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Abstract. Survival data with high-dimensional predictors are regularly
collected in many studies. Models with a very large number of covariates
are both infeasible to fit and likely to incur low predictability due to
overfitting. The selection of significant variables plays a crucial role in
estimating models. Even if several approaches that identify variables in
presence of censored data are available in literature, there is not unani-
mous consensus on which method outperforms the others. Nonetheless,
it is possible to exploit the advantages of methods to get the final set
of covariates as good as possible. Therefore, we propose a method that
combines different variable selection procedures by using the subsampling
technique, for identifying as relevant those covariates that are selected
most frequently by the different variable selectors on subsampled data.
By a simulation study, we evaluate the performance of the proposed
procedure and compare it with other techniques.
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1 Introduction

In recent years the classical problem of variable selection has enjoyed increased
attention thanks to a massive growth of high-dimensional data available in many
scientific disciplines. In modern statistical applications, the number of variables
often exceeds the number of observations. In such contexts, the true model is
often assumed to be sparse, meaning that only a small fraction of the variables
are actually related to the response. Therefore, the selection of the relevant
variables is of fundamental importance in the analysis of high-dimensional data.

Survival analysis deals with the expected time until one or more events occur.
It is frequently used in the field of economics, where the event of interest is the
failure of companies (mainly due to bankruptcy) or the reasons for which cus-
tomers choose to stop their relationship with company. In regression analysis of
survival data, the Cox Proportional Hazard model, proposed by Cox in 1982 [2],
is the most used to explore the relationship between subjects’ survival and some
explanatory variables.

Like linear regression models, traditional variable selection methods such as
subset selection, forward selection, backward elimination, and a combination
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of both are among the most common applied for choosing the set of relevant
variables under survival framework. However, these methods have computa-
tional difficulties in presence of high-dimensional data. Therefore, other methods
have been proposed to overcome this problem. Lasso, firstly proposed for lin-
ear regression models [5], is then extended to the Cox model [6]. Subsequently,
some authors have developed some penalized shrinkage techniques such as SCAD
introduced by [3] specifically for Cox models. On one hand, the above methods of
variable selection have been shown to be successful in theoretical properties and
numerous experiments. On the other hand, their performance is highly depen-
dent on the correct choice of the tuning parameter and these approaches can be
unstable, especially in the high-dimensional data setting.

Among the problems encountered in identifying relevant variables, the choice
of the best selector from those available is the most relevant. Unfortunately, the
set of covariates selected by one method may be different from that selected by
another. Even if it might be seen as a disadvantage, analysing the differences
and similarities among the various methods can provide useful information. For
example, a covariate chosen from all methods can be considered as actually rele-
vant, while ones selected only by one method cannot be related to the response.
In order to take into account this insight, following the idea of [7] for linear
model, we propose a method called Combined Variable Selector with Subsample
(CVSS) that combines different variable selection procedures by using the sub-
sampling technique. We record the percentage of times a covariate is selected
among the procedures and we get the final set by identifying as relevant those
covariates that are selected most frequently. The main difference between our
procedure and [7] consists in the choice of the tuning parameter in the various
methods used. In fact, while in [7] for each method the authors take into consid-
eration some vectors of covariates selected by different penalty coefficients, we
consider only one vector of betas referring to the best tuning parameter. Thus,
we extract only one set of variables for each approach with the advantage that
the procedure becomes very fast.

The paper is organized as follows. In Sect. 2, we introduce our proposed
approach. In Sect. 3, we show the simulation results. We conclude this work
with a discussion in Sect. 4.

2 The Proposed Procedure

Suppose there are n observations {(yi,xi, δi)}n
i=1 of survival data. For an indi-

vidual i, yi denotes its survival time and xi = (xi1, xi2, . . . , xip)T represents the
observed data for the p covariates. At the same time, δi ∈ {0, 1} is a variable
indicator of censorship, where δi = 0 means that yi is right-censored. We assume
also that the censoring mechanism is non-informative and independent of the
event process. Let h(t) be the hazard rate at a time t; the generic form of the
Cox proportional hazards model can be expressed as

h(t | x) = h0(t) exp(xT β)
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where β = (β1, β2, . . . , βp)T denotes a p-dimensional vector of unknown
regression coefficients and h0(t) is the baseline hazard function, that is the haz-
ard function at time t when all the covariates take value zero. In general, β can
be estimated by maximizing the partial likelihood function [2].

In order to identify the set of true relevant variables, it is possible to use
a penalized variable selection method among those proposed in the last years.
For example, the Lasso is able to select the non-zero components in setting with
large p, it is computationally efficient and it uses an L1 type penalty, while
the SCAD is a regularized regression methods with non-convex penalties and
it is designed to reduce estimation bias. Although in the literature there are
several approaches for selecting variables in presence of censored data, there is
not unanimous consensus on which method outperforms the others. Then, how
to select a method remains an open question. Since choosing a method rather
than another influences the selection of relevant variables, it is very important
to identify the best variable selection method for the data under analysis.

In order to solve this open question, we propose to implement different vari-
able selection methods on the sampled data and to check similarities between
different variable selectors. Combining the models with subsampling is used to
improve the variable selection performance of a single variable selection method.
For example, RBVS proposed by [1] uses subsampling to identify the set of
highly-ranked covariates, while Stability Selection proposed by [4] repeatedly
samples observations and fits the sampling data using a variable selection method
(e.g. the Lasso). It therefore keeps covariates with a selection frequency above a
certain threshold.

Similarly to the methods above, our proposal fits variable selection methods
to the subsampled data and it identifies as non-zero components those covari-
ates appearing most frequently. Unlike these other approaches, however, our
procedure uses various variable selection methods. In fact, we observe that no
method outperforms all other methods in all settings, since different variable
selection methods optimize different objective functions. In the case of regular-
ized regression, the difference among methods is usually in terms of the penalty.
If a covariate is selected by the majority of methods, it means that the covari-
ate is chosen to minimize many various objective functions. We expect that a
true covariate should frequently be chosen regardless of the objective function
used. We repeat the fitting on subsampled data to incorporate the variability in
selection due to the variability in the data.

The variable selection procedure proposed can be summarized as follows.
First, we consider mutually exclusive subsets Ib1, . . . , Ibr of size m, drawn uni-
formly from {1, . . . , n} without replacement, where r = �n/m�, b = 1, . . . , B
and B ∈ IN is the number of replicates. Assume that the sets of subsamples
are independently drawn for each b. Second, we fit different variable selection
methods on the sets Ib1, . . . , Ibr and we collect the estimated model in M, where
|M| = r × B × k and k is the number of variable selector used. For each subset
and for each procedure, we obtain a vector of β̂. Third, we measure the relative
frequency of times the jth covariate is selected given by
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τ̂j =
1

|M|

( ∑
Mi∈M

I
(β̂

Mi
j �=0)

)

where β̂Mi
j is the estimated coefficient of the jth covariate on the fitted model

Mi ∈ M, and Ix is the indicator function. Fourth, we identify as relevant those
variable such that

Ŝ = {j : τ̂j ≥ q}
where q is a fixed threshold. For the practical use, the number of replicates B
should be large enough to stabilize the value of j and at the same time, it should
be small enough to not increase the computational time. Following [1], we set
r = 2 and B = 50, so we obtain 100 sets each with n/2 number of observations.
In this paper, we set q = 1/2, which means that covariates with τ̂j ≥ 1/2 are
selected.

The choice of the different methods to be used within our procedure is based
on the following considerations. Each method must have good variable selection
performance and it is required some variability among methods. In this article,
we choose Lasso, MCP, SCAD, Elastic Net and Ridge since they optimize dif-
ferent objective functions, as they use various penalty terms. Furthermore, such
methods are also computationally feasible in high-dimensional setting.

3 Simulation Study

We compare the variable selection performance among different methods by
the number of false positive (FP), the number of false negative (FN), the total
number of variable selection error (FN+FP) and the size of selected set. For
comparison, we also consider other variable selector methods applied on the
whole dataset: the Lasso, the Elastic net, the Ridge regression, the SCAD and
the MCP.

In our simulation study we generate survival times ti, i = 1, 2, . . . , n, as expo-
nential distributions with subject-specific parameters hi = h0(ti) exp(βT Xi),
baseline h0(ti) = 1 and β = (25, 0p−5). Thus the true size of model is s = 5. The
variables X1, . . . , Xp are sampled from a multivariate normal density N(0, Σ)
where the entries of Σ are fixed to corr(Xj ,Xk) = ρ|j−k| with ρ ∈ {0, 0.3, 0.6}.
The percentage of censorship c is setting to 20% or 40%. We set n = 150 and
p = {100, 200}. The results are shown in Table 1.

In all scenarios our procedure has the best performance in terms of both
total error FP+FN and FP. When p = 100 the highest value of FP for CVSS
is 1.46, this means that at most 1.46 of the variables identified as relevant are
not related to the response. MCP procedure is the only selector for which in
Setting 3 the FN is not equal to zero: the final set contains in this case variables
that are not relevant in the model. Looking at the size, our procedure selects a
number of covariates that is very close to the real size 5. As we expected, the
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Table 1. Simulation results for different combination of ρ, c and p. A dark grey cell
represents the best results, while a grey one represents the worst. Standard errors are
shown in the parentheses

Parameters Methods p = 100 p = 200

FP+FN FP FN Size FP+FN FP FN Size

Setting 1 LASSO 12.91 (13.52) 12.91 0 16.92 (13.56) 13.26 (18.68) 13.26 0 17.27 (18.73)

ρ = 0 Elastic Net 10.22 (10.59) 10.22 0 14.32 (10.62) 11.57 (16.64) 11.57 0 15.50 (16.70)

c = 20% Ridge 10.13 (12.46) 10.13 0 14.14 (12.50) 13.28 (17.91) 13.28 0 17.29 (17.96)

SCAD 2.54 (2.74) 2.54 0 6.55 (5.86) 3.01 (3.51) 3.01 0 7.02 (3.56)

MCP 1.85 (1.67) 1.85 0 5.86 (1.71) 1.63 (1.40) 1.63 0 5.64 (1.45)

CVSS 1.14 (0.38) 1.14 0 5.14 (0.38) 1.09 (0.29) 1.09 0 5.09 (0.29)

Setting 2 LASSO 11.32 (15.39) 11.32 0 15.33 (15.43) 12.89 (15.92) 12.89 0 16.90 (15.96)

ρ = 0.3 Elastic Net 9.9 (12.35) 9.90 0 13.91 (12.40) 9.38 (11.25) 9.38 0 13.39 (11.29)

c = 20% Ridge 12.54 (13.84) 12.54 0 16.55 (13.87) 11.26 (12.88) 11.26 0 15.27 (12.91)

SCAD 2.16 (2.49) 2.16 0 6.17 (2.54) 2.53 (3.23) 2.53 0 6.54 (3.28)

MCP 1.58 (1.40) 1.58 0 5.60 (1.50) 1.36 (0.80) 1.36 0 5.38 (0.87)

CVSS 1.04 (0.20) 1.04 0 5.04 (0.20) 1.02 (0.14) 1.02 0 5.02 (0.14)

Setting 3 LASSO 9.84 (14.17) 9.84 0 13.85 (14.22) 11.61 (14.54) 11.61 0 15.62 (14.57)

ρ = 0.6 Elastic Net 8.17 (10.08) 8.17 0 12.18 (10.12) 12.11 (13.71) 12.11 0 16.12 (13.75)

c = 20% Ridge 12.97 (17.27) 12.97 0 16.98 (17.32) 13.49 (15.97) 13.49 0 17.50 (16.00)

SCAD 2.57 (2.52) 2.57 0 6.58 (2.56) 2.50 (2.67) 2.50 0 6.51 (2.71)

MCP 1.66 (1.27) 1.64 0.02 5.63 (1.32) 1.51 (1.01) 1.49 0.02 5.48 (1.07)

CVSS 1.03 (0.17) 1.17 0 5.03 (0.17) 1.01 (0.10) 1.01 0 5.01 (0.10)

Setting 4 LASSO 13.05 (12.13) 13.05 0 17.06 (12.18) 18.22 (18.82) 18.22 0 22.23 (18.86)

ρ = 0 Elastic Net 13.66 (12.34) 13.66 0 17.67 (12.38) 16.19 (17.63) 16.19 0 20.20 (17.68)

c = 40% Ridge 12.67 (12.52) 12.67 0 16.68 (12.56) 14.81 (17.37) 14.81 0 18.83 (17.45)

SCAD 2.61 (2.82) 2.61 0 6.62 (2.87) 3.34 (3.25) 3.34 0 7.35 (3.29)

MCP 1.51 (1.27) 1.51 0 5.52 (1.32) 1.64 (1.48) 1.64 0 5.66 (1,56)

CVSS 1.46 (0.70) 1.46 0 5.46 (0.70) 1.25 (0.48) 1.25 0 5.25 (0.48)

Setting 5 LASSO 10.76 (11.52) 10.76 0 14.77 (11.55) 13.46 (17.42) 13.46 0 17.47 (17.46))

ρ = 0.3 Elastic Net 11.59 (12.95) 11.59 0 15.60 (12.98) 13.80 (20.75) 13.80 0 17.81 (20.80)

c = 40% Ridge 9.36 (9.39) 9.36 0 13.37 (9.43) 13.19 (19.45) 13.19 0 17.20 (19.49)

SCAD 2.17 (1.99) 2.17 0 6.18 (2.04) 2.38 (2.64) 2.38 0 6.40 (2.72)

MCP 1.45 (0.99) 1.45 0 5.46 (1.03) 1.45 (0.99) 1.45 0 5.47 (1.08)

CVSS 1.17 (0.45) 1.17 0 5.17 (0.45) 1.12 (0.38) 1.12 0 5.12 (0.38)

Setting 6 LASSO 14.02 (16.99) 14.02 0 18.03 (16.93) 15.98 (19.02) 15.98 0 19.99 (19.05

ρ = 0.6 Elastic Net 12.19 (13.33) 12.19 0 16.20 (13.32) 18.03 (21.05) 18.03 0 22.04 (21.09)

c = 40% Ridge 11.32 (13.43) 11.32 0 15.33 (13.51) 14.65 (16.69) 14.65 0 18.66 (16.73)

SCAD 2.46 (2.03) 2.46 0 6.48 (2.10) 3.33 (2.86) 3.33 0 7.35 (2.92)

MCP 1.54 (1.09) 1.54 0 5.55 (1.31) 1.68 (1.41) 1.68 0 5.69 (1.45)

CVSS 1.07 (0.26) 1.07 0 5.07 (0.26) 1.02 (0.14) 1.02 0 5.02 (0.14)

procedures with highest FP (the Lasso, the Elastic Net and the Ridge) are also
the procedures that select a higher number of covariates compared to s. In fact,
as the total error increases, also the size increases. While the other approaches
suffer when the correlation increases, CVSS, Lasso and Elastic Net give better
results in terms of selection performances. On the other hand, the increase of
censoring percentage worsens the selection for all the methods.

When p = 200, our procedure is still the best one. If we compare the total
error for two values of p, it is possible to notice that FP+FN is lower when p =
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200. This characteristic is not shared with the competitors. Other approaches,
such as Lasso and Ridge, suffer the increase of the number of variables in the
dataset. The size of CVSS is the closest to the true size s = 5 in all scenarios
and the best performance is related at high correlation value.

4 Conclusion

In this work we proposed a new method to choose the relevant covariates with
high-dimensional survival data. Although survival analysis was initially used to
study death as a specific event in medical studies, these statistical techniques
have increasingly been used in economics and social sciences. Given the relevance
of the topic, it is important to be able to find a method that selects the relevant
variables related to the response variable as good as possible. In particular,
we proposed to combine several variable selectors available in literature with
the subsample technique. Simulation study has shown that our approach works
better than its competitors. For future work we will evaluate this approach from
a theoretical point of view and apply it to real data.

References

1. Baranowski, R., Chen, Y., Fryzlewicz, P.: Ranking-based variable selection for high-
dimensional data. Stat. Sin. 30(3), 1485–1516 (2020)

2. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc.: Ser. B (Methodol.)
34(2), 187–202 (1972)

3. Fan, J., Li, R.: Variable selection for Cox’s proportional hazards model and frailty
model. Ann. Stat. 30(1), 74–99 (2002)
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