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Abstract Type II diabetes mellitus (T2DM) is a metabolic disorder characterized
by chronically elevated glucose caused by insulin resistance. Although T2DM is
manageable through insulin therapy, the disorder is a risk factor for much more
dangerous diseases, including cardiovascular disease, kidney disease, retinopathy,
Alzheimer’s disease, and more. T2DM affects 450 million people worldwide and is
attributed to causing over 4 million deaths each year. Current methods for detecting
diabetes typically involve randomly or after fasting testing a person’s glycated
hemoglobin and blood sugar levels. However, these methods can be problematic due
to an individual’s daily levels or being affected by diet or environment and the lack
of sensitivity and reliability within the tests themselves. Vibrational spectroscopic
methods have been pursued as a novel method for detecting diabetes accurately and
early on in a non-invasivemanner. This review summarizes recent researchwhich has
used infrared or Raman spectroscopy to develop a fast, simple, and accurate method
for non-invasively diagnosing diabetes. It is proposed that vibrational spectroscopy
can improve and revolutionize how diabetes is diagnosed, allowing for faster and
more effective treatment.
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1 Introduction

Diabetes is commonly regarded as a group of metabolic diseases characterized by
elevated glucose levels due to defects in insulin secretion and insulin action. Chronic
levels of hyperglycemia in an individual can lead to severe complications, including
the damage to, and even failure of, organs such as the kidneys and heart [1]. Due to
many health complications associatedwith the disease, accurate and early detection is
of incredible significance [2]. However, one-third of current type II diabetes cases are
undiagnosed, and current diagnostic tests are heavily debated [3, 4].Most commonly,
various blood glucose tests, such as the oral glucose tolerance test and the fasting
blood sugar test, are performed, which require the individual being tested to undergo
some level of fasting and can be affected by short-term lifestyle influences and
changes. Another test, called the glycated hemoglobin (HbA1c) test, provides an
average blood sugar level for the past two to three months. Although the HbA1c test
does not require fasting, it is expensive and does not accurately reflect glycemia.
Further information regarding these tests is highlighted elsewhere [5, 6]. Because
limits exist in the currently used methods, this review critically evaluates vibrational
spectroscopy and its potential to contribute toward the identification of diabetes
simply and accurately.

The two major methods associated with vibrational spectroscopy include Raman
spectroscopy and infrared (IR) spectroscopy. Raman spectroscopy involves irradi-
ating a sample with monochromatic (i.e., laser) light resulting in molecules scat-
tering incident light. The majority of scattered light is at the same wavelength as
the incident light and is called Rayleigh scattering. The small portion of the light
scattered at a different wavelength is called Raman scattering. The difference in
energy between the incident and Raman scattered light is a “Raman shift” and corre-
sponds to a frequency for the vibration, measured in wavenumbers (cm−1). The
resultant Raman spectrum is considered a vibrational “fingerprint,” specific to the
analyzed sample. IR spectroscopy is complementary to Raman spectroscopy and
uses infrared light to irradiate the sample, exciting molecular vibrations. The resul-
tant spectrum describes the absorption of the light by the molecules in the sample
as a function of its frequency, again measured in wavenumbers (cm−1). Vibrational
spectroscopy is useful for identifying different functional groups present in a sample.
Bothmethods provide complementary information regarding themolecular structure
and composition of the sample. Importantly, due to their specificity, each can be used
to identify differences between biological samples obtained from different types of
donors, such as those with or without a disease. Furthermore, research has already
shown that known differences in the biochemical composition of biological fluids
exist because of diabetes. It has been observed that higher levels of certain enzymes,
total cholesterol, triglycerides, and low-density lipoprotein and lower levels of high-
density lipoprotein, hemoglobin, and red blood cell content were found in the blood
of individuals with type 2 diabetes mellitus compared to non-diabetic subjects [7, 8].
Due to these differences, which have been previously observed and documented [9,
10], it is hypothesized that vibrational spectroscopy may be successful in detecting
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the alterations in composition, in addition to others that have been reported, within
biological samples and capitalize on this detection for diagnostic success.

Due to the importance of detecting diabetes accurately and effectively, other
reviews have been published on the topic. However, the scope of this alternative
but informative review differs greatly from this review. Many reviews focus broadly
on any methods useful for monitoring glucose [11–15], glycated hemoglobin [3,
16], or other biomarkers [17] levels to generate a diagnosis. Different reviews have
focused on any method which could be useful for detecting diabetes [4, 18], and
some work has been done to investigate non-enzymatic methods for glucose sensing
[19–22].While further reviews focus on the utility of either Raman spectroscopy [23,
24] or IR spectroscopy [25, 26], or both [27–31] for general medical diagnostics,
there is a gap in the literature that focuses specifically on vibrational spectroscopy
for diagnosing diabetes. In this regard, the current review will analyze and discuss
research published between 2015 and the present. In particular, articles that focus
on applying either Raman spectroscopy or IR spectroscopy to diagnose diabetes
are considered. Modifications of either method will be considered, such as incor-
porating fiber-optic techniques or hand-held devices. Studies conducted using any
form of biological material (including cells, tissue, and body fluids) will be reviewed,
in addition to those studies which may or may not utilize chemometric methods.
Although it is preferred to incorporate the use of multivariate analysis for objective
and accurate diagnostic results, the use of such methods is not always necessary for
identifying diabetes, as will be discussed. This work will review the many applica-
tions of Raman spectroscopy and infrared spectroscopy for the inexpensive, rapid,
simple, and accurate identification of diabetes.

2 Raman Spectroscopy

In more than half of the manuscripts reviewed herein, Raman spectroscopy has been
used to successfully identify various spectroscopic biomarkers to identify diabetes.
The spectral fingerprint produced using Raman spectroscopy can be vital for iden-
tifying differences between healthy donors and those donors with a disease. One
of the first reports on the application of Raman spectroscopy for investigating the
disease mechanism of diabetes was made by Professor Ozaki et al. in 1982. Raman
spectroscopy was employed to investigate the biochemical differences between a
diabetic cataractous lens and a normal lens [32]. Amongst the many important
projects Professor Ozaki carried out, this work, in particular, was crucial to opening
the door for further investigations into using vibrational spectroscopy as a tool to
detect and monitor this disease.

The articles reviewed in this section include those using regular Raman spec-
troscopy to identify diabetes and different variations of the method. For example,
several research projects have incorporated the use of surface-enhanced Raman
spectroscopy (SERS). The advantage of SERS resides in its capacity to detect
biomolecules at ultralow concentrations due to the adsorption of molecules onto
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rough metal surfaces, such as silver or gold nanoparticles. The SERS effect can
enhanceRaman scattering by factors up to 1010 or larger, allowing for amore sensitive
analysis of the analyte in question [33, 34] Portable [35] and fiber-optic [36] Raman
spectroscopic systems are other popular variations ofRaman spectroscopy used in the
following reviewed manuscripts for diagnostic applications. These methods repre-
sent the transition of the instrument toward use in clinical settings; the systems are
typically much smaller, more portable, and easily able to be adapted into different
settings as compared to a typical Raman spectrometer. The instruments can be less
expensive than bench-top instruments, occupy significantly less space, and can often
be used intraoperatively, making real-time analysis much more achievable.

In addition,many of the studies reviewed in this section incorporated chemometric
methods for identifying and diagnosing diabetes. Generally, chemometrics refers to
extracting chemically relevant information from complex datasets [37]. By applying
chemometric methods to data that exists as a matrix (e.g., spectral data), machine
learning algorithms can be built to separate, sort, and recognize patterns within
chemical data. The built models can recognize differences and similarities between
classes or groups of data and can use that information to generate predictions on
new data presented. Incorporating multivariate analysis into a study can lead to more
accurate and objective results than studies that do not rely on chemometrics. In this
way, these algorithms can be used for many different types of medical screening and
diagnostic applications [28, 38–40].

The following research studies focus on identifying diabetes through detection
of glycated hemoglobin, blood glucose levels, other novel biomarkers, or strictly
through chemometric models.

2.1 Monitoring Glycated Hemoglobin (HbA1c) Levels
for Indicating Diabetes

Several research studies focused on detecting glycated hemoglobin (HbA1c) within
the individuals they studied. Elevated levels of HbA1c have been indicated as a
well-known biomarker for diabetes, and the HbA1c test provides an average blood
sugar measurement of the past two to three months by measuring the percentage of
blood sugar attached to hemoglobin [41, 42]. A recent review has focused on the
future outlook of using Raman spectroscopy for sensing glycated hemoglobin [43].
One of the earlier papers to investigate Raman spectroscopy for detectingHbA1cwas
reported byBarman et al. in 2012 [44].More recently, González-Viveros investigated
various commercial lyophilized HbA1c in distilled water. Principal component anal-
ysis (PCA), an unsupervised chemometric method, showed good separation between
the commercial HbA1c and two solutions with known concentrations (Fig. 1). A
nonlinear regression model based on a feed-forward neural network (FFNN) was
then built to predict the unknown concentration of HbA1c in different solutions,
which resulted in a low root mean square error of 0.08% ± 0.04 after five-fold
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Fig. 1 HbA1c concentrations representation by three PC. Each point represents a sampled
spectrum. Reproduced with permission from Elsevier B.V. [45]

cross-validation (CV) [45]. While this work does not directly investigate diagnosing
diabetes, the successful results indicate that future work could extend toward moni-
toring the levels of HbA1c in blood samples for both detecting and monitoring the
progression of the disease.

Using a Raman probe system (Fig. 2), Villa-Manríquez et al. collected Raman
spectra from three different regions of the body, including the index fingertip of
the right hand, ear lobe, and the forehead of 15 healthy volunteers and 71 patients
with diabetes (of whom, 49 had high HbA1c levels and 22 had low HbA1c levels).
Chemometrics analysis methods were used for discrimination, including PCA and
support vector machine (SVM) analysis. Raman spectra of the forehead were the
most successful for differentiating the lowHbA1c level group and healthy volunteers,
reaching 100% sensitivity and specificity each. The fingertip Raman spectra showed
100% sensitivity and 80% specificity for separating the healthy volunteers and the
highHbA1c level group. A receiver operating characteristic (ROC) curvewas used to
confirm the results obtained after external validation conducted using an independent
test dataset, indicating a successful in vivomethod for identifying diabetic individuals
[46].

Lin et al. utilized a near-IR laser tweezers Raman spectroscopy (LTRS) system,
a method that allows for analysis of single biological particles or cells in suspension
[47], to investigate variation in hemoglobin levels within red blood cells obtained
fromT2DMindividuals (n=45) and healthy volunteers (n=45). Linear discriminant
analysis (LDA) could accurately discriminate between the groups, reaching 100%
sensitivity and 90% specificity after external validation. The major spectral differ-
ences were assigned to proteins and heme groups [48]. These two studies are clear
examples of successful methods which employ Raman spectroscopy for detecting
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Fig. 2 Experimental setup scheme. a Laser of 785 nm, b spectrometer, c computer, d Raman
probe, and e sample. Reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim [46]

elevated or variated levels of HbA1c, with the potential to improve accurate detection
of T2DM.

2.2 Monitoring Blood Glucose Levels for Indicating Diabetes

The classic gold standard for diagnosing diabetes is testing an individual’s blood
sugar levels, such as through the oral glucose tolerance test (OGTT); however,
this test, and others, require the patient to fast, are time-consuming, and may have
poor reproducibility [49]. Through Raman spectroscopy, numerous researchers have
pursued improved and alternative methods for identifying elevated blood glucose
levels within individuals. In one work, a method for noninvasive monitoring of blood
glucose levels was explored through Raman spectroscopic analysis of microvessels
in the superficial layer of the human nail fold of 12 random volunteers. PCA in
combination with a backpropagation artificial neural network (BP-ANN) was used
to predict the blood glucose levels of the individuals. The levels were compared to
those obtained using the OGTT, with the results showing a root mean square error
of prediction of 0.45 mmol/L and R2 of 0.95; the predicted glucose concentrations
were further evaluated using the Clarke error grid, which compares how similar
blood glucose values are to sensor readings at isolated points in time [50]. Here,
results indicated the predicted concentrations fell within Clarke error zones A and
B, which means they were within 20% similarity to that provided by the OGTT or
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outside of 20% similarity but would not lead to inappropriate treatment, respectively.
Additional validation of the chemometric model was not reported [51].

A fiber-optic Raman probe was also used to relate Raman spectra to blood glucose
levels in similar work. Here, 20 individuals were given a standard glucose drink,
typically used inOGTT.Raman spectrawere recorded transcutaneously every 10min
for 160min,while finger-prickmeasurementswere drawn to record the blood glucose
levels. Partial least squares regression (PLSR) modeling was used to predict glucose
concentration in the bloodusingRaman spectral data.Results after external validation
showed an accurate comparison could bemade, and 97%of the predictions fell within
zonesA andBof theClarke error grid [52]. Alternatively, Ju et al. used a SERS sensor
to detect in situ glucose levels in a mouse model of Streptozotocin (STZ)-induced
type I diabetes via a functional poly(methyl methacrylate) microneedle (F-PMMA
MN) array (Fig. 3). It was shown that the microneedle array could directly measure
glucose levels within interstitial fluid without causing lasting damage to the skin. A
commercial glucometer was used to compare glucose level measurements; results
show 93% of the glucose readings obtained using the F-PMMAMN array fell within
zones A and B of the Clarke error grid, indicating a novel minimally invasive method
determining blood glucose levels for diabetes detection [53].

Lastly, in different works, a wearable Raman probe system was employed. Ten
human volunteers were administered 2 g/kg of sucrose. Both Raman spectra were
obtained transcutaneously from the inside of the wrist, and glucose reference values,
via a glucose meter were recorded every 20 min for two hours. A nonlinear PLS
model was built to predict the glucose values based on the Raman spectra, with
results indicating an average R2 value of 0.844 after CV. This work indicates a
very intriguing potential to investigate blood glucose levels for monitoring disease
progression in a noninvasive manner [54].

These four studies show that Raman spectroscopy has great potential to measure
blood glucose levels accurately and is minimally invasive. While this research
requires repetition in large-scale human studies, the success shown here indicates
this method could be considered in future work.

2.3 Monitoring Novel Biomarkers for Indicating Diabetes

In addition to monitoring HbA1c and blood glucose levels, other biomarkers were
also explored as a potential route toward identifying diabetes with greater levels of
accuracy and repeatability. Although not all novel biomarkers have a well-known
biochemical connection to diabetes, the exploratory nature of Raman spectroscopy
allows for the detection of biomolecules that have not been considered in the past.

The first set of research studies in this section focused on analyzing serum for
identifying novel biomarkers. Recently, leucine and isoleucine amino acids were
investigated as biomarkers for early T2DM screening using SERS. Here, blood from
40 rats was deposited on substrates prepared from conductive silver paste smeared
onto glass and analyzed; Specific Raman bands were found to correlate with the
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two amino acids, in addition to glucose, with the intensities corresponding to T2DM
biomarkers. Further, when the rats were administered two different antidiabetic drugs
(pioglitazone and herbal extract Momordica spinosa (Glig.) Chiov), the intensity of
theseRamanbands in newly collected spectrawere shown to decrease, thus indicating
these amino acids as potential spectroscopic markers for monitoring the progression
of the disease as well as the efficacy of treatment [55]. Similarly, the same research
group used SERS substrates to analyze blood collected from 50 rats. Here, they
identified valine, leucine, isoleucine, creatine, glucose, and fructose spectral bands
as early indicators for predicting the presence of diabetes. These spectral bands
were also sensitive to antidiabetic drug treatment in the rats. Here, the herbal extract
Rotheca myricoides Hochst and the antidiabetic drug pioglitazone resulted in the
decrease in intensity of the spectroscopic bands associated with the aforementioned
biomolecules; PCA also indicated spectral differences existed between the various
groups [56]. Both papers indicate an interesting potential for the early identifica-
tion and treatment monitoring of T2DM based on the novel and alternative Raman
spectroscopic biomarkers. Early detection of the disease can help mitigate potential
issues that arise due to it and provide the afflicted individual with more effective
treatment opportunities [57–59].

In human studies, Silveira Jr. et al. leveraged Raman spectroscopy for investi-
gating the levels of glucose and lipid fractions in 44 serum samples. The concen-
tration of glucose, triglycerides, cholesterol, and high- and low-density lipoproteins
were determined using a colorimetric method. A PLSR model with leave-one-out
cross-validation (LOOCV) was then built to predict the known concentrations of the
biochemical components based on the Raman spectra and indicated triglycerides and
cholesterol concentrations could be estimated with r values of 0.98 and 0.96, respec-
tively. The r values were slightly lower (0.75–0.86) for the other biochemicals [60].
González-Solís et al. analyzed serum samples from 15 individuals diagnosed with
T2DM and from 20 healthy controls, with spectral differences due to glutathione,
polysaccharides, phenylalanine, tryptophan, and proteins being observed. PCA with
LDA was then employed to discriminate between the two groups, reaching 96%
sensitivity and 99% specificity after CV [61]. In one last report using blood, albumin
was purified using membrane electrophoresis from plasma samples of 40 T2DM
patients and 50 healthy volunteers (where five donors from each class were set
aside for an independent external validation group). SERS spectra were collected,
and PCA with LDA was shown to successfully differentiate between diabetic and
healthy spectra with 100% specificity and 80% sensitivity after external validation
[62]. These studies indicate that alternative blood-based biomarkers may increase
the sensitivity and specificity for identifying and diagnosing diabetes using Raman
spectroscopy.

In non-blood-based studies, urinary extracellular vesicleswere shown in one paper
to be useful as a potential diabetes biomarker, with cluster analysis (CA) of the
obtained Raman spectra showing significant differences between controls (n = 10)
and T2DM (n = 45, 19 with good glycemic control and 26 with unsatisfactory
glycemic control) individuals. On the other hand, endothelium-derived extracellular
vesicles successfully separated cells cultured in differing glycemic conditions. PLSR
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analysis indicated spectral bands associated with saccharides, lipids, proteins and
protein conformation, and nucleic acids could separate the three groups. Although
no validation was reported, this research indicates a different and much less invasive
method for detecting potential diabetes biomarkers [63]. Flores-Guerrero utilized a
probe-based Raman spectrometer to investigate urinary albumin in individuals with
T2DM. Diabetic kidney disease is a main complication of T2DM and is commonly
identified throughurinary albumin excretion.Urine samples from ten individualswith
T2DMwere analyzed, indicating several specificRaman peaks that could be assigned
to albumin. Due to the ability of Raman spectroscopy to detect urinary albumin, the
authors propose a promising method for detecting T2DM noninvasively in future
work [64]. Each of these independent studies is important for their potential to be
used for the early identification of diabetes via the minimally invasive monitoring of
biomarkers that have previously not been focused.

In a different study, the nonenzymatic glycationof collagen scaffoldswas analyzed
inT2DMmice at various time points.While theRamanpeak positions due to collagen
did not change between the groups, the relative intensity of the peaks after normal-
ization increased as diabetic time progressed. These bands were positively correlated
to the expression of anti-advanced glycation end products obtained by immunoflu-
orescence imaging of the scaffolds, suggesting Raman spectroscopy can be used to
monitor how the structure of collagen scaffolds is affected by nonenzymatic glycation
in T2DM mice [65].

In one of the largest studies carried out using Raman spectroscopy, skin glycated
proteins were investigated using a portable Raman spectroscopy system and fluores-
cence spectroscopy (Fig. 4). Ninety-four individualswhowere either nondiabetic had
insulin resistance or were diabetic were evaluated. Increased skin autofluorescence
was noted for those individuals with insulin resistance and those who had diabetes
compared to healthy individuals. Raman spectral bands related to changes in skin
hydration, type I collagen, and protein glycation were noted for diabetic patients. A
positive but weak correlation was also noted between the level of skin autofluores-
cence and the ratio of Raman bands indicative of glycated proteins. Although further

Fig. 4 Clinical procedure with fluorescence and Raman techniques. Reproduced with permission
from WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [66]
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work is needed, this information could be used in the future for noninvasive screening
of diabetes and help to contribute to understanding the biochemical progression of
the disease [66].

These studies indicate several opportunities to explore new potential biomarkers
for diagnosing diabetes using Raman spectroscopy. Although the biochemical basis
for many of these biomolecules is not well established, there exists an exciting
opportunity to increase the sensitivity and specificity of diagnosis with additionally
verified biomarkers.

2.4 General Application of Chemometric Methods
for Indicating Diabetes Within Various Biological
Samples

Although detecting new and known biomarkers using Raman spectroscopy for diag-
nosing diabetes has been fruitful, several research groups have leveraged the power of
chemometric methods to simply investigate diagnosing the disease without requiring
or depending on the presence of specific biomarkers. One of the greatest advantages
of Raman spectroscopy is its ability to probe a sample’s entire biochemical signature.
By leveraging the contribution of all biochemical components, instead of narrowing
the focus to one or two specific biomarkers, chemometrics can capitalize on themulti-
tude of information obtained in a spectrum to objectively achieve highly sensitive
and specific levels of diagnostic accuracy.

Several studies focused on analyzing blood samples using Raman spectroscopy
and chemometrics. In another studybyGonzález-Solís et al., superparamagnetic clus-
tering, a type of clustering-based chemometric method, was investigated to analyze
Raman spectra of serum samples from 15 individuals diagnosed with T2DM and
from 20 healthy controls. Results showed 97.5% sensitivity and 91.2% specificity
for correctly diagnosing the class of serum; however, no validation of the model
was reported [67]. Blood plasma samples obtained from healthy (n = 8) and type
I diabetic individuals (n = 12) were investigated using Raman spectroscopy and
Raman optical activity, electronic circular dichroism, and IR spectroscopy. LDA
was used to evaluate each method individually, as well as combined. Interestingly,
the best results were obtained when the combined data reached 92% sensitivity
and 100% specificity after LOOCV. Raman spectroscopy was used in combination
with PCA to successfully differentiate serum from individuals with T2DM, diabetic
retinopathy, or those who are healthy. Mahalanobis distance, which measures the
similarity between two sets of data for discrimination, was also shown to separate
the Raman spectral data successfully; no validation of either method was included
in the manuscript. However, these results were found to be more successful than
those obtained by relying on the comparison of prominent Raman peak positions
and intensities [68].



144 N. M. Ralbovsky and I. K. Lednev

Two different studies focused on analyzing blood from animal donors to diagnose
the disease. Red blood cells from healthy humans, healthy rats, T2DM humans, and
STZ-induced andAlloxan-induced diabetic ratswere investigated usingRaman spec-
troscopy. In a unique experimental decision, PCA combined with an SVM classifier
could successfully separate all five red blood cells, although a validation mechanism
was not reported. Additional spectral differences were noted between the classes. It
was determined that the STZ-induced diabetic rats were more similar to the human
T2DM group than the Alloxan-induced diabetic rats [69]. Most recently, a study was
shown to successfully separate the blood serum of rats given a high-fat diet treat-
ment and considered pre-diabetic from those fed a normal diet, using partial least
squares discriminant analysis (PLS-DA) combined with a ROC curve. The external
validation results showed the algorithm was 100% successful at making donor-level
predictions [70]. While these studies’ potential is exciting, it must be noted that the
work should be repeated in human trials.

Other attempts to use Raman spectroscopy combinedwith chemometrics for diag-
nosing diabetes were made using other, non-blood-based, biological samples. A
portable SERS system was used in one study to analyze urine samples collected
from 20 diabetic patients and 21 healthy volunteers. PCA and LDA were used for
analyzing the SERS data and indicated 85% sensitivity and 90.5% specificity of the
method for discriminating between the two groups. The model was deemed accu-
rate, yielding an area under the ROC curve of 0.836, although no further validation
was reported [71]. Alternatively, a portable Raman spectrometer was used to collect
in vivo Raman spectra from four different skin sites: left earlobe left inner arm, left
thumbnail, and left median cubital vein, each from 11 individuals with T2DM and 9
healthy controls. ANNs separated the two groups with 88.9–90.9% accuracy for the
varying sample sites. A second model built using PCA and SVM resulted in lower
levels of diagnostic accuracy. Both methods were validated using a tenfold CV. The
results of theANNmodelwere comparable to those obtained using the invasive capil-
lary blood glucose test, showcasing the technique’s success for generating objective
and noninvasive diagnoses [72].

Vieira et al. used Raman spectroscopy to investigate spectroscopic changes in
the dorsal root ganglia (DRG) due to diabetic neuropathy. STZ-induced diabetic
neuropathic (hyperalgesia) rats were analyzed before and after photobiomodulation
therapy (PBMT). PBMT is shown to treat neuropathy by relieving pain. Raman
spectra showed characteristic DRG bands had increased intensities in the hyperal-
gesia rats, which were then reduced in the spectra collected after PBMT therapy. An
LDAmodel was built to differentiate between the different groups with 86% success,
although no validationwas reported. Further research heremay provide a new avenue
for monitoring the treatment of diabetes and identifying potential routes for detecting
the onset early on [73]. In one study by Pacia et al., a confocal Raman imaging system
was used to analyze mice models’ endothelium representing diabetes, hypertension,
or cancermetastasis from controls. Hierarchical cluster analysis (HCA) of the Raman
spectra indicated sensitivity and specificity levels between 88 and 96% for success-
fully distinguishing between groups. However, no model validation was reported
(Fig. 5) [74]. Interestingly, these works reveal that various chemometric methods
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Fig. 5 The analysis of single and average spectra of the endothelium in the murine model of
diabetes. The result of HCA analysis for the single endothelium spectra was obtained for db +
(blue) and db/db (red) mice. a The average spectra of the endothelium of control (blue) and diabetes
(red) mice with the standard error on each data point, b in the 1550–1200 cm−1 range, the Raman
intensity is about threefold magnified relatively to the high wavenumber region. Reproduced with
permission from John Wiley & Sons, Ltd. [74]



146 N. M. Ralbovsky and I. K. Lednev

can be used to analyze Raman spectral data to achieve the same task. While some
methods work better than others, and some studies do not report using a validation
mechanism, all are shown to achieve similar levels of success. Further, utilizing
Raman spectroscopy with chemometric methods to distinguish between healthy and
diabetic biological samples shows as much success as those studies that focus on
utilizing specific new or known biomarkers for diagnoses.

Raman spectroscopy has been heavily explored in recent years to identify diabetes
biomarkers and directly diagnose the disease itself.Many different avenues have been
explored, but the results of all recent studies described herein signify the great poten-
tial of the method. The obvious next step would be to pursue large-scale studies that
can confirm themethod’s statistical significance and indicate its potential application
for clinical use. This is further discussed in the Critical Evaluation section.

3 Infrared Spectroscopy

Similar to the research completed using Raman spectroscopy, infrared spectroscopy
was also explored for detecting diabetes in various recent research. Several groups
capitalized on the advantages of IR spectroscopy to identify novel biomarkers or
biochemical components useful for identifying the disease. The articles reviewed in
this section include those which have used either far-, mid-, or near-IR radiation.
Near-IR radiation (~14,000–4000 cm−1) is highest in energy and typically excites
combination modes or overtones of molecular vibrations, mid-IR (~4000–400 cm−1)
typically excites fundamental vibrations, and far-IR (~400–10 cm−1), which is the
lowest in energy, is used for rotational spectroscopy and low-frequency vibrations.
[75] The mid-IR region is most typically used in the research reviewed herein due to
the absorption radiation of most organic compounds and inorganic ions being within
that region. Notably, near-IR spectroscopy is not considered a form of vibrational
spectroscopy, but due to its complementarity, the few studies which used it are still
included in this review.

The most common infrared spectrometer used in the reviewed work herein is the
Fourier transform infrared (FTIR) spectrometer due to its simultaneous collection of
spectral data across a wide spectral range and transforming that data into a spectrum.
Further, the attenuated total reflectance (ATR) accessory is also often used with
FTIR spectroscopy. It enables the user to directly measure samples in the solid or
liquid state without further sample preparation, typically required for transmittance
FTIR [76]. In addition, many of the studies reviewed in this section incorporated
chemometric methods for diagnosing diabetes due to the aforementioned benefits.

The following research studies focus on identifying diabetes through detection
of glucose levels within bodily fluids, detection of novel biomarkers, or through the
strict use of chemometric models.
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3.1 Monitoring Blood and Saliva Glucose Levels
for Indicating Diabetes

Similar to those studies conducted using Raman spectroscopy, numerous researchers
have pursued using IR spectroscopy to improve the identification of elevated glucose
levels to diagnose diabetes. Liu et al. evaluated the precision of four different non-
invasive glucose sensing methods based on near-IR (NIR) spectroscopy, including
pulse-based differential NIR spectroscopy, occlusion-based differential NIR spec-
troscopy, traditional NIR diffuse reflectance spectroscopy, and position diffuse NIR
reflectance spectroscopy. By evaluating the measurement precision, it was deter-
mined that traditional NIR diffuse reflectance spectroscopy and position diffuse NIR
spectroscopy have the greatest potential to be used in the future as glucose sensing
methods [77]. Then, Jintao et al. employed a NIR fiber optic probe system to analyze
plasma obtained from diabetic and normal rats to develop an in vivo blood glucose
assay (Fig. 6). Spectral data were collected at 0, 15, 30, 45, 60, 90, 120, 180, and
360 min after glucose injection, with blood glucose levels, were recorded simultane-
ously. Two chemometric methods were employed for analyzing the data, including
a PLSR model and an ANN non-regression model, each evaluated using external
validation. After validation, the most optimal PLSR model reached a correlation
coefficient of 96.22%. The ANN model was less successful, with the most optimum

Fig. 6 The process of collecting NIR spectra a rat’s hind leg shaved; b the NIR fiber-optical probe;
c collection of the NIR spectra; d NIR spectra. Reproduced with permission from Elsevier B.V.
[78]
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model achieving a correlation coefficient of 92.79% after validation. Unsurprisingly,
the regressionmodel showed great success for this type of study, suggesting the influ-
ence of selecting a chemometric method on accomplishing the desired diagnostic
goals. [78]

In different work, attenuated total reflectance Fourier transform infrared (ATR-
FTIR) spectroscopy was used to evaluate the saliva of non-diabetic, diabetic, and
insulin-treated diabetic rats to identify biomarkers related to glucose. Two different
chemometric methods, including PCA-LDA and HCA, both with LOOCV, were
used to differentiate between the three groups. Interestingly, both methods reached
95.2% accuracy. Further, two spectral bands correlate with glycemia strongly and
were shown to classify diabetic rats with greater than 93% sensitivity and specificity.
The potential for non-invasive diabetic detection is clearly illustrated through the
analysis of saliva herein [79]. While more research is necessary to pursue IR spec-
troscopic detection of glucose levels for diagnosing diabetes, these studies present
strong support for the potential of the method to achieve this goal.

3.2 Monitoring Novel Biomarkers for Indicating Diabetes

New and alternative biomarkers have also been explored using IR spectroscopy to
identify diabetes easier and more accurate. Several research studies focused on the
analysis of fingernails for meeting this need. In one in-depth study, the character-
ization of microstructures (including both surface morphology and roughness as
well as density and calcium content), materials (modulus and hardness), and macro-
molecules (disulfide bond content, protein content and related secondary structure)
of fingernail plates were investigated. Specifically, human fingernail plates of T2DM
controlled (n= 20), T2DM uncontrolled (n= 25), and healthy people (n= 30) were
analyzed using FTIR spectroscopy. The results indicated that the general quality of
the nail plate degrades within the T2DM controlled group but degrades even further
in the T2DM uncontrolled group. Specifically, the T2DM uncontrolled group has the
most porous, the least amount of dense materials (minerals) present, highly altered
surface morphology, increased surface roughness, decreased amount of modulus and
hardness of the nail, and decreased calcium and protein content. These values were
optimal in healthy individuals and fell in the middle for the controlled T2DM group.
This research poses an interesting avenue for exploring secondary complications
due to T2DM, with the potential to translate the changes observed within finger-
nail plates into an early and noninvasive diagnostic mechanism in the future [80].
Coopman et al. also investigated fingernails, this time using ATR-FTIR spectroscopy
as a tool for assessing glycation in diabetics. Fingernail clippings were obtained
and analyzed from 105 healthy individuals and 127 individuals with T2DM. Using
fructosamine 3-kinase, glycation and deglycation experiments of the clippings were
performed. Glycation was indicated by spectral features, including increased absorp-
tion at 1047 cm−1; after deglycation, there was a general decrease in the area under
the curve between 970 and 1140 cm−1. It was found that the glycated nail protein



Infrared and Raman Spectroscopy Assisted Diagnosis of Diabetics 149

concentrations of diabetics were significantly higher than those of healthy controls,
with ROC analysis yielding 82% specificity and 90% sensitivity with a cut-off value
of 1.28µmol/g nail, illustrating an alternative method for the non-invasive and effec-
tive detection of diabetes [81]. Lastly, an investigation of fingernails was executed
by Monteyne et al. Here, 52 individuals with T2DM and 107 healthy controls were
included in the study. Of the 107 healthy control fingernail samples, 21 were glycated
in vitro at different concentrations with a glucose solution, and all individuals’ finger-
nails were analyzed using NIR spectroscopy. The effect of glycation had a noticeable
impact on the spectral signatures, indicating a potential avenue for monitoring the
onset and progression of diabetes. PLS-DA was performed to differentiate between
the T2DM group and the healthy individuals, where 100% diagnostic accuracy was
achieved when tested using an independent validation set. Interestingly, the advan-
tage of incorporating chemometrics for diagnosing diabetes completely non-invasive
and objective is again supported herein [82]. This triplet of large studies increasingly
indicates IR spectroscopy as a potential method for a completely noninvasivemethod
for detecting diabetes, suggesting an emphasismaybeplacedon analyzingfingernails
in future work.

Tissue samples were analyzed in two different studies for diabetes detection. In
one study, Varma et al. analyzed tissue from histologically normal kidneys (n = 4),
histologically normal kidneys obtained from diabetic subjects (n = 4), and kidneys
with evidence of diabetic nephropathy (n= 5). Spectral data were obtained from the
glomerular basementmembrane, tubular basementmembrane, andmesangiumof the
tissue samples. PCA with LDA was shown to distinguish between the two control
groups and the diabetic group and between all three groups with a very high level
of separation for each tissue section analyzed (Fig. 7). The authors also identified
differences in intensities of twodifferent spectral frequencies,which could beused for
an alternative separation of the groups; notably, the results of chemometrics are more
definitive. However, a validation mechanism was not reported [83]. Kidney tissue
sections were then studied by a different group using probe-based NIR spectroscopy.
The sections were obtained from 27 individuals with normal histological findings,
26 individuals with diabetic neuropathy, and 11 with T2DM. The spectral signatures
indicated differences in carbamoylation and glycation between the groups; these
differences were restored after treatment with the deglycating enzyme fructosamine
3-kinase. PCA and soft independent modeling of class analogy (SIMCA) with CV
showed that the groups could easily be separated [84].

Other researchers studied bodily fluids, including blood and saliva, were studied
by other researchers for developing a diagnostic test for diabetes using IR spectro-
scopic detection of alternative biomarkers. Mazmuder et al. used FTIR spectroscopy
to study serum samples from 85 humans, including individuals with T2DM who
did or did not have retinopathy (n = 30, each) and healthy controls (n = 25). SVM
models could discriminate between all three groupswith an overall accuracy of 90.5%
after ten-fold CV. The differences between spectral signatures indicated a variety of
biochemical components as potential spectroscopic biomarkers, including carbohy-
drate and polysaccharide content, total lipid content, protein phosphorylation, and the
Amide II group [85].Recently, amethodwasdevised to detectmethylglyoxal (MGO),
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Fig. 7 Linear discriminant analysis (LDA) of spectral data extracted from the glomerular basement
membrane (GBM), tubular basement membrane (TBM) and the mesangium (M) of patients cate-
gorized as normal diabetic (NLD), normal nondiabetic (NL), and diabetic nephropathy (DN). LDA
was performed using the complete spectral data set for each of the features studied: aGBM, bTBM,
and cM. Reproduced with permission from the International Society of Nephrology; published by
Elsevier Inc. [83]

a disease-causing factor of diabetic cardiovascular complications. Here, the reaction
between MGO and o-phenylenediamine produced a product with strong absorption
in the far-IR range. Spectral analysis indicated thatMGOcould be detected at concen-
trations between 5 and 2500 nmol/mL, and the concentration of MGO within test
blood samples was determined with 95% accuracy. The results indicated the method
could be used in future clinical applications to determine the concentration of MGO
and relate its presence to diabetes. [86] ATR-FTIR spectroscopy was then used in
one study to differentiate between the saliva of individuals with diabetes (n = 20),
individuals with different kinds of psoriasis (n= 35), and healthy controls (n= 20).
The collected spectral data showed differences in the Amide I and Amide II bands,
suggesting the secondary structure of proteins is altered between the groups. It was
further found that the protein secondary structure between individuals with plaque
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psoriasis is similar to that found within patients with diabetes. Based on this infor-
mation, the authors were able to conclude ATR-FTIR spectroscopy could be used as
a tool to explore any potential link between psoriasis and diabetes, and further aid in
developing effective treatment plans [87].

Lastly, femurs of type I diabetic (n= 6) and control (n= 5) rats were investigated
using FTIR spectroscopy. The results of the analysis indicated several important
characteristic differences between the two groups; these include decreased levels
of mineral content, microhardness, and collagen maturity in the diabetic femurs, as
well as an increase in carbonate content and size and maturation of hydroxyapatite
crystals. These factors suggest that diabetes harms bones, providing information for
relating the structure and function of diabetes on bone health as well as for potential
diagnostic applications [88].

Given the plethora of different biomarkers which were identified in the research
reviewed herein, it is obvious that there is great potential in alternative methods
to identify diabetes which may reach even greater levels of accuracy than current
tests can achieve. Of course, large-scale studies are required to pursue and investigate
these hypotheses further to understandwhich themost promising, and further analysis
are is required to understand the biochemical basis for the novel IR spectroscopy-
determined biomarkers.

3.3 General Application of Chemometric Methods
for Indicating Diabetes Within Various Biological
Samples

The ability to pinpoint new and known biomarkers for diagnosing diabetes using IR
spectroscopy has shown varying levels of success. A great advantage of chemometric
methods resides in the ability to overlook specific biomarkers while monitoring
minute changes in overall spectral data. Further, the advantages of incorporating
chemometrics into diagnostic studies include the ability to make accurate and quan-
titative decisions without the need for subjective interpretation. The building and
use of chemometric models allow for the method to be used in a variety of settings
using the same standard, increasing the efficiency and efficacy of early and accurate
diagnoses. In this section, research that has applied chemometric methods to identify
diabetes using IR spectroscopy and without the use of biomarkers are reviewed.

Analysis of blood was used in most of the research covered in this section. ATR-
FT mid-IR spectroscopy was used to analyze serum samples from 65 patients with
T2DM and 55 healthy volunteers. A SVM model optimized using a genetic algo-
rithm (GA) reached 100% sensitivity, 95.45% specificity, and 97.87% accuracy for
discriminating between the two groups during external validation, indicating one of
the most successful reports yet for detecting T2DM [89] Yang et al. employed ATR-
FTIR spectroscopy for the detection of prediabetes via analysis of peripheral blood.
Here, fasting blood glucose levels and glucose levels at hour 2 during the OGTTwere



152 N. M. Ralbovsky and I. K. Lednev

measured from 112 individuals to determine the control group and the prediabetic
group. ATR-FTIR spectra were recorded from those blood samples simultaneously;
classification and regression trees (CART) and extreme gradientBoosting (XGBoost)
ensemble algorithms were both used to develop the prediabetes diagnostic tests.
The CART model achieved 80% specificity and 95% sensitivity, while the XGBoost
model reached 100% specificity and 85% sensitivity. The accuracy for the CART and
XGBoost models were 86.67% and 93.33%, respectively. All results were reported
after external validation. The superior XGBoost method indicates a real potential
for the accurate detection of prediabetes within individuals [90]. Guang et al. also
utilized ATR-FTIR spectroscopy in combination with XGBoost to analyze whole
blood samples, here to diagnose T2DM. Whole blood was collected from 51 T2DM
individuals and 55 healthy individuals. The most optimumXGBoost model achieved
a sensitivity of 95.23%, specificity of 96%, and accuracy of 95.65% after external
validation, further illustrating the success of IR spectroscopy with chemometrics for
identifying diabetes [91]. Interestingly, this chemometric method of XGBoost was
not explored in any other recent studies, despite its success in these two works.

A different study used IR spectroscopy to investigate non-alcoholic steatohepatitis
(NASH), which is associated with the occurrence of T2DM as well as cardiovascular
complications. In the largest study reviewed, 395 severely obese individuals who
underwent a bariatric procedure were considered in the study; 66 of those individ-
uals had NASH. Spectra of serum from the individuals were analyzed using a logistic
regressionmodel,with the performance evaluated using the area under theROCcurve
(AUROC). After external validation, the AUROCwas 0.77, with an associated sensi-
tivity of 69% and specificity of 76%. When a composite model was built, incorpo-
rating aspartate aminotransferase levels, triglyceride levels, and waist circumference
in addition to the IR spectral data, the AUROC increased to 0.84 after external vali-
dation. While intriguing, this study could potentially benefit from a different and less
complicated method of analysis to reach higher classification results; however, based
on the sample size, this study provides one of the most realistic evaluations of IR
spectroscopy for identifying diabetes [92]. In a related manner, Bernardes-Oliveira
utilized ATR-FTIR to investigate blood plasma obtained from 50 healthy pregnant
women and 50 pregnant women with gestational diabetes mellitus. Several different
chemometric methods were employed for separating the two groups, including LDA,
quadratic discriminant analysis (QDA), and SVM. The best results were obtained
with a GA-LDA model, which reached accuracy, sensitivity, and specificity levels
all of 100% after validation using an independent test set. Lipids and proteins were
found to be the most useful spectral features for separation. These results indicate
a very successful route for low-cost and minimally invasive detection of gestational
diabetes mellitus [93].

In a final study, pancreatic tissues were examined from healthy and the non-obese
diabetic model for type 1 diabetes mice as well as from humans and analyzed using
both Raman spectroscopy and FTIR spectroscopy. Analysis of the data collected
through orthogonal PLS-DAwith external validation resulted in the successful under-
standing of the biochemical profiles of the different pancreatic tissues. This work
provides a stepping stone for generating in vivo diagnostic assessments through the
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analysis of pancreatic biochemistry, but results of the chemometric modeling were
not reported [94].

Interestingly, the methods which were used to analyze IR spectroscopic data to
detect diabetes were just as successful as those summarized using Raman spec-
troscopy. IR spectroscopy can identify potential novel biomarkers for monitoring
the progression of the disease, and the spectra can be further analyzed via chemo-
metric methods for objective and accurate detection of diabetes. Clearly, due to the
high number of publications and research generated in the last five years alone, the
utility of the method is quite promising.

4 Critical Evaluation

There has been an evident success in advancing vibrational spectroscopy for detecting
diabetes in the past five years. Both infrared and Raman spectroscopy have shown the
obvious potential to not only monitor spectroscopic biomarkers throughout both the
onset and various forms of treatment of the disease but to also be able to objectively
detect the disease within biological samples with high levels of diagnostic accuracy.
It would be difficult to argue against the capacity of vibrational spectroscopy for
future use in clinical settings for detecting and diagnosing diabetes. While other
analytical methods for diagnosing diabetes have also been shown to be useful,
including chromatography-based tests, enzymatic-based assays, and antibody-based
immunoassays, these are beyond the scope of this review and the reader is referred
to other work for more information [95–98].

A summary of all studies in this review which were conducted using Raman
spectroscopy and using IR spectroscopy is seen in Tables 1 and 2, respectively.
These tables synthesize the category of study, which was accomplished, the type of
sample which was used (with animal models noted as appropriate), the number of
samples analyzed in the study, the type of chemometric methods used, if any, and
the type of validation that was employed if any. It is important to summarize these
factors, as they can have a noticeable impact on the results that are reached, especially
including the sample size used and the method of validation employed.

Based on this summary, there are some interesting conclusions that can be drawn.
Although more research was accomplished using Raman spectroscopy, those studies
which used IR spectroscopy more frequently analyzed a greater number of samples.
This is an important distinction to make, as large-scale clinical trials are necessary to
validate findings that are made in smaller work [100]. While small-scale studies can
show success, the true nature of that success will not be realized until a large study is
conducted. Additionally, 12 of the 43 studies reviewed utilize animal models instead
of human samples. While animal models are well established for studying diabetes
[101, 102], repeating the work using human donors, which typically have more
complex regulatory measures. A positive study conducted within animals does not
guarantee its success within humans [103, 104]. Therefore, a statistically significant
number of human donors is of utmost importance to ensure that a research plan
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Table 1 Summary table of all research studies reviewed herein which used Raman spectroscopy

Reference Study Category Sample # of
Samples

Chemometric
method

Type of
validation

Birech [55] Novel
biomarkers,
SERS

Whole blood 40, rats None N/A

Chege [56] Novel
biomarkers,
SERS

Whole blood 50, rats PCA None
reported

Flores-guerrero
[64]

Novel
biomarkers,
probe

Urine 10 None N/A

González-solís
[61]

Novel
biomarkers

Blood serum 35 PCA, LDA CV

González-solís
[67]

General
chemometrics

Blood serum 35 SPC None
reported

González-Viveros
[45]

HbA1c Commercial
HbA1c

3 PCA, FFNN Fivefold
CV

Guevara [72] General
chemometrics,
portable

Various skin
sites

20 ANN, PCA,
SVM

Tenfold
CV

Ju [53] Blood glucose,
SERS

Interstitial
fluid

Not
reported,
mouse

None N/A

Li [51] Blood glucose Nailfold 12 PCA,
BP-ANN

None
reported

Lin [62] Novel
biomarkers,
SERS

Blood plasma 80 PCA, LDA External
validation

Lin [48] HbA1c, LTRS Red blood
cells

90 PCA, LDA External
validation

Pacia [74] Novel
biomarkers

Tissue 26, mice HCA None
reported

Paolillo [66] Novel
biomarkers,
portable

Skin 94 None N/A

Ralbovsky [70] General
chemometrics

Blood serum 47, rats PLS-DA, ROC External
validation

Roman [63] Novel
biomarkers

Extracellular
Vesicles

55 CA, PLSR None
reported

Shi [65] Novel
biomarkers

Collagen
scaffolds

10, mice None N/A

Silveira Jr [60] Novel
biomarkers

Blood serum 44 PLSR LOOCV

(continued)
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Table 1 (continued)

Reference Study Category Sample # of
Samples

Chemometric
method

Type of
validation

Singh [68] Novel
biomarkers

Blood serum Not
reported

PCA None
reported

Singh [52] Blood glucose,
probe

Blood serum 20 PLSR External
validation

Šťovíčková [99] General
chemometrics

Blood plasma 20 LDA LOOCV

Vieira [73] Novel
biomarkers

Dorsal root
ganglia

48, rats PCA, LDA,
LDA-LDA

None
reported

Villa-Manríquez
[46]

HbA1c, probe Various skin
sites

86 PCA, SVM,
ROC

External
validation

Wang [69] General
chemometrics

Red blood
cells

Not
reported,
rats and
humans

PCA, SVM None
reported

Zheng [54] Blood glucose,
wearable probe

Skin 10 PLSR LOOCV

Zou [71] General
chemometrics,
portable SERS

Urine 41 PCA, LDA,
ROC

None
reported

can be applied to the general population and not a small subset of individuals, as is
commonly targeted in work reviewed herein. Unfortunately, no recent research has
accomplished this goal yet.

The category of study employed is notably diverse between the research reviewed
herein. Many (in fact, 19 of the 25 studies using Raman spectroscopy and 12 of the
18 studies using IR spectroscopy) focus on identifying new or known biomarkers for
diabetes; interestingly, 22 of these also utilize chemometrics in addition tomonitoring
spectral biomarkers. Many of the noted novel biomarkers highlighted in the previous
papers are common biochemical components that are not necessarily specific to
diabetes or have not been previously linked to the development and progression of
diabetes. While some biomarkers, such as glycated hemoglobin and blood glucose
levels, are well-established biomarkers for the disease, the papers which applied
chemometrics methods without searching for the presence of biomarkers are shown
to be just as successful as those which focus solely on detecting them. While under-
standing the biochemical differences between healthy and diseased individuals is
important, a significant advantage of vibrational spectroscopy is the ability to pinpoint
spectroscopic differences without fully understanding the biochemical cause, saving
both time and effort for making a diagnosis. Additionally, multiple biochemical
components contribute to the vibrational spectrum produced, including contributions
from biochemical components that the scientific community may not yet consider
for the disease in question. Through probing the entire biochemical composition of
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Table 2 Summary table of all research studies reviewed herein which used infrared spectroscopy

Study category Sample # of
Samples

Chemometric
method

Type of
validation

Anty [92] General
chemometrics

Blood serum 395 ROC External
validation

Bernardes-Oliveira
[93]

General
chemometrics

Blood plasma 100 LDA, QDA,
SVM, PCA,
GA

External
validation

Bottoni [87] Novel
biomarkers

Saliva 75 PCA None
reported

Bozkurt [88] Novel
biomarkers

Femurs 11, rats None N/A

Caixeta [79] Glucose
monitoring

Saliva 21, rats PCA, LDA,
HCA, ROC

LOOCV

Coopman [81] Novel
biomarkers

Fingernails 232 ROC None
reported

De Bruyne [84] Novel
biomarkers,
probe

Tissue 64 PCA, SIMCA CV

Fang [89] General
chemometrics

Blood serum 120 PCA, GA,
SVM

External
validation

Guang [91] General
chemometrics

Whole blood 106 PCA,
XGBoost

External
validation

Jintao [78] Glucose
monitoring,
probe

Blood plasma 30, rats PLSR, ANN External
validation

Liu [69] Glucose
monitoring

Various skin
sites

Not
reported

None N/A

Mazmuder [85] Novel
biomarkers

Blood serum 85 PCA, LDA,
SVM

Tenfold
CV

Monteyne [82] Novel
biomarkers

Fingernails 159 PLS-DA External
validation

Nord [94] General
chemometrics

Tissue Not
reported,
mice and
humans

Orthogonal
PLS-DA

External
validation

Sihota [80] Novel
biomarkers

Fingernails 75 None N/A

Varma [83] Novel
biomarkers

Tissue 13 PCA, LDA None
reported

Wu [86] Novel
biomarkers

Blood serum 3 None N/A

Yang [90] General
chemometrics

Whole blood 112 PCA,
XGBoost,
CART

External
validation
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the sample and not limiting the focus to a specific biomarker or two, the specificity
and accuracy for identifying a disease can potentially be increased [105]. For this
reason, those papers that incorporate chemometric methods should be focused on in
the future. The advantages of chemometrics allow it to be used as an objective and
accurate approach for identifying diabetes without limiting the focus to one or two
notable biomolecules.

It should be noted that the studies reviewed herein which incorporated the use of
chemometrics faced their own set of limitations.While almost every studymentioned
reached high levels of diagnostic accuracy, comparable with currently employed
diabetes diagnostic methods, proper validation of the applied chemometric method
is not always observed (Tables 1 and 2) [106]. There are two main types of validation
typically used in diagnostic studies. The first is considered cross-validation and refers
to the general method of testing the model’s performance with the same set of data
used to build it. Cross-validation may often overstate the success of a model due to
overfitting and provide overly optimistic results; this is especially true when studies
are conducted with small sample sizes [100, 107, 108]. Methods of cross-validation
include leave-one-out (spectrum or sample) and n-fold cross-validation. Leave-one-
out cross-validation involves the automatic process of leaving either a single spectrum
or all spectra from one sample out of the model building process; the data left out is
then used to test the model’s performance. This process is repeated until all data has
been left out. Similarly, n-fold cross-validation randomly divides the total dataset
into n groups and builds the model with n-1 groups; the group which is left out is
again repeatedly used for evaluating the model’s performance. On the other hand,
external validation is a much more reliable and trustworthy method for interpreting
the capabilities of a chemometric model. External validation refers to testing a model
with independent data (i.e. data that was not involved in the model building process).
Successful external validation is a key indication that a model is not biased to the
data used to build it. It is likely to be successful when expanded to a real-world
application, such as use within clinical settings [100, 107]. While crucial, external
validation requires a larger number of samples to be incorporated into a study, which
is not always feasible due to various issues such as the availability of volunteers or
funding.

Interestingly, among those studies which incorporated chemometrics, all reported
results achieved sensitivity, specificity, and accuracy levels greater than 80% and up
to 100%. While the definition of a successful varies for several reasons, all studies
that used chemometrics can be considered as erring on the side of success based
on these parameters alone. Interestingly, the types of samples used, the number of
samples studied, and the chemometric method employed vary among these studies
widely. Within this small subset of research, a pattern for a useful combination of
vibrational spectroscopy cannot be established. While various biological samples
were used among these studies, including urine, saliva, fingernails, and others, blood
seemed to be the most frequently employed, suggesting this biological specimen as
the one to focus on in the future. Unsurprisingly, among those studies that focused on
identifying biomarkers and using chemometrics, glucose and glycated proteins were
the most commonly targeted biomolecules. A variety of chemometric techniques are
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used in relatively similar frequency levels, suggesting that the method chosen may
not significantly impact the success of the research. Again, it should be noted that
all studies reviewed here are considered small compared to large-scale clinical trials.
While some results are reported after external validation, all results should be taken
with a degree of caution.

Assuming the “perfect” (ideally a large-scale trial using human samples and with
proper external validation of the chemometric method) trial can be implemented to
verify the real success of vibrational spectroscopy for detecting diabetes, there remain
further hurdles to overcome to introduce the method to clinical settings. While this
topic is beyond the scope of this review, several prominent research groups have
addressed this issue [21, 22, 109, 110]. Importantly, vibrational spectroscopists must
prove to those in the medical community that spectroscopy can be used as a valid
means for diagnosing T2DM for the method to enter clinical settings smoothly. A
unified approach to analyzing samples and the chemometric model employed would
also make implementation much more straightforward to understand.

Despite themany issues which still need to be addressed, it is clear that vibrational
spectroscopy holds unique advantages for diagnosing diabetes. Both IR and Raman
spectroscopy is easy-to-use, fast, and simplemethods that provide objective and accu-
rate diagnostic predictions. The specificity of the methods provides crucial details
that can differentiate between stages of the disease and monitor disease progres-
sion and the effects of treatment. Vibrational spectroscopy is shown herein to have
an incredible potential to revolutionize and simplify the way diabetes is diagnosed,
creating great opportunities for early intervention and treatment, with the potential
to prevent the onset of diabetes-related complications and even save lives.
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