Chapter 18 )
Exploiting Hyaluronan-CD44 Network s
in Tumor Therapy

Theodoros T. Karalis and Spyros S. Skandalis

Abstract Cancer is one of the leading causes of death worldwide. During tumor
development and progression, extracellular matrix is being intensively re-organized.
One of the most abundant molecules in the extracellular matrix is the polysaccharide
hyaluronan. Hyaluronan accumulation and high CD44 expression—the major
hyaluronan cellular receptor—correlate with higher malignant states of cancer
cells, increased incidence of metastases and poor prognosis of the patients in a
wide array of tumor types. Thus, hyaluronan interaction with CD44 emerges as an
important target for cancer treatment. In this chapter, recent efforts to exploit
hyaluronan/CD44 network for tumor therapy are being discussed. Overall, there is
a wide variety of tools available to target this system like anti-CD44 antibodies and
peptides, gene therapies against CD44, nanotechnology and modified-hyaluronan.
Initial in vivo evidence shows promising results, nominating hyaluronan/CD44
network targeting as a potent candidate to be introduced into clinical settings for
tumor therapy.

18.1 Introduction

Cancer is one of the most common-occurring diseases and one of the leading causes
of death worldwide. During cancer development, progression, and metastasis, the
extracellular matrix is extensively re-organized (Theocharis et al. 2016; Larsen et al.
2006). One of the most abundant molecules in the extracellular matrix is the
polysaccharide hyaluronan, which is differentially regulated during tumorigenesis.
Physiologically, hyaluronan is found in many tissues such as the skin and the
cartilage, where owing to its viscoelastic properties regulates several physiological
characteristics of the tissues as well as proper cell function. In cancer, hyaluronan
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metabolism is altered compared to normal tissues and contributes to acquirement of
tumor cell malignant properties (Skandalis et al. 2020; Karousou et al. 2017; Heldin
et al. 2019). One of the main hyaluronan receptors, CD44, is considered a tumor
promoter for most malignancies and plays significant roles in the regulation of
cancer cell survival, proliferation, migration, invasion, metastasis, differentiation
and drug resistance (Skandalis et al. 2019; Misra et al. 2011; Morath et al. 2016).
Given the important roles of hyaluronan and its receptor CD44 in cancer, targeting
this system opens a new avenue for the treatment of malignant diseases. Thereby,
here we summarize the latest developments in the field of hyaluronan/CD44 network
targeting for tumor therapy.

18.1.1 Hyaluronan Synthesis and Catabolism

Hyaluronan is a glycosaminoglycan consisting of repeating disaccharide units of
N-acetyl-glucosamine (GIcNAc) and p-glucuronic acid (GlcUA), bound through
alternate f1-3 and p1-4 linkages (Weigel 2015). Hyaluronan is synthesized in the
plasma membrane by specific enzymes termed hyaluronan synthases (HASes).
Three hyaluronan synthases have been described in the human genome, HASI-3,
which are encoded by distinct genes. HAS! is found in 19q13.41 (www.genecards.
org, GCID: GC19M054887), HAS2 in 8q24.13 (www.genecards.org, GCID:
GCO8M121594) and HAS3 in 16g22.1 (www.genecards.org, GCID:
GC16P069105). Currently there is no information regarding their protein structure,
but it is known that they have six transmembrane domains as well as UDP-sugar
binding regions (Weigel 2015). Although the three hyaluronan synthases are struc-
turally related they display different spatio-temporal expression and activities. For
example, higher expression of HAS1 can be found in adipose tissue and the ovary,
HAS?2 is highly expressed in the adipose tissue, while HAS3 is expressed in urinary
bladder, esophagus, and the lung (proteinatlas.org). Hyaluronan synthases synthe-
size hyaluronan of different molecular weights. Specifically, HAS2 synthesizes
hyaluronan with molecular weight higher than 2 x 10° Da, in contrast to HAS1
and HAS3 which produce hyaluronan ranging from 2 x 10° to 2 x 10° Da (Itano
et al. 1999). Furthermore, HAS1 displays the lowest catalytic activity compared to
the other HASes, while HAS?2 is less active than HAS3. Moreover, HAS1 exhibits
higher Km values for both UDP-GIcUA and UDP-GlcNAc compared to HAS2 and
HAS3 (Itano and Kimata 2002).

These membrane-embedded glycosyl-transferases utilize as substrates
UDP-GIcUA and UDP-GIcNAc which are derived from various metabolic pathways
inside the cells (Vigetti et al. 2012; Flores-Diaz et al. 1997). Accordingly, the
availability of UDP-sugars is a major factor that regulates hyaluronan biosynthesis
(Hascall et al. 2014; Rilla et al. 2013). This in turn suggests that specific microen-
vironment conditions regulate hyaluronan production, since it has been shown that
high glucose upregulates hyaluronan synthesis (Wang et al. 2014). Moreover, the
presence of Mg>* is crucial for hyaluronan production (Weigel 2015). The
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enzymatic activity of HASes is also regulated by their sub-cellular localization and
trafficking from and toward the plasma membrane, where hyaluronan is normally
synthesized. HAS1 is mainly localized in Golgi, HAS3 in Golgi and membrane
protrusions, while HAS?2 is found in the endoplasmic reticulum. The fact that HASes
mainly reside inside the cells suggests that there is a reservoir of enzymes ready to
translocate in plasma membrane and produce hyaluronan upon stimulation
(Torronen et al. 2014). Indicative of this notion is the finding that HAS3 synthesizes
a pericellular hyaluronan stroma after its translocation to the plasma membrane
(Deen et al. 2014). Furthermore, hyaluronan synthase activity is also regulated by
post-translational modifications such as O-GlcNAcylation (Vigetti et al. 2012), poly-
and mono-ubiquitinylation (Karousou et al. 2010; Mehic et al. 2017) and phosphor-
ylation (Vigetti et al. 2011), while homo- and hetero-dimerization of HAS2 with any
of the other synthases leads to concomitant increase in hyaluronan production
(Karousou et al. 2010; Bart et al. 2015).

HAS gene regulation is another crucial factor that controls hyaluronan production
by the cells in different tissues. Different transcription factors bind to the promoter of
each HAS gene and control their expression. Specifically, HAS! gene contains
binding elements for SP1/3, SMAD, and E2F-myc. HAS? is regulated by the binding
of CREB, NF-kB, RAR, STAT3, YY1, ZEB1, E2F-myc, and SP1, while HAS2-
AS1 encoding—a long non-coding RNA that also regulates hyaluronan production
by HAS2—is controlled by NF-kB, SP1/3, SMAD and HIFla. Finally, HAS3
expression is controlled by binding of AN-p63, NF-«kB, C/EBP and SPI in its
promoter regions (Heldin et al. 2019).

Furthermore, hyaluronan synthesis is tightly regulated by several growth factors
that by inducing intracellular signaling pathways control the expression of several
HAS isoforms. The effect of each growth factor on hyaluronan synthesis is cell- and
tissue-type-specific. Such growth factors include PDGF-BB, TGF-f, TNFa and
IL-1, among others (Heldin et al. 2019).

Hyaluronan amount in the tissues is also modulated by catabolism from specific
hyaluronan-degrading enzymes termed hyaluronidases (HYALs). In human,
hyaluronan is recycled with high rates. Almost one-third of the total hyaluronan
amount can be found in the skin and its half-life ranges from one to one and a half
day (Pandey et al. 2008). Hyaluronan in the tissues has initial size about
1000-10,000 kDa and is degraded in the extracellular space in smaller fragments
(10-100 kDa) (Fraser et al. 1997). Next, most of these generated fragments are
drained through the lymphatic system and degraded in the lymph nodes. The
remaining fragments enter the bloodstream and are finally removed by the liver,
kidneys, and spleen (Pandey et al. 2008).

In the human genome, several hyaluronidase genes have been found and are
encoded by different genes. HYAL-1 and HYAL-2 are widely expressed in several
tissues.

HYAL-2 bears a glycosyl-phosphatidyl-inositol (GPI) tail which anchors the
protein to the outside of plasma membrane mainly in lipid rafts, together with
hyaluronan receptor CD44. HYAL-3 function despite its wide expression has not
been fully deciphered (Shuttleworth et al. 2002; Flannery et al. 1998), HYAL-4
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degrades chondroitin sulfate (CS) chains, while PHYAL-1 is a pseudogene and is
not expressed in human. PH-20/SPAMI is a hyaluronidase that is expressed in the
testis and displays significant hyaluronan degrading activity (Cherr et al. 2001; Baba
et al. 2002). Until recently, the widely recognized model for hyaluronan degradation
suggested that hyaluronan residing in the extracellular space is degraded initially by
HYAL-2 in 20 kDa fragments which then enter the cell by endocytosis through
caveolae pathways in endosomes and transported to lysosomes for further degrada-
tion to disaccharides by HYAL-1 and exoglycosidases (Montanari et al. 2018).
Recently, two new hyaluronidases that need to fit into the scheme of hyaluronan
catabolism were discovered, HYBID/CEMIP/KIAA1199 and TMEM2. The tran-
scription and translation of CEMIP/KIAA1199 gene produces a 153 kDa protein that
contains a 30 amino acid N-terminal domain that is required for hyaluronan degra-
dation (Yoshida et al. 2013b). Moreover, it contains seven N-glycosylation sites, one
G8 domain, two GG, and four PbH1 regions. The GG regions seem to be implicated
in the process of hyaluronan degradation, G8 domain in interaction with other
proteins and PbH1 in poly-saccharide hydrolysis (Guo et al. 2006; He et al. 2006;
Birkenkamp-Demtroder et al. 2011; Yoshida et al. 2013a). Hyaluronan degradation
by HYBID is performed by endocytosis in clathrin-coated vesicles with acidic pH,
while the resulting hyaluronan fragments are released in the extracellular space
(Yoshida and Okada 2019). The TMEM?2 gene product is a transmembrane protein
of 154 kDa. The hyaluronidase TMEM?2 contains one G8, one GG, and three PbH1
domains in the extracellular region, a transmembrane region, and a cytoplasmic tail
(Yamaguchi et al. 2019). In contrast to HYAL-1/-2 which degrade hyaluronan in
acidic pH, TMEM?2 has optimal pH of enzymatic activity at 6—7. TMEM?2 is located
in plasma membrane and degrades extracellular hyaluronan in fragments of inter-
mediate size, which then are endocytosed and degraded further in the lysosomes.
The enzymatic activity of TMEM2 requires Ca®* as a co-factor (Yamaguchi et al.
2019; Yamamoto et al. 2017). Finally, hyaluronan can be degraded by
non-enzymatic ways by the action of reactive oxygen species (ROS) produced by
diverse cellular metabolic pathways (Soltes et al. 2006; Agren et al. 1997).

18.1.2 CD44

Hyaluronan synthesized in the plasma membranes is subsequently extruded to the
extracellular space where it can interact with several extracellular proteins, such
as the proteoglycan family hyalectans, or plasma membrane receptors, and thus
regulate several cell functional properties. The hyaluronan receptors discovered
so far include CD44 (Cluster of Differentiation 44), RHAMM (Receptor
for Hyaluronan-Mediated Motility), HARE/STAB2 (Hyaluronic Acid Receptor
for Endocytosis/Stabilin-2), Laylin, Stabilin-1 and LYVE-1 (Lymphatic Vessel
Endothelial Hyaluronic Acid Receptor 1).

The major and best characterized receptor for hyaluronan is CD44, which is
expressed in various cell types and tissues. CD44 gene is located in 11pl3
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(genecards.org) and its transcript mRNA is subjected to alternative splicing which
after translation leads to encoding of several different isoforms of the receptor.
Human CD44 gene contains 19 exons, 10 standard (S1-10) and 9 variants
(V2-10). The S1-10 exons are retained in all CD44 isoforms. CD44s (CD44
standard) isoform does not contain any of the V2-10 exons, while alternative
splicing of V2-10 gives rise to CD44v (CD44 variants). From the mRNA translation
the final product is a transmembrane protein with an extracellular region containing a
LINK domain—which is responsible for hyaluronan/CD44 interactions—and a
stalk-like domain—in which the exons V2-V10 are introduced—a transmembrane
region, and a small cytoplasmic tail. The extracellular domain is modified by O- and
N-glycosylations, while specific CD44 isoforms, such as CD44v3, bear covalently
bound glycosaminoglycan chains (chondroitin sulfate or heparan sulfate chains),
contributing further diversity to the resulting proteins. The cytoplasmic tail of CD44
despite not containing intrinsic kinase activity regulates several signaling pathways
through interactions with cytoplasmic proteins such as Src, ERM (Ezrin, Radixin,
Moesin) and IQGAP1 (Zoller 2011; Skandalis et al. 2010). Moreover, CD44 intra-
cellular domain can be cleaved by y-secretase and translocated to the nucleus where
it regulates the expression of several genes (e.g., MMP9) (Miletti-Gonzalez et al.
2012). Apart from cellular signaling, CD44 can also participate in the endocytosis of
hyaluronan, leading to its degradation (Thankamony and Knudson 2006; Skandalis
et al. 2020).

18.2 Roles of Hyaluronan-CD44 Network in Tumors

Apart from the diverse roles of hyaluronan and its receptor CD44 in physiological
processes like embryogenesis and cartilage function they play significant roles in
tumor development and progression. In tumors, hyaluronan creates a highly
hydrated extracellular matrix with specific physicochemical properties which allows
cancer cells to proliferate and migrate. Moreover, hyaluronan synthesized by tumor
stromal cells or cancer cells themselves, engages CD44 on the surface of cancer cells
to regulate biological processes like growth/survival, epithelial-to-mesenchymal
transition (EMT), differentiation, invasion, metastasis, drug resistance and cancer
stem cell properties.

18.2.1 Growth/Survival

For tumors to successfully form, cancer cells need to deal with several stressful
events, such as anchorage-independent growth, hypoxia and limited nutrient avail-
ability. Therefore, it is critical for cancer cells to take advantage of physiological
molecular mechanisms and pathways allowing them to cope with such stressful
events. One of the major cellular receptors correlated with survival and
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anti-apoptotic signaling in cancer cells is the hyaluronan receptor CD44. CD44
regulates the expression and activation of proteins involved in resistance to apoptosis
and cell growth like Fas, caspase 3/9, Bcl-x1/Bak, Akt, pRb and Bcl-2 (Lakshman
et al. 2004; Yasuda et al. 2001; Park et al. 2012b). For example, overexpression of
CD44s, CD44v3-10, and CD44v8-10 in human colon cancer cells successfully
attenuated etoposide-induced cell death (Lakshman et al. 2004). On the other hand,
inhibition of CD44 expression in colon carcinoma cells reduced the expression of
Bcl-2, Bcel-xL, while simultaneously increased the expression of apoptosis proteins
Bax and caspase-3/8/9 (Park et al. 2012b). Furthermore, CD44 controls downstream
activation of Akt, a major survival pathway, and cell cycle-regulating proteins p21
and pRb in many types of cancer cells, like breast, colon and lung cancer cells
(Lakshman et al. 2004). In lung cancer cells, interaction of hyaluronan with CD44
reduced Fas expression and subsequent Fas-mediated apoptosis (Yasuda et al. 2001).
In chronic lymphocytic leukemia (CLL) patients CD44 was found to promote cancer
cell survival. The crucial importance of CD44 in CLL was further certified by the
fact that CD44 knock-down reduced survival even in Akt-overexpressing cells. In
that model, CD44 regulated the expression of MCL1 anti-apoptotic protein through
Akt and Erk pathways (Fedorchenko et al. 2013). Hyaluronan engaged to CD44 also
induced phosphorylation of FAK, which associates with PI3K to protect against
apoptosis (Fujita et al. 2002). Furthermore, hyaluronan-CD44 interaction activated
ErbB2 signaling through Hsp90, cdc37, p110 and p85 proteins (Chanmee et al.
2015).

18.2.2 Epithelial-to-Mesenchymal Transition (EMT)
and Differentiation

Epithelial-to-mesenchymal transition is a dynamic process that cancer cells utilize in
order to metastasize. During this process, hyaluronan synthase expression is induced
and hyaluronan is synthesized to large amounts. Moreover, CD44 has been found to
be overexpressed in mesenchymal cancer cells and its high expression correlates
with a more undifferentiated phenotype (Misra et al. 2011; Heldin et al. 2014). In
breast cancer, EMT correlates with poor prognosis and intriguingly, breast cancer
cells with mesenchymal and more malignant phenotype express higher amounts of
CD44, which also displays high hyaluronan-binding capacity (Bernert et al. 2011;
Heldin et al. 1996). In breast epithelial cultures, TGF-p-induced EMT depends on
the expression of HAS2. Specifically, TGF-p induces Smad and p38 MAPK path-
ways to upregulate HAS2 expression (Porsch et al. 2013). Moreover, HAS2
overexpression has been shown to promote the malignant phenotype via suppression
of E-cadherin and translocation of pB-catenin to the nucleus, signaling events that take
place during EMT (Zoltan-Jones et al. 2003; Koyama et al. 2007). Interestingly,
switching between CD44v isoforms to CD44s through alternative splicing promoted
EMT by suppression of E-cadherin through PI3K/Akt pathways. Inhibition of
splicing activity that produced CD44v occurred through downregulation of epithelial



18 Exploiting Hyaluronan-CD44 Network in Tumor Therapy 463

splicing regulatory protein 1 and 2 (ESRP1 and 2) by transcription factors Snaill,
Zebl, and Zeb2 (Reinke et al. 2012). Expression of CD44 and its interaction with
hyaluronan also regulate differentiation of aggressive cancer cells like acute myeloid
leukemia cells, thus downregulating their aggressive properties (Solis et al. 2012).

18.2.3 Invasion/Metastasis

Accumulation of hyaluronan as well as high CD44 expression in the cancerous
tissues has been widely correlated with advanced incidence of invasion and metas-
tasis of various types of cancer cells. CD44 interacts with several growth factor
receptors like ErbB2 and PDGFR and its interaction with hyaluronan regulates their
signaling activity (Bourguignon et al. 1997; Ghatak et al. 2005; Li et al. 2000).
Binding of hyaluronan induces CD44 clustering, which activates downstream sig-
naling pathways in a cell- and tissue-dependent manner. This clustering was critical
for MMP9 activation and subsequent activation of TGF-, which in turn induced
cancer cell invasion and metastasis (Yu and Stamenkovic 1999). Moreover, CD44
interacted with MT1-MMP—a major metalloproteinase responsible for extracellular
matrix degradation during invasion and metastasis—to enhance its activity. In turn,
MT1-MMP enhanced the shedding of CD44 variants and promoted cancer cell
invasiveness (Kajita et al. 2001; Stamenkovic and Yu 2009; Mori et al. 2002).
Hyaluronan fragments also have a functional role during invasion and metastasis.
Specifically, hyaluronan dodecasaccharides by engaging CD44 induced secretion of
CXCL1, to enhance endothelial cell sprouting, which could be critical for tumor
angiogenesis, a key process in metastasis (Takahashi et al. 2005). Hyaluronan is also
synthesized by stromal cells. This stromal cell-derived hyaluronan engaged CD44v6
in the surface of colon tumor cells to sustain PI3K signaling in a positive CD44v6/
PI3K loop and promote invasion (Misra et al. 2011).

18.2.4 Drug Resistance

One of the main properties that cancer cells acquire during tumor development is
resistance to several drugs. Drug resistance in the tumors is thought to be acquired
through different mechanisms. First, a subpopulation of cells with pre-existing
potential for drug resistance could be present inside a tumor. Second, drugs utilized
for cancer therapy can induce resistance by cancer cells. In both cases, cancer cells
upregulate the expression of proteins, like multi-drug resistance proteins (MDRs)
that allow them to evade drug-induced apoptosis. Intriguingly, there is extensive
evidence correlating CD44 expression with resistance to radiotherapy or chemother-
apy of various types of cancer cells (Yaghobi et al. 2021). CD44 physically interacts
with P-glycoprotein to enhance drug resistance in cancer cells (Miletti-Gonzalez
et al. 2005). In malignant cells, decrease in CD44 expression ameliorated drug
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resistance (Xu et al. 2015). Specifically, in hepatocellular carcinoma, inhibition of
CD44 sensitized cancer cells to sorafenib (Fernando et al. 2015). Paclitaxel-resistant
ovarian cells also showed increased expression of CD44 (Gao et al. 2015). It is
important to note that interaction of high molecular weight hyaluronan with CD44
increased MDR expression and subsequently led to drug resistance, while low
molecular weight hyaluronan-CD44 interaction led to MDR internalization, signi-
fying that not only the presence of hyaluronan but also its size is critical for this
process (Zoller 2011). Moreover, hyaluronan through CD44 binding activated PI3K
signaling, which in turn induced MDR protein expression (Misra et al. 2005). In the
context of CD44v, CD44v3 targeting in head and neck squamous cell carcinoma
cells reduced resistance to cisplatin (Wang et al. 2007). Hyaluronan-CD44v3 inter-
action upregulates miRNA-302, enhanced Oct4-Sox2-NANOG signaling and
increased expression of MDRI, leading to development of chemo-resistance
(Bourguignon et al. 2012). CD44v3-hyaluronan interaction also regulated expres-
sion and activity of P300 which can in turn acetylate p-catenin and NF-kB-p65,
resulting in upregulation of MDRI1 expression (Zoller 2015). Interestingly, in pros-
tate cancer, knocking down the expression of CD44v6 enhanced chemotherapy
sensitivity (Ni et al. 2014).

18.2.5 Tumor Stem Cell Properties

In tumors, sub-populations of cancer cells, termed cancer stem cells (CSCs), have
been shown to be responsible for tumor recurrence after chemotherapy or radiother-
apy. Hyaluronan, like in normal stem cell niches, creates an ideal micro-environment
for CSCs survival, self-renewal, and maintenance. Importantly, hyaluronan receptor
CD44 is widely recognized as a stem cell marker (Skandalis et al. 2019).
CD44MEhCD24%°% populations isolated from tumors of the breast showed stem
cell properties, like self-renewal and tumor-initiating capacity (Shao et al. 2016; Li
et al. 2017b; Wei et al. 2012). Mechanistically, ANp63 induced the expression of
HAS3, HYAL-1, and CD44 to create a hyaluronan-rich environment that favored
stemness of breast cancer cells (Gatti et al. 2018). The importance of hyaluronan and
CD44 was further solidified by experiments in hyaluronan-based multilayer
nanofilms, where pancreatic cells grown in such conditions upregulated CD44v6
and form colonies (Lee et al. 2018). In pancreatic tumor cells, the tumor suppressor
KFL4 bound to CD44 promoter to block its expression and ameliorated cancer stem
cell properties and metastasis (Yan et al. 2016). On the other hand, targeting
hyaluronan with 4-methyl-umbelliferone—a widely utilized hyaluronan synthesis
inhibitor—promoted phagocytosis of hepatocellular CSCs (Rodriguez et al. 2018).
CD44 also activated Wnt/B-catenin pathway to upregulate FoxM1 and Twist, lead-
ing to enhanced stemness of lung adenocarcinoma cells (Su et al. 2016). Circulating
oral squamous carcinoma cells that display CD44 expression were able to form
spheres and displayed chemoresistance and self-renewal (Patel et al. 2016). For a
more comprehensive analysis of hyaluronan/CD44 roles in cancer stem cell proper-
ties, refer to our previous review (Skandalis et al. 2019).
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18.3 Hyaluronan/CD44 Network Targeting

Given the important roles of hyaluronan/CD44 network in tumor development,
progression, and metastasis, this system emerges as a potent pharmacological target.
Therefore, several efforts have been concentrated toward this purpose, such as
incorporation of hyaluronan on nanoparticles for specific delivery of drugs to
tumor cells, antibodies or peptides blocking CD44 actions and interactions, chem-
ically modified hyaluronan, and utilizing gene therapies (CRISPR/Cas9 or
sh/siRNAs) against CD44 (Fig. 18.1). Below, we describe recent advances in
pharmacological targeting of this system for cancer treatment (summarized in
Table 18.1).

Hyaluronan modified
Anti-CD44 Anti-CD44 drug carrier NPs

antibodies | | peptides Chemically modified
hyaluronan

Hyaluronan

X = X
CD44 XX
mRNAM Coas Drug release
si/shRNAs 9
oD% T
a rgene expression Y
€ a4 )
< CRISPR/Cas9|
L Il emiudeus e
4 } {
Growth/survival Cell cycle arrest Proliferation
EMT Apoptosis Migration
Invasion/Metastasis Differentiation Invasion
Drug resistance Stemness
Stemness Metastasis X Drug
o GlcNAc
e GIcUA

Fig. 18.1 Hyaluronan/CD44 network targeting approaches. Incorporation of hyaluronan on
nanoparticles for specific delivery of drugs to tumor cells, antibodies or peptides blocking CD44
actions and interactions, chemically modified hyaluronan and gene therapies targeting CD44
mRNA (CRISPR/Cas9 or sh/siRNAs against CD44)
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18.3.1 Nanomedicine

Nanomedicine therapies utilize targeted drug delivery approaches to specifically
target tumor cells and avoid adverse effects in normal tissues. Accordingly, there
are two types of targeted drug delivery. First, passive targeting, which takes advan-
tage of enhanced permeability and retention effect (EPR) in tumors. The EPR effect
allows for accumulation of drugs and nanoparticles in tumors that have distinct
architectural features from normal tissues, such as hyper-vasculogenesis, impaired
lymphatic drainage, and different abnormal interstitial pressures (Fang et al. 2011).
Second, active targeting, follows passive targeting to selectively deliver specific
drugs to cancer cells overexpressing the desired receptor, taking advantage of
receptor-substrate interactions (Danhier et al. 2010). Due to the important roles of
hyaluronan/CD44 interactions and the correlation between CD44 expression and
higher states of malignancy, hyaluronan is widely utilized in nanomedicine to
specifically target CD44-expressing cancer cells and cancer stem cells. In blood
circulation drug bioavailability and activity is altered by the body’s defense, through
chemical modification or binding to serum factors. In the last years, a “3S” transition
concept has emerged, which incorporates stability transition, surface transition and
size transition to overcome barriers in the delivery process. Hyaluronan therefore is
an excellent candidate to be incorporated to nanoparticles and drug carriers, since it
fulfills all three criteria due to its biocompatibility, biodegradability, and specific
targeting of CD44-expressing cancer cells (Zhong et al. 2020).

One of the main purposes of hyaluronan-coated nanoparticles is to specifically
deliver encapsulated drugs in cancer cells to enhance anti-tumor efficacy and avoid
adverse effects. Hyaluronan can decorate polyetheleneimine (PEI) biodegradable
nanoparticles of poly(lactic-co-glycolic) acid (PLGA) to deliver docetaxel specifi-
cally to lung cancer cells and inhibit their proliferation (Maiolino et al. 2015). Tumor
growth inhibition of lung cancer cells in vivo was also observed by using PLGA
hyaluronan-coated docetaxel nanoparticles without PEI, verifying the anti-cancer
efficacy of this strategy (Wu et al. 2017). In another study, docetaxel loaded in
chitosan-coated hyaluronan nanoparticles was more effective than free docetaxel
against CD44" breast cancer cells (Shabani Ravari et al. 2016). Hyaluronan
nanoparticles composed of branched cell-penetrating peptide B-mR9 could also
successfully deliver methotrexate to CD44" cells and exerted antitumor activity
(Yoo et al. 2020). Curcumin and celecoxib loaded in hyaluronan-coated
nanoparticles displayed in vitro toxicity and inhibited tumor growth, enhanced
survival of mice, induced apoptosis, and abrogated the formation of lung metastasis
of breast cancer cells (Liu et al. 2020). Tumor cells display higher levels of
glutathione. Taking advantage of this, hyaluronan-coated redox-sensitive micelles
were developed to aim CD44-expressing tumor cells and release the drugs inside the
target cells (Du et al. 2020b). Furthermore, dextran-modified quercetin-Cu(Il)/
hyaluronan nanoparticles with a natural PARP inhibitor could induce synthetic
lethality in triple-negative breast cancer cells and extended animal survival, without
displaying any adverse effects on normal organs (Cheng et al. 2021). Similarly, in
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triple-negative breast cancer cells conjugation of resveratrol and a chalcone to
hyaluronan enhanced their uptake (Shah et al. 2017). Doxorubicin was loaded in
hyaluronan-super paramagnetic iron oxide nanoparticles to achieve better uptake
and cytoplasmic release of the drug and subsequently enhanced apoptosis in triple-
negative breast cancer cells (Vyas et al. 2015). In addition, hyaluronan could
facilitate lipoplexes delivery in breast cancer cells that express CD44 (Surace et al.
2009). Recently, targeting mitochondrial pathways in cancer cells has emerged as a
promising strategy for tumor therapy. Indeed, hyaluronan nanomedicine utilizing a
berberine derivative and doxorubicin was able to target mitochondria and subse-
quently inhibited proliferation, migration, and enhanced apoptosis of triple-negative
breast cancer cells. Importantly, lung metastasis in vivo was abrogated after this
treatment. These effects were mediated by suppression of MMP-2/-9 activities and
induction of mitochondrial apoptotic pathways (Lin et al. 2021). Cisplatin can be
also loaded to hyaluronan-green tea catechin micellar nanocomplexes, to enhance its
efficacy against ovarian cancer cells, without causing side effects in vivo (Bae et al.
2017). In glioblastoma cells, hyaluronan-conjugated liposome nanoparticles effec-
tively delivered doxorubicin inside the cells and enhanced its anti-neoplastic func-
tion (Hayward et al. 2016). Paclitaxel is another drug that can be also delivered with
hyaluronan-nanoparticle complexes to treat CD44-positive colon cancer cells in
orthotopic mouse models (Zhu et al. 2018). Paclitaxel and curcumin encapsulated
in poly (acrylamide-co-acrylonitrile-co-vinylimidazole-co-bis(2-methacryloyl)
oxyethyl disulfide) (PAAVB) polymer-based intelligent platform coated with
hyaluronan, were able to promote adaptive anti-tumor immunogenicity and inhibit
immunosuppression of CD44-overexpressing breast tumor cells while simulta-
neously abrogating lung metastasis (Wang et al. 2021). Hyaluronan can also deco-
rate serum albumin conjugate-based nanoparticles to enhance drug delivery and their
cytotoxic effects on cancer cells expressing CD44 (Edelman et al. 2017). In addition,
promising results have been obtained by using hyaluronan-modified nanoparticles
for treatment of hematological tumors, where CD44 plays significant roles. Specif-
ically, doxorubicin encapsulated in lipoic acid-crosslinked hyaluronic acid
nanoparticles was used to inhibit tumor growth of multiple myeloma and acute
myeloid leukemic cells in vivo (Zhong et al. 2017).

The size of hyaluronan that may be used to coat nanoparticles is apparently
important. Specifically, hyaluronan nanoparticles coated with low molecular weight
hyaluronan displayed low CD44-binding activity, while high binding affinity was
displayed by high molecular weight hyaluronan-coated nanoparticles, suggesting
that high molecular weight hyaluronan is more suitable as a coating substance
(Mizrahy et al. 2011). Furthermore, high molecular weight hyaluronan-coated
nanoparticles displayed enhanced circulation time and better tumor targeting spec-
ificity than low molecular weight hyaluronan-coated nanoparticles (Mizrahy et al.
2014).

As already mentioned, CD44 serves as a major cancer stem cell marker. There-
fore, hyaluronan can be used to guide nanoparticle-drug conjugates to cancer stem
cells. To target prostate cancer stem cells, hyaluronan was used to decorate
cabazitaxel and silibinin co-encapsulated cationic liposomes to induce apoptosis
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and decrease cell migration (Mahira et al. 2019). Cis-dichlorodiamminoplatium
(II) (CDDP) glyconanoparticles were also coated with hyaluronan to deliver the
drug in vivo and suppress stem cell properties of prostate cancer cells (Jafari Malek
et al. 2014). For breast cancer treatment, co-delivery of salinomycin and curcumin in
hyaluronan-coated nanoparticles was achieved in CD44-expressing breast cancer
stem cells, inducing cell cycle arrest in G1 and inhibiting EMT (Zhao et al. 2020).
To target pancreatic cancer stem cells, hyaluronan was utilized to coat
diethyldithiocarbamate-copper complex nanoparticles. These nanoparticles were
able to impair sphere formation of pancreatic cancer stem cells, probably by induc-
ing the generation of ROS (Marengo et al. 2019). Nanoparticles can be delivered
also orally. Specifically, hyaluronan-decorated nanoparticles containing PTC209, a
BMI-1 inhibitor, were able to target colon cancer stem cells and abrogate tumor
growth in vivo (Xu et al. 2019).

Hyaluronan-coated nanoparticles can encapsulate phosphosensitizers, like Ceo6,
to deliver them in human colon cancer cells in vivo. After photodynamic therapy,
tumor growth was attenuated, while no side effects were observed (Gao et al. 2017).
Furthermore, co-administration of hyaluronidase with such nanoparticles induced
their uptake from tumor cells and enhanced their anti-cancer efficacy, probably by
increasing the enhanced permeability and retention (EPR) effect inside the tumor
(Gong et al. 2016). For triple-negative breast cancer treatment, photothermally
targeted hyaluronan-polyaniline (PANi)-imiquimod (R837, a TLR7 agonist)
nanoparticles were used to induce immune responses against the tumor
(Yasothamani et al. 2021). Interestingly, hyaluronan-decorated nanoparticles could
be effectively used to encapsulate and deliver hyaluronidase enzymes specifically to
the tumors together with doxorubicin to enhance its efficacy (Chen et al. 2018a).
Gold-nanoclustered hyaluronan nano-assemblies were also used as a platform for
photodynamic or photothermal cancer therapies, by delivering the photodynamic
therapy agent verteporfin in cancer cells. These nanoparticles displayed excellent
stability in the blood and were able to completely inhibit tumorigenesis while
displaying 100% survival rate (Han et al. 2016). Hyaluronan-conjugated zinc pro-
toporphyrin nanoprobes were also used for photodynamic therapy against colon
cancer and fibrosarcoma cells (Gao et al. 2021).

Among others, hyaluronan-coated nanoparticles can carry siRNAs or shRNAs
against specific proteins expressed in cancer cells. KRAS is a known oncogene with
no available small molecule inhibitors. To target KRAS hyaluronan-decorated
nanocarriers [poly(hexamethylene biguanide) and chitosan] bearing KRAS-si/
shRNA have been designed to specifically silence KRAS expression in CD44-
expressing cancer cells (Tirella et al. 2019). Moreover, chitosan nanoparticles
were conjugated with hyaluronan to target bladder cancer cells that expressed high
levels of CD44, to deliver siRNA against the Bcl-2 oncogene. These particles were
able to target bladder cancer cells in vivo and successfully interfere with the Bcl-2
expression (Liang et al. 2021). A new anti-cancer siRNA delivery system named by
the authors HPLR was manufactured with a siRNA-peptide core surrounded by lipid
bilayer, thin hyaluronan coating, and EGFR-targeted peptides to target EGFR and
CD44 overexpressing cells. This system was able to successfully deliver the siRNAs
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in subcutaneous liver tumors and inhibit their growth without displaying any
significant toxicity (Liang et al. 2019). Additionally, hyaluronan-conjugated
nanoparticles were utilized to deliver Glil siRNA in gastric cancer stem cells and
subsequently reduced migration, invasion as well as tumor spheroid and colony
formation (Yao et al. 2020).

Notably, nanoparticles can also be decorated with CD44-targeting peptides.
Indeed, A6 anti-CD44 peptide conjugated to polymersomal epirubicin enhanced
uptake and anti-cancer efficacy of epirubicin against multiple myeloma cells in vivo
(Gu et al. 2019). Furthermore, nanoparticles can be decorated with anti-CD44
antibodies. Multifunctionalized iron oxide magnetic nanoparticles with CD44 anti-
bodies were able to selectively target CD44-positive cancer cells (Aires et al. 2016).
In breast cancer cells, conjugation of saporin, a ribosome-inactivating protein, with
hyaluronan modified nanoparticles achieved intracellular release of saporin leading
to enhanced apoptosis (Ding et al. 2018). Hyaluronan-coated nanoparticles have
been also conjugated with AS1411 aptamer, to penetrate blood-brain barrier and
deliver docetaxel to CD44- overexpressing glioma cells. Delivery of docetaxel
through this pathway significantly attenuated the formation of spheroids and tumor
growth in vivo (Wang et al. 2019).

18.3.2 Antibodies

Different monoclonal antibodies have been raised against CD44 standard and variant
isoforms to be utilized for cancer treatment. One of the best-studied anti-CD44
monoclonal antibodies is RG7356 which binds to the constant region of CD44,
abrogating hyaluronan binding. In chronic lymphocytic leukemia (CLL), interrup-
tion of hyaluronan/CD44 interaction induced caspase-dependent apoptosis, with the
strongest effects being observed in ZAP-70* CLL cells both in vitro and in vivo
(D’arena et al. 2014). Mechanistically, RG7356 engages CD44 to induce its inter-
nalization in CLL cells, and subsequently decrease ZAP-70, which was found to be
complexed with CD44 (Zhang et al. 2013). RG7356 is also effective against triple-
negative breast cancer cells in mice xenografts by modifying the MAPK pathway
(Weigand et al. 2012). Response to treatment with RG7356 in xenograft models and
colorectal cancer patients depended on the presence of CD44s isoform, suggesting
that only treatment in patients with CD44s expression could be effective (Birzele
et al. 2015). RG7356 mechanism of function also involves activation of the immune
system. Specifically, RG7356 treatment induced secretion of chemo-attractants
responsible for recruitment of immune cells, such as macrophages, to the tumor,
through activation of MAPK. Moreover, RG7356 activated antibody-dependent
cellular phagocytosis (ADCP) of triple-negative breast cancer cells by macrophages
(Maisel et al. 2016). In clinical trials, ®*Zirconium-labeled RG7356 was taken up by
several tissues such as the spleen, liver, bone marrow, lung, and kidney in a dose-
dependent manner in patients (Jauw et al. 2018), while selectively targeting CD44*
breast and pancreatic cancer cells in monkeys (Vugts et al. 2014). Moreover, phase
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1 clinical trials with RG7356 in patients with advanced, CD44-expressing solid
tumors showed that it was well-tolerated, with most side effects being mild such as
fever, headache, and fatigue. Its clinical efficacy was modest with 21% of patients
experiencing disease stabilization (Menke-Van Der Houven Van Oordt et al. 2016).
Furthermore, phase 1 studies in acute myeloid leukemia patients verified the mild
adverse effects, although only 2 out of 44 patients showed response in the treatment
suggesting that this antibody cannot be utilized as monotherapy (Vey et al. 2016).

Another popular anti-CD44 antibody is A3D8. On human acute myeloid leuke-
mia (AML) cells, A3D8 treatment caused GO/G1 cell cycle arrest through induction
of p21, p27 and reduction of pRb and CdK2/4 activities. Furthermore, JNK protein
expression was reduced leading to reduction in c-Jun phosphorylation after A3DS§
treatment (Zada et al. 2003; Gadhoum et al. 20044, b; Li et al. 2016). A3DS, apart
from inducing apoptosis and inhibiting cell proliferation, induced differentiation of
the AML cells (Gadhoum et al. 2004a). This apoptotic effect was caused by A3D8-
induced CD44s lipid raft clustering leading to Fas aggregation and subsequent
caspase-8 activation (Qian et al. 2012). It is important to note that bone marrow
stromal cells could protect acute myeloid leukemia cells from A3D8-induced apo-
ptosis through activation of PI3K/Akt signaling to down-regulate p27 (Chen et al.
2015). In these studies, the effects of A3D8 were verified by another anti-CD44
antibody, H90. In chronic lymphocytic leukemia, A3D8 abrogated CLL cell viabil-
ity and in vivo caused reduction of MCLI1 protein and activation of caspases
(Fedorchenko et al. 2013). In human erythroleukemia cells, A3D8 also evoked cell
growth inhibition and caspase-independent apoptosis-like cell death, through dis-
ruption of mitochondrial membrane potential and release of AIF but not cytochrome
¢, which is typical for caspase-dependent apoptosis. This type of cell death involves
activation of PARP and calpain, since their inhibition ameliorated A3D8-induced
cell death (Artus et al. 2006). CD44 ligation by A3D8 was also able to arrest ovarian
cancer stem cells in S phase and induced apoptosis (Du et al. 2013).

The monoclonal antibody F77 was developed to recognize glycolipids and
O-glycosylation on prostate cancer cell proteins. F77 antigen was finally identified
to be glycosylated CD44v10 isoform. On functional level, F77 induced apoptosis in
prostate cancer cells. Moreover, this antibody can be utilized in ELISA assays to
identify this glycosylated CD44v10 isoform in prostate cancer cells and serum of
patients with prostate cancer (Chen et al. 2018b).

Hermes-1 is an anti-CD44-specific monoclonal antibody that specifically inter-
rupts hyaluronan/CD44 interactions. When compared with other anti-CD44 anti-
bodies, like Hermes-3, J173, and 50B4, Hermes-1 was the only one capable to
completely inhibit binding of hyaluronan by colorectal carcinoma cells. It is impor-
tant to note that Hermes-1, Hermes-3, and J173 inhibited the adhesion of the cells on
laminin and collagen, while 50B4 did not have any effect (Ishii et al. 1993). Hermes-
1 can be also utilized to investigate differences between metastatic cells and cells
from the original tumor. Unexpectedly, utilizing Hermes-1, it was found that primary
human colon carcinoma cells expressed higher amounts of CD44 on their cell
surface, than the cells in lymph node metastases (Kubens and Zanker 1998).
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Inhibition of hyaluronan/CD44 interactions has been also achieved with IM7
monoclonal antibody. Despite not displaying any effect on colon carcinoma cell
growth in vitro, IM7 was able to inhibit liver metastasis in vivo, although tumor cell
colonies were detected in all of the livers even in mice free of nodules, suggesting
that IM7 probably delayed formation of metastases, rather than completely
inhibiting them (Ogoshi et al. 1998). In glioma cells, which synthesize high levels
of hyaluronan, IM7 decreased hyaluronan biosynthesis, and induced apoptosis
(Wiranowska et al. 2010). IM7 can be also delivered with chitosan polylactic acid-
coated nanoparticles to reduce its toxicity. This modified IM7 antibody was able to
reduce proliferation of ovarian cancer cells and control the development and pro-
gression of ovarian cancer in vivo (Yang et al. 2017). It is known that hyaluronan
fragments that engage CD44 can activate downstream NF-kB signaling in various
tumor types, which in turn promotes inflammation and tumorigenesis. IM7 by
inhibiting these interactions successfully reduced NF-kB activation in bladder cancer
cells (Fitzgerald et al. 2000). IM7 was also able to block adhesion of melanoma cells
on endothelial cells, a critical step during metastasis formation (Ota et al. 1995). IM7
can be also conjugated to ribosome inactivating protein saporin, to specifically target
CD44-expressing cancer cells. These modified antibodies can release saporin in the
target cell cytoplasm, which can then display its cytotoxic effects only on prostate
cancer cells with high CD44 expression (Bostad et al. 2014). IM7 also enhanced
natural killer cell activity (Tan et al. 1993), suggesting that CD44 targeting with
antibodies can enhance activation of immune system against cancer cells. In the
same study, different anti-CD44 antibodies were also studied, Hermes-1, S3 and S5,
but the same effect was only observed with S5 antibody. The effect of CD44 ligation
was also investigated with J173 and F10442 antibodies, where CD44 cross-linking
upregulated CD16-mediated lysis. Moreover, CD44 blocking with these antibodies
led to rapid increase of intracellular Ca** (Galandrini et al. 1994). Accordingly, 1173
activated MAPK signaling to enhance the killing activity of peripheral mononuclear
cells against cancer cells from Burkitt’s lymphoma and chronic myelogenous leu-
kemia (Ishizuka et al. 2008).

Several other less studied anti-CD44 monoclonal antibodies have been devel-
oped. The HI44a antibody effects were investigated in acute myeloid leukemia cells
derived from patients. Ligation of CD44 by Hl44a was able to induce differentiation
and apoptosis of AML cells, probably through inhibition of c-Myc expression (Song
et al. 2004). In colon cancer cells, engagement of CD44 by a specific antibody
reversed the resistance to anti-integrin antibody, altered cell morphology, and
enhanced apoptosis (Bates et al. 1998). U36 is another antibody that has been raised
to recognize CD44v6- expressing squamous cell-carcinomas (Van Hal et al. 1996),
but whether it can be used for treatment of these tumors remains to be investigated.
KMP1 is a CD44-specific antibody that shows significant anti-tumor effects against
bladder cancer cells. Specifically, KMP1 inhibited the bladder cancer cell prolifer-
ation, migration, and adhesion in vivo, while suppressed tumor growth in xenograft
models. Importantly, expression of the KMP1 epitope correlated with clinical
severity and prognosis of bladder cancer (Chen et al. 2018c). Anti-CD44 antibody
conjugated to oil liquid nanocapsules, aCD440”LNCs, to target pancreatic cancer
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stem cells, has also been developed. This technology displayed high uptake of these
nanoparticles by pancreatic cancer stem cells in vivo. Moreover, these nanoparticles
when coupled with paclitaxel were able to enhance their anti-tumor efficacy
(Navarro-Marchal et al. 2021). A defucosylated anti-CD44 antibody, 5-mG2a-f,
also significantly reduced tumor development in oral squamous cell carcinoma
xenograft models (Takei et al. 2020). In another study, the authors developed four
anti-CD44 monoclonal antibodies, namely, P4G9, P3D2, P3A7 and P3G4 that
recognized unglycosylated and conserved regions of CD44 ectodomain. P3D2 was
able to inhibit breast cancer tumorigenesis in animal models (Lusche et al. 2021).
Since CD44v7 is expressed in many human cancers, an antibody raised against
CD44v7 is to be utilized as a diagnostic and therapeutic tool in clinical settings
(Borgya et al. 1995). Whether this antibody is useful remains to be investigated. An
antibody raised against CD44v9, mAb 44-IV was able to inhibit liver metastasis of
human colon cancer cells by blocking their adhesion to the capillaries, a critical step
in the metastatic cascade (Seki et al. 1997).

18.3.3 Peptides

Apart from antibodies, peptides have been also used to target CD44 and regulate
hyaluronan binding capacity. Peptides can be used for detection of CD44-
expressing tumor cells inside the tissues. Several peptides against CD44 have been
described utilizing phage display libraries (Park et al. 2012a). For example, RP-1, a
12-mer peptide isolated from a phage peptide library, binds to CD44" gastric cancer
cells and allows their detection inside the tissues (Zhang et al. 2015). Importantly,
RP1 peptide binding can predict prognosis of gastric cancer patients (Li et al. 2017a).
Another 7-mer peptide also isolated from phage display library, termed CV-1, was
able to detect CD44v3-v10 protein expression in gastric cancer cells and tissues
(Zhang et al. 2016). Similarly, a phage displays 15 amino acid peptide PFT marked
CD44v6-expressing prostate cancer stem cells (Peng et al. 2017). Polyvalent-
directed peptide polymer (PDPP) specifically traced CD44-expressing breast cancer
stem cells (Cho et al. 2015).

A widely studied peptide against CD44 is A6. A6 peptide is derived from uPA,
but it does not bind to uPA receptor (uUPAR) nor interferes with uPA/uPAR interac-
tions. Importantly A6 did not cause any significant toxicity in animals. Moreover,
A6 showed efficacy and exceptionally good safety profile in Phase la, 1b and
2 clinical trials. In chronic lymphocytic leukemia, A6 displayed significant toxicity
against B-lymphocytes expressing ZAP-70 (Finlayson 2015). A6 peptides loaded
with reduction-sensitive polymersomal vincristine sulfate targeted CD44-expressing
acute myeloid leukemia cells and reduced the leukemia burden in the circulation,
bone marrow, liver, and spleen, while extending survival of mice (Gu et al. 2021).
A6 also inhibited migration of ovarian and breast cancer cells. Mechanistically, A6
regulated CD44-mediated adhesion to hyaluronan and the activation of downstream
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FAK and MAP/ERK signaling pathways. In vivo treating mice with A6 inhibited the
metastasis of melanoma cells to the lung (Piotrowicz et al. 2011).

Peptides that bind CD44v have been also developed. A peptide mimicking a
specific extracellular motif of CD44v6 reduced CD44v6-mediated activation of
c-Met and VEGFR-2. Treatment with this peptide in vivo reduced angiogenesis in
tumors, suggesting that targeting the co-receptor functions of CD44 is another viable
possibility (Tremmel et al. 2009). Following the same notion, v6 peptide that
interfered with CD44v6 co-receptor functions with these receptors, blocked tumor
growth and metastasis in pancreatic tumors in mice, while extended their survival
time. Of note, the v6 peptide achieved higher inhibition than c-Met or VEGFR-2
inhibitors (Matzke-Ogi et al. 2016). NLN and NEW are peptides that bind CD44v6,
inducing its internalization to inhibit c-Met/Erk pathways, leading to reduction of
cell migration, invasion, and metastasis. In vivo these peptides after conjugation
with KLA pro-apoptotic peptides successfully killed tumor cells and impaired tumor
growth and metastasis without displaying systemic side effects (Khan et al. 2021).

The FK506-binding protein-like (FKBPL) and a 24-amino acid-derived peptide
AD-01 exerted anti-angiogenic effects and reduced tumor growth in vivo, effects
that are dependent on the presence of CD44 (Valentine et al. 2011). Moreover,
FKBPL and AD-01 bound CD44 and reduced breast cancer cell migration, through
inhibition of Rac-1 activity, upregulation of RhoA and the actin-interacting proteins
profilin and vinculin (Yakkundi et al. 2013). Moreover, AD-01 treatment inhibited
mammosphere-forming capacity of breast cancer stem cells in vitro and reduced
tumor initiation in vivo. Specifically, AD-01 induced differentiation of breast cancer
stem cells, while reducing the expression of stem cell markers Nanog, Oct4, and
Sox2. Importantly when combined with DAPT—a Notch inhibitor—it caused sig-
nificant reduction of chemotherapy and radiotherapy resistance in breast cancer stem
cells McClements et al. 2013).

CD44, apart from binding hyaluronan, can also interact with other proteins like
collagen. Consequently, there are also peptides taking advantage of collagen/CD44
interactions. Peptides derived from collagen type IV incorporated to liposomes
bearing doxorubicin targeted CD44% melanoma cells and reduced tumor size
(Ndinguri et al. 2012). Moreover, taking advantage of pro-MMP9 and CD44
interactions, P3 and P6 peptide were prepared from PEX9 domain of pro-MMP9,
and were shown to reduce chronic lymphocytic leukemia cell adhesion to
pro-MMP9 and thus abrogated chemotaxis and transendothelial migration (Ugarte-
Berzal et al. 2014). The peptide PCK3145 induced CD44 shedding by increasing
MT1-MMP while decreasing MMP9 secretion. PCK3145 also abrogated adhesion
of fibrosarcoma cells on hyaluronan, thus antagonizing tumor metastatic processes
(Annabi et al. 2005). ASG27 peptides derived from laminin could also bind CD44v3
and CD44v6, and could be conjugated to particles bearing specific siRNAs. Intro-
duction of such particles in vivo inhibited tumor growth by lung adenocarcinoma or
ovarian carcinoma cells (Golan et al. 2016). A5SG27 peptide blocked melanoma
metastasis by inhibiting the binding of FGF2 in the heparan sulfate chains of
CD44v3, and thus reducing bioactivity of FGF2 (Hibino et al. 2005). C21, a
C-terminal peptide of thrombospondin-4 competed for osteopontin and hyaluronan
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binding to CD44, but its effect on tumor cells remains to be investigated
(Sadvakassova et al. 2009). Another CD44-binding peptide (CD44BP) added to an
engineered matrix showed significant anti-tumorigenic effect, as evidenced by
reductions in tumor sphere formation in vitro (Yang et al. 2013).

Another interesting approach was synthesizing CD44 cytoplasmic tail peptides
bearing phosphor-Ser®*> which were conjugated to penetration sequences in order to
enhance plasma membrane translocation. Such peptides blocked CD44-mediated
cell migration without affecting hyaluronan binding or CD44 expression (Peck and
Isacke 1998). CD44 could be used also as an antigen to be recognized by immune
cells for cancer treatment. Specifically, CD44-derived peptides could function as
immunogens to sensitize dendritic cells and enhance their anti-tumor activities
against prostate cancer stem cells that expressed high CD44 levels in vitro and
in vivo (Wang et al. 2020).

18.3.4 Chemically Modified Hyaluronan

Hyaluronan can be modified in several different chemical groups to inhibit binding
to CD44, affect tissue architecture and to be utilized in hydrogels and as a scaffold
for drug carriers. Sulfhydryl (-SH) modified hyaluronan is utilized to form hydrogels
to be used as drug-loaded implant for chemotherapeutics, photosensitizer and
photothermal reagent in chemotherapy, photodynamic and photothermal therapy
against tumors (Xu et al. 2021). Hyaluronan modification with Au-Ag alloy can be
used in nanoparticles that allow for the sensitization of breast cancer cells in
radiotherapy, since ionizing radiation releases toxic Ag* and enhances production
of OH™ in tumor sites (Chong et al. 2020). High molecular weight hyaluronan can be
also modified with a hydrazide group and bisphosphonate (BP) for selective
targeting of CD44 expressing cancer cells (Varghese et al. 2009). Notably,
hyaluronan—a non-sulfated glycosaminoglycan—has been modified with sulfate
groups which allowed simultaneous targeting of CD44 and P-selectin, to effectively
target CD44*P-selectin® cancer cells (Bhattacharya et al. 2020). Hyaluronan can be
also modified with poly(lactic-co-glycolic acid) to produce highly stable and GSH
sensitive micelles. Loading of these complexes with transferrin-targeted
nanoformulated AUY922 eased their uptake by brain tumor cells and induced
caspase-dependent cleavage of the apoptosis marker PARP followed by
upregulation of p53. Moreover, this complex was drastic against tumor growth
in vivo, without displaying any toxicity to other major organs (Debele et al. 2021).
B-Cyclodextrin-modified hyaluronan with drug conjugates was able to exert signif-
icant toxicity against lung and prostate cancer cells with high expression of CD44,
while on the other hand showed no toxicity against normal cells with low CD44
expression (Bai et al. 2020).
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18.3.5 Gene Therapies

A promising strategy to target hyaluronan/CD44 network in tumors is to silence the
expression of CD44 gene, with specific sSiRNA and/or shRNA or the most recently
developed CRISPR/Cas9 system.

Introduction of a CD44-specific siRNA in lung cancer cells reduced the expres-
sion of the stem cell-related genes CXCR4 and POUSF genes after TGF-f1/TNFo
treatments but failed to reverse EMT gene signature (Nurwidya et al. 2017). A
recombinant adenovirus bearing CD44 shRNA was also able to inhibit cell prolif-
eration, migration and invasion, while induced apoptosis of colon cancer cells. These
adenoviral particles inhibited Akt and GSK-3p signaling pathways. Furthermore, the
expression levels of anti-apoptotic proteins Bcl-2 and Bcl-xL were reduced, while
the apoptotic proteins Bax, cleaved caspase-3/—9 and PARP were increased in colon
cancer cells treated with the adenovirus (Lee et al. 2017). Targeted deletion of
CD44v6 with specific sShRNA in colon cancer cells also reduced the adenoma
growth in vivo through interruption of hyaluronan/CD44v6/pErbB2/Cox-2 pathway
(Misra et al. 2009). In triple-negative breast cancer cells, knock-down of CD44 with
shRNA vectors significantly suppressed proliferation, colony formation, and inva-
sion (Zhou et al. 2018). Doxorubicin resistance is a major caveat in the treatment of
breast cancer. Targeting of breast cancer cells with CD44 siRNA in combination
with doxorubicin treatment effectively limited tumor metastasis, proliferation, inva-
sion, migration, and induced apoptosis in triple-negative breast cancer cells, signi-
fying the importance of targeting CD44 to overcome drug resistance (Vahidian et al.
2020). Targeting of CD44-expressing breast cancer cells can be also performed with
CD44-targeted aptamer Aptl. This aptamer conjugated to liposomes with encapsu-
lated CD44 siRNA was able to successfully target CD44-expressing breast cancer
cells to silence CD44 in vitro and in vivo (Alshaer et al. 2018). In another study, the
authors utilized biodegradable poly b,L-lacticied-co-glycolide acid nanoparticles
(PLGANPs) to deliver FAK and CD44 shRNAs in ovarian cancer cells in vivo,
since both FAK and CD44 have active roles in tumor angiogenesis and cancer
metastatic processes. Double knock-down of both FAK and CD44 reduced tumor
size, inhibited angiogenesis, reduced proliferation and induced apoptosis (Zou et al.
2013).

CRISP/Cas9 technology in contrast to siRNA or shRNA systems offers silencing
capacity of a specific gene by completely removing the target gene from the host
genome. In osteosarcomas, high expression of CD44 predicts poor survival and
higher incidence of metastases in patients. Targeting CD44 with CRISPR/Cas9
system in metastatic osteosarcoma cells abrogated the proliferation and spheroid
formation in 3D cultures as well as migration and invasion (Liu et al. 2018).
Furthermore, in multi-drug-resistant osteosarcoma cells, silencing of CD44 with
CRISPR/Cas9 system could also enhance drug sensitivity (Xiao et al. 2018).
Although CD44 seems to play an important role in tumor growth, CD44 silencing
in vivo with CRISP/Cas9 in HAS3-overexpressing stromal fibroblasts or CD44
knock-down with shRNA in breast cancer cells was not able to inhibit tumor growth,
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in contrast with the reductions that were observed when hyaluronan production or
accumulation was inhibited (Zhao et al. 2019). This rather contradicting study points
out the context-dependent effects of hyaluronan and CD44 in several tumors. Given
the fact that in most breast tumors HAS2 has been most extensively studied, while
the role of HAS3 remains obscure, further studies are needed to clarify this discrep-
ancy. CD44 can be also indirectly targeted, as evidenced by CRISPR/Cas9 silencing
of Cosmc, an endoplasmic reticulum-localized chaperone that regulates protein
O-glycosylation. Cosmc knock-out inhibited protein expression of CD44,
confirming the notion that O-glycosylation is important for proper CD44 expression.
Of note, reconstitution of CD44 reversed the effects of Cosmc disruption on MAPK
signaling and breast cancer cell proliferation, verifying the important role of CD44
for breast tumor growth (Du et al. 2020a). In liver cancer stem cells, knock-out of
CD44 utilizing CRISPR/Cas9 system resulted in less malignant and more differen-
tiated tumors. Unexpectedly, CD44 silencing increased the expression of stem cell
markers Oct4, Sox2, and Nanog. This contradictory finding warrants further inves-
tigation as in these cells CD44 was predominantly nuclear and bound in promoter
regions of c-Myc and Sox2 (Han et al. 2015). The CRISPR/Cas9 system can be also
utilized to target specific variants of CD44. In gastric cells, CD44 exon v6 was
deleted, allowing for the rest of CD44 gene to be expressed. Removal of v6 exon
from CD44 sensitized gastric cancer cells to cisplatin and abrogated their self-
renewal (Lobo et al. 2020). In another study, utilizing CRISPR/Cas9 and
overexpression approaches, chimeric antigen receptors (CARs) that specifically
target CD44v6 from head and neck squamous cell carcinoma were expressed on T
cells. Targeting CD44v6 demonstrated a direct correlation of CD44v6 expression
and cytotoxic effects mediated from CAR T cells (Haist et al. 2021).

18.4 Conclusions

Conclusively, hyaluronan/CD44 network appears to offer an important target for
translation into the clinic to treat tumors. However, given the omnipresent localiza-
tion of hyaluronan in the body and ubiquitous expression of CD44 as well as their
importance in physiological processes, targeting this system needs to be approached
with caution. On the bright side, many of the hyaluronan effects depend on the
expression of CD44v isoforms that are expressed specifically by tumor cells. More-
over, while many of the processes controlled by hyaluronan/CD44 network overlap
with features of immune and inflammatory pathways, there are clear differences
between tumor cells and physiologic events that can be exploited, like the size and
interactions of hyaluronan found in cancerous tissues. Certainly, further research is
needed to clarify the exact roles of hyaluronan and CD44 in tumorigenesis, but the
evidence presented so far suggests that targeting of this system is a promising avenue
for the development of safe and effective cancer treatment regiments in the future.
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