Bush emails
(particularly from constituents) vary wildly in style and formality from message
to message, and reference many Florida personalities, places, and issues likely
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to be poorly covered in the BERT pre-training materials. We therefore view it
as an out-of-domain task for BERT.

4.2 Software and Evaluation

We implemented the active learning workflow with libact [57], an open-source
active learning framework. For each category, a randomly selected positive exam-
ple formed the sample for the first iteration. On each subsequent iteration, 200
documents were sampled using active learning (either relevance feedback or least-
confidence uncertainty sampling) by following experiment settings from prior
HRR studies [51,54].

For BERT runs we used the BERT-base-cased model.3 Masked language
model fine-tuning was done with the HuggingFace script run mlm.py,4 which
uses ADAM with no weight decay and warm up period as the optimizer, and a
learning rate of 5× 10−5. To test the importance of language model fine-tuning,
we vary it from no language model fine-tuning to ten iterations over the corpus.

Then on each active learning iteration, we do classification fine-tuning using
the ADAM optimizer with a linear weight decay of 0.01 with 50 warm up steps
and initial learning rate of 0.001. All reviewed documents (including the ones
previously reviewed) are used to fine-tune the model at each active learning
iterations with 20 epochs. All hyperparameters were selected based on a pilot
study on one selected category of each collection for maximizing the average R-
Precision after 20 active learning iterations. The authors also experimented with
fine-tuning the model with only the newly queried documents at each iteration,
but the results were worse than fine-tuning on all labeled documents by a large
margin.

Logistic regression is served as the baseline in our study and is implemented
with scikit-learn [37] for comparison. It is widely used in HRR research and
commercial software [2,4,52,54]. We use the scikit-learn tokenizer and BM25
within document saturated term frequencies as feature values [39,52]. We use
L2 regularization on the logistic losses, with penalty weight 1.0 and fit to con-
vergence with default settings from scikit-learn.

For comparison with prior work, we report R-Precision, which is a metric
that often reports in high recall retrieval studies [16,41,52]. Despite being an
effectiveness measure that jointly considers precision and recall, it does not reflect
the actual objective of the retrieval task, which is the reviewing cost.

Therefore, our primary evaluation measure is the total optimal reviewing
cost of the TAR run [54], which is the sum of reviewing the training documents
and the documents ranked by the current classification model to fulfill the recall
target. The latter is referred to as the optimal amount of the second phase review
and can be considered as an optimal penalty for the one-phase workflow [26,
54]. We report the minimal total cost that occurs during the 20 active learning

3 https://huggingface.co/bert-base-cased.
4 https://github.com/huggingface/transformers/blob/master/examples/pytorch/

language-modeling/run mlm.py.

https://huggingface.co/bert-base-cased
https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py


508 E. Yang et al.

iterations. Without loss of generality, we use 80% recall target as an example,
which is a widely used target in eDiscovery study. Higher targets such as 95%
yield similar results.

To emphasize the importance of the underlying classification model in the
iterative process, we evaluate with both the uniform cost structure (i.e., no
reviewing cost difference between documents) and expensive training cost struc-
ture. Without loss of generality, we assume the training documents cost ten times
more than documents reviewed during the mass reviewing phase as an exam-
ple [54]. The expensive training cost structure favors classification models that
require less training data for optimizing the total cost, enabling us to distinguish
the effectiveness of the classification model further.

4.3 Hardware

The active learning experiments are conducted on a cluster of 48 NVIDIA Titan
RTX GPUs with 24 GB memory on each. One active learning run (one topic,
one sampling strategy, one pretrained BERT model) took on average 18 h. The
entire set of experiments ((45+44)×5×2 = 890 runs) took around two weeks on
our research cluster. The baseline experiments ran on a single CPU. All logistic
regression runs ((45 + 44)× 2 = 178) took around one hour. A detailed running
time analysis is presented in the next section.

5 Results and Analysis

In this section, we aim to answer the following research questions: does language
model fine-tuning improves the retrieval effectiveness? If so, what is the right
amount? How much overhead are we paying for applying BERT?

5.1 Language Model Fine-Tuning

Based on our experimental results, BERT with language model (LM) fine-tuning
improves the effectiveness only when the domain of the collection aligns with the
domain of the pretraining corpora. In Table 1, the reported cost is the average of
the proportional relative cost differences between the baseline logistic regression
results and the pretrained BERT model. Since the cost varies between categories,
averaging the relative differences prevent the naturally harder tasks (with higher
baseline cost) from diluting the aggregated values. The paired t-tests are still
conducted between the raw cost with a null hypothesis of identical cost between
the BERT and the baseline model. In RCV1-v2, BERT models provide roughly
the same R-Precision (0.75 to 0.77) as the baseline logistic regression model
regardless of the length of LM fine-tuning, suggesting similar quality at the top
of the rank list. On the other hand, BERT models reduce the cost, especially
when the training documents cost more to review, compared to the baseline
model when the amount of LM fine-tuning is just right (10% to 15% on average
with expensive training cost structure). In our experiments, the goldilock amount
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Table 1. Averaged evaluation results on the in-domain RCV1-v2 collection and off-
domain Jeb Bush collection over categories. Numbers in parentheses are the relative
difference between the baseline logistic regression model (LR). Both uniform and expen-
sive training cost (Exp. Train.) values are the relative cost difference between the BERT
and the logistic regression models. Values larger than 1.0 indicate higher costs than
the baseline. * indicates the statistical significance with 95% confidence between the
corresponding pretrained BERT model and the baseline conducted by paired t-test
with Bonferroni corrections within each evaluation metric.

LMFT R-Precision (↑) Uni. Cost (↓) Exp. Train. (↓)

Collection Epoch Relevance Uncertainty Rel. Unc. Rel. Unc.

LR 0.788 (1.00) 0.760 (1.00) 1.000 1.000 1.000 1.000

0 0.752 (0.95) 0.756 (0.99) 1.309 1.015 1.178 *0.873

In-domain 1 0.757 (0.96) 0.768 (1.01) 1.199 1.039 1.012 0.894

RCV1-v2 2 0.759 (0.96) 0.766 (1.01) 1.289 1.028 1.067 0.890

5 0.756 (0.96) 0.784 (1.03) 1.173 0.893 0.980 *0.844

10 0.764 (0.97) 0.765 (1.01) 1.192 0.950 1.051 *0.878

LR 0.904 (1.00) 0.857 (1.00) 1.000 1.000 1.000 1.000

0 *0.724 (0.80) *0.719 (0.84) 6.877 5.834 *2.717 *2.194

Off-domain 1 0.811 (0.90) 0.816 (0.95) 4.678 2.896 1.756 1.413

Jeb Bush 2 0.812 (0.90) 0.808 (0.94) 3.257 3.141 1.675 1.446

5 *0.810 (0.90) 0.813 (0.95) 3.261 2.665 1.583 1.322

10 0.805 (0.89) 0.815 (0.95) 3.922 2.943 1.601 1.361

is five epochs. However, this amount varies with collection size and other char-
acteristics of the task, which is discussed later in the section. Since reducing
the total cost of TAR requires improving the overall rank list [54], these results
suggest that the BERT model with five epochs of LM fine-tuning provides a
consistent improvement on the entire ranking.

If the target collection is off-domain compared to the original pre-trained
corpora, BERT models cannot provide an effective classifier, even worse than
simple linear logistic regression. The averaged values in the Jeb Bush collec-
tion suggest worse effectiveness (lower R-Precision and higher cost) despite that
the differences are not statistically significant. However, the time overhead and
computational burden of applying neural models such as BERT are massive com-
pared to linear models. The inability to provide more effective retrieval results is
already a failure. Note that the effectiveness of the BERT models could eventu-
ally improve over the baseline with more LM fine-tuning despite the decrement
from five to ten epochs; the computational cost would be uneconomical. Running
time analysis is presented later in this section.

Therefore, applying BERT models to TAR is not guaranteed to lead to more
effective retrieval results. The alignment of the domain between the collections
and the amount of LM fine-tuning constitutes a considerable variation of the
effectiveness, which is counterintuitive to the common wisdom that continuing
fine-tuning would result in better results [19]. If just-right hyperparameter is
not available for the task, which is usually the case for real-world applications,
applying BERT models could result in inferior results.
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Table 2. Cost of RCV1-v2 categories in each bin under the expensive training cost
structure. Values are the relative cost difference between the corresponding BERT and
baseline models averaged over the five categories in each bin.

Difficulty Prevalence Relevance Uncertainty

0 1 2 5 10 0 1 2 5 10

Hard Rare 0.918 0.988 1.011 0.997 1.048 1.044 0.843 0.801 0.664 0.870

Medium 0.774 0.773 0.699 0.622 0.639 0.594 0.670 0.602 0.612 0.613

Common 0.832 0.856 0.850 0.798 0.755 0.815 0.849 0.842 0.755 0.751

Medium Rare 0.932 0.916 0.904 0.784 0.951 0.770 0.903 0.868 0.794 0.828

Medium 1.275 1.311 1.293 1.175 1.229 1.065 1.199 1.203 1.088 1.211

Common 0.951 0.778 0.830 0.743 0.820 0.946 0.945 0.933 0.845 0.915

Easy Rare 1.688 1.225 1.362 1.430 1.540 0.587 0.638 0.702 0.632 0.621

Medium 1.897 1.189 1.182 1.103 1.263 1.073 0.936 1.015 1.069 0.982

Common 1.336 1.070 1.474 1.165 1.218 0.960 1.061 1.047 1.136 1.112

5.2 Just-Right Varies Across Tasks

The 45 categories selected from RCV1-v2 enable further analysis into the effect
of the task characteristics. Table 2 demonstrates the averaged relative cost differ-
ences compared to the baseline model in each category bin under the expensive
training cost structure. Since each bin only contains five runs (five categories),
statistical tests are non-indicative; hence omitted.

For relevance feedback where training documents are selected from the top of
the rank, BERT models usually perform similarly to logistic regression models
with a few exceptions. BERT models are more helpful in hard categories than
easy ones since the relevancy is often beyond simple token matching in the hard
ones, yielding a 20% to 30% cost reduction. However, when the task is hard and
the relevant documents are rare, BERT models are no better than simple linear
models, even with more LM fine-tuning.

For uncertainty sampling, where the training documents are ones that the
model is the least certain about (with predicted probability around 0.5), BERT
models provide a substantial improvement of 20% to 40% cost reduction in both
hard and rare categories. These results indicate that BERT models are still more
effective in challenging situations – either extremely unbalanced training set or
relevancy requires subtle semantic understanding. These are cases where linear
models tend to fail if no specific treatments to the collection are made.

However, even in these cases where BERT models demonstrate a clear advan-
tage over the linear models, the amount of LM fine-tuning is still critical. The
optimal length of LM fine-tuning varies across difficulty and prevalence bins,
which were developed by Yang et al. [54]. For example, the best performing pre-
trained model for the hard-medium bin is no LM fine-tuning (0.5935, i.e., 41%
cost reduction). However, LM fine-tuning for five epochs gives us the lowest cost
(0.6637) and seems to be the minimum for hard-rare. For hard-common, more
fine-tuning tends to be consistently improving the model with the lowest cost
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(0.7512) occurred at ten epochs in our experiment. The trend is different for
medium and easy difficulty bins.

Table 3. Running time in minutes. Running time for LM fine-tuning (LMFT) is agnos-
tic to the categories. Time reported for TAR is the average running time for each
category to complete a 20-iteration TAR process, which consists of 20 classification
fine-tuning (or training for logistic regression) and scoring the entire collection. Values
in parentheses are the standard deviations of the averaged time.

LMFT Relevance Uncertainty

Collection Epoch LMFT TAR Total LMFT TAR Total

0 – 1095 1095 (31.49) – 1098 1098 (28.97)

1 98 1094 1192 (17.55) 98 1102 1200 (20.57)

In-domain 2 196 1096 1292 (20.53) 196 1100 1296 (28.33)

RCV1-v2 5 490 1103 1593 (23.57) 490 1103 1593 (19.93)

10 980 1101 2081 (20.26) 980 1105 2085 (20.90)

LR – 0.32 0.34 (0.04) – 0.38 0.38 (0.05)

0 – 999 999 (19.02) – 1008 1008 (19.48)

1 98 1002 1100 (16.56) 98 1003 1101 (24.78)

Off-domain 2 196 1002 1198 (15.03) 196 1002 1198 (21.80)

Jeb Bush 5 490 1007 1497 (19.34) 490 1004 1494 (27.37)

10 981 996 1977 (22.48) 981 1006 1987 (26.67)

LR – 0.33 0.33 (0.04) – 0.41 0.41 (0.06)

Beyond minimum cost during the run, the trajectory of cost over the iter-
ations also varies among different numbers of LM fine-tuning epochs. For the
hard-rare category (I65100) in Fig. 1(a), the transition from the trajectory of 1
epoch of LM fine-tuning to 2 is not smooth and the shape is nowhere similar.
The hard-common category (I81501 in Fig. 1(c)) also convey no clear relation-
ship between different number of LM fine-tuning epochs.

While BERT models provide significant improvement over the failure cases
such as the medium-rare category (I42600, Fig. 1(d)) and hard-medium cate-
gory (C182, Fig. 1(b)), the trajectory is nearly identical for the easy categories
regardless of the LM fine-tuning epochs, especially with relevance feedback.

Despite making no clear conclusion on the optimal amount of LM fine-tuning,
we observe that this hyperparameter is critical and independent of the collection.
All TAR runs in Table 2 are based on the same 20% subset of RCV1-v2 collection
but with different categories. This poses a challenge for TAR practitioners when
applying BERT or potentially other transformer-based classification models to
projects: the joint effect of this hyperparameter and the characteristics of the
task is so large that it ranges from extremely helpful (50% cost reduction in hard-
medium categories using uncertainty sampling without LM fine-tuning) to large
cost overhead (89% cost overhead in easy-medium categories using relevance
feedback without LM fine-tuning). Understanding the characteristics of the task
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Fig. 1. Example total cost of TAR runs on RCV1-v2 collection over the rounds with
expensive training cost structure. The y-axis is the total cost in log-scaled to demon-
strate the differences and the x-axis is the number of TAR rounds.
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remains crucial but challenging without sufficient annotations, which is one of
the purposes for applying TAR.

5.3 Running Time

Finally, we analyze the running time of the TAR runs. In Table 3, the computa-
tional overhead of applying BERT is massive. While the training and scoring of
the collection during TAR using logistic regression takes on average 20 to 25 s
(0.32 to 0.41 min), the BERT model takes around 18 h (1100 min). The majority
of the time was spent on scoring the collection, which takes around 40 min at
each iteration. The LM fine-tuning is done before the TAR iterative process,
taking around 100 min per epoch for the collections we experimented with.

In real high recall retrieval applications where the iterative process spans
weeks or even months, each round of reviewing documents takes around half
a day. Adding one hour overhead to each iteration is potentially acceptable.
However, for smaller projects, this significant time overhead could directly pre-
vent BERT from applying. The computational cost for applying BERT is also
not amortized to millions of queries after deployment. Spending 18 h training a
single-usage model in exchange for a mild effectiveness improvement could be
unnecessary overhead for many HRR projects.

6 Summary and Future Works

We evaluated the effectiveness of TAR with pre-trained BERT as the underlying
predictive model. Before entering active learning, the pre-trained BERT model
is fine-tuned by the masked language modeling objective with several epochs.
Through experiments, we show that the amount of LM fine-tuning is critical
even on an in-domain task. For tasks with out-of-domain text, as compared to
the BERT model pre-training corpora, LM fine-tuning requires more training,
potentially with other similar corpora. Without proper LM fine-tuning, BERT
models underperform typical linear models used with TAR. However, our exper-
iments also show that category characteristics also impact how beneficial the
BERT models are and the large computational overhead might discourage the
application of BERT in real-world HRR projects.

As the first study of applying transformer models to TAR, there is still much
to explore in this area. In the future, we will investigate a wider variety of HRR
tasks and sampling strategies that are designed for neural models such as Monte
Carlo Dropout [14] and Discriminative Active Learning [15]. A comprehensive
approach for handling documents with more than 512 tokens should also be
studied. Pre-training a transformer model with large email corpora would benefit
the community as many eDiscovery tasks are working on emails. Whether the
pre-training corpora would carry biases into the final retrieval results in each
TAR project is also demanding for future research.
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Abstract. Emotion is seen as the external expression of sentiment, while sen-
timent is the essential nature of emotion. They are tightly entangled with each
other in that one helps the understanding of the other, leading to a new research
topic, i.e., multi-modal sentiment and emotion joint analysis. There exists two key
challenges in this field, i.e., multi-modal fusion and multi-task interaction. Most
of the recent approaches treat them as two independent tasks, and fail to model
the relationships between them. In this paper, we propose a novel multi-modal
multi-task learning model, termed MMT, to generically address such issues. Spe-
cially, two attention mechanisms, i.e., cross-modal and cross-task attentions are
designed. Cross-modal attention is proposed to model multi-modal feature fusion,
while cross-task attention is to capture the interaction between sentiment analysis
and emotion recognition. Finally, we empirically show that this method alleviates
such problems on two benchmarking datasets, while getting better performance
for the main task, i.e., sentiment analysis with the help of the secondary emotion
recognition task.

Keywords: Multi-modal sentiment analysis · Emotion recognition · Multi-task
learning · Deep learning

1 Introduction

Sentiment is treated as the subjective attitude of a human towards specific target or
topic. The recent development of social media platforms, e.g., Instagram, TikTok, etc.,
has produced a great number of subjective comments of users [10]. Such data has been
a rich source of information, including that of attitudes or opinions, providing us a
practical and feasible path to understand human intents and affections. Hence, senti-
ment analysis, as a longevous research focus, has attracted great attention over the past
decades [1,31].

Sentiment analysis, also known as opinion mining, usually refers to study, analyze
and identify the subjective polarity carried in user generated contents via NLP, statistics
knowledge and machine or deep learning approaches. Generally speaking, it could be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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considered as a judgment or evaluation on the emotional state (the speaker or author’s
emotional state) and emotional communication (the emotional effect that the speaker or
author wants to convey).

Actually, people’s subjective expression is multi-modal, which comprehends a mix-
ture of natural language (text), facial gestures (vision) and vocal actions (audio), instead
of text only. Single modality (e.g., text) relying only on basic terms (e.g., words, phrase)
and their semantic associations, is insufficient to distinguish complex sentiment while
multi-modality could provide vivid description, convey accurate and rich sentimen-
tal information and uncover the information that single modality may hide. Multi-
modal sentiment analysis is gathering a lot of attention recently considering its potential
use. [4,14].

In this paper, we take a further step towards exploring the use of emotional knowl-
edge to improve sentiment analysis and vice versa. The motivation roots in the differ-
ence and similarity between sentiment and emotion. Sentiment is formed on the basis of
long term emotional experiences, which is a thought that has been influenced by emo-
tion, e.g., “positive”, “negative”, etc. Emotion involves a complex psychological state
such as happiness, anger, jealousy, grief, etc., which is more inclined to the physical
response [17]. Hence, sentiment is tightly coupled with emotion in that one helps the
understanding of the other. Hence, jointly analyzing sentiment and emotion would bring
benefits to each other where a new research topic, multi-modal sentiment and emotion
joint analysis, is brought forth [2].

Different from the traditional single task or text based approaches, there are two
intractable challenges in multi-task multi-modal sentiment analysis, i.e., multi-modal
fusion and multi-task correlation, which are detailed as follows.

(i) Multi-modal fusion. Multi-modal fusion has remained an active research topic
in multi-modal sentiment analysis for a long time. Three commonly used fusion strate-
gies, i.e., feature-level fusion (early fusion), decision-level fusion (late fusion) and
their combination (hybrid fusion), have been applied in different scenarios [32]. Early
fusion targets at grasping the correlations across multi-modal features. Its main obsta-
cle involves data heterogeneity, since each modal feature comes from different semantic
spaces. In contrast, late fusion aims to combine the local decisions based on individual
features. But it ignores multi-modal feature correlation. To exploit the advantages of
both early and late fusion strategies, hybrid fusion is designed with high complexity.
Now, researchers fail to reach an agreement on the optimal manner of merging multi-
modal information, due to the heterogeneities and augmented diversities across modal-
ities [18,24].

(ii) Multi-task correlation. Multi-task learning paradigm attempts to exploit the
inter-relatedness across tasks (e.g., sentiment and emotion, etc.), for improving individ-
ual performance. Recent approaches, including the state of the art [1,2,4] intuitively
argue that one task is tightly intertwined to other tasks and spend considerable effort on
implicitly learning a shared representation across multiple tasks, and separately making
the prediction for each task. Even though they have achieved impressive results, such
implicit way is insufficient to depict the correlations across multiple tasks, e.g., which
task reaps the greatest benefit from others, and limits the potential of the model. Hence,
multi-task interaction is still an important problem that has not been well addressed.
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To generically address the above two issues, we propose a deep attentive multi-
modal multi-task learning framework, termed MMT. The key components are two
attention mechanisms, i.e., cross-modal (Cm) and cross-task (Ct) attentions. Cm atten-
tion is proposed to learn multi-modal feature fusion. The multi-modal representation
of the target document is obtained and fed into the decoder to produce its sentimental
and emotional results. In contrast, Ct attention is proposed to learn the mutual influ-
ence between sentiment analysis and emotion recognition. Extensive experiments are
conducted on two benchmarking datasets, i.e., MUStARD and Memotion, in compar-
ison with a wide range of strong baselines, including deep convolutional neural net-
work (CNN), bidirectional encoder representations from transformers (BERT), RCNN-
RoBERTa, quantum-like multi-modal framework (QMSA) and two state-of-the-art
multi-task learning frameworks (i.e., UPB-MTL and A-MTL). The results show the effi-
cacy of the proposed MMT framework. The evaluation also shows that MMT obtains
better performance for the main task, i.e., sentiment analysis with the help of the sec-
ondary emotion recognition task. The major innovations of the work presented in this
paper can be summarized as follows.

– A novel multi-task multi-modal attentive model is proposed.
– The interaction among related tasks is explicitly captured.
– The correlation between text and image is learned.
– We present the state-of-the-art performance on two datasets.

2 Related Work

2.1 Multi-modal Sentiment Analysis

Multi-modal sentiment analysis aims to identify the polarity expressed in multi-modal
documents. Morency [16] first jointly use visual, audio and textual features to solve the
problem of tri-modal sentiment analysis. Zhang et al. [32] proposed a quantum-inspired
multi-modal sentiment analysis model. Li [13] designed a tensor product based multi-
modal representation model for video sentiment analysis. Most recent works are per-
formed from a multi-modal deep learning perspective [3,12]. Zadeh et al. [29] proposed
to use tensor product to perform multi-modal visual and vocal feature fusion. Huang et
al. [11] proposed a deep multi-modal attentive fusion approach. Yu et al. [28] intro-
duced a Chinese single- and multi-modal sentiment analysis dataset, called CH-SIMS,
and proposed a multi-task learning task. Xu et al. [27] proposed a multi-modal attentive
framework for their new task, which is aspect-based multi-modal sentiment analysis.

The above-mentioned works focused on multi-modal feature extraction and multi-
modal feature fusion. Few approaches had also attempted to use sentiment or emotion
information to enhance the classification performance.

2.2 Multi-modal Emotion Recognition

Multi-modal emotion recognition aims to identify the emotional polarity expressed in
multi-modal documents using machine or deep learning approaches. In earlier times,
Chuang and Wu [6] constructed a multi-modal emotion recognition framework based
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on speech signals and textual content. Datcu and Rothkrantz [7] fused early acoustic
features with facial expressions for emotion recognition. Zhang et al. [32] proposed
a quantum-inspired multi-modal sentiment analysis model. Recently, CNN, RNN and
their multifarious variants were commonly used to extract visual and sequential features
and built multi-modal emotion recognition framework [21,31].

Emotion recognition in conversation (ERC) has become a popular research task.
Majumder [15] described a DialogueRNN model that kept track of the individual party
states throughout the conversation and used this information for ERC. Poria et al. [19]
created the first multimodal conversational dataset, namely, the multimodal emotion-
lines dataset (MELD), to facilitate the development of conversational sentiment anal-
ysis. Zhang and Li [30] designed a quantum-inspired interactive network model for
textual conversational sentiment analysis and showed its effectiveness. However, they
did not take the interactions among different modalities into consideration.

In general, remarkable progress has been made in the current state-of-the-art. How-
ever, current approaches still do not explicitly model the interactions between tasks. In
this work, we tackle all these two problems in a multi-modal sentiment scenario with a
multi-task learning framework.

3 Methodology

In this section, we present the proposed MMT framework step by step.

Fig. 1. The overall architecture of the MMT model.

3.1 Task Description and Overall Network

Task Description. Suppose the dataset contains N multi-modal subjective samples, the
kth sample Xk could be represented as {Xk = (Mk, Ci), Yk}, where Mk, Yk represent



522 Y. Zhang et al.

the target multi-modal utterance and the label respectively, and Ci represents the ith

context, k ∈ [1, 2, ..., N ], i ∈ [1, 2, ..., G]. In this work, we only consider the textual
and vision modalities, e.g., Mk = (M t

k,M
v
k ), Ci = (Ct

i , C
v
i ). But we argue that the

proposed framework could be extended into the triple-modal task. Given a multi-modal
utterance Mk and its context CG, how to jointly detect the sentiment and emotion polar-
ities, i.e., Yk = (Y sen

k , Y emo
k ). We formulate the problem as follows:

ζ =
∏

k

p (Yk|Mk, CG, Θ) (1)

where Θ represents the parameter set.

Overall Network. The architecture of the MMT model is shown in Fig. 1. It consists
of four core components, i.e., a multi-modal encoder for textual (t) and visual (v)
inputs, the external knowledge extraction layer, a multi-head cross-modal attention
based multi-modal fusion layer and a cross-task interaction module. (1) We forward
the textual utterance and video clip, e.g., M t

k,M
v
k into multi-modal encoder for obtain

their hidden states, denoted as ht
k and hv

k respectively. Then, we take the multi-modal
contexts appearing in a fixed-window of length L into account, and obtain their hidden
representation, ht

L and hv
L to merge the target and contextual representation together,

i.e., ht and hv . (2) We learn the vector representation of the participant gender and
that of the overall color as two kinds of external knowledge for augmenting both tex-
tual and visual representations. (3) A multi-head cross-modal attention fusion layer is
applied to obtain the multi-modal representation of the target document M (m)

k . (4) The
cross-task attention Ct is applied in two LSTM sub-networks for explicitly modeling
the correlations between sentiment analysis and emotion recognition.

3.2 Multi-modal Encoder

Textual Encoder. For the target utterance, we assume that there are n words in the kth

target document, i.e., M t
k = {tw1, tw2, ..., twn}. Each word tw ∈ Rdt is initialized

with pre-trained BERT embeddings [9]. We thus feed them into a bidirectional Gated
Recurrent Unit (BiGRU) to learn the contextual relationship between the words and
the hidden states Htar = [ht

tw1
, ht

tw2
, ..., ht

twn
]. To measure the contribution of the

words, we use the attention mechanism and produce a weighted feature representation
ht
k, which can be formulated as:

Dtar = tanh (WdHtar + bd)

αtar = softmax
(
wTDtar

)

ht
k = αtarHtar

(2)

To model the contextual information, we take the multi-modal contexts appearing
in a fixed-window of length L into account. We also employ BERT to obtain its pre-
trained word embeddings and thus feed them to the attention based BiGRU for learning
the contextual representation, ht

i, where i ∈ [1, 2, ..., L]. In this work, the textual rep-
resentation is obtained by concatenating the target and the contextual representations,
i.e., ht = ht

k ⊕ [ht
1, h

t
2, ..., h

t
L].
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Fig. 2. Cross-modal attention mechanism.

Visual Encoder. For video, suppose that there are n clips in the kth target video, i.e.,
Mv

k = {tv1, tv2, ..., tvn}. Each input video clip is scaled to 480 × 360 and its feature
vectors are extracted by the pre-trained EfficientNet network [23]. We use average pool-
ing to get a 768 dimensional feature representation. We thus feed each video clip into
the GRU unit to produce its hidden state H = [hv

tv1 , h
v
tv2 , ..., h

v
tvn ]. Based on Eq. 2, the

attention mechanism is also adopted to get a weighted visual representation hv
k. If the

target visual document is a static image, we choose to divide the whole image into n
visual zones from top to bottom.

Using the same pre-trained model, the visual vectors for each context is represented
as [hv

1, h
v
2, ..., h

v
L]. The visual representation is obtained, hv = hv

k ⊕ [hv
1, h

v
2, ..., h

v
L].

3.3 External Information Extraction

We also incorporate external information, e.g., gender, color, into the textual and visual
vectors to enhance their representation abilities. We represent the gender information
using the pre-trained BERT embedding hgen and thus merge it with the textual repre-
sentation ht, to construct refined representation, i.e., htg = ht ⊕ hgen.

Similarly, since negative users tend more to deliver darker images, while positive
users more likely publish colorful images, we regard the color distribution as another
supplement knowledge to improve the visual representation. We extract the HSV space
based color histogram of each visual document, denoted as hcol, and concatenate it with
the visual representation hv to obtain the refined vector, i.e., hvc = hv ⊕ hcol.

The final textual and visual vectors htg , hvc are fed into next hidden layer to perform
multi-modal fusion.

3.4 Multi-head Cross-modal Attentive Fusion

We have obtained the textual and visual representations, i.e., htg, hvc. Then, an cross-
modal multi-head self attention based multi-modal fusion layer is designed to obtain
the multi-modal representation M

(m)
k , as depicted in Fig. 2.
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Inspired by Multi-modal Transformer [25], we aim to fuse multi-modal information
by learning a latent adaptation across modalities. Given textual and visual modalities t
and v with their vectors htg and hvc, we treat textual modality as Query, i.e., Qt

µ =
WQt

µhtg , and visual modality as Keys and V alues, i.e., Kv
µ = WKv

µhvc and V v
µ =

WV v
µ hvc, where μ ∈ [1, 2, ...,H], H is the number of heads, WQt

µ , WKv

µ and WV v

µ are
weights. The mapping from t to v is defined as:

M t→v
µ = softmax

(
Qt

µKv
µ√

dk

)
V v
µ = softmax

(
WQt

µhtg · WKv
µhvc

√
dk

)
WV v

µ hvc

(3)
Correspondingly, the mapping from t to v is defined as:

Mv→t
µ = softmax

(
Qv

µKt
µ√

dk

)
V t
µ (4)

Equation 3 and Eq. 4 will yield H output values respectively. Then, these val-
ues are concatenated as: M t→v = [M t→v

1 ,M t→v
2 , ...,M t→v

H ] and Mv→t =
[Mv→t

1 ,Mv→t
2 , ...,Mv→t

H ]. In this work, H is set to eight. Now, we merge them
together to obtain the dual-directional representation, as shown in Eq. 5

M
(m)
k =

[
M t→v;Mv→t

]
(5)

3.5 Cross-task Attention Mechanism

In this section, two attention based sub-networks are proposed to model the correla-
tion between sentiment and emotion labels. Since our focus is sentiment analysis, we
regard it as the main task, while emotion recognition is seen as the secondary task, e.g.,
(emo → sen). This action indeeds leverage knowledge from other tasks.

To explicitly learn the relationship between the classes of all the tasks, we design a
self-attention mechanism. This is:

h∗
sen = LSTMs

(
M

(m)
k

)
, h∗

emo = LSTMe

(
M

(m)
k

)

hemo
k = Attention (h∗

emo, h
∗
sen) , hsen

k = Attention (h∗
sen, h∗

emo)
(6)

where the attention is written as:

Attention (hA, hB) = softmax

(
QAKA√

d

)
VA + softmax

(
QAKB√

d

)
VB (7)

where A and B denote different sentiment tasks.

3.6 Classification

The outputs, e.g., hsen
k , hemo

k are forwarded through the softmax functions to yield both
sentiment and emotion labels. We use cross entropy with L2 regularization as the loss
functions ζsen, ζemo for training each task, and jointly minimize them with different
weights:

ζ = wsenζsen + wemoζemo (8)

where wsen and wemo are weights. We use the backpropagation method to compute the
gradients and update all the parameters. To avoid overfitting, we use a dropout strategy.
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4 Experimental Setup

We aim to answer the following research questions and experimentally verify the advan-
tages of the MMT model.

RQ1: What is the optimal sliding window size for modeling contextuality?
RQ2: Is the cross-modal attention layer effective for multi-modal feature fusion?
RQ3: Does modeling of human emotion help in sentiment analysis?

4.1 Experiment Settings

Datasets. We choose benchmark datasets that have textual and visual modalities with
all sentiment and emotion labels. The extended version of MUStARD (MUStARDext

for short)1 [5] and Memotion2 [22] datasets meet the criteria.
(a) MUStARDext: MUStARD consists of 690 multi-modal samples from multi-

ple sources, e.g., Big Bang Theory, Friends, etc. The utterance in each conversation is
annotated with sarcastic or non-sarcastic labels. As an extended version of MUStARD,
MUStARDext re-annotate sentiment and emotion labels.

(b)Memotion: It consists of 6992 training samples and 1879 testing samples. Each
memo data has been labelled with semantic dimensions, e.g., sentiment and type of
emotion, e.g., sarcasm, humor, etc. The speaker identifiers of all the utterances are also
recorded. It is released in the Memotion Analysis 1.0 SemEval 2020 Task.

Evaluation Metrics. We adopt precision (P), recall (R) and micro-F1 (Mi-F1) as eval-
uation metrics in our experiments. We also introduce a balanced accuracymetric for an
ablation test.

Hyper-parameter Setup. The textual and visual inputs are initialized with BERT and
EfficientNet. The dimensionality of the embeddings is set to 768. All weight matrices
are given their initial values by sampling from a uniform distribution U(−0.1, 0.1), and
all biases are set to zeros. We use the Adam algorithm to train the network, and the
number of epochs is set to 100. The batch size is set to 64, and the learning rate for
sentiment analysis is 0.001, while that for emotion recognition is 0.005. The optimal
sliding window size is set to 1 and 2 on two datasets.

4.2 Comparison Models

The state-of-the-art baselines are:

CNN:We apply a deep CNN on the target utterance to extract the textual, visual features
respectively, and merge them together. We thus feed this multi-modal feature into the
softmax function to make prediction.

SVM+BERT [8]: It uses BERT to produce the textual utterance vector and feeds them
into SVM for sentiment and emotion joint analysis. We also concatenate the contextual
features.

1 http://www.iitp.ac.in/ai-nlp-ml/resources.html.
2 https://competitions.codalab.org/competitions/20629.

http://www.iitp.ac.in/ai-nlp-ml/resources.html
https://competitions.codalab.org/competitions/20629
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Table 1. Comparison of different models.

Dataset Method Sentiment analysis Emotion recognition

P R Mi-F1 P R Mi-F1

MUStARDext CNN 42.14 42.16 42.14 22.54 22.55 22.54

SVM+BERT 44.08 44.12 44.10 25.64 25.71 25.67

SVM+BERT (+context) 44.31 44.37 44.34 26.39 26.39 26.39

RCNN-RoBERTa 46.43 46.53 46.48 31.43 31.47 31.44

EfficientNet 46.52 46.61 46.59 32.61 32.70 32.65

UPB-MTL 47.72 47.70 47.70 33.55 33.64 33.60

QMSA 46.96 46.96 46.96 17.50 17.50 17.50

A-MTL 49.45 49.48 49.47 33.12 33.07 33.10

Text-MMT 47.35 47.51 47.39 31.43 31.54 31.40

Image-MMT 45.14 45.19 45.17 29.11 29.25 29.22

MMT 50.47 50.32 50.37 33.72 33.80 33.75

�SOTA (+1.8%) (+1.6%) (+1.7%) (+0.5%) (+0.6%) (+0.5%)

Memotion CNN 33.97 34.10 34.02 33.64 33.70 33.66

SVM+BERT 34.57 34.61 34.59 33.87 33.92 33.90

SVM+BERT (+context) 34.92 34.96 34.93 34.06 34.11 34.07

RCNN-RoBERTa 36.22 36.31 36.27 44.41 44.50 44.45

EfficientNet 33.04 33.33 33.21 46.35 46.40 46.42

UPB-MTL 34.41 34.56 34.49 45.17 45.22 45.18

QMSA 34.88 34.93 34.91 37.78 37.83 37.79

A-MTL 34.23 34.32 34.27 40.39 40.51 40.44

Text-MMT 34.57 34.63 34.58 44.33 44.37 44.42

Image-MMT 30.29 30.36 30.25 36.23 36.45 36.34

MMT 36.77 36.28 36.55 47.04 46.85 46.97

�SOTA (+1.5%) (−0.1%) (+0.7%) (+1.5%) (+0.6%) (+1.1%)

RCNN-RoBERTa [20]: It utilizes pre-trained RoBERTa vectors to represent the utter-
ance and uses a RCNN to obtain its contextual representation. The final classification is
performed by the softmax layer.

EfficientNet [23]: It uses a compound scaling method to create different models, which
has achieved state-of-the-art performance on the ImageNet challenge.

UPB-MTL [26]: It uses ALBERT to represent the textual utterance and uses VGG-16
to represent the accompanying image.

QMSA [32]: It first extracts visual and textual features using density matrices, and
feeds them into the SVM classifier. But we replace the original GloVe embedding with
BERT vector.

A-MTL [5]: It designs two attention mechanisms, e.g., intra-segment and inter-
segment, attentions to learn the relation between different segments and the relation
within the same segment.
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4.3 Comparative Analysis

MUStARDext. From Table 1, we can notice that in the cases of sentiment analysis,
CNN gets the worst results. It also is the second-worst-performing in the case of emo-
tion recognition. One major reason is that its feature representation is not effective to
alleviate “the semantic gap”. SVM+BERT outperforms CNN by a large margin of 4.7%
in term of f1 score. This result is thanks to strong representational capacity of BERT
against CNN. By taking the contextual information into consideration, SVM+BERT
(+context) achieves slightly improvement for both tasks, which shows the importance
of context modeling. Compared with SVM+BERT, RCNN-RoBERTa obtains signifi-
cant improvements for the tasks of sentiment analysis and emotion recognition. This
because that RoBERTa is trained with longer sequence on a larger dataset, which is
capable of better capturing long range dependency. However, RCNN-RoBERTa is only
designed for text instead of multi-modality. EfficientNet and UPB-MTL perform bet-
ter than RCNN-RoBERTa for the tasks of sentiment analysis and emotion recognition.
The performance of QMSA rises and falls steeply for different tasks, which may be due
to the instability of quantum density matrix. A-MTL performs very well and achieves
the best classification performance among all baselines for the task of sentiment analy-
sis, and gets comparable results against UPB-MTL for the task of emotion recognition.
Compared with UPB-MTL, the micro f1 scores increase by 3.8%.

Text-MMT and Image-MMT perform not very well, especially the poorly perfor-
mance that Image-ATM makes, demonstrating that text and visual modalities cannot be
treated independently for multi-modal sentiment and emotion analysis. The proposed
MMT model achieves the best micro-F1 scores of 50.37%, 33.75% as compared to
micro-F1 of 49.47%, 33.10% of the state-of-the-art system (i.e., A-MTL framework).
This shows that MMT successfully leverages the advantages of PLM, multi-task learn-
ing and two attention mechanisms in modeling human sentiment.

Memotion. We can see that the performance differences between all models are not
as contrasting as they are on MUStARDext. CNN achieves comparable performance
against SVM+BERT, because that Memotion contains no conversational context. But
SVM+BERT still outperforms deep CNN, which benefits from the outstanding abstract
ability of PLM. Meanwhile, since there is no conversational context, the performance of
SVM+BERT (+context) is the result of re-running SVM+BERT on Memotion. RCNN-
RoBERTa, EfficientNet and UPB-MTL win or lose each other for different tasks.
QMSA and A-MTL lose for the tasks of sentiment and emotion joint analysis. One
possible interpretation is that QMSA are insufficient to deal with multi-class task. As
for A-MTL, the inter-segment attention is useless since there is no context on Memo-
tion, and this influences its performance. The proposed MMT model remarkably over-
comes all baselines, and achieves the state-of-the-art performance with the micro-f1
of 36.55% and 46.97%. We attribute the main improvements to both PLMs and two
attention mechanisms, which ensures that MMT can model inter-modality fusion and
multi-task interaction.
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4.4 STL v/s MTL Framework

We outline the comparison results between the multi-task (MTL) and single-task (STL)
learning frameworks in Table 2.We see that bi-modal (T+V) shows a better performance
over unimodal setups.

For sentiment analysis on MUStARD, MTL outperforms STL by a large margin in
bi-modality instead of single modalities. The reason is that MUStARD involves many
conversational contexts, where both textual and visual information play key roles in
multi-modal sentiment and emotion joint analysis. MTL learns more supplementary
information when using multi-modal information. For sentiment analysis on Memotion,
MTL achieves better performance than STL on text and bi-modal. Because this dataset
does not contain context, where textual information contributes more on understanding
semantics. The proposed MMT framework could learn the inter-dependence between
two related tasks and improves performance.

Table 2. Comparison with single-task learning (STL) and multi-task (MTL) learning frameworks.

Task Setups T V T+V

Mi-F1 Acc Mi-F1 Acc Mi-F1 Acc

SentimentMUStARD STL 46.55 46.64 45.04 45.05 47.86 48.03

MTL 47.39 47.51 45.17 45.19 50.37 50.32

SentimentMemotion STL 33.34 33.39 30.24 30.26 34.55 34.62

MTL 34.58 34.63 30.25 30.36 36.55 36.28

Table 3. Ablation experiment results.

Dataset Models Metrics

Mi-F1 Acc

MUStARD No Cm Attention 49.26 49.17

No Ct Attention 48.44 48.51

No Attention 46.72 46.69

MMT 50.37 50.32

Memotion No Cm Attention 35.42 35.47

No Ct Attention 35.31 35.27

No Attention 33.29 33.35

MMT 36.55 36.28

4.5 Ablation Test

We perform the ablation experiments to further analyze the effectiveness of different
components of MMT: (1) No Cm Attention that replaces the cross-modal attentive
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fusion with multi-modal feature concatenation; (2) No Ct Attention that only han-
dles sentiment analysis without modeling multi-task correlation; (3) No Attention that
removes both Ie and It attentions from MMT.

The results in Table 3 show that the cross-task Ct attention contributes the most to
overall performance. Because we treat sentiment analysis as the main task, MMT will
share emotional knowledge with sentiment analysis via the connectivity from LSTM,
for improving the performance. In addition, No Attention achieves the worst results,
which shows that cross-modal Cm attention also plays important roles in MMT. In
summary, both of them are indispensable components for MMT.

4.6 Misclassification Cases

We check the dataset and show a few misclassification cases (text+image), including the
cases that MTL predicts correctly while STL fails, and that both setups fails to predict
correctly. These cases are shown in Fig. 3.

For the main task, we notice that misclassification for STL framework happens in
the situation where the literal meaning of the text differs from its visual counterpart.
The proposed MMT model leverages the depressed emotion to make correct sentiment
judgment, and obtains an improvement. Both MTL and STL frameworks fail in the
similar situation where the speaker expresses implicit sentiment, e.g., there are no sen-
timent words or phrases in the utterance. They might require external information, e,g.,
the speaker’s character.

Fig. 3.Wrongly classified multi-modal samples.

5 Conclusions and Future Work

Multi-modal sentiment and emotion joint analysis is an important and challenging NLP
task. In this paper, we propose a deep attentive multi-task learning model, termedMMT.
The main idea is to use two attention mechanisms, i.e., cross-modal and cross-task
attentions, to address the problems of multi-modal fusion and multi-task interaction.
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Comprehensive experiments on two benchmark datasets, show that the effectiveness of
MMT over state-of-the-art baselines. Since there are closely relationship among sen-
timent, emotion, sarcasm, humor, etc., our future works will focus on designing an
unified multi-task learning model to capture the correlation among triple or more tasks.
Those sentiment and emotion conjoint analysis approaches might be applied to emotion
dialogue analysis, reviews mining, etc.
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Abstract. The triplet loss with semi-hard negatives has become the de
facto choice for image-caption retrieval (ICR) methods that are opti-
mized from scratch. Recent progress in metric learning has given rise
to new loss functions that outperform the triplet loss on tasks such as
image retrieval and representation learning. We ask whether these find-
ings generalize to the setting of ICR by comparing three loss functions
on two ICR methods. We answer this question negatively: the triplet
loss with semi-hard negative mining still outperforms newly introduced
loss functions from metric learning on the ICR task. To gain a better
understanding of these outcomes, we introduce an analysis method to
compare loss functions by counting how many samples contribute to the
gradient w.r.t. the query representation during optimization. We find
that loss functions that result in lower evaluation scores on the ICR
task, in general, take too many (non-informative) samples into account
when computing a gradient w.r.t. the query representation, which results
in sub-optimal performance. The triplet loss with semi-hard negatives is
shown to outperform the other loss functions, as it only takes one (hard)
negative into account when computing the gradient.

1 Introduction

Given a query item in one modality, cross-modal retrieval is the task of retriev-
ing similar items in another modality [41]. We focus on image-caption retrieval
(ICR) [11,23,24,38]. For the ICR task, given an image or a caption as a
query, systems have to retrieve the positive (e.g., matching or similar) item(s)
in the other modality. Most ICR methods work with a separate encoder for
each modality to map the input data to a representation in a shared latent
space [11,12,16,23,24]. The encoders are optimized by using a contrastive-loss
criterion, so as to enforce a high degree of similarity between representations of
matching items in the latent space. For retrieval, a similarity score between a
query and each candidate in a candidate set is computed to produce a ranking
with the top-k best matching items. A lot of recent work on ICR relies on (1) pre-
training on large amounts of data [16,25,34], and (2) more sophisticated (and
data-hungry) model architectures [5,11,12,23,24,30]. However, pre-training on
large-scale datasets is not always an option, either due to a lack of compute
power, a lack of data, or both. Hence, it is important to continue to develop
effective ICR methods that only rely on a modest amount of data.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 535–551, 2022.
https://doi.org/10.1007/978-3-030-99736-6_36
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To learn the similarity between a query and candidate representations, most
ICR work relies on the standard Triplet loss with semi-hard negatives (Triplet
SH) [4,5,11,12,23,24,30] or on the cross-entropy based NT-Xent [6,16] loss.
In metric learning, the focus is on loss functions that result in more accurate
item representations (in terms of a given evaluation metric) that can distinguish
between similar and dissimilar items in a low-dimensional latent space [31]. There
has been important progress in metric learning, with the introduction of new
loss functions that result in better evaluation scores on a specific (evaluation)
task. For example SmoothAP [1], it is a smooth approximation of the discrete
evaluation metric Average Precision. By using SmoothAP, a retrieval method can
be optimized with a discrete ranking evaluation metric and can handle multiple
positive candidates simultaneously, which is not possible for the standard Triplet
loss. Loss functions such as SmoothAP narrow the gap between the training
setting and a discrete evaluation objective and thereby improve evaluation scores.

Research Goal. Most metric learning functions work with general representa-
tions of similar/dissimilar candidates and, in principle, there is no clear argument
why obtained results on a specific task/method should not generalize to other tasks
or methods. Hence, can newly introduced metric learning approaches, that is, alter-
native loss functions, be used to increase the performance of ICR methods? We
compare three loss function for the ICR task: (1) the Triplet loss [22], including
semi-hard negative mining, (2) NT-Xent loss [7], and (3) SmoothAP [1]. We expect
SmoothAP to result in the highest performance based on the findings in the con-
text of image retrieval [1] and in representation learning [36].

Main Findings. Following [31], we evaluate the three loss functions on fixed
methods, with different datasets, and with a fixed training regime (i.e., train-
ing hyper-parameters) to verify which loss function uses the given training data
as effectively as possible. Surprisingly, the lessons from metric learning do not
generalize to ICR. The Triplet loss with semi-hard negative mining still outper-
forms the other loss functions that we consider. The promising results obtained by
SmoothAP and the NT-Xent loss in other fields do not generalize to the ICR task.

To get a better grasp of this unexpected outcome, we propose counting con-
tributing samples (COCOS), a method for analyzing contrastive loss functions.
The gradient w.r.t. the query for the Triplet loss, NT-Xent and SmoothAP can
be formulated as a sum over the representations of the positive and negative
candidates in the training batch. The main difference between the loss func-
tions lies in the number of samples used when computing the gradient w.r.t. the
query and how each sample is weighted. We compare loss functions by counting
how many samples contribute to the gradient w.r.t. the query representation at
their convergence points. This yields an explanation of why one loss function
outperforms another on the ICR task.

Main Contributions. (1) We experimentally compare three loss functions
from the metric learning domain to determine if promising results from metric
learning generalize to the ICR task, and find that the Triplet loss semi-hard (SH)
still results in the highest evaluation scores. (2) We propose COCOS, a way of
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analyzing contrastive loss functions, by defining a count that tells us how many
candidates in the batch contribute to the gradient w.r.t. the query. On average,
the best performing loss function takes at most one (semi-hard) negative sample
into account when computing the gradient.

2 Background and Related Work

Notation. We follow the notation introduced in [1,7,36]. We start with a multi-
modal image-caption dataset D = {(xi

I ,x
i
C1

, . . . , xi
Ck

)i, . . . }N
i=1 that contains N

image-caption tuples. For each image xi
I , we have k matching/corresponding cap-

tions, xi
C1

, . . . ,xi
Ck

.
In the ICR task, either an image or a caption can function as a query. Given

a query q, the task is to rank all candidates in a candidate set Ω = {vi | i =
0, . . . ,m}. A matching candidate is denote as v+ and a negative candidate(s) as
v−. For each query q, we can split the candidate set Ω into two disjoint subsets:
v+ ∈ Pq (positive candidate set) and v− ∈ Nq (negative candidate set), where
Nq = {v− | v− ∈ Ω,v− /∈ Pq}. We assume a binary match between images and
captions, they either match or they do not match.

The set with similarity scores for each vi ∈ Ω w.r.t. query q is defined as: Sq
Ω =

{si = 〈 q
‖q‖

vi

‖vi‖ 〉, i = 0, . . . ,m}. We use cosine similarity as a similarity scoring
function. Sq

Ω consists of two disjoint subsets: Sq
P and Sq

N . Sq
P contains the similarity

scores for the positive candidates and Sq
N the similarity scores for the negative

candidates. During training, we randomly sample a batch B with image-caption
pairs. Both the images and captions will functions as queries and candidates.

Image-Caption Retrieval. The ICR task can be divided into image-to text
(i2t) and text-to-image (t2i) retrieval. We target specific ICR methods that are
optimized for the ICR-task only and satisfy three criteria: (1) The methods we
use have solely been trained and evaluated on the same benchmark dataset;
(2) the ICR methods we use compute one global representation for both the
image and caption; and (3) the methods do not require additional supervision
signals besides the contrastive loss for optimization. Below we evaluate two ICR
methods with different loss functions: VSE++ [12] and VSRN [24]. In the online
appendix of this work,1 we provide a detailed description of VSE++ and VSRN.

VSE++. The best performing method of VSE++ uses a ResNet-152 [15]) to
compute a global image representation. The caption encoder is a single directed
GRU-based [10] encoder. Faghri et al. [12] introduce the notion of mining semi
hard-negative triplets for the ICR task. By using the hardest negative in the
batch for each positive pair (i.e. the negative candidate with the highest similar-
ity score w.r.t. the query), their method outperforms state-of-the-art methods
that do not apply this semi-hard negative mining.

1 https://github.com/MauritsBleeker/ecir-2022-reproducibility-bleeker/blob/
master/appendix.

https://github.com/MauritsBleeker/ecir-2022-reproducibility-bleeker/blob/master/appendix
https://github.com/MauritsBleeker/ecir-2022-reproducibility-bleeker/blob/master/appendix
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VSRN. VSRN takes a set of pre-computed image region features as input. A
Graph Convolutional Network [21] is used to enhance the relationships between
each region vector. The sequence of region feature vectors is put through an
RNN network to encode the global image representation. VSRN uses the same
caption encoder and loss as [12].

Other Methods. Following VSE++ and VSRN, the SGRAF [11] and IMRAM
[4] methods have been introduced. We do not use these two methods as they
either do not outperform VSRN [4] or rely on similar principles as VSRN [11].
The main recent progress in ICR has been characterized by a shift towards
transformer-based [37] methods. To the best of our knowledge, TREN/TERAN
[29,30] and VisualSparta [28] are the only transformer-based ICR methods that
are solely optimized using MS-COCO [26] or Flickr30k [40]. We do not use
transformer-based methods, as optimizing them does not scale well for a repro-
duciblity study with moderately sized datasets. Methods such as OSCAR [25],
UNITER [9], Vilbert [27] and ViLT-B [20] use additional data sources and/or
loss functions for training. They focus on a wide variety of tasks such as visual
QA, image captioning, and image retrieval.

Loss Functions for ICR. In this section we introduce three loss functions for
ICR.

Triplet Loss with Semi Hard-Negative Mining. The Triplet loss is com-
monly used as a loss function for ICR methods [5,11,12,23,24,30]. The Triplet
loss with semi-hard negative mining (Triplet loss SH), for a query q is defined
as:

Lq
TripletSH = max(α − s+ + s−, 0), (1)

where α is a margin parameter, s− = max(Sq
N ) and s+ = s0 ∈ Sq

P . Here, Sq
P

only contains one element per query. The Triplet loss SH over the entire training
batch is defined as:

LTripletSH =
∑

q∈B
Lq
TripletSH . (2)

Triplet loss SH performs a form of soft-negative mining per query by selecting
the negative candidate with the highest similarity score w.r.t. the query, we also
refer to this as the maximum violating query. For computational efficiency, this
soft-negative mining is executed within the context of the training batch B and
not over the entire training set.

As opposed to the definition above, another possibility is to take the Triplet-
loss over all triplets in the batch B. This is the definition of the standard Triplet-
loss [22]:

Lq
Triplet =

∑

s−∈Sq
N

max(α − s+ + s−, 0) (3a)

LTriplet =
∑

q∈B
Lq
Triplet . (3b)
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NT-Xent Loss. The NT-Xent loss [7] is a loss function commonly used in the
field of self-supervised representation learning [7,32]. A similar function has also
been proposed by Zhang and Lu [43] in the context of ICR. The NT-Xent loss
is defined as:

LNT-Xent = − 1
|B|

∑

q∈B
log

exp(s+/τ)∑
si∈Sq

Ω
exp(si/τ)

, (4)

where τ functions as a temperature parameter. As for the Triplet-loss formula-
tion: s+ = s0 ∈ Sq

P . The major difference between the Triplet-loss SH is that
the NT-Xent loss takes the entire negative candidate set into account.

SmoothAP Loss. The Average Precision metric w.r.t. a query q and candidate
set Ω is defined as:

APq = 1
|Sq

P |
∑

i∈Sq
P

R(i,Sq
P)

R(i,Sq
Ω)

, (5)

where R(i,S) is a function that returns the ranking of candidate i ∈ S in the
candidate set:

R(i,S) = 1 +
∑

j∈S,i �=j 1{si − sj < 0}. (6)

Let us introduce the M ×M matrix D, where Dij = si −sj . By using the matrix
D, Eq. 5 can be written as:

APq = 1
|Sq

P |
∑

i∈Sq
P

1+
∑

j∈SP ,j �=i 1{Dij>0}
1+

∑
j∈Sq

P ,j �=i
1{Dij>0}+∑

j∈Sq
N

1{Dij>0} .

The indicator function 1{·} is non-differentiable. To overcome this problem, the
indicator function can be replaced by a sigmoid function:

G(x; τ) =
1

1 + e
−x
τ

. (7)

By replacing the indicator function 1{·} by G, the Average Precision metric can
be approximated with a smooth function:

APq ≈ 1
|Sq

P |
∑

i∈Sq
P

1+
∑

j∈Sq
P ,j �=i

G(Dij ;τ)

1+
∑

j∈Sq
P ,j �=i

G(Dij ;τ)+
∑

j∈Sq
N

G(Dij ;τ)
.

This loss function is called SmoothAP and has been introduced in the context of
image retrieval [1], following similar proposals in document retrieval and learning
to rank [2,3,33,39]. The total loss over a batch B can then be formulated as
follows:

LAP = 1
|B|

∑
q∈B(1 − APq). (8)

In the online appendix (see footnote 1), we provide an extended explanation of
SmoothAP.

3 Do Findings from Metric Learning Extend to ICR?

In representation learning it was found that NT-Xent loss outperforms the
Triplet loss and Triplet loss SH [7]. For both the image retrieval and represen-
tation learning task, results show that SmoothAP outperforms both the Triplet
loss SH and the NT-Xent loss [1,36]. We examine whether these findings gener-
alize to ICR.
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Experimental Setup. We focus on two benchmark datasets for the ICR task:
the Flickr30k [40] and MS-COCO [26] datasets. Similar to [12,24], we use the
split provided by Karpathy and Fei-Fei [17] for MS-COCO and the Flickr30k.
For details of the specific implementations of VSE++ [12]2 and [24]3 we refer to
the papers and online implementations. Each method is trained for 30 epochs
with a batch size of 128. We start with a learning rate of 0.0002 and after 15
epochs we lower the learning rate to 0.00002.

For VSE++, we do not apply additional fine-tuning of the image encoder
after 30 epochs. Our main goal is to have a fair comparison across methods,
datasets, and loss functions, not to have the highest overall evaluation scores.
For VSE++, we use ResNet50 [15] as image-encoder instead of ResNet152 [15]
or VGG [35]. ResNet50 is faster to optimize and the performance differences
between ResNet50 and ResNet152 are relatively small.

The VSRN method comes with an additional caption decoder, to decode the
original input caption from the latent image representation, this to add addi-
tional supervision to the optimization process. We remove the additional image-
captioning module, so as to exclude performance gains on the retrieval tasks
due to this extra supervision. In [24], the similarity score for a query candidate
pair, during evaluation, is based on averaging the predicted similarity scores of
(an ensemble of) two trained models. We only take the predicted relevance score
of one model. The reason for this is that the evaluation score improvements
are marginal when using the scores of two models (instead of one) but optimiz-
ing the methods takes twice as long. Therefore, our results are lower than the
results published in [24]. For all the remaining details, we refer to our repository.4

When optimizing with SmoothAP, we take all the k captions into account when
sampling a batch, instead of one positive candidate. For this reason, we have to
increase the amount of training epochs k times as well to have a fair comparison.
For each loss function, we select the best performing hyper-parameter according
to its original work.

Experiments. We evaluate each loss function we described in Sect. 2 given a
dataset and method. For ease of reference, we refer to each individual evaluation
with an experiment number (#) (see Table 1). To reduce the variance in the
results we run each experiment five times and report the average score and
standard deviation. Similar to [12,24], we evaluate using Recall@k with k =
{1, 5, 10}, for both the image-to text (i2t) and text-to-image (t2i) task. We also
report the sum of all the recall scores (rsum) and the average recall value. For
the i2t task, we also report the mean average precision at 5 (mAP@5) due to
the fact we have k positive captions per image query.

Results. Based on the scores reported in Table 1, we have the following obser-
vations:

2 https://github.com/fartashf/vsepp.
3 https://github.com/KunpengLi1994/VSRN.
4 https://github.com/MauritsBleeker/ecir-2022-reproducibility-bleeker.

https://github.com/fartashf/vsepp
https://github.com/KunpengLi1994/VSRN
https://github.com/MauritsBleeker/ecir-2022-reproducibility-bleeker


Do Lessons from Metric Learning Generalize to Image-Caption Retrieval? 541

Table 1. Evaluation scores for the Flickr30k and MS-COCO, for the VSE++ and
VSRN.

i2t t2i

Loss function # hyper param R@1 R@5 R@10 average recall mAP@5 R@1 R@5 R@10 average recall rsum

Flickr30k

VSE++

Triplet loss 1.1 α = 0.2 30.8 ± .7 62.6 ± .3 74.1 ± .8 55.9 ± .3 0.41 ± .00 23.4 ± .3 52.8 ± .1 65.7 ± .3 47.3 ± .1 309.4 ± 0.9

Triplet loss SH 1.2 α = 0.2 42.4 ± .5 71.2 ± .7 80.7 ± .7 64.8 ± .6 0.50 ± .01 30.0 ± .3 59.0 ± .2 70.4 ± .4 53.1 ± .2 353.8 ± 1.6

NT-Xent 1.3 τ = 0.1 37.5 ± .6 68.4 ± .6 77.8 ± .5 61.2 ± .3 0.47 ± .00 27.0 ± .3 57.3 ± .3 69.1 ± .2 51.1 ± .2 337.1 ± 1.3

SmoothAP 1.4 τ = 0.01 42.1 ± .8 70.8 ± .6 80.6 ± .8 64.5 ± .4 0.50 ± .00 29.1 ± .3 58.1 ± .1 69.7 ± .2 52.3 ± .2 350.4 ± 1.7

VSRN

Triplet loss 1.5 α = 0.2 56.4 ± .7 83.6 ± .6 90.1 ± .2 76.7 ± .5 0.63 ± .01 43.1 ± .3 74.4 ± .3 83.1 ± .4 66.9 ± .3 430.7 ± 1.8

Triplet loss SH 1.6 α = 0.2 68.3 ± 1.3 89.6 ± .7 94.0 ± .5 84.0 ± .5 0.73 ± .01 51.2 ± .9 78.0 ± .6 85.6 ± .5 71.6 ± .6 466.6 ± 3.3

NT-Xent 1.7 τ = 0.1 50.9 ± .5 78.9 ± .7 86.6 ± .4 72.2 ± .4 0.59 ± .00 40.6 ± .6 71.9 ± .2 81.7 ± .3 64.7 ± .2 410.6 ± 1.5

SmoothAP 1.8 τ = 0.01 63.1 ± 1.0 86.6 ± .8 92.4 ± .5 80.7 ± .7 0.69 ± .00 45.8 ± .2 73.7 ± .3 82.3 ± .2 67.3 ± .1 444.0 ± 2.1

MS-COCO

VSE++

Triplet loss 2.1 α = 0.2 22.1 ± .5 48.2 ± .3 61.7 ± .3 44.0 ± .3 0.30 ± .00 15.4 ± .1 39.5 ± .1 53.2 ± .1 36.0 ± .1 240.0 ± 0.9

Triplet loss SH 2.2 α = 0.2 32.5 ± .2 61.6 ± .3 73.8 ± .3 56.0 ± .2 0.41 ± .00 21.3 ± .1 48.1 ± .1 61.5 ± .0 43.6 ± .1 298.8 ± 0.8

NT-Xent 2.3 τ = 0.1 25.8 ± ± .5 53.6 ± .5 66.1 ± ± .2 48.5 ± .3 0.34 ± .00 18.0 ± .1 43.0 ± .1 56.6 ± .2 39.2 ± .1 263.0 ± 0.9

SmoothAP 2.4 τ = 0.01 30.8 ± .3 60.3 ± .2 73.6 ± .5 54.9 ± .3 0.40 ± .00 20.3 ± .2 46.5 ± .2 60.1 ± .2 42.3 ± .2 291.5 ± 1.4

VSRN

Triplet loss 2.5 α = 0.2 42.9 ± .4 74.3 ± .3 84.9 ± .4 67.4 ± .3 0.52 ± .00 33.5 ± .1 65.1 ± .1 77.1 ± .2 58.6 ± .1 377.8 ± 1.2

Triplet loss SH 2.6 α = 0.2 48.9 ± .6 78.1 ± ± .5 87.4 ± ± .2 71.4 ± .4 0.57 ± .01 37.8 ± .5 68.1 ± .5 78.9 ± .3 61.6v.4 399.0 ± 2.3

NT-Xent 2.7 τ = 0.1 37.9 ± .4 69.2 ± .2 80.7 ± .3 62.6 ± .1 0.47 ± .00 29.5 ± .1 61.0 ± .2 74.0 ± .2 54.6 ± .1 352.3 ± 0.5

SmoothAP 2.8 τ = 0.01 46.0 ± .6 76.1 ± .3 85.9 ± .3 69.4 ± .3 0.54 ± .00 33.8 ± .3 64.1 ± .1 76.0 ± .2 58.0 ± .2 382.0 ± 1.1

(1) Given a fixed method and default hyper-parameters for each loss function,
the Triplet loss SH results in the best evaluation scores, regardless of dataset,
method or task.

(2) Similar to [12], we find that the Triplet loss SH consistently outperforms the
general Triplet loss, which takes all the negative triplets in the batch into
account that violate the margin constraint.

(3) The NT-Xent loss consistently underperforms compared to the Triplet loss
SH. This is in contrast with findings in [7], where the NT-Xent loss results
in better down-stream evaluation performance on a (augmented image-to-
image) representation learning task than the Triplet loss SH. Although
the ICR task has different (input) data modalities, the underlying learning
object is the same for ICR and augmented image-to-image representation
learning (i.e., contrasting positive and negative pairs).

(4) Only for the VSE++ method on the i2t task, SmoothAP performs similar
to the Triplet-loss SH.

(5) SmoothAP does not outperform the Triplet loss SH. This is in contrast with
the findings in [1], where SmoothAP does outperform Triplet-loss SH and
other metric learning functions.

(6) The method with the best Recall@k score also has the highest mAP@k score.

Upshot. Based on our observations concerning Table 1, we conclude the fol-
lowing: (1) The Triplet loss SH should still be the de facto choice for optimizing
ICR methods. (2) The promising results from the representation learning field
that were obtained by using the NT-Xent loss [7], do not generalize to the ICR
task. (3) Optimizing an ICR method with a smooth approximation of a ranking
metric (SmoothAP) does not result in better Recall@k scores. (4) Optimizing
an ICR method by using a pair-wise distance loss between the positive triplet
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and a semi-hard negative triplet still yields the best evaluation performance. For
both methods VSE++ and VSRN, i2t and t2i and for both datasets.

4 A Method for Analyzing the Behavior of Loss
Functions

Next, we propose a method for analyzing the behavior of loss functions for
ICR. The purpose is to compare loss functions, and explain the difference in
performance. If we compare the gradient w.r.t. q for the Triplet loss and the
Triplet loss SH, the only difference is the number of triplets that the two loss
functions take into account. If two models are optimized in exactly the same
manner, except one model uses the Triplet loss and the other uses Triplet loss
SH, the difference in performance can only be explained by the fact that the
Triplet loss takes all violating triplets into account. This means that the number
of triplets (i.e., candidates) that contribute to the gradient directly relates to the
evaluation performance of the model. The same reasoning applies for the NT-
Xent and the SmoothAP loss. For example, the gradient w.r.t. q for the NT-Xent
loss also has the form v+ −v−. The major difference between the two functions
is that, for the negative candidate the NT-Xent loss computes a weighted sum
over all negative to compute a representation of v−. Therefore, the difference
in evaluation performance between the Triplet loss SH and NT-Xent can only
be explained by this weighted sum over all negatives. This sum can be turned
into a count of negatives, i.e., how many negative approximately contribute to
this weighted sum, which can be related to the other losses. By counting the
number of candidates that contribute to the gradient, we aim to get a better
understanding of why a certain loss function performs better than others. The
method we propose is called counting contributing samples (COCOS).

First, we provide the form of the derivative of each loss function w.r.t. query
q. For each loss function the derivative is a sum over v+ − v−. Loss functions
may weight the positive and negative candidate(s) differently, and the number
of candidates or triplets that are weighted may differ across loss functions.

Triplet Loss and Triplet Loss SH . The gradient w.r.t. q for the Triplet loss
SH, Lq

TripletSH is the difference between the representation of the positive and
negative candidate:

∂Lq
TripletSH

∂q =
{
v+ − v−, if s+ − s− < α
0, otherwise. (9a)

∂Lq
Triplet

∂q =
∑

v−∈Nq
1{s+ − s− < α} (v+ − v−) . (9b)

The gradient of Triplet loss Lq
Triplet (Eq. 9b) w.r.t. q has a similar form. However,

there the gradient is a sum over all triplets that violate s+ + s− < α, and not
only the maximum violating one. Based on Eq. 9a we can see that a query q
only has a non-zero gradient when s+ − s− < α. If this is the case, the gradient
always has the form v+ − v−, and this value is independent of the magnitude
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s+ − s−. For this reason, given a batch B, the number of queries q that have a
non-zero gradient is defined by:

CB
TripletSH =

∑
q∈B 1{s+ − s− < α}, (10)

where s+ = s0 ∈ Sq
P and s− = max (Sq

N ). We define CB
TripletSH to be the number

of queries q that have a non-zero gradient given batch B.
As the Triplet loss takes all the triplets into account that violate the distance

margin α, we can count three things: (1) Per query q, we can count how many
triplets v+ − v− contribute to the gradient of q. We define this as Cq

Triplet =∑
s−∈Sq

N
1{s+ − s− < α}. (2) Given the batch B, we can count how many

triplets contribute to the gradient over the entire training batch B. We define
this number as CB

Triplet =
∑

q∈B Cq
Triplet. (3) Given the entire batch B, we can

count how many queries have a gradient value of zero (i.e., no violating triplets).
This number is C0

Triplet =
∑

q∈B 1{Cq
Triplet = 0}.

NT-Xent Loss. The gradient w.r.t. q for the NT-Xent loss is defined as [7]:

∂Lq

NT-Xent

∂q =
(
1 − exp(s+/τ)

Z(q)

)
τ−1v+ − ∑

s−∈Sq
N

(
exp(s−/τ)

Z(q)

)
τ−1v−, (11)

where Z(q) =
∑

si∈Sq
Ω

exp(si/τ), a normalization constant depending on q.
The gradient w.r.t. q is the weighted difference of the positive candidate v+

and the weighted sum over all the negative candidates. The weight for each
candidate is based on the similarity with the query, normalized by the sum of
the similarities of all candidates. In contrast, for the Triplet-loss (Eq. 9b) all
candidates are weighted equally when they violate the margin constraint. The
NT-Xent loss performs a natural form of (hard) negative weighting [7]. The more
similar a negative sample is to the query, the higher the weight of this negative
in the gradient computation. In principle, all the negatives and the positive
candidate contribute to the gradient w.r.t. q. In practice, most similarity scores
s− ∈ Sq

N have a low value; so the weight of this negative candidate in the gradient
computation will be close to 0.

To count the number of negative candidates that contribute to the gra-
dient, we define a threshold value ε. If the weight of a negative candidate
v− is below ε, we assume that its contribution is negligible. All candidate
vectors are normalized. Hence, there is no additional weighting effect by
the magnitude of the vector. For the NT-Xent loss we define three terms:
Cqv−

NTXent, Wqv−
NTXent and Wqv+

NT−Xent: (1) Given a query q, Cqv−
NT−Xent is the

number of negative candidates v− that contribute to the gradient w.r.t. q:
Cqv−

NT−Xent =
∑

s−∈Sq
N
1{exp(s−/τ)Z(q)−1 > ε}. (2) Given Cqv−

NT−Xent, we com-
pute the sum of the weight values of the contributing negative candidates v−

as Wqv−
NT−Xent =

∑
s−∈Sq

N
1{exp(s−/τ)Z(q)−1 > ε} exp(s−/τ)Z(q)−1. (3) We

define Wqv+

NT−Xent = 1
N

∑
q∈B(1 − exp(s+/τ)Z(q)−1), as the mean weight value

of the positive candidates in batch B.
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We define the two extra terms, Wqv−
NT−Xent and Wqv+

NT−Xent because for the
NT-Xent function we have to count the candidates with a weight value above
the threshold ε. This count on its own does not provide a good picture of the
contribution of these candidates to the gradient. Therefore, we compute a mean
value of those weight values as well, to provide insight into the number of the
samples on which the gradient w.r.t. q is based.

SmoothAP Loss. A full derivation of the gradient of SmoothAP w.r.t. q is
provided with the implementation of our methods (see footnote 1). We introduce
sim(Dij), the derivative of (7):

∂APq

∂q
= 1

|Sq
P |

∑
i∈Sq

P
R (i,Sq

Ω)−2
(
R (i,Sq

P)
(∑

j∈Sq
N

sim(Dij)(vi − vj)
)

− (R (i,Sq
N ) − 1)

(∑
j∈Sq

P ,j �=i sim(Dij)(vi − vj)
))

. (12)

Given Eq. 12, it is less trivial to infer what the update w.r.t. q looks like in
terms of positive candidates vi and negative candidates vj . However, we can
derive the following two properties: (1) The lower a positive candidate vi is in
the total ranking, the less this candidate is taken into account for the gradient
computation w.r.t. q, due the inverse quadratic term R (i,Sq

Ω)−2. This is in
line with optimizing the AP as a metric; positive candidates that are ranked low
contribute less to the total AP score, and therefore are less important to optimize.
(2) Each triplet vi − vj is weighted according to their difference in similarity
score Dij . If their difference in similarity score w.r.t. query q is relatively small
(i.e., Dij is close to zero), sim(Dij) will have a high value due to the fact that
sim(Dij) is the derivative of the sigmoid function. Therefore, sim(Dij) indicates
how close the similarity score (with the query) of candidate vi is compared to
the similarity score of vj This is in line with the SmoothAP loss because we
use a sigmoid to approximate the step-function; only triplets of candidates that
have a similar similarity score will contribute to the gradient.

Table 2. COCOS w.r.t. query q, for the Triplet loss and the Triplet loss SH.

i2t t2i

# Cq CB C0 Cq CB C0

Flickr30k VSE++ Triplet loss 1.1 6.79 ± 0.83 768.92 ± 96.87 14.78 ± 3.52 6.11 ± 0.75 774.67 ± 98.05 1.14 ± 1.22

Triplet loss SH 1.2 1 ± 0.0 98.74 ± 4.83 29.23 ± 4.81 1 ± 0.0 98.22 ± 4.66 29.75 ± 4.62

VSRN Triplet loss 1.5 1.39 ± 0.12 60.96 ± 10.30 84.29 ± 5.80 1.28 ± 0.10 61.21 ± 10.01 80.15 ± 6.35

Triplet loss SH 1.6 1 ± 0.0 45.59 ± 5.93 82.39 ± 5.92 1 ± 0.0 44.98 ± 5.70 82.99 ± 5.70

MS-COCO VSE++ Triplet loss 2.1 3.51 ± 0.49 353.82 ± 52.71 27.09 ± 4.60 2.94 ± 0.36 341.64 ± 50.80 12.24 ± 4.92

Triplet loss SH 2.2 1 ± 0.0 88.17 ± 5.25 39.82 ± 5.24 1 ± 0.0 87.24 ± 5.34 40.75 ± 5.33

VSRN Triplet loss 2.5 1.21 ± 0.13 29.88 ± 7.46 103.33 ± 5.22 1.15 ± 0.10 30.25 ± 7.49 101.70 ± 5.58

Triplet loss SH 2.6 1 ± 0.0 33.24 ± 5.39 94.73 ± 5.45 1 ± 0.0 32.90 ± 5.35 95.08 ± 5.4

We define a threshold value ε again. If the value of sim(Dij) is lower than the
threshold value, we consider the contribution of this triplet to be negligible. We
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have to take into account that all triplets are also weighted by R(i,Sq
Ω)−2, which

is always lower than or equal to 1. We can define Cq
Smooth, which is the number

of triplets v+ − v− that contribute to the gradient w.r.t. q, for SmoothAP as
follows:

Cq
Smooth = 1

|Sq
P |

∑
i∈Sq

P

(∑
j∈Sq

N
1

{
sim(Dij)

R(i,Sq
Ω

)2
> ε

}
+

∑
j∈Sq

P ,j �=i 1
{

sim(Dij)

R(i,Sq
Ω

)2
> ε

})
.

(13)
Similar to [1], we use sim(Dij) in combination with a threshold value ε to indicate
which samples have a non-zero gradient in the training batch. We ignore the
terms R (i,Sq

P) and 1 − R (i,Sq
N ) for this gradient computation. We also count

all queries q within batch B that do not have a gradient value. We define this
number as C0

Smooth =
∑

q∈B 1{Cq
Smooth = 0}. This completes the definition

of COCOS: for every loss function that we consider, it counts the number of
candidates that contribute to the gradient w.r.t. q.

5 Analyzing the Behavior of Loss Functions for ICR

Experimental Setup. To use COCOS, we introduce the following experimen-
tal setup. For each loss function, we take the checkpoint of one of the five opti-
mized models. We refer to this checkpoint as the optimal convergence point for
this loss function. This is not the point with the lowest loss value, but the model
checkpoint that results in the highest evaluation scores on the validation set. We
freeze all model parameters and do not apply dropout. We iterate over the entire
training set by sampling random batches B (with batch size |B| = 128, similar to
the training set-up). For each batch we compute the COCOS and weight values
defined in Sect. 4. We report the mean value and standard deviation over the
entire training set for both VSE++ and VSRN, for both datasets and for each
loss function. The only hyper-parameter for this experiment is ε. We use ε = 0.01
for both the NT-Xent and SmoothAP loss.

Experimental Outcomes. For each of the loss functions that we consider, we
analyze its performance using COCOS.

Table 3. COCOS w.r.t. query q, for the NT-Xent loss [7].

i2t t2i

# C
qv−
NT −Xent

W
qv−
NT −Xent

W
qv+

NT −Xent
C

qv−
NT −Xent

W
qv−
NT −Xent

W
qv+

NT −Xent

Flickr30k VSE++ 1.3 9.88 ± 0.51 0.42 ± 0.02 0.56 ± 0.02 9.65 ± 0.51 0.42 ± 0.02 0.56 ± 0.02

VSRN 1.7 2.45 ± 0.23 0.13 ± 0.02 0.20 ± 0.02 2.46 ± 0.23 0.13 ± 0.02 0.20 ± 0.02

MS-COCO VSE++ 2.3 5.59 ± 0.40 0.36 ± 0.02 0.46 ± 0.02 5.33 ± 0.38 0.36 ± 0.02 0.46 ± 0.02

VSRN 2.7 1.10 ± 0.14 0.10 ± 0.02 0.14 ± 0.02 1.11 ± 0.14 0.09 ± 0.02 0.14 ± 0.02

Triplet Loss. Our goal is not to show that the Triplet loss SH outperforms
the Triplet loss, which has already been shown [12], but to explain this behavior
based on COCOS w.r.t. q and also relate this to the NT-Xent and SmoothAP
loss.
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Based on Table 1 (row 1.1/1.2 and 1.5/1.6, row 2.1/2.2 and 2.5/2.6) it is
clear that the Triplet loss SH always outperforms the general Triplet loss with a
large margin. If we look at Table 2, row 1.1/1.2 and 2.1/2.2, respectively, there
is a clear relation between Cq and the final evaluation score for the VSE++
model for both sub-tasks i2t and t2i (Table 1). Cq

Triplet and CB
Triplet are both

much greater than Cq
TripletSH and CB

TripletSH , for both dataset and both the i2t
and t2i task. When multiple negatives with small margin violation are combined
into a gradient, the gradient is dominated by easy or non-informative negative
samples, which results in convergence of the model into a sub-optimal point [12].
Clearly, the loss function with the lowest evaluation score takes into account the
most negatives when computing the gradient w.r.t. q. Based on [12] and the
COCOS results in Table 2 we conclude that, at the optimal convergence point,
the Triplet loss takes too many negatives into account (i.e., too many triplets
still violate the margin constraint), leading to lower evaluation scores.

For VSRN the relation between Cq
Triplet, Cq

TripletSH and the final evaluation
score is less clear. If we look at Table 2, row 1.5/1.6 and 2.5/2.6, respectively,
we see that Cq

Triplet ≈ Cq
TripletSH = 1. This means that at the optimal conver-

gence point, for VSRN, the Triplet loss and the Triplet loss SH (approximately)
are a similar to each other and both functions only take one negative triplet
into account when computing the gradient w.r.t. q. Thus, both functions should
result in approximately the same gradient value while the Triplet loss SH still
outperforms the Triplet loss with a large margin. This can be explained as fol-
lows: At the start of training, for each query q (almost) all triplets violate the
margin constraint (because all candidate representations are random). There-
fore, the gradient(s) computation w.r.t. q for the Triplet loss is based on all
triplets in the batch and therefore this gradient is dominated by a majority of
non-informative samples in the beginning of the training, which leads to conver-
gence at a sub-optimal point.

NT-Xent. Based on Table 3, we can see that Cqv−
NT−Xent is higher than 1 for both

VSE++ and VSRN, for i2t and t2i, on both datasets. If we relate the evaluation
performances of the NT-Xent loss (row 1.3, 1.7, 2.3, 2.7) to the Triplet loss SH
(row 1.2, 1.6, 2.2, 2.6) in Table 1, we can see that the Triplet loss SH consistently
outperforms the NT-Xent loss, regardless of the method, dataset or sub-task. We
therefore can conclude that taking only the most violating negative into account
when computing the gradient w.r.t. q results in better evaluation performances
than computing a weighted sum over all negative candidates. We can apply the
same reasoning used to explain the performance difference between the Triplet
loss and Triplet loss SH. The gradient w.r.t. q for the NT-Xent is dominated by
too many non-informative negatives, which have a weight value bigger than ε.

Looking at Table 1, we see that NT-Xent loss outperforms the Triplet loss for
the VSE++ method (1.3/1.1 and 2.3/2.1), while taking more negative samples
into account when computing the gradient (based on our definition of COCOS).
This in contrast with the previous observation for the Triplet loss of the more
(non-informative) samples a loss function takes into account when computing
the gradient w.r.t. q, the lower the evaluation score. Solely counting the number
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Table 4. COCOS w.r.t. query q, for the SmoothAP [1] loss.

i2t t2i

# Cq
SmoothAP C0

SmoothAP Cq
SmoothAP C0

SmoothAP

Flickr30k VSE++ 1.4 1.27 ± 0.06 2.15 ± 1.51 1.47 ± 0.83 636.72 ± 18.72

VSRN 1.8 2.33 ± 0.07 0.00 ± 0.00 1.62 ± 0.95 636.49 ± 18.65

MS-COCO VSE++ 2.4 1.48 ± 0.07 0.80 ± 0.90 1.41 ± 0.74 637.10 ± 20.28

VSRN 2.8 1.67 ± 0.07 0.14 ± 0.37 1.42 ± 0.76 637.23 ± 20.35

of negative examples that contribute to the gradient does not the provide the
full picture for the NT-Xent loss; the weight value of each individual sample
(including the positive) plays a more important role than initially was assumed.
We have tried different values for ε, with little impact.

SmoothAP. The observations in Table 4 are in line with the observations in
Table 2 and the evaluation performance in Table 1. At the optimal convergence
point SmoothAP takes approximately one triplet into account when computing
the gradient w.r.t. q, which results in close-to or similar performances as the
Triplet loss SH. We also observe the following: the only experiment where the
Triplet loss SH outperforms SmoothAP with a large margin (Table 1, row 1.5
and 1.8), is also the experiment where the SmoothAP function takes the highest
number of negatives into account when computing the gradient w.r.t. q (Table 4,
row 1.8). This supports the general observation that the more samples that
contribute to the gradient, the lower the final evaluation score.

For the t2i task, we also see that C0
SmoothAP is almost as big as the number of

samples (640 = (k = 5)×(|B| = 128)) in the candidate set, for both datasets and
methods. Hence, barely any query has a gradient value anymore at the optimal
convergence point. However, this is not the case for the i2t task. We conclude
that optimizing a ranking metric (i.e., AP) with only one positive candidate (as
is the case for the t2i task), might be too easy to optimize and could result in
over-fitting. Therefore, it is not useful to optimize a ranking task like ICR with a
ranking-based loss function when there is only one positive candidate per query,
which is the case for the i2t task. For the i2t task, however, there are barely any
queries without a gradient value; here we have k positive candidates per query.

Upshot. In summary, (1) it is important to focus on only one (or a limited)
number of (hard) negatives per query during the entire training for the gradi-
ent computation, so as to prevent the gradient from being dominated by non-
informative or easy negative samples. (2) Weighting each negative candidate by
its score (as is done in NT-Xent) as opposed to weighting all negative equally
(as is done in the Triplet loss) can beneficial for the gradient computation and
therefore for the final evaluation score. However, this weighted sum of negatives
does not result in the fact that the NT-Xent loss outperforms the Triplet loss
SH, which implies that the gradient computation for the NT-Xent is still based
on too many non-informative samples.
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6 Conclusion

We have examined three loss functions from the metric learning field to question
if the promising results obtained in metric learning generalize to the image-
caption retrieval (ICR) task. In contrast with the findings from metric learning,
we find that the Triplet loss with semi-hard negative mining still outperforms the
NT-Xent and SmoothAP loss. Hence, the Triplet loss should still be the de facto
choice as a loss function for ICR; results from metric learning do not generalize
directly to ICR. To gain a better understanding of why a loss function results
in better performance than others, we have introduced the notion of counting
contributing samples (COCOS). We have shown that the best performing loss
function only focuses on one (hard) negative sample when computing the gra-
dient w.r.t. the query and therefore results in the most informative gradient.
COCOS suggests that the underperforming loss functions take too many (non-
informative) negatives into account, and therefore converge to a sub-optimal
point.

The definition of COCOS uses a threshold value. The idea that a candidate
contributes to the gradient if its weight value is above a certain threshold is
insightful but does not provide the complete picture of how strong the influence
of this sample is. We encourage two directions for future work: (1) Work on more
sophisticated methods to determine the influence of (the number of) samples on
the gradient w.r.t. a query. (2) Design new loss functions for the ICR task by
taking the lessons from COCOS into account, i.e., loss functions that only take
one, or a limited number of, hard negative(s) into account. Additionally, we want
to investigate if our findings generalize to fields such as Dense Passage Retrieval
(DPR) [18]. DPR methods are also mainly optimized by using two data encoders
[18,19], for the query and for documents, and the main learning objective is
contrasting positive and negative candidates with a query [8,13,14,18,19,42],
similar to ICR.
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Abstract. Enabling non-discrimination for end-users of recommender
systems by introducing consumer fairness is a key problem, widely stud-
ied in both academia and industry. Current research has led to a variety of
notions, metrics, and unfairness mitigation procedures. The evaluation of
each procedure has been heterogeneous and limited to a mere comparison
with models not accounting for fairness. It is hence hard to contextualize
the impact of each mitigation procedure w.r.t. the others. In this paper, we
conduct a systematic analysis of mitigation procedures against consumer
unfairness in rating prediction and top-n recommendation tasks. To this
end, we collected 15 procedures proposed in recent top-tier conferences and
journals. Only 8 of them could be reproduced. Under a common evalua-
tion protocol, based on two public data sets, we then studied the extent
to which recommendation utility and consumer fairness are impacted by
these procedures, the interplay between twoprimary fairness notions based
on equity and independence, and the demographic groups harmed by the
disparate impact. Our study finally highlights open challenges and future
directions in this field. The source code is available at https://github.com/
jackmedda/C-Fairness-RecSys.

Keywords: Recommender Systems · Fairness · Bias · Consumers

1 Introduction

Recommender systems help us make decisions, from selecting books to choosing
friends [24]. Their wide adoption has spurred investigations into possibly unfair
practices in the systems’ mechanisms [5,9,11,12,21]. Fairness is a concept of non-
discrimination on the basis of the membership to protected groups, identified by
a protected feature, e.g., gender and age in anti-discrimination legislation1. Group
fairness avoids the discrimination of a given group, assessed as the absence of a
disparate impact in the outcomes generated for them [22]. Despite involving dif-
ferent stakeholders (e.g., providers and sellers), fairness in recommender systems
may particularly affect those who receive the recommendations (consumers) [2].

1 Please refer to Art. 21 of the EU Charter of Fundamental Rights, Art. 14 of European
Convention on Human Rights, Art. 18-25 of the Treaty on the Functioning of EU.
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Hence, group consumer fairness should account for no disparate impact of rec-
ommendations on protected groups of consumers. Providing guarantees on this
property is a key strategic objective for the responsible advancement of the field.

As fairness is an abstract concept, an abundance of consumer fairness notions
have been proposed, along with algorithmic procedures for mitigating unfairness
in recommendations according to the proposed notions. Examples of mitigation
procedures have been applied in pre-processing [13], by transforming the input
data, in-processing [6,15,18,28], by constraining the training process of state-
of-the-art models, and post-processing [3,19,23], by ranking again the originally
recommended items. Moreover, the evaluation protocol adopted to assess their
impact has been often heterogeneous (e.g., different data sets, train-test splits)
and limited to showing that the proposed mitigation is better than doing nothing,
making the landscape convoluted. To shape recommender systems that account
for consumer fairness, we need a common understanding and practical bench-
marks on how and when each procedure can be used in comparison to the others.
As a response, with this research work, we address three research questions:

RQ1 Is recommendation utility affected by the mitigation procedures?
RQ2 Do the selected mitigation procedures reduce the unfairness estimates?
RQ3 Is disparate impact systematically harming the minority group?

To answer these questions, in a first step (Sect. 2), we conducted a system-
atic study on algorithmic procedures for mitigating consumer unfairness in rating
prediction or top-n recommendation tasks. To this end, we scanned the proceed-
ings of top-tier conferences and journals, identifying 15 relevant papers. We tried
to reproduce the procedures reported in the paper in case the source code was
made available by the authors (only 8 papers). Our first contribution is hence
an assessment of the reproducibility level of mitigations in the area.

In a second step (Sect. 3), we defined a common evaluation protocol, includ-
ing two public data sets (MovieLens 1M; LastFM 1K), two sensitive attributes
(gender; age) and two fairness notions (equity; independence); we evaluated the
recommendation models reported in the papers, with/out the proposed miti-
gation procedure, under this common protocol. Our results revealed that, the
mitigation procedures did not consistently reduce the utility of the recommen-
dations (RQ1 ). We however found that only a minor subset of procedures sub-
stantially reduce unfairness, and rarely for the two fairness notions at the same
time (RQ2 ). Moreover, disparate impact does not always harm minority groups
(RQ3 ). Our second contribution lies in evaluating mitigation procedures under
a common protocol and identifying challenges in the area (Sect. 4).

2 Research Methodology

In this section, we describe the collection process for mitigation procedures, the
steps for their reproduction, and the common evaluation protocol (Fig. 1).
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Fig. 1. Method. We systematically collected papers and retrieved their source code.
We processed the data sets used in our evaluation protocol, formatted them as per
each mitigation requirements, and made the format of the mitigation results uniform.
We trained the recommendation models included in the original papers, with/out mit-
igation, and computed fairness and utility metrics for the target recommendation task.

2.1 Mitigation Procedures Collection

To collect existing mitigation procedures against consumer fairness, we system-
atically scanned the recent proceedings of top-tier Information Retrieval confer-
ences and workshops, namely CIKM, ECIR, ECML-PKDD, FAccT, KDD, Rec-
Sys, SIGIR, WSDM, WWW, and journals edited by top-tier publishers, namely
ACM, Elsevier, IEEE, and Springer. The keywords for our manual research were
composed by a technical term, “Recommender System” or “Recommendation”,
and a non-technical term, “Consumer Fairness” or “User Fairness”. We marked
a paper to be relevant if (a) it focused on recommender systems, (b) it proposed
a mitigation procedure, and (c) that procedure targeted the end users receiv-
ing the recommendations. Papers on other domains, e.g., non-personalized rank-
ings, other stakeholders, e.g., providers only, and on pure conceptualization only,
e.g., proposing a fairness notion without any mitigation, were excluded. Papers
addressing both consumer and provider fairness were included, since they also tar-
get the end users. Finally, 15 relevant papers were considered in our study.

We then attempted to reproduce the mitigation procedure proposed in each
relevant paper, relying as much as possible on the source code provided by the
authors themselves. We hence tried to obtain the source code for each relevant
paper, by searching for the link into the paper, browsing for the official repository
on the Web , and sending an e-mail to the authors as a last resort. We considered
a mitigation procedure to be reproducible if a working version of the source
code was obtained, and required minimal changes to accept another data set
and extract the final recommendations. Otherwise, we considered a paper to be
non-reproducible given our reproduction approach. We also considered works
to be non-reproducible when the source code was obtained but included only a
skeleton version of the procedure with many parts and details missing. At the
end, 8 out of 15 relevant papers could be reproduced with a reasonable effort.

In Table 1, for each reproducible paper, we identified the recommendation
task (RP: Rating Prediction; TR: Top-N Recommendation), the notion of con-
sumer fairness (EQ: equity of the error/utility score across demographic groups;
IND: independence of the predicted relevance scores or recommendations from the
demographic group), the consumers’ grouping (G: Gender, A: Age, O: Occupation,
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Table 1. The considered reproducible mitigation procedures for consumer fairness.

Task Paper Year Mitigation Evaluation

Notion Groups Type Data Sets Utility Metrics Fairness

Metrics

TR Burke et al. [6] 2018 EQ G IN ML NDCG CES

Frisch et al. [15] 2021 IND G-A IN ML NDCG EPS-CHI

Li et al. [19] 2021 EQ B POST AM NDCG-F1 DP

TR + RP Ekstrand et al. [13] 2018 EQ G PRE ML-LFM NDCG-MRR DP

RP Kamishima et al. [18] 2018 IND G-A IN ML-SS MAE KS

Rastegarpanah et al. [23] 2019 EQ B POST ML RMSE GLV

Ashokan & Haas [3] 2021 EQ G POST ML-SY RMSE-MAE GEI-TI

Wu et al. [28] 2021 IND G-A-O IN ML-LFM RMSE AUC-F1

B: Behavioral), the mitigation type (PRE-, IN- or POST-Processing), the evaluation
data sets (ML: MovieLens 1M or 10M, LFM: LastFM 1K or 360K, AM: Amazon, SS:
Sushi, SY: Synthetic), the utility/accuracy metrics (NDCG: Normalized Discounted
Cumulative Gain; F1: F1 Score; AUC: Area Under Curve; MRR: Mean Reciprocal
Rank; RMSE: Root Mean-Square Error; MAE: Mean Absolute Error), and fairness
metrics (EPS: ε-fairness; CHI: Chi-Square Test; KS: Kolmogorov-Smirnov Test;
GEI: Generalized Entropy Index; TI: Theil Index; DP: Demographic Parity; EP:
Equal Opportunity; CES: Category Equity Score; GLV: Group Loss Variance).
The reproducibility ratio was of 53% (8/15) in total: 50% (4/8) for top-n rec-
ommendation and 57% (4/7) for rating prediction. We identified [20,25–27] and
[4,14,17] as non-reproducible procedures according to our criteria for top-n rec-
ommendation and rating prediction, respectively.

2.2 Mitigation Procedures Reproduction

For each reproducible paper, we delve into the core idea and the characteristics
reported in Table 1. Our source code includes a directory for each paper, docu-
mented with the changes on the original code and the steps to get our results.

Burke et al. [6] proposed to generate recommendations for a user from a neigh-
borhood having an equal number of peers from each group, to reduce unfairness.
SLIM, a collaborative filtering method, was extended with a regularization aimed
to achieve balance between protected and non-protected neighbors. Fairness was
measured with a variant of what is known in statistics as risk ratio; this score
is less (greater) than 1 when the protected group is recommended fewer (more)
movies of the desired genre, on average (1 means perfect equity). Recommen-
dation utility was measured via NDCG@10. An evaluation on ML 1M (5-fold
cross-validation, no train-test split specified) showed that the treated models led
to an equity score closer to 1 than the original models. The source code was not
included in the paper, but shared by the authors during a scientific tutorial [7].

Frisch et al. [15] aimed at producing fair recommendations using a co-clustering
of users and items that respects statistical parity w.r.t. some sensitive attributes.
To this end, the authors introduced a co-clustering model based on the Latent
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Block Model (LBM), that relies on an ordinal regression model taking the sen-
sitive attributes as inputs. Fairness was measured by monitoring that, for any
two items, the proportion of users with the same preference was similar across
demographic groups. NDCG monitored the recommendation utility. An evalua-
tion on ML 1M showed that their procedure led to lower unfairness. No source
code was linked in the paper; we contacted the authors to get a copy of it.

Li et al. [19] investigated consumer unfairness across user groups based on the
level of activity in the platform (more or less active). As a mitigation, the authors
adopted a re-ranking method, whose objective function was to select items out
of the baseline top-n list of each user so that the overall recommendation utility
could be maximized, constrained to the fact that the model should minimize
the difference in average recommendation performance between the groups of
users. F1@10 and NDCG@10 were used to assess recommendation utility. The
difference in NDCG between the groups estimated the unfairness of the model.
An evaluation on Amazon data sets showed that their procedure could reduce
unfairness between groups significantly, and also improve the overall recommen-
dation utility. The original source code in the paper included only the re-ranking
method. We contacted the authors for the complete source code, which was pro-
vided in a public repository (https://github.com/rutgerswiselab/NLR).

Ekstrand et al. [13] re-sampled user interactions (random sampling without
replacement), such that the representation of user interactions across groups
in the training set was balanced, and re-trained the recommendation models
with the balanced training set. Recommendation utility was measured with
NDCG@10, and fairness was assessed by visually comparing the averaged NDCG
scores for the different demographic groups. An evaluation on ML 1M and LFM
1K and 360K showed that their re-sampling procedure led to unfairness miti-
gation for gender groups. The link to the source code was not reported in the
paper. The authors promptly provided us the publicly available archive stored in
the authors’ university website (https://scholarworks.boisestate.edu/cs scripts/
4/).

Kamishima et al. [18] delved into the concept of recommendation indepen-
dence, achieved when a recommendation outcome (predicted ratings) is sta-
tistically independent from a specified sensitive attribute. The mitigation con-
sisted of optimizing a recommendation model by minimizing the dissimilarity
between true ratings and predicted ratings and jointly maximizing the degree
of independence between the predicted ratings and sensitive labels. Prediction
errors were measured by the MAE. Independence was checked by measuring
the equality of the predicted rating distributions between groups (Kolmogorov-
Smirnov test; a smaller KS indicates that predicted ratings are more indepen-
dent). An evaluation on ML 1M, Flixster, and Sushi, and three independence
terms (mean-m, bdist-m, and mi-normal), showed that the sensitive informa-
tion could be removed at the cost of a small loss in MAE. The source code
linked in the paper included two complementary repositories (https://github.
com/tkamishima/kamrecsys) and (https://github.com/tkamishima/kamiers).

https://github.com/rutgerswiselab/NLR
https://scholarworks.boisestate.edu/cs_scripts/4/
https://scholarworks.boisestate.edu/cs_scripts/4/
https://github.com/tkamishima/kamrecsys
https://github.com/tkamishima/kamrecsys
https://github.com/tkamishima/kamiers
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Rastegarpanah et al. [23] investigated whether augmenting the training input
with additional data can improve the fairness of the resulting predictions. Given
a pretrained matrix factorization model, the mitigation required to add fake users
who provided ratings on existing items to the training set; the fake users’ ratings
were chosen to improve the fairness of the final model for the real users. Rec-
ommendation utility was measured via RMSE. Fairness was measured through
the variance of the loss across demographic groups, with the loss being the mean
squared estimation error over all ratings of users in the group. An evaluation
on ML 1M (no train-test split specified) showed that their mitigation could effi-
ciently improve fairness of the considered recommender systems. The source code
was found in a public repository (https://github.com/rastegarpanah/antidote-
data-framework), whose link was sent to us by the authors.

Ashokan & Haas [3] adjusted the relevance scores predicted by the original
model such that a given fairness metric increased. The authors experimented
with value-based fairness (given a user, the difference in predicted and actual
ratings in the training set for the group the user belongs to was added to the
predicted ratings of the user) and parity-based fairness (the overall difference
between predicted ratings for two groups on the training set was added to the
predicted rating of a user for an item in the test set). Recommendation utility was
measured via RMSE and MAE. Fairness was measured, among others, via the
Generalized Entropy and the Theil indexes, which estimate inequality of errors
across users. An evaluation on the ALS and ItemKNN recommendation models,
trained on a synthetic data set and on ML 1M (5-fold cross-validation), showed
that increasing fairness can even lead to lower RMSE and MAE in certain cases.
No source code was linked in the paper; the authors sent it to us by e-mail.

Wu et al. [28] focused on mitigating unfairness in latent factor models. To
this end, their procedure took the user and item embeddings from the original
recommendation model as input and learned a filter space where any sensitive
information was obfuscated and recommendation utility was preserved. The fil-
ters were learnt through a graph-based adversarial training process, where a
discriminator tried to predict the sensitive label, and the filters were trained to
remove sensitive information exposed in the supporting graph structure. RMSE
measured recommendation utility. Fairness was monitored by checking the per-
formance in terms of AUC (binary attributes) and F1 (multi-class attributes)
of a classifier that predicts the sensitive attribute, given the user embedding
(smaller values denote better fairness). An evaluation on ML 1M (training and
test ratio of 9:1) and LFM 360K (training, validation, test ratio of 7:1:2) showed
that fairness could be improved without significantly impacting on recommenda-
tion utility. The source code linked in the paper omitted important components.
The authors provided us with an updated public repository (https://github.
com/newlei/LR-GCCF).

https://github.com/rastegarpanah/antidote-data-framework
https://github.com/rastegarpanah/antidote-data-framework
https://github.com/newlei/LR-GCCF
https://github.com/newlei/LR-GCCF
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2.3 Mitigation Procedures Evaluation

To ensure evaluation consistency and uniformity across mitigation procedures,
given the heterogeneity of the original experimental evaluations, we mixed repli-
cation and reproduction [1,10]. For readability, we use the term “reproducibility”.
So, we used the source code provided by the original authors to run their models
and mitigation procedures, and our own artifacts (data and source code) to (a)
pre-process the input data sets as per their requirements and (b) compute eval-
uation metrics based on the relevance scores or recommendations they returned.

Data Sets. The assessment of consumer fairness is challenging due to the lack
of public data sets with ratings and sensitive attributes of the consumers. In our
analysis, we considered all the public data sets that (a) were used in at least one
reproduced paper, (b) reported at least one sensitive attribute, and (c) included
enough ratings to reasonably train a recommender system (≥ 200,000 ratings).
We hence evaluated the reproduced mitigation procedures on two public data
sets on the movies and music domains (Table 2). Each data set was downloaded
from the original website and pre-processed according to our common evaluation
protocol, in response also to some limitations of the reproduced mitigations.
For instance, given that the existing mitigation procedures are often tailored to
binary groups only, we grouped users in two groups in case of data sets with
multi-class sensitive attributes (while attributes like gender and age are by no
means a binary construct, what we are considering is a binary feature).

Gender labels were already binary in ML 1M. We binarized age labels, orga-
nized in seven age ranges, such that the two groups included consecutive age
ranges and had the most similar representation possible. For LFM 1K, we con-
sidered only users reporting both their gender and age and filtered those with
wrong ages (≤ 0 or ≥ 125). Interactions of a user for the same artist were aggre-
gated, using the number of plays of a user for an artist as a proxy of the rating.
We filtered users interacting with less than 20 artists (as in ML 1M), and ratings
were log-normalized and scaled in [1, 5]. Gender labels were already binary. We
binarized age labels (integer) with the same criteria used in ML 1M.

Table 2. The data sets with consumer’s sensitive attributes included in our study.

Data set #Users #Items #Ratings Sensitive attributes

ML 1M [16] 6,040 3,952 1,000,209 Gender (M: 71.7%; F: 28.3%) Age ( < 35 : 56.6%; ≥ 35 : 43.4%)

LFM 1K [8] 268 51,609 200,586 Gender (M: 57.8%; F: 42.2%) Age ( < 25 : 57.8%; ≥ 25 : 42.2%)

Protocol. Each reproduced paper applied the corresponding mitigation proce-
dure to a set of state-of-the-art recommendation models, which was quite hetero-
geneous across papers due to authors’ arbitrary choices or the focus on a specific
type of model. These models covered several families, including non-personalized
(TopPopular [13] and AvgRating [13]), memory (ItemKNN [3,13], UserKNN [13]),
matrix factorization (BiasedMF [3,19], PMF [18,19,28], FunkSVD [13]), learning-to-
rank (NCF [19], LBM [15], SLIM-U [6], ALS [23], LMaFit [23]), graph (GCN [28]), and
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session-based (STAMP [19]). In line with our reproduction approach, we applied
a given mitigation on the same models considered by the original authors2.

Specifically, given a data set, a sensitive attribute, and a reproducible paper,
we considered the following evaluation protocol. We first performed a train-test
split per user, with 20% of the interactions (the most recent if a timestamp was
available, randomly selected otherwise) being in the test set and the remaining
interactions being in the train set. In case a validation set was needed for best
model selection, 10% of interactions (selected in the same way) of each user from
the train set were considered as a validation set and the other ones included in the
final train set. To fit with the original source code, the format of the considered
sets and the sensitive attribute’s labels per user were adapted. No changes on
the source code specific for the mitigation procedure were applied.

Using the prepared sets and an appropriate hyper-parameters grid, we ran a
grid search for each recommendation model, with and without mitigation. For
each paper, our source code includes the scripts to format a data set as per
the original source code requirements and to compute evaluation metrics as well
as the details of models hyper-parameter tuning. For each setup, we obtained
the predicted relevance scores and the recommendations, and computed utility
and fairness metrics. Utility metrics included NDCG for top-n recommendation
(using binary relevances) and RMSE for rating prediction, selected due to their
popularity (see Table 1). Consumer fairness metrics monitored equity through
Demographic Parity (DP), computed as the difference on utility for the corre-
sponding task between groups, and independence through Kolmogorov-Smirnov
(KS), computed on predicted relevance scores, covering two well-known perspec-
tives and steps of the pipeline. Mainly due to space constraints, we left analyses
on other fairness notions and implementations of the same fairness notions as a
future work. Experiments ran on a Ryzen7 machine with 32 GB RAM.

3 Experimental Results

We now analyze the extent to which the mitigation procedures impact on recom-
mendation utility (RQ1 ), reduce unfairness (RQ2 ), and possibly affect groups
differently (RQ3 ). To this end, we report recommendation utility and fairness
scores obtained under the above evaluation protocol, for TR (Table 3, gender;
Table 4, age) and RP tasks (Table 5, gender; Table 6, age). DP was tested for
statistical significance via a Mann-Whitney test. For KS, we used its own score.
Note that * and ∧ meant significance at p-values 0.05 and 0.01, respectively.

3.1 Impact on Recommendation Utility (RQ1)

In a first analysis, we assess the impact of mitigation on recommendation utility,
focusing on the NDCG/RMSE columns provided in the aforementioned tables.

2 Though some procedures might be applied across models, their transfer often requires
arbitrary design choices and core changes that mine our rigorous reproduction.
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Table 3. Top-n recommendation (TR) considering gender groups.

Paper Model ML 1M LFM 1K

NDCG ↑ DP ↓ KS ↓ NDCG ↑ DP ↓ KS ↓
Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

Burke et al. SLIM-U 0.084 0.084 ˆ0.022 ˆ0.028 ˆ0.032 ˆ0.115 0.348 0.301 ˆ−0.128 ˆ0.072 ˆ0.010 ˆ0.142

Frisch et al. LBM 0.044 0.021 ˆ0.006 ˆ0.004 ˆ0.013 ˆ0.025 0.144 0.212 *−0.035 *−0.058 ˆ0.120 ˆ0.126

Li et al. BiasedMF 0.112 0.112 ˆ0.016 ˆ0.013 ˆ0.033 ˆ0.006 0.246 0.245 ˆ−0.076 *−0.049 ˆ0.026 ˆ0.001

NCF 0.120 0.120 ˆ0.018 ˆ0.015 ˆ0.024 ˆ0.006 0.204 0.202 −0.046 −0.023 ˆ0.017 ˆ0.001

PMF 0.123 0.123 ˆ0.020 ˆ0.015 ˆ0.026 ˆ0.006 0.163 0.164 ˆ-0.069 *−0.049 ˆ0.035 ˆ0.001

STAMP 0.068 0.067 ˆ0.013 ˆ0.009 ˆ0.007 ˆ0.006 0.110 0.110 −0.024 −0.018 ˆ0.002 ˆ0.001

Ekstrand et al. FunkSVD 0.018 0.015 ˆ0.004 0.002 ˆ0.027 ˆ0.018 0.010 0.013 -0.006 −0.003 ˆ0.107 ˆ0.119

ItemKNN 0.140 0.134 ˆ0.038 ˆ0.030 ˆ0.030 ˆ0.031 0.287 0.286 ˆ-0.127 *-0.116 ˆ0.019 ˆ0.022

TopPopular 0.110 0.104 ˆ0.035 ˆ0.030 ˆ0.007 ˆ0.007 0.312 0.321 *-0.085 *-0.102 ˆ0.001 ˆ0.002

UserKNN 0.137 0.131 ˆ0.031 ˆ0.024 ˆ0.074 ˆ0.052 0.406 0.411 ˆ-0.110 ˆ-0.106 ˆ0.067 ˆ0.067

Table 4. Top-n recommendation (TR) considering age groups.

Paper Model ML 1M LFM 1K

NDCG ↑ DP ↓ KS ↓ NDCG ↑ DP ↓ KS ↓
Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

Burke et al. SLIM-U 0.084 0.048 ˆ0.022 ˆ0.014 ˆ0.009 ˆ0.095 0.348 0.207 *−0.065 ˆ−0.145 ˆ0.021 ˆ0.082

Frisch et al. LBM 0.044 0.042 ˆ0.005 ˆ0.006 ˆ0.021 ˆ0.027 0.144 0.213 −0.011 −0.021 ˆ0.125 ˆ0.152

Li et al. BiasedMF 0.112 0.112 ˆ0.018 ˆ0.017 ˆ0.042 ˆ0.006 0.246 0.247 −0.044 *−0.060 ˆ0.015 ˆ0.005

NCF 0.120 0.120 ˆ0.022 ˆ0.019 ˆ0.031 ˆ0.006 0.204 0.203 −0.035 −0.048 ˆ0.008 ˆ0.005

PMF 0.123 0.123 ˆ0.027 ˆ0.021 ˆ0.027 ˆ0.006 0.163 0.164 −0.033 ˆ−0.044 ˆ0.018 ˆ0.005

STAMP 0.068 0.068 0.005 *0.006 ˆ0.006 ˆ0.006 0.110 0.110 *−0.030 ˆ−0.034 ˆ0.005 ˆ0.005

Ekstrand et al. FunkSVD 0.018 0.016 ˆ0.008 ˆ0.006 ˆ0.029 ˆ0.021 0.010 0.016 0.002 −0.004 ˆ0.054 ˆ0.047

ItemKNN 0.140 0.138 ˆ0.027 ˆ0.024 ˆ0.029 ˆ0.033 0.287 0.269 0.010 0.020 ˆ0.133 ˆ0.118

TopPopular 0.110 0.107 ˆ0.038 ˆ0.034 ˆ0.006 ˆ0.006 0.312 0.315 −0.044 -0.050 ˆ0.006 ˆ0.007

UserKNN 0.137 0.137 ˆ0.028 ˆ0.023 ˆ0.060 ˆ0.051 0.406 0.397 −0.023 −0.031 ˆ0.036 ˆ0.031

Table 5. Rating prediction (RP) considering gender groups.

Paper Model ML 1M LFM 1K

RMSE ↓ DP ↓ KS ↓ RMSE ↓ DP ↓ KS ↓
Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

Ekstrand et al. AvgRating 0.905 0.914 ˆ−0.032 *−0.027 ˆ0.047 ˆ0.045 1.239 1.246 0.025 0.024 ˆ0.060 ˆ0.070

FunkSVD 0.881 0.894 ˆ−0.032 −0.023 ˆ0.052 ˆ0.051 1.255 1.268 *0.039 0.039 ˆ0.040 ˆ0.052

ItemKNN 0.865 0.882 ˆ−0.034 *−0.026 ˆ0.055 ˆ0.056 1.218 1.230 *0.037 *0.035 ˆ0.064 ˆ0.072

UserKNN 0.896 0.911 ˆ−0.035 −0.025 ˆ0.056 ˆ0.058 1.226 1.239 ˆ0.047 *0.054 ˆ0.036 ˆ0.045

Kamishima et al. PMF BDist 0.863 0.870 ˆ−0.029 ˆ−0.046 ˆ0.056 ˆ0.032 1.172 1.179 0.014 *0.029 ˆ0.067 ˆ0.029

PMF Mean 0.863 0.870 ˆ−0.029 ˆ−0.048 ˆ0.056 ˆ0.056 1.172 1.179 0.014 *0.025 ˆ0.067 ˆ0.054

PMF Mi 0.863 0.870 ˆ−0.029 ˆ−0.046 ˆ0.056 ˆ0.032 1.172 1.179 0.014 *0.029 ˆ0.067 ˆ0.029

Rastegarpanah et al. ALS 0.894 0.890 ˆ−0.034 ˆ−0.034 ˆ0.035 ˆ0.033 1.490 1.189 ˆ0.145 0.029 ˆ0.036 ˆ0.114

Ashokan & Haas ALS Par 0.867 0.868 ˆ−0.030 ˆ−0.029 ˆ0.056 ˆ0.034 1.145 1.146 0.016 0.018 ˆ0.047 *0.017

ALS Val 0.867 0.867 ˆ−0.030 ˆ−0.030 ˆ0.056 ˆ0.057 1.145 1.150 0.016 0.018 ˆ0.047 ˆ0.050

ItemKNN Par 0.865 0.866 ˆ−0.034 ˆ−0.033 ˆ0.055 ˆ0.036 1.176 1.183 *0.033 *0.045 v0.061 ˆ0.058

ItemKNN Val 0.865 0.865 ˆ−0.034 ˆ−0.034 ˆ0.055 ˆ0.052 1.176 1.173 *0.033 *0.036 ˆ0.061 ˆ0.046

Wu et al. FairGo GCN 0.895 0.892 ˆ−0.038 ˆ−0.034 ˆ0.048 ˆ0.045 1.609 1.283 ˆ0.151 0.038 ˆ0.113 ˆ0.113

In a TR task, we observed that the NDCG achieved by the untreated models
(Base) in ML 1M was in the range [0.110, 0.140], except for SLIM-U, FunkSVD,
LBM, and STAMP, whose NDCG was lower (≤ 0.084). Mitigating unfairness
(Mit) in ML 1M did not generally result in a substantial change in utility (±0.006
gender; ±0.003 age). Higher changes were observed in two cases: SLIM-U treated
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Table 6. Rating prediction (RP) considering age groups.

Paper Model ML 1M LFM 1K

RMSE ↓ DP ↓ KS ↓ RMSE ↓ DP ↓ KS ↓
Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

Ekstrand et al. AvgRating 0.905 0.904 ˆ0.051 ˆ0.056 ˆ0.071 ˆ0.072 1.239 1.248 0.040 0.048 ˆ0.080 ˆ0.092

FunkSVD 0.881 0.886 ˆ0.042 ˆ0.045 ˆ0.073 ˆ0.081 1.255 1.264 0.032 0.035 ˆ0.083 ˆ0.086

ItemKNN 0.865 0.875 ˆ0.039 ˆ0.042 ˆ0.074 ˆ0.079 1.218 1.226 0.019 0.028 ˆ0.088 ˆ0.092

UserKNN 0.896 0.902 ˆ0.047 ˆ0.050 ˆ0.092 ˆ0.103 1.226 1.233 0.034 0.031 ˆ0.087 ˆ0.095

Kamishima et al. PMF BDist 0.863 0.872 ˆ0.039 ˆ0.031 ˆ0.084 ˆ0.018 1.172 1.183 0.045 ˆ0.065 ˆ0.124 ˆ0.047

PMF Mean 0.863 0.872 ˆ0.039 ˆ0.027 ˆ0.084 ˆ0.045 1.172 1.184 0.045 ˆ0.069 ˆ0.124 ˆ0.042

PMF Mi 0.863 0.872 ˆ0.039 ˆ0.031 ˆ0.084 ˆ0.018 1.172 1.183 0.045 ˆ0.064 ˆ0.124 ˆ0.047

Rastegarpanah et al. ALS 0.894 0.892 ˆ0.034 ˆ0.040 ˆ0.034 ˆ0.037 1.490 1.185 0.033 *0.052 ˆ0.017 ˆ0.064

Ashokan & Haas ALS Par 0.867 0.871 ˆ0.041 ˆ0.048 ˆ0.074 ˆ0.026 1.145 1.146 0.043 *0.046 ˆ0.082 *0.015

ALS Val 0.867 0.866 ˆ0.041 ˆ0.042 ˆ0.074 ˆ0.079 1.145 1.149 0.043 *0.046 ˆ0.082 ˆ0.077

ItemKNN Par 0.865 0.870 ˆ0.040 ˆ0.048 ˆ0.074 ˆ0.031 1.176 1.177 0.029 0.031 ˆ0.085 ˆ0.029

ItemKNN Val 0.865 0.864 ˆ0.040 ˆ0.042 ˆ0.074 ˆ0.071 1.176 1.172 0.029 0.032 ˆ0.085 ˆ0.083

Wu et al. FairGo GCN 0.895 0.908 ˆ0.040 ˆ0.044 ˆ0.070 ˆ0.074 1.609 1.277 0.043 *0.056 ˆ0.079 ˆ0.120

with Burke et al.’s mitigation (stable for gender; −0.036 age) and LBM treated
with Frisch et al.’s (−0.023 gender; stable for age). In LFM 1K, the untreated
models (Base) got an NDCG in [0.204, 0.406], overall higher than ML 1M. The
models ranking based on NDCG differs for several models from ML 1M. Though
their utility was relatively high, PMF, FunkSVD, LBM, and STAMP were still
under-performing in LFM 1K. The treated models (Mit) showed changes in
NDCG (±0.009 gender; ±0.018 age) larger in magnitude than ML 1M. SLIM-U
with Burke et al.’s mitigation (−0.047 gender; −0.141 age) and LBM with Frisch
et al.’s mitigation (+0.068 gender; +0.069 age) led to higher changes in NDCG.

Considering an RP task, the untreated models (Base) achieved an RMSE in
the range [0.863, 0.905] in ML 1M. By mitigating (Mit) in ML 1M, no substantial
changes were observed (±0.017 gender; ±0.013 age). In LFM 1K, the untreated
models (Base) achieved a higher RMSE, in the range [1.145, 1.255]. ALS and
GCN are the lowest performers (1.490 and 1.609, respectively). The treated
models (Mit) showed minimal (±0.0135 gender; ±0.012 age) which are similar
to the changes in ML 1M. ALS under Rastegarpanah et al.’s mitigation lowered
RMSE (−0.301 gender; −0.305 age), as well as GCN under Wu et al.’s mitigation
(−0.326 gender; −0.332 age).

Observation 1. In general, the mitigation procedures did not sub-
stantially impact on recommendation utility, regardless of the sensitive
attribute, data set, task. The impact is larger in LFM 1K than ML 1M.

3.2 Impact on Group Unfairness (RQ2)

In a second analysis, we investigated the impact of mitigation on unfairness. For
each table and data set, we consider the DP and KS columns.

We start from a TR task, focusing our presentation on the subset of mod-
els that achieved a reasonable NDCG (≤ 0.110 for ML 1M; ≤ 204 for LFM
1K). In ML 1M, the DP and KS achieved by the untreated models (Base) laid
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in the ranges ([0.016, 0.038] gender; [0.018, 0038] age) and ([0.007, 0.074] gen-
der; [0.006, 0.060] age), respectively. Without any mitigation, in terms of DP,
BiasedMF, NCF, and PMF (≤ 0.020 gender; ≤ 0.027 age) were fairer than Top-
Popular, UserKNN, and ItemKNN (≥ 0.031 gender; ≥ 0.027 age). To some sur-
prise, when KS was considered, we observed a different pattern. TopPopular was
the fairest model (0.007 gender; 0.006 age), followed by NCF and PMF (0.024 and
0.026 gender; 0.031 and 0.027 age), ItemKNN and BiasedMF (0.030 and 0.033
gender; 0.029 and 0.042 age), and UserKNN (0.074 gender; 0.060 age). By mit-
igating (Mit), DP went down to the range ([0.013, 0.030] gender; [0.017, 0.034]
age), while KS laid in the range ([0.006, 0.052] gender; [0.006, 0.051] age). In
LFM 1K, models were less fair than in ML 1M. The untreated models (Base)
achieved a DP in the ranges ([−0.046,−0.127] gender; [0.010,−0.044] age) and a
KS in the ranges ([0.001, 0.067] gender; [0.006, 0.133] age). The models ranking in
terms of DP and KS was similar between LFM 1K and ML 1M. Once mitigated
(Mit), interestingly, we observed that re-sampling by Ekstrand et al. resulted in
a decrease of fairness for TopPopular in terms of DP on gender groups (0.017),
and for TopPopular, ItemKNN and UserKNN on age groups (≥ 0.06). These
findings are replicated for ItemKNN in terms of KS on gender groups (0.03),
while, for age groups KS was substantially lowered (0.015). Other cases did not
lead to substantial changes.

In a RP task, in ML 1M, untreated models (Base) achieved a DP in
[−0.038,−0.025] (gender) and [0.034, 0.051] (age), and a KS in [0.035, 0.056]
(gender) and [0.034, 0.092] (age). With no mitigation, there were minimal dif-
ferences in terms of DP between models for the attribute gender (avg. 0.033,
std. dev. 0.003). For the attribute age, the untreated models had similar DP
(avg. 0.041, std. dev. 0.005). Considering KS, comparable estimates across mod-
els were observed (avg. 0.053, std. dev. 0.003 gender; avg. 0.076, std. dev. 0.007
age). ALS (0.035 gender; 0.034 age) resulted in fairer outcomes in terms of KS.
Treated models (Mit) showed stable fairness (±0.010 gender; ±0.008 age) in all
cases, except for Kamishima et al. (±0.019 gender; ±0.012 age) when DP was
considered. In terms of KS, models treated with Kamishima et al.’s mitigation
(for gender only PMF BDist and PMF Mi) and Ashokan et al.’s mitigation (par-
ity setting) were substantially fairer (≥ 0.019 gender; ≥ 0.039 age), while other
treated models did not benefit from the mitigation (±0.003 gender; ±0.011 age).
In LFM 1K, untreated models (Base) achieved a DP in [0.014, 0.151] (gender)
and [0.019, 0.045] (age), and a KS in [0.036, 0.113] (gender) and [0.017, 0.124]
(age). Without mitigating, findings in ML 1M held in LFM 1K, except for the
high DP (0.151) and KS (0.113) of GCN for gender. Treated models (Mit) instead
showed stable fairness (≤ 0.015 gender; ≤ 0.009 age) except for Kamishima et
al. (≥ 0.019 age), ALS (0.116 gender; 0.019 age), GCN (0.113 gender; 0.013 age),
in terms of DP (opposite to ML 1M). In terms of KS, except the mitigations
of Kamishima et al. and Ashokan et al. (parity), treated models did not benefit
from mitigation (≤ 0.015 gender; ≤ 0.005 age).



Consumer Fairness in Recommender Systems 563

Observation 2. Unfairness depends on the mitigation, model, and fair-
ness notion. Often the mitigation impact is small. Lowering DP does not
imply lowering KS, and viceversa. Unfairness is higher in LFM than ML.

3.3 Relationships Between Representation and Unfairness (RQ3)

In a third analysis, we analyzed whether the disparate impact always harms
minority groups (see group representations in Table 2), based on the sign of DP.

In a TR task, positive values of DP mean that models advantage the majority
(majority group’s NDCG higher than minority’s group NDCG; the higher the
NDCG the higher the utility). Conversely, negative values show an advantage
for the minority. From our results, untreated models (Base) negatively impacted
on the minority for both gender (in all cases significantly) and age (9/10 times
significantly) in ML 1M. Though unfairness was reduced through mitigation, the
same observations were still valid on treated models (Mit). To some surprise, the
majority groups were negatively impacted for both attributes in LFM 1K (7/10
times significantly for gender and 2/10 times significantly for age) by untreated
models (Base). By mitigating (Mit), 7 out of 10 treated models were significantly
unfair for gender. For age, observations were similar.

Considering a RP task, positive values of DP mean that models advantage
the minority (majority group’s RMSE higher than minority’s group RMSE; the
higher the RMSE the lower the utility). Conversely, negative values show an
advantage for the majority. The results showed that the minority age group was
advantaged in both data sets (in all cases significantly in ML 1M) by untreated
models (Base). The minority group was also advantaged in LFM 1K for the gen-
der attribute, significantly 7/13 times. Conversely, the majority gender group
was advantaged in ML 1M, significantly in all cases. Similarly to the TR task,
treated models (Mit) were still significantly unfair against the group disadvan-
taged in the untreated model.

Observation 3. The disparate impact does not always harm the minor-
ity group. The latter was advantaged for both attributes in LFM 1K
(TR), in both data sets for age and in LFM 1K for gender (RP).

4 Discussion and Conclusions

In this last section, we connect our findings and present the resulting conclusions.

Reproducibility. Several challenges emerged while reproducing existing pro-
cedures. For instance, the code base modularity should be improved to eas-
ily accommodate different data sets as an input. Moreover, many procedures
required extensive computational resources to treat the recommendation mod-
els. This issue prevented us from using larger data sets, e.g., LFM 360K, and
questions scalability. Future works should account for modularity and efficiency.

Optimization. Mitigating unfairness adds additional hyper-parameters and
often requires to deal with a trade-off between recommendation utility and
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unfairness. It is hence challenging to tune the hyper-parameters. While we pro-
vide results for an arbitrary optimal setup, it is up to the stakeholders to select
the trade-offs most suitable for their goals. One of the future directions should
be to find novel mitigation procedures that embed the constraint on recom-
mendation utility more strictly, to avoid convoluted decisions on the mentioned
trade-off.

Comparability. Our study showed that there is an abundance of evaluation
metrics to assess fairness and that, despite several papers using similar data sets
(e.g., ML 1M), the evaluation setting was often different. Our paper shows the
first attempt of comparing a wide range of mitigation procedures under the same
evaluation protocol, considering two relevant yet transferable fairness notions.
Despite the common protocol, we however could not conclude whether a mitiga-
tion is better than another in a given context, given that many of them could not
be easily transferred across models. In the future, a mitigation procedure should
be tested across recommendation models, data sets and sensitive attributes.

Impact. Our results showed that the impact of the mitigation procedure on
utility is often negligible. However, depending on the recommendation model,
the data set, and the task, mitigation procedures do not always substantially
reduce unfairness. Moreover, being fair in terms of independence does not imply
higher fairness in terms of equity. Future work should study the friction across
fairness notions, and ensure that the unfairness reduction achieved offline can
then provide tangible impacts when moved online.

Overall, our analyses showed that reproducing research in this area is still a
challenging task hence and call for more rigor and shared practices in this area.
Motivated by our findings, we will extend our analyses to papers published in
other outlets and to other notions of consumer fairness. We also plan to devise
novel mitigation procedures, following the lessons learnt from this study (e.g.,
modularity, efficiency, optimization, comparability, impact).
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Maik Fröbe1(B), Sebastian Günther1, Maximilian Probst1, Martin Potthast2,
and Matthias Hagen1

1 Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
maik.froebe@informatik.uni-halle.de

2 Leipzig University, Leipzig, Germany

Abstract. In the early days of web search, a study by Craswell et al. [11] showed
that anchor texts are particularly helpful ranking features for navigational queries
and a study by Eiron and McCurley [24] showed that anchor texts closely resem-
ble the characteristics of queries and that retrieval against anchor texts yields
more homogeneous results than against documents. In this reproducibility study,
we analyze to what extent these observations still hold in the web search sce-
nario of the current MS MARCO dataset, including the paradigm shift caused by
pre-trained transformers. Our results show that anchor texts still are particularly
helpful for navigational queries, but also that they only very roughly resemble the
characteristics of queries and that they now yield less homogeneous results than
the content of documents. As for retrieval effectiveness, we also evaluate anchor
texts from different time frames and include modern baselines in a comparison on
the TREC 2019 and 2020 Deep Learning tracks. Our code and the newly created
Webis MS MARCO Anchor Texts 2022 datasets are freely available.

Keywords: Anchor text · MS MARCO · ORCAS · TREC Deep Learning track

1 Introduction

Almost from the beginning, search engines have exploited the Web’s link structure to
improve their result rankings. But besides the actual links, also the anchor texts (i.e., the
clickable texts of the links) were an important ranking feature, since they “often provide
more accurate descriptions of web pages than the pages themselves” [2].

The seminal works of Craswell et al. [11] and Eiron and McCurley [24] from 2001
and 2003 examined two important aspects of anchor text. Craswell et al. showed that
anchor text especially helps for navigational queries (i.e., queries to find a specific doc-
ument [3]). This result explained why commercial search engines heavily used anchor
text even though no positive effect was observed in TREC scenarios [27,49]: more
than 20% of the traffic of commercial search engines were navigational queries [3], but
hardly any TREC topic was navigational. Eiron and McCurley showed that retrieval
against anchor texts yields more homogeneous results than against documents and that
anchor texts closely resemble the characteristics of queries. This result later inspired
others to use anchor texts as a replacement for proprietary query logs [7,20,36,38].
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In the two decades since the studies of Craswell et al. and Eiron and McCurley were
published, the Web and the search behavior of users have changed. We thus analyze to
what extent the original findings can be reproduced on current web crawls and query
logs. Additionally, given the recent success of pre-trained transformers [52], we also
analyze whether anchor text is still a valuable ranking feature or whether it might be
“obsolete” for retrieval pipelines using BERT [43], MonoT5 [44], or DeepCT [18].

As reproducibility scenario for our study, we employ the two available versions of
the MS MARCO datasets (3.2 and 12 million documents, 367,013 queries with rele-
vance judgments) [15], the ORCAS query log (18.8 million query–click entries related
to MS MARCO documents) [8], and extract anchor texts from Common Crawl snap-
shots of the last six years to construct the Webis MS MARCO Anchor Texts 2022
dataset: it contains billions of anchor texts for about 1.7 million documents from
MS MARCO Version 1 (about 53% of all documents), and for about 4.82 million doc-
uments from MS MARCO Version 2 (about 40% of all documents).

The results of our reproducibility study are dichotomous. While we can reproduce
Craswell et al.’s observation that anchor text is particularly helpful for navigational
queries (details in Sect. 5), we find substantial differences for the results of Eiron and
McCurley. In the MS MARCO scenario, the anchor texts are pretty different to queries
(e.g., number of distinct terms) and retrieval against them yields less (not more) homo-
geneous results than against the content of documents (details in Sect. 4). We attribute
both changes to the fact that Eiron and McCurley conducted their study in the corpo-
rate IBM intranet with queries and anchor texts both formulated by employees of IBM,
whereas, in our reproducibility scenario, we have “arbitrary” searchers and anchor text
authors from the Web. In the reproducibility experiments for the study of Craswell et
al., we also evaluate the effectiveness of anchor text from different time frames and
include modern baselines in a comparison on the topics of the TREC 2019 and 2020
Deep Learning tracks. The results still confirm the observation that anchor text only
slightly improves the effectiveness in TREC scenarios [11,27,49]. All our code and
data is published under a permissible open-source license.1

2 Related Work

Exploiting link structure has a long tradition in IR [16]. Already in 1993, Dunlop and
van Rijsbergen [23] used text referring to non-textual objects like images to retrieve
those non-textual objects for text queries. McBryan [41] refined this process by only
including terms from the clickable texts of links: the anchor texts. Anchor texts were
later reported to be heavily used by commercial search engines [2,24] but had no posi-
tive effect in TREC scenarios [1,26,27,49]. Craswell et al. [11] resolved this dichotomy
by showing that anchor text is particularly useful for navigational queries (i.e., queries
to find a specific document [3]) while hardly any TREC topics were navigational.

After Craswell et al.s result, dedicated shared tasks like homepage finding or named
page finding evolved [9,10,12] and more and more systems incorporated anchor text for
navigational queries. For instance, Westerveld et al. [49] combined anchor text with a

1 Code and data: https://github.com/webis-de/ECIR-22. Data is integrated in ir datasets [39].
Data on Zenodo: https://zenodo.org/record/5883456.
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document’s content, URL, and link count, and Ogilvie and Callan [45] showed that
anchor text can also be combined with poor-performing features without harming the
overall effectiveness for navigational queries. Since links may “rot” over time [34]—
resulting in possibly outdated anchor texts—, several approaches used historical infor-
mation [17] or importance estimation [22,42] to weight anchor text. Finally, the anchor
text source and quantity were shown to be very important. Kamps et al. [29] found
that anchor text from the Wikipedia is more effective than anchor text from the general
Web while Koolen and Kamps [35] showed that more anchor text led to higher early
precision on the TREC 2009 Web track [6], which includes 66 navigational subtopics.

Anchor text became an important retrieval feature also used in lieu of query
logs [7,20,24,36,38]. But with the recent paradigm shift due to transformers [52], the
IR community’s main focus changed from feature engineering to neural re-ranking and
dense retrieval models [30]. The MS MARCO datasets, utilized by the TREC Deep
Learning tracks [8,14], particularly enabled this shift, but since they lack anchor texts,
our goal of reproducing the seminal anchor text studies by Craswell et al. [11] and Eiron
and McCurley [24] requires the extra effort of collecting anchor texts for its documents.

3 The Webis MS MARCO Anchor Text 2022 Dataset

MS MARCO does not feature anchor texts, and its documents are only sparsely linked.
To overcome this shortcoming for the reproduction of the results of Craswell et al. and
Eiron and McCurley on MS MARCO, we compile the Webis MS MARCO Anchor
Text 2022 dataset by extracting anchor texts from web pages linking to MS MARCO
documents found in Common Crawl snapshots. A high recall has been achieved by
processing one randomly selected snapshot from each year between 2016 and 2021
(between 1.7–3.4 billion documents each). Unlike Craswell et al. and Eiron and McCur-
ley, we applied the three filtering steps developed by Chen et al. [5] to remove low-
quality anchor texts. An anchor text has been omitted, if it consisted of (1) one or more
of the manually selected “stop words” ‘click’, ‘read’, ‘link’, ‘mail’, ‘here’, and ‘open’;
(2) more than 10 words, since these are often due to parsing errors; or, if it (2) originated
from an intra-site link (i.e., same source and target domain), since anchor texts of inter-
site links are usually more descriptive [42]. These filtering steps removed about 50% of
all anchor texts pointing to MS MARCO documents.

Processing the total 17.12 billion Common Crawl documents (343 TiB compressed
WARC files) on our 3000 CPU Hadoop cluster [48] yielded 8.16 billion anchor texts for
MS MARCO documents. A first data analysis revealed that most links point to only a
few very popular documents. To obtain a sensible dataset size both for our experiments
and future users, we applied min-wise sampling of 1,000 anchor texts for documents
that are targeted by more links than that. This stratified sampling still ensured the inclu-
sion of all anchor texts for most of the documents (94% for MS MARCO version 1;
97% for version 2), downsampling only the most popular documents.

Table 1 shows an overview of all extracted anchor texts (column group ‘Anchors’)
and the downsampled subsets for the two MS MARCO versions (‘Sample@V1’ and
‘Sample@V2’). Overall, the combined samples cover 1.70 million documents of Ver-
sion 1 (53% of all documents) and 4.82 million documents of Version 2 (40%). For
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Table 1. The Webis MS MARCO Anchor Text 2022 dataset at a glance. The samples for Ver-
sions 1 and 2 (Sample@V1/V2) include at most 1,000 anchor texts per MS MARCO document.

Common Crawl snapshot Anchors Sample@V1 Sample@V2

Snapshot Docs Size V1 V2 Anchors Docs cov. Anchors Docs cov.

2016-07 1.73 b 28.57 TiB 1.05 b 0.75 b 54.05 m 0.83 m 65.04 m 1.49 m

2017-04 3.14 b 53.95 TiB 0.95 b 0.91 b 61.19 m 1.18 m 94.35 m 2.34 m

2018-13 3.20 b 67.66 TiB 0.83 b 0.68 b 81.24 m 1.27 m 116.59 m 2.45 m

2019-47 2.55 b 53.95 TiB 0.55 b 0.41 b 65.60 m 1.16 m 90.18 m 2.83 m

2020-05 3.10 b 59.94 TiB 0.67 b 0.48 b 78.46 m 1.24 m 108.16 m 3.10 m

2021-04 3.40 b 78.98 TiB 0.52 b 0.36 b 60.62 m 1.14 m 84.93 m 3.18 m
∑

17.12 b 343.05 TiB 4.57 b 3.59 b 207.28 m 1.70 m 341.17 m 4.82 m

each anchor text, our datasets also contain the source URL, the target URL, and the
MS MARCO ID of the target document. Besides releasing the dataset to the commu-
nity, we employ it to reproduce the main findings of Eiron and McCurley [24] (next
section) and the retrieval effectiveness results of Craswell et al. [11] (Sect. 5).

4 Properties of Anchor Texts, Queries, and Documents

In 2003, Eiron and McCurley [24] studied properties of anchor texts, queries, and doc-
uments on the IBM intranet (2.95 million documents, 2.57 million anchor texts, and
1.27 million queries). They found that anchor texts closely resembled query length, that
terms in document titles/bodies and in anchor texts often have different meanings, and
that retrieval against anchor text yielded more homogeneous results than against docu-
ment content. Eiron and McCurley also conducted a study on retrieval effectiveness but
we do not reproduce their setup (without relevance judgments) but instead reproduce
the retrieval experiments of Craswell et al. [11] with relevance judgments (cf. Sect. 5).

Analyzing to what extent the similarity of anchor texts and queries that Eiron and
McCurley observed can be reproduced in a current retrieval scenario is particularly
important, since the observation had inspired others to replace proprietary query logs by
anchor texts [7,20,38]. We repeat the study of Eiron and McCurley on the MS MARCO
Version 1 dataset and the ORCAS query log [8] linked to it. Interestingly, in our “mod-
ern” web search scenario with about 27 times more anchor texts (81.24 million in the
2018 subset matching the MS MARCO Version 1 crawling date) and 15 times more
queries (18.82 million from ORCAS), we obtain some substantially different results.

Number of Distinct Terms. The plots in Fig. 1 show the distributions of the number
of distinct terms per anchor text, query, or document title as reported by Eiron and
McCurley for their IBM dataset (left plot) and what we observe for MS MARCO (right).
While Eiron and McCurley reported the distributions for anchor texts and queries as
highly similar, we find them to be rather dissimilar on MS MARCO.

To assess the similarity of the distributions, we calculate the symmetric Jensen-
Shannon distance [25] for all pairs (right plot of Fig. 2; a distance of 0 indicates equal
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Fig. 1. Distributions of the number of distinct terms in anchor texts, queries, document titles, and
aggregated anchor texts (all anchors combined that point to a document) on the IBM data (left)
and MS MARCO (MSM; right).
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Fig. 2. Left: Number of queries with significantly more, less, or equally homogeneous content-
based results. Right: Jensen-Shannon distance of all pairs (0 = identical).

distributions). The anchor text distributions are very similar for the MS MARCO and
the IBM data (distance of 0.10) as are the distributions of anchor texts and queries for
the IBM data (0.14). However, on the MS MARCO data, anchor texts and queries are
more dissimilar (0.28), probably mainly due to the more “web-like” query distribution:
the IBM query distribution is pretty different to the ORCAS queries (distance of 0.34;
most IBM queries have one term, most ORCAS queries have three terms, etc.).

Frequent Terms. Eiron and McCurley also compared the 16 most frequent terms in
document titles, queries, and anchor texts and found that these are rather different. Some
terms like ‘of’ are frequent in all types but most terms frequent in one type are rare in
the other types. Eiron and McCurley then argued that the different frequencies indicate
that anchor texts should be kept separate and not mixed with document content such
that methods depending on term frequencies could better exploit the different contexts
of a term’s frequencies. We can confirm the observed substantial differences also for the
MS MARCO scenario. For example, the frequent terms ‘you’, ‘it’, and ‘are’ for titles,
‘meaning’, ‘online’, and ‘free’ for ORCAS queries, as well as ‘home’, ‘university’, or
‘website’ for anchor texts very rarely occur in the other types.
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Table 2. Homogeneity of anchor text and content-based search results: (a) mean Jensen-
Shannon (JS) distance, (b) result excerpts for query with largest distance

(a) Distributions of mean JS distance.
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(b) Ranking excerpts for query
kelly clarkson fan club.

Rank Page description
Index: Anchor Mean JS distance: 0.32

1 Homepage of Kelly Clarkson
2 Wikipedia article on Kelly Clarkson
3 Latest News on Kelly Clarkson...
98 Statistics on movie star Grace Kelly
99 Vacancy by the Kelly Services company
100 Login Page to Facebook
Index: Content Mean JS distance: 0.13

1 News on Kelly Clarkson’s career
2 Wikipedia article on a Kelly Clarkson single
3 IMDb biography of Kelly Clarkson...
98 News article on a Kelly Clarkson album
99 Review of Kelly Clarkson at American Idol
100 Article on weight gain of Kelly Clarkson

Search Result Homogeneity. Eiron and McCurley reported that most of the queries
in their log were navigational (e.g., benefits or travel to find respective IBM
guidelines) and that matching queries in the document content tended to retrieve results
for every possible meaning of the query terms while matching only in the anchor texts
retrieved more homogeneous results—but in an experiment with only 14 queries.

On 10,000 randomly sampled ORCAS queries, we follow the setup of Eiron and
McCurley: we rank the MS MARCO documents by either matching their anchor texts
or their content, we remove queries with less than 800 results (7,962 queries remain),
and we measure the results’ homogeneity using the method of Kilgarriff and Rose [33]
to compute the mean Jensen-Shannon distances; distributions shown in Table 2a.

In contrast to Eiron and McCurley, we observe that retrieval against document con-
tent yields more homogeneous results than against anchor text (cf. Fig. 2 (left table);
content yields more homogeneous results for more than 6,700 queries). For example,
the top-100 content-based results for the query kelly clarkson fan club all
refer to Kelly Clarkson while the anchor text-based results are more “diverse” (cf. the
excerpts in Table 2b). An explanation for the difference to the observation of Eiron and
McCurley probably is twofold: (1) our large-scale dataset has rather diverse authors and
queries from different searchers while in the IBM data anchor text writers and searchers
probably were IBM employees with experience in intranet search, and, probably more
importantly, (2) Eiron and McCurley have experimented with 14 queries only.
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5 Anchor Text and Retrieval Effectiveness

To reproduce the result of Craswell et al. [11] (that anchor text helps for navigational
queries), we compare the effectiveness of traditional and modern content-based retrieval
for navigational queries to the effectiveness of focused retrieval in the MS MARCO
anchor text datasets. We also further extend the experiment to the queries with judg-
ments from the TREC Deep Learning tracks [13–15]—all of them informational
queries.

5.1 Navigational Queries for MS MARCO

Craswell et al. [11] experimented with three sets of navigational queries to demonstrate
the effectiveness of anchor text for web search. For a web crawl with 18.5 million pages,
they created 100 navigational queries for random entry pages and 100 navigational
queries for random popular entry pages (selected from a manually maintained Yahoo!
list of popular entry pages). Additionally, for a crawl of 0.4 million documents from
the domain of the Australian National University, they created 100 navigational queries
pointing to academic persons or institutions—we omit those academic queries from our
reproduction to focus on general web search.

Following Craswell et al. [11], we created 100 navigational queries for random entry
pages and 100 for popular entry pages in the MS MARCO document sets as follows.
We extracted all MS MARCO Version 1 documents that potentially are entry pages
by applying the respective rules of Westerveld et al. [49] (URL-path must be empty
or must be index.html). From the resulting 92,562 candidates, we selected 100 pages
at random and 100 documents at random with domains listed in the Alexa top-1000
ranking of 2018 (probable crawl date of the MS MARCO Version 1 document set). To
actually create the 200 navigational queries, we manually inspected each of the 200 tar-
get pages and formulated a query that searchers would probably use to search for that
page. We then also checked whether the page is still present in MS MARCO Version 2
and whether the same navigational query still applies. For 194 query–document pairs,
the transfer was easily possible while for the 6 remaining ones we manually had to
correct changed URLs (e.g., calendar.live.com → outlook.live.com).

5.2 Retrieval Models and Training

For navigational queries, Craswell et al. [11] compared the effectiveness of BM25-
based retrieval using document content to BM25-based retrieval using anchor texts. In
our reproducibility study, we substantially extend this setup by employing 18 differ-
ent retrieval systems. We use different anchor text sets to evaluate the effectiveness of
anchor text over time and include novel retrieval models that did not exist during the
evaluation of Craswell et al. back in 2001.

Seven of the systems in our study retrieve results only against anchor texts using
BM25 as the retrieval model; six systems for six different Common Crawl versions
of our anchor text dataset and a seventh system that uses all the combined anchor
texts. From the other eleven systems that we use for comparison, six solely use the
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documents’ content (one is BM25-based), while the remaining five systems use com-
binations of document content, anchor text, and ORCAS query–click information [8].
Nine of the eleven comparison systems employ approaches that did not exist during
the evaluation of Craswell et al.: DeepCT [18,19], MonoBERT [43], MonoT5 [44],
and LambdaMART [4] (cf. left column of Table 4 for a list of all the 18 systems). For
DeepCT, we use different training setups (with or without access to query log informa-
tion and anchor texts), and for LambdaMART, we use different sets of features (with or
without access to query log information and anchor texts) such that we can assess the
importance of anchor texts in such models as an additional case study.

We use the Anserini toolkit [51] in our experiments and follow Craswell et al. [11]
by not tuning the parameters of BM25—keeping them at Anserini’s defaults of k = 0.9
and b = 0.4. In general, we preprocess queries and the indexed texts via Porter stem-
ming and stopword removal using Lucene’s default stopwords for English but for re-
ranking documents using MonoT5 and MonoBERT, we follow Nogueira et al. [44] and
omit stemming and stopword removal. For all rankers, we break score ties within a
ranking via alphanumeric ordering by document ID as implemented in Anserini (given
random document IDs, this leads to a random distribution with respect to other docu-
ment properties such as text length [37]).

BM25 on Anchor Text. Following Craswell et al. [11], we concatenate all anchor
texts pointing to the same target page and index these aggregated anchor text “doc-
uments” in dedicated Anserini BM25 indexes for all 14 anchor text samples (6 indi-
vidual Common Crawl versions and their combination for MS MARCO Version 1 and
Version 2; see Table 1). At query time, the actual documents are returned in the order
of their retrieved aggregated anchor text “documents”. With this setup, we mimic the
corresponding baseline of Craswell et al. with the novel aspect that we can compare the
retrieval effectiveness for the individual anchor text subsets and their combination.

BM25 on Content. Mimicking the baseline of Craswell et al. [11], we concatenate
the title and body of the documents and create a respective Anserini BM25 index.

DeepCT on Content. DeepCT [18,19] estimates the importance of terms in their
context, removing unimportant terms while including multiple copies of important
terms. With its focus on precision, DeepCT could be particularly suited for naviga-
tional queries. We train three DeepCT models: on the training data of MS MARCO
Version 1, on the ORCAS data, and on our combined anchor texts. Interestingly, Dai
and Callan [18] designed DeepCT to use anchor text as training data but had not tried
it for MS MARCO since no anchor text dataset existed—a gap that we now close with
the release of our anchor text data and our respective results for DeepCT.

Following Dai and Callan [18], we compute the importance of a term t in a docu-
ment d as the fraction of queries with clicks on d that contain t as a query term or the
fraction of anchor texts pointing to d that contain t. The three different DeepCT-based
systems in our comparison are trained on the queries in the official MS MARCO Ver-
sion 1 training data, on the queries in the ORCAS data, and on our new anchor text
data. To avoid any train/test leakage, we remove the 270,511 MS MARCO documents
from the training for which any query or anchor text in the training data contains a term
from any of the 200 navigational queries used in our evaluation. The DeepCT systems
thus are trained on 249,046 documents for the official MS MARCO training data, on
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Table 3. (a) Characteristics of the train/test leakage filtered term importance datasets for DeepCT:
MS MARCO training data (MARCO), ORCAS data (ORCAS), and the combined anchor texts
from the Common Crawls (Anchor). (b) Pairwise comparison of the importance scores’ correla-
tions (Kendall’s τ , Pearson’s ρ) and the Jaccard similarity (J) of terms with non-zero weights.

(a) Term importance training datasets.

Dataset Docs Passages w/o imp. term

MARCO 0.25 m 2.08 m 0.29 m

ORCAS 0.88 m 8.17 m 0.92 m

Anchor 1.43 m 11.64 m 2.02 m

(b) Comparison of importance scores.

Compared datasets τ ρ J

Anchor vs. ORCAS 0.39 0.61 0.53

ORCAS vs. MARCO 0.35 0.46 0.51

Anchor vs. MARCO 0.26 0.41 0.45

876,950 documents for the ORCAS data, and on 1,432,621 documents for the com-
bined anchor texts. Following a suggestion of Dai and Callan [19], each document is
split into fixed-length passages of 250 terms since working with fixed-length passages
is more effective than variable-length original passages [31] (passage splitting done
with the TREC CAsT tools2). Table 3a shows the characteristics of the training datasets
including the number of passages that do not contain any important term.

Table 3b shows the correlations (Kendalls τ and Pearsons ρ) of the term impor-
tance scores derived from the three training datasets and also the Jaccard similarity
of the term sets with non-zero importance scores. Interestingly, anchor texts and the
ORCAS queries lead to more similar scores than the two query sets. Still, the differ-
ences for any pair are large enough so that we decided to train and compare three indi-
vidual models. For the training, we use the implementation of Dai and Callan [18] and
follow their suggestions: each DeepCT model is trained with a maximum input length
of 512 tokens for 100,000 steps with a batch size of 16 and a learning rate of 2e-5. For
inference, we process all passages with PyTerrier [40] and index the documents (pro-
cessed passages concatenated again) in an Anserini BM25 index.

MonoBERT and MonoT5 on Content. Since Transformer-based re-rankers
recently caused a paradigm shift in information retrieval [52], we include two such
systems in our experiments: MonoBERT [43], the first re-ranker based on BERT [21],
and MonoT5 [44] that outperforms MonoBERT on MS MARCO and Robust04 [52] by
classifying the relevance of a document to a given query using the sequence-to-sequence
Transformer T5 [46]. For both, MonoBERT and MonoT5, we use the implementations
of PyGaggle3 and let the default trained castorini/monobert-large-msmarco model and
the castorini/monot5-base-msmarco model re-rank the top-100 BM25 results via the
maximum score of a passage as the document score.

BM25 on ORCAS. For each document d, we concatenate all queries that have
clicks on d in the ORCAS data and index these aggregated query “documents” with
Anserini’s BM25 implementation. At query time, the actual documents are returned in
the order of their retrieved aggregated query “documents”. Note that in the TREC 2021
Deep Learning track that uses MS MARCO Version 2 the ORCAS query log should

2 https://github.com/grill-lab/trec-cast-tools.
3 https://github.com/castorini/pygaggle.

https://github.com/grill-lab/trec-cast-tools
https://github.com/castorini/pygaggle
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Table 4. Effectiveness of the 18 retrieval systems in our comparison as mean reciprocal
rank (MRR), recall at 3 (R@3), and recall at 10 (R@10) on 100 navigational queries for random
entry pages and 100 navigational queries for popular entry pages in MS MARCO version 1 (V1)
and version 2 (V2). Bold: highest scores per group.

Retrieval system Random@V1 Popular@V1 Random@V2 Popular@V2

MRR R@3 R@10 MRR R@3 R@10 MRR R@3 R@10 MRR R@3 R@10

A
nc
ho

r

BM25@2016-07 0.61 0.63 0.68 0.62 0.72 0.83 0.56 0.61 0.64 0.57 0.64 0.80

BM25@2017-04 0.63 0.70 0.73 0.59 0.67 0.84 0.59 0.68 0.70 0.48 0.56 0.73

BM25@2018-13 0.70 0.76 0.82 0.54 0.65 0.81 0.62 0.68 0.77 0.47 0.54 0.77

BM25@2019-47 0.63 0.74 0.78 0.58 0.69 0.84 0.59 0.62 0.76 0.49 0.57 0.78

BM25@2020-05 0.63 0.72 0.79 0.55 0.66 0.86 0.56 0.64 0.71 0.45 0.53 0.74

BM25@2021-04 0.63 0.73 0.77 0.54 0.66 0.80 0.50 0.54 0.64 0.46 0.55 0.73

BM25@Anchor 0.74 0.83 0.89 0.55 0.66 0.84 0.67 0.73 0.85 0.39 0.48 0.70

C
on

te
nt

BM25@Content 0.21 0.24 0.36 0.02 0.02 0.03 0.21 0.22 0.42 0.02 0.01 0.04

DeepCT@Anchor 0.43 0.46 0.58 0.03 0.03 0.08 0.43 0.49 0.66 0.04 0.03 0.13

DeepCT@ORCAS 0.38 0.42 0.57 0.02 0.00 0.09 0.36 0.40 0.60 0.05 0.04 0.10

DeepCT@Train 0.27 0.28 0.44 0.02 0.01 0.05 0.32 0.34 0.49 0.03 0.02 0.08

MonoT5 0.39 0.43 0.53 0.02 0.01 0.05 0.38 0.43 0.57 0.04 0.04 0.08

MonoBERT 0.35 0.37 0.51 0.02 0.01 0.05 0.36 0.41 0.56 0.01 0.01 0.02

O
th
er

BM25@ORCAS 0.60 0.64 0.70 0.28 0.32 0.43 0.56 0.59 0.66 0.28 0.33 0.44

λ-MART@BTOA 0.48 0.55 0.63 0.08 0.07 0.18 0.52 0.57 0.77 0.12 0.12 0.21

λ-MART@BTO 0.41 0.49 0.57 0.07 0.06 0.17 0.49 0.55 0.65 0.08 0.10 0.14

λ-MART@BTA 0.43 0.51 0.61 0.06 0.06 0.19 0.55 0.62 0.75 0.14 0.15 0.24

λ-MART@BT 0.27 0.31 0.46 0.04 0.03 0.09 0.40 0.44 0.60 0.05 0.05 0.08

not be used since it might cause train/test leakage.4 However, since we do not evaluate
the effectiveness of retrieval models on the topics of the TREC 2021 Deep Learning
track, this potential train/test leakage can not occur in our situation and we can use the
ORCAS query log also for MS MARCO Version 2 in our navigational query scenario
without the risk of train/test leakage.

LambdaMART. To study the effectiveness of anchor text in combination with other
features and to analyze whether the observation still holds that anchor text adds only
small or no effectiveness in TREC scenarios [24], we train four LambdaMART [4]
models—the state-of-the-art for feature-based learning to rank [4,28,50]—on the train-
ing and validation labels of MS MARCO Version 1. Again, since we removed the
MS MARCO documents from the training for which any query or anchor text con-
tains a term from any of the 200 navigational queries used in our evaluation, there is
no risk of train/test leakage. In our setup, we distinguish four feature sources: anchor
texts, ORCAS queries, document titles, and document bodies. For each of the four
sources, we calculate the following eight feature types using Anserini: TF, TF · IDF,
BM25, F2exp, QL, QLJM, PL2, and SPL. Four LambdaMART models are trained
with LightGBM [32] on different feature subsets: (1) using all 32 feature types (λ-
MART@BTOA), (2) using body, title, and ORCAS (λ-MART@BTO), (3) using body,
title, and anchor text (λ-MART@BTA), and (4) using body and title (λ-MART@BT).

4 https://microsoft.github.io/msmarco/TREC-Deep-Learning.html.

https://microsoft.github.io/msmarco/TREC-Deep-Learning.html
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5.3 Evaluation

We experimentally compare the effectiveness of the 18 retrieval models on Version 1
and Version 2 of MS MARCO. In a first experiment, we use the above described
200 navigational queries created for MS MARCO to try to reproduce the result
of Craswell et al. [11] that anchor text helps to improve MRR for navigational queries.
We extend the original study by adding novel aspects like modern neural baselines
and by evaluating the effectiveness of anchor text over time. In a second experiment,
we then also evaluate the 18 retrieval models on the 88 informational topics from
the TREC 2019 and 2020 Deep Learning tracks. Any reported significance test uses
p ≤ 0.05 and includes a Bonferroni correction in case of multiple comparisons.

Retrieval Effectiveness for Navigational Queries. Table 4 shows the retrieval
effectiveness for the 200 navigational topics on MS MARCO Version 1 and Version 2.

For queries pointing to random entry pages (columns ‘Random@V1’ and ‘Ran-
dom@V2’), BM25 retrieval against the combined anchor texts (BM25@Anchor)
achieves the best effectiveness scores. While the scores for BM25 on single anchor
text snapshots are a little lower (the combination on average has 450 anchor texts
per random entry page, each individual snapshot less than 250), the MRR differences
from any anchor text-based BM25 retrieval to the best content-based retrieval, DeepCT
with importance scores trained on the anchor texts (DeepCT@Anchor), are significant.
Within the content-based approaches, the recent improvements of neural approaches
are also visible for our navigational queries: the score differences of DeepCT trained
on anchor texts or ORCAS, of MonoT5, and of MonoBERT to the BM25 content-
based retrieval all are statistically significant—as are the differences of the three bet-
ter LambdaMART models to content-based BM25. Interestingly, also BM25 retrieval
on ORCAS queries improves upon all content-only models (all MRR differences
are significant), even reaching the effectiveness of some anchor text models. Still,
BM25 against the combined anchor texts or the ones from 2018 significantly improves
upon BM25 against ORCAS.

For queries pointing to popular entry pages (columns ‘Popular@V1’ and ‘Popu-
lar@V2’), all anchor text-based BM25 models are statistically significantly more effec-
tive than any other model. Also BM25 on ORCAS queries is significantly better than all
non-anchor-based models, again highlighting some similarity of anchor texts to queries.

Altogether, our results confirm the result of Craswell et al. [11] that retrieval against
anchor texts is better than retrieval against document content for navigational queries—
in our experiments now even including modern neural content-based approaches. How-
ever, in almost all of our experimental cases, retrieval for queries pointing to popular
entry pages is less effective than for random entry pages. This contradicts an obser-
vation of Craswell et al. [11] who reported lower MRR scores for queries pointing to
random entry pages than for queries pointing to popular entry pages. For content-based
retrieval, the problem is that many other pages “talk” about popular entry pages and
mention the respective query terms more often than the actual popular page does.

Retrieval Effectiveness of Anchor Text over Time. To further inspect the impact
of crawling time on anchor text effectiveness, we look more deeply into navigational
queries that yield at least 100 results against any anchor text snapshot. From the
200 queries, this filtering removes 47 for MS MARCO Version 1 (27 random, 20 popu-
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Table 5. (a) Overview of the effectiveness of anchor text on our navigational topics over the
crawling period between 2016 and 2021. (b) Overview of the retrieval effectiveness on the TREC
Deep Learning topics from 2019 and 2020 where we report nDCG@10 and nDCG@20.

(a) Effectiveness of anchor text over time.
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(b) Effectiveness on TREC-DL topics.
Retrieval systems DL 2019 DL 2020

nDCG@k with k=10 20 10 20

A
nc

ho
r

BM25@2016-07 0.37 0.32 0.28 0.24
BM25@2017-04 0.39 0.35 0.29 0.27
BM25@2018-13 0.35 0.33 0.27 0.25
BM25@2019-47 0.34 0.31 0.27 0.25
BM25@2020-05 0.38 0.35 0.30 0.28
BM25@2021-04 0.35 0.32 0.30 0.26
BM25@Anchor 0.41 0.38 0.34 0.32

C
on

te
nt

BM25@Content 0.51 0.50 0.53 0.53
DeepCT@Anchor 0.53 0.54 0.55 0.53
DeepCT@ORCAS 0.52 0.53 0.54 0.54
DeepCT@Train 0.54 0.53 0.51 0.52
MonoT5 0.68 0.64 0.62 0.63
MonoBERT 0.67 0.63 0.63 0.62

O
th
er

BM25@ORCAS 0.45 0.41 0.36 0.33
λ-MART@BTOA 0.59 0.55 0.57 0.57
λ-MART@BTO 0.57 0.55 0.57 0.58
λ-MART@BTA 0.57 0.54 0.57 0.57
λ-MART@BT 0.57 0.55 0.56 0.56

lar) and 53 for Version 2 (34 random, 19 popular). Table 5a shows the Recall@10 over
time for the remaining queries. For popular pages, there are only slight changes since
they always have many anchors pointing to them. As for the random pages, the anchor
text crawling time has a larger impact. In particular, the effectiveness peaks at 2018,
reflecting the creation date of MS MARCO Version 1. We also observe this peak for
Version 2 (crawled in 2021) since we use the same queries that we originally created
by sampling pages from Version 1. Not surprisingly, anchor text indexes should thus be
refreshed from time to time to match the temporal changes of navigational queries.

Retrieval Effectiveness for Informational Queries. In a final experiment, we eval-
uate the effectiveness of the 18 retrieval systems on the TREC Deep Learning tracks of
2019 [14] and 2020 [13] on MS MARCO Version 1 (judgments for Version 2 were
not yet available)—the respective 88 topics all are informational. Since not all of the
18 systems did contribute to the judgment pools, we removed all unjudged documents
from the rankings to mitigate bias as suggested by Sakai [47]. Table 5b shows the result-
ing nDCG@10 and nDCG@20 scores. Unsurprisingly, the modern Transformer-based
MonoT5 and MonoBERT models achieve the overall best scores. For these informa-
tional queries, all models solely based on anchor texts or queries are less effective
than BM25 on the content of the documents. Still, more anchor text is more effec-
tive (BM25@Anchor). Still, the LambdaMART results show that combining content-
based retrieval with anchor texts and queries can very slightly improve the effectiveness.
Overall, our experiments confirm the earlier observation [24] that anchor text alone is
not effective in TREC-style scenarios with a focus on informational queries.
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6 Conclusion

In the scenario of the MS MARCO dataset, we have successfully reproduced the result
of Craswell et al. [11] that anchor text is very effective for navigational queries. Trying
to also reproduce the other seminal anchor text study of Eiron and McCurley [24] we
obtained rather different results. We found that the term distributions of anchor texts
and queries today are rather dissimilar and that retrieval against anchor text now yields
less homogeneous results than retrieval against the document content.

Besides the above positive and negative reproducibility results, another important
result of our study is that Transformer-based approaches, be it in re-ranking scenarios
or in the DeepCT context of estimating term importance, are less effective for naviga-
tional queries than a “basic” anchor text-oriented BM25 retrieval. Identifying naviga-
tional queries and switching to anchor text-based retrieval for them instead of neural
models might thus improve the retrieval effectiveness of a general retrieval system.
However, in the popular TREC Deep Learning tracks, the impact will be rather limited
since the Deep Learning tracks do not involve navigational queries. Our code and the
newly created Webis MS MARCO Anchor Texts 2022 datasets are freely available (see
footnote (1)).
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580 M. Fröbe et al.

9. Craswell, N., Hawking, D.: Overview of the TREC-2002 web track. In: Voorhees, E.M.,
Buckland, L.P. (eds.) Proceedings of the 11th Text REtrieval Conference, TREC 2002,
Gaithersburg, MD, USA, 19–22 November 2002. NIST Special Publication, National Insti-
tute of Standards and Technology (NIST), vol. 500–251 (2002)

10. Craswell, N., Hawking, D.: Overview of the TREC 2004 web track. In: Voorhees, E.M.,
Buckland, L.P. (eds.) Proceedings of the 13th Text REtrieval Conference, TREC 2004,
Gaithersburg, MD, USA, 16–19 November 2004. NIST Special Publication, National Insti-
tute of Standards and Technology (NIST), vol. 500–261 (2004)

11. Craswell, N., Hawking, D., Robertson, S.E.: Effective site finding using link anchor infor-
mation. In: Croft, W.B., Harper, D.J., Kraft, D.H., Zobel, J. (eds.) Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2001, New Orleans, LA, USA, 9–13 September 2001, pp. 250–257. ACM
(2001)

12. Craswell, N., Hawking, D., Wilkinson, R., Wu, M.: Overview of the TREC 2003 web track.
In: Voorhees, E.M., Buckland, L.P. (eds.) Proceedings of the 12th Text REtrieval Conference,
TREC 2003, Gaithersburg, MD, USA, 18–21 November 2003. NIST Special Publication,
National Institute of Standards and Technology (NIST), vol. 500–255, pp. 78–92 (2003)

13. Craswell, N., Mitra, B., Yilmaz, E., Campos, D.: Overview of the TREC 2020 deep learning
track. In: Voorhees, E.M., Ellis, A. (eds.) Proceedings of the 29th Text REtrieval Conference,
TREC 2020, Virtual Event, Gaithersburg, MD, USA, 16–20 November 2020. NIST Special
Publication, National Institute of Standards and Technology (NIST), vol. 1266 (2020)

14. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the TREC
2019 deep learning track. In: Voorhees, E., Ellis, A. (eds.) 28th International Text Retrieval
Conference, TREC 2019. Maryland, USA, NIST Special Publication, National Institute of
Standards and Technology (NIST) (2019)

15. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M., Soboroff, I.: TREC Deep
learning track: reusable test collections in the large data regime. In: Diaz, F., Shah, C., Suel,
T., Castells, P., Jones, R., Sakai, T. (eds.) Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2021, Virtual
Event, Canada, 11–15 July 2021, pp. 2369–2375. ACM (2021)

16. Croft, W.B., Metzler, D., Strohman, T.: Search Engines - Information Retrieval in Practice.
Pearson Education (2009). ISBN 978-0-13-136489-9

17. Dai, N., Davison, B.D.: Mining anchor text trends for retrieval. In: Gurrin, C., et al. (eds.)
ECIR 2010. LNCS, vol. 5993, pp. 127–139. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12275-0 14

18. Dai, Z., Callan, J.: Context-aware sentence/passage term importance estimation for first stage
retrieval. CoRR abs/1910.10687 (2019)

19. Dai, Z., Callan, J.: Context-aware document term weighting for ad-hoc search. In: Huang,
Y., King, I., Liu, T., van Steen, M. (eds.) Proceedings of the World Wide Web Conference,
WWW 2020, Taipei, Taiwan, 20–24 April 2020, pp. 1897–1907. ACM/IW3C2 (2020)

20. Dang, V., Croft, W.B.: Query reformulation using anchor text. In: Davison, B.D., Suel, T.,
Craswell, N., Liu, B. (eds.) Proceedings of the 3rd ACM International Conference on Web
Search and Web Data Mining, WSDM 2010, New York, NY, USA, 4–6 February 2010, pp.
41–50, ACM (2010)

21. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2–7, 2019, Volume 1, pp. 4171–4186. Association for Computational Linguistics (2019)

https://doi.org/10.1007/978-3-642-12275-0_14
https://doi.org/10.1007/978-3-642-12275-0_14


The Power of Anchor Text in the Neural Retrieval Era 581

22. Dou, Z., Song, R., Nie, J., Wen, J.: Using anchor texts with their hyperlink structure for
web search. In: Allan, J., Aslam, J.A., Sanderson, M., Zhai, C., Zobel, J. (eds.) Proceedings
of the 32nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2009, Boston, MA, USA, 19–23 July 2009, pp. 227–234.
ACM (2009)

23. Dunlop, M.D., van Rijsbergen, C.J.: Hypermedia and free text retrieval. Inf. Process. Manag.
29(3), 287–298 (1993)

24. Eiron, N., McCurley, K.S.: Analysis of Anchor text for web search. In: Clarke, C.L.A.,
Cormack, G.V., Callan, J., Hawking, D., Smeaton, A.F. (eds.) Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR 2003, Toronto, Canada, 28 July–1 August 2003, pp. 459–460. ACM
(2003)

25. Fuglede, B., Topsøe, F.: Jensen-Shannon divergence and Hilbert space embedding. In: Pro-
ceedings of the 2004 IEEE International Symposium on Information Theory, ISIT 2004,
Chicago Downtown Marriott, Chicago, IL, USA, 27 June–2 July 2004, p. 31. IEEE (2004)

26. Hawking, D.: Overview of the TREC-9 web track. In: Voorhees, E.M., Harman, D.K. (eds.)
Proceedings of the 9th Text REtrieval Conference, TREC 2000, Gaithersburg, MD, USA,
13–16 November 2000. NIST Special Publication, National Institute of Standards and Tech-
nology (NIST), vol. 500–249 (2000)

27. Hawking, D., Voorhees, E.M., Craswell, N., Bailey, P.: Overview of the TREC-8 web track.
In: Voorhees, E.M., Harman, D.K. (eds.) Proceedings of the 8th Text REtrieval Conference,
TREC 1999, Gaithersburg, MD, USA, 17–19 November 1999. NIST Special Publication,
National Institute of Standards and Technology (NIST), vol. 500–246 (1999)

28. Hu, Z., Wang, Y., Peng, Q., Li, H.: Unbiased LambdaMART: an unbiased pairwise learning-
to-rank algorithm. In: Liu, L., et al. (eds.) Proceedings of the World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, 13–17 May 2019, pp. 2830–2836. ACM (2019)

29. Kamps, J., Kaptein, R., Koolen, M.: Using anchor text, spam filtering and Wikipedia for web
search and entity ranking. In: Voorhees, E.M., Buckland, L.P. (eds.) Proceedings of the 19th
Text REtrieval Conference, TREC 2010, Gaithersburg, MD, USA, 16–19 November 2010.
NIST Special Publication, National Institute of Standards and Technology (NIST), vol. 500–
294 (2010)

30. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Web-
ber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Virtual Event, 16–20 November
2020, pp. 6769–6781. Association for Computational Linguistics (2020)

31. Kaszkiel, M., Zobel, J.: Passage retrieval revisited. In: Belkin, N.J., Narasimhalu, A.D., Wil-
lett, P., Hersh, W.R., Can, F., Voorhees, E.M. (eds.) Proceedings of the 20th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 1997, Philadelphia, PA, USA, 27–31 July 1997, pp. 178–185. ACM (1997)

32. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Guyon, I.,
et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA,
pp. 3146–3154 (2017)

33. Kilgarriff, A., Rose, T.: Measures for Corpus similarity and homogeneity. In: Ide, N., Vouti-
lainen, A. (eds.) Proceedings of the 3rd Conference on Empirical Methods for Natural Lan-
guage Processing, Palacio de Exposiciones y Congresos, Granada, Spain, 2 June 1998, pp.
46–52. ACL (1998)

34. Kobayashi, M., Takeda, K.: Information retrieval on the web. ACM Comput. Surv. 32(2),
144–173 (2000)



582 M. Fröbe et al.
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Abstract. In the process of Systematic Literature Review, citation
screening is estimated to be one of the most time-consuming steps. Multi-
ple approaches to automate it using various machine learning techniques
have been proposed. The first research papers that apply deep neural
networks to this problem were published in the last two years. In this
work, we conduct a replicability study of the first two deep learning
papers for citation screening [8,16] and evaluate their performance on 23
publicly available datasets. While we succeeded in replicating the results
of one of the papers, we were unable to replicate the results of the other.
We summarise the challenges involved in the replication, including diffi-
culties in obtaining the datasets to match the experimental setup of the
original papers and problems with executing the original source code.
Motivated by this experience, we subsequently present a simpler model
based on averaging word embeddings that outperforms one of the mod-
els on 18 out of 23 datasets and is, on average, 72 times faster than the
second replicated approach. Finally, we measure the training time and
the invariance of the models when exposed to a variety of input features
and random initialisations, demonstrating differences in the robustness
of these approaches.

Keywords: Citation screening · Study selection · Systematic
literature review (SLR) · Document retrieval · Replicability

1 Introduction

A systematic literature review is a type of secondary study that summarises all
available data fitting pre-specified criteria to answer precise research questions.
It uses rigorous scientific methods to minimise bias and generate clear, solid
conclusions that health practitioners frequently use to make decisions [12].

Unfortunately, conducting systematic reviews is slow, labour intensive and
time-consuming as this relies primarily on human effort. A recent estimate shows
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that conducting a full systematic review takes, on average, 67 weeks [4], although
another past study reports that the median time to publication was 2.4 years
[22]. Furthermore, according to [21], 23% of published systematic reviews need
updating within two years after completion.

Citation screening (also known as selection of primary studies) is a crucial
part of the systematic literature review process [23]. During this stage, reviewers
need to read and comprehend hundreds (or thousands) of documents and decide
whether or not they should be included in the systematic review. This decision
is made on the basis of comparing each article content with predefined exclusion
and inclusion criteria. Traditionally it consists of two stages, the first round
of screening titles and abstracts, which is supposed to narrow down the list of
potentially relevant items. It is followed by a task appraising the full texts, a
more detailed (but also more time-consuming) revision of all included papers
from the first stage based on the full text of articles.

Multiple previous studies tried to decrease the completion time of systematic
reviews by using text mining methods to semi-automate the citation screening
process (see a recent systematic review on this topic: [9]). Using the machine
learning paradigm, citation screening could be reduced to a binary classification
problem. Then, the task is to train a model using the seed of manually labelled
citations that can distinguish between documents to be included (includes) and
those to be excluded (excludes). One of the challenges is a significant class imbal-
ance (for 23 benchmark datasets, the maximum percentage of included docu-
ments is 27%, and on average, it is only 7%). Additionally, existing approaches
require training a separate model for each new systematic review.

In this work, we replicate two recent papers related to automated citation
screening for systematic literature reviews using neural networks [8,16]. We chose
these studies since, to our knowledge, they are the first ones to address this
problem using deep neural networks. Both papers represent citation screening
as a binary classification task and train an independent model for each dataset.
We evaluate the models on 23 publicly available benchmark datasets. We present
our challenges regarding replicability in terms of datasets, models and evaluation.
In the remaining sections of this article, we will use the name Paper A to refer
to the study by Kontonatsios et al. [16] and Paper B to indicate work by van
Dinter et al. [8].

Moreover, we investigate if the models are invariant to different data features
and random initialisations. 18 out of 23 datasets are available as a list of Pubmed
IDs of the input papers with assigned categories (included or excluded). As we
needed to recreate data collection stages for both papers, we wanted to measure
if the choice of the document features would influence the final results of the
replicated models.

Both papers utilise deep learning due to their claimed substantial superiority
over traditional (including shallow neural network) models. We compare the
models with previous benchmarks and assess to what extent do these models
improve performance over simpler and more traditional models. Finally, we make
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our data collection and experiment scripts and detailed results publicly available
on GitHub1.

2 Related Work

Out of all stages of the systematic review process, the selection of primary stud-
ies is known as the most time-consuming step [2,20,24]. It was also automated
the most often in the past using text mining methods. According to a recent
survey on the topic of automation of systematic literature reviews [9], 25 out
of 41 analysed primary studies published between 2006 and 2020 addressed
(semi-)automation of the citation screening process. Another, older systematic
review from 2014 found in total 44 studies dealing implicitly or explicitly with
the problem of screening workload [18].

Existing approaches to automation of the citation screening process can be
categorised into two main groups. The first one uses text classification models [17,
25] and the second one screening prioritisation or ranking techniques that exclude
items falling below some threshold [6,10]. Both groups follow a similar approach.
They train a supervised binary classification algorithm to solve this problem, e.g.
Support Vector Machines (SVMs) [6,25], Näıve Bayes [17] or Random Forest
[15]. A significant limitation of these approaches is the need for a large number
of human decisions (annotations) that must be completed before developing a
reliable model [24].

Kontonatsios et al. [16] (Paper A) was the first one to apply deep learning
algorithms to automate the citation screening process. They have used three
neural network-based denoising autoencoders to create a feature representation
of the documents. This representation was fed into a feed-forward network with
a linear SVM classifier trained in a supervised manner to re-order the cita-
tions. Van Dinter et al. [8] (Paper B) presented the first end-to-end solution
to citation screening with a deep neural network. They developed a binary text
classification model with the usage of a multi-channel convolutional neural net-
work. Both models claim to yield significant workload savings of at least 10%
on most benchmark review datasets.

A different procedure to automating systematic reviews was presented during
the CLEF 2017 eHealth Lab Technology Assisted Reviews in Empirical Medicine
task [13,14]. Here, the user needs to find all relevant documents from a set of
PubMed articles given a Boolean query. It overcomes the need for creating an
annotated dataset first but makes it harder to incorporate reviewers’ feedback.

The recently published BERT model [7] and its variants have pushed the state
of the art for many NLP tasks. Ioannidis [11] used BERT-based models to work
on document screening within the Technology Assisted Review task achieving
better results than the traditional IR baseline models. To our knowledge, this
was the first use of a generative neural network model in a document screening
task.

1 https://github.com/ProjectDoSSIER/CitationScreeningReplicability.

https://github.com/ProjectDoSSIER/CitationScreeningReplicability


Automation of Citation Screening: A Replicability Study 587

3 Experiment Setup

3.1 Models

DAE-FF. Paper A presents a neural network-based, supervised feature extrac-
tion method combined with a linear Support Vector Machine (SVM) trained to
prioritise eligible documents. The data preprocessing pipeline contains stopword
removal and stemming with a Porter stemmer. The feature extraction part is
implemented as three independent denoising autoencoders (DAE) that learn to
reconstruct corrupted Bag-of-Words input vectors. Their concatenated output is
used to initialise a supervised feed-forward neural network (FF). These extracted
document vectors are subsequently used as an input to an L2-regularised linear
SVM classifier. Class imbalance is handled by setting the regularisation param-
eter C = 1 × 10−6.

Multi-channel CNN. Paper B presents a multi-channel convolutional neural
network (CNN) to discriminate between includes and excludes. It uses static,
pre-trained GloVe word embeddings [19] to create an input embedding matrix.
This embedding is inserted into a series of parallel CNN blocks consisting of a
single-dimensional CNN layer followed by global max pooling. Outputs from the
layers are concatenated after global pooling and fed into a feed-forward network.
The authors experimented with a different number of channels and Conv1D
output shapes. Input documents are tokenised and lowercased, punctuation and
non-alphabetic tokens are removed. Documents are padded and truncated to a
maximum length of 600 tokens. Class imbalance is handled with oversampling.
For our replicability study, we have chosen the best performing Model 2.

fastText. We also test a shallow neural network model which is based on fast-
Text word embeddings [3]. This model is still comparable to more complex deep
learning models in many classification tasks. At the same time, it is orders of
magnitude faster for training and prediction, making it more suitable for active
learning scenarios where reviewers could alter the model’s predictions by anno-
tating more documents. To make it even simpler, we do not use pre-trained word
embeddings to vectorise documents. Data preprocessing is kept minimal as we
only lowercase the text and remove all non-alphanumerical characters.

Hyperparameters. Paper A optimised only the number of training epochs
for their DAE model. In order to do so, they used two datasets: Statins and
BPA reviews and justified this choice with differences between smaller datasets
from Clinical and Drug reviews and SWIFT reviews. Other hyperparameters
(including the minibatch size and the number of epochs for the feed-forward
model) are constant across all datasets. Paper B used the Statins review dataset
to tune a set of hyperparameters, including the number of epochs, batch size,
dropout, and dense units.
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3.2 Data

All 23 datasets are summarised in Table 1, including the dataset source, number
of citations, number and percentage of eligible citations, maximum WSS@95%
score (Sect. 3.3) and the availability of additional bibliographic metadata. Every
citation consists of a title, an abstract, and an eligibility label (included or
excluded). Moreover, 18 datasets contain also bibliographic metadata. The per-
centage of eligible citations (includes) varies between datasets, from 0.55% to
27.04%, but on average, it is about 7%, meaning that the datasets are highly
imbalanced.

Table 1. Statistics of 23 publicly available datasets used in the experiments on auto-
mated citation screening for Systematic Literature Reviews.

Dataset name
Introduced

in
# Citations

Included

citations

Excluded

citations

Maximum

WSS@95%

Bibliographic

metadata

1 ACEInhibitors 2544 41 (1.6%) 2503 (98.4%) 93.47% Yes

2 ADHD 851 20 (2.4%) 831 (97.6%) 92.77% Yes

3 Antihistamines 310 16 (5.2%) 294 (94.8%) 89.84% Yes

4 Atypical Antipsychotics 1120 146 (13.0%) 974 (87.0%) 82.59% Yes

5 Beta Blockers 2072 42 (2.0%) 2030 (98.0%) 93.07% Yes

6 Calcium Channel Blockers 1218 100 (8.2%) 1118 (91.8%) 87.20% Yes

7 Estrogens 368 80 (21.7%) 288 (78.3%) 74.35% Yes

8 NSAIDs 393 41 (10.4%) 352 (89.6%) 85.08% Yes

9 Opioids 1915 15 (0.8%) 1900 (99.2%) 94.22% Yes

10 Oral Hypoglycemics 503 136 (27.0%) 367 (73.0%) 69.16% Yes

11 Proton PumpInhibitors 1333 51 (3.8%) 1282 (96.2%) 91.32% Yes

12 Skeletal Muscle Relaxants 1643 9 (0.5%) 1634 (99.5%) 94.45% Yes

13 Statins 3465 85 (2.5%) 3380 (97.5%) 92.66% Yes

14 Triptans 671 24 (3.6%) 647 (96.4%) 91.57% Yes

15 Urinary Incontinence

Drug

(Cohen et al.,

2006 )

327 40 (12.2%) 287 (87.8%) 83.38% Yes

Average Drug 1249 56 (7.7%) 1192 (92.3%) 87.67% 15/15

16 COPD 1606 196 (12.2%) 1410 (87.8%) 83.36% No

17 Proton Beam 4751 243 (5.1%) 4508 (94.9%) 90.14% No

18 Micro Nutrients

Clinical

(Wallace et al.,

2010) 4010 258 (6.4%) 3752 (93.6%) 88.87% No

Average Clinical 3456 232 (7.9%) 3223 (92.1%) 87.45% 0/3

19 PFOA/PFOS 6331 95 (1.5%) 6236 (98.5%) 93.56% Yes

20 Bisphenol A (BPA) 7700 111 (1.4%) 7589 (98.6%) 93.62% Yes

21 Transgenerational 48638 765 (1.6%) 47873 (98.4%) 93.51% Yes

22 Fluoride and neurotoxicity 4479 51 (1.1%) 4428 (98.9%) 93.91% No

23 Neuropathic pain — CAMRADES

SWIFT

(Howard et al.,

2016)

29207 5011 (17.2%) 24196 (82.8%) 78.70% No

Average SWIFT 19271 1206 (4.6%) 18064 (95.4%) 90.66% 3/5

Average (All datasets) 5454 329 (7.0%) 5125 (93.0%) 88.29% 18/23

Cohen et al. [5] was the first one to introduce datasets for training and eval-
uation of citation screening. They constructed a test collection for 15 different
systematic review topics produced by the Oregon Evidence-based Practice Cen-
tre (EPC) related to the efficacy of medications in several drug classes.

Another three datasets for evaluation of automated citation screening were
released by Wallace et al. [25]. These systematic reviews are related to the clinical
outcomes of various treatments. Both drug and clinical reviews contain a small
number of citations (varying from 310 to 4751).
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The third group of datasets was introduced by Howard et al. [10] and consists
of five substantially larger reviews (from 4479 to 48 638 citations) that have been
used to assess the performance of the SWIFT-review tool. They were created
using broader search strategies which justifies a higher number of citations.

Paper A trained and evaluated their model on all 23 datasets coming from
three categories. Paper B used 20 datasets from the Clinical and SWIFT cat-
egories. Paper B states that, on average, 5.2% of abstracts are missing in all
20 datasets, varying between 0% for Neuropathic Pain and 20.82% for Statins.
Compared to previous papers, Paper B reports fewer citations for three datasets:
Statins, PFOA/PFOS and Neuropathic Pain. This difference is insignificant com-
pared to the dataset size, e.g. 29207 versus 29202 for Neuropathic Pain, so it
should not influence the model evaluation.

3.3 Evaluation

Evaluation of automated citation screening can be very challenging. Traditional
metrics used for classification tasks like precision, recall, or F-score cannot cap-
ture what we intend to measure in this task. For an automated system to be
beneficial to systematic reviewers, it should save time and miss as few relevant
papers as possible. Previous studies suggested that recall should not be lower
than 95%, and at the same time, precision should be as high as possible [5].

Work saved over sampling at r% recall (WSS@r%) is a primary metric for
evaluation of automated citation screening. It was first introduced and described
by Cohen et al. [5] as “the percentage of papers that meet the original search
criteria that the reviewers do not have to read (because they have been screened
out by the classifier).” It estimates the human screening workload reduction by
using automation tools, assuming a fixed recall level of r%. WSS@r%, given a
recall of r%, is defined as follows:

WSS@r% =
TN + FN

N
− (1 − r)

where TN is the number of true negatives, FN is the number of false negatives,
and N is the total number of documents. Based on previous studies, we fix the
recall at 95% and compute the WSS@95% score.

One drawback of this metric described by [5] is that it does not take into
account time differences caused by varying lengths of documents and also the
time needed to review a full-text article compared to only reading the title and
the abstract.

A further drawback of WSS is that the maximum WSS value depends on the
ratio of included/excluded samples. A perfectly balanced dataset can achieve a
maximum value of WSS@95% = 0.45, whereas a highly imbalanced dataset with
a 5%/95% split can obtain a maximum WSS@95% score of 0.9. Consequently,
it does not make sense to compare the results nor average them across different
datasets (as done in Paper A and B).
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For our replicability study, we decided to use the implementations of the
WSS metric provided by Papers A and B.

Cross-validation. Both papers use a stratified 10× 2 cross-validation for eval-
uation. In this setting, data is randomly split in half: one part is used to train
the classifier, and the other is left for testing. This process is then repeated
ten times, and the results are accumulated from all ten runs. We also use this
approach to evaluate the quality of all three models.

3.4 Code

The authors of both papers uploaded their code into public GitHub reposito-
ries:2,3. Both models were written in Python 3 and depend primarily on Tensor-
Flow and Keras deep learning frameworks [1]. The whole implementation was
uploaded in four commits for Paper A and one for Paper B (excluding commits
containing only documentation). Except for the code, there is no information
about versions of the packages used to train and evaluate the models. This miss-
ing information is crucial for replicability, as, for TensorFlow alone, in 2020,
there were 27 different releases related to 6 different MINOR versions4.

The model prepared by Paper B uses also pre-trained 100-dimensional GloVe
word embeddings which we downloaded separately from the original authors’
website5 according to the instructions provided by the Paper B GitHub Readme.

Both papers did not include the original datasets they used to train and eval-
uate their models. Paper A provided sample data consisting of 100 documents
which presents the input data format accepted by their model, making it easier
to re-run the experiments. Paper B does not include sample data but describes
where and how to collect and process the datasets.

4 Results and Discussion

4.1 Replicability Study

WSS@95% scores from older benchmarks and original papers, along with our
replicated results, are presented in Table 2. For all datasets, both Paper A and
B provide only mean WSS@95% score from cross-validation runs. Therefore, we
were not able to measure statistical significance between our replicated results
and the original ones. To quantify the difference, we decided to calculate the
absolute delta between reported and replicated scores: |x−y|. Both models report
a random seed for the cross-validation splits but not for the model optimisation.
Usage of different seeds for model optimisation might be one of the reasons why
we were not able to achieve the same results.
2 https://github.com/gkontonatsios/DAE-FF.
3 https://github.com/rvdinter/multichannel-cnn-citation-screening.
4 https://pypi.org/project/tensorflow/#history.
5 https://nlp.stanford.edu/data/glove.6B.zip.

https://github.com/gkontonatsios/DAE-FF
https://github.com/rvdinter/multichannel-cnn-citation-screening
https://pypi.org/project/tensorflow/#history
https://nlp.stanford.edu/data/glove.6B.zip
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Table 2. WSS@95% results for replicated models compared with original results and
benchmark models. WSS@95% scores are averages across ten validation runs for each
of the 23 review datasets. Underlined scores indicate the highest score within the three
tested models, bold values indicate the highest score overall.

Dataset name
Cohen

(2006)

Matwin

(2010)

Cohen

(2008/

2011)

Howard

(2016)
Paper A

Paper A

replicated

Absolute

delta
Paper B

Paper B

replicated

Absolute

delta

fastText

classifier

ACEInhibitors .566 .523 .733 .801 .787 .785 0.16% .783 .367 41.59% .783

ADHD .680 .622 .526 .793 .665 .639 2.58% .698 .704 0.57% .424

Antihistamines .000 .149 .236 .137 .310 .275 3.48% .168 .135 3.32% .047

Atypical Antipsychotics .141 .206 .170 .251 .329 .190 13.92% .212 .081 13.15% .218

Beta Blockers .284 .367 .465 .428 .587 .462 12.52% .504 .399 10.51% .419

Calcium Channel Blockers .122 .234 .430 .448 .424 .347 7.66% .159 .069 9.03% .178

Estrogens .183 .375 .414 .471 .397 .369 2.80% .119 .083 3.56% .306

NSAIDs .497 .528 .672 .730 .723 .735 1.18% .571 .601 2.98% .620

Opioids .133 .554 .364 .826 .533 .580 4.71% .295 .249 4.58% .559

Oral Hypoglycemics .090 .085 .136 .117 .095 .123 2.80% .065 .013 5.21% .098

Proton PumpInhibitors .277 .229 .328 .378 .400 .299 10.13% .243 .129 11.38% .283

Skeletal Muscle Relaxants .000 .265 .374 .556 .286 .286 0.04% .229 .300 7.14% .090

Statins .247 .315 .491 .435 .566 .487 7.93% .443 .283 16.03% .409

Triptans .034 .274 .346 .412 .434 .412 2.24% .266 .440 17.38% .210

Urinary Incontinence .261 .296 .432 .531 .531 .483 4.81% .272 .180 9.21% .439

Average Drug .234 .335 .408 .488 .471 .431 5.13% .335 .269 10.37% .339

COPD - - - - .666 .665 0.07% - .128 - .312

Proton Beam - - - - .816 .812 0.39% - .357 - .733

Micro Nutrients - - - - .662 .663 0.08% - .199 - .608

Average Clinical - - - - .715 .713 0.18% - .228 - .551

PFOA/PFOS - - - .805 .848 .838 0.97% .071 .305 23.44% .779

Bisphenol A (BPA) - - - .752 .793 .780 1.34% .792 .369 42.31% .637

Transgenerational - - - .714 .707 .718 1.14% .708 .000 70.80% .368

Fluoride and neurotoxicity - - - .870 .799 .806 0.68% .883 .808 7.48% .390

Neuropathic pain - - - .691 .608 .598 1.03% .620 .091 52.89% .613

Average SWIFT - - - .766 .751 .748 1.03% .615 .315 39.38% .557

Average (all datasets) - - - - .564 .537 3.59% - .273 17.63% .414

For two datasets (Bisphenol A (BPA) and Triptans), Paper A reports two
different results for the DAE-FF model. We suppose this was only a typing mis-
take, as we managed to infer the actual values based on the averaged WSS@95%
score from all datasets available in the original paper.

The average delta between our replicated results and the original ones from
Paper A is 3.59%. Only for three datasets is this value higher than 10%. If
we consider different seeds used for training models, these results confirm the
successful replication of Paper A’s work.

For Paper B, the average delta is 17.63%. For 10 out of 20 datasets, this
delta is more than 10%. For the two largest datasets: Transgenerational and
Neuropathic Pain we were not able to successfully train the Multi-Channel CNN
model. All of these results raise concerns about replicability.

Paper B also tried to replicate the DAE-FF model from Paper A. They stated
that “(...) we aimed to replicate the model (...) with open-source code via GitHub.
However, we could not achieve the same scores using our dataset. After emailing
the primary author, we were informed that he does not have access to his datasets
anymore, which means their study cannot be fully replicated.”. Our results are
contrary to findings by Paper B: we managed to replicate the results of Paper
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(a) ADHD review dataset. (b) Proton Beam review dataset.

Fig. 1. Example boxplots with WSS@95% scores for three models. Input features are
titles and abstracts.

A successfully without having access to their original datasets. Unfortunately,
Paper B does not present any quantitative results of their replicability study.
Therefore, we cannot draw any conclusions regarding those results as we do not
know what Paper B authors meant by “cannot be fully replicated”.

Figure 1 presents results for ADHD and Proton Beam datasets for all three
models. The Multi-Channel CNN model has the widest range of WSS@95%
scores across cross-validation runs. This is especially evident on the datasets
from the Clinical group (i.e. Proton Beam), for which the DAE-FF and fastText
models yield very steady results across every cross-validation fold. This could
mean that the Multi-Channel CNN model is less stable, and its good performance
is dependant on random initialisation.

Next, we compare our replicated results and the original ones from Paper
A and B to previous benchmark studies. Paper A only compares their model
to custom baseline methods and does not mention the previous state of the art
results. None of the tested neural network-based models can improve on the
results by Howard et al. [10], which uses a log-linear model with word-score and
topic-weight features to classify the citations. This means that even though deep
neural network models can provide significant gains in WSS@95% scores, they
can still be outperformed by classic statistical methods.

4.2 Impact of Input Features

As we encountered memory problems when training the Paper B model on Trans-
generational and Neuropathic pain datasets, we exclude these two datasets from
our comparisons in the remaining experiments.

None of the papers provided the original input data used to train the models.
We wanted to measure if the results depend on how that input data was gathered.
We implemented two independent data gathering scripts using the biopython
package as suggested by Paper B to obtain 18 out of 23 datasets. One imple-
mentation relied on the Medline module, where a document was represented as
a dictionary of all available fields. The second implementation returned all pos-
sible fields (title, abstract, author and journal information) concatenated in a
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Table 3. Influence of input document features on the WSS@95% score for three tested
models. “All features” means a single string containing all possible fields. For each
row, bold values indicate the highest score for each model, underlined scores are best
overall.

DAE-FF Multi-channel CNN fastText classifier

Dataset name
All

features

Title and

Abstract

Abstract

only

Title

only

All

features

Title and

Abstract

Abstract

only

Title

only

All

features

Title and

Abstract

Abstract

only

Title

only

ACEInhibitors .785 .709 .658 .806 .367 .461 .648 .525 .783 .776 .765 .441

ADHD .639 .500 .404 .651 .704 .528 .692 .580 .424 .470 .444 .200

Antihistamines .275 .168 .265 .016 .135 .204 .114 .105 .047 .124 .175 .192

Atypical Antipsychotics .190 .221 .230 .046 .081 .086 .050 .013 .218 .188 .185 .095

Beta Blockers .462 .451 .390 .408 .399 .243 .134 .211 .419 .419 .407 .262

Calcium Channel Blockers .347 .337 .297 .137 .069 .083 .004 .117 .178 .139 .060 .244

Estrogens .369 .358 .331 .145 .083 .076 .051 .092 .306 .199 .108 .241

NSAIDs .735 .679 .690 .658 .601 .443 .358 .225 .620 .506 .512 .535

Opioids .580 .513 .499 .280 .249 .420 .413 .287 .559 .558 .534 .245

Oral Hypoglycemics .123 .129 .107 .019 .013 .021 .004 .005 .098 .049 .042 .016

Proton PumpInhibitors .299 .291 .153 .285 .129 .121 .059 .118 .283 .228 .174 .360

Skeletal Muscle Relaxants .286 .327 .430 .125 .300 .329 .242 .202 .090 .142 .180 .210

Statins .487 .434 .392 .255 .283 .231 .120 .082 .409 .376 .281 .228

Triptans .412 .253 .320 .199 .440 .404 .407 .129 .210 .205 .211 .075

Urinary Incontinence .483 .531 .482 .372 .180 .161 .046 .099 .439 .310 .170 .434

Average Drug .431 .394 .373 .293 .269 .254 .223 .185 .339 .313 .283 .252

COPD .665 .665 .676 .677 .128 .372 .087 .093 .312 .553 .546 .545

Proton Beam .812 .810 .790 .799 .357 .489 .408 .559 .733 .761 .771 .771

Micro Nutrients .663 .648 .665 .677 .199 .255 .251 .268 .608 .602 .605 .601

Average Clinical .713 .708 .670 .718 .228 .372 .249 .307 .551 .638 .640 .639

PFOA/PFOS .713 .839 .847 .696 .305 .405 .391 .109 .779 .796 .778 .292

Bisphenol A (BPA) .780 .754 .715 .631 .369 .300 .612 .182 .637 .630 .499 .079

Fluoride and neurotoxicity .806 .838 .758 .726 .808 .688 .654 .452 .390 .375 .292 .250

Average SWIFT .766 .782 .774 .684 .494 .464 .552 .247 .602 .600 .523 .207

Average (All datasets) .520 .498 .481 .410 .295 .301 .274 .212 .407 .400 .368 .301

single string. Furthermore, we examined how robust the models are, if the input
data contained only titles or abstracts of the citations. Results are presented in
the Table 3.

The best average WSS@95% results are obtained for all three models when
they use all available features (Fig. 2). All models achieved better results when
using just the abstract data compared to the titles alone. This reaffirms our
common sense reasoning that titles alone are not sufficient for citation screening.
However, there are some specific datasets for which best results were obtained
when the input documents contained only titles or abstracts. While this experi-
ment does not indicate why this is the case, we can offer some potential reasons:
(1) it could be that eligible citations of these datasets are more similar in terms
of titles or abstract; (2) it could be that these models are not able to retrieve
relevant information when there is too much noise. Intra- and inter-class dataset
similarity need to be further evaluated in future studies.

As presented in Table 2, the fastText classifier model was not able to out-
perform the original results from Paper A and B. However, compared to our
replicated results of Paper B, the fastText classifier achieves higher WSS@95%
scores on 18 out of 23 datasets. It is also more robust to random initialisation
compared to Multi-Channel CNN.
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Fig. 2. A count of experiments in which a model using a specific input feature achieved
the best results. Models that use all available features scored the best results 49% of
times for a specific (model, dataset) combination.

4.3 Training Time

We computed the training time for each of the models. The relationship between
dataset size and model training time is visualised in Fig. 3. For the DAE-FF
model, we calculated both the training procedure of denoising autoencoder,
feed-forward networks, and linear SVM. The DAE component is the most time-
absorbing component as it consumes, on average, 93.5% of the total training
time. For the fastText and Multi-Channel CNN models, we calculated the train-
ing procedure of the binary classifier.

For small datasets containing less than 1000 documents, one validation fold
for fastText took on average 2 s, for Multi-Channel CNN 13 s, and DAE-FF
82 s. Training time difference increases for larger models, where the speed of
fastText is even more significant. For the largest dataset, Transgenerational, the
mean training time for fastText is 78 s, for Multi-Channel CNN 894 s and for
DAE-FF, it is 18,108 s. On average, the fastText model is 72 times faster than
DAE-FF and more than eight times faster than Multi-Channel CNN, although
this dependency is not linear and favours fastText for larger datasets.

Fig. 3. The relationship between dataset size and a model training time for the three
evaluated models. Both training time and dataset size are shown on a logarithmic scale.
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4.4 Precision@95%recall

Finally, we measure the precision at a recall level of 95%, a metric proposed
by Paper A. Table 4 shows mean scores for each model across all three review
groups. Similarly to the WSS@95% metric, the best performing model is DAE-
FF achieving a mean precision@95%recall on 21 datasets equal to 0.167. This
method outperforms Multi-Channel CNN and fastText models by 3.2% and
4.6%, respectively. Paper A reported average precision@95%recall equal to 19%
over 23 review datasets, which is comparable with our findings. Paper B does not
report this score, so we cannot compare our results regarding the Multi-Channel
CNN model.

Table 4. Influence of input document features on the WSS@95% score for three tested
models. “All features” means a single string containing all possible fields. For each
row, bold values indicate the highest score for each model, underlined scores are best
overall.

DAE-FF Multi-channel CNN fastText classifier

Average Drug .143 .121 .112

Average Clinical .324 .221 .230

Average SWIFT .127 .091 .058

Average (21 datasets) .167 .135 .121

5 Conclusions

This work replicates two recent papers on automated citation screening for sys-
tematic literature reviews using deep neural networks. The model proposed by
Paper A consists of a denoising autoencoder combined with feed-forward and
SVM layers (DAE-FF). Paper B introduces a multi-channel convolutional neu-
ral network (Multi-Channel CNN). We used the 23 publicly available datasets
to measure the quality of both models. The average delta between our replicated
results and the original ones from Paper A is 3.59%. Considering that we do not
know the random seed used for the training of original models, we can conclude
that the replication of Paper A was successful. The average delta for Paper B is
17.63%. In addition to that, this model is characterised by a significant variance,
so we cannot claim successful replication of this method.

Subsequently, we evaluated the fastText classifier and compared its perfor-
mance to the replicated models. This shallow neural network model based on
averaging word embeddings achieved better WSS@95% results when compared
to replicated scores from Paper B and, at the same time, is on average 72 and 8
times faster during training than both Paper A and B models.

None of the tested models can outperform all the others across all the
datasets. DAE-FF achieves the best average results, though it is still worse when
compared to a statistical method with the log-linear model. Models using all
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available features (title, abstract, author and journal information) perform best
on the average of 21 datasets when compared to just using a title, abstract or
both.

Availability of the code alone does not guarantee a replicable experimental
setup. If the project was not documented for the specific software versions, it
might be challenging to reconstruct these requirements based exclusively on the
code, especially if the experiments were conducted some time ago. In the case of
code written in Python, explicitly writing environment version with, for example,
requirements.txt or conda’s environment.yml files should be sufficient in most of
the cases to save time for researchers trying to replicate the experiments.
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Domain Specific Systems for Information Extraction and Retrieval – DoSSIER (H2020-
EU.1.3.1., ID: 860721).
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Abstract. Pseudo-Relevance Feedback (PRF) utilises the relevance sig-
nals from the top-k passages from the first round of retrieval to perform a
second round of retrieval aiming to improve search effectiveness. A recent
research direction has been the study and development of PRF methods
for deep language model based rankers, and in particular in the context
of dense retrievers. Dense retrievers provide a trade off between effective-
ness, which is often reduced compared to more complex neural rankers,
and query latency, which also is reduced making the retrieval pipeline
more efficient. The introduction of PRF methods for dense retrievers has
been motivated as an attempt to further improve their effectiveness. In
this paper, we reproduce and study a recent method for PRF with dense
retrievers, called ANCE-PRF. This method concatenates the query text
and that of the top-k feedback passages to form a new query input, which
is then encoded into a dense representation using a newly trained query
encoder based on the original dense retriever used for the first round
of retrieval. While the method can potentially be applied to any of the
existing dense retrievers, prior work has studied it only in the context of
the ANCE dense retriever.

We study the reproducibility of ANCE-PRF in terms of both its train-
ing (encoding of the PRF signal) and inference (ranking) steps. We fur-
ther extend the empirical analysis provided in the original work to inves-
tigate the effect of the hyper-parameters that govern the training process
and the robustness of the method across these different settings. Finally,
we contribute a study of the generalisability of the ANCE-PRF method
when dense retrievers other than ANCE are used for the first round of
retrieval and for encoding the PRF signal.

Keywords: Pseudo Relevance Feedback · Dense retrievers · Query
representations

1 Introduction

Pseudo-Relevance Feedback (PRF) is a retrieval technique which assumes
that the top-k results from the first round of retrieval are relevant. PRF,
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therefore, uses this signal to improve the query representation for a second round
of retrieval (or re-ranking) in a bid to obtain higher search effectiveness. PRF
has been extensively studied and applied to bag-of-word retrieval models; repre-
sentative techniques are Rocchio [23], KL expansion [18,32], RM3 [17] and other
relevance models [9]. It is well accepted that PRF tends to improve search effec-
tiveness, and strong bag-of-words baselines often rely on PRF (e.g., BM25+RM3
is a typical baseline combination).

Aside from its use with bag-of-words models, PRF has been recently studied
in the context of Transformer [25]-based deep language models such as BERT [4]
and RoBERTa [16]; examples of such Transformer-based rankers include cross-
encoder architectures such as monoBERT [21]. These deep language models have
been very effective for ranking although, compared to bag-of-words methods,
they often require substantially more computational power and are characterised
by high query latencies. Their effectiveness can be further improved by PRF –
but this is at the cost of even higher query latencies, rendering the use of PRF
on top of BERT-based rankers like monoBERT practically unfeasible [12].

Dense retrievers (DRs) have been proposed as alternatives to the expensive
BERT-based rankers [7,8,28,33]. DRs also rely on deep language models like
BERT; however instead of training a cross-encoder to encode a query and docu-
ment1 pair at the same time, it relies on a bi-encoder architecture where queries
and documents are encoded separately. This separation in the encoding allows
us to pre-compute document representations (which is computationally expen-
sive for large collections) at indexing time, thus leaving only the encoding of
the query and the matching between the query and document representations
to be performed at query time. Dense retrievers provide a trade off between
effectiveness and efficiency: while they are often less effective than the cross-
encoder methods, DRs are more efficient (lower query latency). PRF with DRs
then becomes suddenly more interesting than when applied to cross-encoders:
PRF could provide effectiveness boosts while the additional computational cost
imposed by the feedback, infeasible when considering cross-encoders, may be
feasible in the context of DRs. This research direction has therefore attracted
increasing interest [12,27,30].

In this paper, we consider a specific method for PRF with DRs: the ANCE-
PRF method [30]. This method uses the ANCE dense retriever [28] to perform
a first round of retrieval for a given query. Then, the text of the original query
is concatenated with that from the top-k documents retrieved by ANCE. The
output is a new text query, which is encoded using the purposely trained ANCE-
PRF encoder to obtain a new dense query representation that is in turn used for
computing the match with the document dense representations to determine a
ranking for the query. The ANCE-PRF encoder is trained using a straightforward
training procedure with negative sampling strategy based on the original ANCE

1 In this paper, we use ‘document’ and ‘passage’ interchangeably. Our experiments and
the methods considered are in the context of the passage retrieval task. However, the
methods can generalise to deal with documents, at the cost of the development of
strategies for managing the often large size of documents compared to passages [30].
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model, expect that the input to the ANCE-PRF encoder is the concatenation
of the query and the relevance signal (top-k documents), rather than just the
query (or just the document) as in ANCE.

Given the ANCE-PRF method, we aim to replicate the initial study by Yu
et al. [30] in terms of both the training of the ANCE-PRF encoder and its use
for retrieval. In addition, we also aim to further extend that work by considering
the factors that affect the training of the ANCE-PRF encoder, i.e., the hyper-
parameters of the model, and studying their effect on the model performance
and therefore its robustness across hyper-parameters settings. We also study the
generalisability of the strategy underlying ANCE-PRF to other DRs. In doing so,
we develop and publicly release a codebase that implements Yu et al.’s method,
along with trained checkpoints of the method for both ANCE and other DRs.

2 Related Work

Pseudo-Relevance Feedback (PRF) is a classic query expansion method that aims
to mitigate the mismatch between query intent and query representation [1,26],
by modifying the original query with the top-k initially retrieved results. Typical
PRF approaches such as Rocchio [23], query-regularized mixture model [24], KL
expansion [18,32], RM3 [17], relevance models [9], and relevance-feedback matrix
factorization [31] are well studied. However, most of the existing studies of PRF
methods are applied on top of bag-of-words retrieval models.

With the emergence of transformer-based [25] models, many researchers have
been looking into how to integrate PRF with deep language models. Zheng et
al. [34] presented a BERT-based [4] PRF model, BERT-QE, which splits the
PRF documents into smaller chunks and utilises the BERT model to identify
the most relevant PRF document chunks and uses these chunks as PRF signals.
Li et al. [11] proposed a neural PRF approach that uses a feed-forward neural
network model to aggregate the query and feedback document relevance scores
and provide the target document’s relevance score. Yu et al. [29] utilises graph
transformers to capture the PRF signals from the initial retrieved results; and
Wang et al. [26] proposed a clustering method to gather the relevance signals
from PRF documents. These methods show remarkable improvements, but the
efficiency is significantly affected, e.g., BERT-QE inference requires 11.01× more
computations than BERT alone, making these models computationally infeasible
for many practical applications.

Recently, dense retrievers [6–8,15,28] have been attracting a lot of attention
from researchers. These models, which often utilise a BERT-based dual-encoder
to encode queries and passages into a shared embedding space, have shown great
effectiveness and efficiency in various tasks and datasets. However, most of the
existing studies are focusing on different training methods, especially negative
sampling techniques [5,10,28]. Most of these models encode either the query
or the document to a single embedding vector [6,15,28], which fits perfectly to
many vector-based PRF methods.
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In recent research, because of the nature of dense retrievers that use embed-
ding vectors to represent query and document, different methods have been stud-
ied to integrate pseudo relevance information into dense retrievers. Li et al. [12]
investigated two simple approaches, Average and Rocchio, to utilise PRF infor-
mation in dense retrievers (ANCE [28] and RepBERT [33]) without introducing
new neural models or further training. According to the results, both models
achieved superior effectiveness with these two simple approaches without hurt-
ing the efficiency significantly compared to the original models, which shows the
viability of integrating PRF signals in deep language models. A more recent work
attempts to utilise the pattern learning ability of transformer models to leverage
the PRF signals. Yu et al. [30] replaced the query encoder in ANCE [28] model
by training a new query encoder, which takes the original query text and the
PRF documents text together as the new query, based on the original ANCE
model as the initial training checkpoint, without changing the document encoder.
However, it has several major limitations: 1) for each different PRF depths, it
requires training a new query encoder; 2) the input length for the query encoder
is limited, which means the PRF depth is limited; 3) the new query encoder is
trained on top of the ANCE query encoder, which means for different datasets,
different ANCE models need to be trained first, making this new approach hard
to be generalised.

3 Improving Query Representations for Dense Retrievers
with Pseudo Relevance Feedback

In this section, we briefly describe the ANCE-PRF method [30], which extends
ANCE [28] to integrate the PRF signal from the top-k documents to be encoded
in combination with the query to form a new query representation.

In ANCE, the score of a document d for a query q is computed by separately
encoding q and d using the RoBERTa [16] pre-trained deep language model, and
then calculating the inner product between the resulting dense representations:

fANCE(q, d) = ANCEq(〈s〉q〈/s〉) · ANCEd(〈s〉d〈/s〉) (1)

where ANCEq and ANCEd represent the query and the document encoders, respec-
tively, and 〈s〉 and 〈/s〉 represent the [CLS] and [SEP] tokens in ANCE. Both
encoders use the final layer of the 〈s〉 token embedding as the query and doc-
ument dense representations. In ANCE, the document embeddings are pre-
computed offline and stored in an index, while the query embeddings are encoded
at inference (query) time [28]. For fine-tuning Eq. 1, ANCE adopts noisy con-
trastive estimation loss and employs a negative sampling strategy where negative
samples are dynamically retrieved from an asynchronously updated ANCE doc-
ument index [28].

ANCE-PRF uses a similar schema to score documents for retrieval:

fANCE-PRF(q, d) = ANCEprf (〈s〉q〈/s〉d1〈/s〉...dk〈/s〉) · ANCEd(〈s〉d〈/s〉) (2)
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where ANCEprf is the newly trained PRF query encoder and 〈s〉q〈/s〉d1〈/s〉...
dk〈/s〉 is the text concatenation of the original query q with the feedback docu-
ments d1, d2, ..., dk (in addition to [CLS] and separator tokens). We denote qprf

as the query embedding generated through PRF by ANCEprf .
For the training of the PRF query encoder (ANCEprf ), ANCE-PRF uses the

standard noisy contrastive estimation loss:

L = −log
exp(qprf · d+)

exp(qprf · d+) + Σd−∈D−exp(qprf · d−)
(3)

where d+ represents a relevant document for the query, d− represents an irrel-
evant document (obtained from the negative sampling technique). During the
training process, the ANCE-PRF model uses the document embeddings from the
original ANCE model. Therefore, the document embeddings remain unchanged
in the ANCE-PRF model: it is only the query embedding that changes into the
PRF query embedding qprf .

Intuitively, ANCE-PRF should provide increases in search effectiveness
because the newly trained ANCE-PRF query encoder learns to extract rele-
vant information for the query from the PRF documents using the Transformer
attention mechanism [25]. After training, the ANCE-PRF query encoder would
then pay more attention to the relevant tokens in the PRF documents, while
ignoring the irrelevant tokens from this signal. Although Yu et al. [30] do not
report the query latency of ANCE-PRF, this should be approximately twice that
of the original ANCE model.

4 Experimental Settings

4.1 Datasets

The datasets used in the original work of Yu et al. [30] are TREC DL 2019 [2],
TREC DL 2020 [3], DL Hard [19], and MS MARCO Passage Ranking V1 [20].
These datasets are based on the same corpus provided by MS MARCO Pas-
sage Ranking V1, which has ∼8.8M passages in total. Note that for TREC DL
2019/2020 queries, each query has multiple judgements on a relevance scale from
0 to 3, while MS MARCO Passage Ranking V1 only has an average of one judge-
ment per query with binary relevance, either 0 or 1.

The original paper used the training split from MS MARCO Passage Ranking
V1 for training ANCE-PRF, which includes ∼530K queries. The trained mod-
els are evaluated on TREC DL 2019 (43 judged queries), DL 2020 (54 judged
queries), DL HARD, and MS MARCO Passage Ranking V1 Dev set (6,980
queries). For direct comparison with the ANCE-PRF model, we follow the same
process except for evaluation on TREC DL HARD (the results on this dataset
for other dense retrievers considered in this paper are not publicly available).
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4.2 Models

The original work by Yu et al. [30] only considers ANCE as the initial dense
retriever. To validate their hypothesis that their PRF method can be generalised
to other dense retrievers, we consider two recently published dense retrievers
that achieve higher performance than ANCE: TCT ColBERT V2 HN+ [15] and
DistilBERT KD TASB [6]. These two dense retrievers are different from ANCE
with respect to the training process, and the inference is slightly different from
each other. We refer the reader to the original papers for further details. The
output of these three dense retrievers are all embedding vectors that represent
either the query or the document based on the input. The indexes for all three
models are pre-computed and stored offline.

qprfTCT = TCTprf ([CLS] [Q] q[SEP]d1[SEP]...dk[MASK] ∗ 512) (4)

TCT ColBERT V2 HN+ uses a BERT encoder, as shown in Eq. 4, to encode
queries and documents, where TCTprf represents the new PRF query encoder
based on the TCT ColBERT V2 HN+ query encoder. The input requires a
[CLS] token, as well as a [Q] in text as prepend to the actual query text, then
the PRF document texts are separated by the [SEP] token, then use the [MASK]
token to pad the gap if the input is smaller than the max input size of the model,
which is 512 for BERT-based models [4].

fTCT-PRF(q, d) = qprfTCT · TCTd([CLS] [D] d) (5)

For retrieval, TCT ColBERT V2 HN+ uses a scoring function, as shown in
Eq. 5, where TCTd represents the document encoder, and the input document
text is prepended with the [CLS] token and [D] in the text.

qprfDBERT = DBERTprf ([CLS]q[SEP]d1[SEP]...dk[SEP]) (6)

fDBERT-PRF(q, d) = qprfDBERT · DBERTd([CLS]d[SEP]) (7)

On the other hand, DistilBERT KD TASB uses a DistilBERT encoder, as
shown in Eq. 6, and a scoring functions for retrieval, as shown in Eq. 7. Similar
to TCT ColBERT V2 HN+, except the input is a standard BERT input with
the [CLS] token as prepend and the [SEP] token as separators to separate the
PRF documents for both PRF query encoding and retrieval.

4.3 Inference and Training

Inference. To reproduce the ANCE-PRF results, the authors have provided us
with a model checkpoint of PRF depth 3. Since there is no inference code avail-
able from the original authors, we utilise the open source IR toolkit Pyserini2 [14],
which has already implemented the ANCE dense retriever, by introducing a sec-
ond round of ANCE retrieval with the ANCE-PRF model checkpoint. During
2 https://github.com/castorini/pyserini.

https://github.com/castorini/pyserini
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the inference time, the document index is the same for both the first round
ANCE retrieval and the second round ANCE-PRF retrieval. The only difference
in this process is that the initial retrieval uses the ANCE query encoder, while
the second retrieval uses the ANCE-PRF query encoder.

Training. The authors have not released the training code. To replicate the
ANCE-PRF training process, we utilise the open source dense retriever training
toolkit Tevatron3. According to the original paper [30], all hyperparameters used
in ANCE-PRF training are the same as ANCE training, and the ANCE-PRF
query encoder is initialised from ANCE FirstP model4 [28]. Although some of
the parameters are still not reported in the original paper, we managed to repli-
cate the same model as ANCE-PRF with k = 3 by adjusting different training
settings.

We also experimented with two more effective dense retrievers, TCT Col-
BERT V2 HN+ [15] and DistilBERT KD TASB [6] to investigate the generalis-
ability of the ANCE-PRF model. Therefore, we adopted the same hyperparam-
eters from these two models and trained with the same settings as ANCE-PRF.

All models in our experiments are trained on two Tesla V100 SMX2 32GB
GPUs. In the original paper, the ANCE-PRF model is trained with per device
batch size 4 and gradient accumulation step 8 for 450K steps, which is equivalent
to per device batch size 32 for ∼56K steps, therefore, in our training experiments,
we use 10 epochs, which is roughly ∼80K steps.

4.4 Evaluation Metrics

The official evaluation metric for MS MARCO Passage Ranking V1 dataset
is MRR@10 [20], for TREC DL 2019 and 2020 are nDCG@10, Recall@1000
[2,3]. For the Recall@1000 evaluation metric on TREC DL 2019 and 2020, the
judgements are binarized at relevance point 2 according to the official guideline.
Besides the official evaluation metrics, the authors in the original work [30]
also use HOLE@10 as an additional evaluation metric to measure the unjudged
fraction of top 10 retrieved documents [28], to reflect the coverage of the pooled
labels on these dense retrieval systems. However, in our experiments, we opt to
keep the official evaluation metrics only, for the sake of comparison with other
models and baselines. Statistical significance differences between models results
are measured using two-tailed paired t-tests.

4.5 Research Questions

In this work, we aim to address the following research questions along with the
reproducibility and replication5 of the original method from Yu et al. [30]:
3 https://github.com/texttron/tevatron.
4 https://github.com/microsoft/ANCE.
5 We use the terminology of reproducibility and replication in compliance with the

definitions provided by ACM: https://www.acm.org/publications/policies/artifact-
review-badging.

https://github.com/texttron/tevatron
https://github.com/microsoft/ANCE
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
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RQ1: What is the possibility of reproducing the inference results of ANCE-PRF
given only a checkpoint of the trained model provided by the original authors?

RQ2: The training process is governed by a number of hyper-parameters and
choices, importantly including learning rate, optimizer, and negative sampling
technique settings. Given the insufficient details in the original study, it is
reasonable to expect that researchers attempting to replicate the ANCE-
PRF method may set these parameters to values different from those in the
original study. We are then interested to study: what is the impact of ANCE-
PRF training hyper-parameters on the effectiveness of the method, and in
particular if this is robust to different hyper-parameter settings?

RQ3: The PRF strategy underlying ANCE-PRF can be adapted to other dense
retrievers as observed by Yu et al. [30], but not empirically validated. The
original ANCE-PRF model is only trained with ANCE [28] as the initial
dense retriever. We are then interested to investigate: do the improvements
observed for ANCE-PRF generalise to other dense retrievers, such as the two
more effective models, TCT ColBERT V2 HP+ [15] and DistilBERT KD
TASB [6]?

5 Results and Analysis

5.1 RQ1: Reproduce ANCE-PRF Inference

A benefit of the transformer-based neural models nowadays is its easy repro-
ducibility; the results can be reproduced easily by using the model checkpoint.
Therefore, with the PRF 3 checkpoint provided by the authors, we tried to repro-
duce the same results reported in the original paper; the outcomes are shown
in Table 1. During the reproducibility process, we found that the ANCE-PRF
model is sensitive to uppercase or lowercase letters. For the original queries used
in all three datasets in this experiment, no uppercase letters existed, therefore
this detail is omitted from the paper. But from our reproducibility experiments,
uppercase letters exist in the corpus, and the token ids and their associated
tokens embeddings are different with different cases of the same word. There-
fore, for PRF queries, after concatenating the PRF documents to the original
query text, the new PRF queries contain uppercase letters and leads to different
tokens after tokenization, and resulting in different performance compared to
what is reported in the original paper. On the other hand, if we set the tokenizer
to do lowercase at inference time, then we can get the same results as the original
paper. Hence, we successfully reproduced the ANCE-PRF model for inferencing
by using the checkpoint provided by the authors.

To answer RQ1, we confirmed that it is possible to reproduce the same results
with the model checkpoint, however one key detail that was missing in the paper
is the lowercase process to the PRF query. We make our ANCE-PRF inference
implementation publicly available in Pyserini toolkit6 so that practitioners can

6 https://github.com/castorini/pyserini/blob/master/docs/experiments-ance-prf.
md.

https://github.com/castorini/pyserini/blob/master/docs/experiments-ance-prf.md
https://github.com/castorini/pyserini/blob/master/docs/experiments-ance-prf.md
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Table 1. The reproduced results with the provided ANCE-PRF 3 checkpoint after
inference. unhandled represents results with the PRF query containing both upper-
case and lowercase letters. do lowercase indicates the results with PRF query con-
verted to lowercase when tokenized. ANCE-PRF 3 shows results in original paper.

Datasets MS MARCO TREC DL 2019 TREC DL 2020

MRR@10 nDCG@10 R@1000 nDCG@10 R@1000 nDCG@10 R@1000

ANCE [28] 0.330 0.388 0.959 0.648 0.755 0.646 0.776

ANCE-PRF 3 [30] 0.344 0.401 0.959 0.681 0.791 0.695 0.815

Unhandled 0.342 0.399 0.960 0.678 0.792 0.674 0.794

Do lowercase 0.344 0.402 0.960 0.681 0.791 0.695 0.815

easily reproduce the same results in the original paper with the author provided
model checkpoint.

5.2 RQ2: Replicate ANCE-PRF Training

In this section, we would like to see if we can reproduce the model by following
the training settings provided in the original paper. However, some details were
missing and we had to consult with the authors to identify their exact settings.
After clarifying the training parameters, we used the same setting to train our
own ANCE-PRF model; the results are shown in Table 2.

Table 2. The replicated results with the trained ANCE-PRF 3 checkpoint after infer-
ence. ANCE-PRF 3 shows the results from the original paper. ANCE represents the
results from the original ANCE model. Replicated is the results from our replicated
ANCE-PRF model.

Datasets MS MARCO TREC DL 2019 TREC DL 2020

MRR@10 nDCG@10 R@1000 nDCG@10 R@1000 nDCG@10 R@1000

ANCE [28] 0.330 0.388 0.959 0.648 0.755 0.646 0.776

ANCE-PRF 3 [30] 0.344 0.401 0.959 0.681 0.791 0.695 0.815

Replicated 0.347 0.405 0.963 0.672 0.794 0.701 0.814

From the results, once their setting was replicated, we obtained results that
are close to those reported and with similar trends, at times worse, other times
better, but never statistically significantly different from the results reported in
the original paper. The minor differences between the two results can be poten-
tially explained by random neuron drop out during training and the random seed
while sampling the hard negatives from the initially retrieved ANCE results.

In the original study, the authors reported that they were using all hyper-
parameters from ANCE [28] training, and all models are trained on two RTX
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Table 3. Initial represents the results by re-initialising the linear head layer. Inherit
represents the results by inheriting the linear head layer from ANCE. In-Batch rep-
resents the results by using in-batch negatives. No In-Batch represents the results by
not using in-batch negatives. 1e-6 represents the results by using 1e-6 as the learning
rate. 1e-5 represents the results by using 1e-5 as learning rate.

Datasets MS MARCO TREC DL 2019 TREC DL 2020

MRR@10 nDCG@10 R@1000 nDCG@10 R@1000

Inherit/No In-Batch/1e-5 0.347 0.672 0.794 0.701 0.814

Inherit/No In-Batch/1e-6 0.335 0.680 0.798 0.678 0.814

Inherit/In-Batch/1e-5 0.347 0.672 0.797 0.678 0.807

Initial/No In-Batch/1e-5 0.313 0.631 0.710 0.644 0.772

2080 Ti GPUs with per-GPU batch size 4 and gradient accumulation step 8 for
450K steps. However, some parameters are still unclear in ANCE training. We
trained the ANCE-PRF model with two Tesla-V100 SMX2 32GB GPUs with
per-GPU batch size 32, learning rate 1e-5, no in-batch negatives or cross batch
negatives, and no gradient accumulation steps for 10 epoches. The reason why we
chose to remove the gradient accumulation step setting is because we are using
GPUs with larger memory. In the original settings, 450K steps with gradient
accumulation step 8 and per-GPU batch size 4 is the same as 56,250 steps with
per-GPU batch size 32. Therefore, in our training process, we used 10 training
epoches, which is equivalent to 83,240 steps in total, and it is already more than
the steps used in the original settings.

The optimizer in the training process for the ANCE-PRF model reported in
the original study is the LAMB optimizer, which we overlooked at first, instead
we used the AdamW optimizer which might lead to unsuccessful replication.

A common practice for training new models based on an existing model is to
re-initialise the linear head layer and train from scratch while keeping the model
body. We followed this practice at first, but it appears that the ANCE-PRF
model is trained with everything inherited from the the ANCE model, including
the embedding head and normalisation (linear head layer). So without keeping
the linear head layer from ANCE, our trained ANCE-PRF is significantly worse
than the original ANCE-PRF model, as shown in Table 3.

Recent more effective models such as RocketQA [22], uniCOIL [13] show
that in-batch negatives help the model learn and achieve better performance.
However, in our experiments, in-batch negatives do not help to improve the
model performance, as shown in Table 3, the difference between using and not
using in-batch negatives is not statistically significant though.

Learning rate also plays an important part in the training process. We have
experimented with two different learning rates, 1e-5 and 1e-6; the results are
shown in Table 3. Using a larger learning rate tends to improve MRR@10 for the
MS MARCO dataset, while a smaller learning rate tends to improve nDCG@10
and R@1000 in TREC DL 2019. However, only MRR@10 is statistically signifi-
cantly different.
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Table 4. Results of training two more effective dense retrievers with the same training
process as ANCE-PRF. For direct comparisons, we trained the models with PRF depth
of value 3. † represents statically significant difference based on a two-tailed paired t-
test.

Datasets MS MARCO TREC DL 2019 TREC DL 2020

MRR@10 nDCG@10 R@1000 nDCG@10 R@1000 nDCG@10 R@1000

ANCE [28] 0.330 0.388 0.959 0.648 0.755 0.646 0.776

ANCE-PRF 3 [30] 0.344 0.401 0.959 0.681 0.791 0.695 0.815

TCT ColBERT V2 HN+ 0.359 0.420 0.970 0.720 0.826 0.688 0.843

TCT ColBERT V2 HN+ PRF 3 0.357 0.418 0.971† 0.741 0.852† 0.712† 0.840

DistilBERT KD TASB 0.344 0.407 0.977 0.721 0.841 0.685 0.873

DistilBERT KD TASB PRF 3 0.348 0.411† 0.974 0.736 0.857† 0.698† 0.866

To answer RQ2, some hyperparameters, such as learning rate, number of
negatives, type of negatives, and optimizer, are crucial for reproducing the model
checkpoint.

5.3 RQ3: Generalisability of ANCE-PRF Beyond ANCE

After successfully reproducing the ANCE-PRF model inference and replicating
the training, we investigated if integrating this PRF strategy with other popular
and more effective dense retrievers will provide some improvements in effective-
ness when compared to the dense retrievers results without PRF. However, this
improvement is of a smaller magnitude than that observed for ANCE, which can
be observed from Table 4. This may be due to: (1) the best hyper-parameter set-
tings for ANCE-PRF may not be adequate to generalise to other dense retrievers,
and different settings may lead other dense retrievers to obtain larger improve-
ments; this speaks to the limited robustness of ANCE-PRF’s training strategy.
(2) The dense retrievers we consider, TCT ColBERT V2 HN+ [15] and Distil-
BERT KD TASB [6] are more effective than ANCE. The limited improvement
then may be due to the fact that it is easier to improve a weaker model (ANCE)
than it is to improve a more effective one.

To answer RQ3, we find that applying the same training strategy as ANCE-
PRF to other more effective dense retrievers only achieves a smaller magnitude
of improvement. Hence, the ANCE-PRF method may not generalize to other
dense retrievers or may require specific hyper-parameter tuning.

6 Conclusion

In this paper we considered the ANCE-PRF model proposed by Yu et al. [30].
This method is the first of its kind to integrate PRF signals directly into the
query encoder, without changing the document encoder or document index.
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There are three research questions related to reproducing and replicating
ANCE-PRF. RQ1 is aimed to address the issues when reproducing the infer-
ence results by directly adopting the model checkpoint provided by the original
authors. Our experiments show that ANCE-PRF is an uncased model; it can
only handle lowercase letters for queries. If the query contains uppercase letters,
the ANCE-PRF model performs differently and hurts performance.

RQ2 is aimed to replicate the training process of the ANCE-PRF model
by using the settings provided in the original study. However, some details are
missing, which leads to unsatisfying performance of the replicated model. After
consulting with the original authors and using the exact same training settings,
we were able to replicate the ANCE-PRF model with insignificant differences
that might be caused by the random seed in negative sampling or model initial-
isation. We then investigate the effects of hyper-parameters in the ANCE-PRF
model training. Since some details are left out in the original study, we replicate
the model by using common practice. However, in our experiments, we found
that some common practice might not work in this case. For example, using the
linear head layer from the ANCE model to train ANCE-PRF is significantly bet-
ter than to initialise the linear head layer. In-batch negatives have been proved
to be useful for training in many superior models, but in our experiment, there
is no significant difference between using in-batch negatives and no in-batch
negatives.

RQ3 is aimed to test the generalisability of the training method of the ANCE-
PRF model. We use the same parameter settings to train the PRF model on
top of TCT ColBERT V2 HN+ [15] and DistilBERT KD TASB [6], two more
effective dense retrievers compared to ANCE. However, the results are mixed;
the improvements with PRF are of a smaller magnitude than that observed for
ANCE. This may be because the best hyper-parameter settings are not suitable
for all dense retrievers; to achieve better performance one may need to adjust
the parameters accordingly. Another reason may be because both newly added
models are more effective than ANCE; the limited improvements may be because
this training method is more suitable to improve a weaker model.

The code to reproduce the training of all the models in this work is made
available at https://github.com/ielab/APR.
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Abstract. Text retrieval using learned dense representations has
recently emerged as a promising alternative to “traditional” text retrieval
using sparse bag-of-words representations. One foundational work that
has garnered much attention is the dense passage retriever (DPR) pro-
posed by Karpukhin et al. for end-to-end open-domain question answer-
ing. This work presents a reproduction and replication study of DPR. We
first verify the reproducibility of the DPR model checkpoints by training
passage and query encoders from scratch using two different implemen-
tations: the original code released by the authors and another indepen-
dent codebase. After that, we conduct a detailed replication study of the
retrieval stage, starting with model checkpoints provided by the authors
but with an independent implementation from our group’s Pyserini IR
toolkit and PyGaggle neural text ranking library. Although our exper-
imental results largely verify the claims of the original DPR paper, we
arrive at two important additional findings: First, it appears that the
original authors under-report the effectiveness of the BM25 baseline and
hence also dense–sparse hybrid retrieval results. Second, by incorporat-
ing evidence from the retriever and improved answer span scoring, we
manage to improve end-to-end question answering effectiveness using the
same DPR models.

Keywords: Open-domain QA · Dense retrieval

1 Introduction

Reproducibility and replicability form the foundation of the scientific enterprise.
Through such studies, the community gains confidence about the veracity of
previously published results. These investigations are often under-valued, espe-
cially compared to work that proposes novel models, but they nevertheless make
important contributions to advancing science. To be precise, throughout this
paper we use the term reproducibility and replicability in the sense articulated
by the ACM,1 characterized as “different team, same experimental setup” and
“different team, different experimental setup”, respectively.
1 ACM Artifact Review and Badging (Version 2.0).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 613–626, 2022.
https://doi.org/10.1007/978-3-030-99736-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99736-6_41&domain=pdf
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1007/978-3-030-99736-6_41
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This paper focuses on a reproducibility and replicability study of the dense
passage retriever (DPR) model proposed by Karpukhin et al. [8], as the authors
have laid important cornerstones for end-to-end vector-based dense retrieval and
open-domain question answering (QA). Specifically, we first conduct a repro-
duction of model training, verifying that we can obtain models with comparable
levels of effectiveness using the released code from the authors as well as another
implementation. Then, we conduct a replication of the retrieval pipeline, analyz-
ing end-to-end retrieval effectiveness with our independent implementation. For
a fair comparison and to reduce conflated factors, our replication study starts
with the released checkpoints, as we have confirmed the reproducibility of model
training during the first step.

DPR is worthy of detailed study because it represents an important exem-
plar of text retrieval using learned dense representations, which has emerged
as a promising alternative to “traditional” text retrieval using sparse bag-of-
words representations [5,11,16,19]. Our experiments largely verify the claims of
Karpukhin et al. regarding the effectiveness of their proposed techniques. More-
over, we arrive at two important additional findings, one of which is inconsistent
with the original work, the other of which presents an enhancement:

1. Focusing on retrieval, we find that the effectiveness of the sparse retrieval
(BM25) baseline is higher than numbers reported in the original paper.
Whereas they report that dense–sparse hybrid results do not meaningfully
improve over dense retrieval alone, we arrive at the opposite conclusion, where
hybrid techniques yield statistically significant gains. We are able to achieve
on average a four-point improvement in top-20 accuracy over the best DPR
results across five standard QA test collections.

2. Focusing on end-to-end QA effectiveness, we explore different techniques for
evidence combination to extract the final answer span. Whereas the original
DPR paper only uses scores from the reader to identify the final answer span,
we investigate combining retriever scores and further experiment with the
answer span selection technique described by Mao et al. [12]. In our best con-
dition, we are able to achieve statistically significant improvements of around
three points on exact match scores over the original DPR implementation
while using the same exact DPR models.

To summarize, the main contribution of this work is the reproduction of DPR
training and the replication of end-to-end retrieval experiments, where our exper-
imental results add a number of important refinements to the original work.
Code associated with our retrieval experiments is packaged in the Pyserini IR
toolkit2 [10] and code associated with our end-to-end QA experiments is part of
the PyGaggle toolkit3 for neural text ranking.

2 http://pyserini.io/.
3 http://pygaggle.ai/.

http://pyserini.io/
http://pygaggle.ai/
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2 Methods

DPR [8] adopts a retriever–reader pipeline proposed by Chen et al. [2] for open-
domain QA tasks. Both the formulation and the pipeline architecture for tackling
the problem dates from at least the late 1990s [14], which means that this general
approach has a long history that predates neural networks. The open-source
code associated with the paper is available on GitHub (which we refer to as “the
DPR repo”),4 but it does not appear to contain code and models necessary to
reproduce all results reported in the paper (more detailed discussions below).

2.1 Retriever

During retrieval, given a corpus C = {D1,D2, ...,Dm}, the task is to return a
list of the k most relevant documents (i.e., most likely to contain the answer)
from C for each query q, where k << |C|. In the original DPR paper and also our
replication study, the corpus refers to the 2018-12-20 dump of English Wikipedia,
and the “documents” are non-overlapping 100-word splits of articles.

To be clear, in most text ranking applications, the “unit of indexing” (and
also retrieval) is usually referred to as a “document” Dj , although in this case
it is a passage (i.e., a split) from Wikipedia. For consistency with this parlance,
we use “document” and “passage” interchangeably throughout this paper. To
add to the potential confusion, results of the retriever are also referred to as
“contexts” that are fed to the reader.

Specifically, DPR contains a query encoder and a passage encoder, both using
BERT [3] as the backbone model. Queries and passages are encoded as dense
representation vectors separately as follows:

q∗ = BERTq(q),D∗
j = BERTD(Dj)

where q∗ and D∗
j are low dimensional vectors (768 dimensions by default). The

relevance score of a passage to a query is computed by their vector dot product:

Sim(q,Dj) = 〈q∗,D∗
j 〉

Thus, the retrieval problem is carried out as nearest neighbor search in dense
vector space. Operationally, this is accomplished via Facebook’s Faiss library [6].

During training, given a query q, a relevant passage D+ that contains the
answer, and n non-relevant passages D−

1 ,D−
2 , ...D−

n , the training objective is:

L(q,D+,D−
1 ,D−

2 , · · · ,D−
n )

= − log p(D = D+ | Q = q)

= − log
exp(Sim(q,D+))

exp(Sim(q,D+)) +
n∑

i=1

exp(Sim(q,D−
i ))

,

4 https://github.com/facebookresearch/DPR.

https://github.com/facebookresearch/DPR
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where p(D = D+ | Q = q) can be seen as a classifier given the query q evaluated
at passage D+.

Karpukhin et al. also investigated hybrid retrieval, combining results from
dense retrieval (DPR) and sparse retrieval (BM25) by computing the linear
combination of their respective scores to rerank the union of the two initial
retrieved sets: λ · Sim(q,Dj) + BM25(q,Dj), where λ = 1.1, an empirical value
tuned on the development set. BM25 retrieval was performed using Lucene with
parameters b = 0.4 and k1 = 0.9. However, the DPR repo does not appear to
contain code for reproducing the BM25 and hybrid fusion results.

We attempt to replicate the retriever results reported in the DPR paper with
Pyserini, an IR toolkit we have been developing since 2019 [10]. The toolkit
supports sparse retrieval (i.e., BM25) via integration with another toolkit called
Anserini [17] built on Lucene. Like in the original DPR work, Pyserini supports
dense retrieval via integration with Facebook’s Faiss library. Combining dense
and sparse retrieval, the Pyserini toolkit supports hybrid retrieval as well.

Our efforts are divided into two distinct steps: First, we verify that the model
checkpoints released by the DPR authors are reproducible by retraining the
query and passage encoders from scratch. Then, for a fair comparison between
our retrieval implementation and the original DPR work, we use the released
checkpoints as the starting point of our replication study. Our retrieval imple-
mentation does not share any code with the DPR repo, other than evaluation
scripts to ensure that results are comparable.

Similar to the original work, we calculate hybrid retrieval scores by linear
combination of dense and sparse scores: Sim(q,Dj)+α ·BM25(q,Dj). Note that,
contrary to the original work, we place the α weight on the BM25 score because
this yields a more natural way to answer the pertinent research question: Given
dense retrieval as a starting point, does adding BM25 as an additional relevance
signal provide any value? This question is answered by comparing with a setting
of α = 0, which is equivalent to discarding BM25 results.

Finally, there are a few more details of exactly how to combine BM25 and
DPR scores worth exploring. As a baseline, we use the raw scores directly in
the linear combination (exactly as above). However, we notice that the range of
scores from DPR and BM25 can be quite different. To potentially address this
issue, we apply the following normalization technique: If a document from sparse
retrieval is not in the dense retrieval results, we assign it the minimum dense
retrieval score among the retrieved documents, and vice versa for the sparse
retrieval score.

To arrive at a final top-k ranking, the original DPR paper generated top-k′

results from DPR and top-k′ results from BM25 (where k′ > k), before consid-
ering the union of the two result sets and combining the scores to arrive at the
final top-k. The original work set k′ = 2000, but after some preliminary exper-
imentation, we decided to fix k′ = 1000 in our experiments since it is a more
common setting in information retrieval experiments (for example, k = 1000 is
the default in most TREC evaluations).
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2.2 Reader

As is standard in a retriever–reader design, the retriever in the DPR paper
returns k candidate passages (i.e., splits from Wikipedia) for each query q. The
reader extracts the final answer span from the candidate contexts, where each
context Ci contains the Wikipedia article title Ctitle

i and its content Ctext
i .

The reader in DPR uses BERT-base and takes as input each candidate con-
text Ci concatenated to the question q. Answer extraction is treated as a labeling
task, and the reader identifies the answer by predicting the start and end tokens
of the answer span in the contexts. To do so, the DPR reader adds a linear layer
on top of BERT to predict the start logit (i.e., unnormalized probability) and
end logit for each token from the final hidden layer representations. The score
of an answer span is calculated by adding the start logit of the first token and
the end logit of the last token. The reader returns the m highest scoring answer
spans. In addition, the reader uses the learned representation of [CLS] to predict
the overall relevance of the context to the question.

Mathematically, the reader operates as follows:

ri,S = Reader([CLS] q [SEP] Ctitle
i [SEP] Ctext

i )

where ri is the overall relevance score for context Ci, and S comprises m potential
(answer span, span score) pairs extracted from context Ci:

{(Si,1, si,1), (Si,2, si,2), . . . (Si,m, si,m)}.

In the original paper, the final answer span is the candidate with the maximum
span score from the context with the highest relevance score.

We attempt to replicate exactly the DPR implementation of answer extrac-
tion using our open-source PyGaggle neural reranking library, which holds the
code to many of our other search-related projects. Once again, we begin with
reader checkpoints released in the DPR repo, but otherwise our implementation
is completely independent (other than, again, the evaluation code).

In addition to the answer extraction algorithm above, we also implement the
normalized answer span scoring technique described by Mao et al. [12]. Each
answer span in each candidate context Ci is re-scored according to:

s′
i,j = softmax(�r)i · softmax(�si)j

where �r = {r1, · · · , rk} is the set of relevance scores of all candidate contexts
and �si = {si,1, · · · , si,m} is the set of all span scores within context Ci. Dupli-
cate answer spans across all contexts are scored by accumulating their individual
scores. The answer span with the maximum score is selected as the final predic-
tion.

In summary, we compare two answer span scoring techniques in the reader:
the “original” answer span scoring technique described by Karpukhin et al. [8],
and the span scoring technique described by Mao et al. [12].
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2.3 Final Evidence Fusion

In the original DPR paper, the final answer span is only selected based on scores
from the reader. In our replication attempt, we additionally exploit scores from
the retriever to improve answer span selection. Our intuition is that predictions
from both the retriever and the reader should contribute to the final answer.
Concretely, instead of just using the relevance score ri from the reader to score
contexts, we fuse ri with the retriever score Ri, calculated by: β · ri + γ · Ri.
Depending on the retrieval method, Ri can be the sparse retrieval score, the dense
retrieval score, or the score after hybrid fusion. This final fused score replaces
ri as the relevance score for each context in the answer span scoring step. For
example, with fusion, the answer span scoring technique from GAR [12] becomes
softmax(β · �r + γ · �R)i · softmax(�si)j .

Thus, to summarize, we explore four settings in our end-to-end QA replica-
tion: the original DPR span scoring technique, with and without retriever score
fusion, and the answer span scoring technique of GAR [12], with and without
retriever score fusion.

3 Experimental Setup

In this section, we clarify the models, datasets, metrics, and hyperparameters
used in our experiments.

Reproduction of Training. We attempt to reproduce the DPR model checkpoints
by training DPR from scratch, following the same settings in the original work
as close as possible, with two different implementations. The first is the authors’
released code in the DPR repo; experiments reported in the original paper used
8 × Nvidia V100 (32 GB) GPUs, as model quality depends on a large batch
size (i.e., 128). The second is code from Gao et al. [4], which is based on the
original implementation but exploits gradient caching to make a large batch fit
on single GPU.5 In our reproduction, we train models on 4 × V100 GPUs (the
largest machine we have access to) using the authors’ original code, and a single
V100 GPU using the other implementation; hyperparameters are all identical to
the original DPR work. The reproduced checkpoints are evaluated based on the
original DPR repo’s retrieval and evaluation code.

Replication of Retrieval. Our replication efforts begin with model checkpoints
provided in the DPR repo. However, the authors did not release all models
and datasets used in their experiments at the time of our work. Therefore, our
replication experiments only use the models with released checkpoints:

– RetrieverNQ: DPR encoders trained using just the NQ dataset.
– RetrieverMulti: DPR encoders trained using a combination of datasets.

5 https://github.com/luyug/GC-DPR.

https://github.com/luyug/GC-DPR
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– ReaderNQ-Single: the DPR reader trained on NQ with negative passages from
retrieval results by RetrieverNQ.

– ReaderTQA-Multi: the DPR reader trained on TriviaQA with negative passages
from retrieval results by RetrieverMulti.

Datasets. We evaluate retrieval effectiveness on five standard benchmark QA
datasets (NQ [9], TriviaQA [7], WQ [1], CuratedTREC [14], SQuAD [13]),
exactly the same as the original paper. For end-to-end QA, we evaluate on
NQ and TriviaQA with the available models. More precisely, we use the
ReaderNQ-Single model to process the retrieved contexts from RetrieverNQ for
NQ and use the ReaderTQA-Multi model to process the retrieved contexts from
RetrieverMulti for TriviaQA.

Metrics. For retrieval, we measure effectiveness in terms of top-k retrieval accu-
racy, defined as the fraction of questions that have a correct answer span in the
top-k retrieved contexts at least once. End-to-end QA effectiveness is measured
in terms of the exact match (EM) metric, defined as the fraction of questions
that have an extracted answer span exactly matching the ground truth answer.
Missing from the original DPR paper, we perform significance testing to assess
the statistical significance of metric differences. In all cases, we apply paired
t-tests at p < 0.01; the Bonferroni correction is applied to correct for multiple
hypothesis testing as appropriate.

Hyperparameters. In the hybrid retrieval technique described in the DPR paper,
the λ weight for combining dense and sparse retrieval scores is fixed to 1.1.
However, our implementation replaces λ with α (see Sect. 2.1). We tune the α
values on different datasets by optimizing top-20 retrieval accuracy: For datasets
where we can obtain exactly same train/dev/test splits as the original DPR
paper (NQ and TriviaQA), we tune the weight on the development set. For the
remaining datasets, where splits are not available or the original DPR paper does
not provide specific guidance, we tune the weights on a subset of the training
data. We obtain the optimal weight by performing grid search in the range [0, 2]
with step size 0.05.

Similarly, for final evidence fusion, we tune β (i.e., the weight for the relevance
score) and γ (i.e., the weight for the retriever score) on the development set of
NQ and TriviaQA using grid search. For greater computational efficiency, we
perform tuning in multiple passes by interweaving a coarser step size with a
finer step size. For the original DPR answer span scoring technique, we fix β to
one and perform a two-step grid search on γ. We start with step size 0.05 and
find the optimal γ1. Then, we use step size 0.01 in the range [γ1 − 0.04, γ1+0.04]
to find the optimal γ.

For the answer span scoring technique of GAR [12], we define δ = γ
β and

perform a three-step grid search on β and δ (i.e., the weight for the retriever
score becomes γ = β · δ). We start with step size 0.2 for both β and δ to find the
optimal pair of values β1, δ1. We then repeat this process with step size 0.05 and
0.01 in a smaller range around the optimal βi and δi from the previous pass.
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Table 1. Retrieval effectiveness comparing results from the original DPR paper
(“orig”) and our reproduction attempt (“repro”). The symbol ∗ on an “orig” result
indicates that the corresponding checkpoint was released.

Training NQ TriviaQA WQ Curated SQuAD

top20 top100 top20 top100 top20 top100 top20 top100 top20 top100

DPR-Single (orig) 78.4∗ 85.4∗ 79.4 85.0 73.2 81.4 79.8 89.1 63.2 77.2

DPR-Single (repro) 79.1 85.9 78.9 84.5 71.0 80.2 85.1 92.2 62.1 76.8

DPR-Multi (orig) 79.4∗ 86.0∗ 78.8∗ 84.7∗ 75.0∗ 82.9∗ 89.1∗ 93.9∗ 51.6∗ 67.6∗

DPR-Multi (repro) 79.4 87.0 78.5 84.5 75.3 83.0 88.2 94.4 58.3 72.4

For final evidence fusion, we tune the weight parameters together with the
number of retrieval results (k) up to 500 with a step size of 20. Optimal param-
eters are selected based on the highest exact match score.

4 Results

4.1 Reproduction of Training

In Table 1, we report retrieval accuracy from our reproduced model checkpoints.
DPR-Single refers to the query encoder and passage encoder trained on a single
dataset only and DPR-Multi refers to the model trained on the union of NQ,
TriviaQA, WQ, and CuratedTREC (with WQ and CuratedTREC up-sampled
by four times given their smaller sizes). To be clear, at the time of our study,
the DPR repo only released training data for NQ, TriviaQA, and SQuAD. We
follow the DPR paper to prepare training data for WQ and CuratedTREC, but
we prepare BM25 hard negative passages by using the Pyserini toolkit because
the original repo does not contain BM25 retrieval code. The DPR-Single (repro)
results are from training using the authors’ original code. The DPR-Multi (repro)
results are from training using the code of Gao et al. [4].

The models we train from scratch arrive at a comparable level of effectiveness
to the numbers reported in the original paper. Most of the differences are rela-
tively small, within the variability commonly seen when training neural models.
Interestingly, for the DPR-Multi setting, our model appears to be quite a bit
better than the original model for SQuAD.

Overall, we would consider our reproduction attempt successful. In the fol-
lowing experiments, to reduce the number of conflated factors, we use the DPR
authors’ released model checkpoints.

4.2 Replication of Retrieval

Table 2 reports top-k = {20, 100} retrieval accuracy from our replication
attempt, compared to figures copied directly from the original DPR paper; here
we focus on results from RetrieverMulti. The hybrid retrieval results reported in
the original DPR paper is denoted Hybridorig, which is not directly comparable
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Table 2. Comparison between the original DPR paper (“orig”) and our replication
attempt (“repl”). The symbol † on a BM25 result indicates effectiveness that is sig-
nificantly different from DPR. The symbol ‡ indicates that the hybrid technique is
significantly better than BM25 (for SQuAD) or DPR (for all remaining collections).

Condition top20 top100

orig repl orig repl

NQ

DPR 79.4 79.5 86.0 86.1

BM25 59.1 62.9† 73.7 78.3†

Hybridorig (λ = 1.1) 78.0 - 83.9 -

Hybridnorm (α = 1.30) - 82.6‡ - 88.6‡

Hybrid (α = 0.55) - 82.7‡ - 88.1‡

TriviaQA

DPR 78.8 78.9 84.7 84.8

BM25 66.9 76.4† 76.7 83.2†

Hybridorig (λ = 1.1) 79.9 - 84.4 -

Hybridnorm (α = 0.95) - 82.6‡ - 86.5‡

Hybrid (α = 0.55) - 82.3‡ - 86.1‡

WQ

DPR 75.0 75.0 82.9 83.0

BM25 55.0 62.4† 71.1 75.5†

Hybridorig (λ = 1.1) 74.7 - 82.3 -

Hybridnorm (α = 0.95) - 77.1‡ - 84.4‡

Hybrid (α = 0.3) - 77.5‡ - 84.0‡

CuratedTREC

DPR 89.1 88.8 93.9 93.4

BM25 70.9 80.7† 84.1 89.9†

Hybridorig (λ = 1.1) 88.5 - 94.1 -

Hybridnorm (α = 1.05) - 90.1 - 95.0‡

Hybrid (α = 0.7) - 89.6 - 94.6‡

SQuAD

DPR 51.6 52.0 67.6 67.7

BM25 68.8 71.1† 80.0 81.8†

Hybridorig (λ = 1.1) 66.2 - 78.6 -

Hybridnorm (α = 2.00) - 75.1‡ - 84.4‡

Hybrid (α = 28) - 75.0‡ - 84.0‡
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to either of our two techniques: Hybridnorm (with minimum score normalization)
or Hybrid (without such normalization). We make the following observations:

First, our dense retrieval results are very close to those reported in the original
paper. We consider this a successful replication attempt and our efforts add
veracity to the effectiveness of the DPR technique.

Second, our Pyserini BM25 implementation outperforms the BM25 results
reported in the original paper across all datasets. Furthermore, the gap is larger
for k = 20. On average, our results represent a nearly seven-point improvement
in top-20 accuracy and a nearly five-point improvement in top-100 accuracy.
Since the authors of DPR have not made available their code for generating the
BM25 results, we are unable to further diagnose these differences.

Nevertheless, the results do support the finding that dense retrieval using
DPR is (generally) more effective than sparse retrieval. We confirm that the
effectiveness differences between DPR and BM25 in our replication results are
statistically significant. In all datasets except for SQuAD, DPR outperforms
BM25; this is consistent with the original paper. We further confirm that for
SQuAD, DPR is significantly worse than BM25. As Karpukhin et al. noted,
RetrieverMulti is trained by combining training data from all datasets but exclud-
ing SQuAD; these poor results are expected, since SQuAD draws from a very
small set of Wikipedia articles.

Third, the effectiveness of hybrid dense–sparse fusion appears to be under-
stated in the original DPR paper. Karpukhin et al. found that hybrid retrieval
is less effective than dense retrieval in most settings, which is inconsistent with
our experimental results. Instead, we find that dense–sparse retrieval consis-
tently beats sparse retrieval across all settings. The gains from both hybrid
scoring techniques are statistically significant, with the exception of top-20 for
CuratedTREC. Our results might be due to better BM25 effectiveness, but we
are unable to further diagnose these differences because, once again, the hybrid
retrieval code is not provided in the DPR repo. Further testing also finds that
the differences between the two hybrid techniques are not significant. Thus, there
seems to be no strong basis to prefer one hybrid technique over the other.

Table 3. The Jaccard overlap between sparse retrieval and dense retrieval results.

Condition k = 20 100 500 1000

NQ 6.1 5.2 4.4 4.2

TriviaQA 9.2 6.6 5.0 4.6

WQ 5.9 5.9 5.8 5.7

CuratedTrec 6.9 7.2 6.3 5.9

SQuAD 4.5 4.1 4.0 4.0

In Table 3, we report overlap when taking different top-k results from dense
retrieval and sparse retrieval. Overlap is measured in terms of Jaccard overlap,
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which is computed by the intersection over the union. It is apparent that the
overlap between dense and sparse results is quite small, which suggests that
they are effective in different ways. This provides an explanation of why hybrid
retrieval is effective, i.e., it is exploiting different relevance signals. These results
also justify the DPR design choice of retrieving k′ > k results from dense and
sparse retrieval and then rescoring the union to arrive at the final top-k.

4.3 Replication of End-to-End QA

Table 4 presents results for our end-to-end question answering replication exper-
iments on the NQ and TriviaQA datasets in terms of the exact match score.
The original results are shown in the “orig” column. The “repl” column reports
our attempt to replicate exactly the span scoring technique described in the
original paper, whereas the “GAR” column shows results from using the tech-
nique proposed by Mao et al. [12]. The version of each technique that incorpo-
rates retriever scores (see Sect. 2.3) is denoted with a * symbol, i.e., “repl*” and
“GAR*”. For NQ, we used RetrieverNQ and ReaderNQ-Single; for TriviaQA, we
used RetrieverMulti and ReaderTQA-Multi.

Table 4. End-to-end QA effectiveness in terms of the exact match score, compar-
ing different answer span scoring techniques. The “orig” and “repl” columns are the
original and replicated results; “GAR” refers to the technique by Mao et al. [12]; “*”
represents fusion of retriever scores. The symbol † on a “repl*” result indicates sig.
improvement over “repl”; on “GAR”, over “repl”; on “GAR*”, over “GAR”. The sym-
bol ‡ on “GAR*” indicates sig. improvement over “repl”.

Condition orig repl repl* GAR GAR*

NQ

DPR 41.5 41.2 42.5† 41.5 43.5†‡

BM25 32.6 36.3 37.0 37.3† 38.4†‡

Hybrid 39.0 41.2 43.2† 41.9† 44.0†‡

TriviaQA

DPR 56.8 57.5 58.3† 58.9† 59.5†‡

BM25 52.4 58.8 59.2 61.1† 61.6†‡

Hybrid 57.9 59.1 60.0† 61.0† 61.7†‡

With retrieval using DPR only, the “orig” and “repl” scores on both datasets
are close (within a point), which suggests that we have successfully replicated
the results reported in the DPR paper. With retrieval using BM25 only, our
replicated results are quite a bit higher than the original DPR results; this
is not a surprise given that our BM25 results are also better. When combin-
ing DPR and BM25 results at the retriever stage, the end-to-end effectiveness
remains unchanged for NQ, but we observe a modest gain for TriviaQA. The
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gain for TriviaQA is statistically significant. So, it is not the case that better
top-k retrieval always leads to improvement in end-to-end effectiveness.

Comparing the “repl” and “repl*” columns, we observe that combining scores
from the retriever yields modest gains across all conditions. These gains are sig-
nificant for four out of the six conditions, which suggests that retriever scores con-
tribute to improving effectiveness. Comparing the “GAR” and “repl” columns,
we also observe modest gains when adopting the answer span selection technique
of Mao et al. [12]. These gains are significant for all except one condition. Com-
paring the “GAR” and “GAR*” columns, we find that in all cases, incorporating
retriever scores significantly increases effectiveness.

Finally, putting everything together—using both the answer span scoring
technique of Mao et al. [12] and incorporating retriever scores—we observe sta-
tistically significant gains across all retrieval conditions, as can be seen in the
“GAR*” vs. “repl” columns across all rows. Compared to the best replicated
results, we obtain an improvement of approximately three points in end-to-end
QA effectiveness compared to the best answer extraction approach described in
the original DPR paper. Note that we are able to obtain these improvements
using exactly the model checkpoints provided in the DPR repo—we have simply
added two relatively simple tricks to improve scoring and evidence combination.
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Fig. 1. End-to-end question answering effectiveness (exact match score) varying the
number of retrieval results (k) for NQ (left) and TriviaQA (right).

In Fig. 1, we plot exact match scores as a function of varying k retrieval
results for NQ (left) and TriviaQA (right). That is, we show how end-to-end QA
effectiveness changes as the reader is provided more contexts from the retriever
to consider. There are two factors here at play: On the one hand, top-k accuracy
increases monotonically, i.e., as k increases, so does the likelihood that the answer
appears in the contexts fed to the reader. On the other hand, the reader is asked
to consider more contexts, and thus needs to discriminate the correct answer
from a larger pool of candidate contexts, some of which might be low quality
and thus serve as “distractors” from the correct answer. How do these factors
balance out? Similar analyses in previous work with BM25 retrieval have shown
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that end-to-end QA effectiveness increases with increasing k [15,18]; that is, the
reader does not appear to be “confused” by the non-relevant material. Indeed,
in our BM25 results we also observe the same trend.

Interestingly, however, when we switch from BM25 results to DPR results,
the behavior appears to change. For TriviaQA, the effectiveness curve behaves as
expected, but for NQ, the exact match score trends up and then decreases after a
peak. This means that while the likelihood of the reader seeing a correct answer in
the candidate contexts increases with k, it is more likely to be negatively affected
by increasing amounts of non-relevant contexts as well. This general behavior
is also seen for the hybrid scoring techniques: as k increases, so does the exact
match score, but only up to a certain point. Beyond this point, feeding the reader
more candidate contexts leads to slight decreases in end-to-end effectiveness.

5 Conclusion

The breakneck pace at which NLP and IR are advancing, we argue, makes repro-
ducibility and replicability critical to advancing science—to ensure that we are
building on a firm foundation. Our study adds to the veracity of the claims made
by Karpukhin et al. [8], and our work indeed confirms that DPR is an effective
dense retrieval technique. Moreover, we arrive at two important findings, one
of which is inconsistent with the original work, the other of which presents an
enhancement. Together, they enrich our understanding of DPR.
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Abstract. Despite its troubled past, the AOL Query Log continues to
be an important resource to the research community—particularly for
tasks like search personalisation. When using the query log these rank-
ing experiments, little attention is usually paid to the document corpus.
Recent work typically uses a corpus containing versions of the documents
collected long after the log was produced. Given that web documents are
prone to change over time, we study the differences present between a
version of the corpus containing documents as they appeared in 2017
(which has been used by several recent works) and a new version we con-
struct that includes documents close to as they appeared at the time the
query log was produced (2006). We demonstrate that this new version of
the corpus has a far higher coverage of documents present in the original
log (93%) than the 2017 version (55%). Among the overlapping docu-
ments, the content often differs substantially. Given these differences,
we re-conduct session search experiments that originally used the 2017
corpus and find that when using our corpus for training or evaluation,
system performance improves. We place the results in context by intro-
ducing recent adhoc ranking baselines. We also confirm the navigational
nature of the queries in the AOL corpus by showing that including the
URL substantially improves performance across a variety of models. Our
version of the corpus can be easily reconstructed by other researchers and
is included in the ir-datasets package.

1 Introduction

When released in 2006, the AOL Query Log [27] drew harsh criticism from the
media over privacy concerns [4]. Since then, however, it has been an impor-
tant resource to the research community (e.g., [25,30]). Even to this day, the
AOL Query Log continues to enable studies in analysis of data leaks [13], search
autocompletion [14], weak supervision for adhoc search [7,21], search result per-
sonalisation [9,16], and session-based search [1,2,6,28,33].

A key limitation of the AOL Query Log is that it does not include document
contents; it only provides a user identifier, query text, query date/time, and the
URL and rank of clicked documents (if any). This means that for studies that use
the logs as a training and benchmark data for tasks like search result personali-
sation and session search, a document corpus needs to be constructed. Often the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 627–640, 2022.
https://doi.org/10.1007/978-3-030-99736-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99736-6_42&domain=pdf
https://doi.org/10.1007/978-3-030-99736-6_42


628 S. MacAvaney et al.

approach used for constructing the corpus is unspecified. To the best of our knowl-
edge, when the approach is specified, it always involves scraping current versions
of the documents. There are two main problems with this approach. First, given
that the contents of web documents are highly prone to change over time, recent
versions of the documents may not reflect the contents of the documents as they
appeared to the users. Second, this approach impedes reproduciblity and replica-
bility efforts in the area, since the contents of the documents cannot be released
publicly due to the potential that they contain copyrighted material.

In this paper, we study the effect that the document corpus used for AOL
Query Log experiments has on reproducibility. We start by building a new doc-
ument corpus that attempts to better reflect the documents present in the AOL
Query Log as they appeared when the log was collected. This is accomplished
by using the Internet Archive,1 and thus we refer to our corpus as AOLIA. We
find that this approach is able to cover far more of the documents that appeared
in the AOL Query log (93%) when compared to a commonly-used version of
the corpus that was collected in 2017 (55%, shared on request by Ahmad et
al. [2]). Based on the timestamps from the Internet Archive, we are confident
that the documents in AOLIA also better reflect the content of the documents
as they appeared at the time, with 86% of the documents coming from dur-
ing or in the three months prior to the log. We find that the content of the
overlapping documents changed substantially in the 11-year period, with 28% of
documents having no token overlap in the title (which is often used for session-
based search [2,9,28]).

We further conduct a reproducibility and replicability study2 of personalised
session search tasks based on the AOL Query Log. We are unable to reproduce
results using the 2017 version of the corpus, but our replication results (using
AOLIA) are more in line with the original findings. To put the results in context,
we also include a neural adhoc ranking baseline, which ultimately outperforms
the methods we investigate. We also study the effect of using the document’s
URL as additional text and find that it improves the performance of all methods
we investigate (often by a large margin), further confirming the navigational
nature of the queries in the AOL Query Log. In summary, our contributions are:

1. We provide an alternative document corpus (AOLIA) for the AOL Query Log
based on versions of the documents as they were likely to have appeared at
the time the query log was collected.

2. We release artifacts and software such that other researchers will be able to
construct AOLIA themselves, promoting reproducibility.

3. We study the reproducibility and replicability of three session-based search
approaches, and find that using AOLIA alone can improve the performance of
session-based search systems due to higher-quality documents, and that the
training and evaluation datasets constructed from AOLIA can be considerably
larger due to the increased coverage of the dataset.

1 https://archive.org/.
2 ACM version 1.1 definitions of reproducibility and replicability: https://www.acm.

org/publications/policies/artifact-review-and-badging-current.

https://archive.org/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
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The remainder of this paper is organised as follows. In Sect. 2 we provide
additional background information about the problem. Then, Sect. 3 details our
process for constructing AOLIA. Section 4 provides a comparison between AOLIA
and a version produced in 2017 that is used by several recent works. Section 5
then focuses on reproducing prior works using AOLIA. Finally, Sect. 6 details the
limitations of our approach, and Sect. 7 draws final conclusions.

2 Background

Past works that make use of the AOL Query Log use recent versions of the log’s
clicked documents. Because the content of web pages can change over time, using
recent versions necessitates a filtering process, which removes query-document
pairs that are no longer relevant. For instance, Ahmad et al. [2] reports “...in
our preliminary experiments, we observed that many recorded clicks do not have
lexical overlap concerning the queries. One possible reason is that we crawled
the recorded clicks from the AOL search log in 2017 and many of the clicked
documents’ content updated since 2006 when the AOL log was recorded.”

Several alternatives to The Internet Archive exist as sources of data for a
reproducible AOL corpus. Although the Common Crawl3 would provide a more
comprehensive corpus (i.e., it includes a more natural selection of documents,
rather than only documents clicked by the user), we show in Sect. 3 that the
AOL corpus at the time likely did not contain a representative sample of docu-
ments from the web, but rather focused heavily on home pages. Moreover, since
the oldest version of the Common Crawl is from 2008–09, the content of the doc-
uments may already have changed since the time of the log. Finally, the size of
the relevant archives (hundreds of terabytes) could add substantial difficulty in
downloading and working with the data. The ClueWeb 20094 and 20125 corpora
would be another option, and are appealing given that many research groups
already have a copy of them. However, like the Common Crawl, they reflect the
contents of documents several years after the log was constructed. Furthermore,
there is low coverage of the target URLs in the ClueWeb corpora.

Other efforts investigate the stability of using mutable web resources as docu-
ment corpora in IR. McCreadie et al. [23] find that naturally-occurring deletions
from the Twitter corpus used by the TREC Microblog tasks do not have a sub-
stantial effect on the results of experiments that use the corpus. However, the
situation for general web pages is different because the content can change over
time (tweets can only be deleted, not updated). Despite these findings, Sequiera
and Lin [31] investigate the use of the Internet Archive as an alternative source
of data for the TREC 2013–14 Microblog corpus. Our work not only differs
in terms of the document corpus targeted, but also the download mechanism;
the Twitter stream they use is conveniently bundled by month by the Internet
Archive, whereas there is no such bundle available for the documents present in
3 https://commoncrawl.org/.
4 https://lemurproject.org/clueweb09/.
5 https://lemurproject.org/clueweb12/.

https://commoncrawl.org/
https://lemurproject.org/clueweb09/
https://lemurproject.org/clueweb12/
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the AOL Query Log. Consequently, the steps involved to build our version of
the AOL corpus are necessarily more complicated.

Fig. 1. Distribution of the archive dates of the web pages in the scraped collection
from 2004–2008. The vast majority of pages are recovered from the time period during
or right before the AOL Query Log (marked by vertical lines).

3 Reconstructing the AOL Document Corpus

In this section, we reconstruct a document corpus that better reflects the docu-
ments as they appeared to the users at the time. Through this process, we create
artifacts and software that others can use to construct this dataset themselves,
further promoting reproducibility in this area.

We start by building a set of all unique URLs that appear in the AOL Query
Log.6 Importantly, we acknowledge that this only represents documents that
users clicked; the full list of documents indexed by AOL at the time is not
available. This process results in 1,632,620 unique URLs. Nearly half (48.7%) of
the URLs were only clicked a single time. All but 15 URLs specify either http
or https URI schemes (14 specify ftp and one specifies about). 98.4% of the
URLs refer to the home page of a website (i.e., have no path), which suggests
that the search engine primarily functioned as a navigational tool at the time.

We then query archive.org’s WayBack Machine’s availability API7 to request
a version of the page as it appeared as close as possible to 1 March 2006 (the
beginning of the AOL Query Log). Remarkably, we find that 93% of URLs were
archived. Figure 1 shows the distribution of the dates of the archived pages. The
vast majority of the found URLs (84%) are from the period during or in the three
months prior to the log (January to May 2006). A further 8% are from before
2006, and a total of 96% of pages have an archived copy before 2007. Based on
these dates, we feel that the corpus represents a reasonable approximation of the
documents present in the query log at the time it was collected.

6 http://www.cim.mcgill.ca/∼dudek/206/Logs/AOL-user-ct-collection/aol-data.tar.
gz.

7 API Endpoint: https://archive.org/wayback/available.

http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection/aol-data.tar.gz
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection/aol-data.tar.gz
https://archive.org/wayback/available
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We then fetch the archived versions of the documents and parse the resulting
HTML using a libxml2-based parser. The title and body text are extracted
(discarding content that appears in non-content tags, such as <script>). A small
number of documents (0.3%) encountered either parsing errors or persistent
download errors. We discard these documents. The median title length is 5 tokens
(interquartile: (3, 9)), while the median body length is 198 tokens (interquartile:
(47, 454)). As is the case for web content, some documents are substantially
longer (up to 1.7M tokens). When compressed, the corpus is 3.4G in size. Using
a FastText [12] language classifier8 over the document title and body, we find
that the vast majority of documents (92.5%) likely contain English text, as
expected. Table 1 presents a further breakdown of the top languages in AOLIA.
The breakdown is similar to that of the queries that appear in the log, when
considering that language identification is more prone to errors for short texts
like keyword queries.

Table 1. Top languages present in the AOLIA corpus, compared to the prevalence of
the language of queries in the log.

Language Corpus Queries Language Corpus Queries

English 92.5% 79.6% Japanese 0.4% 0.1%

French 1.6% 3.2% Portuguese 0.3% 0.8%

Spanish 1.4% 2.1% Dutch 0.3% 0.9%

German 1.1% 2.6% Russian 0.2% 0.4%

Italian 0.5% 1.8% All others 1.5% 8.5%

Though we cannot distribute the contents of this corpus directly due to
potentially copyrighted content, we take the following steps to facilitate repro-
ducibility using this dataset:

1. We publicly release a mapping of the Internet Archive URLs so that others
can fetch the same versions of the original documents.9

2. We provide software to download and extract the contents of these docu-
ments.10

3. We include a new aol-ia dataset in the ir-datasets [20] package, which
provides easy access to this document corpus and the AOL log records. The
package automatically downloads the log records from a public source, the
Internet Archive mapping (from 1), and provides instructions to the user on
how to run the extraction software (from 2). Once built, the dataset can easily
be used by tools like PyTerrier [22] and OpenNIR [17].

8 https://fasttext.cc/docs/en/language-identification.html.
9 https://macavaney.us/aol.id2wb.tsv.gz.

10 https://github.com/terrierteam/aolia-tools.

https://fasttext.cc/docs/en/language-identification.html
https://macavaney.us/aol.id2wb.tsv.gz
https://github.com/terrierteam/aolia-tools
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4 Comparing AOLIA with AOL17

In this section, we compare AOLIA with a version of the corpus that used more
recent versions of the documents present in the log. Specifically, we use the
version first used by Ahmad et al. [1], which uses documents from the AOL Query
Log as they appeared in 2017 (so we call this corpus AOL17). This corpus has been
used by other works (e.g., [2,9,28]). We treat AOL17 as a representative example
of a contemporary version of the AOL corpus, noting that more recent versions
of the corpus are likely to diverge even further from the original documents.

Table 2. Comparisons of URLs present in the AOLIA and AOL17 datasets. The Total
column indicates the percentage of all URLs present in the AOL corpus.

Count Total

|AOLIA| 1,525,524 93.4%

|AOL17| 897,984 55.0%

|AOL17 \ AOLIA| 12,207 0.7%

|AOLIA \ AOL17| 639,747 39.2%

|AOLIA⋃
AOL17| 1,537,731 94.2%

|AOLIA⋂
AOL17| 885,777 54.3%

Table 2 provides a comparison between the URLs present in the two datasets.
In terms of absolute coverage, AOLIA provides a high (albeit still incomplete)
coverage of 93%. Meanwhile, AOL17 contains only 55% of the URLs found in the
log. There are roughly 12k URLs found in AOL17 but not in AOLIA. Content pages
(i.e., non-homepages) are over-represented among these documents, constituting
13% (1,637) of pages (compared to 2% of the overall corpus). AOLIA compensates
for this disparity simply by virtue of size, filling in 639,747 documents missing
from AOL17 (9,803 of which are content pages). Even though adding missing
documents to AOLIA from AOL17 would increase the total coverage from 93.4%
to 94.2%, doing so would reduce reproducibility, since those documents may
contain copyrighted material and therefore cannot be distributed publicly.

We now dig into the characteristics of the 885,777 documents that overlap
between the corpora. Figure 2 presents the Jaccard similarity between the set of
title tokens11 present in each version of the document. Only 17% of the titles have
a perfect token overlap. Among these, 87% are exact case-insensitive sequence
matches, with typical differences being the replacement or addition of punctua-
tion in the titles, but sometimes involves the repetition of words. Table 3 shows
such examples in rows 1–3.

11 Tokens considered are case-folded, alphanumeric strings separated by whitespace or
punctuation.
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Fig. 2. Distribution of Jaccard similarities over title tokens from overlapping docu-
ments in AOLIA and AOL17.

Table 3. Examples of different titles found on pages between the AOLIA and AOL17

corpora and their corresponding Jaccard index.

# AOLIA AOL17 Jac.

1 Welcome To Atlanta Music Group ! Welcome to Atlanta Music Group 1.0

2 Vinopolis Wine Shop - Portland , Oregon Vinopolis Wine Shop | Portland , Oregon 1.0

3 Mechanics Savings Bank Mechanics Savings Bank - Mechanics Savings Bank 1.0

4 Indalo Productions InMotion Hosting 0.0

5 Kennebec Valley Organization – Home Page (empty) 0.0

6 UK TV Guide Homepage | UKTV 0.0

7 nutone // welcome Nutone Records - Home | Facebook 0.2

8 Vedanta Press and Catalog Books on Vedanta Philosophy 0.1

9 Venning Graphic Utilities for blending images Venning Graphic Utilities 0.5

10 Steinway Musical Instruments , Inc . Steinway Musical Instruments - Steinway & Sons 0.6

The majority of documents (53%) have at most a Jaccard index of 0.25,
indicating low overlap, with 28% having no overlap at all. In the cases when
no overlap is present, semantically dissimilar content is often present, such as a
placeholder document or a replacement with information about the web hosting
provider. In semantically dissimilar cases, the queries that resulted in clicks for
these documents are usually no longer relevant in AOL17. For instance, the query
“indalo” resulted in a click of the documented represented by #4 in Table 3,
which is a reasonable document in AOLIA but not in AOL17. In some cases, the
content is semantically similar, such as in example #6, and still likely a rea-
sonable document for associated queries. Based on a manually-annotated ran-
dom sample of 100 documents with Jaccard similarities of 0, 23 appeared to be
semantically-related (i.e., would likely satisfy similar information needs), while
the remainder were not.

5 Reproduction and Replication

The AOL Query Log has been used for training and evaluating numerous search
tasks. In this section, we explore the effect of AOLIA on one such task: session-
based personalisation. In this setting, a user’s sequence of searches and clicks



634 S. MacAvaney et al.

are broken into sessions (or tasks [11]). Within each session, the prior queries
and clicks can act as additional context to help disambiguate the information
needs of a query. For instance, if a user searches for “cars” followed by “jaguar”,
it is reasonable to tailor the results for the second query towards the luxury car
brand rather than the animal. Although a few datasets are available for training
and/or evaluating these systems (e.g., TREC Sessions [15]), the AOL Query Log
remains a popular (and often exclusive) choice for conducting these experiments.

5.1 Methods

We focus on three neural session-based personalisation techniques: M-NSRF [1],
M-MatchTensor [1], and CARS [2]. We select these methods because numerous
recent works in the area use them as baselines (e.g., [6,28,32,33]). All three
models function as multi-task models, jointly learning to predict both document
relevance and to predict the next query in the sequence. The models differ in the
neural network architecture used to accomplish this. M-MatchTensor adapts the
multi-task approach to the MatchTensor model [10], where MatchTensor builds a
query-document similarity matrix between LSTM-encoded query and documet
text and aggregates the results using CNN filters and max-pooling. M-NSRF
encodes the query and document in separate bi-directional LSTM networks and
combines them using a feed-forward layer to produce ranking scores. CARS
builds upon M-NSRF by modeling the session interactions hierarchically using
attention-based LSTM networks. For these three approaches, we use the authors’
released code12 with default parameters. In line with the code, the number of
training iterations is tuned on dev data.

In addition to the above task-specific methods, we include three additional
adhoc ranking baselines to put the results in context. First, we use the Ter-
rier [26] BM25 implementation to re-rank the candidate documents with default
BM25 parameters. This corresponds to the (unspecified) BM25 baseline con-
ducted in [2]. Furthermore, in light of recent findings in adhoc retrieval, we also
include two neural re-ranking baselines based on the T5 model [24,29]. Given
that transferring relevance signals from one dataset/task to another using con-
textualised language models has generally been shown to be an effective tech-
nique (e.g., [18]), we include a T5 “transfer” baseline. This version is tuned on
the MS MARCO dataset [3]. We also use a “tuned” baseline, which continues
model tuning on the AOL session data from the MS MARCO checkpoint (batch
size 8, learning rate 5× 10−5). In line with Nogueira et al. [24], we simply train
for a fixed number of batches without tuning this or other settings (here, 10,000
batches). For all three adhoc ranking baselines, we use the PyTerrier [22] imple-
mentation.

5.2 Experimental Settings

We test the above six systems on three settings. (1) Using both sessions and
documents from the AOL17 dataset. Here, we use the sessions constructed and
12 https://github.com/wasiahmad/context attentive ir.

https://github.com/wasiahmad/context_attentive_ir
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provided by (author?) [2]. This reflects the original experimental setup and is
therefore a study of reproducibility. (2) Using the sessions from AOL17 (provided
by [2]), but replacing the document titles with those from AOLIA. In the case
where there is not a corresponding document in AOLIA, we leave the title blank
(blanks present in 1.8% of documents across training, dev, and test sets). Since
the same sessions are used as in (1), these results are directly comparable and
isolate the impact of the document text itself. (3) Using sessions from AOLIA. In
this setting, we re-create sessions as described in [2] (using same session elimina-
tion strategy and date ranges in each split), but using the full AOLIA corpus. Due
to the higher coverage of documents, this results in considerably more data and
longer sessions across all three splits. Table 4 presents the characteristics of the
sessions built by each dataset. Both (2) and (3) are replicability studies because
the experimental setting differs from the original paper (a different corpus is
used than the original papers).

Table 4. Session search dataset characteristics provided by AOL17 compared to AOLIA.

Train Dev Test

AOL17 AOLIA % AOL17 AOLIA % AOL17 AOLIA %

# Sessions 219,748 311,877 +42% 34,090 49,522 +45% 29,369 50,944 +73%

# Queries 566,967 1,099,568 +94% 88,021 170,095 +93% 76,159 167,497 +120%

Avg. queries per session 2.58 3.53 +37% 2.58 3.43 +33% 2.59 3.29 +27%

As is commonplace for the task, we use the document title for the document
content. Given that many of the queries are navigational in nature, we also test
a variant of each of the 3 above settings that also appends the tokenised URL
to the title, which can allow models to distinguish between pages that have the
same title content and to match queries that ask for a specific URL.

In all three settings, each of the supervised methods are each trained, tuned,
and tested using the data from the corresponding setting, while the unsupervised
(BM25) and transfer (T5) baselines are simply run on the test set without tuning.
We evaluate the results using MAP, MRR13, which are measures commonly-used
for evaluation of this task. We calculate the measures using the trec eval imple-
mentation provided by ir-measures [19]. Note that this evaluation tool differs
from the original work, which used their own implementation of the measures.
Qu et al. [28] notes that this can result in differences in measures due to tie-
breaking behaviour. We conduct significance tests between all pairs of systems
within each setting (paired t-test, p < 0.05, with Bonferroni correction). We do
not use a tool like repro eval [5] to compare our results with those from the
original papers because the rankings provided from the original papers are not
available.

13 Though this measure has been criticised [8], we report it to compare with past work.
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5.3 Results

Table 5 presents the results for the three settings when using the document title
as its contents. In Setting (1), where we use the same data and code as [2], we are
unable to reproduce the performance reported by Ahmad et al. [2]. However, we
note that the performance for CARS is not far from the results reported by Qu
et al. [28], who report that the discrepancies with the original work are due to
using the trec eval measure implementation. Setting (2), where we use AOLIA
document titles, yields performances closer to those reported by Ahmad et al.
[2], with the CARS model outperforming M-MatchTensor and M-NSRF. Finally,

Table 5. Comparison of personalised session search baselines using various versions of
the datasets. Note that the performances of systems using AOL17 and AOLIA sessions
cannot be directly compared. The top results we measure for each setting are bold (i.e.,
not including results reported by others). Non-significant differences between pairs of
runs within a setting are indicated with superscript letters (paired t-test, p < 0.05,
Bonferroni correction).

Model MAP MRR P@1

(1) Sessions: AOL17, Documents: AOL17

a BM25 (unsupervised) 0.2457 0.2554 0.1454

- from [2] 0.230 0.206 0.206

b T5 (transfer) 0.3553 0.3649 0.2242

c T5 (tuned) 0.4538 0.4640 0.3001

d CARS e0.4280 e0.4390 e0.2787

- from [2] 0.531 0.542 0.391

- from [28] – 0.4538 0.2940

e M-MatchTensor d0.4335 df0.4444 df0.2830

- from [2] 0.505 0.518 0.368

f M-NSRF 0.4410 e0.4521 e0.2904

- from [2] 0.491 0.502 0.391

(2) Sessions: AOL17, Documents: AOLIA

a BM25 (unsupervised) 0.2942 0.3044 0.1914

b T5 (transfer) 0.4228 0.4337 0.3021

c T5 (tuned) 0.5115 0.5223 0.3745

d CARS 0.4998 0.5107 0.3630

e M-MatchTensor f0.4848 f0.4961 f0.3493

f M-NSRF e0.4911 e0.5023 e0.3495

(3) Sessions: AOLIA, Documents: AOLIA

a BM25 (unsupervised) 0.2413 0.2413 0.1462

b T5 (transfer) 0.3620 0.3620 0.2260

c T5 (tuned) 0.4171 0.4171 0.2650

d CARS 0.3784 0.3784 0.2294

e M-MatchTensor 0.3572 0.3572 0.2133

f M-NSRF 0.4009 0.4009 0.2534
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when using both sessions and documents from AOLIA (3), M-NSRF outperforms
the other two session search methods. In short, we validate the findings of Ahmad
et al. [2] that CARS significantly outperforms M-MatchTensor and M-NSRF,
but only when using AOL17 sessions and AOLIA documents; in the other two
settings, we draw the conclusion that the (simpler) M-NSRF model significantly
outperforms the other two approaches.

Across all three settings, however, the adhoc (i.e., session unaware) tuned
T5 model outperforms all other methods. We acknowledge that comparing T5
with CARS, M-MatchTensor, and M-NSRF is not a completely fair comparison;
the T5 model benefits from a much larger model and extensive pre-training,
while CARS, M-MatchTensor, and M-NSRF benefit from access to past queries
and clicks within the session. Techniques for adapting contextualised language
models like T5 for session search have been explored in [28], though in pilot
studies we had difficulty training effective models using the released code. We
also note that although T5 benefits from tuning on the target domain, it can still
perform reasonably well—especially in Setting (3), where the AOLIA documents
and sessions are used.

Table 6. Results when including the tokenised URL in addition to the title. The Δ
column indicates the improvements compared to the results without the URL (Table 5).
Non-significant differences between pairs of runs within a setting are indicated with
superscript letters (paired t-test, p < 0.05, Bonferroni correction).

Model MAP Δ MRR Δ P@1 Δ

(1) Sessions: AOL17, Documents: AOL17

a BM25 (unsupervised) 0.3204 +0.0747 0.3314 +0.0760 0.1991 +0.0537

b T5 (transfer) 0.5023 +0.1470 0.5135 +0.1486 0.3572 +0.1330

c T5 (tuned) 0.7074 +0.2536 0.7190 +0.2550 0.6201 +0.3200

d CARS f0.6530 +0.2250 f0.6643 +0.2253 f0.5493 +0.2706

e M-MatchTensor 0.6756 +0.2421 0.6871 +0.2427 0.5784 +0.2954

f M-NSRF d0.6634 +0.2224 d0.6745 +0.2224 d0.5602 +0.2698

(2) Sessions: AOL17, Documents: AOLIA

a BM25 (unsupervised) 0.3484 +0.0542 0.3591 +0.0547 0.2360 +0.0446

b T5 (transfer) 0.5400 +0.1172 0.5514 +0.1177 0.3959 +0.0938

c T5 (tuned) 0.7071 +0.1956 0.7183 +0.1960 0.6153 +0.2408

d CARS 0.6665 +0.1667 0.6774 +0.1667 e0.5660 +0.2030

e M-MatchTensor f0.6538 +0.1690 f0.6654 +0.1693 df0.5569 +0.2076

f M-NSRF e0.6520 +0.1609 e0.6632 +0.1609 e0.5501 +0.2006

(3) Sessions: AOLIA, Documents: AOLIA

a BM25 (unsupervised) 0.2997 +0.0584 0.2997 +0.0584 0.1790 +0.0328

b T5 (transfer) 0.4260 +0.0640 0.4260 +0.0640 0.2693 +0.0433

c T5 (tuned) 0.5679 +0.1508 0.5679 +0.1508 0.4418 +0.1768

d CARS 0.5360 +0.1576 0.5360 +0.1576 0.4082 +0.1788

e M-MatchTensor 0.5458 +0.1886 0.5458 +0.1886 f0.4297 +0.2164

f M-NSRF 0.5575 +0.1566 0.5575 +0.1566 e0.4336 +0.1802
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Table 6 presents the results in each setting when appending the URL to the
document text. We observe that in every case, this additional feature improves
ranking effectiveness, sometimes by a considerable margin (up to +0.25 in MAP,
+0.26 in MRR, and +0.32 in P@1). These findings underscore the importance
of including this signal when queries are often navigational in nature.

Overall, we find that these experiments provide further evidence that AOLIA
is well-constructed and useful. Between Settings (1) and (2), we see a consistent
boost in ranking effectiveness across several models. Since the only thing we
change between these settings is the document text, it suggests that the texts in
AOLIA are more in line with the preferences of the users. Our experiments using
T5 and URL features suggest that more care should be taken in future session-
based search studies to construct evaluation data that focus on information
needs that are less navigational in nature, as these can be addressed simply
using established adhoc approaches and navigational signals.

6 Limitations

One limitation of using The Internet Archive are actions that the organisation
takes in response to copyright claims made against archived content, which can
effectively remove documents from the archive.14 Over an approximately one-
month window, 51 documents originally present in a prior version of AOLIA
were no longer available on the Internet Archive, presumably due to this policy.
Though this has the potential for knock-on effects downstream, prior work [23]
indicates that it will likely have little effect. Specifically, McCreadie et al. [23]
find that the effect of a far greater proportion of documents being deleted from
the TREC Microblog 2011 corpus had a minimal effect on system evaluation,
hence we expect the same to be true for AOLIA. Furthermore, when compared
with the vast proportion of documents missing in more recent versions of the
AOL corpus (e.g., AOL17 is missing 746,843 documents), the potential for sev-
eral hundred removed documents per year seems preferable. Nevertheless, future
work studying these effects may be warranted.

Although AOLIA improves the coverage and contents of documents that
appear in the log, it does not attempt to fill in other documents that may have
appeared in the corpus. In this way, it does not reflect a realistic sample of doc-
uments that likely existed in the entire AOL corpus at the time; it is more akin
to the MS MARCO v1 passage corpus [3] (which only includes passages that
were presented to annotators) than to corpora like ClueWeb (which includes
documents scraped using typical web crawling techniques). As noted in Sect. 2,
available web crawls would provide a less accurate picture of the documents as
they appeared to the AOL users. Therefore, despite this limitation, we believe
AOLIA is still valuable in many practical experimental settings.

14 See their official copyright policy here: https://archive.org/about/terms.php.

https://archive.org/about/terms.php
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7 Conclusions

In this work, we studied problems surrounding reproducibility of the AOL Query
Log’s corpus. We started by carefully constructing a new version of the corpus
that better reflects the documents as they appeared to the users at the time of
the log. We found that our approach increases the coverage of documents in the
log considerably, when compared to a version that scraped documents eleven
years after the log. We further found that the contents of documents are prone
to considerable change over time, with the majority of document titles having
very low token overlap between versions. When reproducing prior results for
session search, we find that our new corpus improves the effectiveness across a
variety of models (likely attributable to more realistic documents), and brings
benchmarks based off the AOL Query Log more in line with adhoc ranking
methods. We made access to our new version of the AOL corpus easily available
to assist in future reproducibility efforts.
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Abstract. Recommendation algorithms are susceptible to popularity
bias: a tendency to recommend popular items even when they fail to
meet user needs. A related issue is that the recommendation quality
can vary by demographic groups. Marginalized groups or groups that
are under-represented in the training data may receive less relevant rec-
ommendations from these algorithms compared to others. In a recent
study, Ekstrand et al. [15] investigate how recommender performance
varies according to popularity and demographics, and find statistically
significant differences in recommendation utility between binary genders
on two datasets, and significant effects based on age on one dataset. Here
we reproduce those results and extend them with additional analyses. We
find statistically significant differences in recommender performance by
both age and gender. We observe that recommendation utility steadily
degrades for older users, and is lower for women than men. We also
find that the utility is higher for users from countries with more repre-
sentation in the dataset. In addition, we find that total usage and the
popularity of consumed content are strong predictors of recommender
performance and also vary significantly across demographic groups.

Keywords: Algorithmic fairness · Recommender Systems ·
Reproducibility study

1 Introduction

Recommendation systems and search tools increasingly mediate our access to
information online, including news, entertainment, academic resources, and social
connections. When evaluating the quality of theses results, it is common to report
the mean performance over all users. Majority groups therefore tend to dominate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13185, pp. 641–654, 2022.
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overall statistics when measuring the utility of search and recommendation tools,
but utility may also vary across individuals and demographic groups. Smaller
demographic groups, whose needs differ from those of the largest groups, may
not be well served by these algorithms that are optimized for mean performance
across all users. If search and recommendation are unfair, in that the utility
of search results and recommendations are systematically lower for some demo-
graphic groups, members of those groups may be hindered in their decision-making
abilities, access to relevant information, and access to opportunities.

While typical methods of evaluating the effectiveness of search tools and
recommender systems do not consider the disparate impact across demographic
groups, several recent papers support the concern that these differences in utility
do exist. Mehrotra et al. [32] investigate how the needs of different subgroups of
the population are satisfied in the context of search. In particular, they study
the impact on search quality by gender and age and find that both query distri-
bution and result quality vary across these groups. Ekstrand et al. [15] perform
a similar study in the context of recommender systems, which they investigate
through offline top-n evaluation. They investigate whether different demographic
groups experience varying utility from recommender systems, and find statisti-
cally significant differences in utility across age and gender groups.

In our work, we reproduce the findings by Ekstrand et al., and extend the
analysis to incorporate additional user attributes, such as the user’s country,
usage, and the popularity of the content they consume. Like them, we find sta-
tistically significant differences in recommender utility by age and gender. We
further investigate this effect by employing different binning strategies and met-
rics, and find that, on one dataset, when users are binned by age to achieve
roughly equal numbers of users per bin, performance steadily degrades for older
users. We also observe recommendation utility on average is higher for men than
for women. In addition, we find the utility is higher for users from countries with
more representation in the dataset. To understand how different demographic
attributes impact recommendation quality relative to each other, we train an
Explainable Boosting Machine (EBM) with user statistics and demographics
as features, and recommender performance as the target variable. Our results
indicate usage and popularity of consumed content are strong predictors of rec-
ommender performance. Both usage and content popularity vary significantly
across groups and may provide a partial explanation for the observed differ-
ences in recommender utility, though low utility could also partially explain low
usage. In summary, this work studies the following research questions in context
of recommender systems:

RQ1 Does utility vary by demographic group?
RQ2 Does utility vary by usage and content popularity?
RQ3 Can usage and popularity explain demographic differences?

2 Related Work

Recommender systems predict future user-item interactions based on past user-
item interactions [36]. Past interactions are often subject to biases—such as
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selection bias [31], conformity bias [26,30], exposure bias [28], and position
bias [10,22,24]—and the collected data may reflect societal biases towards his-
torically marginalized groups [25,40]. Recommendation algorithms trained on
these datasets may further amplify these biases [39,43] resulting in homogene-
ity of recommendations and reduced utility to the user [8,20]. Recommender
systems often demonstrate popularity bias [2,3] where popular items are rec-
ommended more frequently than warranted by their popularity, and give lower
quality recommendations to users with atypical tastes [4,17,18]. These biases in
recommendation raise fairness concerns for all stake-holders [1,5,35]. For content
producers, unfairness may involve disparate exposure over items of comparable
relevance [12,38]. For consumers of these systems, unfairness may manifest in the
form of different recommendation quality across demographic groups [15]. In this
work, our focus is on consumer-side fairness, building on prior work by Ekstrand
et al. [15].

The fairness concerns in recommendation tasks are not just theoretical ques-
tions; they often result in real-world harms. For example, women may see
fewer recommendations for high-paying jobs and career coaching services com-
pared to men [11,27]. In the context of social networks, previous work [25,40]
finds that friend recommender systems can reinforce historical biases by under-
recommending minorities. Unfairness observed on microlending platforms can
contribute to certain groups receiving systemically smaller loans, or higher inter-
est rates [29]. In ride-hailing platforms, bias can lead to producer-side starvation
and loss of income for drivers [41,42]. Similarly, Ekstrand and Kluver [14] find
that recommender systems for books disproportionately favor male authors. The
cost to publishers due to under-exposure of their content can be further aggra-
vated by superstar economics, common in music and other recommendation sce-
narios [7,16,33,37]. For an overview of fairness and bias in recommender systems,
we point the reader to a recent survey by Chen et al. [9], Ekstrand et al. [13].

3 Demographics and Popularity

As in the original work, we focus on the age and gender attributes of users in
the data set, but also introduce new important variables for this study. Like
Ekstrand et al., we begin our analysis with age and binary gender. For age, in
addition to their bucketing scheme, which had unequal age ranges and numbers
of users per bucket, we use two additional schemes, such that each age bucket:
(i) is equal in age range, and (ii) includes a roughly equal number of users. This
analysis with the age attribute is only possible with Last.FM (LFM360K) [6]
data, since MovieLens (ML1M) [19] users can only select the age bracket they
belong to, as opposed to specifying their exact age in years. This prevents the
ability to manipulate age buckets for ML1M. We also look at how performance
varies by country. We bucket countries by the number of users in the dataset,
and by the country’s gross domestic product (GDP)1, a proxy for socioeconomic
status and cultural hegemony.
1 https://data.worldbank.org/indicator/NY.GDP.PCAP.CD.

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
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Recommender systems learn from a user’s past interactions with items in the
collection. Users who have interacted more with the recommender system are
likely to receive more relevant recommendations. To analyze how usage influences
recommender utility, we bucket users by their number of interactions with items
in the collection. We are also interested in the impact of popularity bias. The
system may do a better job of recommending items to users who typically interact
with items that are popular, compared to users with more niche interests. To
investigate how item popularity affects utility, we introduce a novel pop-index
attribute, defined as the largest value of p such that p% of items the user has
interacted with have also received interactions from p% of other users. We take
inspiration from the h-index [21], used to measure scholarly impact. We compare
recommender utility for groups of users bucketed by pop-index.

Our experiment reproduces the same findings of statistically significant dif-
ferences in recommender performance between demographics on two datasets,
LFM360K and ML1M. The original paper finds differences in recommender util-
ity between gender groups on ML1M, and between age groups on LFM360K. In
our experiment, we observe these differences for both age and gender attributes
on both data sets.

4 Method

4.1 Datasets

Similar to Ekstrand et al., we conduct our experiments on Last.FM and MovieLens
data. LFM360K2 represents a music recommendation task, and contains 358, 868
users and 292, 385 artists. For each user-artist pair, the dataset provides the total
number of plays. There are 17, 535, 605 user-artist pairs with at least one play in
the dataset, which implies that the full user-artist matrix is 99.98% sparse. Entries
in the user-artist matrix were collected using “user.getTopArtists()” in the Lastfm
API, so include only the top artists for each user, representing a “playlist” of their
favourite artists. The number of artists listened to by each user varies across users,
with values between one and 166, and a mean of 50. The dataset also contains user
attributes, such as binary3 gender (67% male, 24% female, 9% missing), age (20%
missing), and country (none missing).

Our second dataset ML1M4 represents a movie recommendation task. ML1M
contains 3, 952 movies and 6, 040 users who joined MovieLens in 2000. Each user-
movie pair has an associated 5-point rating assigned by the user. The dataset
contains 1, 000, 209 ratings, corresponding to a 95.81% sparse user-movie matrix.
Each user has rated at least 20 movies. The dataset also includes a binary gender,
age, and occupation for each user. For the ML1M data set, users can only specify
that they belong to a pre-set age bracket, as opposed to specifying exactly how

2 http://ocelma.net/MusicRecommendationDataset/lastfm-360K.html.
3 We treat gender as a binary class due to the available attributes in the dataset. We do

not intend to suggest that gender identities are binary.
4 https://grouplens.org/datasets/movielens/1m/.

http://ocelma.net/MusicRecommendationDataset/lastfm-360K.html
https://grouplens.org/datasets/movielens/1m/
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old they are in years. The choice of age brackets they can choose from are
displayed on the x-axis of Fig. 1g.

4.2 Model

Our study differs from the original work by use of a different collaborative filtering
model; the original paper uses a range of models from the Lenskit recommender
toolkit. In our experiment, we utilize the Alternating Least Squares (ALS) algo-
rithm for Implicit feedback datasets, to investigate whether the same findings are
observed on the same data sets but with another popular collaborative filtering
model. As a result, what we reproduce is the statistically significant differences in
recommender utility, rather than the exact scores. We therefore consider this to
be a reproducibility paper, as we enact a different experimental setup to the orig-
inal work. We use an ALS model for implicit feedback data [23], as implemented
in the Implicit5 code repository. We use the default hyperparameters as used by
Implicit, by setting factors to 50 and the regularization constant to 0.01. We train
the model for 30 iterations in all experiments. The Implicit code performs some
data cleanup - as described here6- to deal with malformed entries in the data files.
All statistics reported in Sect. 5 are computed after this cleanup.

4.3 Experiment Protocol

We conduct our experiments under a five-fold cross-validation setting. For
LFM360K, each test partition contains 5, 000 randomly sampled users. For
ML1M we partition the whole set of 6, 040 users into five splits containing 1, 208
users, for each iteration of cross-validation. For both datasets, we hold out 20%
of the items each user has interacted with to use as test data. All other users and
the rest of the test users’ items are used for model training in each iteration. To
avoid the cold-start problem, we remove users who listened to 40 or fewer artists
in the LFM360K dataset–roughly 10% of users. The ML1M dataset only includes
users who have rated over 20 or more movies, so none are removed. For eval-
uation, we generate 1, 000 recommendations per user, and measure the results
using NDCG (normalized discounted cumulative gain), MRR (mean reciprocal
rank), and RBP (rank-biased precision) metrics. To verify if differences in util-
ity are significant across demographics, we perform Kruskall-Wallis significance
tests on mean NDCG values between the demographic groups. For attributes
which contain an N/A group, where the information on this attribute is not
provided by the user, the N/A group is omitted from Kruskall-Wallis testing.
This ensures we are only comparing groups of users who provided information
on this attribute. We also run Bonferroni correction for multiple testing.

5 https://github.com/benfred/implicit.
6 https://github.com/benfred/bens-blog-code/blob/master/distance-metrics/

musicdata.py#L39.

https://github.com/benfred/implicit
https://github.com/benfred/bens-blog-code/blob/master/distance-metrics/musicdata.py#L39
https://github.com/benfred/bens-blog-code/blob/master/distance-metrics/musicdata.py#L39
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Fig. 1. Comparison of binning strategies, metrics, and datasets on recommender utility
by demographic variables. Red plots represent the LFM360K dataset and grey represent
ML1M. For age, we consider the original bucketing scheme from Ekstrand et al. (a and
g), and buckets by equal range (b) and equal number of users (c). (d) and (h) represent
gender for LFM360K and ML1M, respectively. (e) and (f) represent country ordered by
number of users and by GDP for LFM360K. P-values from Kruskal-Wallis significance
tests on NDCG are reported above each column. (Color figure online)

To understand the relative impact of user attributes on system performance,
we train an EBM model, as implemented in the InterpretML framework [34],
to predict the mean NDCG for each user as a dependent variable. We represent
each user by a combination of the following features: (i) Age, (ii) Gender, (iii)
Country, ordered by prevalence in the dataset and bucketed (LFM360K only),
(iv) Country, ordered by GDP and bucketed (LFM360K only), (v) Usage (i.e.,
total number of listens for LFM360K and total number of movies rated for
ML1M), (vi) Pop-index, and finally (vii) The last digit of the user ID. The last
digit of the user ID serves as a control feature which should have no effect on
performance on either dataset. We run the EBM model once individually for
each feature group, and once with all features included for cross feature-group
comparison.

5 Results

Using the datasets and methods described above, we reproduce the main results
from Ekstrand et al., and inquire in more detail how the quality of recommen-
dation varies by age, gender, and country, using varied binning strategies and
metrics. In addition, we study the impact of usage and item popularity on utility,
and how they interplay with the other demographic variables.
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RQ1 Does utility vary by demographic group?

Figure 1 shows the distribution of users, recommender utility (mean NDCG),
and the EBM scores corresponding to different demographic variables. Figure 1a–
1f corresponds to the LFM360K dataset (in red). Column (a) divides users into
age groups according to the age range buckets Ekstrand et al. used, replicating
their results. Column (b) divides users into age buckets of uniform range (15
years). Column (c) organizes users into age buckets such that the number of
users in each bucket is comparable. Figure 1g and 1h presents the results for
the ML1M dataset (in grey), where the age buckets again correspond to those
used in Ekstrand et al., replicating their results. For each column, we run the
Kruskall-Wallis significance test and on all metrics. P-values for mean NDCG
are reported above each column.

5.1 Impact on Age

Ekstrand et al. find significant differences in recommender utility across different
user age brackets according to the Kruskal-Wallis significance test. Our analysis
confirms these findings on both datasets, as we also report significant differences
based on Kruskal-Wallis significance test (p < 0.01) across the same age brackets
(Fig. 1a and 1g). We also find significant differences when we try alternative
binning strategies on LFM360K, corresponding to bins with equal age range
(Fig. 1b) and bins with equal number of users (Fig. 1c). While we only report
p-values corresponding to the NDCG metric for recommendation utility, we have
verified the differences are also statistically significant for MRR and RBP, except
for MRR for ML1M.

The first row shows on both datasets that the age distribution is skewed
towards young adults, more so for LFM360K than ML1M. Because the age buck-
ets were irregular, we show the results with buckets of uniform range (Fig. 1b).
We also posit that a skewed distribution of users across age buckets may make
it difficult to detect differences in utility across ages, because some age buck-
ets contain very few users. Therefore, we additionally try buckets containing
approximately equal numbers of users (Fig. 1c). When the number of users in
each bucket are comparable, we find a gradual downward trend in recommender
utility, as age increases. This effect was not visible in Ekstrand et al. We also
observe a similar downward trend on ML1M as seen in Fig. 1g. This trend is
further confirmed by the EBM scores in Figs. 1c and 1g where younger ages
correspond to higher EBM scores when the number of users in each bucket are
approximately equal.

5.2 Impact on Gender

Both LFM360K (Fig. 1d) and ML1M (Fig. 1h) datasets contain many more male
than female users. As in Ekstrand et al., we observe statistically significant
differences in utility by gender based on Kruskal-Wallis significance test (p <
0.01), with better recommendation utility for male than female users. This is
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observed in both datasets, except for MRR and RBP for LFM360K, and MRR for
ML1M. Given the unbalanced user distribution across genders in these datasets,
this can either be the result of a popularity bias, or a demographic bias. We
revisit this question later in this section in the context of RQ3.

5.3 Impact on Country

An additional demographic variable available in the LFM360K dataset, but not
in ML1M, is users’ country of residence. Ekstrand et al. did not analyze whether
there is evidence of recommender utility differences by country, but we perform
this analysis here. We group the countries in two ways. First, according to its
representation in the dataset—i.e., based on the number of users from that
country, into low, medium, and high buckets—and second, by GDP, again into
low, medium, and high buckets. Figures 1e and 1f show the results corresponding
to the two analyses. Low GDP is used here as a proxy for social marginalization.

We find statistically significant differences by country on both measures,
except for MRR and RBP for GDP. The model has higher recommender utility
for users from countries with more representation in the dataset. The same trend
is not observed, however, when countries are ordered by GDP.

As expected, there are no statistically significant differences found on any
metric between users grouped by the last digit of their user ID, the control
feature, across both data sets.

RQ2 Does utility vary by usage and content popularity?

It is not obvious when to attribute utility differences across groups of users
to popularity bias, rather than bias specifically affecting demographic groups,
because marginalized groups are often also less represented in training datasets.
To explore this issue, we first investigate how recommender utility is affected by
two measures of popularity: usage and pop-index. For a given user, high usage
implies more representation in the data, while a higher pop-index corresponds
to affinity towards items that are popular with other users in the dataset. In
Fig. 2 we compare both these measures on the LFM360K and ML1M datasets.
For both datasets there is a trend toward greater NDCG as usage increases. The
EBM analysis shows the same trend, where low usage corresponds to a negative
effect on the EBM score, and high usage corresponds to a positive effect. We
also investigate popularity in the sense of how popular items preferred by a user
are among the user population as a whole. Our hypothesis is that users whose
playlists contain more popular items will likely have greater recommendation
utility. On ML1M (Fig. 2d), we observe a trend which supports our hypothesis.
However, on LFM360K (Fig. 2b), we observe a U-shaped trend, with higher
utility associated with both groups of users with maintstream and unique tastes.
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Fig. 2. Recommendation utility by usage and content popularity. Red plots represent
the LFM360K dataset, grey plots represent ML1M. p-values from Kruskal-Wallis sig-
nificance tests on NDCG are reported above each column. (Color figure online)

We suspect differences in observations on the two datasets may be partially
explained by the semantics of user interactions in the two cases. In LFM360K, the
user interacts with an artist by listening to them, and they can listen to the same
artist multiple times. So, for users with more distinctive tastes, the recommender
algorithm may still achieve reasonable performance by recommending items the
user interacted with before. In contrast, in ML1M the user interacts with the
item by providing a rating and therefore the recommender must suggest new
items the user has not interacted with before, which is a more difficult challenge,
specifically when the user has a distinctive taste.

RQ3 Can usage and popularity explain demographic differences?

One of our goals is to better understand the relative importance of different
demographic and popularity features to explain the differences in mean rec-
ommender utility amongst users. Towards that goal, we train an EBM model to
predict mean recommender utility based on these user attributes. Figure 3 shows
that on both datasets (LFM360K and ML1M) the usage features emerge as the
most predictive, followed by pop-index. Among the demographic attributes, some
of the age-related features are ranked highest on both datasets. On LFM360K,
age is followed by country (ordered by number of users) and gender as the next
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Fig. 3. Ranked features and their scores from the EBM analysis. In (a) and (c) equal
numbers of users are sampled for each factor. In (b) and (d) the full database is used.

most predictive user attributes. In the absence of country information, on the
ML1M dataset we observe gender to be high in the feature ranking after age. The
high feature importance for usage and pop-index provides evidence than some
of the demographic differences may be explained by representation in the data.
This is not to argue that the recommender system under study is fair to differ-
ent demographics of users. Disparity of utility across demographics may directly
influence user retention [15] and usage. This creates a vicious cycle where a small
difference in utility across user groups may be further amplified by subsequent
disparity in system adoption and usage across demographics, leading to even big-
ger disparities in utility. Table 1 shows how usage and pop-index are distributed
across demographic groups, further demonstrating how they may correlate with
historical marginalization.
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Table 1. Percentage of users in different usage and pop-index buckets for each demo-
graphic groups in LFM360K. For younger users and men a higher proportion of the
population correspond to higher usage buckets. The trend for pop-index is less clear.

Age (bucketed by equal number of users) Gender

1–18 19–20 21–22 23–24 25–27 28–33 34+ N/A m f N/A

Usage

1 11% 8% 9% 11% 12% 15% 24% 21% 13% 16% 20%

2 13% 11% 12% 13% 13% 17% 17% 17% 14% 15% 15%

3 14% 15% 13% 13% 15% 15% 15% 14% 14% 16% 15%

4 16% 15% 15% 14% 14% 14% 13% 14% 14% 15% 13%

5 15% 16% 15% 16% 16% 14% 11% 13% 14% 14% 13%

6 15% 17% 18% 17% 14% 13% 11% 11% 15% 13% 12%

7 17% 18% 18% 16% 15% 12% 9% 10% 16% 11% 11%

Pop-index

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

2 0% 0% 0% 0% 0% 0% 1% 1% 0% 0% 0%

3 3% 3% 3% 4% 4% 5% 8% 6% 5% 4% 5%

4 2% 2% 3% 3% 3% 3% 5% 4% 4% 2% 4%

5 7% 9% 9% 10% 11% 12% 15% 11% 11% 8% 11%

6 15% 15% 14% 16% 14% 15% 15% 17% 15% 14% 17%

7 10% 10% 10% 10% 11% 10% 12% 11% 11% 10% 11%

8 23% 23% 23% 23% 24% 22% 19% 20% 21% 25% 21%

9 14% 13% 12% 12% 11% 10% 9% 11% 11% 13% 12%

10 14% 12% 13% 12% 12% 12% 10% 10% 12% 13% 8%

11 7% 8% 7% 6% 6% 6% 4% 5% 6% 7% 6%

12 2% 3% 2% 2% 2% 2% 1% 2% 2% 2% 2%

13+ 2% 2% 2% 2% 1% 2% 1% 1% 2% 2% 1%

6 Discussion and Conclusion

We confirmed that recommender systems are prone to unfairness across the
demographic attributes available in the datasets used here. To explore this ques-
tion more thoroughly, one would need access to more detailed demographic data,
and the ability to observe temporal dynamics of how recommendations affect
usage and usage affects recommendations. In order to answer questions like what
caused the U-shaped pattern we found in recommender utility by usage, we would
need the ability to intervene on recommendations in real time.

Mehrotra et al. [32] point out that users for whom a search engine is least
satisfactory can paradoxically end up having the highest measured utility. They
found when utility is bad enough to make a user stop using the service for
everyday needs, they still use the search engine for very easy queries that they
assume even a poor search engine could get right. Such searches end up being
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successful, resulting in artificially high utility scores. User attrition is an issue
we cannot track given the datasets used here. It may be that users who have
the highest usage are a self-selecting group for whom recommenders happen to
work well.

For both datasets there is a trend toward greater utility as usage increases.
This is unsurprising, given that users with higher usage will provide more labels,
with which the recommender can build a more accurate model of user prefer-
ences. One anomalous effect we observed is in the LastFM dataset; users with
least usage have higher utility recommendations than users with slightly more
usage. This could be evidence of the same effect as observed by Mehrotra et al.
[32]. If LastFM gives poor recommendations for a given user, that user might
stop using it for everyday music streaming, but still use it when they are look-
ing for something very mainstream. Another possibility is since LastFM users
input a few artists they like when setting up their accounts, early listens will be
dominated by artists which the user identified as being among their favourites,
rather than recommendations provided by the model. Utility may therefore be
artificially high during early use.

The social harms that can result from unfair recommendation go well beyond
some people choosing not to use a tool that others find fun and convenient. Rec-
ommendation algorithms are increasingly being used to make major life deci-
sions, like mortgage lending, job searching, connecting with community, and
basic access to information. The body of work we are adding to here demon-
strates that fair recommendation is a problem requiring serious attention.
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T.A., Turk, Ž (eds.) WEBIST 2015. LNBIP, vol. 246, pp. 191–210. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30996-5 10

19. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2016)

20. Hashimoto, T., Srivastava, M., Namkoong, H., Liang, P.: Fairness without demo-
graphics in repeated loss minimization. In: Proceedings of the ICML, pp. 1929–
1938. PMLR (2018)

21. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc.
Natl. Acad. Sci. 102(46), 16569–16572 (2005)

22. Hofmann, K., Mitra, B., Radlinski, F., Shokouhi, M.: An eye-tracking study of
user interactions with query auto completion. In: Proceedings of the CIKM, pp.
549–558. ACM (2014)

23. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp.
263–272. IEEE (2008)

24. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., Gay, G.: Eval-
uating the accuracy of implicit feedback from clicks and query reformulations in
web search. ACM TOIS 25(2), 7-es (2007)
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Abstract. While much recent work has demonstrated that hard neg-
ative mining can be used to train better bi-encoder models, few have
considered it in the context of cross-encoders, which are key ingredients
in modern retrieval pipelines due to their high effectiveness. One note-
worthy exception comes from Gao et al. [13], who propose to train cross-
encoders by adapting the well-known NCE loss and augmenting it with
a “localized” selection of hard negative examples from the first-stage
retriever, which they call the Localized Contrastive Estimation (LCE)
loss. In this work, we present a replication study of LCE on a different
task and combine it with several other “tricks” (e.g., replacing BERTBase

with ELECTRABase and replacing BM25 with TCT-ColBERTv2) to
substantially improve ranking effectiveness. We attempt to more system-
atically explore certain parts of the hyperparameter space, including the
choice of losses and the group size in the LCE loss. While our findings, for
the most part, align with those from the original paper, we observe that
for MS MARCO passage, orienting the retriever used for hard negative
mining with the first-stage retriever used for inference is not as critical for
improving effectiveness across all settings. Our code and documentation
can be found in: https://github.com/castorini/replicate-lce.

1 Introduction

After the introduction of BERT [6] in October 2018, a simple retrieve-then-
rerank approach quickly emerged in January 2019 as an effective method for
applying pretrained transformers to passage retrieval [34]. This model, called
monoBERT, represents the first instance of what has later become known as
cross-encoders for retrieval, a class of reranking models that includes MaxP [4],
CEDR [33], Birch [1], PARADE [25], and many others.
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Innovations in cross-encoder models have of late stagnated in comparison
to rapid developments in retrieval models based on learned dense represen-
tations [21,46] as well as learned sparse representations [5,8,12]. Part of this
excitement stems from the ability of these models to directly perform ranking,
as opposed to reranking based on some first-stage retrieval method to generate a
list of candidates. However, reranking remains important because the output of
even the best dense, sparse, or hybrid retrieval models can be further improved
via reranking—and state-of-the-art effectiveness on popular benchmark datasets
is achieved only by combining effective first-stage retrieval and reranking in a
multi-stage ranking architecture.

Thus, although the attention of most researchers today lies beyond cross-
encoders, there remain opportunities for further innovation with this class of
models. In this paper, we start with the basic monoBERT model, dating back
to January 2019 (which might as well be from the stone age in “neural network
time”), and through a series of replication and generalization experiments, are
able to improve its effectiveness by nearly 7 points absolute (20% relative) on
the popular MS MARCO passage ranking task. We are, in fact, quite surprised
that there is still this much effectiveness that could be squeezed out of such a
mature model. How did we accomplish this? We describe below:

1. Building on the observations of Zhang et al. [53], we switched the backbone
of the cross-encoder to ELECTRABase.

2. We replicated and then generalized the findings of Gao et al. [13], confirming
the effectiveness of the LCE loss compared to hinge and cross entropy (CE)
loss on MS MARCO passage ranking [2], a task not evaluated in the original
paper.

3. Leveraging advances in first-stage dense retrieval methods, we used TCT-
ColBERTv2 [29] to generate both the first-stage base retrieval runs for rerank-
ing and hard negatives for training our cross-encoders.

4. While Gao et al. [13] evaluated various LCE settings with up to 7 negative
passages for each positive example in the batch, we extended this to 31 neg-
atives and continued to see improvements in effectiveness.

5. Further generalizing, we noted a surprising result in our replication on MS
MARCO passage ranking: it does not seem as critical as described in the
original paper to train with negatives that are drawn from the first-stage
retriever used for inference. That is, training with BM25 negatives or TCT-
ColBERTv2 negatives both result in rerankers that perform comparably when
a fixed first-stage retriever is used for reranking, for certain LCE settings.
However, for inference, switching a BM25 first-stage retriever out for a TCT-
ColBERTv2 first-stage retriever still brings about a significant effectiveness
boost.

With the bag of tricks described above, we show that monoELECTRABase can
achieve an MRR@10 of 0.414 on the development set of the MS MARCO passage
ranking task and an MRR@10 of 0.404 on the (blind) evaluation set. Note that
this is accomplished with a standard “base” model size and without the use of any
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ensembles. While admittedly, none of these “tricks” in isolation are particularly
noteworthy, taken together, they show that there is still room for significant
improvements in a basic cross-encoder design that dates from January 2019.

2 Related Work

2.1 Cross-Encoders

As discussed, the first cross-encoder for reranking, monoBERT [34], quickly
emerged after the introduction of BERT [6] itself. It followed the approach rec-
ommended by the BERT authors to handle (query, passage) input pairs, and
demonstrated a huge leap in terms of effectiveness on the MS MARCO pas-
sage ranking [2] and TREC CAR [7] datasets. While vanilla monoBERT showed
great improvement on the passage retrieval task, it was not designed to handle
long input sequences as required for document retrieval. A lot of the follow-up
BERT-based cross-encoder work [1,4,25,33] attempted to address this issue by
either performing multiple inferences on different segments of the document or
making additional architectural changes on top of BERT to better handle the
longer document text.

In addition to cross-encoders relying on BERT-based pretrained Language
Models (pLMs), another genre of cross-encoders takes advantage of the sequence-
to-sequence pLM paradigm. Examples of these are monoT5 [35] and duoT5 [40],
which use T5 [42], an extensively pretrained encoder-decoder language model.
As we mostly focus on BERT-based cross-encoders in this work, we will skip the
details and refer interested readers to the original papers.

There exists a strong need for better cross-encoders, which demonstrate state-
of-the-art effectiveness in information retrieval tasks in various domains, even in
a zero-shot setting [38,39,43,52]. They also form a vital backbone in a wide
range of natural language processing tasks, including fact verification [20,37]
and question answering [48].

2.2 Bi-Encoders

The success of DPR [21] and ANCE [46] revitalized bi-encoders in the new era
of BERT. The goal of a bi-encoder is to learn a transformer-based mapping from
queries and documents into dense fixed-width vectors wherein the inner product
between the query vector and the relevant document vector is maximized. A lot
of work has gone into understanding and better learning such a mapping [9,10,
17,29]. A more thorough survey can be found in Lin et al. [27].

Lin et al. [28] train a bi-encoder by using on-the-fly knowledge distillation
from a ColBERT [22] teacher model that computes soft-labels for in-batch neg-
atives. This is captured by using the KL-divergence between the score distribu-
tions of the student and teacher models for all examples in the batch. They show
that using this loss in addition to the standard cross entropy loss over relevance
labels results in better scores.
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In their follow-up work [29], a “HN+” hard-negative mining strategy is incor-
porated to further improve their bi-encoder, dubbed “TCT-ColBERTv2”. Here,
a trained TCT-ColBERT is used to first mine hard negatives to replace the
BM25-based negatives. Then, the ColBERT teacher is fine-tuned using these
hard negatives and the improved teacher is distilled into the bi-encoder to give
TCT-ColBERTv2.

2.3 Hard Negatives

Prior work shows that the selection of negative examples is critical in training
bi-encoders. Karpukhin et al. [21] compare the training effectiveness of random
negatives, BM25 negatives, and in-batch negatives, and find that a mixture of
BM25 and in-batch negatives yields optimal results. Xiong et al. [46] prove theo-
retically that local negatives are sub-optimal for dense retrieval learning. Then,
they propose to prepare global negatives using the current dense retrieval model
in parallel with training, which requires periodically re-indexing the corpus and
retrieval. Qu et al. [41] also propose to prepare the hard negatives using the
current dense retrieval model, but after the training is finished instead of on the
fly. However, the paper reports that the hard negatives prepared in this way
alone could degrade training and are only effective after being filtered accord-
ing to an independently trained cross-encoder model. Zhan et al. [51] find that
such instability caused by hard negatives could be alleviated by adding random
negatives. Additionally, they periodically re-prepare the hard negatives in the
ANCE [46] manner, but only update the query encoder to save the re-indexing
time. All the above works confirm the importance of hard negatives and show
various degrees of effectiveness.

In addition to the work described above, which focuses on hard negative
training strategies for DPR-like bi-encoder fine-tuning, other works show similar
observations in different methods that aid bi-encoders. Gao et al. [9] find that
hard negatives are still crucial when the model is further pretrained in a way to
enrich the representation of the [CLS] token, which they named Condenser. Its
successor, the coCondenser [10] behaves the same after the model is additionally
pre–fine-tuned on another corpus-aware unsupervised task. Hard negative mining
has also been shown to be important when knowledge distillation is applied on
the bi-encoders [17,29].

In contrast to the plenteous studies of hard negatives aiding bi-encoders,
we only find Gao et al. [13] successfully incorporating hard negatives in cross-
encoder training. To demonstrate the effectiveness of the proposed Localized
Contrastive Estimation (LCE) loss, they show that training cross-encoders incor-
porated with the loss and harder negatives1 can significantly improve reranking
effectiveness, especially when training instances follow the same distribution as
the results returned by the first-stage retrievers. Details will be introduced in
Sect. 5.2.

1 Here the “easy” negatives refer to the negatives sampled from BM25 results and the
“hard” negatives refer to the ones sampled from HDCT [5] results.
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2.4 Pretrained Transformers for Cross-Encoders

Various pretrained models have been proposed after BERT [6]. Most of the
works aim at improving the general language representation ability or lowering
the pretraining cost [3,24,30]. A few pretrained language models under this line
have been compared in Zhang et al. [53] in ad hoc retrieval tasks.

Another line of work focuses on improving pLMs with IR-specific pretraining
objectives. PROP [32] and B-PROP [31] propose to add a representative words
prediction (ROP) task along with MLM in the pretraining stage. To prepare
the training data for ROP, a document language model is used to sample a
list of “pseudo queries” and their likelihoods. Then the queries are paired as
(q+, q−) such that q+ has a higher likelihood than q−, and the BERT model is
further pretrained to score the q+ higher than the q−. PROP uses a unigram
language model as the document language model while its successor B-PROP
uses BERT. Both are tested on a downstream retrieval task by fine-tuning a
cross-encoder initialized with the ROP-pretrained BERT instead of BERT with
standard pretraining. While Gao et al. [9] also propose an IR-specific pretraining
task, it focuses on enriching LMs for the bi-encoder setting.

3 Loss Functions

In this section, we review common loss functions (cross entropy and hinge loss)
used in cross-encoder fine-tuning and then describe the Localized Contrastive
Estimation (LCE) loss function proposed by Gao et al. [13].

3.1 Cross Entropy and Hinge Loss

We begin with a quick review of how cross-encoders typically compute the rele-
vance score given a query q and a document d, borrowing the formulation from
Lin et al. [27]:

zq,d = T[CLS]W + b (1)

where zq,d is the relevance score of the (query, document) pair, T[CLS] stands
for the representation of the [CLS] token in the final layer, and W and b are the
weight and the bias in the final classification layer. The dimensions of W and b
might change according to the loss function—when the model is fine-tuned with
the cross entropy loss, W ∈ R

D×2 and b ∈ R
2, whereas when it is fine-tuned

with the hinge or the LCE loss, W ∈ R
D and b ∈ R. That is, the output has two

dimensions with cross entropy loss, one each for the relevant and non-relevant
classes, while with the other two losses, the output has only one dimension, for
the relevant class only.

Early cross-encoders fine-tune BERT under a classification task, using the
cross entropy loss, as recommended in BERT:

sq,d = softmax(zq,d)1 (2)

LCE = −
∑

log(sq,d+) −
∑

log(1 − sq,d−) (3)
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where softmax(·)1 corresponds to the softmax score of the relevant label which
by convention is indexed by 1, d+ indicates a relevant document and d− indicates
a non-relevant document. We will use this notation from now on.

Later, MacAvaney et al. [33] fine-tune cross-encoders with the hinge loss
(sometimes called max margin loss), which is more commonly used in pre-BERT
neural reranker training [14,19,45]:

Lhinge = max(0, 1 − zq,d+ + zq,d−) (4)

In the literature, cross entropy loss and hinge loss represent the two “basic” ways
of training cross-encoders.

3.2 Localized Contrastive Estimation

Gao et al. [13] note that the above cross entropy loss computation considers
only one document per batch per query. While not discussed in the original
paper, hinge loss is similarly limited by not being able to use multiple negatives
per positive unless done in a pairwise independent fashion. They also note it is
important that negative examples be true negatives, especially on datasets like
MS MARCO passage where many relevant passages remain unlabelled for each
query. Gao et al. [13] propose the Localized Contrastive Estimation (LCE) loss
to address these issues:

LLCEq
:= − log

exp(zq,d+)∑
d∈Gq

exp(zq,d)
(5)

LLCE :=
1

|Q|
∑

q∈Q,Gq∼Rm
q

LLCEq
(6)

where Rm
q is the collection of documents top-ranked by a first-stage retriever for

query q, and Gq refers to a group of documents for query q, which consists of a
relevant document d+ and n− 1 non-relevant documents d− sampled from Rm

q ,
where n is the group size.

The LCE loss combines the Noise Contrastive Estimation (NCE) [15] loss
(used in, for example, Karpukhin et al. [21]) with “localized” selection of nega-
tive examples. The NCE loss scores the positive instance and multiple negative
instances, normalizes all of them into probabilities, passing them through the
softmax function, and encourages the model to score the positive higher than
the negatives. LCE “localizes” this loss by sampling negative training exam-
ples from the top-ranked documents produced by the first-stage retriever. In
combination, this loss should produce a reranker that succeeds at handling the
top-ranked documents specific to a first-stage retriever while also not collaps-
ing to match based on the confounding characteristics in the retriever’s hard
negative samples.
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4 Experimental Setup

In this section, we describe the data and experimental configurations used in
our replication. Note that replication indicates using a different experimental
setup (e.g., implementation, framework, dataset, etc.) to generalize findings from
the original paper, whereas reproduction indicates verifying the original paper’s
findings using the same experimental setup.2

4.1 Data

We use the MS MARCO passage ranking dataset [2] (MS MARCO for later ref-
erence), a large-scale ad hoc retrieval dataset constructed from the Bing search
log. It contains 8.8 million passages and around 800K queries for training, where
most of the queries have a single passage labelled relevant. These do not nec-
essarily represent all true relevant passages, as it is likely that many queries in
the dataset have more than one relevant passage. This setting is often called
“sparse labelling”. On the evaluation side, there is a small development set with
6980 queries and a blind test set with 6837 queries, both of which are similarly
sparsely labelled.

We report MRR@10, the official metric, and Recall@1K (R@1K) on the small
development set for all our experiments. Evaluating on the blind test set requires
the submission of runs to the organizers’ official leaderboard. To avoid probing
the test set across various settings, we chose to submit only the test set run
produced by the most effective system based on development set scores.

Note that the original work [13] uses the MS MARCO document ranking
dataset. Thus, our experiments generalize their findings to cover the MS MARCO
passage ranking dataset and additionally thoroughly explore certain parts in the
hyperparameter space.

First-stage rankings (runs) are generated for MS MARCO’s training, develop-
ment, and test query sets with two retrievers: BM25 and TCT-ColBERTv2 [29].
We use the Anserini IR toolkit [47], which is built on Lucene, to generate the
BM25 runs. The parameters k1 and b are found using grid search over the range
[0.6, 1.2] and [0.5, 0.9], respectively, both with step size 0.1. The tuning is based
on 5 different randomly prepared query subsets, optimizing Recall@1K, following
the reproduction documentation in Anserini.3 We use the Pyserini IR toolkit [26]
to generate the TCT-ColBERTv2 runs following the reproduction documenta-
tion in Pyserini.4 We leverage the model trained with the HN+ setting as it
optimizes the effectiveness of the primary metrics.

2 The terms replication and reproduction are used in the sense articulated by the
ACM Artifact Review and Badging (v1.1) policy; note that the definitions of the
two terms are swapped in Artifact Review and Badging (v1.0).

3 https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-
passage.md.

4 https://github.com/castorini/pyserini/blob/master/docs/experiments-tct colbert-
v2.md.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-badging
https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md
https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md
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We first retrieve the top-200 passages for each query in the training query
set, from which we randomly sample negative examples without replacement
following Gao et al. [13]. The method of creating the training set differs from the
general approach of cross-encoders which instead just relies on the official small
triples training file provided by the organizers.5 However, such an approach is
common in both bi-encoders and cross-encoders when they rely on hard negative
sampling.

We retrieve 1K passages for each query in the development set and test set.
These form the base first-stage retriever runs which are later reranked by the
cross-encoders.

4.2 Training and Inference

Our cross-encoder training and inference experiments are run on Capreo-
lus [49,50], a toolkit for end-to-end neural ad hoc retrieval. We take advantage
of its support for the MS MARCO passage ranking task, the monoBERT cross-
encoder, and the training, reranking, and inference pipeline. We use the provided
hinge and cross entropy loss functions, and incorporate the LCE loss into the
toolkit.

The maximum numbers of tokens for the query and the entire input sequence
(“[CLS] query [SEP] passage [SEP]”) are set to 50 and 256, respectively. For all
experiments, we initialize monoBERT with ELECTRABase, using the checkpoint
released on HuggingFace [44].6 We choose ELECTRABase as the starting point
for fine-tuning as it appears to be the most stable and effective pLM overall
among those considered by Zhang et al. [53].

In all our experiments, we train monoBERT for 300K steps with a batch size
of 16. We use the Adam optimizer [23] with a learning rate of 1e−5, apply linear
warm-up for the first 30K steps, and apply linear decay following warm-up. All
experiments are run on Quadro RTX 8000 GPUs with TensorFlow 2.3.0. We use
mixed-precision training in all the experiments.

5 Results and Discussion

In this section, we first compare the results of the three loss functions (hinge,
cross entropy, and LCE) when using BM25 and TCT-ColBERTv2 first-stage
retrievers. Here, we aim to show that the cross-encoders trained with the LCE
loss outperform those with the other two losses on the MS MARCO passage
ranking task. Then we compare their effectiveness as we vary both the source of
negatives during training and the first-stage retriever during inference. Finally,
we show the effect of the group size to confirm the finding that the effectiveness
of cross-encoders trained with the LCE loss increases with group size, which also
means it increases with more negative samples.

5 https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz.
6 google/electra-base-discriminator.

https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz


Further Improvements in Cross-Encoder Effectiveness for Reranking 663

5.1 Loss Functions

Table 1 reports results with different loss functions and first-stage retrievers used
during training and inference. In the first block, we report the scores of BM25
and TCT-ColBERTv2, which form the two baseline first-stage retrieval runs we
consider for all the Capreolus rerankers.

Table 1. MRR@10 and Recall@1K with different loss functions when using
BM25/TCT-ColBERTv2 as the source of hard negative and first-stage runfile. The
n in the table indicates the group size. For hinge and LCE, each group always contains
a positive example and n − 1 negative examples. For CE, each group only contains
one data point, which could be either a positive or negative example. “–” indicates not
applicable or the score was not reported in the original papers. Superscripts indicate
significantly higher results (p < 0.01 with paired t-tests) after Bonferroni correction,
e.g., a indicates the entry is significantly higher than the results in row (a).

HN+ First Stage Loss n MRR@10 R@1K

Baselines

(a) BM25 – – 0.187 0.857

(b) TCT-ColBERTv2 – – 0.359 0.969

Prior cross-encoder work

(c) monoBERTBase [34] BM25 CE 1 0.347 –

(d) monoBERTBase [36] BM25 CE 1 0.348 –

(e) monoBERTBase [11] BM25 CE 1 0.353 –

(f) monoBERTBase [18] BM25 CE 1 0.376 –

(g) monoBERTBase [34] BM25 CE 1 0.365 –

(h) monoBERTLarge [18] BM25 CE 1 0.366 –

(i) monoBERTLarge [35] BM25 CE 1 0.372 –

(j) monoT5Base [35] BM25 CE 1 0.381 –

Capreolus cross-encoders

(1) monoELECTRABase BM25 CE 1 0.378ab 0.857

(2) monoELECTRABase Hinge 2 0.379ab5

(3) monoELECTRABase LCE 2 0.378ab5

(4) monoELECTRABase LCE 8 0.391ab12356

(5) monoELECTRABase TCT-ColBERTv2 CE 1 0.365a 0.969

(6) monoELECTRABase Hinge 2 0.375ab

(7) monoELECTRABase LCE 2 0.393ab12356

(8) monoELECTRABase LCE 8 0.401ab123456

The second block reports the scores of various comparable cross-encoders
from various groups reported in the literature. We copy over the monoBERT
and monoT5 scores from their original papers, rows (c), (g), and (j), respectively.
We additionally include other monoBERT results reported by different groups
because we observe a large variance of reported scores. This could be due to one
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of many reasons: different BM25 implementations, number of passages reranked,
and monoBERT training hyperparameters, to name a few.

The third block of the table, rows (1–4), shows the scores when our cross-
encoder is trained on BM25-sourced hard negatives and reranks the BM25 run-
file. The fourth block, rows (5–8), shows the scores when the cross-encoder
is trained on TCT-ColBERTv2-sourced hard negatives and reranks the TCT-
ColBERTv2 runfile.

Gao et al. [13] only compare the cross entropy loss to LCE loss with a group
size of 8. We generalize these results by additionally considering a group size of
2 with LCE loss and including hinge loss, which can also be viewed as having
a group size of 2 but has a different loss formulation. As negative examples are
sampled from the same groups of top-ranked passages, both losses benefit from
the “localized” effect and the formulation is the only difference.

The cross entropy loss performs on par with the hinge loss when BM25 is
used as the retriever, row (1) vs. (2). However, when using TCT-ColBERTv2 as
the retriever, the hinge loss demonstrates improved effectiveness over the cross
entropy loss by a slight margin, row (5) vs. (6). We suspect this is due to the
pairwise loss making better use of the harder negative examples provided by
TCT-ColBERTv2.

Another interesting observation is that monoBERT using LCE significantly
outperforms monoBERT using the other two losses when TCT-ColBERTv2
forms the first-stage retriever, even when the group size is 2, which hinge loss
uses too, row (5–7). However, LCE and hinge losses perform comparably when
using BM25 as the retriever, row (2) vs. (3), and fixing the group size at 2. This
indicates that the contrastive loss may itself serve as a better approach to distin-
guish the relevant passage from the negative ones in the ranking task, compared
to the hinge loss. It additionally gains from increasing the group size, rows (3)
and (7) vs. rows (4) and (8); this is more carefully examined in Sect. 5.3.

Table 2. MRR@10 and Recall@1K of all combinations of training hard negatives
retriever and inference first-stage retriever on the development set of the MS MARCO
passage dataset. HN refers to the source of Hard Negatives, i.e., the training retriever.
All table entries use LCE with group size 8 (one positive sample with seven negative
samples). Superscripts indicate significantly higher results (p < 0.01 with paired t-tests)
after Bonferroni correction.

HN First-stage MRR@10 R@1K

(a) BM25 BM25 0.391 0.8573

(b) TCT-ColBERTv2 0.389

(c) BM25 TCT-ColBERTv2 0.402ab 0.9690

(d) TCT-ColBERTv2 0.401ab
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5.2 In-distributional Training Example and Hard Negative

Table 2 presents the effectiveness of the reranker when we vary the retriever for
preparing training negatives and generating the development runfile. Rows (a)
and (d) here correspond to rows (4) and (8) in Table 1, respectively. To obtain
row (b), we use the checkpoint of row (d) to rerank the BM25 runfile. Similarly,
we use the checkpoint of row (a) to rerank the TCT-ColBERTv2 runfile for
row (c).

It is clear that swapping out the BM25 first-stage retriever with the dense
retriever, TCT-ColBERTv2, results in significant improvement irrespective of
the retriever used to mine hard negatives, rows (a–b) vs. (c–d). This is reasonable
as there is a gap of around 11% in Recall@1K, meaning reranking the runfile
produced by TCT-ColBERTv2 would more likely pull up the relevant passages.

We, however, observe no improvement in aligning the retriever used for hard-
negative mining with that used for first-stage retrieval in evaluation. In our
experiments, changing only the retriever for generating the training data does
not yield significant differences in the score when we preserve the first-stage
retriever to be the same, row (b) vs. (a) and row (c) vs. (d). This does not
agree with the original finding of Gao et al. [13], where they find this alignment
critical to the best effectiveness in the MS MARCO document ranking task.
There are several differences in the experiments that could be responsible for this
disagreement. The first is the dataset itself. Although both MS MARCO passage
and MS MARCO document are from the same ad hoc domain, the document
length may impact training data quality. Other possible causes include the range
from where we sample the hard negatives, the choice of the first-stage retriever,
etc. Based on these results, for the rest of the paper, we use TCT-ColBERTv2
as the first-stage retriever during inference.

Table 3. MRR@10 on the development set of the MS MARCO passage dataset across
the choice of group size and retriever used to mine hard negatives. All entries use TCT-
ColBERTv2 as the first stage, which has a Recall@1K of 0.9690, as seen in Table 1.
Superscripts and subscripts indicate significantly higher results (p < 0.01 with paired
t-tests) after Bonferroni correction. (e.g., (·)a2,4,8

b2
indicates the entry is significantly

higher than the results in row (a) with group sizes 2, 4, and 8, and the result in row
(b) with group size 2.)

HN Group Size

2 4 8 16 32

(a) TCT-ColBERTv2 0.393b2 0.400b2 0.401b2 0.408
a2,4,8
b2,4

0.414
a2,4,8
b2,4,8,16

(b) BM25 0.381 0.397b2 0.402b2 0.403b2 0.407b2,4

5.3 LCE Group Size

We now examine the effect of the group size in the LCE loss, denoted by n,
on model effectiveness. This has been studied in the original paper [13] with
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n ∈ {2, 4, 6, 8}, where additional improvement can always be observed when the
group size is increased. We explore the effect of group size in the same manner
but increase the range to {2, 4, 8, 16, 32}. Additionally, we vary the retriever used
for hard negative mining. We examine the MRR@10 scores across these settings
in Table 3.

As noted by Gao et al. [13], we observe that the primary metric improves as
the group size increases. We do so for both choices of the retriever used for hard
negative mining. We surprisingly find that the metric does not seem to plateau
even when the group size increases to 32 (i.e., with 31 negative samples). We
did not experiment on larger group sizes due to hardware limitations,7 but this
suggests that there could be further improvements with improved hardware.

Table 2 does not note any improvements aligning the hard negative mining
retriever with that used for first-stage retrieval during inference in the case with
group size 8. However, we find that there do exist improvements, especially in
group sizes of 2 and 32. We leave further investigation of this unusual observation
as future work and use the best setting reported for the rest of the paper.

We submitted the test set run, produced from our most effective configura-
tion, to the MS MARCO passage leaderboard.8 Table 4 reports our scores and
the systems with higher scores on the test set (at the time of our work).9 The
table shows that our best results are quite competitive to the current top results,
which use ensembles of multiple cross-encoders, rows (a–c, f), or a multi-stage
reranking pipeline, row (e).10

Table 4. MRR@10 on the official MS MARCO passage leaderboard.

Method Dev Eval

MRR@10 MRR@10

(a) coCondenser [10] 0.443 0.428

(b) C-COIL + RoBERTa [12] 0.443 0.427

(c) RocketQA + ERNIE [41] 0.439 0.426

(d) DR-BERT 0.420 0.419

(e) expando-mono-duo-T5 [40] 0.420 0.408

(f) DeepCT + TF-Ranking Ensemble [16] 0.420 0.408

(g) monoELECTRA 0.414 0.404

7 The experiment involving a group size of 32 requires 4 Quadro RTX 8000 GPUs
(48G memory each) to train with a batch size of 16.

8 https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/
leaderboard.

9 We copy the best results from each group and discard anonymous results.
10 We cannot compare with the DR-BERT system, as we do not find its resources

publicly available online.

https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/leaderboard
https://microsoft.github.io/MSMARCO-Passage-Ranking-Submissions/leaderboard
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6 Conclusion

In this paper, we replicate the LCE loss proposed by Gao et al. [13] on a different
codebase and generalize their findings to the MS MARCO passage dataset. We
confirm the superiority of LCE loss to the cross entropy and hinge loss on the
passage ranking task, with improved effectiveness when using a better first-stage
retrieval method like TCT-ColBERTv2 during inference. However, we argue that
more exploration is necessary to conclude if the alignment between the training
and inference first-stage retriever is essential across group sizes. Finally, we con-
firm that the effectiveness can be further strengthened by increasing the number
of hard negatives in each group.
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Abstract. This work explores the reproducibility of CFGAN. CFGAN
and its family of models (TagRec, MTPR, and CRGAN) learn to gener-
ate personalized and fake-but-realistic rankings of preferences for top-N
recommendations by using previous interactions. This work successfully
replicates the results published in the original paper and discusses the
impact of certain differences between the CFGAN framework and the
model used in the original evaluation. The absence of random noise and
the use of real user profiles as condition vectors leaves the generator prone
to learn a degenerate solution in which the output vector is identical
to the input vector, therefore, behaving essentially as a simple autoen-
coder. The work further expands the experimental analysis comparing
CFGAN against a selection of simple and well-known properly optimized
baselines, observing that CFGAN is not consistently competitive against
them despite its high computational cost. To ensure the reproducibility
of these analyses, this work describes the experimental methodology and
publishes all datasets and source code.
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1 Introduction

In recent years, Generative Adversarial Networks (GANs) have become the state-
of-the-art technique inside the group of generative methods, i.e., methods that
learn how to generate fake data from the real one. Their primary use has been
in the computer vision domain [13,16–18]. They have also been used in Informa-
tion Retrieval [34] and Recommender Systems, the most notable example being
Collaborative Filtering GAN (CFGAN) [4], and the family of models based on
it, such as TagRec [5], CRGAN [35], MTPR [36,37].

This work contributes to the trend of evaluation studies in Machine Learning,
Information Retrieval, and Recommender Systems domains [10,11,21,22,38].
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This work discusses the implications of certain differences between the CFGAN
framework and the model that was used in the experimental evaluation, which
would adversely affect its learning ability, providing a reference for future works.
In particular, the generator is left prone to reach a degenerate solution and
behave as a simple autoencoder, therefore, belonging to the same family of pre-
vious recommendation models such as [28,32]. This discussion is based on the
findings of [23], which highlights the importance of describing not only how a
model works, but also what works and why it works, as well as how experimental
inquiries that aim to deepen our understanding are valuable research contribu-
tions even when no new algorithm is proposed. Furthermore, this work analyzes
the replicability, reproducibility, and recommendation quality of CFGAN [4] as
well as its numerical stability which is known to be a challenge for GANs [9,25].
The main research questions of this work are:

RQ1: Is CFGAN replicable and numerically stable? i.e., does CFGAN achieve
the claimed results using the same experimental setup as in [4]?

RQ2: What is the impact of the differences between the CFGAN framework and
the model used for the evaluation in [4], and why do they raise theoretical
and methodological concerns regarding the learning ability of the model?

RQ3: Is CFGAN reproducible, achieving the claimed recommendation quality
when compared to properly-tuned baselines? How does CFGAN compare
along other dimensions such as beyond-accuracy and scalability metrics?

2 Collaborative Filtering Generative Adversarial
Networks

GANs have been successfully applied to numerous prediction and classification
tasks. This work addresses a family of generative models originated from GANs
used in Recommender Systems. Briefly, a GAN1 consists of two neural networks
that are trained together in an adversarial setting until they reach convergence.
The first neural network is called the generator, denoted as G, while the second
network is called the discriminator, denoted as D [3,8,13,14]. CFGAN2 is the
most notable GAN recommendation algorithm [5,37]. Its main attribute is that
it generates personalized user or item profiles, mainly by solely using previous
interactions, but is able to learn from sources of information as well [4].

CFGAN Training Process. Figure 1 shows an illustration of the training
process of CFGAN. Every epoch starts by feeding the generator G with ran-
dom noise z and a condition vector c. The generator creates preferences of users
towards items (or vice versa) which are then masked (see Masking). The discrim-
inator D then receives the real profiles, the masked profiles, and the condition.
The discriminator tells the probability that each masked and real profiles come

1 The supplemental material [29] contains the formal formulation of GANs.
2 For a detailed explanation of CFGAN we refer the reader to the reference article [4].
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from the real data. The discriminator is updated based on how well it is able to
correctly distinguish fake data from real data. The generator is updated based
on how much it could generate fake but realistic data.

Fig. 1. Training process of CFGAN. G, D, z and c are the generator network, discrim-
inator network, random noise, and condition vectors, respectively. Real profiles are not
masked.

Modes. CFGAN has two modes: user-based (u) or item-based (i). The first
learns to generate user profiles, while the second learns to generate item profiles.

Masking. CFGAN applies a mask to the generated profiles by performing an
element-wise product between these and the real profiles. If the variant is Partial
Masking, then the mask changes (see Variants).

Architecture. Both the generator and discriminator of CFGAN are fully con-
nected feed-forward neural networks independent from each other where each
has its own hyper-parameters, e.g., number of hidden layers, learning rate, reg-
ularization, and others. If the mode is user-based, then the number of input
neurons is the number of items in the dataset. Conversely, the number of input
neurons for an item-based CFGAN is the number of users in the dataset.

Recommendations. In a top-N item recommendation scenario, the trained
generator creates user profiles containing the preference scores of users toward
items. Recommendations are built by ranking the items from the highest to
lowest score and selecting the top-N.
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Variants. CFGAN has three variants:

– Zero Reconstruction (ZR): Changes the loss function of the generator. It
ensures that a sample of non-interacted items are given zero-weights in the
generated profiles.

– Partial Masking (PM): The mask applied to the generated profiles combines
the user profile and randomly-chosen unseen items.

– Zero Reconstruction and Partial Masking (ZP): Combines ZR and PM.

3 CFGAN Theoretical and Methodological Questions

This work highlights key differences between the initial description of CFGAN
and the model used in the experimental evaluation of that same paper [4]. These
differences were not discussed in the original paper but have significant implica-
tions on the model’s ability to learn user or item preferences.

3.1 Real Profiles as Condition Vectors

What Raises Concerns? In the experimental evaluation of CFGAN, the con-
dition vector provided to both the generator and the discriminator is the real
user/item profile, i.e., the interactions that CFGAN is learning to generate.

Why Is It a Concern? As a consequence, CFGAN is prone to generate a
trivial solution. The generator could learn the identity function between the
condition vector and the output, therefore easily deceiving the discriminator
without learning to generate new profiles. On the other hand, the discriminator
could learn that the generated user profile should be identical to the condition
vector to be real, again learning a trivial function. In practice, this will push the
generator to behave as an autoencoder [20], which reconstructs as output the
same input (condition) it was provided with.

How to Avoid This Concern? Since the condition vector can contain any
information, a simple strategy would be to use other feature data related to the
items or users or other contextual information. In a pure collaborative recom-
mendations scenario, where no features or context is available, a possible strategy
is to change the condition vector to be the user/item classes (i.e., unique iden-
tifiers) depending on the CFGAN mode. This decision is aligned with previous
works on GANs [26]. In Recommender Systems, using the user/item classes pro-
vides a mechanism to generate personalized recommendations to every user. In
contrast to the original CFGAN reference, using the user/item classes excludes
the possibility that the generator and discriminator learn a trivial solution.

3.2 No Random Noise

What Raises Concerns? The reference article states that the random noise
is not provided as input to the generator in its experiments because the goal is
to generate the single best recommendation list rather than multiple ones.
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Why Is It a Concern? This violates the framework defined in the same article
and the design principles of GANs. In practice, discarding noise is problematic
because it drastically reduces the input space and the generator will be trained
on a very sparse set of user profiles. This assumes that the user profiles will
not change, which will make CFGAN non-robust in a real application where
the data change rapidly. This is known as the dataset shift problem. Since the
data change over time as new interactions are collected, and models are not
continuously retrained, models should be robust to and be able to use the new
data that was not present during training [27,30].

How to Avoid This Concern? Feed the generator with a random noise vector
z and the condition vector c. z is drawn from a normal distribution with zero
mean and unit variance, i.e., z ∼ N (μ, σ2) where μ = 0 and σ2 = 1 as suggested
by other works [13,26]. The size of z is a key element while training GANs.
However, previous works do not have consensus concerning the size of z [8].
We use a heuristic to set the size of the random vector and try different values
depending on the number of input neurons: 50%, 100%, or 200% of them. In
practice, the condition c and the random vector z are concatenated, and this
new vector becomes the input to the first layer of the generator network.

3.3 Methodological Questions

What Raises Concerns? The CFGAN description does not state how to
choose the number of training epochs nor the stopping criterion for the training
phase.

Why Is It a Concern? The number of training epochs and the stopping
criterion are two key methodological aspects for most machine learning models.
With the current GAN formulation, these two are defined by hand instead of
automatically chosen by the continuous evaluation of GAN, which might lead to a
non-optimal model, misuse of computational resources, and negatively affect the
published results’ replicability. There are well-known objective ways to measure
the recommendation quality in offline scenarios without human intervention in
the Recommender Systems domain, e.g., with accuracy metrics.

How to Avoid This Concern? Use an early-stopping mechanism based on
the one used in previous works for other machine learning recommenders, such
as matrix factorization or linear regression [10,11]. An early-stopping mechanism
periodically evaluates CFGAN on validation data while CFGAN is being trained
on train data. The training stops when the CFGAN quality does not improve
over the best evaluation for a fixed number of evaluations.
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4 Experimental Methodology

The experiments, results, and discussion are based on one of the following two
experiments: (i) execution of the source code provided in the CFGAN refer-
ence article as-is to assess the result replicability; (ii) hyper-parameter tuning of
different recommenders using a well-known evaluation framework to study the
reproducibility of the results and evaluate along different dimensions (see [10,11])
The source code of the experiments is available online3.

Datasets. The experiments use the same datasets4 (a sub-sampled version of
Ciao5 [4,33], ML100K [15], and ML1M [15]) and splits (train and test) provided
with the CFGAN reference article [4]. For scenarios that required a validation
split, we created one by applying the same strategy as the reference: random
holdout at 80% of the train split. Given the modest size of these datasets, all
experiments are done on the CPU.

Technologies. The implementation of all experiments, is based on the evalu-
ation framework published in [10], which includes the implementation of some
simple yet competitive state-of-the-art baselines for Recommender Systems. For
the replication study, the original implementation has been used as provided.
For the reproducibility study and the other experiments, the original CFGAN
source code has been adapted to the framework with no changes to the core
algorithm.

4.1 Methodology for the Replicability of CFGAN

The original CFGAN source code includes the implementation of CFGAN and its
training loop using a fixed set of hyper-parameters that are dataset-dependent.
The training procedure is the following: it fits a CFGAN recommender using the
train split of the selected dataset and evaluates the recommender using the test
split. With respect to the evaluation metrics, this source code evaluates CFGAN
on accuracy metrics: precision (PREC), recall (REC), Mean Reciprocal Rank
(MRR), and Normalized Discounted Cumulative Gain (NDCG) at recommen-
dation list length 5 and 20. The limitations of this source code are the lack of
the implementation of the baselines and the hyper-parameter tuning of all rec-
ommenders, e.g., baselines and CFGAN. Due to this, the replication study is
only possible for CFGAN.

3 https://github.com/recsyspolimi/ecir-2022-an-evaluation-of-GAN-for-CF and [29].
4 The Watcha [4] dataset was not provided with the reference article.
5 The reference article does not provide instructions to reproduce this version of the

dataset. We contacted the authors for clarifications but did not receive a reply.

https://github.com/recsyspolimi/ecir-2022-an-evaluation-of-GAN-for-CF
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4.2 Methodology for the Reproducibility of CFGAN

The reproducibility study expands the original CFGAN evaluation by including:
(i) new baselines that were shown to provide high recommendation quality; (ii)
a well-defined hyper-parameter optimization strategy; (iii) a well-defined early-
stopping strategy; and (iv) a comparison against accuracy, beyond-accuracy, and
scalability metrics.

In particular, the goal of (i) and (ii) is to assess the recommendation quality of
CFGAN against a wider set of recommendation models which are properly tuned
under the same conditions. The models we report range from non-personalized,
neighborhood-based, and non-neural machine learning approaches. This decision
is aligned with results obtained by previous evaluation studies in the domain
[10,11]. Regarding the hyper-parameter optimization of CFGAN, it should be
noted that the search-space described in the reference article, considering that
it is done using a grid-search, contains more than 3 · 108 cases, which cannot
be reproduced in a reasonable time. Due to this, this work adopts a different
optimization strategy: Bayesian Search as used in [10]. The hyper-parameter
ranges and distributions of CFGAN are reported in Table 1. The Bayesian Search
starts with 16 initial random searches and performs a total of 50 cases for each
algorithm. Each model in this search is fit with the train split and evaluated
against the validation one. The best hyper-parameters are chosen as those with
the highest NDCG at 10. Once the optimal hyper-parameters set is chosen, it
trains the final models using this set and the union of the train and validation
splits, evaluating the final models against the test set.

Evaluation Metrics. Recommenders are evaluated using the original accuracy
metrics (PREC, REC, MRR, and NDCG) and against the following beyond-
accuracy metrics: novelty [39], item coverage (Cov. Item, quota of recommended
items), and distributional diversity (Div. MIL [39] and Div. Gini [1]). Using these
new metrics provides a broader picture of the quality of all recommenders.

Baselines. Due to space limitations, this work provides only a list of baseline
recommenders. A thorough description of all baselines, and the list, range and
distribution of their hyper-parameters are in [10]. The baselines list is the fol-
lowing: Top Popular [10] as a non-personalized approach. UserKNN CF and
ItemKNN CF [10] as neighborhood-based CF (similarities: cosine, dice, jac-
card, asymmetric cosine, and tversky) and shrinkage term. RP3beta [6] as a
graph-based approach. PureSVD [7] and MF BPR [31] as matrix factoriza-
tion models. SLIM ElasticNet [10,28] as a machine learning approach. Lastly,
EASE R as a fast linear autoencoder [32].

CFGAN Recommenders. The hyper-parameter tuning is done on a total of
18 different CFGAN models: three datasets (Ciao, ML100K, and ML1M), two
modes (item-based i and user-based u), and three variants (ZR, PM, and ZP).
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To ensure a clear stopping criteria and a fair training for CFGAN, it is
trained using the early-stopping criteria defined in [10] and presented in Sect. 3.
The number of minimum and maximum epochs is in Table 1. The early-stopping
selects the best number of epochs by using the validation data. The optimal
number of epochs is used to train the final model. We recall that the original
description of CFGAN does not provide an early-stopping mechanism.

Table 1 lists all hyper-parameters of CFGAN, where hyper-parameters like
optimizer, activation are left unchanged with respect to the reference article.
Apart from the number of training epochs, the optimizer, and activation, the
rest of the hyper-parameters are set by the Bayesian Search.

Table 1. Hyper-parameters for CFGAN. These are divided in two groups. The first
group contains specific hyper-parameters of CFGAN. The second group are hyper-
parameters of the generator and discriminator neural networks, values between net-
works can be different.

Hyper-Parameter Type Range Distribution

# of Epochs Integer 200−400a early-stopping

ZR Coefficient Real 0−1 uniform

ZR Ratio Integer 10−90 uniform

PM Ratio Integer 10−90 uniform

# of Hidden Layers Integer 1−4 uniform

# of Hidden Features Integer 50−300 uniform

# of Steps Integer 1−4 uniform

l2 Regularization Real 1 · 10−4−1 · 10−1 log-uniform

Learning Rate Real 1 · 10−4−5 · 10−3 log-uniform

Batch Size Integer 32−256 uniform

Optimizer Categorical ADAM [19] –

Activation Categorical sigmoid –
aDue to how the training is performed, this range is close to the 1.000
and 1.500 epochs used in the reference article

5 Experiments Results and Discussion

5.1 RQ1: CFGAN Replicability and Numerical Stability

To address RQ1, we report the results of the replication study, as described
in Sect. 4.1, by using the original source code and data. This experiment has
two goals: (i) verify that published results are replicable; and (ii) measure the
numerical stability of CFGAN given the stochastic nature of its architecture
[9,25].

Table 2 shows the results of the experiment, we only report two metrics due
to space limitations6. The results reported in the reference article are denoted as
6 A table with all metrics is available in the supplemental materials of this work.
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Table 2. Comparison between the accuracy metrics in the reference article [4] and
those obtained in the replicability experiment (see Section 5.1) at recommendation
list length of 20. Statistics calculated over 30 executions, evaluating on the last epoch
using recommendation lists of length 20. We consistently obtain lower results across
the three datasets on average. For the Ciao dataset, the original source code trains a
different variant (in bold) than the reported in the reference article.

Dataset Variant Stats PREC NDCG

Ciao iZR Mean ± Std 0.0402 ± 0.0014 0.1135 ± 0.0038

iZP Reference [4] 0.0450 0.1240

ML100K iZP Mean ± Std 0.2851 ± 0.0025 0.4207 ± 0.0048

iZP Reference [4] 0.2940 0.4330

ML1M iZP Mean ± Std 0.3079 ± 0.0011 0.4035 ± 0.0016

iZP Reference [4] 0.3090 0.4060

Reference. Due to the stochastic nature of CFGAN models, we do not expect to
achieve exact numerical replicability. For all datasets, we see that the replicated
results are lower than those reported in the reference article. For the ML1M
dataset, the difference between the average and reported NDCG is −0.62%. On
the smaller ML100K, the results are more varied: −2.84% between the average
and reported NDCG. For the Ciao dataset, the results could not be replicated due
to two factors: (i) the original source code trained a different variant (iZR) than
the reported in the reference article (iZP); and (ii) lack of reproducible hyper-
parameters sets for this dataset in the reference article. Lastly, with respect
to the numerical stability, under 30 executions of this replication, the results
indicate that the reference implementation of CFGAN is numerically stable.

5.2 RQ2: Impact of Theoretical and Methodological Concerns

This section reports the results of the experiments related to RQ2, those used
to measure the impact of the theoretical and methodological concerns raised
in Sect. 3. Table 3 compares the results of the reference CFGAN (denoted as
Reference), the models tuned in Sect. 5.3 (presented in Table 4), and the variants
of this experiment.

Impact of Random Noise. As seen in Sect. 2, CFGAN receives random noise
as part of its input. However, in the experiments of the reference article, the ran-
dom noise is removed. This experiment included three different sizes of random
noise. The results indicate that the recommendation quality improves slightly by
removing the random noise, however, as stated in Sect. 3, it comes at the cost of
risking lower generalizability and lower robustness of the generator in a practi-
cal use case. We argue the random noise should always be present. However, we
recall that doing an exhaustive analysis of the impact of random noise in GAN
and CFGAN is beyond the scope of this paper.
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Table 3. Accuracy and beyond-accuracy values for different CFGAN models for the
ML1M dataset at recommendation list length of 20. The suffix Reference is the model in
the reference article (where − denotes non published values). The suffix ES indicates
that the model uses early-stopping (see Table 4), NO-ES indicates it does not. The
suffix CC indicates that the model uses the user/item class as the condition vector. The
suffix RN-X means that the model uses random noise of size X. Hyper-parameter sets
of variants are chosen as described in Section 4.2 except for those with the Reference
suffix.

Variant PREC NDCG Cov.

Item

Variant PREC NDCG Cov.

Item

iZP Reference [4] 0.3090 0.4060 − uZP Reference [4] − − −
iZP ES 0.2407 0.2972 0.4894 uZP ES 0.2764 0.3620 0.1833

iZP NO-ES 0.2494 0.3111 0.4041 uZP NO-ES 0.2797 0.3639 0.1882

iZP CC 0.0384 0.0507 0.0296 uZP CC 0.0916 0.1106 0.0231

iZP RN-3020 0.2059 0.2475 0.3995 uZP RN-1841 0.2737 0.3591 0.1841

iZP RN-6040 0.1683 0.2000 0.4663 uZP RN-3682 0.2781 0.3651 0.1839

iZP RN-12080 0.1304 0.1471 0.5076 uZP RN-7364 0.2759 0.3626 0.1955

Impact of Condition Vector. Similarly as before, in the experiments of the
reference article, the condition vector is set to be the user/item profiles, which
increases the risk of reaching a trivial solution. This experiment changed the
condition vector to be the user/item classes. The results show that changing
the condition vector with the current CFGAN architecture dramatically lowers
the model’s ability to learn to generate accurate profiles. This constitutes a
negative result, as that the current architecture does not appear to be suitable to
handle the user/item classes as the condition vector. Identifying an appropriate
architecture to do so and an appropriate condition vector to use in scenarios
where only past user interactions are available is an open research question that
goes beyond the scope of this paper.

Impact of Early-Stopping. The reference article does not provide an early-
stopping mechanism for CFGAN, although models in Recommender Systems
typically benefit from one, as discussed in Sect. 3. This experiment removed
the early-stopping and set the maximum number of epochs as 400 (this is the
maximum number of epochs set for the early-stopping as seen in Table 1). Results
show that using early-stopping slightly decreases the recommendation quality of
CFGAN, however, we argue that the benefits of using it outweigh the downsides
of it, especially if scalability is taken into account. For instance, the iZP variant
trains on 645 and 1200 epochs with and without early-stopping, respectively,
i.e., a decrease of 46.25% in training time and 4.47% in NDCG.
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Table 4. Accuracy and beyond-accuracy metrics for tuned baselines and CFGAN on
the ML1M dataset at recommendation list length of 20. Higher accuracy values than
CFGAN models reached by baselines in bold. ItemKNN and UserKNN use asymmetric
cosine. CFGAN results are different than Table 2 due to the hyper-parameter tuning.
CFGAN models use early-stopping.

PREC REC MRR NDCG Novelty Cov.

Item

Div.

MIL

Div.

Gini

Random 0.0099 0.0056 0.0326 0.0108 0.0732 1.0000 0.9946 0.8977

TopPop 0.1552 0.1146 0.3852 0.1938 0.0473 0.0299 0.4529 0.0095

UserKNN CF 0.2891 0.2570 0.6595 0.3888 0.0513 0.3286 0.8921 0.0655

ItemKNN CF 0.2600 0.2196 0.6254 0.3490 0.0497 0.2097 0.8148 0.0362

RP3beta 0.2758 0.2385 0.6425 0.3700 0.0506 0.3427 0.8565 0.0528

PureSVD 0.2913 0.2421 0.6333 0.3783 0.0516 0.2439 0.9142 0.0712

SLIM ElasticNet 0.3119 0.2695 0.6724 0.4123 0.0514 0.3153 0.8984 0.0696

MF BPR 0.2485 0.2103 0.5753 0.3242 0.0512 0.3126 0.8855 0.0631

EASE R 0.3171 0.2763 0.6795 0.4192 0.0518 0.3338 0.9146 0.0803

CFGAN iZR 0.2862 0.2547 0.6312 0.3770 0.0542 0.4123 0.9583 0.1459

CFGAN iPM 0.2505 0.1950 0.5454 0.3138 0.0523 0.3669 0.9218 0.0901

CFGAN iZP 0.2407 0.1742 0.5230 0.2972 0.0530 0.4894 0.9256 0.0901

CFGAN uZR 0.2955 0.2473 0.6222 0.3799 0.0523 0.2167 0.9205 0.0837

CFGAN uPM 0.2367 0.1928 0.5513 0.3054 0.0516 0.1782 0.8962 0.0550

CFGAN uZP 0.2764 0.2342 0.6208 0.3620 0.0513 0.1833 0.9062 0.0617

5.3 RQ3: Reproducibility Evaluation Against Properly Tuned
Baselines

To address RQ3, we report the recommendation quality of CFGAN and baseline
recommenders using a Bayesian hyper-parameter tuning approach, as described
in Sect. 4.2. The goal is to evaluate [4] on the same top-N recommendation sce-
nario of the reference paper against a set of properly tuned baselines on accuracy
and beyond-accuracy metrics and study if published results are reproducible.

Table 4 shows the results of accuracy and beyond-accuracy metrics of prop-
erly tuned recommenders. Due to space constraints, the focus of this discussion
is on the dataset with the highest number of interactions studied in the reference
article [4], i.e., ML1M. Results with other datasets are comparable7.

The results indicate that CFGAN is outperformed by three simple baselines
in NDCG, sometimes by almost 10%, in particular by other autoencoder-based
recommendation models like EASE R and SLIM Elastic Net. These findings
are consistent to those reported in several other evaluation studies [2,10–12,24].
The accuracy across CFGAN models varies depending on the CFGAN mode
and variant. For instance, the most and least accurate variants are uZR and
iZP, respectively, with approximately 21.76% difference in their NDCG metrics.
Under the current methodology, we cannot confirm the claim that item-based
models or ZP variants outperform other variants, as indicated in the reference

7 The full results are in the supplemental material [29].
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article [4]. In fact, our most accurate variant is uZR. When looking at beyond-
accuracy metrics, item-based CFGAN models have equal or higher diversity than
baselines. In particular, iZR has the highest novelty, item coverage, and distribu-
tional diversity, while also being the second-most accurate variant with respect
to NDCG. User-based CFGAN models have less coverage than all baselines.

It can be seen that the results of the replicability study using hyper-
parameter optimization and early-stopping reported in Table 4 are lower than
those reported in the replication study in Table 2. This indicates that the non-
reproducible hyper-parameter search and early-stopping criteria have an impor-
tant impact on the recommendation quality. As a last observation, using the
results reported in the reference article CFGAN would not be competitive against
the baselines.

Scalability. Concerning the recommendation time, all algorithms are able to
create recommendations lists to all users in a total time between 7 and 20 s. Dif-
ferently from other neural models [10], CFGAN models provide fast recommen-
dations. Due to the lack of random noise, they generate static recommendation
lists.

Concerning the training time, CFGAN models take more time to train than
any baseline. We categorize models into three groups: (i) ItemKNN, UserKNN,
PureSVD, RP3beta, and EASE R take between 2 and 25 s on average; (ii)
machine learning approaches, i.e., SLIM and MF BPR take between 3 and 9 min
to train on average; and (iii) all CFGAN models take between 25 and 40 min to
train on average. Even on a comparatively small dataset as ML1M, the difference
in training time between the first and the last group is two orders of magnitude.
Using more performing hardware, i.e., GPU could reduce this gap.

Under this offline evaluation, which is the same as in the original article [4],
CFGAN does not generate more accurate recommendations than simple base-
lines. As CFGAN is a neural approach, bigger datasets with more complex rela-
tions between users, items, and their interactions might increase the accuracy of
CFGAN. However, this is unpractical due to the higher computational cost of
CFGAN models, therefore, we do not report experiments with bigger datasets.

6 Conclusions

This work presents an evaluation study of the family of models of CFGAN,
addressing three research questions under the same top-N recommendation sce-
nario as the reference article [4]. Are previously published results of CFGAN
replicable? What is the impact of the differences between the CFGAN frame-
work and the model evaluated in the reference article? Are previously published
results of CFGAN reproducible? Regarding the model’s architecture, using as
condition vector the user profile and removing the random noise leaves the model
prone to a trivial and not useful solution in which the generator behaves as a
simple autoencoder, negatively affecting the model’s ability to generalize. Due
to this, we argue a different approach should be used, which is still an open
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research question. The experimental results indicate that CFGAN is replicable
and numerically stable, but not reproducible as it can be outperformed by sim-
ple but properly tuned baselines. This result adds to the recent evidence that
properly tuned baselines can outperform complex methods and suggest CFGAN
is not yet a mature recommendation algorithm.
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Abstract. Screening or assessing studies is critical to the quality and
outcomes of a systematic review. Typically, a Boolean query retrieves
the set of studies to screen. As the set of studies retrieved is unordered,
screening all retrieved studies is usually required for high-quality system-
atic reviews. Screening prioritisation, or in other words, ranking the set of
studies, enables downstream activities of a systematic review to begin in
parallel. We investigate a method that exploits seed studies – potentially
relevant studies used to seed the query formulation process – for screening
prioritisation. Our investigation aims to reproduce this method to deter-
mine if it is generalisable on recently published datasets and determine
the impact of using multiple seed studies on effectiveness. We show that
while we could reproduce the original methods, we could not replicate
their results exactly. However, we believe this is due to minor differences
in document pre-processing, not deficiencies with the original methodol-
ogy. Our results also indicate that our reproduced screening prioritisation
method, (1) is generalisable across datasets of similar and different top-
icality compared to the original implementation, (2) that when using
multiple seed studies, the effectiveness of the method increases using our
techniques to enable this, (3) and that the use of multiple seed studies
produces more stable rankings compared to single seed studies. Finally,
we make our implementation and results publicly available at the follow-
ing URL: https://github.com/ielab/sdr.

Keywords: Systematic reviews · Document ranking · Re-ranking

1 Introduction

A systematic review is a focused literature review that synthesises all relevant lit-
erature for a specific research topic. Identifying relevant publications for medical
systematic reviews is a highly tedious and costly exercise, often involving multi-
ple reviewers to screen (i.e., assess) upwards of tens of thousands of studies. It is
a standard practice to screen each study retrieved for a systematic review by a
Boolean query. However, in recent years, there has been a dramatic rise in Infor-
mation Retrieval methods that attempt to re-rank this set of studies for a variety
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of reasons, such as stopping the screening early (once a sufficient number of stud-
ies have been found) or beginning downstream phases of the systematic review
process earlier (such as the acquisition of the full-text of studies). However, a
known problem with many of these methods is that they use a different query
from the Boolean query used to perform the initial literature search. Instead,
most methods typically resort to less informationally representative sources for
queries that can be used for ranking, such as the title of the systematic review,
e.g., [18] (containing narrow information about the retrieval topic), or concate-
nating the clauses of the Boolean query together, e.g., [3] (negating the structural
information in Boolean clauses). We instead turn our attention to methods that
use more informative sources of information to perform re-ranking.

Indeed, we focus this reproducibility study on one such method: seed-driven
document ranking (SDR) from Lee and Sun [16]. SDR exploits studies that
are known a priori to develop the research focus and search strategy for the
systematic review. These studies are often referred to as ‘seed studies’ and are
commonplace in the initial phases of the systematic review creation process. This
method and others such as CLF [21] (which directly uses the Boolean query for
ranking) have been shown to significantly outperform other methods that use a
näıve query representation. Despite this, the SDR method was published when
there was little data for those seeking to research this topic, and there have been
methods published since that did not include SDR as a comparison. To this end,
we devise the following research questions (RQs) to guide our investigation into
why we are interested in reproducing the SDR method:

RQ1 Does the effectiveness of SDR generalise beyond the CLEF TAR 2017
dataset? The original study was only able to be investigated on a single
dataset of systematic review topics. In this study, we plan to use our replicated
implementation of SDR to examine the effectiveness of this method across
more recent datasets, and datasets that are more topically varied (CLEF
TAR 2017 only contains systematic reviews about diagnostic test accuracy).

RQ2 What is the impact of using multiple seed studies collectively on the effec-
tiveness of SDR? The original study focused on two aspects of their method:
an initial ranking using a single seed study and an iterative ranking which fur-
ther uses the remaining seed studies one at a time. We focus on investigating
the first aspect concerning the impact of multiple seed studies (multi-SDR)
used collectively for input to produce an initial ranking.

RQ3 To what extent do seed studies impact the ranking stability of single- and
multi-SDR? In a recent study by Scells et al. [23] to generate Boolean queries
from seed studies, it was found that seed studies can have a considerable
and significant effect on the effectiveness of resulting queries. We perform a
similar study that aims to measure the variance in effectiveness of SDR in
single- and multi- seed study settings.

With the investigation into the above research questions, we will (1) demonstrate
the novelty of the method by performing experiments on more datasets (RQ1),
and experiments that reveal more about the effectiveness of the method (RQ2,
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RQ3), (2) assess the impact of SDR towards the Information Retrieval commu-
nity and the wider systematic review community, (3) investigate the reliability
of SDR by comparing it to several baselines on publicly available datasets, and
(4) make our complete reproduced implementation of SDR publicly available
for others to use as a baseline in future work on re-ranking for systematic reviews.

2 Replicating SDR

In the original paper of Lee and Sun, they devise two experimental settings for
SDR: an initial ranking of retrieved studies using a seed study and iteratively
re-ranking by updating the query used for SDR with one seed study at a time
to simulate the manual screening process. We focus on the initial ranking stage
for two reasons: (1) screening prioritisation is an accepted practice in the sys-
tematic review creation process as all studies must still be screened [4]; and (2)
an effective initial ranking will naturally result in a more effective and efficient
re-ranking of studies, as more studies that are relevant will be identified faster.
The intuition for SDR is that relevant studies are similar to each other. The
original paper makes two important observations about seed studies to support
this intuition: (1) that relevant studies are more similar to each other than they
are to non-relevant studies; and (2) that relevant studies share many clinical
terms. These two observations are used to inform the representation and scoring
of studies, given a seed study. We attempt to replicate these observations below
to verify both that our implementation follows the same steps to make similar
observations and whether the assumptions derived from them hold.

Observation 1. For a given systematic review, its relevant documents share
higher pair-wise similarity than that of irrelevant documents.

We find that this observation is valid in our reproduction, as demonstrated by
Fig. 1. In order to produce this plot, irrelevant studies were randomly under-
sampled ten times. The number of non-relevant studies is always the same as
the number of relevant studies for each topic. This means it is unlikely that we
will produce the exact result initially found for this observation by Lee and Sun.
Furthermore, one reason that the average pairwise similarity for the relevant
studies may not match the original results is that the textual content of studies
on PubMed may have changed or been updated. Rather than using a dump of
PubMed from 2017, we used the latest version of studies on PubMed, as it is
unknown the exact date that studies were extracted from PubMed in the original
paper, and the CLEF TAR dataset does not give an exact date.

Observation 2. Relevant documents for a given systematic review share high
commonality in terms of clinical terms.

We found that this observation is also valid in our reproduction, as demonstrated
in Fig. 2. It can be seen that the commonality of terms for the bag of words
(BOW) and bag of clinical words (BOC) representations closely match those
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Fig. 1. Intra-similarity between rele-
vant studies and irrelevant studies.

Fig. 2. Distribution of terms in rele-
vant studies.

reported by Lee and Sun. However, we also found that with some minor modi-
fications to the pre-processing of studies, we achieved a similar (yet still lower)
commonality for terms using the BOW representation. We believe that the BOC
representation shares a higher commonality of terms because the vocabulary size
is smaller than the BOW representation. Naturally, with a smaller vocabulary,
it is more likely for studies to share common terms. When pre-processing studies
using the method described in original paper, we find that BOC terms count for
4.6% of the vocabulary, while they account for 31.2% using our pre-processing.
In fact, our BOW vocabulary is only 14.8% their BOW vocabulary. Note that
BOC is a distinct subset of BOW.

2.1 Document Representation

Given Observation 1 about relevant studies for this task, Lee and Sun chose to
represent studies as a ‘bag of clinical words’ (BOC). They chose to use the Unified
Medical Language System (UMLS) as their ontology of clinical terms. UMLS is
an umbrella ontology that combines many common medical ontologies such as
SNOMED-CT and MeSH. In order to identify UMLS concepts (and therefore
the clinical terms) within the studies, Lee and Sun combine the outputs of the
NCBO Bioportal [20] API1 and QuickUMLS [24]. We follow their process as
described, however we are not aware if it is not possible to set a specific version
for the NCBO API. We use QuickUMLS version 1.4.0 with UMLS 2016AB.

2.2 Term Weighting

SDR weights terms based on the intuition that terms in relevant studies are
more similar to each other (or occur with each other more frequently) than non-
relevant studies. The weight of an individual term in a seed study is estimated by
measuring to what extent it separates similar (pseudo-relevant) and dissimilar
(pseudo-non-relevant) studies. Formally, each term ti in a seed document ds

(ti ∈ ds) is weighted using the function ϕ(ti, ds) = ln
(
1 + γ(Dti

,ds)

γ(Dt̄i
,ds)

)
, where

1 http://data.bioontology.org/documentation.

http://data.bioontology.org/documentation
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Dti represents the subset of candidate studies to be ranked where ti appears,
and Dt̄i represents the subset of candidate studies to be ranked where ti does
not appear. The average similarity between studies is computed as γ(D, ds) =
1

|D|
∑

dj∈D sim(dj , ds), where sim is the cosine similarity between the vector
representations of the candidate study dj and the seed study di. We follow the
original implementation and represent studies as tf-idf vectors.

2.3 Document Scoring

The original SDR implementation uses the query likelihood language model with
Jelenik-Mercer smoothing for scoring studies. Typically, this ranking function is
derived as indicated by QLM shown in Eq. 1, where c(ti, ds) represents the count
of a term in a seed study, c(ti, d) represents the count of a term in a candidate
study, Ld represents the number of terms in a study, p(ti|C) represents the prob-
ability of a term in a background collection, and λ is the Jelenik-Mercer smooth-
ing parameter. To incorporate the term weights as described in Subsect. 2.2, the
original paper includes ϕ function into the document scoring function as shown
in Eq. 1:

score(d, ds) =
∑

ti∈d,ds

Term Weight︷ ︸︸ ︷
ϕ(ti, ds) ·

QLM︷ ︸︸ ︷
c(ti, ds) · log

(
1 +

1 − λ

λ
· c(ti, d)
Ld · p(ti|C)

)
(1)

where p(ti|C) is estimated using maximum likelihood estimation over the entire
candidate set of studies C. In the original paper, when additional seed studies
were ranked in the top-k set of candidate seed studies (denoted as ds′), a re-
ranking was initiated by expanding each ti in ds with the new terms from ds′ . For
our replication study, we only consider the initial ranking of candidate studies, as
an abundance of baseline methods can be used as a comparison for this task. It
is also arguably the most important step as a poor initial ranking will naturally
result in a less effective and less efficient re-ranking.

2.4 Multi-SDR

One assumption in the original paper is that only a single seed study can be
used at a time for ranking candidate studies. We propose a modification by
studying the impact of using multiple seed studies collectively. In practice, it
is common for Boolean queries (i.e., the search strategies used to retrieve the
set of candidate studies we use for ranking) to be developed with a handful of
seed studies, not just a single seed study. We hypothesise that the effectiveness
of SDR will increase when multiple seed studies are used. Each relevant study
must be used as a seed study for ranking, as the seed studies are not known
in any of the collections we used. Therefore the average performance across
topics was recorded (i.e., leave-one-out cross-validation). This study follows the
methodology for the single-SDR method described in the subsections above. How
we adapt single-SDR for a multi-SDR setting, and how we make this comparable
to single-SDR is described as follows.
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Grouping Seed Studies. To study multi-SDR, we adopt a similar approach
to the original paper; however, we instead randomly group multiple seed stud-
ies together and perform leave-one-out cross-validation over these groups. To
account for any topic differences that may impact performance, we use a sliding
window across the list of seed studies so that a seed study can appear in multiple
groups. The number of seed studies to fill each group was chosen to be 20% of
the total seed studies. Rather than use a fixed number of seed studies, choosing
different proportions simulates the use of seed studies in practice, i.e., different
amounts of seed studies may be known before conducting a review.

Combining Seed Studies for Multi-SDR. The way we exploit multiple
seed studies for SDR is, we believe, similar to how Lee and Sun used multiple
seed studies in their relevance feedback approach to SDR. We concatenate seed
studies together such that the resulting representation can be used directly with
the existing single-SDR framework. We acknowledge that there may be more
sophisticated approaches to exploit multi-SDR. However, we leave this as future
work as it is out of the scope for this reproducibility study.

When computing term weights for multi-SDR, we also encountered compu-
tational infeasibility for large groups of seed studies. To this end, we randomly
under-sampled the number of irrelevant studies to 50 each time we compute ϕ.

Comparing Single-SDR to Multi-SDR. Directly comparing the results of
multi-SDR to single-SDR is not possible due to the leave-one-out cross-validation
style of evaluation used for single-SDR. To address this, we apply an oracle to
identify the most effective single-SDR run out of all the seed studies used for a
given multi-SDR run in terms of MAP. We then remove the other seed studies
used in the multi-SDR run from the oracle-selected single-SDR run so that both
runs share the same number of candidate studies for ranking.

3 Experimental Setup

3.1 Datasets

When the original SDR paper was published, only a single collection with results
of baseline method implementations was available. We intend to assess the gen-
eralisability of their SDR method on several new collections which have been
released since. The collections we consider are:

CLEF TAR 2017 [9] This is the original dataset that was used to study SDR.
We include this dataset to confirm that we achieve the same or similar results
as the original paper. This collection includes 50 systematic review topics on
diagnostic test accuracy – a type of systematic review that is challenging to
create. The 50 topics are split into 20 training topics and 30 testing top-
ics. In our evaluation, we removed topics CD010653, CD010771, CD010386,
CD012019, CD011549 as they contained only a single or no relevant studies to
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use as seed studies. For our experiments using multiple seed studies, we fur-
ther removed topics CD010860, CD010775, CD010896, CD008643, CD011548,
CD010438, CD010633, CD008686 due to low numbers of relevant studies.

CLEF TAR 2018 [11] This collection adds 30 diagnostic test accuracy sys-
tematic reviews as topics to the existing 2017 collection; however, it also
removes eight because they are not ‘reliable for training or testing pur-
poses. In total, this collection contains 72 topics. Our evaluation only used
30 additional reviews of the 2018 dataset and removed topics CD012216,
CD009263, CD011515, CD011602, and CD010680 as they contained only a
single or no relevant studies to use as seed studies. We also removed topic
CD009263 because we ran into memory issues when running experiments on
this topic due to many candidate documents (approx. 80,000). For our exper-
iments using multiple seed studies, we removed topics CD012083, CD012009,
CD010864, CD011686, CD011420 due to low numbers of relevant studies.

CLEF TAR 2019 [10] This collection further develops on the previous years’ by
also including systematic reviews of different types. From this collection, we
use the 38 systematic reviews of interventions (i.e., a different type of diagnos-
tic test accuracy).2 We use this collection to study the generalisability of SDR
on other kinds of systematic reviews. In our evaluation, we removed topics
CD010019, CD012342, CD011140, CD012120, CD012521 as they contained
only a single or no relevant studies to use as seed studies. For our experiments
using multiple seed studies, we further removed topics CD011380, CD012521,
CD009069, CD012164, CD007868, CD005253, CD012455 due to low numbers
of relevant studies.

3.2 Baselines

The baselines in the original paper included the best performing method from the
CLEF TAR 2017 participants, several seed-study-based methods, and variations
of the scoring function used by SDR. For our experiments, we compare our
reproduction of SDR to all of the original baselines that we have also reproduced
from the original paper. The baselines in the original paper include: BM25-
{BOW, BOC}, QLM-{BOW, BOC}, SDR-{BOW, BOC}, and AES-{BOW,
BOC}. The last method, AES, is an embedding-based method that averages the
embeddings for all terms in the seed studies. The AES method uses pre-trained
word2vec embeddings using PubMed and Wikipedia (as specified in the original
paper). We also include a variation that uses only PubMed embeddings (AES-P).
Finally, we also include the linear interpolation between SDR and AES, using
the same parameter as the original paper (α = 0.3). We use the same versions
of the pre-trained embeddings as the original paper.

2 Although the overview paper claims there are 40 interventions topics, there are two
topics that appear in both training and testing splits. However, like the previous
datasets, we ignore these splits and combine the training and testing splits.
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3.3 Evaluation Measures

For comparison to the original paper, we use the same evaluation measures.
These include MAP, precision@k, recall@k, LastRel%, and Work Saved over
Sampling (WSS). LastRel is a measure introduced at CLEF TAR’17 [9]. It is
calculated as the rank position of the last relevant document. LastRel% is the
normalised percentage of studies that must be screened in order to obtain all
relevant studies. Work Saved Over Sampling; a measure initially proposed to
measure classification effectiveness [7], is calculated instead here, by computing
the fraction of studies that can be removed from screening to obtain all relevant
documents; i.e., WSS = |C|−LastRel

|C| . Where C is the number of studies originally
retrieved (i.e., the candidate set for re-ranking). For precision@k and recall@k,
we report much deeper levels of k: the original paper reported k = {10, 20, 30};
where we report k = {10, 100, 1000}. Furthermore, we also report nDCG at
these k-values, as it provides additional information about relevant study rank
positions. We compute LastRel% and WSS using the scripts used in CLEF TAR
2017. For all other evaluation measures we use trec eval (version 9.0.7).

3.4 Document Pre-processing

It is widely known that document pre-processing (e.g., tokenisation, stopwords,
or stemming) can have a profound effect on ranking performance [8]. Although
the original paper provides information about the versions of the libraries it uses
for ranking, there were fewer details, such as how documents were tokenised or
which stopword list was used. We reached out to the original authors to confirm
the exact experimental settings. From the original paper, documents were split
using space, then stopwords were removed using nltk.

The modifications we made to the document pre-processing pipeline were
that documents were first pre-processed to remove punctuation marks and then
tokenised using gensim version 3.2.0 tokeniser. For stopwords, as the original
authors have not specified the nltk version, we used the latest version at the time
of publishing, version 3.6.3. Then terms used are lowercased for in all methods
except for AES. No stemming has been applied in either pre-processing pipeline.

4 Results

Before we investigate the three research questions of our reproducibility study, we
first examine the extent to which we were able to replicate the results of Lee and
Sun. In this study, we were unable to exactly replicate the results due to what we
believe to be minor differences in document pre-processing and evaluation setup.
Despite these difference, the results in Table 1 show a similar performance across
the baselines and evaluation measures compared to what Lee and Sun originally
reported in their paper for our pre-processing pipeline.

The results observed comparing the document pre-processing pipeline for the
BOW representation as described by Lee and Sun (*-LEE) to our document pre-
processing pipeline show that the BOW baselines may not have been as strong
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as if the original authors had performed a similar pipeline as us. We find that
although the results comparing their baseline is statistically significant with our
best performing method, our baseline is not significantly different. Finally, we
find that the SDR-BOW-AES-LEE method, which corresponds to their most
effective method, is significantly worse than our most effective method for 2017,
SDR-BOW-AES-P.

In terms of the BOC representation we were unable to identify a more
effective pipeline for extracting clinical terms. Here, we applied the clinical
term extraction tools over individual terms in the document (following the pre-
processing of Lee and Sun), and not the entire document. Although we find this
to be counter-intuitive, as tools like QuickUMLS and the NCBO API use text
semantics to match n-grams, the result of applying the tools to individual terms
has the effect of reducing the vocabulary of a seed study to the key concepts.

Finally, comparing our evaluation setup to Lee and Sun, we find that there
were a number of topics in the CLEF TAR 2017 dataset that were incompatible
with SDR. Rather than attempting to replicate their results, we simply do not
compare their original results with ours, since we do not have access to their run
files or precise evaluation setup. Furthermore, when we compare the results we
report from to the best performing participant at CLEF TAR 2017 that did not
use relevance feedback [3], we remove the same topics from the run file of this
participant for fairness. Although this method cannot be directly compared to,
we can see that even relatively unsophisticated methods that use seed studies
such as BM25-BOW are able to outperform the method by this participant.

4.1 Generalisability of SDR

We next investigate the first research question: Does the effectiveness of SDR
generalise beyond the CLEF TAR 2017 dataset? In Table 2, we can see that the
term weighting of SDR almost always increases effectiveness compared to using
only QLM, and that interpolation with AES can have further benefits to effec-
tiveness. However, we note that few of these results are statistically significant.

While we are unable to include all of the results for space reasons, we find
that SDR-BOC-AES-P was not always the most effective SDR method. Indeed
on the 2019 dataset, SDR-BOW was the most effective. The reason for this may
be due to the difference in topicality of the 2019 dataset. This suggests that not
only is the method of identifying clinical terms not suitable for these intervention
systematic review topics, but that the interpolation between SDR and AES may
require dataset-specific tuning.
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Table 1. Reproduction results of baselines and SDR methods on the CLEF TAR
2017 dataset. For BOW methods, the pre-processing pipeline used by Lee and Sun is
denoted by ‘-LEE’. BOW methods that do not have this demarcation correspond to our
pipeline. For AES methods, word2vec PubMed embeddings are denoted by ‘-P’. AES
methods that do not have this demarcation correspond to word2vec embeddings that
include PubMed and Wikipedia. Statistical significance (Student’s two-tailed paired
t-test with Bonferonni correction, p < 0.05) between the most effective method (SDR-
BOC-AES-P) and all other methods is indicated by †.

Method MAP Prec. Prec. Prec. Recall Recall Recall nDCG nDCG nDCG LR% WSS

10 100 1000 10 100 1000 10 100 1000

Sheffield-run-2 [3] 0.1706 0.1367 0.0703 0.0156 0.1759 0.5133 0.8353 0.2089 0.3342 0.4465 0.4660 0.5340

BM25-BOW-LEE 0.1710† 0.2027† 0.0867† 0.0195† 0.1543 0.5118† 0.8798† 0.2439† 0.3419† 0.4770† 0.4902† 0.5098†

BM25-BOW 0.1810 0.2128† 0.0898† 0.0200 0.1646 0.5232† 0.8928 0.2560 0.3534† 0.4899† 0.4427† 0.5573†

BM25-BOC 0.1764† 0.2145† 0.0895† 0.0200 0.1562 0.5215† 0.8944 0.2539 0.3496† 0.4871† 0.4401† 0.5599†

QLM-BOW-LEE 0.1539† 0.1846† 0.0778† 0.0184† 0.1367† 0.4664† 0.8508† 0.2198† 0.3091† 0.4454† 0.4662† 0.5338†

QLM-BOW 0.1973 0.2360 0.0964 0.0203 0.1855 0.5464 0.9081 0.2827 0.3772 0.5100 0.3851 0.6149

QLM-BOC 0.1894 0.2330 0.0951 0.0202 0.1809 0.5376 0.9032 0.2771 0.3684 0.5018 0.3936 0.6064

SDR-BOW-LEE 0.1533† 0.1777† 0.0780† 0.0185† 0.1304† 0.4710† 0.8576† 0.2142† 0.3088† 0.4460† 0.4660† 0.5340†

SDR-BOW 0.1972 0.2264 0.0952 0.0204 0.1718 0.5398 0.9083 0.2739 0.3728 0.5081 0.3742 0.6258

SDR-BOC 0.1953 0.2329 0.0974 0.0206 0.1751 0.5530 0.9151 0.2756 0.3751 0.5086 0.3689 0.6311

AES-BOW 0.1516† 0.1768† 0.0785† 0.0190† 0.1369† 0.4611† 0.8794† 0.2163† 0.3106† 0.4552† 0.4549† 0.5451†

AES-BOW-P 0.1604† 0.1872† 0.0809† 0.0193† 0.1480† 0.4954† 0.8895† 0.2274† 0.3255† 0.4669† 0.4088† 0.5912†

SDR-BOW-LEE-AES 0.1716† 0.2008† 0.0870† 0.0197 0.1484† 0.5250† 0.8988† 0.2389† 0.3429† 0.4792† 0.4148† 0.5852†

SDR-BOW-AES 0.1958 0.2309 0.0957 0.0203 0.1750 0.5568 0.9163 0.2756 0.3764 0.5090 0.3880† 0.6120†

SDR-BOC-AES 0.1964 0.2364 0.0972 0.0204 0.1770 0.5699 0.9195 0.2800 0.3813 0.5117 0.3830† 0.6170†

SDR-BOW-LEE-AES-P 0.1764† 0.2058† 0.0883† 0.0199 0.1570 0.5349† 0.9081† 0.2448† 0.3500† 0.4865† 0.3796† 0.6204†

SDR-BOW-AES-P 0.1983 0.2322 0.0961 0.0204 0.1740 0.5673 0.9206 0.2768 0.3812 0.5128 0.3608 0.6392

SDR-BOC-AES-P 0.1984 0.2369 0.0970 0.0205 0.1788 0.5737 0.9241 0.2807 0.3837 0.5147 0.3566 0.6434

4.2 Effect of Multiple Seed Studies

Next, we investigate the second research question: What is the impact of using
multiple seed studies collectively on the effectiveness of SDR? Firstly, several top-
ics were further removed for these experiments. Therefore, the results of single-
SDR in Table 3 are not directly comparable to the results in Tables 1 and 2. In
order to measure the effect multiple studies has on SDR compared to single seed
studies, we also remove the same topics for single-SDR.

We find that across all three datasets, compared to single-SDR, multi-SDR
can significantly increase the effectiveness. We also find that the largest increases
in effectiveness are seen on shallow metrics across all three CLEF TAR datasets.
This has implications for the use of SDR in practice, as typically, multiple seed
studies are available before conducting the screening process. Therefore, when
multiple seed studies are used for the initial ranking process, active learning
methods that iteratively rank unjudged studies will naturally be more effective
(as more relevant studies are retrieved in the early rankings). However, we argue
that the assumption that relevant studies are a good surrogate for seed studies
made by Lee and Sun [16] and by others in other work such as Scells et al. [23]
may be weak and that methods that utilise relevant studies for this purpose
overestimate effectiveness. In reality, seed studies may not be relevant studies.
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Table 2. Generalisability of results on the CLEF TAR 2017, 2018 and 2019 datasets.
Representations used in this table are all BOC. Statistical significance (Student’s two-
tailed paired t-test with Bonferonni correction, p < 0.05) between the most effective
method (SDR-AES-P) and other methods is indicated by †.

Method MAP Prec. Prec. Prec. Recall Recall Recall nDCG nDCG nDCG LR% WSS

10 100 1000 10 100 1000 10 100 1000

2
0
1
7 QLM 0.1894 0.2330 0.0951 0.0202 0.1809 0.5376 0.9032 0.2771 0.3684 0.5018 0.3936 0.6064

SDR 0.1953 0.2329 0.0974 0.0206 0.1751 0.5530 0.9151 0.2756 0.3751 0.5086 0.3689 0.6311

SDR-AES-P 0.1984 0.2369 0.0970 0.0205 0.1788 0.5737 0.9241 0.2807 0.3837 0.5147 0.3566 0.6434

2
0
1
8 QLM-BOC 0.2344 0.2594 0.1130 0.0219 0.1821 0.6214 0.9104 0.3141 0.4156 0.5312 0.3317† 0.6683†

SDR 0.2374 0.2549 0.1136 0.0221 0.1798 0.6176 0.9174 0.3117 0.4163 0.5351 0.3024 0.6976

SDR-AES-P 0.2503 0.2688 0.1161 0.0222 0.1957 0.6036 0.9234 0.3259 0.4243 0.5445 0.2695 0.7305

2
0
1
9 QLM 0.2614 0.2599 0.0881 0.0169 0.2748 0.7032 0.9297 0.3458 0.4700 0.5482 0.4085 0.5915

SDR 0.2790 0.2663 0.0899 0.0169 0.3048 0.7151 0.9337 0.3594 0.4846 0.5602 0.3819 0.6181

SDR-AES-P 0.2827 0.2667 0.0898 0.0168 0.2973 0.7174 0.9378 0.3649 0.4913 0.5672 0.3876 0.6124

(a) Single-SDR; 2017 (b) Single-SDR; 2018 (c) Single-SDR; 2019

(d) Multi-SDR; 2017 (e) Multi-SDR; 2018 (f) Multi-SDR; 2019

Fig. 3. Topic-by-topic distribution of effectiveness (MAP) for the oracle-selected single-
SDR-BOC-AES-P method (top figures) versus multi-SDR-BOC-AES-P.

They may be discarded once a Boolean query has been formulated (e.g., they may
not be randomised controlled trials or unsuitable for inclusion in the review).

4.3 Variability of Seed Studies on Effectiveness

Finally, we investigate the last research question: To what extent do seed stud-
ies impact the ranking stability of single- and multi-SDR? We investigate this
research question by comparing the topic-by-topic distribution of performance
for the same results present in Table 3. These results are visualised in Fig. 3. That
is, we compare the multi-SDR results to the oracle single-SDR results, described
in Sect. 2.4 so that we can fairly compare the variance of one to the other. We
find that the variance obtained by multi-SDR is generally higher than that of
single-SDR using DTA systematic review topics (Fig. 3a vs. Fig. 3d – and Fig. 3b
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Table 3. Results comparing single-SDR and multi-SDR on the CLEF TAR 2017, 2018,
and 2019 datasets. Note that the results for single-SDR are not directly comparable
to the above tables as explained in Sect. 2.4. Statistical differences (Student’s paired
two-tailed t-test, p < 0.05) are indicated pairwise between the single- and multi- SDR
BOC and BOW methods for each year (e.g., single-SDR-BOC-AES-P vs. multi-SDR-
BOC-AES-P for 2017). % Change indicates the average difference between single- and
multi-{BOW+BOC}.

Method MAP Prec. Prec. Prec. Recall Recall Recall nDCG nDCG nDCG LR% WSS

10 100 1000 10 100 1000 10 100 1000

2
0
1
7

Single-BOC 0.3116 0.4235 0.1463 0.0255 0.2219 0.6344 0.9469 0.4830 0.5330 0.6595 0.3699 0.6301

Single-BOW 0.3098 0.4076 0.1465 0.0255 0.2158 0.6366 0.9472 0.4679 0.5312 0.6566 0.3687 0.6313

Multi-BOC 0.4554† 0.5804† 0.1752† 0.0272† 0.2917† 0.7151† 0.9661† 0.6817† 0.6765† 0.7835† 0.3427 0.6573

Multi-BOW 0.4610† 0.5910† 0.1762† 0.0272† 0.2951† 0.7155† 0.9659† 0.6924† 0.6805† 0.7866† 0.3450 0.6550

% Change 47.4801 41.0234 20.0132 6.6705 34.1131 12.5557 2.0029 44.5398 27.5202 19.3035 -6.8792 4.0283

2
0
1
8

Single-BOC 0.3345 0.4443 0.1671 0.0285 0.2041 0.6181 0.9280 0.5011 0.5296 0.6551 0.2641 0.7359

Single-BOW 0.3384 0.4433 0.1678 0.0286 0.2062 0.6197 0.9383 0.4955 0.5301 0.6579 0.2577 0.7423

Multi-BOC 0.4779† 0.6130† 0.1979† 0.0307† 0.2821† 0.6997† 0.9592† 0.7199† 0.6823† 0.7908† 0.2394† 0.7606†

Multi-BOW 0.4809† 0.6109† 0.1978† 0.0306† 0.2813† 0.6968† 0.9585† 0.7218† 0.6835† 0.7924† 0.2396 0.7604

% Change 42.5011 37.8814 18.1509 7.2657 37.3377 12.8217 2.7561 44.6754 28.8870 20.5797 -8.1919 2.8990

2
0
1
9

Single-BOC 0.3900 0.4249 0.1285 0.0221 0.3196 0.7261 0.9368 0.5365 0.6164 0.6897 0.4304 0.5696

Single-BOW 0.3925 0.4418 0.1272 0.0222 0.3366 0.7243 0.9386 0.5516 0.6164 0.6916 0.4285 0.5715

Multi-BOC 0.5341† 0.5746† 0.1533† 0.0243† 0.3962† 0.7896† 0.9622† 0.7105† 0.7458† 0.8091† 0.3852† 0.6148†

Multi-BOW 0.5374† 0.5864† 0.1521† 0.0244† 0.4031† 0.7853† 0.9616† 0.7223† 0.7466† 0.8114† 0.3877† 0.6123†

% Change 36.9305 33.9958 19.3948 9.9327 21.8599 8.5825 2.5819 31.6927 21.0510 17.3213 −10.0189 7.5424

vs. Fig. 3e). We compute the mean variance across all topics, and find that the
variance of multi-SDR (4.49e−2) is 10.89% higher than single-SDR (4.44e−2)
result for the 2017 dataset, and 11.76 % for the 2018 dataset (single: 3.43e−2;
multi: 4.17e−2). For the 2019 dataset, we find that the variance of multi-SDR
(7.93e−2) is 6.51% lower than single-SDR (8.48e−2).

However, when we randomly sample seed studies from each group for single-
SDR, we find that the variance of multi-SDR is significantly lower: 53.2% average
decrease across 2017, 2018, and 2019. For space reasons, we do not include the
full results. This suggests that the choice of seed study is considerably more
important for single-SDR than for multi-SDR and that multi-SDR produces
much more stable rankings, regardless of the seed studies chosen for re-ranking.

5 Related Work

Currently, it is a requirement for most high-quality systematic reviews to retrieve
literature using a Boolean query [4,6]. Given that a Boolean query retrieves
studies in an unordered set, it is also a requirement that all of the studies must
be screened (assessed) for inclusion in the systematic review [4]. It is currently
becoming more common for a ranking to be induced over this set of studies
in order to begin downstream processes of the systematic review earlier [19],
e.g., acquiring the full-text of studies or results extraction. This ranking of stud-
ies has come to be known as ‘screening prioritisation’, as popularised by the
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CLEF TAR tasks which aimed to automate these early stages of the system-
atic review creation pipeline [9–11]. As a result, in recent years there has been
an uptake in Information Retrieval approaches to enable screening prioritisa-
tion [1–3,5,15,16,18,21,22,25,27]. The vast majority of screening prioritisation
use a different representation than the original Boolean query for ranking. Often,
a separate query must be used to perform ranking, which may not represent the
same information need as the Boolean query. Instead, the SDR method by Lee
and Sun [16] forgoes the query all together and uses studies that have a high
likelihood of relevance, seed studies [6], to rank the remaining studies. These
are studies that are known a priori to the query formulation step. The use of
documents for ranking is similar to the task of query-by-document [17,26] which
has also been used extensively in domain-specific applications [12–14]. However,
as Lee and Sun note, the majority of these methods try to extract key phrases
or concepts from these documents to use for searching. SDR differentiates itself
from these as the intuition is that the entire document is a relevance signal,
rather than certain meaningful sections. Given the relatively short length of
documents here (i.e., abstracts of studies), this intuition is more meaningful
than other settings where the length of a document may be much longer.

6 Conclusions

We reproduced the SDR for systematic reviews method by Lee and Sun [16] on
all the available CLEF TAR datasets [9–11]. Across all three of these datasets,
we found that the 2017 and 2018 datasets share a similar trend in results than
to the 2019 dataset. We believe that this is due to topical differences between
the datasets and that proper tuning of SDR would result in results that better
align with those seen in 2017 and 2018. We also performed several pre-processing
steps that revealed that the BOW representation of relevant studies could also
share a relatively high commonality of terms compared to the BOC represen-
tation. Furthermore, we found that the BOC representation for SDR is gener-
ally beneficial and that term weighting generally improves the effectiveness of
SDR. We also found that multi-SDR was able to outperform single-SDR consis-
tently. Our results also used an oracle to select the most effective seed studies to
compare multi-SDR to single-SDR. This means that the actual gap in effective-
ness between single-SDR and multi-SDR may be considerably larger. Finally, in
terms of the impact of seed studies on ranking stability, we found that although
multi-SDR was able to achieve higher performance than single-SDR, multi-SDR
generally had a higher variance in effectiveness.

For future work, we believe that deep learning approaches such as BERT and
other transformer-based architectures will provide richer document representa-
tions that may better discriminate relevant from non-relevant studies. Finally,
we believe that the technique used to sample seed studies in the original paper
and this reproduction paper may overestimate the actual effectiveness. This is
because a seed study is not necessarily a relevant study, and that seed studies
may be discarded after the query has been formulated. For this, we suggest that
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a new collection is required that includes the seed studies that were originally
used to formulate the Boolean query, in addition to the studies included in the
analysis portion of the systematic review.

Further investigation into SDR will continue to accelerate systematic review
creation, thus increasing and improving evidence-based medicine as a whole.
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