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Abstract. In this brief, two robust control approaches are discussed in connection
and elimination with predictive model. First, the disturbance is ignored in robust
model predictive control (RMPC) after considering the cascade controller for
wheeled mobile robots (WMRs) based on the separation ofWMRsmodel. Hence,
the optimization problem is given in MPC algorithm only address for fixed initial
point. Second, in the case of not using predictivemodel, the robust output feedback
controller is discussed with traditional back-stepping technique for obtaining the
tracking of the closed system. Moreover, the tracking problem is also mentioned
in the first method with consideration of feasibility issue. The simulation results
demonstrate the effectiveness of two proposed methods.
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1 Introduction

Robust control design for robotic systems is central to the validation of control systems
such as nonlinear robotic systems with disturbance [1–3]. One popular line for studying
robust control schemes is by utilizing back-stepping technique. This method is usually
established after decoupling mobile robots based on the property of non-holonomic
systems. However, due to the consideration of multi-purposes as well as constraint
problem, optimality based control schemes have been addressed [4–12]. Along with the
development of optimal control designs, the applications of the model predictive con-
troller, which the controller is established after each computation period of optimization
problem, are remarkably considered. The difficulties of applying MPC are disturbance
attenuation and tracking problem. The fact is that the external disturbances lead to the
deviation in predictivemodel. Therefore, the constraint set of initial point in optimization
problem needs to be generated [4, 7–12]. Furthermore, the tracking problem in RMPC
is usually investigated by comparing the Lyapunov functions in two sequential time
based on intermediate function. It is worth noting that the Lyapunov function is chosen
as optimal function in each sampling period. To obtain the convenient comparison, the
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tube region is given to find the intermediate function. This paper presents two robust
control laws, including robust MPC and traditional robust control, for WMRs under cas-
cade systems consideration. The RMPC approach is developed for multi-WMRs using
a novel optimization based distributed RMPC.

2 Robust Control Systems of WMRs

2.1 Robust MPC for a group of WMRs

For eachWMRs, according to traditional Euler Lagrange theory, the dynamic model can
be represented by [1–3]:{

M (η)η̈ + C(η, η̇)η̇ + B(η)(F(η̇) + τd ) = B(η)τ + JT (η)λ

J (η)η̇ = 0
(1)

Based on [1–3, 6], the cascade control scheme can be developed after obtaining the
model involving two subsystems, as follows:

η̇ = S(η)σ

D(η)S(η)σ̇ + C1(η, η̇)σ = B(η)τ
(2)

where S(η) is the solution after solving the equation ST (η)JT (η) = 0.
Therefore, the tracking error model of kinematic model for each WMRs in a group

of WMRs is given as:

ėj =
⎡
⎣ ẋje
ẏje
θ̇je

⎤
⎦ =

⎡
⎢⎣

vi cos(θij) + ωjyje − vj − Ldijωi sin(ψd
ij + θij)

vi sin(θij) − ωjxje − dωj + Ldijωi cos(ψd
ij + θij)(

vi sin(θij) + Ldijωi sin(ψd
ij + θij) + 2k2yje

)
/d − ωj

⎤
⎥⎦

= f
(
xje, yje, uj, t

)
(3)

The optimal control problem is established at each sampling time tk with the cost function
to be defined:

J
(
ej(tk), ue(tk), tk

) =
tk+T∫
tk

L
(
ej(τ |tk), ue(τ |tk)

)
dτ + g

(
ej(tk + T |tk)

)
(4)

where:

L
(
ej(τ |tk), ue(τ |tk)

) = ∥∥ej(τ |tk)
∥∥2
Q + ‖ue(τ |tk)‖2P

P = diag{p1, p2}
Q = diag{q1, q2, q2}
g(p̃e(τ |tk)) = 1

2

∥∥xje(τ |tk)
∥∥2 + 1

2

∥∥yje(τ |tk)
∥∥2 + dk3

2k2

∥∥θje(τ |tk)
∥∥2

T = nδ, n ∈ N

(5)
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uj =
[
vj
ωj

]
= arcmin

uj(τ |tk )
J
(
ej(tk), ue(tk)

)
s.t : a. ėj = f

(
xje, yje, uj, t

)
b. ej(tk |tk) = ej(tk)

c. uj(τ |tk) ∈ U

d . ej(tk + T |tk) ∈ 


(6)

Fig. 1. The tracking of Leader and Follower in a group of WMRs

Fig. 2. The kinematic control inputs of each WMRs
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The MPC controller is obtained after solving this Optimization Problem 1:

where : U =
{{

vj, ωj
}:

∣∣vj∣∣
a

+
∣∣ωj

∣∣
b

≤ 1

}
(7)


 =
{
ej : k1

∣∣xje∣∣ + k2
∣∣∣yje∣∣∣ + k3

∣∣θ je∣∣ < a(1 − λr)
}

(8)

The solution u∗
j (tk) =

{
u∗
j (τ |tk) : τ ∈ [tk , tk + T )

}
at sampling time tk is suitable for

predictive signals e∗
j (tk) =

{
e∗
j (τ |tk) : τ ∈ [tk , tk + T )

}
. The proposed MPC algorithm

is described as follows:

1. At sampling time tk , finding the states of leader and follower:uj, ui, pj, pi.
2. Solving the optimization problem to get the solution u∗

j (tk).

3. Implementing u∗
j (tk) for the follower in the time interval

[
tk , tk+1).

Set k → k + 1 then come back step 1.

2.2 Robust Output Feedback Control for WMRs

The proposed MPC is compared with the traditional robust control for WMRs to be
discussed in [2] as follows:

where
u = u∗ + l

u∗ =
[
e1 cos θc + e2 sin θc − υ̇r + υ̇d − Q2υ̃

e3 − ω̇r + ω̇d − Q3ω̃

]
(9)

and

⎧⎪⎨
⎪⎩
l = 1

ε

(
ẑ − z

)
d

dt
ẑ = −1

ε

(
ẑ − z

) + u + żd

(10)

3 Simulation Studies

The simulations are implemented by Yalmip for finding the MPC controller. Let’s
consider a group of WMRs with the initial positions of Ri and Rj:

pi(0) = [
0 0 π/2

]T
, pj(0) = [

1 −1 π/2
]T

In case of moving on the straight line, the velocities of WMRs are given as:

vi = 0.15(m/s), ωi = 0(rad/s), a = 2(m/s)

with the References: Ldij = 0.5(m), ψd
ij = 3π/2.

The parameters are chosen : k1 = k3 = 1.2, k2 = 0.8
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and: 
 =
{
ej : k1

∣∣xje∣∣ + k2
∣∣∣yje∣∣∣ + k3

∣∣θ je∣∣ < a(1 − λr)
}
, λr = 0.12

The simulation results in Fig. 1, Fig. 2 validate the proposed MPC of a group of
WMRs with the tracking effectiveness of Leader and Follower and the control input
signal.

4 Conclusion

In this paper, we have extend the RMPC for a group ofWMRswith optimization problem
to be only handle in the case of fixed starting point. The fact is that the WMRs is
considered as a cascade model with disturbance being inserted dynamic subsystem.
Moreover, this method is also implemented without using predictive model to avoid
optimal control problem. It is interesting to further consider how to extend RMPC for
dynamic model of WMRs.
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