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Preface

Diabetes is a serious public health issue that affects people all over the world. As the
world population ages, the prevalence of this chronic complicated metabolic illness
increases at an alarming rate. It will have the greatest influence in underdeveloped
countries. Because diabetes is a chronic, complicated metabolic condition, a multi-
disciplinary team of health professionals with experience in diabetes management
should offer diabetes care in conjunction with the patient and family. Despite the fact
that diabetes mellitus was recently given priority status by the WHO, many public
health planners are still uninformed of its scope and its consequences. The rising inci-
dence of the condition and the long-term expense of therapy for both patients and
the health sector, as well as the economic cost to nations, are all factors to consider.
Adult prevalence rates ranging from 7% to 25% have been observed in studies done
in diverse communities throughout the region. Furthermore, a growing number of
nations are reporting the emergence of type 2 diabetes mellitus at a young age. The
goal of incorporating diabetes mellitus into primary health care is to develop routine
screening methods to identify, monitor, and manage diabetes’s frequent complica-
tions. Treatment should just focus not only on decreasing blood glucose levels, but
also on addressing other noncommunicable disease risk factors including smoking,
dyslipidemia, obesity, inactivity, and hypertension. Not only is diabetes care in sham-
bles, but so is our knowledge of the processes that underpin clinical problems asso-
ciated with the illness. The major goals in caring for diabetic patients are to prevent
or at least slow the development of clinical complications such as micro-vascular
(eye and kidney disease) achieved through blood sugar and blood pressure control,
and macro-vascular (coronary, cerebrovascular, and peripheral vascular) achieved
through lipids, hypertension, and smoking control. However, we do not understand
how increased blood glucose, circulating insulin, and changed blood pressure affect
the pathophysiology of blood arteries and cause serious organ failure.

As a result, in the lack of such a knowledge foundation, current treatment tech-
niques focus on risk management. If we want to control this condition properly,
we need to start monitoring diabetes early and keep it up to date. The early detec-
tion of variations in blood glucose levels is the foundation of diabetic care. Effec-
tive treatment, especially for undetected hypoglycemia, requires careful and timely
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vi Preface

monitoring. Blood glucose levels are usually checked before a meal, two hours after,
and before bedtime. Although the development of blood glucose self-monitoring in
recent decades has encouraged diabetes treatment in the quest for euglycemia, its
cumbersome use may result in insufficient data collection of blood glucose. The
pattern, frequency, level, and timing of blood glucose changes have been tracked
using continuous glucose monitoring. Diabetes diagnosis and management need
precise, sensitive, consistent, quick, and attentive glucose monitoring frequently.
Diabetes can create various vascular and neurological issues that impact multiple
organ systems in the short and long term if not treated properly. Regular community-
based screening and prompt diagnosis in undiagnosed patients, sufficient patient
education and support, continuous medical treatment, psychological counseling, and
societal support are all required to avoid acute consequences. Accurate blood glucose
monitoring while enhancing glycaemic control and patient quality of life is one of
the most difficult elements of diabetes mellitus treatment. Regular monitoring by the
doctor or the patient is necessary to keep the diabetes patient’s health from wors-
ening. These recommendations are intended to aid in the standardization of diabetes
treatment at the elementary, secondary, and tertiary levels and advise policymakers
as part of efforts to enhance health care. Above all, we must all endeavor to improve
diabetes mellitus prevention to reduce this increasing burden.

This book intends to offer recent work carried on the leading technologies for
noninvasive (NI) and minimally invasive (MI) glucose monitoring sensors, devices
presently found in the field of medicine sciences. The type of framework used for
accuracy determination and new approaches undertaken by scientists have been
discussed. This book also mentions the upcoming trends to be seen in diabetic diag-
nosis and management by using the machine learning and artificial intelligence. We
hope you enjoy reading the book and find it useful whether this is helping patients
or health professionals to manage diabetics and its complications using the current
innovative technologies. The book will summarize that the invention and replace-
ment of use of new technologies with the existing ones for glucose detection are the
future for diabetic patients.

Doha, Qatar Kishor Kumar Sadasivuni
John-John Cabibihan

Abdulaziz Khalid A M Al-Ali
Rayaz A. Malik
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Introduction

Kishor Kumar Sadasivuni and Mithra Geetha

Abstract Effective diabetes management begins with blood glucose monitoring.
Diabetic care goes beyond monitoring blood glucose levels. This includes overall
health, including blood pressure, weight, cholesterol levels, sleep, mood, medica-
tions, and eye, kidney, and foot health. Monitoring blood sugar is fundamental to
managing diabetes.Micro andmacrovascular complications are reducedwith regular
glucose testing. Despite the recent development of minimally invasive glucose moni-
toring techniques, most glucose monitoring methods are invasive, painful, time-
consuming, and expensive in the long run. In order to improve the quality of life
for patients with diabetes, non-invasive, needle-free, and CGM approaches are
needed. The purpose of this chapter is to provide an overview of different chap-
ters covering various devices and sensors for invasive, minimally-invasive, and non-
invasive glucose monitoring currently available on the market or in development, as
well as their accurate real-time response and sensitivity.

Keywords Diabetes mellitus · Glucose ·Monitoring ·Medications · Blood
pressure

Diabetes mellitus, often known as diabetes, is a set of metabolic diseases character-
ized by elevated blood sugar levels in the human body over an extended time. Several
different pathogenic mechanisms cause diabetes. These can range from autoimmune
destruction of β-cells of the pancreas, resulting in insulin insufficiency, to anomalies
that result in insulin resistance. Type 1 diabetes (β-cell destruction, usually leading
to absolute insulin deficiency), type 2 diabetes (ranging from predominantly insulin
resistance with relative insulin deficiency to predominantly an insulin secretory
defect with insulin resistance), and gestational diabetes mellitus (GDM-any degree
of glucose intolerance with onset during pregnancy) are the most common types.
The global prevalence of diabetes was projected to be 463 million people in 2019
[1]. Data indicates that diabetes patients have surged worldwide, with India being
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second only to China regarding the number of people with diabetes. According to
the International Diabetes Foundation, the number of individuals diagnosed with
diabetes would rise to 628.6 million in 2045, accounting for 6–7% of the global
population [2]. Diabetes rates grow as the population, obesity, physical inactivity,
and unhealthy diet all rise. The World Health Organization and the International
Diabetes Federation have identified diabetes as a serious global problem [3].

The conventional view of diabetes mellitus pathophysiology remains that hered-
itary predisposition underpins disease progression, with genetic mutations affecting
the stages of beta-cell activity, insulin secretion, contact with tissue cells, insulin
receptor synthesis, and insulin action inside cells. The immune system targets and
kills the insulin-producing beta cells in the pancreas in patients with diabetes type
1. As a result, the body’s insulin synthesis halts. Type-2 diabetes mellitus can cause
antibodies against islet beta-cell antigens to be elicited directly in certain people.
In all diabetes mellitus, diabetes type 2 accounts for 80% of all cases. Because of
beta-cell malfunction, this form of diabetes is caused by a relative insulin deficit.
These individuals have a very gradual progression of insulin insufficiency, and they
are classified as having latent autoimmune diabetes (LADA) with a delayed onset.
Gestational diabetes (Type 3) has become a major public health concern during a
woman’s pregnancy. Placenta produces placental growth hormone (PGH) and proin-
flammatory cytokines such as tumor necrosis factor-alpha (TNF-) during a healthy
pregnancy. Insulin sensitivity is reduced in adipose tissue, liver, and skeletal muscle
due to these variables. This disease does not affect all pregnant women, but it does
raise the dangers associated with pregnancy. It can occasionally cause difficulties for
babies and can also obstruct the normal birthing process. However, after the delivery
of a child, this syndrome largely subsides.

Chronic hyperglycemia can cause serious issues in a person’s body, including
damage to and even failure of organs like the kidneys and heart [4]. Diabetic compli-
cations might include blindness, renal illness, neurological and circulatory disease,
limb amputations, stroke, and cardiovascular disease [5]. Patients may have poly-
dipsia, polyuria, and polyphagia due to persistent hyperglycemia. Diabetic complica-
tionsmight also include cardiovascular disease andmortality [6].Other comorbidities
associatedwith diabetes include diabetic foot, diabetes retinopathy, ketoacidosis, and
neuropathy. Recent research has discovered a strong link between glucose levels and
heart rate variability (HRV). This strategy focuses on diabetes patients and alleviates
their financial and health-related problems [7]. For patients, a technology that might
give an early identification of such problems could be life-changing.

In 2017, the total cost of diabetes-related health care in the United States was
predicted to be over $327 billion.According to theMayoClinic, quitting smoking and
keeping the blood pressure and cholesterol under control are two of the top ten strate-
gies to avoid diabetic problems. Regular exercise and drinking water as the primary
beverage are not on this list, but they are equally vital. Diabetes can bemanagedwith a
balanced diet and, eventually, insulin injections [8]. Sleep disruption appears to have
a role in diabetes, just as diabetes can create issues with sleep. Sleep deprivation
raises hunger hormone ghrelin and lowers satiety hormone leptin levels [9]. People
who suffer from sleep problems are more likely to seek consolation in high-sugar
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meals Chapter “Review of EmergingApproaches UtilizingAlternative Physiological
HumanBodyFluids inNon- orMinimally InvasiveGlucoseMonitoring”.Optimizing
glycemic control by reducing blood glucose levels has been shown to reduce the risk
of microvascular complications and long-term macrovascular disease [10]. Because
Type 1 DM patients’ insulin production by beta cells is reduced, pharmacological
stimulation of insulin secretion or insulin absorption is no longer enough to keep
them in a euglycemic state, and external insulin supplementation is the only way to
keep them there.

The basis of diabetes management is timely recognition of the variation of blood
glucose levels. Effective therapy, especially for undiagnosed hypoglycemia, is only
feasible with good and early monitoring. Normally, blood glucose levels are tested
before a meal, two hours after a meal, and before going to bed [11]. Although the
introduction of self-monitoring of blood glucose (SMBG) has inspired diabetes care
in recent decades in the pursuit of euglycemia, its inconvenient usage may result in
inadequate blood glucose data collecting. Continuous glucose monitoring (CGM)
has monitored the pattern, frequency, level, and time of blood glucose level fluc-
tuations. Diagnosis and management of diabetes need regular glucose monitoring
that is accurate, sensitive, dependable, fast, and attentive. Without adequate care,
diabetes can cause a range of vascular and neurological problems affecting various
organ systems in the short and long term. To avoid acute effects, regular community-
based screening and timely diagnosis in undiagnosed individuals, adequate patient
education and support, ongoing medical treatment, as well as psychological therapy,
and societal support are all necessary. One of the most difficult aspects of diabetes
mellitus therapy is correctly monitoring blood glucose while increasing glycaemic
control and patient quality of life. To prevent the diabetic patient’s health from dete-
riorating, regular monitoring should be performed by either the doctor or the patient
Chapter “Current Status of Non-invasive Diabetes Monitoring”.

Self-monitoring blood glucose levels give a consistent, trustworthy, and reliable
method of detecting blood glucose levels. It’s critical to monitor glucose levels in
diabetic patients frequently [12]. The current standard of care for DM diagnosis
is venous plasma glucose testing. Currently, all home blood glucose monitoring
techniques need piercing the skin to get a blood sample. Because the treatments
are invasive, this technique inhibits patient’s cooperation and has severe disadvan-
tages [13]. This invasive procedure aids patients in identifying and avoiding hypo-
glycemia andhyperglycemia.Variousmethods have been developed to assess glucose
levels, including capacitive, coulometric, optical, enzymatic-electrochemical, and
non-enzymatic electrochemical methods [14]. The major goal of these investigations
is to create a less painful method and reduce infection risk [15].

The non-invasive method, which is a relatively new technology, relies on the
body’s glucose signals. It eliminates the need for “finger pricking” and allows for
continuous blood glucose monitoring. A novel method for measuring glucose levels
using an ECG monitor has been devised. The ECG is transmitted to a smartphone
where it is temporarily stored and calculated heart rate variability characteristics.
The algorithm then estimates a human’s capacity to regulate glucose levels using
advanced machine learning approaches. This strategy focuses on diabetes patients
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and alleviates their financial and health-related problems Chapter “A New Solution
for Non-invasive Glucose Measurement Based on Heart Rate Variability”.

Procedures involving the application of fluorescent light to the body in a specific
place and techniques involving the implantation of a sensor in the subcutaneous
tissue cause interference with the process from surrounding signals such as ultravi-
olet and visible light. The primary recognition elements utilized in the construction of
sensors include receptors, antibodies, enzymes, nucleic acids, lectins, and microbes
[16] Chapter “Commercial Non-invasive Glucose Sensor Devices for Monitoring
Diabetes”. A biosensor is a transducer that converts a bimolecular binding event
captured on the surface of a bio-receptor into a readable physical quantity [17]. The
interaction of the optical field with an analyte as a detecting element completes the
optical-based biosensor [18]. A label and an optical signal enhancer, such as gold
nanoparticles, fluorescent or luminous labels, are used in a label-based sensing tech-
nique. The newest manufacturing processes and the major problems associated with
the use of SPR, LSPR, SPR imaging, and PCbiosensors to detect diabetes biomarkers
are reviewed in Chapter “Optic Based Techniques for Monitoring Diabetics”.

In 2017, over 51 million individuals globally used glucometers, with roughly
12% having type 1 diabetes, implying they are forced to take insulin therapy and use
glucometers to monitor that medication by default. Diabetic patients must pay for
constant or frequent self-monitoring and blood glucose testing strips (as much as $1
per strip) or continuous glucose monitoring sensors ($350 per month), glucagon, and
other medications. Cardiovascular disease accounts for more than a quarter of the
expenditures associated with diabetes patients. Regular finger pricking or continuous
glucose meters and frequent trips to cardiologists are the most common treatments
for these problems. A recently proposed approach addresses these issues with a
single system. Simultaneously, the solution provides a gadget for continuous cardiac
arrhythmia and assesses a person’s capacity to regulate blood glucose levels.

The first indicators seen in children with diabetes are pro-insulin autoantibodies
or insulin (PAA/IAA). High affinited IAA against pro-insulin was also linked to high
IAA levels with HLA DPB1 * 04. HbA1c isn’t the primary method for diagnosing
diabetes, but it does offer enough information to do so. These diseases may be easily
diagnosed using a boron-based probe produced using a targeted approach and aids
in recognizing sugar on the cell surface. Because of their great stability and strong
selection rate towards glucose, most glucose sensors use glucose oxidase (GOx).
Mulyanti et al. developed software that was semi-numerical and used the transfer
matrix approach. They also discovered that the concentration of glucose has a signifi-
cant impact on the resonant wavelength shift. Jamil et al. [19] showed that the K-SPR
technique with nano-laminated Au–Cr is extremely effective in detecting creati-
nine and urea Chapter “SPR Assisted Diabetes Detection”. Acoustic spectroscopy
is another method for detecting glucose signals using optical beams; however, it
suffers from scattering effects, resulting in insensitivity. Multi-modal spectrography
IC,which combines impedance and near-infraredmethods,may also be used to assess
glucose levels. In order to remove diverse systemic noises, new practices exploit indi-
rect dielectric characteristics of the tissue surrounding the blood. The application of
the Gabor filter for the analysis of facial contour data is a new approach for detecting



Introduction 5

diabetes [20]. The concentration of acetone in human bodies is extremely low (0.1–
0.8 ppm), however in diabetes mellitus, this amount rises to 1.8–5.0 ppm [21]. Due
to ketonic species, notably acetone and aceto-acetic acid, which are generated when
fatty acids are broken down, people with diabetes mellitus have insulin problem
hormones in their bodies [22]. Many researchers have achieved a biosensor approach
for diabetic diagnosis since exhale breath acetone is a simple diabetes biomarker.

The irradiation of a sample with monochromatic light causes molecules in the
sample to scatter incident light, resulting in vibrational spectroscopy. The resulting
spectrumdescribes the absorption of light by themolecules in the sample as a function
of frequency, measured in wavenumbers. These spectra can be used to distinguish
between distinct functional groups in a material Chapter “Infrared and Raman Spec-
troscopyAssistedDiagnosis ofDiabetics”. Surprisingly, the photo-acoustic approach
is a technology that allows for a high level of sensitivity throughout the analysis
procedure. It goes through the basic principles of photoacoustic spectroscopy and
how theymaymonitor glucose levelsChapter “Photoacoustic SpectroscopyMediated
Non-invasive Detection of Diabetics”.

Electrical bioimpedance can be used in both DC and AC applications. Georg
Simon Ohm defined the impedance Z in Ohm’s law in 1827, where Z is a complex
number. Arthur Kennelly [23] was the first to express it in terms of a real (R) and
imaginary (jX) portion, where Z= R+ jX and “j” is the imaginary operator. A lipid
layer covers each cell, primarily for ion transport and protection. A cell membrane
may be represented as a capacitor connected to a resistor in parallel. Rm (cellular
membrane resistance) can be regarded as significantly greater than Rext (resistance
of extracellular medium) at lower frequencies due to the cell membrane’s unique
isolating characteristic. This action prevents the ionic current from penetrating the
cell, forcing it to pass through the extracellular media. Depending on the frequency of
the excitation alternate signal, biomatological materials, particularly tissue, exhibit
variable dispersion to the applied electrical field. This is due to the different types of
free ions found in extracellular and intracellular fluid. The ionic potential generated
by the external excitation signal will promote the flow of free ions at lower frequen-
cies, although the cell membrane obstructs this flow, resulting in a high impedance.
On the other hand, higher frequencies allow the ionic current to pass through the
cell membranes and intracellular contents, lowering the resistance in most situations
Chapter “Electrical Bioimpedance Based Estimation of Diabetics”.

Millimeter and microwave sensing techniques have the potential to develop a
medical device that non-invasively measures blood glucose without the need for
finger pricking, a drop of blood, and the use of a test stripe; this allows for the
least amount of hassle and the best way to deal with samples to examine and diag-
nose blood glucose levels Chapter “Millimeter and Microwave Sensing Techniques
for Diagnosis of Diabetes”. To enhance health outcomes, artificial intelligence (AI)
is increasingly being used in medicine to discover patterns in complicated collec-
tions of clinically gathered data and self-monitored data. Machine learning (ML)
gives computers the capacity to learn without being explicitly programmed ahead
of time. Clinical knowledge is enhanced by machine learning algorithms, which
have been demonstrated superior to utilizing only one in disease treatment Chapter
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“DifferentMachine Learning Algorithms Involved in GlucoseMonitoring to Prevent
Diabetes Complications and Enhanced Diabetes Mellitus”. Diabetic patients, clin-
icians, and smart healthcare systems are all areas where artificial intelligence may
aid and improve diabetes treatment. AI technologies on diabetes allow for more
effective data processing and tools and gadgets to help patients control their condi-
tion. Patients with diabetes now have new uses for AI, such as patient surveillance,
fast decision-making, and risk prediction [24]. Several sophisticated Artificial Intel-
ligence systems have been widely utilized to enable advanced analyses and give
tailored medical help to diabetic patients Chapter “The Role of Artificial Intelligence
in Diabetes Management”.

With the rise in available data and processing capacity, data-driven techniques are
proving to be more efficient. DSS has become more efficient because of improve-
ments in AI/ML and glucose sensor technologies [25]. A diabetic DSS may be
divided into two categories: patient DSS and clinical DSS (CDSS) Chapter “Artifi-
cial Intelligence andMachine Learning for Diabetes Decision Support”. Researchers
havemostly concentrated on themanufacturing of electrode surfaces in order to build
nonenzymatic glucose sensors [26]. Long-termblood glucose control in diabetic indi-
viduals has been demonstrated to extend life expectancy [27]. Chapter Future Devel-
opments in Invasive andNon-invasive DiabetesMonitoring outlines the non-invasive
glucose monitors that are used to manage diabetes. The benefits and drawbacks of
the most recent commercial remote glucose monitoring systems have been evaluated
Chapter “Future Developments in Invasive and Non-invasive Diabetes Monitoring”.
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Review of Emerging Approaches
Utilizing Alternative Physiological
Human Body Fluids in Non-
or Minimally Invasive Glucose
Monitoring

Sunghoon Jang, Yu Wang, and Andre Jang

Abstract Diabetes can cause various acute as well as long-term complications in
patients with blood sugar levels of over 600mg/dL, such as blindness, kidney disease,
nervous and circulatory system disease, limb amputations, stroke, and cardiovas-
cular disease (CVD). Frequent and regular blood glucose monitoring by diabetics
and physicians is an essential step in the management of diabetes. Over the last five
decades, there have been numerous attempts to develop viable painless, non- or mini-
mally invasive blood glucose monitoring techniques to replace all existing invasive
methods, such as home blood glucose monitoring, which usually require drawing a
blood sample by piercing the skin (typically, on the finger). This method strongly
discourages the patients’ compliance and has serious drawbacks as the procedure
is invasive, causing discomfort, pain, and potential risks of infection or tissue
damage. It is highly desired to have alternative non-invasive blood glucose moni-
toring techniques. This review investigates the principles of three major emerging
general technologies, namely optical, Radio Frequency (RF)/microwave, and electro-
chemical glucose monitoring technologies. These glucose monitoring technologies
can be classified as 15 specific techniques that use multivariate regression anal-
yses to correlate feeble optical, Radio Frequency (RF)/microwave, or electrochem-
ical signals from various body fluids to physiological glucose concentration. This
review also offers how-to utilize glucose-sensing techniques to target variable areas
by sampling physiological human body fluids as an alternative diagnostic medium
to blood; for example, interstitial fluid, urine, sweat, ocular fluids, and saliva all
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contain traces of blood glucose. The feasibility of adopting these emerging tech-
nologies in the commercial market is discussed regarding safety, cost-effectiveness,
data management, and accuracy.

Keywords Blood glucose monitoring · Diabetics · Non- or minimally invasive ·
Optical · RF/Microwave · Electrochemical · Targeting areas · Physiological
human body fluids

1 Introduction

Diabetes mellitus, commonly referred to as diabetes, is a disease in which the body
does not produce or properly use insulin, causing high blood sugar levels over a
prolonged period. This chronic disease is among the top leading causes of death
globally that require long-term medical attention [1]. Often, diabetes can lead to
many serious medical problems. These include blindness, kidney disease, nervous
and circulatory system disease, limb amputations, stroke, and cardiovascular disease
(CVD) [2, 3]. According to data from the 2020 National Diabetes Statistics Report,
diabetes was the seventh leading cause of death in the United States, and an estimated
34.2 million children and adults or 10.5% of the United States population, including
7.3million undiagnosedpeople—2.8%of allU.S. adults havediabetes. The estimated
direct and indirect costs of diabetes-related health care in the United States have risen
to approximately $327 billion annually in 2017 from $188 billion in 2007, a $90
billion in direct medical costs. Diabetes is a disproportionately expensive disease;
in the United States, the individual medical cost per person associated with diabetes
increased from $8417 to $9601 between 2012 and 2017. In 2017, the individual
cost of health care was $16,750 for diabetes, while about $9600 of this amount was
attributed to diabetes [4, 5].

The recent multi-center NIH studies have indicated that the health risks associated
with diabetes are significantly reduced when the blood glucose levels are well and
frequently controlled, indicating that it is prudent to measure the blood glucose as
often as five or six times a day. Thus, it is very important that proper monitoring be
done by diabetics at home or work [6]. At present, all existing home blood glucose
monitoring methods require drawing a blood sample by piercing the skin (typically,
on the finger). This method strongly discourages a patients’ compliance and has
serious drawbacks because the procedures are invasive [7].

Additionally, a recentMayo Clinic report listed 10 ways to avoid diabetes compli-
cations. Their recommendations included: (1) Commit to managing your diabetes.
(2) Do not smoke. (3) Keep your blood pressure and cholesterol under control. (4)
Schedule regular physicals and eye exams. (5) Keep your vaccines up to date. (6)
Take care of your teeth. (7) Pay attention to your feet. (8) Consider a daily aspirin.
(9) If you drink alcohol, do so responsibly. (10) Manage your stress [8]. However,
not included in this list are just as important as regular exercise and choosing water
as your primary beverage.
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2 Alternative Physiological Body Fluids to Blood

Since anon-invasivemethodofmonitoringbloodglucosewouldpresentmajor advan-
tages over existing invasive techniques, many research groups have attempted to
propose numerous attractive alternatives in terms of non- or minimally invasive
glucose-sensing techniques within the physiological glucose concentrations (18–
450 mg/dl) in human blood. These approaches have demonstrated promising results
through in/ex vivo and in vitro experimental/clinical glucose evaluations. Through
our previous study, we attempted to review the number of emerging non- or mini-
mally invasive techniques and methods and provided a comprehensive list in terms
of applying alternative physiological body fluids as opposed to blood [9].

Physiological body fluids are highly complexmixtures of a variable concentration
of cells, proteins, macromolecules, metabolites, small molecules, including glucose
[9, 10]. Although blood is the most commonly studied body fluid and is considered
as the gold standard medium for detecting glucose concentration, other emerging
biological body fluids such as interstitial fluid (IF), urine, sweat, saliva, or ocular
fluids, are more accessible due to the significant advance of nanotechnology. The
amount of glucose contained in the biological body is proportional to its concentration
in the blood. These fluids have been utilized as attractive alternative sample media
for non-invasive continuous monitoring. The glucose level in these body fluids is
identical to the glucose concentration in the blood plasma. Table 1 summarizes the
comparison and contrast of the key aspects, including glucose concentration for
diabetics and non-diabetics, pH level, and time lag of the various physiological body
fluids under the current review.

Blood has been the gold-standard medium for glucose monitoring since measure-
ments carried out in this fluid were first introduced in 1953 [25, 26]. Blood is

Table 1 A summary of relevant glucose concentrations, time lag, and pH values measured in
physiological body fluids of diabetics and non-diabetics

Body fluid Glucose
concentration for
non-diabetics
(mg/dl)

Glucose
concentration for
diabetics (mg/dl)

pH level Time lag (min)

Blood 70–130 [2, 11] 36–720 [2, 11, 12] 7.35–7.45 [10, 12] –

Interstitial fluid 65–118 [13, 14] 35.8–400 [12–14] 7.20–7.40 [10, 12] ~10 [14, 15]

Urine 10.8–27.1 [16, 17] 50.1–100 [16, 18] 4.50–8.00 [10, 12] ~20 [16, 19]

Sweat 1.1–1.98 [10, 12,
20]

0.18–18.0 [10, 12,
20]

4.60–6.80 [10, 12] ~20 [18]

Saliva 4.14–10.3 [12, 21,
22]

9.91–31.9 [21–23] 6.20–7.40 [10, 12] ~15 [23]

Ocular fluids 1.8–9.0 [18, 24] 9.01–90.1 [18, 20,
24]

6.50–7.50 [10, 12,
24]

~10 [10, 24]

Time lag is the time required to diffuse blood from the capillaries to the tissues [9]
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complex plasma containing metabolites and electrolytes (sodium, potassium, chlo-
ride, calcium, bicarbonate, glucose, urea, and creatinine) [10]. The sensor using elec-
trochemical/amperometric enzyme electrodes and transducers, employed the non-
or enzyme glucose oxidase (GOx) and glucose dehydrogenase (GDH) utilizing the
biochemical reaction, has become themost popular and commercially available blood
glucose monitoring method in the market because of its suitable sensitivity, wide
selectivity, good reproducibility, and easy manufacturability at relatively low cost,
although it is an invasivemethod [26]. Several non-invasivemethods are used to detect
and monitor the glucose level in the blood, including Absorbance spectroscopy such
as Near and Mid Infrared spectroscopy, Raman spectroscopy, Photoacoustic spec-
troscopy, Fluorescence spectrophotometry, Bio-impedance spectroscopy, Optical
coherence tomography, and Thermal emission spectroscopy [27–37].

Interstitial fluid is the extracellular fluid that fills the spaces between most of
the body’s tissue cells and makes up a substantial portion of the liquid envi-
ronment of the body. It has significant potential for medical diagnostics as it
closely resembles blood plasma in composition but contains less protein [10,
38]. Since tiny molecular biomarkers are exchanged as biochemical information
between blood and subcutaneous ISF through diffusion, the correlation between
ISF and blood can be used to indirectly obtain the diagnostic information of
patients. Methods for monitoring glucose via the skin have become very popular
in recent years, where these approaches have been developed to counteract the
challenges associated with patient compliance and invasive monitoring. Some of
these approaches include Reverse iontophoresis, Electrochemical methods, Elec-
tromagnetic techniques, Metabolic heat conformation, Microwave resonator-based
technique, Sonophoresis, and Bio-impedance spectroscopy [39–47].

Urine is a commonly collected sample for clinical and nonclinical testing, espe-
cially due to the ease of collection, usually without invasive procedures. Urine is
composed of inorganic salts and organic compounds, including proteins, hormones,
and a wide range of metabolites, including glucose [10, 48]. It is related to applying
an enzyme and nanomaterials-based biosensor as important methods for moni-
toring glucose concentration within the physiologic range, including Colorimetric
biosensing utilizingEnzymatic nanomaterials, Laser-generated photonic nanosensor,
and Photonic crystal-based biosensor [48–51].

Sweating is a primary biological role of thermoregulation. Sweat is considered one
of the most accessible body fluids for glucose detection. Sweat is easily accessible
for sampling with sufficient quantities and rapid reproduction compared to all other
body fluids. Sweat is an acidic electrolyte-rich fluid, and its production is induced by
exercise, resulting in the secretion of metabolites, such as lactate, glucose, alcohol,
and uric acid [10, 12]. More recent studies suggest a direct correlation between
sweat and blood glucose concentration, although glucose levels in sweat are of a
much smaller concentration than those in blood. Wearable sweat-based continuous
glucose monitoring biosensors include non- or Enzyme-based electrochemical tech-
niques, Optical fiber long-period grating (LPG), and Electrochemically enhanced
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iontophoresis integrated with feedback transdermal drug delivery module are under
development [43–45, 52–55].

Saliva is increasingly recognized as an attractive diagnostic fluid because it can be
collected non-invasively without employing specific devices or trained personnel.
More recent studies investigated and confirmed a significant correlation between
salivary and blood glucose levels in diabetics and non-diabetics. Saliva is a complex
mixture of 99.5% water and 0.5% electrolytes (amylase, lipase, mucin, glyco-
proteins, glucose, and antimicrobial enzymes) [10, 56]. Saliva can be utilized as
an alternative to blood and can be monitored by a non-invasive measuring sali-
vary glucose. Some non-invasive techniques for saliva glucose monitoring have
been studied include Enzyme-based electrochemical/Amperometric/Colorimetric
nano-biosensor and Functionalized carbon nano-tube FET/organic electrochemical
transistor [23, 43–45, 56–61].

Ocularfluids include tears, aqueous humor, andvitreous humor,which are promising
fluids because the glucose concentration of ocular fluids is highly correlated to
blood glucose. Monitoring the glucose concentration in the fluids is considered
a relatively new technique that is a worthwhile alternative to invasive methods
for repetitive or continuous monitoring. Ocular fluids excreted from the body
as an extracellular fluid contain glucose water, mucin, lipids, lysozyme, lacto-
ferrin, lipocalin, lacritin, immunoglobulins, glucose, urea, sodium, and potas-
sium [10, 12, 23]. Research working towards non-invasive monitoring methods
of glucose in the ocular fluids consists of Chronoamperometric technique, Elec-
trode/electrochemically embedded contact lens, CMOS/Amperometric needle-type
electrochemical method, Optical coherence tomography (OCT), Fluorescence spec-
trophotometry, Ocular spectroscopy, and Optical polarimetry [62–68].

3 Emerging Non- or Minimally Invasive Glucose
Monitoring Techniques

Through the literature search for the current review, we learned that techniques
for non- or minimally invasive monitoring glucose via the skin had become the
most popular approach in recent years, where these methods have been developed to
counteract the challenges associatedwith patient compliance and invasivemonitoring
[18, 27]. The description and target areas of the leading approaches are presented in
Table 2,mainly classified asOptical technology, includingAbsorbance spectroscopy,
Raman spectroscopy, Photoacoustic spectroscopy, Optical coherence tomography
(OCT), Fluorescence spectrophotometry, Ocular spectroscopy, and Metabolic heat
conformation. The availability of the non- or minimally invasive glucose monitoring
devices in the market is also shown in Tables 2, 3 and 4, respectively. Some devices
have been withdrawn from the market due to inaccuracy, unreliability, inconsistency,
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and other issues. Meanwhile, others have never been introduced due to their unclear
circumstance issues.

Electrochemical technology includes Reverse iontophoresis, Enzymatic electro-
chemical electrodes, Non-Enzymatic amperometric electrodes, and Colorimetric
detection method, all presented in Table 3.

RF/Microwave detection technology includes Microwave resonator-based
method, Bio-impedance spectroscopy, and Sonophoresis, presented in Table 4.

4 Conclusions

This study aimed to present and review the latest specialized approaches in emerging
non- or minimally invasive glucose monitoring techniques after mainly classifying
categories as optical, electrochemical, and RF/Microwave methods. These glucose
monitoring methods convert the weak optical, electrochemical, or electromagnetic
signal to glucose concentration. We also investigated the non- or minimally invasive
glucose monitoring techniques which utilize various physiological body fluids as an
alternative diagnostic medium. These techniques have a great potential for moni-
toring blood glucose levels as they increase accuracy, selectivity, sensitivity, and
reliability of the measurement that would satisfy medical use criteria and meet the
expectation as a less expensive alternative.

Our current study learned that optical and microwave methods have advantages
over electrochemical methods because they offer purely non-invasive and continuous
monitoring without stimulating discomfort to the human body. However, invasive or
minimally invasive electrochemical glucose meters with more advanced enzyme
and electrode materials have significantly improved because they are considered
more reliable and affordable. Electrochemical diagnostic devices are equipped with
software-based analytical performance and data management, capable of updating
device featureswithout recalibration, and less expensive.Therefore, the current domi-
nating electrochemical glucose sensors in the commercial market will not be easily
replaced even if they are invasive until promising non-invasive glucose meters with
the more sensitive, efficient, intelligent, robust, and reliable measurements that can
satisfy medical use criteria is introduced to the market.

5 Future Trends

This review covers the research progress of the latest technologies and their methods
of non- orminimally invasive glucosemonitoringwith alternative physiological body
fluids such as interstitial fluid, urine, sweat, ocular fluids, and saliva instead of blood
glucose concentration. Considerable progress has been made in developing viable
non- or minimally invasive glucose sensors in recent years due to devoted research
efforts and the revolution of biomaterials, medicine, nanotechnology, and computer



Review of Emerging Approaches Utilizing Alternative … 21

science. Although there have been many dedicated research efforts with numerous
progressions to develop a non- or minimally invasive glucose monitoring sensor,
there are still several obstacles to achieving acceptable glucose monitoring because
of the complicated nature of the operation and measurement process.

Through our more recent searches, we also learned that several non- or mini-
mally invasive glucose monitoring devices using optical, electrochemical, and
RF/microwave technologies had been introduced commercially in the market, and
others are close to commercializing. However, we concluded that these methods
are still far from being clinically reliable to meet market expectations. They require
further systemic development and clinical evaluations due to a lack of consistency,
stability, accuracy, and reliability. The remarkable advances in an emerging trend to
integrate a series of functional modules, data mining algorithms, wireless commu-
nications, machine learning algorithms, and computational signal processing led to
significant achievements allowing the creation of new hypotheses that enable deeper
understanding and further investigations of non- orminimally invasive glucosemoni-
toring devices. AI-driven wearable monitoring devices may be introduced to the
current market, making it possible to collect a diverse range of continuous phys-
iological signals to accurately monitor the following: glucose levels in diabetics,
sweat, anxiety, heart rate, blood pressure, nutrition, calorie intake, and COVID-
19 related symptoms in advance. Further continued development of sophisticated
decision support hardware and software systems will yield great opportunities to
introduce more reliable and affordable non-invasive glucose monitoring systems in
the broad commercial market for medical use within the very near future.

Acknowledgements We would like to acknowledge the assistance provided by Eileen Deng for
reviewing and editing this manuscript.

Conflict of Interest None.

References

1. About Diabetes: https://web.archive.org/web/20140331094533/. http://www.who.int/diabetes/
action_online/basics/en/. World Health Organization. Archived from the original http://www.
who.int/diabetes/action_online/basics/en/ on 31 Mar 2014

2. American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diab. Care
27, 5–10 (2004)

3. Coster, S., Gulliford, M.C., Seed, P.T., Powrie, J.K., Swaminathan, R.: Monitoring blood
glucose control in diabetes mellitus: a systematic review. Health Technol. Assess. 4, 1–93
(2000)

4. U.S. Department of Health and Human Services: Centers for disease control and prevention.
In: National Diabetes Statistics Report. Estimates of Diabetes and its Burden in the United
States (2020)

5. American Diabetes Association: Economic costs of diabetes in the U.S. in 2012. Diab. Care
41, 917–928 (2018)

6. National Diabetes Information: Clearinghouse (NDIC) Report in U.S. Department of Health
and Human Services. http://diabetes.niddk.nih.gov/dm/pubs/overview (2011)

https://web.archive.org/web/20140331094533/
http://www.who.int/diabetes/action_online/basics/en/
http://www.who.int/diabetes/action_online/basics/en/
http://diabetes.niddk.nih.gov/dm/pubs/overview


22 S. Jang et al.

7. Newman, J.D., Turner, A.P.F.: Home blood glucose biosensors: a commercial perspective.
Biosens. Bioelectron. 20, 2435–2453 (2005)

8. Diabetes care: 10 ways to avoid complications—Mayo clinic. https://www.mayoclinic.org/dis
eases-conditions/diabetes/in-depth/diabetes-management/art-20045803

9. Jang, S., Xu, C.: Review of emerging approaches in non- or minimally invasive glucose moni-
toring and their application to physiological human body fluids. Int. J. Biosens. Bioelectron.
4(1) (2018)

10. Corrie, S.J, Coffey, J.W., Islam, J., Markey, K.A., Kendall, M.A.F.: Blood, sweat, and tears:
developing clinically relevant protein biosensors for integrated body fluid analysis. Analyst
140, 4350–4364. https://doi.org/10.1039/c5an00464k

11. American Diabetes Association: January 2006 diabetes care. Diab. Care. 29 (Suppl. 1), 51–580
(2006)

12. Bruenm D., Delaney, C., Florea, L., Diamond, D.: Glucose sensing for diabetes monitoring:
recent developments. Sensors 17 (2017)

13. Stout, P.J., Peled, N., Erickson, B.J., Hilgers, M.E., Racchini, J.R., Hoegh, T.B.: Comparison
of glucose levels in dermal interstitial fluid and finger capillary blood. Diabetes Technol. Ther.
3, 81–90 (2001)

14. Fox, L.A., Beck, R.W., Xing, D., Chase, H.P., Gilliam, L.K., Hirsch, I., Kollman, C., Laffel, L.,
Lee, J., Ruedy,K.J., et al.:Variation of interstitial glucosemeasurements assessed by continuous
glucose monitors in healthy nondiabetic individuals. Diab. Care 33, 1297–1299 (2010). https://
doi.org/10.2337/dc09-1971

15. Scuffi,C., Lucarelli, F.,Valgimigli, F.:Minimizing the impact of time lag variability on accuracy
evaluation of continuous glucose monitoring systems. J. Diabetes Sci. Technol. 6(6), 1383–
1391 (2012)

16. Su, L., Feng, J., Zhou, X., Ren, C., Li, H., Chen, X.: Colorimetric detection of urine glucose
based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 84, 5753–5758 (2012)

17. Lind, T., Shepherd, M., Cheyne, G.T.: Enzymatic methods for determining glucose in urine.
Ann. Clin. Biochem. 8 (1971)

18. Makaram, P., Owens, D., Aceros, J.: Trends in nanomaterial-based non-invasive diabetes
sensing technologies. Diagnostics 4, 27–46 (2014). https://doi.org/10.3390/diagnostics4
020027

19. Morris, L.R., McGee, J.A., Kitabchi, A.E.: Correlation between plasma and urine glucose in
diabetes. Ann. Int. Med. 94(4 pt 1), 469–471 (1981)

20. Moyer, D.,Wilson, I., Finkelshtein, B.,Wong, R.: Correlation between sweat glucose and blood
glucose in subjects with diabetes. Diabetes Technol. Ther. 14, 398–402 (2012)

21. Gupta, S., Sandhu, S.V., Bansal, H., Sharma, D.: Comparison of salivary and serum glucose
levels in diabetic patients. J. Diabetes Sci. Technol. 9, 91–96 (2014). https://doi.org/10.1177/
1932296814552673

22. Jurysta, C., Bulur, N., Oguzhan, B., Satman, I., Yilmaz, T.M., Malaisse, W.J., Sener, A. (2009).
Salivary glucose concentration and excretion in normal and diabetic subjects. J. Biomed.
Biotech. 6, 430426

23. Zhang, W., Du, Y., Wang, L.: Noninvasive glucose monitoring using saliva nano-biosensor.
Sens. Bio-Sens. Res. 4, 23–29 (2015)

24. Moses, R.: Adler’s Physiology of the Eye, p. 20 (1975)
25. Clark, L.C., Wolf, R., Granger, D., Taylor, Z.: Continuous recording of blood oxygen tensions

by polarography. J. Appl. Physiol. 6, 189–193 (1953)
26. Clark, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery.

Ann. N. Y. Acad. Sci. 102, 29–45 (1962). https://doi.org/10.1111/j.1749-6632.tb13623.x
27. Haxha, X., Jhoja, J.: Optical based non-invasive glucose monitoring sensor prototype. IEEE

Photon. J. 6805911(99) (2016). Article available from: https://doi.org/10.1109/JPHOT.261
6491

28. Kasahara, R., Kino, S., Soyama, S., Matsuura, Y.: Noninvasive glucose monitoring using mid-
infrared absorption spectroscopy based on a few wavenumbers. Biomed. Opt. Express 289,
9(1) (2018)

https://www.mayoclinic.org/diseases-conditions/diabetes/in-depth/diabetes-management/art-20045803
https://doi.org/10.1039/c5an00464k
https://doi.org/10.2337/dc09-1971
https://doi.org/10.3390/diagnostics4020027
https://doi.org/10.1177/1932296814552673
https://doi.org/10.1111/j.1749-6632.tb13623.x
https://doi.org/10.1109/JPHOT.2616491


Review of Emerging Approaches Utilizing Alternative … 23

29. Poddar, R., Andrews, J.T., Shukla, P., Sen, P.: Non-invasive glucose monitoring techniques: a
review and current trends. arXiv preprint arXiv:0810.5755 (2008)

30. Naam, H., Idrees, M., Awad, A., Abdalsalam, O., Mohamed, F.: Non invasive blood
glucose measurement based on photo-acoustic spectroscopy. In: 2015 International Confer-
ence on Computing, Control, Networking, Electronics and Embedded Systems Engineering
(ICCNEEE), Khartoum, Sudan, 7–9 Sept (2015)

31. Pandey, R., Paidi, S., Valdez, T., Zhang, C., Spegazzini, N., Dasari, R., Barman, B.: Noninvasive
monitoring of blood glucose with raman spectroscopy. Acc. Chem. Res. 50, 264–272 (2017)

32. Pleitez, M., Lieblein, R., Bauer, A., Hertzberg, O., Lilienfeld-Toal, H., Mäntele, W.: In vivo
noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed
photoacoustic spectroscopy. Anal. Chem. 85, 1013−1020 (2013)

33. Larin, K., Motamed, M., Eledrisi, M., Esenaliev, R.: Noninvasive blood glucose monitoring
with optical coherence tomography. Diab. Care 25(12) (2002)

34. Ullah, H., Hussain, F., Ikram, M.: Optical coherence tomography for glucose monitoring in
blood. Appl. Phys. B 120, 355–366 (2015). https://doi.org/10.1007/s00340-015-6144-7

35. Klonoff, D.: Overview of fluorescence glucose sensing: a technology with a bright future. J
Diab. Sci. Technol. 6(6), 1242–1250 (2012)

36. Badugu, R., Lakowicz, J., Geddes, C.: Ophthalmic glucosemonitoring using disposable contact
lenses—a review. J. Fluoresc. 14(5), 617–633 (2004)

37. Ding, L., Zhang, B., Xu, C., Huanga, J., Xia, Z.: Fluorescent glucose sensing using CdTe/CdS
quantum dots–glucose oxidase complex. Anal. Methods 14 (2016)

38. Medical Dictionary: https://medical-dictionary.thefreedictionary.com/interstitial+fluid
39. Potts, R., Tamada, J., Tierney, M.: Glucose monitoring by reverse iontophoresis. Diab. Metab

Res. Rev. 18(Suppl. 1), S49–S53 (2002)
40. Bandodkar,A., Jia,W.,Yardımcı, C.,Wang,X., Ramirez, J.,Wang, J.: Tattoo-based noninvasive

glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015)
41. Tang, F., Wang, X., Wang, D., Li, J.: Non-invasive glucose measurement by use of metabolic

heat conformationmethod. Sensors 8(5), 3335–3344 (2008). https://doi.org/10.3390/s8053335
42. Cho, O., Kim, Y.,Mitsumaki, H., Kuwa, K.: Noninvasivemeasurement of glucose bymetabolic

heat conformation method. Clin. Chem. 50(10), 1894–1898 (2004)
43. Nery, E., Kundys, M., Jelen, P., Jonsson-Niedzioka, M.: Electrochemical glucose sensing: is

there still room for improvement? Anal. Chem. 88, 11271–11282 (2016)
44. Ferri, S., Kojima, K., Sode, K.: Review of glucose oxidases and glucose dehydrogenases: a

bird’s eye view of glucose sensing enzymes. J. Diab. Sci. Technol. 5(5) (2011)
45. Chung, R., Wang, A., Liao, Q., Chuang, K.: Non-enzymatic glucose sensor composed of

carbon-coated nano-zinc oxide. Nanomaterials 7, 36 (2017). https://doi.org/10.3390/nano70
20036

46. Dayakar, T., et al.: Progress of advanced nanomaterials in the non-enzymatic electrochemical
sensing of glucose and H2O2. Biosensors 10(11), 151 (2020). https://doi.org/10.3390/bios10
110151

47. Xue, W., Zhang, D., Zhang, G., Zhu, D.: Colorimetric detection of glucose and an assay for
acetylcholinesterase with amine-terminated polydiacetylene vesicles. Chin. Sci. Bull. 56(18),
1877–1883 (2011)

48. Yan, Z., Xue, M., He, Q., Lu, W., Meng, Z., Yan, D., Qiu, Q., Zhou, L., Yu, Y.: A non-
enzymatic urine glucose sensor with 2-D photonic crystal hydrogel. Anal. Bioanal. Chem.
408(29), 8317–8323 (2016)

49. Wang, T., Guo, K., Hu, X., Liang, J., Li, X., Zhang, Z., Xie, J.: Label-free colorimetric detection
of urine glucose based on color fading using smartphone ambient-light sensor. Chemosensors
8, 10 (2020). https://doi.org/10.3390/chemosensors8010010

50. Yetisen, A., Montelongo, Y., Vasconcellos, F., Martinez-Hurtado, J., Reusable, R.: Accurate
laser-generated photonic nanosensor. Nano Lett. 14(6), 3587–3593 (2014). https://doi.org/10.
1021/nl5012504

51. Robinson, S., Dhanlaksmi, N.: Photonic crystal based biosensor for the detection of glucose
concentration in Urine. Photon. Sens. 7(1), 11–19 (2017)

http://arxiv.org/abs/0810.5755
https://doi.org/10.1007/s00340-015-6144-7
https://medical-dictionary.thefreedictionary.com/interstitial+fluid
https://doi.org/10.3390/s8053335
https://doi.org/10.3390/nano7020036
https://doi.org/10.3390/bios10110151
https://doi.org/10.3390/chemosensors8010010
https://doi.org/10.1021/nl5012504


24 S. Jang et al.

52. Lee, H., Song, C., Hong, Y., Kim, M., Cho, H., Kang, T.: Wearable/disposable sweat-based
glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3(3),
e1601314 (2017)
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Abstract In routine life, diabetes is usually measured by an invasive process.
Although this technique is accurate, there are many drawbacks, especially if you
need to take multiple readings regularly. Hence, it is necessary to develop a highly
reliable non-invasive diabetes screening technology that is better than the pre-existing
invasive technique. In recent investigations, human serums such as tears, saliva, urine,
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and respiratory secretions have been found to reflect the presence of glucose in it.
These factors increase the possibility of non-invasive blood glucose level estima-
tion. Diabetes was a rare condition in past years compared to recent times, but this
has become more widespread in recent decades due to changes in the eating habits
and lifestyles mismanagement of human beings. In some cases, there are chances
of diabetes in newly born infants. When the body cannot produce enough insulin
or cannot use its insulin, blood glucose levels rise in the body. As a result, invasive
methods for measuring blood glucose levels are used, which may cause major or
minor problems for patients in the long run of life. To address this issue, a low-cost,
non-invasive approach for detecting diabetes is urgently required by our society.
Many new technologies have been researched and implemented; each has its advan-
tages and disadvantages. The present chapter gives a qualitative overview of various
non-invasive glucose monitoring systems beneficial for diabetic patients.

Keywords Invasive · Non-invasive · Diabetes · Spectroscopy · NIR

1 Introduction

In contrast to typical invasive laboratory testing of the blood sample, self-monitoring
of glucose level provides a current scenario of diabetes with a continuous, depend-
able, and reliable approach for determining blood glucose concentration. Checking
glucose levels frequently using invasive methods is a critical process for the treat-
ment of diabetes. This invasive technique assists patients in preventing and detecting
hypoglycaemic and hyperglycaemic conditions. Many commercial blood glucose
monitors present in the market require a small drop of blood to be taken by pricking
the skin with a lancet, which is generally a fingertip (often called a fingertip test).
These are the intrusive blood glucose monitors that cause the patients a huge amount
of discomfort because they are likely to be punctured several times a day for checking
their blood glucose level.

Depending upon the amount and condition of the sample, human inaccuracy
during sample collections, calibration errors, humidity, and poor cleanliness in
the testing region, might increase the proportion of mistakes while using invasive
monitoring techniques [1].
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Fig. 1 Flowchart of blood glucose monitoring techniques

The non-invasive approach, a recent technology, requires glucose signals from the
body. Non-invasive methods avoid “finger pricking” and help continuously monitor
blood glucose levels. Techniques such as applying fluorescent light to the body in a
specific location, in addition to the techniques involving the implantation of a sensor
in the subcutaneous tissue, lead to a major disadvantage: the interference of nearby
signals such as ultraviolet and visible light with the process.

Another approach that uses optical beams to detect glucose signals is acoustic
spectroscopy.However, this process suffers from scattering effects, resulting in insen-
sitivity. Near-Infrared (NIR) spectroscopy is also one technique that can also be used
to measure the level of glucose in blood [2]. The level of glucose can also be eval-
uated with the help of multi-modal spectroscopy IC which combines impedance
spectroscopy (IMPS) and multi-wavelength near-infrared spectroscopy (fNIRS) [1].
In Fig. 1 the flowchart of different blood glucose measurement techniques is shown.

This technology employs indirect dielectric properties of the tissue surrounding
the blood and the precision of the glucose levels obtained by the suggested microchip
to eliminate various systemic sounds.

A recent method for identifying diabetes is to use the Gabor filter to analyze face
contour features [3]. Human respiration can potentially be used to diagnose diabetes.
This indicates a good link with blood sugar since human breath includes acetone,
which can be analyzed simply by exhaling it directly into the monitoring device [4].
In Fig. 2, the non-invasive glucose monitoring techniques are shown.
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Fig. 2 Different non-invasive glucose monitoring. Reproduced with permission from [5] CC By
© 2019 by Gonzales et al., Licensee MDPI, Basel, Switzerland

2 NIR Spectroscopy

The spectroscopical region of 12,500–4000 cm−1 belongs to Near-infrared (NIR)
region, and its wavelength is 800–2500 nm. Both wavenumber and wavelength are
being considered in the present chapter. The region in-between IR and the visible
region is NIR spectroscopical region. Generally, NIR spectroscopy deals with reflec-
tion, emission, diffusion, and light absorption. NIR spectroscopy has advanced char-
acteristics that have played a significant role in basic and applied science applications
over the last two decades [6]. In the spectral range of near-infrared, the ability of
light to penetrate soft tissues and biofluids is relatively high (>0.5 mm) as, compared
to visible light and ultraviolet light, it scatters less. Apart from this, this technique
can achieve both reflection and transmission for the sensing measurement of light
[7]. The mathematical formulation for calculating sample absorption is done by
Beer-Lambert law (Eq. 1) from the already known thickness and concentration.

I = Io10
(−l.ε.c) = Ioe

−l.μa (1)
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where I is the intensity of light at depth within the absorption mediumW/cm2, initial
light intensity is represented by I0 (W/cm2), absorption depth is represented by l, ε
is the molar attenuation coefficient or molar extinction coefficient (L/mmol cm), it
depends on the structure of absorbingmolecules and the wavelength of incident light.
Absorbing molecules concentration is represented by c (mmol/L). The absorption
coefficient μa is proportional to the product of c and ε.

This model showcases the transmitted/reflected intensity of light as a function of
concentration, the thickness of the sample, and absorption coefficient. In contrast,
the scattered light effect is ignored in this phenomenon. Log(I0/I) is used to define
absorbance [8]. NIR absorption spectroscopy can quantify the glucose absorbance
and its dependence on wavelength in the aqueous medium. Incident light absorption
by water must be considered as it is the most abundant species in biofluids. Two
absorption peaks, one between 1350 and 1520 nm and the other in-between 1790
and 2000 nm, are revealed in the NIR spectrum range for water. To measure glucose
in the NIR range, wavelength windows in the range of 700–1100 nm, 1500–1850 nm,
and 2000–2400 nm can be used [9–11].

On the contrary, light absorption in a shorter wavelength range is lower for water.
So to obtain selective NIR spectroscopic results with the minimization of interfering
effects of water, one should essentially use shorter wavelengths [7, 12]. Figure 3
shows the spectra recording equipment. The equipment consists of a NIR spec-
trometer, a light source, and a fiber optical measuring head. In NIR spectrometer,
a 128 pixels InGaAs photodiode array detector is attached to a glass block, and it
uses a polychromator with a holographic imaging diffraction grating. According to
the modified Beer’s equation, near-infrared diffused reflection difference spectra are
obtained at the skin tissue to constantly forecast the blood glucose content, which is
proposed and investigated without multivariate analyses. The difference spectra are
presumed to be generated from four primary elements in the human skin (glucose,
protein, fat, and water) and a scattering equivalent component called the baseline. As
a result, the morphological similarity of the absorption spectrum between glucose
and baseline is one of the roots of inaccuracies in predicting blood glucose levels
in the near-infrared region. An artificial component integrated with baseline and fat
is revealed when extracting the glucose components from the distinction spectra at
baseline using fat’s specific wavelength. It is predicated on the notion that a change
in skin scattering induces both the variation in fat contribution and leads to baseline
development.

We can reduce the blood glucose prediction mistakes by using the imaginary
component. In contrast to multivariate analysis methods, the estimation procedure
of blood glucose substances from observed reflection spectra is transparent, making
it easier to evaluate the causes for fluctuations and contributions of the compo-
nents in the observed reflection spectra. In Fig. 3, the typical blood glucose level
profile is shown. Using radial-basis neutral networks (RBF) and partial least-squares
regression (PLS), the calibration coefficient of matrices is calculated.

Glucose measurements are interfered with by chemical and physical parameters
such as albumin, triglyceride, temperature, and pressure variation. Environmental
changes such as variations in humidity, carbon dioxide, atmospheric pressure, skin
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Fig. 3 Schematic representation of the three modes of NIR spectroscopy. a Transmittance mode.
b Reflectance mode. c Interactance mode. Reproduced with permission from [5] CC By © 2019 by
Gonzales et al., Licensee MDPI, Basel, Switzerland

hydration, and temperature also cause errors. The proposed technique may become
a convenient tool for interpreting non-invasive blood glucose monitoring using near-
infrared spectroscopy [13].

RolamjayaHotmartua et al. usedNIR spectroscopy forGlucose detection from the
earlobe. Theyfirst carried out the test by varying glucose concentration from50mg/dl
to 2 g/dl, and 2nd test was carried out directly in the earlobe [14]. Samman et al.
researched glucose monitoring for about 169 days and analyzed the accuracy as well
as stability of the calibration method [15]. In brief, it can be said that the application
of NIR spectroscopy in combination with regression analysis helps quickly to detect
the glucose levels in a non-invasive manner, thereby providing an additional tool for
the early detection of diabetic problems [9].
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3 Raman Spectroscopy

The degree of scattering of monochromatic light is determined by Raman spec-
troscopy which is based on the Raman effect. Scattered light that travels in all direc-
tions is produced when a single wavelength light hits the target. Using the imaginary
component can reduce the error in predicting the blood sugar level. Unlike multi-
variate analysis, this method makes it clearer to calculate blood sugar levels from
the observed reflectance spectrum, making it easier to estimate the reason for the
change and the component contribution in the reflectance spectrum. Rayleigh scat-
tering occurs in visible radiation when the scattering is elastic. The phenomenon
is known as Raman scattering if the scattering is not elastic [16]. The schematic
representation of Raman scattering is shown in Fig. 4.

Raman shift is termed for suchwavelength differences. TheRaman shift represents
the difference between the initial and final vibrational states ofmolecules under study
[17]. The vibrational and rotational states of molecules are dependent on Raman
spectroscopy. The functional group’s vibrational modes are shown in the peaks of
Raman spectra. It consists of a lens that seizes the scattered radiation. It also filters the
radiation and allows the Raman scattered radiation to the detector for getting sensed.
The signals are processed by computer and provide Raman shift correspondingly.

Raman spectroscopy is a favorable non-invasive biomedical method and anal-
yses the problems associated with metabolism. For example, clinical tests and self-
monitoring of glucose levels based on a finger prick technique blood sample are
no longer painful. Raman spectroscopy is based on the elastic scattering of photons
by certain molecules in the sample. The energy shift of the scattered photons is
determined by the bonds of the interacting molecule, thereby resulting in molec-
ular fingerprints. The advantages and limitations of Raman scattering for glucose
monitoring are shown in Table 1.

It also has important benefits in biomedical diagnostics, including non-
invasiveness, a short procurement time, and the capability to offer quick results. It
has been shown that Raman spectroscopy and principal component analysis (PCA)

Fig. 4 Schematic representation of Raman spectroscopy. Reproduced with permission from [5]
CC By © 2019 by Gonzales et al., Licensee MDPI, Basel, Switzerland
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Table 1 The pros and cons of glucose detection using Raman spectroscopy

Pros Cons

• Less susceptible to variations in temperature
• Moderate sensitivity to water
• It can be used on any surface, including
opaque substrates, to measure scattered light

• The elevated degree of specificity

• Susceptible to interference by other
molecules such as hemoglobin

• Intensity and laser wavelength are unstable
• The collection time is long
• Prone to noise interference (low signal to
noise ratio), fluorescence, and turbidity

paired with support vector machine (SVM) has proven to be effective in classifying
glycated hemoglobin levels using in vivo techniques [18].

4 Bio-impedance Spectroscopy

The bio-impedance analysis is a non-invasive, low-cost, and widely utilized method
for determining body composition and assessing clinical status. There are numerous
ways of interpreting the measured bio-impedance data. Apart from that, there are
numerous applications of bio-impedance in the assessment of body composition and
the evaluation of clinical status. In addition, bio-impedance spectroscopy is being
used in variousways in healthcare institutions, including disease prognosis andmoni-
toring of vital signs. Thus, we feel that this warrants a review of the most underlying
facets and forecasts healthcare applications of bio-impedance spectroscopy [19].

The bio-impedance analysis is a low-cost, non-invasive method for evaluating
body composition and helps in monitoring of clinical state. There are varieties of
techniques to interpret measured bio-impedance data and a variety of bio-impedance
applications in body composition assessment and clinical status assessment.

A wrist glucose monitor based on impedance spectroscopy has been invented. It
is shown in Figs. 5 and 6. This monitor uses the skin as a dielectric to sample an
LC resonance circuit data. There are numerous approaches for interpreting measured
bio-impedance data and bio-impedance applications in body composition and clin-
ical state assessment. The drawbacks and advantages are shown in Table 2. Bio-
impedance is also used in healthcare facilities for various applications, such as disease
prognosis and vital sign monitoring [20].

5 Thermal Emission Spectroscopy

Thermal Emission Spectroscopy (TES)—the based device is a novel, non-invasive
hand-held BG monitor having the same dimensions and ease of use as an ear ther-
mometer. Still, this technique is with more technological breakthroughs. The gadget



Current Status of Non-invasive Diabetes Monitoring 35

Fig. 5 Graphical abstract of glucose detection using bioimpedance spectroscopy. Reproduced with
permission from [5] CC By © 2019 Gonzales et al., Licensee MDPI, Basel, Switzerland
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Fig. 6 Bioimpedance model measurement and architecture of gain-phase detector
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Table 2 Advantages and
disadvantages of glucose
detection using bioimpedance
spectroscopy

Advantages Disadvantages

• Relatively low cost
• Effort less investigation on
skin

• Sensitive to changes in
motion and temperature

• Vulnerable to water content
and sweat

• Affects the cell membrane
due to physiological
conditions

is passive, and, in this technique, chronic external radiation does not injure the human
tissues.

This gadget will help individuals with diabetes to live better lives since it will
boost patient BG testing, which will lead to improved glycaemic management
and lesser complications related to diabetes. Thermal emission spectroscopy (TES)
detects infrared signals produced by changes in glucose content in the human body.
According to this technique, the natural mid-infrared emission of the human body,
particularly the eardrum, is regulated by the state of the emitting tissue. Its selec-
tivity is based on the same premise as the absorption spectroscopy technique used
for measurement analysis [21]. Figure 7 represents the pictorial representation of the
principle of thermal emission spectroscopy for glucose detection.

The detection of glucose level using a non-invasive prototype based on thermal
emission in the mid-IR spectral area was measured satisfactorily. Individual daily

Fig. 7 Principle of thermal emission spectroscopy. Reproduced with permission from [5] CC By
© 2019 by Gonzales et al., Licensee MDPI, Basel, Switzerland
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Table 3 Pros and cons of glucose detection using thermal emission spectroscopy

Pros Cons

• It is a passive method
• There is no threat of tissue damage
• Excellent selectivity due to the well-defined
glucose spectra at 9.4 μm

• There is no need for calibrating

• Sensitive to changes in motion and
temperature

• Radiation intensity is vulnerable to tissue
thickness

• It may not be efficient for sensing sudden
variations of glucose

calibrations are unnecessary with this technology, which is one of its benefits [21].
One disadvantage of this technique is that the strength of infrared radiation emitted by
an eardrum is influenced by its thickness and temperature. The other drawbacks and
advantages of this method for glucose detection are shown in Table 3. Although the
clinical outcomes acquired with TES are encouraging, they do not yet meet clinical
accuracy criteria [22].

6 Optical Polarimetry

Optical polarimetry works on the principle of chiral molecules, i.e., the plane of
polarization is rotated by the molecules. The chiral molecule glucose can rotate the
plane of polarisation of a beam of light by an angle α in the clockwise direction. This
glucose detection method is one of the basic techniques of non-invasive technology.
When the beam of polarized light is incident on the glucose solution, the plane of
polarization of the incident light is rotated by the presence of glucose.

At present, the sum of glucose level is comparative to the directional angle
concerning the original incident direction formed by the polarisation direction [23–
27]. The rotation amount is proportional to the optical path length, the laser beam
wavelength, the temperature, and the analyte concentration.

Thiswavelengthwill usually appear in theNIRupper region and the optical band is
in the lower region (approximately 780–400 nm). The polarimetermeasures the plane
of polarised light when it passes through the sample. The pictorial representation of
optical polarimetry is shown in Fig. 8. Themaximum intensity of light is identified by
a photodetector when the electric field rotation is comparable with the polarization
axis of the analyzer. The photodetector cannot detect light when the polarization
angle is perpendicular to the electric field rotation angle [28, 29].

The application of optical polarimetry in the skin is not feasible as the scat-
tering of light in tissue and skin is high, decreasing the glucose’s optical rotation
[30]. The optical polarimetry can be used in the eyes anterior chamber as it has a
good optical property [30, 31]. Eye glucose monitoring is shown in Fig. 8. For this
method, a satisfied error accuracy is not obtained even though this method can be
detected by visible light, easy operation, and obtaining results [32–34]. Currently,
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Fig. 8 Schematic
representation of optical
polarimetry in the eye for
glucose detection.
Reproduced with permission
from [5] CC By © 2019 by
Gonzales et al., Licensee
MDPI, Basel, Switzerland

there are two new mechanisms for resolving the interference issues of the birefrin-
gence of the polarization of glucose overlooked in blood. Dual-wavelength polarizer
and birefringence compensator are the two mechanisms used to resolve this issue.
Dual-wavelength polarimetric glucose detection is shown in Fig. 9.
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Fig. 9 Dual-wavelength polarimetric glucose detection
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7 Fluorescence

Fluorescence technology is associated with the principle of fluorescent light emis-
sion. This fluorescent light emission results in stock shift, wavelength difference due
to the effect of the light emission.

Unlike optical approaches, this approach of utilizing fluorescence requires contact
between sample and sensor. Recently, new techniques have been developed for
analyzing glucose and vitamin A using field instruments. Pickup et al. [47] studied
glucose monitoring using the intrinsic tissue fluorescence. This technique utilizes
the product of glucose metabolism, nicotinamide adenine dinucleotide phosphate
(reduced) (NAD(P)H), a fluorescent cofactor. The test was carried out in in-vivo
analysis, and later they were studied in vitro. The fluorescence sensitivity is highly
required as the glucose concentration in the fluid is in the micromolar range.

The fluorescence techniques can be categorized into affinity-binding and glucose
oxidase (GOx) based sensors. GOx based sensors have a certain limitation as the
results depend not only on the concentration of glucose but also on the oxygen
tension under in-vivo conditions.

Fluorophores, a specialized molecule that release fluorescent light with certain
characteristics, are proportional to the analyte concentration under study. Some fluo-
rophore molecules can bind with glucose molecules directly, but they are associated
with interference, irreversibility, analyte depletion, and low selectivity. Therefore, the
use of intermediatory molecules like receptors binds with glucose molecules more
effectively, leading to changes in their local properties reversibly. This results in fluo-
rescence alteration [67]. Different types of receptors are used for this such as boronic
acid derivatives, enzymes, and glucose binding proteins, which are nature-derived
and fabricated synthetic materials such as quantum dots and carbon nanotubes.

Fluorescence resonant energy transfer (FRET) has gained much attention based
on binding assays. The energy transfer in this technique occurs between the donor
and acceptor molecules, the light-sensitive molecules. When the acceptor molecules
bind with glucose, the bond between acceptor and donor gets disrupted, increasing
fluorescence due to less electron sharing. This is shown in Fig. 10.

Fig. 10 Fluorescence glucose monitoring
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The FRET and fluorescence lifetime techniques were used to measure glucose
concentration byLakowicz and co-workers [50]. They used reagents such asmaltose-
insulin-malachite green and ruthenium-Con A to fabricate a similar sensor. The
fluorescence lifetime and fluorescence intensity of ruthenium dye is increased with
an increase in glucose concentration. The advantage of this type of fluorescence
sensor is that they are highly specific and highly sensitive to the analyte under study.
Apart from that, it also eliminates the potential interferences. The drawback of this
technique is the short lifespan of the fluorophore, foreign materials in biological
media which can cause potential toxicity, etc.

There are somany other techniques that can non-invasively detect glucose concen-
tration, such as Metabolic Heat Conformation (MHC), Photoacoustic Spectroscopy
(PAS), Optical Coherence Tomography (OCT), Millimeter and Microwave Sensing,
etc. Table 4 shows the list of recent research developments on MI and NI techniques
in Glucose detection. Table 5 compares non-invasive and minimally invasive glucose
monitoring devices that are currently accessible or about to be released in the market
soon. Figure 11 depicts the position of non-invasive and minimally invasive methods
and devices for monitoring glucose in the spectrum.

8 Conclusion

The scientific advancement of non-invasive glucose monitoring technologies in
recent years is discussed in this chapter. Optical, microwave, and electrochemical
methods are the three types of non-invasive blood glucose monitoring technologies
available. The advantages of optical andmicrowave technologies, in general, are their
non-invasive nature and ability to monitor continuously without causing discomfort
to the human body. In terms of detection, there are still certain issues, such as sophis-
ticated detection means, harsh detecting components, a time-consuming detection
procedure, high detection equipment needs, and significant background signal inter-
ference. Future research will see if other physical characteristics and other indicators
linked to blood glucose may be integrated to increase the accuracy of non-invasive
skin glucose test results.



Current Status of Non-invasive Diabetes Monitoring 41

Table 4 List of recent research on MI and NI techniques for monitoring glucose levels

Institution Technology Comments Target

Polytechnic
University of
Catalunya

NIR spectroscopy
Photoplethysmography

• Principle: the
relationship between
PPG waveform and
glucose levels

• No calibration needed
• Linear response even
in hypoglycemia and
hyperglycemia

Finger

Karunya University NIR spectroscopy
Photoplethysmography

• Blood viscosity,
breathing, emotional
state, and autonomous
nervous system are
linked to glucose
levels

• Analysis was done
with machine learning

Forearm and finger

Tohoku University MIR spectroscopy
Trapezoidal
multireflection

• Suitable for areas
without a thick skin
layer

• Tuned at 8658 nm
• Sensitive to contact
pressure

Oral mucosa
Inner lips

ETH Zurich MIR spectroscopy
Photoacoustic detection

• It uses Quantum
Cascade lasers
(QCLs)

• Wavelengths:
8.47–10 nm

Forearm

RSP Systems Raman spectroscopy • Glucose sensing at a
critical depth in the
skin

• Accuracy affected by
time-lag

• λ: 830 nm

Hand Palm

Electronics and
Telecomm Research
Inst. of Korea (ETRI)

Photoacoustic
spectroscopy

• Insensitive to skin
secretions

• Acoustic signal:
47 kHz

• λ: 8–10.4 nm

Fingertip

National Cheng Kung
University (NCKU)

Optical coherence
tomography

• It senses optical
rotation angle (γ) and
depolarization index
(�) using the Mueller
model

• Increase in glucose
increases γ and
decreases �

Fingertip

(continued)
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Table 4 (continued)

Institution Technology Comments Target

Caltech Millimeter-wave
transmission

• Based on waveguides
and patch antennas

• f: 15–25 GHz,
16–36 GHz

Ear lobe

Cardiff University Microwave split-ring
resonance

• Glucose level change
shifts resonant
frequency

• Up to 17.5 mm depth
penetration

Abdomen

University of Bath Reverse iontophoresis • Based on the
electro-osmotic flow
principle

• ISF extracted through
hair follicles

• Independent from
skin characteristics
variance

• Some skin irritation is
associated

Skin

Ulsan National Inst.
of Science and
Technology (UNIST)

Contact
lenses—enzymatic
detection

• Measures the level of
glucose in tears

• Electrodes embedded
in the contact lens

• The lag time is
between 10 and
30 min

• Interference from
other electroactive
species

Tears

University of
Maryland

Contact lenses
fluorescence

• Based on a
glucose-silicone
hydrogel

• Decrease of
fluorescence with the
increase of glucose

• It works with
fluorophore Quin-C18

• Long storage seems
not to affect the lens’
response

Tears

KTH Royal Institute
of Technology

Microneedle-enzymatic
detection

• The measurement
taken within the
dermis

• Based on passive fluid
extraction

• Microneedle length:
700 μm

Forearm

Reproduced with permission from [5] CC By © 2019 Gonzales et al., Licensee MDPI, Basel,
Switzerland
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Table 5 Comparison table of non-invasive and minimally invasive glucose monitoring devices

Device Technology Target Type Accuracy Status

Combo
glucometer
(Cnoga Medical)

NIR spectroscopy
(combination of four
LEDs and four sensors
to analyze absorption
and scattering pattern)
λ: 625, 740, 850,
940 nm

Finger NI
NCGM

PEG
Zone A:96.6%
Zone B: 3.4%
MARD: 14.4%

Available

NBM-200G*
(OrSense)

NIR spectroscopy
(occlusion
spectroscopy)
λ: 610, 810 nm

Finger NI
Point-of-care

CEG
Zone A: 69.7%
Zone B: 25.7%

Dropped

HELO Extense
(world global
network)

NIR spectroscopy Finger NI
NCGM

N/A Available

GlucoTrack
(integrity
applications)

Combination of:
• Ultrasound
• Thermal
• Electromagnetic
sensing

Earlobe NI
NCGM

PEG
Zone A: 62.4%
Zone B: 37.6%
MARD: 19.7%

Available

GlucoWise
(MediWise)

mm-wave transmission
spectroscopy
f: 60 GHz

Hand NI
NCGM

N/A Under
development

SugarBEAT
(NemauraMedical)

Reverse iontophoresis Upper
arm

MI
NCGM

MARD:13.76% Waiting for
CE approval

Symphony
(echo therapeutics)

Sonophoresis Skin MI
CGM

CEG
Zone A: 81.7%
Zone B: 18.3%
MARD: 12.3%

Unknown

WizmiTM
(Wear2b Ltd)

NIR spectroscopy Arm
wrist

NI
NCGM

CEG
Zone A: 93%
Zone B: 7%
MARD: 7.23%

Proof of
concept

LTT (light touch
technology)

MIR
spectroscopy/optical
parametric oscillation
λ: 6–9_m

Finger NI
NCGM

N/A Under
development

K’Watch
(PK vitality)

Enzymatic
detection/microneedles

Arm
wrist

MI
CGM

N/A Pre-clinical
tests

Eversense®

(Senseonics)
Fluorescence Upper

arm
MI
CGM

MARD: 14.8% Available

(continued)
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Table 5 (continued)

Device Technology Target Type Accuracy Status

GlucoGenius Metabolic heat
conformation
λ: 660, 760, 850,
940 nm

Finger NI
NCGM

N/A Unknown

Reproduced with permission from [5] CCBy© 2019 Gonzales et al., LicenseeMDPI, Basel, Switzerland

Fig. 11 The chart with location of non-invasive and minimally invasive methods and devices for
glucose in the frequency spectrum. Reproduced with permission from [5] CC By © 2019 Gonzales
et al., Licensee MDPI, Basel, Switzerland
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A New Solution for Non-invasive Glucose
Measurement Based on Heart Rate
Variability

Marjan Gusev

Abstract Diabetes is one of the biggest global health problems, and its prevalence
is increasing. According to the World Health Organization, 422 million people were
diagnosed with diabetes in 2014. This number is expected to have grown in the
last years. Correspondingly, the expenses for glucose monitoring and treatment are
a growing problem. In order to address this, we introduce a new system for glucose
levelmonitoringwith anECGmonitor. The electrocardiogram is sent to a smartphone
for temporary storage and calculation of heart rate variability parameters. Further
on, using sophisticated machine learning methods, the system calculates the ability
of a human to control the glucose level. The three most prominent advantages to
using an ECG sensor, as opposed to a traditional (invasive) glucometer, are that
(1) it is a cheaper long-term solution; (2) it is a non-invasive measurement method,
and (3) it offers a more holistic picture of the patient’s health because it tracks the
function of the heart and glucose at the same time—for the same price. The market
potential is estimated to be the size of the market for glucometers, which was 613$
million in 2016 and is expected to reach 915$ million by 2021. This paper presents a
new solution for non-invasive glucose measurement based on Heart Rate Variability,
elaborating functional details and the technological concept of how our product is
realized.

Keywords ECG · Heart monitoring · Continuous glucose monitoring · Diabetes
monitoring · Edge computing

1 Introduction

The autonomous nerve system (ANS) controls the inner body organs, including the
functions of the heart and pancreas. Indirectly ANS regulates the heart rate and the
glucose level simultaneously. Recent studies show a big correlation of glucose levels
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with heart rate variability (HRV) [5]. This is the motivation behind our research and
product development.

We propose a system comprised of a wearable ECG monitor to obtain an elec-
trocardiogram (ECG) [16] and a smartphone, which processes short and long-term
HRV parameters that serve for the analysis of glucose levels, in such a way that will
provide relevant information on how a human body controls the blood glucose level.
This approach targets diabetic patients and solves their pains from a financial and
health-related standpoint.

The International Diabetes Foundation [17] stated that the number of people diag-
nosed with diabetes is estimated to go up to 628.6 million in 2045, which amounts
to 6–7% of the worldwide population [3]. Of those diagnosed in developed coun-
tries, approximately 12% have type 1 diabetes, which means that they are by default
required to take insulin therapy and use glucometers as a means of managing that
therapy. This is the share of the target market we expect to make long-term. That
amounts to about 51 million people worldwide in 2017. However, the number of
customers is likely to be significantly more as type 2 diabetic patients are often
prescribed insulin.

Diabetic patients have to deal with costs from continuous or frequent self-
monitoring, as well as costs for blood glucose testing strips (as high as $1 per strip)
or continuous glucose monitoring sensors ($350 a month), glucagon ($280), etc.
[18]. In addition, diabetic patients present 6–7% of the total worldwide population,
according to the International Diabetes Foundation [3].More than 25% of diabetes
patient costs are a consequence of cardiovascular disease [4]. Costs are increased
for expenses of physician office visits. Table 1 summarizes the problem, how it is
solved today and how it can be solved with this solution:The analysis of related
health problems of diabetic patients and correlated solutions is presented in Table 1.

The problems tackled within this paper are (1) the need for frequent or continuous
glucose measurement and (2) related cardiovascular diseases. The usual way to treat
these issues is through frequent finger pricking or continuous glucose meters, along
with frequent visits to cardiologists. The newly proposed solution treats both prob-
lems with one system. At the same time, the solution offers a device for continuous
monitoring of heart arrhythmia and monitors the ability of a human to control the
blood glucose level.

The rest of the paper is organized as follows. State-of-the-Art solutions available
on the market are presented in Sect. 2. Section 3 specifies the newly proposed solu-
tion with a description of the main functionalities and constituting units. Section 4
compares the existing technologies with the newly proposed solution and presents
the major impact and benefits of the newly proposed solution. Finally, Sect. 5 gives
relevant conclusions and future work.
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2 State-of-the-Art Solutions

Almost all of the glucometers sold today use invasive methods. Some methods use
an array of small needles that collect blood samples from capillaries, and these are
referred to as semi-invasive methods.

Several ideas for non-invasive glucose measurement have recently submitted
applications for a patent, and only a few have been realized without recognized
commercial success. The real problemwith these solutions is that themeasurement is
activated on-demand. In our approach, this is enhanced by a software agent analyzing
the big data concepts of incoming ECG streams, which is our technological value
proposition.

There have been several initiatives to the use of non-invasive technology for
monitoring glucose levels, including methods that collect interstitial fluids (sweat,
saliva, tears, etc.) or are based on analysis of ultrasound, or using nanomaterials, or
related-radio signals reflected from the human skin, eye, or similar organs. A nice
overview of non-invasive glucose methods is summarized in the following articles
[6, 15, 19, 24, 29, 32]. State-of-the-Art of non-invasive methods (existing solutions)
includes: Non-invasive ultrasound or spectroscopy (light) technology (GlucoTrack)
[20], Thin, flexible filament inserted under the skin to measure glucose every minute
(FreeLibre) [11] (invasive), Measuring blood pressure, pulse wave, and vascular
tone on two hands (Omelon) [8] (semi-invasive), Measures the blood capillary level
by transmitting low-power radio waves sections of the body such as the earlobe
or between the forefinger and thumb (GlucoWise) [12] (semi-invasive), Measures
through a patch that inserts a sensor needle under the skin and wirelessly transmits
results. (Dexcom) [7] (semi-invasive).Illuminates a small area on the patient’s arm
with near-infrared light, which is then scattered back out through the skin (Diasensor
1000) – not successful [21]. A wristwatch that samples the blood glucose level in
an interstitial fluid which is painlessly drawn through the sweat glands via a small
electric charge (GlucoW- atch) – not successful [9], and includes a pill-sized sensor
implanted in the upper arm for 90 days by an on-body transmitter [10] (implanted–
invasive).Note that several hugemarket players offer products for continuous glucose
measurement based on reading the values from conventional glucose devices that
work on the analysis of a drop of blood and transmit the solution wirelessly to a
monitoring center, including Medtronic [22] or Agamatrix [1]. All these medical
devices use invasive or semi-invasive methods instead of our non-invasive solution;
besides, we have an unfair advantage since the innovation measures both the heart
and glucose. Another benefit about them is that we are a small agile SME team that
is ideally suited to developing a new product compared to a large corporation with
well-established principles of operation. However, we lack direct sales channels and
industry know-how, which external financing sources can achieve.
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3 System Description

Our solution introduces a new way for diabetic patients to do continuous real-time
self-monitoring at their homes. It is expected to significantly lower the costs of
diabetic patients and improve their satisfaction.

3.1 Functional Description

The technological idea is to monitor glucose levels using ECG monitors. They are
more affordable, easier to use, last longer, and offer better healthcare for the patient.
This method will disrupt the traditional way of glucose measurement, which uses
on-demand activation and invasive techniques.

Figure 1 presents the system design of such a solution. A patient will continuously
wear a light ECG monitor to measure their glucose level, as illustrated in Fig. 2. For
example, it can beworn for up to 7 dayswithout re-charging and even in the unlikeliest
places, like the shower. The monitor wirelessly connects to the patient’s smartphone
via a low-energy Bluetooth connection to send the collected data and limit energy
consumption to enable more extended performance.

The smartphone processes the collected information and transfers data to a cloud
server as a part of the remote telemedicine solution. The interface for the patient is
presented in Fig. 2, displaying a continuousECGsignal, an indication of the heartbeat
rate on the top right side, and the glucose level on the top left side.

Given that the patient’s smartphone is connected to the Internet, the smartphone
applicationwill upload the data to the cloud, where it is accessible by the patient, their
doctor, and a caregiver, anytime and from any computer device. Heart state moni-
toring and the calculations regarding glucose levels are enabled by the monitoring

Patient

Doctor

Fig. 1 System architecture of the proposed solution
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Fig. 2 Wearable sensor and user interface of the proposed solution

technology based on a Software as a service provision, which has been developed
within the ECGalert project [16].

The complete solution is part of a dew computing solution since processing is
located at the edge of the Internet network. At the same time, it allows independent,
autonomous performance. In the case of Internet connectivity, it collaborates with
the cloud server to exchange information. Cloud server collaboration enables other
users to monitor their health status, including caregivers or doctors. This approach is
complementary to edge computing, which aims at bringing the computing closer to
the user. The dew computing approach brings the computing even closer to the user.
The developed algorithms work on a smartphone, and the whole application can be
used as an AI-based doctor at the user’s pocket.

3.2 Technological Concept

Our early research results prove the dependence of the glucose levels on HRV
parameters as a basis of developing algorithms from artificial intelligence, machine
learning, and parallel processing to enable the simultaneous processing of multiple
data streams with high volumes and speed. In addition, the ECG alert monitoring
technology [23] is consistent with the modern trend of cloud computing. Access to
measurement results is instant and available from anywhere, and approved by the
consumers [2, 14].

Our earlier paper addressed the design issues [13], reflecting the methods to
measure ECG targeting the computing architecture behind the new solution. Here
we provide details on the technological concepts to develop such a solution.
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HRV represents a statistical measure calculated based on heart rate that changes
over time as controlled by the ANS. Although most methods to calculate the HRV
use information by heart rate monitors, we found that to calculate a more precise
HRV parameter which correlates to the ability to control the glucose level needs e
more detailed approach and enhanced information about heartbeat types to eliminate
the impact of the problems imposed by heart anomalies.

An electrocardiogram (ECG) represents a signal that measures the electrical prop-
erties of the working heart. ECG technology is widely used to detect anomalies in the
heart by analyzing heart arrhythmia. For example, a ventricular heartbeat may occur
earlier than expected since the ventricle initiates it instead of the sinoatrial node. A
compensation interval usually follows this, and the heart then continues to beat as
controlled by the ANS.

These changes influence the calculation of the HRV parameters. For example,
SDNN is one of the HRV parameters that correlate to the glucose control ability
is calculated as a standard deviation of time intervals between consecutive pairs of
heartbeats. A slight variation from the heart rate will cause a significant indication in
the SDNN. The example with the ventricular beat type will be manifested as a differ-
ence of both the smaller interval preceding the ventricular beat and the succeeding
one.

Classical heart rate monitors realized as wrist devices, or smartwatches can not
detect the beat type. Therefore, the wearable single-channel ECG monitors out-
perform these since they precisely identify the beat type and associated arrhythmia.
Consequently, arrhythmia caused by heart malfunction and not reflecting the ANS
controllingmechanismmust be eliminated in the calculation. This is only possible by
methods that analyze theECGs similar to humans, and therefore,AI-based algorithms
take over the detection role in our approach.

We have conducted a lot of research detecting the correlation between various
HRV parameters and glucose levels for short-term HRV and instantaneous blood
glucose measurements [31], then between 30-min ECG Measurements and average
glucose levels [28], or long-term HRV correlation to the average glucose levels [27].
The overall conclusion was that specific long-term HRV strongly correlates to the
average glucose levels. In contrast, specific HRV short-term HRV parameters relate
to the instantaneous blood glucose levels.

These results were then used to analyze the distribution of HRV parameters [30],
remove outliers, and develop machine learning and deep learning methods to detect
the ability to control the glucose levels or to estimate the instantaneous plasmaglucose
level [25]. Measurements of 15 min ECG intervals showed the best R2 score and R2

loss function to estimate the blood glucose level with the smallest MSE and RSME
errors. The developed solution was based on Adam optimizer and Relu activation
function for 3 dense layers with 512 neurons each [26].

The best results to detect the ability to control glucose level range the accuracy
validation of 91.96% and F1 score 81.34%, and 74.86% on the testing dataset. The
corresponding DL model was developed applying the Z-score outlier removal, opti-
mized byAdamwith a learning rate of 0.001 using three hidden layers of 32, 256, and
64 neurons. Manual experiments performed similarly to the automated Auto Keras.
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Table 2 Comparison of technology and economic features

Method Measurement Monitoring Access Price

Invasive methods On-demand Once Local $$$

Implanted sensors Continuous <2 weeks Local $$$

Infrared, ultrasound or radio waves Continuous <2 weeks Local $$

Measuring other physiological parameters On-demand >2 years Local $

This non-invasive ECG-based solution Continuous >2 years Online $

The developed prototype achieved our final goal to create a service based on an
automatedmonitoring software agent, whichwill send estimated related results about
the ability of the patient to control the blood glucose levels to a cloud server. This
will enable continuous real-time monitoring with alerting features with notification
about extreme glucose levels or the inability of a human to control the glucose level.

4 Discussion

Wearable ECG sensors do not cause any harm to the user; they are worn similarly
to the clothes. Some users experience allergic reactions on the skin, and they are
advised to use electrodes produced by specific antiallergic material.

Table 2 compares the technologies used for glucose measurements. Several
features are analyzed for each analyzed method, including the type of measurement
activation (on-demand or continuous), monitoring period (once, less than twoweeks,
or more than 2 years), access to results (local or remotely via the Internet), and price
cost estimation per day of usage (small $, medium $$ or large $$$).The benefits of
this solution go beyond just improving the customer’s life. They also touch the lives
of other stakeholders, as described in Table 3.

5 Conclusion

The possibility of measuring glucose with a non-invasive method and getting real-
time results instead of having to prick their finger in regular time intervals is of
immense value for customers. This is how this solution is better than the existing
methods. The technological concept behind this solution is based on using the ECG
generated by wearable monitors as input to calculate the HRV parameters instead
of heart rate monitors. The ECG parameter provides information that eliminates
those heartbeats caused by some heart anomaly and was not directly controlled by
the ANS, which is also responsible for controlling the glucose level in the human
body. In this paper, we have described a non-invasive glucose measurement system
based on a wearable ECG sensor. This system is superior to existing state-of-the-art
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Table 3 Impact of the new solution

Stakeholders Impact

Patients Non-invasive glucose self-monitoring
Ability to monitor the function of two vital organs at the same time
Real-time continuous monitoring
Relief from constantly having to prick fingers deeper and harder
Pay affordable prices for premium service

Caregivers Taking care of patients remotely and in real-time
Easier to efficiently monitor the conditions of more patients simultaneously

Doctors Detect abnormalities in the early stages
Prompt reaction and intervention increase healthcare quality
Medication monitoring will drastically reduce errors

Society Better and more effective healthcare for citizens
Reduced costs for treatment of glucose issues
Increased ability of diabetic patients to work
Prolonged life expectancy and improved quality of life
Increased number of employees and economic growth

Company Increased R&D capability and intellectual property
Company growth
Increased target market

Environment No disposal of medical waste (glucose strips)

because it measures glucose non-invasively and gets real-time results. To summarize
the findings of our analysis, the main benefits are:

• No more finger pricking Safety from unwanted complications
• No hassle A continuous glucose monitoring solution that notifies you when

glucose levels drop
• No need to renew for at least 2 years. A lifetime expectancy of the device for more

than 2 years
• No fear of undiagnosed heart complications Measure the heart function along

with glucose levels.

The affordability of this approach as a continuous monitoring tool for both heart
arrhythmia and the ability to control glucose levels makes this solution a unique
medical device affordable to masses, much like the conventional personalized wrist
devices for measuring blood pressure. Future work includes monitoring other vital
health parameters calculated from an ECG, including blood pressure.
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Optic Based Techniques for Monitoring
Diabetics

Hannaneh Monirinasab and Farzaneh Fathi

Abstract The development of a well-organized, label-free, and non-invasive diag-
nosis approach for diabetes is one of the major health concerns. Recently, glucose
monitoring as a biomarker for diabetics using optical phenomena in blood or human
fluids has attracted more attention. These optic-based sensing approaches include
surface plasmon resonance (SPR) and localized SPR (LSPR) based methods and
also recently developed photonic crystals (PCs) based structures for biomarker detec-
tion. These optic-based detection methods have brought a considerable revolution
in the diagnosis of biological molecules due to their ability to detect the very trivial
refractive index change near the gold surface. SPR which is an important optic-
based sensing method happens when a polarized light hits a prism covered by a
gold layer of the sensor surface. In SPR analysis, any minor mass variations and
refractive index shifting close the gold layer can be sensed by angle changes of SPR
peaks. In the detection of biomolecules, PC-based inverse opal (IO) structures are
one of the templates for a label-free sensing system. PCs-based biosensors with their
nano and 3 dimensional ordered microporous organizations are reliable, cheap, and
robust materials that reveal a reversible change in the structural color and reflection
optical spectra by changing glucose concentrations. In this chapter, current manu-
facturing techniques related to the application of SPR, LSPR, and PC biosensors for
the detection of diabetic biomarkers like glucose, insulin, etc. were discussed.
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1 Introduction

A biosensor is defined as a transducer that transforms a bimolecular binding event
using by capturing on the bio-receptor surface to a readable physical quantity which
led to the discovery of biomolecules related targets like small molecules, proteins,
DNA, cancer biomarkers, cells, viruses, bacteria,microorganisms, organelles, etc. [1,
2]. The Bioreceptor element covering the surface is a bio-recognition molecule such
as antigens, DNA, antibodies, cell, or aptamer that can selectively attach to target
molecules in the samples during test. Depending on the transduction mechanism
and system for response transduction, biosensors can be involved in the optical,
electrochemical, thermal, and piezoelectric ormagnetic [3]. In general, biomarkers in
biological samples, including blood, serum, urine, saliva, and tears, indicate the initial
sign of disease can be detected using developed sensitive and selective biosensors.
[4, 5]. Biosensors with a specific platform for non-invasive biomarker capturing and
potency of sensor surface modification by nanomaterials result in more selective
responses and high sensitivity that make them valuable and label-free diagnostic
instruments for clinical analysis [6–8].

Optical based biosensor is completed by using the interaction of the optical field
with an analyte as a detection element which can be classified into two general types:
label-free and label-based form [9]. When the detected response is produced directly
by the interaction of the analyte biomaterial with the transducer, it is a label-free form
[10]. But, the label-based sensing method includes using a label and optical signal
enhancer like gold nanoparticles fluorescent or luminescent labels [11]. Glucose, the
main biomarker in diabetes, was detected using enzymatic and non-enzymatic elec-
trochemical andopticalmethods [12–16]. For example, using theCeO2@CuOnanos-
tructure, a modified screen-printed electrode was developed for the non-enzymatic
detection of glucose [12]. Surface plasmon resonance (SPR) and localized surface
plasmon resonance (LSPR) as an optically based detectionmethod, with the ability to
detect the very trivial refractive index (RI) change in gold sensor surface, havebrought
a considerable alteration in the diagnosis of biological molecules [17–19]. In LSPR
based biosensors, the various shape of LSPR arrays like the triangle or rhombic struc-
tures on the substrate of LSPR biosensors led to show larger peak wavelength shift
and enhancement of the sensitivity through stimulation of electromagnetic radiation
[20, 21]. Moreover, the gold nanostructures used in the LSPR-based technique can
exhibit a distinctive ultraviolet–visible (UV) absorption band [22]. Peak wavelength
changes are caused by mass absorption and refractive index change on the silver
and gold nanoarrays with various shapes or sizes [23]. Also, photonic crystal (PC)
based IOs structures are templates for sensitive and non-invasive detection systems
[24]. IO-based materials with their 3-dimensional nano-porous organizations have
found useful optical sensing uses in detecting biomolecules like glucose [25]. In this
chapter, the latest manufacturing methods and the main challenges of applying SPR,
LSPR, SPR imaging, and PC biosensors to detect diabetic biomarkers like glucose,
insulin, etc. are discussed.
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2 SPR Method for Detection of Diabetic Biomarkers

2.1 Glucose

In SPR analysis, any minor mass variations and refractive index shifting close to the
gold sensor surface can be sensed by an SPR curves shift of the modified gold
surface (Fig. 1a) [26, 27]. Using SPR based assay, low mass, and contrition of
analyte (such as glucose) which is the most challenging factor in clinical sample
detection, gold chip surface modification led to developing a sensitive method to
improve SPR based sensing system. Measurement of glucose concentration in blood
and urine is an important index for diabetes diagnosis, monitoring, and treatment.
Surface Plasmon Resonance (SPR) is a new technique for glucose sensing, and it
can be different in method or optical fiber type and shape. Tilted fiber Bragg grating

Fig. 1 aRepresentative image of SPR system. Reprintedwith permission from [19].bTri (ethylene
glycol)-terminated thiol (TEGT) self-assembly on the gold chip surface. Reprinted with permission
from [33]. c schematic diagram of borate polymer immobilization. Reprinted with permission from
[32]. d Detection of glucose range by developed D-shaped PC fiber. Reprinted with permission
from [34]
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(TFBG) is a new generation of optical fiber cladding by thin metal such as Ag
and is utilized as glucose and H2O2 sensors [28]. Besides blood and urine, Trans-
dermal extraction of interstitial fluid (ISF) can be minimally invasive blood glucose
monitoring, further glucose/galactose-binding (GGB) protein modified SPR chip
can sense glucose.[29] Glucose SPR sensors are based on two categories: enzymatic
and non-enzymatic. P-mercaptophenylboronic acid (PMBA) modified Au chips is
the non-enzymatic model for glucose detection. PMBA-Au chip andAu nanoparticle
and 2-aminoethanethiol (AET) can amplify SPR signal and detect low constriction of
glucose [30]. Molecularly Imprinted Hydrogels (MIHs) and Molecularly Imprinted
Polymerization (MIPs) are other non-enzymatic chip modifications with recognition
sites andbiomimetic templates for the target analyte, as a result, they canbind analytes
selectively in complex physiological fluids like urine. The sensitivity of MIHs and
MIPs is lower than protein-based; however, it is enough for urine glucose detection at
the physiologically level (1–20 mg/ml). Poly (allylamine hydrochloride) (PAA.HCl)
into D-glucose 6-phosphate monobarium salt (GPS-Ba) is MIH chip modifications
example used for polar glucose detection, and it can connect glucose non-covalently
- hydrogen binding [31]. Boronic acid (BA) is low cytotoxicity and immunogenicity
compound which forms cyclic boronate esters with diols (ex: glucose) in basic
aqueous media. The sensing surface is fabricated by a self-assembled monolayer
(SAM)of bis-BAderivative and tri (ethylene glycol)-terminated thiol (TEGT). TEGT
can decrease non-specific protein adsorptions (Fig. 1b). Another form of boronic acid
is poly (acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-PAAPBA) polymer
used to modify the surface of the Au sensor and carry it out as a glucose sensor
(Fig. 1c). These sensors have a superior affinity, sensitivity, and stability [32, 33].

Asmentioned previously, there are two categories for designing SPR-base glucose
sensors: enzymatic and non-enzymatic. Various methods have investigated glucose
detection by enzymatic sensors. The glucose oxidase (GOx) enzyme converts glucose
to H2O2 and gluconic acid. GOx-based assays are well established. The covalent
binding of GOx on Au or Ag surface makes it stable and reliable [35]. Zinc oxide
(ZnO) is appropriate for attachment of GOx on Au surface in SPR measurements.
GOx/ZnO/Au/prism system can detect 0-300 mg/dl glucose. Enzyme-based sensors
are expensive and have low stability compared to non- enzyme ones [36]. In SPR
biosensor-based photonic crystal fiber (PCF), we can monitor air holes’ size and
shapes, such as sensing layer thickness and the length of air holes to the pitch of D-
shaped PCF. PCF sensors require to load and deliver the analyte samples frequently.
To solve this challenge DPCF sensor was designed. DPCF sensor can detect glucose
in range of 0–100 g/l with 0.83 nm/ (g/L) sensitivity in presence of hemoglobin
(Fig. 1d) [34]. In this method, detection of blood glucose level was conducted by Au
nanoparticle-TiO2 surface in hemoglobin presence.

For the direct discovery of glucose molecules, triple mutant bacterial
glucose/galactose-bindingproteinwas reported. Thismodificationwas accomplished
by changing lysine to arginine and adding serine at the glucose-specific coupling site.
Then modified GGBP was immobilized on Au surface as glucose-specific binding
properties in SPR measurement with a dissociation constant of 0.5 mM [37]. To
measure glucose high-resolution circular birefringence (CB) properties, we can use
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the Surface plasmon resonance prism coupler sensor. This device enables the sense
of CB properties with a resolution of up to 8.9× 10− 7RIU for refractive indices in
the 1.3–1.4. This SPR prism coupler contains a half-ball glass lens, a gold/chromium
(Au-Cr) isotropic soft platform, and a Ta2O5 anisotropic layer and CB sample.When
the concentration of glucose and refractive index change SPR sensor can sense [38].
Kretschmann-based SPR sensor with nano-laminated Au-Cr soft layer for measuring
glucose refractive indices is a sensitive and user-friendly method. Refractive index
changing of various glucose concentrations is analyzed at 670 and 785 nm optical
wavelength. Minimum limit of detection (LOD) of Au-Cr K-SPRis 4 mmol/L. The
developed biosensor can be implemented as a sample detector in lab-on-chip and
point-of-care devices [39].

2.2 Insulin

Insulin is an important hormone that normalizes carbohydrate metabolism, and
detecting it in human serum can be useful for medical diagnostics and checking
patients with different forms of diabetes. Using SPR biosensor for insulin sensing is
possible [40]. For example, AuNPs captured in hydroxyl/thiol-functionalized fourth-
generation polyamidoamine (G4-PAMAM) dendrimers can enhance the surface
density and insulin immobilization [41]. Type 1 diabetic patients are described by
autoimmune aggression against pancreatic beta cells such as Proinsulin Autoan-
tibodies (PAA). PAA is the preclinical marker, and SPR based sensor for serum
detection can be designed by two types of PAA antigen: the genuine unmodified
proinsulin (PI) and the recombinant chimeric thioredoxinproinsulin (TrxPI) [42].
Also, retinol-binding protein 4 (RBP4) is another diabetes marker that has a key role
in obesity-induced insulin resistance and type 2 diabetes. Au surface with a single-
stranded DNA (ssDNA) aptamers modification has a high affinity to RBP4 in SPR
measurement [43].

2.3 Glycated Hemoglobin (HbA1c)

Over a long period in diabetic patients, hemoglobin protein has been glycosylated by
glucose. HbA1C is accepted as a good biochemical marker of diabetes diagnostic. As
mentioned, Glucose part, 4-vinylphenyl boronic acid (VPBA), and phenylboronate
are boronic acid derivatives and are used for HbA1C detection [44, 45]. Aptamers
are small, single-stranded DNA or RNA (ssDNA or ssRNA) emerging molecules
and can bind to a specific target such as antibodies; thus, they have therapeutic and
diagnostic applications as HbA1c, insulin, and Retinol binding protein 4 sensing.
The application of aptamers is one of the most common modifications on the SPR
Au chip for biomarker detection. In this work, the authors show that the amount of
salt and the pH value can significantly affect the affinity between the aptamer and
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HbA1c protein [46]. They exhibited that the pH value of 6 is the best condition for
detecting HbA1c, with high sensitivity and a low LOD (2.55 nM). In this pH range,
the aptamer and glycated hemoglobin have negative and positive charges, respec-
tively, making the promoted interaction by electrostatic attraction and showing the
enhanced SPR response compared with the other pH values. Utilized of fused depo-
sition modeling (FDM) 3D printing and the HbA1c aptamers monolayer for devel-
oping high-sensitivity and rapid angle-scanning SPR can be interesting and attrac-
tive point-of-care device for HbA1c detection in diabetic patients [47]. In diabetic
patients, non-enzymatic glycation reactions accelerate between glucose and proteins
and form advanced glycation end products (AGEs), which have a key role in diabetic
complications. AnAGE generated fromHbA1c is N-(carboxymethyl)valine (CMV).
Thus CMV-Hb assay in nephropathy can be useful for diagnosing diabetes [48].

2.4 Glutamic Acid Decarboxylase (GAD)

SPR sensors play a key role in pre-diabetic markers detection. Glutamic acid decar-
boxylase (GAD) is an enzyme that converses glutamate to GABA. GAD synthesis
is increased in the pancreas Beta-cell in high glucose concentration. As a result,
GAD autoantibodies (Anti-GAD) presence is the main pre-diabetic marker used in
type I diabetes mellitus prediction and diagnosis. SPR sensor for Anti-GAD anti-
body detection was designed by self-assembled monolayers (SAMs). The type of
SAMs indicates different behaviors. 3-mercaptopropionic acid (3-MPA) and 11-
mercaptoundecanoic acid (11-MUA) are the most common thiol compound used
as SAMs. 3-MPA acts as a spacer between MUA and gold chip also reduces steric
hindrance. The evidence ratio of MUA to MPA and the type of terminal group
(hydroxyl or carboxyl) in mixed SMAs affect the sensitivity of sensors. Non-specific
adsorption in the hydroxyl group is less than carboxyl. Biotin-GDAwas immobilized
on MUA-Streptavidin modified chip. Biotin–streptavidin can reduce non-specific
binding. Heterogeneous lengths are activated better than homogeneous lengths by
NHS/EDC also Streptavidin and Biotin-GDA immobilization is more. Based on
evidence 10:1 ratio of 3-MPOH to 11-MUASAMhas high sensitivity as an anti-GAD
sensor [49, 50].

2.5 Acetone Vapor

In diabetic patients, exhaled breath acetone positively correlates with blood glucose
and is non-invasive monitoring. However, the concentration of acetone vapor is low
and conventional devices for its detection are chromatography-mass spectrometry
(GC–MS) and selective ion flow tube mass spectrometry. SPR based sensors can
be the superior device for acetone vapor sensing due to its sensitivity and real-time
measurement. Chitosan-PEG polymer, p-Toluene sulfonic acid doped polyaniline



Optic Based Techniques for Monitoring Diabetics 73

(PANI), chitosan, and reduced graphene oxide (RGO) based SPR sensors are soupier
materials for acetone vapor sensors [51, 52]. In Chitosan-PEG polymer SPR based
biosensor, acetone vaporwas detected in the range of 0.5–5 ppmwith high sensitivity,
selectivity, and linearity.

3 SPR Imaging (SPRi)

Surface Plasmon Resonance imaging (SPRi) is another type of label-free optical
detection and monitoring of biomolecular events which follows the same princi-
ples of SPR. However, it uses images from the CCD camera and different detection
methods. Magnetic nanoparticles (MNP) can covalently conjugate to insulin anti-
body (Abinsulin). Quantum dots to achieve enhanced SPR responses can be a good
idea. Activated carboxyl CdSe/ZnS quantum dots (QD800) and insulin aptamers
are immobilized on the modified cysteamine-PAMAM dendrimer SPR Au chip.
After diluted and mixed Abinsulin-MNP, serum insulin is monitored level of insulin
by aptamer-insulin-antibody sandwich microarray (Fig. 2a) [53]. SPRi technique
and multiplex chips can measure the combination of hormones. A mixed SAM of
thiolated polyethylene glycol (CH3O-PEG-SH) and 16-mercaptohexadecanoic acid
(MHDA) are utilized as a biosensor to detect the diabetic biomarker.[54]. Further-
more, by Advanced glycation end products (AGEs) antibody–Protein G-modified
gold surface is detected AGEs [55].

Fig. 2 Scheme of a SPR microarray aptamer-based biosensor for insulin detection. Reprinted
with permission from [53], b glucose biosensor by polymer-modified gold nano-prisms. Reprinted
with permission from [56], c plasmonic Ag nanowires for the on-chip detection of HbA1c protein.
Reprinted with permission from [60]
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4 Localized SPR (LSPR)

In LSPR, locally coherent oscillation of electrons at the surface of metallic structures
due to creating surface plasmon resonance (SPR) by nanoparticles (NPs) or nanorods
(NRs). LSPR sensitivity is higher than bulk SPR and can multi detection array with
low sample volume. LSPR doesn’t have bulk SPR obstacles such as steric hindrance
and nonspecific proteins adsorption. The LSPR behavior is a sensitive function of
nanoparticle shape, size, material, and surrounding medium refractive index. LSPR
shift occurs by pH reduction; as a result, poly(allylamine) or gold NRs size changing
in the presence of glucose oxidase (GOx) and glucose reaction, finally can sensing
glucose and H2O2 (Fig. 2b) [56, 57]. Three-dimensional (3D) glucose-bismuth
selenide (Bi2Se3) nanostructures and Gold nanoparticles (Au NPs)—thermo-active
redox reaction of chloroauric acid (HAuCl4) are another method in Glucose sensing
by LSPR [58, 59]. As mentioned previously, HbA1c is the most important factor in
diabetes monitoring; silver nanowire-based LSPR chip indicates good potential for
detectingHbA1c level in the blood (Fig. 2c) [60, 61]. For developing a non-enzymatic
glucose sensor based on LSPR, Au nanorods on Ni foam surface can be chosen, Au
NRs as plasmon catalysts, and Ni foam due to its high conductivity [62].

5 Photonic Crystals (PCs)

Photonic crystals (PCs) materials with having a spatially periodic dielectric arrange-
ment make the circulation of photons similar to the periodic potential in semicon-
ductors, which leads to the flow of electrons [63, 64]. The similarity of the potential
periodicity of the semiconductor materials is like that of dielectric constant period-
icity in PCs structures [65]. Recently the use of advanced PCs materials with distinc-
tive optical and physical properties has been found more attention in biomedical
applications like biosensors and imaging [66].

5.1 Brief Overview of PCs Physics

PCs were first completed in the late 80 s and then recognized in a directed mode
arrangement in the 90s [67]. In nature, PCs exist in the wings of butterflies, peacock
feathers, and opal gemstones, and a common characteristic between them is their
rainbow color [68, 69]. This observed color of themdose not related to any absorption
or pigment. Still, it is due to the interaction of light with the periodic or random
construction of these natural material designs [69]. PCs are arrangements with a
periodic variation of the RI in 1, 2, or 3 dimensions, and their working system is
equivalent to that of electrons in crystalline structures (Fig. 3). A photonic bandgap
(PBG) in PCs arrays occurs when the light cannot spread within the polarization
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Fig. 3 Natural PCs (photonic crystals): a peacock feathers, b butterfly wing, c PCs opal films.
Schematic picture of PCs arrays, d 1dimensional, e 2dimensional, f 3dimensional, with correlated
scanning electron microscopy images. Reprinted with permission from [73]

directions of PC martials [70]. Like an electrical band-gap, the PBG is produced
by a matrix or a crystal arrangement. A complete PBG is an individual character
only observed in PCs where light propagation is banned in all directions [70]. For a
more and deeper understanding of the PC structures and their optic behavior, several
complete review papers and textbooks are accessible [71, 72].

5.2 PCs Biosensors

Stimulus-responsive hydrogel polymers introduced as filling materials in the 3-
dimensional PC arrays could act as an optical detection system for various biological
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markers [74]. Changing the hydrogel material volume of PCs structures in reaction
to stimuli would be transformed to the reflected wavelength spectra. Phenylboronic
acid (PBA) modified hydrogels are well identified as glucose-responsive hydrogels
because of having a good affinity to diol-molecules like sugars [75]. The absorp-
tion of glucose molecules by attached PBA in the hydrogel matrix structures makes
volumetric changes, leading to the hydrogel being the desired agent for glucose
monitoring [76]. Using PC hydrogel arrays, the visual detection of glucose was done
[76]. In designated biosensors, polystyrene colloidal structures are fixed in a PBA
modified hydrogel surface to diffract light for sensitive detection on the hydrogel
surface region (Fig. 4a). The volumetric variation of the hydrogel structures during
glucose detection led to the Debye diffraction disk length change. This biosensor has
the positive points of the fast fabrication of the PCs arrangements and the easy way
of Debye ring diffraction display with more selectivity for glucose than other sugar
molecules like fructose and galactose [76]. In developing of glucose biosensor based
on PC hydrogels, this material displayed major sensitivity for glucose in lab devices,
the element arrangement of the PCs altered from 917 to 824 nm (93 nm) within
3 min as the glucose amount improved from 0 to 10 mM, and the physical color of
the PC s arrays transformed from red–orange, to green, and lastly, to cyan [77]. With
a homebuilt portable optical instrument, this inexpensive smart bio-sensing system
can offer a more suitable and well-organized approach for urine glucose discovery
in medical analysis and point-of-care sensing. In another work developed by Chen
et al., polystyrene microspheres were first self-assembled and this two-dimensional
(2D) platform was then covered by a 4-boronobenzaldehyde-modified poly(vinyl
alcohol) hydrogel (Fig. 4b) [78]. The developed biosensor was able to label-free and
real-time detection of glucose in tears which covers both tears’ and blood’ physio-
logical ranges. The physical color could move from red through yellow to green in
this biosensor with increasing glucose range from 0 to 20 mM [78].

Photonic crystal fibers (PCF) show a very significant character in biosensors
due to having flexible, sensitive, and bulky refractive index contrast [82]. The PCF-
mediated biosensors recently are acceptably designed and found to propose very high
sensitivity in the detection of biomarkers [83, 84]. A triangular lattice structure of
PCF-based biosensor for monitoring glucose concentration was developed by Then-
mozhi et al. in 2017[80]. By finite element technique, PCF structures are detected
glucose with an average sensitivity of 19,135.70 nm/RIU, showing a blue-shift and
increasing the RI of filling analyte. In this biosensor, glucose sensitivity material
has flowed on PCF structures’ central air cavity, which connects to six liquid core
sections. With satisfying phase-matching conditions, the liquid-core mode pairs to
defect mode wholly and shows loss peak used to sense glucose amounts (Fig. 4c)
[80].

Also, by applying the PCF structures and Raman spectroscopy, the develop-
ment of glucose biosensors was done [85]. Due to the natural minor Raman
scattering cross-section of glucose, Raman spectroscopy was not applicable for
detecting this molecule. But quantitative glucose Raman detection in the range of
0–25 mM is possible using the very sensitive liquid-filled PCF platform [85]. Using
PC structures naked-eye glucose detection and real-time monitoring of diabetes
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Fig. 4 Schematic image of the a 2-DPChydrogel response to glucose and related SEM image of PC
hydrogel film. Reprinted with permission from [79], b PC hydrogel sensor and biosensor response
to glucose in the diffraction wavelength. Reprinted with permission from [78], c Cross-section
of developed glucose PCF biosensor and related optical response of different glucose samples.
Reprinted with permission from [80], d synthesis process of hydrogel IOs and optical signals of
PCs in different glucose solutions. Reprinted with permission from [81]

is possible and displays hopeful use in the sense of diabetes mellitus. A vertical
convective self-assembly technique prepared pCs arrays for this purpose with a
novel kind of polymer microsphere including methyl methacrylate (MMA), N-
isopropylacrylamide (NIPA), and 3-acrylamidophenylboronic acid (AAPBA) [86].
Developed opal closest-packing PCs structures with high solidity, periodically-
ordered arrangements, and desired physical color exhibitions a redshift near 75 nm
in wavelength and decreased reflection intensity during glucose molecules detection
[86].
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Also naked-eye glucose detection with a range of 3–20 m M is observable by
changing the color PCs arrays from brilliant blue to bright green. For non-invasive
detection of glucose, a PCs-based biosensor was developed by embedding colloidal
microspheres within a polymer system of a polyacrylamide-poly(ethylene glycol)
hydrogel with drooping phenylboronic acid molecules [24]. Phenylboronic acid
was used as the molecular recognition factor to detect physiologic pH ranges. The
improved PCs biosensor detected glucose in tear fluid with LOD of 1 μmol/L which
was visible by shifting evident diffraction color in the visible spectral region from
red to blue [24]. Inverse opal photonic crystal (IOPC) hydrogels commonly denote
the polymer surface with the regular holes prepared using colloidal polymer micro-
spheres as a template and to remove filling materials to prepare IOs nanostructures
[25, 87]. IOs based biosensors can exhibit colorful signals with varying outer moti-
vation, like pressure, humidity, pH, or thermal [88–91]. Recently, the IOPCs struc-
tures have been applied as a colorimetric biosensor for molecular recognition [92].
For example, IOs based films made from chitosan carbohydrate biopolymer could
reversibly transfer their physical colors and absorbance peaks in reply to alcohols
and phenols, which predicted the possible way to visually detect organic solvents
[93, 94]. Glucose detection based on the IOs materials was done by Feng et al.
(Fig. 4d) [89]. Using the natural structural color of IOs arrays, the developed hydrogel
biosensor could be applied to detect carbohydrates with 1,2-cis-diol function and
monitor diabetes without the need of complicated test tools [89]. An IO polymer
membrane prepared from thermosensitive monomer and glucose-sensitive monomer
was used for the colorimetric checking of glucose [95].

This system displays natural color based on Bragg diffraction rising from the
3-D organized arrays with periodicity in the visible light wavelength. The size of
the hydrogel elements reversibly alters as the glucose amount differs in the divided
holes of the IOs polymer layer surface [95].

PCs-based biosensors are reliable, cheap, and robust materials that expose a
reversible alteration in the structural color and the intensity of the optical reflec-
tion peak with the variation in the glucose ranges. Using the colorimetric glucose-
biosensing system, PC-based systems can detect the strong value of glucose amount
around the threshold range for detecting diabetes mellitus. In Table 1, some examples
of optical-based methods for detecting diabetic biomarkers were presented.

6 Conclusion

The development of optic-based sensing approaches includes SPR and LSPR based
methods, and also photonic crystal-based structures have an important role in
diabetics biomarker detection. These optic-based detection methods have brought
a considerable revolution in diagnosing biological molecules due to their potency
to detect the very trivial refractive index change on the gold surface. LSPR based
biosensors for diabetic biomarker detection due to having different gold or silver
nanoparticle structures produce sharp resonance absorbance bands in the visible
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light wavelength ranges, which is highly sensitive to the local refractive index near
the surface of nanoarrays. In comparing SPR and LSPR based detection methods,
SPR biosensors have a much higher refractive index sensitivity. Still, the sensitivity
towards biomolecular binding interactions in LSPR sensor surfaces is more than
that of SPR biosensors. This advantage of the LSPR biosensor makes it a valuable
analytical approach for small biomarker discovery. Also, PC-based arrays, their nano
and microporous 3D organizations, which are one of the templates for label-free
sensing systems, have found attractive optical biosensor applications in detecting
biomolecules like glucose. Introducing the biomarker detection based on PC arrays
due to having large surface area and periodically ordered structures and specific
reflective peaks makes them an effective platform for diabetic biomarker detection
that can be applied to the clinical analysis. We believe that optical-based methods
would have a hopeful future in biomedicine and clinical applications. However, main
challenges are needed to develop large-scale and well-organized optical materials
moving from laboratory toward industrial section.
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SPR Assisted Diabetes Detection

Choudhary Arjun Sunilbhai, Md.Sabir Alam, Kishor Kumar Sadasivuni,
and Jamilur R. Ansari

Abstract Autoimmune aggregation on pancreatic beta cells characterizes Type-I
diabetes mellitus (DM) as resultant insulin secretion with absolute deficiency. Chil-
dren have a high risk of Type-I DM because insulin antibodies are highly reactive
towards proinsulin, and prone to diabetic risks. Radioligand binding assay (RBA)
is the measurement of auto-antibodies which provides quasi-quantitative values of
some specific auto-antibodies. To improve numerical immune response, an alterna-
tive method such as surface plasmon resonance (SPR) to pro-insulin autantibodies
(PAA)measurements are done. HbA1c or glycosylated hemoglobinmolecule is most
common to diagnose Type-II diabetes mellitus. In high-risk cases, HbA1c can track
diabetes easily. This study aims to determine HbA1c by vinyl phenyl-boronic acid-
modified SPR. It was also observed that the concentration increases as the receiving
signals increase. It shows that the variation of pH parameters plays a significant
role in diagnosing diabetes. This study can provide the best alternative to avoid
measuring difficulties of exhaling breath acetone by improving real-time analysis
and obtaining accurate results without proper laboratory equipment setup by using
optical SPR biosensors. In these biosensors, conducting novel poly-aniline doped
(PANI) consists of metallic SPR layers, and chitosan behaves as sensing selective
layers. This article provides direct detection of glucose in the blood by SPR biosen-
sors. High levels of sugar in the blood cause diabetes mellitus. This study provides
howMicroring Resonator (MRR) and SPR based sensors monitor diabetes. Glucose
in the blood can be detected using some specific sensor chip types. SPR setup utilized
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sensors onto the Kretschmann configuration based on prisms by spectral interroga-
tion scheme utilization. The stability of sensor chips depends upon self-assembled
monolayers mainly due to covalent bonding. Type-II diabetes, also known as adult-
onset diabetes, is one of the biggest health issues adults face due to the lack of insulin
in their bodies. An imbalance between energy utilization and caloric intake arises
due to obesity. To avert obesity, gastric bypass surgeries (GBP) are performed. This
research is developed for full-length insulin receptors (IR) by utilizing a high-five
insect cell line. IR-insulin interaction by kinetics measuring improves the concept of
the disease. To study interactions between IR ectodomains and insulin, the multiplex
SPR assay was obtained. Reduced self-association properties with insulin analog
known as lispro were used to introduce IR ectodomains (eIR). eIR-A isoform with
human insulin recombination gives two binding pattern sites such as high-affinity
site (KD1) and low-affinity site (KD2), with some range of dissociation constant (KD).
Glucose doesn’t show any effect on insulin interactionswith eIR isoforms. So, further
development was anticipated for kinetics interpretation of eIR-visfatin interaction.
In the knowledge of SPR sensors, those developed SPR assays are the first-ever
SPR assay to use in studies of insulin-eIR interactions. It’s also possible that these
studies could be extended shortly to study full-length insulin receptors and insulin
interactions.

Keywords Surface plasmon resonance (SPR) · Diabetes mellitus (DM) · Insulin
receptors (IR) · HbA1c · Sensors

1 Introduction

Diabetes patients are rising all around the globe; by statistics, India stands in second
position behind China. In the United States, Brazil, Russia, Mexico, and Indonesia,
over 10 million diabetes patients are estimated. The number of diabetic patients
increased to 7% in 2013 from 5.7% in 2007. At present, the scenario of diabetes
patients has changed. Around 422 million people across the globe are affected by
diabetes, and the majority of people reside in countries having low poverty rates.
According to the International Diabetes Federation (IDF), stroke, kidney failure, and
heart attack are major concerns caused by diabetes.

Due to the lack of insulin level in blood sugar, the sugar level rises, leading to
diabetes. The human body requires glucose for energy and growth. The beta-cell
failure to insulin hormone causes Type-I diabetes, while overweight patients have
risk of Type-II diabetes [1]. The sugar level in an average person should be <8
mmoL/L after the meal, and it should be 4–6 mmoL/L during fasting. The person is
diagnosed with pre-diabetes if he has a level 7.8–11.1 mmoL/L after the meal and
5.6–7 mmoL/L during fasting. But a person diagnosed with diabetes has the sugar
level risen during fasting >7 mmoL/L and >11.8 mmoL/L after the meal. Type-I and
Type-II diabetes can be controlled by regular workouts, maintaining a healthy diet,
and insulin injections. To avoid Type-I and Type-II diabetes, one should maintain
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a healthy diet. The diet should not include sugar-sweetened beverages, fats, rice,
pasta, white bread, honey, maple syrups, cookies, pastries, and dried fruits. People
who have Type-I diabetes should opt for whole grains, starchy foods, fruits and
vegetables, milk, and yogurt, whereas those who have Type-II diabetes can opt for
whole wheat, brown rice, oats, fruits, leafy vegetables, and beans.

Type I diabetics should prefer 35 cal per kg of their body weight daily, whereas
Type II people can opt for 1500–1800 cal daily to achieve proper weight. To main-
tain glucose (sugar) level in diet, pancreas pressure is deduced to produce insulin
hormone naturally. In diabetic treatment, it’s also important to measure glucose
levels regularly [2, 3]. The sugar level in blood is monitored by the common method
of finger-pricking for a blood test [4, 5]. The route adopted via pricking, blood
samples are observed by a glucometer and some test strips [6–8]. 5000 Q factor of
polystyrene microring resonator was included in 1–5% glucose solutions produced
0.07 nmwavelength shift based can easily detect sugar concentration [9]. Due to reac-
tion irreversibility, the glucometer sensor is not reusable [10]. Mulyanti et al. [11]
developed a software-based on semi-numerical and transfer matrixmethod for exam-
ining the effect of glucose concentration with that of resonant wavelength shift based
onMRRs with multiple values of free spectral range Q-factor, and it can easily detect
sugar concentration. They have also reported that glucose concentration efficiently
affects the resonant wavelength shift. Miyazaki et al. reported a 10-μm minimum
glucose detection with a 0.02° resonance angle shift using Krestchmann-surface
plasmon resonance (K-SPR) at 670 nm after 20-min duration using SPR sensors
which are used widely [12]. SPR effectiveness was observed using different mate-
rials and thickness combinations [13–15]. Compared to other label-free methods, the
K-SPR method has an advantage over others [16].

Jamil et al. [17] proved that the K-SPR approach with nano-laminated Au-Cr
method is very efficient in detecting creatinine and urea. The dual SPR fluorescence
assay can detect prostate-specific antigen at 10–50 nk concentration within 12 min
[17]. Various K-SPR biosensors with fast analysis time and lowest detection limits
were researched, utilizingmicro-fluids for point-of-care application [18]. New sensor
designs are improved by using some software by numerical simulation [19, 20]. This
work used finite difference time domain (FDTD) numerical simulation for K-SPR
sensing [21, 22]. By this work, K-SPR configuration with various glucose concen-
trations was observed by calculating refractive index changes of the sample at an
optical wavelength of 670 nm and 785 nm. The refractive index plays a significant
role in surface plasmon resonance. The resonance angle is directly related to refrac-
tive indices. When adsorption and desorption were done on the surface coated with
metal nanoparticles in particular Au NPs, the refractive index of the second medium
approaching the metal-dielectric interface and the resonance angle varied simulta-
neously [23]. In this experiment, the optimum wavelength of nano laminated Au/Cr
film and incident were measured using FDTD software. Scheme 1 shows monitoring
of various components by surface plasmon resonance-based sensors.

As the population, obesity, physical inactivity, and unhealthy diet rise, it affects
diabetes [22, 24]. Diabetes is detected bymeasuring blood sugar levels, but it requires
high-tech laboratory equipment, is time-consuming, and trained personnel [25]. For
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Scheme 1 Schematic diagram showing monitoring of various components by surface plasmon
resonance based sensors

diabetes, exhale breath acetone was considered the best biomarker for non-invasive
diabetes detection [26, 27]. Human bodies have a very low (0.1–0.8 ppm) level
of acetone concentration, but in conditions of diabetes mellitus (DM), this level
increases to 1.8–5.0 ppm [28].

People suffering from diabetes mellitus (DM) experience insulin disorder
hormones in their bodies due to ketonic species, particularly acetone and aceto-
acetic acid, produced upon the breakdown of fatty acids under lipid metabolism
[29]. Exhale breath acetone is an easy diabetes biomarker. Thus, many researchers
have obtained this protocol for diabetic detection [30–32]. The meaning of conven-
tional is to detect acetone, including gas chromatography- proton transfer reaction
mass (PTR-MS), ion mobility spectrometry (IMS), mass spectrometry (GC–MS),
etc. But those methods have some drawbacks, such as expensive and sophisticated
equipment and complicated sample collection procedures [16]. The biosensors are
generally devices that respond to the physical analyte via sending a signal to the other
connected devices for interpretation of results like detection via computer [33, 34].
Based on the chemi-resistive transduction method, exhaled breath acetone biosen-
sors were synthesized using semiconductor oxide materials [35, 36]. But the high
operating temperature is the main issue for these biosensors [37]. The unreliable
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selectivity also differs under the influence of contact resistance [38]. Optical biosen-
sors ‘ advantages are wide dynamic range, electrical passiveness, greater sensitivity,
high stability relatively, multiplexing capabilities, etc. are the advantages of optical
biosensors [39, 40]. SPR based biosensors detect the shifts in the RIs due to the inter-
action of molecules at the surface of materials via surface plasmon resonance. When
light is incident on the surface, the electron on the materials starts oscillating on the
surface and reacts directly with the incident light. In the case of optical biosensors,
the output results depend only on the materials’ nature. Thus SPR based biosensors
are considered promising biosensors. When the light beam is incident on the heavy
metal-doped semiconductor, the light is reflected at a particular angle, and this angle
is called the SPR angle. Any material or biomolecule presence at the interface occurs
a shift in the SPR angle, and the shift thus produced is termed a dip. This research
represents the fabrication process and mathematical simulation or modeling [33].

Some patients have Type-2DM, which can directly elicit antibodies against the
islet beta-cell antigens. These patients have very slow insulin deficiency progress,
and they are considered latent autoimmune diabetes (LADA) on slow-onset [41]. We
have observed that pro-insulin auto-antibodies or/and insulin (PAA/IAA) are the first
markers detected in childhood diabetes history [42, 43]. It was also observed that
children with Type-I DM symptoms could develop IAA-positive autoantibodies due
to beta-cell antigens [44, 45]. It was also reported that IAA- positive children rarely
develop such diseases [43]. Achenbach et al. [46] have reported that Type-I DM is the
highest risk for children. High IAA level with HLA DPB1*04 was also associated
with high-affinity IAA against pro-insulin. Early exposure in context with HLADR4
also shows that diabetic risk for children who identify as pro-insulin reactive IAA-
positive are highest [46]. Radioligand binding assay (RBA) is the measurement of
IAA/PAA, to achieve higher signals for the required reaction conditions and radiola-
beled antigen for the binding equilibrium [46, 47]. In measurements of PAA, SPR is
a very suitable method that can be used to measure PAA through antigen- antibodies.
BySPR, someType-IDMauto-antibodies canbemeasured.Thus basedon the reports
of Ayela et al. [48] who quantified auto-antibodies easily into IA-2 tyrosine phos-
phatase. Carlsson et al. [49] also reported an IAA-related quantification and detection
method. This work was aimed to identify and characterize the PAA concentration in
adult and children patients with two types of pro-insulin antigen alternative forms:
pro-insulin (PI) and thyro-redox-in-pro-insulin (TrxPI) [50]. The rapid PAA response
is from markers profile, clinical presentation, and genetic background [51, 52].

Diabetes is caused by a low level of insulin or a high level of glucose in the blood
or body [53]. The pancreas in the beta cells cannot produce enough insulin in the
blood due to Type-I diabetes. In contrast, Type-II diabetes is caused by unhealthy
diets or low physical activity. Type-II diabetes is the most common type of diabetes
worldwide. The pancreatic beta cells in the body are exhausted due to a high level
of sugar in the blood or hyperglycemia [54]. For a long time, the sugar levels get
very high in the blood Thus, HbA1c is hemoglobin derivative [55]. HbA1c isn’t
the main accepts to diagnose diabetes directly, but it provides sufficient information
to diagnose the disease [56]. HbA1c diabetes is considered a biochemical marker
and the best diagnostic tool for diabetes because the stability level of HbA1c in
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the blood doesn’t affect by any other parameters [57]. According to the American
Diabetes Association (ADA), HbA1c levels should be less than 6.5% in the blood,
considered normal [58]. Handheld devices can measure the glucose level in the
blood, but this method isn’t used to regulate diabetes [59]. But, mass spectrometry,
electrophoresis, ion exchange, colorimetric method, etc., are much more appropriate
for detecting HbA1c [60–62]. A boron-based probe prepared by the targetingmethod
can easily detect these diseases. It helps to recognize the sugar on the surface of
the cells [62], and such devices carrying out biological information or biological
analysis like antibodies, organelles, microorganisms, cell receptors, tissue, etc., are
known as biosensors [63, 64]. The electrochemical sensors which detect HbA1c have
1.25μg/mL and 0.024%LODvalue in general, but it still requires redox indicator for
monitoring [65]. SPR based biosensor easily detects small sample analytes volumes;
also these biosensors are capable to handle complex samples.When a layer is formed
onto the surface for interaction with the analyte, SPR biosensors can measure highly
specificmeasurements [66, 67]. Thiswork shows that SPRbiosensors coatedwith the
gold surface, modified with XPBA (4-vinyl phenyl-boronic acid) efficiently detect
HbA1c.

With biocompatibility, the SPR biosensors are highly precise and sensitive [68]. In
detecting sugar and cholesterol in the blood, SPR sensors play a very significant role
[69, 70]. SPR is the electrons oscillation collection on the surface under some elec-
tromagnetic field at the dielectric medium and metal. Most sensors utilize glucose
oxidase (GOx) in glucose detection due to their high stability and high selection rate
towards glucose [71–73]. In the formof polymermatrix or gel, theGOx entrapped are
studied [74]. But these sensors-based technologies have some disadvantages, such
as repeatability and long-term instability. In studies, no adhesive was used between
the gel layer and metal film because the metal/gel formed is not stable. There are no
changes observed in the refractive index due to the interaction between analytes and
molecular elements, but an average change was observed in the embedded molecules
[75]. Ansari et al. [76] had studied the variation of As(III) from 0.1 ppb to 1000 ppb
with MoS2 QDs and observed that when As(III) was varied from 0.1 to 50 ppb, the
intensity of surface plasmon resonance increases and increasing the concentration of
As(III) from 50–1000 ppb, there was suppression in the SPR as well as photolumi-
nescence. Thus these QDs can also be employed to detect sugar and cholesterol in the
blood. Jorgensen and Yee reported a response curve based on the matrix-gel/polymer
shrink/expand in an aqueous medium for some sensors [77]. The vice-versa of this
phenomenon is that such sensors sense some changes in the refractive index [74].
Polymers/matrix-gel utilization by sensors faces have high response time and low
diffusion rate [78]. Ansari et al. [79] have reported ultra-small Ag NPs using resor-
cinol at a pH of 8. They have varied the pH from 3 to 11 and observed that the
formation and morphology of dendrite nanoparticles were the least affected. They
also reported that with variation in pH, one could easily control the surface plasmon
resonance and photoluminescence of the desired material. These features can be
efficiently utilized in the fields of diabetes for detecting levels of sugar and choles-
terol in the blood. Dayakar et al. [80] have observed that modified electrodes show
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excellent performance against anti-poisoned/interference activities in the glucose-
based sample and exhibit enhanced results for non-enzymatic sensing. T. Dayakar
et al. [81] have used an enzyme-free glucose-based sensor developed with Ag NPs
and observed that bio-synthesized Ag NPs are efficient in fabricating cost-effective,
eco-friendly, and non-enzymatic glucose monitoring devices. Thatikayala et al. [82]
have developed a sensor for detecting glucose and hydrogen peroxide (H2O2) signif-
icantly. Yempally et al. [83] have observed that metabolic variation and pathological
conditions are efficient tools for medical diagnosis, which occurs in human exhaled
breath, in particular exhaled acetone which helps in diagnosis of diabetes.

2 Experimental Analysis

Miyazaki studied surface plasmon resonance at the metal interface surface where
plasma wave was produced due to charge density oscillation at the metal-dielectric
interface. This is called surface plasmon [12]. This surface plasma wave (SPW)
will vanish because the energy is turned into heat and, at certain length non-
radioactive decay. Surface plasmon and transverse magnetically (TM) polarized
light beams matched each other, leading to the excitation of surface plasma wave;
this phenomenon is known as surface plasmon resonance [84]. K-SPR conventional
configuration is shown in Fig. 1. SPR depends on the refractive index of the metal
[85]. The ligand and analytes binding onto the gold surface caused resonance angle
shift [86].

Fig. 1 The conventional configuration of Kretschmann-based SPR. Adapted with permission from
[87]
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2.1 Modification of SPR Chips

Gold surfaces did the modification of SPR chips. Before modification, the gold
surface was washed for 10min with a 10mL solution of purified water, ethyl alcohol,
acidic piranha with a 3:1 v/v solution of hydrogen peroxide/sulfuric acid. After this,
at 30 °C temperature, this chip was dried and pressurized at 200 mmHg. Later on, it
was incubated for 12 h with a 3mM solution of allyl mercaptan at 25 °C temperature.
Finally, this chip was dried in a vacuum oven at 220 mm Hg for further use.

2.2 Preparation of SPR Nanofilms

A solution was prepared with Ethylene glycol dimethyl-acrylate (EGDMA) as
a cross-linker, while 4-vinyl phenyl-boronic acid (VPBA) and Hydroxy-ethyl-
methacrylate (HEMA) was used as a monomer. The desolvation occurred when
0.1 mg of Azobisisobutyronitrile (AIBN) was added as the polymerization initiator
in the solution. Scheme 2 shows that this solution was kept for 20–25 min under
365 nm UV and 100 W in the nitrogenous medium at the end. Acetate buffers solu-
tions are cost-effective and are very simple to prepare and use. The final cleaning
of the surface was carried out by purified water and sodium acetate buffers solution.
These solutions purify and precipitate the nucleic acids on the surface, apart from

Scheme 2 Schematic preparation of SPR nanofilm. Adapted with permission from [89]
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staining gels. In hematology, such cleaning procedures are often used to provide
enhanced stability [88].

2.3 Analysis of SPR Chips

The coated and uncoated nanofilm was analyzed using the SPR chip surface using
Fourier transform infrared (FTIR) - attenuated total reflection (ATR) based spec-
trophotometer, water contact angle measurements, and ellipsometer. FTIR-ATR
characterized 2 cm−1 resolution in the range 400–4000 cm−1. SPR chip thickness
measures auto-nulling imaging ellipsometer. These measurements were taken at 50°
incident angle and 532 nm wavelength incident light.

2.4 Kinetic Studies

The as-synthesized samples underwent kinetic studies based on HbA1c values, and
the measurement was done. The observed value was pH 6. The given samples were
prepared in the volume of 10 mL solutions and pH 6 phosphate buffer solution.
0.1 M NaCl and pH 7.4 phosphate buffer solution are used as desorption solution,
at 10–200 μg/mL concentration range the scanning are performed. pH 6 buffer for
3 min and the same concentration sample for 10 min were allowed to pass to regain
equilibrium while the desorption solution was passed for 3 min. After repeating this
process 5 times, a re-usability sensorgram was reported.

2.5 Artificial Plasma Studies

The solution comparison and the actual sample used to provide the study of artificial
plasma and the suitability of the system. HbA1c sample contained solution for sensor
chip based on boronic acid compared with HbA1c contained in the artificial plasma.

2.6 Site-Directed Mutagenesis

On galactose/glucose-binding protein (GGBP) or, more specifically, pGGBP-6H
constant, the PCR was performed using complementary oligonucleotide primers
contained in GGBP gene mutations. This constructed GGBP was confirmed at the
University of North Carolina by sequencing.
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2.7 Protein Purification

GGBPmutant andHistidine-GGBPwere prepared fromEscherichia Coli sg1300921
strain. In the fabrication of tagged protein, the cell lysates with Ni2+-NTA incubates.
This resin was washed two times at 4 °C temperature, and this protein was dialyzed
overnight under a normal atmosphere. Coomassie blue staining and 12% sodium
dodecyl sulphate—polyacrylamide gel electrophoresis (SDS-PAGE) analyzed the
purity level of the protein, which was more than 95% pure.

2.8 Thiol Coupling of Proteins on CM5 Surfaces

Carbonic anhydrase and GGBP mutants of research-grade CM5 chip were immobi-
lized by coupling chemistry of standard thiol of 5 l/min flow rate in HBS-P running
buffer (used throughout a typical experiment using surface plasmon resonance).
Under specific conditions the protein were inducted in 10 mM pH 4.5 sodium acetate
solution:- carbonic anhydrase-ll 500μg/ml;L2385,E149C,GGBP,A213S80μg/ml,
10 min; E149C, GGBP, 30–40μg/ml, for 20 min. A pulse of solution used to remove
non-specifically surface-bounded protein 3000, 4000, 4500, 10,000 resonance units
of the surface was used for this experiment.

2.9 Amine Coupling of Proteins on CM5 Surfaces

With coupling chemistry on CM5 standard amines chip-surface, wild-type and
E149C GGBP were immobilized, for 24 min, the protein was added in pH 4.5 and
10 mM sodium acetate. In this experiment, 2500 response units (RU) surface for
wild type GGBP, while 4800 RU surface for E149C GGBP were used.

2.10 Ligand Injections

All the carbohydrate injections were prepared in an appropriate running buffer at
25 °C temperature. These injections with various concentrations were performed two
or three times, and in between blank surface and protein surface, these injectionswere
alternated.
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2.11 Regeneration

SPR surface was regenerated by galactose/glucose-binding protein (GGBP) surface.
Such regeneration occurs due to the flow of the channel meant for washing the
given samples with running buffer injection. That’s how the protein surface was
regenerated.

2.12 Denaturation of E149C GGBP Surface

The active surface of 10,000 and 3000 RUE149CGGBP denatured by the automated
protocol of the manufacturer, at 5 l/min continuous flow of running buffer solution
which was applied to the instrument. In HBS-EP, glucose injections were performed
after the unfolding of the protein. By changing the running buffer, the glucose signal
was restored on the low-density surface by applying it to the desired sample and left
in an inert atmosphere overnight.

3 Results and Discussions

Surface plasmon resonance (SPR) based sensors provide specific, accurate, sensitive,
and highly efficient biosensors [68, 90]. SPR based biosensors are generally used for
diabetes detection through blood and the detection of urea, cholesterol, glucose, etc.
[69, 70]. At the surface of the metal, in the electromagnetic field, the electrons oscil-
late; this phenomenon is called surface plasmon resonance (SPR). Thus, a plasmon
wave is generated at the surface, commonly known as the surface plasmon wave
(SPW). But there is a condition for electron oscillation at the surface. The normal or
high wavelength light can excite those electrons to oscillate at the surface, but the
incident light must match well with the electron oscillation frequency; this condi-
tion is known as phase-matching conditions. The resonance wavelength depends
on the metal and dielectric medium; thus, we observed that the interface/medium
changed as the refractive index experienced some changes. A high sugar level in the
blood causes diabetes, so sensing glucose through blood is the area of research and
interest widely used in the medical fields as biosensors making industries [91] due to
high stability and high glucose selection rate. An element of molecules recognizing
glucose oxidase (GOx) ismost often used in the sensors to detect glucose [71–73, 92].
GOxwas entrapped in the polymer matrix or gel form in most studies [93]. Scientists
across the globe widely use gels for molecular recognitions [94]. Still, no change
detection is specified in the refractive index by analyte interaction with the molec-
ular recognition element; but a minor change was reported in molecular embedded
polymers [95]. Jorgensen and Yee reported a response curve based on the concept
of matrix gel polymer, which can shrink/expand in an aqueous medium [77]. Still,
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GOx: Glucose + O2→→ Gluconic Acid + H2O2 

Fig. 2 SPR bands depict the varied glucose concentrations from 0 to 200 mg/dl over GOx
immobilized sensor chip. Reproduced with permission from [91]

some sensors show opposite trends due to sensing changes in the refractive index
[74, 93]. Matrix gel polymers utilized sensors have drawbacks such as these sensors
have high response time and low diffusion rate [2, 78]. This article suggests how
monolayer structure self-assembled layer by layer GOx attached to the glass slides
of Ag-coated SF11 by covalent bonding techniques. This experiment was obtained
on fetal bovine serum (FBS), and human serum (HS) and the results were measured
by glucometer. Also, a graph of reflectance vs. wavelength was reported, which indi-
cates that the SPR spectrum in water shows different glucose concentrations. The
minimum percentage value of reflectance can be referred to as SPR wavelength [95,
96]. A red-shift in curve was also reported, while 0–200 mg/dl glucose concentra-
tion increases glucose interaction with oxygen and H2O2 occur redshift in refractive
index changes as shown in Fig. 2.

There were minor changes in the refractive index due to glucose concentration
in water solutions [95]. An experiment was performed without GOx immobilization
for the sensor chip to obtain SPR spectra. Those results were in good agreement with
the previous experiment. Figure 3 indicates the SPR curve graph plotted for varying
glucose concentrations for the sensor chip without GOx.

Moreover, a glucose concentration vs. resonance wavelength graph was plotted
by combining both experiment results with GOx and without GOx. We observed
a total shift of 28 nm by varying glucose concentrations from 0 to 200 mg/dl for
GOx immobilization with the sensors chip, as shown in Fig. 4 if there is no GOx
immobilization on the sensors chip, in resonancewavelengthminor shift experienced.

FromFig. 4, 0.14 nm/(mg/dl) of sensor sensitivitywas calculated by the curve, and
we observed that this sensitivity was more than double which was recently reported
[74]. Figure 5 shows the second human serum blood serum and FBS experiment.
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Fig. 3 Control experiment 1: SPR curve graph plotted for varying glucose concentrations from 0
to 200 mg/dl for the sensor chip without GOx. Reproduced with permission from [91]

Fig. 4 SPR sensor-based chips depict response curves with and without GOx. Reproduced with
permission from [91]

The human serum curve indicates a redshift for both curves 5.84 nm shift observed
in resonance wavelength.
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Fig. 5 SPR spectra depict the blood serums (HS and FBS). Reproduced with permission from [91]

3.1 Surface Plasmon Resonance (SPR)

Surface plasmon resonance optical biosensors related to this SPR-based concept;
Rich and Myszka reported some outstanding SPR work reviews as shown in Fig. 6

Fig. 6 An exemplary response curve (sensorgram) from SPR biosensors. The resulting modifi-
cation was observed in response units (RU) versus time (s). The initial buffer injection provided
a “baseline” effect, which was supported well with the association of insulin/insulin receptor (in
association phase), later with the release of the bounded insulin (in dissociation phase). The equi-
librium condition is reached when the association and dissociation phase meets. Adapted with
permission from [101]
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[97–100]. The two bindingmolecules interactionmeans one bindingmolecules bond
with the chip surfacewhile the secondbindingmolecule allows theflow in the solution
of the first binding molecules.

3.2 Working Principle of SPR

The oscillation of collective electrons between dielectric and metallic surfaces by
incident light source via optical radiation is as shown in Fig. 7. Phase changes and
light intensity can measure the binding process of the two molecules. The surface of
the SPR chip is, in general, coated by silver or gold. As shown in the Figure, an
incident monochromatic light source was converted when an electron fell on the
metallic surface. These electrons get excited by the incident light source and generate
electromagnetic waves. At the Au-coated surface, these surface plasmon waves are
reflected at some particular angle. Amoleculewas bound on the aqueous side because
the refractive index changed between the side and glass of the gold layer. These
obtained results change the angle of light energy, which is coupled with the SPW.
As far as the angle of incidence is concerned, it remains constant throughout in the
wavelength modulation, albeit lights from varying wavelengths are used to excite
the SPR, which depends upon the vibration of molecules. The molecule bound to
the surface is proportional to the strongest coupling of SPR and the change in the
refractive indices [102]. The lowest reflected light intensity angle change depends
on the amount of the bound molecules of the surface, and the amount differs as the
angle changes. Light wavelength was strongly bounded to SPWwas observed, which
depends on refractive index. This also equals the bounded molecules on the surface

Fig. 7 A glass prism coated with a gold layer shows surface plasmon resonance. Adapted with
permission from [101]
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Fig. 8 Bio-Rad GLM SPR chip surface (with cartridge removed) shows vertical and horizontal
strips corresponding to the 6 ligand and analyte channels. (Reproduced with permission from [101]

[103, 104] based on angular modulation; The ProteOn™ XPR36 protein interaction
system studied in this article (Bio-Rad Laboratories, Hercules, CA, USA).

3.3 BIO-RAD™ ProteOn 360 SPR Biosensor

An early version of biosensors generally used analytes to analyze the study and
interpretation as well as intercalation of the data. Still, the latest approaches show
that the development was increased with the protein interactions studies. In this
protein interaction, a total of 36 interactions occur simultaneously. But with the Bio-
Rad ProteOn™ XPR, 36 protein interaction array system (Bio-Rad Laboratories,
Hercules, CA, USA), which is placed “one-short” of novel high kinetics, and this
approach utilizes six analytes and six ligands as shown in Fig. 8 [105].

3.4 Steps Involved in SPR

Ligand immobilization, analyte interaction, and surface recognition are the main
steps involved in the surface plasmon resonance. These three steps are apart from
equilibration and conditioning steps, whereas alkaline and acidic treatment include
mild detergent in conditioning steps. After this step, thiols and anime coupling were
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used. Biotin-binding onto the chip was used in the next step in studying the interac-
tions and immobilized ligand response studies when an analyte is passed across it.
Later, this analyte can be removed by the regeneration process to obtain regenera-
tion in short time intervals, and a very strong acid was injected during this process
[100, 102].

3.5 Analyzing Kinetics on a SPR Biosensor

Before the first inoculation, the response and time we’re set to be default or zero for
kinetics analysis preparation to obtain biosensors data. The non-specific bindings
and refractive index changes in binding were corrected by subtraction [106]. Rmax

indicates the maximum response in which the ligand is not available anymore. In
contrast, Req indicates that dissociation and association rates were equal following
Eq. (1) and show analyte-A and ligand-B relation, which is as follows:

A + B
ka�
kd

AB (1)

Product [AB] have the association rate as

d[AB]

dt
= ka[A].[B] (2)

Product [AB] have the dissociation rate as:

d[AB]

dt
= −kd .[AB] (3)

Product [AB] have equal rate of association and dissociation:

ka .[A].[B] = kd .[AB] (4)

here kD is constant at dissociation equilibrium:

KD
kd
ka

= [A].[B]

[AB]
(5)

The association constant ka(kon) have (M−1 s−1) basic units. In contrast, disso-
ciation constants kd(koff) have (s−1) units, but the dissociation and association
equilibrium have units M and this equilibrium is represented as kd/ka.

d[AB]

dt
= ka[A][B] − kd [AB] (6)
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Association Phase

Biosensors ions kinetic data were analyzed by analyzing non-linear and linear
regression. At some particular time the SPR signal representing as given by Eq. (7):

d[AB]

dt
= ka[A]t [B]t − kd [AB]t (7)

The analyte concentration in the association phase is constant; thus, at some
constant rate, it’s injected.

[A]t = constant (8)

The unoccupied ligand [B] concentration at some time t ([B]t) from the rest of
maximum ligand B ([B]max) are shown in Eq. 9. In Eq. 9, [AB]t is the difference
between the rest of ligand and ligand concentration at some particular time.

[B]t = [B]max − [AB]t (9)

[AB]t and [B]max are proportional to Rt and Rmax, respectively. Putting Eqs. (8)
and (9) in Eq. (7), we have

dRt

dt
= ka[A](Rmax − Rt ) − kd Rt (10)

From Eq. (10), Rt can be obtained

Rt = Rmax[A]

KD + A
∗ (

1 − e−(kA[A]+kd )t
)

(11)

Dissociation Phase

Dissociation rule follows first-order kinetics or simple exponential decay rule. In this
phase, the analyte [A] concentration was reduced to zero. Now we will substitute
[A] = 0 in Eq. (6):

d[AB]

dt
= kd [AB] (12)

dRt

dt
= −kd Rt (13)

Rt = Re−kdt
0 (14)
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Fig. 9 The equations corresponding to binding, equilibrium and release determine the rate of
association, equilibrium and dissociation constants. Adapted with permission from [101]

At the beginning of the dissociation phase, the signal was denoted by R0 in
Eq. (14). Figure 9 is the graphical representation of the interaction of association
rates and dissociation rates that were shown in Eqs. (11) and (14).

The association data linearization gives on-rate also while the dissociation data
linearization could be obtained by putting a log of the corresponding time and disso-
ciation data. But the least square non-linear analysis is an alternative to this method
[107]. Numerical integration and non-linear regression are the two commonly used
analysis techniques. O’Shaughnessy proposed non-linear regression to compute the
rate constant, which was an integral rate equation and numerical integration [108].

Using the non-linear regressionmethod, bio-sensor ions clamp-program performs
an excellent curve fit analysis. Using Levenburg-Marquardt non-linear algorithm
minimization best curve fitting analysis was obtained for sensorgrams. Some models
in general used for these are as follows:

(A + B ↔ AB,A + B∗ ↔ AB∗)

(a) Mass transport limited model (A0 ↔ A,A + B ↔ AB),
(b) Surface heterogeneity model (A + B ↔ AB,A + B∗ ↔ AB∗)

(c) Simple bimolecular interaction model (A + B ↔ AB),
(d) Conformational change model (A + B ↔ AB,AB ↔ (AB)∗)

where B/B* are ligands, A is the analyte and immobilized on the chip surface [109],
whereas “global fit” and “local fit” are two fitting parameters. To determine ka and
kd values, one particular involved concentration is known as “local fitting”. The
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concentration range of analyte generates ka and kd by fitting at the same time known
as “global fit” also used in kinetics analysis performance.

3.6 Characterization of SPR Chips

The FTIR spectrometer performed the vinyl-phenyl-boronic-acid (VPBA) coated
chip surface characterization was performed by FTIR spectrometer, and the results
were observed in the range 400–4000 cm−1. The peak observed at 1140 cm−1 was
due to CeO vibrations manifested nano-film structure in ethylene glycol di-methyl-
acrylate (EGDMA). Due to OeH stretching the peak was formed at 3467 cm−1.
The prominent and typical peaks at 1450 and 2950 cm−1 were obtained due to
the presence of phenyl groups. Due to BeC stretching, the peak was observed at
1140 cm−1, showing boronic-based polymer (BBP) [89]. Figure 10 shows the FTIR
spectrum of the VPBA coated nano-film SPR chip.

Figure 11a–d and Table 1 show vinyl-phenyl-boronic-acid (VPBA) coated
nanofilm SPR chips, allyl mercaptan modified SPR chip, and VPBA uncoated
nanofilm SPR chip surface measured by an ellipsometer.

The thickness of 32 ± 1.2 nm revealed the surface morphology of the allyl
mercaptan modified SPR chip. In the case of VPBA SPR chip surface, uncoated
nanofilm the thickness was found to be 48 ± 2.1 nm, whereas for VPBA SPR chip
surface coated nanofilm the thickness further increased to 50 ± 4.1 nm [89]. A
liquid drop on the coated surface occurs at some specific angle for VPBA uncoated
nanofilm chip surface, VPBA nanofilm chip surface, and allyl mercaptan modified
chip surface angle values shown in Fig. 12.

Fig. 10 FTIR spectrum showVPBAcoated nanofilm based SPR chip. Reproducedwith permission
from [89]
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Fig. 11 The images as obtained from ellipsometry for a bare SPR chip surface, b allyl mercaptan
modified SPR chip surface, c VPBA uncoated nanofilm SPR chip surface and d VPBA-coated
nanofilm SPR chip surface. Reproduced with permission from [89]

Table 1 Ellipsometry values of SPR chip surfaces. Reproduced with permission from [89]

Surface Thickness (nm)

Allyl mercaptan modified SPR chip surface 32 ± 1.2

VPBA uncoated nanofilm SPR chip surface 48 ± 2.1

VPBA coated nanofilm SPR chip surface 50 ± 4.1

3.7 Kinetic and Isotherm Analysis

The sensorgrams and the graph for glucose concentration versus �R shows the
interaction betweenHbA1c solutions andSPRsensors at varying concentrations from
10 to 200 μg/ml in the presence of pH 6.0 buffer solution as shown in Fig. 13. This
buffer solution is passed through the system for 5 min in the first step. After that, the
HbA1c solution of a specific concentration was allowed to pass at room temperature
for 8 min. As the concentration increases the �R increases which signify that 7
different HbA1c samples were varied at the room. The linear graph thus obtained
shows that the equation has the value of y = 0.0548x − 1.6212, and the linearity
shows R2 = 0.9471 here, R2 belongs to the binding.
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Fig. 12 a allyl mercaptan modified, bVPBA uncoated nanofilm and cVPBA coated nanofilm SPR
chip surfaces contact angle images. Reproduced with permission from [89]

Fig. 13 The sensorgrams and the graph for glucose concentration versus �R show the interac-
tion between HbA1c solutions and SPR sensors at varying concentrations from 10 to 200 gμ/ml.
Reproduced with permission from [89]

The standard statistical method was used to report the results of the statistical
experiments and repetitive experiments to determine relative standard deviation
(RSD) and mean values.
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3.8 Equilibrium Analysis and Association Kinetic Analysis

Equations (15) and (16) shows the values of the limit of detection (LOD) and limit
of quantification (LOQ), respectively

LOD = 3 S/m (15)

LOQ = 10 S/m (16)

Here ‘S’ represents the standard deviation of intercept and ‘m’ represents the slope
of the regression line. The LOD value was found to be 2.86 μg/ mL, while the LOQ
value was found to be 9.52 μg/ mL. Scatchard isotherm examined the equilibrium
analysis. Equation (17) is known as Scatchard equation.

d�R

dt
= kaC(�Rmax − �R)kd�R (17)

Equation (17) ka andkd are the association anddissociation constants, respectively.
This constant (ka/kd) ratio gives reactions binding contract (KA).

�Req

C
= KA(�Rmax − �Req) (18)

Equation (18) is the simplification of the Scatchard equation. In the Scatchard
graph on the y-axis, interpret the dissociation constant. At the point where �R has
the maximum value, binding takes place.

d�R

dt
= kaC�Rmax − (kaC + kd)�R (19)

Equation (19) shows that the resulting equation only applies association kinetics
and calculates the amount. The plotted graph shows the relationship between analyte
concentration and binding speed. Putting Rmax value in Eq. (19) gives the value of
ka/kd. But the amount is high, which helps to fill the surface of sensors.

S = kaC + kd (20)

Equation (20) represents the line slope ka and an interception gives kd. Compared
to the dissociation constants, the binding constant ismuch higher that’s why it’smuch
tough to calculate the kD values. The�R0 logarithmic value and�Rt diffraction rate
at ‘t0’ and ‘t’ time result in the kd values given by Eq. (21).

ln

(
�Rt0
�Rt

)
= kd(t − t0) (21)
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Due to the receptor’s higher affinity values binding kinetics analysis, it can be
said that lower kd values and higher ka values were obtained, which is 0.0233 mL/μg
for kd and 43 mL/μg for ka.

3.9 GGBP-Glucose SPR Signal

Amino acid mutations improved protein stability for immobilization to cysteine
[110]. There was the probability that the protein activity varied because of the immo-
bilization technique. Due to the antigen-antibody, the biological systemwas reduced,
and the affinity of antibodies was observed [111]. Using GGBP, we have observed
that protein immobilizing was done with nitrilotriacetic acid (Ni+2-NTA) on the chip
surface, and the single polyhistidine-tag was found to be inadequate [112]. We have
attached the reactive thiol groups on these chips’ surfaces in an alternative method.
These groups can reactwith the residueof cysteine; usually, onewas introduced inside
the protein by using site-directed mutagenesis. In the third approach, commercially
existing Ni2+-NTA to attach the chips on polyhistidine-fusion proteins via the devel-
opment of a nickel composite used between the imidazole rings of the histidines and
the nitrilo-triacetic-acid (NTA) as reported by Gestwicki et al. [113]. As shown in the
first two techniques in Table 2, E149C GGBP mutant and wild-type GGBP immobi-
lized onto the surface plasmon resonance (SPR) surface. Thefirst approach shows that
by using non-specific EDC/NHS amine coupling onto the surface of carboxy-methyl
dextran each protein was immobilized [114]. In contrast, in the second approach,
the immobilization of E149C GGBP mutant was done through thiols coupling as a
resultant in 100 micro-molar glucose presence, 17.7 RU were reproducible. Small
SPR signal change was observed [115].

3.9.1 GGBP SPR Control Experiments

The GGBP SPR control experiment verified the obtained E149C GGBP glucose-
specific SPR signal. The first control experiment shows glucose and E149C GGBP
interaction. Wild-type GGBP suggests that calcium presence was required in proper
refolding [116]. In Fig. 14, 1.5mMCaCl (calcium chloride) in the presence of protein
was refolded, with a lower density surface, proving that glucose activity was restored.
Some results suggest that the SPR signal of glucose-specific and is proportional to the
uniformly folded protein. The baselines of these sensor grams have been normalized
and kept at zero, and we have shifted the x-axis to analyze appropriate data.

Now in a negative control experiment, protein was bounded with the glucose.
In 100 M glucose, carbonic anhydrase on-chip surface was coupled by thiol. These
controlled experiments results show that SPR resonance depends on folded active
E149C GGBP.
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Fig. 14 100 mM glucose was injected over a surface bearing thiol coupled E149CGGBP (~10,000
RU; solid red line), the denatured E149C surface (dashed red line), and a blank surface (dotted blue
line) as shown by the sensorgrams. Reproduced with permission from [5]

3.10 Comparison of GGBP Mutants

Based on the E149C position within GGBP, in E149C addition, other site-specific
attachments were considered. It was assumed that K137C was attached with GGBP
via the C-terminal domain at distal ends, as shown in Fig. 15.

The E149C was attached with the protein by protein central location near the
binding cleft opening. G74Cwas attached with the GGBP on the N-terminal domain,
while GGBP mutants were attached with thiol except for K137C; which produced
SPR signals; Table 2 shows the values of water contact angles at 68.1 ± 0.30, 55.2
± 0.12, 81.1 ± 0.23 respectively, while empty chip or bare chip or uncoated chip
surface with liquid drop angle is 81.4 ± 0.18. The surface is hydrophobic because
the drop contact angle was greater than 90°.

Calcium absence inhibits protein folding [115], and there is a possibility that
calcium-binding and protein folding interfere with mutations.

3.11 GGBP-Glucose Equilibrium-Binding Constant

E149C GGBP-glucose binding affinity was reported at ~ 7 μM, and the relevant
concentration of the glucose range was determined in the range 1–30 mM. E149C,
L2385 GGBP and A2113S are those triple mutants characterized as single cysteine
mutants. E149C GGBP mutant shows ~7 μM binding affinity with decreasing SPR-
binding data, and triple mutant shows ~5 mM. But these values were considered
weaker compared to glucose affinity in wild-type GGBP determination into the
solution (Kd ~ 0.2 mM) [117].
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Fig. 15 The ribbon image of GGBP bound to glucose as generated from the Protein Data Bank file
2GBP using Sybyl 6.7 (Tripos). Locations of site mutations K137, A213, L238, E149 and G74 are
observed. Reproduced with permission from [5]

Table 2 Bare and coated SPR chip surfaces show varying water contact angles. Reproduced with
permission from [89]

Surface Water contact angle0

Empty Chip 81.4 ± 0.18

Allyl mercaptan modified chip surface 81.1 ± 0.23

VPBA uncoated nano-film chip surface 68.1 ± 0.30

VPBA nano-film chip surface 55.2 ± 0.12

These decreased binding affinities created a mutant, and it can be used in the
glucose assays diagnosis for continuous monitoring. kd values and signal intensity
were reported of these sensors at 25 °C temperature after 3 weeks storage in HBS-P
buffer contact on the instruments.
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3.12 GGBP Mutant Specificities to Other Carbohydrates

Glucose sensors specificity is very important in clinical applications. Thus different
kinds of carbohydrates immobilized on E149C, A213S, L238S GGBP surfaces were
used to obtain immobilization and mutations, as shown in Table 3.

Glucose and galactose are the wild-type GGBP ligands, whereas lactose, rham-
nose, and maltose don’t show binding affinity. There is no particular SPR signal
reported in the case of carbohydrates, but a very small SPR signal was observed
for low-density E149C GGBP surface [118]. Compared to the low-density E149C
GGBP surface and small SPR signal, a large SPR signal was observed on a higher

Table 3 The panels of carbohydrates were tested by varying analytes to find the specificity with
the GGBP surfaces

Analytea E149C 3000 RU surface, SPR reaction
with 100 mM carbohydrate (RU)

E149C, A213S, L238S 10,000 RU
surface SPR reaction with 10 mM
carbohydrate (RU)

Maltose 0.01 ± 2.16 −16.21 ± 1.65

Controlb 1.71 ± 3.81 1.02 ± 7.33

Galacstose 10.32 ± 2.05 46.64 ± 2.81

Glucose 16.73 ± 3.63 61.54 ± 3.42

Lactosec −2.16 ± 5.54 −17.83 ± 5.32

Rhamnose 3.92 ± 2.62 −13.53 ± 6.14

aCarbohydrates in HBS-P as shown in Table 3 with varying concentrations applied to GGBPmutant
surfaces. Double-referenced sensorgrams observed the SPR signals
bBuffer only (no carbohydrates).
cHigh density (~10,000 RU)at the E149C surface based upon saturating concentrations of the
glucose. The varying concentrations have opted as can be seen in Fig. 16.

Fig. 16 SPR signal change dependence on varying glucose concentration. The Kd is ~7 μM for
E149C GGBP and ~0.5 mM for E149C, A213S, and L238S GGBP for these data sets we have used
(10,000 RU protein on every surface). The double referencing system investigated all these data.
Reproduced with permission from [5]
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Fig. 17 The transmission ofmid-range radar sensor as observed by port point for index background
for 0 mmol/L (0%) glucose concentration. Reproduced with permission from [87]

density triple mutant surface. These signals exist because of the excluded volume
effects, similar to the excluded volume effect reported [119]. Diabetes monitoring
microring resonator responds while wavelength integer and round trip length are
independent; hence constructive light interference was observed, which later arises
due to large intensity and sharp resonance[120]. It was also observed that a 0 mmol/L
(0%) level of glucose concentration was used for sensor-based on mid-range radar
sensor (MRR) response. These curves in Fig. 17 indicate the diabetes monitoring
ability of the sensors.

Inside mid-range radar sensor (MRR) wave-guide changes light propagation in
cladding layer effects due to the presence of glucose analyte [121]. MRRwave-guide
phases velocity decrement indicates an increment in effective refractive index values
[122]. For glucose concentration, each variation with MRR based sensor uses the
finite difference time domain (FDTD) method. From the data shown in Fig. 18a we
observed the relationship between resonance shift and refractive index variation. The
MRR based sensors can properly diagnose and monitor diabetes. The MRR based
sensor was simulated for varying concentrations of glucose which was done using
FDTD protocol. Figure 18b shows that a resonance shift of the microring resonator
with increasing glucose concentration was induced. It was observed that with a
very low glucose concentration, there was a resonance shift. Figure 18a can play a
microing resonator-based-sensor for observing diabetes, which occurs due to SPR
shift due to lower frequency. As the glucose concentration increases,MRR resonance
shift-induced, as seen in Fig. 18b. The cladding layer refractive index variation and
resonance shift show linearity between them.
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Fig. 18 FDTD approximation for a by the port transmission spectra of theMRR based-sensor with
varying glucose concentrations and b resonance shift response to the refractive index variation.
Reproduced with permission from [87]

Linear curve slope calculation gives MRR based-sensor sensitivity. These sensi-
tivity values were estimated to be 85.84 nm/RIU, and it depends on the glucose
levels in human blood and the ratio of refractive index and resonance shift. On gold
layers, an evanescent field generates because of the interaction between chromium
adhesive layer surface and incident wave. After that, this field interacts with the
gold plasmon [123]. The gold plasmon and evanescent field interactions give surface
plasmon waves [86]. For the occurrence of surface plasmon resonance, a certain
incident angle is required. The incident wave observed by the gold layers then turns
the wave energy into a surface plasmon wave [124]. The sensor’s response curve
based on SPR in the index background of 0 mmol/L (0%) glucose concentration is
as shown in Fig. 19.

In Fig. 20a the observed response curve is for glucose concentration varying from
0–277.5 mmol/L. These curves are also very helpful for sensor ability to monitor
diabetes. The relationship between SPR resonance angles and analyte refractive
index suggests large-angle shifting [125]. If we consider 0 mmol/L(0%) glucose
concentration as a baseline, a response angle shift occurs, as shown in Fig. 20a.

Also, SPR based sensors sensitivity depends upon the ratio of analyte refractive
index changes and resonance angle shift response to refractive index variation at
670 nm wavelength as shown in Fig. 20b.

This sensitivity measured was observed to be 116.69°/RIU in immunoassay (IA)
research and studies where SPR is used widely. In general, SPR based immunoassays
(IAs) are precise, quick, easily performed and portable, highly sensitive, and it require
minimal samples for pre-treatment and thus is inexpensive. We need highly trained
experts to control and operate because radioactive atoms are included in the signal
generating labels in IAs. There can be some health hazards related to that special
attention needs to be taken to handle the reagents [126]. SPR based bio core system
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Fig. 19 The sensor’s response curve based on SPR in index background of 0 mmol/L (0%) glucose
concentration. Reproduced with permission from [87]

Fig. 20 SPR based-sensor response curve using FDTD approach for a varying concentration of
glucose from 0 to 277.5 mmol/L and the corresponding b resonance shift response to refractive
index variation at 670 nm wavelength. Reproduced with permission from [87]

was very important for the rapid development of analytes, probe bio-molecular inter-
actions, and immunoassay immunological components screening [49, 126]. Further-
more, assay protocols, immobilization chemistries, and many surface-functionalized
SPR chips are the main characteristics of SPR-based IAs development.
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4 Conclusion and Future Outlook

With the help of surface plasmon resonance (SPR) sensors, we have studied and
determined HbA1c or glycosylated hemoglobin, which is one of the most important
aspects in diagnosing diabetes. Experimentally observed the synthesis action of nano-
film-coated vinyl phenyl-boronic acid (VPBA). The interaction between boronic
acid and glucose due to the cis-diol 2.86 μg/mL detection limit was calculated.
This applied approach calculates accurate results beyond the validity of which
aforementioned clinical values have been proved. SPR based biosensor combined
with glucose/galactose-binding protein (GGBP) suggests that the glucose can be
detected directly. SPR based sensors and GGBP produce an optimal signal bunch
through cysteine residues. Site-specific immobilization reduces the GGBP speci-
ficity towards galactose and glucose, then after ~0.5 mM, kD GGBP mutant weak-
ended glucose binding affinity is produced. Lower glucose response can greatly
help hypoglycemia detection—the ability of continuous glucose monitoring devices
improved by miniaturized SPR combination. We have also observed that fiber optic
SPR platforms are much suitable for continuous sensors fabrication. Also, the long
period grating platform (LPG) is a refractive index-based sensor that is most useful
with optical fibers having 125 μm diameter. The glucose-selective and biocompat-
ible membrane that GGBP surrounds immobilizes the surface sensor, which keeps
out antibodies, proteases, and layers of biomolecules. The results of these studies
suggest that immobilized GGBP optical biosensors have sensors potential appli-
cations for clinical diagnostics. SPR simulation and mathematical modeling show
similar results to the PANI-doped layer. Here mathematical modeling shows a shift
result of 80 nm, and SPR angle shows a shift of 6.410. Also, a 0.1 order dielectric
constant was reported by biosensors. As compared to the gold and silver SPR curve,
PANI/chitosan shows a much sharper SPR curve. MRR and SPR based sensors
have a sensitivity of 85.84 nm/RIU, while SPR based sensors have a sensitivity
of 116.69°/RIU. Thus we conclude that the as-synthesized and characterized SPR
based sensors are quite helpful to detect diabetes by glucose with higher durability
and stability. Under the spectral interrogation scheme, this sensor has a sensitivity
of 0.14 nm/(mg/dl). Also, in conclusion, by the SPR technique, we have observed
that we can develop an immunoassay for PAA concentration and fast affinity quan-
titation in sera. This method saves time and shows high analytical capacity. SPR
technique has a major contribution to etiopathogenesis. In DM patients, the various
concentrations of glucose were detected by the K-SPR approach studied in the range
670–785 nm glucose level. Nano-laminated Au/Cr-SPR sensor with 50 nm thick-
ness detects glucose at high and low concentrations sensors, and SPR response curve
was successfully observed in glucose detection. These sensors have some advan-
tages, such as real-time analysis and sound sensitivity. By using enzyme immobi-
lization, sensor sensitivity can be further increased. With the advancement in tech-
nologies, it is expected that prevailing SPR based sensors can be further modified
with various nano-composites. It would prove to be cost-effective and efficient way
for the diagnosis of diabetes and HbA1c as future remediation and applications.
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Infrared and Raman Spectroscopy
Assisted Diagnosis of Diabetics

Nicole M. Ralbovsky and Igor K. Lednev

Abstract Type II diabetes mellitus (T2DM) is a metabolic disorder characterized
by chronically elevated glucose caused by insulin resistance. Although T2DM is
manageable through insulin therapy, the disorder is a risk factor for much more
dangerous diseases, including cardiovascular disease, kidney disease, retinopathy,
Alzheimer’s disease, and more. T2DM affects 450 million people worldwide and is
attributed to causing over 4 million deaths each year. Current methods for detecting
diabetes typically involve randomly or after fasting testing a person’s glycated
hemoglobin and blood sugar levels. However, these methods can be problematic due
to an individual’s daily levels or being affected by diet or environment and the lack
of sensitivity and reliability within the tests themselves. Vibrational spectroscopic
methods have been pursued as a novel method for detecting diabetes accurately and
early on in a non-invasivemanner. This review summarizes recent researchwhich has
used infrared or Raman spectroscopy to develop a fast, simple, and accurate method
for non-invasively diagnosing diabetes. It is proposed that vibrational spectroscopy
can improve and revolutionize how diabetes is diagnosed, allowing for faster and
more effective treatment.
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1 Introduction

Diabetes is commonly regarded as a group of metabolic diseases characterized by
elevated glucose levels due to defects in insulin secretion and insulin action. Chronic
levels of hyperglycemia in an individual can lead to severe complications, including
the damage to, and even failure of, organs such as the kidneys and heart [1]. Due to
many health complications associatedwith the disease, accurate and early detection is
of incredible significance [2]. However, one-third of current type II diabetes cases are
undiagnosed, and current diagnostic tests are heavily debated [3, 4].Most commonly,
various blood glucose tests, such as the oral glucose tolerance test and the fasting
blood sugar test, are performed, which require the individual being tested to undergo
some level of fasting and can be affected by short-term lifestyle influences and
changes. Another test, called the glycated hemoglobin (HbA1c) test, provides an
average blood sugar level for the past two to three months. Although the HbA1c test
does not require fasting, it is expensive and does not accurately reflect glycemia.
Further information regarding these tests is highlighted elsewhere [5, 6]. Because
limits exist in the currently used methods, this review critically evaluates vibrational
spectroscopy and its potential to contribute toward the identification of diabetes
simply and accurately.

The two major methods associated with vibrational spectroscopy include Raman
spectroscopy and infrared (IR) spectroscopy. Raman spectroscopy involves irradi-
ating a sample with monochromatic (i.e., laser) light resulting in molecules scat-
tering incident light. The majority of scattered light is at the same wavelength as
the incident light and is called Rayleigh scattering. The small portion of the light
scattered at a different wavelength is called Raman scattering. The difference in
energy between the incident and Raman scattered light is a “Raman shift” and corre-
sponds to a frequency for the vibration, measured in wavenumbers (cm−1). The
resultant Raman spectrum is considered a vibrational “fingerprint,” specific to the
analyzed sample. IR spectroscopy is complementary to Raman spectroscopy and
uses infrared light to irradiate the sample, exciting molecular vibrations. The resul-
tant spectrum describes the absorption of the light by the molecules in the sample
as a function of its frequency, again measured in wavenumbers (cm−1). Vibrational
spectroscopy is useful for identifying different functional groups present in a sample.
Bothmethods provide complementary information regarding themolecular structure
and composition of the sample. Importantly, due to their specificity, each can be used
to identify differences between biological samples obtained from different types of
donors, such as those with or without a disease. Furthermore, research has already
shown that known differences in the biochemical composition of biological fluids
exist because of diabetes. It has been observed that higher levels of certain enzymes,
total cholesterol, triglycerides, and low-density lipoprotein and lower levels of high-
density lipoprotein, hemoglobin, and red blood cell content were found in the blood
of individuals with type 2 diabetes mellitus compared to non-diabetic subjects [7, 8].
Due to these differences, which have been previously observed and documented [9,
10], it is hypothesized that vibrational spectroscopy may be successful in detecting
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the alterations in composition, in addition to others that have been reported, within
biological samples and capitalize on this detection for diagnostic success.

Due to the importance of detecting diabetes accurately and effectively, other
reviews have been published on the topic. However, the scope of this alternative
but informative review differs greatly from this review. Many reviews focus broadly
on any methods useful for monitoring glucose [11–15], glycated hemoglobin [3,
16], or other biomarkers [17] levels to generate a diagnosis. Different reviews have
focused on any method which could be useful for detecting diabetes [4, 18], and
some work has been done to investigate non-enzymatic methods for glucose sensing
[19–22].While further reviews focus on the utility of either Raman spectroscopy [23,
24] or IR spectroscopy [25, 26], or both [27–31] for general medical diagnostics,
there is a gap in the literature that focuses specifically on vibrational spectroscopy
for diagnosing diabetes. In this regard, the current review will analyze and discuss
research published between 2015 and the present. In particular, articles that focus
on applying either Raman spectroscopy or IR spectroscopy to diagnose diabetes
are considered. Modifications of either method will be considered, such as incor-
porating fiber-optic techniques or hand-held devices. Studies conducted using any
form of biological material (including cells, tissue, and body fluids) will be reviewed,
in addition to those studies which may or may not utilize chemometric methods.
Although it is preferred to incorporate the use of multivariate analysis for objective
and accurate diagnostic results, the use of such methods is not always necessary for
identifying diabetes, as will be discussed. This work will review the many applica-
tions of Raman spectroscopy and infrared spectroscopy for the inexpensive, rapid,
simple, and accurate identification of diabetes.

2 Raman Spectroscopy

In more than half of the manuscripts reviewed herein, Raman spectroscopy has been
used to successfully identify various spectroscopic biomarkers to identify diabetes.
The spectral fingerprint produced using Raman spectroscopy can be vital for iden-
tifying differences between healthy donors and those donors with a disease. One
of the first reports on the application of Raman spectroscopy for investigating the
disease mechanism of diabetes was made by Professor Ozaki et al. in 1982. Raman
spectroscopy was employed to investigate the biochemical differences between a
diabetic cataractous lens and a normal lens [32]. Amongst the many important
projects Professor Ozaki carried out, this work, in particular, was crucial to opening
the door for further investigations into using vibrational spectroscopy as a tool to
detect and monitor this disease.

The articles reviewed in this section include those using regular Raman spec-
troscopy to identify diabetes and different variations of the method. For example,
several research projects have incorporated the use of surface-enhanced Raman
spectroscopy (SERS). The advantage of SERS resides in its capacity to detect
biomolecules at ultralow concentrations due to the adsorption of molecules onto
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rough metal surfaces, such as silver or gold nanoparticles. The SERS effect can
enhanceRaman scattering by factors up to 1010 or larger, allowing for amore sensitive
analysis of the analyte in question [33, 34] Portable [35] and fiber-optic [36] Raman
spectroscopic systems are other popular variations ofRaman spectroscopy used in the
following reviewed manuscripts for diagnostic applications. These methods repre-
sent the transition of the instrument toward use in clinical settings; the systems are
typically much smaller, more portable, and easily able to be adapted into different
settings as compared to a typical Raman spectrometer. The instruments can be less
expensive than bench-top instruments, occupy significantly less space, and can often
be used intraoperatively, making real-time analysis much more achievable.

In addition,many of the studies reviewed in this section incorporated chemometric
methods for identifying and diagnosing diabetes. Generally, chemometrics refers to
extracting chemically relevant information from complex datasets [37]. By applying
chemometric methods to data that exists as a matrix (e.g., spectral data), machine
learning algorithms can be built to separate, sort, and recognize patterns within
chemical data. The built models can recognize differences and similarities between
classes or groups of data and can use that information to generate predictions on
new data presented. Incorporating multivariate analysis into a study can lead to more
accurate and objective results than studies that do not rely on chemometrics. In this
way, these algorithms can be used for many different types of medical screening and
diagnostic applications [28, 38–40].

The following research studies focus on identifying diabetes through detection
of glycated hemoglobin, blood glucose levels, other novel biomarkers, or strictly
through chemometric models.

2.1 Monitoring Glycated Hemoglobin (HbA1c) Levels
for Indicating Diabetes

Several research studies focused on detecting glycated hemoglobin (HbA1c) within
the individuals they studied. Elevated levels of HbA1c have been indicated as a
well-known biomarker for diabetes, and the HbA1c test provides an average blood
sugar measurement of the past two to three months by measuring the percentage of
blood sugar attached to hemoglobin [41, 42]. A recent review has focused on the
future outlook of using Raman spectroscopy for sensing glycated hemoglobin [43].
One of the earlier papers to investigate Raman spectroscopy for detectingHbA1cwas
reported byBarman et al. in 2012 [44].More recently, González-Viveros investigated
various commercial lyophilized HbA1c in distilled water. Principal component anal-
ysis (PCA), an unsupervised chemometric method, showed good separation between
the commercial HbA1c and two solutions with known concentrations (Fig. 1). A
nonlinear regression model based on a feed-forward neural network (FFNN) was
then built to predict the unknown concentration of HbA1c in different solutions,
which resulted in a low root mean square error of 0.08% ± 0.04 after five-fold
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Fig. 1 HbA1c concentrations representation by three PC. Each point represents a sampled
spectrum. Reproduced with permission from Elsevier B.V. [45]

cross-validation (CV) [45]. While this work does not directly investigate diagnosing
diabetes, the successful results indicate that future work could extend toward moni-
toring the levels of HbA1c in blood samples for both detecting and monitoring the
progression of the disease.

Using a Raman probe system (Fig. 2), Villa-Manríquez et al. collected Raman
spectra from three different regions of the body, including the index fingertip of
the right hand, ear lobe, and the forehead of 15 healthy volunteers and 71 patients
with diabetes (of whom, 49 had high HbA1c levels and 22 had low HbA1c levels).
Chemometrics analysis methods were used for discrimination, including PCA and
support vector machine (SVM) analysis. Raman spectra of the forehead were the
most successful for differentiating the lowHbA1c level group and healthy volunteers,
reaching 100% sensitivity and specificity each. The fingertip Raman spectra showed
100% sensitivity and 80% specificity for separating the healthy volunteers and the
highHbA1c level group. A receiver operating characteristic (ROC) curvewas used to
confirm the results obtained after external validation conducted using an independent
test dataset, indicating a successful in vivomethod for identifying diabetic individuals
[46].

Lin et al. utilized a near-IR laser tweezers Raman spectroscopy (LTRS) system,
a method that allows for analysis of single biological particles or cells in suspension
[47], to investigate variation in hemoglobin levels within red blood cells obtained
fromT2DMindividuals (n=45) and healthy volunteers (n=45). Linear discriminant
analysis (LDA) could accurately discriminate between the groups, reaching 100%
sensitivity and 90% specificity after external validation. The major spectral differ-
ences were assigned to proteins and heme groups [48]. These two studies are clear
examples of successful methods which employ Raman spectroscopy for detecting
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Fig. 2 Experimental setup scheme. a Laser of 785 nm, b spectrometer, c computer, d Raman
probe, and e sample. Reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim [46]

elevated or variated levels of HbA1c, with the potential to improve accurate detection
of T2DM.

2.2 Monitoring Blood Glucose Levels for Indicating Diabetes

The classic gold standard for diagnosing diabetes is testing an individual’s blood
sugar levels, such as through the oral glucose tolerance test (OGTT); however,
this test, and others, require the patient to fast, are time-consuming, and may have
poor reproducibility [49]. Through Raman spectroscopy, numerous researchers have
pursued improved and alternative methods for identifying elevated blood glucose
levels within individuals. In one work, a method for noninvasive monitoring of blood
glucose levels was explored through Raman spectroscopic analysis of microvessels
in the superficial layer of the human nail fold of 12 random volunteers. PCA in
combination with a backpropagation artificial neural network (BP-ANN) was used
to predict the blood glucose levels of the individuals. The levels were compared to
those obtained using the OGTT, with the results showing a root mean square error
of prediction of 0.45 mmol/L and R2 of 0.95; the predicted glucose concentrations
were further evaluated using the Clarke error grid, which compares how similar
blood glucose values are to sensor readings at isolated points in time [50]. Here,
results indicated the predicted concentrations fell within Clarke error zones A and
B, which means they were within 20% similarity to that provided by the OGTT or
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outside of 20% similarity but would not lead to inappropriate treatment, respectively.
Additional validation of the chemometric model was not reported [51].

A fiber-optic Raman probe was also used to relate Raman spectra to blood glucose
levels in similar work. Here, 20 individuals were given a standard glucose drink,
typically used inOGTT.Raman spectrawere recorded transcutaneously every 10min
for 160min,while finger-prickmeasurementswere drawn to record the blood glucose
levels. Partial least squares regression (PLSR) modeling was used to predict glucose
concentration in the bloodusingRaman spectral data.Results after external validation
showed an accurate comparison could bemade, and 97%of the predictions fell within
zonesA andBof theClarke error grid [52]. Alternatively, Ju et al. used a SERS sensor
to detect in situ glucose levels in a mouse model of Streptozotocin (STZ)-induced
type I diabetes via a functional poly(methyl methacrylate) microneedle (F-PMMA
MN) array (Fig. 3). It was shown that the microneedle array could directly measure
glucose levels within interstitial fluid without causing lasting damage to the skin. A
commercial glucometer was used to compare glucose level measurements; results
show 93% of the glucose readings obtained using the F-PMMAMN array fell within
zones A and B of the Clarke error grid, indicating a novel minimally invasive method
determining blood glucose levels for diabetes detection [53].

Lastly, in different works, a wearable Raman probe system was employed. Ten
human volunteers were administered 2 g/kg of sucrose. Both Raman spectra were
obtained transcutaneously from the inside of the wrist, and glucose reference values,
via a glucose meter were recorded every 20 min for two hours. A nonlinear PLS
model was built to predict the glucose values based on the Raman spectra, with
results indicating an average R2 value of 0.844 after CV. This work indicates a
very intriguing potential to investigate blood glucose levels for monitoring disease
progression in a noninvasive manner [54].

These four studies show that Raman spectroscopy has great potential to measure
blood glucose levels accurately and is minimally invasive. While this research
requires repetition in large-scale human studies, the success shown here indicates
this method could be considered in future work.

2.3 Monitoring Novel Biomarkers for Indicating Diabetes

In addition to monitoring HbA1c and blood glucose levels, other biomarkers were
also explored as a potential route toward identifying diabetes with greater levels of
accuracy and repeatability. Although not all novel biomarkers have a well-known
biochemical connection to diabetes, the exploratory nature of Raman spectroscopy
allows for the detection of biomolecules that have not been considered in the past.

The first set of research studies in this section focused on analyzing serum for
identifying novel biomarkers. Recently, leucine and isoleucine amino acids were
investigated as biomarkers for early T2DM screening using SERS. Here, blood from
40 rats was deposited on substrates prepared from conductive silver paste smeared
onto glass and analyzed; Specific Raman bands were found to correlate with the
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two amino acids, in addition to glucose, with the intensities corresponding to T2DM
biomarkers. Further, when the rats were administered two different antidiabetic drugs
(pioglitazone and herbal extract Momordica spinosa (Glig.) Chiov), the intensity of
theseRamanbands in newly collected spectrawere shown to decrease, thus indicating
these amino acids as potential spectroscopic markers for monitoring the progression
of the disease as well as the efficacy of treatment [55]. Similarly, the same research
group used SERS substrates to analyze blood collected from 50 rats. Here, they
identified valine, leucine, isoleucine, creatine, glucose, and fructose spectral bands
as early indicators for predicting the presence of diabetes. These spectral bands
were also sensitive to antidiabetic drug treatment in the rats. Here, the herbal extract
Rotheca myricoides Hochst and the antidiabetic drug pioglitazone resulted in the
decrease in intensity of the spectroscopic bands associated with the aforementioned
biomolecules; PCA also indicated spectral differences existed between the various
groups [56]. Both papers indicate an interesting potential for the early identifica-
tion and treatment monitoring of T2DM based on the novel and alternative Raman
spectroscopic biomarkers. Early detection of the disease can help mitigate potential
issues that arise due to it and provide the afflicted individual with more effective
treatment opportunities [57–59].

In human studies, Silveira Jr. et al. leveraged Raman spectroscopy for investi-
gating the levels of glucose and lipid fractions in 44 serum samples. The concen-
tration of glucose, triglycerides, cholesterol, and high- and low-density lipoproteins
were determined using a colorimetric method. A PLSR model with leave-one-out
cross-validation (LOOCV) was then built to predict the known concentrations of the
biochemical components based on the Raman spectra and indicated triglycerides and
cholesterol concentrations could be estimated with r values of 0.98 and 0.96, respec-
tively. The r values were slightly lower (0.75–0.86) for the other biochemicals [60].
González-Solís et al. analyzed serum samples from 15 individuals diagnosed with
T2DM and from 20 healthy controls, with spectral differences due to glutathione,
polysaccharides, phenylalanine, tryptophan, and proteins being observed. PCA with
LDA was then employed to discriminate between the two groups, reaching 96%
sensitivity and 99% specificity after CV [61]. In one last report using blood, albumin
was purified using membrane electrophoresis from plasma samples of 40 T2DM
patients and 50 healthy volunteers (where five donors from each class were set
aside for an independent external validation group). SERS spectra were collected,
and PCA with LDA was shown to successfully differentiate between diabetic and
healthy spectra with 100% specificity and 80% sensitivity after external validation
[62]. These studies indicate that alternative blood-based biomarkers may increase
the sensitivity and specificity for identifying and diagnosing diabetes using Raman
spectroscopy.

In non-blood-based studies, urinary extracellular vesicleswere shown in one paper
to be useful as a potential diabetes biomarker, with cluster analysis (CA) of the
obtained Raman spectra showing significant differences between controls (n = 10)
and T2DM (n = 45, 19 with good glycemic control and 26 with unsatisfactory
glycemic control) individuals. On the other hand, endothelium-derived extracellular
vesicles successfully separated cells cultured in differing glycemic conditions. PLSR
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analysis indicated spectral bands associated with saccharides, lipids, proteins and
protein conformation, and nucleic acids could separate the three groups. Although
no validation was reported, this research indicates a different and much less invasive
method for detecting potential diabetes biomarkers [63]. Flores-Guerrero utilized a
probe-based Raman spectrometer to investigate urinary albumin in individuals with
T2DM. Diabetic kidney disease is a main complication of T2DM and is commonly
identified throughurinary albumin excretion.Urine samples from ten individualswith
T2DMwere analyzed, indicating several specificRaman peaks that could be assigned
to albumin. Due to the ability of Raman spectroscopy to detect urinary albumin, the
authors propose a promising method for detecting T2DM noninvasively in future
work [64]. Each of these independent studies is important for their potential to be
used for the early identification of diabetes via the minimally invasive monitoring of
biomarkers that have previously not been focused.

In a different study, the nonenzymatic glycationof collagen scaffoldswas analyzed
inT2DMmice at various time points.While theRamanpeak positions due to collagen
did not change between the groups, the relative intensity of the peaks after normal-
ization increased as diabetic time progressed. These bands were positively correlated
to the expression of anti-advanced glycation end products obtained by immunoflu-
orescence imaging of the scaffolds, suggesting Raman spectroscopy can be used to
monitor how the structure of collagen scaffolds is affected by nonenzymatic glycation
in T2DM mice [65].

In one of the largest studies carried out using Raman spectroscopy, skin glycated
proteins were investigated using a portable Raman spectroscopy system and fluores-
cence spectroscopy (Fig. 4). Ninety-four individualswhowere either nondiabetic had
insulin resistance or were diabetic were evaluated. Increased skin autofluorescence
was noted for those individuals with insulin resistance and those who had diabetes
compared to healthy individuals. Raman spectral bands related to changes in skin
hydration, type I collagen, and protein glycation were noted for diabetic patients. A
positive but weak correlation was also noted between the level of skin autofluores-
cence and the ratio of Raman bands indicative of glycated proteins. Although further

Fig. 4 Clinical procedure with fluorescence and Raman techniques. Reproduced with permission
from WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [66]
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work is needed, this information could be used in the future for noninvasive screening
of diabetes and help to contribute to understanding the biochemical progression of
the disease [66].

These studies indicate several opportunities to explore new potential biomarkers
for diagnosing diabetes using Raman spectroscopy. Although the biochemical basis
for many of these biomolecules is not well established, there exists an exciting
opportunity to increase the sensitivity and specificity of diagnosis with additionally
verified biomarkers.

2.4 General Application of Chemometric Methods
for Indicating Diabetes Within Various Biological
Samples

Although detecting new and known biomarkers using Raman spectroscopy for diag-
nosing diabetes has been fruitful, several research groups have leveraged the power of
chemometric methods to simply investigate diagnosing the disease without requiring
or depending on the presence of specific biomarkers. One of the greatest advantages
of Raman spectroscopy is its ability to probe a sample’s entire biochemical signature.
By leveraging the contribution of all biochemical components, instead of narrowing
the focus to one or two specific biomarkers, chemometrics can capitalize on themulti-
tude of information obtained in a spectrum to objectively achieve highly sensitive
and specific levels of diagnostic accuracy.

Several studies focused on analyzing blood samples using Raman spectroscopy
and chemometrics. In another studybyGonzález-Solís et al., superparamagnetic clus-
tering, a type of clustering-based chemometric method, was investigated to analyze
Raman spectra of serum samples from 15 individuals diagnosed with T2DM and
from 20 healthy controls. Results showed 97.5% sensitivity and 91.2% specificity
for correctly diagnosing the class of serum; however, no validation of the model
was reported [67]. Blood plasma samples obtained from healthy (n = 8) and type
I diabetic individuals (n = 12) were investigated using Raman spectroscopy and
Raman optical activity, electronic circular dichroism, and IR spectroscopy. LDA
was used to evaluate each method individually, as well as combined. Interestingly,
the best results were obtained when the combined data reached 92% sensitivity
and 100% specificity after LOOCV. Raman spectroscopy was used in combination
with PCA to successfully differentiate serum from individuals with T2DM, diabetic
retinopathy, or those who are healthy. Mahalanobis distance, which measures the
similarity between two sets of data for discrimination, was also shown to separate
the Raman spectral data successfully; no validation of either method was included
in the manuscript. However, these results were found to be more successful than
those obtained by relying on the comparison of prominent Raman peak positions
and intensities [68].
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Two different studies focused on analyzing blood from animal donors to diagnose
the disease. Red blood cells from healthy humans, healthy rats, T2DM humans, and
STZ-induced andAlloxan-induced diabetic ratswere investigated usingRaman spec-
troscopy. In a unique experimental decision, PCA combined with an SVM classifier
could successfully separate all five red blood cells, although a validation mechanism
was not reported. Additional spectral differences were noted between the classes. It
was determined that the STZ-induced diabetic rats were more similar to the human
T2DM group than the Alloxan-induced diabetic rats [69]. Most recently, a study was
shown to successfully separate the blood serum of rats given a high-fat diet treat-
ment and considered pre-diabetic from those fed a normal diet, using partial least
squares discriminant analysis (PLS-DA) combined with a ROC curve. The external
validation results showed the algorithm was 100% successful at making donor-level
predictions [70]. While these studies’ potential is exciting, it must be noted that the
work should be repeated in human trials.

Other attempts to use Raman spectroscopy combinedwith chemometrics for diag-
nosing diabetes were made using other, non-blood-based, biological samples. A
portable SERS system was used in one study to analyze urine samples collected
from 20 diabetic patients and 21 healthy volunteers. PCA and LDA were used for
analyzing the SERS data and indicated 85% sensitivity and 90.5% specificity of the
method for discriminating between the two groups. The model was deemed accu-
rate, yielding an area under the ROC curve of 0.836, although no further validation
was reported [71]. Alternatively, a portable Raman spectrometer was used to collect
in vivo Raman spectra from four different skin sites: left earlobe left inner arm, left
thumbnail, and left median cubital vein, each from 11 individuals with T2DM and 9
healthy controls. ANNs separated the two groups with 88.9–90.9% accuracy for the
varying sample sites. A second model built using PCA and SVM resulted in lower
levels of diagnostic accuracy. Both methods were validated using a tenfold CV. The
results of theANNmodelwere comparable to those obtained using the invasive capil-
lary blood glucose test, showcasing the technique’s success for generating objective
and noninvasive diagnoses [72].

Vieira et al. used Raman spectroscopy to investigate spectroscopic changes in
the dorsal root ganglia (DRG) due to diabetic neuropathy. STZ-induced diabetic
neuropathic (hyperalgesia) rats were analyzed before and after photobiomodulation
therapy (PBMT). PBMT is shown to treat neuropathy by relieving pain. Raman
spectra showed characteristic DRG bands had increased intensities in the hyperal-
gesia rats, which were then reduced in the spectra collected after PBMT therapy. An
LDAmodel was built to differentiate between the different groups with 86% success,
although no validationwas reported. Further research heremay provide a new avenue
for monitoring the treatment of diabetes and identifying potential routes for detecting
the onset early on [73]. In one study by Pacia et al., a confocal Raman imaging system
was used to analyze mice models’ endothelium representing diabetes, hypertension,
or cancermetastasis from controls. Hierarchical cluster analysis (HCA) of the Raman
spectra indicated sensitivity and specificity levels between 88 and 96% for success-
fully distinguishing between groups. However, no model validation was reported
(Fig. 5) [74]. Interestingly, these works reveal that various chemometric methods
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Fig. 5 The analysis of single and average spectra of the endothelium in the murine model of
diabetes. The result of HCA analysis for the single endothelium spectra was obtained for db +
(blue) and db/db (red) mice. a The average spectra of the endothelium of control (blue) and diabetes
(red) mice with the standard error on each data point, b in the 1550–1200 cm−1 range, the Raman
intensity is about threefold magnified relatively to the high wavenumber region. Reproduced with
permission from John Wiley & Sons, Ltd. [74]
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can be used to analyze Raman spectral data to achieve the same task. While some
methods work better than others, and some studies do not report using a validation
mechanism, all are shown to achieve similar levels of success. Further, utilizing
Raman spectroscopy with chemometric methods to distinguish between healthy and
diabetic biological samples shows as much success as those studies that focus on
utilizing specific new or known biomarkers for diagnoses.

Raman spectroscopy has been heavily explored in recent years to identify diabetes
biomarkers and directly diagnose the disease itself.Many different avenues have been
explored, but the results of all recent studies described herein signify the great poten-
tial of the method. The obvious next step would be to pursue large-scale studies that
can confirm themethod’s statistical significance and indicate its potential application
for clinical use. This is further discussed in the Critical Evaluation section.

3 Infrared Spectroscopy

Similar to the research completed using Raman spectroscopy, infrared spectroscopy
was also explored for detecting diabetes in various recent research. Several groups
capitalized on the advantages of IR spectroscopy to identify novel biomarkers or
biochemical components useful for identifying the disease. The articles reviewed in
this section include those which have used either far-, mid-, or near-IR radiation.
Near-IR radiation (~14,000–4000 cm−1) is highest in energy and typically excites
combination modes or overtones of molecular vibrations, mid-IR (~4000–400 cm−1)
typically excites fundamental vibrations, and far-IR (~400–10 cm−1), which is the
lowest in energy, is used for rotational spectroscopy and low-frequency vibrations.
[75] The mid-IR region is most typically used in the research reviewed herein due to
the absorption radiation of most organic compounds and inorganic ions being within
that region. Notably, near-IR spectroscopy is not considered a form of vibrational
spectroscopy, but due to its complementarity, the few studies which used it are still
included in this review.

The most common infrared spectrometer used in the reviewed work herein is the
Fourier transform infrared (FTIR) spectrometer due to its simultaneous collection of
spectral data across a wide spectral range and transforming that data into a spectrum.
Further, the attenuated total reflectance (ATR) accessory is also often used with
FTIR spectroscopy. It enables the user to directly measure samples in the solid or
liquid state without further sample preparation, typically required for transmittance
FTIR [76]. In addition, many of the studies reviewed in this section incorporated
chemometric methods for diagnosing diabetes due to the aforementioned benefits.

The following research studies focus on identifying diabetes through detection
of glucose levels within bodily fluids, detection of novel biomarkers, or through the
strict use of chemometric models.
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3.1 Monitoring Blood and Saliva Glucose Levels
for Indicating Diabetes

Similar to those studies conducted using Raman spectroscopy, numerous researchers
have pursued using IR spectroscopy to improve the identification of elevated glucose
levels to diagnose diabetes. Liu et al. evaluated the precision of four different non-
invasive glucose sensing methods based on near-IR (NIR) spectroscopy, including
pulse-based differential NIR spectroscopy, occlusion-based differential NIR spec-
troscopy, traditional NIR diffuse reflectance spectroscopy, and position diffuse NIR
reflectance spectroscopy. By evaluating the measurement precision, it was deter-
mined that traditional NIR diffuse reflectance spectroscopy and position diffuse NIR
spectroscopy have the greatest potential to be used in the future as glucose sensing
methods [77]. Then, Jintao et al. employed a NIR fiber optic probe system to analyze
plasma obtained from diabetic and normal rats to develop an in vivo blood glucose
assay (Fig. 6). Spectral data were collected at 0, 15, 30, 45, 60, 90, 120, 180, and
360 min after glucose injection, with blood glucose levels, were recorded simultane-
ously. Two chemometric methods were employed for analyzing the data, including
a PLSR model and an ANN non-regression model, each evaluated using external
validation. After validation, the most optimal PLSR model reached a correlation
coefficient of 96.22%. The ANN model was less successful, with the most optimum

Fig. 6 The process of collecting NIR spectra a rat’s hind leg shaved; b the NIR fiber-optical probe;
c collection of the NIR spectra; d NIR spectra. Reproduced with permission from Elsevier B.V.
[78]
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model achieving a correlation coefficient of 92.79% after validation. Unsurprisingly,
the regressionmodel showed great success for this type of study, suggesting the influ-
ence of selecting a chemometric method on accomplishing the desired diagnostic
goals. [78]

In different work, attenuated total reflectance Fourier transform infrared (ATR-
FTIR) spectroscopy was used to evaluate the saliva of non-diabetic, diabetic, and
insulin-treated diabetic rats to identify biomarkers related to glucose. Two different
chemometric methods, including PCA-LDA and HCA, both with LOOCV, were
used to differentiate between the three groups. Interestingly, both methods reached
95.2% accuracy. Further, two spectral bands correlate with glycemia strongly and
were shown to classify diabetic rats with greater than 93% sensitivity and specificity.
The potential for non-invasive diabetic detection is clearly illustrated through the
analysis of saliva herein [79]. While more research is necessary to pursue IR spec-
troscopic detection of glucose levels for diagnosing diabetes, these studies present
strong support for the potential of the method to achieve this goal.

3.2 Monitoring Novel Biomarkers for Indicating Diabetes

New and alternative biomarkers have also been explored using IR spectroscopy to
identify diabetes easier and more accurate. Several research studies focused on the
analysis of fingernails for meeting this need. In one in-depth study, the character-
ization of microstructures (including both surface morphology and roughness as
well as density and calcium content), materials (modulus and hardness), and macro-
molecules (disulfide bond content, protein content and related secondary structure)
of fingernail plates were investigated. Specifically, human fingernail plates of T2DM
controlled (n= 20), T2DM uncontrolled (n= 25), and healthy people (n= 30) were
analyzed using FTIR spectroscopy. The results indicated that the general quality of
the nail plate degrades within the T2DM controlled group but degrades even further
in the T2DM uncontrolled group. Specifically, the T2DM uncontrolled group has the
most porous, the least amount of dense materials (minerals) present, highly altered
surface morphology, increased surface roughness, decreased amount of modulus and
hardness of the nail, and decreased calcium and protein content. These values were
optimal in healthy individuals and fell in the middle for the controlled T2DM group.
This research poses an interesting avenue for exploring secondary complications
due to T2DM, with the potential to translate the changes observed within finger-
nail plates into an early and noninvasive diagnostic mechanism in the future [80].
Coopman et al. also investigated fingernails, this time using ATR-FTIR spectroscopy
as a tool for assessing glycation in diabetics. Fingernail clippings were obtained
and analyzed from 105 healthy individuals and 127 individuals with T2DM. Using
fructosamine 3-kinase, glycation and deglycation experiments of the clippings were
performed. Glycation was indicated by spectral features, including increased absorp-
tion at 1047 cm−1; after deglycation, there was a general decrease in the area under
the curve between 970 and 1140 cm−1. It was found that the glycated nail protein
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concentrations of diabetics were significantly higher than those of healthy controls,
with ROC analysis yielding 82% specificity and 90% sensitivity with a cut-off value
of 1.28µmol/g nail, illustrating an alternative method for the non-invasive and effec-
tive detection of diabetes [81]. Lastly, an investigation of fingernails was executed
by Monteyne et al. Here, 52 individuals with T2DM and 107 healthy controls were
included in the study. Of the 107 healthy control fingernail samples, 21 were glycated
in vitro at different concentrations with a glucose solution, and all individuals’ finger-
nails were analyzed using NIR spectroscopy. The effect of glycation had a noticeable
impact on the spectral signatures, indicating a potential avenue for monitoring the
onset and progression of diabetes. PLS-DA was performed to differentiate between
the T2DM group and the healthy individuals, where 100% diagnostic accuracy was
achieved when tested using an independent validation set. Interestingly, the advan-
tage of incorporating chemometrics for diagnosing diabetes completely non-invasive
and objective is again supported herein [82]. This triplet of large studies increasingly
indicates IR spectroscopy as a potential method for a completely noninvasivemethod
for detecting diabetes, suggesting an emphasismaybeplacedon analyzingfingernails
in future work.

Tissue samples were analyzed in two different studies for diabetes detection. In
one study, Varma et al. analyzed tissue from histologically normal kidneys (n = 4),
histologically normal kidneys obtained from diabetic subjects (n = 4), and kidneys
with evidence of diabetic nephropathy (n= 5). Spectral data were obtained from the
glomerular basementmembrane, tubular basementmembrane, andmesangiumof the
tissue samples. PCA with LDA was shown to distinguish between the two control
groups and the diabetic group and between all three groups with a very high level
of separation for each tissue section analyzed (Fig. 7). The authors also identified
differences in intensities of twodifferent spectral frequencies,which could beused for
an alternative separation of the groups; notably, the results of chemometrics are more
definitive. However, a validation mechanism was not reported [83]. Kidney tissue
sections were then studied by a different group using probe-based NIR spectroscopy.
The sections were obtained from 27 individuals with normal histological findings,
26 individuals with diabetic neuropathy, and 11 with T2DM. The spectral signatures
indicated differences in carbamoylation and glycation between the groups; these
differences were restored after treatment with the deglycating enzyme fructosamine
3-kinase. PCA and soft independent modeling of class analogy (SIMCA) with CV
showed that the groups could easily be separated [84].

Other researchers studied bodily fluids, including blood and saliva, were studied
by other researchers for developing a diagnostic test for diabetes using IR spectro-
scopic detection of alternative biomarkers. Mazmuder et al. used FTIR spectroscopy
to study serum samples from 85 humans, including individuals with T2DM who
did or did not have retinopathy (n = 30, each) and healthy controls (n = 25). SVM
models could discriminate between all three groupswith an overall accuracy of 90.5%
after ten-fold CV. The differences between spectral signatures indicated a variety of
biochemical components as potential spectroscopic biomarkers, including carbohy-
drate and polysaccharide content, total lipid content, protein phosphorylation, and the
Amide II group [85].Recently, amethodwasdevised to detectmethylglyoxal (MGO),
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Fig. 7 Linear discriminant analysis (LDA) of spectral data extracted from the glomerular basement
membrane (GBM), tubular basement membrane (TBM) and the mesangium (M) of patients cate-
gorized as normal diabetic (NLD), normal nondiabetic (NL), and diabetic nephropathy (DN). LDA
was performed using the complete spectral data set for each of the features studied: aGBM, bTBM,
and cM. Reproduced with permission from the International Society of Nephrology; published by
Elsevier Inc. [83]

a disease-causing factor of diabetic cardiovascular complications. Here, the reaction
between MGO and o-phenylenediamine produced a product with strong absorption
in the far-IR range. Spectral analysis indicated thatMGOcould be detected at concen-
trations between 5 and 2500 nmol/mL, and the concentration of MGO within test
blood samples was determined with 95% accuracy. The results indicated the method
could be used in future clinical applications to determine the concentration of MGO
and relate its presence to diabetes. [86] ATR-FTIR spectroscopy was then used in
one study to differentiate between the saliva of individuals with diabetes (n = 20),
individuals with different kinds of psoriasis (n= 35), and healthy controls (n= 20).
The collected spectral data showed differences in the Amide I and Amide II bands,
suggesting the secondary structure of proteins is altered between the groups. It was
further found that the protein secondary structure between individuals with plaque
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psoriasis is similar to that found within patients with diabetes. Based on this infor-
mation, the authors were able to conclude ATR-FTIR spectroscopy could be used as
a tool to explore any potential link between psoriasis and diabetes, and further aid in
developing effective treatment plans [87].

Lastly, femurs of type I diabetic (n= 6) and control (n= 5) rats were investigated
using FTIR spectroscopy. The results of the analysis indicated several important
characteristic differences between the two groups; these include decreased levels
of mineral content, microhardness, and collagen maturity in the diabetic femurs, as
well as an increase in carbonate content and size and maturation of hydroxyapatite
crystals. These factors suggest that diabetes harms bones, providing information for
relating the structure and function of diabetes on bone health as well as for potential
diagnostic applications [88].

Given the plethora of different biomarkers which were identified in the research
reviewed herein, it is obvious that there is great potential in alternative methods
to identify diabetes which may reach even greater levels of accuracy than current
tests can achieve. Of course, large-scale studies are required to pursue and investigate
these hypotheses further to understandwhich themost promising, and further analysis
are is required to understand the biochemical basis for the novel IR spectroscopy-
determined biomarkers.

3.3 General Application of Chemometric Methods
for Indicating Diabetes Within Various Biological
Samples

The ability to pinpoint new and known biomarkers for diagnosing diabetes using IR
spectroscopy has shown varying levels of success. A great advantage of chemometric
methods resides in the ability to overlook specific biomarkers while monitoring
minute changes in overall spectral data. Further, the advantages of incorporating
chemometrics into diagnostic studies include the ability to make accurate and quan-
titative decisions without the need for subjective interpretation. The building and
use of chemometric models allow for the method to be used in a variety of settings
using the same standard, increasing the efficiency and efficacy of early and accurate
diagnoses. In this section, research that has applied chemometric methods to identify
diabetes using IR spectroscopy and without the use of biomarkers are reviewed.

Analysis of blood was used in most of the research covered in this section. ATR-
FT mid-IR spectroscopy was used to analyze serum samples from 65 patients with
T2DM and 55 healthy volunteers. A SVM model optimized using a genetic algo-
rithm (GA) reached 100% sensitivity, 95.45% specificity, and 97.87% accuracy for
discriminating between the two groups during external validation, indicating one of
the most successful reports yet for detecting T2DM [89] Yang et al. employed ATR-
FTIR spectroscopy for the detection of prediabetes via analysis of peripheral blood.
Here, fasting blood glucose levels and glucose levels at hour 2 during the OGTTwere
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measured from 112 individuals to determine the control group and the prediabetic
group. ATR-FTIR spectra were recorded from those blood samples simultaneously;
classification and regression trees (CART) and extreme gradientBoosting (XGBoost)
ensemble algorithms were both used to develop the prediabetes diagnostic tests.
The CART model achieved 80% specificity and 95% sensitivity, while the XGBoost
model reached 100% specificity and 85% sensitivity. The accuracy for the CART and
XGBoost models were 86.67% and 93.33%, respectively. All results were reported
after external validation. The superior XGBoost method indicates a real potential
for the accurate detection of prediabetes within individuals [90]. Guang et al. also
utilized ATR-FTIR spectroscopy in combination with XGBoost to analyze whole
blood samples, here to diagnose T2DM. Whole blood was collected from 51 T2DM
individuals and 55 healthy individuals. The most optimumXGBoost model achieved
a sensitivity of 95.23%, specificity of 96%, and accuracy of 95.65% after external
validation, further illustrating the success of IR spectroscopy with chemometrics for
identifying diabetes [91]. Interestingly, this chemometric method of XGBoost was
not explored in any other recent studies, despite its success in these two works.

A different study used IR spectroscopy to investigate non-alcoholic steatohepatitis
(NASH), which is associated with the occurrence of T2DM as well as cardiovascular
complications. In the largest study reviewed, 395 severely obese individuals who
underwent a bariatric procedure were considered in the study; 66 of those individ-
uals had NASH. Spectra of serum from the individuals were analyzed using a logistic
regressionmodel,with the performance evaluated using the area under theROCcurve
(AUROC). After external validation, the AUROCwas 0.77, with an associated sensi-
tivity of 69% and specificity of 76%. When a composite model was built, incorpo-
rating aspartate aminotransferase levels, triglyceride levels, and waist circumference
in addition to the IR spectral data, the AUROC increased to 0.84 after external vali-
dation. While intriguing, this study could potentially benefit from a different and less
complicated method of analysis to reach higher classification results; however, based
on the sample size, this study provides one of the most realistic evaluations of IR
spectroscopy for identifying diabetes [92]. In a related manner, Bernardes-Oliveira
utilized ATR-FTIR to investigate blood plasma obtained from 50 healthy pregnant
women and 50 pregnant women with gestational diabetes mellitus. Several different
chemometric methods were employed for separating the two groups, including LDA,
quadratic discriminant analysis (QDA), and SVM. The best results were obtained
with a GA-LDA model, which reached accuracy, sensitivity, and specificity levels
all of 100% after validation using an independent test set. Lipids and proteins were
found to be the most useful spectral features for separation. These results indicate
a very successful route for low-cost and minimally invasive detection of gestational
diabetes mellitus [93].

In a final study, pancreatic tissues were examined from healthy and the non-obese
diabetic model for type 1 diabetes mice as well as from humans and analyzed using
both Raman spectroscopy and FTIR spectroscopy. Analysis of the data collected
through orthogonal PLS-DAwith external validation resulted in the successful under-
standing of the biochemical profiles of the different pancreatic tissues. This work
provides a stepping stone for generating in vivo diagnostic assessments through the
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analysis of pancreatic biochemistry, but results of the chemometric modeling were
not reported [94].

Interestingly, the methods which were used to analyze IR spectroscopic data to
detect diabetes were just as successful as those summarized using Raman spec-
troscopy. IR spectroscopy can identify potential novel biomarkers for monitoring
the progression of the disease, and the spectra can be further analyzed via chemo-
metric methods for objective and accurate detection of diabetes. Clearly, due to the
high number of publications and research generated in the last five years alone, the
utility of the method is quite promising.

4 Critical Evaluation

There has been an evident success in advancing vibrational spectroscopy for detecting
diabetes in the past five years. Both infrared and Raman spectroscopy have shown the
obvious potential to not only monitor spectroscopic biomarkers throughout both the
onset and various forms of treatment of the disease but to also be able to objectively
detect the disease within biological samples with high levels of diagnostic accuracy.
It would be difficult to argue against the capacity of vibrational spectroscopy for
future use in clinical settings for detecting and diagnosing diabetes. While other
analytical methods for diagnosing diabetes have also been shown to be useful,
including chromatography-based tests, enzymatic-based assays, and antibody-based
immunoassays, these are beyond the scope of this review and the reader is referred
to other work for more information [95–98].

A summary of all studies in this review which were conducted using Raman
spectroscopy and using IR spectroscopy is seen in Tables 1 and 2, respectively.
These tables synthesize the category of study, which was accomplished, the type of
sample which was used (with animal models noted as appropriate), the number of
samples analyzed in the study, the type of chemometric methods used, if any, and
the type of validation that was employed if any. It is important to summarize these
factors, as they can have a noticeable impact on the results that are reached, especially
including the sample size used and the method of validation employed.

Based on this summary, there are some interesting conclusions that can be drawn.
Although more research was accomplished using Raman spectroscopy, those studies
which used IR spectroscopy more frequently analyzed a greater number of samples.
This is an important distinction to make, as large-scale clinical trials are necessary to
validate findings that are made in smaller work [100]. While small-scale studies can
show success, the true nature of that success will not be realized until a large study is
conducted. Additionally, 12 of the 43 studies reviewed utilize animal models instead
of human samples. While animal models are well established for studying diabetes
[101, 102], repeating the work using human donors, which typically have more
complex regulatory measures. A positive study conducted within animals does not
guarantee its success within humans [103, 104]. Therefore, a statistically significant
number of human donors is of utmost importance to ensure that a research plan
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Table 1 Summary table of all research studies reviewed herein which used Raman spectroscopy

Reference Study Category Sample # of
Samples

Chemometric
method

Type of
validation

Birech [55] Novel
biomarkers,
SERS

Whole blood 40, rats None N/A

Chege [56] Novel
biomarkers,
SERS

Whole blood 50, rats PCA None
reported

Flores-guerrero
[64]

Novel
biomarkers,
probe

Urine 10 None N/A

González-solís
[61]

Novel
biomarkers

Blood serum 35 PCA, LDA CV

González-solís
[67]

General
chemometrics

Blood serum 35 SPC None
reported

González-Viveros
[45]

HbA1c Commercial
HbA1c

3 PCA, FFNN Fivefold
CV

Guevara [72] General
chemometrics,
portable

Various skin
sites

20 ANN, PCA,
SVM

Tenfold
CV

Ju [53] Blood glucose,
SERS

Interstitial
fluid

Not
reported,
mouse

None N/A

Li [51] Blood glucose Nailfold 12 PCA,
BP-ANN

None
reported

Lin [62] Novel
biomarkers,
SERS

Blood plasma 80 PCA, LDA External
validation

Lin [48] HbA1c, LTRS Red blood
cells

90 PCA, LDA External
validation

Pacia [74] Novel
biomarkers

Tissue 26, mice HCA None
reported

Paolillo [66] Novel
biomarkers,
portable

Skin 94 None N/A

Ralbovsky [70] General
chemometrics

Blood serum 47, rats PLS-DA, ROC External
validation

Roman [63] Novel
biomarkers

Extracellular
Vesicles

55 CA, PLSR None
reported

Shi [65] Novel
biomarkers

Collagen
scaffolds

10, mice None N/A

Silveira Jr [60] Novel
biomarkers

Blood serum 44 PLSR LOOCV

(continued)
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Table 1 (continued)

Reference Study Category Sample # of
Samples

Chemometric
method

Type of
validation

Singh [68] Novel
biomarkers

Blood serum Not
reported

PCA None
reported

Singh [52] Blood glucose,
probe

Blood serum 20 PLSR External
validation

Šťovíčková [99] General
chemometrics

Blood plasma 20 LDA LOOCV

Vieira [73] Novel
biomarkers

Dorsal root
ganglia

48, rats PCA, LDA,
LDA-LDA

None
reported

Villa-Manríquez
[46]

HbA1c, probe Various skin
sites

86 PCA, SVM,
ROC

External
validation

Wang [69] General
chemometrics

Red blood
cells

Not
reported,
rats and
humans

PCA, SVM None
reported

Zheng [54] Blood glucose,
wearable probe

Skin 10 PLSR LOOCV

Zou [71] General
chemometrics,
portable SERS

Urine 41 PCA, LDA,
ROC

None
reported

can be applied to the general population and not a small subset of individuals, as is
commonly targeted in work reviewed herein. Unfortunately, no recent research has
accomplished this goal yet.

The category of study employed is notably diverse between the research reviewed
herein. Many (in fact, 19 of the 25 studies using Raman spectroscopy and 12 of the
18 studies using IR spectroscopy) focus on identifying new or known biomarkers for
diabetes; interestingly, 22 of these also utilize chemometrics in addition tomonitoring
spectral biomarkers. Many of the noted novel biomarkers highlighted in the previous
papers are common biochemical components that are not necessarily specific to
diabetes or have not been previously linked to the development and progression of
diabetes. While some biomarkers, such as glycated hemoglobin and blood glucose
levels, are well-established biomarkers for the disease, the papers which applied
chemometrics methods without searching for the presence of biomarkers are shown
to be just as successful as those which focus solely on detecting them. While under-
standing the biochemical differences between healthy and diseased individuals is
important, a significant advantage of vibrational spectroscopy is the ability to pinpoint
spectroscopic differences without fully understanding the biochemical cause, saving
both time and effort for making a diagnosis. Additionally, multiple biochemical
components contribute to the vibrational spectrum produced, including contributions
from biochemical components that the scientific community may not yet consider
for the disease in question. Through probing the entire biochemical composition of
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Table 2 Summary table of all research studies reviewed herein which used infrared spectroscopy

Study category Sample # of
Samples

Chemometric
method

Type of
validation

Anty [92] General
chemometrics

Blood serum 395 ROC External
validation

Bernardes-Oliveira
[93]

General
chemometrics

Blood plasma 100 LDA, QDA,
SVM, PCA,
GA

External
validation

Bottoni [87] Novel
biomarkers

Saliva 75 PCA None
reported

Bozkurt [88] Novel
biomarkers

Femurs 11, rats None N/A

Caixeta [79] Glucose
monitoring

Saliva 21, rats PCA, LDA,
HCA, ROC

LOOCV

Coopman [81] Novel
biomarkers

Fingernails 232 ROC None
reported

De Bruyne [84] Novel
biomarkers,
probe

Tissue 64 PCA, SIMCA CV

Fang [89] General
chemometrics

Blood serum 120 PCA, GA,
SVM

External
validation

Guang [91] General
chemometrics

Whole blood 106 PCA,
XGBoost

External
validation

Jintao [78] Glucose
monitoring,
probe

Blood plasma 30, rats PLSR, ANN External
validation

Liu [69] Glucose
monitoring

Various skin
sites

Not
reported

None N/A

Mazmuder [85] Novel
biomarkers

Blood serum 85 PCA, LDA,
SVM

Tenfold
CV

Monteyne [82] Novel
biomarkers

Fingernails 159 PLS-DA External
validation

Nord [94] General
chemometrics

Tissue Not
reported,
mice and
humans

Orthogonal
PLS-DA

External
validation

Sihota [80] Novel
biomarkers

Fingernails 75 None N/A

Varma [83] Novel
biomarkers

Tissue 13 PCA, LDA None
reported

Wu [86] Novel
biomarkers

Blood serum 3 None N/A

Yang [90] General
chemometrics

Whole blood 112 PCA,
XGBoost,
CART

External
validation
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the sample and not limiting the focus to a specific biomarker or two, the specificity
and accuracy for identifying a disease can potentially be increased [105]. For this
reason, those papers that incorporate chemometric methods should be focused on in
the future. The advantages of chemometrics allow it to be used as an objective and
accurate approach for identifying diabetes without limiting the focus to one or two
notable biomolecules.

It should be noted that the studies reviewed herein which incorporated the use of
chemometrics faced their own set of limitations.While almost every studymentioned
reached high levels of diagnostic accuracy, comparable with currently employed
diabetes diagnostic methods, proper validation of the applied chemometric method
is not always observed (Tables 1 and 2) [106]. There are two main types of validation
typically used in diagnostic studies. The first is considered cross-validation and refers
to the general method of testing the model’s performance with the same set of data
used to build it. Cross-validation may often overstate the success of a model due to
overfitting and provide overly optimistic results; this is especially true when studies
are conducted with small sample sizes [100, 107, 108]. Methods of cross-validation
include leave-one-out (spectrum or sample) and n-fold cross-validation. Leave-one-
out cross-validation involves the automatic process of leaving either a single spectrum
or all spectra from one sample out of the model building process; the data left out is
then used to test the model’s performance. This process is repeated until all data has
been left out. Similarly, n-fold cross-validation randomly divides the total dataset
into n groups and builds the model with n-1 groups; the group which is left out is
again repeatedly used for evaluating the model’s performance. On the other hand,
external validation is a much more reliable and trustworthy method for interpreting
the capabilities of a chemometric model. External validation refers to testing a model
with independent data (i.e. data that was not involved in the model building process).
Successful external validation is a key indication that a model is not biased to the
data used to build it. It is likely to be successful when expanded to a real-world
application, such as use within clinical settings [100, 107]. While crucial, external
validation requires a larger number of samples to be incorporated into a study, which
is not always feasible due to various issues such as the availability of volunteers or
funding.

Interestingly, among those studies which incorporated chemometrics, all reported
results achieved sensitivity, specificity, and accuracy levels greater than 80% and up
to 100%. While the definition of a successful varies for several reasons, all studies
that used chemometrics can be considered as erring on the side of success based
on these parameters alone. Interestingly, the types of samples used, the number of
samples studied, and the chemometric method employed vary among these studies
widely. Within this small subset of research, a pattern for a useful combination of
vibrational spectroscopy cannot be established. While various biological samples
were used among these studies, including urine, saliva, fingernails, and others, blood
seemed to be the most frequently employed, suggesting this biological specimen as
the one to focus on in the future. Unsurprisingly, among those studies that focused on
identifying biomarkers and using chemometrics, glucose and glycated proteins were
the most commonly targeted biomolecules. A variety of chemometric techniques are
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used in relatively similar frequency levels, suggesting that the method chosen may
not significantly impact the success of the research. Again, it should be noted that
all studies reviewed here are considered small compared to large-scale clinical trials.
While some results are reported after external validation, all results should be taken
with a degree of caution.

Assuming the “perfect” (ideally a large-scale trial using human samples and with
proper external validation of the chemometric method) trial can be implemented to
verify the real success of vibrational spectroscopy for detecting diabetes, there remain
further hurdles to overcome to introduce the method to clinical settings. While this
topic is beyond the scope of this review, several prominent research groups have
addressed this issue [21, 22, 109, 110]. Importantly, vibrational spectroscopists must
prove to those in the medical community that spectroscopy can be used as a valid
means for diagnosing T2DM for the method to enter clinical settings smoothly. A
unified approach to analyzing samples and the chemometric model employed would
also make implementation much more straightforward to understand.

Despite themany issues which still need to be addressed, it is clear that vibrational
spectroscopy holds unique advantages for diagnosing diabetes. Both IR and Raman
spectroscopy is easy-to-use, fast, and simplemethods that provide objective and accu-
rate diagnostic predictions. The specificity of the methods provides crucial details
that can differentiate between stages of the disease and monitor disease progres-
sion and the effects of treatment. Vibrational spectroscopy is shown herein to have
an incredible potential to revolutionize and simplify the way diabetes is diagnosed,
creating great opportunities for early intervention and treatment, with the potential
to prevent the onset of diabetes-related complications and even save lives.
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W.M., Paluszkiewicz, C., Stępień, E.Ł: "Raman spectral signatures of urinary extracellular
vesicles from diabetic patients and hyperglycemic endothelial cells as potential biomarkers
in diabetes. Nanomed. Nanotechnol. Biology Med. 17, 137–149 (2019)

64. Flores-Guerrero, J.L., Muñoz-Morales, A., Narea-Jimenez, F., Perez-Fuentes, R., Torres-
Rasgado, E., Ruiz-Vivanco, G., Gonzalez-Viveros, N., Castro-Ramos, J.: Novel assessment
of urinary albumin excretion in type 2 diabetes patients by raman spectroscopy. Diagnostics
10(3), 141 (2020)

65. Shi, P., Liu, H., Deng, X., Jin, Y., Wang, Q., Liu, H., Chen, M., Han, X.: Label-free nonenzy-
matic glycation monitoring of collagen scaffolds in type 2 diabetic mice by confocal Raman
microspectroscopy. J. Biomed. Opt. 20(2), 027002 (2015)

66. Paolillo, F.R., Mattos, V.S., de Oliveira, A.O., Guimarães, F.E.G., Bagnato, V.S., de Castro
Neto, J.C.: Noninvasive assessments of skin glycated proteins by fluorescence and Raman
techniques in diabetics and nondiabetics. J. Biophotonics 12(1), e201800162 (2019)

67. González-Solís, J.L., Torres-González, L.A., Villafán-Bernal, J.R.: Superparamagnetic clus-
tering of diabetes patients Raman spectra. J. Spectrosc. 2019, 4296153 (2019)



162 N. M. Ralbovsky and I. K. Lednev

68. Singh, A.K., Mazumder, A.G., Halder, P., Ghosh, S., Chatterjee, J., Roy, A.: Raman spectral
probe and unique fractal signatures for human serum with diabetes and early stage diabetic
retinopathy. Biomed. Phys. Eng. Expr. 5(1), 015021 (2018)

69. Wang, L., Liu, G.D., Mu, X., Xiao, H.B., Qi, C., Zhang, S.Q., Niu, W.-Y., Jiang, G.K.,
Feng, Y.N., Bian, J.Q.: Red blood cells Raman spectroscopy comparison of type two diabetes
patients and rats. Guang Pu Xue Yu Guang Pu Fen Xi 35(10), 2776–2780 (2015)

70. Ralbovsky, N.M., Fitzgerald, G.S., McNay, E.C., Lednev, I.K.: Towards development of a
novel screening method for identifying Alzheimer’s disease risk: Raman spectroscopy of
blood serum and machine learning. Spectrochim. Acta Part A 119603 (2021)

71. Zou, Y., Huang, M., Wang, K., Song, B., Wang, Y., Chen, J., Liu, X., Li, X., Lin, L., Huang,
G.: Urine surface-enhanced Raman spectroscopy for non-invasive diabetic detection based
on a portable Raman spectrometer. Laser Phys. Lett. 13(6), 065604 (2016)

72. Guevara, E., Torres-Galván, J.C., Ramírez-Elías, M.G., Luevano-Contreras, C., González,
F.J.: Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools.
Biomed. Opt. Express 9(10), 4998–5010 (2018)

73. Vieira, W.F., de Magalhães, S.F., Farias, F.H., de Thomaz, A.A., Parada, C.A.: Raman
spectroscopy of dorsal root ganglia from streptozotocin-induced diabetic neuropathic rats
submitted to photobiomodulation therapy. J. Biophotonics 12(11), e201900135 (2019)

74. Pacia,M.Z.,Mateuszuk, L., Buczek, E., Chlopicki, S., Blazejczyk, A.,Wietrzyk, J., Baranska,
M., Kaczor, A.: Rapid biochemical profiling of endothelial dysfunction in diabetes, hyper-
tension and cancer metastasis by hierarchical cluster analysis of Raman spectra. J. Raman
Spectrosc. 47(11), 1310–1317 (2016)

75. Yu, P., Kirkpatrick, R.J., Poe, B., McMillan, P.F., Cong, X.: Structure of calcium silicate
hydrate (C-S-H): Near-, Mid-, and Far-infrared spectroscopy. J. Am. Ceram. Soc. 82(3),
742–748 (1999)

76. Glassford, S.E., Byrne, B., Kazarian, S.G.: Recent applications of ATR FTIR spectroscopy
and imaging to proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics,
vol. 1834, no. 12, pp. 2849–2858, 2013.

77. Liu, J., Liu, R., Xu, K.: Accuracy of noninvasive glucose sensing based on near-infrared
spectroscopy. Appl. Spectrosc. 69(11), 1313–1318 (2015)

78. Jintao, X., Liming, Y., Yufei, L., Chunyan, L., Han, C.: Noninvasive and fast measurement of
blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochim. Acta, Part A 179,
250–254 (2017)

79. Caixeta, D.C., Aguiar, E.M.G., Cardoso-Sousa, L., Coelho, L.M., Oliveira, S.W., Espindola,
F.S., Raniero, L., Crosara, K.T.B., Baker, M.J. Siqueira, W.L.: Salivary molecular spec-
troscopy: a sustainable, rapid and non-invasive monitoring tool for diabetes mellitus during
insulin treatment. PloS One 15(3), e0223461 (2020)

80. Sihota, P., Yadav, R.N., Dhiman, V., Bhadada, S.K., Mehandia, V., Kumar, N.: Investigation
of diabetic patient’s fingernail quality to monitor type 2 diabetes induced tissue damage. Sci.
Rep. 9, 3193 (2019)

81. Coopman, R., Van de Vyver, T., Kishabongo, A.S., Katchunga, P., Van Aken, E.H., Cikomola,
J., Monteyne, T., Speeckaert, M.M., Delanghe, J.R.: Glycation in human fingernail clippings
using ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes
mellitus. Clin. Biochem. 50(1–2), 62–67 (2017)

82. Monteyne, T., Coopman, R., Kishabongo, A.S., Himpe, J., Lapauw, B., Shadid, S., Van Aken,
E.H., Berenson, D., Speeckaert, M.M., De Beer, T.: Analysis of protein glycation in human
fingernail clippings with near-infrared (NIR) spectroscopy as an alternative technique for the
diagnosis of diabetes mellitus. Clin. Chem. Lab. Med. 56(9), 1551–1558 (2018)

83. Varma, V.K., Kajdacsy-Balla, A., Akkina, S.K., Setty, S., Walsh, M.J.: A label-free approach
by infrared spectroscopic imaging for interrogating the biochemistry of diabetic nephropathy
progression. Kidney Int. 89(5), 1153–1159 (2016)

84. De Bruyne, S., Van Dorpe, J., Himpe, J., Van Biesen, W., Delanghe, S., Speeckaert, M.M.,
Delanghe, J.R.: Detection and characterization of a biochemical signature associated with
diabetic nephropathy using near-infrared spectroscopy on tissue sections. J. Clin. Med. 8(7),
1022 (2019)



Infrared and Raman Spectroscopy Assisted Diagnosis of Diabetics 163

85. Mazumder, A.G., Banerjee, S., Zevictovich, F., Ghosh, S., Mukherjee, A., Chatterjee, J.:
Fourier-transform-infrared-spectroscopy based metabolomic spectral biomarker selection
towards optimal diagnostic differentiation of diabeteswith andwithout retinopathy. Spectrosc.
Lett. 51(7), 340–349 (2018)

86. Wu, X., Dai, Y., Wang, L., Peng, Y., Lu, L., Zhu, Y., Shi, Y., Zhuang, S.: Diagnosis of methyl-
glyoxal in blood by using far-infrared spectroscopy and o-phenylenediamine derivation.
Biomed. Opt. Express 11(2), 963–970 (2020)

87. Bottoni, U., Tiriolo, R., Pullano, S.A., Dastoli, S., Amoruso, G.F., Nisticò, S.P., Fiorillo, A.S.:
Infrared saliva analysis of psoriatic and diabetic patients: similarities in protein components.
IEEE Trans. Biomed. Eng. 63(2), 379–384 (2015)

88. Bozkurt, O., Bilgin, M.D., Evis, Z., Pleshko, N., Severcan, F.: Early alterations in bone
characteristics of type I diabetic rat femur: a fourier transform infrared (FT-IR) imaging
study. Appl. Spectrosc. 70(12), 2005–2015 (2016)

89. Fang, T., Li, Y., Li, F., Huang, F.: Rapid diagnosis of type II diabetes using fourier transform
mid-infrared attenuated total reflection spectroscopy combined with support vector machine.
Anal. Lett. 51(9), 1400–1416 (2018)

90. Yang, X., Fang, T., Li, Y., Guo, L., Li, F., Huang, F., Li, L.: Pre-diabetes diagnosis based on
ATR-FTIR spectroscopy combined with CART and XGBoots. Optik 180, 189–198 (2019)

91. Guang, P., Huang, W., Guo, L., Yang, X., Huang, F., Yang, M., Wen, W., Li, L.: Blood-based
FTIR-ATR spectroscopy coupled with extreme gradient boosting for the diagnosis of type 2
diabetes: A STARD compliant diagnosis research. Medicine 99(15), e19657 (2020)

92. Anty, R., Morvan, M., Le Corvec, M., Canivet, C.M., Patouraux, S., Gugenheim, J.,
Bonnafous, S., Bailly-Maitre, B., Sire, O., Tariel, H., Bernard, J., Piche, T., Loréal, O., Aron-
Wisnewsky, J., Clément, K., Tran, A., Iannelli, A., Gual, P.: The mid-infrared spectroscopy: a
novel non-invasive diagnostic tool for NASH diagnosis in severe obesity. JHEP Reports 1(5),
361–368 (2019)

93. Bernardes-Oliveira, E., de Freitas, D.L.D., de Morais, C.d.L.M., de Mesquita Cornetta,
M.d.C., Camargo, J.D.d.A.S., de Lima, K.M.G., de Oliveira Crispim, J.C.: Spectrochemical
differentiation in gestational diabetes mellitus based on attenuated total reflection Fourier-
transform infrared (ATR-FTIR) spectroscopy and multivariate analysis, Sci. Rep. 10, 19259
(2020)

94. Nord, C., Eriksson, M., Dicker, A., Eriksson, A., Grong, E., Ilegems, E., Mårvik, R., Kulseng,
B., Berggren, P.-O., Gorzsás, A.: Biochemical profiling of diabetes disease progression by
multivariate vibrational microspectroscopy of the pancreas. Sci. Rep. 7, 6646 (2017)

95. Gupta, S., Jain, U., Chauhan, N.: Laboratory diagnosis of HbA1c: a review. J. Nanomed Res.
5(4), 00120 (2017)

96. Grant, D.A., Dunseath, G.J., Churm, R., Luzio, S.D.: Comparison of a point-of-care analyser
for the determination of HbA1c with HPLC method. Pract. Lab. Med. 8, 26–29 (2017)

97. International expert committee report on the role of theA1C assay in the diagnosis of diabetes.
Diab. Care 32(7), 1327–1334 (2009)

98. Sultanpur, C.M., Deepa, K., Kumar, S.V.: Comprehensive review on HbA1c in diagnosis of
diabetes mellitus. Int. J. Pharm. Sci. Rev. Res. 3(2), 119–122 (2010)
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Photoacoustic Spectroscopy Mediated
Non-invasive Detection of Diabetics

Deepak Devadiga and T. N. Ahipa

Abstract Day by day, the number of diabetic people is increasing worldwide.
Since abnormal glucose levels in human blood cause diabetes, analysis of blood
glucose concentrations is essential during diabetes therapy. Moreover, the existing
glucose monitoring approaches commonly emphasize the invasive analysis method,
which is generally time-consuming, painful, costly. Besides, thesemethods are prone
to cause tissue damage. On the other hand, the non-invasive method of analysis over-
comes this set of limitations. Different optical approaches have been used for the non-
invasive detection of blood glucose levels. Interestingly, the photo-acoustic approach
is one such technique that provides a high level of sensitivity during the method
of analysis. Thus, this chapter introduces diabetics, followed by the importance of
non-invasive technology compared to invasive technology. Further, it discusses the
general principle of the photoacoustic spectroscopy and its application in monitoring
glucose levels.

Keywords Photoacoustic spectroscopy · Glucose · Diabetes · Sensors ·
Non-invasive method · Blood

1 Introduction

Diabetes mellitus is a group of metabolic disorders identified by high blood sugar
levels in the human body over a prolonged period and is well known as diabetes.
However, diabetes occurs mainly in two instances, one where the pancreas secretes
little insulin or no insulin at all and the other one where the insulin produced by the
pancreas fails towork; this condition is known as the insulin resistance condition. The
millions of cells in our body need food in an elementary form to make energy. When
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we consume food, our diet is broken down into basic sugar called glucose that
supplies the body with the required energy for everyday activities. As the produced
sugar cannot reach the cells, the insulin is released by the pancreas to act as a carrier
and help the sugar reach into the cells and produce energy.Whenever the insulin fails
to help this process, the sugar level in the blood increases dramatically. Eventually, it
causes hyperglycemia, resulting in severe medical conditions such as kidney failure,
tissue damage, blindness, heart disease, stroke, etc. Finally, it leads to death if left
untreated [1]. The World Health Organization and International Diabetes Federation
have addressed that diabetes is a primary concern affecting the world. Moreover,
the current diabetes infection rate is around 382 million and is anticipated to reach
approximately 592 million in 25 years [2–4]. Further, Cho et al. [4] mentioned that
451 million individuals were affected by diabetes in 2017. The patient numbers are
likely to increase to more than 693 million by 2045 across the Globe [5].

There are two kinds of diabetes, i.e., diabetes type 1 (sudden drop in glucose
levels due to insufficient insulin production in the pancreas) and diabetes type 2
(high glucose levels due to ineffective use of insulin).

Diabetes type 1: The body’s immune system is mainly responsible for fighting
harmful foreign invaders like bacteria and viruses. Whereas, in people with diabetes
type 1, the immune system attacks the insulin producing beta cells and destroys them
in the pancreas. Thereby, the production of insulin stops in the body. Every 25 years,
the prevalence of diabetes type 1 in children doubles [6, 7]. At present, the average
loss of about 11–12 years of the life span was noted in the diabetes type 1 patients
[8, 9]. Moreover, loss of life span is slightly higher in patients diagnosed before age
15 compared to those diagnosed after age 30 [9]. However, no therapeutic approach
has been effective in preventing or curing diabetes type 1 [10, 11]. Since insulin is
not produced in the body of patients who have diabetes type 1, insulin is regularly
injected into their body, i.e., either by using injections insulin is injected into soft
tissue, like the arm, buttocks, or stomach, numerous times per day or by using insulin
pumps, which supply the insulin into the body via a small tube. In addition, blood
sugar testing is essential to manage diabetes type 1, as glucose levels can go up and
down quickly.

Diabetes type 2: This type of diabetes is caused by relative insulin deficiency
because of beta-cell dysfunction [12–14]. Moreover, it frequently exists with insulin
resistance. In all the cases of diabetes mellitus, 80% of the cases are of diabetes
type 2. However, till today it remains an ill-defined type of disease. Also, there is no
precise diagnostic criteria exist for diabetes type 2. Currently, 6 years were shortened
in the life span due to diabetes type 2. However, it reaches 12 years in patients with
diabetes type 2 at a younger age [15]. Several medications are available to treat
diabetes type 2, but none of them has been proven to affect the progressive decline
in beta-cell function over time significantly. RISE study on the patients with early
diabetes type 2 revealed that function of beta cells was improved on treatment for
1 year with metformin, insulin plus metformin, or metformin plus GLP-1 analog.
However, these positive effects vanished in 3months when the treatment withdrawed
[16]. Similar results were noted in the ACT NOW study, where the positive effects
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of pioglitazone on beta-cell function is vanished after discontinuing the treatment
[17, 18].

Both types of diabetes do not have an effective treatment, whichmeans that regular
monitoring of glucose in diabetic patients is essential for the rest of their lives.
Numerous approaches have been developed to estimate glucose levels, including
capacitive, coulometric, optical, enzymatic-electrochemical and non-enzymatic
electrochemical [19–30].

Current measurement approaches are focused mainly on the invasive method,
which uses the patient’s blood. Most of the time, these technologies are expensive
and may damage tissues. Moreover, these invasive approaches are always associated
with a high risk of infection [31]. In contrast, various optical techniques have been
available nowadays and used tomonitor glucose levels in a non-invasivemanner [32–
34]. The main aim of these studies is to develop a technique with less pain and low
infection risk. In these techniques, fingertips (where the interstitial fluid is present)
are commonly used for measurement. Also, these measurements can be made by
using a variety of natural areas, like saliva, earlobe, sweat. In this context, the photo-
acoustic approach emerged as one of the available non-invasive approaches, which
is not affected by light scattering during the analysis and provides high sensitivity
[31, 35].

2 History of Photoacoustic Spectroscopy

According to Rosencwaig, [36, 37] Tyndall, Rontgen, and Alexander Graham Bell,
discovered the photoacoustic effect in 1881. Bell and Charles Summer Tainter were
working together in the making of photophone. Further, Bell found that when modu-
lated light irradiated on selenium (and other solid materials), it started to emit a
sound andwas attained by passingmodulated light through a rotating diskwith holes.
Further, Bell used the spectrophotometer to study this phenomenon, and he noted
that the intensity of emitted sound mainly depends on the wavelength of the incident
light. Moreover, he attributed this observed sound effect to the optical absorption
process [38].

However, the photoacoustic effectwas applied in gas studies nearly after fifty years
of its discovery. Since then, it has become a well-established method for analyzing
gases, and the underlying concepts havebeenwell understood [39].On the other hand,
Rosencwaig studied the photoacoustic effect in the field of solids after 90 years of its
discovery. This delay was probably because of the unavailability of high-power light
sources and sensitive sound detectors [40]. In particular, the 1st photoacoustic spectra
acquired by Rosencwaig were on the materials like carbon-black, Cr2O3 crystal,
and rhodamine-B powder [37]. Further, Rosencwaig has introduced photoacoustic
spectroscopy technique as a new tool for solid research [40]. After this, he noted
that photoacoustic spectroscopy allows similar spectra to be produced on any kind
of semi-solid or solid system, whether it is amorphous, smear, gel, crystalline, etc.
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In addition, since only the absorbed light converts into sound, the effect of light
scattering on photoacoustic spectra is negligible [41].

Rosencwaig has also made a groundbreaking application of photoacoustic spec-
troscopy in the field of biology [40]. He recorded the photoacoustic spectra (200
to 800 nm) over many biological samples such as hemoglobin extracted from
red blood cells, smears of whole blood, and plasma-free red blood cells. In addi-
tion, photoacoustic spectra (250 to 650 nm) of guinea pig epidermis were also
obtained under different conditions. Also, he described the block diagram for
the single-beam photoacoustic spectrometer comprising digital data acquisition. In
1980, Princeton Applied Research Corporation manufactured the 1st commercial
spectrometer (Model 6001) [39, 42].

Moreover, dried solids comprising hemoproteins such as soluble proteins
(cytochrome c) and insoluble ormembrane-bound proteins (cytochrome P-450) were
studied. Certain experiments have confirmed that this technique can determine the
absorbing substances like some drugs in the dried urine samples (e.g., urine drops
on filter paper) [42].

3 Conventional Methods of Glucose Monitoring

Diabetes mellitus has been named the “invisible killer” due to hypoglycemia and
hyperglycemia [26]. Normal fasting blood glucose concentration level is around
< 100 mg/dl (5.6 mmol/L), concentration level in between 100–125 mg/dL (5.6
to 6.9 mmol/L) is considered as prediabetes. Moreover, diabetes is higher than
126 mg/dL (7 mmol/L). However, glucose level concentration is less than 70 mg/dl
(3.9 mmol/L) is termed hypoglycemia [19].

The glucose concentration level can be measured using serum, plasma, or whole
blood. Although the serum or plasma samples were preferably chosen for analysis
because the reading obtained using whole blood samples are typically has 15% lower
values owing to the excess water content level in the blood cells. Intrinsically, tradi-
tional procedures for the analysis (invasive). At first, the glucose analysis was only
possible in labs by using glucose’s reducing property and condensation reactions.
Still, it had some drawbacks, such as toxicity, cross-reaction, and non-specificity.
Because of these drawbacks, this method was phased out from the clinical practices.
Therefore, the latest approaches are based on enzymatic and hexokinase processes.
Both processes have a specificity, high accuracy, and limited cross-reaction. Even
though the laboratories use both processes, home testing and point-of-care use the
enzymatic approach owing to its relative affordability and simplicity [1].
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3.1 Invasive Methods of Glucose Monitoring

Most commercially available devices for continuous blood glucose measurement use
electrochemical sensors due to their quick response for glucose detection in the blood
and cost-effectiveness [43, 44]. Additionally, various commercially available devices
use the lancets to prick the blood at the primary stage for monitoring blood glucose
levels [45]. However, frequent monitoring (3–4 times in a day) via this process may
cause panic and tissue damage attributable to the fingertip prickling to collect the
blood sample [46]. Moreover, invasive methods are irritating and not recommended
for continuous monitoring; they may also cause blood-related infections.

3.2 Minimally Invasive and Non-invasive Methods
of Glucose Monitoring

Intensive research has been focused on non-invasive glucose detection systems
because of the pain, risks, and discomfort associated with the conventional method
of approach. Thus, it can be divided into two main groups: minimally invasive and
non-invasive, detecting people with diabetes. Minimally invasive methods involve
the extraction of somebody’s fluid (e.g., interstitial fluid and tears) to quantify glucose
concentrations via the enzyme reactions. Non-invasivemethods entirely rely on some
form of radiation, and it does not require any body fluids. Additionally, glucosemoni-
toring systems can be divided into four sub-groups: electrical, thermal, optical, and
nanotechnology [1].

Glucose monitoring in thermal methods includes identifying the physiological
indices linked to the metabolic heat generation due to the glucose molecule, and it
operates in the far-infrared region. In contrast, electronic methods generally involve
analyzing the dielectric properties of the glucose molecules at lower frequencies by
using electromagnetic radiation, ultrasound, and current. In a general context, the
optical method includes all the techniques developed to operate in the ultraviolet and
optical spectrum bands because they take advantage of the reflective, absorbing, and
dispersing properties of light while transmitting through biological media. Addition-
ally, there is a new area called nanotechnology for glucose monitoring. Presently,
only twomethods have started exploring this area extensively (surface plasmon reso-
nance and fluorescence), along with optical methods. Nevertheless, various possible
methods can be established, such as plasmonic and carbon nanotubes [47–50].
However, they are still at a very early stage of growth, and most of their present
advancements are being made on the theoretical side. However, it is worth noting
that most of these techniques are focused on minimizing noting that most of these
techniques are focused on minimizing their impact physiological variability and the
diverse environmental factors irrespective of the form of the technology used during
the time analysis [1].
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4 Theory of Photoacoustic Spectroscopy

Usually, when a substance absorbs light, there are several paths that energy can go.
As shown by Eq. 1, light is always conserved,

1 = A + T + R (1)

where

A—Absorbance

T—Transmittance

R—Reflectance.
The light that hits the sample must either be absorbed or transmitted through

the material or reflected off the material. Photoacoustic spectroscopy relies on the
absorbed path of light since it releases heat. As the light strikes the sample, the
photons are absorbed, and the electrons are excited. This energy was further released
as heat, and acoustic waves were formed as the heat expanded. The process is shown
in Fig. 1.

Electrons are excited either vibrationally or electronically as light is absorbed.
Electrons move to a higher energy level in the case of electrical excitation. As they
fall back to their original state, i.e., ground state, the extra energy is released as heat.
Another form of heat generation is via the collisional deactivation process, which
involves atom’s collision. The collision of atoms produces energy in the form of heat.
Even so, in the case of electronic excitation, energy can also be dissipated by radiative
emissions or chemical reactions, as described in Fig. 1. The energy emits photons
in the radiative emission process, making it useless for photoacoustic spectroscopy
(that needs heat). This process decreases the amount of heat formed because energy is
spent elsewhere. Chemical reactions in heat can occur, but only part of the absorbed
energy goes to heat.

But on the other hand, radiative emissions and chemical reactions have little impact
on vibrational energy. The vibration’s lifetime is long enough to avoid interferences
because of the chemical reactions and radiative emissions. The atoms thus have as
much time as required to execute the collision deactivation process, which efficiently
uses the entire amount of energy for heat transfer.

Fig. 1 Schematic illustration for the generation of acoustic waves
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Fig. 2 Primary components of the photoacoustic spectrometer

The thermal expansion also occurs with the formation of heat. The expansion of
heat produces localized pressure waves which can be analyzed as acoustic waves.
Nevertheless, as in the case of energy formation, heat may also be lost through the
environment. Heat diffusion decreases the temperature across the emitted energy
source, which reduces the pressure fields. When acoustic waves are sent after each
pulse of light, the sensor will analyze those waves. Similarly, each pulse of light will
change the frequency of each pulse of light, and the produced acoustic wave will be
analyzed and plotted as a spectrum pertained to a sample material.

Due to the tremendous technological advancement in recent years, technological
development in amplifiers, light sources, and sensors has advanced dramatically.
Figure 2 depicts a schematic configuration inside a photoacoustic spectrometer.
Usually, light sources use infrared lasers or wire filaments such as tungsten that
emit high light intensity. To give the pulses of light to the sample, the light source
is either switched off or switched on to create the pulsing effect or the spinning
disk with the openings to monitor the pulses of light passing through it. Further,
the mirror channels the waves of light to a series of filters, which can be modified
to adjust the wavelength of the light entering the sample. If the light goes through
the filter, it reaches the contact window, where the sample is placed. Moreover, two
microphones are mounted inside to collect the acoustic waves and sent to monitor the
formed electrical signal. Similarly, various wavelengths are examined, and a sample
spectrum is produced.



172 D. Devadiga and T. N. Ahipa

5 Recent Advancement in Photoacoustic Spectroscopy
for the Detection of Glucose

A photoacoustic sensor based on an external cavity diode laser and a cheap piezo-
electric film transducer for the glucose analysis has been shown by Bayrakli et al.
[31] Further, the laser operation was shown to be amplitude-stabilized single mode.
Additionally, a 9 GHz range of fine-tuning was reached using this setup. Moreover,
they used a PVDF-based piezoelectric film transducer as a detector that produces the
electrical signal concerning the acoustic signals obtained by the glucose molecules
after absorbing the laser beam. They observed the detection limit of about 50 mM
(900 mg/dl) for the analyzed samples. Finally, they concluded that these sensor’s
sensitivity could be improved to detect glucose concentration levels in the inter-
stitial fluid below the skin. Additionally, they stated that reduced noise levels and
the enhanced acoustic signal could be obtained by improving the laser quality and
finding effective photoacoustic resonators with different geometries in the future.

A near-infrared (NIR) optoacoustic spectrometer is used by Ghazaryan et al. [51]
to detect physiological glucose concentrations in the aqueous phase, it provided the
glucose spectra between 850 and 1900 nmandmeasured at themultiple concentration
ranges. Additionally, they implemented the dictionary learning and ratio metric tech-
niques with a training data set. They validated their application for the measurement
of glucose concentration with optoacoustic in the data set of the probe. Further, the
authors noted the superior signal-to-noise ratio for the dictionary learning method
compared to the ratio metric method over a wide range of glucose concentrations.
Moreover, they observed the linear relationship between the concentration of phys-
iological glucose and the intensity of the optoacoustic signal. The results are in
line with the findings of optical spectroscopy. Therefore, they described physiolog-
ical glucose concentration monitoring efficacy via NIR optoacoustic spectroscopy,
which allowed the glucose-sensing with a precision of ± 10 mg/dl.

For the first time, Dasa et al. [52] designed a supercontinuum laser-based multi-
spectral photoacoustic sensing system, and they used it to monitor cholesterol and
glucose in the wavelength around 1540–1840 nm (first overtone region). Addition-
ally, they demonstrated how this designed system could recognize the absorption
properties of different analytes and then choose an acceptable wavelength range for
further analysis. Moreover, they performed a simple ratiometric analysis and demon-
strated the viability of this system for reliable glucose monitoring over a wide variety
of concentrations. Furthermore, this study varied the concentrations from 0-8 g/dL,
covering the commonly encountering glucose concentrations inside the human body
(0-400 mg/dL). Previous studies [51, 53, 54] revealed that the photoacoustic signal
linearly varies with the glucose concentration; hence, they also performed the linear
regression examination to predict different glucose concentration levels with clini-
cally acceptable accuracy concerning the standard Clarke error grid analysis. Results
revealed that this system could be used as label-free and non-invasive continuous
glucose monitoring.
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Kottmann et al. [33] proposed a photoacoustic system composed of amid-infrared
quantum cascade laser used to monitor glucose present in the human tissue. That
study used the fiber-based quantum cascade laser-photoacoustic framework and the
new dual quantum cascade laser-photoacoustic set-up. Unlike traditional methods,
this approach is entirely non-invasive. It does not record blood glucose concentra-
tion directly but the glucose concentration level in the interstitial fluid. However, it is
related to the blood glucose level with a delay time of ≤ 15 min at the measurement
sites. In addition, the authors analyzed the efficacy of an oral glucose tolerance test
for healthy individuals. They conducted tests with the photoacoustic cell by closely
contacting the forearm to obtain continuous monitoring results for about 90 min.
At the same time, blood glucose concentrations were assessed by fingertips every
10 min, and blood glucose levels were measured from the glucometer. The findings
suggested that the approach with a single quantum cascade laser produces posi-
tive results but does not always have a definite correlation with the blood glucose
measurement data from the glucometer. The dual-wavelength protocol substantially
increases the measurement stability, and the blood glucose level instability of ±
30 mg/dL is obtained at a confidence level of about 90%. The authors concluded
that detection sensitivity could be increased by using higher laser power up to the
permissible exposure level for short-term irradiation. It should be stressed that no
specialized data treatment, such as the principal component evaluation comprising
the entire wavelength tuning ranges, has been implemented to show viability under
practical circumstances, i.e., for continuous individual measurements. In addition,
more progress is required from the experiments involving more than two wave-
lengths characteristic of glucose absorption, involving many quantum cascade lasers
or even a quantum cascade laser array of pre-selected fixed wavelengths. Finally, the
authors stated that experiments on diabetic patients need to be carried out to assess
the efficacy and to determine the potential of their designed diagnostic method.

To improve the detection sensitivity of the photoacoustic method, a measurable
depth of the blood glucose concentration level was experimentally identified by
Wadamori et al. [55] Here, the measurable depth of the photoacoustic spectroscopy
mainly depends on the modulation frequency of the chopped light falling on the
sample. Further, they established a relationship between the thickness of the sample
and the used modulation frequency. During this set of experiments, the authors
utilized the photoacoustic detector composed of an acoustic resonance pipe, and
an optical microphone and a two-layer model consisting of sheets of silicone with
different optical absorption properties. Furthermore, they noted themeasurable depth
around 2–3 mm in these experiments with a 1000–2000 Hz modulation frequency.
In addition, they discussed theoretically the reason for the measurable depth to be
more profound when compared to the sample’s thermal diffusion length. In addition,
these thermoelastic wave analyses clarified the relationship between the observable
depth in a tissue and the propagation of the photoacoustic signal.

Photoacoustic technique comprising of tunable pulsed laser for glucose level
detection was presented by Ren et al [56]. This set-up used the light source (532 nm
pumped Nd: YAG optical parametric oscillator pulsed laser) for excitation and
acoustic signal detector (confocal PZT transducer). Further, the authors prepared
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the various concentrated solutions of glucose. It was further loaded into the quartz
cuvette, then irradiated with a laser beam, and obtained the time-resolved photoa-
coustic signals with an average of 512 times. Furthermore, the authors received the
photoacoustic peak to peak values from the wavelength range from 1300 to 2300 nm
(near-infrared spectral range) for all glucose solutions. Moreover, the authors used
the variance and one-order derivative spectral strategy in four photoacoustic peaks
to peak signals to determine the typical glucose wavelengths. Eventually, the authors
used the least square fitting algorithm to adjust the photoacoustic peak to peak values
and the corresponding glucose concentration levels to obtain the optimal typical
glucose wavelengths. The expected concentrations were determined by using the
least square fitting algorithm. The estimated error in concentration was all less than
0.62 mmol/dl.

Pai et al. demonstrated the use of near-infrared photoacoustic spectroscopy for
continuous non-invasive glucose analysis [57]. They designed a different photoa-
coustic measuring system, and photoacoustic observations were performed for
glucose samples at various excitation wavelengths in the near-infrared region. A
variety of frequency and time domain characteristics and amplitude and area-based
characteristics were obtained using photoacoustic analysis. The authors noted that
these properties were proportional to the glucose content of the sample, and they
obtained similar results for the photoacoustic tests of whole blood samples at various
glucose concentrations. Consequently, in vivo photoacoustic tests were calibrated
using a quadratic fit on a cohort of 30 volunteers and further compared the obtained
results with the reference glucose levels. The experiments were performed using a
standard blood glucose meter. The authors performed a comparison of 196 measure-
ment pairs of predicted and reference glucose level concentrations using the Clarke
ErrorGrid. The result exhibited a point distribution of 87.24%and 12.76%over zones
A and B, with no measurement pairs dropping in inappropriate zones C, D, and E of
the error grid. Also, the authors observed the expected mean absolute difference of
about 12.57 ± 13.90 mg/dl and the mean absolute relative difference of about 9.61
± 10.55%.

Sim et al. [58] proposed a strategy to overcome the problems of non-invasive
measures of glucose by increasing the reliability of micrometer-scale detection.
Before spectroscopic measurement, authors collected the skin’s microscopic spatial
details from the same laser used for spectroscopic analysis. The authors noted the
inhomogeneity in the microscopic image of the fingertip skin with a mid-infrared
laser; this observation was attributed to the secretion from the eccrine sweat glands
that greatly influenced themid-infrared spectra. Further, they selected the intact posi-
tions where the secretion products were barely intrusive; hence, temporal and spatial
heterogeneity were reduced. Numerous attempts have been made for many decades
to design non-invasive methods of detecting glucose. However, due to the skin secre-
tion materials, the repeatability and accuracy are still below compared to those of
the invasive methods. Finally, the authors stated that their strategy has tremendous
potential to build such a technology to overcome these long-standing problems.
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6 Advantages of Photoacoustic Spectroscopy

Some of the advantages of photoacoustic spectroscopy are listed below, [1]

• This method is relatively simple.
• Not susceptible to the sensing of sodium chloride, albumin, and cholesterol.
• Scattering particles are not influencing the photoacoustic signal.

7 Disadvantages of Photoacoustic Spectroscopy

Some of the disadvantages of photoacoustic spectroscopy are listed below, [1]

• This approach is sensitive to variations caused by motion, pulsation, acoustic
noise, and temperature.

• It requires a long integration time.
• It has a low signal-to-noise ratio.

8 Future Outlook

Photoacoustic spectroscopy has the potential for efficient glucose measurement in
the blood shortly as the non-invasive method if extensive research works are carried
to produce the devices with the following properties.

• The device should produce a wide range of glucose measurements of about 30–
600 mg/dl,

• User friendly, portable, and durable device,
• A device with a borderline cross indication
• Low cost.

9 Conclusion

This book chapter started with the introduction to people with diabetes, followed
by the history of photoacoustic spectroscopy. Further, the conventional methods for
glucose monitoring and minimally invasive and non-invasive methods have been
discussed. Furthermore, the theory behind photoacoustic spectroscopy instruments
and the recent advancements of photoacoustic spectroscopy for detecting glucose
and their advantages and disadvantages have been covered in detail. The commonly
used sources of light, wavelength region, and the detectors in glucose detection setup
based on photoacoustic spectra are described in Table 1. At present, low specificity,
low sensitivity and interference are the main hindrances in the measurement of non-
invasive blood glucose levels due to the various imperfections noted in the utilized
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Table 1 Various types of sources, wavelength regions, and the detectors used for the glucose
detection using photoacoustic spectra

Source Wavelength (nm) Detector References

High energy supercontinuum
laser

1500–1900 Ultrasonic transducer [52]

External cavity quantum
cascade laser

8000–11,111 Ultrasound transducer [58]

Continuous-wave quantum
cascade laser

9090–9950 Miniature electret microphone [33]

Two pulsed laser diodes 905 and 1550 Piezoelectric transducer (Lead
Zirconate Titanate)

[57]

Laser diode 1550 Microphone [55]

532 nm pumped Nd: YAG
optical parametric oscillator
pulsed laser

600-2500 nm PZT ultrasonic transducer [56]

External cavity diode laser 1050–1700 Piezo transducer
(polyvinylidene fluoride)

[31]

Optical parametric oscillator
laser

850–1900 Ultrasound detector [51]

software and hardware components. However, the rapid changes in technological
advancement and the further advance in the quality of the previously reported analysis
method can make a potential alternative for detecting glucose levels.
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Electrical Bioimpedance Based
Estimation of Diabetics

Pedro Bertemes-Filho

Abstract The improvement of life quality of diabetic patients requires periodic
measurements of blood glucose, such as those affected by Diabetes Mellitus. They
need to put a blood droplet on a dispensable reagent strip to measure the blood
glucose level. Currently available devices for this purpose are invasive, in-involving
painful, non-hygienic, and expensive measurement methods. Non-invasive devices,
such as those using near-infrared (NIR), intend to be an alternative even though
considered a low precision method compared to biochemical ones. Despite that, the
creation of computational models to improve the precision of non-invasive blood
glucose monitors combining multiple non-invasive technologies has recently been
investigated, such as the use of electrical bioimpedance (BIA) data. BIA has been
successfully used for cancer diagnosis and biomaterial characterizations due to its
safety, low cost, effectiveness, portability, and applicability. The technique measures
the impedance spectra of the material under study and then obtains its biological
properties using a fitting model. This book brings the physical concepts of the BIA
technique, including hardware and modeling for characterization. It also discusses
the most reliable and promising applications for detecting blood glucose levels, both
invasive and non-evasively. The usability, accuracy, precision, and performance of
using the BIA approach are assessed and focused on diabetic diagnosis.

Keywords Blood glucose · Diabetes mellitus · Invasive · NIR · Electrical
bioimpedance

1 Electrical Bioimpedance: Physical Concepts

The opposition flowing sensed by an electrical current across any biological material
can be defined as bioimpedance (BIA, where “A” stands for analysis). It can be
extended to DC (direct current) or AC (alternate current) applications. Generally, if
the application involves the characterization of biomaterial, for example, tissue, then
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an impedance spectrum is required (i.e., electrical bioimpedance spectroscopy—
EBS).

To better describe the physical concepts on bioimpedance, the previous basic
definition of electrical impedance comes to be essential to establish. The impedanceZ
was defined byGeorg SimonOhm inOhm’s law in 1827,whereZ (=V /I) is a complex
number. It was only in 1893 that Arthur Kennelly represented it in terms of a real
(R) and imaginary part (jX) [1], where Z = R + jX and “j” is the imaginary operator.
The difficulty of the materials produces the real part to DC flow (resistance), and
the imaginary part (reactance) is produced by the combination of the self-induction
of voltages in conductors by the magnetic fields of currents (inductance) and the
electrostatic storage of charge induced by voltages between conductors (capacitance)
[2].

When it comes to biological materials, many other variables maymodify the elec-
trical bioimpedance, such as sample shape, internal structure or chemical compo-
sition, sample moisture, and temperature [3]. Tissue can be represented by cells
suspended in an extracellular fluid composed of 20% plasma and 80% interstitial
fluids [4]. A single cell contains a lipid layer for mainly ion transport and protec-
tion. A cell membrane can be modeled as a capacitor parallel with a resistor. If we
consider intra-cellular and extracellular mediums as uniform and isotropic, they can
be modeled as simple resistors, as shown in Fig. 1. At lower frequencies and due
to the unique isolating property of the cell membrane, Rm can be considered much
higher than Rext . The reactance generated by the membrane capacitance Cm is high.
This effect impedes the ionic current from penetrating the cell, forcing the current

Fig. 1 Illustration of the ionic current flow across a type of skin tissue at lower (blue lines) and
higher (green lines) frequencies
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Fig. 2 Equivalent electrical
circuit for a single cell,
where Rext represents the
resistance of extracellular
medium, Rm and Cm
represents the cellular
membrane resistance and
capacitance, respectively,
and Rint represents the
resistance of the intracellular
medium

flow through the extracellular medium. On the other hand, the membrane reactance
decreases at higher frequencies, allowing ionic current flow inside the cell [5].

Figure 1 brings a typical illustration showing how the cells interact with the elec-
trical field at both low (blue lines) and high frequency (green lines). This mechanics
permits calculating the impedance changes in tissuewhich, in turn, is used for charac-
terization and then differentiating a normal tissue from a cancerous one, for example
[6]. Characterization of biological samples can only be possible by fitting themeasure
impedance data into a proper electrical equivalent model, where sample properties
are extracted [7].

The electrical equivalent model presented in Fig. 2 is just a simple data representa-
tion. However, bioimpedance is a complex number that also includes anisotropy and
inhomogeneities. Therefore, it cannot be modeled with simple electrical components
such as resistors (R) and capacitors (C), even if many RC models are connected in
series or parallel. The electrical extraction properties of the biomaterial under study
require the use of non-linear equations expressed in terms of fractional polynomials,
such as the one suggested by [7]. The Cole equation has been widely used for tissue
characterization over the last 50 years, where “α” (alpha) is a number from 0 and
1, ωC is the cutoff frequency of the material, R0 (=Rext + Rint , assuming Rm >>
Rext and Rext >> Rint) and R∞ (=Rext //Rint ,) where “//” denotes a parallel operation)
represents the impedance at the lowest and highest frequency, respectively. Each
biological material has its alpha value, which best describes the dispersion behavior
of the electrical field inside of it. Table 1 brings the alpha values for a few biolog-
ically important materials. A more detailed list of such alpha values can be found
in [8]. Equation 1 represents just a single-dispersion, but two Cole models can also
be connected in series for studying wide frequency range applications of multiphase
materials, such as blood, bovine milk, cancerous tissue, etc.

Zbiol=R0 − R0 − R∞
1 + ( jω/ωC)1−α

(1)

Examples of biomaterial characterizations are shown in Fig. 3, where constant
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Table 1 Cole-Cole alpha
parameters obtained from
approximately 10 Hz to
20 GHz [8]

Tissue f C (kHz) Alpha

Liver 1120.0 0.219

Bladder 846.0 0.077

Blood 947.0 0.092

Muscle (transverse) 175.0 0.093

Stomach 3060.0 0.122

Nerve 53.0 0.251

Fig. 3 Different types of biomaterial complexity using BIA technique for characterization, where
R0 represents the resistance at the lowest measured frequency whereas Rinf represents the highest
frequency one. a Bovine milk. b Apple fruit. c Bacteria culture. d Slab of skin tissue

phase element (CPE) is a special case of the general fractional component whose
impedance ZCPE is equal to 1/(sαC) in the s-domain, where C is the capacitance and
α is its order. As a result, a phase angle φCPE (= απ/2) can be calculated for each
material type as it is constant at all frequencies, depending only on the α value.
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It is known from impedance spectroscopy studies undertaken over the last 80 years
that biological samples, especially tissue, have different dispersion to the applied
electrical field according to the frequency of the alternate excitation signal. This
is because of the different free ions within both extra- and intracellular fluid. At
lower frequencies, the ionic potential created by the external excitation signal will
facilitate the free ions’ flowing. The cell membrane impedes this flow, resulting in
a high impedance when the amount of extracellular fluids is very small in cancer
tissue. On the other hand, at higher frequencies, the ionic current also flows through
the cell membrane and its intracellular contents, decreasing the impedance for most
cases.

It can be concluded from the interactions of different ions typeswithin a biological
material that bioimpedance spectroscopy can easily differentiate tissue types and
biomaterial structures in a rapid, effective, and low-cost manner.

2 Basic Hardware Structures

Most BIA systems inject a sinusoidal current with a constant amplitude over a wide
frequency range by two electrodes to the sample, measure the resulting voltage by the
other two electrodes, and then calculate the transfer impedance. This is a so-called
tetrapolar technique whose contact impedance can be neglected frommeasured data.
Figure 4 the ionic equipotential lines created by injecting (+I) and sank (−I) current
inside a tissue sample. For example, the tetrapolar technique gives more accurate

Fig. 4 Representation of the
ion equipotential lines
created by an alternate
electrical excitation current
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Fig. 5 Schematic diagram of a basic BIA hardware using the 4-electrode technique

information about the sample properties than the bipolar technique. However, elec-
tronic accuracy plays a great role in the measurements. All stray capacitance in the
instrumentation, cables, and connectors degrades the BIA performance, especially
at higher frequencies.

Blood analysis with BIA requires surface electrodes connected with minimal
hardware, comprisingmainly a current source and a front-end circuit. Figure 5 shows
a hardware example for this application. ThewholeBIA setup can be built either as an
all-in-one or a standalone system. A low-power microcontroller generates the signal
and calculates both impedance modulus and phase. This type of system optimizes
size and battery life by using low-cost integrated circuits (ICs), such as the AD5933
(AnalogDevices, Inc., Norwood,MA), theAFE4300 (Texas Instruments Inc., Dallas,
TX), the ADAS1000 (Analog Devices, Inc.) and theMAX30002 (Maxim Integrated,
Inc., San Jose, CA). IC integrating bioimpedancemeters contain the signal generator,
excitation, and measuring circuits, including a small processor for calculating the
impedance and doing the control interface.

A bioimpedancemeter can easily be built from scratch either for in-vivo or in-vitro
measurements by having some background in electronics. However, some commer-
cial electrical impedance spectrometers (EIS) can also do in-vitro measurements.
EIS is the standard device for measuring impedance in a frequency range. There
is a wide range of manufacturers for these devices, such as Agilent, Zurich Instru-
ments, HP, or Emerson. Commercial impedance analyzers may cost more than one
thousand dollars, which can offer many tools to do impedance measurements such
as high robustness to noise, high-quality layouts for high-speed signals, radiofre-
quency isolation, ultra-precise components for ultra-precisemeasurements, advanced
measurements algorithms, and user-friendly software to make the measurements as
much easy as possible.
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In electronics, it is common sense that measuring impedance demands no more
than applyingOhm’s law,where a voltage is divided by a current. Therefore, low-cost
devices have been increasing in this area over the last 10 years. A well-known low-
cost device used for BIA measurements is the integrated circuit from analog devices
AD5933 [9–12]. This device can do impedancemeasurements up to 300 kHz and cost
no more than $60. On the other hand, it uses a bipolar technique, and it can perform
measurements over 300 kHz if required. This is why most BIA designers prefer to
build custom BIA hardware from scratch. In addition, a customized BIA gives the
researcher more flexibility and efficiency in terms of hardware, signal processing,
and applications.

It is important to mention that the flexibility and freedom while constructing
custom instruments can be a drawback for standardization. The number of combi-
nations when building a BIA hardware can be enormous and may be impossible to
resume. An example of a simple BIA hardware is shown in Fig. 6, where current
is injected through the connectors shown in Fig. 6d and voltage across the tissue is
measured between the connectors shown in Fig. 6e.

Fig. 6 Schematic diagram of a typical BIA hardware. a Current generator. b Voltage meter. c
Current meter. d Current generator and current meter connections. e Voltage meter connections
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2.1 Current Excitation Circuit

The current generation shown in Fig. 6a is divided into a digital to analog converter
(DAC) and a voltage-controlled current source (VCCS). A DAC is a voltage source
that may not be embedded into a Digital Signal Processor (DSP). DAC allows gener-
ating different shapes of a single frequency and multi-frequency waveforms, such
as sine wave, sawtooth, triangle, or square. If multifrequency waveforms are used,
some of the most common for BIA are multisine, Discrete Interval Binary Sequence
(DIBS), or Maximum Length Binary Sequence (MLBS) [13]. VCCS is used to
convert the voltage output from the DAC into the current injected into the tissue.
The VCCS shown in figure x5 is well-known in the bioimpedance field, such as the
modified Howland current source (HCS). Prof. Bradford Howland firstly proposed
this source in 1962, published by [14] and modified by [15]. The modified HCS has
been widely used in bioimpedance due to its simplicity, stability, high bandwidth
[16, 17], and high output impedance [18].

Most BIA system uses a modified Howland current source (MHCS) with the
grounded load. For the academic purpose and better understanding, we describe a
proposed blood analysis design here, as shown in Fig. 7. The inverting input is fed by
a binary signal supplied by the microcontroller (VI/O). In contrast, the non-inverting
input is biased with a trimmer voltage of 1.66 V to cancel the output current offset
produced by the microcontroller signal. According to the transfer function of the
MHCS shown in Eq. 2, Iout = Z4*(V 1.66 − VI/O)/Z5 assuming R2 = R3 = R4 = R
and R1 = R + R5 [18]. For example, if the input voltage VI/O = 3.3 Vp and R5 =
3.3 k�, the MHCS will produce an output current Iout of 1 mAp. The capacitor C2

blocks DC currents coming from the MHCS, then avoiding DC currents flowing to
the patient and preventing DC feedback to input, whereas C1 prevents oscillations
at higher frequencies.

Fig. 7 Proposed current source for bioimpedance analysis of blood
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Fig. 8 Basic voltage acquisition system for a typical BIA hardware

Iout =
[
R1 · Z4 − R2 · R3 − R2 · Z3

R2 · Z5 − (R1 + R3)

]
∗ V1.66 − Z4

R2 · Z5
∗ VI/O (2)

2.2 Voltage and Current Meters

Most of the acquisition systems used an Instrumentation Amplifier (IA), as shown
in Fig. 8. This type of amplifier has a differential input and a single-ended output. It
offers a high input impedance, high Common Mode Rejection Ratio (CMRR), and
low DC offset. Usually, an IA feeds an Analog to Digital Converter (ADC) through
a low-pass filter to digitize the analog signal.

Filtering is most often performed to remove unwanted signals and most types of
noise from the data. The most common form of filtering is the low-pass one, which
limits the bandwidth of the data by eliminating signals and noise above the filter’s
corner frequency. For example, the importance of low-pass filtering appears when
the goal is to avoid the 50/60 Hz inference from the power supply. ECG, EMG and
EEG biosignals usually apply this technique for rejecting the 50/60 Hz. In the case
of Fig. 8, Vout is expected to be a DC value as a function of the impedance modulus,
and then the AC component of the measured signal is removed by filtering it out.

Nonetheless, it is important to ensure that the ADC sample rate is at least double
the maximum frequency generated by the DAC, guaranteeing the fulfillment of the
Nyquist theorem.

A practical example of a voltage acquisition system is shown in Fig. 8. The
instrumentation amplifier INA1 performs the differential voltage across the load at
the first stage. The IA should be chosen according to the load properties and frequency
range that best suits the characterization required.High input impedance, highvoltage
gain, and low output and input noise are highly recommended. As shown in Fig. 8,
R1 and C1 form a high-pass filter for preventing the amplification of any DC signals
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and then saturation of the INA output due to that signals. Before connecting the INA
output to other signal processors, adding an extra high-pass filter (R2 and C2) to
remove both the amplified DC offset signal of INA and the electrode polarization
mismatch is recommended.

To obtain both modulus and phase of the measured impedance, at the second stage
of the signal processing is used a complete four-quadrant, voltage output analog
multiplier (MUX), shown asMULT1 in Fig. 8. Using a MUX is the simplest method
for having a precise and real-time impedance measurement converted into digital.
The key point of aMUX is its transfer function (=VINA*VGAIN*GLOOP), where R4 and
R5 define the loop gain and VGAIN allows a fine gain tuning by the microcontroller.
Even this signal processing is precise and accurate, the output voltage Vout contains
a DC level which, in turn, is removed by the high-pass filter formed by C3 and R3.

Instead of using MUX, one can digitize the INA output voltage directly by an
AD converter, then process the signal for extracting both modulus and phase of the
material impedance under study. However, if the impedance modulus is the only
figure required, then a wide-bandwidth active rectifier and a second-order active
filter will do the job. On the other hand, if the impedance phase is the only variable
to be evaluated in the impedance spectra, a phase-retrieve circuit can be used, such
as a simple multiplier and a second-order active low-pass filter.

Measuring modulus and phase accurately across a load in a wide bandwidth is
quite difficult, as parasite capacitance degrades the signal. Therefore, most BIA
designs measure the current flow in the load by using a shunt resistor connected
in series with the load. The main advantage of measuring the load current is to
compensate for the phase shift errors due to stray and cable capacitance, which, in
the end, increases the accuracy of the measured biological impedance. Most current-
measuring circuits use a trans-impedance amplifier (TIA), composed of a buffer and a
differential amplifier. TIA has the advantage of not using an external resistor in series
with the load, increasing the voltage swing of the MHCS. On the other hand, using
a shunt resistor does not intercept the current return path avoiding errors produced
by the TIA, then maintaining the ground reference [19].

A practical circuit for measuring the current flow through the Load is shown in
Fig. 9. It uses a shunt resistor R1, a high input impedance buffer (OA1) for neglecting
leakage current, a differential amplifier (OA2), and a voltage reference of 1.66 V, for
example, to centralize the VS into the dynamic range of the ADC.

It is also recommended that both modulus and phase of load current ILoad be
measured to calculate the load’s impedance more accurately. That measurement can
be performed by a MUX, as explained above. Then, both modulus and phase of
ILoad (=V1.66/R1 − VS/R1), assuming R2 = R3 = R4 = R5, are used to calculate the
biological load under study. It is important to emphasize that both VS across the load
and shunt resistor are frequency-dependent, then care should be taken when doing
such a calculation. Generally, the impedance modulus is then calculated by the ration
|Vout|/|ILoad |, whereas the phase by the difference between φVout and φLoad.
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Fig. 9 Schematic diagram of a practical current measuring circuit across the load understudy

3 Extracting Glucose from BIA

BIA technique is a non-invasive method, as already discussed in the above sections,
which can be employed to detect blood glucose. BIA is a type of technology consid-
ered “transdermal,” however other technologies have also been used. They can be
divided into different sub-technologies, as shown in Fig. 10. Depending on the envi-
ronment and the accessed body place for measurements, every technology has its

Fig. 10 Diagram showing the most of non-invasive blood measuring technologies
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working features, advantages, and disadvantages. For example, transdermal is very
sensitive to environmental variables such as temperature or sweating [20]. Optical
methods depend on the properties of the tissue, such as color tone in the case of
skin [21]. Over the last 10 years, relevant technologies have been launched in the
market, such as GlucoWatch® G2 Biographer, Pendra®, OrSense NBM-200G, and
Glucose. However, some are not precise enough to predict blood glucose levels,
and others were removed from the FDA (USA) market. This chapter presents the
solution using only the electrical bioimpedance (also called electrical bioimpedance
spectroscopy—EBIS).

Monitoring glucose has been a classic area of research in BIA. Over time, accu-
racy has been increased but not enough to have clinically acceptable results [22,
23]. Recent studies have presented BIA as a promising non-invasive technique for
detecting glucose in the blood [24, 25]. However, it is difficult to choose a proper
body site to connect the electrodes because it depends on electrode geometry, circuitry
topology, measuring technique, etc.

Glucose can be found in interstitial fluids, and most researchers use it to set up
the system [26, 27]. Interstitial fluids are present in every tissue as a component
of the extracellular fluids. Interstitial glucose concentration is well correlated with
blood glucose concentration, but glucose’s appearance in interstitial fluids is delayed
compared to it in the blood [28, 29]. Nevertheless, many researchers consider this
delay a positive point to glucose monitors because they are more accurate than
plasma laboratory analysis. Interstitial glucose is the real glucose that tissue cells
use for their metabolism. Blood glucose can eventually exhibit some peaks while
interstitial glucose keeps stable. Making insulin corrections during the fake glucose
peaks can negatively impact glucose levels because glucose levels do not need to be
reduced [30, 31].

Predicting blood glucose by using the spectra of both impedance modulus and
phase requires a good analytical or numerical model to be computed. This type of
processing deals with measuring exogenous variables (modulus and phase) corre-
lated with variable to be predicted, and modeling how these variables produce effects
in variable to be predicted. In addition, if a tissue characterization is required,
bioimpedance spectra are necessary to properly extract tissue properties, such as
intra- and extracellular components and membrane capacitance. We have seen here
that these properties are calculated using a fractal model, shown in [7], containing
at least four variables to be fitted over the measured frequency range. The Multiple
Linear Regression (MLR) method has been used quite successfully for simple cases
with single dispersion materials. When it comes either with complex materials or
large data to be processed, other different models have been used for that purpose,
such as Support Vector Regression (SVR) and Artificial Neural Network (ANN).

MLR is a linear modeling method that uses the linear relation between a de-
pendent variable and many independent variables. The MLR algorithm has been
used to predict blood glucose non-invasively, such as the one that uses the metabolic
energy conservation technique [32]. In contrast, the presented by [33] used multiple
measured data (capacitive fringing field sensors, optical sensors, and skin hydration



Electrical Bioimpedance Based Estimation of Diabetics 193

levels). MLR can be used by modeling the blood impedance modulus or phase
concerning glucose level measured in milligrams per deciliter (mg/dL).

While linear regression minimizes the error between the actual and predicted
values through the line of best fit, SVRmanages to fit the best line within a threshold
of values, otherwise called the epsilon-insensitive tube. It uses the same basic idea as
SupportVectorMachine (SVM), but applies it to predict real values rather than a class.
It also acknowledges the presence of non-linearity in the data andprovides a proficient
prediction model. Some SVR applications for blood glucose non-invasively predic-
tion are pulse glucometer [34] and electrochemical measurement of saliva [35]. It
can also be used in other re- related areas such as blood glucose level prediction
using daily diet information, exercise, and past blood glucose measurements [36].
Most BIA systems measure over 30 discrete frequency points either for modulus or
phase, then end up with a large amount of data, especially if other biosignals are also
acquired to predict the blood glucose level better.

Handling a large amount of data means dealing with many input data, where an
ANN is highly recommended. The more data fed into the network, the more general-
ized and accurate the predictions are. ANN systems can learn system behaviors using
examples to model them without any specific programming or knowledge about the
system. It can be used for linear and non-linear problems. ANN has been widely
used to predict blood glucose levels non-invasively together with other types of tech-
nologies, such as NIRS [37], palm sweat [38], or multisensor systems including
photoplethysmogram, heart rate, galvanic skin response and temperature measure-
ments [39]. Another application where ANNs have been used related to glucose is
predicting future glucose levels in different time intervals [40].

4 New Trends for Diabetic’s Meter

Many studies are trying to deal with the problem of separating the sources producing
similar physiological effects as the glucose builds. The use of different sensor tech-
nologies helps in this task. Two physiological impacts can have the same behavior:
producing thermal effects but different producing coloring effects. The combina-
tion ultrasonic, electromagnetic, and thermal has shown an increment of accuracy
[41]. Mid-infrared spectroscopy and photoacoustic detection are examples where
combining different technologies improves the results compared with using a single
technology [42].

When the information comes from multiple sensors, computational algorithms
may be used to analyze this information as a set. A neural network has shown a
good performance combining near-infrared spectroscopy (NIRS) and bioimpedance
analysis (BIA) measurements [24]. Photoplethysmogram, galvanic skin response,
and temperature measurements can be combined using multiple linear regression
and an artificial neural network to estimate blood glucose levels [39].
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Novel approaches have been using nanoparticles as non-enzymatic biosensing
of glucose [43] and graphene nanocomposite acting as a non-invasive sensor for
measuring blood glucose in diabetic patients [44].

5 Conclusion

It can be resumed that even the Self-Monitoring Blood Glucose (SMBG) market is
stabilized using invasive methods, there is a big research gap and enormous interest
in the development of non-invasive SMBG devices. It was shown in this chapter that:

i. Current technologies suffer from a lot of problems such as the lack of accuracy
and disturbances;

ii. Bioimpedance (BIA) technique has been showing a robust, low cost, and
promising technique for tissue characterization and then also to blood glucose
estimation;

iii. The use of BIA together with NIR has already proven to be a more accurate
joint technique for blood glucose estimation;

iv. Combining multi-sensor measurements with algorithms seems to be a way
forward to more accurate glucose estimations in diabetic patients.

Some future outlooks for the non-invasive SMBBGmay include the use of biosen-
sors highly sensitive to specific ions or other substances when a patient undergoes a
glycemia peak; the use of a multi-agent sensor network for real-time monitoring; the
use of AI together with wireless sensors for long term and home care applications.
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Abstract Diabetes mellitus is a metabolic syndrome described by hyperglycemia
derived from insulin secretion, insulin action, or combined form deficiencies.
Diabetes is considered one of the emerging epidemics of this century; this neces-
sitates the research on the early diagnosis and essential control of diabetics. Along
with the diagnosis and treatment of this disease, it is crucial to give due impor-
tance to the studies on the prognosis and prevention measures for diabetes. In the
present chapter, the non-invasive millimeter and microwave sensing techniques are
summarized that can be helpful for the prognosis and diagnosis of diabetes. These
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techniques are commonly used in measuring the dielectric properties of solutions
such as glucose parameters and used in non-contact or subsurface skin sensing. Inva-
sive methods cause discomfort and pain during diagnosis, as it takes blood drops to
monitor glucose levels in the body. Millimeter and microwave sensing techniques
have the potential for developing a medicinal gadget that non-invasively measures
the blood glucose without following the usual procedure of finger pricking, taking a
drop of blood, and using the test stripe; this facilitates minimum hassle and the best
possible way to deal with the samples to examine and diagnose blood glucose levels.
Painless glucose testing methods can aid in the proper management of diabetes
for people of all ages, as current approaches like continuous glucose monitors or
finger-prick tests cannot guarantee appreciable efficiency or convenience.

Keywords Prognosis · Diabetics ·Millimeter ·Microwave · Non-invasive

1 Introduction

1.1 Overview

Diabetes is a physiological chronic illness/diseasewhere a person develops the poten-
tial to undertake blood glucose processing known as blood sugar in the impaired form
[1]. The total number of human beings affected globally due to diabetes has quadru-
pled in three decades. In this current century, every 1/11th person is affected due to
diabetes. Asian countries, including China and India, are becoming new epicenters
of diabetes patients in the coming decades throughout the world. From a clinical
perspective, whenever a situation under medical diagnosis of a person is referred
towards abnormal grades of sugar level in the blood, they are said to be diabetic
or are suffering from a form of Diabetic Mellitus (DM) [2]. Diabetes is a mystery
illness; physician Aretacus made this prognosis of Cappadocia (81-138 AD), which
still holds today [3]. For almost two millenniums or even after a brief time of two
millennia, the root cause of diabetes aliment remains obscure. Variable or abnormal
sugar levels in some cases indicate binary levels of a pre-existing condition in the
sample of the affected person, and this condition is referred to as hyperglycemia
or hypoglycemia. The first condition, i.e., is the production of excessive amounts of
glucose. The latter says hypoglycemia lowers the production of excessive amounts of
glucose. The latter says hypoglycemia lowers the glucose level in the normal range.
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1.2 Types of Diabetes

Diabetes is classified into the following three types:

I. Type 1 diabetic
II. Type 2 diabetic
III. Type 3 diabetic, i.e., Gestational diabetes (Fig. 1).

1.2.1 Type 1 Diabetics (Auto-Immune Condition)

Type1diabetics are also knownas Juvenile diabetes [5]. The juvenile formof diabetes
is due to the incapability of a person’s body to produce insulin. Insulin is a hormone
responsible for allowing glucose to enter cells as energy while also keeping glucose
levels in the bloodstream at normal ranges. It is necessary as it helps supply energy
to the body to carry out routine activities and promote day-to-day functions. In
general, for type 1 diabetic patients, the physical management/metabolism becomes
dependent on insulin. Therefore, artificial insulin is to be injected in one form or
other daily for the person to stay alive.

1.2.2 Type 2 Diabetics (Permanent Chronic Condition)

In type 1 diabetes, the immune system mistakenly attacks the insulin-producing beta
cells in the pancreas. It causes permanent damage and prevents the pancreas from

Fig. 1 Schematic representation of the three different types of diabetics: a Type I, Type II (Repro-
duced with permission from [3] CCBy© 2019 by Vieira et al., LicenseeMDPI, Basel, Switzerland)
and b Type III: Gestational diabetes (Reproduced with permission from [4] CC By © 2019 by
Salmeri et al., Licensee MDPI, Basel, Switzerland)
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producing insulin. The body generally produces insulin in such chronic conditions,
but it is not effectively used up as it would have [6].

1.2.3 Type 3 Diabetics (Gestational Diabetes)

Hyperglycemia and gestational diabetes are globally becoming significant public
health issues during the stage of pregnancy in women. Although not all pregnant
women are affected by this condition, the onset increases risks during pregnancy.
Sometimes it causes problems for newborns and sometimes does not favor the proper
birth process. However, this condition mostly subsidizes after the birth of a child [7].
The consequence of gestational diabetes cannot be ignored once and for all the time
(Fig. 2).

Fig. 2 The process of gestational diabetes. The pancreas distributes insulin, which stimulates
specific activities in certain tissues to control blood sugar levels in the blood (1). Through a
healthful gestation, the placenta generates the placental growth hormone (PGH) and proinflam-
matory cytokines such as tumor necrosis factor-alpha (TNF-α), stimulating a reduction in insulin
sensitivity in adipose tissue, liver, and skeletal muscle (2). As a result, fat tissue limits lipid
storage and promotes lipolysis; the liver promotes indigenous glucose (gluconeogenesis); skeletal
muscle glycogen fusion is reduced. (3). Free fatty acids (FFA) and glucose levels in the blood rise
because of such activities. (4), They are essential as nourishment for the placenta and fetus’ growth
(5). Nonetheless, certain pregnant women have susceptible factors that cause gestational diabetes
mellitus (Reproduced with permission from [8] CC By © 2019 by Lizárraga et al., Licensee MDPI,
Basel, Switzerland
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Less common types:

I. Monogenic diabetes
II. Cystic fibrosis diabetes.

2 Diagnosis of Diabetes

“Endocrinology 2.0,” as suggested by existing textbooks monographs and scientific
journals, suggests that hormones play an essential role in diagnoses which are thus
ignored by current medical practitioners [10].

Obesity is still considered one of the regular signs for identifying diabetesmellitus
(Fig. 3). Currently, 354 million diagnosed and undiagnosed diabetic patients are
present in the world [11].

The current diagnostic methods for diabetes include extraction of medical anal-
ysis samples through urine, blood which are generally invasive methods where the
affected body of a patient is invaded for sampling.

Invasive and Non-invasive

In the last ten years, point-of-care devices (POCD) have played a significant role
in detecting diabetes as they are made to check the glucose levels in the blood,
such as glucometers. The POCD is categorized into invasive or minimally invasive

Fig. 3 Schematic illustration of connection amongst obesity on type 2 diabetes (NEFA-Non-
esterified fatty acids) (Reproduced with permission from [12] CC By © 2019 by Hwalla et al.,
Licensee MDPI, Basel, Switzerland)
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nature; after collecting blood from the tip of the finger, an approximate calcula-
tion of glucose is made. The chemical reactions involved are enzymatic glucose-
oxidase, glucose-fragments binding, glucose spectral features, color reflectivity, etc.
An electrical signal is then applied to the glucose concentration to induce it. Blood
is collected from the fingertip is a painful process prone to infection and has high
costs. Hence, a non-painful and invasive free biosensor technique for monitoring
glucose levels has been developed. Research has been undertaken in the last ten
years and is still ongoing to create a suitable substitute as a non-invasive glucose
testing device (NGD). This strategy is adopted by companies that produce clinical
equipment and is used for non-intrusive glucose assessment. Various devices are
mentioned in Table 1 and summarized, along with their manufacturers, advantages,
and disadvantages. Some techniques such as Raman spectroscopy, optical coherence
tomography (OCT), fluorescence technique, light scattering, photoplethysmography
(PPG), photoacoustic and near-infrared (NIR) are all-optical techniques that depend
on rays of light at various wavelengths for the identification of glucose concentration
by using optical parameters. This concept is used for developing NGD devices [13].

Red/near IR or mid-IR absorbance spectrometry techniques employ the splitting
of luminosity at living tissue aiming towards observation or notice of any visual
marks of sugar content occurring in blood. These procedures involve several draw-
backs such as high pricing vulnerable to fluctuations in physiological parameters
like body temperature, blood pressure, the pressure of the atmosphere, tempera-
ture, or humidity. Another procedure for detecting glucose levels indirectly is by
electrochemical techniques, which monitor external fluids of the body like saliva,
breath condensate, sweat, or tears. Later, a comparison between measured glucose
concentration to the amount of glucose in the blood is carried out. Although the
non-invasive techniques have better sensitivity, they are criticized for being vulner-
able to metabolic changes. Apart from that, they are weakly associated with glucose
levels in the blood because of the disparity between changes in sugar concentration
in interstitial fluid (ISF), sweat, or blood. The suggested ideas seem to be in their
infancy, making it hard to assess their usability [13, 14].

Figure 4 illustrates various classifications and arrangements to monitor blood
sugar levels: invasive, minimally, and non-invasive. Bedside medical equipment or
personal assessment care meters are examples of fully intrusive systems. Moreover,
monitors are designed for intensive care units and employ sensitive sensors within
1%. Continuous monitoring is achievable with these devices, which increases the
quantity of available clinical data. Typical approaches like drawing blood from the
skin are still used in homes (precision of six to seven percent). Sugar content is
found via electrochemical, colorimetrical, or optical replicable stripes for finger-stick
blood samples. Attempts have been made to achieve a lower risk of invasiveness;
by reducing the amount of blood taken to only a few microliters and measuring
body regions that are less sensitive to pain, e.g., forearm, upper arm, or thigh. Some
disadvantages like lack of accountability when sleeping or while performing manual
tasks, unnoticed periods of hyper-or hypoglycemia, infection risks, nerve damage,
and the uneasiness of puncturing the finger multiple times a day, etc., often lead to
non-compliance of the technique [15–17].



Millimeter and Microwave Sensing Techniques … 205

Table 1 Gadgets for non-invasive blood glucose monitoring available in the market (Reproduced
with permission from [13] CC By © 2019 by Omer et al., Licensee MDPI, Basel, Switzerland)

Device/company Technique Placement Needs Attributes

NovioSense
(Noviosense BV)

Electrochemical
enzymatic-based
tear analysis

Lower eye lid
(inferior
conjunctival
fornix)

Continuous
monitoring
provided a
sample

Compact, painless,
flexible, wireless
power, smartphone
connected for data
analysis

Smart Contact Lens
(Novartis & Google)

Electrochemical
enzymatic-based
tear analysis

Eye Continuous
monitoring
provided a
sample

Painless, power
efficient, portable,
low relief,
hazardous when
overheated,
withdrawn from
market!

iQuicklt Saliva
Analyzer (Quick
LLC)

Saliva analysis Saliva of the
mouth

Intermittent
monitoring
provided a
sample

Portable,
convenient to use,
accurate, time
efficient (real-time
readings), under
development and
clinical trials

TensorTip Combo
Glucometer (Cnoga
Medical)

Photometric and
photography-based
techniques

Fingertip Intermittent
monitoring
without a
sample

Convenient to use,
accurate when
calibrated on
individual-basis,
smartphone
compatible, battery
operated
(rechargeable),
cost-effective,
certified!

Glucosense
(Glucosense
Diagnostic Ltd.)

Low-powered laser
sensors that use
photonic
technology
(infrared light)

Fingertip Intermittent
monitoring
without a
sample

Convenient to use,
portable,
affordable,
power-efficient,
time-efficient
(30 s), under
development!

Groves’s Device
(Groves Instrument
Inc)

NIR spectroscopy Fingertip or
earlobe

Intermittent
monitoring
without a
sample

Fast processed
readings,
time-efficient
(20 s), compact,
portable, uses
capillary-level
blood, less accurate
due to lacking
subjective
calibration

(continued)
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Table 1 (continued)

Device/company Technique Placement Needs Attributes

GlucoTrack
(Integrity
Applications)

Thermal, ultrasonic,
and microwave EM
technology

Earlobe Intermittent
monitoring
without a
sample

Affordable,
convenient use,
high accuracy due
to earlobe
placement,
unit-connected
results
processing/display,
complex
processing, FDA
approved!

GlucoWise
(MediWise)

RF/Microwave Amid fingers
(thumb and
forefinger)

Intermittent
monitoring
without a
sample

Convenient to use,
affordable,
accurate,
Bluetooth-based
data transmission,
compact, integrable
with insulin pumps,
uses capillary-level
blood,
time-efficient, fast
readings (10 s),
hurtful due
localized energy
usage, under
development!

The minimally invasive method also causes irritability to the patient as it uses
the interstitial fluid sample within intravenous sensors. Even with this approach,
the patient’s treatment is delayed because of their discomfort. Due to this, research
groups have beenworking to evolve glucosemonitoring devices that are non-invasive.
Yet, neither patents nor papers show a high level of accuracy for the non-invasive
technique compared to the invasive one [18, 19].

Non-invasive Method

An alternative method of painless, intermittent glucose monitoring is blood with
other fluids in the body that might contain glucose, like tears, sweat, urine, or saliva.
On the other hand, constant tracking can be achieved by directly measuring body
tissues such as skin, eye, oral mucosa, tongue, or tympanic membrane.

It is possible through non-invasive glucose monitors, which differentiate
glucose information from other overlapping components (proteins, urea, uric acid,
hemoglobin, water, etc.). Similar sensors can detect blood sugar levels either directly,
depending on the chemical composition of the glucose molecule, or by monitoring
the impact of blood sugar on other procedures, for example, temperature or pH shifts.
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Fig. 4 An overview of non-invasive blood glucose management systems

Reverse iontophoresis, polarimetry, metabolic heat conformation, ultrasound,
thermal emission, electromagnetic, photoacoustic, Raman, light absorption, and
bioimpedance spectrometry have been used throughout various non-invasive studies.
In addition to the methodology and sample region, the measurement surroundings
should also be considered. Sweltering, skin shade, surface bumpiness, skin thickness,
exhaling artifacts, the flow of blood, bodily motions, ambient temperature, pressure,
and slow response all impact the results in transdermal monitoring [14](Fig. 5).

Themost difficult aspects of developing fully non-invasive blood sugar examining
technology are precision, serviceability, and appropriateness for easy handling at
home by many persons. The best way to overcome these challenges is to develop
a device that will create a significant breakthrough in this field (Fig. 6). A gadget
like this can replace the existing benchmark of intrusive glucose biosensors and
enhance the lives of millions of diabetic patients around the world. However, many
systems still have several significant drawbacks, including low glucose sensitivity
and specificity and the need for a lengthy and frequent calibration. This shows how
difficult it is to balance generalizability and application. It is vital to make the device
usable and acceptance level assessment better, which may reveal main user problems
and provide a significant action in the commercialization of these gadgets.

The inability of existing non-invasive gadgets to replace a standard glucose
measuring meter is one of its primary drawbacks. As a result, these devices must
be constantly improved to improve the algorithm, software, and device features to
increase their performance further. Furthermore, more clinical research is needed
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Fig. 5 Skills in advancement for minimally and non-invasive glucose detection (Reproduced with
permission from [20] CCBy©2019 byVillenaGonzales et al., LicenseeMDPI, Basel, Switzerland)

Fig. 6 Confronts of
non-invasive blood sugar
examination. An effective
non-invasive glucose
monitoring device should
surmount the sequence of
precision usableness and
should face the challenges

ACCURACY

APPLICABILITYUSABILITY
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Fig. 7 Schematic
illustration of fasting plasma
glucose test

to assess whether non-invasive devices will improve glycemic management in indi-
viduals. It is similarly worth noting that the existing analysis ignores the issue of
inexpensiveness. Consumers may choose non-invasive blood sugar detecting tools
because they do not need lancets or strips, though several methodologies that have
been reviewed are expensive [21].

2.1 Testing Methodologies

The testing methodologies/methods of diabetes include [22].

I. Fasting plasma glucose (FPG).
II. A1 C test.
III. Random plasma glucose.

2.1.1 Fasting Plasma Glucose (FPG) Test

The FPG methodologies are an instantaneous measurement parameter that requires
pre-condition of receptor’s body to fast for at least 8 h, except sips ofwater intake. The
fasting condition is generally done at night, and tests are conducted in the morning
for reliable results [23] (Fig. 7).

2.1.2 The A1C Test (HbA1C, Glycated Hemoglobin Test)

As opposed to the FPG test, the A1C/HbA1C test is used to diagnose not
affected/inconsistent overeating and drinking before the test. The chart of the A1C
test is shown in Fig. 8. Averaging down sugar levels over 3 months is considered to
provide accurate sugar levels in the blood.
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Fig. 8 The A1C test results

Other symptoms such as age, anemia, or other stipulated problems are also consid-
ered during the tests undertaken. This is done because the A1C test is inconsistent
when the person does not have anemia or any other blood-related disorder.

2.1.3 Random Plasma Glucose (RPG) Test

Sometimes health care professionals use theRPG test for diagnosing the symptoms in
a patient. This blood test does not follow any pre-conditions that need to be followed.
This can be done at a given time of day. The glucose challenge test is used through the
oral testing methodology for pregnant women. Oral glucose tolerance test requires
fasting for about 8 h and then taking glucose. This is done by drawing blood every
hour 2–3 times (Fig. 9).

Pre-diabetes

A combined study in 1997 and 2003 by the authority board on the diagnosis and cate-
gorization of diabetes mellitus could recognize a group of individuals whole glucose
were neither in the range of classified diabetes patient. Still, it was high enough to be
not classified with the normal levels. Such a condition on the borderline is referred
to as pre-diabetes by medical professionals. A1C (5.7–6.4%) (39–47 mmol/mol).
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Fig. 9 RPG test

It can be considered as an increased risk for diabetes. Generally, it is measured
in cases of diabetes which is supposed to have obesity dyslipidemia with extreme
triglycerides and/or to have a low-level HDL cholesterol and hypertension.

3 Millimeter and Microwave Techniques for Sensing

3.1 Background: Mechanism of Millimeter and Microwave
Techniques

The well-known microwave frequency band stretches around 300 MHz to 30 GHz,
while themillimeterwave spectrumspans in the rangeof 30–300GHz; the subsequent
wavelength ranges are 1000–10 mm and 10–1 mm, correspondingly. The frequency
and wavelengths correlated with microwave and millimeter waves are shown in
Fig. 10. These frequencies allow interrogating signals to permeate dielectric objects
and react with their interior composition. The millimeter microwave sensors provide
useful spectroscopic approaches that do not necessitate exact alignment [24]. This
technique focuses onmicrowave spectroscopy, also known as dielectric spectroscopy.
Because there is less dispersion by the tissue, millimeter and microwave radiation
can penetrate deeper into the tissue [25]. In this approach, mm-wavelengths are
commonly employed in parts that use soft tissue’s reflection and absorption features.
The link between mm-wavelength radioactivity and blood sugar decreases permit-
tivity as the sugar level rises.On the other hand, the conductivity increases in response
to a rise in blood sugar levels [26]. Radar, reflection, resonant perturbation, and
transmission are the four techniques used in mm-wavelength sensing [27].

The radar technique involves transmitting an electromagnetic signal to an object
close to the transmitter [28]. The statistics, which comprises the dielectric character-
istics of blood glucose, will subsequently be sent to the receiver by the transmitter.
This is distinct at various glucose concentrations [28]. The primary data is evaluated
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Fig. 10 Millimeter wave in the spectrum band

using traditional signal processing methods, which aid in identifying blood glucose
levels [29].

The fundamental goal of the mm-wavelength sensing reflection method is to
quantify the reflection boundary for detecting the changes in permittivity due to
blood glucose variations. Using a coaxial probe, the reflection factor estimates the
permittivity, which leads to blood glucose monitoring by reflection in the mm-wave
sensor [30]. A vector network analyzer, such as the Anritsu 37397C, measures the
reflection coefficient across the open coaxial probe. Similarly, an antenna can be used
in the open coaxial probe sensor attached to the vector network analyzer [31]. The
resonant frequency is relevant in determining shifting blood sugar substances related
to the reflection coefficient. The link between resonant frequency and variable sugar
levels in the blood is assumed to occur with the drop in the intensities of resonant
frequency, which occurs by the rise in glucose concentrations.

The resonant perturbation approach offers some of the greatest sensor execu-
tion for mm-wavelength light to date [27]. This method aims to determine reso-
nant frequency fluctuations and link such changes to dielectric characteristics. The
microfluidic subsystem design and the substrate integrated waveguide (SIW) re-
entrant cavity resonator model are the two aspects of this particular method. A
microfluidic-integrated SIW re-entrant cavity with a quality element allows eval-
uating dielectric characteristics of fluids such as the blood samples [32]. When these
two systems function together, they provide a sensitive and accurate sensor. Trans-
mission approaches are comparable to reflection techniques in which the reflec-
tion parameters are also evaluated. mm-wavelengths can be used in transmission
methods to assess fluctuations in glucose levels based on dense permittivity varia-
tions throughout a single channel. A sensor can operate in the K band (27–40 GHz)
to carry out the benefits of transmitted data. The transmission method requires
two measurement ports, whereas the reflection method requires one. Transmission
methods are simply reflection systems, but they operate two times because of dual
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ports. According to recent research, the transmission coefficient and blood sugar
used for examining purposes have a good association [24] (Fig. 11).

Microwave sensing deals with frequency in the range of GHz, having corre-
sponding wavelength frequencies between 10 cm and 1 mm. Signal with wavelength
order in millimeter range is often referred to as millimeter waves. The electrical
impulses being localized in human bodies can be detected by microwave compo-
nents acting as distributed elements like phase voltage, current, etc., which changes
significantly over physiological extendedness of device dimensions/bodyon the order
of wavelength. Here, quasi-optical techniques can also be deployed for application
in millimeter-wave systems [33, 34].

Fig. 11 Millimeter microwave sensor layout for blood sugar recognition. a The mm-wave glucose
sensor concept is set upwith two patch antennas. The skin/blood patient area or a reservoir is located
among the two antennas. b A diagram of the sensor scheme with data and instruction flow used by
Labview
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Millimeter and microwave sensing techniques can directly measure the quan-
tities correlated to dielectric properties and, hence, inspect biological material.
This technique uses methods such as protein thermal unfolding and refolding lipid
bilayer membranes, large aqueous-based molecules, single-cell characteristics, etc.
are used in this technique [35]. Here, they introduce a combined millimeter-wave
radar system for detecting various glucose levels in laboratory-prepared fake blood
models (Fig. 12). The study’s goal is to see if mm-wave radars can be used for the
non-invasive monitoring of glucose levels in diabetic patients. The proposed concept
utilizes signal processing techniques to detect various glucose dilutions and compare
them with reflected mm-wave readings. According to the measurement statistics and
processed findings, the examined mm-wave radar discriminates glucose dilutions
in blood samples across test tubes with extreme sensitivity. This expanded anal-
ysis verifies preliminary discoveries and demonstrates a high-resolution recognition
capacity. This research also displayed how signal-processing algorithmsmay process
raw records to identify glucose levels accurately. The findings are significant and
should open up the way for further research into the possibility of recognizing blood
within the physical body [29].

There is another method developed by researchers using the microwave sensing
technique for predicting the glucose concentration from the solution of blood plasma.
They were designed with three sensors using microwave technology. Figure 13 is
the setup of glucose detection using sensors from the blood of a human being. The
plasma solution is prepared using various concentrations of glucose, which is added
to the blood sample with the addition of ascorbic and lactic acid. The results show
an excellent performance of the sensors with good outcomes, and the sensitivity is
varied by the amount of glucose [36].

There is a strong relationship between blood glucose concentrations and MMW
transmission across the rat ear. It also shows the signal fluctuations above the noise
floor when transmitter power is within safe exposure quantities. However, rigid

Fig. 12 Test setup: fake blood samples, radar antenna directed to sample tube on a 3-D printed
fixture, and PC for supervising/processing (Reproduced with permission from [13] CC By © 2019
by Omer et al., Licensee MDPI, Basel, Switzerland)
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Fig. 13 Measuring glucose from real human blood plasma solutions (Reproduced with permission
from [36] CC By © 2019 by the Juan et al., Licensee MDPI, Basel, Switzerland)

waveguide hardware can only be used on immobilized animals. A tiny lightweight
fitting containing an MMW CMOS transceiver chipset and an input/output antenna
has been designed and built up for active human and animal studies. In addition,
experiments were conducted to determine whether the transmission of MMWs via
solutions of saline and saline plus sugar could be replicated both in vivo in rat ears
and in vitro in the blood (Fig. 14). Measurements in in-vitro and in-vivo, CMOS
transceiver design, and packaging of non-invasive glucose monitoring tools are
presented in this chapter. Furthermore, millimeter-wave absorption by the solutions
having glucose content was evaluated in customized liquid transmission cells, and
the results were demonstrated concerning the rat [37].

Fig. 14 Schematic diagram
of variations in MMW
transmission via the rat ear
were evaluated when 1gm/kg
glucose, 5 ml saline
(control), and 2U/kg insulin
is injected
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Table 2 The advantages and disadvantages of the millimeter/microwave technique

Method Advantages Disadvantages

Millimeter and microwave • Robust and intense signal
saturation

• Sharp sensitivity for blood
sugar concentration changes

• No possibilities of ionization

• Low selectivity
• Vulnerable to additional
substances in the blood

• Susceptible to changes of
biological factors, inhaling,
perspiring level, and cardiac
movement

4 Advantages and Disadvantages

The advantages and disadvantages of the millimeter/Microwave non-invasive tech-
nique are given in Table 2.

5 Future Scope

Microwave and millimeter-wave NDT&E have been used in various applications
Microwave and millimeter-wave imaging for flaw discovery and assessment in
diverse composite constructions using near field focus. Synthetic aperture techniques
are a few examples. Biological applications, microwave microscopy, composites,
and new uses are constantly being developed. There are several advantages to using
microwave and mm-wave NDT&E technologies in near-field applications. These
approaches are non-contact, one-sided, and require coupling to transfer the signal into
thematerial under test (unlike ultrasonic approaches). They are alsomonostatic, low-
power, and small. Easily adaptable to existing industrial scanners, real-time in-field
operator-friendly does not need operator expertise in the field of microwave engi-
neering allows images with high resolutions to be obtained because the spatial reso-
lution in the near-field is a function of probe dimensions (which in these frequency
arrays are quite small) rather than operatingwavelength robust, tough and repeatable,
as well as sensibly priced [38]. Generally, the non-invasive methods are classified
into three: optical, microwave, and electrochemical.

The millimeter microwave method lies in the microwave category, so the other
methods do not ensure efficiency or ease of operation. But the main advantage of the
millimeter microwave method is the strong selectivity according to the variation of
glucose levels. This method has excessive non-invasive behavior, which delivers a
continuous examination of blood sugar without inducing difficulties in patients. The
proposed benefits of millimeter and microwave properties can be used to perform
microanalysis up to the basic functional unit of the body. Synthesis of observational
cells and the associated immense ways of diagnostics is to be leveraged for different
inventions in the bio-medical field using this technology. Unfortunately, in line with
the research studies, the assessed rates may not be closely linked with real sugar



Millimeter and Microwave Sensing Techniques … 217

levels, and thus the linear range is restricted, necessitating more algorithm modifica-
tion. Personal characteristics such as old skin tones, skin form, and so on in the sample
part will produce huge inaccuracies in the measurement results, resulting in unifor-
mity and steadiness. In termsof analysis, there are certain issues, such as sophisticated
detection ways, harsher detecting components, a time-consuming monitoring proce-
dure, detection accuracy support requirements, and significant background signal
interference. These constraints can restrict its potential as a household commer-
cial glucose monitor. Suppose more physical parameters such as pH, temperature,
humidity, frequency, and other biomarkers involved in blood glucose can be blended
to fix the results obtained, improve the performance of painless skin glucose testing
and significance to their blood sugar, and achieve continuous monitoring of patients
with high blood sugar and low blood sugar. In that case, this could be a promising
direction for future research.

6 Conclusion

This chapter evaluated the advancement of research works involved in non-invasive
glucose monitoring using millimeter microwave sensing. Non-invasive methods are
quite good and less time-consuming than conventional invasive methods. It also
offers uninterrupted real-timemonitoring of blood sugar levels. This chapter summa-
rizes the different optical and microwave, millimeter-wave biosensor modalities.
The millimeter and microwave technologies-based point-of-care devices for glucose
level monitoring have been presented. The chapter also discussed the electromag-
netic spectrum in which most of the research occurs. We also compared the different
glucose monitoring devices existing in the market. Combining all these sections, we
have tried to show how all the current aspects, connected to glucose detection, model
the technical evolution and development of millimeter and microwave technology
that can monitor glucose concentrations non-invasively.
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Different Machine Learning Algorithms
Involved in Glucose Monitoring
to Prevent Diabetes Complications
and Enhanced Diabetes Mellitus
Management
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Abstract Diabetes mellitus (DM) is a group of metabolic disorders resulting from
dysregulation of blood glucose (BG). Hence, it may lead to various vascular and
neural complications involving multiple organ systems, either short- or long-term.
During the past two decades, various computer-assisted systems based on machine
learning algorithms haves based on machine learning algorithms have become
available and have achieved satisfactory performance in glucose monitoring and
predicting the prognosis of diabetic patients. The increased availability of multidi-
mensional health data has shed light on machine learning for a novel BG prediction
and diabetes management method. So far, various machine learning algorithms have
been productive in predicting BG and diabetes progression and prognosis. Hence,
machine learning algorithms have been regarded as accurate, with less operation
cost and higher efficacy in predicting potential diabetes in the undiagnosed popula-
tion, profiling personalized BGdynamics, establishing personalized decision support
systems, and building BG alarm events in DM patients. However, real-world data
concerning the efficacy of variousmachine learning algorithms in diabetes prediction
and management is still limited, and internationally acceptable guidelines have not
been established to estimate and quantify the potential lifestyle-relevant variables
related to the BG level. This chapter has been written to address the current progress
in the application of machine learning in glucose monitoring and DM management.
Different machine learning algorithms have also been discussed on the validity and
feasibility of the algorithms fit for purpose.
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1 Introduction

Diabetes mellitus (DM), which entails a global health crisis, is a group of metabolic
disorders that results from dysregulation of blood glucose (BG), either due to the
failure of the body to secrete insulin (type I diabetes mellitus, T1DM) or the inability
of the body to respond to insulin action (type II diabetes mellitus, T2DM), as
well as first recognition during pregnancy (Gestational Diabetes Mellitus, GDM)
or other specific types [69]. The patients may present with chronic hyperglycemia,
manifesting polydipsia, polyuria, and polyphagia.

Clinically, the current mainstream diagnostic investigation method of DM is
venous plasmaglucosemeasurement [28], and2-horal glucose tolerance test (OGTT)
remains the internationally accepted gold standard for DM diagnosis, where the
venous plasma glucose levels are obtained for fasting, as well as 1-h- and 2-h-post a
certain amount of glucose intake (normally 50 g or 75 g).

Themainstream view of the pathophysiology of DM remained that genetic predis-
position underlies DM development, where what control the biological steps of beta-
cell action, insulin secretion, insulin interaction with tissue cells, insulin receptor
production and insulin action inside the cells that were altered or mutated [22].
T2DM patients are getting increasingly insensitive to the physiological effects of
insulin. Therefore, more insulin is needed to maintain the original effects of insulin
to induce cells to uptake glucose [29]. Nevertheless, for T1DM patients, as their
insulin production by beta cells is impaired, therefore, eventually, for both T1DM
and T2DM patients, the pharmacological induction of insulin secretion or insulin
absorption is no longer sufficient for maintaining the euglycemic state. External
insulin supplementation is the sine qua non for diabetes management [39].

DM without proper management may lead to a variety of vascular and neural
complications involving multiple organ systems either in a short- or long-term
manner, and it is the multiple complications secondary to DM that lead to the heavy
burdens of the patients, causing increased medical cost and decreased quality of
life [22]. In this sense, regular community-based screening and prompt diagnosis in
undiagnosed patients, sufficient patient education and support, continuous medical
care, and user-friendly continuous BG monitoring, as well as psychological dredge
and social support, are required to prevent acute complications (e.g., ketoacidosis)
and minimize the risk of long-term complications (e.g., nephropathy, retinopathy,
diabetic foot, cardiovascular disease, or stroke) [14, 29].

Therefore, on the one hand, in the community, timely screening of diabetes in
undiagnosed patients could help prevent further development of diabetic complica-
tions, hence reducing disease burden and improving quality of life. On the other
hand, for DM patients, BG monitoring is of vital significance. It is acknowledged
that optimizing glycemic control through loweringBG levels andminimizing glucose
variability could prevent the development of microvascular complications and long-
termmacrovascular disease [47, 54]. BG serves as the most important risk factor and
prognostic factor in DM patients owing to its predictive values in disease progres-
sion; it is difficult to manage because of its multifactorial nature, as well as inter-and
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Fig. 1 Systems and organs related to blood glucose level

intra-personal variability associated with nutritional, behavioral, and pharmaceutical
management, as shown in Fig. 1 [54].

Specifically, timely acknowledgment of the fluctuation of blood glucose levels
underlies the foundation of diabetes management. With proper and timely blood
glucosemonitoring, efficacious treatment, dysglycemia (especially undetected hypo-
glycemia) identification, and treatment plan modification (including medical nutri-
tion therapy, exercise therapy, and pharmaceutical interventions) become possible.
Normally, the blood glucose level is checked before the meal, 2 h post-meal, and
before sleep [1].

The emergence of self-monitoring of blood glucose (SMBG) has inspired diabetes
management in the previous decades, aspiring for euglycemia. Yet, its inconvenience
in use may lead to incomplete BG data collection [1]. Moreover, portable blood
glucosemeters have allowed patients and healthcareworkers to obtain dynamic blood
glucose level data. With the development of technology, the advent of continuous
glucose monitoring (CGM) has made surveillance of fluctuation pattern, frequency,
level, and timing of BG level variation possible, and it is proven useful in alarming
hypoglycemia. Nevertheless, the CGM devices could be expensive and require
continued capillary glucose testing for calibration.Despite the gradual transition from
SMBG tomore advanced glucosemonitoring devices, some reluctance tomonitor the
blood glucose has been noted given the costs, complexity in use, and low awareness of
the necessity. Though SMBG has been available for many DM patients, the need for
frequent testing and continuous replenishment of consumables has undermined the
patients’ compliance. Besides traditional serum glucose monitoring, novel materials
have also inspired glucosemonitoring. For instance, non-invasive and non-enzymatic
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Fig. 2 The number of published articles inGoogle Scholar includes “Blood glucose” and “Machine
learning”

sensing using advanced nanomaterials gained popularity, despite lacking sufficient
clinical evidence in the accuracy and stability of long-term glucose monitoring [15,
56, 59]. Hence, accurately monitoring the blood glucose while improving glycaemic
control and the quality of life of these patients is now one of the biggest challenges in
DMmanagement. The recent boom in BG levels prediction arises with the explosion
of interest in Artificial Pancreas Project, a closed-loop control system for BG control
[60], and a gross estimate of the number of academic papers concerning “blood
glucose” and “machine learning” in the Google Scholar database is shown in Fig. 2.

Artificial intelligence (AI) is progressively utilized in medicine to find patterns in
complex sets of clinically collected data and self-monitored data to improve health
outcomes [38]. AmongmanyAI-based algorithms,machine learning (ML) can equip
computers with the ability to learn without the need to be explicitly programmed
in advance [49]. The ML algorithms provide the added value of the expertise of
clinicians. It is better than using only one in disease treatment [11, 68], especially in
better DM management and complications prevention (Gadekallu et al. 2020; [51].

In the present chapter, the following contents will be addressed: (1) the role of
ML algorithms in DMmanagement; (2) difference between various ML algorithms;
(3) insights into future ML application.
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2 The Role of ML Algorithms in DMManagement

Specifically, theML takes part in theDMmanagementsmainly in threemain aspects:
(1) assisting precise BG level prediction; (2) detecting DM-associated complica-
tions and BG alarm event (BG anomalies); (3) establishing personalized decision
support/education systems.

2.1 BG Levels Prediction

BG levels are variable and multifactorial, directly affected by insulin, physical
activity, and dietary intakes, and influenced by numerous factors. Owing to the
dynamic nature of BG levels, some scholars also conceptualized a physiological
model that could consider the daily events that influence BG levels, including insulin
uptakes, food intakes, exercise, sleep, and even seasonal variation [41].

A comprehensive understanding of the pathophysiology and biological mech-
anisms underlying DM development and progression is the foundation of incor-
porating physiological parameters in the ML algorithms. Generally, a physiology-
based approach to ML strategies would fractionize the parameters related to BG
regulation into three distinct categories, viz., BG dynamics, insulin dynamics, and
meal absorption dynamics [40]. Two methods are generally used to incorporate the
physiology-based data, namely the lumped (semi-empirical) model and the compre-
hensive model, where the former would only consist of a few equations and parame-
ters, taking all the organs and tissues as a whole. At the same time, the latter manages
data separately according to various organs and tissues [6].

Moreover, the increasing popularity of mobile health applications, biosensors,
wearables, and many devices for self-monitoring and healthcare management has
alsomade possible the generation and collection of automated and continuous health-
related personal data to feed theML algorithms [62], such as body mass index, stress
level, amount of sleeping time, underlying diseases, medications use, smoking habit,
menstruation, alcoholism, allergies, and geological factors [62].

Nevertheless, compared to the physiology-based approach, another approach
coined the data-driven strategy also internalize self-collected data and other easily
available parameters to predict BG. Regarded as the black box, although sometimes
this approach can achieve a high accuracy rate, it is sometimes difficult to interpret
the results since it lacks biological and physiological theoretical support underlying
themechanisms of the algorithms [62]. In sum, it could be divided into three different
models, namely a time series model, machine learning model, and hybrid model.

Specifically, forDMpatients, necessary alarms could be noted throughBGpredic-
tion to avoid disease progression and over-or under-regulation of BG levels, causing
hypoglycemia or hyperglycemia. Sudharsan et al. have shown that robustMLmodels
for hypoglycemia prediction in T2DM patients could effectively identify vulner-
able patients needing to manage hypoglycemia [55, 64]. Oviedo et al. conducted
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a methodological review regarding the prediction models of BG levels, risks, and
events. They found that the algorithms setup and performance metrics of the ML
algorithms currently reported were mainly focused on a closed-loop system (an arti-
ficial pancreas) [40]. As reported by Woldaregay et al., in terms of BG level predic-
tion, feedforward neural networks remain the most used algorithms (20%), followed
by hybridization of the physiology-based model and machine learning techniques
(19%), recurrent neural networks (18%), and support vectormachines (SVMs) (11%)
[62].

2.2 Detection of DM-Associated Complications

Continuously increasedMLmodels attempting to manage DM-associated complica-
tions have been built and assessed. Studies have proven the efficacy of ML-assisted
T2DM care programs in the community by identifying population-level effects and
mostly benefited patient sub-groups [14, 66]. Makino et al. has demonstrated the use
of machine learning (scikit-learn), building a prediction model from 24 factors of
interest in predicting the progression of diabetic kidney disease, and an accuracy of
71% was achieved [34].

A systematic review by Kavakiotis et al. has summarized the efficacious role of
MLand datamining techniques in diabetes screening and diagnosis and detection and
management of complications [26]. Nevertheless, complications secondary to T1DM
were scarcely investigated usingML predictionmodels [26]. T2DMprediction in the
community is beneficial for the early detection of T2DM in populations with high-
risk factors. It might robustly capture cases with early dysglycaemia but present with
no obvious clinical symptoms [13].

On the other hand, pre-hospital screening is also an important application of ML
algorithms. Haq et al. proposed a filter method based on a decision tree for incredibly
important feature selection and incorporated two ensemble learning algorithms, Ada
Boost and Random Forest, for feature selection; the proposed algorithm could reach
a test accuracy of 99%, 99.8% with k-floods and 99.9% with LOSO validation, in
identifying populations at risk of DM [23].

DM risk classification is vital and challenging, as the medical data is non-linear,
non-normal, and complex [7, 35]. A variety of ML algorithms have been devel-
oped for the prediction and diagnosis of diabetes disease, viz., (1) supervised algo-
rithms including decision tree (DT), random forest (RF), linear regression, logistic
regression (LR), Gaussian process classification (GPC), aïve Bayes (NB), as well
as neural networks like artificial neural network (ANN) and feedforward neural
network (FFNN); and (2) unsupervised algorithms such as k-nearest neighborhood
(KNN), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
and support vector machine (SVM) [8, 35]. And the efficacy of such algorithms
has been evaluated and reported by various researchers, with an accuracy of DM
prediction ranging from 70 to 99% [4, 5, 9, 21, 25, 27, 33, 42, 43, 48, 58, 61, 65].
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3 Different Machine Learning Algorithms

ML algorithms were established to reproduce human neural networks in silico in
the 1980s. ML is generally composed of three key components: learning algorithms,
computational power, and data [18]. As a subset of AI, ML models can be regarded
as algorithms that can either self-learn or learn from preset parameters. The main
objective is to identify effective variables and the underlying correlation [36, 38].
ML models are normally developed through the following steps, namely, problem
identification, goal setting, data collection and sorting, ML model building, valida-
tion, assessment of impact, deployment, and monitoring, as well as future modifying
[12], as shown in Fig. 3.

The ultimate aim of establishing machine-learning algorithms is to provide
optimal personalized decision support of DM management, specifically by devel-
oping better closed-loop insulin delivery systems taking into account glycemic
variability in DM patients [62].

The value of health-related data to expedite precision medicine development has
been well underlined [37, 46, 50]. Therefore, biomarkers and pharmacogenetics
parameters may also be incorporated into the ML algorithms to predict management
efficacy and responses in patients [19, 31], the onset the progression of the disease
course, as well as BG levels [67].

Several factors may influence the eventual clinical implementation during the
model design, such as data type and size, model interpretability, and the use of a
balancingmodel. Nevertheless, every type ofML algorithm has its limitations, which

Fig. 3 A graphical summary of the machine learning algorithm process
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may only work at full efficacy in specific circumstances. In a systematic review on
ML models for community-based T2DM, ANN outperformed all the counterparts,
closely followed by logistic regression, decision trees, and random forests [32]. There
exists nothing like universally acceptable and ever-winning ML algorithms that fit
in every situation. Therefore, to generate relevant and robust results, the currently
available ML frameworks should be adjusted in a tailor-made manner to improve
further productivity and efficiency [18].

3.1 Artificial Neural Network (ANN)

An artificial neural network (ANN) is a computational model inspired by biological
nervous systems. It comprises various processing elements similar to neurons and
axons-like connections called weights [44].

The topology of the ANN could be classified into two main types, namely the
feedforward networks and recurrent/feedback networks. The feedforward network
is the most used one, where feedback information could be sent back to the former
level. In contrast, information could only be sent in one direction (forward) from the
earlier stage to the next level in the forward network. Therefore, ANN has excellent
efficacy and significant advantages and could adjust to the data flexibly to model and
solve a real-world problem.

3.2 Support Vector Machines (SVM) and Gaussian Process
Regression

Support vector machines (SVM), a supervised learning algorithm, have been largely
utilized for various purposes, such as identification and recognition of patterns, cate-
gorization or classification, regression, and prediction [10]. The use of SVM could
minimize the errors incurred by empirical classification.

Support vector regression (SVR) is the most widely used in BG level prediction
and modeling among the many SVM algorithms. For instance, Reymann et al. has
developed an SVT-based Mobile platform with a radial basis function as a kernel to
predict BG levels [45].

Although Gaussian process regression is non-parametric, it could estimate uncer-
tainty and capture noise and smoothness parameters from data input [62]. For
instance, Tomczak et al. has reported the feasibility of Gaussian process regres-
sion in BG level prediction using categorical inputs such as the type of measurement
(e.g., insulin dose, meal intake, physical exercise, pre-prandial BG measurement,
and others) [53].
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3.3 Decision Tree and Random Forest

A decision tree (DT) uses a structure built using input features to predict or classify
the target outcomes using various input variables. The decision rules could be easily
extracted, and hence it is generalized and extended for multiple kinds of application.

Random forests also called randomdecision forests, serve as an ensemble learning
approach for classification and regression applications. It learns through a multitude
of decision trees having been constructed, and it can thus directly start feature selec-
tion, generating themodel of the class or themeanof prediction [24]. Twomethods are
generally utilized when measuring variable importance, namely the Gini importance
index and permutation importance index [2].

For instance, Xiao et al. developed a kind of BG predictor using random forest and
support vector regression to evaluate the improved performance gained using amixed
strategy to select an optimal feature pattern [63]. Moreover, Georga et al. predicted
the BG levels using random forest regression in a multivariate and multidimensional
dataset [17].

3.4 Logistic Regression

Logistic regression (LR) is generally utilized for classification purposes, and the
dependent variable ought to be categorical, owing to its significant role in classi-
fication compared to regression. With advantages in robustness and easy handling
of non-linear data, the logistic regression could predict the probability of a binary
variable (the dummy output variables) based on one or more predictor variables [57].

4 An Example of the Application of ML Algorithms
Predicting BG Levels in Pregnant Women with GDM
in Resource-Limited Regions

Gestational diabetes mellitus (GDM) is glucose intolerance (hyperglycemia) with
the first onset or discovered upon pregnancy. Unmanaged GDM could lead to severe
adverse outcomes compromising both mothers and offspring. Nevertheless, preg-
nant women living in low- and middle-income areas or countries may fail to undergo
routine antenatal examinations, leading to a missed diagnosis of GDM. The reluc-
tance to experience the full course of oral glucose tolerance test (OGTT) or the
unavailability of a sufficient testing kit may be blamed. To tackle the problems, an
AI model that included 9 algorithms was trained using data collected from 12,304
pregnant women from November 2010 to October 2017 who underwent routine
prenatal tests in the Obstetrics and Gynecology Department of the First Affiliated
Hospital of Jinan University, Guangzhou, China.
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The pregnant women’s age and fasting blood glucose level were chosen as the
critical parameters input for model building. For validation, fivefold cross-validation
was conducted for the internal dataset. An external validation dataset constitutedwith
1655 cases collected from the electronic database of the Prince of Wales Hospital,
Hong Kong SAR.

With 9 ML algorithms (SVM, RF, AdaBoost, kNN, NB, decision tree, LR,
eXtreme gradient boosting, and gradient boosting decision tree) built, SVM reached
the best performance, obtaining an accuracy of 88.7% in the external validation set.

Later, amobile applicationwas developed, and a prospective andmulticenter study
was conducted to test the clinical efficacy of the mobile application incorporated
with the ML algorithms we developed in GDM screening for pregnant women in
resource-limited areas, using only fasting blood glucose value and their age [52].
Although further experiments are needed, this study has provided direct evidence
that ML algorithms could, on the one hand, provide a highly accurate diagnosis of
undiagnosed patients with high efficacy, and on the other hand, render the cost at an
extremely low level. Hence can become an appropriate tool used in the real world
instead of merely an algorithm-chasing high performance in silico.

5 Outlook

Considering the ML algorithms involved in DM managements, several questions
emerge (1) who is using the algorithms; (2) what kinds of data are input in the
algorithms, and (3) how is the efficacy and interpretability of the models?

Owing to the “black box”-like low interpretability of ML algorithm, the promo-
tion and further generalized application of ML is doubted, despite that the predic-
tive performance is considerably convincing and promising [20, 30]. Nevertheless,
machine learning is only effective when large samples are used due to the input
data’s multi-dimensionality [3], hence, the studies’ small sample size models may
be under-estimated. Moreover, ML models devoid of appropriate external validation
suffer from limited applicability and extendibility and lacks clinical impact. Even if
the ML model is suitable for clinical application, challenges exist in practice due to
real-world scenarios’ complexity and variability.

Moreover, the user of the ML algorithms matters. Although some ML models
could achieve a prominent accuracy and clinical significance level, the data needed
to feed the model may not be easily collected and utilized. Therefore, ML algorithm
builders should consider the real-world situation and consider the future users of the
algorithms instead of an utter inaccuracy chasing. Concerning the future users of the
ML algorithms, the source of the parameters for the model building could be both
from the patients’ side (BG levels, insulin intake, calories intake each diet, exercise,
and others) and from clinician’s database (bio-physiological parameters, laboratory
investigations, ancillary examinations, and others). Moreover, it is also necessary
to consider any relevant contextual information, such as intra- and inter variability
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among the patient’s lifestyle changes, environmental factors, the time series (diurnal
vs. nocturnal), and other relevant factors parameters [62].

Therefore, achieving a universal model that accurately predicts and easily collects
data from the target population isn’t easy. The high accuracy remains controversial
if the algorithms were extrapolated to a larger population or a different popula-
tion. Lacking specific clinical evidence so far, the ML algorithms could still not
replace routine diabetes screening and diagnosis and provide clinical suggestions for
management for potential DM-related complications predicted. In this sense, future
studies should also value the interpretability and applicability of the ML algorithms
developed. The assessment of the clinical efficacy and cost-effectiveness of the ML
algorithms in the clinics remains urgently needed.

6 Conclusion

Machine learning algorithms have been regarded as accurate, with less operation
cost and higher efficacy in predicting potential diabetes in undiagnosed populations,
profiling personalized BG dynamics, establishing personalized decision support
systems, and building BG alarm events in DM patients. However, real-world data
concerning the efficacy and cost-effectiveness of various machine learning algo-
rithms clinically is still limited, and internationally acceptable guidelines have not
been established to estimate and quantify the potential lifestyle-relevant variables
related to BG level.
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The Role of Artificial Intelligence
in Diabetes Management

Amine Rghioui, Jaime Lloret, and Abdelmajid Oumnad

Abstract Diabetes is one of themajor health complications in theworld. It increases
the need to focus on prevention and early detection to improve management and
diabetes treatment. For effective treatment of diabetes, rapid diagnosis and ongoing
medical care are necessary to prevent acute complications and minimize the risk
of long-term complications. Several technologies like Artificial Intelligence (AI),
Internet of Things (IoT), communication technologies, embedded systems, and smart
devices are used to improve the quality of life of diabetic patients and reduce the costs
of hospitalization. Artificial Intelligence (AI) is a booming field, and its applications
to diabetes are growing even faster. In this work, many intelligent algorithms are
presented to support advanced analytics and provide individualized medical assis-
tance to diabetic patients. The algorithms are detailed and compared deeply as many
healthcare companies are applying these technologies. The short-term outlook indi-
cates that they are likely to have considerable success in clinical practice. Moreover,
we present some Artificial Intelligence initiatives to resolve the diabetic problem.
Therefore, we evaluate the accuracy of an Artificial Intelligence (AI) model using a
Machine learning algorithm and diabetic data. Finally, we discuss the current issues
and future challenges.
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1 Introduction

When the pancreas does not work the way it should be producing the amount of
insulin needed or when the body does not use the insulin produced correctly, humans
are affected by a chronic disease known as Diabetes. Important organs of the human
body like the blood vessels, the nerves, and the eyes can be damaged by high or low
blood sugar levels. To avoid these worsening of the state of health of the diabetic
patient, daily monitoring should be carried out either by the doctor or by the patient
himself. Diabetes is a chronic disease that affects more than 463 million people
worldwide.

Diabetes can cause short-term complications (hypoglycemia, malaise, etc.) and
long-term complications in the event of poor blood glucose control (blindness,
cataracts, thrombosis, nephropathy, etc.). To avoid such consequences, advice and
treatment allow patients to live normally. Therefore, for effective treatment of
diabetes, prompt diagnosis, patient education in self-management, and ongoing
medical care are necessary to prevent acute complications and minimize the risk
of long-term complications [1, 2].

Artificial Intelligence (AI) and the Internet of things (IoT) are two new technolo-
gies that can help patients and doctors to solve several problems of diabetes. Artificial
Intelligence can be defined as “a branch of computing that aims to create methods
that analyze information and help manage complexity in a wide range of applica-
tions”. Artificial intelligence involves implementing several techniques that enable
machines to imitate a form of real intelligence. Artificial Intelligence is implemented
in a large and growing number of fields of application. The application of AI tech-
nologies on diabetics is possible for efficient data processing and tools and devices
to manage this disease [3, 4].

Artificial Intelligence can help and facilitate 3 main areas of diabetes care:
diabetic patients, doctors, and smart healthcare systems. AI has added new uses
for patients with diabetes, introducing patient supervision, rapid decision making,
and risk prediction.

This chapter discusses the current advances and challenges in introducing Arti-
ficial Intelligence for diabetes disease treatment. We will also cite a wide variety of
intelligent Artificial Intelligence algorithms widely used to support advanced anal-
yses and provide personalizedmedical assistance to diabetic patients. In another part,
we will talk about the applications and initiatives that exist in the literature and where
Artificial Intelligence techniques are used to solve the problems of diabetic patients.

To this end, this chapter is organized in such structure: Section 2 is a review
of related works. Section 3 proposes the Intelligence Artificial and its application
for monitoring diabetic patients. Section 4 details some applications and initiatives
that use Intelligence Artificial technologies to manage diabetic disease. Section 5
describes our application for data classification for diabetic patients using machine
learning algorithms and the obtained results that help in the practical evaluation. In
the end, Section 7 is the conclusion of this chapter.
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2 Related Work

Different articles that useArtificial Intelligence techniques for personalized and auto-
mated diabetes management exist in the literature. This section presents a summary
of the recent works that deal with diabetes disease management and the systems that
have been designed to help diabetic patients. Some of these works are given below:

In recent years, many advances have been made in health care and, more specif-
ically, in solving the problems of diabetic patients. Several new Artificial Intelli-
gence techniques have been developed to help patients and doctors either develop
new applications for the management of diabetes, or applications that continuously
monitor blood glucose levels for diabetic patients. We also find the classification and
prediction of diabetes in diabetic patients.

For the applications, we find: Xiao et al. [5] proposed a newwireless electrochem-
ical sensor used for diabetic patients to monitor the blood glucose level in real-time.
This sensor is characterized by low power consumption and low cost. We also find
the work of Wang and Lee [6], where they developed a new blood glucose sensor
that controls and monitors the level of glucose in diabetic patients. This sensor takes
real-time measurements and contains an alarm that indicates the glucose level.

Ahmed et al. [7] developed a new system that predicts glucose concentra-
tion in patients with diabetes using GlucoSim, a software that helps analyze
patient information. This system aims to avoid hyperglycemia and severe diabetes
complications.

Rghioui and Jaime [8] presented a work to predict diabetes by classifying the
glucose level measurements in several diabetic patients, using J48, Naives bayes,
RandomTree, SMO, OneR, and ZeroR. They also compared the performance of
thesemachine learning algorithms based on accuracy and execution time. The results
showed that the performance of the J48 algorithm is better than that of the other
algorithms.

Kumar and Umatejaswi [9] presented analyses of several data mining approaches
such as classification and grouping to diagnose the type of diabetes and its severity
level for each patient. In [10], the authors aim to consolidate the prediction of the func-
tioning of depression in diabetic patients by applying machine learning techniques.
The authors used four algorithms for the prediction, SVM, Kmeans, Fcmean, and
PNN; the results obtained show that the SVM classifier is more stable than the others.
In [11], the authors compared the performance of severalmachine learning algorithms
for predicting the length of stay of short- and long-term hospitalized diabetic patients.
The results showed that the SVM method is the most reliable method for predicting
the length of stay of short-term hospitalized diabetic patients. In [12], the authors
studied and predicted diabetic patients using real data sets and proposed an approach
based on three major steps: cleaning, modeling, and storytelling. Next, they applied
the k-nearest neighbor algorithm to classify the patients, and finally, they evaluated
the performance of this approach using the receptor operating characteristic (ROC)
and the F1 score.
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In our article, we will talk about Artificial Intelligence and its application for the
monitoring and surveillance of diabetic patients. We will also mention the patient
monitoring applications based on Artificial Intelligence technology. Finally, we will
describe our application which aims to classify data for diabetic patients using
machine learning algorithms and then we will discuss the results of our practical
evaluations.

3 Artificial Intelligence and Diabetes

Artificial Intelligence was born in the 1950s with the mathematician Alan Turing
to implement different techniques that allow machines to imitate a form of real
intelligence. So, it is a process of imitating human intelligence that relies on
creating and applying algorithms executed in a computer environment to enable
these environments to think and act like human beings.

Therefore, Artificial Intelligence can be defined as “all the theories and techniques
implemented to create machines capable of simulating intelligence”, according to
Larousse. Computers or programs capable of performance are usually associated
with human intelligence and amplified by technology. According to this definition,
many people consider that Artificial Intelligence is a technology dedicated only
to computing. Still, on the contrary, AI is a field with broad roots ranging from
mathematics to statistics through computer science, philosophy, and psychology. AI
is found implemented in a large number of application areas.

According to mainstream search engines, the term “Artificial Intelligence” has
become a buzzword in recent years; its frequency of use has increased in recent
years. Figure 1 illustrates the rapid increase in the number of publications referring
to “Artificial Intelligence” on IEEE Xplore, regardless of disciplines and fields.

Diabetes is a disease that results from various disorders that include how the
body converts food into energy [13]. When diabetic patients do not respect their
medication, their ies cannot produce insulin the way they should. A large amount
of glucose persists in the body, a disorder commonly known as hyperglycemia. This
can cause serious or life-threatening health problems [14].

In eating, the sugar level in the blood increases, the carbohydrates are then trans-
formed mainly into glucose. The pancreas senses the rise in blood sugar. Insulin acts
like a key; it permits glucose to enter the body’s cells: in muscles, in fatty tissue,
and in the liver, where it can be processed and stored. Glucose then decreases in the
blood.

Type 1 diabetes (which affects around 6%of diabetics) is generally found in young
people with symptoms of intense thirst, abundant urine, and rapid weight loss. Type
1 diabetes is treated by injecting insulin into the body with a syringe or pen or insulin
pump.

Diabetes type 2, known as non-insulin-dependent (which affects 92% of people
with diabetes), usually develops in people over 40. Overweight, obesity and lack
of physical activity reveal the causes of type 2 diabetes in genetically predisposed
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Fig. 1 Number of publications referring to the “Artificial Intelligence” in IEEE Xplore

people. This type of diabetes can be treated initially by lifestyle and dieteticmeasures,
then quickly by oral and/or injectable anti-diabetic treatments. The other types of
diabetes concern the remaining 2% (diabetes secondary to certain diseases or the
taking of drugs).

4 Initiatives that Solve Diabetes Using Artificial
Intelligence Techniques

Artificial Intelligence is gradually being deployed in many formats in health and
brings many benefits to managing chronic diseases like diabetes; this technology is
being progressively deployed in diagnosis, prediction, monitoring and management
of the disease information. Several initiatives are utilizing Artificial Intelligence
techniques to manage the diabetic disease. Some of the examples are listed below:

Diabetic Patient Monitoring Using Machine Learning Algorithms: the authors
develop a wireless blood glucose monitoring system using 5G technology. The data
collected by the sensors connected to the patient’s body measures several health
parameters such as blood sugar, body temperature, and physical activities. Themoni-
toring system collects and analyzes patient data using multiple classification algo-
rithms, allowing patients with diabetes to get future predictions of their blood sugar.
In this paper, the classification algorithms used are Naïve Bayes, ZeroR, Random
Forest, J48, SMO, and Simple Logistic; they are applied to the dataset to test which
is the most powerful to determine the level of risk of the patient [15].
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FreeStyle is a sensor attached to the skin for 14 days thatmeasures the level of glucose
in the blood without calibration. A soft and sterile 5 mm microfilament is inserted
under the skin when this sensor is applied. The measurements are collected on the
device and are available in real-time. The data can be downloaded using the software.
The benefits for patients are numerous; they no longer need to prick their fingers and
expose their disease; the sensor only needs to be changed every two weeks. Thus, the
controls are easier and allow a better patient adaptation. However, the sensor remains
visible, which can cause discomfort for users.

The K’Watch measures blood sugar just in contact with the skin. Unlike many
existing devices, it uses an everyday object to measure blood sugar. It is equipped
with micro-needles (<0.5 mm) that collect and analyze the chemical composition
of the interstitial fluid located just under the skin’s surface. The use of the watch is
discreet and promotes better blood sugar control.

Diabetes Prediction: To predict the risk of developing diabetes in patients, several
studies have been performed with an assessment of existing models of diabetes risk
assessment using machine learning algorithms for prediction and classification. The
researchers also selected some of these algorithms and applied them to diabetes
data. Experimental results have proven the stability of risk assessment approaches
for diabetes. A study by Rghioui et al. [16] used various machine learning algo-
rithms for classifying diabetic patients using the WEKA tool; these algorithms
are compared based on their precision and accuracy. Their new system has been
monitored by machine learning algorithms (Naïve Bayes, OneR, J48, SMO, Simple
Logistic, Random Forest, and ZeroR). The simulation results have shown that the
SMO algorithm has an excellent classification, with the highest accuracy of 99.67%,
a sensitivity of 99.86% and an accuracy of 99.56%. In this sense, we believe that
different assessment models should be developed for different races and that AI
models focused on diabetic patients promise to improve the efficiency of diabetes
prediction.

Lifestyle Guidance for Diabetes Patients: Good diabetes treatment requires a better
understanding of patients’ food systems and how carbohydrates affect blood sugar.
To properly fix an insulin level, the total amount of carbohydrate ingested by the
patient should be measured. A food meter should be used to ensure better blood
sugar management. Several applications using graphical analysis technologies to
analyze food content are under development in recent years. Zeevi et al. [17] applied
a machine learning algorithm using artificial intelligence techniques to integrate
blood parameters, eating habits, and physical activities of diabetic patients. This
algorithm accurately predicts blood sugar responses during meals. The results of
this experiment indicated that personalized diets could successfully reduce the rise
in blood sugar. With the technical advancements in machine learning and machine
learning, it can be concluded that AI would play a crucial role in improving the
lifestyle of the diabetic patient and thus help in the management of diabetes.
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5 Use Case: Prediction of Glycemic Using Artificial
Intelligence Techniques

In this part, we classify the glucose level data by applying different mathemat-
ical classification algorithms. The algorithms used for this classification are Naive
Bayes (NB), J48, ZeroR, SMO (Sequential Minimal Optimization), Random tree,
and OneR. The main idea of the classification of diabetes in this study is to allow
early prediction and avoid complications of diabetes. This prediction of the disease
enables the treating of patients before the disease worsens and fails and their health
condition becomes critical.

All the experiments were carried out using functions included in the Weka
(Waikato Environment for Knowledge Analysis) software; it is an open-source tool
that does preprocess, classification, regression, clustering, and data association rules.
The mentioned tool provides many classifiers; it consists of two principles methods,
the machine-learning standard and data mining algorithms. These methods are based
on the JAVA environment. WEKA can also be used to cluster and associate the data.
In addition, this tool can process the “. arff” files in its explorer to perform the
classification [18].

We used the database that included 40 diabetic patient glucose levels, 30 men and
10 women aged from 25 to 60 years for a total of 30 days, during 30 days. The format
of this database contains five columns designated by Date, Day, Glucose Level, and
Request. Table 1 describes the attributes of the database.

Evaluating classification algorithms is one of the key points in any data mining
process. In this part,wewill study the analysis results and the classificationof the data.
After applying the preprocessing and preparation methods, we analyze the data visu-
ally and determine the distribution of values about effectiveness and efficiency. This
study uses a confusion matrix and then calculates different performance measures,
focusing on the most important criteria [19, 20]. The prediction process consists of
four different outcomes: true positive (TP), true negative (TN), false positive (FP),
and false-negative (FN). These four results constitute the confusion matrix. Column
A shows results tested positive, and Column B shows results tested negative. The
first row shows the predictive results for the positive class, and the second row shows
the predictive results for the negative class. The confusion matrix is shown in Fig. 2.

We can construct several equations using the confusion matrix to determine the
accuracy, precision, sensitivity, and F-measure values. Table 2 gives the TP, FP, TN,

Table 1 Attributes and data
type

N° Attributes Data type

1 Sex Boolean

2 Age Numeric

3 Day Numeric

4 Glucose level Numeric

5 BGL Boolean
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Fig. 2 Confusion matrix

Table 2 TP, FP, FN, and TN Values obtained for each algorithm

Algorithm TP FP FN TN

Random forest 1757 12 7 774

Random tree 1755 18 9 768

Simple linear regression 1753 345 11 441

ZeroR 1756 16 8 770

and FN values obtained for the above algorithms.

Accuracy = T P + T N

T P + T N + FP + FN
(1)

Precision = T P

T P + FP
(2)

Speci f ici t y = T N

T N + FP
(3)

Sensi tivi t y = T P

T P + FN
(4)

FMeasure = 2 ∗ Precision ∗ Sensi tivi t y

Precision + Sensi tivi t y
(5)

According to Eq. (1), we can define the accuracy of the classification that is the
percentage of correctly classified instances for all instances. Equation (2) presents
the Precision: the ratio of the true value of a positive rate to the total of the true value
of a positive rate and the false value of a positive rate. Specificity is defined by Eq. (3).
The sensitivity given by Eq. (4) is defined by the ratio of the true value of a positive
rate to the total of the true value of a positive rate and the false value of a negative
rate. F-Measure is given by Eq. (5). Accuracy, Precision, Sensitivity, Specificity, and
F_Measure are the five metrics used to evaluate a method based on the parameters
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of the confusion matrix. The results of various measurements are given in Table 3
(Figs. 3, 4 and 5).

Mean Absolute Error (MAE): is the amount used to measure how close the forecast
or prediction is to the eventual outcome. The mean absolute error is an average of
the absolute errors, where the prediction and the true value are. Root Mean Square
Error (RMSE) measures the differences between values predicted by a model and
the values observed. The Relative Absolute Error (RAE) is the Mean absolute error
divided by the classifier’s error. The Root Relative Squared Error (RRSE) takes the
total squared error and normalizes it by dividing by the total squared error of the
simple predictor.

Table 3 Classified instances

Algorithms Correctly classified
instances (%)

Incorrectly classified
instances (%)

Time to build a model (s)

Random forest 99.05 0.95 1,1

Random tree 98.94 1.05 0,01

Simple linear
regression

86.03 13.97 1,37

ZeroR 99.25 0.75 0,05
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Figure 6 shows the error rate results. Here four different parameters are used to
represent the error rate of the four classification algorithms (Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE), and
Root Relative Squared Error (RRSE). The figure shows that Random Forest and
ZeroR algorithms have the lowest error rate.

Table 4 shows that the precision of the random forest (99.32%) is higher than
the precision of the random tree, simple linear regression, and ZeroR. It also shows
that the random forest has the highest value of correctly classified instances and the
lowest of misclassified instances compared to other classifiers (see Fig. 3).

As presented in Table 5, the lowest warning error rate (0.075). It can also be
noted that the Random Forest has the best compatibility in terms of the reliability of
collected data and their validity, as shown in Fig. 6.

After creating the predicted model, the evaluation of the efficiency of the algo-
rithms studied can now be analyzed. Table 4 shows that the Random Forest gives
the highest value of TP. The FP rate is lower when using Random Forest classifiers.

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 

ZeroR Simple Linear Regression RandomTree RandomForest

Va
lu

es

Algorithms

Mean Absolute Error (MAE) Root Mean Square Error (RMSE)

Rela ve Absolute Error (RAE) % Root Rela ve Squared Error (RRSE) %
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Table 4 Values of specificity, sensitivity, precision, F-Measure, and accuracy for each algorithms

Algorithms Specificity
(%)

Sensitivity
(%)

Precision (%) F-Measure
(%)

Accuracy (%)

Random forest 98.47 99.60 99.32 99.46 99.25

Random tree 97.71 99.49 98.98 99.24 98.94

Simple linear
Regression

56.11 99.38 83.56 90.78 86.04

ZeroR 97.96 99.55 99.10 99.32 99.06
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Table 5 Comparison of MAE, RMSE, RAE, and RRSE errors

Algorithms Mean absolute
error (MAE)

Root Mean
square error
(RMSE)

Relative absolute
error (RAE) %

Root relative
squared error
(RRSE) %

Random forest 0.0075 0.0863 1.7469 18.6933

Random tree 0.0112 0.0121 2.6341 22.1198

Simple linear
regression

0.2749 0.3563 64.4506 77.1839

ZeroR 0.0108 0.0856 2.5389 18.5296

These results explain why Random Forest outperforms other classifiers. Our experi-
mental results provide the highest accuracy for classifying the diabetes dataset given
by Random Forest (99.25%). Random Forest presents a good classifier in terms of
effectiveness and efficiency, including Sensitivity, Precision, and Specificity. The
Random Forest model gives good results as compared with other methods. Other
models have generally shown low accuracy and low capacity and allow an intense
precision and capacity. Therefore, for a more detailed evaluation of machine learning
models, the Random Forest model is used for the comparative analysis.

6 Conclusion

The application of Artificial Intelligence to help patients manage their diabetes is
at the beginning of its evolution. While significant advancements are being made in
AI, these advancements focus on narrow applications of the technology to specific
health issues. The need for an examination for the diagnosis of diabetes is widely
accepted. The implementation of machine learning can help improve the quality
of life of diabetic patients and provide good precision for clinical decisions. Much
research has recently resulted in developing the first diabetes prediction algorithms.
The most significant advances in applying AI techniques in health and especially in
diabetic patients have led to a change in diabetes management systems.Many studies
have already been published on the application of AI to diabetes in a wide range of
management areas. Research in this area should continue and seek to uncover the
opportunities and benefits of applying AI methodologies in diabetes management
that differentiate these strategies from other conventional approaches.
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Artificial Intelligence and Machine
Learning for Diabetes Decision Support

Josep Vehi, Omer Mujahid, and Ivan Contreras

Abstract Artificially intelligent decision support systems are proving instrumental
in the quest of enabling diabetes patients to lead a normal life. These systems provide
suggestions to the patients to enhance their judgments regarding their glycemic
profile. A variant of such systems, the clinical decision support systems, helps clini-
cians and healthcare professionals make clinical decisions. For a diabetes patient, it
is imperative to keep their blood glucose level inside a lower bound of 70 mg/dL and
an upper bound of 140 mg/dL. This range is known as the normoglycemic range.
Such systems aim to utilize artificial intelligence and machine learning techniques
to estimate relationships between patient-related data and the glycemic outcomes
and then propose preventive/protective measures to keep the glycemic profile of
the patient in the specified range. Apart from tracking and correcting the glycemic
profile of a diabetes patient, the decision support systems are also responsible for
detecting/predicting adverse glycemic events like hypoglycemia and suggest proac-
tive measures to be taken by the patient so that adversity is avoided. The recom-
mendations given by such systems to patients with diabetes may consist of informa-
tion about meal intake in the form of carbohydrates, insulin delivery, medicine/drug
consumption and other lifestyle-related advice such as physical activity and sleep
routine, etc. On the other hand, the clinical decision support systems aid healthcare
professionals in diagnosing diabetes and its comorbidities. Such systems may also
assist the doctors by issuing prognosis of the illness as well as help them in drug
prescriptions. This chapter discusses the latest trends in artificial intelligence and
machine learning-based decision support in diabetes healthcare. Moreover, it also
weighs up the challenges designers face in this domain. This chapter could be a
thorough guide to the researchers planning to work in diabetes decision support.
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1 Introduction

Patients with type 1 diabetes have to make about 180 diabetes-related decisions per
day [1]. For a person that aspires to a normal life, diabetes could prove to be a constant
struggle. From decisions regarding physical activities to choices concerning meals,
a person with diabetes has to consider it all to avoid adversity. Accurate insulin dose
measurements, carbohydrate intake calculations, and physical activity monitoring
based on real-time blood glucose values are all parts of the decision-making process
that a diabetes patient goes through every day. A large number of decisions and the
greater complexity of some of these decisions make the lives of people with diabetes
very difficult. For this reason, a tool that could assist this decision-making process
is imperative.

Moreover, diabetes patients are at a higher risk of other comorbidities [2]. Diabetic
foot, diabetes retinopathy, ketoacidosis, and neuropathy are complications arising
fromdiabetes. A tool that could provide an early diagnosis of such complicationsmay
prove life-changing for the patients. In technical terms, one such tool that performs all
the tasks mentioned above and assists diabetes patients in improving their decision-
making capability is known as a decision support system (DSS). A DSS aids patients
of a specific disease in decision making and provides other services such as early
detection of complications and predictions of adverse events. A diabetes DSS has to
assist patients in managing their medications such as insulin adjustments recommen-
dations, warning about adverse glycemic events such as hypoglycemia and hyper-
glycemia, carbohydrates counting, behavioral and lifestyle adjustments, and data
visualization/interpretation [3]. Moreover, a good diabetes DSS must educate the
patients about their disease and provide personalized solutions.

Artificial intelligence (AI) and machine learning (ML) are set to restructure
diabetes healthcare in several ways [4]. Data-driven approaches are proving to be
more efficientwith increased available data and computational power.MLandNeural
Networks (NNs) based prediction and classification techniques are now accurate
enough to integrate into a DSS [5]. Improvement in AI/ML techniques and advances
in glucose sensor technology have made the realization of efficient DSS possible
[6, 7]. Glucose sensor technology has made collecting a large amount of blood
glucose data possible [8, 9]. A DSS based on data-driven approaches improves the
knowledge-based DSS of the past that only worked on rule-based reasoning or case-
based reasoning techniques in terms of output accuracy and design flexibility [10].
A diabetes DSS could be classified into a patient DSS and a clinical DSS (CDSS).
As the name suggests, a patient DSS assists diabetes patients while a clinical DSS
assists healthcare professionals. A patient DSS could be embedded inside a smart
device that a diabetic patient can carry at all times. The most suitable device to host
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a patient DSS is a smartphone. Since most of the patients carry a smartphone device
virtually, the DSS can monitor the patient’s health efficiently.

On the other hand, a CDSS is usually deployed in the doctor’s workplace PC.
Figure 1 shows a general overview of the chapter. The left section represents the
needs/requirements of a patient DSS, while the right section portrays what a good
CDSS be constituted of. The center section represents the ML/AI techniques used to
design both sets of DSS. This chapter discusses the cutting-edge technologies and
trends in the field of AI/ML-based DSS for diabetes. The chapter unfolds by first
discussing the needs/requirements of diabetes patients and what they expect from a

Fig. 1 A high-level graphical representation of AI/ML-based DSS
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DSS of this type. Next, a brief description of a diabetes clinical DSS is given and
how it can make the lives of diabetes healthcare workers easy. After that, AI and
ML-based approaches for a diabetes DSS are discussed. The chapter then provides
an account of the challenges faced by the designers of such DSS’ before concluding
in the follow-up section.

2 Needs of the Patients

A diabetes DSS has to fulfill the patients’ needs to be classified as a capable aiding
system. Along with the ease of use, a diabetes DSS has to be responsive, interactive,
and trustworthy.Other than that, aDSS should fulfill the following needs of a diabetes
patient.

2.1 Prevention and Prognosis

A diabetes DSS must be able to perform a prognosis. Prognosis is predicting the
course of an illness after it has happened. It is understood that diabetes can result
in many other complications in the body. Diabetes patients must keep track of their
disease and the overall health of their bodies. A DSS aims to keep the glycemic
profile of a diabetes patient in the normal range. This is done by regulating the BG
levels with the help of insulin delivery, carbohydrates intake, and physical activity.
The more a diabetic patient stays outside of the normoglycemic range, the greater
are their chances of developing diabetic comorbidities. A diabetes DSS can help
patients keep track of their glycemic profile and provide insight into the severity
of diabetes they suffer from, the chances of creating other complications, and the
actions required to avoid such complications [11].

2.2 Medication Management

Medication management is one of the most important traits for a DSS. In a disease
like diabetes, where the course of medication is not fixed but varies according to the
patient’s glycemic profile and physiological characteristics, having a DSS that can
help the patient manage their medications is essential. Diabetes patients are often
dependent on medicines like insulin. The delivery of insulin to the bloodstream is
timely and in the correct measured quantity. Moreover, several types of insulin are
injected based on time of the day, the quantity of carbohydrates intake and the inten-
sity of physical activity, etc. For a diabetes patient, it is a cumbersome task to calculate
the right amount of the right type of insulin throughout the day [12]. However, it
is important to mention that not all diabetes patients are insulin-dependent. Most
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type2 diabetes or prediabetes patients use drugs other than insulin, such as Alpha-
glucosidase inhibitors andBiguanides, tomanage their BG.ADSSmay prove vital in
such a scenario where the medication management is done by the automated system
and suggested to the patient.

2.3 Warning About Future Adversities

Diabetes patients live in constant fear of adverse glycemic events. Hypoglycemia and
hyperglycemia are decrease and increase of BG above critical levels, respectively.
Both of these conditions come with their complications and harms. Being the more
threatening of the two,Hypoglycemia is also themore feared among diabetes patients
[13]. A DSS must predict and inform the patient beforehand about the occurrence
of any such event. Such predictions result in peace of mind for diabetes patients and
prevent the patients from going into the jaws of calamity. For instance, hypoglycemia
can cause loss of cognitive ability, hearing, and in extreme cases, death. Normally
when a patient recognizes a hypoglycemic episode, it is too late. A patient needs
to anticipate the occurrence of hypoglycemia in advance to avoid its event [14, 15].
A DSS with the mechanism of hypoglycemia prediction may prove crucial for the
patients.

2.4 Risk Stratification

Risk stratification means measuring or quantifying the risk of occurrence of an
adverse event. Furthermore, it might also mean assessing the prospect of how fatal
an adverse event is after it has happened [16]. A DSS with the functionality for risk
stratification may prove useful for patients by informing them about the danger of an
event with the predicted percentage values. A patient’s DSS may be used to predict
comorbidities or any sort of organ failure that can occur due to diabetes. An AI/ML-
based DSS takes its cues from the data it is trained on, and learning from patterns in
the data can output the risk associated with a comorbidity or organ failure. Risk strat-
ification makes the accurate delivery of medication doses possible and contributes to
the mental peace of diabetes patients [17]. When patients can observe the quantified
risk related to comorbidities caused by diabetes on the user interface of their DSS,
they may manage their disease better and escape the stress of uncertainty.

2.5 Personalization

Personalization in medicine means customizing treatments for patients according to
their individual needs [18]. Like every individual patient has unique physiological
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dynamics, there is a need for special treatments to cure any illness. In diabetes,
each patient may be treated individually by assessing specific information such as
the insulin tolerance, glycemic variability, age of patient and body-mass index, etc.
Personalization helps minimize the risk of diabetic comorbidities and increases the
efficiency of the treatment [19]. It also saves a lot of money wasted otherwise in
treating a patient with the conventional hit and trial method. A personalized DSS
may help patients overcome diabetes more effectively and increase patient trust in
such systems.

2.6 Diabetes Education

The most important thing for a diabetes patient is to understand their disease and,
even more so, to grasp the idea of their personalized variant of the disease [20].
People with diabetes must first understand the basics of diabetes and how it may be
managed. Secondly, they must learn how to use diabetes devices like glucometers,
CGMs, insulin pumps etc. They must also develop problem-solving strategies while
facing adversity. A DSS can educate diabetes patients and help them manage their
disease.

The lack of diabetes literacy and numeracy is linked with various studies’ below
par diabetes outcomes [21, 22]. Lower diabetes literacy and numeracy results in poor
glycemic control, less time in range and weaker knowledge of the disease itself. The
lack of a diabetes patient’s literacy or numeracy is not always evidently obvious. For
this particular reason, a DSS that could educate diabetes patients becomes vital.

2.7 Behavioral and Life Style Adjustments

A diabetes DSS can induce behavioral changes and lifestyle adjustments in diabetes
patients. Diabetes is one of those diseases where lifestyle adjustments make a huge
difference to a patient’s health [23]. A weight loss of 5–6% of the total body weight
and 150 min of moderate-intensity physical activity per week is recommended for
most diabetes patients [24]. A DSS may guide the patients about their eating habits,
physical activities, sleep patterns, and other things like alcohol consumption and
stress management, etc.

3 Clinical DSS: Demands of Healthcare Professionals

A diabetes CDSS is a type of DSS meant to assist healthcare workers, doctors, and
clinicians in the quest to treat diabetes patients. Such a DSS improves the making
ability of professionals while treating a diabetes patient by providing important
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suggestions and showing a broader picture to the clinicians by depicting multiple
outcomes to a scenario. Like the diabetes DSS meant for the patients, the CDSS can
also be a knowledge-based system or based on data-driven approaches. A CDSS can
cover various areas of the healthcare system and assist healthcare workers inmultiple
forms [25]. Some of the tasks that a diabetes CDSS can perform are presented below.

3.1 Patient Safety

Improved patient safety is one of the prime goals of any CDSS. In diabetes, medica-
tion errors are common and can be reduced with the help of a CDSS. According to a
study, approximately 65% of inpatients are exposed to one or more types of harmful
drug combinations [26]. Along with assistance in medication management, CDSS
also helps the healthcare workers in other areas. A CDSS installed in a hospital ICU
ward significantly reduced the hypoglycemia cases by alerting the nurses about the
occurrence of a hypoglycemia episode [27].

3.2 Diagnostic Support

Diabetes CDSS can provide diagnostic support to clinicians while treating diabetes
patients. In diabetes healthcare, such CDSS may assist the healthcare professional
in identifying the development and diagnosis of diabetes and the diagnosis of other
diabetic comorbidities. Diagnostic errors are real in primary care and are termed a
high-priority problem by the world health organization (WHO) [28]. AI/ML-based
diagnostic tools may pave the way towards accurate diagnosis and ease the burden
of the existing healthcare system.

3.3 Implementing Clinical Guidelines

Studies show that clinical guidelines have adhered to more with the help of CDSS
[29]. It has been seen that because of low clinician adherence, new clinical guidelines
have been very hard to implement. The experts do not automatically adopt new
clinical policies, opposing the general belief. CDSS can also notify clinicians about
the patients that haven’t complied with a specific management plan and could also
aid the professionals to reach out to such patients.
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4 What Can AI and ML Offer?

AI is a vague term and can be defined as a collection of algorithms that enable
a certain computer processor to make decisions that imitate the human decision-
making process [30]. Though AI is incapable of replicating the intuitive ability of
the human mind, the aim of comparison with the human mind is only to specify the
goal of achieving optimal solutions just like a normal human mind would strive for.
In the following section, wewill talk about howML/AI-based techniques help design
a DSS that could fulfill all the needs of diabetes patients and healthcare workers.

4.1 Detection/Description

Detection in ML terms refers to identifying an event in a time series data. It may also
be referred to as a description. ML detection could identify unusual glycemic events
in BG time-series data [31]. Identifying these events could prove to be helpful in a
DSS when the aim is prevention or prognosis of an adverse event. The description
of an adverse event using ML could be performed by using labeled time series data.
This data could contain a BG time series, an insulin time series, and a time series that
specifiesmeal intakes in the formof carbohydrates. By learning from this past labeled
data, the ML algorithm could then identify patterns in the data that correspond to the
occurrence of unique events and, on the occurrence of any such marks in the future,
notify the patient about their circumstance. Detection could be performed by using
several ML/AI techniques. It could be taken as both regression or a classification
problem. As a regression problem, the ML algorithm tries to map the input–output
relations with the help of a mathematical function. After obtaining the function, it
computes unknown outputs for known inputs. So, for instance, if the known result is
the past BG value, insulin value, and carbohydrate value, the unknown output will
be the current BG value. The calculated BG value could then be used to inform the
patient about any abnormality. The ML algorithm tries to draw a line between two
or more labeled classes in a classification scenario. A new sample falling in any of
these classes is a part of that class group. Adverse events, hence, could be mapped
with the data as classes of data.

4.2 Prediction

Prediction means estimating future values in a time series data. For prediction, it is
necessary that the estimated value is somewhere in the future and not in the present.
This is the prime difference that distinguishes prediction from detection. Though
prediction could be performed on any data, it is most commonly associated with
time-series data. This is because timestamps related to time-series data act as an
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extra feature in determining the output and result in more accurate predictions. ML-
based prediction can prove vital in a DSS that warns the patient about an adverse
glycemic event in the future. In case of hypoglycemia, a warning before the future
occurrence of a hypoglycemic event may prove to be lifesaving [32]. Prediction too
may both be treated as a regression or classification problem.

4.3 Recommendation

AI-based recommender systems have found their application in many areas of life.
In diabetes healthcare, AI-based diabetes recommender systems may recommend
medication doses, lifestyle choices, and meal portions to the patients. Recommender
systems use various AI-based techniques, including ML and deep learning (DL),
to perform recommendations. It is important to understand that the recommender
system could be standalone or aid the other systems mentioned above in a DSS.
In the case of a standalone recommender system, the DSS will only give away
recommendations to the patients. It will not appraise the patient about the possibility
of an adverse event in the future or the level of threat they face from a particular
adverse event. A scenario where the recommender system collaborates with other
systems gives recommendations after a prediction or detection is performed. Such
DSS’ are not mere recommendation DSS but can also act as a warning or educatory
systems.

4.4 Clustering

The division of data points into groups of similar characteristics is called clustering.
Clustering, though a famous machine learning technique, can prove vital in person-
alizing a DSS for a particular patient [33]. Personalization means tailoring a system
to fulfill the demands of personalized treatment for individual patients in the best
possible way [34]. A customized system might not work with the same efficiency
for a person it is not designed for. This logic might become almost impossible to
have a customized DSS for each patient separately. We, however, can use clustering
to group patients with the same characteristics together and then design a DSS that
could fulfill the needs of that particular group of people.

5 Challenges for the Designers

AI-based methodologies come with their own set of limitations. Most AI-based tech-
niques are data-driven and can enhance performance only when a sufficient amount
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of good quality data is available. Good quality data in a data-driven setup essen-
tially means data that is consistent, free of noise, and available in large quantities.
The problem arises when there is a lack of such data. This directly affects the perfor-
mance of a data-driven algorithm,whether anMLmodel or a neural network. There is
always a scarcity of good-quality clinical data in healthcare applications—the reason
for this is the natural and technical constraints involved in clinical data collection.

ML designers also face many non-technical obstacles while deploying models
for clinical DSS. Coming up with safety protocols that can ensure patients’ safety
is complicated. Legal issues involving data privacy and moral dilemmas are always
challenging for AI/ML designers. In a scenario where good quality data is already
scarce for AI/ML designers to work with, privacy-related laws make it even harder
for them to experiment freely. Another issue that poses a challenge for the designers
is gaining user’s trust. Since there is a lack of transparency about AI/ML models;
the users often find it hard to trust the results of an AI/ML-based DSS. It is known
that AI-based models are virtual black boxes with certain inputs and outputs. What
happens inside these black boxes is often hidden from a user’s eyes. In a DSS that
uses neural networks, the trust issue is even greater since it is almost impossible
to comprehend the computational structure of a neural network. This leads to a
lack of trust among the patients and causes significant problems for the designers.
Furthermore, the inability of users to understand extremely specific terminologies of
AI/ML also creates problems for the designers. The designers then look for languages
that are more common to a layman to be used in the DSS.

6 Conclusion

Decision support in diabetes holds great importance because of the huge number of
decisions a diabetes patient has to make every day. AI/ML-based diabetes DSS can
transform the entire structure of the diabetes healthcare system. Such DSS’ are user-
friendly, flexible, and can be customized according to patients’ needs. Healthcare
professionals can also benefit from these technologies by using CDSS. CDSS are
variants of DSS designed to assist clinicians and healthcare workers. Different AI
techniques such as description, prediction, clustering, and recommendation integrate
various methodologies inside such DSS. These DSS could be deployed using smart-
phone devices and integrated with CGM sensors for continuous decision support.
In the case of CDSS, patient’s electronic health records and secure messages could
be used to analyze patterns in the patient’s data and assist healthcare workers by
providing them decision support. Though there are challenges for the designers in
the shape of unavailability of high-quality data, privacy laws and user trust issues,
the future of AI/ML-based DSS is bright. Designers should strive for faster and more
accurate models, better and friendlier user interfaces, and more flexible DSS to gain
patients’ trust and help ease the burden of the current healthcare system.
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Commercial Non-invasive Glucose
Sensor Devices for Monitoring Diabetes

Manickam Tamilselvi, Pandia Raj, Ravikumar Ramlu Vidule,
and Srinivas Ankanagari

Abstract Diabetes disease is one of the metabolic disorders having a great conse-
quence on natural life quality. Over 500 million people are affected worldwide.
To better manage diabetes in patients, more glucose measurements within a short
period are needed. At present, the existing glucose monitoring devices available in
the market are invasive and cannot be used for monitoring glucose levels continu-
ously. Noninvasive Glucose Monitoring (NGM) can be used continuously to check
glucose levels in the body without blood draws, skin puncturing, or causing any
trauma or pain. The devices available are wristwatch-like and can be easily worn.
It is important to develop noninvasive and easy usage as it is economical, compact,
painless, and easy for frequent glucose monitoring. The glucose biosensors are either
electrochemical or optical-based. The various bands available in the electromag-
netic spectrum are used in glucose analysis and detection. Raman spectroscopy
technologies are gaining attraction to measure glucose in interstitial fluid (ISF),
allowing accuracy between 5.6 and 20.8%. In addition, optical-based techniques
using infrared light beams allow sensing the presence of glucose in the skin. The
glucose detection in human sweat is also becoming relevant to check its levels. The
noninvasive glucose sensor devices have enormous demand in the global market.
Several clinical trials of noninvasive glucose monitors are enlarged in the twenty-
first century. To develop NGM sensors, an exhaustive, detailed understanding of
NGM systems components is required, which includes medical applied technolo-
gies, device surface, material chemistry, electrochemistry sensing, and the systems
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interface. This chapter focuses on leading technologies and devices available to check
noninvasive glucosemonitoring in diabetic patients and assess accuracy in themarket
regulatory framework.

Keywords Commercial · Noninvasive · Glucose sensor · Diabetes · Easy use

1 Introduction

Diabetes is a well-known metabolic disorder, and a global challenge disease with
over 500 million people affected, as per WHO estimation [1]. Diabetes affects the
quality of life of the patient in case if no proper management of the disease is taken,
leading to dangerous problems related to health [2]. There are three different diabetes
known, Type I, Type II, and Type III. Type I comes from childhood, hence also known
as juvenile diabetes [3]. In children or young people, their immune system destroys
insulin-producing beta cells in the pancreas. It affects about 5% of people, including
both males and females. Type II is the most common lifelong disease where the
insulin is secreted but cannot be used properly, known as insulin resistance. It affects
middle-aged or older people and is also called adult-onset diabetes. This diabetes is
associatedwith shorter life expectancy, and 90%of cases areType II diabetes. Type III
is gestational diabetes. In this condition blood, glucose levels become high during
pregnancy. It affects women who are pregnant and have no history of diagnosed
diabetes. In the U.S, every year, 2–10% of women are affected with Type III diabetes
[4].

Diabetes has become one of the twenty-first century health challenges [5].
The adults with diabetes over two decades have tripled, with a rise every year
of approximately 8 million new cases of diabetes diagnosed. It is becoming an
important demand for monitoring blood glucose, diabetes if untreated, can lead to
kidney disease, amputation of the lower limb, blindness and heart stroke, increasing
the chances of death. Since these complication conditions can arise in diabetic
patients over time, there is a growing demand for effective management in people
with diabetes to monitor blood glucose and avoid complications. This necessi-
tated designing reliable and robust periodical glucose monitoring devices/sensors
to manage diabetes efficiently [6, 7]. In recent years the market for these devices has
grown rapidly [8, 9].

A variety of glucose sensors are developed for monitoring blood glucose to
manage diabetes. A glucose sensor is a “compact analytical device or unit incor-
porating a biological or biologically derived sensitive recognition element integrated
or associated with a physio-chemical transducer” [10]. The biological recognition
element identifies the target molecule and transduce, converting the recognition
event into a signal that can be measured, followed by processing the signal into
a form that can be read [11–13]. The receptors, antibodies, enzymes, nucleic acids,
lectins, and microorganisms are the major recognition elements used in the design
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of sensors [14, 15]. The transducing signal is optical, electrochemical, piezoelec-
tric, thermometric, or magnetic [16]. The common electrochemical sensors include
amperometric, conductometric or potentiometric types [17–19]. Clark and Lyons, in
1962, first proposed a biosensor concept to measure glucose [11]. The first commer-
cially developed biosensor for glucose measurement was successfully introduced by
YellowSprings InstrumentCompany (Model 23AYSI analyzer). Thefirst-generation
glucose sensors used oxygen substrate and detected hydrogen peroxide production.
The disadvantage of this generation glucose sensor is the requirement of high poten-
tial to operate and get the high selectivity to measure hydrogen peroxide. This limita-
tion made the development of second-generation glucose sensors to replace oxygen
with redoxmediators [20]. The self-monitoring home-based glucosemonitor is a pen-
sized device launched in 1987 by Medisense Inc as ExacTech. The third-generation
glucose biosensors were developed without mediators. There are no reagents used
and capable for direct transfer from enzyme to the electrode. This led to a needle-type
device that can be implanted to monitor blood glucose continuously.

Currently, most of the available devices in themarket are mostly invasive. There is
a need to develop noninvasive and easy usage, which should be economical, compact,
and painless for frequent blood testing, helping to regulate blood glucose levels. To
maintain normal blood glucose levels, sensors and devices have been developed
during the last half-century in which continuous monitoring of glucose and nonin-
vasive systems have significantly improved. The in vivo continuous glucose moni-
toring (CGM) blood glucose was demonstrated in 1982 [21]. CGMgives data in real-
time to have control of blood glucose levels. Currently, two CGM systems include
subcutaneous glucose monitoring and blood glucose monitoring. Due to protein
contamination of electrodes and thromboembolism, CGM cannot directly measure
blood glucose. Instead, needle type implanted electrode in interstitial fluid measures
glucose reflecting blood glucose level [22, 23]. The needle-type glucose biosensor
was approved by US Food and Drug Administration (US FDA) and marketed by
Minimed, Sylamr, CA USA in 1982 [24]. However, device accuracy is lower than
the traditional glucose biosensors, and its clinical usefulnesswas not established [25].
Noninvasive glucose monitoring (NGM) is achieved with optical approaches. The
optical approach uses light physical properties, which includes Raman spectroscopy
[26], polarimetry [27], photoacoustics [28], infrared absorption spectroscopy [29]
and optical coherence tomography [30] in interstitial fluid (ISF) or eye. Here,
we present the platforms used in the developments made in noninvasive glucose
monitoring and discuss in the context of regulatory compliance.
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2 Noninvasive Glucose Monitoring Care and Device
Standards

2.1 Continuous Glucose Monitoring

Diabetes having high blood glucose levels leads to a life-threatening condition.
Constant monitoring of blood glucose levels throughout the day helps monitor long
variation levels of glucose in the body. This will lead to deciding on balanced food,
medication, and physical activity [31]. More frequent blood glucose measurements
can better manage diabetes and illnesses related to this disease. Two methods of
measuring glucose in blood levels are available. One approach is pricking a finger
with the help of a lancet. This can be painful and uncomfortable for many, making
testing less frequent, and consequently, blood sugar levels control is poorer. The
other is noninvasive glucose monitoring which is user-friendly and more useful. In
general, all patients intend to have a noninvasive measurement that can help them
monitor glucose levels continuously with ease. In the European countries, patients
are keen in pain-free blood glucose level monitoring methods so that it helps them
to manage with ease [32].

At present, people can easily avail noninvasive commercial glucose meters due to
highly developed technologies. The NGM sensors help check blood glucose levels
with ease and get measurements throughout the day. For instance, the metallic trace
sensing element is taped on the patient skin, and the tag uses no power to monitor
glucose levels [33].Many improvements in theNGMtechniques have beendeveloped
[34]. On the other hand, the current noninvasive patented techniques work with a
beam of invisible infrared light passing onto the skin to count the glucose molecules.
The process is painless, much faster, and cost-effective.

Moreover, one can check several times a day measurements variations in the
glucose levels in the blood during the day and at night. The noninvasive device is
wristwatch-like, measuring glucose continuously and helps to take treatment and
manage the disease [35]. The device can communicate with the mobile phone; there-
fore, it checks information and takes instantaneous action to regulate blood glucose
levels. For several diabetic patients who are critical, such as Type 1 diabetes, sudden
changes in glucose levels, constant and accurate monitoring is essential to save
patients’ lives. In the case of other people, there will not be significant glucose level
changes and need not be monitored [6].

2.2 Noninvasive Definition

The term noninvasive refers to devices and procedures with no skin disruption,
involves no contact with skin, makes any break in mucosa or internal body cavity.
Noninvasive procedure draws blood without skin puncturing and instigating any
traumaor pain to check the body levels of glucose.Noninvasivemonitoring of glucose
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helps to prevent acute and chronic complications. The procedures for noninvasive do
not pierce the skin; they only touch the surface of the body. The noninvasive method
improves diabetic patients’ life quality by managing hyper and hypoglycemia, and
physiological complications can be avoided [36].

2.3 Medical Device Definition

According to US-FDA, “Medical device is an instrument, apparatus, implement,
machine, contrivance, implant, in vitro reagent, or other similar or related article,
including a part or accessory which is: recognized in the official National Formulary,
or the United States Pharmacopoeia or any supplement to them intended for use in
the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or
prevention of disease, in man or other animals, or intended to affect the structure
or any function of the body of man or other animals, and which does not achieve
its primary intended purposes through chemical action within or on the body of
man or other animals and which is not dependent upon being metabolized for the
achievement of any of its primary intended purposes” [37].

2.4 Accuracy Standards

Invasive techniques cause discomfort, and the diagnosis is slow to help the diabetic
patient. On the other side, the high level of accuracy and sensitivitymakes the invasive
methods continue. Moreover, it is also used as the reference method for calibration.
On the contrary, the noninvasive techniques are less accurate but provide continuous
and quick results for managing glucose levels by the patient. The major considera-
tions involved in noninvasive glucose monitoring are accurateness, usefulness and
applicability.

Moreover, the device’s sensitivity, specificity and less calibration time are needed.
The accuracy and usefulness of devices are assessed by mean-absolute-relative-
difference (MARD) [38], and the requirements and specifications are given by
ISO15197 [39]. The standards and the metrics are important in researching and
developing a noninvasive sensor to achieve and get the accuracy levels.

3 Types of Noninvasive Glucose Biosensors

Modern biosensors are miniaturized to the micro and nano levels (microsensors
and nanosensors) to measure glucose in liquid samples to get real-time continuous
monitoring. These glucose biosensors are either electrochemical or optical-based.
The glucose biosensor based on electrochemical sensing uses the electrical signal
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produced by the glucose oxidase (GOx) oxidation to measure concentration. The
enzyme GOx converts glucose to gluconic acid and hydrogen peroxide (H2O2).
The H2O2 produces protons on deprotonation in dissolved oxygen and gives away
two electrons in the potential oxidative conditions. This method is widely used
for glucose monitoring [40–42]. Electrochemical sensing is limited in use since
in sensing endogenous electroactive species interfere, causing false-positive noise.

The optical-based glucose biosensors use fluorescence sensing, which can be
conducted with sensing elements such as enzymes, bacteria or plant lectins. The
fluorescent probes of dye or quantum dots can diffuse into cells with biofunctional
properties to monitor using UV excitation external source. The photoillumenscence
(PL) response in the dye or quantum dot UV excitation can be instigated through
Forster resonance energy transfer (FRET) to get programmable and distinct PL.
The PL spatial measurements can then help resolve the target analyte and capture
at distinct time points. This type of glucose biosensors based on fluorescence is
important for noninvasive and continuous glucose monitoring [43, 44].

The limitations involved in the use of Enzymatic glucose and H2O2 sensors
(EGHS) like denaturation of the enzyme, protease digestion, difficulties with immo-
bilization paved the way to use nanomaterial assisted electrochemical processes
to develop Non-enzymatic glucose and H2O2 (NEGH) sensors [45]. In developing
NEGH, nanomaterials have the advantages of ideal electrode materials because of
increased surfaces areas, lower charge transfer resistance andwindow potentials. The
carbon, metal/metal oxide and nanocomposite nanomaterials are the new platforms
with nano morphologies like rods, wires, fibers, twisters, quantum dots, crystals, and
core shells.Dayakar et al. used abio-based route to produceAgNPs fromOcimumand
coated on glassy carbon electrode with high sensitivity, response time, linear range,
and lower detection limit to develop a glucosemonitoring device [46]. Dayakar et al.,
with the Ocimum leaf extract, fabricated nanostructure with core–shell Ag@CuO
has anti-poised activity and anti-interference in samples containing glucose [47].
To investigate in breath samples, Swathi et al. fabricated a nanocomposite based
on cellulose acetate and graphene acetone sensor for people with diabetes [48].
The application of non-enzymatic electrodes promises for fourth-generation glucose
sensor glucose oxidation analysis.

4 Principles of Noninvasive Glucose Monitoring

Raman spectroscopy uses the degree of the monochromatic light scattering causing
the Raman effect to determine Raman scattering [49]. It gives high specificity and
is less sensitive to temperature changes and water. It is highly suitable for surfaces
including the opaque substratum and can measure scattered light. However, inter-
ference from blood protein, long collection time, and low signal-to-noise ratio are
drawbacks [50]. The fluorescence emission with a specific wavelength when another
energy level radiation is absorbed causes Stoke’s shift, and it is used in the fluo-
rescence technique [51]. This technology is very sensitive and allows for detecting
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single molecules of glucose. It has high specificity because of the unique properties
of molecules that measure glucose levels based on fluorescence intensity and decay
times. It is also protected from light scattering effects. However, the technology
is susceptible to oxygen and pH level changes. It is limited by photostability and
recognition loss capabilities [43, 44, 52].

The photoacoustic spectroscopy is based on laser pulse that the molecule can
absorb with localized heat in the tissue [41, 53]. The heat absorbed generates ultra-
sound waves detected by the sensor to track peak-to-peak changes to sense the levels
of glucose variations in blood [54]. It is a simple method that is not affected by water
and other molecules like cholesterol, albumin, or NaCl. The scattering particles
present in the medium do not influence the photoacoustic signal. The main problem
associatedwith this technology is that it is susceptible to temperature changes,motion
and noise due to acoustics. It also has a lower signal-to-noise ratio and integration
time is long. The near-infrared spectroscopyworks onmolecular vibrations and bond
rotation caused by absorption of wavelengths 780–2500 nm and scattering [55]. It
measures transmittance, interacting and reflectance [56]. It is not affected by water;
the intensity of the signal correlates well with the concentration of glucose. It is
also not affected by glass or plastic interfering substances. However, it is affected
by heterogenous glucose distribution, and too low a glucose concentration can affect
accuracy.

Electromagnetic waves measure blood glucose levels noninvasively by relating
the antenna’s resonant frequency to analyze conductivity and permittivity of the skin
[57, 58]. It is then related to levels of glucose. The antenna acts as an electromagnetic
sensor that can radiate or receive power. It is made out of conducting material with
shape and size designed. The structure can be excited with time-varying currents
and with the help of a waveguide or transmission line. The water content in different
tissues has permittivity in the human body, andwatermolecules can be polarizedwith
an electromagnetic field. As the frequency increases, the lining of water molecules
takes slowly and stores energy in the tissue. When permittivity drops, frequency
increases, causing dispersion with different frequency ranges, affecting the body’s
EM waves. The glucose present in blood and other dielectric material around the
antenna changes the characteristics of the antenna. The antenna’s performance in
terms of resonance frequency can be correlated to the glucose concentration in the
blood. Various antenna types, including narrow and wideband, have been designed
and tested recently. Among the antenna used, planar antenna structure microstrip
antenna are used. Its advantages include compatibility with integrated circuits and
configurations with low cost and lightweight.

5 Platforms for Noninvasive Glucose Monitoring

The noninvasive monitoring methods of glucose in the blood keep its level under
control and are classified into optical and transdermal forms. The visual methods
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use NIR spectroscopy, Raman Spectroscopy, Photoacoustic and Fluorescence spec-
troscopy,wherein the light properties interactwith different concentrations of glucose
to detect its quantity. The optical methods also use techniques for thermal emis-
sion, reverse iontophoresis, bioimpedance, photoacoustics, absorbance spectroscopy,
ocular spectroscopy, polarimetry, electromagnetic sensing, temperature modulated
localized reflectance, ultrasound, metabolic heat conformation and optical coherence
tomography [59]. The transdermalmethods use impedance and reverse iontophoresis
based on transdermal properties where measurement of glucose due to electricity or
ultrasound through the skin uses the temperature change in metabolic heat confor-
mation and conservation of energy [60]. The technologies involved in the skin physi-
ology of noninvasive monitoring systems include device surface, material chemistry,
electrochemistry sensing and system interfaces. With these methods, the effective
realization of developing platforms of noninvasive glucose monitoring requires the
scientific problems consideration, legal, economic and commercial concerns, and
education of the patient and physician [34].

With the introduction by Clark and Lyons enzyme glucose biosensors, the field
continues to be the research activity focus and improving the life of diabetes patients
[61]. Many research groups are developing noninvasive functional glucose moni-
toring devices [62]. A watch-type biosensor uses a very low volume for clinical
analysis in the relevant ranges, consumes less power, and is cost-effective [63].
FDA-approved glucose sensor (Glucose electrode) checks glucose variation in the
skin on passing light through it; the sensor measures the reflected light because of
glucose interaction [64]. Noninvasive glucosemonitoring devices are GlucoTrack™,
G2 biographerdevice, GlucoWatch® and OrSenseNBM-200G. In Glucowatch, the
sensor contains glucose oxidase enzyme; using the technique iontophoresis, glucose
is determined through cathode disk. Glucowatch® device alerts patients by raising
beep alarm sound if glucose level goes beyond 35%. It includes accompanying soft-
ware, which interprets changes in glucose data. Activity markers are used for data
analysis, exercise, meals, and insulin injection, and up to 8500 readings are stored in
internal memory. In GlucoTrack™ device and OrSense NBM-200G- a sensor probe
with a light source can detect red and near-infrared, and RNIR spectral range and the
presence of pneumatic cuff makes to occlude the blood flow and systolic pressure. To
monitor glucose levels, in turn, produces an optical signal. The sensor-based fabri-
cated CeO2 identifies glucose with higher 0.495 µA cm−2 nM−1 sensitivity, lesser
detection of 6.46 nM limit and broader linear ranges from 0 to 600 nM. In the protein
sensors also CeO2 based bioelectrode is considered a suitable candidate [65].

Most of the existing noninvasive devices use electromagnetism (EM) techniques
to detect glucose levels in the blood [66]. The EM sensor devices are metallic
constructed for EMwaves receiving or radiating. To detect glucose levels, a reflection
of transmitted waves is used. To monitor the glucose variation using the EM sensors
is based on two key aspects: (i) the medium under test (MUT) dielectric properties
direct the EM waves compartment and (ii) the dielectric properties changes with
the glucose levels. Consequently, the EM waves released from the sensor when it
is exposed to the body, the transmitted and reflected waves carry useful informa-
tion from the underlying tissues influencing their properties. More specifically, the S
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parameters change to connect in MUT with glucose fluctuations due to the phase
and magnitude shifts. Monitoring these variations, determining blood glucose levels
(BGLs), and technologies based on EM present some advantages [67].

Other research data results provided by patch antennas have indicated high-level
glucose sensitivity towards its variations. The study experiments for serum-based
demonstrated ‖�S21‖ of 0.25 dB change equivalent to a 55.6 mM (~1001.8 mg/dl)
amount.Noninvasive ease of using the device is required for glucose levelmonitoring,
especially for patients to regulate blood glucose levels. It is very sensitive, wearable
and helps monitor glucose levels continuously by using a multisensory system. This
wireless device senses both hypo and hyperglycemic variations [67]. A chip-less tag
sensor over the skin of a patient measures variation in glucose levels in the interstitial
fluid. It can be detected with ~1 mM/l accuracy of 38 kHz resonance frequency shift
[33].

Based on integrating Reverse Iontophoresis on a flexible substrate with ampero-
metric glucose detection, a tattoo-based, wearable noninvasive glucose monitoring
platformwas developed [68].Using the screen-printing, a single transitory tattoo plat-
form was fabricated with electrodes for iontophoretic and glucose sensing, making
body-compliant and flexible wearing, for glucose measurements of single-use. This
platform removed the Glucowatch® discomfort reducing the iontophoretic current
applied for extraction of ISF. The tattoo-based electrodes were evaluated for perfor-
mance before or after the meals by recording and comparing glucose signals in
human subjects. The results were validated using a commercial glucometer for the
simultaneous blood glucose measurement with disposable use; wireless electronics
integrated into the sensor [34].

One of the approaches that involve minimal invasive is sweat testing. It is released
in normal conditions from the body and contains glucose, reflecting its levels in
the blood. However, since sweat availability and the rate of sweating can vary from
individual to individual, glucose levels can be lower compared to blood. To overcome
the problems associated with sweat, Juliane et al. developed a device that can be
used for personalized measurement [69]. In this device, sweat is collected from the
patient by placing a finger on the sensor for 1 min. To absorb sweat polyvinyl alcohol
hydrogel in the sensor in contact with an electrochemical sensor detects and allows
to measure glucose. Based on calibration with a finger prick, the reading is corrected
to collect data, and an algorithm is used to interpret. The device can predict glucose
levels with above 96% accuracy in volunteers tested.

Sweat is considered physiologically important electrolytes and metabolites, and
the technology involves a sensor array platform in a wearable patch type to
help continuous monitoring applications [70]. This device has integrated signal
transduction, processing and wireless transmission. An additional NGM based
on impedance spectroscopy device is a wristwatch used to detect a pattern of
levels variation in glucose. It performs measuring impedance with an open reso-
nant circuit (1–200 MHz) with four measurements/minute and has 20–60 mg dL−1

glucose/ohm sensitivity range. Currently, three devices are available in the market of
US and Europe after clearing their regulatory approval [34]. Further improvement
on iontophoretic stimulation in sweat is needed for consistent, controllable, and
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reproducible sweat generation without exercise. Concerning epidermal microfluidic
devices, focus on improving sweat collection for flow and replenishment is needed.
To overcome advancements in continuous epidermal glucose monitoring will be crit-
ical for realizing its prospective impact. The glucose detection with Accu-Chek® in
human sweat is relevant to test its levels. The glucose level is detected with glucose
binding to sensor interface by electrochemical impedance spectroscopy, and quanti-
fied level ranges 0.01–200 mg/dl in human sweat. This is also helpful in monitoring
the level of glucose and alcohol in pre-diabetics, people with diabetes, and during
alcohol consumption.

Raman Spectroscopy is considered one of the promising technologies for glucose
measurement in interstitial fluid. Lundsgaard-Nielsen et al. showed confocal Raman
Spectroscopy in a clinical trial involving type 1 Diabetes independent validation data
with 25.8%MARD [71]. Researchers at Samsung Advanced Institute of Technology
(SAIT), Samsung Electronics used Raman spectroscopy to check the glucose level.
In an hour, the results are read after the initial calibration, which is tested in the pigs.

Noninvasive glucose evaluation techniques are also done using Heart Rate Vari-
ability (HRV) and artificial intelligence-based algorithms. The various criteria of
measurements and dimensions involved in these noninvasive glucose measurement
approaches are invasiveness, size, sensing properties, media analyzed, the method
applied, type of activation, delay in response, duration of measurement, and the
results access. There is another type of glucose sensor in that the wearable EGC
sensor measures the HRV, in case of a decrease in the HRV indicates diabetes is
autonomic dysfunction. The method can also be used to monitor glucose levels in
the blood but needs improvement in accuracy though it provides a comfort level to
the patients. Many of those measurement methods used in current have MI and NI
techniques to achieve better accuracy [32].

Currently keeping in demand for glucose monitoring systems, considerable
improvement has been made so far. Due to improved technology, several devices
are already on the market; many of these devices are using spectroscopic technique
NIR. Furthermore, the significant thing is that NI devices manufacturers aim for
non-continuous glucose monitoring (NCGM) and use techniques based on MI for
continuous glucose monitoring are more appropriate. Noninvasive devices based on
optical or vibrational should measure a controlled atmosphere thus, it is noncontin-
uous, whereas a minimal invasive glucometer is not sensitive to mechanical vibra-
tions, temperature, light, etc. and it is continuous. Optical coherence tomography
is used in the detection of concentrations of glucose. The light beam on metal is
focused through the prism that forms resonating surface plasma polaritons sensitive
to glucose levels changes at certain angles. In the NIR-based blood glucose detec-
tion method, the absorption of light by blood glucose shows that the transmittance
of laser light is 30 times higher than near infrared-light with a wavelength of 650 nm
in human fingers and water [72].

The glucose monitoring system is portable, and it is a self-monitoring device
within built web and android applications that are safe and easy to use for patients
[73]. Photoplethysmography (PPG) assesses BGL through a noninvasive method.
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Earlier work with an optical sensor has shown improved blood glucose level estima-
tion. In this system, data acquisition is built with a sensor to record subjects’ PPG
signal with Single Pulse Analysis for the efficient assessment of values of BGL [74].

In recent times, for themanagement of diabetes, the development of biosensors for
noninvasive glucosemonitoring is gettingmore attention.CombiningNGMplus real-
time glucose with accurate, stable long-term measurements needs to have a critical
assessment for the accuracy of large-scale studies. Additionally, sensing with other
physiological parameters like pH, temperature, or humidity efforts should combine to
get measurements accurately for epidermal glucose and for calibration and accuracy
to correlate the blood glucose levels [35]. There are advantages and disadvantages
to these platforms. NIR spectroscopy is a well-established analytical technique that
removes all interferences but requires multivariate analysis and is available only on
a macro scale. Raman spectroscopy measures directly from biofluids, but it is used
transcutaneous and requires long-standing time. Bioimpedance spectroscopy is low
cost, simple, safe and fast, but has lengthy calibration time and is susceptible to
interferences. In thermal emission spectroscopy though the accuracy is acceptable,
has a radiation effect, and the results of measurements are not satisfactory [75].
The benefits of advanced noninvasive glucose sensors help patients feel pain-free
and not disposable. The other benefits include reading history data in tabular and
graphic formats, reduction in the cost of life cycle and on the long term it can be less
expensive than compared to the finger-prick device, user-friendly, data easiness to
read, large color touch screen, self-diabetes management and long term calibration
validity becomes easier [76].

For many companies, technology based on noninvasive glucose monitoring signi-
fies exciting research and an exceedingly desired market. Thirty years ago, the first
noninvasive glucose device was released on the market. At present, the global market
of digital diabetes management is projected to reach $17.09 billion by 2025. The
Blood Glucose Monitoring (BGM) devices’ accuracy ranges between 5.6 and 20.8%
in the US. The clinical trials of noninvasive glucose monitors are increased in the
twenty-first century; 16 trials were conducted from 2016–2020, whereas in 2000–
2015, only five trials were conducted as per NIH [77]. The detection of glucose by
using these noninvasive technologies of glucose sensors is available in the market,
whereas some are withdrawn from the market due to accuracy issues [37]. For
example, Glucowatch and Pendra are withdrawn from the market.

The sensors based on NIGM in tears, saliva, urine, and sweat are becoming more
and more significant. The study conducted by Masakazu et al. considered tears for
NIGM clinical applications [78]. There was a significant association for glucose
concentrations in tears and plasma using random intercept model analysis in diabetic
patients (P < 0/001) by NanoZyme copper calorimetric sensing, Naveen Prasad et al.
could detect urine glucose at low concentrations. To find the change in blood glucose
levels throughout day and night, many devices have been developed to manage
diabetes easier and more measurements to take [79]. Dongwoon Anatech has devel-
oped saliva-based glucose monitoring and completed a clinical trial in December
2020. The device is called D-SaLife, which is based on microcurrent control tech-
nology to estimate glucose in saliva. The result of the reading is color-coded bymeter
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and recorded in the mobile app. In 2019, the iQ Global Group, an Australian biotech
company, developed Saliva Glucose Biosensor. This small strip can be disposed of
and transmitted measured glucose level to the smartphone when exposed to saliva.
In a recent clinical trial study conducted by Stefan et al. on the prototype for Raman-
based NIGM device developed by GlucoBeam, RSP Systems A/S, Denmark, when
tested on type I diabetic patients, the study established calibration models. It showed
the proof of concept for the real-time application [80].

Tensor Tip Combo Glucometer by Cnoga Medical Ltd. (Israel) requires calibra-
tion and uses light passing through the finger to quantify; the signal is detected due to
the molecule’s presence by VIS–NIR spectroscopy. The MARD accuracy is 14.4%.
GucoTrack by Integrity Applications uses thermal-based electromagnetic sensing
combined with ultrasound. It is used on earlobe and is having MARD 19.7%. Health
Care Computer developed metabolic heat confirmation-based technology. It is used
on finger and gives 87% accuracy.Wizmidevice is developed byWear2b Ltd. (Israel),
which uses NIR spectroscopy. A wrist LTT device is developed by the Quantum
Science and Technology, Light Touch Technology Ltd. (Japan) research group,
which uses MIR spectroscopy. It uses a finger to measure the glucose. The Biovotion
device is developed by Biovotion Ltd. (Switzerland). It is based on Bioimpedance
Spectroscopy and uses the arm to measure glucose.

DiaMonTech helps manage people with diabetes at comfort with more frequent
measurements done. This technology uses a shoebox-sized device as a prototype. In
the human clinical trials, DiaMonTech attained identical accuracy as the test strips
in preclinical tests. For diabetes Type 2, in case of any abnormal case, it checks
glucose levels within the acceptable range. The HELO Extense uses a technology
based on color indicator detecting glucose concentration. Low sensitivity, specificity,
and interference are some of hardware and software limitations [6]. Abbott Diabetes
Care developed FreeStyleLibre. It is a sensor patch kept on the arm and can be used
for glucose levels measurement of interstitial fluid present between cells underneath
the skin. It is available in the US, Canada and Europe. GlucoWise sensor is placed
on the earlobe or space between the forefinger and index finger of the skin.

The measured reading is sent directly to the app on a smartphone. Meds measure
glucose levels using radio waves and accuracy more than another wireless glucose
monitor type. SugarBEAT measures glucose levels with a skin patch transmitter and
low-level electricity passing over through interstitial fluid in the skin. The developed
transmitter by UK biotech Nemaura Medical is rechargeable. Data can be sent to
Bluetooth every 5 min to the user’s phone. Using an associated app, readings are
monitored [81]. Bypassing non-perceptible electricity over the skin of the arm, leg
and abdomen, the device with the patch is placed on the skin to measure the glucose
through the interstitial fluid. Google’s smart contact lenses developed by Google’s
eye care division and Novartis. It uses a chip in lens to measure glucose with and
reading details can be transferred to smartphones via antenna.
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6 Medical Device Regulation Updates

Glucosemonitor display falls intomedical device classification II. The special control
for the labelling of the device must take into user and follow information for use on
the glucose continuous system monitoring. The device is not to replace practices
advised by the physician. As per FDA, a device monitoring glucose in adults (age
18 and older) with diabetes is indicated to identify trends and pattern tracking. The
gadget is suggested for use as an adjunctive device to supplement, not to substitute
info acquired from basic home-based devicesmonitoring glucose. The system should
enable finding the incidents of hyperglycemia and hypoglycemia to enable long-term
and severe treatments (access data FDA). The FDA will take decisions centred on
various evaluations and the reliability effectiveness of the device results. There is no
primary endpoint for clinical accuracy study based on Continuous Glucose Moni-
toring devices. Before premarket submission, the manufacturer can obtain feedback
from the FDA to clarify study design and analysis [82]. As EU MDR manufac-
turers want to market their CGM devices, they must certify by the Notified bodies
stats that the new device complies with all the specifications as per the EU MDR.
Conducting clinical trials or PMS is not required [83]. Europe’s CGM Market is
growing exponentially. CGM is a new idea of glucose regulation that allows user
to monitor frequently their glucose levels. CGM develops awareness of the patients
regarding food intake and variation of blood glucose levels before and after food.
CGM helps patients manage effectively due to complications arising from diabetes
[84].

7 Future Outlook

Noninvasive procedure helps diabetes patients manage their quality of life by
checking their BGL safely and easily. Thus, managing blood glucose levels is a
basic concept of managing diabetes. Glucose sensors need to advance in getting
more accuracy, cost-effectiveness, convenience to use as well as the sensor/device
should allow software-based data analysis and management. The companies must
develop and improve hardware technologies that provide enhanced accuracy, wear-
ability, and biocompatibility that keep patients quality life. Current revised medical
device regulations are helping to improve and regulate devices to apply diabetes
management. Educating self on CGM is critical and guarantees quality life [85].
Shortly due to the available technologies which are improving day by day, will bring
multiple choices of glucose monitoring devices that will be available in the market.

Without a thorough understanding of physical and physiological factors that affect
the BGL, glucose monitoring accuracy cannot be accomplished. Since physiolog-
ical variation will affect the technology, patient-to-patient body regulation varies,
including metabolism, blood components, and other circulating body fluids. As most
noninvasive technologies are based on optical sensing measurements, variations in
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time may occur between various body parts, introducing calibration errors. More-
over, temperature, light, and measurement area may also affect the glucose detection
levels in the blood [86].

8 Conclusion

• Continuous glucose monitoring with NI device is valuable in controlling hyper-
glycaemic events and helps improve patent life quality.

• Getting the accuracy level in the NI device used for monitoring blood glucose
is a challenge. The device should have accurate reading before it is considered
genuine.

• The hardware and software limitations result in interference and are the major
hindrances to high sensitivity and specificity. The new developments in material
and computer sciences in the future preclude and bring in more sensitive and
noninvasive monitoring devices.

• The difference in the individuals or difficult and tedious detection parts of the
device or the correlation of measured glucose level by the device and the indi-
vidual blood glucose level leads to errors in results measured. This can impact
commercial glucose detecting devices’ stability, reliability, and consistency.

• The electrodes and devices integrated with smartphone and wireless transmission
are emerging to get real-time monitoring and improve the diabetic patient’s life
quality.
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and Non-invasive Diabetes Monitoring
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Abstract Blood glucosemonitoring is the cornerstone of effective diabetesmanage-
ment. Regular glucose testing reduced the risk of developing long-term micro-and
macro-vascular complications. Despite the recently growing development of mini-
mally invasive glucose monitoring techniques, most glucose monitoring methods are
invasive, painful, time-consuming, and pricey in the long run. Painless, needle-free,
and CGM approaches are needed to enhance the life quality of patients with diabetes.
This chapter offers an up-to-date compte-rendu on the leading technologies for inva-
sive, minimally-invasive and non-invasive glucose monitoring devices and sensors
currently being used in themarket or developments alongside their accurate real-time
responses and sensitivity. Besides, the new non-invasive approaches currently under
development by different research groups and developers and their fidelity to assess
hypo- to hyperglycemic variations described. The chapter concludes by featuring the

F. Harb
Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Fanar, Lebanon
e-mail: frederic.harb@ul.edu.lb

W. S. Azar
Department of Physiology and Biophysics, Georgetown University School of Medicine,
Washington, DC, USA

W. S. Azar · H. E. Ghadieh · R. Njeim · A. A. Eid (B)
Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and
Medical Center, American University of Beirut, Beirut, Lebanon
e-mail: ae49@aub.edu.lb

AUB Diabetes, American University of Beirut, Beirut, Lebanon

Y. Tawk · J. Costantine · R. Kanj
Department of Electrical and Computer Engineering, Maroun Semaan Faculty of Engineering and
Architecture, American University of Beirut, Beirut, Lebanon
e-mail: yt03@aub.edu.lb

J. Costantine
e-mail: jc14@aub.edu.lb

R. Kanj
e-mail: rk05@aub.edu.lb

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. K. Sadasivuni et al. (eds.), Advanced Bioscience and Biosystems for Detection
and Management of Diabetes, Springer Series on Bio- and Neurosystems 13,
https://doi.org/10.1007/978-3-030-99728-1_15

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99728-1_15&domain=pdf
mailto:frederic.harb@ul.edu.lb
mailto:ae49@aub.edu.lb
mailto:yt03@aub.edu.lb
mailto:jc14@aub.edu.lb
mailto:rk05@aub.edu.lb
https://doi.org/10.1007/978-3-030-99728-1_15


294 F. Harb et al.

future trend of glucose measurement tailored to the needs of patients with diabetes
based on the body target used for detection.

Keywords Diabetes mellitus · Glucose · Non-invasive glucose monitoring ·
Minimally invasive glucose monitoring · Continuous glucose monitoring

1 Introduction

Diabetes mellitus has become a major international health issue [1]. The burden
of diabetes is amplified because the disease is associated with a range of compli-
cations, including nephropathy, neuropathy, and retinopathy. The global prevalence
of diabetes in 2019 was estimated at 463 million individuals and has been prog-
nosticated to rise by about 11% by 2045. A fasting blood glucose (BG) concentra-
tion less than 5.6 mmol/L is considered normal. A concentration between 5.6 and
6.9 mmol/L is considered prediabetes, while a concentration greater than 7 mmol/L,
using two separate tests, is consistent with diabetes. Hypoglycemia is defined as
having a BG concentration <3.9 mmol/L. A concentration of <2.8 mmol/L can cause
defective glucose counter-regulation and impaired awareness of hypoglycemia. In
contrast, hyperglycemia can result in multiple metabolic abnormalities associated
with long-term microvascular and macrovascular complications [2–6]. Alternative
consequences of diabetes include cardiovascular disease and death [7]. Further-
more, one in two individuals living with diabetes does not know that they have
diabetes. The growing load of diabetes in low- and middle-income countries may
cause considerable financial pressure on individuals and health systems.

Diabetesmellitus is divided into Type 1 (T1DM) andType 2 (T2DM). Prediabetes,
as defined earlier, presents with various symptoms, including weight loss, increased
urinary frequency and urgency, polydipsia, and impaired vision. Prediabetes is a
serious condition that puts the patient at a higher risk of progressing to T2DM. In
T1DM, the immune system attacks the pancreas and destroys the pancreatic β-cells
that make insulin. In T2DM, however, the pancreas can still produce insulin, but
the body does not adequately respond to it. Furthermore, overweight individuals
have a higher chance of developing T2DM, which makes a healthy diet helpful in
attenuating diabetes and its complications in these individuals. Siegel et al. found an
increase in BG in subjects with hypertension treated with thiazides consistent with a
proportional increase in body mass index. This increase in BG occurred in all groups
studied, scaled according to obesity.Among individualswith hypertension, there is an
increased prevalence of T2DM and impaired glucose tolerance [8, 9], which explains
why hypertension, obesity, and diabetes or prediabetes are commonly referred to as
“metabolic syndrome” [10, 11].

Interestingly, sleep disorders have also been associated with diabetes in a bidi-
rectional relationship. Just as diabetes can cause sleep problems, sleep disturbance
also plays a role in diabetes. Acquiring insufficient sleep or less healthful slow-wave
sleep has been linked to hyperglycemia in individuals with diabetes and prediabetes
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[12, 13]. However, it is not clear whether the relationship is causal or whether more
variables are at work. It is thought that sleep deprivation increases levels of ghrelin,
the hunger hormone, and decreases levels of leptin, the satiety hormone. To neutralize
lower energy levels, people who have sleep disturbances are prone to seek comfort
in foods that raise blood sugar, putting them at a higher risk for obesity, a major risk
factor for diabetes.

Diagnosis and management of diabetes require accurate, sensitive, reliable, rapid,
and attentive glucose monitoring daily. Since both types of diabetes cannot be cured,
the only possibility for patients is to monitor BG levels and treat them accordingly.
Unfortunately, BG levels of patients with diabetes must be controlled for life, and the
patients will remain vulnerable to events of hypoglycemia and hyperglycemia. To
monitor and estimate BG levels, many techniques have been developed, including the
optical [14], coulometric [15], capacitive [16], and electrochemical [17, 18] detec-
tion methods. Many devices use glucose oxidase and glucose dehydrogenase to
measure BG [19]. These sensors are based on enzymatic reactions and show remark-
able sensitivity and specificity. Yet, they present some disadvantages, including poor
stability and reproducibility [20]. Consequently, researchers have focused on devel-
oping nonenzymatic glucose sensors mostly based on the fabrication of electrode
surfaces that oxidize glucose without enzymes. This type of detector is advanta-
geous in its simplicity, manufacturability, portability, selectivity, stability, sensitivity
and low cost [21–23].

Long-termBGmanagement in patientswith diabetes has been shown to extend life
expectancy [24]. To optimize treatment plans, BG management should be combined
withmonitoring lifestyle changes such as diet and physical exercise [25]. This chapter
provides an outline of non-invasive glucose sensors used to control diabetes. The
different biological fluids used for continuous glucose management will also be
addressed.

The most up-to-date commercial remote glucose monitoring technologies have
been reviewed, and their benefits and limitations have been weighed.We will discuss
various sensing methods for glucose monitoring as well as the most recent commer-
cially available products. Finally, findings and predictions for the future will be
discussed.

2 Diabetes Monitoring with Glucose Sensors

2.1 Description

In patientswith diabetes, long-termmanagement of BG through daily self-testing and
patient adherence to treatment is vital in preventing diabetes and its complications.
Patients with diabetes can monitor their BG levels at home using electronic devices.
One of them is the glucometer, a hand-held electronic system that tests the sugar
content of a small droplet of blood. Continuous BGmanagement is highly beneficial,
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for it provides insight into the effectiveness of a recommended medication. In other
words, regular testing of BG levels can reflect how well patients are adapting to their
care plan. BG concentrations differ significantly between healthy adults, adults at
high risk, and adults with diabetes. They also vary during the day and usually rise
after each meal. Consequently, hyperglycemia can cause glucose toxicity, leading to
cell dysfunction and diabetic complications [26].

2.2 Suitable Body Fluids Used for Glucose Monitoring Levels

Blood has long been recognized as the most common bodily substance that humans
use for measurements and medical tests. BG levels are usually measured in a droplet
of capillary blood at the fingertips. Capillary glucose levels closely match systemic
arterial BG levels. Other available body fluids appropriate for testing include urine,
interstitial fluid (ISF), sweat, ocular fluid, and saliva for non-invasive screening.
Urine is a non-invasive and readily available fluid used in diagnosing diabetes. Urine
is made up of various metabolites, including glucose, proteins, salts, and nitrates,
which explains why the pH of urine fluctuates between acidic (pH 4.8) and basic
(pH 8). During hyperglycemic events, glucose can be excreted and measured in the
urine. Since urine is transient, it cannot be used for continuous glucose monitoring.

ISF is a thin film of fluid that encloses the body’s cells. It is composed of water,
carbohydrates, salts, fatty acids, amino acids, hormones, leukocytes, neurotransmit-
ters, coenzymes, and cell byproducts. ISF glucose levels vary from BG levels, and
correlationmeasurements are needed. The bloodstream is the body’s transport system
for transporting substances like glucose on a systemic level. At the same time, the
ISF is the compartment where substances like glucose diffuse into tissues and cells
locally. Accordingly, blood collects glucose absorbed from the gastrointestinal tract
or released from glucose stores, flowing through capillary walls into the ISF. In other
words, BG concentration is a measure of the overall amount of glucose present in the
blood. In contrast, the concentration of glucose in the ISF depends on local factors,
such as local diffusion from the blood and metabolism by surrounding tissues. ISF
is readily accessed from subcutaneous tissue. Minimally invasive microneedles have
been conceived to gather ISF. They are applied to the skin with an adhesive film for
up to two weeks, allowing continuous glucose monitoring (CGM).

Sweat is a thermoregulatory substance that serves to control body temperature. It
is secreted by sweat glands all over the body,making it themost available bodily fluid.
Sweat is mildly acidic (pH 5.5–6.5) and primarily consists of water, electrolytes, and
urea. Sweat also contains low glucose, antibodies, and cytokines [27]. Glucose levels
in sweat were associated with BG levels, but they lag by around 8min fromBG levels
[28]. Saliva is a versatile fluid that includes multiple analytes excreted from the blood
that can influence an individual’s hormonal, mental, dietary, andmetabolic condition.
Saliva may be used as a non-invasive glucose sensing sample. Salivary glucose levels
range between 0.23 and 0.38 mM in healthy individuals, while in patients with
diabetes, salivary glucose levels fall between 0.55 and 1.77 mM. Further studies are
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needed to establish a stronger association between BG and salivary glucose levels
before using saliva in clinical settings. Significant research has been conducted in
this area, and several new technologies for non-invasive and CGM in saliva have
been documented [29].

2.3 Sensing Techniques for Glucose Detection

The many benefits of daily surveillance have led to the appearance of many glucose
monitoring devices on the market, which, for the most, are built on biosensors.
A biosensor is an analytical instrument that uses a physicochemical transducer to
convert biological elements into electronic signals. Figure 1 is a schematic diagram
of a biosensor. The biorecognition element in this system can detect an analyte such
as glucose [30]. The biological signals are then converted into electrical signals by
the transducer/detector.

The electronic circuit interprets the signals and translates the results into an easy-
to-understand format by converting the biorecognition event into a measurable elec-
trical or optical signal that correlates with analyte–bioreceptor interactions. Themost
commonmethod for BGmonitoring employs a portable electronic instrument known
as the glucometer. The glucometer measures the amount of glucose in a droplet of
blood drawn most often from the fingertips and mounted on a disposable test strip
pre-treated with specific chemicals. Electrical signals result from the different chem-
ical interactions on the test strip and are then interpreted by a reader. Even though this
procedure is inexpensive and straightforward, it instantly provides a BG calculation
and creates only minimal pain. This procedure is not suitable for CGM, because
repeated pricks increase the risks of infection and tissue injury over time.

A non-invasive technique refers to any surgical procedure that does not require
the insertion of an instrument into the body. In this approach, the patient does
not feel the discomfort that accompanies a blood draw [31]. This segment
discusses some of the many non-invasive glucose monitoring strategies that have
been developed, including electrochemical techniques, microwave sensing, Raman
spectroscopy, near-infrared spectroscopy, iontophoresis, and stepped-impedance
resonators, among others.

Fig. 1 Schematic diagram of a biosensor (created with BioRender.com)

https://biorender.com/
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2.3.1 Non-enzymatic Biosensors

Today’s research largely focuses on non-enzymatic biosensors, most of which
are engineered to identify single analytes. Non-enzymatic sensing is cheaper and
longer-lasting than enzymatic electrochemical sensing. Nevertheless, it carries
several disadvantages, including high working potential, slow electro-kinetics, and
weak sensing parameters. Accordingly, scientists are focusing their efforts on
exploring new nanomaterials to construct non-enzymatic sensors characterized by a
higher conductivity, a more efficient catalytic activity, and more advanced physical
and chemical strengths. In this respect, the development of sensing components for
the specific identification of glucose has greatly advanced [32–36].

2.3.2 Electrochemical Methods

The electrochemical technique was created to detect glucose levels in tears, saliva,
sweat, and blood [37, 38]. In this procedure, glucose concentrations are indirectly
quantified by adding a thin layer of the enzyme glucose oxidase to a platinum
electrode through a semipermeable dialysis membrane. The amount of glucose
is estimated by measuring the proportional decrease in oxygen and increase in
hydrogen peroxide [29]. This glucose monitoring technique evolved into the current
finger pricking process, which utilizes tiny blood samples measured in vitro using
test strips and a glucometer. This invasive, uncomfortable, and painful enzymatic
approach is non-continuous, for it measures snapshots in time of BG levels. It can
therefore miss cycles of hyperglycemia or hypoglycemia that happen outside of the
measurement window. Tools that depend on other biological fluids have been devel-
oped to alleviate consumers from the discomfort and inconvenience associated with
finger pricking during BG tests. Hendrikus and his colleagues have created an elec-
trochemical glucose sensing apparatus that employs an electrode-like hollow coil
biosensor with a versatile wireless sensor system to detect glucose in tears [38].
Claussen et al. used a photolithographic technique that included graph nanosheets,
platinum nanoparticles, and glucose oxidase to create an electrochemical biosensor
that measures glucose concentrations in saliva and tears [37]. Zhang et al. created
another system focused on electrochemical sensing with carbon nanotubes that uses
saliva [39]. Given the high accessibility of non-invasive biological fluids, it is antic-
ipated that further research on devices that employ such fluids for glucose detection
will be conducted in abundance.

2.3.3 Microwave Sensing

Radiofrequency or microwave instruments may characterize the permittivity of
various materials using electromagnetic waves. Researchers have thoroughly
analyzed the dielectric properties of biological tissues [40]. The single-pole Cole–
ColeModelwas recently used to studybiological tissueswith varying glucose content
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and model their wideband dielectric properties [41]. The Cole–Cole-Model offers
an accurate and detailed biological tissue representation over a broad frequency
spectrum, facilitating experiments on various human tissues, including skin, fat,
bone, brain, and breast. Inductive and capacitive sensors detect glucose similarly to
how dielectric permittivity is seen [40]. The sensor configuration is a fluid inductor
consisting of a center and a coil. The inductor’s stray capacitance changes in response
to glucose when it comes in contact with the inductor. Improvement in BG levels
in the body can be compared with impedance measurements. Stepped impedance
resonator (SIR) is another instrument capable of calculating dielectric permittivities.
SIRs are microwave resonator-based biosensors that can identify the concentration
and physical properties by interacting with the resonator’s electromagnetic waves
(EM). Similar to inductive, capacitive sensors, the association of electromagnetic
waves with the tested material is expressed in the SIR’s S-parameters and the change
in central frequency [42]. The physical properties of the substance are correlated
with the resonant frequency transition. However, in contrast to inductive, capacitive
sensors, SIRs are planar. They can bemanufacturedwith printed circuit boards,which
puts them at an advantage in decreasing circuit size and in the potential inclusion
of wearables. Variations in glucose concentration affect the biosensor resonator’s
equivalent sequence inductance and shunt capacitance.

2.3.4 Near-Infrared Spectroscopy

Near-infrared spectroscopy (NIRS) assesses the various chemical constituents of
biological samples using light absorbance. This approach probes tissue with light
waves. The reflected spectra from wavelengths between 400 and 2400 nm allow for
specimen study. NIR radiation can reach deeper into the skin than visible or mid-
infrared radiation (MIR) [43]. Various windows mediate spectral measurements of
NIR within the NIR spectral area that show low-intensity absorption bands for water,
hemoglobin and lipid, which allows for light transmission into tissues. The receiver,
transmitter, light source, and detector are mounted on opposite sides of a thin and
muscular soft tissue such as the earlobe to carry out NIR measurements. NIR wave-
lengths are administered at the level of the transmitter, and the signal is attenuated
by blood glucose, which is then evaluated at the receiver end. The disadvantage of
using this method is that tissues can scatter lights, causing interference from different
elements with comparable absorption characteristics. As a result, the system needs
calibration for the measured glucose levels to match the actual BG levels [44].

2.3.5 Optical Methods

Surface plasmon resonance (SPR) happens when polarized light strikes a chemically
inert and conductive electrode, interacting with media having different refractive
indices. The light beam reaches the metal via a prism in the basic Kretschmann
configuration, creating resonating surface plasmon polaritons (SPP) responsive to
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alterations in glucose levels at a resonance angle, θR. Photon absorption leads to
dark lines in reflected lights caused by changes in the glucose level detected by the
sensor [45, 46]. Recent developments are focused on improving sensitivity by surface
alteration [47, 48].

Another type of optical method is the fluorescence technique, in which the
Stokes shift theory underpins the fluorescence technique. A wavelength alteration
is produced upon the absorption at a certain energy level radiation, resulting in the
emission of a particular fluorescent light. Fluorophores are specific molecules that
bind to the glucose, leading to fluorescent light emission relative to glucose concen-
tration in the analyzed sample [49]. However, since the interaction between glucose
and fluorophores molecules is needed, applications will need physical samples such
as blood [50], tears and saliva [51], and transdermal glucose from buffer solution
[52].

2.3.6 Metabolic Heat Conformation (MHC)

MHC technique measures glucose levels by assessing the physiological parame-
ters of metabolic heat and local oxygen availability [53]. MHC considers glucose
metabolic oxidation, which generates heat as a byproduct that correlates with oxygen
and glucose levels in the organism. Heat can be transferred in the form of convection,
radiation or evaporation. Radiation and convection heat are related to skin and atmo-
spheric temperatures, while evaporated heat is the sum of skin evaporations [54].
The sensor would register the following parameters: hemoglobin (Hb), blood flow
rate, thermal output, and oxyhemoglobin concentration (O2Hb). They are determined
by multi-wavelength spectroscopy, fingertip temperature, ambient and background
radiation. They are measured in a fingertip. The data are then evaluated by various
statistical tools such as discriminant, regression, andmultivariate analyses. However,
this technique is often susceptible to temperature fluctuations and sweat intrusion.

2.3.7 Reverse Iontophoresis (RI)

RI is a minimally invasive technique circulating a minor electrical current at the skin
surface to reach the ISF. The current is mainly formed by the movement of sodium
ions which causes the ISF to flow convectively or electro-osmotically, allowing for
the movement of glucose molecules from the anode to the cathode [44]. A glucose
sensor measures glucose levels at the cathode via the enzymatic approach.

RI is one of the most well-researched glucose tracking systems. However, the
technology has some drawbacks such as skin irritation, susceptibility to sweating,
and low accuracy in measuring rapid changes in glucose content [55].
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3 Commercial Non-invasive Glucose Meters

3.1 Glucowatch®

GlucoWatch® is a non-invasive automatic glucose monitoring device worn on the
wrist, similar to a Watch Fig. 2. The software can monitor glucose concentration
trends in patients with diabetes and has been accepted as a supplement to traditional
BG meters in monitoring diabetic patterns. GlucoWatch® uses iontophoresis.

This procedure removes ISF from the skin’s surface to quantify glucose levels
in the pH range of 7.2–7.4. The process starts with a 300 μA electric current that
passes at the backof the unit between two electrodes in contactwith the skin. The elec-
tric current extracts the ISF and transports it to two storage disks that act as the cathode
and the anode. GlucoWatch® canmeasure a maximum of six readings every hour and
notifies the user if glucose levels deviate bymore than 35% from the acceptable range.
One ofGlucoWatch®’smain drawbacks is its need for frequent recalibration using the
pricking process, making it costlier for the user. Since the device uses conductivity
sensors and thermo-transducers, the accuracy of its measurements can be influenced
by changes in both skin temperature and perspiration. GlucoWatch® detects glucose
15 min later than normal enzymatic measurement approaches. Other drawbacks of
GlucoWatch® include prolonged warm-up time, skin rashes, and sweating, which
led to the product’s removal from the market in 2008 [56].

Fig. 2 The Biographer®: non-invasive glucose monitoring device [56]
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3.2 GlucoTrack™

Integrity Applications Ltd created GlucoTrack™, a real-time non-invasive glucose
monitoring system Fig. 3. The device can detect BG concentrations by employing
three non-invasive glucose monitoring techniques: electromagnetic, ultrasonic, and
heat capacity.

Because of the convergence of various methods, GlucoTrack™ has very high
accuracy and precision. It is also capable of reducing noise by minimizing the influ-
ence of interferences. The device consists of a monitor with a personal ear clip (PEC)
attached to the earlobe. The PEC is outfitted with sensors and a calibration system,
allowing for accurate measurement of BG concentration. The ample blood flow that
the earlobe receives makes it a highly accessible location and a preferred candidate
for BG measurement. The device is also easy to use in that it does not interfere with
the user’s daily tasks. The unit must be calibrated against intrusive post-prandial and
basal BG references before its use. However, the calibration is only accurate for a
single month. It has a good level of efficacy in clinical trials, and the findings are
compared to most glucose analyzers and glucometers on the market. The product has
the advantage of being lightweight, portable, and comfortable for patients. However,
it will only be commercialized once themanufacturer is able to increase the efficiency
of its calibration technique and refine its algorithm for better handling of data [57].

Fig. 3 GlucoTrack™: non-invasive monitoring device [57]
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3.3 Abbot FreeStyle® Libre

Abbott FreeStyle® Libre was granted CE Mark on September 3rd, 2014, and it is
currently being used in several countries around the world Fig. 4. The FreeStyle
system does not require any finger prick for calibration. It only simply requires the
user to wear it for 14 days at the back of the upper arm.

Glucose levels are measured by the minute in ISF via a 5 mm × 0.4 mm needle
implanted subcutaneously by an applicator held in place with an adhesive material.
However, when BG levels rapidly fluctuate, the levels of ISF glucose are not reliable
in that they do not correctly match the level of BG. A finger prick measurement by
standard glucometer is needed in this situation and hypoglycemic events or when the
symptoms are inconsistent with the device’s measurements. Abbott FreeStyle® Libre
can require about an hour to equilibrate before obtaining the glucose measurement,
which takes a fraction of a second. The device will store a maximum of 90 days of
data and can accurately predict where BG levels are heading [58].

Fig. 4 Abbot FreeStyle® libre: glucose monitoring system [58]
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3.4 Medtronic Guardian™

The Medtronic Guardian™ Sensor is a CGM sensor worn on the back of the user’s
arm or the abdomen. The FDA approved the technology as the first hybrid closed loop
(HCL) insulin delivery system ever created. Individuals wear the Guardian™ Sensor
for up to 7 days. Guardian™ Sensor covers 30 days of sensor wear to ensure that
patients with diabetes receive safe and valid measurements. The unit is connected
to software that obtains data from the Medtronic diabetes management system and
generates a dataset that physicians can use to track the success of their patients.

4 Sensors in Development

Numerous scientific centers and universities are encouraged to develop novel
methods for non-invasive glucose monitoring. The Ulsan National Institute of
Science and Technology (UNIST) focuses on designing soft contact lenses for
glucose monitoring. In addition, Infratec andMIT reflect novel paths that other orga-
nizationsmight further explore.Moreover, while some groups continue to investigate
NIR/MIR spectroscopy technologies, others have begun to consider other options.
In this regard, it is worthwhile to note the work of Siegel et al. at Caltech [59–61].
Over the years, they have made steady progress using millimeter waveguides and
achieving interesting outcomes with a solid association with the conventional inva-
sive approach in rodents and humans [59, 60]. Furthermore, the research conducted
at the University of Western Ontario [62] is unique, though solely theoretical at this
stage. They also began investigating the use of nanoparticles in conjunction with the
fluorescence-resonance energy-transfer principle, aiming for a higher accuracy level
in detecting glucose levels in tears. Moreover, a recent study by Hanna et al. shows
promising results in the field of non-invasive glucose monitoring based on an elec-
tromagnetic diabetes monitoring device (eDiamond©). A team of researchers at the
American University of Beirut proposes a highly accurate, non-invasive continuous
glucose monitoring wearable multisensory system [63]. The unique electromagnetic
topology of the system is inspired by the human vasculature’s anatomy, which allows
the generation of highly sensitive responses Fig. 5. The proposed sensors have been
tested on blood, tissues, and diabetic rodents, as well as in clinics. During clin-
ical experiments, non-invasive measuring findings revealed a high association (>0.9)
between blood glucose levels and the physical parameters with no time lag.

Furthermore, their proposed wearable device detects hypo- and hyperglycemic
differences wirelessly and with high accuracy. To sum up, their modules are engi-
neered to reach several body positions simultaneously, paving the way for the
construction of an artificial pancreas in a closed-loop system.
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Fig. 5 eDiamond©: a noninvasive continuous glucose monitoring wearable multisensory system
inspired by the human vasculature anatomy [63]

5 Glucose Monitoring Informatics (GMI)

Extensive research is underway to advance algorithms that improve sensor sensi-
tivity, accuracy and performance, facilitate data readability, and make up for possible
disturbances and confounders such as temperature, sweat, blood perfusion, and tissue
scattering. Such algorithms are also applied in the engineering of closed-loop systems
in automated insulin pumps for patients with diabetes. These algorithms are either
corrective or predictive. On the one hand, corrective algorithms suppress noise distor-
tion and minimize other confounding variations to improve the signal’s quality. On
the other hand, predictive algorithms forecast potential glucose levels or improve
current assessments based on many datasets [46].

6 Tools and Standards for Assessing Accuracy

Testing the accuracy and efficacy of glucose detection systems can be done through
various methods, protocols, and criteria. Metric measurements for evaluating accu-
racy include the mean-average-relative-measurement (MARD) and the error grids.
The standard ISO 15197 (refer to the official website for more details: https://www.
iso.org/obp/ui/#iso:std:iso:15197:ed-2:v1:en) is widely employed around the globe
to specify the quality standards, criteria, and parameters that glucose measurement
devicesmustmeet to be suitable for use in humans. The ISOguidelines allow national
authorities to determine whether a specific device is appropriate for commercializa-
tion. The United States follow their own unique set of rules and criteria. The presence
of such guidelines encourages researchers to focus on specific areas of interest, which
explains why some technologies lag behind while other more accurate and advanced
technologies blossom.

https://www.iso.org/obp/ui/#iso:std:iso:15197:ed-2:v1:en


306 F. Harb et al.

7 Conclusion

With about 7.8 million new cases diagnosed each year, diabetes mellitus is becoming
more and more common worldwide. The most critical aspect of diabetes treatment is
monitoring and controlling BG. Patients withwell-controlled BG levels are at a lower
risk of developing debilitating or fatal diabetic complications, thus allowing them to
lead healthier lives. Many scientific attempts have been advanced to create a simple
and accuratemeasuring sensor to detectBG. Patientswith diabetes can regularly track
their BG levels thanks to the new painless, non-invasive glucose screening. Despite
continuous technological advances in non-invasive glucose monitoring, extensive
research is warranted for accurate glucose monitoring. Sensitivity to variables (body
temperature, environmental temperature, sweating, etc.) that fluctuate in everyday life
can limitwearable devices.Current non-invasive glucose tracking devices, such as the
ones discussed in this chapter, which are now available in the consumer technology
industry, may provide screening and diagnosis of disease and substantially affect
health. Yet, will this be enough to monitor the glucose level and fight the disease
closely? The response wouldmost likely be affirmative for many. However, a modern
legislative system with technical development is still in progress for those who need
constant surveillance and precise data. Owing to many shortcomings in the hardware
and applications currently in use, poor sensitivity, low precision, and interference
continue to be the biggest obstacles. However, with the unfolding of innovations
and the continued development of existing ones, researchers are certain that the
emergence of a truly non-invasive glucose meter is only a matter of time.
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