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Abstract The improvement of life quality of diabetic patients requires periodic
measurements of blood glucose, such as those affected by Diabetes Mellitus. They
need to put a blood droplet on a dispensable reagent strip to measure the blood
glucose level. Currently available devices for this purpose are invasive, in-involving
painful, non-hygienic, and expensive measurement methods. Non-invasive devices,
such as those using near-infrared (NIR), intend to be an alternative even though
considered a low precision method compared to biochemical ones. Despite that, the
creation of computational models to improve the precision of non-invasive blood
glucose monitors combining multiple non-invasive technologies has recently been
investigated, such as the use of electrical bioimpedance (BIA) data. BIA has been
successfully used for cancer diagnosis and biomaterial characterizations due to its
safety, low cost, effectiveness, portability, and applicability. The technique measures
the impedance spectra of the material under study and then obtains its biological
properties using a fitting model. This book brings the physical concepts of the BIA
technique, including hardware and modeling for characterization. It also discusses
the most reliable and promising applications for detecting blood glucose levels, both
invasive and non-evasively. The usability, accuracy, precision, and performance of
using the BIA approach are assessed and focused on diabetic diagnosis.

Keywords Blood glucose · Diabetes mellitus · Invasive · NIR · Electrical
bioimpedance

1 Electrical Bioimpedance: Physical Concepts

The opposition flowing sensed by an electrical current across any biological material
can be defined as bioimpedance (BIA, where “A” stands for analysis). It can be
extended to DC (direct current) or AC (alternate current) applications. Generally, if
the application involves the characterization of biomaterial, for example, tissue, then
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an impedance spectrum is required (i.e., electrical bioimpedance spectroscopy—
EBS).

To better describe the physical concepts on bioimpedance, the previous basic
definition of electrical impedance comes to be essential to establish. The impedanceZ
was defined byGeorg SimonOhm inOhm’s law in 1827,whereZ (=V /I) is a complex
number. It was only in 1893 that Arthur Kennelly represented it in terms of a real
(R) and imaginary part (jX) [1], where Z = R + jX and “j” is the imaginary operator.
The difficulty of the materials produces the real part to DC flow (resistance), and
the imaginary part (reactance) is produced by the combination of the self-induction
of voltages in conductors by the magnetic fields of currents (inductance) and the
electrostatic storage of charge induced by voltages between conductors (capacitance)
[2].

When it comes to biological materials, many other variables maymodify the elec-
trical bioimpedance, such as sample shape, internal structure or chemical compo-
sition, sample moisture, and temperature [3]. Tissue can be represented by cells
suspended in an extracellular fluid composed of 20% plasma and 80% interstitial
fluids [4]. A single cell contains a lipid layer for mainly ion transport and protec-
tion. A cell membrane can be modeled as a capacitor parallel with a resistor. If we
consider intra-cellular and extracellular mediums as uniform and isotropic, they can
be modeled as simple resistors, as shown in Fig. 1. At lower frequencies and due
to the unique isolating property of the cell membrane, Rm can be considered much
higher than Rext . The reactance generated by the membrane capacitance Cm is high.
This effect impedes the ionic current from penetrating the cell, forcing the current

Fig. 1 Illustration of the ionic current flow across a type of skin tissue at lower (blue lines) and
higher (green lines) frequencies
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Fig. 2 Equivalent electrical
circuit for a single cell,
where Rext represents the
resistance of extracellular
medium, Rm and Cm
represents the cellular
membrane resistance and
capacitance, respectively,
and Rint represents the
resistance of the intracellular
medium

flow through the extracellular medium. On the other hand, the membrane reactance
decreases at higher frequencies, allowing ionic current flow inside the cell [5].

Figure 1 brings a typical illustration showing how the cells interact with the elec-
trical field at both low (blue lines) and high frequency (green lines). This mechanics
permits calculating the impedance changes in tissuewhich, in turn, is used for charac-
terization and then differentiating a normal tissue from a cancerous one, for example
[6]. Characterization of biological samples can only be possible by fitting themeasure
impedance data into a proper electrical equivalent model, where sample properties
are extracted [7].

The electrical equivalent model presented in Fig. 2 is just a simple data representa-
tion. However, bioimpedance is a complex number that also includes anisotropy and
inhomogeneities. Therefore, it cannot be modeled with simple electrical components
such as resistors (R) and capacitors (C), even if many RC models are connected in
series or parallel. The electrical extraction properties of the biomaterial under study
require the use of non-linear equations expressed in terms of fractional polynomials,
such as the one suggested by [7]. The Cole equation has been widely used for tissue
characterization over the last 50 years, where “α” (alpha) is a number from 0 and
1, ωC is the cutoff frequency of the material, R0 (=Rext + Rint , assuming Rm >>
Rext and Rext >> Rint) and R∞ (=Rext //Rint ,) where “//” denotes a parallel operation)
represents the impedance at the lowest and highest frequency, respectively. Each
biological material has its alpha value, which best describes the dispersion behavior
of the electrical field inside of it. Table 1 brings the alpha values for a few biolog-
ically important materials. A more detailed list of such alpha values can be found
in [8]. Equation 1 represents just a single-dispersion, but two Cole models can also
be connected in series for studying wide frequency range applications of multiphase
materials, such as blood, bovine milk, cancerous tissue, etc.

Zbiol=R0 − R0 − R∞
1 + ( jω/ωC)1−α

(1)

Examples of biomaterial characterizations are shown in Fig. 3, where constant
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Table 1 Cole-Cole alpha
parameters obtained from
approximately 10 Hz to
20 GHz [8]

Tissue f C (kHz) Alpha

Liver 1120.0 0.219

Bladder 846.0 0.077

Blood 947.0 0.092

Muscle (transverse) 175.0 0.093

Stomach 3060.0 0.122

Nerve 53.0 0.251

Fig. 3 Different types of biomaterial complexity using BIA technique for characterization, where
R0 represents the resistance at the lowest measured frequency whereas Rinf represents the highest
frequency one. a Bovine milk. b Apple fruit. c Bacteria culture. d Slab of skin tissue

phase element (CPE) is a special case of the general fractional component whose
impedance ZCPE is equal to 1/(sαC) in the s-domain, where C is the capacitance and
α is its order. As a result, a phase angle φCPE (= απ/2) can be calculated for each
material type as it is constant at all frequencies, depending only on the α value.
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It is known from impedance spectroscopy studies undertaken over the last 80 years
that biological samples, especially tissue, have different dispersion to the applied
electrical field according to the frequency of the alternate excitation signal. This
is because of the different free ions within both extra- and intracellular fluid. At
lower frequencies, the ionic potential created by the external excitation signal will
facilitate the free ions’ flowing. The cell membrane impedes this flow, resulting in
a high impedance when the amount of extracellular fluids is very small in cancer
tissue. On the other hand, at higher frequencies, the ionic current also flows through
the cell membrane and its intracellular contents, decreasing the impedance for most
cases.

It can be concluded from the interactions of different ions typeswithin a biological
material that bioimpedance spectroscopy can easily differentiate tissue types and
biomaterial structures in a rapid, effective, and low-cost manner.

2 Basic Hardware Structures

Most BIA systems inject a sinusoidal current with a constant amplitude over a wide
frequency range by two electrodes to the sample, measure the resulting voltage by the
other two electrodes, and then calculate the transfer impedance. This is a so-called
tetrapolar technique whose contact impedance can be neglected frommeasured data.
Figure 4 the ionic equipotential lines created by injecting (+I) and sank (−I) current
inside a tissue sample. For example, the tetrapolar technique gives more accurate

Fig. 4 Representation of the
ion equipotential lines
created by an alternate
electrical excitation current
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Fig. 5 Schematic diagram of a basic BIA hardware using the 4-electrode technique

information about the sample properties than the bipolar technique. However, elec-
tronic accuracy plays a great role in the measurements. All stray capacitance in the
instrumentation, cables, and connectors degrades the BIA performance, especially
at higher frequencies.

Blood analysis with BIA requires surface electrodes connected with minimal
hardware, comprisingmainly a current source and a front-end circuit. Figure 5 shows
a hardware example for this application. ThewholeBIA setup can be built either as an
all-in-one or a standalone system. A low-power microcontroller generates the signal
and calculates both impedance modulus and phase. This type of system optimizes
size and battery life by using low-cost integrated circuits (ICs), such as the AD5933
(AnalogDevices, Inc., Norwood,MA), theAFE4300 (Texas Instruments Inc., Dallas,
TX), the ADAS1000 (Analog Devices, Inc.) and theMAX30002 (Maxim Integrated,
Inc., San Jose, CA). IC integrating bioimpedancemeters contain the signal generator,
excitation, and measuring circuits, including a small processor for calculating the
impedance and doing the control interface.

A bioimpedancemeter can easily be built from scratch either for in-vivo or in-vitro
measurements by having some background in electronics. However, some commer-
cial electrical impedance spectrometers (EIS) can also do in-vitro measurements.
EIS is the standard device for measuring impedance in a frequency range. There
is a wide range of manufacturers for these devices, such as Agilent, Zurich Instru-
ments, HP, or Emerson. Commercial impedance analyzers may cost more than one
thousand dollars, which can offer many tools to do impedance measurements such
as high robustness to noise, high-quality layouts for high-speed signals, radiofre-
quency isolation, ultra-precise components for ultra-precisemeasurements, advanced
measurements algorithms, and user-friendly software to make the measurements as
much easy as possible.
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In electronics, it is common sense that measuring impedance demands no more
than applyingOhm’s law,where a voltage is divided by a current. Therefore, low-cost
devices have been increasing in this area over the last 10 years. A well-known low-
cost device used for BIA measurements is the integrated circuit from analog devices
AD5933 [9–12]. This device can do impedancemeasurements up to 300 kHz and cost
no more than $60. On the other hand, it uses a bipolar technique, and it can perform
measurements over 300 kHz if required. This is why most BIA designers prefer to
build custom BIA hardware from scratch. In addition, a customized BIA gives the
researcher more flexibility and efficiency in terms of hardware, signal processing,
and applications.

It is important to mention that the flexibility and freedom while constructing
custom instruments can be a drawback for standardization. The number of combi-
nations when building a BIA hardware can be enormous and may be impossible to
resume. An example of a simple BIA hardware is shown in Fig. 6, where current
is injected through the connectors shown in Fig. 6d and voltage across the tissue is
measured between the connectors shown in Fig. 6e.

Fig. 6 Schematic diagram of a typical BIA hardware. a Current generator. b Voltage meter. c
Current meter. d Current generator and current meter connections. e Voltage meter connections
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2.1 Current Excitation Circuit

The current generation shown in Fig. 6a is divided into a digital to analog converter
(DAC) and a voltage-controlled current source (VCCS). A DAC is a voltage source
that may not be embedded into a Digital Signal Processor (DSP). DAC allows gener-
ating different shapes of a single frequency and multi-frequency waveforms, such
as sine wave, sawtooth, triangle, or square. If multifrequency waveforms are used,
some of the most common for BIA are multisine, Discrete Interval Binary Sequence
(DIBS), or Maximum Length Binary Sequence (MLBS) [13]. VCCS is used to
convert the voltage output from the DAC into the current injected into the tissue.
The VCCS shown in figure x5 is well-known in the bioimpedance field, such as the
modified Howland current source (HCS). Prof. Bradford Howland firstly proposed
this source in 1962, published by [14] and modified by [15]. The modified HCS has
been widely used in bioimpedance due to its simplicity, stability, high bandwidth
[16, 17], and high output impedance [18].

Most BIA system uses a modified Howland current source (MHCS) with the
grounded load. For the academic purpose and better understanding, we describe a
proposed blood analysis design here, as shown in Fig. 7. The inverting input is fed by
a binary signal supplied by the microcontroller (VI/O). In contrast, the non-inverting
input is biased with a trimmer voltage of 1.66 V to cancel the output current offset
produced by the microcontroller signal. According to the transfer function of the
MHCS shown in Eq. 2, Iout = Z4*(V 1.66 − VI/O)/Z5 assuming R2 = R3 = R4 = R
and R1 = R + R5 [18]. For example, if the input voltage VI/O = 3.3 Vp and R5 =
3.3 k�, the MHCS will produce an output current Iout of 1 mAp. The capacitor C2

blocks DC currents coming from the MHCS, then avoiding DC currents flowing to
the patient and preventing DC feedback to input, whereas C1 prevents oscillations
at higher frequencies.

Fig. 7 Proposed current source for bioimpedance analysis of blood
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Fig. 8 Basic voltage acquisition system for a typical BIA hardware

Iout =
[
R1 · Z4 − R2 · R3 − R2 · Z3

R2 · Z5 − (R1 + R3)

]
∗ V1.66 − Z4

R2 · Z5
∗ VI/O (2)

2.2 Voltage and Current Meters

Most of the acquisition systems used an Instrumentation Amplifier (IA), as shown
in Fig. 8. This type of amplifier has a differential input and a single-ended output. It
offers a high input impedance, high Common Mode Rejection Ratio (CMRR), and
low DC offset. Usually, an IA feeds an Analog to Digital Converter (ADC) through
a low-pass filter to digitize the analog signal.

Filtering is most often performed to remove unwanted signals and most types of
noise from the data. The most common form of filtering is the low-pass one, which
limits the bandwidth of the data by eliminating signals and noise above the filter’s
corner frequency. For example, the importance of low-pass filtering appears when
the goal is to avoid the 50/60 Hz inference from the power supply. ECG, EMG and
EEG biosignals usually apply this technique for rejecting the 50/60 Hz. In the case
of Fig. 8, Vout is expected to be a DC value as a function of the impedance modulus,
and then the AC component of the measured signal is removed by filtering it out.

Nonetheless, it is important to ensure that the ADC sample rate is at least double
the maximum frequency generated by the DAC, guaranteeing the fulfillment of the
Nyquist theorem.

A practical example of a voltage acquisition system is shown in Fig. 8. The
instrumentation amplifier INA1 performs the differential voltage across the load at
the first stage. The IA should be chosen according to the load properties and frequency
range that best suits the characterization required.High input impedance, highvoltage
gain, and low output and input noise are highly recommended. As shown in Fig. 8,
R1 and C1 form a high-pass filter for preventing the amplification of any DC signals
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and then saturation of the INA output due to that signals. Before connecting the INA
output to other signal processors, adding an extra high-pass filter (R2 and C2) to
remove both the amplified DC offset signal of INA and the electrode polarization
mismatch is recommended.

To obtain both modulus and phase of the measured impedance, at the second stage
of the signal processing is used a complete four-quadrant, voltage output analog
multiplier (MUX), shown asMULT1 in Fig. 8. Using a MUX is the simplest method
for having a precise and real-time impedance measurement converted into digital.
The key point of aMUX is its transfer function (=VINA*VGAIN*GLOOP), where R4 and
R5 define the loop gain and VGAIN allows a fine gain tuning by the microcontroller.
Even this signal processing is precise and accurate, the output voltage Vout contains
a DC level which, in turn, is removed by the high-pass filter formed by C3 and R3.

Instead of using MUX, one can digitize the INA output voltage directly by an
AD converter, then process the signal for extracting both modulus and phase of the
material impedance under study. However, if the impedance modulus is the only
figure required, then a wide-bandwidth active rectifier and a second-order active
filter will do the job. On the other hand, if the impedance phase is the only variable
to be evaluated in the impedance spectra, a phase-retrieve circuit can be used, such
as a simple multiplier and a second-order active low-pass filter.

Measuring modulus and phase accurately across a load in a wide bandwidth is
quite difficult, as parasite capacitance degrades the signal. Therefore, most BIA
designs measure the current flow in the load by using a shunt resistor connected
in series with the load. The main advantage of measuring the load current is to
compensate for the phase shift errors due to stray and cable capacitance, which, in
the end, increases the accuracy of the measured biological impedance. Most current-
measuring circuits use a trans-impedance amplifier (TIA), composed of a buffer and a
differential amplifier. TIA has the advantage of not using an external resistor in series
with the load, increasing the voltage swing of the MHCS. On the other hand, using
a shunt resistor does not intercept the current return path avoiding errors produced
by the TIA, then maintaining the ground reference [19].

A practical circuit for measuring the current flow through the Load is shown in
Fig. 9. It uses a shunt resistor R1, a high input impedance buffer (OA1) for neglecting
leakage current, a differential amplifier (OA2), and a voltage reference of 1.66 V, for
example, to centralize the VS into the dynamic range of the ADC.

It is also recommended that both modulus and phase of load current ILoad be
measured to calculate the load’s impedance more accurately. That measurement can
be performed by a MUX, as explained above. Then, both modulus and phase of
ILoad (=V1.66/R1 − VS/R1), assuming R2 = R3 = R4 = R5, are used to calculate the
biological load under study. It is important to emphasize that both VS across the load
and shunt resistor are frequency-dependent, then care should be taken when doing
such a calculation. Generally, the impedance modulus is then calculated by the ration
|Vout|/|ILoad |, whereas the phase by the difference between φVout and φLoad.
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Fig. 9 Schematic diagram of a practical current measuring circuit across the load understudy

3 Extracting Glucose from BIA

BIA technique is a non-invasive method, as already discussed in the above sections,
which can be employed to detect blood glucose. BIA is a type of technology consid-
ered “transdermal,” however other technologies have also been used. They can be
divided into different sub-technologies, as shown in Fig. 10. Depending on the envi-
ronment and the accessed body place for measurements, every technology has its

Fig. 10 Diagram showing the most of non-invasive blood measuring technologies
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working features, advantages, and disadvantages. For example, transdermal is very
sensitive to environmental variables such as temperature or sweating [20]. Optical
methods depend on the properties of the tissue, such as color tone in the case of
skin [21]. Over the last 10 years, relevant technologies have been launched in the
market, such as GlucoWatch® G2 Biographer, Pendra®, OrSense NBM-200G, and
Glucose. However, some are not precise enough to predict blood glucose levels,
and others were removed from the FDA (USA) market. This chapter presents the
solution using only the electrical bioimpedance (also called electrical bioimpedance
spectroscopy—EBIS).

Monitoring glucose has been a classic area of research in BIA. Over time, accu-
racy has been increased but not enough to have clinically acceptable results [22,
23]. Recent studies have presented BIA as a promising non-invasive technique for
detecting glucose in the blood [24, 25]. However, it is difficult to choose a proper
body site to connect the electrodes because it depends on electrode geometry, circuitry
topology, measuring technique, etc.

Glucose can be found in interstitial fluids, and most researchers use it to set up
the system [26, 27]. Interstitial fluids are present in every tissue as a component
of the extracellular fluids. Interstitial glucose concentration is well correlated with
blood glucose concentration, but glucose’s appearance in interstitial fluids is delayed
compared to it in the blood [28, 29]. Nevertheless, many researchers consider this
delay a positive point to glucose monitors because they are more accurate than
plasma laboratory analysis. Interstitial glucose is the real glucose that tissue cells
use for their metabolism. Blood glucose can eventually exhibit some peaks while
interstitial glucose keeps stable. Making insulin corrections during the fake glucose
peaks can negatively impact glucose levels because glucose levels do not need to be
reduced [30, 31].

Predicting blood glucose by using the spectra of both impedance modulus and
phase requires a good analytical or numerical model to be computed. This type of
processing deals with measuring exogenous variables (modulus and phase) corre-
lated with variable to be predicted, and modeling how these variables produce effects
in variable to be predicted. In addition, if a tissue characterization is required,
bioimpedance spectra are necessary to properly extract tissue properties, such as
intra- and extracellular components and membrane capacitance. We have seen here
that these properties are calculated using a fractal model, shown in [7], containing
at least four variables to be fitted over the measured frequency range. The Multiple
Linear Regression (MLR) method has been used quite successfully for simple cases
with single dispersion materials. When it comes either with complex materials or
large data to be processed, other different models have been used for that purpose,
such as Support Vector Regression (SVR) and Artificial Neural Network (ANN).

MLR is a linear modeling method that uses the linear relation between a de-
pendent variable and many independent variables. The MLR algorithm has been
used to predict blood glucose non-invasively, such as the one that uses the metabolic
energy conservation technique [32]. In contrast, the presented by [33] used multiple
measured data (capacitive fringing field sensors, optical sensors, and skin hydration
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levels). MLR can be used by modeling the blood impedance modulus or phase
concerning glucose level measured in milligrams per deciliter (mg/dL).

While linear regression minimizes the error between the actual and predicted
values through the line of best fit, SVRmanages to fit the best line within a threshold
of values, otherwise called the epsilon-insensitive tube. It uses the same basic idea as
SupportVectorMachine (SVM), but applies it to predict real values rather than a class.
It also acknowledges the presence of non-linearity in the data andprovides a proficient
prediction model. Some SVR applications for blood glucose non-invasively predic-
tion are pulse glucometer [34] and electrochemical measurement of saliva [35]. It
can also be used in other re- related areas such as blood glucose level prediction
using daily diet information, exercise, and past blood glucose measurements [36].
Most BIA systems measure over 30 discrete frequency points either for modulus or
phase, then end up with a large amount of data, especially if other biosignals are also
acquired to predict the blood glucose level better.

Handling a large amount of data means dealing with many input data, where an
ANN is highly recommended. The more data fed into the network, the more general-
ized and accurate the predictions are. ANN systems can learn system behaviors using
examples to model them without any specific programming or knowledge about the
system. It can be used for linear and non-linear problems. ANN has been widely
used to predict blood glucose levels non-invasively together with other types of tech-
nologies, such as NIRS [37], palm sweat [38], or multisensor systems including
photoplethysmogram, heart rate, galvanic skin response and temperature measure-
ments [39]. Another application where ANNs have been used related to glucose is
predicting future glucose levels in different time intervals [40].

4 New Trends for Diabetic’s Meter

Many studies are trying to deal with the problem of separating the sources producing
similar physiological effects as the glucose builds. The use of different sensor tech-
nologies helps in this task. Two physiological impacts can have the same behavior:
producing thermal effects but different producing coloring effects. The combina-
tion ultrasonic, electromagnetic, and thermal has shown an increment of accuracy
[41]. Mid-infrared spectroscopy and photoacoustic detection are examples where
combining different technologies improves the results compared with using a single
technology [42].

When the information comes from multiple sensors, computational algorithms
may be used to analyze this information as a set. A neural network has shown a
good performance combining near-infrared spectroscopy (NIRS) and bioimpedance
analysis (BIA) measurements [24]. Photoplethysmogram, galvanic skin response,
and temperature measurements can be combined using multiple linear regression
and an artificial neural network to estimate blood glucose levels [39].
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Novel approaches have been using nanoparticles as non-enzymatic biosensing
of glucose [43] and graphene nanocomposite acting as a non-invasive sensor for
measuring blood glucose in diabetic patients [44].

5 Conclusion

It can be resumed that even the Self-Monitoring Blood Glucose (SMBG) market is
stabilized using invasive methods, there is a big research gap and enormous interest
in the development of non-invasive SMBG devices. It was shown in this chapter that:

i. Current technologies suffer from a lot of problems such as the lack of accuracy
and disturbances;

ii. Bioimpedance (BIA) technique has been showing a robust, low cost, and
promising technique for tissue characterization and then also to blood glucose
estimation;

iii. The use of BIA together with NIR has already proven to be a more accurate
joint technique for blood glucose estimation;

iv. Combining multi-sensor measurements with algorithms seems to be a way
forward to more accurate glucose estimations in diabetic patients.

Some future outlooks for the non-invasive SMBBGmay include the use of biosen-
sors highly sensitive to specific ions or other substances when a patient undergoes a
glycemia peak; the use of a multi-agent sensor network for real-time monitoring; the
use of AI together with wireless sensors for long term and home care applications.
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