
Chapter 14
The Role of Inflammatory Cells in Tumor
Angiogenesis

Roberto Tamma, Tiziana Annese, and Domenico Ribatti

Abstract Tumor growth depends on angiogenesis. The complex tissue environ-
ment surrounding tumor cells, which is composed of a variety of resident and
infiltrating host cells, secreted factors and extracellular matrix proteins, influences
tumor angiogenesis and progression. Moreover, the tumor microenvironment con-
tributes to determining therapeutic responses and resistance to therapy. The ability to
block tumor resistance is related to the understanding of the cellular and molecular
pathways activated in the tumor microenvironment. Novel emerging targeted ther-
apeutic strategies are based on the combination of different antitumor approaches
with the aim of resolving refractory tumors and improving cancer treatment
efficiency.

14.1 Tumor Angiogenesis

Healthy and pathologic tissue homeostasis requires an adequate supply of oxygen
and nutrients that is connected to efficient development of the vascular system.
Additionally, tumor cells to survive and proliferate need oxygen and nutrients and
consequently the closeness to blood vessels. Angiogenesis is the physiological
process through which new blood vessels form from pre-existing vessels (Carmeliet
and Jain 2011). Generally, tumor development is an angiogenesis-dependent pro-
cess, and the angiogenetic process depends on the temporal coordination of factors
and related pathways needed for the establishment of stable channels to provide a
supply to tumor cells (Weis and Cheresh 2011). It has been well established that
during cancer progression, the interactions between tumor cells and inflammatory
cells are closely associated with each other and with angiogenesis (Wang et al.
2019a).
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The growth of solid tumor mass, its progression and the metastatic process, how it
is widely described, are strongly influenced by angiogenesis (Folkman 1971). In
1966, Warren and collaborators implanted melanoma nodules in experimental ani-
mals and observed a rapid vessel sprout toward the mass, the formation of new
capillaries, their penetration into the tumor, and the establishment of blood flow.
This phenomenon was more evident during tumor growth than in inflammation
processes (Warren and Shubik 1966). Research conducted by Folkman showed
that without appropriate vascularization and therefore oxygen and nutrient supply,
a tumor can grow limitedly to a size of a few millimeters and a cell content of
approximately a few thousand cells (Folkman 1971; Nishida et al. 2006). Under
these conditions, tumors induce a process recognized as an angiogenic switch in
which tumor cells acquire angiogenic properties, leading to the transition from a
quiescent to active endothelium and consequently the vascularization of the growing
cell mass (Baeriswyl and Christofori 2009; Ribatti et al. 2007). In tumor murine
models, this switch coincides with malignant transition of the growing mass and is
needed for malignant tumor progression (Lin et al. 2006; Folkman et al. 1989). It
became evident that some soluble factors released by the tumor induced the activa-
tion of angiogenesis. Folkman hypothesized that until the appropriate blood flow is
created, the tumor mass stops its growth and enters a dormant state (Folkman et al.
1971). On this basis, in the last 50 years, research on mechanisms related to tumor
angiogenesis has intensified to discover molecules usable as new targets in antican-
cer therapy. Tumor angiogenesis is a multiphasic process initiated directly by the
tumor when it reaches a size that makes it hypoxic, which further leads to cancer
development.

14.2 Tumor Microenvironment

It is well known that tumor cells develop in a complex tissue environment, the
so-called tumor microenvironment (TME), which includes cancer cells, stromal
cells, blood vessels, nerve fibers, extracellular matrix, and acellular components.
The TME is involved in tumor initiation as well as during tumor progression and
metastasis; furthermore, it also has important effects on therapeutic efficacy (Tamma
et al. 2019a). It is believed that although cancer initiation is due to the acquisition of
oncogenic mutations in cells, its progression depends on the surrounding cells that
are recruited and subsequently release many cytokines and chemokines (Tysnes and
Bjerkvig 2007). In 1863, Rudolf Virchow postulated the crosstalk between inflam-
mation and cancer (Virchow 1989), and 20 years after Stephen Paget illustrated the
“seed and soil” theory assuming that the choice of the target organ depends on the
interactions between metastatic tumor cells (the “seed”) and their organ microenvi-
ronment (the “soil”) (Paget 1989). One hundred years later, Hanahan and Weinberg
expanded from six to ten hallmarks of cancer and recognized the important role of
the TME in cancer development (Hanahan and Weinberg 2011). The main cytokines
and chemokines secreted by cells of the TME are involved in the regulation of
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angiogenesis, including proangiogenic factors, such as the vascular endothelial
growth factor (VEGF) family, fibroblast growth factors (FGFs), platelet-derived
growth factor (PDGF), angiopoietins (Ang), and hypoxia-inducible factor (HIF),
and angiostatic factors, such as angiostatin, endostatin, platelet factor 4 (PF4), and
thrombospondin-1 (TSP1) (Ucuzian et al. 2010).

14.3 Pro-Angiogenic Factors

VEGF The human VEGF family includes VEGF-A, VEGF-B, VEGF-C, VEGF-D,
and placental growth factor (PlGF) originating from different genes (Melincovici
et al. 2018). The VEGF family exerts its function by binding three transmembrane
tyrosine kinase receptors (RTKs), VEGFR-1 (FLT1), VEGFR-2 (KDR, FLK1), and
VEGFR-3 (FLT4). VEGFR-1 is expressed in monocytes, macrophages, hematopoi-
etic stem cells, vascular smooth cells, and leukemic cells. VEGFR-2 is expressed in
vascular endothelial cells, endothelial progenitor cells, and megakaryocytes,
whereas VEGFR-3 is expressed in lymphatic endothelial cells. VEGFs can also
interact with other proteins, integrins, cadherins, heparan sulfate proteoglycans, and
with the coreceptors neuropilin-1 and -2 (NRP-1 and NRP-2), which enhance
VEGFR-1 and VEGFR-2 action (Stuttfeld and Ballmer-Hofer 2009). VEGF-A is
the main component of the VEGF family and is produced by endothelial and
vascular smooth muscle cells, activated platelets, fibroblasts, lymphocytes, macro-
phages, and tumor cells. It is considered a crucial angiogenic stimulator involved in
numerous pleiotropic effects, including the proliferation and inhibition of apoptosis
of vascular endothelial cells (Ferrara and Davis-Smyth 1997; Gerber et al. 1998),
permeability, chemotaxis and activation of monocytes and hematopoietic stem cells,
and exerts neurotrophic and neuroprotective action (Storkebaum and Carmeliet
2004). Through alternative splicing, the VEGF-A transcript produces several
isoforms with proangiogenic or antiangiogenic activities, including VEGF-A121,
VEGF-A145, VEGF-A165, VEGF-A189, and VEGF-A206 (Yang et al. 2018a; Logue
et al. 2016; Dehghani et al. 2018). VEGFA165 is the most important both quantita-
tively and qualitatively. VEGF-B is involved in pulmonary angiogenesis after
chronic hypoxia and has been found in cardiac and skeletal muscle. VEGF-C and
VEGF-D are important lymphangiogenesis regulators (Rauniyar et al. 2018; Stacker
and Achen 2018). PlGF, discovered in the human placenta, is highly expressed in
trophoblast cells (Hang et al. 2013) and has also been found in the thyroid, lungs,
heart, and skeletal muscle (Maglione et al. 1991). It includes four different subtypes
that bind VEGFR-1, and the PlGF isoform also binds NRP-1 and NRP-2. PlGF
regulates the growth, migration, and survival of endothelial cells directly through
VEGFR-1 or indirectly through VEGFR-2/VEGF-A-mediated activation or forma-
tion of a PlGF/VEGF-A heterodimer (Autiero et al. 2003).

Fibroblast Growth Factors (FGFs) The human FGF family includes 22 members
involved in the regulation of endothelial cell differentiation, proliferation, migration,
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survival, and vessel maturation (Yun et al. 2010). FGF-1 and FGF-2, the first known
as acid FGF and the latter as basic FGF, mostly mediate the angiogenic response
(Motomura et al. 2008). FGF receptors (FGFRs) belong to the RTK superfamily.
Upon activation, they undergo dimerization and internalization and initiate large-
scale tyrosine phosphorylation responses and signaling cascades activating the Ras/
MAP-kinase pathway (Mathew et al. 2016).

Platelet-Derived Growth Factor (PDGF) The PDGF family comprises four
PDGF homodimers, namely, PDGF-AA, PDGF-BB, PDGF-CC, and PDGF-DD,
and one heterodimer, PDGF-AB (Fredriksson et al. 2004). PDGF was originally
isolated from platelets, but it has been expressed by numerous other cell types,
including epithelial and endothelial cells. PDGF receptors (PDGFRs) belong to the
family of RTKs and include PDGFRα and PDGFRβ, which are encoded by two
different genes (Gao et al. 2018). These receptors are expressed by fibroblasts,
pericytes, vascular smooth muscle cells, monocytes, macrophages, lymphocytes,
and mast cells and stimulate their proliferation and motility. PDGFs participate in
vascular development by acting on the proliferation and survival of vascular mural
cells (Olson and Soriano 2011).

Angiopoietins (Angs) The Ang protein family includes four members: Ang-1,
Ang-2, Ang-3, and Ang-4 (Lee et al. 2004); the first two are the major members
involved in vasculogenesis and vascular repair (Akwii et al. 2019). Angs bind to two
receptors belonging to the family of RTKs named Tie1 and Tie2. Tie2 is expressed
by endothelial and myeloid cells (Patan 1998). Tie1 is an orphan poorly character-
ized receptor that seems to be involved in the modulation of Ang/Tie-2 through the
formation of heterodimers with Tie-2 (Eklund et al. 2017). Ang-1 is expressed by
both mural cells and other nonvascular stromal and tumor cells. It is involved in the
regulation of vessel stabilization during embryonic development, vessel remodeling,
and maintenance of the normal vasculature (Brindle et al. 2006). Ang-2 is produced
by the VEGF-stimulated endothelium, hypoxia, and shear stress, promoting blood
vessel wall destabilization through competitive inhibition of Tie-2 and integrin
activation. Furthermore, Ang-2 stimulates pericyte detachment, permeability, vas-
cular regression, and lymphangiogenesis (Akwii et al. 2019).

Hypoxia-Inducible Factors (HIFs) HIFs are DNA-binding transcription factors
that associate with specific nuclear cofactors under hypoxia (Palazon et al. 2014).
They are heterodimers that include both the constitutively expressed HIF-1β subunit
and oxygen-regulated HIF-1α or HIF-2α subunit (Hu et al. 2003). In humans,
HIF-1α is ubiquitously expressed, while HIF-2α, although it is expressed mainly
in the endothelium, in hypoxic conditions, is also expressed in the kidney, pancreas,
brain, liver, intestine, and myocardium. When cells are in a hypoxic environment,
the hydroxylation process is inhibited, and HIF-α escapes proteasomal degradation,
dimerizes with HIF-1β, and associates with transcriptional coactivators (Berra et al.
2001). The latter recognizes hypoxia-responsive genes, resulting in physiological
adaptation to hypoxia. Other stimuli, such as nitric oxide and reactive oxygen
species (ROS), can also activate HIFs (Wellman et al. 2004).
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Many human cancers are characterized by increased levels of HIF, and its
expression correlates with mortality (Zhong et al. 1999; Talks et al. 2000). Hypoxic
conditions contribute to increased HIF activity, which translates into the regulation
of genes involved in angiogenesis, cell survival, metabolism, invasion, and metas-
tasis. In solid tumors, the rapid proliferation of cancer cells limits oxygen diffusion
within the tumor, decreasing its concentrations under physiological conditions. This
leads to increased expression and activity of HIF, contributing to tumor angiogenesis
(Huang et al. 2017; Shi and Fang 2004).

14.4 Angiogenic Inhibitors

Angiostatin Angiostatin is a 38 kDa internal fragment of plasminogen (Cao and
Xue 2004; Ji et al. 1998). Angiostatin inhibits endothelial cell proliferation, migra-
tion, and tube formation (Pozzi et al. 2000) and induces apoptosis of endothelial cells
(Ramirez-Moreno et al. 2020). Moreover, angiostatin inhibits the signaling induced
by FGF-2 and VEGF in human microvascular endothelial cells (Redlitz et al. 1999)
and inhibits primary tumor growth as well as angiogenesis-dependent growth of
metastases (Dell’Eva et al. 2002).

Endostatin Endostatin is an angiostatic 20 kDa internal type XVIII collagen
fragment released by proteolytic activity (Wenzel et al. 2006). The hinge region of
endostatin contains several proteolytic cleavage sites where matrix
metalloproteinases (MMPs), cathepsins, and elastases induce its release and conse-
quently the interaction with cell membrane receptors, including α5β1, αvβ3, and
αvβ5 integrin receptors, on endothelial cells (Zatterstrom et al. 2000). Endostatin
inhibits the mitogen-activated protein kinase pathway in endothelial cells, leading to
the inhibition of angiogenesis (Wickstrom et al. 2005). Endostatin affects VEGF to
VEGFR-2 binding and tyrosine phosphorylation (Jia et al. 2004) and inhibits the
activities of matrix metalloproteinases-2, -9, and -13 (MMP-2, MMP-9, and
MMP-13) (Kim et al. 2000).

Platelet Factor 4 (PF4) PF4 is the most abundant chemokine member of the C-X-C
family found in platelets and megakaryocytes. It exhibits antiangiogenic effects both
in vivo and in vitro and directly interacts with VEGF-A165 (Hang et al. 2013; Maurer
et al. 2006).

Thrombospondin-1 (TSP-1) TSP-1 belongs to a family of extracellular matrix
(ECM) glycoproteins. TSP-1, initially discovered in platelet granules, is also pro-
duced by endothelial cells, monocytes/macrophages, and smooth muscle cells.
TSP-1 interacts with numerous ECM proteins, modulates extracellular protease
levels, and activates transforming growth factor beta (TGF-β) (Lawler 2002).
TSP-1 inhibits angiogenesis by inhibiting the growth, sprouting, and motility of
endothelial cells. High concentrations of TSP-1 have the opposite effect, promoting
angiogenesis (Lawler and Lawler 2012).
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14.5 TME Infiltrating Cells

Macrophages Tumor-associated macrophages (TAMs) are one of the major tumor-
infiltrating innate immune cells and play an important role in the TME because they
are involved in promoting tumor growth, invasion, metastasis, and therapeutic
resistance (Chanmee et al. 2014). TAMs are described in two different polarization
states: M1 CD68-positive and M2, CD-163 and CD-206-positive (Medbury et al.
2013). It is generally believed that M1 macrophages are involved in
proinflammatory processes by migrating to inflamed tissues and targeting pathogens
directly or activating cells of the adaptive immune system. It has been demonstrated
that the M1 subpopulation has antitumor function because of its ability to kill tumor
cells and recruit cytotoxic T lymphocytes to activate adaptive immune responses
(Chanmee et al. 2014). The M2 subpopulation, on the other hand, has the functions
of debris removal, angiogenesis stimulation, and tissue reconstruction and promotes
tumorigenesis. They induce immune tolerance and attract T regulatory cells and Th2
T cells. It is believed that M2 TAMs have protumor activity because they stimulate
angiogenesis and tumor growth (Jayasingam et al. 2019). Usually, TAM recruitment
is correlated with the induction of angiogenic switching and is associated with a poor
prognosis in most cancer types. Many cytokines and chemokines are secreted by
vascular and perivascular cells, stromal cells, and cancer cells that recruit TAMs in
the TME and include C-C motif ligand 2 (CCL2), CCL5, CCL7, Ang-2,
colony-stimulating factor-1 (CSF1), VEGF, interleukin-33 (IL-33), semaphorin
3D (Sema 3D), endothelial monocyte-activating polypeptide-II (EMAP-II),
endothelin (ET)-1 and 2, stromal cell-derived factor 1α (SDF1α/CXCL12), eotaxin,
and oncostatin (Wang et al. 2019a).

TAMs can transdifferentiate into vessel-like structures by vasculogenic mimicry.
In gliomas, the areas where vascular mimicry is found are characterized by high
TAM infiltration and correlated with M2 density (Rong et al. 2016). The angiogenic
factors secreted by TAMs include EGF-A, TGF-β, FGF-2, CCL18, Sema4D,
adrenomedullin (ADM), and PlGF (Riabov et al. 2014). TAMs express the
MCT1-lactate transporter. Furthermore, TAMs express VEGF-A when exposed to
hypoxia or in the presence of lactate produced by tumor cells following aerobic or
anaerobic glycolysis (Zhang et al. 2020). This effect is mediated by HIF1α, and
lactate seems to lead to M2-like polarization of TAMs (Colegio et al. 2014). TAMs
have been found to localize frequently in avascular and hypoxic areas of invasive
carcinoma of the breast, where the expression of VEGF-A is upregulated (Lewis and
Pollard 2006). Fra-1 and the IL-6/JAK/Stat3 signaling pathway in TAMs are
involved in the secretion of proangiogenic factors (Choi et al. 2018). TAMs produce
CCL18, which stimulates angiogenesis in synergy with VEGF-A (Lin et al. 2015).
ADM is a potent vasodilator belonging to the calcitonin superfamily whose secretion
by macrophages is upregulated by inflammatory factors and hypoxia. In melanoma,
TAM-derived ADM induces angiogenesis in a paracrine manner via the endothelial
nitric oxide synthase (eNOS) signaling pathway (Chen et al. 2011). MMP-9, which
is highly expressed by M2 macrophages, triggers the angiogenic switch during

380 R. Tamma et al.



carcinogenesis by the release of VEGF-A from the ECM in colorectal cancer
(Deryugina and Quigley 2015; Yahaya et al. 2019).

Mast Cells (MCs) MCs are involved in a large spectrum of biological processes,
ranging from inflammation and immune modulation to angiogenesis, tissue repair,
remodeling, and cancer (Welker et al. 2000). MC precursors complete their differ-
entiation and maturation in target tissues under the control of local growth factors,
including IL-9, IL-10, IL-3, IL-4, IL-33, CXCL12, nerve growth factor (NGF), and
TGF-β (Hu et al. 2007). MCs are traditionally classified based on the production of
tryptase and chymase, and resident MCs of various organs are characterized by the
expression and release of peculiar factors related to their tissue-specific functions
(Krystel-Whittemore et al. 2015). MCs can be recruited to the tumor microenviron-
ment by tumor cell-released chemoattractants, including stem cell factor (SCF) or
CCL-15 (Yu et al. 2018). In the TME, MCs release proangiogenic factors such as
FGF2, VEGFA, tumor necrosis factor alpha (TNFα), and CXCL8 (Norrby 2002).
Furthermore, they produce MMPs and chymase, and tryptase activates pro-MMPs
(Kanbe et al. 1999; Johnson et al. 1998). The localization of MCs in the TME is
determined by interactions of CCR2, CXCR2, and CXCR3 with their respective
ligands CCL2, CXCL1, and CXCL10. In this way, MCs facilitate tumor angiogen-
esis and promote tumor invasiveness (Ramirez-Moreno et al. 2020; Komi and
Redegeld 2020). On the other hand, numerous cytokines released by MCs contribute
to inflammation, inhibiting tumor cell growth and inducing tumor cell apoptosis
(Ribatti and Crivellato 2012). MC tryptase activates the Ang-1 pathway and induces
endothelial cell proliferation in pancreatic cancer (Guo et al. 2016). MC inactivation
delayed the angiogenic switch and malignant progression in early preneoplastic
lesion experimental squamous epithelial, intestinal, and pancreatic islet cancer
models (Maciel et al. 2015).

Neutrophils Neutrophils release large amounts of soluble factors, including cyto-
kines and chemokines, through which they recruit and activate other immune cells
(Malech et al. 2014). Moreover, they are involved in chronic inflammation regula-
tion and in various steps of tumor progression and angiogenesis, exerting both
pro-(tumor-associated neutrophil, TAN-N2) and antitumor (TAN-N1) roles. Normal
density neutrophils (NDNs) have been associated with cytotoxic antitumor activities,
while immature low-density neutrophils (LDNs) exert immunosuppressive protumor
activities (Cerecedo et al. 2021). The TME is infiltrated with CD66b+ neutrophils,
and their number is correlated with poor clinical outcome (Carus et al. 2013). TGFβ
reduces endothelial adhesiveness of neutrophils and neutrophil transmigration
through the endothelium as well as the number of antitumor neutrophils in the
TME (Granot 2019). In a Nod Scid mouse model of human prostate cancer, TANs
are the major source of MMP-9 (Li et al. 2020a). In gliomas, the high TME
infiltration of neutrophils was correlated with the tumor grade as well as resistance
to anti-VEGF therapy (Liang et al. 2014). Neutrophils produce low amounts of tissue
inhibitors of metalloproteinases-1 (TIMP-1), thus enhancing the angiogenic effect of
MMP-9 (Wang et al. 2019b). In a RIP-Tag murine model, granulocyte-CSF (G-CSF)
stimulates neutrophils to release the proangiogenic molecule Bv8, which is critical
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for VEGF-independent tumor angiogenesis (Bjornmalm et al. 2017). Resistance to
anti-VEGF therapy in tumors has been correlated with the infiltration of neutrophils
and associated with Bv8 neutrophil expression (Shojaei et al. 2008). On the other
hand, neutrophils are also involved in the inhibition of angiogenesis through the
release of antiangiogenic factors, such as affecting neutrophil migration toward
CXCL1 and CXCL8 (Jeronimo et al. 2017).

Lymphocytes The role of lymphocytes in tumor progression and angiogenesis
remains to be further explored, and conflicting data about their function in the
TME are emerging (Paijens et al. 2021). B cells are often present in the TME, and
it is believed that they may contribute to tumor angiogenesis via STAT3 activation.
STAT3 activation in cancer promotes tumor cell survival and proliferation, and a
positive correlation has been established between its expression and VEGF release
(Yang et al. 2013). It is thought that although only a subset of B cells infiltrating the
tumor express STAT3, this might be enough to potentiate and maintain persistent
STAT3 activation. Transplantation of STAT3-expressing B cells in tumor mouse
models increased tumor growth and angiogenesis through the production of VEGF
(Wang et al. 2019c). Another way by which B cells contribute to tumor angiogenesis
is the antibody-mediated activation of Fcγ receptors on TAMs. This mechanism
induces the secretion of IL-1, leading to the recruitment of myofibroblasts and
promotion of tumor angiogenesis (Voronov et al. 2014). Tumor-infiltrating T cells
play an important role in the antitumor response by the production of many cyto-
kines, such as TNF-α, interferon gamma (IFN-γ), IL-2, IL-17, IL-22, and IL-36.
TAMs inhibit CD8+ T-cell infiltration and antitumor function (de Ruiter et al. 2017;
Lan et al. 2021). Regulatory T (Treg) cells are immunosuppressive cells that affect
the specialization and function of antigen-presenting cells (APCs), decrease their
interactions with T cells, and subsequently inhibit effector T-cell function (Maimela
et al. 2019). In addition, Tregs suppress natural killer (NK) cell activities (Li et al.
2020b). Cytotoxic T cells in the TME release IL-2, IL-12, and IFN-γ, improving the
cytotoxic functions of CD8+ T cells through the production of TNF-related apopto-
sis-inducing ligands (TRAILs), ROS, and perforin (Grossman et al. 2004). Tumor
cells express coinhibitory receptors such as programmed death ligand-1 (PD-L1) and
CD80 that interact with the inhibitory molecules programmed death-1 (PD-1) and
cytotoxic T lymphocyte antigen-4 (CTLA-4) expressed by CD8+ T cells. These
interactions may inhibit CD8+ T-cell activation and function (Cai et al. 2019). CD4+

and CD8+ T cells produce FGF-2 and heparin-binding epidermal-like growth factor
(HB-EGF), which are both proangiogenic factors (Blotnick et al. 1994). On the other
hand, T cells are also involved in the antiangiogenic response through TNFα, TGFβ,
and IFNs. IFNs induce the expression of CXCL-9, CXCL-10, and CXCL-11 with
angiostatic activities that can directly bind CXCR3 on endothelial cells (Blotnick
et al. 1994; Beatty and Paterson 2001). NK cells are able to control tumor growth
through their cytotoxic activity (Wu and Lanier 2003). Intratumor NK cells display
phenotypic and/or functional alterations compared with peripheral NK cells
depending on the influence of local factors and/or the interaction with other cell
types of the TME (Larsen et al. 2014). The presence of TGF-β inhibits CD16,
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perforins, granzymes, and IFN-γ secretion, reverting NK cells to a proangiogenic
phenotype characterized by the secretion of VEGF. Furthermore, the interaction
between the immunoregulatory class I MHC molecule HLA-G and the KIR2DL4,
ILT-4, and ILT-2 inhibitory NK cell receptors induces NK cells to acquire
proangiogenic activities. Prostaglandin E2 (PGE2) is believed to contribute to the
NK cell angiogenic switch (Bassani et al. 2019). Tumor-infiltrating NK cells express
high levels of CD56, but low levels or none of CD16 produce several factors, such as
VEGF, angiogenin, Ang-1, PIGF, CXCL8, and MMPs, which stimulate endothelial
cell growth and angiogenesis (Bruno et al. 2018).

Cancer-Associated Fibroblasts (CAFs) CAFs are able to interact with tumor cells
and form a myofibroblastic microenvironment that supports tumor progression and
angiogenesis via secretion of various growth factors, cytokines, chemokines, and the
degradation of ECM (Liu et al. 2019). A significant percentage of CAFs may share
endothelial markers such as PECAM/CD31, and this allows us to suppose that they
originate from an endothelial subpopulation through endothelial-to-mesenchymal
transition (Potenta et al. 2008). Regarding their influence on angiogenesis, several
studies have shown that their secretome is rich in several cytokines with
proangiogenic effects, including VEGF, CXCL-8, and FGFs (Linares et al. 2020).
Furthermore, CAF release is able to form capillary-like structures through
vasculogenic mimicry by TGF-β and SDF-1 paracrine action (Yang et al. 2016a).
Moreover, SDF-1 recruits endothelial precursor cells (EPCs), which may
transdifferentiate into endothelial cells and stimulate the formation of novel vascu-
lature at the tumor-host cell interface (Orimo et al. 2005). CAFs express podoplanin,
which promotes angiogenesis in breast cancer via upregulation of VEGF-C rather
than VEGF-A or VEGF-D (Kubouchi et al. 2018). The galectin family of glycan-
binding proteins displays important functions in cancer development and progres-
sion. In gastric cancer, CAF expression of Galectin-1 is upregulated, leading to
enhanced VEGF expression. Under hypoxic conditions, G-protein-coupled estrogen
receptor (GPER) downregulation in CAFs reduces VEGF expression (Ham et al.
2019). In human pancreatic adenocarcinoma, VEGF expression by CAFs may be
regulated by fibroblast activation protein α (FAP α), which is involved in affecting
the balance of pro- and anti-angiogenic mediators (Higashino et al. 2019).

14.6 TME Inflammatory Cells and Angiogenesis. Our
Experience in the Study of Human Lymphomas

We studied the inflammatory cell infiltrate and its role in tumor angiogenesis in
diffuse large B-cell lymphoma (DLBCL) by comparing activated B-cell-like (ABC)
patients to germinal center B-cell-like (GCB) patients. We demonstrated that
increased ABC expression of STAT3 was correlated with poor prognosis in
DLBCL and was associated with higher M2 TAM (Fig. 14.1a, b) and CD8+

(Fig. 14.1c, d) cell infiltration into the TME, which, in turn, induced a strong
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angiogenic response in the ABC group (Tamma et al. 2020). Moreover, tumor
vessels appeared lined by endothelial cells expressing both FVIII and STAT3
(Tamma et al. 2019b). Regarding the morphological distribution of the different
TME cells in DLBCL, we established that cell patterns generated by CD4+, CD8+,
CD68+, CD163+, and tryptase+ mast cell profiles have a higher uniformity index in
the ABC, indicating a tendency of the cells to assume a more uniform distribution in
the tissues in this more aggressive DLBCL subtype (Guidolin et al. 2021). Recently,
Laddaga and coworkers suggested that the number of tumor infiltrating lympho-
cytes in the DLBCL TME is connected to a pre-existing antitumor immune response
and then to an improved therapy response (Laddaga et al. 2021).

In a further study, we demonstrated that mucosa-associated lymphoid tissue
(MALT)-type lymphoma and the tumor inflammatory TME included a high number
of CD3+, CD4+ and CD8+ lymphocytes, CD68+ (Fig. 14.1e, f), CD163+ macro-
phages, and tryptase+ mast cells. Interestingly, CD8+ cell content positively corre-
lated with both CD34+ vessels, remarking on the important role of these cells in
tumor angiogenesis and with CD163+ TAMs. Moreover, tryptase+ mast cells corre-
lated with CD4+ lymphocytes (Tamma et al. 2021).

Fig. 14.1 Immunohistochemical staining of CD163+ macrophages in ABC (a) and GCB (b)
DLBCL samples; CD8+ T cells in ABC (c) and GCB (d) DLBCL samples; CD68+ macrophages
in MALT lymphoma (e) and control (f) samples. Scale bar 60 mm
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14.7 Targeting Angiogenesis and Inflammatory Cells
in TME

Chemotherapy associated with surgery and/or radiotherapy is the principal cancer
therapy worldwide (Bjornmalm et al. 2017). The TME has been gradually recog-
nized as a crucial contributor to cancer progression and drug resistance (Heinrich
et al. 2012), so the study of the components of the TME was deepened to identify
new therapeutic targets.

Targeting Angiogenesis Bevacizumab was the first anti-VEGF antibody Food and
Drug Administration (FDA) approved and actually used in different cancers, includ-
ing metastatic colorectal cancer, lung cancer, kidney cancer, glioblastoma metasta-
sis, and HER2-negative breast cancer, with response rates and durations highly
variable (Jang et al. 2017). The addition of bevacizumab to chemotherapy has
shown improvements in progression-free and overall survival with respect to che-
motherapy alone (Jang et al. 2017; Yang et al. 2017). Another strategy consists of the
inhibition of VEGF binding to its receptors by soluble decoy receptors (Holash et al.
2002). Aflibercept is a recombinant fusion protein containing portions of human
VEGFR-1 and VEGFR-2 extracellular domains fused to the Fc portion of human
immunoglobulin G1 able to bind with high-affinity VEGF and PlGF, inhibiting the
activation of cognate VEGFRs (Holash et al. 2002). Experimental data about the use
of aflibercept in cancer xenograft models demonstrated greater antitumor activity
than bevacizumab (Chiron et al. 2014). Ramucirumab is a monoclonal anti-VEGFR-
2 antibody used as monotherapy or in combination with paclitaxel for the treatment
of advanced gastric or gastroesophageal junction adenocarcinoma, metastatic
non-small cell lung cancer (NSCLC), and colorectal cancer (Singh and Parmar
2015; Aprile et al. 2014). Tyrosine kinase inhibitors (TKIs) are used for the
inhibition of VEGFRs, PDGF-A and PDGF-BRs, and c-Kit (Hamberg et al. 2010;
Wang et al. 2016). Among TKIs, pazopanib is commonly used for the treatment of
advanced renal cell carcinoma and soft tissue sarcoma (Hamberg et al. 2010; Nakano
et al. 2019) and sunitinib is used in metastatic renal cell carcinoma (Roma-Rodrigues
et al. 2019). Sunitinib has more benefits than sorafenib as a first-line therapy,
although sunitinib has higher toxicity than sorafenib (Deng et al. 2019). M-TOR
inhibitors decrease endothelial cell proliferation through the mTOR/AP-1/VEGF
pathway, among which everolimus (Wang et al. 2016). Patients treated with
antiangiogenic agents have a reduced response to therapies for the acquisition of
drug resistance. Two mechanisms of this resistance are the activation of alternative
signaling pathways and the upregulation of alternative angiogenic factors and
cytokines. Deepening these pathways would allow us to elaborate new treatments
and the development of combination regimens with more durable clinical benefits
(Philips and Atkins 2014). Anti-VEGF treatment in pancreatic cancer induces
increased expression of FGF-1 and -2 and Ang-1 (Zhuang et al. 2010). In patients
affected by colorectal cancer treated with bevacizumab, high levels of Ang-2 were
detectable (Goede et al. 2010). In glioblastoma multiforme, anti-VEGFR therapy
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leads to increased levels of FGF-2 and SDF-1. Similar results have been found in
lung cancer models resistant to angiogenesis inhibitors in which epidermal growth
factor receptors (EGFRs) and FGFRs are overexpressed (Cascone et al. 2011). In
colorectal and renal cancer patients treated with TKIs, increased levels of PIGF and
VEGF were detectable (Motzer and Bukowski 2006). Vanucizumab, a bispecific
anti-Ang-2/anti-VEGF-A antibody, revealed an acceptable safety profile and prom-
ising antitumor activity (Hidalgo et al. 2018). FGFR inhibitors restore the sensitivity
to bevacizumab in tumor mouse models (Gyanchandani et al. 2013), but fur-
ther research failed to determine the relevance of this association (Norden et al.
2015; Semrad et al. 2017). The VEGFR, FGFR, and PDGFR multiple receptor TKI
lenvatinib showed promising effects in several tumors and should be considered for
counteracting resistance to antiangiogenic agents (Suyama and Iwase 2018).

Anti-angiogenic therapies induce the production of cytokines, such as SDF1,
IL-8, and G-CSF, involved in the recruitment of bone marrow-derived cells
(BMDCs), which contributes negatively to the anti-angiogenic effect (Montemagno
and Pages 2020). An increase in CD11b+ Gr1+ myeloid-derived suppressor cells
(MDSCs) has been observed in tumors not sensitive to anti-VEGF-A treatment
(Shojaei et al. 2007). Th-17 cells induce the expression of G-CSF by CAFs and
consequently the recruitment of MDSCs (Shojaei et al. 2009). Hypoxia has been
related to sunitinib resistance in glioblastoma and breast and metastatic renal cell
carcinoma as a consequence of the increased recruitment of MDSCs to the tumor
niche (Piao et al. 2012).

Vessel co-option is believed to be correlated with refractoriness to anti-VEGF
drug treatment of colorectal cancer liver metastases (Frentzas et al. 2016) and has
been observed following anti-VEGFR-2 inhibition in cerebral melanoma metastases
(Frentzas et al. 2016). Moreover, vessel co-option has been evidenced in human
breast cancer liver metastases, NSCLC, and lung metastases (Kuczynski et al. 2016).
The blockade of both VEGF-A and ARP2/3, VEGFA and c-MET or VEGF-A and
ZEB2 suppresses vessel co-option and tumor invasion (Sennino et al. 2012; Depner
et al. 2016). Vasculogenic mimicry is deeply associated with poor patient survival
(Sun et al. 2004). In ovarian cancer models, bevacizumab may induce the progres-
sion of metastatic disease, which would correlate with a hypoxic response and
vasculogenic mimicry (Xu et al. 2012). Studies on the TME in everolimus-resistant
renal carcinoma demonstrated that the antiangiogenic drug stimulates vasculogenic
mimicry by differentiating tumor cells into endothelial-like cells (Serova et al. 2016).
Moreover, everolimus induces triple-negative breast cancer invasion via
vasculogenic mimicry; thus, its evaluation could be helpful in predicting the efficacy
of antiangiogenic therapy in these patients (Sun et al. 2017).

Targeting TAMs Targeting TAM-recruiting mediators, which include
chemokines, complement components, CSF-1, and VEGF, is being studied (Liu
et al. 2020). It has been reported that the inhibition of CSF1R in glioblastoma and
cervical and breast cancer murine models induces a dramatic reduction in tumor
volume and survival of mice (Pyonteck et al. 2013). This inhibition seems to
reprogram TAMs by GM-CSF to induce their repolarization to an antitumoral
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state (Quail and Joyce 2013; DeNardo et al. 2011). The monoclonal antibody
RG7155 in human patients led to a remarkable reduction in CSF-1R+ CD163+

macrophages in diffuse-type giant cell tumor patients (Ackermann et al. 2013).
TAM reduction improves antiangiogenic treatments. Treatment with vascular-
disrupting agents such as combretastatin-A4-phosphate has been reported to mark-
edly increase its efficacy when TIE2+ TAM recruitment is blocked (Welford et al.
2011). The reduction in TAMs augmented the effects of sorafenib (Zhang et al.
2010). In addition, TAMs improved the antiangiogenic and antitumor effects of
VEGF/VEGFR2 antibodies in subcutaneous tumor models (Priceman et al. 2010).
TAMs limit the cytotoxic activity of CD8+ cytotoxic T cells during tumor progres-
sion, mainly in the M2 polarization state. Inhibiting TAM recruitment or blocking
TAM polarization to the M2 phenotype may enhance T-cell-mediated antitumor
responses and improve the efficacy of immunotherapies (Coussens et al. 2013).
Moreover, some immunotherapies may also depend on the reprogramming of TAMs
toward an M1 phenotype. One method used to reprogram TAMs is histidine-rich
glycoprotein (HRG) treatment, which induces macrophage downregulation of PlGF
and stimulates the normalization of blood vessels and the efficiency of chemotherapy
in mouse tumor models (Rolny et al. 2011). Other strategies include the suppression
of nuclear factor-kB signaling (Hagemann et al. 2008) or exposure to anti-IL-10R
antibodies combined with the TLR9 ligand CpG (Guiducci et al. 2005).

Targeting TANs Inhibition of the protumor functions of TANs (Hsu et al. 2020)
may be combined with conventional or new anticancer therapies to improve the
antitumor effects (Khan et al. 2020). CXCR2 inhibitors are also used in combination
with other therapies in clinical evaluation in patients with different tumors (Li et al.
2019; Timaxian et al. 2021; Groth et al. 2021; Cabrero-de Las Heras and Martinez-
Balibrea 2018). The neutrophil-derived enzyme elastase promotes tumor growth and
invasiveness. The elastase inhibitor ONO-5046 reduced tumor growth in NSCLC
(Houghton et al. 2010). Another approach has been to reprogram neutrophil function
in the TME through the inhibition of TGFβ (Qin et al. 2020). The inhibition of
angiotensin-converting enzyme and the angiotensin II type 1 receptor nicotinamide
phosphoribosyltransferase (NAMPT) or CXCR4 is another approach to reprogram
neutrophils to an antitumor state (Shrestha et al. 2016; Yang et al. 2018b).

Targeting CAFs The protein FAP is considered a candidate for targeting CAFs
because it is expressed in tumors but not in healthy tissues and is considered a
predictor of poor survival (Liao et al. 2013). Nevertheless, both sibrotuzumab, an
antibody targeting FAP, and inhibitors of FAP activity induced lower survival rates
(Liu et al. 2019; Yang et al. 2016b). An IL-2 variant targeting FAP, RO6874281, is
under investigation (Joshi 2020; Koustoulidou et al. 2021).
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14.8 Concluding Remarks

Cytokines and chemokines secreted by cells of the TME are involved in the
regulation of tumor angiogenesis based on the balance of pro- and antiangiogenic
factors. Deepening the mechanisms underlying the crosstalk between the TME and
tumor cells has allowed the discovery of numerous molecular-targeted drugs that
control diverse elements of the TME. Different approaches varying from traditional
and emerging inhibitors of angiogenic cytokines and their receptors to the modula-
tion of TME cell activities and novel immune checkpoint inhibitors proved to be
promising in tumor progression. Despite the promising results of these new thera-
peutic approaches, their efficacy is often limited by evasion, and resistance mecha-
nisms have emerged. Overcoming resistance to antitumor therapies is a great
challenge but might lead to the improvement of the clinical outcome of patients
and, for this reason, currently constitutes a major focus of research.
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