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Preface

This volume is a collection of papers selected and peer reviewed from the more than
100 presented at the International Conference on Mathematical and Statistical
Methods for Actuarial Sciences and Finance–MAF2022, held at the University of
Salerno from 20 to 22 April 2022.

In its organizational phase, the course of the COVID-19 pandemic was still
unpredictable, and the MAF2022 steering committee made the decision to hold the
event in a hybrid form, online or in-person, leaving each participant free to choose
the most appropriate mode of participation. Nevertheless, we have always hoped to
have the widest possible participation in presence, both as a desired sign of nor-
mality and as a return to the tradition of the conference, always characterized by
cultural and human exchanges that only in presence can be fully realized.

This year’s conference, organized by the Department of Economics and
Statistics of the University of Salerno with the collaboration of the Department of
Economics of the University of Venice Cà Foscari, is the tenth in a two-year series
that began in 2004.

It was in fact in 2003 that the mathematicians and statisticians of the Department
of Economics and Statistics of the University of Salerno, colleagues and friends
among them, conceived and grew the purpose of developing through scientific
meetings the cooperation and exchange of ideas among those who, like them, were
engaged in research in actuarial science and finance. The enthusiasm about the
initiative was always based on the deep conviction that this interaction would surely
bear good fruit.

And so, the initiative has followed regularly, availing since 2008 of the valuable
collaboration of the Department of Economics of the University of Venice Cà
Foscari.

The first six editions were held in Italy, namely in 2004 and 2006 in Salerno, in
2008 in Venice, in 2010 in Ravello (Salerno), in 2012 again in Venice and in 2014
in Vietri sul Mare (Salerno). The international dimension of the conference has
grown over time, attracting a wider and wider audience. Thus, in 2016 the MAF
was held in Paris and in 2018 in Madrid. The 2020 edition, already suffering from
the COVID-19 pandemic, was held in a fully online version from Venice.
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This tenth edition confirms the growing interest of the international scientific
community towards the initiative, with about 200 participants, more than 170
scientific contributions proposed in the form of abstracts or papers and four pres-
tigious plenary speakers, namely

Prof. Elsa Fornero, Honorary Professor, University of Turin, who presents an
invited talk entitled: “Reform, Inform, Educate”: a new paradigm for the sustain-
ability of pension system;
Prof. Massimiliano Caporin, University of Padua, who presents an invited talk
entitled: Realized Covariance Modelling, Forecast Error Variance Decompositions
and a Model-Based Diebold-Yilmaz Index;
Prof. Marcello Galeotti, University of Florence, who presents an invited talk
entitled: Applications of Game Theory to Risk Models: Evolutionary and
Cooperative Approaches;
Dr. Michel Dacorogna, Prime Re Solutions, Zug, Switzerland, who presents an
invited talk entitled: Pro-Cyclicality Beyond Business Cycles: The Case of
Traditional Risk Measurements.

Since 2006, all editions of the conference have been accompanied by a book
published by Springer, a product that has often been counted among the most
downloaded on the platform. Also, this tenth edition proposes the associated book,
with the aim of offering the selected scientific contributions in a concise form of
maximum 6 pages, in which the authors present their idea and the methodology
behind its development, providing, when possible, an illustrative application.

The goal is to create a forum for comparison of ideas, topics and research
perspectives, which embodies and represents at best the soul of MAF as a place of
meeting and scientific exchange.

Several are the research areas to which the papers are dedicated with a focus on
applicability and/or applications of the results:

Actuarial models, analysis of high-frequency financial data, behavioural finance,
carbon and green finance, credit risk methods and models, dynamic optimization in
finance, financial econometrics, forecasting of dynamical actuarial and financial
phenomena, fund performance evaluation, insurance portfolio risk analysis, interest
rate models, longevity risk, machine learning and soft computing in finance,
management in insurance business, models and methods for financial time series
analysis, models for financial derivatives, multivariate techniques for financial
markets analysis, neural networks in insurance, optimization in insurance, pricing,
probability in actuarial sciences, insurance and finance, real-world finance, risk
management, solvency analysis, sovereign risk, static and dynamic portfolio
selection and management, trading systems.

In its almost twenty years, the initiative has always availed itself of the support
of the Departments of Economics and Statistics of the University of Salerno (Italy)
and of the Department of Economics of the University Ca’ Foscari of Venice (Italy)
and nonetheless of the scientific associations:
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• AMASES—Association for Mathematics Applied to Social and Economic
Sciences

• SIS—Italian Statistical Society.

Further, we would also like to express our deep gratitude to the members of the
scientific and organizing committees and to all the people whose collaboration
contributed to the success of the MAF2022 conference. In particular, our heartfelt
thanks go to Giovanna Bimonte and Antonio Naimoli, who have worked unstint-
ingly with great enthusiasm and efficiency, continually showing with their work the
sharing of the aims of the initiative. We would also like to thank all the participants
for their precious and indispensable contribution.

Finally, we are pleased to inform you that the organizational machine is already
at work, looking forward to the MAF2024 edition.

Marco CorazzaApril 2022
Cira Perna

Claudio Pizzi
Marilena Sibillo
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Absolute and Relative Gender Gap in Pensions:
The Impact of the Transition from DB to NDC

in Italy

Antonio Abatemarco1(B) and Maria Russolillo2

1 Department of Economics and Statistics and Centre for Economic and Labour Policy,
Evaluation (CELPE), University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano,

SA, Italy
aabatemarco@unisa.it

2 Department of Economics and Statistics, University of Salerno, Via Giovanni Paolo II, 132,
84084 Fisciano, SA, Italy

mrussolillo@unisa.it

Abstract. In this paper, we analyze how the progressive transition from the DB
to the NDC scheme has affected both the absolute and the relative gender gap
at retirement in Italy for individuals retiring from 1980 to 2027 by using data
from SHARELIFE (Wave 7). With this purpose in mind, the two opposite effects
originating respectively from (i) improving labormarket conditions forwomen and
(ii) increasing actuarial fairness of the pension plan are simultaneously considered.
We observe a U-shaped pattern since the gender gap in pensions is found to be
decreasing up to 2020 but increasing afterward. By using both absolute and relative
gender-gap indicators, we show that the increasing pattern for the gender gap
at retirement after 2020 is driven by (i) decreasing redistributive impact of the
pension scheme, and (ii) women’s penalization in the pro-rata mechanism due to
lower contributions paid in the earlyworking life. Specifically, due to the transition
from a very generous to an actuarially fair pension scheme, gender disparities are
found to be slightly different when comparing absolute and relative indicators.

Keywords: Gender gap · Pension · Redistribution · Actuarial fairness

1 Introduction

The Gender Gap in Pensions (GGP) indicates the percentage by which women’s average
pension is lower than men’s. The GGP is observed in all countries with different mag-
nitude and reveals the weaker pension position many women find themselves compared
to men.

During the last decades, a decreasing trend has been observed for the GGP in most of
the European countries, which is still going on in the recent times. As for the population

M. Russolillo—Netspar Fellow - Network for Studies on Pensions, Aging and Retirement.
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2 A. Abatemarco and M. Russolillo

aged more than 65 years old in EU-SILC, the GGP is found, on average, 39.1% in
2009 [3], whereas the same indicator for the population of retirees aged 65–79 years
old in 2017 is found sensibly lower at 35.7% [5]. Nevertheless, the transition from a
Defined-Benefit (DB) and redistributive pension plan to a Defined-Contribution (DC)
and actuarially fair scheme, foreseen by many pension reforms, is expected to increase
this gap by introducing a stronger link between earnings and pensions [7], especially in
Italy.

Basically, during the last decades two driving forces impacting on the GGP have
been observed in Italy: on the one hand, since the Sixties, significant improvement of
labor market conditions for women in terms of both average labor market earnings and
participation in the labor market, have narrowed the gap [8]. On the other hand, pension
reforms introduced from the Nineties – promoting the transition from a redistributive
DB to an actuarially fair NDC scheme – have reduced generic rich-to-poor redistribution
in old-age and seniority pensions [1], and are then expected to open the GGP [6]. The
present work is tailored to study, by using a counterfactual approach (in the absence of
behavioural responses), the dynamics of the gender gap at retirement by cohorts and by
year of retirement, while comparing absolute and relative indicators in order to capture
possible gender disparities.

2 Data and Methodology

This paper uses data from SHARE (The Survey of Health, Aging and Retirement in
Europe) Wave 7 (https://doi.org/10.6103/SHARE.w7.711), see [4] for methodological
details.1

2.1 Data

The study focuses on a population of individuals (employees and self-employed) with a
public pension plan, born from 1940 up to 1969, and retired from 1980 up to 2016 (ret-
rospective analysis), or expected to meet minimum eligibility requirements within 2027
(prospective analysis). Data are taken from SHARELIFE [4] questionnaire (wave 7) and
are collected by taking into account, for each job position lasting six months at least, the
following features: employment spells, employment status, job characteristics, income,
retirement benefits, typology of contribution plans, and the type of public pension ben-
efits. To focus on the insurance mechanism of the pension scheme (independently from

1 The SHARE data collection has been funded by the European Commission through FP5
(QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-
2005–028857, SHARELIFE: CIT4-CT-2006-028812), FP7 (SHARE-PREP: GA N.211909,
SHARE-LEAP: GA N.227822, SHARE M4: GA N.261982, DASISH: GA N-283646) and
Horizon 2020 (SHARE-DEV3: GAN.676536, SHARE-COHESION: GAN.870628, SERISS:
GA N.654221, SSHOC: GA N.823782) and by DG Employment, Social A_airs & Inclusion.
Additional funding from the German Ministry of Education and Research, the Max Planck
Society for the Advancement of Science, the U.S. National Institute on Aging (U01 AG09740-
13S2, P01 AG005842, P01 AG08291, P30 AG12815, R21 AG025169, Y1-AG-4553-01, IAG
BSR06-11, OGHA 04-064, HHSN271201300071C) and from various national funding sources
is gratefully acknowledged (see www.share-project.org).

https://doi.org/10.6103/SHARE.w7.711
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social assistance), we consider the sole respondents receiving an old-age or seniority ben-
efit from contributions to a public pension plan (so excluding first-tier pension benefits).
The analysis here carried out considers real data for the reconstruction of the contribution
career of retirees (last chronological year 2016) divided by three consecutive intervals
for the year of birth (cohort), respectively 1940–49, 1950–59, and 1960–69, and three
consecutive intervals for the year of retirement, respectively 1980–09, 2010–19, and
2020–27 and it is based on the following assumptions.

(a) Salary progression within each job spell is simulated according to the earnings
growth rate differentiated by macro sector from official reports of the Italian
National Institute of Statistics (ISTAT).

(b) Gross earnings are obtained from net earnings applying tax brackets and marginal
tax rates from three different tax systems (1974, 1992, 2007).

(c) Transformation Coefficients for the bienniums 2023–24, 2025–26 and 2027 are
obtained by projecting mortality rates according to the Lee-Carter model [9, 10] by
using data from the Human Mortality Database [2].

(d) As far as our analysis is of the retrospective kind for people retiring before 2017
and prospective with respect to still-in-job individuals who are expected to retire by
31st December 2027, we assume that still-in-job individuals in 2016 preserve their
working conditions ad retire as soon as they reachminimumeligibility requirements
according to pension rules in 2022.

(e) Since official capitalization rates to be applied in the NDC scheme are not available
before 1962 and after 2021, we reconstruct the missing values by using the 5 yearly
moving average of the GDP growth rate (ISTAT).

2.2 Methodology

Given the information on the working career of individuals retired from 1980 to 2016,
as well as on the population of still-in-job individuals expected to retire within 2027,
let bi := {

b1i, . . . .., bnii
} ∈ R

ni+ be the actual distribution of first pension benefits in

the ith cell and bvi :=
{
bv1i, . . . .., b

v
nii

}
∈ R

ni+, be the virtual distribution of first pension

benefits calculated under the hypothesis of a fully NDC (actuarially fair) scheme.
Following the existing literature on the gender gap [3, 5], the actual and the virtual

GGPs in the ith cell are, respectively,

GGPa
i = 1 − b

a
i (F)

b
a
i (M )

GGPv
i = 1 − b

v
i (F)

b
v
i (M )

(1)

with bi(F) and bi(M ) indicating the average pension benefit in the ith cell of females and
males respectively. Notably, the money (absolute) gap between average pension benefits
is taken in relative terms with respect to the average pension of males.
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3 Preliminary Results

In the analysis we carry on, following the reforms of the Italian pension system, in
particular Dini (Law 335/1995) andMonti-Fornero (Decree-Law 201/2011) Reform, we
consider three different cells. Cell 1 consists of workers with 18 years of contribution at
least in 1995 and retiring before 2012, for whom a fully DB benefit formula applies in the
computation of the first pension. Cell 2 consists of workers with 18 years of contribution
at least in 1995 but retiring after 2012; for these workers the old DB scheme applies for
years of contribution until 2011, whereas the NDC scheme applies afterward. Finally,
Cell 3 is composed by workers with less than 18 years of contribution in 1995, for whom
the old DB scheme applies until 1995 whereas the NDC scheme applies afterward.

The dynamics of the composition of the population in each cell with respect to the
pension scheme in force is as follows: in Cell 1 the 98.2% of retirees obtain a fully DB
pension; in Cell 2, only the 10.5% of retirees obtain a fully DB pension, while NDC
from 2012 for 80.7% of retirees applies; finally, in Cell 3 NDC applies from 1996 for
85.8% of retirees.

The actual and the virtual GGPs calculated according to formula (1) are illustrated
in Table 1.

Table 1. Gender Gap in Pensions by cohort and by year of retirement

Gender Gap Cell 1* Cell 2* Cell 3*

GGPa 0.289 0.183 0.190

GGPv 0.318 0.221 0.171
*Cell 1: cohort 1940–49, retirement 1980–09. Cell 2: cohort 1950–59, retirement 2010–19. Cell
3: cohort 1960–69, retirement 2020–27.

From Table 1, it appears that the GGPa reduces significantly, in percentage terms,
with the transition from Cell 1 to Cell 2. This virtuous gender gap reduction trend
interrupts with the transition from Cell 2 to Cell 3, thus determining a U-shaped pattern
for the GGPa. This trend clearly highlights the redistributive impact of the DB pension
scheme in Cell 1 and 2, compared to the actuarially fair NDC scheme, oddly absent in
Cell 3. The second raw in Table 1 shows on the contrary a decreasing pattern for the
GGPv for all the considered cohorts. While this result is expected, we cannot say the
same for the first one. In order to better explain the U-shaped GGPa, in Table 2 we report
the actual mean pension benefit for male and female and the Absolute Actual Gender
Gap in Pensions (Abs. GGPa) by cohort and year of retirement.

As concerns the dynamics of the actual pension benefits across cells, it is worth
observing that, for both males and females, actual pension benefits are first increasing
from Cell 1 to Cell 2, then decreasing from Cell 2 to Cell 3. This is mostly the result of
the two driving forces above described (Sect. 1) moving in opposite directions, where
the first effect due to increasing labor market earnings from the eighties dominates from
Cell 1 to Cell 2, whereas the lower rate of return of the NDC scheme dominates from
Cell 2 to Cell 3, causing the reduction of mean pension benefits for both males and



Absolute and Relative Gender Gap in Pensions 5

Table 2. Absolute Actual Gender Gap in Pensions by cohort and by year of retirement

Gender Gap (e) Cell 1* Cell 2* Cell 3*

bi
a
(M ) 19878.2 25724.0 22859.8

bi
a
(F) 14123.2 21014.7 18489.2

Abs.GGPa 5755.0 4709.3 4370.6
*Cell 1: cohort 1940–49, retirement 1980–09. Cell 2: cohort 1950–59, retirement 2010–19. Cell
3: cohort 1960–69, retirement 2020–27.

females. With the progressive transition from DB to NDC scheme the GGPa has started
to growing again in percentage terms, while slowing down sharply in absolute terms.

From these results it might appear that women would make better with a fully NDC
in Cell 3. This might be due to the Pro-rata mechanism insidious for late entering in the
labor market and discontinuous early working career of the women compared to men.
To explore this result further, in Table 3, the actual and virtual women’s average pension
benefit by cohort and year of retirement are compared.

Table 3. Women’s average pension benefit by cohort and by year of retirement

Gender Gap (e) Cell 1* Cell 2* Cell 3*

bi
a
(F) 14123.2 21014.7 18489.2

bi
v
(F) 11634.9 16091.6 17545.3

*Cell 1: cohort 1940–49, retirement 1980–09. Cell 2: cohort 1950–59, retirement 2010–19. Cell
3: cohort 1960–69, retirement 2020–27.

From Table 3, the gross actual pension benefit for females is found to be higher than
the virtual one for all of the three Cells, even if the gap is sensibly lower in Cell 3. Hence,
even if women would do better in terms of GGP under a fully NDC scheme, in absolute
terms the pro-rata mechanism is still to be preferred to the fully NDC due to a more
generous pension benefit formula.

4 Remarks

Our analysis proves that the progressive transition from the DB to the NDC scheme
has stopped the decreasing pattern of the gender gap in pensions in Italy (in terms of
old-age and seniority pensions), even if a decreasing pattern is still observed in money
(absolute) terms. To our knowledge, this is the first analysis investigating the dynamics
of the gender gap in pensions by cohort and by year of retirement, which is crucial to
capture the effect of pension reforms over time. Future research efforts will be devoted to
the identification of alternative methodologies to be used to investigate the robustness of
the results obtained from the counterfactual GGP analysis implemented in our analysis.
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Abstract. In this work, we propose a data-driven approach to derive a
Textual Political Polarity Index (TPPI ) based on the verbatim reports
of the Italian “Senate of the Republic”. Our procedure allows us to build
a set of polarity indices reflecting the impact of political debate and
(dis)agreement within parties’ groups on a chosen economic variable -
the Italian GDP growth rate - over time. Results point to a nontrivial
predictive power of the proposed indices, which (importantly) do not rely
on a subjective choice of an affective lexicon.

Keywords: NLP · Sentiment analysis · Text as data · Parliamentary
debate · Time series

1 Introduction

Recently the interest in “text as data” among scholars of political science, eco-
nomics, and finance has dramatically increased [2], due to the advantages of
textual analysis in terms of costs [11] and timeliness [7].

In this work we propose new text-based indices to improve predictions of
traditional economic indicators [7] using parliamentary debates [4,9]. Texts sen-
timent polarities are derived without relying on a subjective choice of an affective
lexicon [8] in a completely data driven manner, following the intuition of [6].

2 Data

We work with two different sets of data: a corpus of parliamentary debates and
the time series of a macroeconomic variable.

Let t = 1, . . . , T = 73 be the sample (S) years corresponding to the calendar
years 1948 to 2020. We use years t = 1, . . . ,M = 43 as training sample (S1) for
words polarities computation and years t = M +1, . . . , T as test sample (S2) for
indices time series construction and evaluation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 7–12, 2022.
https://doi.org/10.1007/978-3-030-99638-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99638-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-99638-3_2
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2.1 The Italian Senate Verbatim Reports

The corpus we use is the collection of the Italian Senate of the Republic parlia-
mentary verbatim reports. It consists of more than 11,500 transcripts from 08
May 1948 to 31 December 2020 which we convert from raw .pdf format into a
Document Term Matrix (DTM).

In order to do so, we perform optical character recognition (OCR) when
needed, then apply standard pre-processing and cleaning [1], stop-words and
rare terms removal [4,9] and stemming to reduce vocabulary size.

After splitting the texts into speeches, we filter out orators identified by their
office only [3].

Then we associate each orator speech to a set of metadata used to identify
four Political Groups each orator belonged to the day they spoke. Namely, the
Government group includes all Government members. Majority and Opposition
group members either support the Government or not, respectively. We disregard
the residual Mixed group as it aggregates the (few) orators not belonging to any
previous group.

We call C = (cdt,v) the original D×V DTM where: D =
∑M

t=1 Dt is the total
number of documents in S1; Dt is the number of documents at each time t; V is
the total number of words in S1; cdt,v ≥ 0 is the count of word v in document dt
at time t; dt = 1, . . . , Dt; t = 1, . . . ,M ; v = 1, . . . , V .

To align the sample frequencies of corpus texts and economic variable we
create the M × V matrix C̃ whose elements are given by c̃t,v =

∑Dt

dt=1 cdt,v.
In order to put more weight on the most relevant words at each time, we

apply the tf-idf transformation1 on C̃ and obtain the M × V matrix F = (ft,v)
where ft,v is the tf-idf weighted frequency of word v in document t. Finally, such
frequencies are normalised as in [10] via the L2-norm so to obtain the elements
f̃t,v with t = 1, . . . , M of the matrix F̃ .

2.2 The Italian Yearly GDP Time Series

The macroeconomic variable we use is the Italian gross domestic product (GDP).
To cover our sample period we create a custom time series from two already
available series. Specifically, we used the 1948–1995 values of the GDP time
series re-constructed by the Italian institute of statistics (ISTAT ) and Bank
of Italy and the 2017–2020 values of the GDP time series as made available
by ISTAT in its National Accounts database. For years 1995–2017 a weighted
average of the two series is calculated at each time. Both series are yearly based,
measured in millions of euros at current market prices, and constructed by the
original sources in accordance with the European National Accounts 2010 (ESA
2010). The series obtained is converted in a fixed 2000 market prices series using
specific multipliers made available by ISTAT.

1 Let x be a word in a corpus, its term frequency-inverse document frequency is given
by: tf -idf(x) = tf(x)×idf(x) where tf(x) is the relative frequency of x and idf(x) =
log total number of documents

number of documents containing x
is the inverse document frequency of x.
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Let {yt}Mt=0 be the time series of interest and let y = (y0, . . . , yM ) be the
(M +1)×1 vector associated with it. As we are mostly interested in the economy
temporal dynamic, and to have a stationary series, we compute the year-on-year
growth rates series {Δyt}Mt=1, where Δyt = yt−yt−1

yt−1
.

3 Determining Words Sentiment Polarities

To determine the words sentiment polarities, each normalised weighted word fre-
quency f̃t,v is assigned the corresponding growth rates at each time t = 1, . . . , M .

To do so, we need to choose a “textual window” - i.e. the portion of texts to
be used in calculations. Let Bk,h be the generic “textual window configuration”
where h and k are, respectively, its starting and ending time points. Textual
windows control for possible delayed impacts of Parliamentary discussion on the
Country economy.

Assigning the growth rates signs results in the construction of the “polarised
textual windows” matrices sgnW

(∗)
t where ∗ = {B0,0, . . . , B1,4}.

Finally, we obtain each “word sentiment polarity”, p̃
(y)
v , by summing sgnW t

elements across rows and re-scaling the computed values.

4 Polarity Indices Time Series

After determining each word polarity on the training sample S1, we construct
time series of polarity indices on the test sample S2.

4.1 Total Textual Political Polarity Index (TPPI-T)

To construct the polarity indices time series we start from the (test sample)
normalised tf-idf weighted frequencies f̃t,v and use them to obtain the “polarised
words frequencies” g

(y)
t,v = f̃t,v × p̃

(y)
v where t = M + 1, . . . , T and v = 1, . . . , V .

We create time series of positive, negative and total polarities whose ele-
ments are, respectively, given by: pos

(y)
t =

∑V
v=1

(
g
(y)
t,v | g(y)t,v > 0

)
while neg

(y)
t =

∑V
v=1

(
g
(y)
t,v | g(y)t,v < 0

)
and tot

(y)
t =

∑V
v=1|g(y)t,v |.

Finally, we construct the “Total Textual Political Polarity Index” (TPPI-T )
time series whose elements are given by:

TPPI-T (y)
t =

pos
(y)
t + neg

(y)
t

tot
(y)
t

t = M + 1, . . . , T (1)

We call such index “Total” as it is constructed without conditioning on the
political group belonging of each orator at the time they were speaking.
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4.2 Group Specific Textual Political Polarity Indices (TPPI-GS)

With the procedure previously detailed, we construct analogous indices condi-
tioning on orators’ political group: Government, Majority and Opposition.

Therefore, the following three “Group Specific Textual Political Polarity
Indices”, TPPI-GS, are built - one for each political group:

TPPI-GS(y)
i,t i = {Gov,Maj,Opp} t = {M + 1, . . . , T} (2)

4.3 Polarity Divergence Indices (TPPI-D)

The TPPI-T and the TPPI-GS aim at modelling the sentiment polarity of
debate during Assembly sessions over time.

Another interesting feature is the degree of (dis)agreement between one politi-
cal group and the others. Therefore we also propose “Group Polarity Divergence
Indices”, TPPI-D, derived directly from the TPPI-GS basing on the squared
differences between each of the three TPPI-GS at each time.

Let TPPI-GS(y)
i,t be the t-th time series point of the i -th TPPI-GS with

i = {Gov,Maj,Opp}. The t-th time series point of the ij -th TPPI-D is:

TPPI-D(y)
ij,t =

(
TPPI-GS(y)

i,t − TPPI-GS(y)
j,t

)2

(3)

where i, j = {Gov,Maj,Opp}, i �= j and t = M + 1, . . . , T .
In addition, we construct an Average Group Divergence Index, TPPI-DAvg,

by averaging the values of the three polarity divergence series at each time:

TPPI-D(y)
Avg,t =

1
C

∑

ij

TPPI-D(y)
ij,t (4)

where t = M + 1, . . . , T and C is the number of possible couples of i and j with
i, j = {Gov,Maj,Opp}, i �= j. Hence, we obtained three TPPI-D.

5 Evaluating Indices Configurations

Each index is constructed in 8 versions depending on the textual window config-
uration. In total we had N = 32 “primary” indices - i.e. not deriving from other
indices: 8 TPPI-T and 24 TPPI-GS.

To choose the best configurations, we used the model confidence set (MCS)
introduced by [5]. As loss function for the procedure, we used the squared error

function: SE
(∗)
t =

(
yt − TPPI

(∗)
t

)2

where t = M + 1, . . . , T and TPPI(∗) is a
TPPI-T or TPPI-GS under textual window ∗ = {B0,0, . . . , B1,4}.

We performed four MCS - one for each of the indices TPPI-T, TPPI-GSi with
i = {Gov,Maj,Opp} - and select the best N∗ = 9 textual window configurations:
B0,0 and B0,2 for the TPPI-T ; B0,1, B0,0 and B1,1 for the TPPI-GSGov; B0,0

and B0,2 for the TPPI-GSMaj ; B0,0 and B1,1 for the TPPI-GSOpp.
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Fig. 1. Annual growth rate of the Italian yearly GDP at 2000 constant prices: best
AR-X models via MCS vs AR model

For the 24 “secondary” indices TPPI-D the choice is based on the selection
of the TPPI-GS they derive from. For each best TPPI-GS version, the cor-
responding TPPI-D with the same window configuration are selected. Hence,
10 TPPI-D versions are selected: B0,0, B1,1, B0,1, B0,2 for the TPPI-DGovMaj ;
B0,0, B1,1, B0,1 for the TPPI-DGovOpp; B0,0, B1,1, B0,2 for the TPPI-DMajOpp.
Finally, for the TPPI-DAvg only configurations B0,0 and B1,1 are considered.

To test their ability to improve the forecast accuracy of Italian GDP growth
rate, following [7], each of the 21 selected indices is employed as exogenous vari-
able (X) in an autoregressive model (AR-X ) and compared against the simpler
autoregressive model (AR) of order one.

Then, we identify the best performing models via a MCS, hence selecting the
AR-X including the indices TPPI-D(B0,2)

GovMaj and TPPI-GS(B0,0)
Maj as the two best

models with a confidence level of 99% and a mean squared error (MSE) of 0.476
and 0.614, respectively. In all cases AR-X models outperform the classic AR
model providing evidence in favour of the informative content of the constructed
indices. Specifically, the AR-X regressions including the TPPI-D(B0,2)

GovMaj and

TPPI-GS(B0,0)
Maj show an R-squared (R2) of 0.466 and 0.111, respectively, against

an R2 = −0.013 of the AR model. Figure 1 shows the GDP predictions obtained
by the two best performing AR-X models according to the MCS and the bench-
mark AR model compared against the observed data.
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6 Conclusion

In this work, we derive two classes of textual indices linking political debate and
economic dynamic. The TPPI-T and TPPI-GS measure sentiment polarity and
aim at replicating directly the economic variable of interest; on the other hand,
the TPPI-D incorporate information about political (dis)agreement.

Results are achieved by analysing the full corpus of Italian Senate debates
and creating a database ready to use for textual analysis.

Importantly, words sentiment polarities are derived via a completely data-
driven approach without relying on the choice of an affective lexicon which is a
more common practice.

The proposed indices are used as additional predictors in regression models.
Results highlight a significant negative linear relation between the dynamic of
the Italian GDP growth rate and the tone divergence in the discussion between
Government and Majority members.
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Abstract. In this paper we introduce the use of mixed-frequency vari-
ables in a quantile regression framework to compute high-frequency con-
ditional quantiles by means of low-frequency variables. We merge the
well-known Quantile Regression Forest algorithm and the recently pro-
posed Mixed-Data-Sampling model to build a comprehensive method-
ology to jointly model complexity, non-linearity and mixed-frequencies.
Due to the link between quantile and the Value-at-Risk (VaR) measure,
we compare our novel methodology with the most popular ones in VaR
forecasting.
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1 Introduction

Quantile regression [10] is a popular technique that offers a more complete pic-
ture of the conditional distribution of the response variable with respect to stan-
dard linear regression. It also allows to make inference on processes violating the
Gaussianity assumptions of many econometric models, and for this reason it is
widely popular among researchers and practitioners in a variety of fields, such
as finance, economics and machine learning.

In the latter context, [9,13,14] applied quantile regression to a non-
parametric framework by means of neural networks and support vector machines,
whereas [1,2,12] extend Random Forests [3] to a quantile regression setting.
Here we use the Random Forests approach, which represents a machine learning
algorithm based on training a multitude of decision trees and computing the
conditional expected value of the response variable by averaging the forecasts of
each individual tree. In a quantile regression framework, the natural extension of
Random Forests proposed by [12], denoted as Quantile Regression Forest (QRF),
estimates the whole conditional distribution of the response variable and then
computes the quantile at a probability level τ .
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These models are particularly appealing since they mitigate the standard
assumptions presented in traditional quantile regression models.

Given the relation between the concept of VaR and quantile, quantile regres-
sion has been successfully implemented also for financial risk management pur-
poses. However, financial and economics data are usually observed at different
frequencies. This feature does not allow to include potentially useful variables in
many standard econometric models, which usually account for variables sampled
at the same frequency. For instance, in daily VaR forecasting it might be useful
to include monthly or quarterly economic variables (for instance, GDP or infla-
tion) that serve as a proxy for the general state of the economy. For this reason,
the Mixed Data Sampling (MIDAS) model [7] has been specifically developed
to consider mixed frequency variables in linear models and applied to quantile
regression and VaR forecasting by [4]. In spite of the relevance of the quantile
regression technique in VaR forecasting, the QRF and the MIDAS models have
never been merged together in the literature. Thus, the aim of our paper is to
combine the MIDAS framework with the QRF one to forecast daily VaR by con-
sidering monthly macroeconomic variables as covariates. Up to our knowledge,
this represents the first attempt in the literature to merge the quantile regression
approach, Random Forests and mixed-frequency data models.

The resulting model, called MIDAS-QRF, allows to detect non-linear rela-
tions among variables without specifying a-priori any functional form. Moreover,
the use of Random Forests allows to build an interpretable and computationally
efficient algorithm. As a matter of fact, Random Forests have a higher grade of
intepretability and require a lower computation effort to be trained with respect
to other machine learning algorithms, such as neural networks.

The empirical application on a real financial dataset shows that our approach
outperforms existing models in forecasting daily VaRs of the S&P 500 index in
terms of backtesting procedure and by means of [8] quantile loss function. The
rest of the paper is organised as follows: Sect. 2 concerns the methodology used
to develop our model, Sect. 3 presents the empirical results in terms of statistical
adequacy and forecast accuracy and Sect. 4 concludes.

2 Methodology

In this section the methodology used to build the MIDAS-QRF, based on the
MIDAS [7] and the QRF [12] models, is presented.

Let {(Yi,t,Xi,t)}T
i=1 ∈ R×R

P be the sample of random variables drawn from
the unknown joint distribution of the random variables (Y,X). In particular,
Yi,t is the response variable sampled at time i of the t − th period of the year
and Xi,t = (X1

i,t . . . , XP
i,t)

′ is the P -vector at time i of covariates sampled at the
same frequency of Yi,t. We also define Zt = (Z1

t , . . . , ZN
t )′ to be the vector of

N low-frequency variables sampled at time t. In our framework, the dependent
variable Yi,t is represented by daily financial returns sampled at day i of the
t − th month of the year, and the low-frequency variable might be a monthly
economic variable representing the general state of the economy sampled at the
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t − th month of the year. The VaR at day i at probability level τ ∈ (0, 1),
denoted with V aRi,t, is defined as Pr(Yi,t < V aRi,t|Fi−1,t) = τ , i.e. the τ -th
conditional quantile of Yi,t, given the filtration Fi−1,t. The aim of this paper is to
extend the QRF framework building a MIDAS-QRF model introducing mixed-
frequency data in the QRF algorithm exploiting the approach of [7] and [4], and
is specified as follows:

Yi,t = f(Xi−1,t,MCi−1,t) + εi,t (1)

where MCi−1,t = (MC1
i−1,t, . . . ,MCN

i−1,t)
′ is the set containing the

MIDAS component for each low-frequency variable in Zt, with MCi−1,t =
∑K

k=1 φk(ω)Zt−k. The MIDAS component is a filter of the last K observations
of the low-frequency covariate Zt up to the last day of the t − th period. The
values of MCi−1,t are computed through a weighting function, that in our paper
is the Beta one, as [4]:

φk(ω) =
(k/K)ω1−1(1 − k/K)ω2−1

∑K
k=1(k/K)ω1−1(1 − k/K)ω2−1

. (2)

By setting ω1 = 1 and ω2 > 1, a greater weight is imputed to more
recent observations and the only parameter of the MCi−1,t component is ω2.
In our algorithm, the values of each MIDAS component are obtained by opti-
mising ω2. We denote with ω∗

2 = (ω1
2 , . . . , ω

N
2 )′ the vector containing the opti-

mal values ω∗
2 . The goal of the MIDAS-QRF is to compute the conditional

quantile Qτ (Yi,t|Xi−1,t,MCi−1,t) at level τ by estimating f(·) in Eq. (1) non-
parametrically.

In particular, the MIDAS-QRF algorithm consists in computing quantiles by
training a QRF with high-frequency variables {(Yi,t,Xi,t)}T

i=1 and with MCi−1,t

as additional set of covariates. Each MIDAS component is computed as in Eq. (2)
by optimising ω∗

2 via grid search. The grid search consists in computing dif-
ferent sets MCi−1,t for different values of ω2. Then, each set MCi−1,t and
{(Yi,t,Xi,t)}T

i=1 are used to train a QRF and a vector of out-of-sample quantile
forecasts is computed. The optimal ω∗

2 is the one corresponding to the QRF
delivering the lowest quantile loss.

3 Empirical Application

We apply our model on a dataset containing as Yi,t the daily log-returns of the
S&P 500 index (SPX) from December 2013 to February 2020. The covariates
observed at the same daily frequency are the Yi−1,t and the log-difference of
VIX index considered at time i − 1, t. The low-frequency variables introduced
in the model are the American Industrial Production (MV1) and the Consumer
Price Index (MV2) observed at monthly time, that are going to be included
in the MIDAS part of the model. Data are differentiated when necessary. The
MIDAS-QRF model has been trained with an expanding window approach and
has been used to forecast the VaR at probability levels τ = 0.05, 0.01. At each
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level τ , we use 30% of the full set as set of out-of-sample observations to compute
one-step-ahead VaR forecasts.

In order to evaluate the performance of the MIDAS-QRF, we compare the
results with several traditional models used to forecast VaR. The first group
of models comprehends the standard Quantile Regression Forest, the Linear
Quantile Regression and the GARCH model with two different distributions of
the errors, Normal and Student’s t distributions. None of them contemplate the
MIDAS component. The second group of models includes the GARCH-MIDAS,
the Double Asymmetric GARCH-MIDAS and the MIDAS-QRF with one low-
frequency MIDAS covariate included. In the latter cases, for each model we use
first the Consumer Price Index (MV1) as low-frequency variable and then the
Industrial Production (MV2) one.

The statistical adequacy of the VaR forecasts obtained with our model is
assessed with the quantile loss results computed as in [8] and the three backtest-
ing procedures: Unconditional Coverage Test (UC), Conditional Coverage Test
(CC) and Dynamic Quantile (DQ) test [5,6,11]. We report also the values of the
Actual Exceedances (AE) and the ratio of the quantile loss of the MIDAS-QRF
and the loss of the benchmark model (%Loss). For the former, for τ = 0.05 are
expected 35 exceedances, whereas for τ = 0.01 are expected 7 exceedances. For
the latter, values smaller than 100 indicate that the MIDAS-QRF model deliver
a smaller quantile loss with respect to the benchmark model. The results of the
AE and %Loss measures are reported in Table 1 along with the p-values of the
three above-mentioned backtesting procedures.

Table 1. Results of the Backtesting procedures and quantile loss for 5% and 1% VaR
levels.

VaR level 5% 1%

S&P 500 Loss % Loss AE UC CC DQ Loss % Loss AE UC CC DQ

QRF-MIDAS (MV1, MV2) 7.62 - 30 0.41 0.67 0.24 2.57 - 9 0.50 0.71 0.11

QRF-MIDAS (MV1) 8.12 93.90 38 0.69 0.93 0.93 2.64 97.31 8 0.75 0.87 0.07

QRF-MIDAS (MV2) 8.29 91.97 37 0.90 0.82 0.14 2.71 94.94 9 0.50 0.71 0.10

QRF 9.31 81.88 41 0.29 0.54 0.14 2.89 88.93 10 0.31 0.52 0.12

QR 9.95 76.65 37 0.67 0.05 0.00 3.29 77.99 9 0.50 0.71 0.00

GARCH-norm 8.47 90.06 39 0.47 0.40 0.28 3.05 84.15 22 0.00 0 .00 0.00

GARCH-std 8.55 89.18 51 0.00 0.02 0.00 2.75 93.41 17 0.00 0.00 0.00

GM (MV1) 8.35 91.31 39 0.58 0.567 0.921 2.91 88.19 21 0.00 0.00 0.00

GM (MV2) 8.38 90.97 42 0.22 0.46 0.14 3.04 84.50 25 0.00 0.00 0.00

DAGM (MV1) 8.35 91.31 37 0.67 0.93 0.97 2.95 86.94 23 0.00 0.00 0.00

DAGM (MV2) 8.40 90.76 43 0.17 0.38 0.14 3.06 84.09 25 0.00 0.00 0.00

The average number of degrees of freedom for the GARCH-std is 4.5.

Empirical results for VaR at 1% and 5% indicate that the MIDAS-QRF
model delivers statistically adequate forecasts, as represented by the backtesting
results, and produces more accurate forecasts in terms of quantile loss and AE
with respect to any other model considered in our analysis.

In particular, for VaR at 5% level, each model passes all three tests at
95% confidence level, except for the Linear Quantile Regression model and the
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GARCH model with Student’s t distribution of errors. In terms of quantile loss,
the MIDAS-QRF delivers the smallest quantile loss, as represented by the values
of %Loss, which is well bellow the threshold of 100. The two specifications of
the MIDAS-QRF also deliver a smallest quantile loss and a smaller AE value
with respect to the GM and DAGM models, indicating a higher risk assessment
capability of our model.

At 1% level, only the three specifications of our model and the QRF are
successfully backtested, whereas the rest of the models underestimate the market
risk by delivering very high values for the AE results. Again, the MIDAS-QRF
delivers the smallest quantile loss and produces an AE value very similar to the
threshold, which is equal to 7.

The empirical results show that the MIDAS-QRF delivers the most accurate
forecasts in terms of quantile loss and AE, allowing a more accurate risk assess-
ment. This might be due to several reasons: first, differently from traditional
econometric models, the MIDAS-QRF offers a non-parametric setting to com-
pute quantiles, which does not need any hypothesis regarding the distribution
of the variables. Second, machine learning algorithms are well-known for their
ability to model non-linear relationships among variables, that characterise rela-
tions among economic and financial variables and that are not considered by
classical econometric models such as the GARCH and Linear Quantile Regres-
sion models. Third, our model exploits information from variables sampled at
different frequencies, improving the forecast accuracy by a maximum of 23% for
VaR at both 5% and 1% levels.

4 Conclusions

This paper proposes a new methodology to compute conditional quantiles in
a machine learning framework to jointly account for complexity, non-linearity
and mixed-frequencies in data. We propose a novel algorithm called MIDAS-
QRF to exploit information coming from low-frequency variables in order to
compute quantiles by merging the QRF and the MIDAS models. The empirical
application on a real financial dataset shows that our model delivers adequate
VaR forecasts and that it outperforms popular existing models used in VaR
forecasting in terms of quantile loss.
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Abstract. This paper fosters discussion about the gender pension gap.
We propose a research framework in financial economics, centered on the
role of gender in longevity risk perception. Our approach is essentially
made by three steps, aiming at the: (i) identification of drivers of sub-
jective longevity assessment (e.g., biases), (ii) the measurement of the
economic significance of longevity (mis)-perception in relation to saving
and investment behaviors, (iii) the design of strategies to help women
understand the opportunities behind long-term planning for retirement.
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1 Introduction

The Agenda of the United Nations (see [22]) sets the goal of achieving gender
equality and the empowerment of all women and girls, at all levels of decision-
making in political, economic, and public life. Nevertheless, the EU is at least
sixty years beyond from reaching gender equality (see [7]). Women aged 65+
receive, on average, 26% less income than men from the pension system in the
OECD (cf. [17]). Policy makers at national and international levels recognize that
the gender pension gap is a problem with serious consequences on the financial
and social well-being of women in old age.

This paper intends to foster the discussion on individuals’ decision-making as
a driver of the gender pension gap. Such a gap represents a complex issue that goes
much beyond the obvious explanation that refers to the wage gender gap, as it also
relates to the outcome of individuals’ forward-looking behaviour when planning
for their retirement (e.g., investment, saving and annuitization choices). We advo-
cate the use of a multidisciplinary approach to address the pension gap. We pro-
pose a research framework entailing insights and methodologies from behavioural
finance, household finance, and actuarial sciences. We illustrate where the state-
of-the-art stands so far in the explanation of retirement behaviour, with a focus
on those driving factors that are documented to reverberate gender differences
(i.e., financial literacy, risk attitudes, and beliefs). We emphasize what is not yet
thoroughly addressed in the literature. Although there is consensus on the fact
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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that women and men form different beliefs about their survival, there are not
well-established results about the nature of this discrepancy (e.g., if it arises from
more marked behavioural heuristics in women) and about its impact on financial
preparedness for retirement. Accordingly, no approaches have been envisaged yet
to increase women’s awareness of their longevity and nudge them towards better
long-term decisions. We describe how longevity perception could play a role in
future research on the gender pension gap.

2 Drivers of Retirement Behaviour: the State-of-the-Art

Well-being in old age depends on the ability to generate retirement savings.
Financial literacy and behavioural heuristics that could lead to misjudgements
are identified in the literature as drivers of individuals’ retirement planning
behaviour and thus offer possible explanations for the pension gap.

The standard microeconomic approach assumes that fully rational and well-
informed individuals arrange their optimal saving and decumulation patterns in
such a way to obtain smooth consumption over the life cycle. However, empirical
evidence shows that individuals’ behaviour can be inconsistent with conventional
economic models. According to a growing body of economic research, a lack of
adequate financial literacy can cause sub-optimal choices about financial plan-
ning and pensions. [14] found that, in the U.S., women who understand the con-
cept of risk diversification are more likely to plan for retirement. [12] found, only
among women, a statistically significant and positive relationship between engage-
ment in retirement planning and an extended measure of financial literacy (that
included investment risks). The chance to develop a retirement plan, especially
among women, thus increases with a deeper financial knowledge than the basic
one, i.e., financial sophistication embracing proper risks understanding and per-
ception. A subjective dimension comes thus into question. Subjective assessment
of risks and uncertainty is, indeed, found to be a determinant of retirement plan-
ning behaviour, also in connection to risks that are not merely related to the finan-
cial markets, such as longevity risk. In particular, the role of such determinant
surpasses that of financial literacy, as traditionally measured and interpreted, as
shown in [9], where individuals who expected to live longer were found to be more
likely to be planners. The literature shows that retirement planning can be affected
by the way individuals deal with uncertainty and assess the economic risks aris-
ing from it. Longevity is an important source of uncertainty, that can potentially
undermine old-age financial well-being. In the next Section, we illustrate how sub-
jective survival beliefs are proven to affect savings, investments and annuitization.
Such decisions play the major role in determining economic preparation for retire-
ment (cf. [16]) and can reverberate gender differences in decision outcomes.

3 Subjective Longevity, Gender and Economic Choices

Individuals’ residual life span, that is inherently random, defines the time hori-
zon over which a retirement income will be required. Research contributions in
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economics and finance focus their attention on the effects that individuals’ expec-
tations about future events have on intertemporal decision-making. Survival
expectations are documented to affect individual saving decisions (see, e.g., [19]
and [11]). Under a gender perspective, literature addresses the impact of risk tol-
erance on women’s engagement in saving (cf. [8]), but there is little research about
the effects of gender differences in survival expectations. Saving for retirement is
increasingly taking the form of investing in financial assets. [4] found that women
invest less in stocks because of their attitudes toward risk. Longevity risk affects
portfolio choice, as shown by the theoretical models predicting that investors with
longer horizons should allocate more wealth to risky assets, especially under loss
aversion (cf. [3]). [20] found that, after appropriate controls, investors with longer
subjective time horizons hold a larger share of risky assets. [18] showed that the
riskiness of household portfolios increases only with the husband’s subjective time
horizon. To our knowledge, this is the only research contribution addressing how
differing subjective survival beliefs between females and males affect their invest-
ment decisions. A further crucial financial decision for individuals at retirement
relates to the purchase of annuities. Such products provide retirement benefits,
while insuring individuals against the risk of longevity and of old-age poverty. Nev-
ertheless, a few consumers actually allocate a substantial fraction of their retire-
ment savings to the private annuity market, in contrast with the prediction of stan-
dard economic theory (“annuity puzzle”, cf. [15]). Influential empirical and experi-
mental literature documents gender differences in annuitization decisions, that are
also analysed through the lenses of behavioural finance. Women and men show a
different sensitivity to the framing that is used to present risk information rela-
tive to the annuities. [1] showed that emphasizing the consequences of longevity
risk (e.g. the chance to outlive the own assets) did not significantly enhance the
likelihood to choose an annuity for women, but it did for men. This sheds light on
the issue, still poorly addressed in the literature, that women and men could have
different longevity awareness.

4 Our Research Framework and Directions

Our line of research is centered on longevity risk and on its crucial importance
for long-term planning and thus for economic preparedness for retirement. In
this Section, we highlight our research outcomes relative to the identification
of the driving factors of longevity perception and its gender connotation. As a
novel contribution of this paper, we shed light on our empirical findings about
the effects that longevity (mis-)perception has on financial risk taking. We then
describe how these findings pave the way for further important research on the
economic implications of subjective longevity and the use of nudging in the
context of retirement choices.

As a first step in the research process we have investigated how individuals
assess their longevity. It is well-established in the empirical literature that subjec-
tive survival expectations fail to align with actuarial probabilities. Indeed, young
individuals tend to under-estimate their survival, while the opposite holds for
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older individuals (i.e., aged more than seventy). It is far from straightforward
to explain both survival under-estimation at younger ages and survival over-
estimation at old ages (the so-called “survival gap”) in a purely rational setting
(e.g., in the framework of the rational Bayesian learning paradigm). Indeed,
previous literature detects behavioural heuristics behind the survival gap (cf.
[10,11,13]). Nevertheless, to understand the economic consequences of individ-
uals’ beliefs about survival, the identification of judgemental biases should be
accompanied by their measurement. The state-of-the art focusing on behavioural
explanations tends to neglect that subjective survival beliefs also include private
information that is relevant to assess survival probabilities but standard actuarial
probabilities (reflecting only the effects of age, period and gender on mortality)
do not incorporate (e.g., health information). In [2], we theoretically explain
and empirically assess the survival gap. We propose a parsimonious model of
sentiment, that is based on the assumption that subjective survival probabili-
ties evolve according to sentiment-driven expectations about the future health
status. Our model predicts that the survival gap is positive when individuals
preserve their optimism in the face of health shocks. Such prediction finds sig-
nificant empirical support in survey data (from the U.S. Health and Retirement
Study (HRS)1 and from the Survey of Health, Ageing, and Retirement in Europe
(SHARE) (cf. [6]). Our empirical measure of the survival gap is based on health-
dependent actuarial probabilities, this allowing a better quantification of the bias
affecting their subjective counterpart. Besides sentiment, gender is a significant
determinant of the survival gap: women are more likely to under-estimate the
own survival than men, although, on average, they experience higher longevity.

As an original contribution of this paper, we discuss our preliminary empir-
ical evidence on the relation between longevity risk perception, as measured
by the survival gap, and individuals’ willingness to engage in financial risks.
This aspect is not addressed in [2], but seems crucial to understand household
decisions, from asset allocation to insurance purchase, that is a target of our
future research. Specifically, given the empirical evidence reported in [2] on the
role of gender in relation to the magnitude of the survival gap, analysing how
longevity risk perception affects financial risk taking represents an important
step to address the pension gap. Our econometric analyses, based on data from
SHARE, suggest that, after appropriate controls, those individuals who express
a more precise estimation of their survival prospects are more likely to accept at
least some level of financial risk when saving and investing. For these individuals,
the likelihood of being financial risk-takers are up to 6% higher than for the other
respondents. Furthermore, the odds of taking some financial risk is, for females,
11% to 13% lower than for males. Our research also shows that changes in subjec-
tive survival beliefs are statistically significant drivers of financial risk tolerance
updating. These results shed light on the impact that the age-dependent pattern
of subjective survival expectations can have on life-cycle behaviour. For instance,
rational life-cycle financial planners should adopt investment strategies designed
as follows: during the accumulation phase, people should gradually switch from

1 https://hrs.isr.umich.edu/about.

https://hrs.isr.umich.edu/about
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equity-type to bond type-investments as the retirement date approaches, while,
during the decumulation phase, they should exchange bonds for life annuities
(e.g. the phased annuitization in [5]). A lack of longevity awareness in younger
(female) people can lead them to conservative investment strategies during their
working years. This would imply lower expected returns over the long term and
smaller chances to obtain a high retirement income and high annuity payments.
This paper aims also to provide innovative directions for further research on
retirement planning. Accounting for age-dependent patterns of longevity risk
perception and financial risk attitudes in models of economic behaviour would
be beneficial to quantify deviations from the predictions of standard economic
theory. We also advocate the use of behavioural economics for the design of
strategic solutions to help the people being at disadvantage in retirement provi-
sion, as women, to make better choices (e.g. the prescriptive programs for saving
decisions in [21]). In this respect, our future research targets the choice archi-
tecture where individuals make their economic decisions relevant to retirement.
Indeed, individuals should be nudged towards balanced-risk investment strate-
gies and annuitization already at earlier stages in their life when they under-
estimate their survival. A target for intervention is represented, for instance,
by default investment options within defined contribution retirement savings
arrangements.
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Abstract. Path integrals are a well-known tool in quantum mechanics
and statistical physics. They could be used to derive the propagator or
kernel of stochastic processes, analogous to solving the Fokker-Planck
equation. In finance, they become an alternative tool to address the val-
uation of derivatives. Here, taking advantage of the hedging formula of
the realized variance by means of the log contract, we use path integrals
for the pricing of variance swaps under the Constant Elasticity of Vari-
ance (CEV) model, approximating analytically the propagator for the
log contract by semiclassical arguments. Our results demonstrate that
the semiclassical method provides an alternative and efficient computa-
tion which shows a high level of accuracy but at the same time lower
execution times.

Keywords: Path integral · CEV model · Variance swap

1 Introduction

The constant elasticity of variance (CEV) model [1,2] is featured by its capac-
ity to address some phenomena as heteroskedasticity, implied volatility skew,
bankruptcy, and leverage effect, but also by its analytical tractability [3].

The variance swap (VS) pricing, when the underlying asset rules under the
CEV assumption, has been addressed by means of the valuation of the log con-
tract [4] or using an approximation via small disturbance asymptotic expansion
of the CEV variance [5]. Moreover, Carr & Sun [6] provide closed-form pricing
formulas by means of Laplace inversion to the variance 3/2 model. It should be
noted that the CEV model implies that instantaneous variance follows a 3/2
process, which has received a lot of empirical support [6,7].

Our idea here is to provide an alternative approach to the VS valuation, based
on the path integral framework [8]. Using the replication of the realized variance
by means of the log contract [9], we approximate the transition density for the
price process (a.k.a. propagator) using the well-known semiclassical approach for
the path integral, a functional analog of the stationary phase approximation [10].
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This method was used recently in the CEV option pricing problem [11], showing
be an efficient approach and competitive or even superior performance with
other numerical schemes, namely Monte Carlo simulation, binomial tree, and
finite difference method. Here, we will study its application in the VS valuation
in terms of the accuracy and the capacity to provide significantly lower running
times than the valuation using the exact analytical propagator.

2 The Model

In the CEV environment, the price S is ruled by the following stochastic differ-
ential equation:

dSt = rSt + δSα+1
t dWt (1)

where W is a standard Brownian motion and r, σ > 0, and α ∈ [−1, 0[ the
constant parameters of the model.

The transition probability density function of the price at time T , a.k.a prop-
agator, is given by [11]:

P (ST , T | S0, 0) = (2 − α) k
1

2−α
(
yw1−2α

) 1
2(2−α) e−y−wI1/(2−α) (2

√
yw) (2)

where Iλ (x) is the modified Bessel function of the first kind of order λ and:

k = y
2r

σ2 (2 − α)
[
er(2−α)T − 1

] , y = kS2−α
0 er(2−α)T , w = kS2−α

T

On the other hand, the instantaneous variance of the model is given by:

Vt = δ2S2α
t (3)

In addition, by Itó’s lemma, is clear that the variance process follows a 3/2
model:

dVt = αVt [(2α − 1) Vt + 2r] dt + 2αV
3
2

t dBt

2.1 Variance Swap Pricing

The VS is a derivative based on the difference between the annualized realized
variance over the expected one, in a defined time span. In continuous-time, it’s
defined as:

V S =

(
1
T

∫ T

0

Vtdt − EV

)

× N (4)

being Vt the instantaneous variance of the underlying asset and N the variance
notional amount. At the initial time (t = 0), the entry cost of the contract is
zero. It means that the variance strike EV is fixed to be equal to the realized
variance in the interval [0, T ]. Then, in a risk-neutral world, the pricing of a
variance swap is reduced to compute the expected value of the realized variance.
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3 Realized Variance Replication

The realized variance could be replicated by means of the log contract following
the approach of Demeterfi et al. [9]:

E

[
1
T

∫ T

0

Vt

]

= 2r +
2
T

log (S0) − 2
T
E [log (ST )] (5)

Then, according to Eq. (5), the variance swap pricing is reduced to compute
the expected value for log (ST ), which is estimated by:

E [log (ST )] =
∫ ∞

−∞
log (ST ) · P (ST , T | S0, 0) dST (6)

The previous integral can be addressed numerically but its computation is espe-
cially costly under i) short maturities, ii) short volatilities, and iii) when elasticity
tends to zero [4].

3.1 The Semiclassical Approximation for the Log Contract

First, by means of the transformation x = − (αδSα)−1, we obtain a new process
with constant (unitary) diffusion coefficient:

dxt =
(

α + 1
αx

− rαx

)
dt + dWt (7)

Following the methodology given by Bennati et al. [12], the propagator can
be obtained using the following path integral representation:

P (xT , T | x0, 0) =
∫

Dx(t)e− ∫ T
o

Lxdt

being Dx(t) the measure of the integration which considers all the trajectories
from x(t = 0) = x0 to x(t = T ) = xT .

Lx is called the Lagrangian and is given by [12]:

Lx =
1
2

(
ẋ + rαx − α + 1

2αx

)2

− 1
2

(
α + 1
2αx2

+ rα

)

= L′
x + Gx

where

L′
x =

ẋ2

2
+

r2α2x2

2
+

1 − α2

8α2x2
(8)

Gx = ẋ

(
rαx − α + 1

2αx

)
+

(2α + 1) r

2
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Before starting, we develop the time integral of Gx in the following way:
∫ T

0

Gxdt =
rα

2
(
x2

T − x2
0

) − (α + 1)
α

(ln xT − ln x0) − (2α + 1) rT

2

and since the above result is path-independent (only depends on the xT and x0):

P (xT , T | x0, 0) =
(

xT

x0

) (α+1)
α

e
(2−α)rT

2 − rα
2 (x2

T −x2
0)

∫
Dx(t)e− ∫ T

0 (L′
x)dt (9)

Instead of computing analytically the path integral inside (9), we could
approximate it by semiclassical arguments by means of Pauli’s formula [13]:

∫
Dx(t)e− ∫ T

o
L′

xdt ≈ e−Aȳ

√

−M
2π

(10)

being A
′
x̄ the Action functional (time integral of the Lagrangian) evaluated at

the classical path x̄; i.e., classical action. The classical path is who links the
initial and final points and obeys the Euler-Lagrange equation. The term M is
called the Van-Vleck-Morette determinant [10] and is computed as:

M =
∂2Ax̄

∂x0∂xT

Directly from Eq. (8), the classical path related to L′
x (which solve the asso-

ciated E-L equation) is given by:

x(t) =

√
4ω2

(
λ − 1

4

) − C2
1 (2ωC2 + e−2ωt)2

4ω2C1e−2wt

where C1 and C2 are constant of integration obtained by means of the extremality
conditions (x(0) = x0 and x(T ) = xT ).

After replacing the classical path into Eq. (8) and its time integral (i.e.,
A′

x̄), the Van-Vleck-Morette determinant can be obtained and, in consequence,
the semiclassical approximation is achieved, and then, the propagator could be
approximated analytically.

4 Numerical Results

By means of a standard numeric integration scheme, the computation of (6) is
performed. We can observe, in Table 1, the successfulness of the semiclassical
approach for the pricing of the log contract, and in consequence the variance
swap pricing, compared with the benchmark (i.e., using the analytical and exact
propagator). The semiclassical way offers both i) very low computational times
(a difference of two orders of magnitude) and ii) high accuracy contrasted to the
standard way of computation. Through the relative error under different parame-
ter sets, it’s clear that the better performance of the semiclassical approximation
occurs for elasticities near zero, short maturities, and small volatilities.
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Table 1. Comparison for the semiclassical approximation and benchmark using S0 =
100 and r = 5%.

T δ α Semiclassical Benchmark Relative error (%)

E [ST ] Time (s) E [ST ] Time (s)

0.25 0.05 −0.02 4.6162 0.0002 4.6174 0.0773 0.03

−0.2 4.6061 0.0002 4.6061 0.0793 0.25

0.5 −0.02 4.5895 0.0002 4.5917 0.0778 0.05

−0.2 4.5990 0.0002 4.6127 0.0780 0.30

1 0.05 −0.02 4.6427 0.0002 4.6541 0.0777 0.25

−0.2 4.6086 0.0002 4.6550 0.0801 1.00

0.5 −0.02 4.5413 0.0002 4.5504 0.0817 0.20

−0.2 4.6086 0.0002 4.6354 0.0779 1.18
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Abstract. Linking pensions to longevity developments and population age-
ing is one of the most common types of automatic adjustment mechanisms in
pension schemes. Although this reform approach is primarily driven by cost-
containment objectives, other dimensions of welfare restructuring are present,
including pension adequacy, recalibration, introducing economic and actuarial
rationality, recommodification, and blame avoidance for unpopular policies that
involve retrenchments. This paper discusses how to index pensions to longevity
developments and population ageing in a way that is consistent with actuarial
fairness and neutrality across generations. We derive an intergenerational fairness
and neutrality condition for pension reform and examine alternative policy options
including modifying the contribution rate, updating the statutory retirement age,
or introducing sustainability factors.

Keywords: Automatic adjustment mechanisms · Life expectancy · Pensions ·
Actuarial fairness · Risk-sharing · Longevity risk

1 Introduction

Pension schemes require regular adjustments to address the long-term affordability,
fiscal sustainability and adequacy challenges posed by demographic (e.g., population
ageing), economic (e.g., low productivity gains and economic growth, a rapidly shifting
labour market) and financial (e.g., low-for-long interest rate scenario) shocks. These
adjustments can be discretionary or follow some (fully or semi) automatic adjustment
or stabilization mechanism (AASM), mechanically updating the scheme’s parameters
(e.g., retirement age) conditional on some triggering indicator (e.g., life expectancy).
The introduction of automatic stabilizers replaces regular discretionary measures, con-
tributing to enhancing the credibility of the system, social trust, and the support of the
intergenerational contract by preventing otherwise unexpected public finance crises and
major benefit cuts in the future [1]. About two-thirds of OECD countries employ some
form of AASM in mandatory pension schemes [2].
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Linking pensions to longevity developments is one of the most common types of
AASM[3–6].However, some studies pointed out several deficiencies in thewaypensions
have been indexed to life expectancy developments, including the use of inappropriate
longevity measures, the adoption of uniformmarkers neglecting longevity heterogeneity
and lifespan inequality, embracing compensation and obfuscation strategies such as
sequencing, long-phasing in periods, and long indexation lags [7, 8]. Critical to this
paper, they were not designed to keep the scheme fair across generations.

This paper extends Bravo et al. [9] and discusses how to index pensions to longevity
developments and population ageing in a way that is consistent with actuarial fair-
ness and neutrality principles. We derive the intergenerational fairness and neutrality
condition for pension reform and discuss alternative automatic adjustment mechanisms
includingmodifying the contribution rate, updating the statutory retirement age, or intro-
ducing sustainability factors, but the full policy option menu includes indexing pensions
in payment, adjusting the penalties (bonus) for early (late) retirement, modifying past
earnings revalorization rate. The structure of this article is as follows. Section 1 outlines
the key concepts and research methods used in the paper. Section 2 presents the model
setup, the intergenerational fairness and neutrality condition. Section 3 examines several
alternative policy options. Section 4 concludes.

2 Intergenerational Fairness and Neutrality Condition

In this paper, we follow and extend Bravo et al. [9] and consider a stylized career average
re-evaluated earnings-related non-financial defined benefit (NDB) pension scheme with
entry pension actuarially computed based on the entire contribution effort. The approach
is extended to account for population ageing (increase in the old-age dependency ratio)
and the existence of external sources of funding in the pension scheme. The actuarial
pay-as-you-go aggregate balance constraint in year t equals the revalued contribution
effort and the pension wealth

At · ct · Vt + EX t = Lt · λt · Pxr(t) · aπ,y
xr(t)

, (1)

where At is the number of active workers in the scheme; ct is the contribution rate;
Vt ≡ V

(
xr(t), xe,w, yt

)
is the lifetime pensionable average salarywt of all activeworkers,

revalued using an (actuarial equilibrium, notional) rate of return yt ; xe is the average
labour market entry age; EX t represents the external sources of funding (e.g., general or
dedicated taxes);Lt is the number of pensioners;λt ≥ 1 is the average number of pensions
per pensioner (to account for the overlapping of old-age and survivor’s pensions); Pxr(t)

is the annual average pension benefit across all retirees, computed as follows:

Pxr(t) = θt
(
xr(t) − xe

) · RExr(t) · SFxr(t) · bxr(t), (2)

where θt is a linear (usually flat) accrual rate for each year of service,
(
xr(t) − xe

)
is

the average contribution period with xr(t) the exit (retirement); θt
(
xr(t) − xe

)
is the

scheme’s target replacement rate; SFxr(t) is a life expectancy coefficient (often called
sustainability factor) introduced in some countries (e.g., Finland, Portugal) to adjust
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entry pensions to longevity increases; bxr(t) are pension decrements
(
bxr(t) < 1

)
or pen-

sion increments
(
bxr(t) > 1

)
for early or delayed retirement, respectively; RExr(t) ≡

RE
(
xr(t), xe,wt, υt

)
is the lifetime average revalued earnings of all active workers

RExr(t) = RExr(t)/(xr(t) − xe) with

RExr(t) =
⎛

⎝wxr(t)
t +

xr(t)−1∑

x=x0

wxr(t)
t−xr(t)+x

t∏

j=t−xr(t)+x+1

(
1 + υj

)
⎞

⎠, (3)

where υt denotes the rate at which each year contributions are revalued; a
π,y
xr(t)

is the life
annuity factor

aπ,y
xr(t)

:=
ω−xr∑

τ=1

(
1 + πτ

1 + yτ

)t

τpxr(t). (4)

where π is the uprating rate for pensions, τpxr(t) is the τ -year survival probability of
a population cohort aged xr at time t, computed using a diagonal (cohort) approach.
Let Dt denote the scheme’s old-age dependency ratio - the ratio between the number
of pensions Ltλt and the number of active workers At -, Dt = Ltλt/At . The balance
constraint (1) can be rewritten as

ct · Vt + EX t/At = Dt · Pxr(t) · aπ,y
xr(t)

, (5)

If the longevity prospects of the population increase, the pension scheme parameters
(e.g., the early and normal retirement ages, the contribution rate, the life expectancy
coefficient, the accrual rate per year, the survivor pensions benefit formula, the indexation
rate of pensions) must be updated to ensure the scheme remains actuarially fair and
neutral across generations and does not require external funding. To ensure the scheme
remains fair and neutral across the members of the initial (labelled 0) and the current
(labelled t) generations, the following condition must hold:

ct
c0

· Vt

V0
+ EX t/At

EX 0/A0
= Dt

D0
· θt

(
xr(t) − xe

)

θ0
(
xr(0) − xe

) · RExr(t)

RExr(0)
· SFxr(t)

SFxr(0)
· bxr(t)
bxr(0)

· a
π,y
xr(t)

aπ,y
xr(0)

. (6)

where we assumed the parameters that are not pension policy instruments (e.g., wages,
labour market entry age) are kept constant.

Without loss of generality, assume now that individuals of both cohorts retire at the
full old-age pension age (i.e., bxr(t)/bxr(0) = 1), that the life expectancy coefficient is
constant over time (i.e., SFxr(t)/SFxr(0) = 1), and that the external funding per active
worker EX t/At is null or remains fixed over time. The fairness condition (6) simplifies
to:

ct
c0

· Vt

V0
= Dt

D0
· θt

(
xr(t) − xe

)

θ0
(
xr(0) − xe

) · RExr(t)

RExr(0)
· a

π,y
xr(t)

aπ,y
xr(0)

. (7)

Equations (6) and (7) offer a complete menu of automatic adjustment mechanisms and
pension policy rules to absorb the impact of economic and/or demographic shocks and
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preserve actuarial fairness and neutrality across generations. Theoretically speaking,
the policy interventions can take place at the three stages of pensions: accumulation
(e.g., contribution rate), annuitization (e.g., retirement age, sustainability factor), and
payout (pensions indexation rate), and may even combine multiple interventions in all
three stages [3]. In real-world cases, it is well known that some reforms are politi-
cally and socially hard to approve and sustain over time, as recent empirical evidence
shows in many OECD countries. Moreover, automatic adjustments may modify the way
the cost (and the risks) of providing for pensions is shared among generations. In the
next section, we summarize some of the policy options offered by the intergenerational
fairness condition above.

3 Policy Options

3.1 Adjusting the Contribution Rate

In a pureNDBscheme, the natural control variable is the contribution rate. The individual
benefits are defined by a set of rules and the social insurance premiums, contributions,
or taxes paid to cover the benefits must adapt to accommodate to whatever is required to
cover the additional costs generated by longer lives under the given set of rules including
the retirement age and the benefit formula. From (7), keeping all other parameters fixed
and assuming lifetime earnings are revalued at the scheme’s internal rate of return (i.e.,
υt = yt ∀t), the dynamics of the contribution rate required to cope with the population
extended longevity prospects follows

ct = c0 · a
π,y
xr(t)

aπ,y
xr(0)

· Dt

D0
. (8)

From (8), we can conclude that the contribution rate updates required to cope with
increasing survival rates and population ageing depend on two multiplicative factors: (i)
the first is a ratio between the actuarial value of the annuity factor at time t and that of

the corresponding benchmark value at time 0,
(
aπ,y
xr(t)

/aπ,y
xr(0)

)
. If lower (higher) mortality

is observed (and forecasted), the contribution rate must increase (decline). The second
adjustment factor (Dt/D0) captures the dynamics of the scheme’s old-age dependency
ratio. If the number of pensions relative to active workers augments, due to increased
life expectancy and/or population ageing and/or a deterioration in the labour market
conditions (reduced participation and/or higher unemployment rates), the ratio Dt/D0
augments and the contribution must increase to keep the scheme fair and neutral across
generations.

3.2 Adjusting the Retirement Age While Keeping the Replacement Rate
Constant

Under this policy design, the contribution period is extended, and the retirement age
increased while maintaining the macro replacement rate constant. This roughly means
the additional contribution effort does not translate into higher pension entitlements.
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To achieve it, the accrual rate per year must be reduced. From (7), keeping all other
parameters fixed and assuming that lifetime earnings are revalued at the scheme’s internal
rate of return and that the uprating rate for pensionsmatches the discount rate (i.e.,πt = yt
∀t), it can be shown that the dynamics of the retirement age follows

ėCxr(t)(
xr(t) − xe

) = ėCxr(0)(
xr(0) − xe

) · D0

Dt
, (9)

where ėCxr(t) is the cohort life expectancy at the retirement age. FromEq. (9), we conclude
that to keep the pension scheme actuarially fair and neutral and the replacement rate
constant when longevity increases, the retirement age must be updated such that the
expected years in retirement relative to contribution years equal that of the benchmark
(initial) generation reduced by the rate of increase in the scheme’s old-age dependency
ratio. In a scenario of population ageing the ratio D0/D1 declines (D0/D1 < 1) and
future pensioners will enjoy a shorter fraction of their lives in retirement compared to
previous generations.

3.3 Adjusting the Retirement Age While Improving Pension Adequacy

Under this policy design, the retirement age is increased, and the extra contribution
period translates into higher pension entitlements, improved pension adequacy, and an
enlarged pension scheme. This is achieved by keeping the accrual rate per year constant
and the other scheme’s parameters unchanged. From (7), assuming again that lifetime
earnings are revalued at the scheme’s internal rate of return and that the uprating rate for
pensions matches the discount rate, the new equilibrium retirement age follows

ėCxr(t) = ėCxr(0) · D0

Dt
. (10)

Equation (10) states that to cope with increased life expectancy at retirement ages and
population ageingwhile improving pension adequacy and keeping the scheme fair across
generations, the pension age must be updated such that the expected period in retirement
is reduced by a factor equal to the rate of increase in the scheme’s old-age dependency
ratio. Under this policy design, all extra longevity is spent working and the required
pension age adjustments are higher than that obtained with (9). Stated differently, to
improve pension adequacy younger cohorts must accept a reduced period in retirement.

3.4 Amending Entry Pensions Through a Sustainability Factor

For a given retirement age, sustainability factors reduce pension entitlements to com-
pensate for the extra pension expenditures that come with increased life expectancy [1].
Sustainability factors gradually reduce the replacement rate of pensions, which is often
wrongly perceived as a measure of the scheme’s generosity. In some countries (e.g.,
Portugal), the factor introduction was originally combined with flexible retirement age
approaches, including the possibility of extending working life to offset the pension cuts
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introduced by the reduction factor. From (6), keeping all other parameters fixed (includ-
ing the absence of external funding and a constant accrual rate per year) and considering
the same assumptions as above, the dynamics of the sustainability factor follows

SFxr(t) = SFxr(0) · a
π,y
xr(0)

aπ,y
xr(t)

· D0

Dt
, (11)

From (11) it follows that in a scenario of increased longevity and population ageing,
entry pensions must gradually be adjusted by a factor equal to the inverse of the product
of the rate of change in the scheme’s old-age dependency ratio and the rate of increase in
the annuity factor, to keep the scheme financially balanced and fair across generations.
This policy transfers, directly and indirectly, the financial burden of expanding lifetime
prospects to pensioners, which are at the end of the day the main beneficiaries of longer
lives.

4 Conclusion

This paper considers a simple stylized Bismarckian earnings-related NDB scheme to
derive an intergenerational fairness condition on how to index pensions to longevity
developments and population ageing in a way that is consistent with actuarial fairness
and neutrality across generations. The results show that increases in life expectancy at
retirement ages should be accompanied by either an increase in the contribution rate, by
increasing the statutory retirement age while keeping the replacement rate constant or,
alternatively, while expanding pension adequacy, by introducing a sustainability factor
linking entry pensions to longevity gains at annuitization, or a combination of all of
the above. Importantly, the results show that population ageing, as measured here by an
increase in the pension scheme’s old-age dependency ratio, demands an extra correction
in the key parameters since this shock structurally affects the relationship between the
contribution revenue and pension expenditure. Otherwise, countries will have to increas-
ingly resort to external funding sources (or, worst, denying benefits) to restore financial
balance. Further research will empirically investigate the magnitude of the adjustments
prescribed by the above policy options.
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Abstract. In this paper we propose a discrete time model, based on
dynamic programming, to price GLWB variable annuities under the
dynamic approach within a stochastic mortality framework. Our set-up is
very general and only requires the Markovian property for the mortality
intensity and the asset price processes. We also show the validity of the
bang-bang condition for the set of discrete withdrawal strategies of the
model. This result allows to drastically reduce the computational time
needed to search the optimal withdrawal in the backward recursive step
of our dynamic algorithm and provides, as a by-product, an interesting
contract decomposition.

Keywords: GLWB · Dynamic withdrawals · Bang-bang condition ·
Stochastic mortality

1 Introduction

Variable annuities (VAs) are very flexible life insurance investment products that
package living and death benefits endowed with a number of possible guaran-
tees in respect of financial or biometric risks. A rider that can be included in
a VA contract in order to provide a post-retirement income is the Guaranteed
Lifelong Withdrawal Benefit (GLWB), that offers a lifelong withdrawal guaran-
tee. There has been a number of papers dealing with pricing of the VA products.
Most of them are focused on pricing VA guarantees under the static policyholder
behaviour (see e.g., [1]), meaning that the policyholder always withdraws exactly
the guaranteed amount, and never surrenders the contract. Some studies include
pricing under the dynamic approach, when the policyholder optimally decides
the amount to withdraw at each withdrawal date depending on the informa-
tion available at that date (see, e.g., [2]). According to whether withdrawals are
assumed to occur continuously or discretely, the optimal withdrawal problem
under the dynamic approach is generally solved using, respectively, stochastic
control and dynamic programming [3]. In this paper we propose a discrete time
model, based on dynamic programming, to price VAs with GLWB under the
dynamic approach within a stochastic mortality framework. Our set-up is very
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
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general and only requires the Markovian property for the mortality intensity
and the asset price processes. Another contribution of our paper is the verifica-
tion of the bang-bang condition for the set of discrete withdrawal strategies of
the GLWB model. This means that the set of the optimal withdrawals consists
of three choices only: zero withdrawal, withdrawal at the contractual amount,
complete surrender. This result, proven in our discrete time framework, is par-
ticularly remarkable as in the insurance literature either the existence of optimal
bang-bang controls is assumed or it requires suitable conditions (see e.g., [4]).
The bang-bang condition, beyond drastically reducing the computational time
needed to search the optimal withdrawal in the backward recursive step of our
dynamic algorithm, allows to clearly separate the various contract components.

The remainder of this paper is organized as follows. In Sect. 2 we describe the
structure of the VA contract. In Sect. 3 we introduce our valuation framework
and define the optimal withdrawal problem. In Sect. 4 we first define the dynamic
programming equations that allow to solve the problem, then we introduce the
bang-bang condition and outline the proof of its validity, and after we present
the contract decomposition. Finally, Sect. 5 concludes the paper.

2 The Contract Structure

In this section we describe the GLWB rider in our variable annuity contract. At
time 0 (contract inception), the policyholder, aged x, pays a single premium P
which is entirely invested in a well-diversified and non-dividend paying mutual
fund of her own choice. We denote by St the market price at time t of each unit
of this fund, that drives the return on the investment portfolio built up with
the policyholder’s payment. The value at time t of such portfolio, that is called
‘personal account’, is denoted by Wt. The GLWB rider gives the policyholder the
right to make periodical withdrawals from her account at some specified dates
for the whole life, even if the account value is reduced to zero. The cost of the
guarantee is financed by periodical proportional deductions from the personal
account value, while the guaranteed withdrawal amount is calculated as a fixed
proportion g of the ‘benefit base’, denoted by At, which is initially set equal to
the single premium. In addition, the benefit base can be adjusted upward via the
‘roll-up’ feature, that applies when no withdrawal is made on a specified with-
drawal date. Both the complete surrender of the policy and the policyholder’s
death are events that cause the closure of the contract. The value that remains
in the personal account when the policyholder dies is paid to the beneficiary as
a death benefit. In particular, from now on we assume that: (i) withdrawals are
allowed on a predetermined set of equidistant dates and we take the distance
between two consecutive dates as unit of measurement of time; (ii) the death
benefit is paid to the beneficiary on the next upcoming withdrawal date. Let τ
denote the time of death of the policyholder, so that withdrawals are allowed
only at times i = 1, 2, . . . , provided that τ > i. The guaranteed amount that can
be withdrawn at time i is equal to gAi, and the return on the reference fund over
the interval [i − 1, i] is Ri = (Si/Si−1) − 1, i = 1, 2, . . . . We denote by yi the
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actual withdrawal made by the policyholder at time i and, under our dynamic
approach, we assume that the set of possible withdrawals at this time is given by
the interval [0,max{gAi,Wi}]. If the policyholder does not withdraw anything
at time i, the benefit base is proportionally increased according to the roll-up
rate, that we denote by bi (with 0 < bi < 1), while, if the withdrawal exceeds
gAi, it is proportionally reduced according to the so called ‘pro-rata’ adjustment
rule. Then the benefit base evolves as follows:

Ai+1 = fA
i+1(Wi, Ai, yi) =

⎧
⎪⎪⎨

⎪⎪⎩

Ai(1 + bi) if yi = 0,

Ai if 0 < yi ≤ gAi,

Ai
Wi − yi

Wi − gAi
if gAi < yi ≤ Wi

, i = 1, 2, . . . , (1)

with A1 = P . Moreover, in case of withdrawals exceeding the guaranteed
amount, there is also a proportional penalization on the surplus according to
a penalty rate, that we denote by ki (such that 0 < ki < 1). Therefore, the net
amount (cash-flow) received by the policyholder at time i is given by

B
(s)
i = f

(s)
i (yi, Ai) = yi − ki max{yi − gAi, 0}, i = 1, 2, . . . . (2)

The policy account value evolves according to the following equation:

Wi+1 = fW
i+1(Wi, Ri+1, yi) = max{Wi−yi, 0}(1+Ri+1)(1−ϕ), i = 0, 1, . . . , (3)

where ϕ (such that 0 < ϕ < 1) is the insurance fee rate, W0 = P and y0 = 0.
Note that 0 is an absorbent barrier for W because, once it becomes null, it
remains so for ever. The contract, however, continues while At > 0 (and the
insured is still alive). Finally, in case of death in the time interval (i − 1, i], the
death benefit, paid at time i, is

B
(d)
i = Wi, i − 1 < τ ≤ i , i = 1, 2, . . . . (4)

In case of surrender at time i, i.e., when yi = Wi > gAi, the contract is auto-
matically closed because (1) and (3) imply At = Wt = 0 for all t > i, hence no
further withdrawals are admitted, nor a death benefit will be paid.

3 The Valuation Framework

In this section we introduce our valuation framework and define the optimal
withdrawal problem. Consider a filtered probability space (Ω,F ,F, Q) support-
ing all sources of financial and biometric uncertainty, where all random variables
and processes are defined. The filtration F = (Ft)t≥0 satisfies the usual condi-
tions of right continuity and completeness, and is such that F0 is Q-trivial. Q is
a risk-neutral probability measure selected by the insurer, for pricing purposes,
among the infinitely many equivalent martingale measures existing in incomplete
arbitrage-free markets. In this setting, the residual lifetime of the policyholder τ
is a stochastic F-stopping time and let μt := μx+t(t) be the mortality intensity
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which determines the probability of death at time t conditional on survival for
the policyholder aged x at time 0. Moreover, we suppose there is independence
between financial- and biometric-related variables. In this general framework we
can consider for μ any (reasonable) Markovian process and denote by

pi(μi) = Q (τ > i + 1 | τ > i, μi) = E
Q

[
e− ∫ i+1

i
μu du |μi

]
, i = 0, 1, . . . , (5)

the probability of survival up to i + 1 for the policyholder still alive at age x + i
given the mortality intensity’s values up to i. Consequently, qi(μi) = 1−pi(μi) is
the probability of death before i + 1 conditional on survival at time i. Concern-
ing the financial uncertainty, we assume the instantaneous interest rate to be
deterministic and constant, and denote it by r. The reference price S, instead,
can be any Markovian process whose discounted value is a martingale under Q.
Consider now a withdrawal strategy y = (yi)i∈N+ , where yi denotes the actual
withdrawal made at time i (in case of survival). This is a stochastic process,
adapted to the filtration F, because at each withdrawal date the policyholder
takes her withdrawal decision once she knows the values of all state variables.
This strategy is admissible if it belongs to the set of admissible withdrawal
strategies Y = (Yi)i∈N+ , where Yi = [0, max{Wi, gAi}]. Then we define the
initial value of the GLWB variable annuity as the solution of the following opti-
mization problem:

V0 = sup
y∈Y

E
Q

[ ∞∑

i=1

e−ri
(
1{τ>i}f

(s)
i (yi, Ai) + 1{i−1<τ≤i}Wi

)
]

, (6)

where the account value and the benefit base satisfy (3) and (1) respectively.
Hence the policyholder is assumed to maximize the present expected value, under
Q, of all the future cash-flows generated by the VA contract.

4 Dynamic Programming

In this section we implement a dynamic programming algorithm for discrete
stochastic control problems to solve (6). In particular, as we act in a Marko-
vian framework, for each i we denote by Vi(Wi, Ai, μi) the contract value
at time i (before the periodic withdrawal) and by vi(Wi, Ai, μi) the contract
value at the same time when, moreover, the policyholder is then alive. Clearly
Vi(Wi, Ai, μi) = 1{τ>i}vi(Wi, Ai, μi) and V0 = V0(P, P, μ0) = v0(P, P, μ0).

Since the algorithm proceeds backward, we need a starting point. To this end,
we assume that there is an ultimate age for the policyholder beyond which her
survival probability is null. We denote by ω this age, that typically is in the range
110-120 years, and let n = max{i ∈ N : ω −x ≤ i+1}, hence n < ω −x ≤ n+1.
Then Eq. (5) is valid only for i < n, while pi(μi) ≡ 0 for i ≥ n. Therefore, the
optimal problem (6) can be rewritten as

V0 = sup
y∈Y

E
Q

[
n∑

i=1

e−ri
(
1{τ>i}f

(s)
i (yi, Ai) + 1{i−1<τ≤i}Wi

)
+ e−r(n+1)1{τ>n}Wn+1

]

(7)
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We take n + 1 as starting point of our backward dynamic algorithm, and define
the following terminal condition:

vn+1(Wi, Ai, μi) ≡ 0. (8)

Then we proceed backward and, for i = n, n − 1, . . . , 1, we define the Bellman
recursive equation of the problem as follows:

vi(Wi, Ai, μi) = sup
yi∈Yi

(

f
(s)
i (yi, Ai) + qi(μi)max{Wi − yi, 0}(1 − ϕ) + (9)

E
Q

[
e− ∫ i+1

i
μu duvi+1

(
fW

i+1(Wi, Ri+1, yi), fA
i+1(Wi, Ai, yi), μi+1

)
e−r|Wi, Ai, μi

]
)

.

Finally, the initial contract value is given by

v0(P, P, μ0) = q0(μ0)P (1 − ϕ) + E
Q

[
e− ∫ 1

0 μu duv1(P (1 + R1)(1 − ϕ), P, μ1)e−r
]
.

(10)

4.1 Bang-Bang Analysis

At each time step i = n, n − 1, . . . 1, Eq. (9) requires to solve a real-valued
optimization problem where the domain of yi is the whole interval Yi =
[0, max{Wi, gAi}]. Moreover, this problem must be solved for every possible
triplet of state variables (Wi, Ai, μi). Then the computational effort could be
substantial. A property that drastically reduces this effort is the bang-bang con-
dition, which states that the set of the optimal withdrawals consists of three
choices only: zero withdrawal, withdrawal at the contractual amount, complete
surrender. Such a condition is satisfied for our problem, indeed the optimal solu-
tion of (9) is yi = 0, or yi = gAi, or yi = Wi.

Now we outline the proof, that can be made by backward induction. First
of all, through tedious computations it is easy to show that the function to
maximise at step n is a continuous linear spline, defined in the closed inter-
val Yn, with a single knot given by min{Wn, gAn}, and that its maximizer
belongs to the set {Wn, gAn}. In addition, the value function at this step
takes the form vn(Wn, An, μn) = Cn(μn)Wn + Dn(μn)gAn, where Cn and Dn

are two (constant) functions such that 0 ≤ Cn(μn) < 1 and Dn(μn) > 0.
Then, assuming vi+1(Wi+1, Ai+1, μi+1) = Ci+1(μi+1)Wi+1 + Di+1(μi+1)gAi+1

for i = n − 1, . . . , 1, with 0 ≤ Ci+1(μi+1) < 1 and Di+1(μi+1) > 0 (almost
surely), it is easy to show that the function to maximize at step i is a linear
spline defined in the closed interval Yi. This function is discontinuous at 0, where
it takes a value strictly greater than its right limit, and continuous in the (only)
knot given by min{Wi, gAi}. Hence the conclusion is that its maximizer belongs
to the set {0, Wi, gAi} and also at this step the value function takes the form
vi(Wi, Ai, μi) = Ci(μi)Wi + Di(μi)gAi, with 0 ≤ Ci(μi) < 1 and Di(μi) > 0.
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4.2 Contract Decomposition

It is clear that the valuation algorithm aimed at producing the contract value
under the dynamic approach can be used to obtain, as simplified cases, also
the contract values under alternative policyholder behaviours, namely under the
static and the mixed1 approaches. To obtain the value under the static approach
it is sufficient to fix yi = gAi for any i = 1, 2, . . . , n, without searching any
maximum, while to obtain the value under the mixed approach the search of the
maximum must be restricted to the subset {gAi, Wi}. To distinguish between
these three different values we denote them, respectively, by V dynamic

0 , V static
0

and V mixed
0 . Then we can see the dynamic contract as the combination of three

components: the basic GLWB contract, i.e., the static one, the surrender option
(with value given by V surrender

0 := V mixed
0 − V static

0 ), and the roll-up option
(whose value is V rollup

0 := V dynamic
0 − V mixed

0 ):

V dynamic
0 = V static

0 + V surrender
0 + V rollup

0 .

5 Conclusion

In this paper we have proposed a discrete time model, based on dynamic pro-
gramming, to price GLWB variable annuities under the dynamic approach within
a stochastic mortality framework. We have verified, by backward induction, the
bang-bang condition for the set of discrete withdrawal strategies of the model,
and offered an interesting contract decomposition. We have considered a quite
general set-up, only requiring the Markovian property for the mortality intensity
and the asset price processes. However, to keep the curse of dimensionality of our
valuation algorithm manageable, we have assumed constant interest rates. Our
next step is the numerical implementation of the model by focussing on a square
root process for the mortality intensity and an exponential Lévy process for the
asset price. Moreover, the inclusion of stochastic interest rates is a challenging
topic for future research.
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Abstract. This paper addresses the ever-prominent issue of how to eval-
uate and forecast future longevity dynamics. Indeed, studying the evo-
lution of mortality and/or the cost of longevity risk is a major task for
both demographers and actuaries. In contrast to the usual period-based
evaluation, we consider the problem of approximating the distribution
of future life expectancy with a cohort-based perspective. In particular,
we suggest an application of the Least-Squares Monte Carlo approach,
which allows to overcome the straightforward nested simulations method.
The method is applied to the family of CBDX models, and results and
comparisons between different models, males and females, and period
and cohort approaches, are presented.
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1 Introduction

The analysis of mortality, and consequently of the evolution of various longevity
indices, is always under study by demographers and actuaries. Indeed, policy
makers need to quantify and manage the risks deriving from unexpected changes
in mortality, which would have major implications for the financial stability and
solvability of insurance companies and pension providers.

In contrast to the usual period-based approach, this paper addresses the prob-
lem of approximating the distribution of future life expectancy, and provides a
simulation scheme with a cohort-based perspective that depends on the future
evolution of mortality obtained by relying on extrapolative methods. In this
regard, one contribution can be found in [7], where the so-called SCOPE app-
roach to forecast future life expectancy levels, i.e., by conditioning on specific
future mortality scenarios, is introduced. Indeed, forecasting longevity indices
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with a cohort-based method requires the computation of conditional expecta-
tions for which explicit solutions often do not exist. A simple way to solve this
problem would be to rely on a nested simulations approach, which unfortunately
becomes readily unmanageable and computationally intensive, especially when
life expectancy estimates are needed for different cohorts and when stochas-
tic mortality models with multiple factors are considered. To overcome this
drawback, [3] proposes a Taylor-series approximation of the involved conditional
expectations.

This work, instead, suggests an application of the well-known Least-Squares
Monte Carlo (LSMC) approach firstly introduced in the financial field (e.g., see
[6]) and then extensively adopted in the actuarial one. The main idea is to approx-
imate conditional expectations by linear combinations of some basis functions
depending on the relevant factors that affect the quantity of interest. Among the
most important advantages of this method, we can mention its generality and flex-
ibility; indeed, it can be used with any mortality model, regardless of its complex-
ity. Essentially, the methodology proposed in this paper is based on that described
in [1], where the problem of evaluating future life annuities is addressed. Even if
here we focus on just life expectancy, this methodology may be adopted also for
approximating other longevity measures at future dates for which cohort-based
estimations are often replaced by period ones for computational simplicity.

The remainder of the paper is structured as follows: Sect. 2 states the problem
and briefly explains the proposed methodology, Sect. 3 illustrates some numerical
results and finally, in Sect. 4, we draw some conclusions.

2 Life Expectancy and Computational Framework

The objective of this paper is to analyse the evolution of future life expectancy
levels. Indeed, even if previous studies have broadly addressed this problem, the
majority of them exploited a period approach, therefore neglecting future mortal-
ity improvements. To fill this gap, we propose a methodology that allows to adopt
a cohort based perspective without increasing the computational complexity.

To this end, let μx,t be the instantaneous death rate for an individual aged x
at time t. Then, following [2], we assume that the force of mortality is constant
over each year of age and calendar. Hence, denoting by mx,t the central death
rate at age x in year t, and px,t the 1-year survival probability of an individual
aged x at time t, it follows that mx,t = μx,t and px,t = e−μx,t = e−mx,t .

Now, we are interested in estimating the residual lifespan of an individual
aged x at a future time T > 0. We define the period life expectancy measure as
follows:

ep
x,T =

1
2

+
ω−x∑

i=1

ipx,T , (1)
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where ipx,T = e− ∑i−1
k=0 mx+k,T represents the i-th years survival probability for an

individual aged x at time T , computed by considering the age-specific mortality
rates at time T , and ω is the ultimate age. It is clear from Eq. (1) that further
mortality improvements after time T are ignored.

Therefore, to describe the actual life course of an individual aged x at time
T > 0, let us introduce the concept of cohort life expectancy defined as

ec
x(T ) =

1
2

+
ω−x∑

i=1

ipx(T ), (2)

where ipx(T ) = ET

[
e− ∑i−1

k=0 mx+k,T+k

]
represents the (conditional) i-th years

survival probability for an individual aged x at time T , and ET [·] is the con-
ditional expectation given the information available at the future date T . As
already mentioned, cohort life expectancy is not as commonly evaluated, unlike
its period counterpart, since it requires the calculation of a conditional expec-
tation. Note that both Eqs. (1) and (2) are the discrete versions of period and
cohort life expectancy measures given, for instance, in [5].

Forecasting life expectancy at future times requires projections of mortality
onto the future. For this reason, we introduce the computational framework on
which we build some numerical results. In particular, we make use of stochastic
mortality models in order to capture the possible time evolution of mortality,
and in this regard we consider the recently introduced CBDX family (see [4]).
Hence, let Dx,t denote the number of deaths at age x and calendar year t, which is
assumed to be Poisson distributed with parameter Ex,tmx,t, where Ex,t denotes
the central exposure. Then, according to [4], the central death rate at age x and
calendar year t can be modelled as

log mx,t = αx +
N∑

i=1

f (i)(x)κ(i)
t + γt−x,

where αx is a static age parameter, κt =
(
κ
(1)
t , . . . , κ

(N)
t

)
is the time index, γt−x

incorporates the cohort effects, and f (i)(x) is a known age-modulating function.
In particular, [4] considers the case of N ∈ {1, 2, 3} (named CBDX1, CBDX2
and CBDX3, respectively), and proposes as modulating functions f (1)(x) =
1, f (2)(x) = (x − x̄) and f (3)(x) =

[
(x − x̄) − σ2

x

]
, where x̄ and σ2

x represent
the mean and variance of the ages in the data. To project mortality into the
future, the time indices are assumed to follow a multivariate random walk with
drift, while the cohort effect is modelled as a univariate ARIMA model.

2.1 Valuation Procedure

Computing the quantity in Eq. (2) is not a trivial task since explicit expressions
do not always exist. In particular, this is the case of the valuation framework
previously introduced. For this reason, a straightforward solution would be a
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nested simulations scheme. The latter is computationally challenging since it
requires a huge number of simulations. An alternative methodology has been
proposed by [3], which consists in approximating conditional expectations by
Taylor-series expansions. However, also this approach would be time-demanding
since multiple simulations sets are needed in order to estimate the involved
coefficients. For this reason, on the basis of [1] we adopt a very flexible tool for
approximating conditional expectations, i.e. the LSMC method. Indeed, to the
best of our knowledge, this methodology has been extensively used in many fields
but it has not yet been proposed in the demographic context. The main idea is
to express conditional expectations through linear combinations of some basis
functions (e.g. simple or orthogonal polynomials) depending on the relevant risk
factors that affect the evolution of mortality (in our case, the time indices κt

and γt−x), and use regression across simulations against those factors. Hence,
we will evaluate Eq. (2) by regression. Moreover, we refer the readers to [1] for
more details.

3 Numerical Results

In this Section we provide some numerical results based on the previously intro-
duced framework. In particular, we analyse the evolution of life expectancy with
both cohort and period life tables. The analysis considers males and females in
England and Wales population. The models have been calibrated on the mortal-
ity data over the period 1965–2018 and range of ages 60–89, obtained from the
Human Mortality Database, excluding the first and last 5 cohorts to avoid over-
fitting. We assume that year 2018 is time 0, and that life tables are closed using
a log-linear procedure up to the ultimate age ω = 120. Finally, all computations
are based on n = 20000 trajectories, and the LSMC algorithm exploits as basis
functions simple polynomials of order p = 2. Under this setting, we analyse the
evolution of life expectancy of both males and females aged x = 65 at different
future times T = 2019, . . . , 2053 (35 years).

Table 1 reports a summary of the distributions of future cohort life
expectancy for females at different future times T , obtained by exploiting the
different stochastic mortality models. From the table, we can see that each of
the proposed models suggests, as expected, an ever increasing life expectancy.
In particular, the CBDX1 model provides more optimistic results, while the
opposite happens for the CBDX2 model. Moreover, we can appreciate how the
uncertainty increases as time passes1. All these features can be seen in Fig. 1
that compares the future cohort male and female life expectancy distributions.
Figure 1 highlights, first, the increasing uncertainty characterizing the evolution
of the longevity metric, and second, gender differences. Indeed, in line with the
existing literature, our results depict future life expectancy levels for females
constantly above those for males. Finally, in Table 2 we compare cohort and

1 Similar results were obtained for males, not reported here for space considerations.
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period2 approaches. The table shows how, unsurprisingly, the latter approach
persistently under-estimates the desired quantities. What is important to notice
is, instead, the magnitude of such under-estimation, which may lead public social
systems and life insurance companies to under-estimate the related risks.

Table 1. Summary of the future cohort life expectancy distributions for females aged
x = 65 at (future) times T . LSMC based on 20000 × 1 simulations with monomials of
degree p = 2.

T Model Mean Std. dev. Skew. Kurt. 10th Perc. Median 90th Perc.

2019 CBDX1 23.535 0.284 −0.104 3.058 23.170 23.541 23.900

CBDX2 21.838 0.273 0.026 3.007 21.489 21.835 22.191

CBDX3 23.215 0.283 0.085 3.081 22.859 23.211 23.580

2039 CBDX1 25.788 1.154 −0.030 3.031 24.305 25.790 27.256

CBDX2 23.515 1.194 0.063 3.006 21.999 23.495 25.050

CBDX3 25.292 1.221 0.026 3.028 23.741 25.286 26.863

2053 CBDX1 27.347 1.453 −0.084 2.981 25.467 27.361 29.202

CBDX2 24.666 1.571 0.072 3.010 22.668 24.646 26.707

CBDX3 26.700 1.557 0.031 3.012 24.717 26.690 28.714

Fig. 1. Distribution of future life expectancy for a cohort of females (red) and males
(blue) aged x = 65 at (future) times T ∈ {2019, . . . , 2053}. Stochastic mortality models:
CBDX1 (left), CBDX2 (centre), CBDX3 (right). LSMC based on 20000×1 trajectories
with monomials of degree p = 2. Dotted lines represent the 90% prediction intervals.

2 Period life expectancy estimates have been obtained through a simple Monte Carlo
(MC) scheme based on 20000 simulations.
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Table 2. Expected future cohort and period life expectancy for females aged x = 65
at (future) times T . LSMC (cohort) based on 20000 × 1 simulations and monomials of
order p = 2. MC method (period) based on 20000 trajectories.

T Approach CBDX1 CBDX2 CBDX3

2019 Period 21.584 21.501 21.530

Cohort 23.535 21.838 23.215

2039 Period 24.001 22.373 23.680

Cohort 25.788 23.515 25.292

2053 Period 25.510 23.401 25.084

Cohort 27.347 24.666 26.700

4 Conclusion

In this paper we addressed the ever-prominent issue of how to evaluate and fore-
cast future longevity dynamics, and in particular we focused on life expectancy.
We proposed the LSMC approach that allows to adopt a cohort based perspective,
rather than a period one, without increasing the computational complexity. Our
results proved to be in line with those already presented in literature. To conclude,
we want to strengthen the idea that this methodology can be used to estimate any
other longevity measure involving conditional arguments, where cohort measure-
ments are often replaced by period ones for computational simplicity.
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Abstract. The study deals with the assessment of an optimal reim-
bursement strategy for an Health Plan, that covers several branches
of disease (e.g. surgery, orthodontia, diagnostic tests, medical devices
etc.). We start from the estimation of the expected value and variance
of the health expenditure for each branch by a three-part regression
model, based on Generalized Linear Models (GLM). Then, we define a
reimbursement rule (e.g. deductibles, co-payments, policy limits etc.) by
means of the ratio between the per payment values (reimbursement) and
the per loss values (expenditure). The latter is the proportion of expendi-
ture reimbursed and is defined as Indicated Deductible Relativity (IDR);
an IDR is calculated for each branch covered by the Health Plan.

We apply the optimization problem proposed by De Finetti (1940) in
the context of proportional reinsurance to calculate the IDR values, that
minimize the variance of the total reimbursement of the Health Plan fix-
ing the expected total gain.

Furthermore, an application is provided for an italian Health Plan in
case of uncorrelated branches.

1 Introduction

The Italian National Health System (SSN) is based on three pillars. In particular,
the second is mainly characterized by private group health plans (henceforth HP)
and usually provided through labor agreements. The HP covers the expenditure
for several branches of disease.

In the insurance products deductibles and/or policy limits represent a very
relevant coverage modifications contract, which aim is to reduce the premium
and to limit the abuse of reimbursement requests, especially in health insurance
policies or plans. In particular, our goal is to use the optimization problem
introduced by [2] in the context of proportional reinsurance to formalize an
optimization problem for the assessment of a set of reimbursement strategies to
be applied in an HP.
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The first step consists of the prediction of the expected value and variance
of the health care expenditure for each branch, by a three part model, following
[1]. Then, considering deductibles, copayments and other limitations working
on single episode, or single person or family level, we focus on the proportion
of expenditure reimbursed, that is defined as Indicated Deductible Relativity
(henceforth IDR).

Following [2] and [4], our final goal is the estimate of the optimal vector
of IDR (whose length is equal to the number of branches) that minimizes the
variance of the expenditure of the HP, fixing the total expected gain.

2 Actuarial Framework

We consider an Health Plan (henceforth HP) composed by r policyholders. In
the following, we denote with:

In classical risk theory, given a specific branch j, with 1 ≤ j ≤ J the expen-
diture of the single policyholder i, with 1 ≤ i ≤ r, is:

Z
(i)
j =

N
(i)
j∑

v=1

Y
(i)
j,v (1)

where

– Y
(i)
j,v is the r.v. expenditure for the i-th policyholder, j-th branch and v-th

episode;
– Z

(i)
j is the r.v. expenditure for the i-th policyholder and j-th branch;

– N
(i)
j is the r.v. number of episodes for for the i-th policyholder and j-th

branch.

It is worth noting that

N
(i)
j =

N(i)∑

v=1

1
(
B(i)

v = j
)
, (2)

where, 1(B(i)
v = j) is the indicator r.v. for the event the episode v of the i-th

policyholder belongs to the branch j, and B the r.v. branch of the requested
episode. Hence, the total expenditure for single policyholder is:

Z(i) =
J∑

j=1

Z
(i)
j (3)

Under the standard actuarial assumption:

– N
(i)
j ⊥⊥ Y

(i)
j,v ,∀v;

– Y
(i)
j,v i.i.d.,∀v;
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it is possible to state:

E
[
Z

(i)
j

]
= E

[
N

(i)
j

]
· E

[
Y

(i)
j

]
, (4)

V AR
[
Z

(i)
j

]
= E

[
N

(i)
j

]
· V AR

[
Y

(i)
j

]
+ V AR

[
N

(i)
j

]
· E

[
Y

(i)
j

]2
(5)

Assuming independency between all risks insured, the expected value and vari-
ance of the expenditure for single branch are:

E [Zj ] =
r∑

i=1

E
[
Z

(i)
j

]
, (6)

V AR [Zj ] = σ2
j =

r∑

i=1

V AR
[
Z

(i)
j

]
. (7)

Then, assuming that Cj = E [Zj ] + mj the known contribution paid for j-th
branch with mj the risk loading for branch j, the gain for the j-th branch is
Gj = Cj − Zj and the expected total gain for the HP is:

E [G] =
J∑

j=1

E [Gj ] =
J∑

j=1

E [mj ] , (8)

In order to assess the reimbursement amount,we state that the r.v. reimburse-
ment for single episode L

(i)
j,v, i.e. after the application of the payment limitation

is written as a function (a risk-sharing function) h
(
L
(i)
j,v;Θ

)
, with Θ a set of

admissible coverage modification rules. By the way of example, we introduce
a standard reimbursement rule applied by Italian HPs based on the following
notation:

– fj is the deductible for single episode for j-th branch;
– Mj is the policy limit for single episode for j-th branch;

then:

L
(i)
j,v = h

(
L
(i)
j,v

)
= min

{
1

(
Y

(i)
j,v > fj

)
· Y

(i)
j,v ;Mj

}
(9)

It is worth noting that Eq. (9) represents one of the possible reimbursement rules
and other forms of reimbursement may be considered (e.g. ordinary deductible,
coinsurance, copayments, out-of-pocket limit).

In order to assess the influence of the deductibles and limits on the loss of
the company, it is possible to focus on the following r.v. R

(i)
j,v =

L
(i)
j,v

Y
(i)
j,v

, that is the

proportion of expenditure reimbursed or IDR for a single insured, branch and
episode. The latter can be also considered at overall branch level:

Rj =

∑r
i=1

∑N
(i)
j

v=1 L
(i)
j,v

∑r
i=1

∑N
(i)
j

v=1 Y
(i)
j,v

(10)
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3 The Optimal Reimbursement Problem

Starting from Eq. (10), the HP can reduce the reimbursement by setting a reim-
bursement rule at episode level by introducing a “target” IDR at branch level,
as 0 ≤ Rj ≤ 1 limiting the benefit and reducing contribution of the same per-
centage.

Assuming a set of target IDR Rj = aj ∈ [0, 1], j = 1, . . . , J , the r.v. gain after
the application of reimbursement rule for the j-th branch is G∗

j = aj (Cj − Zj).
Then, the expected gain of the HP after reimbursement rule is:

E (G∗) =
J∑

j=1

E
[
G∗

j

]
=

J∑

j=1

aj · mj (11)

and the variance is :

V AR (G∗) =
∑J

j=1 a2
j · σ2

j , uncorrelated branches∑J
j=1

∑J
w=1 aw · aj · σwj , correlated branches

(12)

Following [2], it is possible to define an optimal reimbursement strategy based
on the following minimization problem:

min
a1...aJ

V AR (G∗)

J∑

j=1

aj · mj = Ĝ

0 ≤ aj ≤ 1,∀j

(13)

The strategy is based on finding the optimal IDR (a∗
j ) for each branch, in such a

way that the total variance is minimal, fixing the target gain after the application
of reimbursement rule.

The optimization problem (13) is the same proposed in [2], where a solution
for the optimal retention problem in reinsurance market is provided. Let A∗ be
the set of the optimal percentages, it corresponds to a path in the J-dimensional
cube that connects the natural starting point, the vertex 1 of full retention, to
the opposite vertex 0 of full reduction. In other words, gradually making choices
of increasing reduction of the gain, the IDRs of the branches gradually decrease
from 1 (full retention) to 0 (full reduction). This reduction takes place for each
branch one by one, choosing the branch for which Fj (a1, . . . , aJ ) =

∑J
w=1

σjw
mj

aw

is maximum. The latter represents the measure of the advantage coming from a
small reduction of the j-th branch. In Fig. 1, it is possible to see an example of
optimal path in the case of only three branches.
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Fig. 1. Example of optimal path in case of three branches

By the way of example, we focus on the case of uncorrelated branches; in
this case is σjw = 0 for j �= w, then Fj (a1, . . . , aJ ) = σj2

mj
aj .

In this case is simple to order the branches by the ratios σj2

mj
. Following [2],

it is possible to show that, for any 0 ≤ λ ≤ max
j

Fj(1) = max
j

σj2

mj
, an optimal

retention is given by

a∗
j = min

(
σ2

j

mj
; 1

)
(14)

In case of correlated branches de Finetti suggests that the properties of the
optimum path fully mimic the pattern characterizing the no-correlation case.
The only difference is that we lack an a priori ordering of the risks because of a
more complicated expression of Fj (a1, . . . , aJ ) =

∑J
w=1

σjw
mj

aw. An extension of
de Finetti’s algorithm to the general case is provided in [4], where the conditions
for regularity of an optimum path are given.

4 Numerical Investigation

We set our framework on a database from an Italian HP between years 2009
and 2013. The portfolio has r = 53,984 policyholders. The number of observed
episodes is 341,494 spread in J = 5 branches. Following [1], in order to estimate
E[Zj ] and V AR[Zj ] we need to start by a specific probabilistic structure for the
main r.v.s:

– Ni is Negative Binomial distributed;
– B

(i)
v multinomial distributed;

– Y
(i)
j is Gamma distributed;

In order to get an estimate of mean and variance conditioned to insurer i and
branch j, a possible choice is the introduction of a dependency structure between
the response variables and a set of covariates by means of a regression model.
Considering the features of the r.v.s previously introduced, Generalized Linear
Models (see [3]) (GLM) seem an appropriate choice.
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Table 1. GLM estimate in the uncorrelated case.

Branch Cj E [Zj ] mj σ2
j

σj2

mj

Hospitalization class 1 1,239.90 1,127.18 112.72 10,635.00 94.35

Hospitalization class 2 357.34 324.85 32.49 2,722.00 83.79

Stomathologic diseases 22,513.81 20,467.10 2,046.71 168,940.00 82.54

Chronic diseases 850.93 773.57 77.36 6,318.00 81.67

Hearing aid 291.82 265.29 26.53 2,157.00 81.31

Fig. 2. Optimal a∗
j by varying the reduction of expected gain: uncorrelated case

It is important to know that GLM provides an estimate of mean and condi-
tional variance for each r.v., then following Eq. (4), (5), (6), (7), an estimate of
mean and variance for each branch is obtained. In Table 1 the mean and vari-
ance estimates provided by GLMs are reported ordering the branches by the
ratio σj2

mj
, in the uncorrelated case.

Finally, in Fig. 2 the outcome of the minimization problem (13) is reported. In
the graph are reported the values of the optimal a∗

j , by varying the ratio between
the target expected gain Ĝ after reimbursement rule and the expected gain E[G].
As one can see, by reducing the expected gain Ĝ, the branches reimbursement
are reduced following the order defined by the ratio σj2

mj
.

5 Conclusions

The study deals with the assessment of an optimal reimbursement strategy for
an HP, that covers several branches of disease. We estimate by a three-part
model the mean and variance of the expenditure per single branch, and we
consider these outputs to define an optimal strategy to fix the percentage of
reimbursement, in such a way that the total variance of the HP is minimal fixing
the reduction of expected gain.

We have applied the strategy for an Italian HP, with the assumption of
no correlation among branches. Reducing the expected gain , the branches are
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reduced one by one following the decreasing order imposed by the ratio σj2

mj
; in

our application the first branch to be reduced is the Hospitalization class 1 and
the last is the Hearing aid.
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Abstract. In this contribution, we address the issue of reference depen-
dence within a behavioral portfolio model defined under Cumulative
Prospect Theory. In such a framework, an investor selects the port-
folio weights in order to maximize her prospect value, where portfolio
returns are measured as deviations from a certain reference point. The
location of this reference point affects actual investment decisions. We
consider alternative hypothesis and perform an application to the Euro-
pean equity market.

1 Introduction

Reference dependence is an essential element in Prospect Theory (PT) [4]. A
main difference between PT and Expected Utility (EU) theory relies on the fact
that, under PT, investment opportunities are evaluated not in terms of final
wealth, but based on potential gains and losses; outcomes are defined relative
to a specific reference point. According to PT, individuals have different risk
attitudes toward positive and negative returns: they are risk-averse for gains
and risk-seeking in the domain of losses, and are more sensitive to losses than
gains of comparable magnitude (they display loss aversion). The utility func-
tion is replaced by a value function, which is assumed continuous and strictly
increasing. In correspondence with the reference point, the slope of the value
function is discontinuous: above the reference point, the function is concave, as
a conventional utility function; at the reference point, it displays a kink; below
the reference point, it is convex and steeper.

Zero is usually taken as a reference point (the status quo, the individual’s
point of comparison to alternative scenarios), even though PT does not clarify
how to locate such a value (see [5] and [7]). Its position is determined subjec-
tively by the decision-maker, and the investment decisions will depend on the
perception of the outcomes.

In this contribution, we investigate how the positioning of the reference point,
r0, may affect portfolio selection and performances within the behavioral portfo-
lio (BP) model proposed by [1]. In particular, our goal is to analyse the optimal
portfolio behavior when we remove the constant assumption about r0 and we
consider alternative criteria to set such a reference point. We present some appli-
cations to the European equity market.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 57–63, 2022.
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The remainder of this paper is organized as follows. Section 2 synthesises the
behavioral portfolio model. In Sect. 3 alternative hypotheses about the reference
point definition are introduced. Section 4 presents empirical results.

2 Behavioral Portfolio Selection

We apply the BP model proposed in [1] based on Cumulative Prospect The-
ory (CPT) [6]. A prospect investor (PI) is risk-averse for positive outcomes
and risk-seeking for negative outcomes and is loss averse. PI applies decision
weights that are biased with respect to objective probabilities and are more sen-
sitive to changes in the probability of extreme outcomes than mid outcomes;
medium and high probabilities tend to be underweighted, and low probabili-
ties of extreme outcomes are overweighted. Risk attitude and loss aversion are
modeled through a value function v and probabilistic risk perception through
a probability weighting (or probability distortion) function w. These functions
are the two main foundations of CPT, and actual choices depend on their shape
and interaction.

A PI maximizes the prospect value V =
∑n

i=−m πi · v(zi), where zi denotes
negative outcomes for −m ≤ i < 0 and positive outcomes for 0 < i ≤ n, with
zi ≤ zj for i < j.

In the application, we adopt the following value function:

v(z) =
{

v+(z) = za z ≥ 0
v−(z) = −λ(−z)b z < 0,

(1)

with positive parameters that control risk attitude, 0 < a ≤ 1 and 0 < b ≤ 1,
and loss aversion, λ ≥ 1. Function (1) is widely used in the literature, it is
continuous, strictly increasing and with the above mentioned features1.

In CPT, the prospect value V depends also on the rank of the outcomes and
the decision weights πi are differences in transformed (through the probability
distortion function) counter-cumulative probabilities of gains and cumulative
probabilities of losses. The probability weighting function w is a strictly increas-
ing function which maps the probability interval [0, 1] into [0, 1], with w(0) = 0
and w(1) = 1. Empirical evidence suggests a typical inverse-S shape: the function
is initially concave (probabilistic risk seeking or optimism) for probabilities in
the interval (0, p∗), and then convex (probabilistic risk aversion or pessimism) in
the interval (p∗, 1), for a certain value of p∗. As for the reference point, PT does
not indicate clearly when high probabilities should be considered extremely high
probabilities (see [5]) and where elevation of the weighting function is precisely
located. Various parametric forms for the weighting function with the above
mentioned features have been proposed in the literature, and their parameters
have been estimated in many empirical studies which indicate that the intersec-
tion (elevation) between the weighting function and the 45◦ line, w(p) = p, is
for p in the interval (0.3, 0.4).
1 In the numerical experiments, we use the parameters estimated by Tversky and

Kahneman [6]: λ = 2.25 and a = b = 0.88 (referred to as TK sentiment).
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A commonly applied weighting function is the following:

w(p) =
pγ

(pγ + (1 − p)γ)1/γ
, (2)

with w(0) = 0 and w(1) = 1, and γ > 0 (with some constraint in order to have
an increasing function). When γ < 1, w displays the inverse-S shape2.

In the BP model introduced in [1], a PI selects the portfolio weights in order
to maximize the prospect value subject to the usual budget constraint and short
selling restrictions. Let x = (x1, . . . , xn) be the vector of portfolio weights, such
that xj ≥ 0 (j = 1, 2, . . . , n) and

∑n
j=1 xj = 1. Let us consider m possible

scenarios, with rij the return of equity j in scenario i, and pi be the probability
of each i. In this work we considered equally probable scenarios. The reference
point, denoted without loss of generality with r0, will be further discussed and
detailed in Sect. 3.

The portfolio returns, measured relative to r0, are subjectively evaluated and
weighted through the distorted probabilities. Formally, the BP selection model
is defined as:

max
x

m∑

i=1

πi · v

⎛

⎝
n∑

j=1

(xjrij − r0)

⎞

⎠

s.t.
n∑

j=1

xj = 1

xj ≥ 0, j = 1, 2, . . . , n.

(3)

The resulting optimization problem is highly non-linear and non-
differentiable, hence we resort to an evolutionary metaheuristic, Particle Swarm
Optimization (PSO). PSO is an iterative bio-inspired population-based app-
roach for the solution of global unconstrained optimization problems. In order
to take into account the presence of constraints, we reformulate problem (3)
into an unconstrained one using a nondifferentiable penalty function method
already applied in the financial context. Such an approach is known as exact
penalty method, where the term “exact” refers to the correspondence between
the optimizers of the original constrained problem and the optimizers of the
unconstrained (penalized) one.

The reformulated version of BP optimization problem (3) is then

max
x

m∑

i=1

πi · v

⎛

⎝
n∑

j=1

(xjrij − r0)

⎞

⎠ − 1
ε

⎡

⎣

∣
∣
∣
∣
∣
∣

n∑

j=1

xj − 1

∣
∣
∣
∣
∣
∣
+

n∑

j=1

max (0,−xj)

⎤

⎦ , (4)

where ε is the so-called penalty parameter. Note that a correct setting of ε
ensures the correspondence between the solutions of the original constrained
problem and problem (4).
2 In the applications, we use the (TK) parameters estimated by [6]: γ+ = 0.61 and

γ− = 0.69, for w− and w+, respectively.
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3 The Reference Point

The reference point determines how an outcome is perceived by the investor.
Nevertheless, PT does not provide specific indications on what defines the loca-
tion of the reference point. A standard assumption for applications of PT is
a constant reference point, usually set at zero. For monetary outcomes, the
status quo is usually considered as the reference point, separating gains from
losses. For instance, [3] adopt as reference point a benchmark wealth. In the BP
model (4), outcomes are defined in terms of deviations of the portfolio (relative)
returns from a constant reference point, which in [1] is set equal to r0 = 0%,
and r0 = 2.5%. [2] consider outcomes as excess return on a risky asset over the
risk-free interest rate.

It is worth noting that the assumption of a constant reference point identifies
an absolute parameter with respect to which all possible outcomes are evaluated.
However, investor attitude to gains and losses and their evaluation can reflect
or be influenced by the context, as for example the current market conditions,
resulting thus more in a valuation with respect to a relative reference point
rather than an absolute one.

In this contribution, we aim at analyzing the impact of the introduction of
a relative reference point and, specifically, we consider a reference benchmark
representative of a specific market. The BP portfolio model (4) can easily han-
dle a stochastic reference point that can reflect the risk/return profile that an
investor intends to track and with respect to which deviations (gains and losses)
are evaluated and weighted. To this aim, in (4) the reference point r0 is specified
through a discrete-time stochastic process characterized through a finite number
of scenarios that describe possible future outcomes of the reference benchmark
r̃i, with i = 1, . . . , m. Thus, given the scenario description of market evolution,
gains and losses are evaluated and weighted with reference to each specific sce-
nario.

A further interesting extension of this model allows for the introduction of a
combination of a fixed (absolute) reference and a variable (stochastic) one in the
form r0 = max{0, r̃i). With this specification, each outcome is evaluated with
respect to the maximum between the fixed reference 0% and the variable market
outcomes r̃i.

These reference point specifications aim at accounting for the market condi-
tions in which the investor operates and with respect to which evaluations are
made. Rather than considering a discrete process with finite possible outcomes,
we can also account for relative market conditions choosing as reference point
significant statistics that describe the market behavior and, specifically, we can
set the reference point as the mean or specific percentiles of the distribution of
the reference benchmark.
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4 An Application

To address the issue of reference dependence, we tested the proposed BP model
(4) in an out-of-sample exercise on weekly data from the European equity market
represented by the STOXX 600 Europe index.

The out-of-sample analysis is performed over the period that goes from July,
2018 to June, 2019, and is carried out as follows: a 1-year in-sample period is used
to select the optimal portfolios with different reference point specifications, then
the resulting optimal portfolios are evaluated in a mark-to-market procedure
using realized weekly market returns for the subsequent 3-month out-of-sample
period (i.e. first in-sample period, from July, 2017 to June, 2018; first out-of-
sample period, from July, 2018 to September, 2018). This scheme is then rolled
over for 4 times to cover the entire 1-year out-of-sample testing period.

Our purpose is to compare the performances of different investment decisions,
induced by alternative definitions of the reference point, using out-of-sample
mark-to-market evaluated portfolios. The relative reference points considered
are: the stochastic reference point r̃i, for which we use the market benchmark
STOXX 600 Europe index; the enhanced stochastic reference point max{0, r̃i};
the mean μs of the market benchmark returns computed over the m scenarios
generated in the considered 3-month out-of-sample period; its enhanced version
max{0, μs}; and the 50%, 66.67% and 75% percentiles of the distribution of the
stochastic reference.

Figure 1 shows the out-of-sample equity lines for the optimal portfolios and
for the STOXX 600 Europe index (Index), using as starting portfolio value
C = 100; Table 1 summarizes the main statistics of the portfolios’ out-of-sample
returns. The volatility of the market strongly affects the out-of-sample per-
formances of the optimal portfolios, which behave similarly. The BPs for the
enhanced reference cases, max(0, r̃i) and max(0, μs), perform better than the
ones corresponding to the reference values r̃i and μs. Compare also the Sharpe
ratios in columns 3–4, and 5–6 of Table 1, respectively. With regards to the differ-
ent selected reference points, we can notice that the performance of the portfolios
improves when we increase the considered percentiles. In particular, in the cases
displayed in Fig. 1, we can observe that the behavior of the optimized portfolios
improves moving from 50% to 66.67% and 75% percentiles. This is also shown
by the increasing values of the means and of the Sharpe ratios in columns 7
to 9 of Table 1, with substantially equal volatilities associated to the considered
percentiles. Lastly, all the out-of-sample equity lines show negatively skewed
distributions (see the skewnesses reported in Table 1). Likely, this is due to the
difficulty of the BPs to perform well, with respect to the chosen reference points,
in the pronounced up-and-down trends characterizing the considered period of
the investigated market.
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Fig. 1. Out-of-sample equity lines of the optimal BPs for different reference points and
the Index

Table 1. Statistics for the out-of-sample returns of the optimal BPs for different ref-
erence points r0 and the Index as benchmark. From left to right: Index, r̃i, max(0, r̃i),
μs, max(0, μs), perc = 50 %, perc = 66.67 %, perc = 75 %.

Index r̃i max(0, r̃i) μs max(0, μs)50% 66.67 75%

Mean
0.0000

-0.0004
0.0001

-0.0012 -0.0004 -0.0007 -0.0002
0.0001

Stand.
Dev. 0.0174 0.0203 0.0182 0.0157 0.0185 0.0188 0.0189 0.0180
Skewness -0.4685 -0.4764 -0.2645 -0.1720 -0.4381 -0.3350 -0.5402 -0.7443
Kurtosis

3.0281 2.7912 2.6274 2.9328 3.0962 2.6706 3.0447 3.0637
Sharpe
ratio

-0.0003 -0.0176
0.0068

-0.0780 -0.0212 -0.0360 -0.0119
0.0072
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Abstract. In this contribution we consider a genetic programming app-
roach to price rainfall derivatives and we test it on a case study based
on data collected from a meteorological station in a city in the northeast
region of Friuli Venezia Giulia (Italy), characterized by a fairly abundant
rainfall.
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1 Introduction

In the context of the climate change, we are witnessing increasingly meteorolog-
ical uncertainty and variability, including increasing number of extreme events.
Several sectors’ revenues are affected by weather, not only agriculture and related
sectors but, for example, also tourism, energy production, construction among
others, last but not least the financial and insurance sectors themselves can be
affected by losses induced by these events.

Weather derivatives, such as rainfall derivatives, represent an important tool
to be placed side by side with traditional insurance dealing with meteorological
risk as testified by the consistent increase in demand, [13] on the behaviour of
derivative prices in response to weather outcomes.

Rainfall derivatives have been introduced at the Chicago Mercantile
Exchange (CME) in 2011, relatively few contributions in the literature focused on
pricing methodologies and a generally recognised pricing framework is missing.
Major difficulties are associated with the modelling of the underlying, for which
physical, meteorological and orographics models are involved, see, for example,
[2,3]. The time series of rainfall is discontinuous and the binary event of wet or
dry days is largely random. Daily data do not exhibit a trend and also season-
ality is limited. The nature of the risk underlying the derivative contract, that
cannot be replicated, introduces a further complexity in the pricing problem
characterizing it as a problem of pricing in incomplete market. However, further
testing is needed to assess applicability also to more general cases.

To tackle this problem we refer to the use of Genetic Programming (GP),
a population-based search algorithm that belongs to the field of Evolutionary
Automatic Programming. GP is a data-driven methodology that requires a very
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 64–69, 2022.
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limited modelling assumptions thus providing flexibility. For applications of GP
in finance and economics see, among others, [1] and [5]. The first implementation
of Genetic Programming for option pricing is the work by [10] that uses GP to
price American put options. Other contributions specifically for derivatives and
option pricing are [4,6]. More recently, GP has been used in pricing weather
derivatives and specifically rainfall derivatives, see [7–9].

In this contribution we apply GP for the pricing of a strangles strategy that
combines a long put and a long call on the same underlying source of risk,
thus providing the holder of the contract a two-sided protection from extreme
phenomena of excess or lack of rainfalls over a considered one-month period.

The structure of the paper is as follows. In Sect. 2 we briefly present GP
technique and in Sect. 3 rainfall derivatives are introduced. Finally, in Sect. 4 a
case study is discussed.

2 Genetic Programming

Genetic Programming (GP), introduced by [11], is a population-based search
algorithm that extends genetic algorithms to a population of functions where
the chromosomes may change their size and describe hierarchically the functions
in tree-like structures. GP consists on a set of instructions and a fitness function
to measure how well a computer program can performed a task.

We synthetically recall the structure of the GP algorithm. The first step is the
generation of a random population of computer codes. The initial population is
randomly generated and each individual is composed of primitive functions and
terminals pertinent to the problem domain. Through the Darwinian principle of
natural selection, according to which only the fittest elements in the population
survive and reproduce, and the genetic recombination (crossover operation), the
populations of computer programs are muted in terms of genes applying genetic
operators (reproduction, crossover and mutation) probabilistically. Then they
are evaluated through a fitness measure to register their performance in the
specified problem environment. If a certain fitness criterion is obtained the algo-
rithm is terminated and the computer code with the highest fitness is selected as
the final result. If the criterion is not reached, the current population is replaced
by a new population and the process is repeated till the point at which the
desired criterion threshold is reached. Preparatory steps for GP require deter-
mining the set of terminals, the set of primitive functions, the fitness measure,
the parameters for controlling the run, the termination criterion and the method
of result designation for the run.

3 Rainfall Derivatives Pricing

Rainfalls derivatives are traded on rainfalls, usually measured in mm, and used to
hedge risks associated with rainfall fluctuations. Modelling the underlying source
of risk is particularly challenging and heavily dependent by specific local con-
ditions. However, the pricing of rainfall derivatives presents relevant challenges
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associated, not only with respect to the difficulties in modelling the weather
events, but also to the lack of traded tools used to build a replicating portfolio
and thus resort to standard derivative pricing techniques based on the existence
of a unique martingale measure. The incompleteness of the market is a relevant
issue and currently there exists no generally accepted pricing framework to value
these contracts.

The contract analysed in this contribution is an Over-the-counter (OTC)
strangle strategy that combines a long put and a long call on the same underlying
source of risk, thus providing the holder a two-sided protection from extreme
phenomena of excess or lack of rainfalls over a considered one-month period.
The contract is written on an index of cumulated rainfalls in the geographic
region considered over a given month. The payoff of the contract, cash settled at
maturity, is expressed as a function of the value of the rainfall cumulated index
measured at a given location over a given period and the strikes as follows

Ft(It, κ1, κ2) =

⎧
⎪⎨

⎪⎩

κ1 − It It < κ1

0 κ1 ≤ It < κ2

It − κ2 It ≥ κ1

(1)

where It denotes the rainfall index and κ1 and κ2 are the strikes. The setting of
two strikes is based on the ad-hoc features of agricultural and hydrological field.

Future payments of the contract depend on the evolution of the rainfall index
It and the strikes κ1 and κ2. To price the contract we calculate the expected
discounted value of payments

Pt(It, κ1, κ2, t) = EQ [eρtFt(It, κ1, κ2)|Ft] (2)

where ρ is the risk-free rate and EQ denotes the expected value taken with
respect to the Q measure.

In this contribution, to model the underlying we resort to GP, in which the
data are the cumulative rainfalls computed over 30 days, with a sliding window
accumulation method, given by: It =

∑tb
ta

rt where It denotes the accumulated
amount of rainfall for a given period, rt is the daily amount of rainfall with the
day varying over a contract period from ta to tb. Finally, the Q measure, used
in the application considered in this contribution, is the real-world probability
measure for sake of comparison with other pricing approaches, see Sect. 4.

4 Data and Application

The dataset chosen to apply the genetic procedure is the time series of rainfalls
drawn by the meteorological station (142 m above sea level) of Vivaro, a town
in the Italian province of Pordenone situated in the southern part of the alluvial
cone formed by the Cellina and Medusa rivers. The soil of this region is charac-
terized by a typical karst topography which prevents crops from being subjected
to water stress. The station is in an optimal position for the detection of rainy
phenomena.
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The time series of the daily observations starts from January, 1, 1995 until
December, 31, 2021 is available on the official website of Agenzia Regionale per
la Protezione dell’Ambiente of Friuli Venezia Giulia region (OSMER-ARPA,
https://www.osmer.fvg.it/). The data presents a set of 11 missing data, whose
size is irrelevant compared to the whole number of observation (n = 9851): it
corresponds to 0.11%.

Some preliminary comparisons show that there are no differences in the main
statistics considering different imputation of these missing values (seasonal impu-
tation, a naive method of substitution for the missing values with the corre-
sponding ones from the previous year, and substitution with data found through
reports and collection of hourly data). The main sample statistics (mean, five
numbers of Tukey and standard deviation) are shown in Table 1. So it is con-
venient to ignore the missing data in order to avoid problems with statistical
assumptions.

Table 1. Data statistics (01/01/1995 to 31/12/2021)

n mean Std.Dev. min Q1 median Q3 max NA

9851 4.366 12.164 0 0 0 1.8 210.8 11

Looking more carefully at the data, the great part of rainfalls are in between
1.2 and 50.055 mm (respectively the quantiles of order 0.05 and 0.95 of the
rainfall days). Furthermore, the recorded data greater than 100 mm are typically
during the fall, and the maximum is 210.8 recorded in 2005-09-09. We recall that
we can not remove the outliers that in this case coincide with the extreme values
on which we base the derivative contracts. The goal of the contracts we consider
in our analysis is the protection from heavy rains, that according to the WMO
correspond to daily recordings greater than 50 mm. This definition is not unique,
for example, according to the Protezione Civile Italiana the standard of heavy
rains is defined as the daily recordings greater than 60 mm. This difference
implies exactly 47 observations. The dataset is then divided in two parts: a
training set composed by the first 25 year (from January, 1, 1995 to December,
31, 2019) and the validation set formed by following last 2 years.

Following the notes of FAO (Food and Agriculture Organization), and con-
sidering the Penman-Monteith formula in order to include also the evapotranspi-
ration phenomenon, the inferior strike value is found using the series of rainfall
data from 2015 to 2018 from Vivaro dataset and this is equal to κ1 = 74.31 mm
in a month. As regards to the superior strike value, it can be obtained con-
sidering the definition of heavy rains, according to WMO, and estimating rain
probability curves using the Gumbel random variable. It is found that this value
may be considered equal to κ2 = 166 mm in a month.

The size of the population is fixed at 200 individuals, the crossover probability
is pc = 0.9, and in this first preliminary analysis we do not include the mutation
probability. The stopping rule is based on computational time, we set tmax = 2

https://www.osmer.fvg.it/
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min. On an Intel I7, 3 GHz, dual core processor, this results in a number of fit-
ness evaluations over 50 000. We consider 20 replications of the GP and 50 elite
functions (i.e. the functions with the better fitness) for each replication. This pro-
duces 1000 trajectories eligible to be the best result. The fitness function is the
Root Mean Square Error (RMSE) of the observed values with the fitted ones. The
obtained result in terms of function is:

yt = 62.06 × log
{

log(yt−8) ×
[

1.34 + cos
(

yt−1

yt−4

)]}

As reference benchmarks we consider the actuarial valuation of the contract
obtained applying the Historical Burn Analysis (HBA), a data-driven method-
ology where the price of the derivative is computed as the average of historical
payoffs discounted at the risk-free rate [12], and the prices obtained using the
Normal distribution, the Normal-inverse Gaussian distribution and the Gamma
distribution. In the following table, we present the obtained derivative prices
under the different assumptions and computed in absence of the market price
for risk.

Table 2. Results of the pricing method

Estimated values Normal NIG Gamma HBA

17.95 20.59 14.40 19.28 15.20

The obtained prices also in this very preliminary example confirm the rele-
vance and the difficulties associated with the statistical modelling of the rainfalls
phenomena and the huge impact that this can have on the resulting price of the
derivative. Furthermore, research is needed with reference to the risk-neutral
pricing through the estimation of the market price of risk, using for example the
Esscher transform, and the sensitivity of the obtained price to the modelling of
the market price of risk.

5 Conclusion

In this contribution we aimed at testing the application of genetic program-
ming techniques to the problem of pricing a rainfall derivative contract. The
case study considered refers to an OTC long strangle contract that provides
two-sided protection from risks determined by periods of insufficient rainfall
and risks associated with an excess of rainfall. Compared with other traditional
methodologies, GP has the advantage of being a flexible data-driven technique
that allows to approach the complexity of the problem limiting the modelling
assumptions.

Acknowledgement. The authors thank Michela Zonch for her help with data collec-
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Abstract. In fund raising management, modeling the gift probability is
a key point. The availability of an accurate estimate of the gift probabil-
ity is relevant in order to evaluate the results of a fund raising campaign.
In this contribution, we discuss a statistical methodology for modeling
and estimating such quantity. To this aim, a parametric approach is sug-
gested. In particular, we model the number of gifts as a Poisson random
variable with intensity parameter which depends on individual charac-
teristics of the Donors. The expected number of donations, and the prob-
ability of gift, can then be estimated by performing a Poisson regression.

1 Introduction

Recent innovative approaches to fund raising (FR) are characterized by a sig-
nificant use of mathematical modeling, which is suitably implemented according
to the considered purpose or the particular focus of the process. Along with
the modeling approach, the methods differ in the use of advanced mathematical
and statistical techniques (probability, linear algebra, utility functions, similarity
measures, Choquet integral, non-parametric estimation) or soft computing and
artificial intelligence techniques (fuzzy logic, knowledge-based approach).

An innovative approach has been performed in this field by [2], that intro-
duces the use of mathematical modeling and Decision Support Systems (DSS)
techniques, in order to help Associations both to decide the kind of campaign
they have to organize and the features to implement, and the Donors of the Data
Base (DB) which must be contacted, in order to maximize the expected return
of the campaign, satisfying time and budget constraints. This quantitative app-
roach has been specialized for different kind of Organizations. On one hand [3]
and [7] dealt with large-sized Associations, international also, that have lists of
millions of Donors and a powerful organizational system requiring a very sophis-
ticated DSS. On the other hand, [4] consider also small-sized Organizations and
developed a DSS based only on essential information with no need of an orga-
nized DB. This approach has been validated both in the operational world by
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Associations that test it (as documented in [3,4] and [7]) and in the pertaining
literature ([18] and [13]). The medium-sized Organizations are considered in [6]
and in [5], where a DSS based on a specific mathematical model and targeted for
this kind of Associations has been created and enhanced. More in general, a pro-
cess of evolution, strengthening and specialization of the proposed methods and
algorithms has been developed. As for the link of FR with other economic fields,
[14] has shown the analogy between the FR process and some bank activities
and the consequent correspondence of the employed methodologies.

In FR management modeling the gift probability, as well as the gift amount,
is a prominent issue. As regards the available information, Associations are clas-
sified according to the existence of a structured DB and the presence in the DB
of specific qualitative information of Donors’ profile (like personal interests and
attitudes, and relationship network), in addition to the usual information on the
gifts (gift history), and the typical personal profile (which includes both qualita-
tive and quantitative information). Normally this classification strictly depends
on the Organization size.

The availability of accurate estimates of the gift probability is important in
order to evaluate the results of a campaign. Despite its key role, this relevant
topic has been approached by the business literature and practitioners without
an in-depth statistical analysis.

In this contribution, we discuss statistical methodologies for modeling the
gift as an individual risk, focusing on the estimation of the gift probability. To
this aim, a parametric approach is suggested. In particular, in a first approach
we model the number of gifts as a Poisson random variable with intensity param-
eter which depends on individual characteristics of the Donors (exploiting the
information available in large DB of Donors). The expected number of dona-
tions, and the probability of gift, can then be estimated by performing a Poisson
regression.

2 The Donor

FR strategies are crucial for the achievement of the mission of the Association
and, specifically, to reaching the goal of a campaign [16]. In this context, a great
importance has the role of the Donor (see e.g. [10] and [12]), and his/her effi-
cient management. For this reason, econometric literature dealt with (potential)
Donors’ profiles that match some specific gift inclination (see e.g. [9]) in order
to support the effectiveness of the process.

Economists agree that information on potential Donors plays a crucial role
to achieve the improvement of the FR strategies [15]. Quantitative studies have
shown the main factors that influence individuals in the choice of giving. For
example, [1] characterizes the economic and social foundations of altruism, indi-
viduating factors such as the own community or the social network and the so
called “enlightened self-interest”. These variables are also modelled by [10] and
[17]. [12] argue that an individual tends to assume a role-identity as Donor, that
depends on his/her network of social relationship. They identify several variables
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that can have impact on role-identity; all these variables influence individual
preferences and attitudes, and impact on the utility people get from their deci-
sion on how and to what extent donate [8]. More generally, several factors should
be considered to individuate an optimal fund raising strategy: the interests of
(potential) Donors, their social network and personal profile; the operational
literature and rules of thumb of the experts in the field; and the information
on past campaigns. Practitioners claim that the 70–80% success rate of a fund
raising campaign is determined by choosing the appropriate target (the set of
Donors to whom the strategy is addressed), and only 20–30% from motivations
and creativity. These factors have a strong influence on the gift probability,
which is affected both by individual attitudes and economic constraints [8]: age,
instruction level, place of origin, financial situation, number of children, social
network and religious involvement. Therefore, the task of integrating all of this
information to find an optimal fund raising strategy is very complex.

The effective use of the information on Donors and Contacts (i.e., poten-
tial Donors), which is in fact normally managed by an organized DB, is crucial
for optimizing the resources for the campaign by selecting the most promising
Donors/Contacts for the considered context. However, tools using a classical DB
approach are not able to elaborate the knowledge available in the econometric
and operational literature as an expert in the field does [9], and they are not
able to suggest suitable fund raising strategies. In fact, the problems that these
systems can solve are limited by the potential of such a technology. The sup-
port to the fund raiser is limited to giving general indications in relation to
specific claims without adequately managing all data about people, integrating
qualitative information with quantitative data.

As getting in touch with a Donor implies some costs, one main aim of FR
management is to select the Donors to contact in order to maximize the expected
return of the campaign and at the same time to control the return variability.
In this context, the accuracy of the expected gift estimation depends on the
appropriate use of the information about each Donor.

3 Modeling the Gift as an Individual Risk

As discussed in the previous sections, assessing a FR campaign expected return
is crucial and, to this aim, the estimation, for each Donor, of the gift probability
and the expected gift amount is required.

Here we model the ‘gift’ as an individual risk [11], in much analogy with other
main domains of applications: finance, credit risk, insurance, and marketing. The
gift can be viewed from four perspectives:

i) the occurrence of a donation: the outcome is either ‘yes’ or ‘no’;
ii) the frequency or count of the donations received in a period of time (e.g.,

a year or the duration of the campaign): the number of gifts is zero or any
positive integer;

iii) the timing or duration, which is about when a donation has occurred or
the interval between donations: the outcome is an interval of time, usually
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measured with reference to a fixed point of origin, such as the beginning of
the campaign or when the potential Donor has been contacted for the first
time;

iv) the gift amount : how much money is given by the Donor for each donation
(the outcome is measured in currency units, e.g. euros).

With respect to all these perspectives, the gift is quantifiable and can be modeled
using statistical methodology, determining for any aspect listed above which kind
of random variable is suitable: i) a dichotomous variable, ii) a count variable, iii)
a duration variable, and iv) a continuous positive variable, respectively.

Either dichotomous or count variables can be used to model the occurrence
of the gift event. Let us simply consider a dichotomous random variable1 Y ;
then the probability of gift is equal to E(Y ) = p. Let X be a continuous random
variable that represents the amount of money given by the Donor for a donation,
or the total gift of all donations filed in the considered period. In this case the
expected gift for each Donor can be computed by the product of the gift probabil-
ity and expected gift amount, E(Y )E(X). Considering the whole campaign, both
the number of gifts and the gift amount are random, hence campaign’s return
can be modeled as a random sum; in order to compute its expectation, some
assumptions need to be introduced (such as independence amongst Donors, and
independence of gifts count and gift amounts). All these features can be mod-
eled in alternative ways; in Sect. 4 we suggest a model for the number of gifts
considering a single Donor.

We make some assumptions about the mechanism that gives rise to the gift:
any gift is associated with an individual i, the Donor; a Donor can be a person,
a company, or other entity that can be represented by some individual charac-
teristics which are collected in a data set; the individual characteristics of the
Donor are synthesized by a score; the gift history (gift events, timing and gift
amounts) of the Donor is recorded.

A score is a statistical measure of individual risk based on individual char-
acteristics [11]. In the context of FR, it can be used to quantify the individual
propensity to donate (the higher the score, the higher the propensity to the gift),
to rank Donors in a population, to distinguish between (expected) “good” and
“bad” Donors. This latter procedure is called segmentation and in FR could
be used to distinguish potential Contacts or to address ad hoc advertising to
subclasses of Donors.

Let xi be the vector which collects selected observable, qualitative and quan-
titative, individual characteristics of Donor i, in a sample of n Donors. Define zi
as the vector of transformed individual characteristics (where qualitative features
are properly transformed into quantitative or dummy variables). The score can
be defined as a scalar function of covariates z′

iθ, where θ is a vector of param-
eters. The score, which summarizes the information about the Donor, can be
determined by more sophisticated approaches (see [11]).

1 Formally, denoting with D the gift/donation event, we have Y = 1D(ω), where 1D

is the indicator function of D, with P[Y = 1] = p.
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4 Poisson Regression in FR

Any event, such as the arrival of a new claim to an Insurer or a donation to an
Association, can be viewed as the outcome of a random variable. For instance,
a dichotomous variable indicates whether or not a gift is received. In this con-
tribution, we suggest a model for the number of gifts (in a certain period) or,
equivalently how frequent gifts are, in much analogy with insurance theory where
count variables are used to model e.g. the number of claims on one policy in a
year. The number of gifts can be modeled and estimated by the Poisson regres-
sion model.

Let Y represent the number of gifts in a unit of time; in a basic count variable
model, we assume that Y has a Poisson distribution with intensity parameter λ.
It is well known that E(Y ) = λ, which is equal to its variance V(Y ) = λ.

In the Poisson regression model, λ depends on the values of observable char-
acteristics xi of each individual or entity i. As the intensity varies across indi-
viduals, its specification for Donor i will be

λi = exp(z′
iθ), (1)

where θ is the vector of unknown parameters and zi is a vector of transformed
individual characteristics; the exponential function allows for positive intensity.
The score z′

iθ can be used for rating Donors with respect to their propensity to
the gift; the higher the score is, the higher the expected number of gifts, which
indicates “good” Donors.

Let us consider a sample of n Donors, the gift count variables Y1, . . . , Yn in
this model are independent, conditional on the covariates, and the conditional
distribution of Yi is a Poisson distribution with parameter λi as in (1). It is
worth noting that

E[Yi|xi] = V[Yi|xi] = exp(z′
iθ); (2)

it turns out that the model is naturally heteroskedastic. Parameters θ can be
estimated by maximum likelihood; the resulting log-likelihood function is

L(θ) =
n∑

i=1

[yiz′
iθ − exp(z′

iθ) − log(yi!)]. (3)

Once estimated, the model can be used to compute the expected number of gifts
for a single Donor (or a new Contact), λi, and the probability of gift

P[Yi = y] = exp(−λi)
λy
i

y!
, y = 0, 1, 2, . . . (4)

Poisson regression model is easy to interpret; a possible drawback is that it is
based on some strong assumptions. Nevertheless, the model allows for various
extensions. For instance, a gamma distributed heterogeneity factor can be intro-
duced; as a result, one obtains a negative-binomial model [11]. This issue is left
for future research.
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Abstract. In Internal Rating Based approaches, the regulator indicates
a model to determine bank’s credit capital requirements. The main con-
cern is on model’s econometric usage and on the estimation of its key
parameters: the probability of default and the loss given default. In this
study, we point out that taking into account only parameters’ expecta-
tion leads to a significant underestimation of bank’s risk and its Regu-
latory Capital. In particular, we statistically test distributional assump-
tions on these two parameters and we underline the key role played by
parameters’ dependency.

We analyse two benchmark datasets: one with all corporations rated
by Moody’s and another one that includes only speculative grade firms.
Results are striking: we obtain that, considering parameters’ uncertainty,
the Regulatory Capital should be increased by an amount in the range
between 38% and 66%. A clear policy implication stems from this study:
the scaling factor for model risk, removed by Basel III accord, should be
reintroduced in the determination of credit Regulatory Capital.

Keywords: Model risk · IRB · LGD-PD dependency · Scaling factor

1 Introduction

Capital adequacy in banks is often determined via Internal Rating Based (IRB)
approaches. In IRB, regulators require to measure credit Regulatory Capital as
a quantile of the loss distribution (VaR) of bank’s credit portfolio modeled via
the Asymptotic Single Risk Factor (ASRF) model, introduced by [7]. The ASRF
models with a single risk factor the credit exposures of a financial institution. The
regulator, besides the relevant time horizon (1y) and the confidence level α for
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the VaR (99.9%), establishes also the correlation with the single risk factor as a
deterministic function of other parameters. Credit exposures are modeled by two
main parameters for each obligor in bank’s portfolio: the obligor’s probability of
default (PD) and his loss-given-default (LGD). Both parameters (PD and LGD)
correspond to the one-year-horizon forecast; they are calibrated with Through-
the-Cycle values, i.e. long term default and recovery rates, often provided by
rating agencies. Estimation risk in credit capital requirements is related to the
estimation noise of these two parameters, i.e. the risk arising from errors in model
parameters when we cannot rely on the assumption that the parameters of the
model are known with certainty.

Albeit the relevance of this risk is well known, there is a relative paucity of
empirical studies that measure the impact risk in credit capital requirements.

The problem has been introduced by [9], even before the details of Basel II
accord were introduced; then, it has been analysed by [13]. Both studies con-
sider the impact of parameter uncertainty on measures of tail risk in a stylized
credit portfolio that is homogeneous, i.e. characterized by the same exposure and
the same parameters (PD and LGD) for each obligor. In this case, the capital
adequacy per unit exposure at default (hereinafter regulatory capital or RC) is

RC = V aRα[L] − E[L] , (1)

where L is the portfolio loss rate, i.e. the ratio of total losses to total portfolio
exposure at default. [13] has emphasized that the estimation noise is another
relevant source of uncertainty about potential losses besides credit-risk factors
in capital requirements (1): thus, the correct regulatory capital should reflect
all potential losses, whose uncertainty includes the imperfect information about
risk parameters.

All studies in credit capital requirements consider LGD and PD independent.
However, it is quite reasonable to observe a relationship between PD and LGD
(or equivalently recovery). A dependency between PD and LGD has been first
pointed out by [6] for non-financial issuers domiciled in the USA in the time inter-
val 1982–1997, then a positive correlation between PD and LGD has been iden-
tified and measured by [1] in the speculative grade USA bond market. The eco-
nomic reason of this dependency is rather simple: if an economy experiences a
recession, on the one hand, the observed frequency of corporate defaults increases
and, on the other hand, recoveries decrease because the assets of failed companies
are sold when many other firms have defaulted and when few buyers are avail-
able at extremely discounted prices (fire sale). Here, we consider this dependency,
estimate statistically it and identify the impact on capital requirement: we show
that this dependency is the most relevant source of model risk in credit capital
requirements.

Our contributions to the existing literature are threefold: i) we model estima-
tion risk of PD and LGD in capital requirements via a bi-dimensional copula and
we statistically test this assumption on a real dataset, ii) we compute credit capital
requirements within the IRB approach in presence of estimation risk and, in par-
ticular, we analyse the impact of parameter dependency in capital requirements,
and iii) we draw a relevant policy implication for credit capital requirements.
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2 The Capital Requirement in the IRB Approach

In regulatory capital, econometricians play a main role. A peculiarity of the
IRB approach is that the modeling framework has been established by the Basel
committee, while model calibration is left to the banks.

To understand the relevance of this role in the correct determination of regu-
latory capital, we focus on model risk for a homogeneous portfolio [14] as in [9],
[13]. The IRB approach considers the case with a large number of obligors. In
this case, the expected loss conditional on the common risk factor M and given
the parameters PD and LGD, is

E[L|M,PD,LGD] = LGD · Φ

(
k − √

ρ M√
1 − ρ

)
, (2)

where k = Φ−1(PD) is often referred to as the default point [13], with Φ the
standard normal cumulative distribution function. Moreover, ρ is ρ(PD), a deter-
ministic function of PD established by the Basel Committee [2].

A näıve approximation of IRB [13] accounts for the credit risk factor M but
treats PD and LGD as known and equal to ˆPD and ˆLGD, the point estimates
of the respective parameters. In this special case, the above setup reduces to a
single risk factor model and the capital requirement becomes

RCnaive = ˆLGD · Φ

⎛
⎝Φ−1( ˆPD) −

√
ρ( ˆPD) Φ−1(1 − α)√

1 − ρ( ˆPD)

⎞
⎠ − ELnaive (3)

where the factor that multiplies ˆLGD is also known as the 1 year Worst Case
Default Rate and

ELnaive := ˆLGD · ˆPD

is the expected loss. The popularity of this näıve IRB approach among practi-
tioners can be related to the simplicity of the analytical closed formula (3).

In general, parameters could carry a significant estimation noise that cannot
be neglected. Thus, it can be proven that the correct capital requirement (1) is

RC = V aRα [E[L|M,PD,LGD]] − E[L] , (4)

where E[L|M,PD,LGD] is reported in (2).
Two remarks should be made. First, as already pointed out by [13], M is

independent from parameters: since the uncertainty about M refers to the ex-
post realization of the credit risk factor, while parameters are the best ex-ante
estimation given past data, the assumed temporal independence of the risk factor
M implies that it is independent from parameter uncertainty. Second, there is
no closed formula for the correct capital requirement (4) but it can be easily
obtained via a Monte Carlo simulation.

What really matters is the increase in capital requirement w.r.t. the näıve
IRB approach. In particular we focus on the Add-on for the capital require-
ment, defined as the percentage increment of the correct RC w.r.t. its näıve
approximation
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add-on :=
(RC − RCnaive) + (E[L] − ELnaive)

RCnaive
. (5)

In this short paper, we focus on this percentage increase in RCnaive induced
by parameter uncertainty.

3 The Dataset and Parameters’ Gaussian Copula

We analyse a dataset provided by Moody’s Investor Service on annual LGD
rates for defaulted senior unsecured corporate bonds and on annual corporate
default rates [10]. Two are the default rates considered: the first set includes
all corporates rated by Moody’s (hereinafter “All Ratings” or “AR”) while the
second is limited only to firms who have a speculative grade at the beginning of
the default year (hereinafter “Speculative Grade” or “SG”). The dataset reports
an annual value for the period 1983–2019 (37 years); it is used by several financial
institutions either in the determination of regulatory capital or in the definition
of benchmarks for measuring IRB parameters.

In this short paper, we estimate the empirical properties of one-year LGD
and PD via the observed default rates in this dataset, analysing the distribution
for k = Φ−1(PD) and LGD. We show, not only that they can be accurately
described by Gaussian marginals, but also that the joint distribution is a bi-
dimensional Gaussian. We verify the normality hypothesis via a statistical test.
The Shapiro-Wilk test allows to determine if the null hypothesis of univariate
normality is a reasonable assumption regarding the population distribution of a
random sample [12]. Moreover, [11] has extended the Shapiro-Wilk hypothesis
test to the bivariate case to verify composite normality.

Table 1. Shapiro-Wilk test outcome on LGD and default point k; W is the Shapiro-
Wilk test statistics. We never reject the null hypothesis of normality.

W p-value

LGD 0.983 0.840

kAR 0.987 0.941

kSG 0.979 0.706

Composite LGD-kAR 0.973 0.509

Composite LGD-kSG 0.984 0.856

The results for the Shapiro-Wilk test statistic W and the p-value are reported
in Table 1. We do not reject the null hypothesis of normality with a 10% thresh-
old. Notice that all p-values are above 50%. Thus, we can consider normal the
marginal distribution of each parameter; furthermore, the couple LGD-k follows
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a bivariate normal distribution in both cases. Hence, PD and LGD can be well
described by a 2-d Gaussian copula.1

Moreover, we can easily verify whether LGD and k are correlated. We can
reject the uncorrelated hypothesis with a p-value 6.12 ·10−07. In the Speculative
Grade case, results look similar; the uncorrelated hypothesis is rejected with
a p-value 8.85 · 10−05 in this case. The estimated Pearson correlation ρLGD-k

between LGD and k is reported in Table 2.

Table 2. Pearson correlation LGD-k considering All Ratings and only Speculative
Grade firms. We report the estimator ρLGD-k and the 95%-confidence interval (CI).

ρLGD-k 95%CI

All Ratings (AR) 0.717 (0.511, 0.844)

Speculative Grade (SG) 0.599 (0.342, 0.773)

4 Estimation Risk in RC and Policy Implication

We conclude analysing the impact on capital requirements stemming from
parameter uncertainty. First, we take into account the uncertainty due to the
estimation of LGD and PD, measuring the add-on (5) in different cases. We
analyse one parameter at a time (and impose the other parameter equal to its
expected value) and both parameters at the same time. In this way we can
“isolate” each contribution to the add-on. Table 3 shows the results obtained
considering either one parameter at time or the two parameters simultaneously.
Parameter dependency, that –as shown in previous section– cannot be neglected
from a statistical point of view, has the most relevant impact: it determines
the most relevant contribution to the add-on in capital adequacy. Moreover,

Table 3. Regulatory capital add-on due to parameter uncertainties, via a Monte Carlo
with Nsim = 107 simulations. First, we consider the add-on due to LGD and k sep-
arately, keeping the other parameter constant. Then, we consider the two correlated
parameters. PD-LGD dependency gives the most relevant contribution to RC-add-on.

AR SG

LGD (only) 5.63% 9.12%

k (only) 12.22% 28.87%

LGD, k (correlated) 38.48% 65.97%

1 Let us emphasize that the Gaussian copula among parameters has no relation with
the Gaussian copula in the ASRF that models obligors’ assets. In the former, other
empirical analysis that confirm the Gaussian copula between PD and LGD can be
found in [4]. In the latter, the Gaussian hypothesis is not empirically justified on
real data and a model with heavier tails should be considered (see, e.g., [8]).
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the values of add-on appear very large: the correct RC, that takes into account
estimation noise, is significantly greater than the one computed with the näıve
approach. The contribution of parameter uncertainty to capital requirements
appears startling with an increase in the required capital larger than 38%, if All
Ratings are considered, and almost equal to 2/3, if we consider a credit portfolio
composed only by Speculate Grade corporates. This is the main result of this
study.

Then, we draw a policy implication for capital requirements. For market risk,
regulatory capital is calculated via a multiplication factor mc ≥ 3 imposed by
the regulators, a multiple in line with a model risk adjustment buffer [5]. Also for
credit risk, the Basel II Accord allowed to apply a multiplication factor (named
scaling factor) –greater than 1– to the result of the credit VaR calculations, factor
that corresponds to a –greater than 0– add-on. In Basel III, the Committee has
agreed to remove this scaling factor [3]. The main conclusion of this study from a
financial policy perspective is that, to cope with the associated estimation risk,
regulators should reintroduce the scaling factor at least equal to 1.4, when a
bank prefers to stuck with a näıve regulatory computation.

It is common practice by risk managers to rely on a näıve IRB approach
for capital requirements, where parameters are estimated with the long term
averages of historical rates. We have shown how to incorporate the inevitable
uncertainty about the forecasted parameters in measures of portfolio credit risk:
such parameter forecasting depends on statistical hypotheses that can be tested
on real datasets. Ignoring estimation noise leads to a substantial understate-
ment of the regulatory capital; in particular, we have shown that parameters’
dependency plays the most relevant role in capital adequacy.
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Abstract. The Italian pension system underwent two major reforms, in 1995 and
2011, encompassing a long transitional phase from defined benefit to notional
defined contribution (NDC) rules. Automatic adjustments of benefits and eligibil-
ity age, in reaction to changes in life expectancy,were introduced to reducepolitical
risk. In this paper, we evaluate the actuarial features of the Italian pension system
using an overlapping generation (OLG)model that accounts for interdependencies
between the macroeconomy, the labor market, and the pension system. This is in
contrast to existing studies for Italy that use microsimulation or representative
agent models. In addition to that, we evaluate two policy changes concerning the
computation and adjustment of conversion coefficients used in the NDC formula.
Namely, we consider the calculation of cohort-specific conversion coefficients.
The first policy change exploits Eurostat projected life tables, whereas the second
relies on historical mortality rates attributed to retiring cohorts following the com-
putational mechanism existing in Sweden. The NDC system returns individuals
60% of what they paid as contributions during their working life. This value is
lower than what was found by previous studies and is the result of dynamic effi-
ciency as endogenously determined by the OLG model. Projected cohort-specific
conversion coefficients lead to a slightly lower generosity, accounting for the
reduction in mortality probabilities individuals experience after retirement. By
implementing a narrow retirement age window, Swedish-type conversion coef-
ficients do not suffer from obsolescence. Significantly, vis-à-vis the current leg-
islation, they do not alter pension generosity and, as such, they look politically
appealing.

Keywords: Actuarial fairness · Overlapping generation model · Notional
defined contribution

1 Introduction

In the last three decades, population ageing and low economic growth have weakened
the financial stability of several pay-as-you-go defined benefit (DB) pension schemes.
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Some countries - including Italy, Latvia, Norway, Poland, and Sweden - have reformed
their pension system by retaining their pay-as-you-go financing method but replacing
their DB with a notional defined contribution (NDC) pension formula. An NDC scheme
consists of an individual account system to which contributions are earmarked and
interests notionally paid; at retirement, the notionally accumulated sum is converted
into the pension considering life expectancy, that is, incorporating actuarial fairness.

The ItalianNDCschemewas introduced in 1995 (so-calledDini reform). This reform
encompasses a long transitional phase from DB to NDC rules, gradually introducing
actuarial fairness in the system. Older individuals – those with more than 18 years of
contributions in 1995 -were excluded from the reform. In 2011, however, a further reform
(Fornero reform) extended NDC rules to these cohorts (for the part of their career after
2011). Individuals with less than 18 years of contribution in 1995 are subject to a “pro-
rata” system, with a DB formula for contributions paid up to 1995 and an NDC formula
for those paid later. Finally, those who started to work after 1995 are fully subject to the
NDC formula.

Eurostat projects that in Italy, life expectancy at the age of 65 will increase from 22.9
(19.6) years in 2019 to 29.1 (26) years in 2100 for females (males) [1]. The implemen-
tations of actuarially fair NDC systems need to guarantee that life expectancy used to
compute the annuity at retirement is as close as possible to actual, ex-post, residual life.
Automatic adjustments [2] of benefits and eligibility age, in reaction to changes in life
expectancy, were introduced to reduce political risk.

The critical elements of the NDC pension formula are the conversion (or trans-
formation) coefficients (TCs), which convert the sum of contributions accumulated at
retirement into the stream of future pension benefits. There is a window of possible
retirement ages and one TC for each retirement age. Consistently with the principle
of actuarial fairness, the higher the retirement age (thus, the lower the residual life
expectancy at retirement), the higher the TC, the higher the pension. Therefore, the sys-
tem in its steady-state should not provide financial incentives to retire at any particular
age. TCs are computed using cross-sectional mortality rates recently published by the
Italian Institute of Statistics, and they are adjusted to changes in life expectancy biannu-
ally. The 2012 reform introduced automatic biannual adjustments of pension eligibility
ages to the changes in life expectancy. Currently, the old-age retirement age is 67.

The scope of this paper is to evaluate the actuarial features of the Italian pension
system, analyzing both its transitional phase fromDB to NDC and the steady-state NDC
rules. We rely on an overlapping generation (OLG) model built upon the work by [3].
Previous Italian studies conducting similar analyses relied on either representative agent
or microsimulation models. Among the first group of studies, [4] and [5] show that
the former DB scheme was highly generous. In contrast, the future NDC will be almost
actuarially fair.Microsimulationmodels have largely confirmed these findings (e.g., [6]).
Themain advantage of theOLG approach overmicrosimulation and representative agent
models is that OLG can fully account for interdependencies between themacroeconomy,
the labor market, and the pension system. The model is calibrated to match the main
features of the Italian economy, and the output of this calibration affects the performance
and the evaluation of the pension system.
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We evaluate two policy changes concerning the computation and adjustment of the
TCs. These proposals consider the computation of cohort-specific CTs. The first exploits
projected life tables; the second relies on historical mortality rates attributed to retiring
cohorts following the computational mechanism existing in Sweden and adapted to the
Italian case. The next session provides more methodological details, Sect. 3 reports our
main results, and Sect. 4 concludes.

2 Methods

D’Andria et al. [3] developed an OLG model (EDGE-M3) to study the effects of demo-
graphic change on taxes and pension system reforms at the EU level. We enriched it with
a module on the Italian pension system, which can account for many normative details
and focuses on the formulas used to compute and update TCs.

There are 80 adult generations aged 20 to 99 in EDGE-M3. The oldest one is
cohort 1953, starting to work at age 20 and retiring at 67 in 2019. Over their life-
time, individuals face a mortality risk in line with Eurostat projections [1]. Individuals
are further distinguished by income quintiles. All in all, there are 400 representative
individuals in the model. They receive utility from consumption, leaving bequests and
disutility from labor. They optimize over their lifetime, choosing their labor supply (and
consumption/savings), fromwhich they receive earnings depending on their ability type.

The Italian pensionmodule interactswith the othermodules of EDGE-M3 in a variety
of ways. The most obvious way is through the modeling of taxation [3]. The calibration
of the model allows coherently representing and simulating the interactions between the
Italian tax system and the public pension system. E.g., an individual receives pension
benefits and pays an income tax as part of the capital tax. Another interaction with the
pension module is that individuals account for a marginal increase in pension benefits
due to a marginal increase in hours worked.

We apply the pension rules established by the Dini and Fornero reforms for each
cohort in themodel. Thus, there are five “Fornero” cohorts (1953–1957) retiring in 2019–
2023, eighteen pro-rata cohorts (1958–1975) retiring in 2024–2041, and NDC cohorts
(1976-) retiring since 2042. We refer to [5] for a detailed description of the pension
sub-schemes formulas and the TCs formula, including its computational assumptions.
Here we only recall that the latter formula exploits cross-sectional mortality rates taken
from recent official life tables. This exercise computes future expected values of the TCs
using projected (cross-sectional) life tables from [1] (central scenario).

We assess the actuarial fairness of the Italian pension system using the present value
ratio (PVR), i.e., the ratio between the expected present value of pension benefits and
the lifetime present value of contributions [7]. We use cohort-specific mortality rates for
Italy obtained from Eurostat projections [1] when computing present values. Namely,
we get the mortality rates from the diagonal of the year times age matrix of the gender-
specific life table. When PVR= 1, the system is actuarially fair. In NDC schemes, PVR
< 1 since its rate of return is the GDP (or wage bill) growth rate (plus population growth
rate) and g < r in a dynamic efficient economy (quasi-actuarial fairness, [8, 9]).



86 M. Belloni and M. Zachlod-Jelec

We consider the following normative scenarios:

1. Baseline. The current legislation - but we keep the retirement age constant across
generations and equal to its current value 67;

2. Current legislation: as the baseline, but we allow for the age of retirement to increase
in line with increased longevity;

3. Policy 1: we compute TCs by cohort - using projected cohort-specific mortality
tables;

4. Policy 2: we compute TCs by cohort – using the method applied in the Swedish
NDC system (see, e.g. [10]) adapted to the Italian situation. In detail, we assume
that the retirement age window is 67–71. Each cohort is then assigned a permanent
set of coefficients by age computed when they reach age 66. Unlike Policy 1, these
coefficients are thus computed using historical life tables.1

3 Main Results

Figure 1 reports results for the baseline scenario. While the system is almost actuarially
fair for the Fornero cohorts, it becomes less than actuarially fair for the pro-rata. The
PVR progressively declines as the system converges towards its NDC steady state. It
is indeed well-known that the DB formula is more generous than the NDC. There is
a within-cohort heterogeneity for cohorts under the Fornero and the pro-rata schemes:
lower ability types seem better off than high ability types. Their relative labor supply
primarily drives this result – the lower ability types working more during the lifetime
than their more affluent counterparts (the latter invest more in education, for instance).
Differences in theworking career are irrelevant in theNDCscheme.Themost remarkable
finding is that the NDC system returns individuals no more than 60% of what they paid
in contributions during their working life (PVR about 0.6). This value is lower than what
was found by previous studies. It is the result of dynamic efficiency as endogenously
determined by the OLGmodel: The calibrated values for g= 1.13% and r= 2.13% lead
to a spread of 1%.

In the current legislation scenario, the retirement age is increased progressively
from age 67 to 72 (in 2073, when the 2001 cohort retires). The main finding is that this
increase in the retirement age improves adequacy substantially: for instance, for NDC
cohort 1990, 3rd quintile, the PVR = 0.6 if retirement is at age 67 and PVR = 0.73 if
the old-age retirement age is raised to 71.

Figure 2 presents Policy options 1 and 2 and compares them with the baseline case,
focusing on the 3rd quintile.2 Applying projected cohort-specific mortality tables in the
computation of TCs leads to a minor reduction of the PVR - up to 3 p.p. lower for the
cohort 1964 and around 2 p.p. lower for most analyzed cohorts - vis-à-vis the baseline.

1 E.g., coefficients for cohort 1955 are attributed in year 2021, those for cohort 1954 in 2020, and
so on. As a consequence, in a given calendar year, coefficients coexist for different cohorts: in
2021 there exist coefficients for cohorts from 1954 (aged 67) up to cohort 1950 (aged 71).

2 Results for other quintiles are similar. Note that, in the current legislation scenario, a comparison
of the PVR across cohorts does not isolate the effect of changes in pension rules, since the
retirement age varies as well. For this reason, we compare policy options against the baseline.
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There is no impact on the Fornero cohorts’ PVR due to a tiny NDC component of their
pension formula. Noticeably, this policy results in a smoother course of the PVR among
adjacent cohorts because it eliminates the need for the periodical updating process of
the TCs. Policy option 2 leads to an almost unchanged PVR compared to the baseline.
Indeed, in both scenarios, historical mortality is used to compute TCs. Moreover, our
policy design implies a narrow retirement age window (67–71) and thus the use of recent
life tables.

Fig. 1. PVR by cohort and income quintile – baseline scenario

Fig. 2. PVR by cohort, 3rd income quintile – Policy options 1 and 2 versus baseline
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4 Discussion and Conclusions

Our analysis points out that – if the retirement age remained constant at 67 – the future
Italian NDC scheme will return to individuals 60% of what they paid in terms of contri-
butions during their working life. This value is lower than what was found by previous
studies and is the result of the OLG endogenously determined 1% spread between the
GDP growth rate and the risk-free interest rate. The periodical adjustments of the TCs
create discontinuities in generosity among adjacent cohorts, which, in turn, generates
undesirable between-cohorts redistribution and incentives to anticipate retirement before
the revision. Such incentives are stronger if one considers postponing retirement formore
years, as adjustments occur more than once. The uncertainty associated with the TCs
future values can also play an additional role in anticipating retirement. The retirement
age increase in response to increased longevity is an effective solution to improve the
adequacy of future benefits.

Cohort TCs avoid the just-mentioned adverse effects of the current updating pro-
cedure. Applying projected cohort-specific mortality tables in the computation of TCs
reduces the PVR by max. 3 percentage points. This policy is preferable from the actu-
arial fairness viewpoint, because it incorporates declining mortality rates individuals
experience during retirement. Practically, however, one should quantify the degree of
uncertainty associatedwith projectedmortality. Future developments of this study should
at least check the results’ robustness to different projections. By implementing a nar-
row retirement age window, Swedish-type conversion coefficients do not suffer from
obsolescence. Significantly, vis-à-vis the current legislation, they do not alter pension
generosity (i.e., the PVR) and, as such, they look politically appealing.
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Abstract. The VIX is a proxy for the implied volatility, computed con-
sidering Standard & Poor’s 500 Index data. It widely regarded as a mea-
sure of turbulence in U.S. and global financial markets. Hence, forecasting
the VIX is essential for both portfolio managers and policy makers. By
modeling the S&P 500 Index as a multifractional Brownian motion, we
exploit the relationship between its Hurst exponent and the volatility to
predict the VIX by a Distributed Lag model.

Keywords: Hurst exponent · Financial markets · VIX index ·
Volatility · Multifractional Brownian motion

1 Introduction

Implied volatility is usually used by practitioners as a forecast of the future
market volatility and is estimated from option prices. The VIX index, devel-
oped by the Chicago Board of Options Exchange (CBOE), measures the implied
volatility for the Standard & Poor’s 500 Index. The VIX is also widely regarded
as a measure of turbulence in U.S. and global financial markets. Actually, the
VIX calculation differs from the previous implied volatility-based index, called
VXO. Indeed, unlike the VXO (computed by solving the Black-Scholes pricing
equation), the VIX returns the following model-free value [13]:

V S(t, T ) =
2

T − t

∑

i

ΔKi

K2
i

eri(T−t)Oi (Ki, T ) − 1
T − t

[
Ft

K0
− 1

]2

, (1)

where T is the common expiration date for all option contracts involved in the
calculation, Ft is the forward index level from the option prices at time t, Ki

is the strike price of the i-th out-of-the-money option at time t, Oi (Ki, T ) is
the midpoint of the bid-ask spread for each out-of-the-money option with strike
price Ki,K0 is the first strike price below Ft,ΔKi = Ki+1−Ki

2 is the half-interval
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between strike prices preceding and following Ki, and rt is the risk-free rate over
the period (T − t).

Forecasting VIX is an important issue for many reasons [8,9]. To quote a
few, investors try to get forecasts on the uncertainty levels in order to adjust
their asset allocation; also, it is common nowadays to trade on derivatives built
on the VIX index, such as futures or CFD contracts. Hence, forecasting the VIX
can help taking both correct investment decisions for these kind of derivatives
and right directions for policy makers.

Most of previous literature has tried to use implied volatility to predict real-
ized volatility [e.g. see 6]. Moreover, [1] demonstrated a fractionally co-integrated
relationship between the two. However, few papers questioned what does pre-
dict the VIX. [8] shown that the VIX index is hard to be predicted and that
does not seem to be very closely connected to the volatility of the underly-
ing index. Opposite evidences have been documented in [9] and [7]. [9] show
some forecasting power with HAR (Heterogeneous Autoregressive) models when
they employ macro-finance exogenous covariates such as the compounded S&P
500 returns, the first differences of S&P 500 log-volumes, the continuously com-
pounded return on the one-month crude oil futures, or even some exchange rates.
Instead, [7] found favorable results by simply implementing a non-parametric
model called Singular Spectrum Analysis.

In what follows, we contribute to the VIX forecasting literature by studying
the predictive power of the S&P500 Hurst exponent. Choosing the Hurst expo-
nent as a VIX predictor can be motivated by two important evidences. First of
all, we know that the VIX and S&P 500 returns are negatively correlated [e.g. see
9]. Second, it is well known that S&P 500 Index and the VIX are characterized
by a long-memory processes [2,12,13]. Assuming that the S&P 500 Index fol-
lows a multifractional Brownian motion, we exploit the theoretical relationship
between its Hurst exponent and the volatility [e.g. see 15].

The remainder of the paper is structured as follows. In Sect. 2 the model and
the estimator are briefly described. Section 3 describes data and methodology
along with the results of the analysis. Finally, Sect. 4 concludes with some final
remarks and future research direction.

2 Model and Estimator

The multifractional Brownian motion (mBm) generalizes the fractional Brown-
ian motion (fBm) by letting its exponent H to change through time [see 14]. This
allows more modeling flexibility when the pointwise regularity of paths changes
even abruptly, as in financial time series [3]. MBm admits the following moving
average representation (to lighten notation, we write Ht in place of H(t))

BHt
(t) =

C
√

Γ (2Ht + 1) sin(πHt)
Γ

(
Ht + 1

2

)
{∫ 0

−∞

[
(t − u)Ht−1/2 +

− (−u)Ht−1/2 dB(u) +
∫ t

0

(t − u)Ht−1/2 dB(u)

}
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where C is a positive constant, Ht ∈ (0, 1) and dB is the Brownian measure.
Being E [BHt

(t)] = 0 a.s., the variance is E [BHt
(t)]2 = C2|t|2Ht [5].

When Ht > 1/2, the increments of mBm are positively correlated. Conversely,
when Ht < 1/2 increments are negatively correlated and there is short-memory,
in the sense that the autocovariance function decreases exponentially. In the end,
for Ht = 1/2 the mBm reduces to a standard Brownian motion.

Following [3,4], we estimate a time-varying Hurst exponent and study
whether it is able to predict VIX realizations in out-of-sample. To estimate the
time-varying Hurst exponent, we consider the AMBE method proposed in [3,4].

The estimator works as follows. Given the path XHt
(t) generated by an

mBm and fixed a rolling window of size δ and a lag q, the discrete sampling
{Xi,n}i=1,...,n−1, for j = i − δ, . . . , i − q is considered, i = δ + 1, . . . , n and
q = 1, . . . , δ. Since at time t0 the mBm behaves like an fBm with exponent
H(t0), the following estimator can be built [3]:

Ĥt = −
log

(√
(π)Sk/

(
2k/2Γ

(
k+1
2

)
Kk

))

k log
(

n+1
q

) (2)

with Sk =
1

δ − q + 1

i−q∑

j=i−δ

|Xj+q,n − Xj,n|k , i = δ + 1, . . . , n

Optimal choices to minimize the estimator’s variance can be proved to be q = 1
and k = 2. The window size δ is chosen as a trade-off between the estimator’s
variance and the timely response to the signal. For financial application [2,4]
suggest a value of δ = 30.

Once the estimate of H(t) has been obtained through (2), we compare the
forecasts based on it using a Distributed Lag model with respect to those of a
model that employs only past VIX realizations. We find that the S&P 500 Hurst
exponent is a strong predictor for the VIX.

3 Empirical Analysis and Results

For the empirical analysis we consider the daily time series of the VIX and
the underlying (Adjusted Price) S&P 500 between the time period 01-1990 to
12-2021 (see Fig. 1).

Before to estimate the models, the stationarity analysis is needed. In par-
ticular, the augmented Dickey – Fuller test (ADF) is carried out on both time
series to verify the absence of unit roots in the time series. In unreported tables,
we reject the null hypothesis of unit roots for all the involved time series.

Once the time-varying Hurst exponent Ht has been estimated, we study its
predictive power by means of a Distributed Lag (DL) model. The DL(q) model
assumes that the time series V IXt can be represented by a linear function of q
lagged values of one or more explanatory variables. In this empirical experiment
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Fig. 1. Time series involved in the empirical experiment

we consider both the underlying asset Hurst exponent (i.e. the S&P 500 Hurst)
Ht and a proxy of volatility, computed as the absolute value of daily log return
σt = |rt| [10]. By means of step-wise regression model, we consider q = 5. More
in detail, we compare the forecasts obtained by a simple model that employs the
volatility as a predictor:

V IXt = β0 + β1σt−1 + ... + β5σt−5 + ε (3)

with an alternative model that includes the Hurst exponent:

V IXt = β0 + β1Ht−1 + ... + β5Ht−5 + β6σt−1 + ... + β10σt−5 + ε (4)

In order to choose the best fitting for the model and avoid multicollinearity
and overfitting, we have introduced the step-wise regression procedure [11]. This
procedure starts with no predictors, then sequentially add the most contribu-
tive predictors (forward selection). After adding each new variable, remove any
variables that no longer provide an improvement in the model fit (backward
selection). R-squared was considered as a criterion for choosing the best model
[11]. To assess the impact of the Hurst index on the predictability of VIX, two
models were considered. The first adopting as regressor only the proxy daily
volatility of the underlying in the step-wise regression model. The second, by
adding the Hurst term to the ADL.
The model was trained on a test sample containing 90% of the time series obser-
vations, the remainder being the sample used for out-of-sample testing. The test
set consists of the daily observations from 11/2019 to 12/2021. At the end of the
step-wise regression procedure, the best model is as follows (see Table 1)

V IXt = β0 + β1Ht−1 + β2σt−1 + ε (5)
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Table 1. Estimated models

Panel A: benchmark model

Coefficient Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.30556 0.10117 151.28 <2e−16

L(sd, 1) 5.19271 0.09192 56.49 <2e−16

Adjusted R-squared 0.29

Panel B: model with Hurst exponent

(Intercept) 83.7188 0.4674 179.1 <2e−16

L(h, 1) –128.4453 0.9251 –138.8 <2e−16

L(σ, 1) 1.76422 0.06275 28.11 <2e−16

Adjusted R-squared 0.75

Table 2 shows the results of forecast on the test set. The error metrics used
(RMSE, MAE, Rsquared) show an improvement in performance with the use of
the Hurst index.

Table 2. Results out of bag

Metrics Model1 Model with Hurst Exp

MSE 65.5 29.42

RMSE 8.09 5.42

MedianAPE 18.9% 13%

MAPE 20% 15.5%

Rsquared 0.39 0.73

Corr (IV vs Fitted IV) 0.72 0.89

Test Statistic P-value

Diebold-Mariano Test 49.275 2.225e−12

Fligner-Killeen –6.9978 8.095e−12

Furthermore, the non-parametric statistical tests on the variance of the error
show a significant difference between the estimates of the two models used. In
particular, the Hurst effect reduces the variance of the forecast error.

4 Conclusions and Further Directions

Although it is related to volatility by a closed-form formula in the case of frac-
tional Gaussian processes, the Hurst parameter appears to be much more infor-
mative than simple volatility in VIX forecasting. This added value deserves to be
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investigated along at least two directions: on the one hand, it is appropriate to
compare the forecasting ability of the Hurst-based DL(q) with other performing
models (e.g. HAR); on the other hand, it would be of extreme interest to analyze
the forecasting ability in relation to the link that the Hurst exponent has with
the market efficiency condition.
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12. Granero, M.S., Segovia, J.T., Pérez, J.G.: Some comments on hurst exponent and
the long memory processes on capital markets. Phys. A 387(22), 5543–5551 (2008)

13. Ouandlous, A., Barkoulas, J.T., Alhaj-Yaseen, Y.: Persistence and discontinuity in
the VIX dynamics. Chaos, Solit. Fractals 113, 333–344 (2018)
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Abstract. We express the realized volatility in terms of the Hurst expo-
nent of the trajectory drawn by the market index. By analyzing distribu-
tion, stationarity, and (partial) sample autocorrelation of the estimated
paths, and exploiting the empirical law of return to the central value 1/2,
we model the dynamics of H(t) (and hence of the volatility) through a
fractional Brownian bridge of appropriate parameter H.

Keywords: Hurst exponent · Fractional Brownian bridge · Volatility

1 Introduction

The link between the realized volatility and the dynamic Hurst exponent of a
price series is now fairly well documented in literature. For an interpretation
of this relationship see for example [5,14]. To make a long story short, Fig. 1
displays the realized log-volatility versus the (time-changing) Hurst parameter of
the S&P500 from 1950 to 2021: the linear relationship linking the two is almost
indisputable. As observed in [4], measuring volatility through the Hurst exponent
has the advantage to relate the degree of variability of the log-indexes to the
departures from market efficiency. In fact, while the level of volatility per se is not
informative of the degree of efficiency of local market dynamics, the value of the
Hurst exponent characterizes precisely how far the market is from the equilibrium
represented by Ht = 1

2 . This is the value that is expected to be realized when
(discounted) prices follow a martingale, i.e. when the market is efficient [8].
Moving from this, it seems crucial not only to estimate the Hurst exponent, but
also to effectively model its dynamics. The point of this contribution is precisely
this. From the estimation of the Hurst exponent we will infer some features
(that seem ubiquitous with respect to time and the different markets examined)
which suggest that, once properly rescaled, fractional Brownian bridges (fBb)
may represent good models for the dynamics of Ht. Our results are strongly
consistent with those on rough volatility [11], which model the log-volatility
by fractional Brownian motion (fBm) with a very small Hurst exponent. One
difference lies in the fact that, using Ht instead of the log-volatility, an additional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 96–102, 2022.
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constraint emerges that can contribute to specify the modeling process as a fBb
instead of a fBm. This follows from the empirical observation that the Hurst
parameter tends to return to the value 1/2, that is markets tend to restore the
equilibrium by continuously adjusting Ht towards its central value 1/2.

Fig. 1. S&P500 (1950–2021), 19735 observations: estimated log-volatility vs. estimated
Hurst exponent

2 Fractional Brownian Bridge

While there is a substantial literature in physics and signal analysis, not many
contributions have investigated the use of fBb in finance [13]. On the contrary,
when one tries to model the dynamics of the Hurst parameter, this choice sounds
reasonable, because generally Ht ∈ [a, b] ⊂ (0, 1); to fulfill this constraint [10]
uses e.g. a Fisher-like transformation. Here we will adopt the fBb approach.

To resume some results, in the following we will refer to [7].
The real-valued process Xt, with X0 = 0, is called a bridge, denoted by XB

t ,
if it is conditioned to be XT = a. It can be proved that

E
(
XB

t1

)
= a

E(Xt1XT )
E(X2

T )
(1)

and

E
(
XB

t1X
B
t2

)
= E (Xt1Xt2) − [

E
(
X2

T

) − a2
] E(Xt1XT )E(Xt2XT )

E(X2
T )2

(2)

The subtracted process XS
t , defined from the original process Xt, reads as

XS
t := Xt − (XT − a)

E(XtXT )
EX2

T

. (3)

First, it can be noticed that XS
t

L= XB
t , where L= denotes the equality in law.

When Xt is the Brownian motion Bt, the subtracted process - which has the
same law as the Brownian bridge terminating at a - obviously reduces to

BS
t := Bt − t

T
(BT − a) . (4)
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Because of the nonzero autocorrelation functions, things are slightly trickier in
the case of the fractional Brownian motion BH

t of parameter H �= 1
2 . In this

case, the subtracted process is non-linear in t and reads as

(BH
t )S := BH

t − 1
2

(
BH

T − a
)
[

1 +
(

t

T

)2H

−
(

1 − t

T

)2H
]

(5)

Using the perturbative expansion (see [15] and [6]) obtained for the standard
Brownian motion and setting H = 1

2 + ε (for small ε), in [7] Delorme and Wiese
deduce the distribution of the maximum of the fractional Brownian bridge

PB
H(m) =

2y1−8ε

TH
e−y2Aε+εG(y)+cst + O(ε2) (6)

where:

• y = m
T H ;

• Aε = 4H

4−4H = 1 + 4 ln(2)ε + O(ε2)
• G(y) = −4(y2 − 1)I(y2)+2

√
πey2

yerfc(y)+2y2
[
ln(4y2) + γE

]− 4γE − 2 (γE

being the Euler-Mascheroni constant);
• I(x) = 1

2πerfi(
√

x)−x2F2

(
1, 1; 3

2 , 2;x
)

(here 2F2 denotes the hypergeometric
function)

At small m, the distribution PB
H(m) has a power law given by m1−8ε+O(ε2). This

leads to the result PB
H(m) ∼ m

2
H −3. At large m, PB

H(m) has a Gaussian tail with
dimensionless variable y2 = z2/T 2ε = m2/T 2H .

3 Methodology and Application

First, from the daily stock indexes series of length n we estimate the Hurst expo-
nent using the methodology in [12], where the unbiased, large-variance estimator
Ĥν,n(t, A) is merged with the biased, low-variance estimator Ĥν,n,K∗(t) to obtain
the unbiased, low-variance estimator

H̃ν,n(t, A) = Ĥν,n,K∗(t) +
1
n

n∑

t=1

(
Ĥν,n(t, A) − Ĥν,n,K∗(t)

)
, (7)

where ν is the size of the estimation window, K∗ is an arbitrary scale parame-
ter of the process and A is a discrete differencing operator acting to make the
sequence locally stationary and to weaken the dependence between the obser-
vations. Using (7), we get the estimates summarized in Fig. 2 for three main
stock indexes in the period January 2, 2000–December 31, 2021. Figure 3 and
Table 1 report the partial sample autocorrelation functions and the results of the
normality test of H̃21,n(t, (−1, 1)). We refer to the partial ACF to remove the
spurious autoregressive component triggered by estimator (7) and desumable by
the spike in correspondence of lag ν and its multiples.

The analysis suggests that, for the three indexes, H̃21,n(t, (−1, 1)):
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a) is trend stationary (Augmented Dickey Fuller test in column ADF, Table 1)
and mean-reverting (Fig. 2);

b) has mean value approximately equal to 1
2 (column mean, Table 1)

c) displays negative short-term autocorrelation (Fig. 3)
d) is roughly normally distributed. Using the Lilliefors test, normality cannot be

rejected, especially net of the spikes recordered for market crashes (column
L-test, Table 1, compared with the critical values of the last three columns).

The above claims a)-d) suggest to model Ht by means of a fBb, with terminal
value 1

2 and variance dictated by the estimated ones (column std, Table 1). To
this aim, it is necessary to estimate the global Hurst exponent of the sequence
H̃21,n(t, (−1, 1)) of each index. As noted by [10], this configures a kind of nested
fractality. Denoted by σ(H̃21,n(t, (−1, 1))) the standard deviation of the sequence
H̃21,n, the global Hurst exponent H is estimated as the slope of the log-linear fit

ln σ(H̃21,n(λt,A)) = H ln λ + lnσ(H̃21,n(t, A)). (8)

Relation (8) directly follows from the well-known scaling law BH
λt

d= λHBH
t ,

peculiar of the fBm. The results of the log-linear fit are reproduced in Table 2.

Fig. 2. ˜H21,1,n(t, (−1, 1)): (a) ESTOXX50 (b) Nikkei 225 (c) S&P500

Table 1. Main stats for ˜H21,1,n(t, (−1, 1)) (critical value for the ADF test: –3.4134)

Critical value α

mean std kurt skew max min ADF L-stat 0.01 0.05 0.1

ESTOXX50 0.486 0.0550 3.041 –0.459 0.627 0.309 –5.295 0.0617 0.0656 0.0563 0.0517

Nikkei 225 0.489 0.0468 3.965 –0.415 0.617 0.283 –5.746 0.0466 0.0671 0.0576 0.0529

S&P500 0.533 0.0600 3.539 –0.599 0.685 0.310 –4.831 0.0545 0.0662 0.0568 0.0522

Under the assumption of stationarity, let A in Eq. (5) be a r.v. distributed as

the standardized H̃ν,n, i.e. A ∼ PDF
(

˜Hν,n−mean( ˜Hν,n)

σ( ˜Hν,n)

)
. Using relation (5) with

H given by the slopes summarized in Table 2, we can surrogate paths of fBb of
length T (representing the simulated dynamics of Ht) as follows:



100 S. Bianchi et al.

Fig. 3. Partial ACF of ˜H21,1,n(t, (−1, 1)): (a) STOXX50E (b) Nikkei 225 (c) S&P 500

Table 2. Log-linear fit (8). The slopes provide the estimated H.

Estimated SE tStat pVal #Obs RMSE R-squared

ESTOXX50 Slope 0.2776 0.0033 84.69 0 532 0.0574 0.931

Intcp –4.450 0.0180 –247.39 0

Nikkei 225 Slope 0.2515 0.0036 69.90 0 513 0.0614 0.905

Intcp –4.353 0.0196 –221.78 0

S&P500 Slope 0.2595 0.0030 87.91 0 530 0.0515 0.936

Intcp –4.279 0.0162 –264.34 0

Hsim
t = (BH

t )B L= (BH
t )S

=

{

BH
t − 1

2
(
BH

T − A
)
[

1 +
(

t

T

)2H

−
(

1 − t

T

)2H
]}

σ
˜Hν,n

+
1
2

The r.v. A forces the terminal values of all simulated paths of fBb to distribute
as the standardized H̃ν,n, while scaling the fBb by σ

˜Hν,n
will ensure that the

intermediate values of the surrogated fBb deviate from 0 as the observed ones.
This is a crucial issue, since the condition H ∈ [a, b] ⊂ (0, 1) has to be ful-
filled. Finally, shifting the simulated fBb by the quantity 1/2 ensures that the
surrogates Ht will fluctuate around the equilibrium value.

In the following simulations, A ∼ GEV(k, σ, μ), with the shape, scale and
location parameter of the Generalized Extreme Value distribution estimated
from H̃ν,n of each index. An example of the sample paths generated using the
above procedure is reported in Fig. 4 for the index ESTOXX50. For each index,
Fig. 5 displays the fits of the simulations at the terminal points.
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Fig. 4. Hsim
t (in green 1000 trajectories; in red one of the paths)

Fig. 5. (a) ESTOXX50 (b) Nikkei 225 (c) S&P500

4 Conclusion

Modeling volatility through the Hurst exponent has the added value of establish-
ing a direct relationship with market equilibrium. The problem that this approach
poses is to restrict the values of H-volatility to the range [a, b] ⊂ (0, 1). This con-
straint is met through the use of an fBb properly rescaled. The preliminary results
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of this contribution are consistent with the literature on rough volatility and con-
firm the goodness of fit of the surrogated paths.
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Abstract. The Shapley value assigns each game in Characteristic form
a result (contribution) for each player. In games with externalities, there
is a Partition Function assigned to the characteristic representation. Var-
ious generalisations or extensions of the Shapley value have been devel-
oped in the literature. The Shapley value for games in Partition Function
Form can be interpreted as the ex ante value of a process of successive
bilateral mergers. Game-theoretic formulations of feature importance are
a way of explaining machine learning models. These methods define a
cooperative game between features in a model and using Shapley’s value
study the influence of input features. The externality modelled in the
game is read as a further measure of the contribution of features and
seeks to interpret causal structures in the data. Our aim is to construct
a weighted elementary marginal contribution for each feauture, in order
to select attributes that have explanatory value.

Keywords: Shapley value · Games in partition function · Features
contributions · Causality

1 Introduction

The theory of cooperative games associates each transferable utility game (TU)
with a characteristic function that assigns real numbers (payoffs) to each coali-
tion that can be formed. A limitation of games in the characteristic function
form is that it cannot be possible to differentiate between various situations
in which the payoffs that a coalition can obtain depend on the external coali-
tional arrangement of the players. The partition function associated with a TU
game is a way of preserving information about externalities. A partition function
(Thrall and Lucas (1963)) assigns a value to each pair consisting of a coalition
and a coalition structure that includes that coalition. The Shapley value (Shap-
ley 1953), one of the most important solution notions for cooperative games, has
proven to be a useful solution concept for TU games as it provides a way for
the division of the common profits of the grand coalition, which satisfies certain
properties (axioms).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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In Partition Function Form (PFF) games, several generalized and/or
extended notions of the concept of Shapley value have been defined, since the
final payoffs depend on the structure of the coalition that is formed (Myerson
(1977), Bolger (1989) and Potter (2000)). In all these papers, authors derived an
efficient extended value for TU games in PFF: in Myerson (1977) Shapley value is
a natural extension of the value based on the three simple axioms; Bolger (1989)
derived a value that assigns zero to dummies players and assigns non-negative
values to other players; Potter (2000) modified the regular concept of a dummy
player that allows the dummy player to bring a value to the game. Pham Do
and Norde [2] construct a Shapley value extension under the assumption that
all the players outside this coalition act as singletons, they define a collection of
marginal vectors different from Bolger; instead Potter considered the sum of an
‘average worth’ of coalitions. The authors show that there is a unique solution,
the Shapley value, satisfying efficiency, additivity, the null player property and
symmetry for a TU game in PFF.

Finally, Mc Quillin [8] defined a Generalized Extended Shapley Value, exclud-
ing from consideration the payoffs to embedded coalitions involving partitions
of more than two coalitions, i.e. when S forms, all the other agents form a coali-
tion, N \ S. The extended and generalized Shapley value is the expected value
of the outcome for each player. Players arrive in the coalition in a random order
and receive the marginal payoff that their participation brings to the coalition
formed by the players who arrived first.

2 Games in Partition Function Form

Let N = {1, 2, ..., n} denote a finite set of players and V the set of all mappings
v : 2N → R with v(∅) = 0. Subset of N are called coalitions. We refer to v ∈ V
as a transferable utility (TU) game in characteristic function form, on N. A
partition k of N is a set of non-empty coalitions, k = {S1, S2, ..., Sm}, such that
m⋃

i=1

Si = N and Si

⋂
Sj = ∅ for i �= j. Let P(N) be the set of all partitions of N .

For a partition k ∈ P(N) and i ∈ N we denote the coalition in k to which player
i belongs by S(k, i). As in Pham Do and al. [2], let k ∈ P(N) and i, j ∈ N ,
such that i �= j, we define the partition kij obtained from k interchanging the
positions of i and j.1

A pair consisting of a coalition S and a partition k ∈ P(N) to which S
belongs, S(k, i), is called an embedded coalition. Let E(N) be the set of al
embedded coalitions:

E(N) = {(S, k) ∈ 2N × P(N)|S ∈ k}.

A mapping ω : E(N) → R that assigns a real value ω(S, k) to each embedded
coalition (S, k) is a partition function. Let W be the set of all mappings ω, with
S = ∅ → ω(S, k) = 0. We define a Partition Function Form Game, PFFG, an

1 If i and j belong to the same coalition, i.e. S(k, i) = S(k, j), then kij = k.
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ordered pair (N,ω) and the set of partition function form games with player set
N is denoted by PFFGN .

2.1 The Shapley Value

The value in a PFFG represents the payoff of coalition S given that coalition struc-
ture k forms. We consider the extended generalized value defined by Mc Quillin [8].
In this model, χ is a mapping from W to W , then χ(ω) is also an element of W .
Given an embedded coalition (S, k), the real number ω(S, k) represents the utility
payoff assessed for coalition S given the partition k in the game (N,ω). χ(ω)(S, k)
is the expected utility outcome associated with coalition S whenever k is the coali-
tion structure existing in the game (N,ω). Formally, a mapping become a set of
ordered pairs: χ ≡ {(ω, χ(ω)) : ω ∈ W}. Note that {({i}, [N ]) : i ∈ N} ⊆ E(N)
is the set of embedded coalitions comprising singletons and the finest partition.
Finally, let Π denotes the set of permutations of N , and given π ∈ Π, S ∈ N ,
k ∈ P(N), ω ∈ W , we define πk ∈ P(N) to be the set {(πS)S∈k} with πS the
image under π of S, and πω ∈ W is πω(πS, πk) = ω(S, k).

We assume the following standard axioms, extended for a PFF game:

Axiom 1 (Efficiency)2
∑

i∈N χ(ω)({i}, [N ]) = ω(N, {N}).
Axiom 2 (Symmetry) For all permutation π ∈ Π, χ(πω)({π(j)}, [N ]) =

χ(ω)({j}, [N ]).
Axiom 3 (Null-player) If j is a null-player in ω, then χ(ω)({j}, [N ]) = 0
Axiom 4 (Linearity)
(i) χ(ω + ω′)({j}, [N ]) = (χ(ω) + χ(ω′))({j}, [N ]),
(ii) for all λ ∈ R, χ(λω)({j}, [N ]) = λχ(ω)({j}, [N ]).

The Shapley value can be defined as follows:

Definition 1. The set {(ω, χ(ω)|{({i},[N ]):i∈N}) : ω ∈ W} is the Shapley value
if and only if ∀i ∈ N , and for all ω ∈ W ,

χ(ω)({i}, [N ]) =
∑

S⊆N

(|S| − 1)!(|N | − |S|)!
|N |! (v(S) − v(S \ {i})) (1)

where v is the correspondent element in V to ω.

The term (|S|−1)!(|N |−|S|)!
|N |! can be interpreted as the probability that in any per-

mutation, the members of S are ahead of a distinguished player i. The term
(v(S)− v(S \ {i}) gives the marginal contribution of player i to the worth of the
coalition S. The Shapley value gives the expected contribution of player i to the
worth of any coalition.

The generalized Shapley value for games in partition function form consider
the marginal contributions of the embedded coalitions, assuming that all players

2 The Efficiency axiom asserts that ω(N, {N}) = maxk∈P(N)

∑
S∈k χ(ω)(S, k), and

arising from superadditivity assumption (von Neumann and Morgenstern).
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outside this coalition act as singletons. Pham Do and al. show that the Shapley
value for PFFG, defined as the average of marginal vectors of the embedded coali-
tions (S, kS), is the only solution satisfying the four axioms. McQuillin defined
a Generalized Shapley Value as

χ(ω)(S, k) =
∑

T∈k

(|T | − 1)!(|k| − |T |)!
|k|! (v(

⋃

A∈T

A) − v(
⋃

A∈(T\{S})
A)

That is, for any partition coarser than [N ], only one member is the coalition
representative, and all other players are null-players. To each coalition is assigned
the payoff given to its representative in the game, which is thus created on the
representatives and null players.

3 Shapley Values for Features Contributions

Machine learning models can produce high accuracy predictions in many appli-
cations. The accuracy in prediction from such black box models, comes at the
cost of interpretability. To explain the prediction of a model using the Shap-
ley value method, it is necessary to reformulate a cooperative game with players
who correspond to the features and a payoff that fits the prediction. Given a pre-
dictive model, for each instance a vector of importance scores associated with
the underlying features is produced. Thus, the importance scores can act as an
explanation for the specific instance, indicating which features are fundamental
for the model to make its prediction.

The Shapley Value has been widely used for the interpretation of that mod-
els; i.e. the Shapley Value is an important part of stepwise selection of the fea-
tures, a modeling procedure in which features which increase the accuracy of a
model are successively added to the modeling set. Following Frye and al. [4], in the
machine learning models, let fy(x) represents a model’s predicted probability that
data point x belongs to class y. We can interpret the input features {x1, x2, ..., xn}
as players that cooperate to earn a value fy(x). To define the value function, v(S),
to represent the model’s action on a coalition xS ⊆ {x1, x2, ..., xn} of x′s features.
The features out of the coalition S are xS = {x1, x2, ..., xn} \ xS , and the value is

vfy(x)(S) = ·Ep(x′)[fy(xS 	 x′
S
)]

The average over permutations leads to Shapley value that explains the individ-
ual prediction fy(x). In the context of model explainability, the efficiency axiom
implies that the model’s output attribution is fully distributed over its input char-
acteristics; The null-player axiom (nonexistence) guarantees that if a feature is
completely disconnected from the model output, it receives a Shapley value of
zero; the symmetry axiom (consistency) requires that the attribution is equally
distributed over features that are identically informative of the model prediction;
finally the additivity can be interpreted as local accuracy of the model.

Shapley explanations are largely based on the value function vfy(x)(S). The
unconditional marginalization is problematic, since out-of-coalition features may
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not be compatible with in-coalition features. The risk is to ignore interactions
between features, which are likely to be very important in applications. Con-
structing embedded coalitions allows to assess feature compatibility by select-
ing the appropriate coalition structure, and a conditional value function can be
defined appropriately. A revised Shapley value of the conditional value function
can respect correlations in the data and it may attribute influence to features
with no interventional effect.

4 Conclusions and Further Research

The problem related to the distribution of a model’s prediction score for a specific
input to its underlying features, can be interpreted as the importance of the
feature for the prediction. In the main literature of the application of Shapley
values for feature selection emerges the necessity to quantify the importance of
random input variables to a function, see Owen and Prieur [9]. Using a PFFG, the
research has two objectives: first, by defining the weighted elementary marginal
contribution (w-emc) for each feauture, select only those attributes that have
explanatory value; second, construct an asymmetric Shapley value depending
on externalities effect that takes into account the subset size.

In non-additive model, the situational contribution of the value of one fea-
ture depends on the values of other features. This leads to considering the order
in which the features are added, and the Shapley values are obtained by aver-
aging the values of all possible orderings. The need to generalize the marginal
contributions to incorporate the effect of externalities emerges. We define a new
coalition structure that takes into account the dependence (externalities) effect
between features. Fryer and al. [3] first attempt to incorporate causality using
an asymmetric Shapley value. Asymmetric Shapley values provide a method
for incorporating causal knowledge into the model’s expectation explainability.
Furthermore, all features are assumed to have equal weight in the model expla-
nation. This forces Shapley values to uniformly distribute the importance of
features across identically informative features. For this porpouses, we define
the marginal contribution of i as a weighted average of all possible elementary
marginal contributions of i. All weights must be non-negative and must not
depend on the names of the agents (symmetry). Finally, for normalization, we
assume that their sum is equal to one for each embedded coalition. In this way,
the weights can be interpreted as the probability that a transfer of i from S to
another coalition will take place. Formally, we use the notion of weighted ele-
mentary marginal contribution (Skibski et al. [10]) in which we take into account
the new partition induced by the leaving agent.

Example 1 (Symmetric three players, superadditive and efficient game with pos-
itive externalities (Hafalir [5])). Let N = {1, 2, 3}. The values take into account
externalities effect:
v({i}; {{1}, {2}, {3}}) = 4 for all i = 1, 2, 3;
v({jk}; {{i}, {jk}) = 9 and v({i}; {{i}, {jk}) = 1
v(N, {N}) = 14
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There are six ordered permutations of N, consider π = (1, 2, 3). The marginal
contribution depends on the process by which agents leave the grand coalition
and merge into external coalitions. The externality-free value assumes that every
leaving player will form a singletone coalition, the w-emc vector is (5, 5, 4); The
McQuillin value assumes that every leaving player will join the (only) existing
coalition outside, the w-emc vector is (5, 8, 1).

A second problem with using Shapley value is being able to handle the com-
putational complexity that grows exponentially in the number of features, see
Aas et al. [1]. Some authors, Jullum et al. [7] and Harris et al. [6], suggest com-
puting Shapley values for groups of features defined with all the usual Shapley
properties. In Song et al. [11] authors use a semivalue, that indicates the relative
importance of a certain subset size. The research work will focus on replacing
the half-value with the PFF approach: this yields an asymmetric Shapley value
that depends on the effect of externalities.
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Abstract. Range Value at Risk (RVaR) is a two-parameter class of
quantile-based risk measures. It is the conditional expectation of the
loss when it lies between two values of VaR, for levels p and q, where
0 < p < q < 1. We describe some of the nonparametric estimators of
RVaR. Using Monte Carlo simulations, we compare the accuracy of these
estimators under certain conditions. Our simulations provide insight into
the effect of varying p and q with n on the performance of nonparametric
RVaR estimators, where n is the sample size.

Keywords: Range Value at Risk · Nonparametric estimation · Monte
Carlo simulations

1 Introduction

Risk management in financial institutions has been the focus of much interest
in many countries. From a quantitative perspective, the use of appropriate risk
measures is an important issue. The VaR and ES are the most common families
of risk measures in practise; both are utilised in modern financial and insurance
regulation. There has been a lot of discussion on the comparative advantages of
VaR and ES during the last few years; see Embrechts et al. [6] and Emmer et al.
[8] for comprehensive discussions. The one-parameter families of risk measures,
VaR and ES, are unified in a more general two-parameter family of risk measures,
called the Range-Value-at-Risk (RVaR). The family of RVaR was introduced in
Cont et al. [4] in the context of robustness properties of risk measures. More
importantly, RVaR can be seen as a bridge connecting VaR and ES. Embrechts
et al. [7] addressed the problem of risk sharing among agents using the RVaR
and Fissler and Ziegel [9] discussed about the elicitability of the RVaR. Much
like ES, it has been shown that RVaR is not elicitable. The author shows that a
triplet of RVaR with two VaR components at different levels is elicitable.

We do not find much literature regarding the estimation of RVaR. In this
paper, we define some of the nonparametric estimators of RVaR and compare
their finite sample performance. The advantage of the nonparametric approach
is that it does not require exact specification of the data generating process
and hence it is robust against mis-specification of the marginal distribution. We
compare the performance of nonparametric estimators of RVaR for varying p
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 109–114, 2022.
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and q, via Monte Carlo simulations. The paper is divided into four sections. In
Sect. 2, we describe five nonparametric RVaR estimators. In Sect. 3 using Monte
Carlo simulations, we compare the mean squared errors (MSE) of some of the
RVaR estimators for five different models. In Sect. 4 we report the findings.

1.1 Definitions

Let ψ be the set of real valued random variables. We consider a random variable
X as a loss of some portfolio. Let F be the distribution function of X, then
Qp(X) = inf{x : F (x) ≥ p}, 0 < p < 1 is the quantile function. For, 0 < p <
q < 1, the three risk measures V aRp, ESp and RV aRp,q are defined as

V aRp = inf{x ∈ R : F (x) ≥ p},

ESp =
1

1 − p

∫ 1

p

V aRudu, (1)

and
RV aRp,q =

1

q − p

∫ q

p

V aRudu. (2)

Note that from Eqs. (1) and (2), we get

RV aRp,q =
(1 − p)ESp − (1 − q)ESq

q − p
. (3)

2 Nonparametric Methods for Estimating RVaR

In this section we define the estimators of RVaR using Eq. (3). So we first define
the nonparametric estimators of ES and then we define the estimators of RVaR.
The non-parametric estimators of RVaR are defined in the following sections.

2.1 Empirical Estimator

Let F̂ denote the empirical distribution of the observed losses X1,X2, . . . , Xn

i.e.

F̂ (x) =
1

n

n∑
i=1

I(Xi ≤ x),

where I(·) is the indicator function and Xi is i.i.d with distribution F . By
standard results on empirical distribution (see Van Der Vaart [12]), the pth
quantile can be estimated by:

F̂−1(p) = X(i), p ∈
[
i − 1

n
,

i

n

)
,

where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics. The empirical
estimator of expected shortfall is defined as

Empp =

∑n
i=[np]+1 X(i)

n − [np]
,
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where [x] denotes the largest integer not greater than x. The empirical estimator
can be re-written as

Empp =

∑n
t=1 XtI(Xt ≥ q̂p)

[n(1 − p)] + 1
,

where q̂p = X([np]+1). Therefore the empirical estimator of RVaR is

Empp,q =
(1 − p)Empp − (1 − q)Empq

q − p
.

2.2 Brazauskas et al.’s Estimator

Let us recall that expected shortfall is defined as

ESp =
1

1 − p

∫ 1

p

Qudu.

Brazauskas et al. [3] defined an empirical estimator of ESp as follows

ÊSp =
1

1 − p

∫ 1

p

F̂ −1(u)du.

Then the estimator of RVaR following Brazauskas et al. [3] can be written as

R̂V aRp,q =
(1 − p)ÊSp − (1 − q)ÊSq

q − p
.

2.3 Kernel Estimator

If we use kernel distribution function instead of empirical distribution function in
the Brazauskas et al.’s estimator, then we can call it as a kernel estimator. For a
given kernel function K, if Fn,b(x) = 1

n

∑n
i=1 K

(
x−Xi

b

)
is the kernel distribution

function and F−1
n,b is its quantile function, then we can write (Biswas and Sen [2])

Kerp =
1

1 − p

∫ 1

p

F −1
n,b(u)du.

Fn,b is estimated by using the plug-in bandwidth proposed by Altman and Leger
[1] defined as

hAL =
(1/4V̂

B̂

)1/3

n−1/3,

where

V̂ = �(k)
1

n(n − 1)

n∑
i=1

n∑
j=1,j �=i

1

α
k
(xi − xj

α

)
,

and B̂ = 0.25D̂(F )(μ2(k))2, where �(k) = 2
∫ +∞

−∞ xk(x)K(x)dx, μ2(k) =∫ +∞
−∞ x2k(x)dx and

D̂(F ) =
1

n3α4
b

n∑
i=1

n∑
j=1

n∑
l=1

k′
b

(xi − xj

αb

)
k′

b

(xi − xl

αb

)
.
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k′
b is the derivative of a kernel function kb (not necessarily equal to k). In practice

αb = α and kb = k. If we use the kernel function as Epanechnikov kernel,
[1] proved that an optimal choice is made by taking α = n−0.3σ̂(xi), where
σ̂(xi) = min

{
ŝ, Q3−Q1

1.349

}
, with ŝ the sample standard deviation, and Q1, Q3

denote the first and third quartile respectively. We have estimated hAL using
the ALbw function in kerdiest package in R software. Then the kernel based
estimator of RVaR can be written as

Kerp,q =
(1 − p)Kerp − (1 − q)Kerq

q − p
.

2.4 Yamai and Yoshiba’s Estimator

Yamai and Yoshiba [13] defined the following estimator of ESp

ESp,β =
1

n(β − p)

nβ∑
i=[np]

X(i),

where β is a positive constant such that X(1) < X(2) < .... < X([np]) < .... <
X([nβ]) < .... < X(n). The empirical estimator Empp is similar to the above
estimator for β = 1. If 1−p → 0 as n → ∞, we may use β = 1−rn in the Yamai
and Yoshiba’s estimator ESp,β , where rn converges to zero at a faster rate than
1 − p as n → ∞. We use nrn = max{1, 0.25(n(1 − p))2/3/(ln(n(1 − p) + 1))2ι},
ι = 10−10. This choice is motivated by the choice of kn in Hill’s estimator [10].
The estimator of RVaR is given as

RV aRp,q,β =
(1 − p)ESp,β − (1 − q)ESp,β

q − p
.

2.5 Filtered Historical Method

In this method a suitable time series model, such as an ARMA or a GARCH,
is fitted to the asset return data. We fit a GARCH(1,1) model. Let êi, i =
1, 2, . . . , n, denote the residuals of the fitted model. Then the filtered historical
estimator of expected shortfall (Magadia [11]) is given by

FHp =

∑
ηt>q ηt∑

ηt>q I(ηt > q)
,

where ηt = êt − 1
n

∑n
t=1 êt and q = η([pn]+1) is the ([pn] + 1)th order statistic of

{η1, . . . , ηn}. The estimator of RVaR is

FHp,q =
(1 − p)FHp − (1 − q)FHp

q − p
.
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3 Simulation

In order to compare the behaviour of different estimators in finite samples, we
compute the mean squared error (MSE) of the estimators by simulating obser-
vations from several models. We consider three models.

(i) {Xi}i=1,2,··· is an i.i.d. process, marginal distribution GPD with ξ = 1/3.

(ii) {Xi}i=1,2,··· is an i.i.d. process, marginal distribution Student’s-t with 4 df.

(iii) {Xi}i=1,2,··· is an i.i.d. process, marginal distribution N(0,1).

To study the effect of dependence on the above mentioned RVaR estimators
we consider the following ARMA (1,1) models in Drees [5]

Xi − φXi−1 = Zi + θZi−1,

(iv) φ = 0.95, θ = −0.6,

(v) φ = 0.95, θ = −0.9.

We use Monte Carlo (MC) simulation to approximate the MSE of each of
these estimators. We have considered sample sizes n = 30, 100, 250, 500, 1000
and (p, q) to be (0.95, 0.97), (0.97, 0.99), and (0.99, 0.999). From each of the
above models (i) − (v) and for each combination of (n, p, q) we draw 1000
MC samples of size n. From each of these samples compute the values of the
five estimators of RV aRp,q for various values of (p, q). From these values we
compute the MC estimate of the MSE of that estimator for different choices of
(n, p, q) and the underlying model. MSE1 denotes the mean squared error of
Empp,q, MSE2 for R̂V aRp,q, MSE3 for Kerp,q, MSE4 for RV aRp,q,β and MSE5
for FHp,q. In the next section we report the findings.

4 Findings

Following are the observations.

1. No estimator uniformly outperforms the other estimators. However we can
identify some conditions under which some of these estimators performs well.

2. For 100 ≤ n ≤ 500 and (0.99, 0.999) the estimator R̂V aRp,q outperform
all the estimators for GPD and for n ≤ 500 and (0.99, 0.999) the estimator
R̂V aRp,q outperform the empirical estimator Empp,q for Normal and Stu-
dent’s t. We also observe that for all choices of (n, p, q) the estimator FHp,q

outperform Empp,q for Normal and Student’s.
3. For GPD Empp,q and R̂V aRp,q are best except (30, 0.95, 0.97) case where

RV aRp,q,β is best. For Normal R̂V aRp,q and FHp,q are best except for (30,
0.99, 0.999) case where Kerp,q is best. For t, R̂V aRp,q and FHp,q are best
except for (1000, 0.99, 0.999) case where Empp,q is best.

4. For the ARMA models the estimators R̂V aRp,q, FHp,q and Kerp,q seems to
be more accurate than Empp,q for all choices of (n, p, q). FHp,q is almost
always best except a few cases where Kerp,q is better, but even in those cases
the difference is small.
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Notes and Comments. The above observations suggest that estimators R̂V aRp,q

and FHp,q are preferable choices for estimation of RVaR for n ≤ 500 and (0.99,
0.999) for all the i.i.d. models. For Normal and Student’s t we can consider
FHp,q for other choices of (p, q) and large n. If the data are generated by
ARMA model then FHp,q and Kerp,q seems to perform well for all the choices
of (n, p, q) considered in our study.
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Abstract. An increase in pension age is one of the most common
reforms to restore the financial sustainability of the pension scheme.
However, this measure might damage individuals from lower socio-
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1 Introduction

The decline in fertility rates, the increase in longevity and the current forecasts
for the ageing of the baby boom generation, all point to a substantial increase in
the age dependency ratio, and this will raise serious concerns for the sustainabil-
ity of Pay-As-You-Go (PAYG) pension schemes. This is a worldwide problem,
and consequently, many countries have already carried out some parametric
reform, or even structural reforms, of their pension systems [1].

The most common measure to improve the financial sustainability is to
strengthen the incentives to work, thereby enlarging the total contribution base
of the system. This can be done through i) increases in the statutory retirement
age; ii) tightening of early retirement provisions; iii) higher financial incentives
to delay the retirement age; and iv) greater possibilities to combine work and
pensions. In practice, on average across all OECD countries, the retirement age
of those workers entering the labour market in 2020 is expected to increase from
64 to 66.1 years by the 2060s [1]. This partly explains the generalised increase
in the effective retirement age observed in recent years.
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However, increasing the effective retirement age, although desirable consid-
ering the system’s financial sustainability, has some unintended consequences. It
contributes to enlarge income disparities among pensioners with the pensions of
low-income individuals relative to that of high-income retirees falling by 12% on
average for OECD countries [2]. This fact is particularly acute given that since
the 1980s we are in a context of growing inequality, with no prospect of this
trend to be reversed soon [3].

The impact of the increase in retirement age on pensioners’ inequality
is mainly due to the heterogeneity in life expectancy of the socio-economic
classes—normally assessed through income, education, or occupation. A close
link between level of education and mortality has been well documented (see [4]
and [5]). The evidence suggests that the mortality rates are negatively correlated
with social-economic status (i.e., individuals with higher socio-economic status
live longer than those belonging to lower socio-economic groups and the size of
mortality differences across subgroups has increased over time).1 However, the
net effect of income redistribution between subpopulations considering both gen-
der and socio-economic status is not clear for some subgroups, such as females
with low socio-economic status or men from a high socio-economic class.

Far from being anecdotal evidence, the gap in life expectancy in the US
between the richest 1% and poorest 1% reaches 14.6 years among men and
10.1 years among women [6]. Although narrower, it is a generally growing phe-
nomenon that can also be extrapolated to other economies [2]. For this reason,
increases in the retirement age - so popular among the reforms carried out so
far - in practice generate a Matthew effect by implicitly taxing (subsidizing)
people with a low (high) income level [7]. The magnitude of this implicit tax on
the poorest is estimated, for instance, in the case of the US and Germany, to
be as high as 21.9% and 12.3% for the lower part of the income distribution,
respectively [8]. Consequently, and due to the magnitude of the issue, “limit(ing)
the impact of socio-economic differences in life expectancy on pension benefits”
appears as one of the key recommendations of the OECD report (2017).

2 Objective

This paper aims to analyse to what extent a fixed reference career duration
instead of a reference retirement age acts as an automatic balancing mechanism
that contributes to strength the actuarial fairness/equity in the current pub-
lic pension schemes and mitigate the inequality among different socio-economic
groups.

The reasoning behind the proposal is as follows. Low-skilled workers, since
they generally spend less time on studying, are the first to enter the labour
market and are also the ones who perform the most arduous jobs. This is, in
turn, correlated with their life expectancy, as empirically observed. Therefore,
1 Queisser and Whitehouse (2006) and Ayuso et al. (2016, 2017) provide comprehen-

sive reviews of mortality differentials across socio-economic groups and the implica-
tions of heterogeneity for pension reform and design.
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in the case of early retirement, since they have a shorter life expectancy, the
pay-out period is longer than for those high-skilled individuals with higher life
expectancy, on average. The opposite would be true for high-skilled workers.
By investing more time in education attainment, the individuals would join the
labour market later and, thus, receive their pension at a later date. This delay
in retirement would be potentially compensated by a longer life expectancy.

If the pension system establishes a fixed reference career duration the desired
outcome of a pension system in terms of equity would be strengthened by nar-
rowing the relationship between contributions paid and benefits expected to
be received. Moreover, the proposed scheme would be “simple, operational and
transparent”, as Ayuso et al. (2016) suggest, while at the same time would pro-
mote another desirable property, such as flexibility [9].

In the remainder of this paper, we first define the term actuarial fairness in
pension systems. In Sect. 4, we describe the data we use while Sect. 5 focuses
on policy implications.

3 Actuarial Fairness

A pension scheme is viewed as actuarially fair (or equitable) if for all individuals
the (expected) present value of lifetime contributions is equal to the (expected)
present value of pension benefits. Any difference between these two present values
is defined as an income redistribution towards or away from the individual [10].

The measurement of the lifetime redistribution from an individual’s perspec-
tive can be investigated through the ratio between the present value of bene-
fits paid during the retirement and the contributions paid during their working
career (see [11–13] and [14]). Thus, the ratio shows how much the benefit system
returns to the participant for each euro paid.

A value of one indicates that the system is actuarially fair for an individual
(i.e., she received pension benefits which correspond to her contributions)—by
definition, there is no redistribution towards or away from any person [15]. A
value greater (lower) than one indicates that an individual receives more (less)
than she has been contributing-an individual faces an expected gain (loss) from
the pension system.

4 Data

The continuous sample of working lives (CSWL) was first released in 2004 and
has been renewed annually since then. It is composed of a random sample of
4% of the total population (approximately 1.2 million people) who had some
relationship with the Spanish Social Security during the reference year, either as
workers, unemployed or pension beneficiaries. For each individual, longitudinal
administrative information is extracted with their social security, income tax and
census records. In case an individual ceases to have a relationship with the Social
Security or is deceased, he or she is replaced by another individual, drawn at
random. Otherwise, he/she will continue to be part of the sample in the following
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reference years. Due to these characteristics, it is an exceptionally rich database,
widely used by the scientific community (e.g., [16,17] and [18]). As far as this
paper is concerned, it allows us to estimate individuals’ life expectancies [19],
their length of working life [20] and relationships between the level of educational
attainment and the type of work carried out by the individual [21]. Hence, this
dataset is optimal for the objectives of this paper.

As shown in Fig. 1 the difference in the labour entry age between individuals
with primary studies and those with university studies ranges between 1.5 and
4.75 years. Although the gap reaches its lowest value in 2007, since then it has
been growing over time. This could be due to the use of education as a “refuge”
from the labor market, which, in the case of Spain, is especially precarious for
young people [21].
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Fig. 1. Entry age (median) by educational attainment level in Spain for the period
1984–2019. Own source based on CSWL.

5 Policy Implications

Ageing populations have put existing retirement systems under significant strain.
Raising the retirement age is one of the most common reforms to increase pen-
sion revenue. However, this measure might damage individuals from lower socio-
economic groups who, on average, have shorter life expectancies. Research is
needed to consider both the type of work and the length of the contributory
period of the individuals so that there is a closer relationship between the con-
tributions and pensions.
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Although the evaluation of the redistribution effects on the pension system
has attracted wide attention, in this paper, for the very first time according to the
authors’ knowledge, we study the effects of fixing a career duration on actuarial
fairness. This could be an alternative reform to be taken by governments, easy to
understand by individuals and at the same time could improve the equity among
the participants of the system. Moreover, this measure seeks not to damage
individuals from lower socio-economic groups moving away from the traditional
and unpopular increase of retirement age.
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Abstract. The aim of this work concerns the problem of comparing
groups of time series, in particular financial time series. Some empiri-
cal studies have been published on the topic. However, there is a lack
of literature about valid statistical inferential approaches regarding the
comparison between groups. In particular, we focus on a two-sample test-
ing problem with the goal of comparing two different groups of financial
titles in a given time period. The dataset consists in the time series of the
financial returns of the two groups of titles. The problem can be defined
as a multivariate test on central tendency and the proposed solution is
based on the methodology of combined permutation tests. The applica-
tion presented in this study concerns the comparative evaluation of the
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1 Introduction

A portfolio is defined, in financial language, as a set of assets that can include
both real assets and financial instruments. It is possible to calculate the expected
return and risk of a portfolio given characteristics and weights of the single
assets. If Ri represents the return of the i-th title of the portfolio and RP the
performance of the portfolio, then the expected return of the portfolio can be
written as

E(RP ) =
n∑

i=1

wiE(Ri) (1)

and its standard deviation is

σP =

√√√√
n∑

i=1

w2
i σ2

i +
n∑

i=1

n∑

j=1j �=i

wiwjσiσjρij (2)

where σi represents the standard deviation of the return of i-th title and ρij the
Pearson correlation index of the returns of the i-th and the j-th title. The weight
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of each individual title in the previous formulas usually refers to the proportion
of the value of that asset to the total value of the portfolio. Since the evaluation
of the weights’ effect is not a goal of our study, from now on we will consider the
case of equal weights.

Hence, in order to compare the financial performance of two different groups
of financial titles, a reasonable choice seems to be a two-sample test on location
using data of a given time period. The dataset consists in the time series of the
financial returns of the two groups of titles. The problem can be defined as a
multivariate test on central tendency where the mean returns of the two groups
are compared for each of the time points in the considered time period. The
motivating example in this study concerns the comparative evaluation of the
financial performance of ESG titles.

The acronym ESG stands for Environmental, Social, Governance and is used
in economic/financial field to indicate all those activities related to responsi-
ble investment (RI) that pursue the typical objectives of financial management
taking into consideration environmental, social and governance aspects.

In the literature, many works agrees that ESG investing has become the focus
of many investors as more and more research shows that it has implications for
both risk and return. ESG-related investments now account for approximately
26% of all professionally managed businesses and it is now known that ESG is
a shortcut to environmental, social and governance metrics.

For example [1] discuss some of the models for integrating ESG into equity
portfolios and argue that integrating ESG stocks has important potential benefits
for investors. In favor of sustainable investments, we find a further study [6] which
examines the impact of companies’ environmental, social and governance (ESG)
initiatives on financial performance. Also in favor of these investments we find
[4,5] who believe that the integration of ESG stocks into a portfolio has the
potential to improve the valuation of the portfolio.

A recent contribution argues that it is necessary carrying out further studies
on this topic, because the relationship between ESG score and brand value, while
positive, has not always been constant over time (see [3]). Therefore, the need
of further investigations, in order to strengthen the results obtained so far, is
evident.

Section 2 focuses on the presentation of the statistical problem, followed
by the description of the methodological proposal (Sect. 3). The results of the
application of the proposed method to a case study are reported in Sect. 4.
Section 5 includes concluding remarks.

2 Statistical Problem

The analysis of different time series may consist of methods used for predicting
future values based on observed time series, or direct comparison between dif-
ferent time series. A descriptive method for comparing time series can be based
on a similarity measure, which includes metric and non-metric methods.



Nonparametric Test for Financial Time Series Comparisons 123

However, the use of metrics is not always possible. In any case, the appli-
cation of these methods directly to the original time series is computationally
complex (especially within a cluster analysis) and therefore shorter representa-
tions are often created and the distance between pairs of time series approxima-
tions is estimated [12]. The existing approaches are not applicable when the two
dynamic models have a different number of component variables. In this case,
the only method is to establish the average behavior of each model and then
compare the two univariate average time series but this approach may be useless
or inappropriate for some applications [10]. Several methods have been proposed
to calculate the distance between univariate time series. Some of the most used
are Euclidean distance, Manhattan distance, Dynamic Time Warping (DTW)
and Longest Common Subsequence (LCSS). [11] propose a new method: the
semi-metric time series (Semi Metric Ensemble Time Series or SMETS), which
is able to compare multivariate time series of arbitrary size. The method also
takes into account the differences attributable to univariate unmatched compo-
nents when one of the two time series has a higher dimensionality than the other
but it is computationally complex.

We focus on the testing problem where the central tendency of the distri-
bution of two different groups of financial titles is compared with respect to a
time series with T time points. We consider observational data of the returns of
two samples of titles: group 1 and group 2. The general problem can be broken
down into T partial problems, one for each time point t, with t = 1, 2, . . . , T .
Hence, we have T partial null hypotheses H01, . . . , H0T and T partial alternative
hypotheses H11, . . . , H1T and the overall problem can be defined as

H0 :
T⋂

t=1

H0t H1 :
T⋃

t=1

H1t. (3)

We would like to compare the performances of ESG titles with non-ESG titles
for each time point of the series with T time points. Let Rkt be the financial
performance (return) of the titles of the k-th group at time t, with k = 1, 2. The
hypothesis of the testing problem can be written as follows:

H0 :
T⋂

t=1

(
R1t

d= R2t

)
H1 :

T⋃

t=1

(
R1t

d
> R2t

)
. (4)

In our application, k = 1 corresponds to ESG titles and k = 2 to non-ESG titles,
hence we want to test the hypothesis that, for at least one time point t, the
former have a better performance than the latter.

3 Methodological Solution

The proposed solution concerns the application of a combined permutation test
[8]. This family of nonparametric methods is suitable when the problem can be
broken down into q sub-problems or partial tests. Hence, we have q partial null
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hypotheses H01, . . . , H0q and q partial alternative hypotheses H11, . . . , H1q and
the overall problem can be defined as

H0 :
q⋂

i=1

H0i H1 :
q⋃

i=1

H1i (5)

Basically, it is a multiple test where each sub-problem consists in testing the null
hypothesis H0i versus the alternative hypothesis H1i.

Permutation methods can be used, provided that mean and variance of
the populations are assumed to be finite and exchangeability under the null
hypothesis holds [7]. Permutation methods are preferable to parametric solutions
when the underlying distribution is unknown or cannot be assumed accord-
ing to asymptotic theories (hence especially for small samples). Moreover the
dependence between the test statistics of the partial problems does not need be
explicitly modeled, as in the likelihood approach or other parametric methods.
In particular, with the combined permutation tests, the dependence structure is
implicitly taken into account by permuting the rows of the dataset and the appli-
cation of a suitable combining function Ψ . The sufficient statistic of permutation
tests is represented by the observed dataset.

Whether variance or moments of the two distributions of returns are constant
or not over time does not affect the application of the permutation multiple test.
Therefore the method can also be applied in case of non-stationary behavior.
Autocorrelation or other types of dependence over time are not an obstacle to the
application of the test because the procedure implicitly take the dependence into
account. The only important condition is exchangeability of the statistical units,
the financial titles in our problem, under H0 (satisfied in the null hypothesis
under study) [2,8].

Without loss of generality, we can assume that the null (partial and overall)
hypotheses are rejected for large values of the test statistics. Let Li(t) = P (Ti ≥
t|X) denote the significance level function of the i-th partial test, Ti the test
statistic of the i-th partial test and ti a given value taken by Ti. The (univariate)
combined test statistic is TΨ = Ψ(l1, . . . , lk) where li = Li(ti). Ψ must be non-
increasing function of the arguments and satisfy mild conditions such as: it tends
to its supremum (possibly not finite) when one argument tends to zero and,
∀α ∈ (0, 1), the critical value of TΨ is assumed to be finite and strictly less than
the supremum. For the problem under study we used for the test statistics the
sum of values in sample 1 (permutationally equivalent to the sample mean of
sample 1 and the difference of the sample means of sample 1 and sample 2).
Formally

Ti =
n1∑

u=1

R1iu (6)

where R1iu represents the return of the u-th title in sample 1 at time i.
When the length T of the time series tends to infinity (keeping the sample

sizes fixed) the test is consistent. In fact, adding new partial tests (i.e. time
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points) under H1, determines an increase in the test power and when T diverges
the power tends to one.

We will apply to our case study three main combination functions: Fisher,
Liptak and Tippett (see [2]).

4 Case Study

The data used for the analysis were downloaded from the Yahoo Finance site
considering a five-year period. All the securities in the S&P 500 list [9] were
searched. ESG titles were differentiated from non-ESG titles and daily time
series of each of them were downloaded. At the end of the data collection we
obtained 453 companies divided into 139 non-ESG and 314 ESG and 1258 daily
dates in which each company had a closing return value.

With the methodology explained in Sect. 3, a combined permutation test
was applied to test whether ESG titles have a higher performance than non-
ESG titles over time.

A significance level α equal to 0.05 was set and the p-values of the test were
calculated.

In conclusion, all three mentioned combined tests were applied and no p-
value was less than the significance level α (0.05). In general we obtain very
high p-values, as can be seen in Table 1. This means that there is no significant

Table 1. Overall p-values

Fisher Liptak Tippett

p-value 0.8241758 0.8191808 0.8441558

difference in performance between the two types of titles. The empirical findings
in our study do not confirm the thesis that ESG investments are financially
convenient over time, as reported by some authors in the literature of financial
economics. According to the comparison of the two samples of financial time
series, there is not empirical evidence in favor of this hypothesis.

5 Concluding Remarks

The goal of this study is to compare the trajectories over time of the central
tendencies of two populations, in particular in the case of financial time series.

In the empirical literature on time series, there is a lack of contributions on
comparing time series for inferential purposes. The few existing works adopt
approaches that are not efficient, computational convenient or suitable for tests
of hypotheses.
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We propose the application of a procedure based on a combined permutation
test. This method is very useful for solving complex problems, especially mul-
tivariate problems or problems in which a multivariate statistical test might be
suitable. The main advantage, over other standard parametric methods, is that
it is powerful, flexible because distribution-free, and satisfy important properties
such as unbiasedness and consistency.

The application of the test to a sample concerning ESG and non-ESG titles
does not bring to empirical evidence in favor of the hypothesis that ESG titles
performance is greater than that of non-ESG titles.
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Abstract. Weather Resilience against adverse meteorological events
became a big issue in several sectors of the economic system. Innova-
tive tools can complement traditional strategies and speed up recovery.
In the insurance industry, the parametric coverages based on the use of
the bioclimatic parameters correlated to the client’s loss, represent an
interesting and alternative risk solutions. Nevertheless, the risk that the
index is measured with spatial distance to production location, i.e. the
basis risk, can hinder the market diffusion process. The real time data
collected by satellites can mitigate the basis risk and combined with
main features of the Agribusiness in the personal parametric weather
insurance lead to an adequate risk management.

Keywords: Weather insurance · Parametric insurance · Satellite data

1 Introduction

The climate changes represent one of the big issue of the Planet affecting several
sectors of the economic system. Agricultural production depends on the weather
more than any other sector, so that the extreme and not extreme adverse meteo-
rological events cause a lot of concerns to achieve an accurate risk management.
The pressing need to create tools to increase climate resilience encouraged the
insurance industry to design new solutions, particularly revolved to measurable
index and based on predefined triggers or pay out mechanisms without neces-
sarily the connection to the occurrence of a physical damage.

In the weather coverage field, classical strategies are characterized by insur-
ance product or derivative-based product. The two instruments feature differ-
ent regulatory, accounting, tax, and legal issues, the risk transfer characteris-
tics and benefits are similar. In particular, the insurance business traditionally
provides Indemnity-Based Insurance, that consists in the payment of a prede-
termined insured amount, which can be agreed or based on insured’s historical
returns. Conversely, the Index-based Insurance is composed by the payment of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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an indemnity on the basis of a realized average yield related to an area or a
specific weather index. Nevertheless, even if the index-based schemes remove the
problems of moral hazard and adverse selection, the risk that occurs if index is
measured with spatial distance to production location, i.e. basis risk, can signif-
icantly affects this kind of policy [2,3]. Because no field loss assessment is made
under index insurance, the payout is based entirely on the index measurement
and may be either higher or lower than the actual loss [6]. As the climate-related
weather risks become increasingly complex, the requests for innovative products
increased. In this context, the parametric weather insurance can be designed
to cover both specific catastrophic losses and frequency losses. In the paper,
we propose an innovative scheme of the parametric weather insurance, we called
Personal Parametric Weather Insurance (PPWI), where the bioclimatic indicator
depends on the satellite data, collected by the weather stations and processed by
machine learning technique. Improved data and models enable parametric cover
as an increasingly efficient, affordable and viable option in the market.

The layout of the paper is the following. Section 2 introduces the complexity
of the satellite data to be processed in order to obtain an accurate information
about risky days in the agribusiness. Section 3 propose the model. In Sect. 4 we
provides the main findings.

2 Methodology and Satellite Data

Bioclimatic risk indexes using satellite data are obtained by a data pre-processing
procedure to transform data from a storage format to a matrix. In this sense,
we refer to two sources of data: the NASA MERRA-2 database and the Harmo-
nized World soil database (HWSD), both collecting the data in raster format. It
is therefore necessary to transform the raster data into a row by column matrix.
Before transforming the dataset it was necessary to automate the NASA data
download procedure, following [4], since each dataset contained daily data and
the time interval considered is from 1980/01/01 to 2020/08/30, totaling 14’854
daily datasets. Afterwards, pixels will be further refined by selecting only those
containing mainland, with the support of HWSD. MERRA-2 database is struc-
tured in such a way as to have a series of daily or intraday datasets, each of
which detects weather variables regarding a specific topic. For our application,
the Single-Level Diagnostics (M2SDNXSLV version 5.12.4) dataset is used [1].

3 Personalised Parametric Weather Insurance

Weather risk index is used to define two index insurance strategies. Type I
covers both extreme and non-extreme weather conditions and Type II covers
only extreme weather conditions [5]. Let I the weather index, K the realized
yield, w and w the extreme and non-extreme event thresholds, with, w > w and
μ1 and μ2 the expected yield associated to non-extreme and extreme events,
with μ1 < μ2:
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γI
t =

⎧
⎨

⎩

μ2 − K if I ≥ w
μ1 − K if w ≤ I < w

0 otherwise
(1)

γII
t =

{
μ2 − K if I ≥ w

0 otherwise
(2)

Once defined γI
t and γII

t , we synthesize the financial payoff function γ as
follows:

γ = max {μi − K, 0}, i = 1, 2 (3)

Since the payoff function depends on the insurance layer, we define:

η = min {max {μi − K, 0}, w − w} , i = 1, 2 (4)

From Eq. 4 we compute the fair premium at time zero as follows:

π0 = e−rT
E[η] (5)

where r is the risk free rate and T the time interval.

4 Numerical Application

The insurance contract we propose aims at saving the maize crop against one of
the main risk affecting the agribusiness, i.e. the risk of dry conditions. The table
ratings are related to the hectare, basing on the variable soil type expressed by
the following modalities: A: acidic; B: neutral; C: saturated. The soil type (A,
B or C) is detected according to the information provided by the geographic
coordinate system on the corresponding pixel. Based on the soil type, the pure
price of the contract is quoted according to the fair premium due to the expected
loss of the insurer at time t, Lt and the θ being the safety loading that is
the double value of the cost of capital rate CoC, assuming that the insurance
company follows a risk capital framework principle with a minimum solvency
ratio of 200%:

E [Lt] + θ (6)

where CoC represents the 6% of the difference between the 99.5% quantile
V aR99.5%(LT ) and the expected cash outflow. We assume a expenses loading
rate of 20%, being Pt = PurePremium

1−20% . It is noteworthy that parametric policies
can offer many benefits, such as the decreasing of the premium rate due to the
event that triggers the payout and the mechanism used for payouts determine
what will be paid to the customers a clearer predetermined amount, instead of
the traditional solutions, where a claims adjuster needs to assess and determine
damages. For sake of clarity, as the soil type changes, the premium rates varies
as the specific probability distribution of the indemnity. The policy is designed
and adapted to customer specific needs, those are reflected on the quantiles of
the following bioclimatic indicators:
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1. the number of days without rainfall (IP):
– No adverse events: IP < 175;
– Non-extreme adverse event: 175 ≤ IP < 200;
– Extreme adverse event: IP ≥ 200.

2. the number of days with dry conditions (IH):
– No adverse events: IH < 35;
– Non-extreme adverse event: 35 ≤ IH < 50;
– Extreme adverse event: IH ≥ 50.

Table 1 shows the joint probabilities of the variables IP, IH and the corre-
sponding indemnity percentages of the insured crop value.

Table 1. Analysis of the joint probability of the reimbursement, i.e. the indemnity
received by the policyholder

Probability of the reimbursement

Soil Type A
IP < 175 175 ≤ IP < 200 IP ≥ 200

IH < 35 31.67% 13.33% 2.50%

35 ≤ IH < 50 5.83% 12.50% 10.83%

IH ≥ 50 0.83% 7.50% 15.00%

Soil Type B
IP < 175 175 ≤ IP < 200 IP ≥ 200

IH < 35 0% 0% 33.33%

35 ≤ IH < 50 0% 22.22% 10.11%

IH ≥ 50 0% 33.33% 1.00%

Soil Type C
IP < 175 175 ≤ IP < 200 IP ≥ 200

IH < 35 10.82% 13.16% 7.60%

35 ≤ IH < 50 2.34% 6.73% 8.19%

IH ≥ 50 0.29% 11.70% 39.18%

In Table 1 we can observe that for the soil type A there is a greater proba-
bility of absence of adverse event for precipitation deficit indicator with respect
the others, while for the soil type B the probability of extreme or non-extreme
adverse event for precipitation deficit indicator is very high, associated to non-
extreme or absence of precipitation deficit. On the contrary, for the soil type C
there is a great probability of a joint extreme event. It can also be noted that
the event of no rainfall deficit has a very low probability when associated with
high temperatures for all the soil type considered. In any case, despite the fact
that the Italian territory has some characteristics in common, the type of soil
can help to define more accurately which are the critical events to be taken into
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consideration. The value of the crop and the geographic coordinate system on
the corresponding pixel determine the policy quotation. The insurance coverage
offered to an hypothetic agro Consortium by assuming 120 HA of the soil type
A, 9 HA of B, 341 HA of C, the value per hectare of the crop of Euros being
5,000 can be estimated by the Table 2:

Table 2. Valuations for the Premium of the whole Agribusiness Consortium

Premium 1,390,307

Business insured value 2,350,000

Total capital requirement 1,087,890

Fair premium 1,231,954

Pure premium 1,362,501

Expected profit 130,547

CoC 65,273

RORAC 6.00%

Cost per hectare 2,958

Rate premium 59.2%

According to the estimation, the amount of the premium paid to the Consor-
tium will consist in Euros 1,390,307. In case of the drought, the indemnity will
change according from 0 to Euros 2,350,000. The Solvency Capital Requirement
for the premium risk amounts to Euros 1.087.890 with a corresponding cost of
capital equal to Euros 65,273, where the expected profit is Euros 130,547, the
RORAC being 6%. On the basis of the defined policy, the reimbursement is
defined according to the soil type in Table 3, where we can observe that the
soil type determines the percentages of reimbursement. Considering that in case
of absence of adverse events there is no reimbursement, while in case of both
extreme events the reimbursement is total for all types of soil, for soil A the
reimbursement rate is higher in cases of an extreme high temperature event,
associated with both the absence of a rainfall deficit and a non-extreme rain-
fall deficit, while for soil B the greater reimbursement relates the occurrence
of an extreme event and a non-extreme event at the same time and for soil C
the reimbursement rate is higher in cases of an extreme rainfall deficit, associ-
ated with both the absence of a high temperature event and a non-extreme high
temperature event.
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Table 3. Percentage of the reimbursement of the insured value of the crop based on
the joint analysis

Percentage of reimbursement of the insured value of the crop

Soil type A
IP < 175 175 ≤ IP < 200 IP ≥ 200

IC < 35 0% 10% 40%

35 ≤ IC < 50 20% 30% 60%

IC ≥ 50 60% 70% 100%

Soil type B
IP < 175 175 ≤ IP < 200 IP ≥ 200

IC < 35 0% 20% 50%

35 ≤ IC < 50 20% 40% 70%

IC ≥ 50 50% 70% 100%

Soil type C
IP < 175 175 ≤ IP < 200 IP ≥ 200

IC < 35 0% 10% 90%

35 ≤ IC < 50 5% 15% 95%

IC ≥ 50 10% 20% 100%

5 Concluding Remarks

As the climate-related weather risks become increasingly complex, the requests
for innovative products increased. In this context, the parametric weather insur-
ance can be designed to cover both specific catastrophic losses and frequency
losses and to complement traditional strategies. In this paper, we propose an
innovative scheme of the parametric weather insurance, we called Personal Para-
metric Weather Insurance (PPWI), where the bioclimatic indicator depends on
the satellite data, collected by the weather stations and processed by machine
learning technique and combined with specific features of the agribusiness, par-
ticularly related to the soil type
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Abstract. With the increasing availability of temporal data, researchers
often analyze information stored in matrices, in which entries are repli-
cated on different occasions. Such multidimensional data can be stored
in 3-way arrays or tensors to be analyzed. A collection of 3-way arrays
can also be available leading to 4-way arrays. In this work, we apply
a tensor-based method, the Tucker4, to mortality data provided by the
World Health Organization, referred to 4 dimensions (causes of death,
age groups, years, and countries) and organized in a 4-way array. We
carry out the analysis on the total population. Our findings reveal some
peculiar aspects of the mortality phenomenon.

1 Introduction

The core of this paper is the application of multi-way models to causes of death
mortality data. The area of mortality by cause includes the impact of specific
causes of death on historical mortality trends, the use of “by cause” information
in mortality projections, the availability and use of data suitable for under-
writing, pricing, and analysis of life assurance and pensions products [8]. The
twentieth century witnessed longevity improvements in many high-income coun-
tries. These improvements were determined especially by the reduction in a few
specific major causes of death groups. In parallel with the growing interest in
the topic of mortality, there has also been a development of statistical method-
ologies to analyse the mortality data, such as multi-way methods, although they
were applied to mortality only more recently. In fact, the first attempts of using
these models concern three dimensions [4], and the analysis of the cause-of-death
mortality data [1,3,9]. A recent review of these methods is in [2]. [9] proposes a
three-way extension of the Lee-Carter [5] model by considering death rates aggre-
gated over time, age-groups and country. [1] generalizes the model used in [9]
using different tensor decompositions and addresses the forecasting problem of
multi-population mortality. Following this line of research, focusing on the cause
of death rate, we analyze the causes of death mortality using multi-way models
and considering four dimensions. The main advantage of the four-way model is
that it allows using information contained in four dimensions simultaneously.
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2 Methodology and Application

Four-way component analysis techniques carry out a descriptive analysis of 4-
way data that can emerge in different contexts; here we refer to the causes of
death mortality. The idea of this method is to efficiently summarize all the infor-
mation in the four-way data stored in a four-dimensional array through a few
components (P,Q, R and S ) and the relation between these components (Core
tensor G). Therefore, four-way component analysis is useful for the exploratory
analysis of four-way data. We can consider a multi-way method as a generaliza-
tion of Principal Component Analysis (PCA), which is a technique to explore
the relationship among two-way data that can be applied when the available
information can be collected in a matrix, say X. Often the information is repli-
cated in different (time) occasions, in this situation there is an additional mode
(occasions), and the data is stored in a 3-way array or (3-way) tensor X. We
can consider the four-way method as an extension of the three-way method, and
one of the best known is the Tucker3 (T3). In our analysis, in which we con-
sider 4-way data, there is an additional dimension (the second occasions) and
the data are stored in a 4-way array or (4-way) tensor X in �I×J×K×L with
generic element xijkl expressing the score of observation unit i for variable j at
first occasion k and at the second occasion l. The Tucker4 (T4) model can be
formulated as

xijkl =
P∑

p=1

Q∑

q=1

R∑

r=1

S∑

s=1

aipbjqckrdlsgpqrs + eijkl,

with i = 1, ..., I, j = 1, ..., J, k = 1, ...,K, l = 1, ..., L where there are
rispectively, the loadings linked to each dimension, the core elements and the
generic error term. The T4 in matrix notation is:

XA = AGA(D⊗C⊗B)′ + EA

where XA is a matrix of order (I × JKL) and represents the unit mode matri-
cization of the 4-way array X. XA is obtained by juxtaposing next to each the
previously-defined matricizations of the 3-way arrays pertaining to all the second
occasions. The symbol ⊗ denotes the Kronecker product of matrices. A B, C
and D are the component matrices for the 4 modes and their order is (I × P ),
(J×Q), (K×R) and (L×S) respectively, where P , Q, R and S denote the num-
ber of components for the units, the variables, the first occasions and the second
occasions, respectively. Furthermore, GA is the unit mode matricization of the
core tensor G of order (P×Q×R×S) with generic element gpqrs, which expresses
the quadruple interaction among component p of the unit mode, component q
of the variable mode, component r of the first occasion mode and component s
of the second occasion mode. A high value of gpqrs in absolute sense suggests
a strong relation among these components. The T4 consists in minimizing the
sum squared errors ||EA||2 with respect to the component matrices A B, C and
D and the core array G. To choose the number of components we balance fit
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and parsimony looking for a solution easy to interpret, in particular we interpret
the components for all modes; next, the core array G summarizes the informa-
tion in the original 4-way array and contains main effects and 2, 3, and 4-way
interactions present in the original array [4].

We consider a dataset provided by the World Health Organization (WHO)
mortality database and we refer to death rates. We choose the following 8 causes
of death: Infectious diseases, Smoking-related cancer, Non-smoking-related can-
cer, Diabetes, Circulatory system diseases, Respiratory diseases, External causes
of death, Other causes of death. Age is organized in classes from 0 to 84 years,
from 5 to 5, except for the first two classes, which represent respectively the
individuals aged 0 and aged 1–4. Regarding time, we focus the analysis on the
years 1961–2015 to consider the same time window for each country. Only the
countries for which data is available in this time frame are included in the anal-
ysis: Australia, Austria, Canada, USA, Japan, Belgium, Denmark, Finland,
France, Hungary, Ireland, Italy, The Netherlands, Norway, Spain, Sweden,
Switzerland and UK. The analysis is developed considering the total popula-
tion. In order to apply the multi-way method, we organize the data in an array of
four dimensions (cause of death × age × time × country). The dimension of the
array is: 8 × 18 × 55 × 18, for a total of 142,560 entries. To choose among the
multitude of possible four-way analysis solutions, we performed the T4 using a
number of components from two to eight (the minimum between (I,J ,K,L)) for
each of the modes and computed the associated fit values, then in total, we have
from 8 to 32 total components corresponding to the different solutions. We chose
the solution P = 4, Q = 4, R = 2, S = 2 with the fit value of 91.3%, not only
for the fit, but also for the next interesting interpretation. In Table 1, we show
the scores of each component that describes the causes of death mortality. The
first component mainly depends on External causes and Cardiovascular diseases
(CVD), and it is also associated with other diseases and both type of Cancer
diseases, so this component represents the Leading causes of death (Leading
CoD). The second component is mainly associated with External diseases and
with negative signs with Other Lifestyle-related (Other LR), representing that
External diseases conduct to a higher incidence of mortality, while Other LR to
a lower incidence of mortality. Specifically, we can stress the high positive mag-
nitude associated with External causes, frequently related to young mortality,
road accidents, and violence. On the opposite side, we see the negative compo-
nent for CVD and Smoking-related cancer. The third component is more related
to Other diseases (0.92) and less (with a negative sign) to CVD and External
disease, so we can conclude that this component mainly portrays Other diseases.
The last component is primarily associated with Infectious diseases (0.97).
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Table 1. Causes of death components for total population.

Cause of death Leading CoD External vs Other LR Other Infectious

Infectious 0.13 0.05 0.12 0.97

Smoking-related cancer 0.26 –0.30 0.03 –0.17

Non-smoking-related cancer 0.32 –0.04 0.04 –0.01

Diabetes 0.03 –0.02 –0.00 –0.02

Cardiovascular diseases 0.57 –0.65 –0.23 0.03

Respiratory 0.06 –0.05 0.02 0.05

External 0.62 0.70 –0.30 –0.09

Other 0.31 0.08 0.92 –0.14

We can also interpret the other components for each dimension. The first age
component, Adults, reflects the adult mortality (it is mainly positively associated
with ages from 30 to 50), showing the typical regularity well described by a
linear Gompertz law of mortality. We can relate the second component, Old vs
Young (O vs Y), to the different behaviors of mortality between the old and the
young, in particular it captures the excess of mortality from 60 to 80, which is
opposed to a reduction of mortality from 5 to 25. The third component depicts
infant mortality (Infants), which is mainly associated with 0 and 1 ages. The
last one, Early adults vs Children (EA vs Child), reflects the different behaviors
of mortality between early adults and children, in fact it is positively associated
with age 30–35, and negatively with age 1, 5 and 10. The first year component
represents the overall improvement of mortality (with a stronger association
in the first few years) the second component underlines two different aspects
related to“converging” and “improvements” periods, respectively. Therefore, this
second component is associated with the “late” period with positive signs versus
the “early” period with negative signs. Indeed, the recent historical worldwide
longevity dynamics evidence the first increase after the 50s, albeit with high
heterogeneity levels, that flattened in the decades around 75 s–85 s, that might
be described as a global convergence [6,7]. The first-year component describes
all the countries considered from the database (HMD). The second component
discriminates between a group of European countries (Spain, Italy, Ireland, and
Hungary) as well as Northern European countries that recently show relevant
improvements in life expectancy, leading the global records as the case of Sweden
[7]. Italy and Spain are usually considered similar in culture, values, and also in
economic patterns. Ireland is often compared to Spain and Italy for its pattern
of mortality, for example in terms of life expectancy [10]. In this group, there is
also Hungary that can represent the Eastern European countries. Finally, Table 2
represents the core tensor G, where the higher in absolute value an element of
the core, the stronger the interaction among the components involved.
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Table 2. Interaction for total population.

Period: Overall improvement

CoD components Countries: HMD Countries: EU vs North EU

Adults O vs Y Infants EA vs Child Adults O vs Y Infants EA vs Child

Leading CoD 13.86 –0.29 –0.27 –0.11 0.15 –0.17 –0.11 0.02

External vs Other LR –0.45 –8.64 –0.15 0.37 –0.67 0.25 –0.02 –0.13

Other –0.02 –0.04 3.02 0.51 0.42 –0.26 0.03 –0.16

Infectious –0.03 –0.00 0.90 –0.27 0.49 –0.29 0.42 0.03

Period: Late vs Early

CoD components Countries: HMD Countries: EU vs North EU

Adults O vs Y Infants EA vs Child Adults O vs Y Infants EA vs Child

Leading CoD 0.24 1.22 –0.52 1.76 0.25 0.00 –0.17 –0.13

External vs Other LR 0.16 0.71 –0.73 1.48 0.11 –0.44 0.00 –0.12

Other 1.94 0.24 1.33 0.53 –0.18 0.11 –0.40 –0.01

Infectious –0.84 0.17 –1.16 –0.04 –0.33 0.21 –0.50 0.10

The highest score (13.86) refers to the interaction term between leading CoD
that occurred at adult ages in a phase of overall longevity improvement for all the
countries considered by HMD. It means that during this period, for the adults,
the leading CoD lead to a major incidence of mortality in all the countries con-
sidered. In the same period, for the same group of countries the coefficient (–8.64)
linked to External vs Other LR has a negative sign referred to O vs Y mortality;
this means that during the phase of overall longevity improvement, in all the coun-
tries considered, there is a higher incidence of deaths caused by external causes for
younger people compared to older people, and there is a higher incidence of CVD
and Smoking-related cancer for older people compared to younger people. As for
infectious diseases, they affect both periods in childhood. In the same period and
in the same group of countries, infants die predominantly for other causes of death
(3.02), in fact in this group there are specific causes such as perinatal infant mor-
tality. The Infant component is also related to Infectious diseases (0.90). For the
same group of countries, in the last period, there is a prevalence of deaths produced
by the leading causes for older people compared to younger people, while in the
early period the opposite situation occurs: there is a prevalence of deaths gener-
ated by the leading causes for younger people with respect to older people (1.22).
Similarly, deaths are prevalent for early adults (compared to children) caused by
leading CoD in the late period, while in the early period the opposite situation
occurs (1.94). Moreover, in the late period there is a prevalence of deaths caused by
external causes (compared to CVD and Smoking-related cancer) for early adults
with respect to children, while in the early period there is a prevalence of deaths
due external causes (compared to other LR diseases) for children with respect to
early adults (1.48). In the late period, for adults there is a prevalence of deaths
due to other causes, while in the early period it appears to be less evident (1.94);
concerning infectious diseases, the opposite situation occurs (–0.84). Regarding
infants, in the early period, there is a prevalence of deaths due to infectious dis-
eases, much limited in the late period (–1.16); for other causes, the opposite situ-
ation occurs (1.33). Considering the second component of countries, Spain, Italy,
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Ireland, and Hungary vs Northern EU, in the period of overall improvement, the
coefficients linked to other and infectious diseases have positive signs (0.42, 0.49)
referred to adult mortality; this means that there is a higher incidence of these
causes for adults in the first group of countries compared to the Northern EU
countries. Furthermore, in the same period and for adults, there is a prevalence of
deaths caused by other LR diseases compared to external causes (–0.67).

3 Conclusions

In this paper, we have applied the T4 method to the mortality by cause of death
considering four dimensions. We have shown that the model allows extracting
meaningful demographic explanation by reporting a walkthrough of our results:
firstly, we have summarized the interpretation of the components for all the
dimensions and in the last part that of the core array. We have chosen the
solution P = 4, Q = 4, R = 2, S = 2 with a fit value of 91.3%, which enables us to
provide an interesting interpretation of the phenomenon under investigation. For
example, the highest score refers to the interaction term between Leading CoD
that occurred at adult ages during the phase of overall longevity improvement
for all the countries considered by HMD. In this sense, the four-way component
analysis is useful for 4-way data, and, in our context, the analysis has revealed
some peculiar aspects of mortality by cause of death.
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Abstract. Cyber risk is a fast-growing area of interest and companies
have to include it in their risk management framework. Modelling fre-
quency and severity of cyber incidents is a crucial step in actuarial valua-
tions related to cyber insurance, a way of transferring part of the residual
cyber risk to a third party. In the last years, data breaches seem to be
the main cause of cyber incidents. Aim of this paper is to give further
insights about frequency and severity statistical distributions, by ana-
lyzing the Chronology of Data Breaches provided by the Privacy Rights
Clearinghouse.

Keywords: Cyber risk · Frequency and severity modelling · Data
breaches

1 Introduction

In an increasingly interconnected world, the risks arising from the cyber domain
are growing more and more. Nowadays, the financial losses caused by the impact
of these risks have become considerable. In general, cybercrime has an impact on
the global economy of about 1 trillion dollars, more than 1 percent of global GDP.
The covid pandemic has certainly worsened this situation and, to date, most
companies consider cyber risks, the pandemic outbreak, business interruption
and strongly linked to each other [1].

Cyber risks belong to the category of operational risks that stem from exter-
nal occurrences or bad and unfruitful internal systems, people, and processes.
However, they show specific characteristics that make them particularly hard to
manage and mitigate. Indeed, it is well known that the environment of cyber
risks constantly evolves as a consequence of new technologies and the rapid
development of computer information systems. In [8] the authors state that
many researchers have mentioned that cyber risks are like natural catastrophes,
at least in terms of scale. In the light of these considerations, companies are
increasingly aware that the best risk management practices need to consider
cyber risk as a component of the overall risk management routine. After ana-
lyzing and quantifying cyber risks, each company will decide how much money
to invest in order to improve security levels. Even if security investments were
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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significant, it would not be possible to eliminate cyber risk completely. However,
there is the option of transferring part of it to a third party by signing a cyber
insurance contract. Cyber insurance aims to mitigate losses from cyber incidents
which include data breaches, data theft, business interruption and network dam-
age. Insuring cyber risks is a challenging issue due to several reasons, among the
others: continuous evolution of information systems, increasingly sophisticated
and challenging cyber attacks, interdependence of security levels, hard impact
determination, information asymmetry, lack of statistical data [7]. Regarding the
lack of statistical data, it mainly arises from information sharing barriers caused
by the unwillingness of companies to reveal cyber incidents. The reason lies in
the concern regarding reputation damages. Reporting requirements have been
introduced since 2002 in many US states. For this reason, the literature on this
topic is focused on data breaches and US data. The situation is rapidly chang-
ing in Europe too with the introduction, in May 2018, of GDPR (General Data
Protection Regulation). Data are essential to actuarial valuations: the premium
calculation in practice requires knowledge of the full loss distribution in order
to determine the right amount of safety capital. As a consequence, modelling
frequency and severity of cyber incidents is a crucial step.

Aim of this paper is to give some insights regarding the statistical distribu-
tions of severity and frequency of data breaches. In particular, we refer to the
Chronology of Data Breaches provided by the Privacy Rights Clearinghouse.
Several contributions of the recent literature on cyber risk management analyze
this data set [6,8,12]. We contribute to the existing literature offering a further
analysis of this dataset. Our analysis confirms that data breaches of different
types, as long as events occurred in different entities, often show a different sta-
tistical nature. The rest of the paper is structured as follows. Section 2 focuses on
the main features of data breaches and relative studies in the recent literature.
Section 3 discusses a case study and Sect. 4 concludes.

2 Cyber Incidents and Data Breaches

[10] gives an overview both of the different types of cyber incidents and the
kind of losses that may occur. With regard to the incidents, four broad cate-
gories are included: data confidentiality breach, system malfunction/issue, data
integrity/availability and malicious activity. According to [1], data breaches are
the main cause of cyber incidents. Indeed, companies collect and use ever greater
volumes of personal data and breaches are becoming larger and more expen-
sive. Dealing with a mega breach (involving more than one million records)
now costs $42 mn on average. Moreover,data protection and privacy regulation,
and subsequent penalties, are widening in scope and geographical reach. Many
employees (intentionally or not) are often the weakest link that causes a suc-
cessful cyber incident (e.g. accidental publication of confidential information,
non-custody of laptop computers containing highly sensitive information) [10].
A complete review of the main data breach studies in the existing literature is
given in [9]. As far as frequency and severity modelling is concerned, frequency
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is generally well fitted by either a Poisson or a negative binomial distribution.
Regarding severity, log-normal and skew-normal models are frequently being
used in the actuarial literature. Models from extreme value theory (ETV) are
popular too, because the data from operational risk show heavy tails. The peaks-
over-threshold method (POT) is the most common EVT approach. Applications
of these models in the cyber risk domain are proposed by [6]. It is pointed out
that different kinds of cyber incidents often show a different statistical nature,
requiring separate modeling [3]. Another issue concerns the dependability struc-
ture of losses, requiring a model able to deal with various, but dependent, classes
of damages [2]. In order to model dependency structure, copulas are commonly
used [2,5].

In the following, we analyze the data breach information obtained from the
Chronology of Data Breaches compiled by the Privacy Rights Clearinghouse [11],
a nonprofit organization. It is by far the most complete and reliable publicly
available dataset, as already stated by other researchers [4,6,12,13].

3 Case Study

The Chronology of Data Breaches compiled by the Privacy Rights Clearing-
house contains information on data breaches occurred in the US between Jan-
uary 10, 2005 and December 31, 2019, always including name, location and
type of the breached entity, description and type of breach, and often the num-
ber of breached records; all the reported events have been confirmed by major
media sources. Organizations are categorized as businesses-financial and insur-
ance services (BSF); businesses-retail/merchant including online retail (BSR);
businesses-other (BSO); educational institutions (EDU); government and mil-
itary (GOV); healthcare, medical providers and medical insurance services
(MED); and nonprofit organizations (NGO). Information exposures (breaches)
are reported as Debit and Credit Cards Frauds (CARD), data loss due to
hacking/malware (HACK), or to insiders (INSD), physical data loss (PHYS),
portable device data loss (PORT), stationary computer data loss (STAT), unin-
tended disclosure of data (DISC), unknown cause (UNKN). The main limitation
to these data is its underestimate of the phenomenon, because publicly acknowl-
edged breaches are just a part of all the security incidents; moreover, the data do
not include information on financial losses. Following [12], we decided to focus
our analysis on the recent data (breaches reported after the 1st of January, 2010)
assuming that they reflect the more recent cyber threat situation. Moreover, we
also disregard the incomplete records with unknown/unreported/missing hack-
ing breach sizes or unknown cause. The resulting dataset contains 4823 breach
incidents in the United States between January 1st, 2010 and October, 25th,
2019. As the results of previous studies [3,4] have confirmed, the best fit for
the frequency of breach incidents is provided by a negative binomial distribu-
tion, with good results on the full dataset and a quite excellent performance
on any considered subset. The distribution of data breach sizes, on the other
side, is just approximately described by a log-normal or a skew-normal distri-
bution, even if the fit improves while considering smaller subsets. In general,
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data breaches of different types, as long as events occurred in different entities,
often show a different statistical nature so that on the entire dataset none of the
considered models could give completely satisfactory results, due to the strong
heterogeneity of the data. A closer inspection of data subsets have shown that
medical entities (MED) suffered the largest number of Data Breaches (3591 obs.,
about 3/4 of the total), but most of these breaches are due to lack of vigilance
(negligent breaches). Moreover, this high number of incidents corresponds to a
very low number of breached records (about 2% of the total) and a severity anal-
ysis on this subset showed a very particular distribution, apparently related to
the presence of different entities (big institutions and small medical practices).
The empirical distributions of the data breach sizes for the MED and non-MED
subgroups shown in Fig. 1 visually confirm our claim. Such anomalies led us in
a previous work [3], to analyze separately the MED/negl subset, comprised of
the breaches in MED entities related to negligence causes. In this study, we then
exclude the MED subset and focus on breaches typologies’ differences for the
other organization categories, by separating the negligent breaches (i.e., DISC,
PHYS, PORT, STAT) from the malicious ones (i.e., CARD, HACK, INSD).

Fig. 1. Histograms of the base-10 logarithm of the data breach sizes for the MED and
non-MED subgroups from the PRC data in the time range 2010–2019

We applied the data fitting analysis for the breach frequency separately to
each of the two groups and find that the best fit for each of the categories
(negligent, 512 obs. and malicious, 720 obs.) is given by a negative binomial
distribution for daily frequency, completely confirmed by Kolmogorov-Smirnov
test results (p-value = 1 for both cases).

The best fit for the severity of both malicious and negligent breaches, among
all the distributions proposed in the literature, is given by the skew-normal
distribution. Even not as accurate as the frequency ones, these fits are still
acceptable: results of the Kolmogorov-Smirnov test give p-values of about 0.21
and 0.19, respectively for the two categories. Further analysis of the severity
distributions, however, reported in Fig. 2, shows that just very few large breaches
are not well fitted by the skew-normal distribution; there is not enough evidence
to justify a different modeling (based on EVT) for the larger breach sizes.
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Fig. 2. The distribution of breach sizes and the fit to a skew-normal distribution: the
left and right panel show the malicious and negligent subgroups, respectively.

Finally, we are able to estimate the Value at Risk and assess the goodness
of fit of the model on the two data subsets. In Table 1 four confidence levels
are reported (90%, 95%, 99% and 99.5%) along with the p-value for testing
the difference between estimated and empirical values. These p-values confirm
the evidence from Fig. 2: while the fit for malicious breaches severity gives good
results up to the 95th percentile and degrades after, the one for negligent breaches
poorly approximates the empirical data. Indeed, this is already evident from the
90th percentile and the worse fit concentrates in the first part of the tail, where
more data are available.

Table 1. Risk measurement results: estimated (s) and empirical (m) values of the Log
of breached records for the two considered categories, malicious (mal) and negligent
(negl), along with the p-value of their agreement.

Type 90 s 90m p-value 95 s 95m p-value 99 s 99m p-value 99.5 s 99.5m p-value

mal 6.10 6.04 0.71 7.02 7.00 0.94 8.81 8.17 0.02 9.49 8.53 0.02

negl 5.41 5.14 0.02 6.05 6.30 0.19 7.30 7.95 0.16 7.78 8.18 0.45

4 Concluding Remarks

This study aimed at providing more detailed information both on the frequency
and severity modelling of cyber incidents. Focusing on data breaches, the cate-
gory of cyber incidents that causes the biggest losses nowadays, we analyzed a
dataset obtained from the Chronology of Data Breaches compiled by the Privacy
Rights Clearinghouse [11], a nonprofit organization. It is widely recognized as the
most complete and reliable publicly available dataset. Unfortunately, the data do
not include information on financial losses. Following [12], we decided to analyze
the recent data (breaches reported after the 1st of January, 2010) assuming that
they reflect the more recent cyber threat situation. In this study, we estimated
frequency and severity for all the organization types but the Medical one, whose
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empirical distribution shows several anomalies. After observing the different sta-
tistical nature (in terms of distribution parameters) of the negligent breaches and
the malicious ones we proceeded by separating breaches data into these two cate-
gories. We verified that the best fit for daily frequency of both categories is given by
a negative binomial distribution and this is completely confirmed by Kolmogorov-
Smirnov (KS) test. As regard severity, we observe that the best fit for both mali-
cious and negligent breaches, among all the distributions proposed in the liter-
ature, is given by the skew-normal distribution. The fits are not as accurate as
frequency ones, but the KS test gives acceptable results. Indeed, just very few
large breaches are not well fitted by the skew-normal distribution, where negli-
gent breaches are slightly underestimated and malicious ones overestimated. All
the conclusions are confirmed by the VaR estimates in Table 1.

Other datasets should be analysed in the future. In particular, it would be
desirable to analyse data relating to European companies and the availability of
such data should be facilitated by the entry into force of the GDPR.
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Abstract. We explore and test the capabilities of B-Splines and
Dynamic De Rezende-Ferreira five–factor model to replicate the main
dynamics and stylized facts of futures curves in the Natural Gas Futures
market. Furthermore, we discuss the joint use of these models with a
Nonlinear Autoregressive Neural Network for parameters fine–tuning to
forecast futures curves. The simulation study highlighted the effective-
ness of the proposed framework; empirical results show that the joint use
of B–Splines and neural networks provides highest overall performances
on the Natural Gas futures market.
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1 Introduction

Fostered by the liberalization process of commodities markets [7,8], during the
last decade Energy Commodities grew in importance as an alternative financial
asset. Understanding the dynamics of futures prices term structure is therefore
of paramount importance for hedging, capital budgeting as well as to provide a
deep insight on the investors’ expectations about the behaviour of the underlying
commodities. Based on these premises, our research focused on the analysis of
the term structure of the Natural Gas (NG) futures market, the second largest
and fastest rising source for energy demand, with the aim to identify a proper
modeling approach to effectively describe stylized facts in the futures curve and
to provide effective in–sample fitting and out–of–sample forecasting.

In the existing literature on the Natural Gas market there is a quite limited
number of studies dealing with models of the term structure [2,13,16,17]; in fact
most of the research mainly debates on the existence of possible relations with
other commodities or securities [3,4,20], as well as on models for spot prices,
price volatility, demand and supply [6,14,18].

The motivation for our work arised in observing that both B–Splines [19] and
the Five–Factor De Rezende–Ferreira (5F–DRF) model [11] have been widely
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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and successfully applied in the fixed–income market [10,15] which is quite similar
to that of Natural Gas, at least for what it is concerning the data structure,
the maturity and the overall dynamics. We therefore introduced a framework
using B–Spline and the 5F–DRF models for in–sample fitting and a Nonlinear
Autoregressive Neural Network (NAR–NN) for parameters tuning in out–of–
sample forecasting of NG futures curves.

Main contributions of our research are summarized as follows: we analyzed
futures curves in the NG market within a new framework, providing empirical
evidence of its ability to replicate patterns and dynamics of the data with high
levels of in-sample matching accuracy; furthermore, we benefit of the NAR–
NNs flexibility [1,12] to forecast futures curves. The analysis was carried out in
the time span from August 2010 to April 2021 thus including periods of high
turbulence such as the Euro Crisis of 2010, the Chinese stock market turmoil
in 2015–2016 as well as the oil and pandemic crush of 2020 with the scope to
validate the adequacy of the framework under very critical conditions.

The remainder of the paper is organized as follows: in Sect. 2 we present the
dataset and the methodology in use; in Sect. 3 we provide and discuss the main
results; Sect. 4 concludes.

2 Data and Methods

We used a dataset of daily settlement prices quoted in e/MWh of monthly
futures contracts with maturities from 1 up to 12 months (Mc1 to Mc12),
obtained from the Dutch Title Transfer Facility (TTF), a virtual trading hub
which in recent years has become the leading gas trading platform in Europe. The
dataset organized by data and maturity is plotted in Fig. 1 (see the Appendix).

The 3D–plot highlights a number of stylized facts such as upward sloping,
inverted and flat curves, as well as persistence and volatility, which support
the existence of strong similarities between the examined data and those in the
fixed–income markets. This in turn, inspired our research study which applies
on the NG futures market models of established use in the fixed–income market.

Our framework works in two phases: the first one performs in–sample fitting
of the futures curve on a daily basis, while the second stage provides one–day–
ahead forecasting. The modeling stage is carried out by means of B–Splines [9]
and by means of the 5F–DRF factor model [11].

Parameters estimation follows the approach discussed in [15] for B–Splines
and the method described in [5] for the 5F–DRF. The generated futures curve
are compared in terms of Mean Square Error (MSE) and Root Mean Square
Error (RMSE) statistics.

The estimated parameters enter then into a fine–tuning process driven by
a NAR–NN to provide one–day ahead prices forecasts. The accuracy of the
forecasting process is evaluated by the Mean Squared Forecast Error (MSFE)
and Mean Square Percentage Error (MSPE) performance metrics.
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3 Empirical Results

Table 1 compares the MSE and RMSE main statistics for both the B–Spline and
the 5F–DRF. The B–Spline generated more accurate fits in every examined case;
this, in turn, highlighted some limitations of the factor model in approximating
medium and long term maturities of more twisted curves.

Table 1. Main MSE and RMSE statistics for the 5F-DRF and B–Spline models

Performance MSE RMSE

Model 5F–DRF B-Spline 5F–DRF B-Spline

Mean 5.1600 × 10−2 1.9187 × 10−2 2.0118 × 10−1 1.1958 × 10−1

SD 5.4560 × 10−2 2.2616 × 10−2 1.0550 × 10−1 6.9928 × 10−2

Min. 3.3350 × 10−4 1.9149 × 10−4 1.8262 × 10−2 1.3884 × 10−2

Max. 3.3556 × 10−1 2.1747 × 10−1 5.7927 × 10−1 4.6635 × 10−1

To asses the overall adequacy of the models we have also performed one–
day–ahead forecasts considering the first 20 working days of March 2021. We
evaluated the MSPE and MSFE of both the tuned methods and we compared
them to the values obtained by the NAR–NN used alone, directly on the futures
price time series. The results in Table 2 suggest that not only the joint use of
NAR–NNs and B–Splines works better, but also it outperforms the NAR–NN
used alone on the data.

Table 2. Comparison of the forecasting performances

Model 5F–DRF B–Spline NAR–NN

MSPE 1.0688 0.0486 0.0883

MSFE 3.7306 0.1615 0.2963

4 Conclusion

We discussed a framework that uses B–Splines and the 5F–DRF factor models
on the Natural Gas Futures market tuning their parameters with a NAR–NN for
day–ahead forecasts. Both models showed high degree of flexibility and adapt-
ability to the wide variety of situations characterizing the Natural Gas market.
Furthermore, we highlighted that the joint use of B–Splines and neural networks
seems being particularly effective in day–ahead forecasting, as it outperforms
both 5F–DRF coupled to NAR–NN and the NAR–NN itself directly employed
on the data.
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A Appendix: Figures

Fig. 1. Term Structure of Natural Gas Futures Prices. Prices time-series of the natural
gas futures contracts with expiration date from 1 (Mc1) to 12 (Mc12) months. The
data spans 2732 trading days from August 19, 2010 to April 27, 2021.
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Abstract. This paper aims at investigating whether the life expectancy
gender gap follows any long-run common tendency across different coun-
tries through a model-based analysis. If these tendencies are found to
exist, then a model which takes them into account should perform bet-
ter than a basic and unrestricted one. Once the gap is modeled as a
multivariate non-stationary stochastic process, the goal is to find any
long-run equilibrium among single series via cointegration analysis, which
ultimately allows estimating some stationary linear combinations of non-
stationary variables referred to as the error correction terms. To achieve
such a result it is preferable to work with homogeneous samples. There-
fore, the first step of this analysis consists in partitioning the initial data
set into five clusters. Since the input data set includes countries with
different gender gap dynamics, this diversity is clearly reflected by the
difference among the models employed to fit single clusters. All series
result to be non-stationary. Given the model, we check the stationarity
of the error correction term and apply simple backtesting to ten-years
forecasting. Evidence suggests that the fifth cluster is a cointegrated
series leading to postulate that an underlying long period equilibrium
does exist for this cluster.

1 Introduction

Both insurance companies and pension schemes are deeply concerned with man-
aging longevity risk. The modeling and forecasting of life expectancy play a
central role (see e.g. the work of [2], which consider an indexing mechanism
based on the expected residual life for adjusting the retirement age and discuss
the implications of the gender gap in life expectancy). The reason is straightfor-
ward: a proper intertemporal resource allocation requires a full understanding of
mortality dynamics, hence the need for a framework of stochastic models for mor-
tality and longevity - a deterministic approach would not provide information
such as risk measures. If mortality tends to converge across different countries,
then forecasting should display mutual coherence. Even more so, if policy mak-
ers involve several countries in their decisions, demographic forecasting must

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 151–155, 2022.
https://doi.org/10.1007/978-3-030-99638-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99638-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-99638-3_25


152 L. Cefalo et al.

regard multiple populations and coherence is obviously needful. Alongside with
cross-country longevity convergence, there is some evidence that also female and
male life expectancies are heading towards a long-term equalisation, at least in
developed countries. Modeling and forecasting the gender gap in life expectancy
- henceforth GGLE - might be interesting for actuaries for the following reasons:
i) male life expectancy forecasting is more reliable if they are modeled as the dif-
ference between female life expectancy and GGLE rather than directly (see, e.g.
[1,8]); ii) equal life insurance premiums, imposed by the Gender Directive (Coun-
cil Directive 2004/113/EC) for equal treatment between men and women, imply
different risk exposures and different loss distributions; iii) the initial benefit in
defined contribution pension schemes is calculated, at retirement, by convert-
ing the individual notional account into an annuity depending on the remaining
life expectancy. To establish intertemporal equilibria, the knowledge of longevity
gender differentials is crucial. An additional issue arises when it comes to retire-
ment age (all increasings, especially differential ones, should be at least consistent
with longevity forecasting - other than socially acceptable). However, GGLE is
not a frequently discussed topic in actuarial literature. Since univariate model-
based studies are not very frequent in the GGLE modeling, a multivariate time
series approach may be an actual novelty (a similar approach applied to life
expectancy is found in [7] and [6]). Our study collects data from a quite wide
set of countries. We consider countries whose data are available from 1970 to
2018 and whose population size is larger than one million inhabitants. The data
source is the Human Mortality Database [3].

To assess whether some series display a long-run equilibrium, the idea is to
check for cointegration. Since present series are I(1), the aim is to estimate sta-
tionary linear combinations, referred to as error correction terms via the vector
error correction model (VECM). We use the maximum likelihood estimation
developed by [4] to check for cointegrating relationships in the data sets with
more than two variables. Since in a cointegration analysis it is preferable working
with homogeneous samples, we partition the data set into five clusters using the
K-means algorithm.

2 Materials and Methods

GGLE data are obtained as differences between female and male life expectan-
cies. The data set collected in the Human Mortality Database consists of GGLE
data of 25 countries in the period 1970-2018. Observations have been partitioned
into a training set and a testing set; the first one includes data from 1970 to 2008,
the latter from 2009 to 2018.

The K-means algorithm converges at the second iteration providing the fol-
lowing clusters:

• Cluster 1: Australia, Austria, Belgium, Canada, Switzerland, Italy, USA.
• Cluster 2: Belarus, Estonia, Lithuania, Latvia.
• Cluster 3: Czechia, Spain, Japan, Portugal.
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• Cluster 4: Finland, France, Hungary, Poland, Slovakia.
• Cluster 5: Denmark, Great Britain, Netherlands, Norway, Sweden.

We focus on cluster 5, which is the most appealing for understanding the gender
differences in longevity.

Cointegration Analysis
A multivariate non-stationary stochastic process is said to be cointegrated if
there are some linear combinations of its single variables, which have a smaller
integration order. In this paper, we work with processes integrated of order 1.

We consider a p-dimensional vector autoregression V AR(k) process:

yt = Φ1yt−1 + . . . + Φkyt−k + εt (1)

Where yt is the GGLE at birth, defined by eF
0 −eM

0 . With E [εt] = 0, E [εtε
′
t] = Σ

and E
[
εtε

′
t−�

]
= 0 for any integer � greater than zero. The following represen-

tation is derived:

Δyt = Γ1Δyt−1 + . . . + Γk−1Δyt−k+1 + Πyt−k + εt (2)

Which is called the vector error correction model, where Γi = −I +Φ1 + ...+Φi

and Π = −I + Φ1 + ... + Φk. If yt ∼ I(1), being both differences and innovations
stationary, also Πyt−k shall be stationary . Stationarity is possible if the Π matrix
is singular. Unless its rank - henceforth, r - is zero, the process is considered to
be cointegrated, and the number of cointegrating relationships is r.

For any r ∈ [0; p), the first hypothesis of the VECM is H1 : Π = αβ′ being α
and β two p× r matrices. The r × 1 vector β′Zk,t represents the error correction
term. It should be noticed that α and β are not unique, so that the ones estimated
with this procedure are not the only possible pair. To test H1, a maximum
likelihood estimation of model parameters is performed. In order to determine
the cointegrating rank, the hypothesis to test is that there are no more than r
cointegrating vectors, i.e. H2 : rk(Π) ≤ r versus rk(Π) > r. Likelihood ratio test
statistic is thus derived:

LR(r) = 2ln [�∗(Π,Σ, r)] − 2ln [�∗(Π,Σ)] = −T

p∑

i=r+1

ln(1 − λi) (3)

Where λ : |λSkk − Sk0S
−1
00 S − 0k| = 0 with Sij := 1

T

∑T−k
t=k Ri,tR

′
j,t, for i, j =

0, 1, ..., k, and R0,t and Rk.t are the residuals obtained by regressing respectively
Δyt and yt−k on the lagged differences Δyt−1...Δyt−k+1 (see [4,5])

3 Results

In this section, we show the results concerning cluster 5 that gathers very high-
longevity countries. After checking the stationarity, we find that all the GGLE
series belonging to this cluster are non-stationary. We model them as linear trend
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processes. The cointegration analysis is performed with a V AR(3) representa-
tion. The backtesting results are reported in the following. Table 1 shows the
Root Mean Square Error (RMSE) values. We can appreciate the superior accu-
racy of the VECM compared to the VAR model in all the selected countries. On
average over the cluster, VECM produce a more than 60% reduction of RMSE
with respect to the VAR model.

Table 1. RMSE values for cluster 5. Years 2009–2018.

Cluster 5 DNK GBR NLD NOR SWE Average

VECM(3) 0.126 0.093 0.254 0.318 0.094 0.177

VAR(3) 0.358 0.175 0.727 0.661 0.435 0.471

Figure 1 illustrates the GGLE forecast with a VAR(3) derived by the
VECM(3) with r = 1. The forecasted values (in blue) are compared with the
observed value (in black). The predictions provided by the VECM(3) are par-
ticularly appreciable for Great Britain and Sweden.

Our analysis allows us to conclude that there is evidence for long period
equilibria between the countries included in cluster 5. In other words, it is correct
to outline a multi-population pattern of the life expectancy gender gap.
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Fig. 1. GGLE forecast for Denmark (DNK), Great Britain (GBR), Netherlands (NLD),
Norway (NOR) and Sweden (SWE). Years 2009–2018. Observed values (black) vs fore-
casted values (blue) and 5%–95% prediction intervals (grey).
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4 Conclusions

The research for a model describing the data generating processes has been car-
ried out within the vector autoregressive models framework. The results of this
preliminary study show that the evolution of the gender gap in life expectancy at
birth follows a homogeneous pattern. Specifically, the analysis based on cluster
5 reflects the demographic theoretical background of gender differences in life
expectancy at birth. Overall our findings support the exists of a diverging trend
between the male and female populations. During the early period, women expe-
rienced a higher survivor, mostly attributable to different sources of mortality.
In the recent period, this gap is going to be filled in all countries due to specific
policy implementation, therefore the gender gap monitoring might play a crucial
role for the public and private sectors.
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Abstract. This study proposes a tri-objective portfolio optimization model com-
prising three objectives, which apart from the return, risk, modelled decision-
maker preferences using a proposed composite index. In earlier studies, decision-
maker preferences modelled using practical constraints; in contrast, this paper
modelled these preferences as constraints along with the proposed composite
index based on three decision parameters. To check the effectiveness of the
proposed approach is tested on four multi-objective evolutionary algorithms i.e.
NSGA-II, SPEA2, MOPSO, and MOEA/D. Finally, conclusions are drawn from
the comparative study of these adapted Multi-Objective Evolutionary Algorithms
(MOEAs).

Keywords: Multi-objective portfolio optimization · CVaR · Decision parameters

1 Introduction and Motivation of the Study

The transformation of the financial sector driven by technological innovation and the
availability of an enormous flows of data and informations is a phenomenon that has
attracted growing attention from the Institutions. In fact, huge amounts of data are gener-
ated and stored in the financial world every day. Therefore, the enormous availability of
data is associated with the ability to process them and build predictive models capable of
improving decision-making. Until the 1980s, the classical theory of finance that emerged
culminated with the CAPM (and the APT) and the theory of efficient markets. According
to the first contribution, stock returns are explained by risk factors as there are rational
risk-averse agents in the market pursuing their interest, while the theory of efficient mar-
kets holds that stock prices incorporate public information or private companies present
in the market making the future returns of the securities unpredictable.

The essence of portfolio optimization [1] is formulating a trade-off between com-
puted magnitudes of returns and risk-term. Numerous internal and exterior elements
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influence these two parameters. While formulating a portfolio optimization model com-
prised of these functions along with realistic constraints, e.g., floor and ceiling con-
straint, cardinality constraint, pre-assignment constraint, etc., the design can lead to
a complicated assorted problem. The classical methods are inapt to generate optimal
solutions considering these problems. However, multi-objective evolutionary algorithms
(MOEAs) are gaining acceptance for finding solutions to a portfolio optimization prob-
lem based on mean-variance theory with realistic constraints [2–4]. The investor might
be interested in setting up a trade-off between two or more objectives. Generally, one of
the objective is expected return. The other objectives could be reliability [5] or themagni-
tude of variance. A decision parameter ai is used for a trade-off between expected return
and reliability is described in [5]. A new decision parameter ai is used in this study for
this purpose. The second decision parameter qi is used to represent an appropriate level
of the proportion of capital allocated to a category of sub-portfolios [5]. In the proposed
portfolio optimization model, the third decision parameter is di, which signifies a level
of downside risk for a sub-portfolio, and its value is calculated using CVaR. Therefore,
the proposed model has the third objective represented by a single index. The proposed
model presented in this paper introduces a tri-objective framework. Three significant
decision parameters are used for the formulation of a composite index. An upper bound
value of the composite index is also introduced in the model based on a desirable highest
level of probability. The proposed tri-objective model is suitable to generate efficient
and optimal solutions of the problem in the context of appropriate allocation of capi-
tal to sub-portfolios, and it considers the investors preferences regarding downside risk
and a trade-off between expected return and variance. The new tri-objective portfolio
optimization is described below:

Minimizeσp =
N∑

i=1

N∑

j=1

xixjσij (1)

Maximizeμp =
N∑

i=1

xiμi (2)

MinimizeVp =
3∑

i=1

dpi (3)

N∑

i=1

xi = 1 (4)

Where dpi can have one of the values from any of the three decision parameters
i.e. ai, qi and di. The value of Vp is determined using aggregation of these three deci-
sion parameters namely, ai, qi and di. The user preferences about these three decision
parameters allow for selecting an appropriate weight for a decision parameter in the
aggregation operation.

The third objective is based on a single index value comprised of an aggregation of
these three decision parameters (ai qi di). The availability of a unique index is beneficial
to an investor for selecting an appropriate level for each of these essential decision
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parameters. The proposed model is tested on existing MOEAs i.e. NSGA-II, SPEA2,
MOEA/D, and MOPSO, and their performances are compared. The third objective is
used to study the impact of decision parameters on the portfolios, validate their inclusion
in the objective, and analyze the optimal solution based on these parameters to compare
the outputs. The equation used for representing the third objective is given below:

Vp = ai + qi + di (5)

The decision parameter (ai) signifies the relative importance of two objectives i.e.
return and variance. The decision parameter (di) indicates sustainable loss value, and
it is related to CVaR value. The decision parameter (qi) defines the proportion of the
capital allocated to sub-portfolios.

Practically, the number of assets N could be enormous. Distributing amount amidst
accessible assets needs high management and transaction cost of every asset [3]. Thus,
an investor is inclined towards putting investing amount for subsets of N assets by
considering a constraint on the size of assets having non-zero weights in the portfolio.
This constraint that binds these non-zero weights assets using an integer value is given
below:

k1 ≤
N∑

i=1

zi ≤ k2 (6)

The zi is a binary-valued parameter, which is used for either including ith asset or
excluding it in the portfolio. Therefore, ∀i ∈ {1, 2, . . . ,N}, zi is given by the following
criteria:

zi =
{
0, if ith asset is not incorporated in portfolio
1, if ith asset is incorporated in portfolio

(7)

These binary-valued zis’ are utilized in another way for modelling constraints on
floor and ceiling, which are named as quantity constraints. These constraints restrict
asset distributions inside fixed pre-decided bounds. The first one is used for limiting
the cost associated with management, whereas the second one is used to avoid portfolio
from exceeding focusing on a specific asset. When the cardinality constraints are used
Eq. 2, the quantity constraint is defined as follows

ziloweri ≤ xi ≤ ziupperi,∀i ∈ {1, 2, . . . ,N } (8)

Where loweri and upperi are the minimum and maximum bounding value of the
amount used for ith asset respectively. The significance of including zi in Eq. 4 is that
when zi = 1, the ith asset is included in the portfolio and amount for ith asset is bounded
by loweri and upperi. As we have considered in this perusal 0 ≤ loweri ≤ upperi ≤ 1
which along with quantity constraints impose long-only constraints (xi ≥ 0 ∀i ∈ {1, 2,
. . . ,N }).
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2 Study Framework and Experimental Results

Traditional optimization methods are incapable of maintaining the portfolio selection
model in the existence of realistic constraints like cardinality, pre-assignment [4]. Con-
sequently, the present study aims to seek the use of prevailing MOEAs (multi-objective
algorithms) for the introduced model [5].

The representation of a composite index as the third objective, along with its upper
bound in the model imposes multi-folded restrictions in the model. Currently, these
restrictions are not represented appropriately in a model based on conventional multi-
objective algorithms. The upper bound can be included in the framework with fairly less
difficulty. A scheme to include the upper bound in the model is described in the current
perusal. To check the usefulness of the introduced scheme and to find an optimal solu-
tion to the portfolio optimization problem, this framework is tested with four prevailing
multi-objective evolutionary algorithms, i.e. NSGA-II [6], SPEA2 [7], MOPSO [8] and
MOEA/D [9]. MOEAs are adapted so that the solution of the portfolio optimization
problem is computed based on the fulfilment of all the restrictions in the introduced
model. The crossover function that is used in the MOPSO algorithm is modified in the
proposed strategy. This study evaluates the adapted MOEAs for the tri-objective port-
folio optimization model using a dataset for five markets (HS33, DAX100, FTSE100,
S&P100, and Nikkei225). The efficient frontiers, along with the outputs based on the
hypervolume metric, are used to compare the performances of adapted algorithms. Fur-
ther, the values of the third objective and the decision parameters are also used for this
comparison. Based on hyper-volume statistics, NSGA2 and SPEA2 have better per-
formance as compared to other adapted algorithms. Based on statistics of the decision
parameter (ai), NSGA2 has better performance over other adapted algorithms for market
1, market 2, and market 4. At the same time SPEA2 exceeds in performance over other
adapted algorithms for market 3 and market 5. In the case of the decision parameter (qi),
MOPSO exceeds in performance over other adapted algorithms for all markets data set.
Similarly, in the case of the decision parameter (di), MOPSO has better performance
over other adapted algorithms for market 1, market 3, and market 5. At the same time,
SPEA2 outperforms other algorithms for market 2, and NSGA2 outperforms other algo-
rithms for market 4. Experimental results indicate that choosing a minimal value of the
third objective is preferable for obtaining a higher expected return for a specified range
of risk. Moreover, the third objective’s value is highly correlated to the value of the
decision parameter (ai). A practical way of calculating the upper bound values of the
third objective in the proposed tri-objective model is also illustrated.

This paper uses fivemarket data sets for performing tests of the tri-objective portfolio
optimization model taken from Chang et al. [10]. The information contained in these
data sets is used for framing UCEF (Unconstrained efficient frontier), values of expected
returns, and for constructing the sample matrix of covariances values of assets returns.
The time duration used in the data set is comprising of 291 weeks. These data sets are
publicly available from Or-library [11] (Table 1).
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Table 1. Datasets Or-library [11]

Stock index N k1 k2

HS33 (Hang Seng) 31 5 10

DAX100 (DAX 100) 85 5 10

FTSE100 (FTSE 100) 89 5 10

S&P100 (S&P 100) 98 5 10

Nikkei225 (Nikkei 225) 225 5 10

The parameters used in the algorithms are adjusted to get the best optimal values
before using them in the experiment for the HS33 dataset. Besides, the parameters in
the algorithms, apart from the size of the population, the size of the archive, and the
maximum number of generations, are calculated for their optimal values before being
used in the experiment. The best values of the parameter are obtained for the algorithms
(NSGA-II, SPEA2, MOEA/D, and MOPSO) are cataloged in Table 2.

Table 2. Parameters and their values that are employed in algorithms

Name of parameters MOEA/D MOPSO SPEA2 NSGA-II

Size of population 100 100 100 100

Size of archive – 100 100 –

Number of generation 1000 1000 1000 1000

BEX scale parameter 5 5 5 5

Crossover probability 0.9 0.9 0.9 0.9

Mutation probability 0.7 0.7 0.7 0.7

Total number of runs 20 20 20 20

3 Conclusions

A seminal tri-objective portfolio optimization framework has been introduced in this
ongoing work based on objectives of expected return, risk, and a composite index cal-
culated using decision parameters. The use of MOEAs is needed in this approach since
traditional methods are incapable of appropriately modeling this portfolio optimization
framework. Furthermore, the selection of methods amidst adapted algorithmsMOEA/D,
SPEA2, NSGA-II, and MOPSO for the tri-objective model is based on the hypervolume
metric and diversity of the solutions. NSGA-II is preferred choice of the algorithm based
on the hypervolume metric and diversity of the solutions for the portfolio optimization
problem. Since the investor is more inclined to a decision that yields a higher expected
return, the choice also centers on choosing a lower value of the third objective for a
given or specified range of risk. Thus, choosing a minimal value of the upper bound



Decision Making in Portfolio Optimization by Using a Tri-Objective 161

for the third objective value helps an investor make a decision. Further, the value of the
upper bound is highly correlated with the value of the decision parameter ai, the choice
for selecting a minimal value for the ai parameter becomes a preferable option. These
aspects with others will be involved in future research on this fascinating topics and a lot
of reflections into Portfolio optimization framework, with a sketch into Portfolio Man-
agement, are going to be deeply analyzed by a complex approach and multidisciplinary
point of view.
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Abstract. Reliable Bitcoin price forecasts currently represent a chal-
lenging issue, due to the high volatility of this digital asset with respect
to currencies in the Forex market. Since 2009 several models for Bit-
coin price have been studied, based on neural networks, nonlinear opti-
mization and regression approaches. More recently, Machine Learning
paradigms have suggested novel ideas which provide successful guide-
lines. In particular, in this paper we start from considering the most
recent performance of Bitcoin price, along with the history of its price,
since they seem to partially invalidate well renowned regression models.
This gives room to our Machine Learning and Mixed Integer Program-
ming perspectives, since they seem to provide more reliable results. We
remark that our outcomes are data–driven and do not need the fulfill-
ment of standard assumptions required by regression–based approaches.
Furthermore, considering the versatility of our approach, we allow the
use of standard solvers for MIP optimization problems.

Keywords: Bitcoin · Regression problems · Support Vector
Machines · Quadratic Mixed Integer Programming

1 Introduction

This paper details a novel viewpoint to study a price forecast problem, asso-
ciated with Bitcoin [2,4,7], that represents the proposal with the largest mar-
ket capitalization among the crypto assets. Bitcoin was initially created by an
anonymous researcher (or possibly a team of people), under the nickname of
Satoshi Nakamoto. The actual identity of such creator has never been revealed
so far, and anonymity is expected to be likely maintained also in the future.
No private/central bank is responsible for minting novel bitcoins1, so that Bit-
coin/USD rate is merely the result of negotiations among private stakeholders
1 Observe that typically the symbol Bitcoin is used to identify the crypto asset, while
bitcoins represent its coins.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 162–167, 2022.
https://doi.org/10.1007/978-3-030-99638-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99638-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-99638-3_27


Bitcoin Price Analysis 163

through online exchanges, so that exchanges prevent from double-spending and
arbitrary generation of new bitcoins. Direct peer–to–peer transactions involving
bitcoins among private investors are also allowed, recurring to special secure
protocols that impede abuses. In order to take record of finalized Bitcoin move-
ments, a special distributed ledger, namely a blockchain, both does not allow
reversibility for transactions and guarantees public information on transactions
amount, though preserving anonymity.

In the last decade a number of approaches were introduced in the literature
for Bitcoin price prediction (see e.g. [1] and [6], along with therein references),
involving investors, researchers, practitioners, as well as private and public insti-
tutions, so that some approaches may be undoubtedly considered more method-
ologically sound with respect to others. Among the main difficulties which nega-
tively affect an accurate prediction of Bitcoin price we find its high volatility, that
is yielded by several causes, including a relatively small experience of investors,
an unstructured market, the extreme liquidity of bitcoins and the high leverages
on Bitcoin transactions.

Unlike the cited references we report here a data–driven approach, based on
both Multiobjective Optimization and a Mixed Integer Quadratic Programming
formulation, in order to reliably foresee Bitcoin price and exploiting its historical
performance.

2 Our Problem

As from [5], in Fig. 1 we summarize some relevant information associated with
the price of Bitcoin, from past transactions between 2009 and the end of Septem-
ber 2021. The abscissa axis reports the scaled values of the Stock–to–Flow (SF)
associated with Bitcoin, i.e.

SF =
Stock of Bitcoin at a given date

F low of bitcoins in a given time window
,

where Flow of bitcoins in a given time window refers to an interval of 463 days
(according with the suggestion from the current literature – see also [5]). On the
ordinate axis of Fig. 1 we report Bitcoin price. Moreover, we compute the sets
LEast−South and LWest−North, being respectively

– LEast−South: the weak Pareto front associated with both the maximization
of the stock-to-flow SF and the minimization of Bitcoin price;

– LWest−North: the weak Pareto front associated with both the minimization
of the stock-to-flow SF and the maximization of Bitcoin price.

Furthermore, we also indicate in Fig. 1 some circled points, corresponding to so
called support vectors, obtained applying a standard Support Vector Machine
(SVM) approach (see also [6] and [5]) to the linear separation problem between
the points in the sets LEast−South and LWest−North. The stripe delimited by the
lines through these support vectors represents an area where no extreme Bitcoin
transactions were experienced. In other words, loosely speaking this last area
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contains all the pairs of Bitcoin vs. its SF, obtained during its history, neither
contained in LEast−South nor in LWest−North. Thus, this (reasonably thin) area
is likely expected to contain also most of the future transactions.

Fig. 1. The weak Pareto fronts LEast−South and LWest−North, corresponding to
extreme past transactions of Bitcoin price vs. its stock-to-flow ratio: cyan points corre-
spond to relatively favorable (i.e. large priced) transactions, while red points correspond
to relatively poor (i.e. poorly priced) transactions.

2.1 Our MIP Viewpoint vs. SVMs

First observe that if N represents the number of all the points in R
2 correspond-

ing to Bitcoin price vs. its SF (i.e. our dataset), we consider the next assignment
for the labels {yi}:

yi = +1 if the point Pi belongs to LWest−North,
yi = −1 if the point Pi belongs to LEast−South.

Then, setting N0 = |LEast−South∪LWest−North|, in order to apply the SVM app-
roach in Fig. 1, the solution of the next Convex Quadratic Programming problem
is required (see also [1] and therein references for a complete justification)

min
β, β0, ξ

1
2
‖β‖2 + C

N0∑

i=1

ξi

s.t. (βT xi + β0)yi ≥ 1 − ξi, i = 1, . . . , N0,
ξi ≥ 0, i = 1, . . . , N0,

(1)
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In (1) the pair (β, β0) represents the coefficients of the line (central line in Fig. 1)
which best separates the sets LEast−South and LWest−North, i.e. it corresponds
to the largest possible stripe delimited by the support vectors in Fig. 1. The
quantities xi, i = 1, . . . , N0, in our application represent scalars, corresponding
to a value (i.e. SF) in the abscissa axis. Nevertheless, in a more general framework
they may represent n–real vectors, each representing a vector of values including
the SF; this explains why in (1) we preferred to introduce the (more general)
inner product between the n–real vector (of coefficients) β and the vector xi, for
any i. A similar consideration holds also for the formulations (2) and (3) below.

We highlight that some elements of the solution of this mathematical pro-
gramming problem, namely β∗ and β∗

0 , provide the optimal estimates of the
coefficients of the central line inside the area delimited by the weak Pareto
fronts LEast−South and LWest−North. Similarly, this also happens for the subse-
quent formulations (2) and (3). Note that these optimal estimates are determined
accordingly to a data-driven SVM-based optimization approach which, loosely
speaking, regresses the Bitcoin price on the SF . Note also that the above (opti-
mal) central line constitutes the long term Bitcoin price forecaster; similarly,
again, for the mathematical programming problems (2) and (3).

Moreover, it can be proved that the quantities {ξi} will be all equal to zero
if and only if the two sets LEast−South and LWest−North are linearly separable.
We also observe that after assigning i ≥ 1 labels {y1, . . . , yi} ⊆ {+1,−1} to
the points {P1, . . . , Pi}, not contained in LEast−South ∪LWest−North, then in (1)
we can replace N0 by Ni, being Ni ⊃ N0 and Ni = N0 + i (i.e. Ni points in
the dataset have been labelled). Thus, it can easily be proved that adopting the
procedure in [5], including one point of our dataset at a time, starting from N0

up to N , we can iteratively refine the solution of (1) by solving

min
β, β0, ξ

1
2
‖β‖2 + C

Ni∑

j=1

ξj

s.t. (βT xj + β0)yj ≥ 1 − ξj , j = 1, . . . , Ni,
ξj ≥ 0, j = 1, . . . , Ni.

(2)

Thus, after solving N − N0 + 1 SVMs (i.e. i = 1, . . . , N − N0 + 1), each corre-
sponding to a binary separation problem, all the N points in the dataset will be
classified as either closer to LEast−South or closer to LWest−North. We strongly
highlight that, as detailed in [5], there are applications (e.g. from semi–supervised
learning) where the labels {y1, . . . , yN} are not all known when solving the first
SVM in the sequence: this justifies the above iterative procedure.

Now, considering a completely different perspective we might alternatively
replace the above iterative SVM–based procedure with a unique Mixed Integer
Quadratic Programming (MIQP) reformulation. In this regard, let us prelimi-
narily set ⎧

⎨

⎩

A ≡ LWest−North,

B ≡ LEast−South.
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Then, in place of the above N −N0 +1 SVMs we can propose to solve the MIQP
problem (note that M � 1 is not an unknown but it represents a Big–M , i.e. a
large enough constant value)

min
β, β0, ξ, γ

1
2
‖β‖2 + C

N∑

i=1

ξi

s.t. − (βT xi + β0) + 1 − ξi ≤ (1 − γi)M, i : xi 
∈ A ∪ B,
(βT xi + β0) + 1 − ξi ≤ γiM, i : xi 
∈ A ∪ B,
−(βT xi + β0) + 1 − ξi ≤ 0, i : xi ∈ A,
(βT xi + β0) + 1 − ξi ≤ 0, i : xi ∈ B,
ξi ≥ 0, i = 1, . . . , N,
γi ∈ {0, 1}, i : xi 
∈ A ∪ B,

(3)

where:

– the objective function maintains the same structure with respect to the for-
mulation (1) (i.e. a convex quadratic functional);

– 2(N − |A ∪ B|) linear constraints are added with respect to (1);
– 2(N −|A∪B|) binary unknowns (the unknowns {γi}) are added with respect

to (1), so that if (β∗, β∗
0 , ξ∗, γ∗) is the final solution of (3) then:

• γ∗
i = 0 means xi ∈ B (and in (1) we will equivalently have yi = −1),

• γ∗
i = 1 means xi ∈ A (and in (1) we will equivalently have yi = +1).

Remark 1. We highlight that the formulation (3) is equivalent to solve the N −
N0+1 SVMs in (2). Indeed, under mild assumptions (3) provides the same results
of the N −N0+1 SVMs in (2). However, note that (3) unlike (2) contains integer
unknowns, that typically increase the computational burden and require a more
sophisticated solver.

Several additional properties can be proved for the formulation (3), with
respect to considering a sequence of N − N0 + 1 SVMs, including some interest-
ing numerical results. The reader may refer to [5] and [3] for a more thorough
description, along with additional suggestions and a complete analysis of the
outcomes of the above methodologies on several practical applications. We also
remark that C represents the unique parameter included in the formulation (3),
and its assessment typically follows two guidelines: on one hand it is chosen large
enough to penalize misclassification (i.e. when C is large we tend to reduce the
number of nonzero unknowns {ξi}); on the other hand, a too large value for C
may imply a relatively large time of computation. In our Matlab implementation
we set C = inf and no numerical odd was experienced.
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Abstract. In a paper appeared some years ago, an index for evaluating
the non-linear bivariate comovement between two asset prices has been
proposed. In this paper, we assess if that index satisfies the classical seven
axioms formulated by Rényi that a measure of dependence should meet.
In the cases in which the index does not fulfil an axiom, we propose a
weakened version of that statement the index satisfies.

1 Introduction

In a paper appeared some years ago, a methodology for the non-linear evaluation
of bivariate comovement between asset prices has been introduced (see [1]). That
methodology proposes an index for evaluating the comovement between two
random variables. In this paper, we assess if that index satisfies the classical
seven axioms formulated by Rényi that a measure of dependence should meet
(see [5]). In the cases in which the index does not fulfil a given axiom, we propose
a weakened version of the original statement the index satisfies.

The remainder of the paper is organized as follows. In the next section we
recall the definition of the index and introduce the seven axioms formulated by
Rényi. In Sect. 3 we verify if and which among such axioms are satisfied by the
index, for the axioms which are not satisfied we propose weakened versions of
their formulations the index satisfies, and lastly we conclude with some final
remarks.

2 The Comovement Index and the Rényi Dependence
Axioms

The definition of the index softly draws one’s inspiration from the concept of
comonotonicity; limiting our interest to the bivariate case, see for details [4].
We can provide such a definition as follows. Let us start by considering two
discrete-time time series, {X1(t) , t = t1, . . ., tN } and {X2(t) , t = t1, . . ., tN }, and
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their first order differences Δ1(t) � X1(t) − X1(t − 1) and Δ2(t) � X2(t) − X2(t −
1), respectively. The index for evaluating the non-linear bivariate dependence
between the random variables X1(t) and X2(t) is:

δ1,2 =

�
�
�
�
�

1
N−1

tN∑

t=t2

Δ(t)1,2

�
�
�
�
�
, where Δ(t)1,2 =

{

−1 if Δ1(t)Δ2(t) < 0
1 if Δ1(t)Δ2(t) > 0 .

As for the Rényi dependence axioms, let us consider two random variables
X1 and X2 and a functional μ(X1, X2) → R. μ(X1, X2) is a measure of dependence
between X1 and X2 in the Rényi sense if it satisfies the following axioms: 1)
μ(X1, X2) is defined for any pair of random variables X1 and X2, neither of them
being constant with probability 1; 2) μ(X1, X2) = μ(X2, X1); 3) 0 ≤ μ(X1, X2) ≤ 1;
4) μ(X1, X2) = 0 if and only if X1 and X2 are stochastically independent; 5)
μ(X1, X2) = 1 if there is a strict dependence relationship between X1 and X2,
i.e. either X1 = ϕ(X2) or X2 = ψ(X1), where ϕ(·) and ψ(·) are Borel-measurable
functions; 6) If Borel-measurable functions ϕ(·) and ψ(·) map the real axis in
a one-to-one way onto itself, then μ(ϕ(X1, X2), ψ(X1, X2)) = μ(X1, X2); 7) If the
joint distribution of X1 and X2 is normal, then μ(X1, X2) =

�
�ρ1,2(X1, X2)|, where

ρ1,2(X1, X2) is the linear correlation coefficient between X1 and X2.

3 Is δ1,2 a Measure of Dependence à la Rényi?

To verify if δ1,2 satisfies the Rényi dependence axioms, we consider
�
�δ1,2

�
�. In fact,

if we do not recur to the absolute value of δ1,2 it comes up that −1 ≤ δ1,2 ≤ 1,
and it is possible to prove that this property can not coexist with the property
stated in Axiom 4 (see for details [2]).

Proposition 1.
�
�δ1,2

�
� satisfies Axiom 1.

Proof. The index
�
�δ1,2

�
� is given by the summation of the variable Δ(t)1,2 which

assumes value −1 or 1 according to Δ1(t)Δ2(t) < 0 or Δ1(t)Δ2(t) ≥ 0, respectively.
For that reason,

�
�δ1,2

�
� results to be defined for every value of (X1(·), X2(·)), i.e.

for every bivariate time series (X1(t), X2(t)), with t = t1, ..., tN . �

Proposition 2.
�
�δ1,2

�
� satisfies Axiom 2.

Proof. By the commutative property of multiplication, it is immediate to verify
that Δ1(t)Δ2(t) = Δ2(t)Δ1(t), and therefore that

�
�δ1,2

�
� =

�
�δ2,1

�
�. �

Proposition 3.
�
�δ1,2

�
� satisfies Axiom 3.

Proof. First, let us consider the case in which
�
�δ1,2

�
� = 1. Such a situation might

occur either if all the products of differences are negative or if all of them are
non-negative, i.e. when the two random variables X1(·) and X2(·) are counterde-
pendent or codependent, respectively. Then, let us consider the case in which
�
�δ1,2

�
� = 0. It represents the situation in which, if N − 1 is an even number,
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then half of the products of differences are negative and the other half are non-
negative. Finally, let us consider the case in which 0 <

�
�δ1,2

�
� < 1. Such a situation

might occur if at least 1 and at most N − 2 of the N − 1 products of differences
is negative (non-negative) and all the others are non-negative (negative). �

Proposition 4.
�
�δ1,2

�
� does not satisfy Axiom 4.

Proof. We prove both the necessary condition and the sufficient one by coun-
terexamples. (⇐) Irrespective of the hypothesis following which X1(t) and X2(t)
are stochastically independent, let us consider the situation in which N − 1 is
an odd number. In this case, the lowest value

�
�δ1,2

�
� can reach is 1/N, which is

different from 0, when (N − 2)/2 products of differences are negative and other
(N −2)/2 are non-negative. (⇒) Let us consider two dependent random variables
X1(t) and X2(t) such that X1(t) = 2 − [X2(t)]

2, and their discrete-time time series
in Table 1.

Table 1. Discrete-time time series of X1(t) and X2(t).

Random variable t1 t2 t3 t4 t5

X1(t) 1 1 7/4 41/25 41/25

X2(t) 1 1 1/2 3/5 3/5

Thus the index
�
�δ1,2

�
� turns out to be

�
�δ1,2

�
� =

�
�
�
�
�

1
4

t5∑

t=t2

Δ(t)1,2

�
�
�
�
�
=

�
�
�
�

1
4
(+1 − 1 − 1 + 1)

�
�
�
�
= 0. �

Now, we propose a weakened version of the statement of Axiom 4 and prove it.

Proposition 5. Let us consider the random variables X1(·) and X2(·), their
first order differences Δ1(t) and Δ2(t), with t = t1, . . ., tN , and the probabilities
Pr(Δ1(t) < 0) = p1, Pr(Δ1(t) > 0) = q1, Pr(Δ2(t) < 0) = p2 and Pr(Δ2(t) > 0) = q2,
with 0 ≤ p1, q1, p2, q2 ≤ 0. If the events (Δ1(t) < 0) and (Δ2(t) > 0) and the events
(Δ1(t) > 0) and (Δ2(t) < 0) are stochastically independent for any t, respectively,
and if p1q2 + q1p2 =

�(N−1)/2�
N−1 , then

E
(�
�δ1,2

�
�
)
= 0 if N − 1 is even and lim

N−1→+∞
E
(�
�δ1,2

�
�
)
= 0 if N − 1 is odd.

Proof. Let us start by determining the probability that Δ1,2(t) = −1, i.e.
Pr (Δ1(t)Δ2(t)<0):
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Pr (Δ1(t)Δ2(t) < 0) = Pr ((Δ1(t) < 0 ∩ Δ2(t) > 0) ∪ (Δ1(t) > 0 ∩ Δ2(t) < 0))
= Pr (Δ1(t) < 0 ∩ Δ2(t) > 0) + Pr (Δ1(t) > 0 ∩ Δ2(t) < 0)
= Pr (Δ1(t) < 0)Pr (Δ2(t) > 0) + Pr (Δ1(t) > 0)Pr (Δ2(t) < 0)
= p1q2 + q1p2.

Note that: the second row of the previous relationship is due, by construction,
to the fact that the events (Δ1(t) < 0 ∩ Δ2(t) > 0) and (Δ1(t) > 0 ∩ Δ2(t) < 0) are
incompatible for any t; the third row of the same relationship is due, by hypoth-
esis, to the fact that the events (Δ1(t) < 0) and (Δ2(t) > 0) and the events
(Δ1(t) > 0) and (Δ2(t) < 0) are stochastically independent for any t, respec-
tively. Of course, the probability that Δ1,2(t) = 1, i.e. Pr (Δ1(t)Δ2(t) ≥ 0), is
1 − Pr (Δ1(t)Δ2(t) < 0) = 1 − p1q2 + q1p2. Now, let us express the probabilities
above in terms of N − 1, i.e.:

Pr (Δ1(t)Δ2(t) < 0) = p1q2 + q1p2 =
�(N − 1)/2�

N − 1
=

{
1
2 if N − 1 is even

1
2
N−2
N−1 if N − 1 is odd

and

Pr (Δ1(t)Δ2(t) ≥ 0)=1 − p1q2 + q1p2=1 −
�(N − 1)/2�

N − 1
=

{
1
2 if N − 1 is even
N

N−1
1
2 if N − 1 is odd.

Therefore

E
(�
�δ1,2

�
�
)
= −1

1
2
+ 1

1
2
= 0 if N − 1 is even

and

lim
N−1→+∞

E
(�
�δ1,2

�
�
)
= lim

N−1→+∞

(

−1
1
2
N − 2
N − 1

+ 1
1
2

N
N − 1

)

= 0 if N − 1 is odd. �

Proposition 6.
�
�δ1,2

�
� does not satisfy Axiom 5.

Proof. We prove that the assumption of a strict dependence relationship between
X1(·) and X2(·) is not a sufficient condition for

�
�δ1,2

�
� = 1. We prove it only for ϕ(·)

as the proof for ψ(·) is absolutely similar. Let ϕ(·) be a Borel-measurable function
such that X1 = ϕ(X2), and let us reformulate the definition of

�
�δ1,2

�
� taking into

account the equivalence X1 = ϕ(X2). So, we have

�
�δ1,2

�
� �

�
�δ1,2(ϕ(X2(t)), X2(t))

�
� =

�
�
�
�
�

1
N − 1

tN∑

t=t2

Δ(ϕ; t)1,2

�
�
�
�
�
, where (1)



172 M. Corazza et al.

Δ(ϕ; t)1,2 =

{

−1 if [ϕ(X2(t)) − ϕ(X2(t − 1))][X2(t) − X2(t − 1)] < 0
1 if [ϕ(X2(t)) − ϕ(X2(t − 1))][X2(t) − X2(t − 1)] ≥ 0 .

Now, without lack of generality, let us assume that ϕ(·) is a strictly unimodal
function with mode equal to m, i.e. a function which is strictly increasing for
X2(·) ≤ m and strictly decreasing for X2(·) ≥ m. Thus, for the points X2(·) ≤ m
we have that ϕ(·) preserves the order and then Δ(ϕ; t)1,2 = 1 is added in Eq. 1.
On the contrary, for the points X2(·) ≥ m, we have that ϕ(·) reverses the order
and then Δ(ϕ; t)1,2 = −1 is added in Eq. 1. As consequent result

�
�δ1,2

�
� < 1 and

hence
�
�δ1,2

�
� does not meet Axiom 5. �

Now, we propose a weakened version of the statement of axiom 5 and prove
it.

Proposition 7.
�
�δ1,2

�
� = 1 if and only if there exists a dependence relationship

between X1(·) and X2(·), i.e. X1 = ϕ(X2(·)) or X2 = ψ(X1(·)), where ψ(·) and ϕ(·)
are either strictly decreasing functions or (not strictly) increasing functions on
Range (X1(·)) and on Range (X2(·)), respectively.

Proof. First, we prove that if there exists a dependence relationship between
X1(·) and X2(·) as defined above, then

�
�δ1,2

�
� = 1. Second, we prove the other

direction of the biimplication. As done for the previous proposition, we prove
it only for ϕ(·) as the proof for ψ(·) is absolutely similar. (⇐) Let ϕ(·) be a
dependence relationship as specified in the statement of Proposition 7 such that
X1 = ϕ(X2), and let us reformulate the definition of

�
�δ1,2

�
� taking into account

the equivalence X1 = ϕ(X2) as in Eq. (1). If ϕ(·) is strictly decreasing, then it
reverses the order and Δ(ϕ; t)1,2 = −1 is added in Eq. (1) for each product of
differences. Consequently,

�
�δ1,2

�
� = 1. Similarly, if ϕ(·) is increasing, then it is

not order-reversing and Δ(ϕ; t)1,2 = 1 is added in Eq. (1) for each product of
differences. Consequently, still

�
�δ1,2

�
� = 1. (⇒) By hypothesis

�
�δ1,2

�
� = 1, therefore

the products of differences have to be either all negative or all non-negative.
The former case implies that if X2(t) ≶ X2(t − 1), with X2(·) ∈ Range (X2(·)),
then ϕ(X2(t)) ≷ ϕ(X2(t − 1)). Therefore, ϕ(·) is a strictly decreasing function.
The latter case implies that if X2(t) ≶ X2(t − 1), with X2(·) ∈ Range (X2(·)), then
ϕ(X2(t)) � ϕ(X2(t − 1)). So, ϕ(·) is a (not strictly) increasing function. �

Proposition 8.
�
�δ1,2

�
� does not satisfy Axiom 6.

Proof. Let ϕ(·), ψ(·) : R → R be one-to-one Borel-measurable functions, and let
us reformulate as follows the definition of

�
�δ1,2

�
� in terms of ϕ(·) and ψ(·):

�
�δ1,2(ϕ(X1(·)), ψ(X2(·)))

�
� =

�
�
�
�
�

1
N − 1

tN∑

t=t2

Δ(ϕ, ψ; t)1,2

�
�
�
�
�
, where (2)

Δ(ϕ, ψ; t)1,2=
{

−1 if [ϕ(X1(t)) − ϕ(X1(t − 1))][ψ(X2(t)) − ψ(X2(t − 1))]<0
1 if [ϕ(X1(t)) − ϕ(X1(t − 1))][ψ(X2(t)) − ψ(X2(t − 1))]≥0 .
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Now, without lack of generality, let us assume that both ϕ(·) and ψ(·) are strictly
unimodal functions having modes equal to m and n, respectively, with m � n and,
for instance, m < n. (Note that a monotone and one-to-one function is strictly
monotone.) Thus, for the points X1(·), X2(·) ≤ min{m, n} � m we have that both
ϕ(·) and ψ(·) are order preserver and then Δ(ϕ, ψ; t)1,2 = Δ(t)1,2. Similarly, for the
points X1(·), X2(·) ≥ max{m, n} � n we have that both ϕ(·) and ψ(·) are order
reverser and then again Δ(ϕ, ψ; t)1,2 = Δ(t)1,2. On the contrary, for the points
m ≤ X1(·), X2(·) ≤ n we have that ϕ(·) reverses the order whilst ψ(·) preserves the
order and then Δ(ϕ, ψ; t)1,2 � Δ(t)1,2. So,

�
�δ1,2(ϕ(X1(·))ψ(X2(·)))

�
� �

�
�δ1,2

�
�. �

Now, we propose a weakened version of the statement of Axiom 6 and prove
it.

Proposition 9. If ϕ(·), ψ(·) : R → R are either strictly decreasing functions or
(not strictly) increasing functions on Range (X1(·)) and on Range (X2(·)), respec-
tively, then

�
�δ1,2(ϕ(X1), ψ(X2))

�
� =

�
�δ1,2

�
�.

Proof. Let ϕ(·) and ψ(·) be either strictly decreasing functions or (not strictly)
increasing functions on Range (X1(·)) and on Range (X2(·)), respectively, and let
us reformulate the definition of

�
�δ1,2

�
� in terms of ϕ(·) and ψ(·) as in Eq. (2).

Now, the following two cases are possible: First, if ϕ(·) and ψ(·) are strictly
decreasing functions, then both of them are order-reversing. So, whenever X1(t −
1) ≶ X1(t) and X2(t − 1) ≶ X2(t), then ϕ(X1(t − 1)) ≷ ϕ(X1(t)) and ψ(X2(t − 1)) ≷
ψ(X2(t)), respectively. As consequence, we have Δ(ϕ, ψ; t)1,2 = Δ(t)1,2 that implies
�
�δ1,2(ϕ(X1), ψ(X2))

�
� =

�
�δ1,2

�
�; Second, if ϕ(·) and ψ(·) are not strictly increasing

functions, then both of them are not order-reversing. So, whenever X1(t − 1) ≶
X1(t) and X2(t − 1) ≶ ≶ X2(t), then ϕ(X1(t − 1)) � ϕ(X1(t)) and ψ(X2(t − 1)) �
ψ(X2(t)), respectively. As consequence, we have still Δ(ϕ, ψ; t)1,2 = Δ(t)1,2 that
implies

�
�δ1,2(ϕ(X1), ψ(X2))

�
�=

�
�δ1,2

�
�. Therefore,

�
�δ1,2(ϕ(X1), ψ(X2))

�
� =

�
�δ1,2

�
�. �

Proposition 10.
�
�δ1,2

�
� does not satisfy Axiom 7.

Proof. We prove this proposition by a counterexample. Let us assume that X1(·)

and X2(·) are uncorrelated, i.e. that
�
�ρ1,2

�
� = 0, and let us consider the situation

in which N − 1 is an odd number. In this case, the lowest value
�
�δ1,2

�
� can reach

is 1/N, which is different from the assumed value of
�
�ρ1,2

�
�, i.e. 0. �

For Proposition 10 it is few meaningful to propose a weakened version of its
statement because it would require the relaxation of at least the normality of the
bivariate joint distribution. By doing so, the weakened version of the statement
would appear to much weakened.

Concluding, note that, as premised in Sect. 3, δ1,2 does not achieve some of
the Rényi’s dependence axioms. This occurrence is not surprising. Indeed, this
stems from the fact that the Rényi’s set of dependence axioms is probably not the
most natural for a measure of dependence. Furthermore, in the literature there
is a large consensus following which a scalar measure of bivariate dependence,
should satisfy more suitable properties like, for example, the ones considered
in [3] and [6]. Note also that we are currently investigating the possibility of
formally deriving a linkage between the concept of comonotonicity and the idea
of codependence expressed in terms of δ1,2.
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Abstract. This article investigates how consumers’ perceptions and
expectations about inflation evolved during the first twelve months after
the pandemic broke out in Italy. The analysis is based on data from
the European business and consumer qualitative surveys and exploits an
innovative dynamic model for ordinal data based on a mixture distribu-
tion with time varying parameters.

Keywords: Inflation expectations · Inflation perceptions · CUB
models · Ordinal data

1 Introduction

The Covid-19 pandemic originated an unprecedent and sudden shock for the eco-
nomic systems in all world countries. The crisis had unusual characteristics due to
the uncertainty about the duration of the pandemic and the medium/long term
effects on the economy. This uncertainty resulted in a substantial change for the
worse in the economic sentiment in all EU countries [16]. The pandemic affected
inflation in different ways. During the period of more drastic measures, the falling
demand caused by the reduced opportunity of consumption and the disruptions
of supply chains produced opposite pressures on prices. In addition, the sudden
changes in the consumers’ expenditure patterns introduced a bias in the measure-
ment of inflation based on the Consumer Price Indices [2,5]. Within this frame-
work, monitoring consumers’ beliefs of current and future inflation was a challeng-
ing issue for monetary authorities and policy makers [6,10] because consumers’
beliefs about inflation development influence spending and saving behavior, bor-
rowing and wage bargaining, and affect overall macroeconomic outcomes. The
pandemic changed both perceptions and expectations about the development of
inflation introducing a sort of bias in the opinion formation process [1,3].

The aim of this work is to analyze how opinions of Italian consumers evolved
during the pandemic period. The investigation relies on data from the qualitative
EU business and economic survey and exploits an innovative dynamic model
for ordinal data based on a mixture distribution with time varying parameters
[7]. The article is organized as follows. Section 2 briefly illustrates the model.
Section 3 discusses the results. Section 4 presents some final remarks.
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2 The Model

The mixture distribution for the analysis of rating data − proposed by Pic-
colo [13] and developed in various directions [14] − describes the respondent’s
mechanism for the selection of an ordinal score. This is a combination of the
respondent’s deep-rooted attitude towards the item and the tendency to make
a completely random choice. In a previous contribution, Corduas [7] extended
the original formulation to frequency distributions of repeated ordinal responses,
allowing the relationship of parameters to explanatory variables observed over
time. In particular, the model is expressed as follows, for t = 1, .., n:

P (Yt = y) = δtD
c
yt + (1 − δt)

[
πt

(
m − 1
y − 1

)
(1 − ξt)y−1ξm−y

t + (1 − πt)
1
m

]
,

y = 1, 2, ...,m.

πt =
1

1 + e−β0−β1wt−1
; ξt =

1
1 + e−γ0−γ1zt−1

; δt =
1

1 + e−α0−α1vt−1
, (1)

where wt−1, zt−1 and vt−1 are lagged variables, Dc
yt is a degenerate distribu-

tion at a category c that represents a refuge category for respondents that are
unwilling or unable to give a meditated answer. At a given time t, the parameters
(1−ξt) and (1−πt) are interpreted as the feeling and uncertainty underlying the
rating process. In particular, the uncertainty is related to the heterogeneity of
the distribution [4] and, in this sense, it depicts the mutual disagreement among
respondents. Finally, δt provides the proportion of respondents that selects the
refuge category in excess of that given by the combination of the shifted binomial
with the uniform distribution. When π → 1 the previous formulation collapses
to the simple mixture of a shifted binomial distribution with a degenerate dis-
tribution.

The estimation can be performed by the minimum chi-square method. This
seems a natural choice when data arise in form of periodically observed frequency
distributions. It is worth mentioning that the chi-square estimation criterion is a
special case of more general divergence measures, such as the power divergence
statistic [8] and the phi-divergence [12], for which interesting properties and
developments have been derived.

3 Results

The data set consisted of the frequency distributions of consumers’ opinions
about inflation (perceptions and expectations), collected from January 2018 to
March 2021 by ISTAT within joint harmonized European programme of busi-
ness and consumer surveys. Opinions were coded using a 5-points scale (ranging
from 1 = decreasing price trend to 5 = rapidly increasing trend). Note that in
April 2020 the consumer and business confidence survey was suspended and
resumed regularly in May. Moreover, from the end of February 2020, numerous
containment measures were taken by Italian authorities to cope with the spread
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of the pandemic. In particular, after the initial national lockdown (from 9th
March to 4th May), Italy experienced a number of stop-and-go measures char-
acterized by different level of restrictions in accordance with the development
of Covid cases. During this period the year-over-year changes in the consumer
price index declined remarkably due to the weak consumer demand and persis-
tent economic slowdown. From May 2020 the rate of inflation was negative and
still declining. It began to rise only at the end of the year (Fig. 1). At the same
time, consumers perceptions were altered by the changed consumption basket
[9] and shopping frequency [11], by the unfairness and steep changes of prices of
particular goods [15]. Moreover, expectations were influenced by the increasing
uncertainty about the evolution of the health crisis.
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Fig. 1. Inflation rate

The frequency distributions of opinions observed over time present some
common features. First, a prominent peak is located at the neutral category
describing that the level of prices has remained (or is expected to remain) about
the same. For this reason, both models elaborated for inflation perceptions and
expectations include a refuge category c = 2. Secondly, a lower peak, located
at the category indicating an increase (or an expected increase) in prices, is
observed for most of the considered time points.

The model of inflation expectations is a mixture including the three compo-
nents as described in (1). The parameter ξt depends on the mean of expectations
at time (t − 1) (aveExp), the parameter πt on the mean of perceptions at time
(t−1) (avePerc), and the parameter δt is function of the difference between the
two mentioned means (aveExp−avePerc). Note that this difference provides a
proxy of the expected change in inflation at the previous instant.

The model of inflation perceptions, instead, includes only two components:
the shifted binomial distribution and the refuge component. In this case the
time varying parameters, ξt and δt depends on avePerc and the difference
(aveExp−avePerc) at time (t − 1), respectively.

The estimation results are illustrated in Table 1. Compared with the igno-
rance model (where each category is equally probable), the reduction of the
chi-square discrepancy between the fitted and observed distributions [7], Ifit,
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is above 90% for both models. The scatter plots of the estimated uncertainty
(1 − πt) versus the feeling (1 − ξt) (left panel of Fig. 2) and versus the refuge
category coefficient δt (right panel of Fig. 2) show the trajectories that those
parameters followed during the months after the pandemic broke out.

Table 1. Estimation results (standard errors in parentheses)

Model β̂0 β̂1 γ̂0 γ̂1 α̂0 α̂1 Ifit

Perceptions 1.157 −0.517 −0.847 0.214 0.93

(0.019) (0.006) (0.010) (0.008)

Expectations 2.333 −0.370 −0.017 −0.518 −0.090 −0.897 0.98

(0.228) (0.077) (0.754) (0.255) (0.008) (0.051)
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Fig. 2. Inflation Expectations: scatter plot of uncertainty (1 − πt) vs feeling (1 − ξt)
(left panel); uncertainty vs refuge category coefficient δt (right panel)

Moving from March to May 2020 (the lockdown period), consumers opin-
ions were better defined (both the uncertainty and the weight of the neutral
category decreased) and a greater number of respondents believed that inflation
was going to rise (the feeling increased). As mentioned before, consumers based
these opinions on a limited and biased set of information about prices. When the
mobility restrictions started to be lifted, during the summer, consumer gained a
wider view of the price developments. The mutual disagreement between opin-
ions increased and the probability that respondents believed that inflation was
rising began to decline (the feeling was smaller). At the end of September 2020
the contagious started to spread again, reaching the peak number of Covid cases
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in November. However, as show by the trajectories in Fig. 2, the parameters fol-
lowed a path that brought them closer to the bulk of data. In other words, the
initial shock due to the Covid outbreak was completely absorbed. As regards to
inflation perception, the scatter plot of the uncertainty and refuge components
shows again a path that from March 2020 moves far from the majority of points
(Fig. 3). Despite observed inflation declined until the end of 2020, the feeling
increased and then the distributions of responses became more left skewed since
a larger part of respondents believed that inflation was increasing. Only at the
beginning of 2021 the dynamics of the time varying parameters went back to the
pre-Covid pattern.
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Fig. 3. Inflation perceptions: scatter plot of refuge category coefficient δt vs feeling
(1 − ξt)

4 Conclusions

The model approach, presented in this article, represents a useful tool for the
summary and interpretation of qualitative data from repeated surveys. The
investigation of the evolution of the characterizing time-varying parameters helps
to understand how the shape of the frequency distributions of respondents’
opinions changes over time. The results concerning consumers’ perceptions and
expectations about inflation have confirmed that the pandemic outbreak had a
significant but temporary effect on opinion formation. The end of lockdown, the
progressive lift of containment measures and the start of new policies for the
recovery of economic activities, helped consumers to expand the content of their
consumption basket and increase the number of their price observations so that
perceptions and expectation of inflation resulted less biased.
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Abstract. In this paper, we propose a new method for estimating the
regulatory capital requirements for a portfolio of income stream reverse
mortgages owned by a financial institution, according to Basel II and
III. The method considers house price risk, mortality risk and interest
rate risk and regulatory capital requirements need to be computed using
a Monte Carlo simulation procedure. Several scenarios for the reverse
mortgage specifications are considered, including fixed or variable mort-
gage rates and different income stream schemes (with the lump sum as
a particular case). The results for the U.K. show that the reverse mort-
gage provider faces higher risk in the lump-sum case, for relatively young
borrowers and for the female population. Furthermore, the lender’s risk
grows with the percentage of the loan amount that the borrower receives
on the initial date, with the lump sum (100% of the loan amount on the
initial date) being the riskiest case. The lender’s risk is also higher with
fixed mortgage roll-up rates than with floating rates.

Keywords: Reverse mortgages · Option pricing · Mortality
modeling · House price modeling · Interest rate risk · Regulatory
capital requirements

JEL Codes: G21 · G22 · J14 · R3

1 Introduction

In the current context in which many people worry about the sustainability of
pension systems, reverse mortgages are gaining popularity because they are a
way of supplement elderly people’s income. In a reverse mortgage the owner of
a property receives from the lender a certain amount of money, either in form of
a single payment (lump-sum solutions) or in form of several payments (income
stream solutions). The loan is repaid with the sale of the borrower’s property
at the date of his/her death or when he/she moves to another home, with the
particularity that the borrower’s debt cannot be greater than the amount of
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the sale of the house. This clause is commonly known as the non-negative-equity
guarantee (NNEG), which is of course a source of risk for the lender. This NNEG
can be viewed as a European put option owned by the borrower, so that he/she
will exercise the option whenever on the date of his/her death the sale amount
of the house is lower than the redemption amount of the mortgage.

During recent years there have been many papers addressing the problem of
valuing reverse mortgages ([1,2,4,5,8,9], among others). However, less attention
has been paid to the measurement and management of risk in reverse mortgages.
Although in many papers ([1,3]) it is estimated the risk faced by the lender by
means of computing the value at risk (VaR) or the expected shortfall (ES) of a
single contract, few attention has been given to the calculation of regulatory cap-
ital requirements in practice for a financial institution owing a portfolio of reverse
mortgages. [6] and [7] propose a method for computing regulatory capital require-
ments for a theoretical portfolio of lump-sum reverse mortgages owned by a finan-
cial institution, allowing for house price and mortality risks. However, no articles
have been found addressing this problem in the case of income stream solutions.

In this paper we fill this gap by proposing a new and realistic method for cal-
culating regulatory capital requirements for a portfolio of income stream reverse
mortgages according to Basel II and III, allowing for house price risk, interest rate
risk and mortality risk. Furthermore, the proposed method for income stream
solutions includes the lump-sum solution as a particular case, which allows us
to compare both types of reverse mortgages from the point of view of the risk
faced by the lender.

2 Modeling House Price Risk, Interest Rate Risk
and Mortality Rate Dynamics

As stated in the Introduction, three sources of risk will be considered when
estimating the regulatory capital requirements for reverse mortgages: house price
risk, interest rate risk and mortality risk.

The house price data source is the Nationwide’s House Price Index from the
U.K. (quarterly data from 1952 to 2020, i.e., 273 observations). The proposed
model for the house price index (HPI) is the ARMA-EGARCH model, according
to [8] and [7].

The interest rate data set is composed of the quarterly series of the 10-
year zero-coupon government bond rate in the U.K. from 1970 to 2020, whose
dynamics is modelled through the Vasicek model.

Finally, the mortality data comes from the Human Mortality Database (U.K.
data from 1952 to 2018). The probabilities of survival and death, which are
necessary in the regulatory capital requirements estimation process, have been
estimated through the Lee-Carter model, that is the most used model in the
actuarial and demographic literature.

Once the three sources of risk are modelled, the next step is to estimate
the NNEG that is necessary to estimate the regulatory capital requirements
for reverse mortgages. Under the assumptions above for the sources of risk, the
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price at time t of a European option maturing at time T , Vt, under the equivalent
risk-neutral probability measure (Q), can be computed as:

Vt = EQ

[
e−r(T−i) · VT | Φt

]
(1)

where VT is the option’s payoff at expiration and Φt is a set containing all
market information available at time t.

Given that the date of death of the borrower is unknown, the value of the
NNEG, VNNEG, will be estimated as a weighted average of several European
put options values, each of them maturing at each of the quarters from now till
the maximum lifetime considered for a person, ω:

VNNEG =
(ω−x)·4−1∑

k=0

kpxqx+kP (k +
1
2

+ δ, S,X, uκ, rκ, g) (2)

where kpx is the probability that a person aged x at inception survives to age
x + k and qx+k is the probability that a person aged x at inception dies during
the interval k to k + 1, with k = 0, 1, . . . , ω, and P (k + 1

2 + δ, S,X, uκ, rκ, g) is
the European put option value, rκ is the risk-free interest rate, uκ is the floating
mortgage roll-up rate (the short rate plus a certain spread) and g is the rental
yield rate. In the calculation of this op-tion value, it is assumed that all deaths
occur at mid-quarter and that there is a delay of six months (δ) from the home
exit until the sale of the property.

Let us assume that S0 is the current price of the house, LTV is the loan-to-
value ratio, and Xκ is the value at the end of quarter κ of all quantities advanced
by the lender until this moment. On the initial date, time 0, the borrower receives
a percentage, α, of the loan amount: α·LTV ·S0. The rest is received in annuities
over j years, with payments at the end of each year: (1−α)·LTV ·S0

j . Thus, the value
at the end of quarter κ of all quantities advanced by the lender until κ, Xκ, can
be computed as:

Xκ =

⎧
⎪⎨
⎪⎩

α · LTV · S0 · e
u0
4 if κ = 1

Xκ−1 · e
uκ−1

4 if κ �= 4 · j,∀j = 1, 2, . . . , ω(
Xκ−1 · e

uκ−1
4 + (1−α)·LTV ·S0

ϕ

)
if κ = 4 · j,∀j = 1, 2, . . . , ω

(3)

Therefore, the put option value in expression 2, P (k + 1
2 + δ, S,X, uκ, rκ, g),

can be calculated as:

e

[
− ∑(ω−k)+ 1

2+δ

t=1
rt
4 )

]
· EQ

[(
Xκ+ 1

2
− Sk+ 1

2+δ

)+
]

(4)

3 Calculation of Regulatory Capital Requirements

Let us consider a portfolio of income stream reverse mortgages owned by a certain
financial institution. The portfolio is composed of N0 = 1,000 people (all of them
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men or women) aged 70, 80 or 90 years. The calculation of one-year or VaR or
ES involves the simulation of (i) the house price in one year, (ii) the interest rate
in one year and (iii) the number of survivors in one year. The house price and the
interest rate in one year are simulated by means of the ARMA-EGARCH and
the Vasicek processes respectively, taking into account the correlation among
them. Finally, to simulate the number of survivors in one year it is assumed that
the distribution of the number of deaths is a binomial B(N0, qx), with qx being
the probability of death for the considered population.

Under these assumptions the value at the beginning of the year of the port-
folio of income stream reverse mortgages from the lender’s perspective is:

N0 · (Y0 − NNEG0) (5)

Where Y0 is the present actuarial value of all amounts received by the lender
until his or her death and NNEG0 is the value of the no-negative-equity guar-
antee estimated at the beginning of the year, assuming and initial house price
of S0 = 150,000 pounds. Once we have simulated the number of survivors and
the house price in one year, (N1, S1), together with the forward curve for the
interest rate, we can estimate the value of the no-negative-equity guarantee in
one year’s time, (NNEG1). Under these specific simulated values for (N1, S1)
and the forward curve for the interest rate, the final value of the portfolio of
income stream reverse mortgages is:

N1 · (Y1 − NNEG1) + (N0 − N1) · [Y
′
1 − max(Y

′
1 − S1, 0)] (6)

The second term in expression 6 accounts for the intermediate cash flows.
Moreover, in expression 6 Y

′
1 represents the sum of all quantities received by the

borrower during the year plus interest, whereas Y1 is equal to Y
′
1 plus the present

actuarial value at the end of the year all amounts received by the lender until his
or her death. The different between Y1 and Y

′
1 is due to the fact that the debt

corresponding to the survivors is estimated considering all future quantities that
the borrowers will receive until their dead, whereas the debt corresponding to
the lenders who died during the year is limited to the amounts received during
this year plus interest.

To obtain a distribution for the value of the portfolio of income stream
reverser mortgages at the end of the year we repeat this process 10,000 times, so
we can estimate the VaR as the 99.9th percentile of the distribution. The final
step is to calculate the potential loss suffered by the lender during the year as
the present value of the VaR after one year minus its initial value. In the results
presented below the losses are expressed as a percentage of the initial portfolio
value. Moreover, different values have been considered for the percentage (α) of
the loan amount that the borrower receives on the initial date (α · LTV · S0).
These values are 20%, 40%, 60% and 100%, where 100% corresponds to the lump
sum case.

Tables 1 and 2 show the results for the one-year 99.9% VaR with fixed and
floating roll-up rates respectively. From Tables 1 and 2 it can be seen that the
risk of a floating rate of r + 0% is approximately equivalent to a fixed rate of
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Table 1. One-year 99.9% VaR (%), fixed roll-up rate (u)

Male Female

u/Age 70 80 90 70 80 90

1.50% –2.85% –1.88% –0.13% –3.31% –2.33% –0.19%

2.00% –4.19% –2.75% –0.25% –4.80% –3.30% –0.36%

2.50% –6.11% –3.65% –0.44% –6.86% –4.39% –0.60%

3.00% –8.56% –4.92% –0.75% –9.78% –5.85% –0.96%

3.50% –11.79% –6.35% –1.07% –13.62% –7.30% –1.34%

4.00% –16.47% –7.98% –1.52% –19.69% –9.01% –1.87%

4.50% –22.99% –9.58% –2.04% –33.57% –10.88% –2.45%

5.00% –37.77% –11.59% –2.56% –105.7% –13.04% –3.14%

Table 2. One-year 99.9% VaR (%), floating roll-up rate (u = r + s)

Male Female

s/Age 70 80 90 70 80 90

0.00% –9.32% –3.67% –1.81% –12.53% –4.51% –1.82%

0.50% –12.19% –4.83% –2.17% –15.91% –5.95% –2.20%

1.00% –14.86% –6.04% –2.57% –18.97% –7.28% –2.60%

1.50% –17.23% –7.19% –2.97% –21.66% –8.54% –3.03%

2.00% –19.58% –8.32% –3.40% –24.30% –9.59% –3.52%

2.50% –22.01% –9.18% –3.92% –27.73% –10.52% –4.06%

3.00% –26.00% –10.28% –4.39% –34.88% –11.44% –4.63%

3.50% –31.88% –11.14% –4.89% –53.18% –12.23% –5.18%

2.5%. From there the risk grows faster in the floating case than in the fixed case.
Furthermore, the risk is higher for relatively young borrowers and for the female
population.

Tables 3 and 4 show the results of the comparison of the risk assumed by the
lender for different values of the percentage, α, of the loan amount that the bor-
rower receives on the initial date, with α = 100% being the lump sum case. With
fixed roll-up rates (Table 3), the risk is higher for higher α levels. However, with
floating rates (Table 4), the evidence is mixed; for relatively young borrowers (70
years old) the risk is higher for lower values of α, however for older borrowers
(80 or 90 years old) the risk is higher for higher values of α. This is because
with downward interest rate dynamics the interest loss with floating rates may
be higher for younger borrowers than with fixed rates.
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Table 3. One-year 99.9% VaR (%), fixed roll-up rate u = 3%

Male Female

α/Age 70 80 90 70 80 90

100% –8.56% –4.92% –0.75% –9.78% –5.85% –0.96%

80% –8.00% –4.63% –0.85% –9.08% –5.42% –0.99%

60% –7.44% –4.43% –1.14% –8.56% –5.19% –1.20%

40% –6.96% –4.38% –1.68% –8.02% –4.85% –1.78%

20% –6.67% –4.24% –2.50% –7.40% –4.87% –2.33%

Table 4. One-year 99.9% VaR (%), floating roll-up rate s = 1.5%

Male Female

α/Age 70 80 90 70 80 90

100% –17.23% –7.19% –2.97% –21.66% –8.54% –3.03%

80% –17.49% –5.72% –1.15% –22.73% –7.07% –1.09%

60% –17.47% –3.71% 0.00% –23.61% –5.27% 0.00%

40% –17.61% –1.23% 0.00% –25.40% –2.78% 0.00%

20% –17.87% 0.00% 0.00% –28.31% 0.00% 0.00%
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Abstract. Private pension schemes focus on retirement savings. Perceptions of
health status change over time and, as retirement age approaches, concerns about
Long-Term Care grow. However, once near retirement age, there isn’t enough
time to plan sufficiently in advance. This paper proposes a mechanism to trans-
form the private pension of a Defined Benefit scheme (retirement, invalidity) into
an allowance. In turn, should the need arise on becoming dependant, this allowance
will pay for any Long-Term Care services the beneficiary might require. Depend-
ing on the pensioner’s situation, both the expected number of payments and their
intensity are transformed. For this purpose, a mechanism is defined, through a
multiple state Markov model, to adapt the amount of the pension to the revised
life expectancy of the beneficiary. The revised life expectancy would be derived
from his/her new health status. The main contribution of this work is to establish
a private Defined Benefit pension scheme model capable of transforming its ben-
efits, adding Long-Term Care support, without increasing the total pension cost
to the scheme.

Keywords: Ageing · Dependence · Long-Term Care · Private pension

1 Introduction

InDefinedBenefit (DB) pension schemes, an individual has no information about his/her
future health status. Therefore, the individual has a contribution pattern that is indepen-
dent of his/her future health status, as it depends solely on the career path of the individual.
Moreover, any additional information about the true health status that arises over time,
does not really affect the benefit an individual receives on retirement [1–3].

Long-Term Care (LTC) coverage is, therefore, a logical extension to a pension
schemes purpose, it being: to provide an adequate financial complement to meet retire-
ment needs, regardless of the individual’s health status. Therefore, the design of the
pension scheme must take into account the possible needs of LTC [4]; on the one hand,
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providing an income to make up for the lack of salary and, on the other, as soon as LTC
needs arise, replacing the income with a supplement to help pay for them. Hence, when
the bulk of the baby boom generation reaches an age when LTC is needed, i.e. as the
population needs and services demanded change with age, there will be resources to
meet them [5].

The aim of this work is to establish a financial-actuarial model that makes it possible
to transform the pension element, part of the private economic resources that individuals
may have, into a supplement that helps to pay for LTC needs. This transformation would
take place at the request of the beneficiary and would do so without increasing the
pension’s overall cost. This model provides the private pension scheme with a social
vision by means of adapting its coverages to the pensioner’s need for resources, whether
or not, he/she is the beneficiary of a retirement or disability pension.

The second section, in order to meet this objective, considers an actuarial valuation
model under different mortality rates in line with the scheme member’s status. This
defines an actuarial mortality correction factor to be applied to the pension’s valuation
depending on the beneficiary’s condition: retired or invalid. The key to this lies with the
difference in life expectancy according to the beneficiary’s status i.e. general population,
disabled or severely dependant. The third section shows the results of this correction fac-
tor applied to the Spanish mortality experience, both for generic, disabled and dependant
population. The final sections present conclusions and future lines of work.

The main contribution of this work is to establish a private Defined Benefit pension
scheme model capable of transforming its benefits, adding Long-Term Care support,
without increasing the total pension cost to the scheme. The model allows for the adap-
tation of the expenditure to the reality experience by the individual. The quality of life
of the dependant is improved by having part of the LTC costs covered. As indicated by
[6], the dependant can live longer by improving his/her functional environment.

2 The Model

This paper develops the model initially proposed by [7–10] by incorporating it into a
pension scheme and deriving the supplement that meets the needs for LTC due to higher
degrees of dependency. In these cases, the dependant needs assistance to perform several
basic daily activities several times a day. Due to loss of physical, mental, intellectual
or sensory autonomy, the individual needs extensive support for personal autonomy.
This assistance carries extra expenses. So, the aim of the transformation is to provide
resources for the new expenses.

The pension is automatically increased to provide additional resources to help pay
LTC costs when the pension beneficiary becomes severely dependant and requests it.
Thus, there is a transfer of the value of the pension to the LTC assistance. Then, at an
age x > r, such that the pensioner is dependant and decides to transform the pension, an
equivalence is fulfilled;

PVFBx = PVFLTCx (1)
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PVFBx present value of future benefits valued at age x, such that x > r.
PVFLTCx present value of future benefits, including the new LTC allowance, both

valued at the time of the decision, or x, such that x > r.
This gives the transformation factor at each age (λdx ). This is subject to the sum of the

residual probabilities of survival in future years according to the beneficiary’s status, i.e.
the life expectancy according to the status (general or dependant), financially discounted
to the expected return of the pension fund.

λdx =
∫ w
x e

−∫ t+1
t μtdt · e−

∫ w
r δ(t)dt · dt

∫ w
x e

−∫ t+1
t μd

t dt · e−
∫ w
r δ(t)dt · dt

= amx
damx

(2)

e−
∫ t+1
t μd

t dt probability of survival of a dependant person of age t to live to age t + 1
as a dependant.

e−
∫ t+1
t μtdt probability of survival of a person of age t to live to age t + 1 (general

mortality).
e−

∫ w
r δ(t)dt financial discounting factor from time t. The financial discounting function

is defined by the force of interest rate δ(t) as standard in the private pension scheme.
amx Continuous life annuity of a person at age x. Depending on whether or not it is

indexed to an external benchmark, it can be variable or constant.
damx Continuous life annuity of a dependant person at age x. Depending on whether

or not it is indexed to an external benchmark, it can be variable or constant.
The resulting LTC complement depends on:

• The age of decision making,
• The expected mortality of the cohort,
• The pension scheme’s performance,
• The expected mortality of the dependant and
• The level of pension that the beneficiary is receiving.

Except for the expected mortality of the dependant, all other factors are standard in
the design of a private pension scheme.

3 A Sample for Spain

3.1 Mortality Tables by State

In Spain, the private sector provides coverage for the highest levels of dependency
almost exclusively [10], through either insurance or pension schemes [12]. To illustrate
the influence of this factor, the following tables have been applied:

• For general population, the PERM/F for the year 2000, with special reference to the
year 2008 [13] (different life tables for men and women).
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• For invalid population, the Spanish Social Security actuarial tables for pensioners
receiving an invalidity annuity [14]. This table provides information on the entire
populationwith permanent disability, whether or not they are dependant. It is compiled
for ages 16 to 108 years, both inclusive. Based on the census of the Spanish population
in 2008, a separation by gender is made [15].

• For dependant mortality, those elaborated by [16], based on general mortality tables
[13] and adjusted to French statistics, HID 98-01.

3.2 Results

There is a difference in mortality by gender in all age groups and for the different states.
Figure 1 shows that the percentage of over-mortality in males (a) is much higher than in
females (b). There is a gradual decrease in the excess mortality differential in all states.
Towards the end of the estimated life expectancy, the values of the mortality ratios are
almost equal showing that, excess mortality tends to decrease.

Fig. 1. Mortality differential by status and gender after retirement age (65 years). (a) Men, (b)
Women. Source: Own elaboration. Age x: man. Age y: woman. d qx m: Dependant mortality rate
at age x. i qx m: Invalid mortality rate at age x. qx m: General mortality rate at age x.

Analysing the last years of life (Fig. 2) the convergence of the mortality tables is
greater. This shows that in the end mortality does not depend on the state at which one
arrives, since towards the end of the estimated life expectancy everyone has a similar
mortality.

The resulting equity/fairness factor (LTC complement percentage for a given age
and gender) is much higher if it is generated in the retirement state rather than in the
disability state (Fig. 3) leading to high LTC benefits. However, the longer the delay in
causing severe dependency, the lower the value of the benefit. This is because of the
logical confluence of the mortalities of the different states.
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Fig. 2. Existing excess mortality in each state by gender and age (a) from 75 to 85 years; (b) from
85 to 100 years. Source: Own elaboration

Fig. 3. Percentage of LTC supplement by age and gender. (a) Retirement men, (b) Retirement
women, (c) Disability men, (d) Disability women Source: Own elaboration.

4 Conclusions

The actuarial model has been designed to be implemented without much difficulty and
at no cost to the pension scheme. Enabling the pension coverage to be extended in DB
and other privately funded pension schemes. At present, these privately funded pension
schemes are designed assuming a general mortality rate for the insured, but not a specific
one in the case of high or severe dependency.

The consideration of both the equity/fairness factor together with the use of specific
mortality tables for dependants,would enable the scheme to transform its benefits, adding
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LTC support, without increasing the overall pension cost to the scheme. Hence, without
the need of any further contributions to be made.

What is adjusted is the expectation of payment, increasing the total pension (pension
plus economic support).

Future work would entail the design of a Defined Contribution (DC) pension scheme
that would include LTC coverage, although it would be in competition with other insur-
ance products. In a DC scheme, the individual is aware of his/her health situation from
year to year and, unlike in a DB scheme, can supplement the coverage with dependency
insurance products.
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Abstract. In the paper we present a securitized bond set in the macrocosm of sus-
tainable finance. The product is generated by a securitization scheme that involves
three actors: firms, issuing insurance contracts to protect the health of workers;
insurers; investors, betting on the good health management of workers. The prod-
uct is a derivative linked to an underlying representing the trend of the pandemic,
specifically the present COVID-19 number of infected persons compared to its
expected value. Aim of the paper is to frame the product in specific categories
recognized within the ESG criteria. In particular, two specific categories are iden-
tified within the Principles Responsible Investments, which integrate the bond
within the ESG products. Moreover, from an insurance point of view, the prod-
uct can be considered within the most innovative asset categorization for impact
finance, recent for the insurance sector. This area encompasses a limited number
of recently developed tools aimed to sustainability and impact.

Keywords: Impact investing · Sustainability · Securitization · Pandemic bond ·
Social health insurance products

1 Introduction

Theworldwide spread ofCOVID-19 contagion has been determining long-term systemic
consequences in economy, lifestyles and social cohesion, whose perspectives appear
strongly related to the evolution of the health risk: innovative and resilient tools and
roles are needed.

The role of health insurance entities – private and public (such as those bearing a
variable part of the costs of public health, most common in European Countries) – is
more than ever in protecting people and productive activities; those who are responsible
for large numbers of people (cf. [3, 5]) must cope with new sustainability challenges.
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Before the impact of the pandemic, the 15th edition of the Global Risk Report of
the World Economic Forum addressed public health global risks through sustainability
based strategic and financial resilience tools taking into account environment, climate
change, energy innovation; the pandemic is a new, dramatic variable that adds to the
above and requires innovative economic and financial synergies to manage health risk,
to protect collective health (cf. [3]), to preserve business entity going concern, occupation
and economy: differently from other health threats, the pandemic drives up the health
care costs for those who are affected by the disease as well as impacting entities turnover
and income as consequences of quarantines, isolations of people and lock-downs.

Considering occupational safety as a social value, we develop (cf. [3]) an insur-
ance product that combines both the aspects of risk-sharing and incentives for virtuous
behavior, according to a structure oriented to the pursuit of objectives linked to a wide
perspective of common good and refer broadly to insurance contracts aiming to cover
the risks of damage to workers’ health, with particular regard to the risk of contagion,
in which the firm is the contractor, and the insured persons are the workers. The cov-
erage of the risk arising from the contagion is implemented through a sharing system
such as securitization (cf. [3, 6, 8–10, 12]) which involves a third figure, that is the
investor/underwriter of the derivative issued with the product itself.

The pursuit of the common objective of improving health is achieved through incen-
tives granted to insured firms that develop virtuous behavior aiming at high health safety
standards. The incentive may consist in the reduction of the premium at the contract
renewal, to the extent of an appropriate percentage that becomes a decision variable of
the scheme.

The risk arising from the contagion, particularly in the presence of pandemics, is
shared through the issuance of health securities, that is health bonds whose underlying
is an appropriate and specific parameter representative of the general health status of the
reference community (cf. [11]). The cat bond will originate a cash flow depending on
the performance of the underlying that, if it is positive, provides a percentage of bonuses
to be awarded to the company insured virtuous in the renewal of the contract for the
following period.

The product involves actors joined by the common goal of improving or safeguarding
the general state of public health, all of whom benefit by operating into a single virtuous
cycle. The first one is the insured company, which is awarded the bonus; the second is
the insurer, gaining considerable reputational advantages (even political ones, in cases
of public entities of agencies), increasingly recognized because of activities geared to
the common good; the third, that is the investor/underwriter, who invests in the quality
of life by gaining personal and community benefits in the broadest sense.

A fundamental aspect of the product is the derivative issued on the underlying con-
nected to the state of public health. This is the use of a newly developed derivative, which
is indeed in the broad category of derivatives related to insurance business. These prod-
ucts have diversified widely over time, starting with the securitization of risks related to
unforeseen changes in the development of human survival (through mortality/longevity-
linked securities that transfer these risks to the capital market, cf. [2]), up to specific
categories of securities implemented in sustainable finance contexts.
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2 Sustainability and Impact: A Possible Conjugation

2.1 The Guidelines of the Scheme

Let us consider insurance contracts signed by firms to cover the employees/workers
from possible health damage due to COVID-19 infection. The contract is characterized
by an incentive consisting into a reduction of future premiums if the general trend of
the pandemic improves. The insurer issues, through a securitization process, pandemic-
related bonds through a special purpose vehicle (cf. [3]). The bonds are bought by the
investors who bet on the improvement of the contagion. In case of a contagion reduction,
the investor will receive a cash flow being, in any case, an actor of a virtuous project
aimed at collective health. Indicated byK the amount of the coupon cap, by It the number
of infected at each maturity and by value It its expected value, the cash flows for the
investor and the insurer respectively are the following:

(1)

(2)

The market value of the securitized product arises from the relationship between
the two commercial counterparts: the insurer, which issues the security, and the vehicle
company, which we will indicate with the acronym SPC: the SPC puts the securitized
bond on the market and sets its price. In order to indicate the procedure for calculating
the price of the securitized bond, we describe the financial relationship on which the
balance between the two inflows and outflows for the SPC is based. The inflows consist
of the price (that is assumed to be the maximum price) that the insurer is willing to pay
to undertake the transaction referred to each bond, p0, to which must be added the total
revenue resulting from the sale of the bonds. We will indicate with P0 the price of the
single bond and with N the number of bonds being sold. By observing that the outgoing
sum in the various maturities of the bond is for the SPC always equal to K, and by
indicating with F the nominal value of the bond at maturity, we can write the following
financial equation, in which the amount on the left-hand side must cover the outgoing at
the right side (cf. [4]):

Np0 + N ∗ P0 = NK ∗ E0

[
n∑

t=1

exp

(
− t∫

0
δsds

)]

+ NF ∗ E0

[
exp

(
− n∫

0
δsds

)]
+ NM0 (3)
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In Eq. (3) n represents the number of the maturities of the coupons, δs represents the
instantaneous risk-free rate and M0 is the profit margin for each bond recognized to the
SPC.

In the right-hand side of Eq. (3), the future amounts have been calculated as expected
values in t = 0 of the flows discounted at the risk-free rate.

In Eq. (3) the unknown is P0, that is the price of the securitized bond. If we assume
to operate in a risk-neutral system also in the calculation of p0, i.e., the price paid by the
insurer, it is possible to determine its value as the average, always calculated in t = 0 at
the stochastic rate δs, of the random incoming flows for the insurer.

We can write:

P0 = K ∗ E0

[
n∑

t=1

exp

(
− t∫

0
δsds

)]
+ F ∗ E0

[
exp

(
− n∫

0
δsds

)]
− p0 + M0

2.2 Which Category Within Socially Responsible Investments?

The proposed asset may be included in the macro area of socially responsible invest-
ments, those made by entities whose strategies, practices and ownerships incorporate
environmental, social and governance (ESG) factors (cf. [13]).

The integration of these factors in investment choices, indeed, is becoming increas-
ingly widespread. This is due to both regulatory changes and a growing market demand.
These two trends have inducedmany investors to orient their investment strategy accord-
ing to PRI (Principles Responsible Investment) and integrate the ESG factors in their
choice, a clear indication of the increasing relevance of ESGcriteria in the firms’ decision
strategies (cf. [14]). For example, is it known that BlackRock has recently announced that
“almost all $ 7 trillion assets under management would be governed by ESG principles”.

Concerning the bond we propose, the ESG integration strategy can be analysed
from a double point of view: the one of the investor, who considers it as a securitized
instrument and the one of the insurer who manages an asset to mitigate one of the risks
associated with ESG factors.

Referring to the investor perspective, it is important at first to know that currently
an investor can integrate ESG criteria into his investment choices through different
approaches (cf. [13] and [14]): Best in Class, Engagement and Voting, ESG Integration,
Exclusions, Impact Investing, Norm Based Screenings, Sustainability Themed, Impact
Investing. Among these categories, we focus on the last two, here briefly recalled (cf.
[7]), that seem to fit our product well.

Sustainability Themed

“Investment in themes or assets linked to the development of sustainability. The-
matic funds focus on specific or multiple issues related to ESG. Sustainability
themed investments inherently contribute to addressing social and/or environ-
mental challenges such as climate change, eco-efficiency and health. Funds are
required to have an ESG analysis or screen of investments in order to be counted
in this approach.”
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Impact Investing

“Impact Investments are investments made into companies, organisations and
funds with the intention to generate social and environmental impact alongside a
financial return. Impact investments can be made in both emerging and developed
markets and target a range of returns from below market-to-market rate, depending
upon the circumstances. Investments are often project-specific, and distinct from
philanthropy, as the investor retains ownership of the asset and expects a positive
financial return. Impact investment includes microfinance, community investing,
social business/entrepreneurship funds and French fonds solidaires.”

In details, we highlight why we have chosen these categories.
Sustainability Themed, because the object of the underwriting considered one of

the risk categories belonging to the social area of ESG factors, as we can observe in
Table 1 (cf. [14]), that shows the main risk categories related to the different ESG areas.

The product we propose deals with the fifth criteria in the Table 1. The development
of strategies that reduce the risk of contagion in the company, indeed, represents a way
to improve workers’ condition.

Impact Investing. Considering the reward scheme associatedwith particularly virtuous
realities, this instrument could take on a further connotation, which exceeds the logic of
thematic investment; rather, it is a typical instrument of impact finance. In fact, it not only
mitigates negative effects but also encourages virtuous actions. The effect generated is
therefore planned ex ante (intentional), additional (because obtained thanks to the direct
action of the companies) and measurable (through the evaluation of the effects related to
the risk of contagion). These three elements allow us to talk about the impact generated
by the underlying shares and therefore of a tool that can fit into the impact finance assets.

Even analyzing the securitized bond from an insurance point of view, you can con-
sider it in the most innovative asset categorization for impact finance, which is recent
for the insurance sector. This area, in fact, compared to investment, has only recently
developed tools geared to sustainability and impact. This evolution stems from the aware-
ness that the insurance industry has a primary role in promoting economic, social and
environmental sustainability (cf. [1]).
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Table 1. Risk Criteria and examples of mitigation for Social Factor

Criteria Theme Risk criteria Risk mitigation examples &
good practice

Social Human rights Child labour Policy/statement on
protecting and promoting
human rights, prohibits child
labour, shared with suppli-
ers, regular audits and public
findings (e.g. ILO, UNDHR)

Human trafficking Human rights policy that
includes a statement on
protecting and promoting
human rights and prohibits
human trafficking

Forced labour Human rights policy that
includes a statement on
protecting and promoting
human rights and prohibits
forced labour

Forced resettlement
(including land/water
rights for native people,
land grabbing)

Free, prior & informed
consent (FPIC) achieved.
Effective environmental &
social impact assessment
(ESIA) process covering
consultation, resettlement,
compensation aspects

Poor worker safety
record (e.g. worse than
sector average record on
accidents)

Effective occupational health
& safety policy that defines
safety responsibilities and
prevention measures to
minimise fatalities, injuries
and health impacts

Violation of worker rights
(e.g. discrimination,
collective bargaining)

Code of conduct that outlines
company’s commitment to
respect workers’ rights

Misconduct of security
personnel (e.g. physical
harm to people, human
rights abuses)

Whistle-blower channel to
report such violations

Controversial weapons Controversial weapons
exposure (e.g. UN
conventions)

Anti-Personnel Mine Ban
Convention, Convention on
Cluster Munitions

Source: UN Environment Programme’s Principles for Sustainable Insurance Initiative, 2020 (cf.
[14]).
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Abstract. We study a system of forward-backward stochastic differ-
ential equations (FBSDEs), with time delayed generator driven by a
Lèvy-type noise, establishing a non-linear Feynman-Kac representation
formula to associate the BSDE solution to a path dependent nonlinear
Kolmogorov equation. We also provide two financial applications: a gen-
eralization of the Large Investor Problem and an insurance investment
type model.

1 The Non-linear Path Dependent Kolmogorov Equation

We provide a probabilistic representation of a (mild) solution of the following
path-dependent nonlinear Kolmogorov equation for a fixed time horizon T < ∞{

−∂tu
(
t, φ

) − Lu
(
t, φ

) − f
(
t, φ, u(t, φ), (∂xu · σ)(t, φ), (u(·, φ))t,J u(t, φ)

)
= 0

u(T, φ) = h(φ), φ ∈ Λ

(1.1)
with t ∈ [0, T ) and φ ∈ Λ := D([0, T ];Rd) being D, the space of càdlàg R

d-
valued functions. The second order differential diffusion operator L is defined by

Lu
(
t, φ

)
:=

1
2
Tr [σ(t, φ)σ∗(t, φ)∂2

xxu(t, φ)] + 〈b(t, φ), ∂xu(t, φ)〉

with b : [0, T ] × Λ → R
d and σ : [0, T ] × Λ → R

d×d′
two non anticipative

functionals. For a fixed delay δ > 0, we define the delayed term by

(u(·, φ))t := (u(t + θ, φ))θ∈[−δ,0]
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while J is the integro-differential operator associated to the jump behaviour

J u(t, φ) :=
∫
R\{0}

[
u
(
t, φ + γ(t, φ, z)

) − u(t, φ)
]
Δ(z)ν(dz), (1.2)

where γ : [0, T ]×Λ×R \ {0} → R
d is a continuous, non anticipative, functional,

ν is a Lèvy measure and Δ is the parameter modelling the intensity of jumps. As
proved in Theorem 2, the deterministic non-anticipative functional u : [0, T ] ×
Λ → R represents a mild solution to (1.1), and u(t, φ) := Y t,φ(t) holds, with
Y t,φ(t) the first component of the BSDE solution. We remark that the concept
of mild solutions to delay equations generalizes the standard notion of viscosity
solutions, see, e.g., [6] or [10].

2 The FBSDE System

Let us consider the following probability space
(
Ω,F , {Ft}t∈[0,T ],P

)
, where

{Ft}t∈[0,T ] is jointly generated by a Brownian motion W (s) and a Poisson ran-
dom measure N(ds, dz) independent from W , for all z ∈ R0 := R \ 0 and for all
s ∈ [0, T ]. The compensated Poisson measure Ñ associated to the Lévy measure
ν is defined by

Ñ(dt, dz) := N(dt, dz) − ν(dz)dt. (2.1)

We denote by Xt,φ the solution of the following forward SDE⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(s) = φ(t) +
∫ s

t

b(r,X)dr +
∫ s

t

σ(r,X)dW (r)

+
∫ s

t

∫
R

γ(X, r, z)Ñ(dr, dz), s ∈ [t, T ]

X(s) = φ(s), s ∈ [0, t]

(2.2)

to emphasize the dependence on the initial time t ∈ [0, T ] and a given càdlag path
φ ∈ D([0, t];Rd). We assume that the non anticipative functions b : [0, T ] × Λ →
R

d, σ : [0, T ] × Λ → R
d×d′

and γ : [0, T ] × Λ × R → R
d are continuous and they

satisfy some Lipschitz-type conditions. The proof of existence and uniqueness is
a classical result, proved in, e.g., [3] via Picard iterations.

We fix a delay δ ∈ R
+ and we consider a time-delayed BSDE, given by⎧⎪⎪⎨

⎪⎪⎩
Y (s) = h(Xt,φ) +

∫ T

s

f
(
r,Xt,φ, Y (r), Z(r), Ũ(r), Yr

)
dr

−
∫ T

s

Z(r)dW (r) −
∫ T

s

∫
R

U(r, z)Ñ(dr, dz), s ∈ [t, T ]
(2.3)

where Ũ is defined by

Ũ(t) =
∫
R0

U(t, z)Δ(z)ν(dz)
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being Δ the parameter defined in the jump operator (1.2) appearing in the Kol-
mogorov Equation (1.1). The solution of (2.3) corresponds to a triple of stochas-
tic processes that denoted by

(
Y t,φ, Zt,φ, U t,φ

)
. We remark that the solution of

(2.3) depends on Xt,φ, i.e. the path of the forward dynamic (2.2) and on the
delayed term Y t,φ

r appearing in the generator f that is the path of Y t,φ restricted
to [r − δ, r], namely

Yr := (Y (r + θ))θ∈[−δ,0] .

To fully characterize an admissible solution over the whole interval [0, T ], we
should also provide supplementary initial conditions, namely

Y t,φ(s) = Y s,φ(s), Zt,φ(s) = U t,φ(s, z) = 0, s ∈ [0, t].

The solution of the BSDE (Y t,φ, Zt,φ, U t,φ) belongs to the Banach space S
2
t (R)×

H
2
t (R

d′
) × H

2
t,N (R) where

– S
2
t (R) denotes the space of Ft-adapted, product measurable càdlàg processes

Y : Ω × [0, T ] → R satisfying E
[
supt∈[0,T ] |Y (t)|2] < ∞ ;

– H
2
t (R

d′
) denotes the space of Ft-predictable processes Z : Ω × [0, T ] → R

d′

satisfying E
[ ∫ T

0
|Z(t)|2dt

]
< ∞ ;

– H
2
t,N (R) denotes the space of Ft-predictable processes U : Ω × [0, T ] × (R \

{0}) → R satisfying E
[ ∫ T

0

∫
R\{0} |U(t, z)|2ν(dz)dt

]
< ∞.

We need the generator F : [0, T ] × Λ × R × R
d′ × R × L2 ([−δ, 0];R) → R to

be continuous w.r.t. φ, Lipschitz w.r.t. Y , Z, U and Yr and F-progressively
measurable, for any (Y,Z, U, Yr) ∈ R × R

d′ × R × L2 ([−δ, 0];R). Moreover, we
require that φ �→ h(t, φ) is continuous and |h(φ)| ≤ M(1 + ‖φ‖p

T ), for all φ ∈ Λ.
To prove existence, uniqueness and continuity of Y t,φ w.r.t. φ, we need a small
delay δ or small Lipschitz constant K, see or [5,7] or [9].

Theorem 1. If suitable assumptions on the coefficients are satisfied and
by requiring K or δ small enough, then there exists a unique solution
(Y t,φ, Zt,φ, U t,φ) of the BSDE (2.3) such that (Y t,φ, Zt,φ, U t,φ) ∈ S

2
t (R) ×

H
2
t (R

d′
) × H

2
t,N (R) for all t ∈ [0, T ] and the application t → (Y t,φ, Zt,φ, U t,φ) is

continuous from [0, T ] into S
2
0(R) × H

2
0(R

d′
) × H

2
0,N (R).

3 Feynman-Kac Formula

The forward process Xt,φ : [0, T ]×D([0, T ];Rd) → R
d is not markovian, since its

value depends on the (near) past. Nevertheless, we can enlarge the state space
and consider X as a process of the path, then lifting in in an infinite-dimensional
state space, to recover markovianity. Following, e.g., [11], we can rephrase the
problem in an infinite dimensional setting, by the so-called product-space refor-
mulation into the so-called Delfour-Mitter space M2 := L2([−T, 0];Rd)×R

d, see,
e.g., [2]. More precisely, we decompose the process Xt,φ into two components:
the solution at time s is denoted by X(s), while its path, up to time s, is denoted
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by X[0,s]. Moreover, by [6] (Prop. 2.6), we have that the strong solution to Eq.
(2.2) in M2, is a Markov process in the sense that

P((Xt,φ ∈ B|Fs) = P(((Xt,φ ∈ B|(Xt,φ(s) = φ(s)), P − a.s.

for all s ∈ [0, t] and for all sets B in the Borel set B(M2). Furthermore, M2 is a
separable Hilbert space, see, e.g., [2], and, since D is densely and continuously
embedded in M2, we can derive the following non-linear Feynman-Kac formula.

Theorem 2. Let suitable regularity assumptions hold and K or δ be small
enough. Then

Y t,φ(s) = u(s,Xt,φ), for all s ∈ [0, T ] (3.1)

∀ (t, φ) ∈ [0, T ] × Λ being Y t,φ is the solution of the BSDE (2.3) while u(t, φ) :
[0, T ] × Λ → R is a deterministic function given by the following representation
formula

u(t, φ) = Y t,φ (t, φ) ∈ [0, T ] × Λ.

Moreover, the solution of the decoupled system of the FBSDEs given by (2.2)
and (2.3) is the quadruple (X,Y,Z, U) taking values in Λ × R × R

d′ × R.

4 Financial Applications

Section 4.1 generalizes the Large Investor Problem with a stock price jump-
diffusion dynamic and Sect. 4.2 describes an insurance problem with a payment
dynamics consistent with a step process and evaluated by a dynamic risk mea-
sure.

4.1 The Large Investor Problem

Following [4] and [5], we consider an investor with strategy π and investment
portfolio Xπ, acting on a financial market whose strategy affects μ and r⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS0(t)
S0(t)

= r(t,Xπ(t), π (t) ,Xπ
t )dt , S0(0) = 1 ,

dS(t)
S(t)

= μ (t,Xπ(t), π (t) ,Xπ
t ) dt + σ(t,Xπ(t),Xπ

t )dW (t),

+
∫
R\{0}

γ(t,Xπ(t),Xπ
t , z)δ(z)ν(dz), S(0) = s0 > 0 ,

(4.1)

where r, μ, σ and γ are F
W,Ñ -predictable processes, being F

W,Ñ the natural
filtration associated to the Brownian motion W and adapted to the Poisson
random measure Ñ . The total amount of the large investor portfolio reads

dXπ = π(t)
dS(t)
S(t)

+ (Xπ(t) − π(t))
dS0(t)
S0(t)

dt ,
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and we aim at finding an admissible replicating strategy π ∈ A for a claim
h(S(T )). By plugging (4.1), X evolves according to

dX(t) = π(t) ·
[
μ (t, X(t), π (t) , Xt) dt + σ(t, X(t), Xt)dW (t)

+

∫

R\{0}
γ(t, X(t), Xt, z)Ñ(dt, dz)

]
+ [X (t) − π(t)] · r(t, X(t), π (t) , Xt)dt

with the final condition X(T ) = h (S) . Hence, for t ∈ [0, T ], we have

X(t) = h (S) +

∫ T

t

F (s, X (s) , π (s) , Xs, πs) ds −
∫ T

t

π(s)σ(s, X(s), Xs)dW (s)

−
∫ T

t

∫

R\{0}
π(s)γ(s, X(s), Xs, z)Ñ(ds, dz),

(4.2)
The system composed by the Forward SDE (4.1) and the BSDE (4.2) repli-
cates the structure already analysed, see (2.2) and (2.3). By imposing suitable
assumptions on μ, r, σ and γ, Theorem 1 allows us to have both existence and
uniqueness, while, by Theorem2, we derive the following solution representation
(Xπ) of the backward component of (4.2) for every (t, φ) ∈ [0, T ] × Λ, namely
u (t, φ) = Xt,φ (t) where u(t, φ) a mild solution of a path-dependent PDE as the
same kind of Eq. (1.1).

4.2 Dynamic Risk Measure for an Insurance Payment Process

We consider a Black-Scholes setting and a filtration F = (F)0≤t≤T . We define
a F-adapted Brownian motion W and a random measure N generated by an
F-adapted step process. The dynamics of the risk-less bond S0 := (S0)0≤t≤T is
described by

dS0(t)
S0(t)

= r(t)dt, S0(0) = 1 (4.3)

where r(t) denotes the risk-free rate.The stock S := (S)0≤t≤T is described by

dS(t)
S(t)

= μ(t)dt + σ(t)dW (t), S(0) = s > 0 (4.4)

where μ is the expected return and σ the stock volatility. According to [7],
insurance claims are modelled by a step process J and a jump measure N ,
e.g., J can be modeled as a point process defined w.r.t. a sequence of random
variables (defaults of securities, insured persons deceases or policies surrenders).
The insurance payment process reads

P (t) =
∫ t

0

H(s)ds +
∫ t

0

∫
R

G(s, z)N(ds, dz) + F1{t=T}, 0 ≤ t ≤ T (4.5)

where the process P contains payments H continuously occurring during the
contract life (annuities), claims G, randomly happening because triggered by the
step process J (death benefits), and liability F settled at the end of the insurance,
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(survival benefit). We consider an investor (insurer) facing liabilities’ stream
(4.5) and investing in the stock (4.4), assuming that the combined financial
and insurance model is arbitrage-free. Her goal is to replicate the insurance by
investing on assets and to quantify the risk of the investing activities.

The replicating portfolio of the investment is denoted by Xπ = (Xπ(t))0≤t≤T

under a strategy π. We assume Xπ := (Xπ(t), 0 ≤ t ≤ T ) is self-financing and
its dynamic is given by the following forward SDE

dXπ(t) = π(t)
dS(t)
S(t)

+ (Xπ(t) − π(t))
dS0(t)
S0(t)

− dP (t)

= π(t) (μ(t)dt + σ(t)dW (t)) + (Xπ(t) − π(t)) r(t)dt − dP (t)
Xπ(0) = x > 0

(4.6)

where π denotes the amount invested in the risky asset S and x the initial capital.
By plugging (4.5) into (4.6), we obtain

dXπ(t) = π(t) (μ(t)dt + σ(t)dW (t)) + (Xπ(t) − π(t)) r(t)dt

−H(t)dt −
∫
R

G(t, z)N(dt, dz), Xπ(0) = x > 0 (4.7)

where we have to subtract the claim F from the terminal wealth Xπ(T ).
To calibrate the investment, we consider a dynamic risk measure and, accord-

ing to [12] or [1], we model the risk measure Y (t) as a g-expectation to incor-
porate a memory effect by moving average, see [8]. We consider two bounded
and Lipschitz functions g1 and g2, s.t. g2(0) = 0 and a g-expectation of the form
g(x, y, z) = βg1(ȳ)g2(z), where ȳ is the time-average in a sufficiently small time
interval and a given financial weight β ∈ R, hence dealing with a time-delayed
BSDE:

Y (t) = h
(
Xπ(T ) − F

)
+

β

δ

∫ T

t

g1

(∫ 0

−δ

Y (s + r)dr

)
g2(Z(s))ds −

∫ T

t

Z(s)dW (s)

(4.8)
assuming a terminal payoff h : Λ → R depending on the final wealth of the
investment discounted by F , and δ being the amount of the small delay. By
associating (4.7) to the BSDE (4.8) as a risk measure, we obtain a system that
is analogous to our theoretical setting given by (2.2) and (2.3).

References

1. Acciaio, B., Penner, I.: Dynamic risk measures. Risk Manag. 1–34 (2011)
2. Baños, D.R., Cordoni, F., Di Nunno, G., Di Persio, L., Røse, E.E.: Stochastic

systems with memory and jumps, arXiv e-prints (2016)
3. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equa-

tions and integral-partial differential equations. Stochast. Stochast. Rep. 60, 57–83
(1997)

4. Cvitanic, J., Ma, J.: Hedging options for a large investor and forward-backward
SDEs. Ann. Appl. Probab. 6(2), 370–398 (1996)



208 L. Di Persio et al.

5. Cordoni, F., Di Persio, L., Maticiuc, L., Zălinescu, A.: A stochastic approach to
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Abstract. This paper empirically assesses the ability of three putative
stablecoins (two dollar-backed, Tether and USD Coin; and one gold-
backed, Digix Gold) to reduce the risk of a traditional cryptocurrency
portfolio during the COVID-19 pandemic. A monthly rebalance exper-
iment is conducted over an out-of-sample period, so that the effects of
including stablecoins in terms of diversification can be clearly assessed.
The GO-GARCH model is implemented to obtain dynamic estimates of
conditional co-moment arrays up to order four. Then, assuming a CARA
utility function and a risk defensive investor profile, an extension of the
certainty equivalent with co-skewness and co-kurtosis is conducted for
portfolio allocation purposes. Using the Cornish-Fisher expansion of the
parametric VaR (i.e., the modified VaR), we evaluate how the introduc-
tion of every single stablecoin into a traditional cryptocurrency portfolio
affects the downside risk of the combined strategy. The empirical evi-
dence highlights that the two dollar-backed tokens have high diversifi-
cation and hedging capabilities against traditional cryptocurrencies and
can even act as safe havens, whereas Digix Gold shows a high diver-
sification potential, but constrained by its high intrinsic volatility. In
addition, our results also reveal the importance of considering higher
order moments when forming cryptocurrency portfolios and measuring
their risk.

Keywords: Co-skewness · Co-kurtosis · Cryptocurrency · Modified
VaR · Portfolio allocation · Stablecoin

1 Introduction

Not much research has yet been done on the capabilities of stablecoins to act as
diversifiers in traditional cryptocurrency portfolios, with the notable exception
of [9]. Our study follows this trend by assessing stablecoins capabilities to reduce
the VaR of a traditional cryptocurrency portfolio. Based on a careful and state-
of-the-art methodology, we provide empirical evidence to help answer a relevant

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 209–215, 2022.
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and novel question for many academics and practitioners: do stablecoins act as
diversifiers or hedgers against more volatile and traditional cryptocurrencies?

We conduct an out-of-sample experiment during the COVID-19 pandemic
(which covers from March the 1st of 2020 to May the 25th of 2021, and with
an in sample period ranging from October the 5th of 2018 to February the 29th
of 2020), through which we obtain one-day ahead forecasted co-moment ten-
sors by means of the calibrated Generalized Orthogonal GARCH (GO-GARCH)
models and use these forecasts to reallocate the portfolios every 30 days. We
consider a base portfolio formed by five traditional cryptocurrencies: Bitcoin,
Ethereum, Ripple, Cardano and Litecoin; and its diversification by means of the
introduction of one of the following three asset-backed cyptocurrencies: Tether,
USD Coin and Digix Gold (the first two being USD backed and the latter being
gold-backed).

First, we classify the considered stablecoins as diversifyiers or hedgers fol-
lowing the definitions proposed in [1], so that we consider a diversifying asset to
be one that presents non-perfect positive correlation with another asset, while
a hedging asset would be one that presents zero or negative correlation with
another asset. Second, we dynamically estimate the co-moment tensors up to
fourth order by making use of the GO-GARCH model proposed in [8]. Third,
four portfolios are constructed over the out-of-sample period: one formed by
five traditional cryptocurrencies, and three others composed by the latter base
portfolio together with one of the three stablecoins. Two portfolio allocation
strategies are considered: (1), the maximization of the certainty equivalent (CE)
that arises from a Constant Absolute Risk Aversion (CARA) utility function of a
highly risk-averse investor with preference for positive skewness and low kurtosis;
(2), minimum variance (MV) portfolios are formed as a benchmark. Fourth, we
dynamically estimate the downside risk of the portfolios by estimating the modi-
fied VaR (mVaR) proposed in [5], and we analyze the results in terms of the effect
that the introduction of stablecoins has on portfolio risk. Thus, our main contri-
bution consists on assessing the capabilities of stablecoins on the allocation and
diversification of traditional cryptocurrency portfolios considering co-moments
up to order four both in terms of optimization and risk management. This is
also the first paper to apply the GO-GARCH model to portfolios composed
exclusively of cryptocurrencies and also the first to apply it to stablecoins.

The results show that the two dollar-backed tokens have high diversifica-
tion and hedging capabilities against traditional cryptocurrencies, whereas Digix
Gold shows a significant diversification potential constrained by its high intrin-
sic volatility. In addition, our results also reveal the importance of considering
higher order moments when forming cryptocurrency portfolios and measuring
their risk.
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2 Methodology

2.1 The Portfolio Allocation Method

We consider an investor who allocates her portfolio by maximizing her CE. Given
a lottery L in which a particular individual can participate, the CE is the amount
of wealth for which she would feel indifferent between taking it or playing the
lottery. By developing a Taylor expansion on the investor’s utility function we
reach the function to maximize:

CE ≈ μp − 1
2
λσ2

p +
sp

6
λ2σ3

p − kp − 3
24

λ3σ4
p (1)

which is an approximation of the investor’s CE that accounts for the first four
moments of the portfolio returns, being: the mean (μp), the variance (σp), the
skewness (sp) and the kurtosis (kp). The moments are estimated dynamically
by means of the GO-GARCH model proposed in [8], as it allows to estimate
conditional co-moment tensors. In addition, MV portfolios are formed to serve as
benchmark. To these optimization problems we add a no short-selling constraint
[3,7] as this could ostensibly increase the risk and the instability of the portfolios.

2.2 Downside Risk Measures and Backtesting

As a risk measure we employ the mVaR proposed by [5], which is an extension
of gVaR that accounts for skewness and excess kurtosis. The mVaR can be
computed as the sum of the gVaR and a term derived from the Cornish-Fisher
expansion:

mVaRt(α) = gVaRt(α)

− σp,t

(
1
6
(z2α − 1)sp,t +

1
24

(z3α − 3zα)kp,t − 1
36

(2z3α − 5zα)s2p,t

)

(2)
where zα = Φ−1(α) corresponds to the quantile α of a gaussian distribution with
zero mean and unit variance, with 0 < α < 1 being the significance level (which
we set at 0.04 and 0.01).

To check the effectiveness of the risk measures considered, we conduct a
backtesting based on three broadly used tests: the unconditional coverage test
[6], the conditional coverage test [2] and Dynamic Quantile test [4].

3 Main Results and Findings

From our preliminary analysis of the conditional correlation between stablecoins
and traditional cryptocurrencies, we report on the different behaviors exhibited
by the various structures of dependence, depending not only on the pairwise sta-
blecoin but on the point in time under study. Figure 1 shows that Tether performs
as a diversifier during the first months of the pandemic, during which uncertainty
and turmoil in the markets was very high, and as a hedger since late 2020.
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In contrast, correlations with USD Coin show a more stable and inverse
behavior during most of the period considered, suggesting its role as a hedger. In
the case of Digix Gold, we find a diversifying asset with a low positive correlation
with traditional cryptocurrencies throughout the out-of-sample period. This low
conditional correlation with traditional cryptocurrencies synergizes with the low
intrinsic volatility of USD-backed tokens, which explains why they obtain aver-
age weightings close to 80% in CE portfolios and around 90% in MV portfolios.
Conversely, Digix Gold’s diversification potential gives it a significant position in
the portfolio, with an average weighting of around 48% in the EC portfolio and
59% in the case of the MV portfolio; however, its high intrinsic volatility limits
this potential and leads to a more unstable portfolio composition, drastically so
in the case of the EC portfolio. From the risk impact analysis, the results of
which are summarized in Fig. 2 and Table 1, we find that including USD-pegged
stablecoins into the base cryptocurrency portfolio results in a significant and
systematic risk mitigation of the combined strategy throughout the entire sam-
ple. In contrast, including Digix Gold conducts to a greater instability in risk
reduction, even increasing it with respect to the base portfolio at certain times,
which undoubtedly obeys to the high intrinsic volatility of this gold-backed cur-
rency, and which places it outside the domain of stablecoins, acting as a mere
diversifier. Moreover, the empirical results highlight the importance of consid-
ering higher order moments when measuring the tail risk of cryptocurrencies,
otherwise leading to an underestimation of the actual risk exposure, as mVaR
exceeds gVaR by an increasing magnitude with confidence level.

Table 1. Summary statistics on the impact on the risk of CE and MV portfolios when
introducing stablecoins. Note that here mVaR (100 − α%) reduction and differential
(100 − α%) have the same interpretation as explained at the caption of Fig. 2.

With USDT CE portfolio MV portfolio

Mean Std. dev. Min. Max. Mean Std. dev. Min. Max.

mVaR (99%) reduction 0.77390 0.19401 0.20444 0.95980 0.75730 0.01473 0.82673 0.94359

mVaR (96%) reduction 0.88104 0.20381 0.15097 0.94748 0.86973 0.01594 0.79228 0.92041

differential (99%) 0.01511 0.01751 −0.01243 0.06899 −0.00144 0.00629 −0.00482 0.04045

differential (96%) 0.01088 0.00577 −0.02339 0.02085 −0.00032 0.00471 −0.02203 0.01490

With USDC Mean Std. dev. Min. Max. Mean Std. dev. Min. Max.

mVaR (99%) reduction 0.77819 0.18640 0.28306 0.96878 0.92311 0.03582 0.79586 0.96927

mVaR (96%) reduction 0.76434 0.19252 0.24036 0.96731 0.88810 0.02213 0.77804 0.93133

differential (99%) 0.01198 0.01146 −0.02530 0.06325 0.01189 0.00689 −0.02261 0.02571

differential (96%) −0.00187 0.00411 −0.02121 0.02331 −0.00140 0.00491 −0.02512 0.01521

With DGX Mean Std. dev. Min. Max. Mean Std. dev. Min. Max.

mVaR (99%) reduction 0.12419 0.56241 −3.89687 0.70818 0.22333 0.61631 −5.28361 0.67136

mVaR (96%) reduction 0.06172 0.49999 −3.27553 0.64488 0.12045 0.52273 −4.34238 0.55148

differential (99%) 0.04472 0.14250 −1.15905 0.27534 0.08215 0.18891 −1.62425 0.27227

differential (96%) −0.01769 0.06600 −0.53773 0.09257 −0.02064 0.08459 −0.68301 0.08152
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Fig. 1. Conditional correlations between traditional cryptocurrencies (Bitcoin (BTC),
Ethereum (ETH), Ripple (XRP), Cardano (ADA), Litecoin (LTC)) and stablecoins
(Tether (USDT), USD Coin (USDC), Digix Gold (DGX))
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Fig. 2. Effects on VaR of introducing Tether (USDT), USD Coin (USDC) and Digix
Gold (DGX). The first row shows the gVaR (100 − α%) reduction, which represents
the relative reduction of gVaR when comparing the portfolio that includes a stablecoin
against the portfolio of traditional cryptocurrencies, i.e., gVaRstable(100−α%)

gVaRtrad(100−α%)
− 1, and

equivalently for mVaR (100 − α%) reduction shown in the second row. In the third
row, the differential reduction represents the difference between the mVaR and gVaR
relative reductions, i.e., mVaRstable(100−α%)

mVaRtrad(100−α%)
− gVaRstable(100−α%)

gVaRtrad(100−α%)
, so positive (negative)

values indicate that the introduction of the stablecoin in the portfolio generates a higher
(lower) relative reduction or increase in mVaR than in gVaR.
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It would be interesting to extend this work in the future using Expected
Shortfall (ES) and modified Expected Shortfall (mES) as complementary mea-
sures to gVaR and mVaR, or to approach risk measurement using copulas or
Extreme Value Theory (EVT). On the other hand, a logical extension of this
paper would be to broaden the variety of assets analyzed, especially with regard
to stablecoins (Table 2).

Table 2. Backtesting gVaR and mVaR for the portfolios that maximize the CE. Tradi-
tional indicates the estimate of the model considering only the 5 traditional cryptocur-
rencies, while Tether (USDT), USD Coin (USDC) and Digix Gold (DGX) indicate the
estimates of the models considering the 5 traditional cryptocurrencies plus the corre-
sponding asset-backed cryptocurrency. 4 and 18 exceedances are expected at 1% and
4% significance levels, respectively. LRUC , LRCC and DQ denote the unconditional,
conditional and Dynamic Quantile test statistics, respectively, the latter being speci-
fied with 4 lags of the endogenous variable Hit and one lag of the VaR as explanatory
variables. *, ** and *** reveal significance at the 10%, 5% and 1% levels, respectively.

Portfolio Model Exceed. LRUC LRCC DQ

1% 4% 1% 4% 1% 4% 1% 4%

Traditional gVaR 7 11 1.1997 3.2783* 1.4214 3.8309 42.9778*** 21.6749***

mVaR 1 11 4.0192** 3.2783* 4.0237 3.8309 18.3322*** 21.2561***

USDT gVaR 8 16 2.2333 0.2401 2.5236 1.4229 23.5146*** 20.3556***

mVaR 7 15 1.1997 0.5511 1.4214 1.5882 17.4655*** 22.1622***

USDC gVaR 4 15 0.0582 0.5511 0.1302 1.5882 0.7280 2.1920

mVaR 2 15 1.7702 0.5511 1.7881 1.5882 1.4751 2.2018

DGX gVaR 5 11 0.0541 3.2783* 0.1667 4.5428 8.0133 11.1270*

mVaR 2 11 1.7702 3.2783* 1.7881 4.5428 1.4545 10.7191*
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Abstract. The implementation of Basel III introduces new capital
requirements for liquidity risk that build on the Liquidity Coverage Ratio
(LCR) and the Net Stable Funding Ratio (NSFR). We adopt a non-
homogeneous Markov model framework to study liquidity dynamics on
a simulated interbank network and test whether the implementation of
the new regulation allows for efficient networks. The model simulates the
effect of two different policies on the interbank network efficiency.
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1 Introduction

Financial markets and institutions are truly interconnected to each other, both
withing a certain economy and at the international level. The Global Finan-
cial Crisis (GFC) has highlighted the need for straightening the international
regulatory standards, to cope with financial crashes at the global level. The
unprecedented lack of banks’ liquidity, which has characterized the early stage
of the GFC, led to the introduction in Basel III framework (2010) of the novelty
involving capital requirements for liquidity risk. The two liquidity ratios aim at
a better management of the maturity mismatch between assets and liabilities,
for banks to survive liquidity pressures: the Liquidity Coverage Ratio (LCR),
focuses on a bank’s ability to survive a 30-day period of liquidity disruptions
and the Net Stable Funding Ratio (NSFR), which focuses on liquidity manage-
ment over a period of one year. To this aim the European Central Bank has set
up Task Force on Systemic Liquidity (TFSL) for policy responses to liquidity
risk. This paper aims at studying the impact of the LCR on the efficiency of
the interbank networks. Drawing from [1], we study this relationship by explor-
ing the interrelationship with network topologies, using a different modelling
framework in the context of dynamically evolving networks.

Regulatory Requirement on the LCR. The LCR requires that the amount of
unencumbered High-Quality Liquid Assets (HQLA) (i.e. central bank reserves,
sovereign bonds) be at least as large as the net outflow of funds under the 30-
day stress scenario [5], LCR = HQLA

NetCashOutflow ≥ 100% where Net Cash Outflow
(NCOF) stands for the total net cash outflow over the next 30 calendar days
over a stress period.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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for Actuarial Sciences and Finance, pp. 216–221, 2022.
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2 A Model of Liquidity Dynamics on an Interbank
Network

We model an economy as being composed by a large amount of homogeneous
agents willing to have a buy and sell financial transaction involving the need to
ask for a bank’s loan. Each node of the network is a bank and a link is created
between the bank that issues the loan and the bank where the account of the
seller is settled. As a result of the financial transaction, whenever it occurs,
liquidity flows from the bank from the bank that issues the loan to the bank
where the seller’s account stands and this flow results in a network link. The
model builds on three concepts: a liquidity profile that, for each bank, varies
over time, i.e. each node of the network; a liquidity dynamics on each node and,
finally, a network dynamics. Let’s start by introducing the liquidity profile. As
far as the liquidity profile is concerned, for each bank assets are clusterized into
different liquidity classes, ranging from the lowest to the highest liquid assets
(central bank reserves or sovereign bonds for instance). The percentage of asset
in the highest classes are considered as belonging to the subcluster of HQLA [5]
for the purpose of computing the LCR.

LCRr(t) =
HQLAr(t)
NCOFr

, r = 1, . . . ,M, (1)

where HQLAr(t) is the percentage of high-quality liquid assets at time t of the
r-th bank of the network and NCOFr is the 30-days Net Cash Outflow of the r-
th bank and it is considered to be fixed over the time interval under observation;
finally M is the number of banks.

We introduce now the liquidity dynamics on each node. As for the liquidity
dynamics on each node, agents interact with each other by means of financial
transactions possibily involving the issue of a loan. The agents are clusterised by
means of the banks where their bank account is based. For simplicity we assume
that each individual ‘belongs’ to just one bank. The stylised dynamics that is
modelled is the following. The financial transaction is finalised if and only if the
bank issues the loan and the bank issues the loan only if the LCR requirement
is satisfied at that time. There are two possible outcomes:

1. The loan is issued and the payoff is stochastic. It might in fact result in a shift
toward a higher liquidity class with probability α (depending on the inter-
est rate) for the bank of the individual selling the asset and thus obtaining
money and a shift towards a lower liquidity class for the bank of the indi-
vidual acquiring the asset (with the same probability α for simplicity). This
dynamics can be tought in terms of pairwise interaction dynamics between
agents resulting in a winner and a loser, where the shift toward the higher
class is the ‘win’ outcome (for an example in a population dynamics see [6]).

2. The loan is not issued (because the LCR requirement is not satisfied). In this
case there are no payoffs for both the two nodes involved in the financial
transaction.
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The previous modelization assumptions result in the following system of finite-
differences equations [6,7]:

fij(t + Δt) = fij(t) + Δt
( ∑

k,l

ηklfij(t)fil(t)ψkli − fij(t)
∑
l

ηilfil(t)
)

(2)

– fij probability that an entity in the ‘liquidity status’ xj at time t, takes the
status xi at t + Δt;

– ηkl probability of the occurrence of financial transactions of an entity in the
status xk with an entity in the state xl;

– the Markovian transition mass function ψklii is the probability that an entity
in the status xk at time t takes the status xi at t + Δt due to a financial
transaction with an agent in the status xl in the interval t, t + Δt.

The time-variation in the parameters of the Markov process is governed by a
discrete-valued latent stochastic process with limited memory i.e. the current
state is characterized only by the state from the previous period and the transi-
tion matrix [7]. Markovian transition probabilities are defined according to the
previously introduced model specifications.

The initial condition is defined by each bank’s liquidity profile at the initial
time. A specific example is given in the numerical simulation in the next section.
As a result of the dynamics the liquidity profile for each bank changes dynami-
cally during time due to the stochastic interactions outlined by the model.

The model is completed by defining the network dynamics. The same dynam-
ics that might determine the change in the liquidity profiles of the banks involved
in the financial transactions determine the network dynamics as explained in the
following. Recall that if two individuals are involved in a financial transaction
the model consider that the financial transaction is finalised if and only if the
bank issues the loan and the bank issues the loan only if the LCR requirement
is satisfied at that time. Form the network dynamics perspective, there are then
two possible outcomes.

1. The loan is issued and the link between the two involved banks is created if
not already existing or its weight increases if already existing.

2. The loan is not issued (because the LCR requirement is not satisfied) and the
link between the two involved banks is not created if not existing already or
its weight is lowered if already existing.

3 Numerical Simulations with Diagnostic of Network
Efficiency

By using the model above introduce, we conducted two different simulations in
order to observe the impact of regulations requirements with different specifi-
cation on the network efficiency. In this case network efficiency is quantified by
using centrality measures [8,9], specifically aggregate centrality.
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We compare the effect on the time evolution of aggregate centrality in two
different scenarios, in order to exploit possible impact of different policy mea-
sures. Both scenarios are simulated using 100 banks, i.e. a network with 100
nodes. For both scenarios we choose an initial core-pheriphery network struc-
ture. The initial liquidity profiles on each bank have been chosen as randomly
drawn from a normal distribution, using 1000 replications, with mean equal to
6 and different standard deviations, spanning from 1 to 2 (with values equally
spaced). The constant NCOF is different for each bank (see (Eq. 1) and have
been chosen such that the initial liquidity coverage ratios span over an interval
from 80% to 125%. We have chosen 9 liquidity classes spanning from the one
with the lowest liquidity quality up to the one with the highest and the 3 highest
classes in terms of liquidity are classified as HQLA (Fig. 1).

Fig. 1. A bank’s liquidity profiles with 9 different liquidity classes and 3 classes classi-
fied as HQLA

For the second scenario the same conditions on the initial network topology
and the initial liquidity profiles for each node as in the first scenario apply.
The only difference consists in including a penalty for banks holding excesses of
liquidity reserves. The penalty has been introduced by assuming that whenever
LCR > 115% for a bank at a given time step, the NCOF is increased of a 5%.
We report the time evolution of the aggregate centrality in the two different
scenarios (Fig. 2):
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Fig. 2. Time evolution of the aggregate centrality in the first scenario (left) and in the
second scenario (right).

where network efficiency is clearly falling down. All else equal, the time evolution
of the aggregate centrality in the second scenario where bank are penalized for
holding excesses of liquidity is clearly stabilizing the network efficiency around
the initial value.

4 Conclusions and Research Perspectives

This paper presents a stylised model of liquidity dynamics on an interbank net-
work when a specific regulatory policy is implemented in order to show how
interconnectedness of institutions crucially impact network efficiency.

We explore a research perspective by considering on any node that the prob-
ability characterizing the fact that it is forced to delete a link might increase
due to an increment in environmental volatility [10]. The probability has been
evaluated by using a binomial distribution starting with p = 0 and increasing
up to p = 1 (with steps 0.04).

The increase in environmental volatility linked to the loss of links, determines
a breakpoint in network efficiency.
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Abstract. The Conditional Value-at-Risk (CoVaR) is a modified ver-
sion of the Value-at-Risk (VaR) to quantify the risk of a random variable
Y with respect to another random variable X. In this work, we consider
a multivariate modification of CoVaR based on the Kendall distribution
function. In particular, we discuss two possible hazard scenarios that
generalize the standard CoVar and use the copula theory to derive the
corresponding risk quantities. We consider a systemic risk exercise of the
Italian banking system to demonstrate how the multivariate modifica-
tion of CoVaR can be useful to analyze the resilience of a system when
some parts of it are under distress.

Keywords: Copula · Systemic risk · Value-at-Risk

1 Introduction

The Conditional Value-at-Risk (CoVaR), introduced by Adrian and Brunnermeier
[1], is a dependence-adjusted version of the Value-at-Risk (VaR) that represents
the risk of a random variable Y with respect to another random variable X. The
general idea behind CoVaR is to quantify the risk by using the conditional distri-
bution of Y given that X is under distress. Various versions of CoVaR have been
proposed in the literature depending on different definitions of the stress event:
see, for instance [3,9,11].

In this work, we consider a multivariate modification of CoVaR, which has
been proposed in [4] to take into account a stress event related to multiple
random variables. Specifically, given a random vector (X, Y ) that represents
losses of a economic/financial system, we are interested in the VaR of Y given
that X takes values in a stress scenario S ⊆ R

d. Following the modified version
of CoVaR presented for the first time in [9], we here consider that the probability
of the event {ω ∈ Ω : X(ω) ∈ Sα} is non-zero.

The CoVaR of Y given that X ∈ S is formally defined as

CoVaRS,β(Y | X) = VaRβ(Y | X ∈ Sα), (1)

where β ∈ (0, 1) and P(X ∈ S) = 1−α; here, α and β belong to {0.90, 0.95, 0.99}.
In other words, CoVaRSα,β(Y | X) can be seen as the Value-at-Risk VaRβ of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 222–227, 2022.
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the conditional distribution of Y given that the realizations of X1, . . . , Xd are
from a hazard scenario Sα with a specified probability size.

In the multivariate context there is no general consensus about how to define
a stress scenario due to the lack of a total order in R

d. Here, we adopt the
approach based on the Kendall distribution function [8,13,14]. In our setting, the
stress scenario is directly generated by the joint distribution function of X and
the family of its level curves at some suitable levels. Compared with other stress
scenario (like AND and OR scenarios), the advantage of the Kendall approach
is that a single hazard region is associated to a given level α.

The paper is organized as follows. In Sect. 2, we revisit the notion of CoVaR
based on Kendall hazard scenarios and show how the concept of copula can be
helpful in deriving the risk quantities. In Sect. 3, we demonstrate the advantage
of the proposed multivariate perspective to quantify the risk by considering a
systemic risk exercise of the Italian banking systems.

2 The Kendall CoVaR

In this section, we present the notation and the mathematical description of
the proposed multivariate approach. Given a probability space (Ω,F ,P), let
(X, Y ) = (X1, . . . , Xd, Y ) be a (d + 1)–dimensional continuous random vector
whose components represent losses. Consider the cumulative distribution func-
tion associated with (X, Y ) as given by

F(X,Y )(x1, . . . , xd, y) = P(X1 ≤ x1, . . . , Xd ≤ xd, Y ≤ y),

which can be expressed as

F(X,Y )(x1, . . . , xd, y) = C(FX1(x1), . . . , FXd
(xd), FY (y)),

where C is the copula of the random vector and FXi
, i = 1, . . . , d, and FY are the

marginal distribution functions (see, for instance, [7]). Hereinafter, we denote by
FX the joint distribution function of X.

Suppose that d = 1. Given a probability level α ∈ ]0, 1[ (e.g., α ∈
{0.90, 0.95}), a stress scenario, also called hazard scenario [18], for X corre-
sponds to the set S ⊆ R of all realizations x such that the probability that X
will exceed x is bounded from above by 1 − α, i.e.

P(X ≥ x) = FX(x) ≤ 1 − α,

where FX is the survival function associated with X. This can be equivalently
expressed as

P(X ≤ x) = FX(x) ≥ α.

For continuous distribution functions FX , we have that S = [v∗,+∞], where
v∗ is the Value-at-Risk of X at level α, i.e. the α–quantile of X. Moreover,
P(X ∈ S) = 1 − α.
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Since, for every d > 1, FX and its associated survival function FX may not
coincide, two generalizations are possible for a hazard scenario S, namely

SǨ = {x ∈ R
d : FX(x) ≤ ť}, (2)

with P(X ∈ SǨ) = 1 − α, and

SK = {x ∈ R
d : FX(x) ≥ t}, (3)

with P(X ∈ SK) = 1 − α. These two stress scenarios are called, respectively,
survival Kendall and Kendall hazard scenarios. We notice that:

– the distribution function of the random variable FX(X) is known as survival
Kendall function (see, e.g., [13]).

– Analogously, the distribution function of the r.v. FX(X), known as Kendall
function (see, e.g., [8,17]).

An illustration of the two regions is presented in Fig. 1 by considering realizations
from a bivariate Gumbel-Hougaard copula with standard exponential margins,
respectively.

We now consider two different notions of multivariate CoVaR based on sur-
vival Kendall and Kendall hazard scenarios.

Kendall Scenario. First, we notice that the distribution function of Y given
that X ∈ SK can be written as

FY |X∈SK (y) = P (Y ≤ y | FX(X) ≥ t)

=
FY (y) − P (FX(X) ≤ t, Y ≤ y)

1 − α
.
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Fig. 1. Random sample of 500 points from a Gumbel-Hougaard copula model with
standard exponential marginals. The red points indicate the Kendall hazard scenario
(left) and the survival Kendall hazard scenario (right) with the respective level curve
{FX(x = t} and {FX(x = ť}.
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It follows that CoVaRSK ,β(Y | X ∈ SK) is the value y such that

FY (y) − D(FX(X),Y )(α, FY (y)) = (1 − α)β,

where D is the copula between the r.v.’s FX(X) and Y .

Survival Kendall Scenario. We may write the distribution function of Y given
that X ∈ SǨ as

FY |X∈SǨ (y) = P
(
Y ≤ y | FX(X) ≤ ť

)

=
P

(
FX(X) ≤ ť, Y ≤ y

)

1 − α
=

D(FX(X),Y )(1 − α, FY (y))

1 − α
,

where D is the copula between FX(X) and Y . Thus, CoVaR(Y | X ∈ SǨ) is
the value y such that

D(FX(X),Y )(1 − α, FY (y)) = (1 − α)β.

Summarizing, in both cases CoVaR can be calculated by using (a) the distribu-
tion function of Y , (b) the joint distribution function of X, and (c) the copula
between an aggregation of the elements of X and Y .

3 Illustration: Analysis of the Italian banking systems

In this section, we present a case study to illustrate the methodology introduced
in Sect. 2. In this empirical analysis, we are interested in quantifying the sys-
temic risk in the Italian banking system from a multivariate perspective. To
this end, we consider log-returns of the daily prices of the ten most capitalized
Italian banks listed on the FTSE MIB and FTSE Italia Mid Cap from March
15th, 2020 to November 30, 2021. The FTSE MIB is the primary benchmark
Index for the Italian equity markets, and it is comprised of highly liquid, leading
companies across ICB sectors in Italy. It includes the following eight banks that
are analysed here: Intesa Sanpaolo (ISP.MI), Unicredit (UCG.MI), Finecobank
(FBK.MI), Mediobanca (MB.MI), Banca Mediolanum (BMED.MI), Banco Gen-
erali (BGN.MI), Banco BPM (BAMI.MI) and Bper Banca (BPE.MI). Moreover,
we add also Credem (CE.MI) and Monte dei Paschi di Siena (BMPS.MI) that
are listed in the FTSE Italia Mid Cap.

The time series of the daily prices in EUR are obtained from the website
Yahoo Finance (see https://it.finance.yahoo.com/). The database contains a
total of 437 daily observations for each variable and no missing values. To focus
on the right-side of the distribution, the relative log-returns are calculated with
a negative sign.

To investigate the joint behaviour of the different time series we consider
an ARMA-GARCH copula model (see, e.g., [15,16]) and estimate the marginals
and the copula according to a two-stage procedure as illustrated in [10, section

https://it.finance.yahoo.com/
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6.2.3]. First, in order to describe separately the behavior of each time series, we
estimate an appropriate ARMA(1,1)-GARCH(1,1) model with Student distribu-
tion for residuals. It allows to model the conditional mean and variance taking
into account possible time-varying volatility patterns. Moreover, the obtained
residuals show no strong evidence of heteroskedasticity and/or serial dependence
according to Weighted Ljung-Box Test and ARCH LM Tests.

Once an appropriate ARMA-GARCH model has been estimated to each time
series, the possible dependence relations among variable is investigated by means
of special copula constructions built from bivariate copulas, i.e., vine copulas
[2,5]. Specifically, we fit an R-Vine copula model on standardized residuals via
maximum likelihood procedures as done in [6, section 4]. We use R package
‘rvinecopulib’, implemented in [12], to conduct estimation and model selection
procedures for the vine copulas.

Once the desired joint model has been obtained for all the ten banks, we
determine the predicted (one-step) CoVaR of each banking institution condi-
tionally on a stress scenario involving all the other nine banks. The results
are visualized in Fig. 2 for both the Kendall and the survival Kendall hazard
scenarios. From the picture, we notice that the two approaches provide a qual-
itatively analogous representation of the systemic risk. In particular, it seems
that the most suffering bank of the entire system is Monte Dei Paschi Di Siena
(BMPS.MI), while Finecobank (FBK.MI) is the least suffering, conditioned by
a stress scenario compared to all the other banks.

BAMI BGN BMED BMPS BPE CE FBK ISP MB UCG

0
2

4
6

8
10

BAMI BGN BMED BMPS BPE CE FBK ISP MB UCG

0
2

4
6

8
10

12
14

Fig. 2. CoVaR of one bank conditioned to a stress scenario of all the other banks
according to Kendall hazard scenario (left) and the survival Kendall hazard scenario
(right). Here, α = β = 0.95.
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Abstract. This study comprises a preliminary investigation into the
use of Long Short-Term Memory (LSTM) methodology when used in
conjunction with Principal Component Analysis (PCA) for producing
trading signals for daily returns of the the FTSE100 index. The model
is trained on approximately 35 years of daily data and validated on six
months of testing data, demonstrating a high degree of risk-adjusted
trading efficacy.
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1 Introduction

The challenge of accurately predicting Time Series data, such as equity prices,
bond prices and volatility levels is one of the most difficult in the finance industry.
The Efficient Market Hypothesis (EMH) suggests that it is not possible, however.
Over many years, there have been a vast amount of research carried out on how
machine learning techniques might be applied to outperform classic time series
forecasting techniques such as ARIMA and other methods.

Instead of trying to predict the returns themselves, the intention here is
to find trading allocations (long or short) which optimise Optimal Growth (i.e.,
proceeding as if employing a logarithmic utility function). A combination of deep
learning methods are used and compared in a stacked ensemble like approach in
order to achieve this.

One of the main difficulties when modelling Financial Time Series data is the
low signal-to-noise ratio. This makes it difficult for models to discern random fluc-
tuations from meaningful signals that provide information on where the asset’s
price will go next. Many noise removal techniques have been tried over the years.
For this study, a combination of truncating the returns between a certain threshold
and performing a statistical transformation in the form of PCA are used in order
to filter out noise while maximizing the amount of information passed to the mod-
els. As will be seen, this enables modelling of subtle relationships such as can be
discovered by methods such as LSTM to be used much more effectively than many
researchers have found previously in the financial forecasting context.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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2 Related Work

2.1 Ensemble Methods

Meta Labelling. Meta-labelling [2] is a method whereby ‘sub-learners’ predict
the direction of the trades, with a 1 representing a long position and a –1 repre-
senting a short position, similar to a binary classification task. These predictions,
along with their corresponding probabilities are then fed into a secondary model
(meta learner) as features. The Secondary model determines whether or not the
transaction should take place, as indicated by a signal which can be either 0
if the meta learner determines the sub learner to be incorrect, or 1 if the sub
learner deems the sub learners’ prediction to be correct.

The advantage of this methodology is effectively a filter for the trading signal
which has been generated: If the meta learner determines the sub learner was
wrong, it does not take the opposite side of the trade, instead it takes up no
position. This can be interpreted as a weak signal being present in the data at
that point in time. Another advantage of this method is the output probabilities
help give a confidence measure of the sub-learners predictions. When we do
regression of (transformed) prices, these probabilities are not available and hence
the meta learner cannot know how confident a model’s prediction is.

2.2 Hybrid Methods

Hybrid methods, which combine statistical and deep learning methods have
shown impressive results in time series forecasting problems. By combining these
two methodologies, patterns in financial time series data can be more effectively
captured due to the cancellation of errors and noise as a result of averaging. Smyl
[11] used Exponential Smoothing and a LSTM, trained using the same gradient
descent method to outperform deep learning and statistical methods in a Kaggle
competition (M5) on time series forecasting.

2.3 Deep Learning Paradigms

The M5 competition hosted on kaggle.com has acted as an incubator for new
approaches and techniques to time series forecasting. N-BEATS has shown to
be an example of an ensemble based approach to time series modelling, being
described as the state of the art algorithm for time series classification.

3 Model Architecture

3.1 Overview

Stacking has been shown in the past to reduce bias when used for many machine
learning tasks, while Deep Learning methods such as RNNs have proven very
successful in the past in modelling sequential data such as Natural Language
and speech recognition problems [?]. This work aims to combine both of these
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methods on Financial Time Series data, along with Principal Component Anal-
ysis (PCA) [4].

Here, a Deep Feedforward Network is applied to seven lags of transformed
price return data and one lag of volume data, normalized using min-max scal-
ing and fed into a sub learner, a Multi-Layered Perceptron. The sub-learner
hyper-parameters are found using purged Cross-fold Validation. The sub-learner
one-step predictions along with lag price return and volume return data are
transformed using PCA and normalized using min-max scaling before being fed
into the meta-learner.

The meta learner then predicts the optimal investment size to achieve log-
optimal growth, based on the ‘Merton Ratio’ which is μi/σ2

i (equivalent to the
first-order long-optimal investment amount). If σi is constant then the best size
is proportional to μi, the forecast return for day i.

The Meta Learner generates one step predictions for each input sample, and
the output of the meta learner is a vector of each of these one step predictions,
concatenated together.

Three different Meta-Learners are considered: An MLP, Vanilla RNN and an
LSTM.

3.2 Sub-Learners

Deep Multi-Layered Perceptron. A Deep Multi-Layered Perceptron with 4
hidden layers is used as the base learner. Each hidden layer gets passed through
a ReLU activation function. For each of the 10 splits for generating predictions
to be fed into the Meta Learner, a different model is fit. Each of these models
is found by using Purged Cross fold validation with a gap of 7 for each split.
For the portion of the data to be used as testing and validation data for the
Meta Learner, Purged Cross fold validation is used again on the entire training
dataset and the best model found is used to predict one step prediction values
for these datasets.

3.3 Meta-learners

Recurrent Neural Network. Recurrent Neural Network (RNNs) are Neural
Networks designed for sequential data which typically comes from areas such as
speech recognition and translation, natural language processing and time series
data. Classical networks such as the MLP are capable of handling sequential
data, but have some limitations, such as the inability to handle sequences of
variable length and to detect time invariant patterns in the data [5]. RNNs make
use of recurrent connections which connect the hidden units in the network back
to themselves with a time delay. RNNs’ main pitfall in practice is the difficulty
encountered in training them. A long sequence of data modelled by an RNN
gives rise to a strong possibility of vanishing or exploding gradients [6], making
it impossible to build an accurate model. Various alterations to RNNs, such as
LSTM and GRU have been found useful in avoiding this issue.
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Long Short Term Memory. Long short term memory (LSTM) [7] is a mod-
ified version of an RNN. It can remember both short and long term values
and is capable of learning order dependence in sequence prediction problems.
LSTMs have a forget gate, an input gate and an output gate. These gates are
fully connected layers with weights that can be trained using well known back-
propagation techniques. These gates in turn regulate the flow of information
through the network.

4 Methods

4.1 Creating the Dataset

Raw Data. The raw data contains Closing Price (Fig. 1) and Volume data from
the FTSE100 index, obtained from Yahoo! Finance Python API and covers a
time period from 1985 until 2021.

Fig. 1. FTSE100 historical price

Feature Engineering. The first step is to identify any missing values in the
dataset, and remove them, compute the logarithmic returns, and then truncate
any extreme values, at approximately the 0.5% level.

Analogously, similar truncation is applied to volume data.
The dataset provided only contains volume data back as far as the year 2000,

hence all data from before that period is not used in any of the model building
or evaluation.

5 Experimental Setup and Evaluation

As is required with stacking, the dataset was partitioned, in this case into
10 folds. Additionally, the usual Training/validation/generalisation protocol
was followed, all to ensure minimal overfitting. Data were preprocessed using
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Principal Components and min-max scaling. The training criterion used was the
quadtratic approximation to Optimal Growth Performance,

(m(x)y − 1)2

where y denotes the target and m(·) the system’s estimate of the optimal invest-
ment allocation.

An earlier draft of this article outlined the gridwise hyper-parameter opti-
misation which was used in the fitting of the LSTM model, but space does not
allow inclusion here [interested readers are invited to contact the authors].

For simplicity, in order to assess performance in a risk-adjusted manner, we
focus on the Sharpe-Ratio, namely the annualised ratio of investment return
(which would have resulted from the model’s investments) to its standard devia-
tion, as measured on a daily basis. As the correlation of investments managed in
this way tends to be extremely low, this relates directly to what is often referred
to as ‘portable alpha’.

6 Results

Table 1. Out of sample (test data) performance metrics

Description (SL)MLP (ML)MLP (ML)RNN (ML)LSTM

Sharpe ratio 0.547 0.708 0.753 0.746

Correlation 0.014 0.179 0.206 0.208

Fig. 2. Cumulative returns on the trading strategies generated by the LSTM vs actual
cumulative return of the FTSE in the test period

The results show that the recurrent models (RNN and LSTM) provide the most
profitable trading strategies (as well outperforming on the basis of a number of
other metrics which are not included here for brevity’s sake). What the results
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also show is that the Meta-Learners techniques are significantly better in pre-
dicting the direction of the returns when compared to the sub learner MLP,
being on average %20 better in terms of accuracy. More importantly, the meta-
learners also produce trading strategies with much higher Sharpe Ratios, sug-
gesting strong risk-adjusted performance.

7 Conclusion

Experimental results show that the methodology undertaken in this study show
great potential for contributing to successful trading strategies. Further back-
testing is essential before any strategy can be deployed for live trading, however.
What this study appears to suggest is that LSTMs and RNNs do have the
ability to accurately model financial time series data, but it is essential that
the right kind of data is fed into them in order to achieve results better than
random guessing. PCA helps these models filter out noise and hence helps to
prevent over-fitting, which leads to better generalization ability. The custom loss
function used also helps the model focus more on getting the direction of the
bet right than traditional loss functions like MAE and RMSE.
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Abstract. A hybrid model that combines a stochastic volatility model
[2] and the K Nearest Neighbors (KNN) model [1] is proposed to obtain
precision forecasts of log returns of a risky asset traded in the financial
market. The precision forecasts are the sum of the forecasts obtained with
the stochastic volatility model and a correction term produced by the
KNN model. Numerical experiments based on real data are performed
to investigate the accuracy of the precision forecasts.

Keywords: Precision forecast · Stochastic volatility model · Machine
learning

1 Introduction

Recently the ubiquitous availability of big data has led to the massive use of data-
driven models to forecast time series dynamics. In particular in mathematical
finance and in the financial market practice non parametric Machine Learning
(ML) models compete with parametric models to forecast prices or log returns
of risky assets. The appeal of non parametric ML models comes from their com-
putational efficiency and from their flexibility. However parametric models with
their a priori assumptions about the dynamics of the quantities studied often
are able to capture qualitative information that non parametric ML models are
unable to grasp. In order to exploit the full potential of these alternative classes
of models, in this paper it is developed a hybrid model that combines a non
parametric ML model (i.e. KKN model [1]) and a partially specified stochastic
volatility model (called optimal control model [2]) to forecast log returns of a
risky asset traded in the financial market. The log return forecasts obtained with
the hybrid model are called precision log return forecasts. The paper is organized
as follows: Sect. 2 describes the hybrid model, Sect. 3 presents some numerical
experiments based on real data.
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2 The Hybrid Model

Let us introduce the optimal control model [2]. This is a partially specified
stochastic volatility model that generalizes and, in some sense, enhances the
Heston model [3].

The stochastic processes S(t), x(t) = ln(S(t)/S(0)), v(t), t ∈ [0, T ], T ∈ R+,
represent, respectively, the price, the log return and the stochastic variance of
a risky asset traded in the financial market. The time interval [0, T ] is called
investment period. The optimal control model assumes that the dynamics of x(t),
v(t), t ∈ [0, T ], is defined through the following system of stochastic differential
equations:

dx(t) =
(

f1(t, x(t), v(t)) − 1
2
v(t)

)
dt +

√
v(t)dB(t), t ∈ [0, T ], (1)

dv(t) =f2(t, x(t), v(t))dt + σ
√

v(t)dZ(t), t ∈ [0, T ], (2)

with the initial condition:

x(0) = 0, v(0) = v0, (3)

where 0, v0 are random variables concentrated with probability one in the points
0, v0 > 0 and σ ∈ R+. Note that with abuse of notation 0, v0 denote both
the random variables of (3) and the points where these random variables are
concentrated. In (1), (2) the stochastic processes B(t), Z(t), t ∈ [0, T ], denote
Wiener processes, such that B(0) = Z(0) = 0, and their stochastic differentials
dB(t), dZ(t), t ∈ [0, T ], are assumed to be such that:

E
P(dB(t)dZ(t)) = ρdt, t ∈ [0, T ], (4)

where ρ ∈ (−1, 1) is a correlation coefficient and E
P(·) is the expected value of ·

with respect to the measure P. The density of the probability measure P is the
transition probability function of model (1), (2), (3), (4). Model (1), (2), (3), (4)
is completed (when needed) with a reflecting condition to prevent the possibility
that v(t) becomes negative with positive probability, t ∈ [0, T ] (see [2]).

Note that when f1(t, x, v) = μ, f2(t, x, v) = k(θ − v), t ∈ R+, x ∈ R, v ∈ R+,
μ ∈ R, k, θ ∈ R+, the optimal control model (1), (2), (3), (4) coincides with
the Heston model. However, in the optimal control model (1), (2), (3), (4) the
analytic expression of the functions f1, f2 is not given. In this sense model (1),
(2), (3), (4) is partially specified. The functions f1, f2 are determined in the
calibration of model (1), (2), (3), (4).

In [2] when σ, ρ, v0 are given (or determined from a set of data) the cali-
bration problem of model (1), (2), (3), (4) is formulated as a stochastic optimal
control problem that depends from a set of observed asset log returns and from
three priors chosen by the investor determined as solution of the optimal con-
trol problem. Maximizing the objective function of this optimal control problem
corresponds to pursue the following goals: i) the asset log returns implied by
the model fit the observed asset log returns, ii) f1 fits a reference drift rate,
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iii) f2 fits a reference drift, iv) at the end of the investment period the asset
log return implied by the model fits a reference final asset log return. Two of
these priors (i.e. the reference asset price drift rate and the reference stochastic
variance drift) are chosen as suggested by the Heston model. The third prior
is determined with a fitting procedure [2]. The previous goals are weighted in
the objective function of the control problem. The choice of the priors made
suggest that the optimal control model can be interpreted as a refinement of the
Heston model. The unknown functions f1 and f2 are determined as solution of
the optimal control problem.

In the numerical experiments the data set used in the calibration of the opti-
mal control model is a set of log return data observed at known observation times.
After being calibrated the optimal control model is used to forecast the asset log
returns. The optimal control model log return forecast at a time greater than the
observation time of last available calibration datum is the expected value of the
log return of the calibrated optimal control model at the forecasting time condi-
tioned to the last available log return observation. From the log return forecasts
it is easy to compute the asset price forecasts. In the numerical experiments σ,
ρ, v0 are deduced from a suitable set of data.

Let us introduce the KNN correction term that must be added to the optimal
control model log return forecast to obtain the precision log return forecasts.
First of all let us define the asset price normalized residual time series. Let N
be a positive integer, 0 ≤ τ1 < τ2 < . . . < τN be time values such that τi −
τi−1 = Δ > 0, i = 2, 3, . . . , N, xoc(τi), Soc(τi), Sobs(τi), be, respectively, the log
return and the asset price optimal control model forecasts and the observed asset
price at time τi, i = 1, 2, . . . , N. The asset price normalized residual time series
{e(t), t = τ1, τ2, . . . , τN} is the time series of the relative differences between the
optimal control model forecasts and the observed asset prices, that is:

e(τi) =
Soc(τi) − Sobs(τi)

Sobs(τi)
, i = 1, 2, . . . , N. (5)

The KNN model is used to forecast the asset price normalized residual time
series. The KNN model is based on the idea that similar time series in the past
will have similar future behaviour. In particular, given the positive integers M,
K, H, the KNN model collects a set of past observations (i.e. the training set
of the model) that is the set of the vectors made of M consecutive outcomes
of the time series under investigation (i.e. the training instances) and to each
training instance associates a target vector of H values that follow in the time
series the training instance considered. Given a new vector of outcomes the KNN
model looks for the K training instances that are closest to the new vector in a
given metric (the K nearest neighbors of the new vector in the training set) and
forecasts the H future outcomes of the new vector in the time series as a linear
combination of the target vectors associated to the K nearest neighbors. The
vector of the H future values forecasted is the KNN model forecast associated
to the new vector considered.

To tune the KNN model to the data studied it is necessary to choose the num-
ber of neighbors K used in the forecast, the dimension of the training instance
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vectors M, the dimension of the target vectors H and the coefficients of the
linear combination that produces the KNN forecast. The integers K, M, H and
the linear combination coefficients are called hyperparameters of the KNN model
and must satisfy some obvious constraints to make possible the production of
forecasts.

Let ei = e(τi), i = 1, 2, . . . , N, be the asset price normalized residual time
series, at time τN we forecast the H consecutive normalized residuals that follow
eN choosing as new vector of the KNN model the last M consecutive normalized
residuals observed at time t ≤ τN , that is the vector (eN−M+1, eN−M+2, . . . , eN ),
and as training set of the KNN model the set of consecutive normalized residual
vectors of dimension M that “end” before time τN−M+1. Finally we forecast the
normalized residual at times t = τN+1, τN+2, . . . , τN+H , where τN+i = τN + iΔ,
i = 1, 2, . . . ,H, computing the arithmetic mean of the target vectors that follow
the K-nearest neighbor vectors selected by the KNN model.

The precision log return forecasts produced by the hybrid model are obtained
adding to the optimal control model log return forecasts a correction term easily
deduced from the KNN asset price normalized residuals forecasts.

3 Numerical Experiments

Let us study the performance of the hybrid model introduced in Sect. 2 in a
numerical experiment based on real data. The data considered are the daily
closing values of the S&P500 (Standard & Poor 500) index of the N.Y.S.E.
(New York Stock Exchange) relative to the period August, 25-th, 2008 – August,
23-th, 2021. In order to show the improvement in accuracy obtained using the
hybrid model instead of the optimal control model we compare the accuracy
of the precision forecasts with that of the optimal control model forecast as a
function of the forecast horizon. We consider as forecast horizons: κ months
in the future, that is κ months after the observation time of the last available
datum, κ = 1, 2, . . . , 6.

In what follows we assume year, month and week made, respectively, by 252,
21 and 5 (consecutive) trading days. Using a rolling window of the daily closing
values of the S&P500 index relative to a time period of 30 consecutive months, we
calibrate the optimal control model once a week and we forecast the log returns
κ months in the future, κ = 1, 2, . . . , 6. This is done 504 times during a period of
504 weeks, that is a period of 10 years. Note that with our definitions 504 weeks
= 2520 (trading) days = 10 years. Denoting by t = 0 the time corresponding to
August, 25-th, 2008, at calibration time t = ti = (630 + (i − 1)5)/252 years we
calibrate the optimal control model using as data the daily closing values of the
prices of S&P500 relative to the time window [ti−630 1

252 , ti], for i = 1, 2, . . . , 504.
Note that the last calibration day t504 corresponds to February, 23-th, 2021.
The calibrated optimal control model at time ti is used to forecast the asset
log returns κ months in the future (i.e. κ months after time ti), κ = 1, 2, . . . , 6,
i = 1, 2, . . . , 504. The normalized residual with forecast horizon κ time series
defined as eκ,i = e(t), where t = ti + κ 21

252 , for i = 1, 2, . . . , 504, is computed,



A Hybrid Model 239

κ = 1, 2, . . . , 6. Note that the time of last forecast depends on the forecasting
horizon and corresponds to March, 24-th, 2021, April, 23-th, 2021, May, 24-th,
2021, June, 23-th, 2021, July, 23-th, 2021 and August, 23-th, 2021, respectively,
when κ = 1, 2, . . . , 6.

Passing from a calibration time ti to the successive calibration time ti+1

we discard the first five daily closing prices belonging to the calibration time
window associated to ti and we insert the five daily closing prices following
ti, i = 1, 2, . . . , 504. In this way for the forecast horizon κ a time series of
504 normalized residuals, given by {eκ,i | i = 1, 2, . . . , 504} is obtained, κ =
1, 2, . . . , 6. We use the KNN model to correct the last 300 outcomes of these
time series. For this purpose we choose the hyperparameters of the KNN model
as follows: K = 2, M = 3 and H = 1, that is, given a new vector of dimension
M = 3, we consider the first K = 2 closest neighbors, training instances of
dimension M = 3 and a target vector of dimension H = 1. The KNN forecast is
obtained as the arithmetic mean of the target vectors of the two nearest neighbors
selected. The hyperparameters are chosen with an elementary trial and error
procedure. For the forecast horizon κ months, for i = 203, . . . , 504, we use the
set of the vectors made by the M = 3 consecutive normalized residuals belonging
to the set Aκ,i = {eκ,j | j = 1, 2, . . . , i} as training set and we forecast the next
(H = 1) normalized residual using the KNN model, κ = 1, 2, . . . , 6.. We denote
by êκ,i the precision forecast normalized residual at time t = ti + κ 21

252 relative
to the forecast horizon κ months, i = 204, 205, ..., 504, κ = 1, 2, . . . , 6. From the
normalized residual forecast it is immediate to obtain the corresponding KNN
correction term forecast that added to the optimal control model log return
forecast gives precision log return forecast produced by the hybrid model.
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Fig. 1. MAPEκ and M̂APEκ (left panel) and dMAPEκ (right panel) as a function
of the forecast horizon κ months.

To compare the improvement in accuracy obtained using the precision fore-
casts instead of the optimal control model forecasts as a function of the forecast
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horizon κ months we compute the relative difference between the mean abso-
lute percentage error (MAPE) of the optimal control model forecast normalized
residuals and the MAPE of the precision forecast normalized residuals (M̂APE),
κ = 1, 2, . . . , 6. The MAPEκ of the optimal control model forecast normalized
residuals is computed as the average of the absolute values of the optimal control
model forecast normalized residuals relative to the forecast horizon κ months,
κ = 1, 2, . . . , 6, that is:

MAPEκ =
1

300

504∑
i=204

|eκ,i|, κ = 1, 2, . . . , 6. (6)

Analogously we compute the M̂APEκ of the precision forecast normalized
residuals as the average of the absolute values of the precision forecast normalized
residuals relative to the forecast horizon κ months, κ = 1, 2, . . . , 6, that is:

M̂APEκ =
1

300

504∑
i=204

|êκ,i|, κ = 1, 2, . . . , 6. (7)

In Fig. 1 in the left panel we show the values of MAPEκ and M̂APEκ

as function of the forecast horizon κ months, κ = 1, 2, . . . , 6. In Fig. 1 in the
right panel we show the relative difference between MAPEκ and M̂APEκ :
dMAPEκ = (MAPEκ − M̂APEκ)/M̂APEκ as a function of the forecast hori-
zon κ months, κ = 1, 2, . . . , 6. The dMAPEκ tells us how much better (in
absolute percentage terms) or worse the precision forecasts are than the opti-
mal control model forecasts when the forecast horizon κ months is considered,
κ = 1, 2, . . . , 6. Observing Fig. 1 we can conclude that the improvement in accu-
racy of the precision forecasts with respect to the optimal control model forecasts
increases as the forecast horizon increases.
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Abstract. This work considers the classification of financial nonsta-
tionary time series, where the nonstationarity is due to the presence of
a deterministic trend. It is evaluated in a high-dimensional context by
looking at the first derivative of the trend function and without requir-
ing a pre-specified form. This is achieved by means of a nonparametric
estimator which is used in a two stage procedure: the first stage selects
the time series with no trend and the second stage focuses the atten-
tion on nonlinear trends. A real data application to US Mutual Funds is
conducted to demonstrate the validity and applicability of the procedure.

Keywords: High-dimensionality · Nonparametric regression ·
Screening procedure · Mixing processes · Financial time series

1 Introduction

Time series trend composition is a very important topic in data analysis. Check-
ing trend composition is the first step for a further statistical analysis conducted
on a time series. In the recent literature, there is an increasing interest to auto-
mate this process, see [10] and [1] among the others. In general, one can be
interested in checking if the trend is absent, linear or nonlinear, but actually,
the true structure of the trend is unknown, then a procedure that automati-
cally allows this distinction is necessary before any further analysis. Suppose to
observe p independent time series of the form

Yit = mi(t/T ) + εit, i = 1, . . . , p; t = 1, . . . , T (1)

where p may go to infinity as a function of the time series length T , mi : [0, 1] →
IR are unknown trend functions and {εit}T

t=1 are zero mean, strongly mixing
error processes [11]. In particular, two classic examples of strongly mixing pro-
cesses are ARMA and GARCH processes [2]. To classify the mentioned time
series according to their trend composition (absent, linear or nonlinear), one can
estimate, instead of the trend, its first derivative. This can be done by using a
nonparametric estimator. The use of a nonparametric first derivative estimator
has at least two main advantages: (i) on the mathematical point of view, the use
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 241–246, 2022.
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of the first derivative to highlight the linearity of a function is quite intuitive; (ii)
one can assert if a trend is linear or not without imposing a predefined model.
Given these two points, the rest of the paper is organized as follows: in Sect.
2 the proposed method for classifying the time series is presented; in Sect. 3
an application of the method is presented considering the US Mutual Funds; in
Sect. 4 some conclusions and future developments are discussed.

2 The Proposed Method

Considering the representation (1) for a time series, the proposed nonparametric
estimator for the trend first derivative at point x ∈ [0, 1], has the form

β̂(x) =
1

Th2

T∑

t=1

Kh(t/T − x)(t/T − x)Yt, (2)

where Kh(u) = 1
hK

(
u
h

)
, with K(·) a symmetric Lipshitz continuous kernel func-

tion with bounded support, and h = hT > 0 is the bandwidth such that h → 0
and Th4 → ∞ as T → ∞. It can be proven that the proposed estimator, based
on the guiding line of Local Polynomial estimator (see [3,5,7–9] among others)
with fixed design, has the appealing characteristics that it is asymptotically nor-
mal distributed and its expected value is proportional to the true first derivative
by a known quantity, as T → ∞.

Under the reasonable assumption that the number of time series with nonlin-
ear trend is finite, the proposed classification procedure consists of two stages. In
the first, the proposed estimator β̂(x) is tested to be zero, by the following statistic

Îβ =
T 4/7

μ∗
2c(ε)

kT∑

j=1

β̂(xj)2, (3)

where kT = O(T ) is the number of points considered into a subinterval of
[0, 1], μ∗

2 =
∫ 1

−1
u2K(u)2du and c(ε) = γε(0) + 2

∑∞
k=1 γε(k), with γε(k) =

Cov(εt, εt−k). Once the sum of all autocovariancies of the process εt, c(ε), is
substituted by the nonparametric consistent estimator of the spectral density
valued at frequency zero, say ĉ(ε), Îβ allows to distinguish the time series with
no trend. Under the hypothesis that the time series has no trend, it can be proven
that Îβ follows a chi-squared distribution. This allows the p time series to be
tested through the use of the Bonferroni correction. In the second stage, the dif-
ference between the estimator at different points is used in a screening approach
[4] to make the further linear/non linear partition of the remaining time series
from the previous stage. More precisely, defining D̂(x1, x2) = β̂(x1) − β̂(x2),
where x1, x2 ∈ (h, 1 − h), the statistic

ÎD(x) =
1
kT

kT∑

j=1

D(x, xj)2 (4)
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is used to rank the remaining time series. This ensures, with probability tending
to 1, that one can estimate the set which contains the true set of time series
with nonlinear trend under the sparsity assumption that the latter has a finite
number of elements. Furthermore, the consistency results for both stages can
be proven considering the rate p = o

(
T 1/2

log T

)
which also guarantees the Sure

Screening Property [4].
In other words, the proposed method to classify time series according to their

trend composition (absent, linear or nonlinear) consists of two stages: the first
stage is used to select the time series with no trend by using a testing procedure
based on the (3), while the second is a screening stage, based on the (4), which
gives the set containing, with probability tending to 1, the true set of time series
with nonlinear trend. The performance of the procedure has been evaluated
trough a simulation study (not reported here) obtaining satisfactory results. We
here evaluate the feasibility of the procedure to a large financial dataset whose
details are given below.

3 Real Data Application

A Mutual Fund is a professionally managed investment fund that pools money
from many investors to purchase securities. The typical classification of Mutual
Funds is well known (i.e. by their principal investments or by found category) as
the advantages of the latter: the opportunity for diversification, daily liquidity
(quicker redemption of the net asset value) and the ability to participate in
investments that may be available only to larger investors, among the others.
Mutual funds have disadvantages as well. In particular, they have less predictable
income and no opportunity to customize. A possible solution may be to create
a portfolio of Mutual Funds. With this in mind, a preliminary classification on
the long-term behaviour of the available funds is essential.

The Kaggle platform (https://www.kaggle.com) is an online community of
data scientists and machine learning practitioners which allows users to find and
publish data sets, explore and build models in a web-based data-science environ-
ment, work with other data scientists and machine learning engineers, and enter
competitions to solve data science challenges. Among the many datasets, the one
called “US Funds dataset from Yahoo Finance” was chosen. It contains 24821
daily closing prizes of US Mutual Funds scraped from the publicly available
website https://finance.yahoo.com and updated to October 2021.

From this dataset, we randomly choose 200 time series and we consider the
observations from 9 August 2018 to 12 October 2021, for a total of 800 observa-
tions. To make the series comparable, our classification procedure was applied
on the transformed series of index numbers (i.e., the observed values of each time
series are divided by the first value, observed on 9 August). After that, in order
to make the assumption of independence between the time series as realistic as
possible, a window of 500 time points is extracted from each time series, where
the starting point of each window is uniformly selected, without replacement
among the first 300 observations of the series (i.e., from 9 August 2018 to 4 June

https://www.kaggle.com
https://finance.yahoo.com
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2019). In this way, a “new” set of time series has been derived, where the 200
series start from different time points (but they essentially keep the same trend as
before). Given this dataset, we apply our procedure to classify which series have
no trend, linear and nonlinear trend. Finally, the above procedure is repeated
100 times, each one with different time windows, in order to derive the relative
frequency of times each series is classified with “no trend”, with “linear” or with
“nonlinear” trend. To pursue this aim, the procedure is applied for all the 100
sets of time series using the Epanechnikov kernel K(u) = 3

4 max(0, 1 − u2) with
a FeedForward Neural Network estimator in order to obtain a plug-in estimator
for the optimal bandwidths, as in [6], for each time series.

Given the results of the first stage, 100 possibly different sets of time series
labelled as no trend can be obtained. It is reasonable to think that the time series
with no trend will be those belonging to the intersection of all these sets. In other
words, the time series with no trend will be those with relative frequency, over
the 100 replicates, equal to 1. Considering now the second stage, it will produce,
for each set of time series, a ranking based on (4) where the top positions include
the time series with a nonlinear trend. In this way, a matrix can be created whose
columns represent the 100 different ranking of the time series. To estimate the
set of time series with nonlinear trend, it is reasonable to calculate the frequency
with which the time series occur in the top positions of the ranking matrix. In
particular, we define the following criterion. Let us consider a given threshold
for the frequency, say α. For example, we set α = 0.5. We then classify with
“nonlinear trend” those series that appear in the top α% positions at least α%
of the time. So, in our case, we are looking for those series which appear in the
top 100 positions of the ranking matrix at least 50% of the time. Of course,
the number of series reaching the second stage can be different for different
iterations, so it may happen that this number is sometime less than 100 (so
that the ranking matrix has less than 100 rows). However, this does not create
problems for the aforementioned selection criterion.

Table 1. Cardinality of the classification sets obtained applying the procedure to the
200 index number time series.

� No trend � Lin trend � NoLin trend

63 123 14

The results of the overall procedure are shown in Table 1 which highlight
that the majority of funds have a linear trend and only 14 funds have a non
linear trend. This result is in line with the “nonlinear sparsity” assumption
made in the previous section. Figure 1 shows how the procedure has classified 5
funds taken from the 200. The first two have no trend, the third has a nonlinear
trend and, finally, the last two have a linear trend. Replicating the procedure
on the adjusted closing prices, the number of series belonging to each class (no
trend, linear, nonlinear) remains almost the same. For this reason the results are
omitted but they are available from the authors.
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Fig. 1. On the left: 5 Mutual Funds (EVIBX, FHIIX, FKRCX, FSPHX and GATEX),
from August 2018 to October 2021, before applying the procedure. On the right: the
same 5 funds labelled according to the procedure. The first two are labelled to have no
trend (solid line), the third to have a nonlinear trend (dotted line) and the last two to
have a linear trend (dashed line).

4 Conclusions

In this work, a new procedure is presented as embryonic analysis for carrying out
further analysis on time series. It deals with the classification of nonstationary
time series, where the nonstationarity is given by the presence of a deterministic
trend. It is based on the first derivative of the trend function in a context of high-
dimensionality and without requiring a pre-specified form for the trend. This is
achieved by using the proposed first derivative trend estimator β̂(x) which is
based on the Local Polynomial estimator for fixed design and also presents the
desirable characteristic of a simple form. Under the reasonable assumption that
the number of time series with nonlinear trend is finite, the proposed procedure
consists of two stages. In the first one, the proposed estimator, given in (3), is
tested to be zero, which allows to distinguish the time series with no trend. In the
second stage, the difference between the estimator at different points (see Eq. (4))
is used in a screening approach to make the further linear/nonlinear partition
of the remaining time series from the previous stage, by means of a sort of
stability selection of the number of time series with non linear trend. A real data
application to 200 US Mutual Funds is conducted to demonstrate the validity
and applicability of the procedure. Future developments of the procedure could
include a further cluster analysis on the time series divided by type of trend.
In this way an efficient procedure for determining the expected return and the



246 G. Feo et al.

riskiness of a portfolio could be made completely automatic. Another possible
development could be to consider stochastic nonstationary time series, since the
empirical evidence shows almost always financial time series are stochastically
nonstationary. The latter can occur both in the form of a stochastic trend and
as a characteristic of the epsilon process.
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Abstract. In this article, we consider a research topic in the field of
game theory: the pursuit-evasion differential games. With the evolution
of the world and technology, activities have transformed, and systems
based on the dichotomy evader-pursuer have also evolved to answer other
questions, just think for example of the management of intelligent mis-
siles, designed to chase an object in movement. The main purpose is
to provide a study proposal for the management and recovery of waste
materials in space missions through an approach based on differential
games.

Keywords: Differential games · Pursuit-evasion games · Space
economy

1 Introduction

Studying a differential game means defining a system of time-dependent differ-
ential equations, which describes the evolution process of the phenomenon over
time. The main purpose is to choose the optimal control, based on the definition
of adequate escape or capture strategies. Each player defines one of the controls
by choosing the optimal strategy for his purpose. The problem that arises from
these observations is therefore that of the definition of the control of the actors
in a process of pursuit-evasion. We are confident that the paper’s idea of linking
a theoretical study of this problem will be a good way to define new perspectives
in space research and the increasingly sustainable management of space missions.
The main purpose of this paper is to describe some results obtained in the field
of pursuit-evasion games, i.e. what results have been obtained in terms of evasion
and/or capture strategy. This is because we would like to start thinking about
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the application of these games in the context of the recovery of waste materials in
space missions. The general idea is to bring the researchers’ attention to the fact
that if the debris starts from certain positions and follows well-defined routes, it
is possible to recover these materials. There are, in fact, meaningful results that
allow us to understand under what conditions the strategies implemented by the
pursuers lead to the capture of the escaped person and when they fail. The pur-
suit and evasion game, thus described, would present m pursuers and n evaders,
where the latter are the waste materials dispersed in space and the former the
tools for cleaning the space. The basic idea is still in a primordial stage, but this
application would be inserted in a context of sustainability of space missions and
would reduce the impact that the same conditions in cosmic space. The study
of linear two person zero-sum differential games was initiated by Isaacs [14]. A
fundamental contribution to the development of the theory of differential games
was given in [3,4,8,9,12,19,20,23]. In [15] linear pursuit differential game was
studied.

Simple motion pursuit and evasion differential games of many players is a
major area of interest within the field of differential games. Traditionally, there
are two constraints on controls of pursuer and evader: geometric or integral con-
straints. Croft in [7] made an important contribution to the area of differential
games of many pursuers. In the game of many pursuers Mishchenko et al. [18]
constructed a new evasion strategy. Evasion of one faster evader from many pur-
suers was studied by Chernous’ko [6]. The most interesting finding on simple
motion differential game of many pursuers and one evader in Rn was obtained
by Pshenichnii [21]. Another type of differential games with simple dynamics
containing a group of pursuers and a group of evaders were analyzed in Rn by
Petrov [5]. A differential game of a group of n pursuers and one evader was stud-
ied by Azamov et al. [2] on the 1-skeleton graph S of regular polyhedrons of three
types. An evasion differential game of countably many pursuers and countably
many evaders was studied by Idham et al. [1] in Hilbert space l2 and a sufficient
condition of evasion was obtained in terms of energies of players. If the control
resource, say as energy, finance, food etc. (see, e.g. [13,17]) is bounded, then
integral constraints on the control functions arise in control systems. Ibragimov
and Satimov in [11] studied the following simple motion pursuit differential game
of M evaders and K pursuers

ẋi = ui, xi(0) = xi0, i = 1, . . . ,K, (1)
ẏj = vj , yj(0) = yj0, j = 1, . . . ,M, (2)

with integral constraints

∞∫

0

|ui(s)|2ds ≤ ρ2i , i = 1, . . . ,K, (3)

∞∫

0

|vj(s)|2ds ≤ σ2
j , j = 1, . . . , M, (4)
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in a closed convex subset of Rn, where xi, yj , ui, vj ∈ Rn, n ≥ 2, and ρi, σj are
given positive numbers, xi0 �= yj0 for all j = 1, . . . ,M and i = 1, . . . , K. It was
established in [11] that if

ρ21 + . . . + ρ2K > σ2
1 + . . . + σ2

M , (5)

then pursuit can be completed game (1)–(4). The evasion game described by
equations (1)–(4) in Rn in general case, that is, when

ρ21 + . . . + ρ2K ≤ σ2
1 + . . . + σ2

M (6)

was studied in [10].

2 Space Economy and the Detritus Management: The
Role of Differential Games

In this paper we are presenting a model by which modeling the detritus dynam-
ics and the related effects on operation of satellites, spacecrafts and related
problems. The space area surrounding planet Earth is submerged by more than
300.000 particles of space-debris, characterized by a diameter of more than 1 cm.
This area is divided into three levels with respect to the Earth’s orbit: LEO (Low
Earth Orbit), up to 2,000 Km; MEO (Medium Earth Orbit), between 2.000 Km
and 36.000 Km; GEO (Geosynchronous Earth Orbit), over 36,000 Km. Space
debris has various similarities to asteroids because their long-term evolution
has also depended on collisions at high speeds and orbits are very chaotic. On
February 10, 2009, a serious impact occurred between the Iridium 33 and Cos-
mos 2251 satellites which showed how the possibility of a collision is a risk not to
be underestimated in any space activity. In fact, after that impact, space experts
established some preventive procedures such as: validation of impact mitigation,
coordination of space traffic and efficient mitigation measurements. The United
States Strategic Command (USSTRATCOM) has classified the alien space probe
in orbit in the TLE (Two Line Element) catalog, where about 15,000 objects are
represented with their current orbital parameter. The limit dimensions of the
cataloged objects are: between 5 and 10 cm under a few miles km of altitude;
between 0.5 and 1 Mt for orbits up to the GEO level. In particular, 6% of the
objects in the TLE catalog are operational satellites; 24% non-operational satel-
lites; 17% missiles in the upper phase; 13 % mission debris; 40% fragments. The
United States Space Surveillance Network frequently offers a wealth of optical
and radar observations. Since 2008, Europe has launched the SSA program, SST
segment, to increase the know-how of the space surrounding the Earth; to do
this it is essential to have very accurate systems and algorithms to be able to
precisely define the orbit. The field of space debris has been long and thoroughly
studied by SpaceDys and its partners who, since the early 90s, have contributed
to the creation of the first European models for the analysis of the evolution
of all space debris in the long term, focusing precisely on the risks of possible
impacts and on the related possible mitigation interventions. Compared to the
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impact that occurred in 2009, for example, ten years earlier they had published
an article in Nature that illustrated the possible consequences due to the frag-
mentation of the Constellation of Iridium. Therefore, the SpaceDys team has
further deepened the theoretical and applicative research on this topic with sig-
nificant results regarding the determination of the orbit and the correlation of
space objects, published in numerous journals and presented in several interna-
tional conferences. In addition, SpaceDys has developed another project that,
thanks to radar and GPS measurements, contributes to a better determination
of the orbit and to the prediction of re-entry of the Goce satellite, focusing on
the definition of significant dynamics and observational uncertainties and on
the correlation between position prediction and re-entry position. In this frame
Space economy is a new challenge field of study which involves activities and
analysis of resources that create value and benefits to human beings by explor-
ing, managing, and utilizing space. The core of the space industry activities in
space manufacturing and in satellite operations and other consumer activities
that have been derived over the years from R&D especially promoted by govern-
ments. It includes all public and private plans involved in developing, providing
and using space-related outputs, space derived products and services and the sci-
entific knowledge arisen from space research. In the near future we will develop
new discoveries in this framework starting from the results gathered from this
work arising from space research

3 Concluding Remarks and Further Developments

Starting from October 4, 1957, over 4,900 space launches have led, as evident
in the USA Space Surveillance Network graph, to a population in orbit today
of over 17,000 traceable objects, with dimensions greater than 10 cm (equivalent
diameter). Of these objects:

1. about 1,000 are operational spacecraft;
2. the remaining 94% is made up of space debris;
3. about 64% of the objects routinely tracked are fragments belonging to 250

space systems that have undergone fragmentation in orbit, mainly due to
improvised explosions and then to collisions between satellites or launch sys-
tems (Fig. 1).

The ASI (Italian Space Agency) data describe, the population in Earth orbit
of smaller objects of artificial origin, therefore not traceable, is the following:

1. objects larger than 10 cm, about 20,000;
2. objects larger than 1 cm, about 700,000 objects;
3. objects larger than 1 mm, about 170 million objects.

Due to the relative orbital speeds, which can exceed 50 thousand kilometers per
hour, a debris of 1 cm can seriously damage or disable an operational space-
craft, while in the event of collisions with objects larger than 10 cm they become
possible catastrophic ruptures, capable of producing clouds of dangerous debris,
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Fig. 1. Source: ASI (Agenzia Spaziale Italiana)

potentially causing further catastrophic collisions, triggering a sort of chain reac-
tion in some orbital regions (the so-called “Kessler syndrome”, named after
NASA researcher Donald Kessler who highlighted the problem at the end of the
70s of the last century). Space debris mitigation measures, when properly imple-
mented by spacecraft designers and mission operators, can reduce the growth
rate of the debris population. However, the active removal of debris already in
orbit, in particular large stadiums and satellites abandoned in the most crowded
orbits, seems to be the only measure capable of reversing the current phase
of increasing debris. The so-called space waste or the elements of rockets or
satellites that remain suspended in the low orbit of the Earth when they stop
functioning or during the various phases of space missions, in the next years
this critical mass will grow steadily and this will involve the adoption of policies
aimed at guaranteeing the sustainability of space missions. The movements and
dynamics that characterize the coexistence of satellites, spacecraft and space
waste represent in our opinion a field of study that in the coming years could
offer interesting research perspectives and help to arrange optimization plans of
space routes in order to contain risks of collision, causing costs and economic
losses. Our seminal idea that inspired this article is the mathematical modeling
included in the pursuit-evasion games. Our approach has as its main purpose to
propose a new vision of the protagonists of a space environment such as satellites,
spacecraft and debris that draw orbits, focused on a dynamics of displacements
based on forecasting and crash management data. An ongoing interim study
could consider debris wandering in space as pursuers and satellites and space-
craft as evaders. A second approach sees space cleaning as an application. In fact,
by exchanging the role of the actors, or considering the debris as evaders and the
spaceships as pursuers, the ideal conditions would be obtained to make this series
of activities carried out outside the earth’s orbit more and more eco-sustainable.
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Abstract. The high level of integration of international financial mar-
kets highlights the need to accurately assess contagion and systemic risk
under different market conditions. To this end, we develop a quantile
graphical model to identify the tail conditional dependence structure in
multivariate data across different quantiles of the marginal distributions
of the variables of interest. To implement the procedure, we consider the
Multivariate Asymmetric Laplace distribution and exploit its location-
scale mixture representation to build a penalized EM algorithm for esti-
mating the sparse precision matrix of the distribution by means of an L1

penalty. The empirical application is performed on a large set of com-
modities representative of the energy, agricultural and metal sectors.

Keywords: EM algorithm · Energy commodities · Graphical models ·
Multivariate asymmetric laplace distribution

1 Introduction

The financial system is a complex, dynamic and interconnected world. Observing
the extreme financial integration in the recent global financial crisis, it was soon
noted the crucial importance to identify how the impact of financial stress events
can spread across the whole financial global system. For this reason, network
science has emerged as a useful tool for describing the propagation of systemic
risk, where the interconnectedness between financial institutions is represented
by a graph whose nodes stand for companies, commodities, institutions, for
instance, and the edges highlight their interactions. Within this literature, Gaus-
sian Graphical Models (GGM) have received an enormous attention because they
provide a simple method to model the pair-wise conditional correlation structure
of a collection of stochastic variables. As it is well known, under the assumption
of normally distributed data, the underlying conditional dependence structure is
completely characterized by the precision matrix, i.e. the inverse of the covari-
ance matrix of the corresponding GGM (see [7] for a general background). In a
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high-dimensional framework when a large set of random variables is considered,
we are interested in identifying only a smaller subset of variables that exhibits the
most relevant and strongest dependencies. Among the several methods proposed
in literature, there is the popular Least Absolute Shrinkage and Selection Oper-
ator (LASSO) method by [10] which allows to improve estimation and conduct
variable selection. To estimate the model parameters, the implementation of this
technique often relies on the Graphical LASSO (glasso) algorithm of [3], which
maximizes the likelihood of the model penalized by the L1-norm of the elements
of the precision matrix. However, several empirical studies show that financial
returns exhibit most of the well known stylized facts like fat tails, leptokurtosis
and skewness, and deviation from normality makes it harder to characterize con-
ditional dependence structures. The literature regarding non-Gaussian graphical
models is fairly limited. In this context, the work of [2] provides a tool for robust
model selection using multivariate t-distributions to model the data. Moreover,
these proposals are not able to recover the dependencies in the tails of the distri-
bution. Be able to understand and focus on specific part of a distribution such as
the tails can really improve the knowledge in areas like financial contagion and
systemic risk, where the dynamic of extreme events is of utmost importance. In
this paper we develop a quantile graphical model to estimate the conditional tail
dependence structure in multivariate data at different quantile levels of interest,
without relying on the restrictive assumption of normally distributed data. In
order to model the conditional dependence structure of multiple random vari-
ables at quantile-specific indices, we generalize the work of [8], which consider a
reparametrization of the Multivariate Asymmetric Laplace (MAL) distribution
of [6] to jointly model conditional quantiles of multiple random variables in a
likelihood framework. Following [2], we demonstrate that the precision matrix
of the MAL distribution completely characterizes the conditional dependence
structure among the random variables at each quantile level, and allows us to
construct a graph whose edges correspond to relations of conditional depen-
dency. As opposed to GGMs, the proposed methodology has several advantages.
Firstly, we can assess contagion and systemic risk during different market condi-
tions focusing on specific parts of the distributions of variables. Secondly, we can
construct a collection of graphs indexed by the quantile level, which allows us
to evaluate whether the financial network is more interconnected and more vul-
nerable to contagion during periods of financial and economic crises. To induce
sparsity in the precision matrix, we exploit the Gaussian location-scale mixture
of the MAL and apply the glasso algorithm. In particular, following [4], we build
a suitable Penalized EM (PEM) algorithm based on the maximization of the
likelihood of the model penalized by the L1-norm of the off-diagonal elements of
the precision matrix. The estimated networks can be analyzed with respect to
centrality measures as functions of the quantile level. The relevance of our app-
roach is shown empirically on a set of energy, metal and agriculture commodity
futures, and the modeling approach we propose is able to identify the connect-
edness of the commodities during crisis and bullish periods, and can describe
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the topological structure of the underlying graph at different quantile levels of
interest.

2 Model Specification

Given p quantile indexes τ = [τ1, . . . , τp]′, with τj ∈ (0, 1), for j = 1, . . . , p,
let Yt = [Y (1)

t , . . . , Y
(p)
t ] denote a continuous p-dimensional random vector for

t = 1, . . . , T . Generalizing the approach of [8], our objective is to develop a
quantile graphical model for learning the conditional tail dependence structure
among the components of Y t at different quantile levels of interest τ . Specifically,
we employ the MAL distribution, MAL ∼ (μ,Dξ̃,DΣD), (see [6]) as:

fY (yt) =
2 exp

{
(yt − μ)′D−1Σ−1ξ̃

}

(2π)p/2|DΣD|1/2

(
m̃t

2 + d̃

)ν/2

Kν

(√
(2 + d̃)m̃t

)
, (1)

where μ is the location parameter, Dξ ∈ Rp is the scale (or skew) parameter,
with D = diag[δ1, δ2, . . . , δp], δj > 0 and ξ = [ξ1, ξ2, . . . , ξp]′, having generic
element ξj = 1−2τj

τj(1−τj)
. Σ is a p×p positive definite matrix such that Σ = ΛΨΛ,

with Ψ being a correlation matrix and Λ = diag[σ1, σ1, . . . , σp], with σ2
j =

2
τj(1−τj)

, j = 1, . . . , p. Finally, m̃t = (yt − μ)′(DΣD)−1(yt − μ), d̃ = ξ̃
′
Σ−1ξ̃,

and Kν(·) denotes the modified Bessel function of the third kind with index
parameter ν = (2−p)/2. One of the key benefits of the MAL distribution is that,
using (1) and following [6], the MAL ∼ (μ,Dξ̃,DΣD) admits the following
location-scale mixture representation:

Y = μ + Dξ̃W +
√

WDΣ1/2Z (2)

where Z ∼ Np(0p, Ip) denotes a p-variate Normal distribution and W ∼ Exp(1)
has a standard Exponential distribution, with Z being independent of W . Hence,
the mixture representation in (2) represents the generating process of a MAL
random vector Y from a latent Gaussian random vector Z with correlation
matrix Ψ and a single latent Exponential variable with mean 1. In particular,
the constraints imposed on ξ̃ and Λ represent necessary conditions for model
identifiability for any fixed quantile level τ1, . . . , τp and guarantee that μ(j) is
the τj-th quantile of Y

(j)
t , for j = 1, . . . , p. To build the graphical model, let

G = (V,E) be an undirected graph where V = {1, . . . , p} is the set of nodes,
such that each component of the random variable Y t corresponds to a node in
V , and E ⊆ V × V represents the set of undirected edges. In order to study
the conditional dependence structure of Y t through the graph G, we exploit
the MAL representation in (2). For notational convenience and to illustrate the
similarities with the GGM, we define the precision matrix K = Ψ−1. Follow-
ing [7] and the t-distribution graphical model approach in [2], we establish the
following proposition.
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Proposition 1. For a fixed p-dimensional vector of quantile levels τ =
[τ1, τ2, . . . , τp]′ such that τj ∈ (0, 1), for j = 1, . . . , p, let Y ∼
MAL(μ,Dξ̃,DΛK−1ΛD). If two nodes j and k, with j, k ∈ V and j �= k,
of the graph are separated by a set of nodes C ∈ V , then Y (j) and Y (k) are
conditionally uncorrelated given Y (C).

The proof of Proposition 1 follows directly from the mixture representation
of the MAL in (2) and the closure property of the Normal distribution under
conditioning of its components. Most importantly, from Proposition 1 there fol-
low several interesting comments. Firstly, the existing edges in G indicate the
allowed conditional independencies in the latent Gaussian vector Z. Secondly,
the zero entries in the precision matrix K imply the conditional uncorrelation
between the components of Y t at each given quantile level τ . More formally, if
the (j, k)-th element of K equals 0, for j �= k, this means that Y

(j)
t and Y

(k)
t

are uncorrelated, given all the remaining components of Y t, and it entails a
missing edge between the nodes j and k, i.e. the edge (j, k) /∈ E. To estimate
and make inference on the model parameters we develop a suitable Expectation-
Maximization (EM) algorithm, which exploits the mixture representation of the
MAL distribution, treating W as missing data. In order to identify only a smaller
subset of variables that exhibit the most relevant and strongest dependencies, we
construct a PEM algorithm by adding an L1-norm penalty of the off-diagonal
elements of K to the likelihood of the model. Specifically, for a given vector
τ = [τ1, τ2, . . . , τp]′, the penalized complete log-likelihood function is propor-
tional to:

�c(Φτ ) ∝ T

2
log |D−1KD−1| − T

2
tr{KS} − ρ||K||1 (3)

with

S =
1
T

T∑
t=1

1
Wt

Λ−1D−1(Y t − μ − DξWt)(Y t − μ − DξWt)′D−1Λ−1 (4)

and where Wt is an Exponential random variable with mean 1.
As it can be noticed, the likelihood function in (3) is convex in K. Therefore,

at each iteration of the PEM, this feature allows us to adopt the glasso algorithm
for efficient estimation of the sparse precision matrix K.

3 Main Results and Conclusions

The empirical analysis is performed on the log-returns of 24 commodities repre-
sentative of the energy, agriculture and metals sectors from October 3, 2005 to
December 31, 2018. Table 1 reports the considered commodities. We set τ = τj ,
j = 1, . . . , 24, and fit the proposed model for a sequence of 99 quantile levels
τ = [0.01, 0.02, . . . , 0.98, 0.99]′. Then, for each τ , we construct the corresponding
graph Gτ . In Fig. 1 we represent the estimated graph at τ = 0.05 and τ = 0.46
to show how the density of the network changes between the tails (Gτ =0.05) and
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Table 1. Commodities considered in the analysis. In brackets the Bloomberg tickers
used in Fig. 1.

Commodity sector

Energy Metals Agriculture

Heating Oil (HO1) Gold (GC1) Oats (O1) Rough Rice (RR1)

Gasoline (XB1) Silver (SI1) Wheat (W1) Sugar (SB1)

Low Sulfur Gasolio (QS1) Copper (HG1) Soybeans (S1) Soybean Oil (BO1)

Natural Gas (NG1) Palladium (PA1) Coffee (KC1) Soybean Meal (SM1)

Ethanol (DL1) Zinc (LX1) Cocoa (CC1) Orange Juice (JO1)

WTI Crude Oil (CL1) Cotton (CT1) Corn (C1)

Natural Gas UK (FN1)

GC1

SI1

HG1

PA1

LX1

CL1

HO1

QS1

NG1
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DL1

C1

O1

RR1

S1

W1

CC1

CT1
KC1

SB1

BO1

SM1

JO1
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Fig. 1. Graphs for τ = 0.05 (left) and τ = 0.46 (right). Yellow, grey and red nodes
represent respectively the agriculture, the metal and the energy sectors. The node size
reflects the degree of each variable in the network.

the centre of the distribution (Gτ =0.46). These two quantile indices are represen-
tative for the most and the less connected network, respectively. On this matter
it is also interesting to note the reduced number of connection in Gτ =0.46 and
how in that case few nodes stand out in terms of the degree centrality.

A deeper analysis to analyze how the interconnectedness and contagion risk
change as a function of the quantile index τ , is conducted by showing in Fig. 2
the following network centrality measures for the considered sequence of values
of τ , namely the edge density (left), skewness of degree distribution (center) and
network assortativity (right). The edge density, which is the ratio of edges in
network Gτ to all possible edges p × (p − 1)/2, shows a highly interconnected
system, even for the smallest ratio of value 46 at τ = 0.46. It is evident a
strongest dependency during crisis, bearish periods, i.e. for τ < 0.25, as the
edge density is the largest for networks capturing the dependence in the left-
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Fig. 2. Edge Density, Network Assortativity and Skewness of degree distribution as a
function of τ . Blue vertical lines identify the 25th and 75th percentile. The black curve
represents the centrality measure for the whole graph. Yellow, grey and red curves
represent respectively the centrality measures for the agriculture, the metal and the
energy sectors.

tail of the return distribution. This increased connectedness in the left tail is
in line with existing studies which found that during the global financial crisis
and the European sovereign debt crisis the interconnectedness of global or local
commodities or financial institutions increased [5,9]. The network assortativity
is a measure of dependence between the vertex degree of connected vertices. The
value of the coefficient suggests whether vertices tend to be connected to each
other depending on their degree. In our analysis we detect a negative value for
each quantile level, which indicates that vertices of different degree are more
likely to be connected, as we can expect from a highly dense system as the
commodity network. Moreover, the skewness of the degree distribution expresses
how the structure of connectedness changes by varying τ . Negative values at
extreme quantiles evidence that no commodity dominates with respect to vertex
degree, while in tranquil periods few variables have a large influence on the
network, as shown in Fig. 1. In conclusion, with our approach we are able to
recover valuable information at each quantile level even without the assumption
of normality. The whole analysis conveys a highly connected network which
becomes even more dense during bearish and bullish markets periods, and the
results are in line with existing studies [1,5,9]. With this model we strengthen
the existing literature in this field, implementing a technique to adjust the glasso
algorithm to a quantile structure of dependence.
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Abstract. The Mardia’s kurtosis of a random vector with nonsingular
covariance matrix and finite fourth-order moments is the fourth moment
of the Mahalanobis distance of the random vector from its mean. In par-
ticular, the Mardia’s kurtosis of a nondegenerate random variable with
finite fourth moment coincides with its fourth standardized moment. The
Mardia’s kurtosis is the best known measure of multivariate kurtosis and
appears in normality testing, robustness studies and outlier detection.
Under mild assumptions, we show that an observation generated by a
multivariate GARCH model has a Mardia’s kurtosis which is greater
than the Mardia’s kurtosis of the innovation in the same model. The
result generalizes to the multivariate case a well-known feature of uni-
variate GARCH models. The practical relevance of the result is assessed
with real data.

Keywords: GARCH model · Multivariate kurtosis · Stylized fact

1 Introduction

The kurtosis of a random variable is its fourth standardized moment, if the
fourth moment of the random variable is finite. Random variables whose kur-
tosis is smaller than three, equal to three or greater than three are platykur-
tic, mesokurtic and leptokurtic distributions, respectively. Leptokurtosis is a
well-known stylized fact of financial returns, which partly motivated the ARCH
model [7]. The same model has been generalized in several ways to describe other
stylized facts of financial returns (see, for example, [4]).

Multivariate generalization of these models, as for example the multivariate
GARCH model [3] and the multivariate SGARCH model [6] were introduced
to investigate connections between several financial markets. In order to assess
their complex tail behaviour, multivariate generalizations of kurtosis are called
for. [13] generalized kurtosis to the multivariate case by defining the kurtosis
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of a random vector with nonsingular covariance matrix and finite fourth-order
moments as the fourth moment of the Mahalanobis distance of the random
vector from its mean. More formally, let x be a p−dimensional random vector
with mean µ, nonsingular covariance Σ and finite fourth-order moments. The
Mardia’s kurtosis of x is

β2,M (x) = E

{[
(x − µ)T Σ−1 (x − µ)

]2}
.

As remarked by [9], Mardia’s kurtosis is the best known measure of multivariate
kurtosis. It also possesses several interesting properties. In the first place, it is
invariant with respect to one-to-one affine transformations. Let y = Ax + b
be an affine, one-to-one transformation of the p−dimensional random vector x.
Then x and y have the same Mardia’s kurtosis:

β2,M (x) = β2,M (Ax + b) ,A ∈ R
p × R

p, det (A) �= 0, b ∈ R
p.

In the second place, the tail behaviour and the Mardia’s kurtosis of a random
vector are related. Let β2,M (x) be the Mardia’s kurtosis of a random vector x
with mean µ and nonsingular covariance Σ. Then the following inequalities hold
true for any real ε greater than p:

P
[
(x − µ)T Σ−1 (x − µ) ≥ ε

]
≤ β2,M (x) − p2

ε2 − 2pε + β2,M (x)
≤ β2,M (x)

ε2
.

In the third place, the Mardia’s kurtosis of a random vector is not smaller than
the squared number of the vector’s components:

β2,M (x) ≥ p2.

The sample counterpart of Mardia’s kurtosis is defined as follows. Let m and S
be the mean and the variance of the n×p data matrix X. The Mardia’s kurtosis
of X, that is the sample kurtosis, is

b2,M (X) =
1
n

n∑
i=1

[
(xi − m)T S−1 (xi − m)

]2
.

2 Main Results

Theorem 1. Let x be a p-dimensional random vector with nonsingular covari-
ance matrix and finite fourth-order moments. Also, let A be a nonsingular and
nondegenerate p × p random matrix with finite fourth-order moments and inde-
pendent of x. Then the Mardia’s kurtosis of Ax is greater than the Mardia’s
kurtosis of x.

Let’s consider an application of the above theorem to multivariate financial
time series. [3] defined a multivariate GARCH process as{

rt = Σ1/2
t zt, t ∈ Z

}
, where {zt ∼ N (0d, Id) , t ∈ Z}
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is a strong white noise with standard normal components and {Σt} is a process
satisfying

vec (Σt) = vec (Γ) +
q∑

i=1

Ai (zt ⊗ zt) +
p∑

j=1

Bjvec (Σt−j) ,

where Γ is a d×d symmetric and positive definite matrix, Ai and Bj are d2×d2

positive definite matrices such that Σt is a symmetric matrix, while vec (M) is
the vectorization of the matrix M, that is the vector obtained by stacking the
columns of M on top of each other, for i = 1, ..., q and j = 1, ..., p.

Let rt,i and zt,i be the i-th components of rt and zt. Normality of zt,i and
ordinary properties of GARCH models imply that rt,i is leptokurtic, i.e. its kur-
tosis is greater than three (see, e.g., [2] and [1]). The above theorem generalizes
this well-known feature of univariate GARCH models to multivariate GARCH
models, in that it implies that the Mardia’s kurtosis of rt is greater than the
Mardia’s kurtosis of zt:

β2,M (rt) > β2,M (zt) = d (d + 2) .

The last equality follows from the results in [13].
We assess the practical relevance of the above theoretical result with 1291%

logarithmic daily returns recorded from 25 June 2003 to 23 June 2008 in the
French, Dutch and Spanish financial markets. The same dataset already appeared
in the financial literature (see, e.g., [5]). Returns are arranged in a 1291 × 3 data
matrix where each row represents a day and each column a country.

The Mardia’s kurtosis of the univariate samples associated with the French,
the Dutch and the Spanish markets are 7.66, 7.15 and 11.00. The Mardia’s
kurtosis of the bivariate samples associated with the French and Dutch markets,
the French and Spanish markets, the Dutch and Spanish markets are 14.62,
17.64, 17.80. The Mardia’s kurtosis of the trivariate sample associated with the
French, the Dutch and the Spanish markets is 27.07. The Mardia’s kurtosis
of the univariate, bivariate and trivariate samples at hand are about twice their
expected values under normality, that is 3, 8 and 15. The empirical results may be
explained by the above theorem, under the assumption that the data generating
model is multivariate GARCH.

3 Theorem’s Proof

The Mardia’s kurtosis is invariant with respect to one-to-one affine transforma-
tions, so that we can assume without loss of generality that x is a standard
random vector:

E (Ax) = 0p and cov (Ax) = Ip,
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where 0p and Ip are the p-dimensional null vector and the p× p identity matrix.
The Mardia’s kurtosis of a standard random vector coincides with the trace of
its fourth moment [10]:

β2,M (x) = tr (M4,x) , where M4,x = E
(
xxT ⊗ xxT

)
.

The p2 × p2 matrix M4,x is symmetric and positive semidefinite, with rank r at
most equal to p (p + 1) /2 [8].

Let Σ be the expectation of the product between the matrix A and its
transpose:

Σ = E
(
AAT

)
.

Independence between A and x, together with the covariance structure of x,
imply that the covariance of Ax is Σ. Let Σ−1/2 be the positive definite sym-
metric square root of the concentration matrix Σ−1, that is the inverse of Σ.
It follows that Bx, where B = Σ−1/2A, is a p-dimensional standard random
vector whose Mardia’s kurtosis equal the Mardia’s kurtosis of Ax:

E (Bx) = 0p, cov (Bx) = Ip and β2,M (Ax) = β2,M (Bx) = tr (M4,Bx) ,

where M4,Bx is the fourth moment of Bx. The identity

M4,Bx = E
[
(B ⊗ B)M4,x

(
BT ⊗ BT

)]
follows from x being independent of A and the fourth moment of the linear
transformation Ux of x, where U is a k × d matrix, being

M4,x = (U ⊗ U)M4,x

(
UT ⊗ UT

)
[8]. Ordinary properties of a matrix’s trace and of Mardia’s kurtosis lead to

β2,M (Bx) = tr
{
E

[
(B ⊗ B)M4,x

(
BT ⊗ BT

)]}
=

E
{
tr

[
M4,x

(
BT ⊗ BT

)
(B ⊗ B)

]}
.

For matrices X, Y, Z and W of appropriate size, the identity

(X ⊗ Y) (Z ⊗ W) = XZ ⊗ YW

holds true ([14], page 194). As a direct consequence, we have

M4,x

(
BT ⊗ BT

)
(B ⊗ B) = M4,x (Q ⊗ Q) , where Q = BTB.

Let vi be the eigenvector associated with the positive eigenvalue λi of M4,x,
so that vi is the vectorization of a symmetric p × p matrix Vi [11]. The fourth
moment of x might be represented as a linear combination of the Kronecker
squares of the matrices V1, ..., Vr [12]:

M4,x =
r∑

i=1

λiVi ⊗ Vi.
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The above representation, together with the distributive property of the Kro-
necker product lead to

M4,x (Q ⊗ Q) =
r∑

i=1

λiViQ ⊗ ViQ.

The trace of the Kronecker product of two square matrices is the product of the
matrices’ traces, so that

tr [M4,x (Q ⊗ Q)] =
r∑

i=1

λitr (ViQ ⊗ ViQ) =
r∑

i=1

λitr
2 (ViQ) .

Any two matrices X and Y of the same size satisfy the identity

tr
(
XTY

)
= vecT (Y)vec(X).

Therefore, the following identity holds true:
r∑

i=1

λitr
2 (ViQ) =

r∑
i=1

λivecT (Q) vec (Vi) vecT (Vi) vec (Q) .

By definition vi = vec (Vi) is the eigenvector associated with the positive eigen-
value λi of M4,x, so that

tr [M4,x (Q ⊗ Q)] =
r∑

i=1

λivecT (Q)vivT
i vec (Q)

= vecT (Q)
(

r∑
i=1

λivivT
i

)
vec (Q) = vecT (Q)M4,xvec (Q) .

By assumption, A is a nonsingular and nondegenerate p × p matrix, so that the
covariance of vec (Q) is a positive definite, symmetric p2 × p2 matrix:

cov [vec (Q)] = E
[
vec (Q) vecT (Q)

] − E [vec (Q)] E
[
vecT (Q)

]
> Op2×p2 .

The expected value of Q is the p×p identity matrix, thus leading to the inequality

E
[
vec (Q) vecT (Q)

]
> vec (Ip) vecT (Ip) .

Let S be the positive semidefinite, symmetric square root of M4,x and apply
linear properties of the expected value to obtain

E
[
Svec (Q) vecT (Q)S

]
> Svec (Ip) vecT (Ip)S.

The above inequality, ordinary properties of the trace and the definition of S
imply the following one:

tr
{
E

[
Svec (Q) vecT (Q)S

]}

= E
[
vecT (Q)M4,xvec (Q)

]

> vecT (Ip)M4,xvec (Ip) .

The right-hand side of the above inequality is the Mardia’s kurtosis of Ax,
while its left-hand side is the Mardia’s kurtosis of x [11]. We can then write
β2,M (Ax) > β2,M (x) and complete the proof.
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Abstract. The aging population is currently impacting several coun-
tries worldwide, generating socio-economic needs such as long-term care
(LTC) in old age. Developing a strategy linking these care needs to the
pension scheme can help in managing the increasing cost of care of pen-
sioners affected by disability. This paper presents a model in which the
LTC benefit is integrated into a notional-defined contribution (NDC)
pension system. The model’s financial sustainability is investigated with-
out and with the application of an automatic balance mechanism (ABM)
founded on a Liquidity Ratio. Economic and demographic variables
(including the new disability risk element generated by the LTC) are
modeled in a stochastic environment.

Keywords: LTC benefits · NDC pension system · Financial
sustainability · Automatic balance mechanisms

1 Introduction

An increasing number of countries - Italy included - are affected by the aging pop-
ulation, which has raised growing concern both for the sustainability of the social
security system and for the system’s ability to extend coverage to new emerging
socioeconomic risks, such as the need to receive LTC in old age. Therefore, LTC
expenditure is expected to grow significantly in the next years in the advanced
countries. In Italy, the LTC public spending was 1.7% of GDP in 2019, and will
rise to 1.9% in 2030 and 2.6% in 2050 based on the EU projections [3].

A specific literature on the combination of retirement with LTC benefits has
been developed in the recent years (see e.g. [7–9]). Following this line of research,
we present a model integrating the LTC benefit into an NDC pension system.
The main economic and demographic variables involved in the integrated system
are modeled in a stochastic environment.
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The presence of LTC benefits adds new risk elements, such as the uncertainty
related to the disability rates and mortality rates of disabled [5], which makes
the introduction of automatic balance mechanisms (ABMs) to guarantee the
system’s financial sustainability even more necessary. Specifically, we apply an
ABMs based on the liquidity ratio, acting on the indexation of pensions and
notional rate as in [1].

2 The Model

Our model considers two benefits: old-age pension and LTC in the form of a
life care annuity (LCA). LCA is a coverage providing a LTC benefit which is a
percentage increase, η, of the basic pension, b, (with b(h) = b): b(d) = b(1 + η).
The uplift is financed during the accumulation period by an extra contribution.
Other benefits are disregarded. We consider a multiple state model with four
states: contributor (1), pensioner (2), disabled (3), and dead (4). The transi-
tion probabilities between states (contributor → pensioner, contributor → dead,
pensioner → disabled, pensioner → dead, disabled → dead) depend on age and
time and not from the years of service. We define the transition probability of
an individual aged x in state i at time t to arrive in state j at time t + h as
hpij(x, t), and the probability for the same individual to remain in state i for
time h as hpii(x, t).

Denoting Nk(x, t) as the number of individuals in state k at age x at time t
and Zk(x, t) the new entrants, the population dynamics at each time t is given
by:

Nk(x, t) = Nk(x − 1, t − 1)pkk(x − 1, t − 1) + Zk(x, t) k = 1, 2, 3, 4 (1)

The total population in the state k at time t is given by Nk(t) =
∑

x Nk(x, t).
Let us consider an overlapping generation model starting at time t = 0 with

Nk(0) = 0 ∀k. xa is the entry age into the contributor state and xr is the
retirement age, both are assumed to be constant over time. Z1(xa, t) is assumed
constant ∀t. Therefore, assuming that there are no deaths among contributors,
the active population stabilizes in xr − xa years.

Denoting s(x, t, i) as the wage for the i-th active aged x at time t and assum-
ing the same wage for all the individuals belonging to the same generation,
s(x, t, i) = s(x, t) for all i. The individual wage evolves according to a given
growth rate, as follows:

s(x, t) = s(x, t − 1) [1 + ξ(t)] for x < xr (2)

Where ξ(t) is the growth rate of individual wage from t − 1 to t.
The total wage earned by the active population aged x at time t is given by

S(x, t) = N1(x, t)s(x, t) (for x < xr). While, denoting S(t) =
∑

x S(x, t) as the
total wage at time t, the average wage is equal to: s(t) = S(t)

N1(t) .
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The individual contribution paid by an active aged x at time t is c(x, t) =
c(t)s(x, t) (for x < xr). Where c(t) is the contribution rate of the pension system
at time t. The total contribution for the active population aged x at time t is
given by: C(x, t) = c(t)S(x, t) (for x < xr). We denote with C(t) the amount of
total contribution earned by the system, C(t) =

∑
x C(x, t).

In an NDC system, the contribution rate is fixed and assumed constant over
time, c(t) = c for all t. Each participant’s contributions are booked on an indi-
vidual notional account and remunerated each year t at the same rate of return,
g(t). The individual notional account for an active i aged x at the end of year t
is calculated as:

m(x, t, i) = [m(x − 1, t − 1, i) + c(t)s(x, t)] [1 + g(t)] for x < xr (3)

At retirement, the initial benefit is determined by converting the individual
notional account into an annuity consistently with the remaining cohort life
expectancy, the expected indexation rate, λ∗, and the expected rate of return,
g∗. Considering a new healthy pensioner aged xr at time t and assuming benefits
paid in advance, the annuity rate ä(xr, t) is calculated as:

ä22(xr, t) =
∑

h=0

hp22∗(xr, t) ·
t+h∏

k=t

[1 + j∗(k)]−1 (4)

where j∗(k) = 1+g∗(k)
1+λ∗(k) − 1 is the expected rate measuring the amount by which

the notional rate deviates from pension indexation. Similarly, the annuity rate
for a new disabled pensioner aged x ≥ xr at time t is determined by: ä23(x, t) =
∑

h=0 hp23∗(x, t) · ∏t+h
k=t [1 + j∗(k)]−1.

Considering LCA benefits, the basic pension amount b paid to a new (healthy)
pensioner is the same as what would be paid in an NDC system without LTC:

b(xr, t, i) =
m′(xr, t, i)

ä22(xr, t) + (1 + η)ä23(xr, t)
=

m(xr, t, i)
ä22(xr, t) + ä23(xr, t)

(5)

where m′(xr, t, i) is the value of the notional amount to be accumulated to finance
both old-age pension and LCA benefits (m′(xr, t, i) > m(xr, t, i)). Starting from
Eq. 5 we can determine the new contribution rate c′(x, t):

c′(x, t)
c(x, t)

=
m′(xr, t, i)
m(xr, t, i)

=
ä22(xr, t) + (1 + η)ä23(xr, t)

ä22(xr, t) + ä23(xr, t)
(6)

When the LCA is introduced, we define C ′(x, t) and C ′(t) consistently to
C(x, t) and C(t).

We denote B2
z(xr, t) and B3

z(x, t) the total benefits paid to the new healthy
and disabled pensioners in the year t, respectively. The total pensions paid to
all retirees aged x in the year t evolve as follows:

B2(x, t) = B2(x − 1, t − 1)p22(x − 1, t − 1) [1 + λ(t − 1)] for x > xr (7)
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B3(x, t) = B3(x − 1, t − 1)p33(x − 1, t − 1) [1 + λ(t − 1)] + B3
z(x, t) for x > xr

(8)
where λ, could be different from its estimated value, λ∗.

Finally, let B(t) =
∑

x,i Bi(x, t), i = 2, 3, be the amount of total pensions
paid to all retirees in the year t. The corresponding average pension is given by:
b(t) = B(t)

N2(t)+N3(t) .

3 Financial Sustainability and ABMs

In a balanced PAYG scheme we have C ′(t) = B(t). Considering the previous
equations, such condition can be expressed as: N1(t) · c′(t) · s(t) = (N2(t) +
N3(t)) · b(t). The contribution rate satisfying the equilibrium equation is defined
as:

ĉ′(t) =
N2(t) + N3(t)

N1(t)
· b(t)
s(t)

= D(t) · r(t) (9)

where D(t) = N2(t)+N3

N1(t) denotes the dependency ratio, and r(t) = b(t)
s(t) denotes

the average replacement rate of the system in the year t.
A PAYG system could experience periods with cash-flow deficit (surplus),

C ′(t) < B(t) (C ′(t) > B(t)). We measure the liquidity of the system in the year
t by the unfunded liabilities (UL), defined as: UL(t) = B(t) − C ′(t).

This implies the accumulation of a reserve fund F (t) (if UL < 0), or a pension
liability (if UL > 0). Assuming the rate of return of F (t) equal to the notional rate,
the evolution of F (t) is given by: F (t) = F (t − 1) [1 + g(t − 1)] + C ′(t) − B(t).

Demographic evolution and/or economic dynamics could undermine the
PAYG equilibrium. In an NDC system, as the contribution rate is constant,
the equilibrium can be reached by changing the replacement rate, which means
changing the notional rate and the expected probabilities used in Eq. 4. But,
as observed by [2], there are situations where an NDC system is not able to
immediately restore the equilibrium, thus remaining vulnerable to demographic
and economic shocks. We consider an ABM based on liquidity ratio defined as
follows, and designed to attain a liquidity ratio of 1:

LR(T ) =
C ′(t) + F−(t)

B(t)
(10)

Both the notional rate g(t) and the pension indexation λ(t) are adjusted:

(1 + gLR(t)) = (1 + g(t))ILR(t) (11)

(1 + λLR(t)) = (1 + λ(t))ILR(t) (12)

where ILR(t) = C(t)+FLR−(t)
BLR(t)

.
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4 Numerical Application and Conclusions

We model both transition probabilities and macroeconomic variables in a
stochastic environment to take into account demographic and economic risks,
which are assumed to be independent. The economic data are taken from the
Italian National Institute of Statistics (ISTAT) for the period 1983-2019. We
model the inflation rate and wage growth rate with a VAR(1) with an exoge-
nous long-run trend of 2% and 3.5%, respectively (see [4] for further details).
We assume that the transition probabilities p12(x, t) are deterministic, while
we model p23(x, t), p24(x, t) and p34(x, t) with CBD models including an age-
dependent cohort effect (see [6] for a detailed description of the model and param-
eter estimation based on the data of the Italian National Institute of Social Secu-
rity (INPS) on people qualified to a universal disability benefit over the period
2002–2012 for ages 40–89). We disregard contributors mortality: p14(x, t) = 0
∀x, t. Finally, pi1(x, t) with i = 2, 3 are assumed to be 0 ∀x, t. xa and xr are
respectively set at 25 and 65.

We consider two scenarios: one refers to a standard NDC pension system
without LTC benefits (“base scenario”), the other refers to an NDC system with
an LCA benefit (“LCA Scenario”). The time horizon is set to T = 150 years in
order to achieve the full development of the overlapping generation model.

Based on the features of the Italian NDC system, the notional rate is equal to
the 5-years moving average of the GDP growth rate, and the pension indexation
rate is equal to the inflation rate. We assume that the GDP growth rate is equal
to the sum of the growth rate of the active population and the growth rate of
the individual wage. In the actuarial valuation, we consider a constant discount
rate equivalent to the long run trend of notional GDP growth rate.

Expected values and confidence intervals of the main indicators of the pen-
sion system at the end of forecasting period are reported in the following table
(Table 1).

Table 1. Expected values (and confidence interval at 90%) of D(T ), r(T ) and ĉ(T ),
without and with ABM.

Indicator Base scenario LCA scenario

No ABM With ABM No ABM With ABM

D(T ) 0.658

(0.547; 0.744)

r(T ) 0.461 0.459 0.479 0.475

(0.426; 0.499) (0.403; 0.545) (0.437; 0.526) (0.416; 0.564)

ĉ′(T ) 0.303 0.299 0.314 0.309

(0.255; 0.346) (0.296; 0.302) (0.273; 0.353) (0.306; 0.312)
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The results show that the introduction of the LCA benefit involves an increase
in the average replacement rate of the system (+1.8%) together with an increase
in the equilibrium contribution rate (+1.1%). The introduction of the ABM
based on the liquidity ratio slightly reduces the replacement rates, producing
an alignment of the contribution rates to 0.30 and 0.31, respectively. Obviously,
with the introduction of the ABM, the uncertainty of ĉ′(t) is significantly reduced
(with and without LCA benefit), but, at the same time, the uncertainty of the
replacement rate increases (+94.5% in the base scenario, +66.3% in the LCA
scenario). The results show that the introduction of an ABM could help to
improve the stability of the system, in both base and LCA scenarios. On the
other hand, the introduction of an ABM based on the liquidity ratio trans-
fers risk to retirees, increasing the uncertainty of the replacement rate. Future
researches may analyze the effect of alternative ABMs to reduce the replacement
rate uncertainty. Further development could consist of studying alternative LTC
benefits, for example, the enhanced pension.
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Abstract. In recent years a large literature on deep learning based
methods for the numerical solution partial differential equations has
emerged; results for integro-differential equations on the other hand are
scarce. In this short paper we study deep neural network algorithms for
solving linear parabolic partial integro-differential equations with bound-
ary conditions in high dimension. To show the viability of our approach
we discuss a test case study from insurance.

Keywords: Deep neural networks · Parabolic partial
integro-differential equations · Machine learning · Insurance

1 Introduction

Many problems in insurance and finance lead to terminal or boundary value prob-
lems involving parabolic partial integro-differential equations (PIDEs). Examples
include option pricing in models with jumps, the valuation of insurance contracts,
ruin probabilities in non-life insurance, optimal reinsurance problems and many
applications in credit risk. These PIDEs can be linear (such as PIDEs arising in
risk-neutral pricing) or semilinear (such as the dynamic programming equation
in many stochastic control problems). Practical applications often involve sev-
eral underlying assets or economic factors, so that one has to deal with PIDEs
in a high-dimensional space. These PIDEs do typically not admit an analytic
solution, making the design of suitable numerical methods an ongoing challenge.
Existing numerical methods include deterministic schemes such as finite differ-
ence and finite element methods and random schemes based on Monte-Carlo
methods. However, finite difference and finite element methods cannot be used
in the case of high-dimensional PIDEs as they suffer from the curse of dimen-
sionality. Monte-Carlo methods on the other hand are suitable for problems in
higher dimensions. However, these methods only provide a solution for a single
fixed time-space point (t, x). This is problematic in risk management applica-
tions, where one needs to find the solution of a pricing problem for a large set
D of future scenarios. The naive solution via nested Monte Carlo is in most
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M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
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cases computationally infeasible. For these reasons many recent contributions
study machine learning techniques for the numerical solution of PDEs. A large
strand of this literature is based on the representation of semilinear parabolic
PDEs via backward stochastic differential equations (BSDEs), see e.g. the sem-
inal papers [6] and [4]. Applications of deep learning methods to partial integro
differential equations on the other hand are scarce.

In this short paper we consider a deep neural network (DNN) algorithm for
linear parabolic PIDEs that generalizes the regression approach of [2]. In the
extended version [5] we additionally consider an algorithm for the semilinear
case generalizing the deep splitting method of [1]. In the semilinear case we first
linearize the equation locally in time using a time grid tn, n = 0, . . . , N . Then we
perform a backward induction over the grid points, using in each step the DNN
algorithm for the linear case. Moreover, we propose a alternative linearization
procedure to [1] and we apply our DNN algorithms also to boundary value
problems, while [2] and [1] consider only pure Cauchy problems.

Our focus is on applications to insurance and finance. To assess performance
of our methodology we carry out extensive tests for PIDEs arising in actuarial
mathematics. A formal error analysis is left to future research. In this short paper
we consider pricing of a stop-loss type reinsurance contract in a model where
claims arrive with stochastic intensity (see, e.g. [3]) as a first test case. In the
extended version [5] we present additional insurance and finance related examples
both for the linear and the semilinear case. For other applications of neural
networks to insurance see e.g. [7]. Our experiments show that the performance
is satisfying in terms of accuracy and speed. The relative L1-approximation error
is close to zero and the computation time is significantly smaller compared to
Monte-Carlo methods in cases when the solution is computed on a set D.

The paper is organized as follows. Section 2 introduces the general setting;
Sect. 3 deals with linear PIDEs.

2 Modeling Framework

We fix a probability space (Ω,F ,P), a time horizon T and a right continuous
filtration F. Consider measurable functions μ : [0, T ]×R

d → R
d, σ : [0, T ]×R

d →
R

d×d and γX : [0, T ] × R
d × E → R

d, where (E, E) is a separable measurable
space. We assume that (Ω,F ,P) supports a d-dimensional Brownian motion W
and a Poisson random measure J on [0, T ] × E. The compensator of J is given
by ν(dz)dt for a finite measure ν on E. We consider a d-dimensional process X
that is the unique strong solution to the SDE, X0 = x ∈ R

d,

dXt = μ(t,Xt)dt + σ(t,Xt)dWt +
∫

E

γX(t,Xt−, z)J(dt,dz), (1)

We restrict ourselves to finite activity processes to simplify the exposition as it
is sufficient for most applications in insurance. It is well known that the SDE
(1) has a unique strong solution under mild conditions on the coefficients.
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Define the matrix Σ(t, x) = (bi,j(t, x), i, j = 1, . . . , d), by Σ(t, x) = σσ�(t, x)
and consider for u ∈ C1,2([0, T ] × R

d) the integro-differential operator L

Lu(t, x) :=
d∑

i=1

μi(t, x)uxi
(t, x) +

1
2

d∑
i,j=1

bi,j(t, x)uxixj
(t, x) (2)

+
∫
Rd

[u(t, x + γX(t, x, z)) − u(t, x)]ν(dz), x ∈ R
d, t ∈ [0, T ].

The operator L is the generator of X solving the martingale problem for L.
Consider functions c : [0, T ]×R

d → R, r : [0, T ]×R
d → R and g : [0, T ]×R

d →
R, and let D be an open subset of Rd. In Sect. 3 we are interested in the following
boundary value problem

ut(t, x) + Lu(t, x) − r(t, x)u(t, x) + c(t, x) = 0, (t, x) ∈ [0, T ) × D, (3)

and u(t, x) = g(t, x) for (t, x) ∈ (
[0, T )×(Rd\D)

)∪({T}×R
d
)
. The special case

D = R
d corresponds to a pure Cauchy problem without boundary conditions; in

that case we use the simpler notation g(T, x) =: ϕ(x) to denote the terminal con-
dition. It follows from the Feynman-Kac formula that under some integrability
conditions a classical solution u of (3) has the probabilistic representation

u(t, x) = Et,x

[ ∫ τ̄

t

e− ∫ s
t

r(u,Xu)duc(s,Xs)ds + e− ∫ τ̄
t

r(u,Xu)dug
(
τ̄ , Xτ̄

)]
, (4)

where τ̄ := T ∧ τ and τ := inf{s ≥ t : Xs /∈ D}.
In Sect. 3 we propose a deep neural network (DNN) algorithm to approximate

the function u defined in (4). In the extended version [5] we are interested in
semilinear problems of the form ut(t, x) + Lu(t, x) + f(t, x, u(t, x),∇u(t, x)) =
0, (t, x) ∈ [0, T ) × D, where f : [0, T ] ×R

d ×R×R
d → R is a nonlinear function

such as the Hamiltonian in a typical Hamilton Jacobi Bellman equation.

3 Deep Neural Network Approximation for Linear PIDEs

3.1 Representation as Solution of a Minimization Problem

Fix some time point t ∈ [0, T ) and a closed and bounded set A ⊂ D. Define the
function u : [0, T ] × R

d → R by the Feynman-Kac representation (4). We want
to compute an approximation to the function u(t, ·) on the set A. The key idea
is to write this function as solution of a minimization problem.

Consider some random variable ξ whose distribution is absolutely continuous
with respect to the Lebesgue measure such that the corresponding density has
support A (in applications the distribution of ξ is often the uniform distribution
on A) and denote by Xξ the solution of the SDE (1) with initial value Xt = ξ.
Define the random variable

Y ξ :=
∫ T∧τ

t

e− ∫ s
t

r(u,Xξ
u)duc(s,Xξ

s )ds + e− ∫ T ∧τ
t

r(u,Xξ
u)dug

(
T ∧ τ,Xξ

T∧τ

)
. (5)
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Assume that E[|Y ξ|2] < ∞ and that the function u(t, ·) belongs to C0(A). Since
Xξ is a Markov process it holds that u(t, ξ) = E[Y ξ | σ(ξ)], where σ(ξ) is the
sigma-field generated by ξ. Since Y ξ is square integrable we thus get from the
L2-minimality of conditional expectations that

E

[∣∣Y ξ − u(t, ξ)
∣∣2] = inf

{
E

[∣∣Y ξ − Z
∣∣2] : Z ∈ L2(Ω, σ(ξ),P)

}
. (6)

Since u(t, ·) ∈ C0(A) and since the density of ξ is strictly positive on A we
conclude that u(t, ·) is the unique solution of the minimization problem

minE

[∣∣Y ξ − v(ξ)
∣∣2], v ∈ C0(A). (7)

which can be solved with deep learning methods, as we explain next.

3.2 The Algorithm

The first step in solving (7) with machine learning techniques is to simulate
trajectories of Xξ up to the stopping time τ . The simplest method is the Euler-
Maruyama scheme. Here we choose a time discretization t = t0 < t1 < · · · <
tM = T , Δtm = tm − tm−1, generate K simulations ξ(1), . . . , ξ(K) of the random
variable ξ and simulate K paths X(1), . . . , X(K) of Xξ up to the stopping time
τ by the following recursive algorithm. We let X

(k)
t = ξ(k), and for m ≥ 1,

X
(k)
tm∧τ := X

(k)
tm−1∧τ + 1(0,τ)(tm−1)

(
μ(tm−1,X

(k)
tm−1

)Δtm + σ(tm−1,X
(k)
tm−1

)ΔW
(k)
tm

+
∫ tm

tm−1

∫
Rd

γ(tm−1,X
(k)
tm−1

, z) J (k)(dz,ds)
)
. (8)

Note that the integrand in the integral with respect to J (k) is evaluated at
tm−1 so that this integral corresponds to the increment of a standard compound
Poisson process. Using these simulations we compute for each path

Y (k) :=
∫ τ̄

t

e− ∫ s
t

r(u,X(k)
u )duc(s,X(k)

s )ds + e− ∫ τ̄
t

r(u,X(k)
u )dug(τ̄ , X

(k)
τ̄ ), (9)

with τ̄ := T ∧ τ . The integrals can be approximated by Riemann sums.
In the next step we approximate u(t, ·) by a deep neural network Ut(·) =

Ut(·; θ) : A → R
d. We determine the network parameters θ (training of the net-

work) by minimizing the loss function θ 
→ 1
K

∑K
k=1

(
Y (k) − Ut(ξ(k); θ)

)2
. For

this we rely on stochastic gradient-descent methods; algorithmic details are given
in [5]. This approach can be considered as a regression-based scheme since one
attempts to minimize the squared error between the DNN approximation Ut(·; θ)
and the given terminal and boundary values of the PIDE.

To test the proposed DNN algorithm we price a reinsurance contract in the
model of [3], where the claims process follows a doubly stochastic risk process.
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3.3 Example

Valuation of an Insurance Contract with Doubly Stochastic Poisson Arrivals.
We consider an insurance company and a reinsurer who enter into a reinsur-
ance contract with a given maturity T = 1. The risk-free interest rate is r. To
model the losses in the insurance portfolio underlying this contract we consider
a sequence {Tn}n∈N of claim arrival times with nonnegative intensity process
λL = (λL

t )t≥0 and a sequence {Zn}n∈N of claim sizes that are iid strictly posi-
tive random variables independent of the counting process N = (Nt)t≥0 defined
by Nt =

∑∞
n=1 1{Tn≤t}. The loss process L = (Lt)t≥0 is given by Lt =

∑Nt

n=1 Zn.
We assume that the Zn are Gamma (α, β) distributed with density fα,β(z). This
is a common choice in insurance. Moreover, the Gamma distribution is closed
under convolution so that the sum of independent Gamma distributed random
variables can be generated with a single simulation, which speeds up the sam-
pling of trajectories from L. The claim-arrival intensity process λL satisfies the
SDE

dλL
t = b(λL

t )dt + σ(λL
t )dWt, λL

0 = λ0 ∈ R+, (10)

where W is a standard Brownian motion. In this example it is convenient to
write the process X in the form Xt = (Lt, λ

L
t ). We assume that the reinsurance

contract is a stop-loss contract, i.e. the indemnity payment is of the form ϕ(LT )
with ϕ(l) = [l − K]+, with [z]+ = max{z, 0}. The market value u at time t ∈
[0, T ] of the reinsurance contract is for (l, λ) ∈ R

0
+ × R+ defined by u(t, l, λ) :=

E
l,λ
t [e−r(T−t)ϕ(LT )], where E

l,λ
t [ · ] := E[ · |Lt = l, λL

t = λ]. The authors of [3]
show that u is the unique solution of the PIDE ut(t, l, λ) + Lu(t, l, λ) = 0 with
terminal condition u(T, l, λ) = ϕ(l) and generator

Lu(t, l, λ) = uλ(t, l, λ)b(λ) +
1
2
uλλ(t, l, λ)σ(λ)2 (11)

+ λ

∫
R

[u(t, l + z, λ) − u(t, l, λ)]fα,β(z)dz,

for (l, λ) ∈ R
0
+ × R+, t ∈ [0, T ). There is no explicit solution for this PIDE, and

we approximate u(0, l, λ) on the set A := {(l, λ) : l ∈ [0, 30], λ ∈ [90, 130]} with a
deep neural network U0(l, λ). Parameters used for the valuation of the stop-loss
contract are b(λ) = 0.5(100 − λ), σ(λ) = 0.2λ, α = 1, β = 1, r = 0 and K = 90.
Paths of the processes L and λL are simulated with the Euler-Maruyama scheme
and ξ ∼ Unif(A).

Figure 1 shows the approximate solution U0 obtained by the DNN algo-
rithm. As a reference we compute for fixed (l, λ) approximate values UMC(l, λ) ≈
u(0, l, λ) with Monte-Carlo (MC) using 106 simulated paths for each point (l, λ)
(paths are simulated with the Euler-Maruyama scheme).

The relative L1-error between the DNN approximation U and the MC-
solution UMC is defined as ε := E

[∣∣∣U(ξl,ξλ)−UMC(ξl,ξλ)
UMC(ξl,ξλ)

∣∣∣
]
. Using 1000 simula-

tions of ξl ∼ Unif([0, 30]), ξλ ∼ Unif([90, 130]) we obtained a relative error of
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Fig. 1. Solution u(0, l, λ) for l = 0, λ ∈ [90, 130] (left) and l ∈ [0, 30], λ = 90 (right)
computed with the DNN-algorithm (black) and reference points with MC (grey).

ε = 0.0018. On a Lenovo Thinkpad notebook with an Intel Core i5 processor
(1.7 GHz) and 16 GB of memory the computation of U via the training of a DNN
took around 322 s, whereas the computation of UMC(l, λ) with Monte-Carlo for
a fixed point (l, λ) took around 4.3 s. This shows that the DNN approach is faster
than the MC approach if one wants to compute u(t, li, λi) for a grid (li, λi) with
more than 100 grid points.
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Abstract. In algorithmic trading strategies aiming at “Buying Low and
Selling High” a given asset is a recurrent topic for many practitioners and
still pose challenges for researchers. We may ask, for example, what hap-
pens in the long run if we set price levels θ < θ and buy the asset if its
price goes below θ and sell it if the price exceeds θ? In their recent paper,
Lovas and Rásonyi proved that under suitable conditions, the distribu-
tion of the log-rate of returns realized in each cycle converges to a unique
limit distribution in total variation at geometric speed. Furthermore, the
law of large numbers holds for bounded and measurable functionals of
the returns. We tested these findings by executing the strategy on real
stock exchange data consists of in about 2.3 million records, providing
empirical evidence for the law of large numbers.

Keywords: Algorithmic trading · Threshold-type strategies · Optimal
investment · Stochastic stability · Markov chain · Minorization
condition

1 Introduction

The good old but naive advice for beginner traders is to “(B)uy (L)ow and (S)ell
(H)igh” (BLSH) a given financial asset. Although, the majority of expert traders
refuse to take this obvious approach serious or at least they operate with a more
refined versions of such strategies, BLSH has been studied by several authors
in the past twenty years from various aspects (see for example [1] and [8]). We
focus on two main question arising in this context: (1) When it is advisable to
buy/sell a given asset? (2) What happens in the long run if we fix thresholds
θ < θ and buy the asset if its price goes below θ and sell it if the price exceeds
θ exploiting the so-called up-crossings [θ, θ] to profit from price oscillations?
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For instance, the first question was addressed by Dai et al. who formulated
stochastic optimal stopping problems and elaborated a trading strategy to deter-
mine the proper time for a single buy and sell under the assumption that the
underlying asset price follows geometric Brownian motion (GBM) [3]. Authors
in [9], studied optimal sequential investment strategies. They showed that GBM
price process does not allow for optimal buying and selling strategies that have
a sequential nature. They also proved that mean-reverting constant elasticity of
variance processes may be optimal to sequentially buy and sell. Earlier Zhang and
Zhang [10] considered the problem of buying and selling a single asset sequen-
tially to maximize a discounted utility in a model, where the evolution of the
underlying asset price is described by a mean-reverting process

dYt = a(b − Yt)dt + σdBt, Y0 = y0, (1)

where b, y0 ∈ IR, a, σ > 0, and (Bt)t≥0 denotes the standard Brownian motion.
Using the dynamic programming approach, they showed that the optimal trading
rule can be determined by two threshold levels θ, θ, as in the second question,
moreover θ and θ can be expressed in terms of a, b and σ.

Concerning the second question, Lovas and Rásonyi studied the long term
behavior of the above-mentioned fixed-threshold version of the BLSH [5].
Inspired by the recent results of Mijatovic and Vysotsky on the stability of the
overshoots of random walks with i.i.d. increments [7], they proved for a broad
class of price processes that the distribution of the gain and the time between
buying and selling converges in the long run, moreover for bounded utility func-
tions the law of large numbers holds in the strong sense. Although these results
cover many stochastic volatility models including certain price processes even
with non-Markovian increments (see Section 6 in [5]), the assumptions are too
restrictive, and the applicability of the theorem to real-life situations is ques-
tionable.

It is the purpose of this numerical study to examine whether the law of large
number remains valid if we omit some of these restrictive technical conditions.
We simulated trading with fixed thresholds on artificial data, and also on S&P
500 tick data consists of more than 2.3 million records. Our investigations provide
empirical evidence for that the ergodic averages of logarithmic rate of returns
converge to a limit, and thus the law of large numbers may hold.

2 Trading with Fixed Thresholds

In this section, we formulate the elements of trading mechanism, and briefly out-
line our recent advancements in [5] regarding the stability and ergodic properties
of returns if the investor follows a vanilla BLSH-type trading strategy.

We consider an asset which logarithmic price at t ∈ IN is denoted by At, and
assume that for some μ ∈ IR,

At = μt + St (2)
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holds, where μt represents the drift and St = S0 +
∑t

j=1 Xj is a random walk
that describes the fluctuations around the linear trend, moreover S0 is an almost
surely finite random variable independent of σ(Xk : k ∈ IN).

To set up a “buying low, selling high”-type strategy, we fix thresholds θ, θ ∈
IR, satisfying θ < 0 < θ, and define the sequences of buying and selling times
0 =: L0 < T1 < L2 < T2 < . . . such that Tn+1 := min{k > Ln : Sk < θ} and
Ln+1 := min{k > Tn+1 : Sk > θ}, n ∈ IN. By buying the asset at Tn and selling
it at Ln, the logarithmic return over the n-th investment period will be

Rn = ALn
− ATn

= μ(Ln − Tn) + SLn
− STn

, n ≥ 1. (3)

We restrict ourselves to the case when for some M > 0, (Xt)t∈IN is a time-
homogeneous Markov chain on the probability space (Ω,F , IP) with state space
(−∞,M ], satisfying the uniform minorization condition i.e. there exists α, h > 0
such that, for all x, y ∈ (−∞,M ],

IP (Xt+1 ∈ (−∞, y] | Xt = x) ≥ α
1
2h

Leb([−h, h] ∩ (−∞, y]), (4)

where Leb(.) stands for the standard Lebesgue measure on IR. Roughly speaking,
the minorization condition ensures that the whole state space itself is a small
set of the chain (Xt)t∈IN, on the other hand, the random movements of S have a
small diffuse component. By Theorem 16.2.2 of [6], there is a unique probability
law π∗ on (−∞,M ] such that the distribution of Xt converges to π∗ in total
variation as t → ∞, at a geometric speed. Let us assume that π∗ has zero mean,
that is ∫

(−∞,M ]

xπ∗(dx) = 0. (5)

According to Lemma 2.4 of [5], under the minorization condition for (Xt)t∈IN

and the assumption that π∗ has zero mean, the random variables (Tn, Ln)n∈IN

are well-defined and almost surely finite.
The following theorem plays an important role because it opens door to the

statistical analysis of investment returns.

Theorem 1. Under our standing assumptions, the law of Un := (Ln − Tn, Rn)
converges to a unique limiting law Π∗ on IN × IR in total variation, as n → ∞.
Furthermore, for any bounded and measurable function φ : IN × IR → IR,

∑n
j=1 φ(Uj)

n
→

∫

IN×IR

φ(u)Π∗(du), n → ∞, (6)

almost surely.

Proof. This follows from Theorems 2.5 of [5]. We give a brief sketch of the main
ideas nonetheless. Let us consider the process Wn := (XTn

, STn
,XLn

, SLn
, Ln −

Tn) instead of (Un)n∈IN. It is straightforward to verify that (Wn)n>1 is a time-
homogeneous Markov chain on the state space (−∞, 0) × (−∞, θ) × (0,M ] ×
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(θ, θ + M) × (IN\{0}). Furthermore, by taking into account only those trajecto-
ries of S that consist of just one decreasing and one increasing segment, it can be
shown that the chain (Wn)n>1 also satisfies the uniform minorization condition.
By Theorem 16.2.2 of [6] again, we have that the law of Wn converges in total
variation to a unique limit distribution, as n → ∞, moreover for bounded func-
tionals of (Wn)n>1, the strong law of large numbers holds. Since (Un)n>1 is the
projection of (Wn)n>1, the same is true for (Un)n>1 as well which completes the
proof. ��
Corollary 1. Due to the time value of money, especially in presence of a poten-
tially risk-free asset with positive interest rate, the logarithmic rate of return is
more informative, and thus has greater importance for investors, than the log-
arithmic return over one investment period. For the logarithmic rate of return,
we have

rn =
Rn

Ln − Tn
= μ +

SLn
− STn

Ln − Tn
. (7)

Notice that for n ∈ IN, rn is a bounded and measurable function of Un, where
Un is as in Theorem1, provided that the sequence (Xt)t∈IN is bounded hence by
Theorem1, the sequence (rn)n∈IN admits an ergodic behavior.

Remark 1. Section 6 of [5] extends Theorem 1 under suitable assumptions to cer-
tain price models of the form (2) with non-Markovian summands in their mar-
tingale part i.e. (St)t∈IN. The motivation for such generalization is that discrete
time analogues of continuous-time stochastic volatility models can be treated in
this way, where the latter are of the form

dAt = μdt + ν0(Σt)dBt, (8)

where (Bt)t≥0 is a Brownian motion, ν0 is a suitable function, moreover in the
volatility term, it is imaginable that (Σt)t≥0 is non-Markovian process, driven
by e.g. fractional Brownian motion, see [2,4].

3 Numerical Simulations

First, we considered situations when (Xt)t∈IN is AR(1) process with model
parameters p = 0 (uncorrelated case), p = 0.1, and p = 0.9 that is Xt+1 =
pXt + σεt+1, where (εt)t∈IN is a sequence of i.i.d. Gaussian random variables,
X0 = 0, σ = 0.01. In the price model (2), we set μ = 0.001 and S0 = 0. Notice
that (Xt)t∈IN is still Markovian but it is not bounded from above, moreover it
fails to satisfy the minorization condition (4). We evaluated the ergodic average
of the logarithmic rate of returns over 200 investment periods (see Fig. 1), and
experienced convergence.

Next, we downloaded free S&P 500 Value Index tick data from http://www.
kibot.com/free historical data.aspx, took a period between 28-03-2017 and 23-
10-2019 that consists of 2338793 records of close prices. After separating the
drift and “martingale part” S, we set θ = −8.36×10−4 and θ = 9.39×10−4 that

http://www.kibot.com/free_historical_data.aspx
http://www.kibot.com/free_historical_data.aspx
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Fig. 1. Simulated trading on AR(1) data, where p denotes the model parameter.
Ergodic average of the logarithmic rate of returns (rn) over 200 investment periods.

are equal to the 45th and 55th percentiles of the empirical S-values which means
roughly speaking, that the process S spends only 10% of its time between θ and
θ. Finally, we run the trading algorithm as described in Sect. 2, and obtained
sequences of buying and selling times that determine 56 consecutive investment
periods: T1 < L1 < T2 < . . . < T56 < L56 (see Fig. 2).
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Fig. 2. S&P 500 Value Index over the considered trading period. Blue circles indicate
times when it is advisable to buy i.e. (Tn)n∈IN, and red circlies signalize times when it
is recommended to sell i.e. (Ln)n∈IN.

The logarithmic rate of return has been computed for each investment period,
and also we calculated the sequence of ergodic averages r̂n := 1

n

∑n
k=1 rk, n =

1, . . . , 56. From Fig. 3, we can observe that the sequence (r̂n)n∈IN apparently
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tends to a limit demonstrating that Theorem1 may be applicable to “real-life”
price data.
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Fig. 3. Simulated trading on S&P 500 data. Logarithmic rate of returns (rn) over the
56 investment periods – red line, and their ergodic average – blue line.

References
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Abstract. This paper considers how to improve pension information, by making
it more relevant for decision making purposes. Since 2017, it has been manda-
tory for the Member States of the European Union to report pension entitlement
information, in a supplementary report referred to as Table 29. The usefulness
of this unaccompanied liability information is analyzed, and a proposal is made
to complement it with an actuarial balance sheet (ABS) and its corresponding
income statement. More specifically, we propose a methodology to easily convert
Table 29 into an ABS which estimates the assets that accompany the liabilities
in the Table and which undoubtedly provides more useful information for taking
decisions. To a large extent the considerations follow the requirements of the Inter-
national Public Sector Accounting Standards Board (IPSASB), which explain in
its conceptual framework (CF) that the aim of financial reporting by public sec-
tor entities is to provide information about any particular entity for the purposes
of accountability and decision-making. It is the information needs of their users,
therefore, that condition the content of financial reports.

Keywords: Accountability · Actuarial balance sheet · Income statement ·
Pension liabilities · Table 29 · Useful information

1 Introduction

European Union (EU) regulations require the disclosure of the accrued-to-date pension
liability (ADL) by all Member States since 2017. The information is prepared using
a standard actuarial cost method and some common assumptions and the information
provided relates to both Social Security (SS) schemes and unfunded defined benefit (DB)
schemes covering civil servants. The pension liabilities1 are disclosed in a supplementary

1 Liabilities are expressed in terms of “actuarial present value” (APV). APV is the sum of money
needed nowwhich, invested over the duration of the scheme’s pension commitments, is expected
to be sufficient to pay out all the pensions promised.
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table, known as “Table 29”. The objective of this supplementary table is to provide
information on the pension obligations to households covered by any social insurance
pension scheme.

Table 29 is a step forward, but it has its limitation for reporting and decision-making
purposes because it does not provide information on the sustainability of SS schemes,
which are typically financed on a pay-as-you-go/partially funded basis. TheADLmethod
captures only one side of a pension scheme’s balance sheet and according to previous
literature an ABS (actuarial balance sheet) is the most valuable instrument for reporting
the system’s financial status from a SS administration’s point of view (Vidal-Meliá et al.
2018; Garvey et al. 2021; TSPS 2020).

In this paper we propose the introduction of an actuarial balance sheet (ABS) and its
associated income statement (IS) to improve pension information disclosure. An ABS
can be defined as a financial statement that details a pension system’s obligations to
contributors and pensioners at a particular date, together with the amounts of the assets
(financial and in particular those from contributions) that underwrite those commitments.

The proposal comes from converting the information included in “Table 29” into
an ABS through a methodology designed for that purpose. This will allow the “Table
29” liabilities to be accompanied by their corresponding assets and offer information for
decision making on SS pension schemes. In addition, it offers useful information as to
its solvency. Barr and Diamond (2009) mention that ignoring explicit or implicit assets
is misleading.

The inclusion of an Income statement provides a breakdown of the variations in
assets and liabilities during the reporting period which makes pension information more
understandable, transparent, relevant and useful for the purposes of taking decisions. It
shows the actuarial gain or loss for each accounting period formulated which can be
examined in detail, showing the breakdown of the financial result and giving important
information on the origin of the variations.

We consider the disclosure of “Table 29” to be an opportunity to develop amethodol-
ogy to transform the information into a more useful report for all EUMember States and
offer useful and relevant information to policymakers, statisticians, public accountants,
SS actuaries and public finance economists, among other users.

2 The European Union Requirement for “Table 29”

The information in the supplementary table was submitted by Member State countries
of the EU for the first time in 2017 using 2015 as the reference year, and again in 2020
with data from the year 2018. Data must be transmitted compulsorily every three years
for data relating to year t-2 and the liability shows the perspective of the debtor and also
of the creditor.

“Table 29” pension reporting is based on the ADL method, which is consistent with
the closed-group approach (CG) excluding future accruals. A plan’s liabilities are equal
to the present value of all expected future benefits to pensioners and all accrued rights of
current affiliates derived from social contributions already paid by current workers and
the remaining pension entitlements payable to existing pensioners.
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The supplementary table (Table 29) records all positive and negative movements
relating to the different elements making up pension obligations for all social insurance
pension schemes according to the debtor and the creditor.

Table 1. Rows of the supplementary table showing accrued-to-date pension entitlements in social
insurance.

Row no. Item

1 Pension entitlements at 31 December t (Opening Balance
Sheet)

2 (2.1 + 2.2 + 2.3 + 2.4–2.5) Increase in pension entitlements due to social contributions

2.1 Employer actual social contributions

2.2 Employer imputed social contributions

2.3 Household actual social contributions

2.4 Household social contribution supplements

2.5 Less: pension scheme service charges

3 Other (actuarial) changes in pension entitlements in social
security pension schemes

4 Reduction in pension entitlements due to payment of
pension benefits

5 (2 + 3–4) Changes in pension entitlements due to social
contributions and pension benefits

6 Transfers of pension entitlements between schemes

7 Change in entitlements due to negotiated changes in
scheme structure

8 + 9 Changes in entitlements due to revaluations and other
changes in volume

8 Changes in entitlements due to revaluations

9 Changes in entitlements due to other changes in volume

10 (1 + 5 + 6 + 7 + 8 + 9) Pension entitlements at 31 December t + 1
(Closing Balance Sheet)

Source: Eurostat (2013).

The information is included in Table 29 according to whether it is recorded or not
in the core national accounts. This refers to whether they are funded or unfunded
schemes. On a second level, the information is classified according to whether the
funds are managed by general government organizations or by non-general government
organizations.

At the next level, workplace pension schemes are included in Columns A to G and
SS schemes are in Column H. Workplace schemes are further divided according to
defined benefit (DB), defined contribution (DC) or hybrid schemes. Column I includes
the total for all the schemes and Columns J and K show the breakdown of the pension
liability between resident and non-resident households (a mandatory requirement from
2015).
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As previouslymentioned, Table 1 above shows the rows (1 to 10)where the variations
in entitlements during the year are recorded according to different categories. Row 1
offers an opening balance of the pension entitlements on the first day of the reporting
year and Row 10 shows the closing balance of pension entitlements on the last day of
the year being reported, offering a reconciliation of the information from the start to the
close of the reporting period.

Rows 2 to 9 are each related to a different item, and they include the variations
in that category during the year. For example, Row 2 includes the increase in pension
entitlements due to social contributions. This row is further subclassified to include
the amounts that correspond to employer actual or imputed contributions and household
actual or supplementary contributions. Pension scheme service charges are then deducted
before reaching the total for Row 2.

As another example,Row 3 represents the difference between the current service cost
and the sumof the employees’ and employer’s actual social contributions paid during that
year. It also includes any “experience effects” observed for SS pension schemes which
could include for example wage growth rate, inflation rate and discount rate where the
outcome differs from the assumptions initially made.

3 Improving Pension Information for Decision Making

The supplementary table is a step forward in reporting pension information, but the use-
fulness of this liability information presented unaccompanied is in doubt andwe question
whether it complies with useful and relevant information for decision making. We con-
template the possibility of creating a methodology to transform easily, this detailed table
into information that can provide useful information for decisionmaking. The proposal is
to transform Table 29 into an actuarial balance sheet (ABS) and construct its correspond-
ing income statement. This information would certainly be a step forward to complying
with the requirements of the International Public Sector Accounting Standards Board
(IPSASB 2020).

According to the conceptual framework (CF) of the IPSASB (2020), General Pur-
pose Financial Reports (GPFRs) should be prepared primarily considering the needs of
primary users. Citizens are considered to be primary users and are both beneficiaries
and major contributors to the pension system. The CF (IPSASB 2020) gives importance
to accountability and decision-making requirements of public sector information and
clearly explains that governments and other public sector entities are accountable to
those who provide them with resources and to those who depend on them to use those
resources to deliver services during the reporting period and longer periods of time.
Information about the entity’s management of the resources entrusted to it form part of
accountability. The CF specifically mentions giving information on liquidity, solvency
and the sustainability of the entity in question.

The CF (IPSASB 2020) outlines six qualitative characteristics of all financial and
non-financial information reported in GPFRs relating to historical, prospective and
explanatory information: relevance, faithful representation, understandability, timeli-
ness, comparability and verifiability. Materiality and cost-benefit are included as two
pervasive constraints that are used to achieve a suitable balance between the qualitative
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characteristics. Relevance and faithful representation are considered fundamental, while
the others are seen as enhancing qualitative characteristics. Both types of characteristics
are important and when used together contribute to the usefulness of the information.

According to the CF (IPSASB 2020), information is relevant if it can make a differ-
ence in achieving the objectives of financial reporting. For information to be capable of
making a difference, it needs to have confirmatory and predictive value. Confirmatory
value is said to be achieved if the information confirms or changes past or present expec-
tations. This includes confirmation of expectations that management will discharge their
responsibilities for the efficient and effective use of resources and that delivery of speci-
fied service objectives and compliancewith budgetary, legislative and other requirements
will be achieved.

From the above we can see that there is increasing demands on public sector entities
to provide useful information for decision making purposes and on the accountability
of the resources entrusted to these entities.

Very briefly, our proposal consists of taking the liabilities for pensions included in
Table 29 and developing a methodology of introducing mathematical formula and using
available data to calculate the assets that back up the reported liabilities. This would
allow us to calculate the net worth corresponding to the pension system on a specified
date and by comparing that information a year later for example, the calculation of
actuarial profits or losses for the period (Fig. 1). At the same time, an income statement
could complement the net worth by showing a breakdown of the actuarial profit or loss
for the period.

4 Conclusions

Pension information would bemore relevant for decisionmaking purposes if the pension
obligations included in Table 29 were accompanied by their corresponding assets. As
Member States of the EU have the mandatory obligation to prepare detailed information
on pension entitlements, this information could be made more relevant by developing a
methodology to transformTable 29 intomore relevant anduseful information for decision
making purposes, including an ABS and an Income Statement. To a large extent, the
above-mentioned proposal would conform with the requirements of the International
Public Sector Accounting Standards Board.
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Abstract. Motivated by the controversial empirical evidence, we deeply
investigate the model proposed by Bessembinder and Lemmon (2002)
and their hypotheses. We inspect the accuracy of the forward premium
approximation when expressed in terms of wholesale prices, and try to
unveil its dependency on price kurtosis. We derive the analytical formula
of the forward risk premium in terms of the first two moments of demand
and relax the assumption of normality. Finally, we study the dependence
of the premium in terms of the demand skewness and kurtosis.

Keywords: Electricity · Demand · Prices · Simulations

1 Background on the Bessembinder and Lemmon’s
Model

The electricity system is organized in a day-ahead (or spot) and in a forward mar-
ket, where Pi with i = 1, 2, . . . , NP Producers produce power and sell it (either
spot or forward) to retailers. Retailers, Rj with j = 1, 2, . . . , NR, buy power
from producers and resell it to final consumers. Consumers cannot access the
spot/forward market and can only buy electricity from Retailers at a fixed price.
In this setting, PW is the spot or wholesale or day-ahead price, at which one unit
of power is traded on the spot market at time T . PF is the forward price at which
the contract is agreed upon at time 0 for delivery of (a unit of) power at the matu-
rity T . Finally, PR is the retail price, at which (unit) power is sold to consumers
at time T ; and it is reasonably higher than the spot price to account for taxes and
levies. At time 0, each producer sells the quantity QF

Pi at a forward price PF in
the forward market with delivery on T . Whereas, at the maturity T , the producer
generates the quantity QPi � 0, which can be seen as a combination of two parts:
the first one being QF

Pi, delivered to honour the forward contracts, granting a rev-
enue given by PF QF

Pi; and, the second one being the residual QW
Pi = QPi − QF

Pi

which is instead sold on the spot market, with a revenue given by PW QW
Pi. Note

that QF
Pi or QW

Pi may be negative, which means that the producer buys |QF
Pi| or

|QW
Pi| on the forward/spot market. However, the sum QPi = QF

Pi + QW
Pi cannot

be negative. At time T , producer i incurs into the total production costs TC(QPi)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 291–296, 2022.
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to generate the quantity QPi. The cost function is assumed to be the same for
all producers, and defined as TC(Q) = C0 + aQc/c, with a > 0 and c � 2 and
C0 being fixed costs. Marginal costs are increasing and convex in production Q.
The (ex-post) profit for producer i at time T is the same (concave) function of
(QF

Pi, Q
W
Pi) for all producers. On the other hand, at time 0, each retailer buys the

quantity Y F
Rj at the forward price PF in the forward market for delivery on T , fac-

ing at time T the aggregated demand Dj requested from all consumers, which is
covered by the quantity bought at time 0 on forward markets, Y F

Rj (with an out-
flow at time T equal to PFY F

Rj) and the remaining part, Y W
Rj = Dj−Y F

Rj , is bought
on the spot market (on T , at a cost of PWY W

Rj ). Note that Y F
Rj or Y W

Rj may be neg-
ative, but the sum (Dj) cannot be negative. In addition, at time T , the retailer
sells the total purchased quantity to consumers at the retail price PR, receiving
a revenue of PRDj . Hence, at time T , the (ex-post) profit is a linear function of
(Y F

Rj , Y
W
Rj ), and again is equal for all retailers. To summarize, at the initial time 0,

the forward and retail prices (PF and PR) are known together with the quantities
traded forward by producers and retailers, whereas, PW , QW

Pi, QPi, πPi, Y W
Rj , Dj ,

πRj will become known only at the maturity time T . The optimal choice is deter-
mined at the maturity time T , when spot prices and demand are known. Then, to
determine the optimal choice at the initial time 0, PW and D are unknown and
considered as random variables. At time T , each Producer/Retailer has the same
Mean-Variance utility function for random profits to be maximized, where A > 0
is the common risk aversion coefficient. The equilibrium forward price at time 0 is
then determined by matching the total quantity sold by producers with the total
quantity purchased by retailers. The solution is obtained and the forward pre-
mium FP = PF − EPW is derived. Writing, here and in what follows, W instead
of PW we have1

FP = ω · cov(W, W b+1 − c PR W b) with ω =
ANP

(NP + NR) c ab
> 0, (1)

where b = 1/(c − 1) (notice that 0 < b � 1). This equation shows that FP is
a function of the distribution of the wholesale prices W ; and, in particular, it
depends on its moments. Using a quadratic Taylor expansion around μW , it is
possible to write the premium in terms of price moments, that is

FP ≈ γ2 σ2
W + γ3 σ3

W ξW (2)

where μW , σ2
W and ξW denote the mean, variance and skewness of W , respec-

tively, with

γ2 = ω (b + 1)μb−1
W (μW − PR) and γ3 = ω

b + 1
2

μb−2
W (bμW − (b − 1)PR) .

Recalling that ω > 0 and 0 < b � 1, we see that γ3 > 0, while γ2 < 0 if
PR > μW (which is reasonable). All this leads Bessembinder and Lemmon (2002,
henceforth BL) to state their first two hypotheses: (H1) FP is decreasing in σW ;
and, (H2) FP is increasing in ξW .
1 The covariance is finite provided W has finite moment of order b+2, which is between
2 and 3.
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FP as a Function of Demand. BL derive the equilibrium relation between
demand and wholesale price as W = a(D/NP )c−1. Plugging this expression into
(1) we obtain the following expression (not provided by BL)2

FP = ω′ · cov(Dc−1, Dc − ω′′ D) (3)

where

ω′ = ω · ab+2

N2c−1
P

> 0 and ω′′ =
c PR N c−1

P

a
> 0

This equation allows us to investigate the dependence of FP on the distribution
of D. Concerning this dependence, BL propose these further hypotheses: (H3)
FP is convex in σD (first decreasing, then increasing); and, (H4) FP is increasing
in μD. However, they did not formulate any hypothesis about the dependence
of FP on the skewness and kurtosis of demand (incidentally, neither [5] did;
henceforth SVK).

2 Simulations and Results

Testing the Accuracy of the BL Approximation (2) for FP. Hypotheses
H1 and H2 in BL are based on the approximate expression (2) for FP. However,
they did not investigate the accuracy of such an approximation. We do this inves-
tigation next, using the following parameter choices, introduced in BL and used
in subsequent studies3: A = 0.8/c2, NP = NR = 20, a = 30(NP /100)c−1 and
PR = λ · μW , where λ > 1 is a constant; BL propose λ = 1.2, but higher retail
markups may be expected, so we also considered λ = 1.5. In line with previous
research, we assume that W is normally distributed, with given mean and vari-
ance. Through simulation4 (discarding negative values of W ), we can compute the
exact FP using Eq. 1 and compare it with the BL approximation in (2). Table 1
shows the results for selected combinations of μW , σW and c, with λ = 1.2. We
observe that the approximation works reasonably well when σ is small compared
to μ, and when c is low. However, accuracy worsens when c � 4 or σ increases. We
obtain similar conclusions in the case λ = 1.5 (numerical results are omitted).

Testing the BL Hypotheses H1 and H2, and Inspecting for Depen-
dence on Price Kurtosis. In order to check the validity of hypothesis H1
2 The covariance is finite provided D has finite moment of order 2c − 1 � 3.
3 Note that we focus on forward prices, whereas recently [1] investigate risk premia from
options contingent on electricity futures.

4 The exact forward premium in terms of W comes in the form of a covariance between
W and a transformation of W , precisely h(W ) = W b+1 − cPRW b (see formula (1)).
Then, we have generated M = 107 iid replicates for W (according to a selected dis-
tribution) and computed the sample covariance between the two series, (Wi)i=1,...,M

and (h(Wi))i=1,...,M . We proceeded similarly for the forward premium in terms of the
demand D (using formula (3)). We use Matlab R2021 and its built-in functions for
normal and student-t distributions and implemented the algorithm presented in [2]
for the skew-t distribution.



294 A. Gianfreda and G. Scandolo

Table 1. Simulations results for the exact and approximated forward premium for a
given set of parameters. μW and σW are selected according to [3] and [4].

μW σW c Exact FP BL approx FP

100 10 3 −4.17 −4.05

100 30 3 −47.35 −36.06

100 10 4 −1.29 −1.25

100 30 4 −15.94 −11.04

100 10 5 −0.56 −0.54

100 30 5 −7.32 −4.83

in BL, we consider a normal distribution for W with fixed μW = 100 and σW

varying in the range (0, 30). Simulating W and discarding negative price values,
we can compute the premium as a sample covariance, using (1) with λ = 1.5
and c = 2, 3, 4, 5. In all cases, the premium is decreasing in σW , thus confirming
hypothesis H1. A similar behaviour is found for λ = 1.2 and/or other fixed values
of μW and ranges for σW . For testing the hypothesis about dependence of premia
on price skewness, we consider the family of (location-scale) skew-t distributions
for W , as introduced in [2]. This family is specified in terms of 4 parameters
that allow to adjust for mean, variance, skewness and kurtosis. In particular, by
carefully selecting the parameters we have considered a subgroup of such price
distributions, with fixed mean (100), standard deviation (20) and kurtosis (10)
and skewness ranging in (0.8, 1.25). For each such distribution, via simulation
we have computed FP. Results for the case c = 3 and λ = 1.5 are reported in
Fig. 1 (on the left). A similar behaviour can be observed for other values of c, λ
and the variance. We can state that, at least in the skew-t case, BL hypothesis
H2 is confirmed (i.e. FP increasing in ξW ). Finally, and as additional contribu-
tion, for investigating the dependence of premia on price kurtosis, we consider
a (location-scale) Student-t distribution for W with μW = 100, σW = 30 and
varying ν (degrees-of-freedom), in such a way that the kurtosis5 ranges in (4, 15).
Results are presented in Fig. 1 (on the right). We can see that, at least in this
case, FP seems to be increasing in the kurtosis.

Testing the BL Hypotheses H3 and H4, Inspecting Also for Demand
Skewness and Kurtosis. We investigate the behaviour of the forward premium
with respect to the demand mean, variance, skewness and kurtosis, using the
exact formula that we derived in Eq. 3. Note that both BL and SVK studied the
dependence of FP on μD and σD assuming a normal distribution for demand.
Here, we inspect the dependence on the mean; in detail, we consider a normal
distribution for D with fixed σD = 5 (then at 15, 25, 35) and μD ranging
in (50, 150). Via simulation, we compute the exact value of FP (with λ = 1.2);
results coincide with those in Fig. 2 (bottom row) in [5] and therefore are omitted.
5 Recall that the kurtosis of such a distribution is given by κ = (3ν −6)/(ν −4), while
the skewness is null, and μ and σ2 are the actual mean and variance.
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All dynamics seem to indicate that hypothesis H4 holds, at least in the normal
case, even though there are some occasional departures. Results for λ = 1.5 are
similar. Relaxing the normality assumption, we assume that D is distributed as a
Student-t, adopting 3 different values6 for ν; see Fig. 2 (on the left). We see that
BL hypothesis H4 (FP increasing in μD) receives further confirmation. Moving
to the dependence on variance, we consider a normal distribution for D with
fixed μD = 50 (then at 75, 100, 125, 150) and σD ranging in (0, 40). The results
corresponding to λ = 1.2 agree with those in Fig. 2 (top row) in [5], hence are
omitted; results with λ = 1.5 are similar. As a robustness check, we also provide
the results for D distributed as a Student-t with 3 different values for ν (Fig. 2,
on the right). We can observe that the Hypothesis H3 is generally supported by
these results. Moving forward to demand skewness, we then consider a (location-
scale) Skew-t distribution for D and, as before, we carefully select the parameters
in order to keep μD, σD and κD constant, respectively at level 100, 20 and 10,
while varying the skewness in (0.8, 1.25). Results for the case c = 3 and λ = 1.5
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Fig. 1. On the left: FP vs ξW for W Skew-t with μ = 100, σ = 20, κ = 10 (c = 3,
λ = 1.5). On the right: FP vs κW for W Student-t with μ = 100, σ = 30 (c = 3,
λ = 1.5).
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Fig. 2. On the left: FP vs μD for D Student-t with σ = 20 and three values for ν
(c = 3, λ = 1.5). On the right: FP vs σD for D Student-t with σ = 20 and three values
for ν (c = 3, λ = 1.5)

6 Note that c = 3 imposes finiteness of the moment of order 5, hence ν > 5.



296 A. Gianfreda and G. Scandolo

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

skewness
D

-3.5

-3

-2.5

-2

-1.5

-1

-0.5
FP

4 6 8 10 12 14 16

kurtosis
D

-14

-12

-10

-8

-6

-4

-2

0

2

4

FP

Fig. 3. On the left: FP vs ξD for D Skew-t with μ = 100, σ = 20, κ = 10 (c = 3,
λ = 1.5). On the right: FP vs κD for D Student-t with μ = 100, σ = 30 (c = 3,
λ = 1.5)

are presented in Fig. 3 (on the left). We obtain a similar behaviour with other
values of σD, λ and/or c. We can observe that the FP is increasing w.r.t. the
skewness of D, at least when using Skew-t distributions. Finally, for investigating
the dependence on kurtosis, we consider a (location-scale) Student-t distribution
for D with μD = 100, σD = 30 and varying νD, in such a way that the kurtosis
ranges in (3, 12). Results are reported in Fig. 3 (on the right). We obtain a similar
behaviour with other values of σ, λ and/or c. We can conclude that the FP is
increasing w.r.t. κD, at least using Student-t distributions.

3 Conclusions

Given previous controversial results, we replicate the BL model and contribute
firstly deriving the analytical formula of the forward risk premia with respect
to the first two moments of demand. Then, we relax the assumption of normal
distributed demand and simulate its dependence in terms of (demand) skewness
and kurtosis. Additionally, we investigate the accuracy of the forward premium
approximation when expressed in terms of wholesale prices. Finally, we try to
discover its dependency on price kurtosis.
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Abstract. A vast body of empirical literature documents the existence
of short-term momentum and medium-term mean reversion in various
financial markets. By contrast, there is still a great shortage of theoreti-
cal models that explain the presence of these two common phenomena.
We develop a semi-Markov model where the return process randomly
switches between bull and bear states. In our model, the state duration
times are governed by a negative binomial distribution that exhibits a
positive duration dependence. We demonstrate that this model induces
return momentum at short lags and reversal at subsequent lags. We
calibrate our model to empirical data and show that the model-implied
autocorrelation function fits reasonably well to the empirically estimated
autocorrelation function.

Keywords: Time-series momentum · Mean reversion · Duration
dependence · Bull and bear markets · Semi-Markov model

1 Introduction

There is a vast body of empirical literature on momentum and mean reversion in
various financial markets. By contrast, there is still a great shortage of theoret-
ical models that explain the presence of short-term momentum and subsequent
mean reversion. Almost exclusively, these models are equilibrium models that
assume the existence of several types of traders in a financial market: rational
traders, noisy traders, momentum traders, and contrarian traders. These models
are elaborate and complicated theoretical models that are difficult to solve ana-
lytically. This paper is the first to entertain a fundamentally different approach
to the theoretical modeling of momentum and mean reversion in financial mar-
kets. In our model, the return process randomly switches between two possible
states commonly referred to as bull and bear markets.

Conventional Markov-switching models (MSM) of [3] have been traditionally
used to model stock returns in bull and bear market states. In an MSM, the
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return process exhibits a positive autocorrelation that decreases as the lag length
increases (see [1] and [2]). Thus, an MSM can explain the short-term momentum,
but is not able to explain the medium-term mean reversion.

A severe limitation of an MSM is that the state duration times are governed
by a geometric distribution that is memoryless. As a result, the state termination
probability does not depend on the time already spent in that state. By contrast,
many empirical studies document that the longer a bull (bear) market lasts,
the higher its probability of ending. Consequently, an MSM does not correctly
represent the bull and bear market duration times.

We incorporate the duration dependence in a regime-switching model using
an expanded-state MSM (ESMSM), where several Markovian states represent
one semi-Markovian state. We use a specific topology where the state duration
times are governed by a negative binomial distribution that exhibits a positive
duration dependence. Our ESMSM provides some degree of analytical tractabil-
ity and is easy to solve numerically.

We present the theoretical construction of our ESMSM, where the return
process randomly switches between bull and bear states. For the simplest case,
where two Markovian states represent each semi-Markovian state, we offer the
analytical solutions to the return autocorrelation function. We demonstrate that
the return autocorrelation function exhibits short-term momentum and medium-
term mean reversion. Qualitatively, this autocorrelation function remains the
same in the general case where many Markovian states represent each semi-
Markovian state.

2 Return Autocorrelation in a Regime-Switching Model

We assume that the period-t log return Xt is a discrete-time stochastic process
that randomly switches between two states (regimes): A and B. The return
distribution depends on the state St in the following manner:

Xt =

{
μA + σAzt if St = A,

μB + σBzt if St = B,
(1)

where μA and σA are the mean and standard deviation of returns in state A, μB

and σB are the mean and standard deviation of returns in state B, and zt is an
i.i.d. random variable with zero mean and unit variance. We assume that state
A is a bull state of the market, while state B is a bear state of the market.

The conditional probabilities Prob(St+n = J |St = I) = pIJ (n) are called the
multi-period transition probabilities. The n-period transition probability distri-
bution of the process can be represented by a 2×2 transition probability matrix
P(n):

P(n) =
(

pAA(n) pAB(n)
pBA(n) pBB(n)

)
. (2)

Denote by π = [πA, πB ] the vector of the steady-state (stationary or ergodic)
probabilities. Specifically,

πA = Prob(St = A), πB = Prob(St = B). (3)
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The expression for the lag-n autocorrelation can be re-written in the following
form (see [1] and [2, Chapter 10]):

ρn =
πAπB(μA − μB)2 − (μA − μB)(πA pAB(n)μA − πB pBA(n)μB)

σ2
, (4)

where
σ2 = πAσ2

A + πBσ2
B + πAπB(μA − μB)2. (5)

It is important to note that the return autocorrelation function depends on n
only through transition probabilities pAB(n) and pBA(n).

3 Return Autocorrelation in a Markov Model

The conventional MSM is defined by the following one-period transition proba-
bility matrix:

P =
(

pAA pAB

pBA pBB

)
=

(
1 − α α

β 1 − β

)
, (6)

where α (β) denotes the one-period transition probability from state A to state
B (state B to state A). In an MSM, the return autocorrelation function is given
by (see [1])

ρn =
πAπB(μA − μB)2

σ2
(1 − α − β)n. (7)

The autocorrelation exponentially decreases towards zero as n increases. Conse-
quently, in an MSM, the return process exhibits a short-term momentum only.

4 Topology of ESMSM

In the simplest case, each macro-state A and B is represented by two sub-states.
Specifically, macro-state A consists of sub-states 1 and 2, while macro-state B
consists of sub-states 3 and 4. The one-period transition probability matrix is
given by:

P =

⎡
⎢⎢⎣
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 − 2α 2α 0 0
0 1 − 2α 2α 0
0 0 1 − 2β 2β
2β 0 0 1 − 2β

⎤
⎥⎥⎦ . (8)

Each element pij of the transition probability matrix is defined in the usual
manner: pij = Prob(St+1 = j|St = i). Note that the self-transition probabilities
of sub-states 1 and 2 (3 and 4) are the same p11 = p22 (p33 = p44). As a result,
the transition probabilities from one sub-state of macro-state A (B) to either
another sub-state or another macro-state are the same p12 = p23 (p34 = p41).

In the ESMSM specified by the transition probability matrix in (8), the self-
transition probability of macro-state A is computed as follows. If we know that
the process is in macro-state A, then the process is equally likely to be either in
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sub-state 1 or 2. If the process is in sub-state 1, then the probability of remaining
in macro-state A is p11+p12. If the process is in sub-state 2, then the probability
of remaining in macro-state A is p21 + p22. Consequently, the probability pAA is
computed as (p11 + p12)/2 + (p21 + p22)/2. All other transition probabilities are
computed in the same manner:

pAA = (p11 + p12 + p21 + p22)/2,

pAB = (p13 + p14 + p23 + p24)/2,

pBA = (p31 + p32 + p41 + p42)/2,

pBB = (p33 + p34 + p43 + p44)/2.
(9)

It is easy to check that both the ESMSM and corresponding MSM have the
same one-period transition probabilities for states A and B. For example, pAA =
1 − α in both the ESMSM and MSM. However, the multi-period transition
probabilities are different.

The n-period transition probability matrix in the ESMSM is given by

P(n) = Pn =

⎡
⎢⎢⎣

p11(n) p12(n) p13(n) p14(n)
p21(n) p22(n) p23(n) p24(n)
p31(n) p32(n) p33(n) p34(n)
p41(n) p42(n) p43(n) p44(n)

⎤
⎥⎥⎦ . (10)

The n-period transition probabilities of macro-states A and B are computed
similarly to (9). For example, the n-period self-transition probability of state A
is computed as pAA(n) = (p11(n) + p12(n) + p21(n) + p22(n))/2.

5 Analytical Solutions

This section presents a number of propositions. All proofs are available from the
authors upon request.

Proposition 1. The solutions to the n-period state transition probabilities of
macro-states A and B, with two sub-states for each macro-state, are given by

pAB(n) = πB − 1
4β

ψ(n), pBA(n) = πA − 1
4α

ψ(n), (11)

where function ψ(n) is given by

ψ(n) =
(δ + C)2

4C
λn
3 − (δ − C)2

4C
λn
4 − (α − β)2

δ
(1 − 2δ)n, (12)

πA and πB are the stationary probabilities, δ = α + β, λ3 = 1 − δ − C, λ4 =
1 − δ + C, and C =

√
α2 + β2 − 6αβ assuming that C �= 0.

Therefore, the solution for the lag-n autocorrelation yields

ρn =
(μA − μB)2

4σ2(α + β)
ψ(n). (13)
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Function ψ(n) determines the functional form of the lag-n autocorrelation in
the ESMSM. This function represents the sum of three exponential functions,
where the first two are functions of C. Note that C can be either a real non-
zero number, zero, or a complex number depending on the sign and value of
α2 + β2 − 6αβ. In particular:

C is

{
a complex number if (3 − √

8)β < α < (3 +
√

8)β,

a real number if α < (3 − √
8)β or α > (3 +

√
8)β.

(14)

One can easily deduce that C is a real number when the mean duration of one
state is approximately more than six times greater than the mean duration of
the other state. We do not observe such a notable difference between the mean
durations of bull and bear markets. Consequently, in the context of the stock
market cycles, we expect that C is a complex number. In this case, λ3 and λ4 is a
complex conjugate pair, and the analytical solution to function ψ(n) is provided
by the following proposition.

Proposition 2. If C is a complex number, then function ψ(n) given by Eq. (12)
can be rewritten in the following form:

ψ(n) = Rλn cos(nϕ + θ) − (α − β)2

δ
(1 − 2δ)n, (15)

where

λ =
√

1 − 2δ + 8αβ, ϕ = arctan

(√
6αβ − α2 − β2

1 − δ

)
, (16)

R =

√
δ2 +

(α − β)4

6αβ − α2 − β2
, θ = arctan

(
(α − β)2

δ
√

6αβ − α2 − β2

)
. (17)

Consequently, if C is a complex number, the expression for the n-period state
transition probabilities represents the difference between two components. The
first component is a damped cosine wave with a phase shift, while the second
is exponential decay. Therefore, ρn approaches zero in an oscillating manner as
n increases. To gain further insight into the behavior of the lag-n autocorre-
lation, let us assume that α = β. In this case, the expression for ρn can be
simplified to1

ρn =
(μA − μB)2

4σ2
λn cos(nϕ). (18)

Under this simplified assumption, it is clear-cut that a damped cosine function
without a phase shift represents the shape of the lag-n autocorrelation. In par-
ticular, ρn periodically changes sign beginning from a positive one.2 Typically,

1 If α = β, then R = α + β and θ = 0. Besides, the second term on the right-hand
side of Eq. (15) disappears. Finally, πA = πB = 0.5.

2 This function crosses zero each time when nϕ = kπ radians, where k is a positive
integer value.



302 J. Giner and V. Zakamulin

because the cosine wave decays rather fast, the full oscillating behavior is hard
to notice. However, one can clearly see a positive autocorrelation over the short
run and a subsequent negative autocorrelation over the medium run. That is,
the return process exhibits both short-term momentum and medium-term mean
reversion.

6 Empirical Application

We calibrate our model to monthly returns on the Dow Jones and Standard and
Poor’s Composite indices. Figure 1 plots the results and demonstrates that the
fit is reasonably good. In particular, our model correctly captures the duration of
short-term momentum that lasts about 10–12 months and subsequently reverses.
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Fig. 1. The results of estimations and calibrations. The black lines with points show the
empirically estimated autocorrelations. The shaded areas indicate the 90% confidence
interval for the estimated autocorrelation under the null hypothesis of i.i.d. returns.
The blue lines with points depict the autocorrelations implied by the fitted conventional
Markov model. The red lines with points depict the autocorrelations implied by the
fitted semi-Markov model, where four Markovian states represent one semi-Markovian
state.
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Abstract. Survival data with high-dimensional predictors are regularly
collected in many studies. Models with a very large number of covariates
are both infeasible to fit and likely to incur low predictability due to
overfitting. The selection of significant variables plays a crucial role in
estimating models. Even if several approaches that identify variables in
presence of censored data are available in literature, there is not unani-
mous consensus on which method outperforms the others. Nonetheless,
it is possible to exploit the advantages of methods to get the final set
of covariates as good as possible. Therefore, we propose a method that
combines different variable selection procedures by using the subsampling
technique, for identifying as relevant those covariates that are selected
most frequently by the different variable selectors on subsampled data.
By a simulation study, we evaluate the performance of the proposed
procedure and compare it with other techniques.

Keywords: Variable selection · High-dimension · Survival data

1 Introduction

In recent years the classical problem of variable selection has enjoyed increased
attention thanks to a massive growth of high-dimensional data available in many
scientific disciplines. In modern statistical applications, the number of variables
often exceeds the number of observations. In such contexts, the true model is
often assumed to be sparse, meaning that only a small fraction of the variables
are actually related to the response. Therefore, the selection of the relevant
variables is of fundamental importance in the analysis of high-dimensional data.

Survival analysis deals with the expected time until one or more events occur.
It is frequently used in the field of economics, where the event of interest is the
failure of companies (mainly due to bankruptcy) or the reasons for which cus-
tomers choose to stop their relationship with company. In regression analysis of
survival data, the Cox Proportional Hazard model, proposed by Cox in 1982 [2],
is the most used to explore the relationship between subjects’ survival and some
explanatory variables.

Like linear regression models, traditional variable selection methods such as
subset selection, forward selection, backward elimination, and a combination
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 303–308, 2022.
https://doi.org/10.1007/978-3-030-99638-3_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99638-3_49&domain=pdf
https://doi.org/10.1007/978-3-030-99638-3_49


304 F. Giordano et al.

of both are among the most common applied for choosing the set of relevant
variables under survival framework. However, these methods have computa-
tional difficulties in presence of high-dimensional data. Therefore, other methods
have been proposed to overcome this problem. Lasso, firstly proposed for lin-
ear regression models [5], is then extended to the Cox model [6]. Subsequently,
some authors have developed some penalized shrinkage techniques such as SCAD
introduced by [3] specifically for Cox models. On one hand, the above methods of
variable selection have been shown to be successful in theoretical properties and
numerous experiments. On the other hand, their performance is highly depen-
dent on the correct choice of the tuning parameter and these approaches can be
unstable, especially in the high-dimensional data setting.

Among the problems encountered in identifying relevant variables, the choice
of the best selector from those available is the most relevant. Unfortunately, the
set of covariates selected by one method may be different from that selected by
another. Even if it might be seen as a disadvantage, analysing the differences
and similarities among the various methods can provide useful information. For
example, a covariate chosen from all methods can be considered as actually rele-
vant, while ones selected only by one method cannot be related to the response.
In order to take into account this insight, following the idea of [7] for linear
model, we propose a method called Combined Variable Selector with Subsample
(CVSS) that combines different variable selection procedures by using the sub-
sampling technique. We record the percentage of times a covariate is selected
among the procedures and we get the final set by identifying as relevant those
covariates that are selected most frequently. The main difference between our
procedure and [7] consists in the choice of the tuning parameter in the various
methods used. In fact, while in [7] for each method the authors take into consid-
eration some vectors of covariates selected by different penalty coefficients, we
consider only one vector of betas referring to the best tuning parameter. Thus,
we extract only one set of variables for each approach with the advantage that
the procedure becomes very fast.

The paper is organized as follows. In Sect. 2, we introduce our proposed
approach. In Sect. 3, we show the simulation results. We conclude this work
with a discussion in Sect. 4.

2 The Proposed Procedure

Suppose there are n observations {(yi,xi, δi)}n
i=1 of survival data. For an indi-

vidual i, yi denotes its survival time and xi = (xi1, xi2, . . . , xip)T represents the
observed data for the p covariates. At the same time, δi ∈ {0, 1} is a variable
indicator of censorship, where δi = 0 means that yi is right-censored. We assume
also that the censoring mechanism is non-informative and independent of the
event process. Let h(t) be the hazard rate at a time t; the generic form of the
Cox proportional hazards model can be expressed as

h(t | x) = h0(t) exp(xT β)
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where β = (β1, β2, . . . , βp)T denotes a p-dimensional vector of unknown
regression coefficients and h0(t) is the baseline hazard function, that is the haz-
ard function at time t when all the covariates take value zero. In general, β can
be estimated by maximizing the partial likelihood function [2].

In order to identify the set of true relevant variables, it is possible to use
a penalized variable selection method among those proposed in the last years.
For example, the Lasso is able to select the non-zero components in setting with
large p, it is computationally efficient and it uses an L1 type penalty, while
the SCAD is a regularized regression methods with non-convex penalties and
it is designed to reduce estimation bias. Although in the literature there are
several approaches for selecting variables in presence of censored data, there is
not unanimous consensus on which method outperforms the others. Then, how
to select a method remains an open question. Since choosing a method rather
than another influences the selection of relevant variables, it is very important
to identify the best variable selection method for the data under analysis.

In order to solve this open question, we propose to implement different vari-
able selection methods on the sampled data and to check similarities between
different variable selectors. Combining the models with subsampling is used to
improve the variable selection performance of a single variable selection method.
For example, RBVS proposed by [1] uses subsampling to identify the set of
highly-ranked covariates, while Stability Selection proposed by [4] repeatedly
samples observations and fits the sampling data using a variable selection method
(e.g. the Lasso). It therefore keeps covariates with a selection frequency above a
certain threshold.

Similarly to the methods above, our proposal fits variable selection methods
to the subsampled data and it identifies as non-zero components those covari-
ates appearing most frequently. Unlike these other approaches, however, our
procedure uses various variable selection methods. In fact, we observe that no
method outperforms all other methods in all settings, since different variable
selection methods optimize different objective functions. In the case of regular-
ized regression, the difference among methods is usually in terms of the penalty.
If a covariate is selected by the majority of methods, it means that the covari-
ate is chosen to minimize many various objective functions. We expect that a
true covariate should frequently be chosen regardless of the objective function
used. We repeat the fitting on subsampled data to incorporate the variability in
selection due to the variability in the data.

The variable selection procedure proposed can be summarized as follows.
First, we consider mutually exclusive subsets Ib1, . . . , Ibr of size m, drawn uni-
formly from {1, . . . , n} without replacement, where r = �n/m�, b = 1, . . . , B
and B ∈ IN is the number of replicates. Assume that the sets of subsamples
are independently drawn for each b. Second, we fit different variable selection
methods on the sets Ib1, . . . , Ibr and we collect the estimated model in M, where
|M| = r × B × k and k is the number of variable selector used. For each subset
and for each procedure, we obtain a vector of β̂. Third, we measure the relative
frequency of times the jth covariate is selected given by
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τ̂j =
1

|M|

( ∑
Mi∈M

I
(β̂

Mi
j �=0)

)

where β̂Mi
j is the estimated coefficient of the jth covariate on the fitted model

Mi ∈ M, and Ix is the indicator function. Fourth, we identify as relevant those
variable such that

Ŝ = {j : τ̂j ≥ q}
where q is a fixed threshold. For the practical use, the number of replicates B
should be large enough to stabilize the value of j and at the same time, it should
be small enough to not increase the computational time. Following [1], we set
r = 2 and B = 50, so we obtain 100 sets each with n/2 number of observations.
In this paper, we set q = 1/2, which means that covariates with τ̂j ≥ 1/2 are
selected.

The choice of the different methods to be used within our procedure is based
on the following considerations. Each method must have good variable selection
performance and it is required some variability among methods. In this article,
we choose Lasso, MCP, SCAD, Elastic Net and Ridge since they optimize dif-
ferent objective functions, as they use various penalty terms. Furthermore, such
methods are also computationally feasible in high-dimensional setting.

3 Simulation Study

We compare the variable selection performance among different methods by
the number of false positive (FP), the number of false negative (FN), the total
number of variable selection error (FN+FP) and the size of selected set. For
comparison, we also consider other variable selector methods applied on the
whole dataset: the Lasso, the Elastic net, the Ridge regression, the SCAD and
the MCP.

In our simulation study we generate survival times ti, i = 1, 2, . . . , n, as expo-
nential distributions with subject-specific parameters hi = h0(ti) exp(βT Xi),
baseline h0(ti) = 1 and β = (25, 0p−5). Thus the true size of model is s = 5. The
variables X1, . . . , Xp are sampled from a multivariate normal density N(0, Σ)
where the entries of Σ are fixed to corr(Xj ,Xk) = ρ|j−k| with ρ ∈ {0, 0.3, 0.6}.
The percentage of censorship c is setting to 20% or 40%. We set n = 150 and
p = {100, 200}. The results are shown in Table 1.

In all scenarios our procedure has the best performance in terms of both
total error FP+FN and FP. When p = 100 the highest value of FP for CVSS
is 1.46, this means that at most 1.46 of the variables identified as relevant are
not related to the response. MCP procedure is the only selector for which in
Setting 3 the FN is not equal to zero: the final set contains in this case variables
that are not relevant in the model. Looking at the size, our procedure selects a
number of covariates that is very close to the real size 5. As we expected, the
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Table 1. Simulation results for different combination of ρ, c and p. A dark grey cell
represents the best results, while a grey one represents the worst. Standard errors are
shown in the parentheses

Parameters Methods p = 100 p = 200

FP+FN FP FN Size FP+FN FP FN Size

Setting 1 LASSO 12.91 (13.52) 12.91 0 16.92 (13.56) 13.26 (18.68) 13.26 0 17.27 (18.73)

ρ = 0 Elastic Net 10.22 (10.59) 10.22 0 14.32 (10.62) 11.57 (16.64) 11.57 0 15.50 (16.70)

c = 20% Ridge 10.13 (12.46) 10.13 0 14.14 (12.50) 13.28 (17.91) 13.28 0 17.29 (17.96)

SCAD 2.54 (2.74) 2.54 0 6.55 (5.86) 3.01 (3.51) 3.01 0 7.02 (3.56)

MCP 1.85 (1.67) 1.85 0 5.86 (1.71) 1.63 (1.40) 1.63 0 5.64 (1.45)

CVSS 1.14 (0.38) 1.14 0 5.14 (0.38) 1.09 (0.29) 1.09 0 5.09 (0.29)

Setting 2 LASSO 11.32 (15.39) 11.32 0 15.33 (15.43) 12.89 (15.92) 12.89 0 16.90 (15.96)

ρ = 0.3 Elastic Net 9.9 (12.35) 9.90 0 13.91 (12.40) 9.38 (11.25) 9.38 0 13.39 (11.29)

c = 20% Ridge 12.54 (13.84) 12.54 0 16.55 (13.87) 11.26 (12.88) 11.26 0 15.27 (12.91)

SCAD 2.16 (2.49) 2.16 0 6.17 (2.54) 2.53 (3.23) 2.53 0 6.54 (3.28)

MCP 1.58 (1.40) 1.58 0 5.60 (1.50) 1.36 (0.80) 1.36 0 5.38 (0.87)

CVSS 1.04 (0.20) 1.04 0 5.04 (0.20) 1.02 (0.14) 1.02 0 5.02 (0.14)

Setting 3 LASSO 9.84 (14.17) 9.84 0 13.85 (14.22) 11.61 (14.54) 11.61 0 15.62 (14.57)

ρ = 0.6 Elastic Net 8.17 (10.08) 8.17 0 12.18 (10.12) 12.11 (13.71) 12.11 0 16.12 (13.75)

c = 20% Ridge 12.97 (17.27) 12.97 0 16.98 (17.32) 13.49 (15.97) 13.49 0 17.50 (16.00)

SCAD 2.57 (2.52) 2.57 0 6.58 (2.56) 2.50 (2.67) 2.50 0 6.51 (2.71)

MCP 1.66 (1.27) 1.64 0.02 5.63 (1.32) 1.51 (1.01) 1.49 0.02 5.48 (1.07)

CVSS 1.03 (0.17) 1.17 0 5.03 (0.17) 1.01 (0.10) 1.01 0 5.01 (0.10)

Setting 4 LASSO 13.05 (12.13) 13.05 0 17.06 (12.18) 18.22 (18.82) 18.22 0 22.23 (18.86)

ρ = 0 Elastic Net 13.66 (12.34) 13.66 0 17.67 (12.38) 16.19 (17.63) 16.19 0 20.20 (17.68)

c = 40% Ridge 12.67 (12.52) 12.67 0 16.68 (12.56) 14.81 (17.37) 14.81 0 18.83 (17.45)

SCAD 2.61 (2.82) 2.61 0 6.62 (2.87) 3.34 (3.25) 3.34 0 7.35 (3.29)

MCP 1.51 (1.27) 1.51 0 5.52 (1.32) 1.64 (1.48) 1.64 0 5.66 (1,56)

CVSS 1.46 (0.70) 1.46 0 5.46 (0.70) 1.25 (0.48) 1.25 0 5.25 (0.48)

Setting 5 LASSO 10.76 (11.52) 10.76 0 14.77 (11.55) 13.46 (17.42) 13.46 0 17.47 (17.46))

ρ = 0.3 Elastic Net 11.59 (12.95) 11.59 0 15.60 (12.98) 13.80 (20.75) 13.80 0 17.81 (20.80)

c = 40% Ridge 9.36 (9.39) 9.36 0 13.37 (9.43) 13.19 (19.45) 13.19 0 17.20 (19.49)

SCAD 2.17 (1.99) 2.17 0 6.18 (2.04) 2.38 (2.64) 2.38 0 6.40 (2.72)

MCP 1.45 (0.99) 1.45 0 5.46 (1.03) 1.45 (0.99) 1.45 0 5.47 (1.08)

CVSS 1.17 (0.45) 1.17 0 5.17 (0.45) 1.12 (0.38) 1.12 0 5.12 (0.38)

Setting 6 LASSO 14.02 (16.99) 14.02 0 18.03 (16.93) 15.98 (19.02) 15.98 0 19.99 (19.05

ρ = 0.6 Elastic Net 12.19 (13.33) 12.19 0 16.20 (13.32) 18.03 (21.05) 18.03 0 22.04 (21.09)

c = 40% Ridge 11.32 (13.43) 11.32 0 15.33 (13.51) 14.65 (16.69) 14.65 0 18.66 (16.73)

SCAD 2.46 (2.03) 2.46 0 6.48 (2.10) 3.33 (2.86) 3.33 0 7.35 (2.92)

MCP 1.54 (1.09) 1.54 0 5.55 (1.31) 1.68 (1.41) 1.68 0 5.69 (1.45)

CVSS 1.07 (0.26) 1.07 0 5.07 (0.26) 1.02 (0.14) 1.02 0 5.02 (0.14)

procedures with highest FP (the Lasso, the Elastic Net and the Ridge) are also
the procedures that select a higher number of covariates compared to s. In fact,
as the total error increases, also the size increases. While the other approaches
suffer when the correlation increases, CVSS, Lasso and Elastic Net give better
results in terms of selection performances. On the other hand, the increase of
censoring percentage worsens the selection for all the methods.

When p = 200, our procedure is still the best one. If we compare the total
error for two values of p, it is possible to notice that FP+FN is lower when p =
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200. This characteristic is not shared with the competitors. Other approaches,
such as Lasso and Ridge, suffer the increase of the number of variables in the
dataset. The size of CVSS is the closest to the true size s = 5 in all scenarios
and the best performance is related at high correlation value.

4 Conclusion

In this work we proposed a new method to choose the relevant covariates with
high-dimensional survival data. Although survival analysis was initially used to
study death as a specific event in medical studies, these statistical techniques
have increasingly been used in economics and social sciences. Given the relevance
of the topic, it is important to be able to find a method that selects the relevant
variables related to the response variable as good as possible. In particular,
we proposed to combine several variable selectors available in literature with
the subsample technique. Simulation study has shown that our approach works
better than its competitors. For future work we will evaluate this approach from
a theoretical point of view and apply it to real data.
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Abstract. In this paper we extend the Ranking Based Variable Selec-
tion technique (Baranowsky et al., Statistica Sinica 30, 1485–1516
(2020)) to the framework of general linear regression models. After the
presentation of the main steps of the algorithm, it is applied to select
the variables affecting the repayment ability of bank loan holders. We
give evidence that, unlike some largely applied selection methods, the
algorithm is robust to the presence of high correlated variables and the
number of features selected does not change even when the dataset is
contaminated with irrelevant artificial covariates.
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1 Introduction

In the last years, in many fields of sciences such as medicine, finance, social
sciences, the availability of datasets of large dimensions is increased and is often
characterized by a huge number of variables (p) that does not correspond to an
adequate number of observations (n).

In practice, it occurs that the number of variables significantly exceeds the
number of observations and then the identification of the relevant variables is
a critical and essential challenge because among thousand of variables, only a
subset of them could affect the phenomena under analysis.

The growing availability of data and the high computational power of pro-
cessors have increased the attention on the variable selection problem that has
been differently faced.

An approach of variable selection, largely examined in the literature, is based
on penalized estimation procedures (among the others see LASSO [8], SCAD [4],
MCP [10]) that, unfortunately, in presence of high dimensional datasets are
computationally very heavy. It has lead to face the problem of variable selection,
considering two steps: the first is devoted to the data reduction (screening step)
and, more precisely, to the reduction of the covariates such that they become
less than n; the second step (selection step) performs the true variable selection
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on the reduced dataset where, for example, penalized estimation procedures can
be applied without computational difficulties.

The first step, devoted to the variable reduction, has been largely faced in [5]
where the Sure Independence Screening (SIS) is introduced. It ranks the p covari-
ates using their marginal utility and allows to identify (using proper metrics) the
top variables that are then considered in the next selection step. The original
idea behind the SIS has been largely extended, but even further approaches
have been proposed to screen variables. Among them, [6] extend the SIS to gen-
eralized linear models, [9] identifies the relevant covariates of linear regression
models using the forward regression or, more recently, [2] screen the variables
by maximum likelihood estimators.

Within the literature of high-dimensional regression problem we focus on the
variable selection for generalized linear models. In particular, we here extend the
Ranking-Based Variable Selection (RBVS) procedure of [1], originally proposed
for linear regression models, to the generalized linear models (glm). In Sect. 2
we briefly introduce the setup of the regression model under analysis, in Sect. 3
we clarify how the RBVS procedure can be extended to the model setting under
consideration. In Sect. 4 we apply our proposal to a large dataset where the
selected variables can be used to evaluate the default risk of bank loan holders.

2 The Model

The analysis of financial datasets are often characterized by binary response
variables related to the status of the units under analysis (banks, borrowers,
credit card holders, credit card transactions, etc.). In most cases this dichotomy
is obtained by the creditworthiness of the units (solvent = 1, no solvent = 0) or
the type of transaction (fraudulent = 1, no fraudulent = 0) which can be related
to a large set of covariates that have to be selected from huge datasets.

As largely known, given the response variable Y ∼ Ber(π), with π ∈ (0, 1),
and the matrix (n × p) of covariates X, the logit model is:

g(πi) = x′
iβ, i = 1, . . . n (1)

where xi is the i-th row of X, g(πi) = log
(

πi

1−πi

)
is the link function and β is

the (p × 1) vector of coefficients.
One feature that often characterizes the response variable Y in financial

datasets, is the small number of ones that makes inappropriate the use of the
symmetric logit link function (see among the others [3]). In this context with
unbalanced number of zeros and ones, we model Y by the Gumbel distribu-
tion such that the link function (called complementary log-log function) becomes
g(πi) = log[− log(1 − πi)], i = 1, . . . , n.

After the selection of the model, to estimate the probabilities πi, i = 1, . . . , n
we need to select the variables that are evaluated as “important”. The avail-
ability of high dimensional datasets, that are very common in financial domain,
requires the use of proper variable selection procedures. We here extend, to the
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generalized linear models domain, the RBVS procedure of [1], whose details are
shortly given in the following.

3 RBVS Algorithm

A variable selection procedure that includes the two steps described in Sect. 1
is introduced in [1]. The procedure aims to rank the variables of the dataset to
define the top-ranked variables (screening step) that are then evaluated to select
the relevant covariates for Y (variable selection step).

The algorithm of [1] is based on the following idea: given the set of p covariates
included in X, the variables with higher influence on Y are those that even in
presence of randomly selected subsamples, extracted from X, exhibit consistent
relationship with Y .

We here shortly describe the RBVS algorithm, whereas all technical details
are in [1].

Let Zi = {Yi,Xi1,Xi2, . . . , Xip}, for i = 1, 2, . . . , n and with p that
grows with n, be the observed dataset used to select the subset of covariates
{X1, . . . , Xp} relevant for Y . Further, let A ⊂ (1, . . . , p) be the indices that
identify a subset of covariates and let |A| = k be the cardinality of A, for
k = 0, 1, . . . , p. Let Rnj(Z1, . . . , Zn) be the ranking of the jth covariate, based
on a measure ω̂j = ω̂j(Z1, . . . , Zn) assessing the importance of each covariate
where, following [6], ωi = |β̂j |, with β̂j the estimated coefficient of the marginal
logit model (1), g(π) = β0 + βj for j = 1, . . . , p. Then consider the probability:

πn(A) = P({Rn1(Z1, . . . , Zn), . . . , Rn|A|(Z1, . . . , Zn)} = A)

with πn(A) = 1, if A = ∅.
Correspondingly define:

πn,m(A) = P({Rn1(Z1, . . . , Zm), . . . , Rn|A|(Z1, . . . , Zm)} = A),

the probability of A obtained from a subset of m observations, with 1 ≤ m ≤ n.
It follows that if A corresponds to the indices of the top-ranked covari-

ates, πn,m(A) is its probability computed on a randomly selected subset of m
observations.

To estimate πn,m(A), [1] use a bootstrap approach that for each b = 1, . . . , B
(with B the number of bootstrap replicates) and given r = �n/m�, extract from
Zi, for i = 1, . . . , n, r independent subsets without replacement (Ib1 , . . . , Ibr )
and for each bootstrap replicate compute the empirical relative frequency of A,
given by r−1

∑r
j=1 1(A|Ibj ), with 1(·) an indicator function. Then πn,m(A) is

estimated by:

π̂n,m(A) = B−1
B∑

b=1

r−1
r∑

j=1

1(A|Ibj ), (2)

where A|Ibj = {Rn1(Zi)i∈Ibj
, . . . , Rn|A|(Zi)i∈Ibj

}.
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The probability (2) allows to define the top-ranked variables (first step:
screening step) given by:

Âk,m = arg max
A∈Ωk

π̂m,n(A),

with Ωk the set of all permutations of {1, . . . , k}.
Starting from Âk,m, we need to detect the “important” variables for Y (sec-

ond step: selection step). It is common at this stage of the variable selection
algorithm, to introduce a threshold ζ that allows to select the subset:

ŝ = min
{

k : π̂n,m(Âk+1,m) ≤ ζ
}

, ζ > 0.

Given the difficulty to choose the value of ζ, the alternative introduced in [1] is
the estimation of the ratio π̂τ

n,m(Âk+1,m)/π̂n,m(Âk,m) with τ ∈ (0, 1] such that
the relevant covariates are the s top-ranked variables where:

ŝ = arg min
k=0,...,kmax−1

π̂τ
n,m(Âk+1,m)

π̂n,m(Âk,m)
. (3)

In practice, given the estimated probabilities of π̂n,m(Âk,m), for k =
0, . . . , kmax − 1, with kmax a fixed large integer, the number of relevant vari-
ables is related to the evaluation of the magnitude of the estimated probability
and ŝ corresponds to the case where the ratio in (3) has the greatest decrease,
whereas Ŝ = Âŝ,m is the subset of {0, 1, . . . , p} that contains the indices of the
relevant variables.

4 Default Risk of Bank Loan Holders

The RBVS algorithm has been applied to predict the repayment ability of bank
loans holders. It is a very critical element for all banks and then providing a
procedure able to select the most important variables that affect the repayment
ability of their clients, could be a substantial concern.

We have considered a huge dataset downloaded from Kaggle (named “Bank
loan status dataset”) characterized by millions of operations (that involve bank
accounts) made by a sample of bank loan holders. Then the first main step has
been the merging of the dataset containing the general information of the bank
clients with other nine datasets where the operations made through their bank
account, credit card etc. are stored. The merging key has been the ID of the
loan, that has lead to ascribe, to each bank loan holder, all collected data.

After the merging of the ten datasets, we have extracted the numeric variables
that are of interest in our case and that make the data matrix consistent with the
RBVS algorithm, so removing all qualitative variables, all variables with missing
values and other variables without any contribution for the present analysis. The
dataset considered is finally characterized by 29 variables classified in four main
groups, as presented in Table 1.
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Table 1. List of the main variables in the dataset.

Class Description

Loan Amount loan; loan annuity; price goods for which the loan is given

Personal information Income; seniority of employment; number population region where
client lives; rating of the region; rating of the city; client’s age;
client’s age at the time of application; family members number;
days (before application) the client change the identity document;
days (before application) client change registration

Credit position Number enquiries to Credit Bureau (CB) in one year; number of
days past due on CB for related loans; times the CB credit
prolonged; days the client applies for Credit Bureau credit; number
of times the CB credit prolonged; current CB credit; Current
amount overdue on CB credit; days from the last information about
the CB credit; days past due, during the month of previous credit

Previous credits (*) AMT: Balance; credit card limit; amount drawing; how much did
the client pay; amount receivable; number of drawings

Other credits: Days past due, Days past due with tolerance (debts
with low loan amounts are ignored)

(*) These variables are only related to previous credits.

Further, the binary response variable Y assumes value one if the client has
payment difficulties and these difficulties are related to the fact that he/she has
late payments.

It is interesting to note that some covariates under analysis are strongly cor-
related (as it is often the case in financial domain) and 9 of them have correlation,
in absolute value, greater than 0.90. This collinearity could affect the variable
selection stage but, as it will be shown in the following, the RBVS algorithm is
robust to the presence of linear relation among variables.

To perform the RBVS algorithm (described in Sect. 3) to select variables
in the glm domain, we have extracted from the dataset a sample of n = 640
units, ensuring that the proportion of ones of the response variable in the subset
corresponds to that of the whole dataset. This proportion is equal to 0.0875 in
the dataset and leads to select the Gumbel distribution for the response variable
and consequently a complementary log-log as link function.

After the standardization of the data, we have run the RBVS algorithm fixing
m = n/2, r = 100, τ = 0.5 in (3) (as suggested in [1]) whereas ω̂j = |β̂j |, for
j = 1, . . . , p, is chosen as measure to assess the importance of each covariate (as
described in the algorithm in Sect. 3).

In this context, where the “true important” variables are unknown, the eval-
uation of the procedure has been performed introducing new variables in the
dataset. In particular we have added, to the 29 observed variables, 100 variables
artificially generated from a Uniform distribution with mean zero and unit vari-
ance. The RBVS algorithm has been run again on this augmented dataset to
evaluate the stability of the selected variables.

The performance of the RBVS procedure has been finally compared with the
outcomes of the glm-LASSO [7], both in the presence of the original and the
augmented datasets.
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Table 2. RBVS selection on the original and augmented datasets. In brackets the
artificial variables selected in the augmented dataset.

Procedure Original dataset Augmented dataset
(Artificial selected variables)

RBVS 4 4
(0)

glm-LASSO 14 13
(10)

The results of the two variable selection procedures are summarized in Table 2
where it can be noted that in the RBVS case the number of selected variables
does not change when the dataset is artificially augmented and in both cases the
variables are given by the rating of the region, the rating of the city (that are
strictly related to the economic position of the loan holder), the days past due
(during the month) on the previous credit and the days the client applied for
Credit Bureau credit. In contrast, in the glm-LASSO case, the variable selection
is definitely less parsimonious and even less stable because, with the augmented
dataset, it selects 10 artificial variables whereas, among the remaining selected
variables, two are common with those selected on the original dataset.

These results give evidence of the main findings of the proposed procedure:
it is robust to the collinearity in the data, it combines the screening and variable
selection steps and it is not based on any form of penalization. Even if this first
example of application of the RBVS algorithm in financial domain considers a
dataset with p < n, the algorithm has been evaluated in high-dimension in a
Monte Carlo study (not included in the paper) where its performance has been
assessed and compared to competing approaches.
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Abstract. In this paper we focus on the use of Extreme Learning
Machines (ELMs) to appropriately capture the nonlinear dynamics of
the range based estimators. The results on all the assets in the S&P500
index show that ELMs produce residuals without neglected nonlinearities
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1 Introduction

Volatility plays a key role in many areas of financial econometrics including
derivative pricing, asset allocation, investment decisions and risk analysis. The
most popular parametric approach to model the time varying conditional volatil-
ity is the family of GARCH-type models. This class of models are generally
return-based models and use only the data available at closing prices. Therefore,
they are not able to catch the intraday price movements and related information.
As a consequence, volatility measures based on the range are becoming popular
alternative measures, since they use functions of the high and low prices of an
asset within a given time interval [1].

The aim of this paper is to explore the use of Extreme Learning Machines
(ELMs) as a tool to appropriately capture the nonlinear dynamics of the range
based estimators. The paper is organized as follows. In Sect. 2 the price range
estimators are briefly reviewed and discussed. In Sect. 3, the use of Extreme
learning machines are introduced, highlighting their advantage with respect the
traditional models generally employed in this context. In Sect. 4 an application
to real data is presented and discussed along with some remarks.

2 The Range-Based Volatility Measures

For an asset, define the following variables:Ot = the opening price of the tth

trading day; Ct = the closing price of the tth trading day; Ht = the highest price
of the tth trading day; Lt = the lowest price of the tth trading day. The classical
range estimator was introduced by [6]; it is defined as:
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σ̂2
P =

(

1
4 log 2

)

(log(Ht) − log(Lt))
2
. (1)

Another estimator, which uses extra information such as the opening and the
closing prices, has been proposed by [2]; it is defined as:

σ̂2
GK = 0.51 [log(Ht/Lt)]

2 − 0.019 {log(Ct/Ot) [log(Ht) + log(Lt) − 2 log(Ot)]

+ −2 [log(HT /Ot) log(LT /Ot)]} − 0.383 [log(Ct/Ot)]
2 (2)

This estimator can be expressed as:

σ̂2
GK = 0.5 [log(Ht/Lt)]

2 [2 log(2) − 1] [log(Ct/Ot)]
2 (3)

Both the estimators implicitly assume that the asset log-price follows a geo-
metric Brownian motion without a drift. In term of efficiency with respect to
the close-close estimator, the theoretical relative efficiency gain of the Parkinson
estimator ranges from 2.5 to 5, which means that the estimation variance is 2.5–5
times lower. The Garman and Klass estimator has an efficiency of 7.4.

3 ELM for High-Low Range Volatility Models

Let Rt, T = 1, . . . , T be one of the definitions of the range-based volatility time
series as reviewed in the previous section. It can be modeled as an autoregressive
process:

Rt = m (Rt−1, . . . , Rt−p, ) + εt (4)

where m(·) is an unknown (possibly nonlinear) function, εt are i.i.d. innovations
with mean zero and finite variance.

The function m can be approximated by using neural networks with a single
output and additive nodes (NNs) in the class:

F =

{

f(z,η) =
r

∑

k=1

βkψ (a′
kz + bk) : z ∈ R

p+d,η ∈ R
r(p+d+2)

}

(5)

where r is the hidden layer size, ψ(·) is a sigmoidal activation function. The vec-
tor η is defined as η = (β1, . . . , βr,a′

1,a
′
2, . . . ,a

′
r, b1, . . . , br)

′ where {ak} are the
(p + d) dimensional vectors of weights for the connections between input layer
and hidden layer; {βk} are the weights of the link between the hidden layer and
the output; {bk} are the bias terms of the hidden neurons. However, despite their
proven theoretical capabilities of non-parametric data driven universal approxi-
mation, NNs face challenging issues, concerning the specification of the network
topology in accordance with the underlying structure of the series and the esti-
mation of the parameters, which results in an heavy computational task. This
latter issue makes difficult the use of neural networks on large financial temporal
databases. Recently, ELM has attracted the attention in the literature (see [3]
for a review) as a fast and effective alternative method to specify and estimate
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neural network models for time series data. The essence of ELMs is that, unlike
the other traditional learning algorithms, such as back propagation, the hidden
nodes weights are randomly generated and they need not to be tuned, so that
the algorithm analytically determines the output weights of NNs.

Basically, ELM trains a NN in two main stages. In the first stage, once fixed
the activation function, the hidden node parameters (a, b) are randomly gener-
ated according to any continuous probability distribution so that the matrix:

H =

⎡

⎢

⎣

ψ(a′
1z1 + b1) · · · ψ(a′

rz1 + br)
...

. . .
...

ψ(a′
1zT + b1) · · · ψ(a′

rzT + br)

⎤

⎥

⎦ (6)

is completely known. In the second stage, the output weights β are estimated
by solving the following minimization problem:

β̂ = argminβ ‖Hβ − y‖ (7)

where y is the training data target vector and ‖·‖ denotes the L2-norm.
If H† denotes the Moore-Penrose generalized inverse of matrix H, the optimal

solution to the previous optimization problem is:

β̂ = H†y (8)

The matrix H† can be calculated by using one of the numerous methods
proposed in the literature which include orthogonal projection, orthogonalization
method, iterative method and the single value decomposition, the last one being
the most general. The estimation of the parameter vector β can also be obtained
via regularized ELM [3].

The ELM approach have several advantages (see [5] for a discussion). Firstly,
it has good generalization performance in the sense that it reaches the small
training error and, contemporaneously, the smallest norm of output weights. Sec-
ondly, learning can be done without iteratively tuning the hidden nodes which
can be independent of training data. This has a big advantage in terms of com-
putational burden for ELMs that can be thousand of time faster with respect
to traditional NNs trained by using back-propagation or NLS. Moreover, ELMs,
preserve the property of being universal approximators for a large class of non-
linear functions. The results in [4] state the universal approximation capability
of ELMs without imposing any restrictive assumption on the activation func-
tion as in the case of NN paradigm in which, on the contrary, a continuous and
differentiable activation function is needed. In practice, being the hidden layer
randomly generated, ELMs usually require more hidden neurons than NNs to
obtain a given performance. However, this does not seem to be a serious problem
due to the computational efficiency of ELMs. Moreover, ELMs are well suited for
large data processing and, even if a model selection process is implemented for
an optimal structure searching, the running time of ELMs is always lower than
other competing strategies. In any case, parallel and cloud computing techniques
can also be used for even faster implementation of ELMs.
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4 Application to Real Data and Concluding Remarks

In this application we will consider all the assets in the S&P500 index. The
time series have been downloaded from Yahoo finance and they cover the period
from 30/11/2017 to 30/11/2019. The analysis has been conducted firstly con-
sidering the S&P500 index and then all its constituencies. In Fig. 1 the time
plot of the Parkinson and Garman Klass definition of the High-Low range for
the S&P500 index, while in Table 1 are reported the results of White’s linearity
and Teräsvirta’s linearity test for the original series, the residuals from a linear
model and the residuals from a nonparametric NAR model estimated via ELM.
All tests p-values have been adjusted for multiple testing by controlling the FDR
using the Benjamini-Hochberg procedure. Clearly, the linear specification does
not seem able to model the nonlinear dynamic futures of the series.

In Fig. 2, 3 and 4 are reported the distributions of the White’s linearity
test p-values for, respectively, the original time series, the residuals from linear
autoregressive models and the residuals from nonlinear autoregressive models
estimated via ELMs. Again, the linear model specification is not able to model
the nonlinear dynamics of the High-Low range time series correctly, while the
ELMs produce residuals without neglected nonlinearities.
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Fig. 1. Time plot of the S&P 500 high-low range with Parkinson (upper plot) and
Garman and Klass (lower plot) definition
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Fig. 2. Distribution of White’s linearity test p-values for all the constituencies of the
S&P500, adjusted for multiple testing by controlling the FDR using the Benjamini-
Hochberg procedure
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Fig. 3. Distribution of White’s linearity test p-values for the residuals from AR models
for all the constituencies of the S&P500, adjusted for multiple testing by controlling
the FDR using the Benjamini-Hochberg procedure

Table 1. Test statistics and p-values for the Teräsvirta and White linearity test for
the S&P500 index

Parkinson Garman and Klass

Teräsvirta White Teräsvirta White

Original series Statistics 28.7966 30.0607 46.5113 42.3297

pvalue 0.0000 0.0000 0.0000 0.0000

AR residuals Statistics 10.6461 1.9668 7.4286 11.5053

pvalue 0.0049 0.3740 0.0244 0.0032

ELM residuals Statistics 3.1749 0.7008 3.7553 1.8316

pvalue 0.2045 0.7044 0.1530 0.4002
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Fig. 4. Distribution of White’s linearity test p-values for the residuals from ELM mod-
els for all the constituencies of the S&P500, adjusted for multiple testing by controlling
the FDR using the Benjamini-Hochberg procedure
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Josep Lledó(B) and Jose M. Pavı́a
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Abstract. Insurance companies use annual life tables to manage mortality risks
despite intra-annual mortality risks showing sub-annual fluctuations. The diffi-
culty of (accurately) measuring and computing these fluctuations is likely behind
this decision. The research carried out by [5], however, offers new opportunities
by developing a methodology that, for the first time in the literature, allows actu-
aries and statisticians to derive quarterly life tables from annual tables simply
by using the so-called SAI (Seasonal-Ageing Indexes) coefficients. SAIs capture
mortality risks taking into account both source of fluctuations, age and calendar
quarters. This paper aims to discern the implications of using an approach based
on SAIs and study how the new methodology could be employed in a competitive
market where different insurance companies operate. On the one hand, we exem-
plify the new procedure on a real insurance portfolio by calculating premiums
for different quarters. This gives, for each age and calendar quarter, the distance
(measured in euros) between using annual and SAI-quarterly life tables. On the
other hand, we study the market opportunities that the new methodology offers
by simulating a two-company market, where one of the companies incorporates
SAI-quarterly tables in its pricing processes. We analyse the impact of the use of
these different market strategies on profit and loss accounts of both companies.
The results of this research highlight some of the practical advantages of using
the SAI-based approach.

1 Introduction

The introduction of a new pricing methodology has an impact on any business envi-
ronment, and the insurance sector is no stranger to this fact. The price offered by an
insurance company is determined by the premium of the insurance product. In life-
insurance product pricing processes, it is common to use a life table to calculate the
pure premiums [4]. Life tables are composed of multiple biometric functions, such as
the probability that a person of age x does not reach age x+1, qx, or life expectancy at
birth, e0

0. All the variables have a characteristic in common; they are expressed in annual
frequency. However, several studies show that the seasonal behaviour of mortality (see
[2] has a negative impact on the insurance sector [3,5].
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The intra-annual behaviour patterns of the number of deaths of mortality risks point
to the need to adopt a frequency other than the annual one. The study published by [5]
enables quarterly mortality tables to be produced that collect intra-annual mortality pat-
terns without the need to perform additional calculations, simply by applying the new
SAI coefficients (Seasonal-Ageing Index) to the annual mortality tables. [5] develop
this new methodology from a theoretical perspective and study its effects in practice
on just one classic life insurance product. Thus, the impact of this methodology on the
competitive market of the insurance sector as a whole, where multiple companies oper-
ate with the classic methodology of annual life tables, is still to be estimated. Among the
numerous research questions, as yet unresolved, are: (Q1) What pricing strategy should
a company that uses the SAI methodology adopt? and (Q2) How different would the
returns per policy of two companies be if one adopts a classic methodology and the
other uses a methodology based on SAIs?

To answer the research questions Q1 and Q2, this study follows a two-pronged app-
roach. On the one hand, we analyse the strategy to be adopted by an insurance company
that uses the SAI approach in a insurance market in which competing companies oper-
ate using an approach based on annual life tables. On the other hand, we calculate the
(hypothetical) income statement for each of the two approaches.

2 Benefits and Losses. Pricing Strategies

In the insurance sector the companies (insurers) establish their pricing policies and the
consumer (insured) chooses between the different products. Logically, the behaviour of
consumers is rational and, for the same product, they tend to choose the lowest price.
At the moment, the dominant pricing methodology for life insurance products is based
on the use of annual life tables. For a risk-life insurance product, whose main cover
is death, the insurance price, also denoted as a pure premium or risk premium, P, is
calculated as the sum insured (capital at risk) in the event of death,C, by the probability
that a person of age x does not reach age x+1, qx, P =C ·qx. The main hypothesis of
this classic approach is to assume that the risk of mortality between age x and x+ 1 is
constant and independent of calendar.

This hypothesis, however, is debatable, if not clearly incorrect. [5] show the exis-
tence of intra-annual patterns in mortality risks, which present certain characteristics
of quarterly periodicity (age and calendar). In this context, [5] make a double method-
ological contribution, openning up new possibilities by allowing pure premiums to be
obtained for age x for each age quarter r and calendar quarter s, rsPx. In this scheme, the
corresponding annual premium is calculated as the sum of the four quarterly premiums,
one for each quarter that the person remains in the insurance portfolio until the next
renewal. To calculate the annual premium both the moment of the hiring and the exact
age of the insured, (r,s), must be taken into account to proper compute the probability
of dying in each quarter. For example, for a person aged 55 and 2 quarters (2Q) who
takes out insurance in the third calendar quarter (summer), the premium for a capital
of C is calculated as: 2

3P55 = C ·23 q55 +C · (1 −2
3 q55) ·34 q55 +C · (1 −2

3 q55) · (1 −3
4 q55)

·41 q55+C ·(1−2
3 q55) ·(1−3

4 q55) ·(1−4
1 q55) ·12 q56. The use of quarterly life tables makes

it possible to calculate 16 annual premiums for each age, one for each calendar s and



Mortality Risk. Incorporating the New SAI into a Pricing Strategy 323

age r quarter, depending on the exact age and time when the insured takes out the pol-
icy. These annual premiums, obtained by applying the SAI procedure, can be compared
with the annual premium calculated using the classic methodology.

In this context, let us consider two companies A and B. A uses the classic approach
while B uses the SAI procedure. In a competitive market, given a fixed portfolio of
potential clients, there are four possible scenarios, taking into account the relative prices
of the two companies for the same product (see Fig. 1). When the two companies (A and
B) compete in a competitive market with the same product, the insured, who behaves
rationally, chooses the policy with the lowest premium (price). However, there may
be certain situations in which the customer is willing to pay a higher price, within a
threshold, ϕ , for the same product. This could be due to factors such as the influence of
advertisements, the administrative cost of cancelling a pre-existing insurance policy or
loyalty to an insurance company.

Fig. 1. Possible scenarios depending on the price offered by Company A, Px, and by Company B,
r
sPx.

In scenarios I and III (see Fig. 1) (almost) all policies will be sold by the company
with the cheapest price (A and B, respectively). In scenario I (esc. III) Company A
(Co. B) takes over the market with its products at a price Px (rsPx). In scenarios II and
IV, with smaller price differences, companies A and B will share a percentage of the
market. In scenario II (esc. IV), Company B (Co. A) will enjoy a percentage θ of the
market despite having a higher price. It is, there is a maximum price difference, ϕ ,
below which companies A and B will share a percentage of the portfolio’s premiums.
This occurs when the price difference between r

sPx and Px does not exceed a percentage
β of the upper price between Px and r

sPx. This parameter, β , measures the sensitivity
that consumers have to prices between companies. A direct relationship between the
parameters β and ϕ can be obtained. For example, ϕ = β ·rs Px in scenario I. If β = 0
(ϕ = 0), consumers will (strictly) prefer the lowest price. This sensitivity to prices, or
equivalently the market share, can be proportional to the distance between both prices
(through a linear function, which will depend on ϕ or β ) or depend on a non-linear
function between both prices, such as logarithmic or exponential functions. In any case,
it seems reasonable to assume that when r

sPx = Px both companies will share the market
equally: θ = 0.50. Likewise, for |rsPx −Px| ≥ ϕ it is verified that θ = 0.
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To give an example, let us consider a 40-year-old man in his age quarter 1, Q1,
(r = 1), who takes out insurance in calendar quarter 1, winter, (s = 1). Suppose that
for this profile, the annual premium of a product that uses quarterly mortality tables is
1
1P40 = 44e and that the premium of the same product that uses annual mortality tables
is P40 = 44.82e. If we assume that β = 0.05, then ϕ = P40 · β = 2.24e. Company B,
which sells its products at a lower price, would gain most of the total premiums, but not
all, since Px−r

s Px < ϕ → 44.82−44 = 0.82 < 2.24 (scenario IV of Fig. 1). Company A
will take a share of the policies despite selling its product at a higher price. Specifically,
if we assume linearity, the percentage of policies taken out with Company B would be
1−θ = 0.5+ (Px−r

sPx)·0.5
Px−Px·(1−β ) = 68.3% while Company A would take the rest of the market,

31.7%.
Knowing the premiums that each company (A or B) gains from the total number of

insured enables the total income of their income statements to be calculated (Technique
Income Statements). To calculate this income, we start with an insurance portfolio made
up of the total number of insured persons for age x in the age quarter r and calendar
quarter s, r

sTx. The technical benefit is then calculated by deducting the benefits paid
out as claims (insured sum of the people who die) from the total paid in as premiums.
The total loss ratio, the total benefits paid as claims, will coincide with the probable
payment flow of Company B (if it covers the entire market) since the quarterly tables
capture the incidence of mortality for each quarter and this is calculated taking into
account all demographic events [5]. Thus, for a life insurance product between the ages
π1 and π2, the technical profit (loss), BT , of Company A can be calculated based on the
policies that Company A acquires in scenarios I, II and IV, using BTA = ∑π2

i=π1
Ti(Px −

C ·rs qi)∨(Pi <r
s Pi−ϕ)∨(Pi−r

s Pi > ϕ)∨(rsPi−Pi > ϕ) and, for Company B, the policies
it acquires in scenarios II, III and IV are considered: BTB = ∑π2

i=π1
∑4
s′=1 ∑4

r′=1
r′
s′Ti(

r′
s′Pi−

C ·r′s′ qi)∨ (rsPi −Pi > −ϕ)∨ (rsPi < Pi −ϕ)∨ (Pi −r
s Pi > ϕ)

3 Results

The previous section shows the different scenarios that can occur in a competitive
market with the entry of a company that implements the use of quarterly life tables
through the SAIs. To verify the results of these scenarios, real data from an insurance
portfolio of a Spanish insurance company is used. Its activity involves the commer-
cialisation of products whose main cover is death (life insurance) through a renew-
able annual insurance premium. The annual mortality tables used are those known
as (PASEM2019secondorder) according to the Spanish insurance regulations [1]. The
quarterly life tables are calculated applying the SAI methodology. The age range is
defined in the underwriting policy and covers the interval x ∈ [18,75]. The insurance
portfolio corresponds to the year 2020 and its total size, ∑r

s Tx, is 72,957 insured, of
which 45,327 are men and 27,630 are women.

The calculations are carried out for all the policies of the insurance portfolio assum-
ing r = 1 and using different values for β = 0%,1%,2%,5%,10%. The hypothesis
r = 1 is less strong than it seems since in annual insurance when r > 2 the probabilities
that apply for an insured person of whole age x are those that correspond to age x+1.
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More realistic results would have been obtained assuming that for half of the portfolio
r = 1 and for the other half r = 2.

Fig. 2. Technique Income Statement for Company A. Left table for men, right table for women.

As can be seen in Fig. 2, when β = 0% (only scenarios I and III apply), Company
A has expected technical losses in the three quarters that it manages to sell its products
since it sells them at a price lower than expenses (claims), both for men (0.64%) and
for women (0.34%). These (total) differences are not uniform for the three quarters.
Continuing with this β level, in summer the differences in premiums r

3Px and Px are
greater than between Px and the other quarterly premiums, r2Px and r

4Px. This leads to a
loss of 1.27% (0.44%) in men (women).

However, when β > 0%, their expected technical losses are reduced, both for men
and women, because Company B shares clients with Company A (scenarios II and IV).
For all β , the expected technical benefit of Company B is 0 since its expected premium
income coincides with the expected cost for claims. Undoubtedly, the pricing strategy
to be followed by a company that uses quarterly tables (Company B) is to aim to attract
customers born in winter and to get customers born in summer to contract the product
with the competition, Company A.

4 Conclusions and Future Research

The research carried out by [5] provides quarterly life tables without the need for addi-
tional calculations, simply by using SAIs. This study analyses the pricing strategy that
a company adopting this new methodological procedure needs to use in a competitive
market where consumers (insured) behave rationally in relation to price. Specifically
the company that uses quarterly life tables needs to capture customers born in winter
and encourage customers born in summer to choose the company that uses annual life
tables. The main results suggest that not taking into account the exact times (quarters)
of birth and when the policy is taken out represents a loss compared to a company that
does take these variables into account. The differences found in a real portfolio, for a
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classic annual renewable insurance (covering death), would be 0.64% and 0.34% for
men and women, respectively.

Of course, the conclusions reached in this study still leave many research opportu-
nities open. On the one hand, all the scenarios carried out in this research are based on
pure premiums and no other factors are taken into account. The impact of the benefit
surcharge that insurance companies incorporate in their premiums to deal with unex-
pected claims remains to be analysed. On the other hand, it would be helpful to have
an alternative methodological procedure that allows quarterly life tables to be obtained
without the need to perform the SAI procedure (the calculations carried out by [5]
required the processing of more than 180 million microdata).
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Abstract. This work documents the existence of a cointegration rela-
tionship between credit spreads, leverage and volatility for a large set
of US companies. It is shown that accounting for the long-run equilib-
rium dynamic between these variables is essential to correctly explain
credit spread changes. Using a novel structural model in which equity is
modelled as a compound option on the firm’s assets, a new methodol-
ogy for estimating the unobservable market asset value and volatility is
developed. The proposed model allows to reduce pricing errors in predict-
ing credit spreads. In terms of correlation analysis, it is shown that not
accounting for the long-run equilibrium equation embedded in an Error
Correction Mechanism (ECM) results into a misspecification problem
when regressing a set of explanatory variables onto the spread changes.
Once credit spreads, leverage and volatility are correctly modelled, the fit
of the regressions sensibly increases if compared to the results of previous
research.

Keywords: Credit spreads · Financial leverage · Asset volatility ·
Cointegration · Compound options

1 Credit Risk Model and Calibration

The model generalises the one in Geske (1977): there equity is modelled as a
compound option written on the firm assets, whilst here equity is seen as a
n–fold compound call option, thus allowing a more realistic description of the
firm’s capital structure. The firm has indeed issued n bonds, maturing at ti, with
i ∈ I = {1, . . . , n}.

Assuming that default occurs the first time at which the firm is unable to
issue new equity to repay its debt, and the firm’s asset value process Vt follows
a geometric Brownian motion with volatility σV and drift (r − �), where r is
the risk-free rate and � the payout rate, the firm’s equity is

S (Vt, σV ) = e−�(tn−t)VtΦn

(
dM;Γn

) −
n∑

i=1

e−r(ti−t)FiΦi

(
dQ

i ;Γi

)
(1)
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where dM :=
(
dMi

)
1≤i≤n

and dQ

i =
(
dMj − σV

√
tj − t

)
1≤j≤i

with

dMi =
ln

(
V/V̄i

)
+

(
r − � + σ2

V /2
)
(ti − t)

σV

√
ti − t

, Γi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√

t1−t
t2−t . . .

√
t1−t
ti−t

1 . . .
√

t2−t
ti−t

. . . . . . . . . . . .

1
√

ti−1−t
ti−t

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Φi(z;Γ ) the cumulative distribution function of a i-dimensional normal
random vector with zero mean and covariance matrix Γ calculated over the
set×i

j=1
(−∞, zj). Also, (V̄i)1≤i≤n is the latent sequence of default thresholds

embedded in the firm’s capital structure.
The unobservable parameters of the model are the value of the firm assets,

V , and the asset volatility, σV . As the sequence of risk-neutral probabilities
Q (τ ≥ ti) can be estimated from the CDS spreads in a model-free fashion (Brigo
2005), the following system of non-linear equations can be employed to estimate
both variables, {

S (Vt, σV ) = St

ΦQ

i (Vt, σV ) = Φ̂Q

i ∀i ∈ I.
(2)

Here, the functional form of S (Vt, σV ) and ΦQ

i (Vt, σV ) = Φi

(
dQ

i (Vt, σV );Γi

)
are

obtained from (1). S is the observed stock price, whist Φ̂Q

i are the model-free risk
neutral probability of survival (for maturity ti) estimated from the CDS spread.

Once the estimates of Vt and σV are obtained, the volatility of the equity
and the firm’s leverage are calculated accordingly, that is

VOLt = σV
Vt

St

∂S

∂V
, LEVt =

Vte
−�(tn−t) − St

St
. (3)

This novel estimation technique is applied to a set of 64 US companies,
constituents of the S&P100 during the period January 2013–December 2017.

2 The Error Correction Mechanism

The structural approach to credit risk prescribes that the probability of default
of a firm, and hence its credit spread, is driven by the firm’s leverage and the
volatility of its cash-flows. Models such as (1) clearly link these variable; more-
over, changes in any of the inputs would affect the others (e.g. a change in the
firm riskiness would impact the firm’s equity and hence its leverage). Given the
evidence in Collin-Dufresne and Goldstein (2001) in which average firms are
shown to target stationary leverage ratios, a long-run equilibrium between the
drivers of credit spread would then appear.

Despite the functional form in (1) being nonlinear, an Error Correction Mech-
anism could be used as first-order approximation for describing such link, once
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such variables display stochastic trends. Empirical test confirms both the pres-
ence of unit roots and the cointegration.

Based on the structural approach of default, the spread is likely to follow
upon changes on the firm’s financial leverage (LEV) and riskiness (VOL) and
not vice versa. Therefore, the model is implemented à la Engle-Granger instead
of using a VECM (that is, only one cointegrating vector is estimated).

Assume the long-run equilibrium equation to be

CDSi,t = θi,0 + θi,LLEVi,t + θi,V VOLi,t + εi,t, (4)

in which (CDS, LEV, VOL)i,t are, respectively, the CDS spread (for a given
maturity), model-implied market leverage and equity volatility of firm i at time
t. CDS is observed, whilst LEV and VOL are estimated as in (3).

The autoregressive distributive lag, ARDL(1, 1, 1), dynamic panel specifica-
tion of (4) (with exogenous variables, ΔX below) is defined as

CDSi,t = αi + φiCDSi,t−1 + βi,0LEVi,t + βi,1LEVi,t−1 + γi,0VOLi,t

+ γi,1VOLi,t−1 + ξ�ΔXt + ηi,t,
(5)

and the error correction reparameterization of (5) is

ΔCDSi,t = λi (CDSi,t−1 − θi,0 − θi,LLEVi,t−1 − θi,V VOLi,t−1)

+ βi,0ΔLEVi,t + γi,0ΔVOLi,t + ξ�ΔXt + ηi,t

= λiεi,t−1 + βi,0ΔLEVi,t + γi,0ΔVOLi,t + ξ�ΔXt + ηi,t

(6)

where λi = −(1 − φi), θi,0 = αi

1−φi
, θi,L = βi,0+βi,1

1−φi
, and θi,V = γi,0+γi,1

1−φi
. λi = 0

is expected to be significantly negative under the prior assumption that the
variables show a return to a long-run equilibrium. Of particular importance is
the vector θ = (θL, θV ), which contains the long-run relationships between the
variables driving the spreads.

3 The Main Result

Most of the results are qualitatively similar when 1-, 5- and 10-year spreads
are used: all the variables, both endogenous and exogenous, display the sign
that the theory prescribes and previous empirical research has found. Table 1
reports the results for the 1-year spread (5- and 10-year are) and Table 2 reports
the adjusted R2 of the models for different terms. Based on the latter, it is
clear that the cointegration mechanism is more successful at explaining shorter
maturities than long-term ones, thus suggesting a more responsiveness of short-
term spreads to changes in the firm’s leverage and risk.

This novel estimation technique is applied to a set of 64 US companies,
constituents of the S&P100 during the period January 2013 – December 2017.
Companies with either preferred equity or subject to merges or acquisitions are
excluded. Also, only companies for which CDS spreads are available are included.



330 F. Maglione

Table 1. ECM for 1−year CDS spreads. All the variables which structural models
predict to influence the change in spreads are statistically significant and have the pre-
dicted signs. The loading on the cointegrating equation (ε) is negative and statistically
significant, thus confirming the existence of a long-term equilibrium which spreads,
volatility and leverage converge to. Number of observations: 16,640; number of groups:
64; observations per group: 260. Significance levels: 10% (*), 5% (**), 1% (***).

1−year CDS spread

Long-run equilibrium Coefficient t–stat p–value

VOL 0.0028 9.88 0.000 ***

LEV 0.0024 14.45 0.000 ***

Short-term adjustment Coefficient t–stat p–value

ε −0.1005 −11.52 0.000 ***

ΔVOL 0.0074 6.29 0.000 ***

ΔLEV 0.0036 5.23 0.000 ***

ΔLevel −0.0566 −4.55 0.000 ***

ΔSlope 0.0213 4.56 0.000 ***

ΔCurvature 1.2409 3.77 0.000 ***

Δ ln(S&P500) −0.0013 −5.13 0.000 ***

ΔSkew 5E−07 2.37 0.018 **

Constant −0.0001 −9.66 0.000 ***

Table 2. Adjusted R2s of the firm-specific time-series regressions in (6) (short-term
adjustments). As shown by both the mean and median adjusted R2, the explanatory
power of the variables which should affect credit spread changes as predicted by struc-
tural models diminishes with the maturity of the spread.

1−year 5−year 10−year

adj–R2

Mean 0.69 0.45 0.30

Median 0.71 0.41 0.24

Min 0.22 0.07 0.01

Max 0.94 0.91 0.90

For what concerns the long-run equilibrium, both volatility (VOL) and lever-
age (LEV) display a positive and statistically significant loading: an increase in
either VOL or LEV induce a larger level of the spread in the long-run. Focusing
on the short-term adjustment, changes in both the firm’s equity volatility and
its financial leverage increase the change in the spread. In terms of economic
significance, an increase of 1% in the firm’s volatility increases the CDS spread
of 0.7 bps. Similarly, an identical change in the firm’s financial leverage induces
the spread to increase of 0.4 bps.
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Following Collin-Dufresne et al. (2001), exogenous variables, in changes
(ΔX), are also added. These are the change in level, slope and curvature of the
term structure of interest rates, the log-return on the S&P500, and the change
in the CBOE Skew Index. The change in the Skew Index is used to proxy the
effect of systematic jumps on credit risk.

First, the changes in the level of interest rates have a negative impact on
the credit spread as in Longstaff and Schwartz (1995) and Duffee (1998). Like-
wise, the positive coefficients of the changes on the slope and curvature of the
term structure are consistent with the findings of previous studies. Also, posi-
tive returns in the S&P500 – which accounts for growing economy and therefore
an increasing expected recovery rate – have the effect to reduce the spread as
suggested by economic intuition.

The variable ΔSkew is the only one that changes sign and significance
between short-term spread (1-year) and medium- and long-term spreads (5- and
10-year). As shown in Zhou (2001), Zhang et al. (2009) and Du et al. (2019),
jumps are necessary to explain the level of short-term spreads: structural mod-
els which account only for diffusive shocks in the asset value process imply zero
instantaneous probability of default and therefore cannot meet the observed level
of 6-month and 1-year spreads. Hence, the coefficient of ΔSkew is positive for
1-year spread changes as expected.

Finally, the estimated coefficient of the long-run equation (ε) is negative,
within the unit circle and statistically significant. The closer the estimate is to
zero, the slower is the adjustment. As expected, the size of the coefficient is
larger, in absolute value, for shorter maturities: short-term spreads adjust faster
to shocks in the firm’s volatility and leverage. The associated t–statistic is also
larger for 1–year spread changes. Conversely, the degree of cointegration becomes
stronger at longer horizons: the t–statistics of the long-run equilibrium equation
increase with the maturity of the CDS.

The cointegrating mechanism is also able to enhance the fit of the regressions
on the spreads as compared with Collin-Dufresne et al. (2001) and other studies.
Average adjusted–R2s of 69%, 45% and 30% are obtained for 1-, 5- and 10-years
spread changes and are reported in Table 2.

As the goodness-to-fit of the ECM model is evidently superior to the ones of
a simple regression on changes, this provides extra evidence of the importance of
a long-run equilibrium dynamic which must be taken into account to correctly
identify how credit spreads change.

4 Conclusions

This paper develops a new estimation technique for the unobservable firm’s asset
value and volatility which relies only on the observable equity value, risk-neutral
probability of default and the face value of the firm’s debt.

The estimated parameters are used to investigate the existence of cointe-
gration between credit spreads and those variables which structural models of
default predict driving their level. Estimations confirm the presence of an error-
correction mechanism which leads to a long-equilibrium between the level of the
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spreads, financial leverage and the volatility of the firm’s equity. Once the coin-
tegration equation is accounted for, the goodness-to-fit of the regressions on the
changes improves substantially compared to previous studies.

In conclusion, a structural model where equity is modelled as a compound
option provides substantial improvement in predicting spreads out-of-sample,
thus suggesting its superior ability in capturing firms’ default dynamics. Most
importantly, this work is the first to document the cointegration between CDS
spreads, financial leverage and the firm’s risk in a large panel of US firms. Once
the cointegration equation is added to the regressions on credit spread changes,
the selected variables do explain quite well their variation. Consistently with pre-
vious findings and the economic intuition, it is shown that short-term spreads
react more quickly to shocks to the long-run equilibrium and that jumps affect
short- and long-term spreads differently. Also, most of the variation in the cross-
section appears to be driven by firm-specific characteristics rather than system-
atic factors.
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Abstract. The key to business success for many companies is the correct use of
data to make better decisions. Companies need to use robust and efficient tools
such as Business Intelligence (BI) as positive catalysts to achieve this goal, which
can assist them in mechanizing the tasks of analysis, decision making, strategy
formulation and forecasting.

Therefore, the main objective of the work is to answer the question whether
operationalization of Business Intelligence, Organizational Learning (OL) and
Innovation can provide financial performance enhancement for companies. It is
an applied research as it examines the theoretical structures in a real context of start-
ups located in the Shanghai Zizhu Science-based Industrial Park to demonstrate
what kind of externality it generates on participating companies.

Research findings demonstrate that Business Intelligence and innovation have
a critical influence on the companies conduct. But there was no meaningful rela-
tionship between Organizational Learning and financial performance of the same
companies.

Keywords: Science Park · Business Intelligence · Financial Performance

1 Introduction

The main corporate objective is to generate profit and increase the well-being of both
the shareholders and the various stakeholders who will interact with the company.

Science parks are indeed complex institutions designed to be applied as policy tools
to support the development of innovative startups and regional clusters.

In fact, they facilitate the exchange of knowledge between universities, research and
development bodies and companies. For the pursuit of an efficient interaction between the
parties involved, companies and Science Parks, it is essential to examine the factors that
influence the financial performance of the company, considering the limited availability
of resources and information.
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Therefore, in addition to paying attention to factors that are necessary for sustain-
ability in other companies, managers should pay attention to factors such as business
intelligence (BI), organizational learning (OL), innovation and etc. in order to increase
the efficiency, effectiveness and durability of innovative companies.

According to many economic experts, entrepreneurship as an economic driver, plays
a variety of roles in society and is the basis of all human developments and progress[1].

So, the objective of this paper is twofold: as regards companies, to analyze the
impact of BI, OL and innovation on the financial performance of startups located within
a science park.

In the literature, International Association of Science Parks1 provided the main def-
inition of Science Park as follows: a Science Park is a business support and technology
transfer initiative that.

1. encourages and supports the startup and incubation of innovation led, high growth
knowledge based businesses;

2. provides an environment where larger and international businesses can develop spe-
cific and close interactions with a particular center of knowledge creation for their
mutual benefit;

3. has formal and operational links with poles of knowledge creation such as
universities, higher education institutes and research organizations [2, 8].

In recent years, an increasing number of empirical studies has examined the relation-
ship between innovation and firms’ performance considering different types of models,
estimation methods, measures of growth and innovation activity.

In particular, corporate performance, and therefore investments in innovation, are
strictly connected to the financial performances that influence the entire management.
These are usually measured in terms of profitability through three accounting variables:
Return On Assets, Return On Equity and Return On Sales which provide a system of
measurements complete enough for potential investors to optimally assess the company’s
financial performance [2].

In the study on the relationship between corporate governance and financial perfor-
mance firms by Kyere and Ausloos (2021), ROA and Tobin’s Q were used as dependent
variables. ROA gives an indication of how best the assets of a company is utilized to
generate profit and it is not affected by leverage or other extraordinary and discretionary
items; it is calculated by dividing annual earnings of the company by its total assets.
The Tobin’s Q is usually used to capture existing assets, future growth potentials of
the company and investors’ expectations to future events, including evaluation of cur-
rent business strategies; it is a ratio of market value of company outstanding stock and
debt divided by replacement cost of the company’s assets (“book value”). Instead, the
independent variables considered in the same study are related to corporate governance
mechanisms: insider shareholding, board size, independent board, CEO duality, audit
committee meetings [3].

1 IASP International Board, 6th February, 2002.
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As anticipated, technological innovation is also correlated to the business intelligence
mechanisms introduced in the company to be able to make all available data produc-
tive. In fact, BI methodologies, through an assortment of coordinated operational just as
choice help applications and databases, convert raw data sets into information to support
decision-making processes to optimize knowledge and make processes faster and more
efficient. Therefore, the development of BI is one of the fundamental elements of inno-
vation within a company and determines the improvement of its overall performance
[4].

The last aspect considered is the organizational learning which is determined by the
set of organizational features, practices and issues that enable the learning processes.
Thus, the OL translates into the ability to convert new and past ideas into actions that
can improve business performance ahead of competitors in order to gain a sustainable
competitive advantage. This occurs through the generation, acquisition, dissemination
and integration of knowledge and the modification of its behavior. In fact, it is argued
that firms better at learning get a better chance of increasing market share thanks to a
responsive structure that can quickly react to new challenges [5].

Finally, Ferrara and Mavilia (2014), despite constituting a pioneering analysis, has
showed a lot of interesting features of TP/SP’s effects on both regional economic growth
and associated (or incubated) firms’ growth in terms of revenues. In particular, they found
both that TP/SP impacts are different if analyzed by geographic location and that their
effects are still evident even in the aggregate model. The number of TP/SP per region
seems to display a positive role in sustaining the economic growth of corresponding
regions. In addition, the patenting activity and the creation of research centers foster
the growth of affiliated firms, which in turns affects regional economy’s parameters. To
the contrary, the distance between the TP/SP and affiliated firms reduces the growing
potential of the latter. In addition, firms within a TP/SP turn out outperforms (largely)
the regional average and more recent structures tend to be more prone to both patent-
ing activity and high-level growth. Younger structures are also characterized by higher
dispersion rates [7].

2 Problem Statement and Methodology

2.1 Research Method and Data Collection

Statistical population of the research is considered start-up companies located in the
Science Park (Shanghai Zizhu Science-based Industrial Park, located in the southeast of
Minhang District, Shanghai). The sampling of this research is simple random. Morgan
table was employed to demonstrate the sample size as shown in Table 1. It was found
that the number of executives of start-up companies located in the Science Park is 400
people; therefore, the number of samples requested is 196 people and 280 questionnaires
were distributed to compensate for any statistical bias due to the choice of sample.
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Table 1 Krejcie and Morgan table (1970) for determining sample size of a known population (N
is the population size; S is the sample size.)

N S N S N S N S N S

10 10 100 80 280 162 800 260 2800 338

15 14 110 86 290 165 850 265 3000 341

20 19 120 92 300 169 900 269 3500 346

25 24 130 97 320 175 950 274 4000 351

30 28 140 103 340 181 1000 278 4500 354

35 32 150 108 360 186 1100 285 5000 357

40 36 160 113 380 191 1200 291 6000 361

45 40 170 118 400 196 1300 297 7000 364

50 44 180 123 420 201 1400 302 8000 367

55 48 190 127 440 205 1500 306 9000 368

60 52 200 132 460 210 1600 310 10000 370

65 56 210 136 480 214 1700 313 15000 375

70 59 220 140 500 217 1800 317 20000 377

75 63 230 144 550 226 1900 320 30000 379

80 66 240 148 600 234 2000 322 40000 380

85 70 250 152 650 242 2200 327 50000 381

90 73 260 155 700 248 2400 331 75000 382

95 76 270 159 750 254 2600 335 1000000 384

The online questionnaire (according to the Corona pandemic) includes demographic
information and 47 questions of research variables (financial performance – 12 ques-
tions; business intelligence – 12 questions; innovation – 12 questions; organizational
learning – 11 questions) and its validity and reliability have been appropriately verified.
In particular, Cronbach’s alpha approach has been applied to compute the internal con-
sistency of the measuring instrument; since the value attributed to all variables is greater
than 0.7 (0.913 for the whole questionnaire), the case has agreeable dependability.

Figure 1 shows the research’ conceptual model [1].



Business Intelligence Modelling for Studying Science 337

Fig. 1. Conceptual model of research.

2.2 Research Data Analysis Method

In the study, the demographic data of the research were described employing descriptive
statistics, frequency tables and pie charts and the data were analyzed employing SPSS
software.

2.3 Structural Equation Modeling

There are two important issues in measuring variables in the behavioral and cognitive
sciences. A. Measurements, and B. Cause and effect relationships between variables.
Structural equation models contain two parts, the measurement model (external model)
and the structural function model (internal model). Structural Equation Models by inte-
grating the two models of confirmatory factor analysis and structural function analysis,
many problems and difficulties of measuring latent variables and inferring causal rela-
tionships between these latent variables are solved. One of the strongest and most appro-
priate methods of analysis is multivariate analysis, which means the analysis of different
variables that in a theory-based structure, demonstrates the simultaneous influences of
variables on each other. The default partial least squares method does not require the
type of distribution of the measurement variables. Therefore, it is suitable and practical
for data with abnormal distribution or unknown distribution [1].

3 Main Results

Employing the internal model, hypotheses could be inspected. By correlating the value
of “t” computed for the coefficient of every path, we could confirm or reject the research
hypothesis. Therefore, if certain rate of the “t” statistic is larger than 1.96, it ismeaningful
at the 95% trust level. In analysis, “t” statistics value for all paths except the path of OL
to financial performance, is larger than 1.96 and as a result are meaningful at the 95%
confidence level.

The coefficient of perception for the financial performance variable is estimated to be
0.62 and shows that the variables of OL, BI and Innovation, together, could explain 62%
of the changes in financial performance. According to the value of standard coefficient
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and “t” statistics, variables of Innovation (0.568) and BI (0.233) had the topmost impact
on the financial performance variable, respectively, and the OL variable did not have a
significant effect. Similarly, the variables of OL and BI explain a total of 0.66 of the
changes in Innovation. According to the value of standard coefficient and “t” statistics,
OL variable has a greater impact on the innovation variable than the BI variable. Accord-
ing to the number of coefficients of determination, it can be said that the BI variable
explains 27% of the changes in the OL variable [1].

4 Conclusions

The illustrated research aims to answer the questionwhether operationalization ofBI,OL
and Innovation can provide financial performance enhancement for these organizations.
Based on the analysis, out of 6 hypotheses, 5 hypotheseswere confirmed and 1 hypothesis
was rejected in the study population. In particular, the main results are:

• Business intelligence has a positive and critical influence on organizational learning.
Particularly, improving BI can improve OL.

• Organizational learninghas apositive and critical influenceon innovation. Particularly,
OL can increase innovation.

• Business intelligence has a positive and critical influence on innovation. Particularly,
BI can increase innovation.

• Following the existence of a relationship between organizational learning on the finan-
cial performance of innovative companies, the results showed a lack of relationship
between these two variables in the statistical population of the study and this hypothe-
siswas rejected.One of the reasons is the discrepancy between organizationalmaturity
formed in start-up companies versus large companies.

• Business intelligence has a positive and critical influence on financial efficacy. Par-
ticularly, BI can improve financial performance. This path coefficient is significant at
the error level of 0.05.

• Innovation has a positive and critical influence on financial efficacy. Particularly,
innovation can improve financial performance [1].
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Abstract. We investigate the evaluation problem of variable annuities
by considering guaranteed minimum maturity benefits with constant or
path-dependent guarantees of barrier and lookback type. We propose
to solve the non-standard Volterra integral equations associated with
the policy valuations through a randomized trapezoidal quadrature rule
combined with an interpolation technique. Such a rule improves the con-
vergence rate with respect to the classical trapezoidal quadrature, while
the interpolation technique allows us to obtain an efficient algorithm that
produces an accurate approximation of the early exercise boundary. The
method accuracy is assessed by constructing two benchmarks based on
lattice approaches and the least-squares Monte Carlo simulations. In the
first case, a novel algorithm for the lookback path-dependent guarantee
is obtained thanks to the lattice convergence properties.

Keywords: Variable annuity · Guaranteed minimum
maturity/accumulation benefit · Volterra integral equation ·
Randomized trapezoidal quadrature · Lattice model · Monte Carlo
simulation

1 The Framework

We consider a variable annuity (VA) policy issued at time 0 and maturing at time
T for which the policyholder pays a single premium, then invested by the insurer
in a fund presenting the following dynamics under the risk-neutral probability
measure Q, dSt = rStdt+σStdBt, where r is the constant instantaneous risk-free
rate of return, σ is the return volatility, and (Bt)0≤t≤T is a standard Brownian
motion in the probability space (Ω,F ,Q), endowed with the filtration (Ft)0≤t≤T .
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In absence of the possibility of surrendering the contract early, the policy pays
at maturity T the maximum between the policyholder account value at time T ,
WT , and the value of the guaranteed minimum payoff at the same time, GT . Part
of the premium is paid for the guarantee and it is supposed to be collected as a
fee continuously withdrawn from the policyholder account at a constant rate α,
i.e., at any time 0 ≤ t ≤ T , Wt = e−αtSt, with dWt = (r − α)Wtdt + σWtdBt.

Whenever the VA policy presents a surrender option for the embedded guar-
antee, the policyholder may decide to exercise the option at any time before
maturity. Clearly, being a rational individual, the policyholder optimally exer-
cises the surrender option according to a strategy that is strictly dependent upon
the type of the embedded guarantee, which we suppose to be of three different
types as detailed hereafter in Model 1, Model 2, and Model 3.

In Model 1, we consider a VA contract with a guaranteed minimum maturity
benefit (GMMB) characterized by constant guarantees. Decomposing the con-
tract payoff according to Brennan and Schwartz [1], the policyholder will receive
the account value WT at maturity T and, whenever the surrender option on the
guarantee is exercised at time t before maturity, the surrender benefit modelled
as (G − e−κ(T−t)Wt)+, where G represents the constant minimum guaranteed
amount and a penalty for early surrender, having the form e−κ(T−t), is applied
to the account value Wt. To sum up, the value of the VA contract at a generic
time t may be written as

V A1(t, Wt) = e−r(T−t)
E
Q[WT |Ft] + sup

τ∗∈S(t,T )
E
Q

[
e−r(τ∗−t)(G − e−κ(T−τ∗)Wτ∗)+|Ft

]
,

(1)

where S(t, T ) indicates the set of all the stopping times of the filtration
(Ft)0≤t≤T .

Model 2 extends Model 1 by embedding in the VA contract with GMMB
a path-dependent guarantee having the form of an up-and-out barrier option.
In this case, if the policyholder account value hits the up-and-out barrier H
from below, the embedded guarantee disappears and the policyholder receives
the account value at maturity. At a generic time t where the surrender option
has not yet been exercised, this VA contract has value

V A2(t,Wt) = e−r(T−t)
E
Q[WT |Ft] +

+ sup
τ∗∈S(t,T )

E
Q

[
e−r(τ∗−t)(G− e−κ(T−τ∗)Wτ∗)+1{τH>T}|Ft

]
,

where 1{·} is the indicator function and τH = inf{s > 0|Ws = H} represents the
first barrier hitting time.

Model 3 complicates further Model 2 by adding to Model 1 a path-
dependent guarantee with a lookback feature that is, clearly, more complex to
be managed. Indeed, the guarantee is now described as a constant proportion ϕ
of the historical maximum registered by the policyholder account value during
the policy lifetime, defined as Mt = max0≤π≤t Wπ. The result is that, in this
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case, the guarantee is time-dependent being its value defined as Gt = ϕMt, with
ϕ ∈ [0, 1], and the VA contract value is given by

V A3(t, Wt, Mt) = e−r(T−t)
E
Q [WT |Ft] +

+ sup
τ∗∈S(t,T )

E
Q

[
e−r(τ∗−t)

(
ϕMτ∗ − e−κ(T−τ∗)Wτ∗

)+
|Ft

]
.

2 Volterra Integral Equation Approach

When considering the VA with GMMB in Model 1, the embedded guarantee
in (1), indicated as

V1(t, f) = sup
τ∗∈S(t,T )

E
Q

[
e−r(τ∗−t) max

(
G − e−κ(T−τ∗)Wτ∗ , 0

)
|Wt = f

]
,

satisfies the following variational inequality
⎧
⎪⎨
⎪⎩

LV1(t, f) ≤ 0 if V1(t, f) = max
(
G − e−κ(T−t)f, 0

)
,

LV1(t, f) = 0 if V1(t, f) > max
(
G − e−κ(T−t)f, 0

)
,

V1(T, f) = max(G − f, 0),
(2)

on the domain D1 = {(t, f)| 0 ≤ t ≤ T, 0 < f < ∞}. In problem (2), the
continuation region is C1 =

{
(t, f) ∈ D1|V1(t, f) > max

(
G − e−κ(T−t)f, 0

)}
and

the surrender region is S1 =
{
(t, f) ∈ D1|V1(t, f) = G − e−κ(T−t)f

}
. Defining

the optimal surrender boundary as B1(t) = inf
{
e−κ(T−t)f ∈ R+|(t, f) ∈ C1

}
,

the regions C1 and S1 may be redefined as C1 =
{
(t, f) ∈ D1|e−κ(T−t)f > B1(t)

}
and S1 =

{
(t, f) ∈ D1|e−κ(T−t)f ≤ B1(t)

}
. In addition, at the free boundary

B1(t) = e−κ(T−t)f , the following conditions hold:

V1

(
t, eκ(T−t)B1(t)

)
= G − B1(t),

∂V1

∂f

(
t, eκ(T−t)B1(t)

)
= −e−κ(T−t). (3)

The value of the embedded guarantee V1(t, f) satisfies the problem
{

LV1(t, f) = − (
rG − (α − κ) e−κ(T−t)f

)
1{f<eκ(T −t)B1(t)},

V1(T, f) = max(G − f, 0),

which presents the solution in the Volterra integral equation form given by

V1(t, f) = Ge−rτΦ

(
−d−

(
τ,

f

G

))
− fe−ατΦ

(
−d+

(
τ,

f

G

))
+

+ rG

∫ τ

0

e−r(τ−ξ)Φ

(
−d−

(
τ − ξ,

f

eκξB̃1(ξ)

))
dξ+

− (α − κ)f
∫ τ

0

e−κξe−α(τ−ξ)Φ

(
−d+

(
τ − ξ,

f

eκξB̃1(ξ)

))
dξ, (4)
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where τ = T −t, B̃1(τ) is the time reversed free-boundary, Φ(·) is the cumulative

normal distribution function, and d±(t, f) =
log f+(r−α± 1

2σ2)t

σ
√

t
. Given equation

(4) and taking into account the defined optimal surrender boundary and the
conditions in (3), the time-reversed free boundary is the solution of G− B̃1(τ) =
V1

(
τ, eκτ B̃1(τ)

)
, and the optimal surrender boundary is obtained by reverting

the free-boundary, i.e., B1(T − τ) = B̃1(τ). Furthermore, it results that1

B1(T−) = B̃1(0+) = lim
τ→0+

B̃1(τ) = min
(

1,
r

max(α − κ, 0)

)
G. (5)

We propose to solve the non-standard integral equations presented above
through an approximation of the integrals that is based on the randomized trape-
zoidal quadrature method presented by Wu [6], coupled with linear interpolation.
To detail the algorithm, let N be a positive integer and partition the interval
[0, T ] into N intervals of equal length Δ = T

N , 0 = t0 < t1 < t2 < · · · < tN = T ,
where ti = iΔ, i = 0, . . . , N . In addition, as argued in Wu [6], let {υi}N−1

i=0 be
a sequence of independent standard uniform random variables and υ̃i = 1 − υi.
The Volterra integral formulations involve two or more integrals of the form

I(t, s) =
∫ t

0

e−λ(t−s)Φ

(
±d±

(
t − s,

B(t)
B(s)

))
ds,

where t ∈ [0, T ] and λ is a constant. By considering a generic time ti > 0, when
i = 1, 2, . . . N , following Wu [6] we can approximate such integral as

∫ ti

0
e−λ(ti−s)Φ

(
±d±

(
ti − s, B(ti)

B(s)

))
ds ≈

Δ
2

i−1∑
w=0

[
e−λ(ti−tw−υwΔ)Φ

(
±d±

(
ti − tw − υwΔ, B(ti)

B(tw+υwΔ)

))
+

+e−λ(ti−tw−υ̃wΔ)Φ
(
±d±

(
ti − tw − υ̃wΔ, B(ti)

B(tw+υ̃wΔ)

)) ]
.

Now, suppose to analyze Model 1.2 Preliminarily, we define the quantity

V E
1

(
τ, eκτ B̃1(τ)

)
= Ge−rτΦ

(
−d−

(
τ, eκτ

˜B1(τ)
G

))
+

−B̃1(τ)e−(α−κ)τΦ
(
−d+

(
τ, eκτ

˜B1(τ)
G

))
,
(6)

1 For Model 2 and Model 3, the integral equation is obtained similarly.
2 What we present here may be easily adapted to the integral formulations of Model
2 and Model 3.
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and, for w = 0, 1, . . . , i − 1, we introduce the quantities zw = tw + υwΔ and
z̃w = tw + υ̃wΔ, so that zw, z̃w ∈ [tw, tw+1]. By virtue of equation (5), B̃1(t0) =
min

(
1, r

max(α−κ,0)

)
G, and for each ti, i = 1, . . . , N , we can write

B̃1(ti) = G − V E
1 (ti, eκtiB̃1(ti))+

−rGΔ
2

i−1∑
w=0

[
e−r(ti−zw)Φ

(
− d−

(
ti − zw, eκti ˜B1(ti)

eκzw ˜B1(zw)

))
+

+e−r(ti−z̃w)Φ

(
− d−

(
ti − z̃w, eκti ˜B1(ti)

eκz̃w ˜B1(z̃w)

))]
+

+(α − κ)eκtiB̃1(ti)Δ
2

i−1∑
w=0

[
e−κzwe−α(ti−zw)Φ

(
− d+

(
ti − zw, eκti ˜B1(ti)

eκzw ˜B1(zw)

))
+

+e−κz̃we−α(ti−z̃w)Φ

(
− d+

(
ti − z̃w, eκti ˜B1(ti)

eκz̃w ˜B1(z̃w)

))]
.

(7)

Considering simultaneously, for all i, the non-linear equation (7), we obtain a
non-linear system of N equations in 3N unknowns. In order to avoid this prob-
lem, we approximate each B̃1(zw) and B̃1(z̃w) with the interpolated values

B̃1(zw) ≈ FA

(
tw, tw+1, B̃1(tw), B̃1(tw+1), zw

)
,

B̃1(z̃w) ≈ FB

(
tw, tw+1, B̃1(tw), B̃1(tw+1), z̃w

)
,

where FA and FB are two functions indicating a linear interpolation, thus reduc-
ing the 3N unknowns to the N unknowns represented by the quantities B̃1(ti),
with i = 1, . . . , N . Solving the arising system of N equation in N unknowns and
considering the exact value of B̃1(t0), we obtain the approximate solution

{
B̃1(t0), B̃1(t1), B̃1(t2), . . . , B̃1(tN )

}
.

To present how to extend the previous algorithm for computing the provision
α, suppose to fix the initial investment value at level W and consider the first case
analyzed in Model 1. The provision α making the contract fair may be evaluated
applying the proposed algorithm and considering the additional equation W =
V A1(0,W ). A system of N + 1 equations in N + 1 unknowns is solved in order
to find both the early boundary exercise and the provision.3

3 Hints to the Benchmark Methods and Numerical
Results

Some hints of the benchmark methods will be focused on Model 3, because the
cases reported in Model 1 and Model 2 are quite standard.
3 The same considerations may be applied to Model 2 and Model 3.
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Concerning the lattice procedure, while a straightforward application of the
Cox, Ross, and Rubinstein (CRR) [2] model allows to evaluate the VA con-
tract appearing in Model 1 and a little effort is needed to take into account
the up-and-out barrier in Model 2, a novel approach is established for the VAs
described in Model 3, where the policy embeds a lookback path-dependent guar-
antee. In detail, we propose an algorithm that detects all the possible maximum
values registered on the trajectories reaching a given node of the lattice used to
discretize the policyholder account dynamics. The convergence properties of the
CRR model coupled with the consideration of all the possible maximum account
values for each lattice node make the proposed approach a natural benchmark
when lookback features are embedded in the policy guarantees. Clearly, the pro-
posed algorithm is of immediate application for valuing European or American
lookback options, thus providing a useful tool not only for actuarial products
like VAs but also for pure financial instruments.

Concerning the least squares Monte Carlo method (cf. Longstaff and
Schwartz [4]), the main problem concerns the treatment of the lookback fea-
ture that we propose to manage through the consideration of basis functions as
functions of two variables, i.e., the maximum of the policyholder account values
registered before the evaluation time t and the same account value at time t. In
detail, we propose to choose for such basis functions monomials of order up to
M = 3.

The idea of developing two different benchmark methods rises when, running
the proposed numerical algorithm to solve the non-standard Volterra integral
equations, in some cases we find significant discrepancies with respect to the
results reported in the papers of Shen et al. [5] when considering Model 1, and
of Jeon and Kwak [3] when considering Model 3. In addition, we remark that
the proposed procedure provides VA evaluations that are completely coherent
with the policy values obtained by applying both the lattice and the Monte Carlo
benchmark methods. These empirical evidences highlight that the contributions
of Shen et al. [5] limitedly to Model 1, and Jeon and Kwak [3] limitedly to
Model 3, present some problems affecting the cases in which their algorithms
do not perform properly. On the contrary, the proposed numerical algorithm
provides results that are coherent with the developed benchmarks in all the
analyzed cases.
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Abstract. The increase in the frequency and severity of extreme weather events
associated with climate changes has relevant impacts for farmers. Weather para-
metric insurance schemes are a possible option in managing agricultural risks
because they refer to objective and immediate data to assess the payouts (as e.g.
weather station data) accelerating time of reimbursement and reducing disputes
with respect to conventional crop insurance coverages. These insurance can be
considered an attractive opportunity, due to their advantages: low costs, no infor-
mation asymmetry, abundant data, wide spectrum of activities covered, flexibil-
ity. The goal of the study is to investigate the potential benefits that the improve-
ment in the design of insurance solutions (and the predictive analytics techniques)
could offer in this area. Specifically, with reference to grape production in two
Italian regions, we study which meteorological indices are most suitable as pre-
dictors of agricultural production and the predictive efficacy of different models:
GLM, Neural Network, Random Forest.

Keywords: Agribusiness insurance · Weather events · Parametric insurance ·
Risk management · Machine learning

1 Introduction

Climate change causes shifts in average weather conditions and an increase in the
weather variability due to changes in the frequency and occurrence of extreme events.
Weather-related insurance losses have increased in recent years, much faster than
non-weather related events. Insurers have historically provided insurance solutions for
weather-related losses and have started to pay attention to the implications of climate
change for their business. One of the most obvious applications of weather risk manage-
ment products is in agriculture and farming. Weather impacts many aspects of the agri-
cultural supply and demand chain. Identifying weather risk for an agricultural grower or
producer involves three steps: identifying the regions at risk to weather and the weather
stations that reflected that risk; identifying the time period during which risk is preva-
lent; and identifying the weather index that is the best proxy for the weather exposure.

Weather parametric insurance schemes are a possible option in managing weather
and climate: they refer to weather station data or grid data (rainfall, temperature) in
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order to assess the payouts and these are therefore immediate and with fewer dis-
putes than conventional crop insurance coverages. An index insurance contract pays
out according to the value of an ‘index’, not on losses measured in the field. The index
should be a variable that is highly correlated with losses and that cannot be influenced
by the insured (e.g.: rainfall, temperature, regional yield, river levels etc.). On one hand,
index insurance contracts have many advantages: they overcome most of the supply side
problems of traditional Multi-Peril Crop Insurance, are objective and transparent, pro-
vide timely payout, reduce administrative costs, facilitate international reinsurance. On
the other hand, these contracts also have disadvantages: there is a potential mismatch
between losses and payouts (basis risk), they provide single-risk protection, require
high inputs during development phase (weather data and networks), require local adap-
tation (slow the scaling up). The construction of a weather index-based (WII) insur-
ance requires the selection of one or more indices correlated as much as possible with
yield. The index selection is therefore of fundamental importance for these products
(see [2,5,10,11] and literature therein). Meteorological data can be derived from dif-
ferent types of data sets and, as shown by Parkes et al. [9], these differences create a
wide uncertainty in estimated crop yield responses and exposure to variability in grow-
ing season weather”. With reference to grape production in two Italian regions, the first
objective of this work is to identify which of the six most frequently used indicators in
the literature is effective as a regressor in yield estimation. We consider the following
indexes:

Winkler

WI =
oct

∑
apr

Ta/d −10◦C (1)

where Ta/d is the daily mean temperature in Celsius grade. The index take into account
all days from April 1st (apr) till October 31st (oct).

Huglin

HI = K ·
oct

∑
apr

Ta/d +Tm/d
2

−10◦C (2)

where Tm/d is the daily maximum temperature in Celsius grade and K is a parameter
dependent on the latitude of the location.

Winkler Normalized

WIN = H ·
oct

∑
apr

10◦C< Th/d ≤ 35◦C (3)

where H is a normalization factor that takes into account the hours included in the
April-October period.

Branas, Bernon and Levadoux

BBL=
M

∑
m=1

Tm ∗Rm (4)
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where Tm and Rm are the mean monthly temperature and the cumulative monthly rainfall
on month m, respectively.

Ribéreau-Gayonand Peynaud

RGP=
DM

∑
d=1

max(Td −10◦C;0)−Rd (5)

where Td and Rd are the mean daily temperature and the cumulative daily rainfall on
day d, respectively.

Growing Season Precipitation

GSP=
DM

∑
d=1

Rd (6)

The first three indicators include only one factor and account for the accumulated heat
over the growing period, while the forth and the fifth take into account the accumu-
lated heat over the growing period and rainfall. The last one considers only rainfall.
Several studies have analyzed the ability of different weather-yield indices to represent
the weather-yield relationship, but this is the first analytical study on the production of
wine grapes in Italy that analyzes such a wide range of indices.

A second decisive element for an effective WII product is the accurate represen-
tation of the relationship between agricultural yield and meteorological indicator. The
literature [10] shows how the assumption of the existence of linear correlations (as in
linear regression models) is not always valid and it may be necessary to use alterna-
tive models capable of representing more complex forms of dependence. Some authors
model the dependence between yield and weather using copulas [3] and [10]. Also
machine learning algorithms can be used in predicting the relationship between weather
conditions and yield, e.g. [1] uses recursive partitioning to build classification and
regression trees (CART) to evaluate the predictive power of the weather variable. Our
contribution in this field consists in the adoption of alternative algorithms such as neural
networks and random forests (compared to a traditional GLM model) as well as in the
application to a crop and a set of indicators not yet tested in the literature.

2 Methodology

Machine learning (ML) approaches are used for yield prediction adopting several math-
ematical and statistical methods, namely artificial neural networks, fuzzy information
networks, decision tree, regression analysis, clustering, principal component analysis,
Bayesian belief network, time series analysis, and Markov chain model. The applica-
tion of these machine learning techniques in agricultural risk management shows more
tremendous advantages due to the availability of many data from several resources to
obtain hidden knowledge. In this paper we use Neural Networks and Random Forests to
predict and check yield to support the construction of an optimal index and the design of
an index-based insurance. Deep neural networks (DNN): Deep neural networks tech-
niques belong to the class of representation learning methods with multiple levels of
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abstraction, which can learn the underlying representation of data without the need for
handcrafted features (see [7] for details). Representation learning is a set of methods
that allows a model to be fed with raw data and to automatically discover the rela-
tionships between inputs and outputs. Deep neural networks apply a nonlinear function
to the output of each hidden layer which makes them highly nonlinear. DNN mod-
els are trained with gradient-based optimization methods to minimize the desired error
function for the task for which they are used. DNN models have recently been used
for crop yield prediction which has shown great success by outperforming other tra-
ditional machine learning methods (as discussed in [6] and related works). Random
forests (RF): RF include multiple individual trees and uses Breiman’s “bagging” idea
to ensemble many decision trees into a single but strong model (as described in [4]). It
uses the self-help method (i.e., the bootstrap resampling technology) to generate new
training sample sets from the original training samples of N by repeatedly selecting
random k sets of samples. During the overall selecting process, some samples may
be collected more than once. The training sample is used to generate k buffeting the
decision or regression trees (CART) for the development of random forests, and then
classify the test sample by majority vote decision or use the average as return values.
Given the fact that randomness can effectively reduce model variance, random forests,
in general, can achieve good generalization ability and low variance resistance without
additional pruning. As far as the model accuracy regards, different standard statistical
performance evaluations evaluate various conventional predictor model performances.
The most widely used statistical measures are coefficient of determination (R2), root
mean square error (RMSE), mean absolute error (MAE), mean squared error (MSE),
mean absolute percentage error (MAPE), coefficient of variance (CV) and normalized
mean squared error (NMSE).

3 Numerical Application

In this section the models introduced in Sect. 2 are applied to historical datasets of
two of the most relevant regions of wine in Italy, Veneto and Piemonte. Data on daily
weather conditions for the period 2006–2020, which have been used for the construction
of the bioclimatic indicators described in Sect. 1 were downloaded from the Modern-
Era Retrospective analysis for Research and Applications, Version 2 database managed
by the NASA Goddard Earth Sciences (GES) Data and Information Services Center
(DISC) [https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/]: for the two regions con-
sidered in the analysis, Piemonte and Veneto, the list of locations, identified by longi-
tude and latitude, corresponds to the list of provinces. Grape yield data (in q/ha) for
the period 2006–2020 are the ones provided by the Italian National Institute of Statis-
tics, a public research organisation, the main producer of official statistics, including
Agricultural ones [https://dati.istat.it/].

Table 1 shows the improvements using Neural Networks and Random Forests in
terms of reduction of the MSE. The architecture of the Neural Network model has been
fitted calibrating the number of neurons and layers that minimizes the error. As for the
Random Forest the selection of the seed and the number of trees is the combination that
produces the minimum value of the squared distances. Comparing the performance of

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://dati.istat.it/
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Table 1. Performance analysis

Model MSE Difference vs MSE.GLM

GLM 1007.4710

Neural Network 821.8806 −18.42%

Random Forest 544.8351 −45.92%

different learning methods for yield prediction based on all the bioclimatic indicators
introduced in Sect. 1 it can be observed that in the GLM model the significance codes
indicate that only Winkler, BBL and GSP have an impact on the dependent variable
while in the other models all the indicators contribute to the increase of the percentage
of variance explained. As expected, contrary to linear regression models, neural net-
works and tree partitioning allow to capture non-linear and high order interactions. The
optimal selection of the forecasting model is used to design the payoff of a weather
index-based product with the benefit of reducing basis risk which refers to a mismatch
between the index that determines the indemnities and the actual loss experienced and
has historically been one of the limitations to the development of this type of solutions
for agriculture.

4 Conclusions

In this work we have investigated the benefits that some machine learning techniques
can bring in agricultural risk management with respect to the development of alterna-
tive solutions. The results indicate that nonlinear models outperform the linear one and
are more effective in finding the functional relationship between the yield and the input
data. The result is relevant to increase the accuracy in forming the best predictors and
constructing optimal indexes. The comparative analysis of the models might support
the construction of an optimal index and the design of an WII. Indeed, the choice of the
index has a decisive impact on the payoff of the insurance contract. There are several
possible directions to improve future research. First, it would be interesting to extend
the set of explanatory variables to include other indicators that might be relevant to crop
yield, such as variables representing global warming, as well as remote sensing data,
as suggested in [8]. It could be worth exploring other techniques for variable selection
and index identification, testing the potential improvements in forecasting and reduc-
ing basis risk. Future research will focus on building an insurance product based on
the models presented here and measuring the effectiveness of insurance coverage in
stabilizing farmers’ income.
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Abstract. RSA-based scheme are the most popular asymmetric cryptosystems to
date, being deployed in billions of security systems and applications. This RSA
cryptosystem comprises of two important features that are needed for encryption
process known as the public parameter and the modulus. Such constructions are
extensively used in financial applications such as Bitcoins, where more than one
key is required in order to authorize Bitcoin transactions. Many of the current
state-of-the-art schemes are based on the RSA assumptions, however this may
be-come insecure in the future, for example due to the possibility of quantum
attacks. In this paper we propose a scheme based on recent theoretical advances
in lattice-based cryptography.

Over the last years lattice-based cryptography has received much attention as
it is a very versatile tool in different fields.

In this work we explore the implementations of cryptographic systems pre-
senting geometric considerations for an application approach to the financial sec-
tor, in particular emphasizing the feasibility of the special algebraic structure of
ideal lattice on the spread of “cryptocurrencies” (or “virtual currencies”), the best
known of which is bitcoin.

Keywords: Encryption · RSA cryptanalysis · Lattice Based Cryptanalysis

1 Introduction

The term Cryptography comes from Kryptós (hidden) and graphía (writing), in fact it is
a system designed to make a message unreadable to those who do not have the solution
to decode it.

Cryptography consists in the study of methods to encrypt a message in such a way
that only those interested can decrypt and read the content of this.

Cryptography := Encryption ⊕ Decryption
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M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 353–358, 2022.
https://doi.org/10.1007/978-3-030-99638-3_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99638-3_57&domain=pdf
https://doi.org/10.1007/978-3-030-99638-3_57


354 D. S. Merenda and M. Ferrara

Obviously, in parallel with this discipline has developed Cryptoanalysis, ie the study
of various attacks on encryption methods.

The purpose of modern cryptography is to find mathematical methods to ensure the
main properties of communication: confidentiality, privacy, integrity, authentification of
the sender.

In this paper a brief introduction to the currently most used cryptoanalysis model,
RSA showed, and then a family of cryptosystems that could potentially resist possible
attacks illustrated based on the lattice.

This article has been divided into the following sections. Section 2 describes encryp-
tion with a focus on asymmetric encryption. Section 3 explains the RSA algorithmwhile
Sect. 4 presents a new approach using the lattice method. Finally, Sect. 6 provides the
conclusions of this study.

2 Encryption: A Brief Introduction

This section briefly present basics yet important materials on Encryption.

2.1 Asymmetric Encryption Algorithms

Cryptography is divided into symmetrical and asymmetrical. The initial idea of encryp-
tion started with a symmetrical idea that implied that users used the same key to encrypt
and decrypt data. However, the problem of how to distribute keys efficiently arose as
an increase in the number of users. Two cryptographers, Diffie and Hellman [1] have
introduced Public Key Cryptography (PKC) or also known as asymmetric cryptography
that led to a success in the mass use of cryptography.

Asymmetric algorithms use two interdependent keys, one to encrypt data, and the
other to decrypt it. One private and one public. If one key used for the encryption
operation, the other must be used for the decryption and vice versa. As can be under-
stood from the names themselves, the private key known only by the owner, it must
be kept secret and must not be shared with anyone else. The public key shared by all
correspondents. The fact of being aware of the public key does not allow to trace the
private key in any way (Table 1).

Table 1. Public Key Cryptography scheme.

Public Key Cryptography (PKC)

Private key (for decryption) kept secret and never shared

Public key (for encryption) advertised publicly as part of a “digital certificate” that includes
also the name of the owner, the details of the PKC scheme and
some other information

An important feature of PKC is that it uses a one-way function along with its hatch
information.
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The function is an easy function to calculate but computationally impossible to invert
unless you have the information of the trap door that allows the inverse calculation in
polynomial time [2]. In 1978, Rivest, Shamir and Adleman invented a cryptographic
system called RSA [3] and it implemented globally to provide communications security
and information protection.

The algorithm RSA, often used in e-commerce protocols as SSL, is also one of the
most used algorithms for the encryption of digital signatures: RSA considered safe due
to sufficiently long keys and the use of up-to-date implementations.

The main elements of RSA are the modulo where is a product of two distinct large
and balanced prime numbers called p and q, a parameter and which is set as the public
key and relatively prime to the Euler function, and a private exponent connected via the
relation

Nφ(N )d ed ≡ 1 mod (N ) (1)

3 RSA Cryptosystem

The RSA public key cryptography system [3] can be defined as follows:

RSA = (M , C, K, e, d , N , E, D) (2)

where:

1. M is the space for unencrypted messages.
2. C is the space for encrypted messages.
3. K is the space of the keys.
4. N = pq is the module with p, q primes, usually the latter have at least 100 digits.
5. {e; N }, {d; N } ∈ K with e �= d are the encryption and decryption keys,which satisfy

respectively

ed ≡ 1 (mod φ(N )) (3)

where φ(N ) = (p − 1)(q − 1) is the Euler function, defined by φ(N ) = #(Z∗
N ),

which is therefore the number of invertible elements in the multiplicative group Z∗
N

6. E is the encryption function:

Ee,N : M → C (4)

which operates as follows:

c ≡ me(mod N ) (5)

7. D is the decryption function:

Dd ,N : C → M (6)

which operates as follows:

m ≡ cd ≡ (
me)d

(mod N ) (7)
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4 Lattice Based Cryptanalysis

Lattice-based cryptographic [4] constructions are prime candidates for post-quantum
public key cryptography.

Lattice-based cryptography uses two-dimensional algebraic constructs known as
“lattices”, resistant to quantum computational schemes.

A lattice is an infinite grid of points; the computational problem on which lattice-
based technology based is the “Shortest Vector Problem”, which requires identifying the
point in the grid that is closest to a fixed central point in space, called the origin. This
is an easy problem to solve in a two-dimensional grid, but as the number of dimensions
increases, even a quantum computer can no longer solve the problem efficiently.

Fig. 1. Integer lattice

In SVP we try to find, given a basis of a geometric
lattice, a non-zero vector of minimum norm belong-
ing to the lattice; an approximation of it, very useful
in cryptography is SVP that is to find the shortest
non-zero vector within an approximation. The two
problems are both considered computationally very
difficult.

A lattice is an additive subgroup of Rn, in
particular any subgroup of Z

n called an integer
lattice.

An integer lattice is the set of all integer linear
combinations of a set of linearly independent vectors
(bi)

(8)

Fig. 2. Minimum distance and
distance function

The set of these linearly independent vectors called the
lattice base (Fig. 1).

All the bases have the same number of elements,
which identifies the size of the latter, indicated with
dim(L).

Minimum distance:

(9)

(10)

Distance function (Fig. 2):

(11)

Definition Shortest Vector Problem (SVP). Given a basis B ∈ Znxn of L, find the
non-zero vector of the lattice Bx (x ∈ Zn = {0}) of length at most ‖Bx‖ ≤ λ1 (Fig. 3).
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Fig. 3. Shortest Vector Problem

5 Application to Cryptovalues Dynamics

Fig. 4. Distributed network

New technologies, favored by advances in cryptog-
raphy - that is the application of methods that serve
to make a message understandable/intelligible only to
people authorized to read it - and by the evolution of
the internet, are causing a radical change in the global
economy, with particular reference to the financial sec-
tor, in terms of the methods of exchange of goods,
services and any financial activity.

One of the most significant applications of digi-
tal technology to the financial sec-tor is the birth and
spread of “cryptocurrencies” (or “virtual currencies”),
the best known ofwhich is bitcoin. A distributed ledger
or blockchain is an open and distributed ledger that can
safely store transactions between two parties, verifi-
able and permanent. The participants in the system are
defined as ‘nodes’ and are connected to each other in
a distributed manner. In essence, it is an ever-growing
list of records, called blocks, which are linked together
and secured through the use of cryptography. The data
in a block are by their nature immutable (they cannot be retroactively altered without all
subsequent blocks being modified; to do this, given the nature of the protocol and the
validation scheme, the consent of the majority of the network would be required).

The distributed nature and the cooperative model make the validation process par-
ticularly safe and stable, even though it has to resort to non-negligible times and costs,
largely referable to the price of the electricity necessary to validate the blocks (this in
the case of the Blockchain of bitcoin) and the computational capacity necessary to solve
complex algorithmic calculations (an activity commonly referred to as ‘mining’). In our
idea the new aspects introduced in this ongoing research could pro-mote these geomet-
rical structure to better studying this dynamics in terms of distributed chain or graph
(Fig. 4).
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6 Conclusion

In this paper, the theme of Cryptography has been addressed, considering first of all the
RSA Method that has been found computationally complex but currently the most used
one, a valid alternative can be the Lattice Based Cryptanalysis.

Because cryptography is a computationally difficult problem, the best post-quantum
algorithms to solve it have complexities of exponential order compared to the size of the
lattice.

In fact through the new reticular approach the calculations are performed easily,
with low computational cost. In this way it would be possible to carry out encryption
operations also using devices with a reduced computing power and therefore cheaper.
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Abstract. This paper investigates the impact of economic policy uncer-
tainty on tail risk forecasting. We refer to the Realized Exponential
GARCH model as it can directly incorporate information from realized
volatility measures and newspaper-based uncertainty indices. An appli-
cation to the prediction of daily Value-at-Risk and Expected Shortfall
for the S&P 500 provides evidence that combining realized volatility and
uncertainty measures can lead to significant accuracy gains in forecasting
tail risk.

Keywords: Economic policy uncertainty · Uncertainty indices ·
Realized GARCH · Tail risk forecasting

1 Introduction

The growing importance of risk management in banking and industrial sectors
has led to Value at Risk (VaR) becoming a widely used benchmark for measur-
ing risk. However, VaR fails to meet the requirements of a coherent risk met-
ric [1]. The Basel Committee on Banking Supervision has moved toward using
the Expected Shortfall (ES), as a complement to VaR, to calculate minimum
capital requirements for market risk.

The volatility forecasting literature provides extensive evidence that the use
of realized volatility (RV) measures can be beneficial in improving the accu-
racy of volatility forecasts, with several papers also supporting the usefulness of
including realized measures in risk forecasting models [2,3].

The question we attempt to answer is whether or not economic policy uncer-
tainty matters in forecasting tail risk. Recently, [4] developed an economic policy
uncertainty (EPU) index that relies on newspaper coverage to measure policy-
related economic uncertainty. Along the same lines, [5] introduced the Equity
Market Volatility (EMV) Index that moves with VIX and with the RV of returns
on the S&P 500. Currently, social media provide one of the main sources of infor-
mation. Given the popularity of Twitter, Twitter-based Economic Uncertainty
indices have been proposed by [6].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The existing studies have mainly focused on analyzing the link between eco-
nomic policy uncertainty and financial markets within a GARCH-MIDAS [7]
framework, using monthly-scale uncertainty indices [8–10]. Our paper presents
two main contributions compared to previous research. First, we examine the
impact that recently developed newspaper-based uncertainty indices have on
tail risk forecasting, by using the EPU, EMV and four Twitter-based economic
uncertainty indicators observed on a daily basis. Second, we employ the Realized
Exponential GARCH (REGARCH) [11] to account for the contribution of a set
of newspaper-based indices on volatility dynamics.

An empirical application on the Standard & Poor’s 500 index reveals that
incorporating newspaper-based uncertainty indices as additional predictor vari-
ables in REGARCH specifications, based only on the use of the 5-min RV, leads
to significant accuracy gains in forecasting tail risk, for both VaR and ES.

The remainder of this paper is organized as follows. Section 2 briefly describes
the REGARCH model. Section 3 focuses on the estimation of the models under
analysis. Section 4 discusses the data, while the empirical results are shown in
Sect. 5. Finally, Sect. 6 concludes.

2 The Realized Exponential GARCH

The Realized Exponential GARCH (REGARCH) model by [11] represents a
flexible framework for jointly modelling returns and realized volatility measures.
The REGARCH differs from standard GARCH in several respects: (i) in the
volatility dynamics, the squared returns are replaced by a more efficient proxy,
i.e., a realized volatility measure; (ii) it relates the realized measure to the latent
volatility through a measurement equation, by also including an asymmetric
response to shocks; (iii) the model is very flexible and dynamically complete,
allowing the generation of multi-step forecasts.

Let {rt} be a time series of daily log-returns and xt = (x1,t, · · · , xK,t)′ be a
vector of K realized and uncertainty measures; the REGARCH is defined as

rt =
√

ht zt (1)
log(ht) = ω + β log(ht−1) + δ(zt−1) + γ′ ut−1 (2)

log (xj,t) = ξj + ϕj log(ht) + τj(zt) + uj,t j = 1, ...,K (3)

where ut = (u1,t, ..., uK,t)
′ and γ = (γ1, ..., γK)′. Also, ht = var(rt|Ft−1) is the

conditional variance and Ft−1 is the information set at time t − 1. Finally, the
functions τ(zt) = τ1 zt + τ2(z2t − 1) and δ(zt) = δ1 zt + δ2(z2t − 1) are used to
model leverage-type effects, with zt and ut mutually independent.

3 Estimation

The models are estimated by the maximum likelihood (ML) approach, assuming
a standardized Student-t distribution for innovations zt

iid∼ t(0, 1, ν), since, as
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confirmed by empirical evidence, the distribution of daily log-returns is typically
peaked and characterized by fat tails. Also, following [11], we assume that ut

iid∼
NK(0,Σ), where NK(0,Σ) denotes a K-variate Normal distribution with mean
0 and variance-covariance matrix Σ. Therefore, the log-likelihood function for
REGARCH models is given by

L(r, u;θ) = − 1
2

T∑

t=1

−A(ν) + log(ht) + (1 + ν) log

(
1 +

r2t
ht(ν − 2)

)
(4)

− 1
2

T∑

t=1

Klog(2π) + log (|Σ|) + u′
t Σ−1 ut , (5)

where A(ν) = log
[
Γ

(
ν+1
2

)] − log
[
Γ

(
ν
2

)] − 1
2 log[π(ν − 2)].

Therefore, the overall log-likelihood incorporates both the contribution of the
realized measures from (5) and the returns from (4).

4 The Data

The data set used in this paper consists of two categories: (i) daily observations
of open-to-close log-returns and 5-min RV of the Standard & Poor’s 500 index,
publicly available at https://realized.oxford-man.ox.ac.uk; (ii) daily indicators
based on text-counts of newspaper articles that include several keywords related
to the U.S. economy or stock market volatility. In particular, to investigate the
role of policy uncertainty, we refer to the daily Economic Policy Uncertainty
(EPU) index. The EPU is calculated by counting the occurrence of words related
to uncertainty in leading U.S. newspapers that contain a trio of terms related to
the economy (E), policy (P), and uncertainty (U) [4].

On the other hand, to account for the public attention on future market
volatility we consider the newspaper-based Equity Market Volatility (EMV)
Index [5]. This Index moves with the CBOE Volatility Index (VIX) and with
the realized volatility of returns on the S&P 500. The EMV tracker is calculated
through an analysis of newspaper articles containing terms related to stock mar-
ket uncertainty, i.e., by counting the following keywords occurring in eleven
major U.S. newspapers: E {economic, economy, financial}; M {“stock market”,
equity, equities, “Standard and Poors” (and variants)} and V {volatility, volatile,
uncertain, uncertainty, risk, risky}.

We also consider Twitter-derived measures of economic uncertainty. Twitter
Economic Uncertainty (TEU) indicators are based on counts of tweets about
the “economy” and “uncertainty” [6]. We examine four variants of daily TEU
indices in our analysis. The first, TEU-ENG, consists of the total number of daily
English-language tweets that contain both uncertainty and economic terms. The
second, TEU-USA, is constructed by isolating the number of these tweets that
come from users in the U.S. using a geotagged-based classifier. The TEU-WGT
is a variant of TEU-USA as it weights each tweet by (1+log(1+# of retweets)).

https://realized.oxford-man.ox.ac.uk
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Finally, in order to track changes in Twitter usage intensity over time, the TEU-
SCA index scales the number of tweets each day by the number of tweets on
that day containing the word “have”. The data and and further details on these
indices can be found at https://www.policyuncertainty.com/index.html.

Based on the availability of daily Twitter uncertainty measures, the sampling
period is from 01 June 2011 to 01 June 2021, for a total of 2507 observations. The
uncertainty indices were adjusted by excluding non-trading days (Saturday and
Sunday), in order to have the same observations as the financial variables. Also,
the uncertainty indices were rescaled to have the same range as the 5-min RV.
To provide more insight on the characteristics of the variables, Table 1 reports
the main descriptive statistics of log-returns, 5-min RV, and all daily indicators
based on key words related to economic and policy uncertainty.

Table 1. Summary statistics for the full sample period 01/06/2011–01/06/2021

Mean Sd Median Min Max Skew Kurt

rt 0.00 0.01 0.00 −0.07 0.05 −0.55 6.68

RV5† 0.00 0.00 0.00 0.00 0.00 10.95 156.78

EPU‡ 0.12 0.09 0.09 0.00 0.81 2.47 8.41

EMV‡ 0.06 0.08 0.03 0.00 0.94 4.04 24.08

TEU.ENG‡ 0.10 0.09 0.08 0.01 1.48 3.41 26.75

TEU.USA‡ 0.10 0.11 0.07 0.00 1.56 3.86 25.11

TEU.WGT‡ 0.10 0.12 0.07 0.00 1.66 4.13 27.12

TEU.SCA‡ 0.10 0.10 0.07 0.00 2.04 6.03 77.95

Key to table. rt: daily open-to-close log-returns; RV5: daily
5-min RV; EPU: Economic Policy Uncertainty Index; EMV:
Equity Market Volatility Index; TEU.∗: Twitter-based Economic
Uncertainty Index.∗, with ∗ ∈(ENG,USA,WGT,SCA); † = ×100;
‡ = /1000.

5 Empirical Findings

We compare several models obtained by considering different configurations of
the REGARCH. In particular, the standard REGARCH based on the 5-min RV,
REG(RV5), is compared with specifications combining the 5-min RV with uncer-
tainty measures: REG(RV5, EPU); REG(RV5, EMV); REG(RV5, TEU.ENG);
REG(RV5, TEU.USA); REG(RV5, TEU.WGT) and REG(RV5, TEU.SCA).

The analyzed specifications are used to generate one-step-ahead forecasts of
VaR and ES, where model parameters are recursively estimated daily via ML
with a rolling window of 1500 observations. The out-of-sample forecasting per-
formance of the models is evaluated by considering different loss functions and
three distinct α-risk levels: 1%, 2.5% and 5%. The significance of the differ-
ences in the forecasting performance of the models is tested through the Model
Confidence Set (MCS) [12], considering the confidence levels of 75% and 90%.

https://www.policyuncertainty.com/index.html
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Specifically, to rank models based on their ability to accurately forecast VaR,
we rely on the Quantile Loss (QL) function [13]

QLt(α) = (α − lt)(rt − V aRt(α)) , (6)

where lt = I(rt<V aRt(α)). This loss function is well known to be a strictly con-
sistent scoring rule for VaR prediction.

Furthermore, although several strictly consistent scoring rules have been pro-
posed for the pair (VaR, ES), to evaluate the ability of the proposed models to
jointly forecast VaR and ES, we consider the zero degree homogeneous loss func-
tion [14]:

FZ0
t =

1
αESt(α)

lt (rt − V aRt(α)) +
V aRt(α)
ESt(α)

+ log(−ESt(α)) − 1 , (7)

where VaR and ES are assumed to be strictly negative and ESt(α) ≤ V aRt(α) <
0. As usual, models characterized by lower average values of QL and FZ0

t are
preferred.

Table 2 reports the ratios of QL and FZ0 loss functions of all models to
those of the REG(RV5); values smaller than 100 denote improvements over the
benchmark. Overall, it emerges that: (i) the REGARCH specification combining
the 5-min RV and EPU minimizes the considered losses in five out of six cases,
with REG(RV5, EMV) completing the picture; (ii) the REGARCHs using EPU
and EMV information are the only models always entering the 75% MCS; (iii)
the Twitter uncertainty measures appear to be less influential in forecasting VaR
and ES than EPU and EMV; (iv) the FZ0 is more discriminating than the QL;
(v) according to the MCS, the main benefits in combining economic and financial
uncertainty indices with the 5-min RV occur at the 1% risk level.

Table 2. VaR and ES loss functions comparison: QL and FZ0.

α = 0.01 α = 0.025 α = 0.05

QL FZ0 QL FZ0 QL FZ0

REG(RV5) 100.00 100.00 100.00 100.00 100.00 100.00

REG(RV5, EPU) 96.40 97.98 99.23 99.27 99.51 99.56

REG(RV5, EMV) 96.89 98.23 99.05 99.32 99.68 99.64

REG(RV5, TEU.ENG) 101.98 100.81 100.52 100.34 100.57 100.29

REG(RV5, TEU.USA) 97.47 98.79 99.67 99.59 99.77 99.76

REG(RV5, TEU.WGT) 98.12 99.14 100.03 99.74 99.96 99.84

REG(RV5, TEU.SCA) 99.64 99.93 100.15 99.99 100.03 100.00

The table shows the ratios of the loss functions QL and FZ0 at the risk
levels of α = {0.01; 0.025; 0.05} of all models to those of the REGARCH
(RV5) (benchmark model). Values smaller than 100 denote improvements
over the benchmark. The best model is given in bold, while models ∈ 75%
and ∈ 90% MCS are shaded in gray and light-gray, respectively.
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6 Conclusion

In this paper, we examined the forecasting power of newspaper-based uncertainty
indices on daily returns of the S&P 500 index. Using the REGARCH model, we
find evidence that combining the information contained in the RV and the EPU
and EMV uncertainty indices yields significant accuracy gains in predicting VaR
and ES at different risk levels. On the other hand, the benefits of incorporating
Twitter-based uncertainty indices are less evident, if any. A natural extension
of our work would be to combine multiple daily uncertainty indicators based
on text-counts and to use alternative proxies to measure economic policy uncer-
tainty and market uncertainty.
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1 Ankara University, Ankara, Turkey
ozens@ankara.edu.tr

2 University of Liverpool, Liverpool L69 3BX, UK

Sule.Sahin@liverpool.ac.uk

Abstract. Index-based longevity swaps provide many advantages over
the other hedging instruments to life insurance companies and pension
plans. Insurers and pension plan providers can transfer their longevity
exposures to the capital markets at lower costs by using these securities.
Hence, significant growth has been seen in longevity swap transactions in
the longevity-linked securities and derivatives markets since 2008. How-
ever, since longevity-linked instruments are traded OTC, each involved
party is exposed to the counterparty default risk. Therefore, regulators
have emphasised the role of credit risk mitigation tools such as collater-
alization for the improvement of swap contracts’ credit quality. In this
paper, our aim is to construct a hedging strategy for longevity risk by using
collateral. As the first step, the Lee-Carter with renewal process and expo-
nential jumps model proposed by Özen and Şahin [7] and the Lee-Carter
model without jumps are used to project the future mortality rates and to
price the index-based longevity swaps. Additionally, re-hypothecation is
allowed for the parties of the swap to increase the benefits of the collateral-
ization. As a result, for both mortality models, insurers and pension plan
providers obtain more effective risk reduction levels with the inclusion of
the collateral. However, the Lee-Carter model with renewal process and
exponential jump model provides more risk reduction.

Keywords: Longevity risk · Collateral · Hedging strategy · Longevity
swaps

1 Introduction

Longevity risk has become a major issue along with the development in medicine,
lifestyle, and health care for insurance companies. It is a crucial financial concern
for both pension plans and life insurers since they may have to make more
payments than expected.

Generally, three approaches are used for financial institutions to manage
and mitigate their longevity risk. Index-based hedging solutions, which involve
longevity-linked derivatives or securities, provide many advantages over other
hedging solutions, such as faster execution, liquidity potential and lower costs
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[6]. Due to offering significant capital savings and effective risk management,
index-based longevity instruments attract increased interest from within and
outside of the worlds of insurance and pensions [2].

The first step of the longevity risk assessment and thus the valuation of index-
based financial products is mortality modelling. The choice of the appropriate
model is crucial to quantify the risk and provide a foundation for pricing and
reserving. In this paper, a different approach proposed by Özen and Şahin [7] is
used for mortality modelling. Their approach is a specification of the Lee-Carter
model with jump effects. In the model, the history of catastrophic events is
included in the jump frequency modelling process by using the renewal process.
It is important to incorporate the mortality jumps to estimate the uncertainty
surrounding a central mortality projection. Incorporating the jumps into the
modelling process allows us to estimate the probability of catastrophic mortality
deterioration when pricing securities for hedging extreme mortality risk [8].

While trading mortality, the counterparty default risk is another risk fac-
tor that should be considered. Since longevity-linked instruments are traded in
OTC, each involved party will be exposed to the counterparty default risk which
can be defined as the risk that the counterparties might not meet their obliga-
tions regarding swap payments [2]. Historical experiences show that counterparty
default risk often leads to significant losses, and this risk has become particu-
larly apparent following the global financial crisis. Therefore, regulators have
emphasized the role of the credit risk mitigation tools such as clearing and col-
lateralization to improve the swap contracts’ credit quality [1]. The International
Swap and Derivatives Association [3] indicates that bilateral collateral posting
is the most credit-enhancing way for counterparty risk and hence it provides an
effective risk reduction.

Collateralization is a hedging strategy that includes exchanging the assets
between two parties to reduce the counterparty default risk. The main idea is
quite simple: securities, financial instruments, or cash are passed to the counter-
party to provide hedging for the default exposure. Collateralization has many
benefits, both privately and socially. For example, collateralization decreases
losses conditional on default. Whichever party received the collateral will keep
the collateral, meaning that the maximal loss will be total exposure with the
subtraction of any collateral that was posted [4].

The aim of this paper is to build an effective hedging framework for longevity
risk under collateralization. To illustrate the idea, we construct a hedging strat-
egy for a hypothetical pension plan by using collateral. Two different mortality
models are used to quantify jump effects on the hedge. The Lee-Carter model
with exponential jumps and renewal process model, which is proposed by Özen
and Şahin [7], and the original Lee-Carter model without jumps are chosen to
model mortality. Moreover, different amounts of collateral are considered here
to show the effects of collateralization on the hedge. It is found that posting
collateral decrases the longevity risk and default risk exposure.

The remainder of this paper is as follows. Section 2 presents the mortality
models. In Sect. 3, a hedging framework under collateralization is described and



Impact of Collateralization 367

hedging results of the hypothetical pension plan are given. Section 4 concludes
the paper.

2 Mortality Models

2.1 The Lee-Carter Model

This model describes the logarithm of central death rates in the following way:

ln(mx,t) = ax + bxkt + ex,t. (1)

Here, ax is an age-specific component; the time-varying kt parameter summarizes
the general mortality level; and the other age-specific parameter, bx, explains
how slowly or how rapidly mortality varies for each age as the mortality index
changes. ex,t is an error term reflecting age-specific influences that are not cap-
tured by the model.

The Lee-Carter model is an overparameterized model. For obtaining a unique
solution, ax is taken to be the arithmetic mean of ln(mx,t) over time and the
sums of bx and kt are respectively normalized to unity and zero. A two-stage
estimation procedure is used for the parameters. We can apply the singular value
decomposition (SVD) method to the matrix of ln(mx,t) − ax for obtaining the
estimates of bx and kt as the first step. As the second step, the time-varying terms
are iteratively reestimated given the values of ax and bx, which are obtained in
the first step. The autoregressive integrated moving average (ARIMA) model is
applied for the modeling of the dynamics of kt to project the future mortality
rates in the original model [5].

2.2 The Lee-Carter Model with Exponential Transitory Jumps
and Renewal Process

The model used here is a Lee-Carter model with exponential transitory jumps
and renewal process. Our proposed model is given as follows:

log(mx,t) = ax + bxkt, (2)

kt = k0 + (μ − 1
2
σ2)t + σW (t) +

N(t)∑

i=1

Yi. (3)

Here, mx,t, ax, bx and kt are the same as in the original Lee-Carter model.
W (t) is standard Brownian motion, and Yi denotes a sequence of iid exponential
random variables representing the size of the jumps with the η parameter. Finally
N(t) denotes the renewal process that has a lognormal distribution with α and
β parameters.

We estimate the model’s parameters using the MLE method. Afterwards, Eq.
(3) is used to calibrate the time-varying mortality index. We need to find the
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density function of the independent one-period increments, Δki = ri = ki−ki−1,
to estimate the parameters of the calibrated model.

Let D = {k0, k1, ..., kT } represents the mortality time series at times of
t = 1, 2, ..., T , which have equal spacing. The one-period increments are iid.
Unconditional density for the one-period increment f(r) is given as follows:

f(ri) = P (0)f(ri|0) +
N(t)∑

n=1

P (n)f(ri|n). (4)

P (0) = 1−F (t), P (n) =
∫ t

0
Pn−1(t−s)f(s)ds are the probability of no jump and

n jumps occur in the renewal process, where F (t) and f(t) are the distribution
and density functions of inter-arrival times between two jumps. f(ri|0), f(ri|n)
are conditional densities for a one-period increment; more specifically, they are
conditional on the given numbers of jumps and expressed as:

f(ri|0) =
1√
2πσ

e− (r−μ+0.5σ2)2

2σ2

f(ri|n) =
ηn

(n − 1)!
√

2πσ

∫ ∞

0

Xn−1e−ηX− 1
2σ2 (r−X−μ+0.5σ2)2dx

Then, we can write the log-likelihood of the model as follows:

L(D;μ, σ, η, α, β) =
T∑

i=1

ln(f(ri)).

3 Hedging with Collateral

In this section, we consider a hypothetical pension plan to construct a hedg-
ing framework for longevity risk with collateral by using a 10-year index-based
longevity swap. The pension plan members are assumed to have underlying mor-
tality rates that are the same as England & Wales male population for a sample
period from 1961 to 2016. Suppose that all members of the pension plan are
aged 65 and pay £1 per year on survival from age 66 to 90. The risk-free interest
rate r is used during the whole period as in Biffis et al. [2]. The current date is
taken as the start of the calendar year 2016.

We assume that St denotes the longevity swap value at time t. As a floating-
leg receiver, the present value of the longevity swap’s future cash inflows without
counterparty default risk, St, can be written as:

St =
T∑

t=1

(
t
p65 −t pforward

65

)
(1 + r)−t (5)

where S0 = 0, tp65 is random future survivor index, and tp
forward
65 is the for-

ward survivor index which is specified at the beginning of the swap. After spec-
ifying the longevity swap payment structure, the counterparty default risk is
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considered, and hence collateralization for hedging this risk. Using the notation
X+ := max(X, 0) and X− := max(−X, 0), all possible liabilities under collater-
alization and rehypothecation will be obtained here. It should be noted that the
cost of posting collateral is ignored in this study. Furthermore, we assume that
(Ct)t≥0 is the collateral process and it indicates the quantity of cash, Ct, that
will be posted at each time t before default as in the work of Biffis et al. [2].

Under the collateralization rules the liabilities of insurer can be expressed as
follows:

1. On the insurer’s default event, t = τ = τi, the counterparty posts collateral
and the longevity swap value is paid to the insurer if St− ≥ 0. The exposure
of counterparty is reduced by collateral and the swap value is paid to the
insurer. The posted collateral rehypothecated by the insurer and the remain-
ing amount is paid to the counterparty. Then the insurer has:

1{τ=τi}1{St−≥0}
(
(St − Ct)+ + REC ′

i(St − Ct)−)

2. On the insurer’s default event, t = τ = τi, if St− < 0, then the insurer posts
collateral. The counterparty uses the collateral to reduce exposure and only
a fraction of the swap is exchanged. The remaining collateral returned to the
investor (if any). If the remaining collateral is not enough, then insurer would
have a loss for remaining value. Then the insurer has:

1{τ=τi}1{St−<0}
( − RECi(St − Ct)− − (St − Ct)+

)

3. On the counterparty’s default event, t = τ = τc, the insurer pays the swap
value to the counterparty if St− < 0 and the collateral is posted by the
insurer. Then the insurer uses the collateral to reduce exposure. The collateral
rehypothecated by the counterparty and remaining collateral is returned to
the investor (if any). Then the insurer has:

1{τ=τc}1{St−<0}
( − (St − Ct)− + REC ′

c(St − Ct)+
)

4. On the counterparty’s default event, t = τ = τc, if St− ≥ 0, the counterparty
posts some collateral which is used by insurer to reduce its exposure. Only a
fraction of the swap is exchanged and the remaining collateral is returned to
the counterparty (if any). Then the insurer has:

1{τ=τc}1{St−≥0}
(
RECc(St − Ct)+ + (St − Ct)−)

where RECi (RECc) denotes the recovery fraction of the swap value that
will be received by the counterparty (insurer) upon the defaulting of the insurer
(counterparty), REC ′

i (REC ′
c) is the recovery fraction of collateral rehypothe-

cated by the defaulted insurer (counterparty), and St− denotes the swap value
before the default [2].

In this paper, we calculate recovery fraction ratio for different collateral
amounts in the hedged portfolio. We assume that both parties are subject
to the same default probabilities, and we consider the basic case in which
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REC = RECi = RECc = REC ′
i = REC ′

c to examine the impact of collat-
eral on the hedge for longevity risk. The aggregated cash flows are rearranged to
determine liabilities arising from the swap payments for insurer. Using the fact
that the market value of the swap is zero at initiation, the swap is discounted for
ten years and the recovery rates are obtained for different collateral amounts.
The results show that the recovery rates increase while the posted amount of
collateral increases for both mortality models. An increasing recovery rate means
that the insurer gets more protection in the case of default and hence this trans-
action will reduce hedger’s default as well as longevity exposure. The insurer
would recover their exposure more with the increased recovery rate.

4 Conclusions

In this paper, the effect of collateral on the longevity swap transaction is exam-
ined. Different mortality models and different amount of collaterals are used to
obtain recovery fractions of the swap. We use the Lee-Carter with exponential
jumps and renewal process model and the original Lee-Carter model to calcu-
late the legs of the swap. The analysis show that, the recovery rates increase
as the collateral amount increases for both mortality models. However, the Lee-
Carter with exponential jumps and renewal process model provides more hedge
effectiveness compared to the other model and it has the highest risk reduc-
tion levels. Recovery fractions reflect the amount of insurer gets in the case of
default. Obtaining higher recovery values indicates that this transaction will
reduce longevity and default risk exposure of hedger.
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Abstract. Finance literature suggests that cross-correlations among
assets increase during periods of financial distress, and that cross-
correlation’s very own clustering structure varies over time. This work
proposes an Identity-Link Latent-Space Infinite-Mixture model to ana-
lyze the clustering structure of cross-correlation over time. The model
allows for the representation of stocks on a d-dimensional Euclidean space
and the clustering of assets into groups. Model estimation is carried out
within a Bayesian framework, which allows including prior extra-sample
information in the inference and accounting for parameter uncertainty.
We apply the model to time-varying correlations among the DAX com-
ponents. We find evidence of clustering effects and positive dependence
between the number of clusters and both annualized volatility and aver-
age cross-correlation.

Keywords: Latent space models · Bayesian inference ·
Non-parametric methods

1 Introduction

It is a well-established fact in the finance literature that stocks cross-correlation
increases during periods of financial turmoil [2,9,11,14]. There is also empirical
evidence of clustering effects in assets cross-correlation and of time variations
in the clustering structure [1,8,10]. On a preliminary visual inspection, these
two stylized facts seem to hold for the components of the DAX 40 index. Panel
A in Fig. 1 reports the box plots of the yearly cross-correlation of DAX compo-
nents through time. The average cross-correlation increases during the 2008–2009
financial crisis, the European debt crisis (year: 2011), the stock-market sell-off
(2015), and the covid-19 breakout (2020). Panel B in Fig. 1 reports the Epanech-
nikov kernel density estimates of cross-correlation of DAX components over the
years. The presence of bi-modality signals a change in the clustering structure
of stock returns over time.
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M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 371–376, 2022.
https://doi.org/10.1007/978-3-030-99638-3_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99638-3_60&domain=pdf
https://doi.org/10.1007/978-3-030-99638-3_60


372 A. Peruzzi and R. Casarin

The analysis of stocks cross-correlation dynamics and clustering is of
paramount importance, especially for practitioners. Stock market portfolios orig-
inally devised to achieve diversification may experience higher components cross-
correlation in periods of financial distress. In such a context, having some insight
into which components do not experience an increase in cross-correlation may
be relevant information to consider.

In this work, we propose a Latent-Space (LS) Infinite-Mixture model. We
build on the LS modeling strategy of D’Angelo [3] and propose a new LS model
with an identity-link function well suited for symmetric and positive-definite
matrices. The model allows for clustering in the correlation among asset log-
returns with an unknown number of clusters. We follow a Bayesian approach to
inference. This framework allows for the inclusion of extra-sample information
and makes it easier to handle latent variables and identification issues. The model
inference estimates the asset coordinates on a latent d-dimensional Euclidean
space, the number of clusters, and the cluster composition.

We apply the model to the cross-correlations of a set of DAX components in a
time-lapse raging from 2003 to 2021 and investigate the relationship between the
estimated number of clusters over time and two relevant market features, which
are average cross-correlation and annual volatility. We find a +65.6% correlation
with DAX volatility and a +27% correlation with the average cross-correlation
of DAX components. Our finding is coherent with what is found in previous
works (see [1]).

The structure of the work is the following. Section 2 provides a review of the
literature on LS models. Section 3 introduces the proposed LS model. Section 4
provides an application to correlations among DAX components and presents
the main results. Eventually, Sect. 5 wraps up this work.

2 Literature Review

LS models have been introduced by Hoff et al. [6] and allow to filter a lower
d -dimensional latent space from network-structured data. Several modifications
to the early logistic-link model have been implemented. Friel et al. [4] propose a
dynamic latent space model for the analysis of the bipartite network of interlock-
ing directors. A similar dynamic model is proposed by Sewell et al. [12] accom-
modating for the use of count and non-negative real-valued weighted edges. In an
early follow-up, Handcock et al. [5] provide an extension of the model allowing
for clustering by drawing latent positions from a finite Gaussian mixture. Yet
in the discussion section of that work, Trevor Sweeting suggests the adoption of
an infinite mixture of Gaussian distributions by means of a Dirichlet Process.
To the best of our knowledge, a first static implementation of such a model is
present in the doctoral work of D’Angelo [3]. Our model represents an adapta-
tion of the aforementioned model in two main directions. On the one hand, the
logistic link is replaced by an identity link to gain flexibility in modeling assets
cross-correlations. On the other hand, our model takes into account also the
time domain, as we are interested in the dynamic evolution of both the latent
positions and the number of clusters.
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Fig. 1. DAX Components Cross-correlation Panel A: Boxplots of DAX’s com-
ponents cross-correlations over time. Average cross-correlation increases in periods of
financial turmoil. Panel B: Epanechnikov Kernel Density Estimates of DAX’s compo-
nents cross-correlation distribution through time with smoothing parameter h = 0.04.
Bi-modality emerges during years of financial distress such as 2008, 2015, and 2020.

A related application of LS models to financial data can be found in Aheleg-
bey et al. [1]. The authors combine LS models and covariance-structure learning
algorithms to extract latent asset positions from a Graphical VAR model. Our
model differs from their model in many aspects. First, we assume the number
of clusters is random and is not given a priori, allowing for time variations in
the number of clusters. Secondly, our Dirichlet Process Prior assumption (DPP)
combined with a Bayesian inference procedure allows us to estimate the number
of clusters over time and account naturally for cluster uncertainty in the predic-
tive distribution. The empirical results in the two works provide evidence of an
increasing number of clusters during periods of financial distress.

3 LS Infinite-Mixture Model with Identity Link

Let Ĉτ τ = 1, 2, . . . , T be a sequence of N ×N correlation matrices. Each matrix
is estimated in one of T time intervals on a set of N log-return time series
Y = {Y1,Y2, ...,YN}. Let wτ be the M × 1 vector of unique cross-correlations
of Ĉτ at the interval τ with characteristic element wijτ . We assume wijτ ∼
N (μijτ , γ2

τ ) i.i.d. where N (μ, γ2) denotes a Normal distribution described by
a location and scale parameters μ and γ, respectively. We further assume that
the location parameter is inversely proportional to the squared distance in the
latent space for any pair of assets. We model such a relationship as follows:

μijτ = ατ − ||xiτ − xjτ ||2 (1)



374 A. Peruzzi and R. Casarin

where ||·|| denotes the Euclidean distance and xiτ ∈ R
d is a d-dimensional vector

of latent coordinates. Latent variable models pose inference difficulties which
naturally call for Bayesian inference. In this work, we assume a non-parametric
hierarchical prior on the latent vector xiτ . At the first stage of the prior, we
assume xiτ |θ ∼ N (μ, σ2I) where θ = {μ, σ2} denotes the hyper-parameter
vector. At the second stage, we assume a DPP with concentration parameter ψ
and base measure S0, that is: θ|S ∼ S with S ∼ DP (ψ, S0). We choose the base
measure S0 as given by the product of N (0, ω2I) and Invχ2(ζ), respectively
a multivariate normal distribution with mean 0 and variance-covariance matrix
ω2I and an inverse chi-squared distribution with degrees of freedom parameter ζ.
Following the DPP assumption the latent positions model admits the following
infinite mixture representation:

xiτ |S ∼
∞∑

kiτ=1

λkiτ
N (μkiτ

, σ2
kiτ

I) (2)

Our LS model identifies latent factors (i.e., the latent coordinates) driving the
asset correlations, the correlation clustering structure, and allows for the estima-
tion of the number of clusters in the latent positioning. The inference problem
becomes more tractable within a Bayesian framework since data augmentation
can be applied and simulation methods can be easily included in the inference
procedure. We adopt a Gibbs Sampling procedure adapting to our model the
slice-sampling technique proposed in [7,13].

4 Empirical Application

By means of the identity-link LS infinite-mixture model, we investigate the
changes in the clustering structure of the stocks included in the DAX 40 index
as of December 10th, 2021. Daily closing prices for the DAX components are
obtained from the Bloomberg platform for the period ranging from January 1st,
2003, to December 10th, 2021. We drop from the dataset all the components
with missing observations and obtain 29 price series.

For each year τ from 2003 to 2021, the correlation matrix Ĉτ among log-
return series is estimated and an LS model, LSτ , is fitted on each Ĉτ . As an
illustrative example, Panel A in Fig. 2 reports the latent coordinates estimated
by the LS2020 model. The model detects the presence of two main clusters in the
latent positioning of the index components. The great majority of stocks belong
to a single cluster while QIA and SRT3 belong to a second separated cluster.
This result is coherent in light of the covid-19 breakout. In fact, the stock price of
QIA and SRT3 – two bio-medical companies – behaved counter-cyclically w.r.t.
the market, probably discounting their expertise in molecular testing.

Panel B in Fig. 2 reports the bar plots for the most frequent number of clus-
ters estimated by each LSτ model. The red bars in the picture are proportional
to the number of times a given number of clusters has been drawn by the MCMC
algorithm. Inspection suggests that the number of clusters increases during years
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Fig. 2. Empirical Application Panel A: Latent Positioning of Dax components in
the year 2020 (covid-19 breakout). The algorithm detects the presence of two clusters.
The majority of the stocks belong to a single cluster, while QIA and SRT3 – two
pharmaceutical companies – belong to a second distinct cluster. Panel B: bar plot
representing the number of sampled clusters year by year

of financial turbulence. This seems to be true for the years of the financial crisis
(2008–2009), stock market selloff (2015), and the covid-19 crisis (2020). Over-
all, the yearly time series of the median number of clusters shows a +65.6%
correlation with the DAX-index yearly volatility and a +27% correlation with
DAX-components average cross-correlation.

5 Conclusion

In this work, we proposed an identity-link LS infinite-mixture model to extract
the latent positions of a set of assets from returns cross-correlation. The model
not only provides a graphical representation of such positions but offers informa-
tion about assets’ clustering structure without the need of specifying the number
of clusters a-priori. We applied our model to the components of the DAX index
estimating latent positions on a yearly basis. We found that the number of clus-
ters positively correlates with market volatility and, more loosely, with average
cross-correlation. Such results are coherent with existing evidence found in other
works.
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Abstract. This article analyzes the stochastic aspects of a tontine using a Gom-
pertz distribution. In particular, the probabilistic and demographic risks of a tontine
investment are examined. The expected value and variance of tontine payouts are
calculated. Both parameters increase with age. The stochastic present value of a
tontine payout is compared with the present value of a fixed annuity. It is shown
that only at very high ages the tontine is more profitable than an annuity. Finally,
the demographic risks associated with a tontine are discussed. Elasticities are used
to calculate the impact of changes in modal age on the tontine payout. It is shown
that the tontine payout is very sensitive to changes in modal age.

Keyword: Gompertz distribution · Life table · Annuity · Demography ·
Mortality

1 Introduction

A tontine is a rising life annuity, in which the annual constant interest yield or dividend
of the total investment sum is paid out to the surviving subscribers of the tontine. It
is commonly believed that the Italian banker Lorenzo Tonti invented tontines in the
17th century. In the 18th and 19th centuries, tontines were a popular means of public
financing (see, e.g., Hellwege [1]). The tontine ends with the death of the last subscriber.
The capital falls to the initiator of the tontine. Recently, the tontine is considered as an
attractive alternative to life annuities (see, e.g., Milevsky [3, 4] or Hellwege [1]).

2 Gompertz Distribution

BenjaminGompertz proposed in 1825 a life table function, which is one of the oldest and
most famous models of demography. It states that the mortality intensity exponentially
increases with age in adulthood. It has been much applied in the life table analysis
and insurance mathematics with various modifications (e.g., Gompertz-Makeham law).
Due to declining children and youth mortality, it has again become essential in order to
describe “modern” life tables with low mortality. The Gompertz model allows to fully
describe the present and future life tables in industrialized countries by using only two
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parameters, in principle, which are both easy to estimate from data. It provides a good
approximation of life tables in these populations (see, e.g., Pollard [7] or Pflaumer [5,
6]).

The survival function is given by
l(x) = exp

(
e−k·m − ek·(x−m)

)
, where m is the modal age and k the growth rate of the

force of mortality function μ(x) = k · ek·(x−m). The life expectancy at birth is calculated
by e0 = m − γ /k with γ = 0, 577221566...(Euler-Mascheroni-Constant).

The rectangularization of the survival curve is defined as a trend toward a more
rectangular shape of the survival curve, due to increased survival and concentration of
deaths around the mean age at death. The variability in the age at death declines and
deaths are being compressed into the upper years of life. An increase in the parameter k
causes rising rectangularization.

3 Basic Formulas of the Tontine Payout

It is assumed that all n investors buy at age u. The tontine share per investor is equally
high. The mortality is subject to a Gompertz distribution with the parameters m and k.

l(x): Probability of surviving from birth to age x
l(u): Probability of surviving from birth to age u
N(x,u): Number of investors at age x alive who buy at age u
N (0, u) = n

l(u) Number at age x = 0 of the life table
Z: Total yearly payout
n = N(u,u): Number of subscribers of the tontine at age u
i: Interest rate
Z/n: Initial payout
t(x,u): (Expected) tontine payout per surviving investor at age x x ≥ u

t(x, u) = Z

N (x, u)
= Z

n · l(x)
l(u)

= Z
n

l(u) · exp(e−k·m − ek·(x−m)
)

= Z

n · exp(ek·(u−m) − ek·(x−m)
) ; x ≥ u

The growth rate of the tontine is
δt
δx
t = μ(x) = k · ek·(x−m).

t(x,u) is a random variable, since it is assumed that N(x,u) has a binomial distribution
(see Li and Tuljapurkar [2]). The variance is:

Var(N (x, u)) = n · exp
(
ek·(u−m) − ek·(x−m)

)
·
(
1 − exp

(
ek·(u−m) − ek·(x−m)

))

= n ·
(
exp

(
ek·(u−m) − ek·(x−m)

)
− exp

(
2 · ek·(u−m) − 2 · ek·(x−m)

))

The 0.05- and 0.95-quantiles of N(x,u) are N*(x,u)0,05 and N*(x,u)0,95, which are
obtained from the corresponding binomial distribution.
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The lower and upper limits of a 90%-confidence interval of the tontine payouts are
given by the quantiles

Lx,0.05 = Z
N∗(x,u)0,95 and Ux,0.05 = Z

N∗(x,u)0.95 .

Approximative (1 − α)-confidence interval for the survivors:

N (x, u) ± u1− α
2

√
Var(N (x, u))

Approximative (1 − α)-confidence interval for the tontine payouts.

Lower limit:
Z

N (x, u) + u1− α
2

√
Var(N (x, u))

;

Upper limit:
Z

N (x, u) − u1− α
2

√
Var(N (x, u))

uα is the α-quantile of the standard normal distribution.
Present value of the tontine payout up to age a (with a first payout at age u + 1):

a∫

u

e−i(u−x) · Z

n · exp(ek·(u−m) − ek·(x−m)
)dx

= Z

n
· exp

(
i · u − ek·(u−m)

)
·

a∫

u

exp
(
ek·(x−m) − i · x

)
dx

Present value of the tontine payout up to age a (with a first payout at age u):

a∫

u

e−i(u−x) · Z

n · exp(ek·(u−m) − ek·(x−m)
)dx + Z

n

= Z

n
·
⎛

⎝1 + exp
(
i · u − ek·(u−m)

)
·

a∫

u

exp
(
ek·(x−m) − i · x

)
dx

⎞

⎠

4 Demographic Risks

In recent decades, life expectancy has risen sharply worldwide. While the increase was
initially due to a decline in infant mortality, it is now the result of lower mortality in old
age. For example, the life expectancy of a man at age 60 today (2016/18 life table of
Germany) is 22 years. Around 140 years earlier, it was only 12 years, and in 1970/1972
it was 15 years. The demographic risk will be explained by a rise in life expectancy or
in modal age.

Elasticity of t(x,u) with respect to m:

εt,m(x) =
δt
δm

t
· m =

(
−k · ek·(x−m) + k · ek·(u−m)

)
· m =

(
−r(x) + k · ek·(u−m)

)
· m

m � u : → ε̂t,m(x) = −r(x) · m; εt,m(m) ≈ −k · m
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Elasticity of t(x,u) with respect to k:

εt,k(x) =
δt
δk

t
· k = k · ek·(x−m) · (x − m) + k · ek·(u−m) · (m − u)

= r(x) · (x − m) + k · ek·(u−m) · (m − u)

Approximation: k · ek·(x−m) · (x − m) = r(x) · (x − m)

εt,k(m) = k · ek·(u−m) · (m − u) > 0; εt,k(x) has a minimum at x = m − 1
k .

Approximate solution: εtS ,k(x) has a zero point atm−ek·(u−m) ·(m − u) (Taylor series
of order 1 around x = m). From the total derivative (x > m) dt = fm · dm + fk · dk = 0

follows dk
dm = − fm

fk
= k·(ek·x−ek·u)

ek·x ·(x−m)+ek·u·(m−u)
or �k ≈ k·(ek·x−ek·u)

ek·x ·(x−m)+ek·u·(m−u)
· �m.

Example:
The mortality follows a Gompertz distribution with m = 88.7 and k = 0.1152 (data for
estimation: German life table for females (2013/2015). It is assumed that all n = 400
investors buy at age u = 65 with l(65) = 0.93691. The number at age x = 0 of the life
table is therefore 427. The tontine share per investor is 100. Thus, the total yearly payout
is 1,600 and the initial payout per investor is 4. The comparable annuity can be calculated
as 7.3 (äy,65 = 13.734 at i = 4%). At age 86 the tontine payout exceeds the annuity of
7.3; at age x = 96, e.g., the payout varies between 30.8 and 50.0; the expected value
is 38.1 (see Fig. 1). The present value of tontine payouts exceeds at age 92 the initial
investment of 100 (see Fig. 2). The present value increases rapidly after that age with
increasing confidence intervals. At the modal age of m = 88.7, the elasticity is −10 (see
Fig. 3); an increase of the modal age reduces the tontine payout substantially (e.g., an
increase of m by 1% reduces the tontine payout by about 10% at age 88.7). The reduction
can be partly compensated by an increase of k, which means a rectangularization of the
life table. For example, if at age x = 95 the modal age increases by 1 year, k would
have to increase by nearly 0.02 for the payout to remain the same. This increase in k is
unrealistically high. Therefore, an increase in m will always lead to a reduction in the
payout.
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Fig. 1. Annuity (green) and tontine payout with 90% - confidence intervals
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Fig. 3. Demographic influences (black: exact, red: approximative formulas)

5 Conclusion

A tontine is a worthwhile investment for people who reach a very old age. But it is
subject to three types of risk: financial (interest rate, default, inflation), probabilistic
and demographic. The probabilistic risk can be reduced by increasing the number of
investors. The demographic risk should not be underestimated. Decreasing mortality
and increasing life expectancy will lead to a significant reduction in tontine payout.
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Abstract. After the financial crises in the last decades, the systemic
risk is now recognized as an unavoidable issue to be constantly mon-
itored. In this paper the contributions to the global systemic risk of
different geographic areas are investigated. The analysis is performed by
considering the aggregate systemic risk of the firms located in a specific
geographic area as a part of the distribution of the global systemic risk.
The techniques used for a such investigation are based on Compositional
Data (CoDa) methodology, a quite recent approach very useful when the
relevant information convoyed by the data is in the proportions among
the parts and not in their absolute values or in their sum.

Keywords: Systemic risk · SRISK · Compositional data · Aitchison
geometry

1 Introduction

The relevance of the systemic risk has been globally emphasized by the global
financial crisis of 2007-2009. Initially, there was no commonly accepted defini-
tion of the systemic risk, but now it can be identified as “the propensity of a
financial institution to be undercapitalized when the financial system as a whole
is undercapitalized” [6]. Many papers deal with the issue of the assessment of
the systemic risk: for an overview on this topic, see for example [4,6], and the
references therein. An important measure for evaluating the systemic-risk degree
associated with a single firm is the so-called SRISK, which has been firstly intro-
duced in [1] and later extended in many other papers. More details about this
topic can be found in the interesting review in [7].

The value of SRISK related to a single specific firm can be intended as the
amount of money needed by the firm to rise to function normally in the case of a
financial crisis (such as a very significant loss of the financial markets). Formally,
at a given time t, the value of SRISK for an individual firm i is calculated by:

SRISKit = k [Dit + (1 − φit)Wit] − (1 − φit)Wit, where:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 383–389, 2022.
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• k is the prudential capital ratio;
• Dit the book value of total liabilities;
• Wit the market capitalization (or market value of equity);
• φit the Long-Run Marginal Expected Shortfall (LRMES), which corresponds

to the expected drop in equity value conditional on the market falling by
more than 40% within the next six months.

The SRISK can be decomposed in the difference between two quantities: the first
one, which represents the Required Capital, is equal to k[Dit+(1−φit)Wit], while
the second one, given by (1 − φit)Wit corresponds to the Available Capital. As
stated in [5], “SRISK is a function of the size of the firm, its degree of leverage,
and its expected equity devaluation conditional on a market decline. SRISK is
higher for firms that are larger, more leveraged, and with higher sensitivity to
market declines.” A negative (or null) value of SRISK for a specific firm, means
that such firm can overcome the market shock with no capital injections by the
government. For this reason, a measure of the financial distress for a system
(with N firms) is the aggregate SRISK, that, at a given moment t, is defined by:

SRISKt =
N∑

i=1

(SRISKit)+ (1)

where (x)+ denotes max(0, x). This measure represents the total amount of
bailing out a financial system (with N firms), conditional on a systemic event.
In the computation of the aggregate SRISK, the negative amounts of SRISK
do not effectively contribute in the sum in formula (1), because in a crisis it is
unlikely that surplus capital will be easily mobilized through mergers or loans
among firms (cfr. [4]). The fact that, financially speaking, the world is a global
village and the regulators must consider “a large picture” to make decisions, is
now accepted by the most part of the researchers. For this reason, an analysis
about the influence of geographical factors to the systemic risk can help to
monitor and to better understand the dynamics of such kind of risk.

Keeping this in mind, in this paper a geographical analysis of the composition
of the systemic risk is performed. The analysis is conducted with a dataset
provided by the Volatility Laboratory (V-Lab) (more information about the
data can be found in Sect. 3). The approach used is based on the Compositional
Data (CoDa) methodology, a set of quite recent techniques, which is getting
more and more attention in the literature (cfr. [2] and [3]).

2 The Compositional Approach

The Compositional Data (CoDa) are multivariate observations where relative
rather than absolute information is relevant. This means that they represent a
quantitative description of the parts of some whole. The basic pillar in compo-
sitional methods are the compositions, defined as follows.
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Definition 1. A composition vector is a real-valued vector with all (strictly)
positive components. A D-part composition is a class of equivalence which con-
tains all the compositionally equivalent vectors in R

D, where two compositions
x = (x1, x2, . . . , xD) and y = (y1, y2, . . . , yD) are compositionally equivalent if
there exists a positive constant λ ∈ R

+ such that x = λ · y.
A suitable sample space for the equivalence classes is the D-part simplex S

D,
defined as:

S
D = {(x1, x2, . . . , xD) ∈ R

D : xi > 0 ∀i;
D∑

i=1

xi = c}, (2)

where c is a positive arbitrary constant. For further details, see [8,9] and the
references therein. Usually in compositional analysis, the vectors of proportions
(which sum to 1) are used as representatives of an equivalence class: this corre-
sponds to select c = 1 in the previous definition, and in the next one.

Definition 2. The closure (to c) of the D-part composition x = (x1, x2, . . . , xD)
is given by:

C (x) =

(
c · x1∑D
i=1 xi

,
c · x2∑D
i=1 xi

, . . . ,
c · xD∑D
i=1 xi

)
.

Starting from these initial two definitions, it is possible to create a coherent
geometry, called Aitchison geometry on the simplex, which allows a deep analysis
of compositional data (see [9] for further details).

A typical compositional dataset X is a sample of n observations of D-part
compositions X = (x1,x2, . . . ,xn)′, with xi = (xi1, xi2, . . . , xiD), i = 1, 2, . . . , n.
Since in such a dataset, the standard statistical descriptive measures, based on
the real Euclidean structure, applied to compositional data may lead to erroneous
conclusions (see for example [9]), an alternative set of descriptive measures based
on the Aitchison geometry can more properly be used. In the following, just the
most common two are reported.

Definition 3. An indicator of central tendency for the compositional dataset X
is the closed geometric mean. This vector is called center, and it is defined as

cen(X) = C (g1, g2, . . . , gD),

where gj denotes the geometric mean of the n observations related to the j-th
component of the vectors in X: gj = (

∏n
i=1 xij)

1/n
, j = 1, 2, . . . ,D.

The dispersion in a compositional dataset X, can be described by the variation
matrix, defined by:

T =

⎛

⎜⎜⎜⎝

0 t12 · · · t1D
t21 0 · · · t2D
...

...
. . .

...
tD1 tD2 · · · 0

⎞

⎟⎟⎟⎠ , where tij = var

(
ln

xi

xj

)
.
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For measuring the variability of a dataset by a single value, the following defini-
tion of Total Variance has been introduced.

Definition 4. The Total Variance of the compositional sample X is a measure
of its global dispersion. It is based on the entries of the variation matrix T :

TotVar(X) =
1

2D

D∑

i=1

D∑

j=1

var

(
ln

xi

xj

)
=

1
2D

D∑

i=1

D∑

j=1

tij .

As the information convoyed by the compositions is relative, an usual practice is
to apply transformations, mapping the compositions into real vectors in order to
exploit the usual Euclidean structure. In the literature there are several transfor-
mations based on the logratios: the additive logratio (alr), the centered logratio
(clr), and the isometric logratio (ilr). Unfortunately, even a simple overview of
these transformations is out of scope of this paper: the interested reader can see
[9] and [8], among the others, for further details. For the provided analysis in the
following, it can just be reported that the clr -transformation is basically charac-
terized by two important properties: the first one is that it does not change the
number of parts, since a D-part composition is mapped in a vector in R

D. The
second one is that it preserves the distances and the angles: this implies that the
Aitchison distance in the simplex of two compositions is equal to the distance of
the corresponding transformed vectors in R

D (see [9] for details). This feature
is fundamental in exploratory analyses based on metrics, like clr -biplots and
ternary or De Finetti diagrams. The definition of the centered logratio transfor-
mation, is the following one.

Definition 5. The centered logratio transformation (clr) of a composition x =
(x1, x2, . . . , xD) is given by

clr(x) = ln
(

x1

gm(x)
,

x2

gm(x)
, . . . ,

xD

gm(x)

)
,

where gm(x) denotes the geometric mean of the D parts: gm(x) =
(∏D

i=1 xi

)1/D

.

In every compositional data analysis, graphics are usually used to visualize and
interpret the data. The most common one is the PCA biplot. Generally speaking,
the biplots permit the representation of a rank-2 approximation of the data, and
they are based on the Single Value Decomposition (SVD) of the centered (or
standardized) data matrix. In Compositional Data analysis, there are two basic
kinds of biplots: the form biplot, which favours the display of the units, and the
covariance biplot, which favours the display of the variables. More details on
them can be found in [9], and in [8].

3 Application

The data used in the application are provided by the Volatility Laboratory (V-
Lab) of the New York University Stern School of Business, and they are available
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at the website: https://vlab.stern.nyu.edu. The dataset consists of the value of
the aggregate SRISK for four macro-areas: Africa, Americas, Europe, and Asia.
Such values are related to each quarter from 2014 to 2021: the value for each
quarter is the value of SRISK in the last month of the period (March, June,
September, and December). The only exception regards the year 2021: since at
the moment, the SRISK detection of December is not available, the last quarter
of such year is not considered. The aggregate SRISK of each macro-area is based
on the SRISK of all the firms in such geographical area, monitored by the V-Lab
team, therefore enough big to have a systemic relevance. In practice, the dataset
can be seen as a compositional sample of 31 different 4-compositions, grouped in
8 different years (2014-2021). The left panel of Table 1 reports the sample center
and the right panel, the variation matrix of the dataset. The center highlights
an important predominance of Asia, showing a geometric mean that exceeds
more than the 50% SRISK share over the sample period. The right panel shows
that the maximum variability is associated with Africa, and the Total Variance
is equal to 0.2890. In order to identify patterns in the data, Fig. 1 shows the
covariance biplot. The first two Principal Components are representative of the
dataset variability, since the first one explains the 66.43% of the total variance,
and the second one adds an other 24.83%, bearing the proportion of the cumula-
tive explained variance at more than 90% (91.26%). By using some interpretation
rules of the compositional biplot, some remarks can be achieved from Fig. 1. The
first one is related to the interpretation of the Principal Components: the first
component discriminates Africa from the other macro-areas, likely because it
captures a sort of “evolution degree” of the financial markets in the macro-area;
the second one sharply distinguishes between Asia and Americas. By an obser-
vation of the length of the four rays (the segments joining each vertex to the
center), it can be stated that the smallest one is related to Europe, suggesting
that the logratio of such macro-area has the smallest contribution to the total
variability. The links (segments joining two vertices) corresponding to the pairs
Asia-Americas and Europe-Africa are nearly orthogonal: this suggests that the
corresponding logratios should be checked for zero correlation. The observation
that the four vertices are very spread out indicates that all the variances of the
logratios are very far from being null, highlighting the lack of proportionality of

Table 1. The center of the 4-part composition (left panel) and the Logratio variances
of the 4-part composition for the macro-areas (right panel).

Macro-
Center Africa Americas Asia Europe

Clr

Areas variances

Africa 0.0031 Africa 0 0.2751 0.2525 0.3219 0.1061

Americas 0.1299 Americas 0.2751 0 0.1438 0.0840 0.0606

Asia 0.5262 Asia 0.2525 0.1438 0 0.0786 0.0629

Europe 0.3408 Europe 0.3219 0.0840 0.0786 0 0.0594

Total Variance 0.2890

https://vlab.stern.nyu.edu
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the parts. Since the projections of the points of the quarters in 2014 on the link
Asia-Americas are (quite) close to the projection of the center on the same link,
it can be state that such quarters have the value of the logratio corresponding
to Asia and Americas (quite) equal to its average on the whole dataset. The
projections of the points of years 2014, 2015, 2018 and 2020 are (quite) far from
the projection of the center on the link Europe-Africa: this shows that the values
of the corresponding logratios are (quite) very different from the average on the
whole dataset. All these findings can be considered coherent with the results of
other analysis, but their added value is that they came from the application of
the quite recent CoDa methodology.

Fig. 1. The covariance biplot of the dataset of the four macro-areas.
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Abstract. The paper continues the study of a market model based on
jump-telegraph processes. It is assumed that the price of a risky asset
follows the stochastic exponential of a piecewise linear process, equipped
with jumps that occur at the moments of a pattern change. In this case,
the standard option pricing formula was derived earlier and it is very
similar to the classic Black-Scholes formula, see [7]. Meanwhile, exotic
options for this model have not been studied yet.

Within this framework, we are developing procedures for pricing
binary barrier options. This article concerns the “cash-(at hit)-or-
nothing” binary barrier option. The cases “down-and-in” and “up-and-
in” are studied separately. The main tools of this analysis are methods
developed for first pass probabilities. Some known results related to the
ruin probabilities follow directly from these settings. On the same basis,
some advanced versions of binary options can also be developed and
studied.

Keywords: Jump-telegraph process · Martingales · Binary option ·
Barrier option

1 Market Model and Measure Transform

Let ε = ε(t) ∈ {0, 1}, t ≥ 0, be a random process with two states, switching
at random times {τn}n≥1, τ0 = 0, which form a Markov flow controlled by two
alternating rates λ0 and λ1. Let N(t) = max{n : τn ≤ t} be a counting process.

Let X(t) =
∫ t

0
cε(u)du, t ≥ 0, be an asymmetric telegraph process with

parameters (c0, λ0), (c1, λ1), c0 ≥ c1, and J = J(t) =
∑N(t)

n=1 Yn is a jump
process with independent random jump amplitudes Yn, Yn > −1. Consider a
market model consisting of one risky asset. Let the stock price S(t), t ∈ [0, T ],
follows the stochastic equation

dS(t) = S(t−)d (X(t) + J(t)) , 0 < t < T. (1)

This research was supported by the Russian Science Foundation (RSF), project number
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Assume that the distributions h0 and h1 of the jump amplitudes Yn inter-
change alternately as the market state ε = ε(t) switches. For simplicity, let the
interest rate be constant r, r ≥ 0, so that the bond price is Bt = ert, 0 ≤ t ≤ T.

Integrating (1), we have S(t) = S0Et (X + J) , t ∈ [0, T ], where S0 = S(0).
Here Et(·) is the stochastic exponential, so that S(t) = S0eX(t)κN(t), where
κN(t) =

∏N(t)
k=1 (1 + Yn). See, for example, [1].

This idea is now well understood. On the basis of such jump-telegraph and
similar processes, various market models have been constructed, see the overview
in [2]. Note that the standard call option pricing formula has the same structure
as the classic Black-Scholes formula. Meanwhile, exotic options have been studied
much less.

Recall that the jump-telegraph process X + J and its stochastic exponential
S(t), t ≥ 0, are martingales if and only if c0 +λ0y0 = 0, c1 +λ1y1 = 0, where y0
and y1 are the average amplitudes of the jumps associated with the state 0 and 1,
respectively, see [4]. Since jump amplitudes are random, this model usually has
infinitely many risk-neutral measures. Following in the footsteps of R.C.Merton,
[5], consider the measure transformation based on the Radon-Nikodym derivative

dQ
dP

= Et(X∗ + J∗) = exp(X∗(t))κ∗
N(t),

where X∗(t) =
∫ t

0
c∗
ε(u)du, J∗(t) =

∑N(t)
n=1 y∗

ε(τn−), κ∗
N(t) =

∏N(t)
n=1 (1 + y∗

n). The
deterministic constants c∗

0, c
∗
1 and y∗

0 , y
∗
1 satisfy the martingale condition, that

is,
c∗
0 + λ0y

∗
0 = 0, c∗

1 + λ1y
∗
1 = 0. (2)

Given the measure Q in this way, the distribution of jump amplitudes does
not change, but the market regimes switch with changed intensities λ∗

0, λ∗
1,

λ∗
0 = λ0(1 + y∗

0) = λ0 − c∗
0, λ∗

1 = λ1(1 + y∗
1) = λ1 − c∗

1.

By virtue of (2), one can see that the martingale measure for this market model
is given by c∗

i = λi + ci/yi and y∗
i = −c∗

i /λi = −1 − ci/(λiyi), i ∈ {0, 1}.

2 Cash-(At Hit)-or-Nothing Barrier Binary Option

This paper deals with binary barrier options. In particular, we are interested
in the price of the option in the simple case when the payoff is received at the
moment the barrier x is breached. To be specific, let, first, S0 < x.

Consider an option with a payoff function H(x) = 1
{
maxt∈[0,T ] S(t) > x

}
,

where 1{A} is the indicator of the event A, and the payoff is received at the
time

T (x) = inf{t ∈ (0, T ] | S(t) > x}
when the stock price S(t), t ∈ (0, T ], passes through x for the first time.
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The option price is determined by a pair of bond-discounted payoff
expectations

c0 = EQ

[
e−rT (x) | ε(0) = 0

]
, c1 = EQ

[
e−rT (x) | ε(0) = 1

]
,

with respect to the martingale measure Q, and depending on the state of the
market at underwriting.

Note that the first passage time T (x) for the stock price coincides with the
first passage time for the process X(t)+log κ(t) through the threshold log[x/S0].

In what follows, we study the first passage time problem for the process
X(t)+J(t), 0 ≤ t ≤ T. Therefore, to describe the market model (1), it suffices to
modify the results obtained below by replacing x → log(x/S0), Yn → log(1+Yn)
with appropriate changes in the jump distributions.

Let the measure be already martingale.

2.1 “Bull Market” and Positive Threshold

We consider first the model with alternating positive trends c0 > c1 > 0, and
negative jump amplitudes. The latter means that the alternating distributions
h0 and h1 of Yn-corrections to rising bullish market (log-)prices are supported
by (−∞, 0]. Let x > 0.

Let us denote the first passage time through the threshold x by the log-
price process X(t) + J(t) as τx := inf{t > 0 : X(t) + J(t) > x}. Let φ =
(φ0(x), φ1(x))′ be the Laplace transform of τx,

φ0(x) =E
[
e−rτx1{τx<T} | ε(0) = 0

]
,

φ1(x) =E
[
e−rτx1{τx<T} | ε(0) = 1

]
.

(3)

By definition 0 ≤ φi(x) ≤ 1, ∀x. Because τx = 0 for non-positive x, we set
φ0(x) ≡ 1, φ1(x) ≡ 1, if x ≤ 0. Further, φ0(x), φ1(x)|x>c0T = 0, since the
threshold x, x > c0T, is never reached till time T .

By conditioning on the first Markov switching, we obtain the pair of coupled
integral equations. First, in the case 0 < x < c1T, we have

φ0(x) = e−(λ0+r)x/c0+
∫ x/c0

0

λ0e−(r+λ0)tH x−c0t
0 [φ1]dt, (4)

φ1(x) = e−(λ1+r)x/c1+
∫ x/c1

0

λ1e−(r+λ1)tH x−c1t
1 [φ0]dt. (5)

Here, the first terms correspond to the price movement without speed switching,
and the operators H z

i , catching the first jump, are defined by the convolutions
H z

i [φ] :=
∫ ∞

−∞ φ(z − y)hi(dy), i ∈ {0, 1}, for any test-function φ = φ(z).
In the case c1T < x < c0T, the process X(t) does not reach the threshold x

without switching from the low velocity c1 on the time interval [0, T ]. Therefore,
in this case, Eq. (5) should be written as

φ1(x) =
∫ T

0

λ1e−(r+λ1)tH x−c1t
1 [φ0]dt. (6)
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Both systems of integral equations, (4)–(5) and (4), (6), have a unique bound-
ary solution, [3]. To get it, note that ψα = exp(−αx), Re(α) > 0, is an eigen-
function of the operator H x,

H x [ψα] =
∫ 0

−∞
exp (−α(x − y)) h(dy) = ĥ(−α)ψα(x), x > 0,

with the eigenvalue ĥ(−α) =
∫ 0

−∞ eαyh(dy). For a real positive α, the eigenvalue

ĥ(−α) is real, 0 ≤ ĥ(−α) ≤ 1, and the function α → ĥ(−α), α ∈ (0,∞),
decreases.

Let

φ(x) =
N∑

k=1

exp(−αkx)Ak, x > 0, Reαk > 0, (7)

with indefinite coefficients Ak = (Ak0, Ak1)′ and exponents αk, k = 1, . . . , N.
Substituting this function into (4)–(5), after a simple algebra, we find that N =
2, and α0, α1 are the roots of the equation

(αc0 − λ0 − r)(αc1 − λ1 − r) = λ0λ1ĥ0(−α)ĥ1(−α). (8)

For system (4), (6), α0 and α1 are roots of

(αc0 − λ0 − r)(αc1 − λ1 − r) = λ0λ1ĥ0(−α)ĥ1(−α) ·
(
1 − e−(r+λ1−αc1)T

)
. (9)

Each of Eqs. (8) and (9) has exactly two real and positive roots α1 and α2, such
that

0 < α1 < min
(

λ0 + q

c0
,

λ1 + q

c1

)

≤ max
(

λ0 + q

c0
,

λ1 + q

c1

)

< α2,

since the right parts of these equations are decreasing and positive. The same
simple algebra leads to explicit formulae for the coefficients A1 and A2, see [8]
for details.

In a particular case of the Cramér-Lundberg model, our previous achieve-
ments help to find the ruin probability explicitly. Precisely, suppose that our mar-
ket model the trends are positive and equal, c0 = c1 = c > 0, λ0 = λ1 = λ, and
the negative jumps have exponential distribution with the mean value 1/b, b > 0.

That is, ĥ0(−α) = ĥ1(−α) = b/(b+α). This is a compound Poisson process with
i.i.d. negative exponential jumps and a positive trend.

We are interested in the distribution of the ruin time τx, x > 0.
In this case, Eq. (8) can be simplified to the pair of quadratic equations,

(cα − λ − r)(α + b) = ±λb,

which give two positive roots α; the first one is obtained from (cα−λ−r)(α+b) =
−λb,

α1 =
λ + r − bc +

√
(λ + r − bc)2 + 4bcr

2c
= −b +

1
2c

(
q +

√
q2 − 4bcλ

)
. (10)
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where q = q(r) = r+λ+bc, and the second is found from (cα−λ−r)(α+b) = +λb,

α2 =
λ + r − bc +

√
(λ + r − bc)2 + 4bc(r + 2λ)

2c
.

Due to (7) and the explicit formulae for A1 and A2, the Laplace transform
of τx is given by

φ0(x) = φ1(x) = A1e−α1x + A2e−α2x,

where A1 = 1 and A2 = 0.
Since the limit of the root α1 = α1(r) at r ↓ 0 depends only on λ/c − b,

limr↓0 α1(r) =
λ − bc

c
1{λ>bc}, the ruin probability is given by

P{τx < ∞} = lim
r↓0

φ(x) =

{
exp (−(λ/c − b)x) , if λ/c > b,

1, otherwise,

which coincides with known results.
Further, by [6, formula (2.2.5-18)] the inverse Laplace transform of the func-

tion
q → exp(aq − a

√
q2 − z2) − 1, q > z,

is given by
az√

t2 + 2at
I1

(
z
√

t2 + 2at
)

,

where I1(·) denotes the modified Bessel function of the first order. Due to (10),
the probability density function p(t;x) = L −1

q→t (exp(−α1(q)x)),

p(t;x) = e−λt

[

δ (t − x/c) +
x
√

λb
√

t(ct − x)
I1

(
2
√

λbt(ct − x)
)
]

, t > −x/c,

where δ(·) is the Dirac delta-function, corresponding to movement without
switching.

2.2 “Bull Market” and Negative Threshold

A process with positive trends c0 > c1 > 0 breach the threshold x < 0 only by
jumping. It cannot pass this level without switching, and the problem becomes
much more difficult. Similarly to Sect. 2.1, we obtain the equations

φ0(x) =
∫ T

0

λ0e−(r+λ0)tH0(x − c0t)dt

+
∫ T

0

λ0e−(r+λ0)tdt

∫ 0

x−c0t

φ1(x − c0t − y)h0(dy), (11)

φ1(x) =
∫ T

0

λ1e−(r+λ1)tH1(x − c1t)dt

+
∫ T

0

λ1e−(r+λ1)tdt

∫ 0

x−c1t

φ0(x − c1t − y)h1(dy), (12)
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where Hi(x), i ∈ {0, 1}, is the accumulated probability distribution function of
the jump occurring in state i. The first terms of these equations appear under
the condition of breakdown of the threshold after the first jump, the second
terms correspond a small jump, not enough to immediately exercise the option.

In the case of infinite expiration time (perpetual option with no fixed matu-
rity) and exponentially distributed jump sizes, Eqs. (11)–(12) become a bit
simpler. Indeed, let (negative) jumps have alternating exponential distributions
Hi(y) = Pi{Y < y} = ebiy ∧ 1, bi > 0, i ∈ {0, 1}. Equations (11)–(12) take the
form

φ0(x) =
λ0

r + λ0 + b0c0

[
eb0x + b0

∫ 0

x
eb0(x−z)φ1(z)dz + b0

∫ x

−∞
e−(r+λ0)(x−z)/c0φ1(z)dz

]
,

φ1(x) =
λ1

r + λ1 + b1c1

[
eb1x + b1

∫ 0

x
eb1(x−z)φ0(z)dz + b1

∫ x

−∞
e−(r+λ1)(x−z)/c1φ0(z)dz

]
.

(13)
With the additional symmetry assumptions λ0 = λ1 = λ, c0 = c1 = c and
b0 = b1 = b, these equations give the ruin probability. In this symmetric case,
φ0 = φ1 = φ, and, under the net profit condition bc > λ, the ruin probability
P{τx < ∞} is given explicitly:

P{τx < ∞} = φ(x)|r=0 =
λ

bc
exp (x(b − λ/c)) ,

which can be proved by plugging into Eqs. (13). This coincides with the known
results, see, e.g. [9, (5.3.8)].

2.3 “Bear Market” and the Cramér-Lundberg Ruin Model

Let both trends be negative, 0 > c0 > c1, x < 0, and jumps positive. This case is
symmetric to bullish market with negative corrections described in Sect. 2.1. In
this case, the Laplace transform φ of τx is given by formula (7) with the negative
exponential rates α1, α2 given by the Eqs. (8) and (9).

3 Conclusion

A new approach to barrier options pricing is proposed. The model is based
on simple piecewise-linear processes with random jumps occurring at velocity
switching. Due to space constraints, we’ve only mentioned the cash-(at hit)-or-
nothing type here. Of course, a complete overview of binary options within this
framework can also be given and will be published elsewhere later.

Acknowledgements. The author expresses his deep gratitude to the anonymous ref-
eree for a careful reading of the paper and useful comments that significantly improved
the text.
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Abstract. The objective of the present paper is to propose a new method to
measure the recovery performance of a portfolio of non-performing loans (NPLs)
in terms of recovery rate and time to liquidate. The fundamental idea is to draw
a curve representing the recovery rates during time, here assumed discretized, for
example, in years. In this way, the user can get simultaneously information about
recovery rate and time to liquidate of the portfolio. In particular, it is discussed how
to estimate such a curve in presence of right censored data, i.e. when the NPLs
composing the portfolio have been observed in different periods. Uncertainty
about the estimates is depicted trough confidence bands obtained by using the
non-parametric Bootstrap. The effectiveness of the proposal is shown by applying
the method to a real financial data set about some portfolios of Italian unsecured
NPLs taken in charge by a specialized operator.

Keywords: Recovery rate · Time to liquidate · NPLs · Censored data

1 Introduction

Non-Performing Loans (NPLs) are exposures in state of insolvency, that means loans
whose collection by banks is uncertain. As Resti and Sironi [9] point out, an effective
recovery depends on the characteristics of the exposure, of the counterparty, on macroe-
conomic and on internal (to the bank) factors. There is a NPLmarket that offers banks the
opportunity to get rid of non-performing loans by selling them to specialized operators
who deal with recovery. The main method for determining the value of Non-Performing
Loans is that of discounted financial flows, according to which the value of the loans is
equal to the sum of the expected income flows, discounted at a rate consistent with the
expected unlevered return of the investor and net of the related recovery costs.

In the case of a performing loan, the borrower is expected to pay principal and
interest at the agreed deadlines with a high level of probability (oneminus the probability
of default, generally low). In this case, the uncertainty in the valuation is limited to
the determination of the discount rate to consider the general market conditions and
the specific risk of the debtor. In the case of Non-Performing Loans, the uncertainty
concerns not only the discount rate but also the amount that will be returned and the
time of return. In fact, the probability of default is now equal to one, or is in any case

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
for Actuarial Sciences and Finance, pp. 397–403, 2022.
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very high, if the credit is in other categories of impaired loans (unlikely to pay). The
valuation methodologies currently used on the market are therefore based primarily on
forecast models of the amount of net repayments expected from receivables and related
collection times.

The estimationmethodology for recovery rate,whichwe are interested in forNPLs, is
faced in the more general context of Basel II. It is well known that under internal ratings-
based (IRB) approach todetermine capital requirements for credit risk, banks are required
to estimate the following risk components: probability of default (PD), loss given default
(LGD), exposure at default (EAD) and maturity (M). While the estimation of PD is well
established, LGD is not so well investigated and still subject to research. Given the
borrower has already defaulted, LGD is defined as the proportion of money financial
institutions fail to gather during the collection period and, conversely, Recovery Rate
(RR) is defined as the proportion of money financial institutions successfully collected.
That means LGD = 1- RR.

Recovery rate (or LGD) can be estimated using both parametric and non-parametric
methods. Mainly, recovery rate is estimated using parametric methods and considering
a one-year time horizon. Methods used in literature, among others, are: classical linear
regression, regularized regression likeLasso, Ridge, Elastic-net, etc. [7], Beta regression,
inflatedBeta regression, two-stagemodel combining aBetamixturemodelwith a logistic
regression [10].

In the case of NPLs, in our opinion, in investigating the recovery process of defaulted
exposures the focus must be not only on the recovered amounts, but also on the duration
of the recovery process, the so-called time to liquidate (TTL).

Cheng and Cirillo [4] propose a model that can learn, using a Bayesian update in a
machine learning context, how to predict the possible recovery curve of a counterpart.
They introduce a special type of combinatory stochastic process, based on a complex
system of assumptions, referring to a discretization of recovery rates in m levels.

Our purpose is to introduce a particular non parametric method to measure the
performance of a NPLs portfolio in terms of recovery rate (RR) and time to liquidate
(TTL) jointly, without assuming any particular model and/or discretization of the RR.
The idea is to represent the recovery process as a curve showing how theRR is distributed
during the time without assuming a particular parametric model. We will also propose a
method to estimate such a curve when some data are censored. The plan of the paper is
the following. In Sect. 2 we show how the recovery curve is defined, while in Sect. 3 the
method of estimation in case of censored data is introduced. In Sect. 4, the effectiveness
of the proposal is shown through an application on real data, while some conclusions
and final remarks are discussed in Sect. 5.

2 Recovery Rate and Time to Liquidate of a Portfolio

The definition of recovery rate (RR) and time to liquidate (TTL) of a NPLs portfolio is
not trivial because the two quantities are strictly connected. Since it is crucial to decide
when to measure the RR and TTL – that is when each NPL in the portfolio has been
entirely liquidated or after a given period to be defined - the measurement of the RR
cannot disregard the measurement of the TTL and vice versa.
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First, we note that to measure the TTL when the last NPL has been liquidated could
lead to measures highly affected, and biased, by anomalous NPLs with long TTLs and
small EAD. It follows that theTTLshould bemeasuredwhen theRRbecomes significant.
It remains to understand what is “significant”. Second, in many cases the user needs a
more complete information rather than only two numbers: RR and TTL. It would be
better to know how the RR increases during the time. This would also help in choosing
at what RR point to measure the TTL according to whatever optimality criterion the
operator decides to adopt. For the aforementioned reasons, we decide to measure the
behavior of the RR during the time through what we called the “recovery curve”. Such
a curve is built in the following way.

Let us consider a portfolio of K NPLs. For each of the K NPLs the debt exposure at
default is EADk (exposure at default of the k-th NPL) and the total portfolio exposure
. Assume I time intervals (of the delay of payment) from the default (time t0) to the
valuation date (time tI ). Let pk,i be the recovery of the k-th , in the i-th interval (of delay),
i.e. (ti−1, ti], with k ∈ {1, 2, …, K} and i ∈ {1, 2, …, I}. The portfolio recovery in
time interval i equals , that is the total recovery, for all the K debt positions, in the i-th
time interval of delay. Consequently, after i time intervals of delay, i.e. by the end of
the interval (t0, ti] we define as the total portfolio “recovery value until time ti”, i.e.
the total recovery, for all the K debt positions, in the first i periods from the default
date. We could also define the total recovery, being V(pi) the value of P∗

i capitalized
at an appropriate interest rate. In this initial study, we (like many other, i.e. [10]) do
not consider the interest because we consider time and recovery rate together and also
because the recovery curve, even if lower, would have the same trend. We define also
Ri = Pi/EAD as the portfolio “recovery rate until time i”, while ri = pi/EAD equals the
portfolio recovery rate in the i-th time interval. Since , ri = Ri − Ri−1 and r1 = R1 we
can refer in an equivalent way to Ri or to ri for i ∈ {2, …, I}.

In Table 1 there is an example of portfolio with K = 4 debt positions.

Table 1. Portfolio with K = 4 debt positions.

k EADk pk,1 pk,2 pk,3 pk,4

1 100 10 0 0 0

2 200 20 15 0 0

3 300 20 25 10 15

4 400 30 35 10 #N/D

We are interested in measuring the portfolio performance in 3 years after default,
i.e. I = 3 periods of delay. It can be measured in terms of recovery rates until year i as
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Table 2. Portfolio (EAD = 1000) performance in 3 years (I = 3).

i 1 2 3

pi 80 75 20

Pi 80 155 175

ri 8.00% 7.50% 2.00%

Ri 8.00% 15.50% 17.50%

We see that, for example, in the first 2 years the portfolio recovers the 15.5% of the
total initial exposure: 8% in the first year and 7.5% in the second.

Sometimes the available data are incomplete, in particular, censored, i.e. the pk,i are
not available from a certain date on for some k. In our example, this happens in the fourth
period for the NPL (k = 4). In this case, it is not possible to compute the recovery curve
for the fourth interval without further hypotheses. In the next section, we will discuss
some of them and how to estimate the recovery curve from the incomplete data.

3 Estimating the Recovery Rate Curve from Censored Data

The estimation of the recovery curve in the presence of censored data is carried out in a
way similar to the estimation of a survival curve (e.g. [8]). First, we note that sometimes
it is interesting to consider the “conditional recovery rate” ci in each delay period i. Let
Ei be the effective portfolio exposure at the beginning of period i

Ei =
{

EAD i= 1∑K
k=1

(
EADk− ∑i−1

i′=1 pk,I ′
)
i> 1

(1)

that means Ei = EAD – Pi-1 with P0 = 0 by convention. The conditional recovery rate
is defined as ci = pi/Ei. In words, it is the recovery rate with respect to the effective
portfolio exposure at the beginning of the period (Ei) rather than to the initial one (EAD).
We observe that it is possible to obtain ri from ci and Ri−1:

ri= pi
EAD

· Ei

Ei
= pi
Ei

· EAD − Pi−1

EAD
= ci

(
1−Pi−1

EAD

)
= ci(1−Ri−1) (2)

It means that the recovery rate is the conditional recovery of the percentage of how
much still has to be recovered. This way of computing ri is convenient when there are
censored data in the database, i.e. for some NPLs the recovery pk,is are observed only
until a particular time. In this case, since ri = pi/EAD cannot be used, the idea is to
apply formula (2) by computing the conditional recovery rate ci using only the available
data. In details, let us suppose that Ki = {k = 1, …, K | ∃ pk,i} is the subset of indexes
k corresponding to the NPLs for which at delay time i the value pk,i is not censored. In
this case the effective portfolio exposure, for i > 1, is a generalization of (1):

Ei=
∑

k∈Ki

(
EADk−

∑i−1

i′=1
pk,i′

)
(3)
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and the conditional recovery rate is

ci=
(∑

k∈Ki
pk,i

)
/Ei (4)

Let’s consider the previous example. Ifwewant to considermore than 3 intervals of delay,
assuming we are interested in measuring the performances in 4 years, i.e. I = 4 periods
of delay, then we obtain the same results of Table 2 for the first 3 years, and for i = 4 we
get: p4 = 15, P4 = 190, E4 = 500, r4 = 2.48%, c4 = 3.00%, R4 = 19.98%. This method
of measuring performances allows not only to measure jointly the recovery rate and the
time to liquidate, but also to deal with censored data.

Obviously, it is wrong to imagine the censored data equal to 0, meaning no inflows
instead than no information about that inflow. With the same example, substituting
p4,4 = 0, we would obtain the same results of Table 2 for the first 3 years, but for i = 4
we would get: p4 = 15, P4 = 190, E4 = 825, r4 = 1.50%, c4 = 1.82%, R4 = 19.00%.
That is, probably, an underestimate of the true curve.

The results would have been different if we simply did not consider in the portfolio
the NPLs for which the data are censored. In the example, considering I = 4 periods of
delay excluding NPL4 would lead to different results for all the durations, as it is shown
in the table below. Such estimates are of lower quality than the proposed ones because
obtained by using less data, i.e. information (Table 3).

Table 3. Portfolio (EAD = 600) performance for K = 3 loans.

i 1 2 3 4

pi 50 40 10 15

ri 8.33% 6.67% 1.67% 2.50%

Ri 8.33% 15.00% 16.67% 19.17%

4 Application

We analyse a data set of Italian NPLs supplied by a specialized operator. We examine
two portfolios of unsecured loans with different initial debt size. The portfolios have the
same year of acceptance by the operator: year 2005. In particular:

Portfolio 1: 5000 <EADk < 25000, K = 4732, Average EADk = 14709;
Portfolio 2: 100000 <EADk < 250000, K = 876, Average EADk = 151117.

We consider as time t0 the year of acceptance (2005), rather than the exact time
of default, because this is the moment in which the operator starts the recovery proce-
dure. We follow the recovery history for 9 years. We observe that both portfolios have
approximately 5% censored data in the last year and about 2.5‰ censored data in the
penultimate year. The results in terms of ri and Ri are reported in the plots below,
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Fig. 1. Recovery rate until time i (Ri) recovery rate (ri) of Portfolio 1 and Portfolio 2.

where the dotted lines are the boundaries of the confidence intervals computed pointwise
by using a non-parametric bootstrap [6].

Obviously, the highest values of the recovery rate are at the beginning of the period
(i = 1) and as time passes the recovery rate tends to decrease, even if not monotonically.
To compare the results we discuss Ri, that in our opinion is the most explicative ratio.
Even considering the width of the confidence intervals, it appears that the recovery is
greater for the portfolio with smaller credits. Probably, this is because taking charge by
specialized operators has greater effect on those who must return lower amounts.

In the extended version of the paper other comparisons will be presented.

5 Conclusions and Final Remarks

According to the objective of this paper, we propose a kind of measurement that takes
in consideration both the recovery rate, the time to liquidate and how they interact. This
is obtained by estimating a “recovery curve” displaying the behaviour of the recovery
rate during the time.

In doing that, we faced the problem of censored data and we suggest to use a method
of measuring performances that allows not only to measure jointly the recovery rate and
the time to liquidate, but also to deal with censored data. This method is based on an
algorithm that is usually used in the construction of survival curves.

Our next goal is to use our method to compare performance of portfolios with dif-
ferent characteristics by using non-parametric boostrap tests for clustered observations.
taking into account. Another idea is to extend and test the validity of the method to cases
where the database has missing data not only at the end of the observation period, but
also at the beginning of it.
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Abstract. The modern pair-copula construction (PCC) approach,
which defines complex multivariate structures through the use of bivari-
ate copulas, it proves to be an extremely effective tool for respond to
problems in various fields of application including the actuarial one. The
aim of this paper is to analyze the PCC methodology through an appli-
cation to a non-life insurance portfolio in presence of categorical and
continuous data. The aim is to define a multivariate distribution, high-
lighting the technical and operational limits in applications in the insur-
ance field. This methodology allows to overcome both the limits of the
“traditional” dependence structures and of the more “modern” copula
functions. However, since each varied n-distribution has a considerable
number of decompositions, the multivariate distribution was determined
using Dißmann’s algorithm.

Keywords: Pair-copula construction · Model selection · Insurance

1 Introduction

In the actuarial context the use of the correlation coefficient for the analysis of
the dependence between pairs of random variables has led, due to the nature of
the phenomena represented, such as the asymmetry of the distribution of claims
and the increasing dependence between risks on the queues, to distorted or even
misleading results. These limitations have driven the use of copula functions in
insurance to a massive extent, and in fact, to date, there are numerous families
of copulas existing in the literature and multiple approaches to define them
[13]. Moreover, although there is a wide range of bivariate copulas, the choice
narrows significantly for larger dimensions, since it is not always possible to use a
bivariate copula extension to the n-dimensional case, assuming the latter exists.

The need for methodologies that could easily define multivariate distributions
with a large number of marginals stimulated the development of pair-copula con-
struction (hereafter PCC). The theory of PCC was introduced by the pioneering
work of Joe [8], later taken up in the papers of Bedford and Cooke [2] and [3], who
first used the term trees regular vines. This theory was put into inferential con-
text by Aas et al. [1] and, subsequently, more recent studies such as Kurowicka
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and Cooke [9] have defined the sequences of vines in the form currently used.
In Czado [4] and in later work by the same author, the problem of pair-copula
selection is dealt with extensively. Stöber and Czado al. [15] introduce R-vine
PCC for discrete and continuous marginal distributions, which generalizes those
of Panagiotelis et al. [14] for discrete data and Aas et al. [1] for continuous data.
One of the main advantage in the presence of discrete marginal distributions of
the approach they presented is the significant computational advantages since
it requires only the evaluation of bivariate instead of higher dimensional copula
functions. Furthermore, the number of required evaluations of copula functions
to calculate the probability mass function (pmf) grows only quadratically with
the number of discrete variables. As observed in [5] the use of this approach in
the insurance field is complex, therefore we explore this methodology by means of
an application to a non-life database widely used in the actuarial field [7]. This
application is performed by using a very recent package called rvinecopulib
[12] that extents some features of the most popular VineCopula package with
the main advantages of the introduction of nonparametric and multi-parameter
families and the ability to model discrete variables. In this short paper we limit
ourselves to an analysis of the fitting and of the operational limitations that can
be encountered using an non-life database.erdh, with the aim of a more in-depth
study in subsequent research work, to explore how the use of the PCC can be
declined in the perimeter of pricing, also using multivariate regression tools.

2 An Hint on Pair-Copula Construction

The development of PCC methodologies fully meets the need for methodolo-
gies that could easily define multivariate distributions with a high number of
marginals.

The model is based on the decomposition of the multivariate density into a
series of pair-copula, i.e., pairs of distributions joined via copula function, which
can be applied to the original variables or their conditional or unconditional
distribution functions. In other words, the idea behind PCC is to rewrite the
density f as a product of possibly conditional pair-copule densities. For example,
a pair copula decomposition of an arbitrary three-dimensional density is given
by the following expression:

f(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)

· c12
(
F1(x1), F2(x2)

) · c23
(
F2(x2), F3(x3)

)

· c13;2
(
F1|2(x1|x2), F3|2(x3|x2);x2

)
(1)

In order to represent in a simple way the many possible PCC, Cooke in 1997
expanded the concept of tree addressed by Cayley in 1889 by generalizing it into
the modern concept of vine. Bedford and Cooke [2] and [3] conjugated the theory
of PCC to that of graphs and introduced the so-called regular vines or R-vines.
As the size increases, the number of decomposition of f using R-vine increases
very rapidly. In fact, Morales-Nápoles [10] showed that on n dimensions the
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number of regular R-vine structures is equal to n!
2 · 2(n−2

2 ). Therefore, given the
size of this class, many recent studies have focused on two specific subclasses of
R-vines: Canonical vine (C-vine) whose trees have a star-like structure; Drawable
vine (D-vine) whose trees have a linear path structure. These subclasses were
introduced by Aas et al. [1]. The example given above for the dimension n = 3
is an example of D-vine copula. The introduction of these classes allows the
number of possible combinations of C-vine to be reduced, which is identical to
the more reasonable D-vine and equal to n!

2 .
In the modeling of real phenomena, it is useful to simplify the model in Eq. (1)

by requiring that the copula density c13;2 depends on x2 only through the par-
tition functions F·|2(x·|x2)(for further details see [5]). Defining the multivariate
distribution through the use of semplified vine copulas greatly reduces the risks
of overfitting from which insurance portfolios generally have been shown to be
affected.

3 Numerical Application

The following study considered data1 regarding a portfolio of 67,856 Motor risk
contracts entered into on a one-year basis between 2004 and 2005. In the port-
folio, we observe that 6,8% reported at least one claim. The variables contained
in the dataset are both quantitative and categorical.

Very recently the new ‘R’ package rvinecopulib handles these types of vari-
ables essentially by transforming the categorical variables into a set of dummy
variables. The resulting model will therefore have many more variables than
initially supplied to the modelling function.

To find the vine copula that best fits the data, the vine function of
rvinecopulib implements Dißmann’s algorithm [6] and allows to find a “locally
optimal” R-vine copula in reasonable time without analyzing all the n!

2 × 2(n−2
2 )

R-vine copule of size n. It is observed that Dißman’s algorithm called the greedy
algorithm does not necessarily find C- or D-vine copula but also a generic R-vine.
Furthermore, it is important to note that when the number of variables is mod-
est, it may be convenient to search for the optimal C- or D-vine copula through
an arbitrary comparison, i.e., without making use of this algorithm. In our case,
however, even considering all the variables as quantitative, an exhaustive analy-
sis of the dataset via C- or D-vine copulas is not feasible (i.e. 10!

2 = 1, 814, 400).
In order to show a brief example, we analyzed two models using four variables:

The numclaims measures the number of claims whereas the claimcst0 is the
loss amount; the gender variable (2 levels - F: female and M: male) and the
area (6 levels identified by the letters from A to F) are pure categorical. The
algorithm used transforms the gender into a binary variable assigning value 1

1 www.businessandeconomics.mq.edu.au/our departments/Applied Finance and/
Actuarial Studies research/books/GLMsforInsuranceData/data sets source: Mac-
quarie University Department of Applied Finance and Actuarial Studies, Sydney.
Data may also be found in the insuranceData package of R.

www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and/Actuarial_Studies_research/books/GLMsforInsuranceData/data_sets
www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and/Actuarial_Studies_research/books/GLMsforInsuranceData/data_sets
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to the M level, and the area is splitted into 5 dummy variables. Therefore, the
generated models will have 8 variables.

The difference between the two models is that in the former we left the choice
of copulas to the greedy algorithm while in the latter we restricted the choice to
only elliptical copulas (hereafter model M1 and M2 respectively). Traditionally,
BIC and AIC indicators are used to compare the goodness of fit of statistical
models. In the case of PCC, an ad-hoc method was proposed by Nagler et al.
[11], called Modified vine copula Bayesian information criterion, and denoted
mBICv. It is defined as follows:

mBICv = −2log lik + v log n − 2
n−1∑

t=1

(qt log φt
0 − (n − t − qt) log 1 − φt

0) (2)

Where log lik is the log-likelihood, v is the (effective) number of model parame-
ters, t is the tree level, φ0 is the a-priori probability of having a non-independent
copula, and qt is the number of independence copulas in the tree t and n is the
dimension of the model. As expected, the model M1 (i.e. the one that could
select all copula families implemented in the package), succeeds in modeling the
dataset better. In fact, the mBICv(M1) = −573, 920.9 while mBICv(M2) =
−220, 452.6 is significantly higher. On the other hand, the massive use of non-
parametric copulas makes it more difficult to interpret, as can be seen from the
contour plot in Fig. 1). In Table 1 we just report the first and the last trees out-
comes although the output provides all trees involved in the PCC. The first tree
shows that the two models coupled the same edges. However, none of the distri-
butions selected by the algorithm adopted in M1 belongs to the elliptic family
as imposed in M2. Moreover, for the categorical variable area the dummy trans-
formation gives rise to a relevant differences in terms of Normalized bivariate
copula contours plot as observable in Fig. 1. Indeed, the M2 (see Fig. 2) does not

Table 1. Table of the R-vine copula: First Tree (1) and Last Tree (7).

Tree Edge Conditioned Conditioning Variable types Copula type Rotation Copula parameters df τ Log lik

R-vine copula associated with model M1

1 1 2, 1 c, c bb7 0 1.405, 14.165 2 0.855 106963.490

1 2 1, 6 c, d joe 270 1.031 1 −0.017 4.829

1 3 6, 5 d, d tll 0 [30 × 30 grid] 0 −0.068 4074.412

1 4 4, 5 d, d bb8 90 7.997, 0.990 2 −0.779 6121.241

1 5 7, 5 d, d bb8 90 7.996, 0.990 2 −0.779 2871.696

1 6 3, 8 d, d joe 180 1.168 1 0.087 19.253

1 7 5, 8 d, d tll 0 [30 × 30 grid] 0 −0.032 2936.725

7 1 2, 4 3, 7, 8, 5, 6, 1 c, d t 0 −0.021, 2 2 −0.013 119.291

R-vine copula associated with model M2

1 1 2, 1 c, c t 0 0.982, 2.081 2 0.880 87891.573

1 2 1, 6 c, d Gaussian 0 −0.028 1 −0.018 4.671

1 3 6, 5 d, d t 0 −0.999, 5.0108 2 −0.999 3183.100

1 4 4, 5 d, d t 0 −0.999, 5.001 2 −0.999 5488.691

1 5 7, 5 d, d t 0 −0.999, 5.0199 2 −0.999 2251.425

1 6 3, 8 d, d Gaussian 0 0.062 1 0.039 19.253

1 7 5, 8 d, d t 0 −0.999, 5.026 2 −0.990 1332.590

7 1 2, 3 4, 7, 8, 5, 6, 1 c, d Gaussian 0 0.009 1 0.005 1.736
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Fig. 1. Normalized bivariate copula contours of Model 1

Fig. 2. Normalized bivariate copula contours of the first tree of Model 1

produce a plot when Kendall’s tau is closed to −0.999 given the link with the
basic parameter of the exponential family distribution, generally indicates as ρ.
Finally, non parametric transformation kernel bivariate copulas, (indicated in
Table 1 with the acronym “tll”) often occurs in M1. As observable contour plots
are very irregular (e.g. see plot in the third row and second column in Fig. 1)
making it difficult to interpret the results obtained by the model in terms of
dependence structure.

4 Conclusion and Further Research

The empirical analysis shows that qualitative variables are not always handled
by the PCC algorithm in a “rational” manner. For example, in our study, the
variable area is transformed into 5 dummy variables that are sometimes coupled
together showing dependency shapes that seem to be not appropriate and, not
secondarily, the approach is time consuming. Therefore, in our opinion, in case of
categorical variable, the algorithm can be improved first by assuming a priori the
dependency between dummy variables, generated by the same categorical vari-
able, second by constructing a vine tree sequence from the regular vine matrix.
In addition, a mixed tailored model could not only improve the fit of the model
to the phenomenon but would also speed up the estimation process by skipping
some steps of the algorithm to search for the best copula in the PCC.



An Application of the PCC to a Non-life Dataset 409

References

1. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple
dependence. Insur. Math. Econ. 44, 182–198 (2009)

2. Bedford, T., Cooke, R.M.: Monte Carlo simulation of vine dependent random vari-
ables for applications in uncertainty analysis. In: Proceedings of ESREL 2001,
Turin, Italy (2001)

3. Bedford, T., Cooke, R.M.: Vines: a new graphical model for dependent random
variables. Ann. Stat. 30(4), 1031–1068 (2002)

4. Czado, C.: Pair-copula constructions of multivariate copulas. In: Jaworski, P.,
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Abstract. This study analyzes different parametric and non-parametric
modeling methods for estimating the Loss Given Default (LGD) of bank
loans for shipping companies. The shipping industry is subject to several
risks which create the need to accurately measure the possible losses in
order to estimate the LGD for the banking industry. We use a unique
database of defaulted loans in European banks involved in shipping
finance. The aim of this study is twofold: to compare the performance
of alternative LGD modeling methodologies in shipping finance and to
provide some insights into what drives LGD in the shipping industry.
We find that non-parametric methods, especially random forest, lead to
a remarkable increase in the prediction accuracy and outperform the tra-
ditional statistical models in terms of both in-sample and out-of-sample
results. To investigate the risk drivers in the shipping business, we use a
variable importance measure built on the idea of the permutation impor-
tance and find the energy index to be of paramount importance the most
important risk factor. We find that crude oil prices play a big role and
may affect the financial health of shipping firms and then the LGDs of
shipping loans.

Keywords: Loss Given Default · Shipping finance · Global Credit
Data

1 Introduction

The shipping industry is the leading mode of transportation worldwide and is
considered the backbone of the global economy. The need for high levels of capital
investment is one of the main indicators affecting the development of this sector.
The debt capital provided by banks is considered historically the largest source
and the most common way of financing vessels in the shipping industry [1,10,11].
Accurate estimates of potential losses are essential for financial institutions. The
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Loss Given Default (LGD)concerning shipping finance is of great relevance for
banks taking into account several risks associated with the sector, mainly driven
by the very high volatility in oil prices and freight rates. However, it still remains
an unexplored topic in the academic literature and the lack of data availability
remains the main reason. We use a unique database of shipping finance loss data
and investigate different parametric and non-parametric modeling methods to
estimate and forecast the LGD for shipping finance. The aim of this study is to
explore different approaches in estimating the LGD in shipping finance and to
identify the main risk drivers of LGD in the shipping industry. To the best of our
knowledge, this is the first study that investigates modeling methods for LGD of
bank loans in shipping finance and provides new insights into what drives LGD
in the shipping industry. The remainder of the paper is organized as follows.
Section 2 briefly describes our dataset. Section 3 introduces the parametric and
non-parametric methods that are used for the estimation as well as the met-
rics used for performance assessment. Section 4 and Sect. 5 report the empirical
results and the concluding remarks.

2 Data

We use a unique loss database provided by Global Credit Data (GCD).1 The
data is of defaulted shipping borrowers and it provides us with information
on: a) the defaulted borrower (residence, industry, financial health etc.); b) the
characteristics of the ships serving as collateral (vessel type, size, valuation etc.),
and (3) loan-related factors (exposure at default, seniority, facility type etc.). A
full list of variables is available upon author’s request. In our paper, we analyze
363 defaulted loans with a shipping collateral whose country of jurisdiction is
located in European countries. LGD2 is given as one minus the recovery rate
where the last is the difference between the discounted incoming cash flows and
discounted direct and indirect costs, divided by the exposure at default (EAD).

Fig. 1. LGD distribution

1 The GCD association consists of 55 member banks from all over the world and the
data collected comes across the span of 20 years https://globalcreditdata.org/.

2 In this study we use the loan-level LGD. The economic LGD calculation is used
where principal advance and financial claim are parts of the recovered amount.

https://globalcreditdata.org/
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We refer to the default definition [3] and restrict our data sample from the
year 2000 to ensure a consistent default definition. In addition, we do not account
for defaults after 2019 since the workouts of recent defaults may not be neces-
sarily completed.3. Finally, we include the GDP growth, the uncertainty index
and the energy commodity index as macroeconomic factors so the models are
sensitive to macroeconomic characteristics [7]. As Fig. 1 indicates, there is the
presence of highly left-skewed LGDs. In our sample, the lowest LGD is -28.61%
while the mean is given by 15.54%.

3 Methodology and Performance Assessment

We consider four parametric models in our study, a simple OLS regression,
ridge regression [12], least absolute shrinkage selector operator (LASSO) regres-
sion [14], and elastic net (EN) regression [15]. Ridge, LASSO and EN are a
modification of simple OLS and the main idea behind these regression models
stands in shrinking the regression coefficients by imposing a penalty on their
size to mitigate the overfitting. When this penalty factor is equal to zero, we
get the standard OLS regression. In addition, we include five non-parametric
methods including bagging (BG) [4], random forest (RF) [5], boosting (BS) [9],
artificial neural networks (ANN) [2], and multivariate adaptive regression splines
(MARS) [8]. Evaluating the predictive accuracy of the models is an essential part
of the study so we use the root mean squared error (RMSE) and the mean abso-
lute error (MAE) as the most commonly used measures of model performance.
Since we are interested to assess the RMSE and MAE on a sample that is inde-
pendent of that used in building the models, we will split our sample into two
sets using a standard 70% (training set) - 30% (test set) random split. In addi-
tion, models hyperparameters were tuned by using ten-fold cross-validation on
the training set. All the models are trained using the latest version of the Caret
library in RStudio [13].

4 Results

The performance matrices of in-sample and out-of-sample results are presented
in Table 1. We also add R2 as the most intuitive measure of explanatory power.
Regarding errors between the realized and forecasted LGDs, we find that non-
parametric methods produce the best forecasting results, and outperform para-
metric methods in terms of both in-sample and out-of-sample results. Non-
parametric methods exhibit a proportion of explained variation in terms of R 2
measure, ranging from 44.20% to 81.15 % for in-sample results and from 14.31%
to 55.76% for out-of-sample results. Additionally, we observe that the random
forest algorithm is superior to all the other methods presenting not only the high-
est proportion of explained variation of 81.15% (in-sample) and 55.76% (out-of-
sample) but also the lowest errors. On the other hand, we observe that parametric
3 The resolution bias is addressed according to GCD methodology: https://www.

globalcreditdata.org/syst.

https://www.globalcreditdata.org/syst
https://www.globalcreditdata.org/syst
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models are associated with a weaker performance in terms of predictive accuracy
and explained variation.

Table 1. Performance matrix

Method In-sample performance Out-of-sample performance

RMSE MAE R2 RMSE MAE R2

OLS 0.2149 (5) 0.1447 (5) 0.4319 (6) 0.2922 (9) 0.2002 (8) 0.1064 (9)

Ridge 0.2512 (9) 0.1887 (9) 0.3106 (9) 0.2752 (8) 0.2059 (9) 0.1104 (8)

LASSO 0.2364 (7) 0.1676 (7) 0.3453 (7) 0.2671 (6) 0.1907 (6) 0.1313 (6)

EN 0.2404 (8) 0.1761 (8) 0.3270 (8) 0.2696 (7) 0.1959 (7) 0.1148 (7)

BG 0.1943 (3) 0.1273 (3) 0.5712 (3) 0.2598 (5) 0.1584 (3) 0.2461 (3)

RF 0.1265 (1) 0.0776 (1) 0.8115 (1) 0.1777 (1) 0.1213 (1) 0.5576 (1)

BS 0.1728 (2) 0.1168 (2) 0.6908 (2) 0.2457 (3) 0.1473 (2) 0.3321 (2)

ANN 0.2174 (6) 0.1646 (6) 0.4552 (4) 0.2499 (4) 0.1809 (5) 0.1431 (5)

MARS 0.2106 (4) 0.1431 (4) 0.4420 (5) 0.2286 (2) 0.1658 (4) 0.1901 (4)

Note: The numbers in brackets state the ranks of the models in terms of per-
formance measures. The ranks range from 1 (best) to 9 (worst).

4.1 Variable Importance

We investigate the importance of LGD risk drivers in our models mainly to
identify the factors which drive the LGD dynamics. We generate a visual com-
parison of all the input variables for every model by constructing a measure
built on the idea of the permutation importance [5]. Figure 2 presents variable
importance rankings for all the non-parametric methods that best performed in
our study. The variables are ranked by their importance in a decreasing order
and the results reveal some important insights into what drives LGD of ship-
ping finance. The most important variables considered by all the non-parametric
methods are a mixture of macroeconomic indicators and loan file information.
All these algorithms generally agree in their decisions and rank the energy index
and the jurisdiction country as the main input variables in forecasting LGDs of
shipping loans. Considering only the rankings of the random forest model, that
best performed across all models, we observe that the energy index is the first
most important input variable, followed by the country of jurisdiction, and the
uncertainty index. This result highlights the significant role of the macroeco-
nomic environment in the shipping industry.
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Fig. 2. Variable importance in non-parametric methods

4.2 Effect of Energy Index in Model Prediction

The most important risk driver of LGD in shipping finance. To further investigate
the relationship between model forecasts and this risk driver, we use the Partial
Dependence plots (PDP) [9], a popular tool used in the field of explainable
machine learning. They are calculated after the model has been fit and attempt to
visually explain what the model predicts on average when the value of the feature
changes. Figure 3 (left) reports the dynamic of the energy commodity index
which shows its peak in correspondence of the Global Financial Crisis (GFC) and
then shows a very volatile dynamic from 2010 onward. Figure 3 (right) reports
the PDP of this index. As it can be seen, the highest peak of the index (around
170) is achieved during GFC, the period which was also associated with the
highest losses for the banks. Given that crude oil presents an 84.6% share of the
energy index, the results are obviously driven by the price of crude oil which
plays an essential role in the global economy and particularly in the shipping
industry. The model suggests that as the index is increasing, up to the value
of 120, there is a negative downtrend, meaning that it is associated with lower
losses for the bank. This may be explained by a positive relationship between
an increase in oil prices due to increase demand from oil, and shipping stock
returns [6]. However, when it goes above 120, which is the value of the energy
index during GFC, a sharp increase of LGD occurs. This may be explained by the
fact that when the oil prices increase and therefore the energy index, shipping
companies experience losses due to higher operating costs and this may lead
to higher number of defaults and higher LGDs. We find that large volatility of
crude oil prices affects LGDs in two directions: at first when prices increase due
to an initial higher demand of crude oil, shipping companies benefit from a first
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increase of business, but when oil prices keep on increasing, the positive effect
on shipping companies revenues is offset by the increase in operating costs.

Fig. 3. Energy index in years (left) and PDP of energy index (right)

5 Conclusion

This study was based on the shipping finance loss data and we compared dif-
ferent parametric and non-parametric models that attempt to predict the LGD
for shipping finance. We find that non-parametric methods lead to a remarkable
increase in the prediction accuracy and outperform the traditional statistical
models in term of both insample and out-of-sample results. The random for-
est model stood out as having the best forecasting performance among all the
models. Furthermore, we use a variable importance measure built on the idea
of the permutation importance, to analyze the risk drivers with the greatest
effects on the LGD for shipping finance prediction accuracy for each method.
We observe that all the methods consider the energy index, which is mainly
driven by the crude oil prices, as the main input variable in forecasting LGDs
of shipping loans. Furthermore, using PDP, we found that the model captures
a positive signal in terms of higher expectation of losses, as the volatility of the
crude oil market increases sharply, as it happened during the last financial cri-
sis. The result highlights the dominant role played by crude oil prices which can
deteriorate the financial health of shipping firms and therefore affect the LGDs
of shipping loans. Other inputs such as the freight rates can be considered in
LGD modeling of shipping finance for further research.
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Abstract. The problem of understanding how to modify the probabil-
ity of success for a stage in an R&D project is still open. Primarily in
cases where it is impossible to compare a project with other competi-
tors, the probability of passing a certain phase of the experimentation
is determined by taking into account only information from within the
company and not from external information.

In this paper, we propose to use Natural Language Processing tech-
niques to obtain a sentiment score for the news from the outside world.
In this way, we can transform sentences expressed in natural language
into a numerical value which, in addition to the internal information,
allows us to better “direct” the probabilities of success in a stage.

Keywords: Real options · Sentiment analysis · Information revelation

1 Introduction

In the various stages of a project’s development, information from external
sources plays an important role. In particular, information expressed in natural
language is fundamental (such as news in newspapers or information leaks). The
branch of Artificial Intelligence that deals with the study of natural language
is Natural Language Processing (NLP). Among the different tasks that can be
pursued through the study of words, there is also the sentiment analysis, which
allows to determine the polarity of a sentence (positive/negative) and indicate a
sentiment score. In the academic literature, several papers have emphasized the
importance of uncertainty. For example, Dixit [7] assumes a constant hazard rate,
Weeds [14] defines how a player should make an irreversible decision, Cassimon
et al. [3] analyze multi-stage R&D in the pharmaceutical sector, Kellogg and
Charnes [9] consider the technical uncertainty of drug projects, or D’Amico and
Villani [4] consider the probabilities of success as generated by a Markov chain.
The literature has in common that these probabilities of success in each phase
of the R&D process are determined relying on internal analyzes of the company
and reshaped in various ways by taking into account two types of risks. At the
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same time, what we want to introduce in this paper is the possibility of updat-
ing these probabilities based on news coming from sources outside the company,
especially in the case of projects that are not comparable with others.

Dias [6] defined a mathematical framework for considering uncertainty in
R&D project evaluation, creating a metric that simplifies investment decisions
under technical uncertainty. With this in mind, the objective of this paper is
to use the previous framework by introducing the sentiment score determined
through NLP models as a learning measure, with some adaptations.

2 AlBERTino for Sentiment Analysis

Over time, NLP models have evolved. One of the newer models, Bidirectional
Encoder Representations from Transformers (BERT [5]), was born from the
combination of the best elements of its predecessor models, such as Embed-
dings from Language Models (ELMo) and Generative Pre-trained Transformer
(GPT). In particular, this new model based on an encoder-decoder network
that uses the transformers architecture (developed by Vaswani et al. [13]) solves
the problems of its predecessors, such as encoding context bidirectionally and
requesting minimal changes for various NLP tasks. BERT consists of a set of
transformer encoders which perform two fundamental tasks: Masked Language
Modeling (Masked LM), in which it defines the language modeling by randomly
masking 15% of the tokens being in the corpora and the Next Sentence Predic-
tion, that is the ability to predict if two sentences follow each other.

In our hypothesis, we are interested in evaluating projects for which there
are not (or are not very representative) probabilities of success in the differ-
ent phases. In this sense, the information obtained from outside the company
has a significant impact. For example, we can consider news from the eco-
nomic/financial world that are interdisciplinary to different sectors in most cases.
Aract [1] was the first to develop a BERT model for sentiment classification and
regression about that kind of information. In particular, BERT’s training was
carried out by using three datasets: the pre-training was carried out through
TRC2-financial, filtering the TRC2 corpus based on financial keywords (obtain-
ing a dataset consisting of over 29M words and 400k phrases); FinancialPhrase-
Bank, the main sentiment analysis dataset [10] and FiQA Sentiment, a dataset
created for the WWW 18 conference challenge. This model, called by the authors
FinBERT, despite failing in some cases (as demonstrated in cases where it has
difficulty in distinguishing phrases generally used in the business environment
from positive ones), turns out to be the best compared to other state-of-the-art
models and allows to give great decision support for investors.

However, our goal is to use a BERT model that considers the facets of the
Italian language to use the language very often used by journalists rich in tech-
nical/financial terminology. For this reason, we used AlBERTo, a BERT model
developed by Polignano et al. [12] that has been trained on the Italian language.
This model, which was trained on the TWITA [2] dataset, contains a large cor-
pus of Tweets (191 GB) recorded from 2012 to 2018. As the authors define,
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AlBERTo focuses mainly on the Masked LM task leaving out the Next Sentence
Prediction. The model was tested on the EVALITA 2016 dataset (in particular
on the SENTIPOLC - SENTIment POLarity Classification task), demonstrating
accuracy in the prediction of positivity and negativity, measured by F1 (an indi-
cator for accuracy on the test set based on precision and recall), equal to 0.72.
Given the remarkable capacity of this model in the different tasks, such as polar-
ity and irony detection, we have carried out a fine-tuning of this model based
on the FinancialPhrasebank dataset collected by Malo et al. [10] appropriately
translated into Italian. This dataset contains about 4, 000 sentences relating to
financial news with the annotation of positivity or negativity for each of them.
In this way, it was possible to build an Italian model focused on news from the
financial world, AlBERTino, by adding a layer on AlBERTo trained on this
translated dataset.

3 Probability of Success in R&D Stages

As defined by Cassimon et al. [3] (in the pharmaceutical case, but extendable to
other types of projects), we can divide the realization of a project into different
stages, each of which is characterized by its own probability of success pi. We
can also assume that the various probabilities pi are independent of each other
in the various i-th stages. For example, in Fig. 1 there is a representation of
an R&D project divided into two stages. Let us consider the division into only
two stages in this test phase to study the functioning of sentiment analysis in
research projects, as defined by Perlitz et al. [11] and Jensen and Warren [8].
Since our aim is to incorporate the sentiment score defined by AlBERTino in
the various success probabilities, we can start from the framework defined by
Dias [6]. In particular, in each state i we can study the dependence relationship
between two Bernoulli random variables: X, a variable with technical uncertainty
that is important for investment decisions; and S, also called binary signal,
representing events that make it possible to determine the success or failure of
a certain action. For example, let us consider the development project of a new
biomaterial as a real-world application. Then, we can focus on the pre-production
stage of studying the constituent element relationships. For example, we could
say that success is described by a Bernoulli variable X ∼ Be(p) and that a signal
S ∼ Be(q) could be the recently discovered news of the possible scarcity of one
constituent selected element. We can thus introduce the element of information
revealed, that is, the impact of the news (or the signal S) on the probability of
success p in that i-th phase. Dias [6] defines a learning measure η2(X|S) which
links the two Bernoulli distributions, so that the probability p evolves according
to the signal S in two ways:

p+ = P [X = 1|S = 1] = p +
√

1 − q

q

√
p(1 − p)

√
η2(X|S) (1)

p− = P [X = 1|S = 0] = p −
√

q

1 − q

√
p(1 − p)

√
η2(X|S) (2)
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Fig. 1. Structure of n = 2 compound option as decsribed by Cassimon et al. [3] and
D’Amico and Villani [4].

in case of positive dependence; in case of negative dependence by inverting the
sign after p. It is precisely in this case that the determined sentiment score
intervenes: the possibility of transforming sentences in natural language into a
polarity value allows to obtain a score γ ∈ [−1, 1] for positive sentences γ ∈ [0, 1],
while for negative sentences γ ∈ [−1, 0]. Through manipulations, we can make
sure that even in the case of negative polarity γ ∈ [0, 1], so that γ responds to
the axioms defined by Dias [6] (in particular the Fréchet-Hoeffding bound and
the equality of marginal distribution) and can be used as a learning measure
η2 = γ. Thanks to these assumptions, we can determine the new probabilities
revealed only in the case of positive dependence, such as:

p+ = p + (1 − p)
√

γ (3)

p− = p − p
√

γ. (4)

If the polarity is positive, the new probability of success revealed will be p+,
and if the polarity is negative, it will be p−. In this way, returning to developing
a new biomaterial, the news (learned, for example, from a newspaper) of the
possible scarcity would lead to a low probability of success in that stage. Thus,
having a numerical value related to success, the company can decide in advance
whether to continue the experimentation or modify the constituent elements
of the material. All this allows us to keep the assumptions of Dias [6] valid in
determining the revelation process in the presence of multiple S signals, but it
benefits us because, thanks to the polarity, we can follow a single path of the
tree.
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4 Conclusions

In this paper, we propose the use of an NLP model, AlBERTino, to determine
the sentiment score of some news that can modify the probability of success
in the different stages of an R&D project. In particular, we have improved the
AlBERTo model on the sentiment analysis of Italian sentences to focus on the
economic world, which generally allows information to be extracted from hetero-
geneous sectors. Furthermore, this sentiment score, based on certain assumptions
and axioms, was used as a revealed information tool for a certain stage of the
project and therefore made it possible to improve the probability of overcoming
that phase, taking into account information coming from the outside. The next
objective is to verify how we can improve a probability based on different signals
occurring in one stage, determine a revelation process, and numerically test this
model with real information.
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Abstract. This paper proposes a simple and fully-interpretable neural
network model for multi-population mortality modelling and forecast-
ing. The architecture is designed to be interpretable in the Lee-Carter
framework and induces a massive reduction of the parameters to opti-
mise. The model structure leads the creation of clusters of countries with
similar mortality patterns during the fitting procedure highlighting dif-
ferences and commonalities among the clusters. Numerical experiments
performed on the Human Mortality Database Data show that the pro-
posed model produces reliable estimates and very accurate forecasts.

1 Introduction

Accurate modelling and forecasting are important for social welfare policies and
resource budgeting among the government and insurance industry sectors. With
this aim, several contributions were proposed in the literature. The Lee-Carter
model proposed in [6] represents a milestone. It decomposes logarithmic death
rates into an age-specific base level and a time-varying component (period effect)
multiplied by an age-modulating parameter (age effect). Forecasts are obtained
by projecting the time-dependent index with classical time-series models. Sev-
eral extensions of the LC model have been proposed. [1] improved the Ordinary
Least Squared estimation approach of the classical LC method by modelling
the number of deaths directly by a Poisson distribution and employing maxi-
mum likelihood for parameter estimation. [11] explored multi-factor extensions
of the LC model while [12] extended the model incorporating cohort effects.
Even though these approaches often describe the mortality of a single popula-
tion well, there are cases in which it could be necessary to simultaneously model
the mortality of multiple populations [2]. To this end, the researchers started
exploring multi-population models. One of the most famous models is the Li and
Lee (LL) model proposed in [8], which provides a double log-bilinear mortality
model augmenting common age and period effects with subpopulation-specific
age and period effects. An attractive property of this model is to ensure long-term
not-divergent forecasts among the populations, which could be not biologically
reasonable. An attractive property of this model called is to ensure long-term
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not-divergent forecasts among the populations, which could be not biologically
reasonable. Despite the coherent mortality forecasting has been investigated in
other papers such as [4,5], some authors highlights that the coherent assump-
tion could be suitable for specific populations and over limited time windows
[7]. Recently, the application of neural networks to mortality modelling and
forecasting is becoming popular. [3] used a neural analyser for detecting and
forecasting non-linearities of the log-mortality in a single-population setting.
[9] introduced the Long Short Term Memory networks to model the dynamics
of the LC time-index into the classical two-stage approach. [13] developed a
neural network model based on fully connected and embedding layers for large-
scale mortality forecasting, and [10] further extended their model by introducing
Recurrent and Convolutional Neural Networks. This paper introduces a simple
and fully-interpretable neural network model for large-scale mortality modelling
and forecasting. The architecture is designed to be easily interpretable induces
a substantial reduction in the number of parameters to estimate. Some homoge-
neous clusters are formed within the model fitting, highlighting differences and
commonalities among populations. In addition, numerical experiments show that
the model produces very accurate forecasts.

2 Multi-population Mortality Modelling

Let X = {x0, x1, . . . , xω} be the set of the age categories, T = {t0, t1, . . . , tn}
be the set of calendar years and I = R × G = R × {male, female} be the set of
the populations considered (where R is the set of the countries). The LC model
defines the logarithm of the central death rate log m

(i)
x,t ∈ R at age x ∈ X in the

calendar year t ∈ T in the population i = (r, g) ∈ I as

log m
(i)
x,t = a(i)

x + b(i)x k
(i)
t + e

(i)
x,t, (1)

where a
(i)
x ∈ R is the average age- and population-specific pattern of mortality,

b
(i)
x ∈ R represents the age- and population-specific patterns of mortality change

and indicates the sensitivity of the logarithm of the force of mortality at age x to
variations in the time index k

(i)
t , k

(i)
t ∈ R is the population-specific time index

describing mortality trend and e
(i)
x,t ∈ R is the error term. Since the model in is

over-parameterised, the following constraints are imposed

∑

x∈X

b(i)x = 1
∑

t∈T

k
(i)
t

| T | = 0. (2)

To obtain forecasts, the LC model assumes that the parameters (a(i)
x )x and (b(i)x )x

are constant over time while the time indices k
(i)
t are modelled as random walk

with drift (RWD)

k
(i)
t = k

(i)
t−1 + θ(i) + e

(i)
t with i.i.d, e

(i)
t ∼ N(0, (σ(i)

ε )2) (3)
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where θ(i) ∈ R is the population-specific drift term. The application of indi-
vidual Lee-Carter models for each population can produce divergent long-term
predictions while it might be reasonable to assume that the differences in mor-
tality between these populations should not increase over time indefinitely if
they share similar socioeconomic conditions. To avoid long-run divergence, Li
and Lee proposed a model where all the populations share the same age and
period (b(i)x = Bx ∈ R and k

(i)
t = Kt ∈ R,∀i ∈ I) with additional population-

specific age and period effects to improve fitting and forecasting. The full LL
model reads:

log m
(i)
x,t = a(i)

x + BxKt + b(i)x k
(i)
t + e

(i)
x,t, (4)

where Kt is a RWD and k
(i)
t evolves as a first-order autoregressive model (AR(l)).

3 A Multi-population Locally-Coherent Mortality Model

The coherent modelling prevents diverging long-term forecasts, which do not
seem biologically reasonable. However, the coherence assumption may be per-
ceived as too strong and is not always supported by empirical observations. This
paper proposes a mortality model that relaxes the assumption of coherent mod-
elling by requiring it to work only within sub-groups of similar populations. This
property can be defined as local-coherence, and we define our model as Locally-
Coherent Neural Network (LCNN) mortality model. The model assumes that a
small set of latent factors κt = (κ(1)

t , κ
(2)
t , . . . , κ

(P )
t )′ ∈ R

P driving the mortality
of groups of countries exists, where P < |I|. Each latent factor κ

(j)
t describes the

mortality of the countries belonging to the same j-th cluster. In the case that
the assumption b

(i)
x = Bx still holds, the model can be written as:

log m
(i)
x,t = a(i)

x + Bxκ
c(r)
t + e

(i)
x,t, (5)

where c : R �→ {1, 2, . . . , P} ⊂ N is a surjective function which assigns to every
population r ∈ R a cluster number c(r) ∈ {1, . . . , P} and C(j) := c−1({j}), j =
1, . . . , P denote the set of countries belonging of the j-th clusters. The model in
(5) can be also written as

logm(i)
t = a(i) + B ·

〈
γc(r), κt

〉
+ e

(i)
x,t ∀i ∈ I (6)

where logm(i)
t = {log m

(i)
x,t}x∈X , a(i) = {a

(i)
x }x∈X , B = {Bx}x∈X , 〈·, ·〉 is the

scalar product and γc(r) = (γc(r)
1 , γ

c(r)
2 , . . . , γ

c(r)
P )′ ∈ {0, 1}P with

γ
c(r)
l =

{
1 l = c(r)
0 l 
= c(r)

l = 1, . . . , P. (7)

We perform the model fitting in a neural network setting. A network archi-
tecture replicating the model structure in (6) is provided and each model term
is approximated through a dedicated subnet. More in detail:
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• a(i) can be considered a function of i and is approximated by a neural network
composed of two embedding layers and a fully connected layer.

• γc(r) determines the cluster to which the country r belongs and is function of
r. The subnet that approximate this term consists of embedding layer and a
custom layer that forces the output vector to have a single non-zero element
equal to 1.

• The vector κt summarises the mortality of all the clusters and it is assumed
as a function of the set of log-mortality curves logm(i)

t , i ∈ I. It is extracted
using a subnet with two fully connected layers. The first 1-dimensional layer is
applied to the log-mortality curves individually and compresses each curve to
a single value. The second P-dimensional layer processes these values simul-
taneously to extract latent factors.

• A 1-dimensional fully layer further processes the outcome
〈
γc(r), κt

〉 ∈ R.
The weight vector of this layer represents the age-specific coefficients Bx.

The sum of a(i) and Bx · 〈
γc(r), κt

〉
gives an estimate of the mortality curve

̂logm(i)
t ∈ R

|X|. The coefficients of these layers are calibrated simultaneously in
order to minimise a given loss function.

4 Results

In this section, we perform some numerical experiments using the data of the
Human Mortality Database [14]. We set X = {x ∈ N : 0 ≤ x < 100},T = {t ∈
N : 1960 ≤ t < 2021} and I contains male and female populations of the follow-
ing countries: USA, RUS, JPN, DEUTWN, FRATNP, ITA, GBRTENW, UKR,
ESP, POL, CAN, AUS, NLD, DEUTE, HUN, PRT, BLR, CZE, BEL, SWE,
AUT, BGR, CHE, SVK, DNK, FIN, GBR SCO, NOR, IRL, LTU, NZL NM,
LVA, GBR NIR, EST, LUX and ISL (we observe |I| = |R| · |G| = 36 · 2 = 72).
We considered all populations for which data from 1960 onwards were avail-
able in the HMD. The set T is splitted in T1 = {t ∈ T : t < 2000} and
T2 = {t ∈ T : t ≥ 2000} such that T1 ∪ T2 = T . The data relating to the first set
of years are used for the model calibration while the data of the second part are
employed to measure the forecasting accuracy. Let P = 4, the LCNN network
model is trained for 2000 epochs with the aim of minimising the Mean Squared
Error (MSE). Figures 1 and 2 show the estimates of the model parameters. Figure
2 presents the estimations of the (a(i)

x )x for all populations considered i ∈ I. We
observe that the curves are pretty smooth, suggesting that the estimates pro-
duced by the network are few sensible to the fluctuations often found in mortality
data. Figure 2 (left) illustrates the estimates of (Bx)x∈X which is the same for
all populations which appears pretty smooth as well while, Figure 2 (right) also
shows the extracted κ

(j)
t factors relating to the different clusters of populations.

We observe that the factors present a decreasing trend highlighting that mor-
tality is generally decreasing. However, the four factors have different rates of
decline, showing that the mortality of some countries is falling faster than others.
Interestingly, we observe that the factor relating to Cluster 4 declines rapidly.
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This cluster encompasses countries such as ITA, JPN, ESP and SWE. The fac-
tor of Cluster 3 shows a less pronounced reduction than Cluster 4. In addition,
it appears similar to Cluster 2. These two groups include countries that have
observed reductions in mortality on average compared to the group of countries
considered. Cluster 3 includes DEUTE, DEUTW, GBR NIR GBR SCO, while
Cluster 2 includes AUT, FIN, FRATNP, USA. The factor of Cluster 1 shows
a fluctuating dynamics, highlighting both increases and decreases in mortality
over time. This cluster contains countries where mortality evolution is less reg-
ular than the other countries in the set, such as BLR, EST, LTU, LVA, RUS,
and UKR. Finally, we compare the proposed model against some benchmarks
in terms of forecasting accuracy and number of parameters to optimise. Table 1
lists the MSE forecasting and the number of parameters of our LCNN model
and the LC SVD [6], the LC Poisson [1], the LL [8] models. We observe that
all models perform pretty well, but the LCNN model outperforms the others. In
addition, we also note that the LCNN model is the most parsimonious. In future
works we intend to analyse in more detail similarities and differences between
the clusters obtained and to investigate different neural network architectures
for the extraction of the factors κt.

NOR IRL LTU NZL_NM LVA GBR_NIR EST LUX ISL
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POL CAN AUS NLD DEUTE HUN PRT BLR CZE
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Table 1. Comparisons of the LC SVD, LC Poisson, LL and LCNN model: forecasting
MSE and number of parameters.

Model LC SVD LC Poisson LL LCNN

MSE .4794 * 10−3 .4581 * 10−3 .3500 * 10−3 .3179 * 10−3

# Parameters 17.280 17.280 17.420 1.642
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13. Richman, R., Wüthrich, M.V.: A neural network extension of the Lee-Carter model
to multiple populations. Ann. Actuar. Sci. 15(2), 346–366 (2021)

14. Wilmoth, J.R., Shkolnikov, V.: Human mortality database. University of Califor-
nia, Berkeley (US), and Max Planck Institute for Demographic Research (Ger-
many) (2021)



RVaR Hedging and Market Completions

Ilia Vasilev(B) and Alexander Melnikov

University of Alberta, Edmonton, AB T6G 2R3, Canada
{ivasilev,melnikov}@ualberta.ca

Abstract. The problem of partial hedging is very important in the mod-
ern risk management industry. It is known that the key element of this
problem is a risk measure chosen for assessment of risks. Two of the most
widely used risk measures in the industry nowadays are Value-at-Risk
(VaR) and Expected Shortfall (CVaR). However, it has been demon-
strated recently that both of these measures could be incorporated into
one two-parametric risk measure called Range Value-at-Risk (RVaR). In
this paper we focus on demonstration that partial hedging problem with
respect to RVaR in incomplete market could be approached with the help
of method of market completions through the Utility Maximization task
embedded into RVaR optimization problem.

Keywords: Range Value at Risk · Incomplete market · Method of
market completions · Partial hedging

1 RVaR Hedging Problem

1.1 Multidimensional Diffusion Market Model

We will work with well-known Standard Multidimensional Market Model that
consists of one risk-free asset and n risky assets (stocks) and can be defined as
(B,S) = (Bt, S

1
t , ..., Sn

t )t≤T where:

dBt = Btrtdt, B0 = 1 (1)

dSi
t = Si

t

⎛
⎝μi

tdt +
k∑

j=1

σij
t dW j

t

⎞
⎠

and a k-dimensional vector W = (W 1, ...,W k) consists of independent stan-
dard Brownian motions on a stochastic basis (Ω,F , (F), P ). We will call (F)t≤T -
adapted process π = (βt, π

1
t , ..., πn

t )t≤T portfolio (strategy) with its value process
V π

t = βtBt +
∑n

i=1 πi
tS

i
t .

Let us also denote class of admissible portfolios with initial capital x as

A(x) = {π : V π
0 = x,∃K(π) ≥ 0 s.t. V π

t ≥ −K ∀t ≤ T}.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Admissible strategy π is called self-financing if the following conditions hold

∫ T

0

n∑
i=1

⎛
⎝|πi

tμ
i
t| + (πi

t)
2

k∑
j=1

(σij
t )2

⎞
⎠ dt < ∞, (2)

V π
t = V π

0 +
n∑

i=1

∫ t

0

πi
sdSi

s. (3)

The set of strategies, satisfying (2)–(3) is denoted by SFa. We assume that
the market (1) is arbitrage-free, which (see details in [2]) holds true if there exists
a (Ft)t≤T −progressively measurable process θ = (θ1t , ..., θk

t )t≤T that satisfies

k∑
j=1

σij
t θj

t = μi
t − r, i = 1, ..., n, P − a.s. (4)

and

E

⎡
⎣exp

⎛
⎝1

2

∫ T

0

k∑
j=1

(θj
t )

2dt

⎞
⎠

⎤
⎦ < ∞. (5)

Definition 1 (Market Completeness). The market is called complete if for
each FT −measurable payment function H = HT (ω) ≥ 0, such that E [H] < ∞
there exists a strategy π ∈ SFa such that P − a.s.

V π
T = H

Completeness of the market (1) is closely connected with the shape of ”volatil-
ity” matrix Σ = {σij}i=1..n,j=1..k. In case of complete market one observes
n = k, matrix has full rank and we expect it to be non-degenerative and square
one k × k.

1.2 Optimization Problem

Construction of an optimal hedging portfolio is a very important practical prob-
lem in financial markets and actuary industry. For complete and incomplete
markets, there is a chance that perfect- and super-hedging strategies respec-
tively, are not feasible as their initial price is out of investors budget. In this
case, market agent can focus on partial-hedging strategies that minimize risk
exposure measured by some chosen risk-measure. Assume investor holds a posi-
tion which, potentially, can result in loss X, which is a random variable defined
on space (Ω,F , P ).

Definition 2 (VaR). Value-at-Risk (VaR) measure of a loss X at the level α
can be defined as

V aRα(X) = inf{a : P (X > a) ≤ α} (6)

This measure is not coherent, that is why alternative one was offered
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Definition 3 (CVaR). Conditional Value-at-Risk (CVaR) measure of a loss
X at the level α can be defined as

CV aRα(X) =
1
α

∫ α

0

V aRα(x)dx, (7)

These two measures were suggested by famous Basel accord and are widely
used in the Risk Management industry. It was recently demonstrated in [7] that
these two measures can be considered as a limit cases of more general two-
parametric risk measure called Range Value at Risk, or RV aR.

Definition 4 (RVaR). Range Value-at-Risk at levels (α, β) of a loss X is
defined as

RV aRα,β(X) = 1
β

α+β∫
α

V aRs(X)ds, β > 0

RV aRα,β(X) = V aRα(X), β = 0

RVaR hedging problem consists in finding a strategy, that satisfies budget
constraint (V0) and minimizes RVaR measure of possible future loss. This prob-
lem is solved in two steps: first - find an optimal function for determining hedged-
loss proportion of risk, second - use portfolio that replicates this proportion of
risk as optimal strategy for RVaR hedging problem.

As shown in [6], the solution to this problem depends on the size of initial
capital that investor possess. If investor has enough money to pay for hedging
of f∗(x) = x · Ix≤V aRα+β(x) then an optimal hedged loss proportion will be
f∗(x), otherwise, optimal hedged loss function will be f∗(x) = f(x, d∗, u∗) =
((x − d∗)+ + (x − u∗)+) ·Ix≤V aRα+β(B) which is formulated in the following the-
orem.

Theorem 1. If Π(B · IB≤V aRα+β(B)) ≤ V0, then the optimal hedged loss func-
tion is:

f∗(x) = x · Ix≤V aRα+β(x) (8)

If Π(B · IB≤V aRα+β(B)) > V0, then the optimal hedged loss function is:

f∗(x) = f(x, d∗, u∗) =
(
(x − d∗)+ + (x − u∗)+

) · Ix≤V aRα+β(B), (9)

where (d∗, u∗) is the solution to⎧⎨
⎩

min
{0≤d≤V aRα(B),d≤u≤V aRα+β(B)}

{
d + 1

β

∫ α+β

α
(V aRs(B) − u)+ds

}

s.t. Π(f(x, d, u)) ≤ V0

(10)

In other words, to choose proper optimal hedged loss function, it is crucial
to assess if investor has enough capital, which is done with the help of some
pricing functional. As it was mentioned in [1], such pricing functional should
preserve stop-loss ordering and allow no-arbitrage on the market. One of the
famous types of pricing functionals that fits this goal perfectly comes from Utility
Based Indifference Pricing (UBIP) approach. However, for this approach, market
incompleteness is a serious complication, that can easily be overcome with the
help of Method of Market completions.
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1.3 Method of Market Completions

In order to complete market, we propose to add necessary amount of ”auxiliary”
assets into consideration. These are special mathematical objects that represent
assets of the same structure as existing ones and intended to ”extend” observed
Σ to square matrix with full rank.

Assume canonical market model (1) with n risky assets for which n < k.
As always, asset price dynamics is defined on measure space (Ω,F , P ) equipped
with filtration F generated by k-dimensional Brownian motion. We will call assets
that form this incomplete model primary assets, or existing assets.

Denote Sc a (k − n)−dimensional (Ft)t≤T −adapted process Sc =
(Sn+1

t , ..., Sk
t )t≤T with the same structure as primary assets:

dSi
t = Si

t

⎛
⎝μi

tdt +
k∑

j=1

σij
t dW j

t

⎞
⎠ , i = n + 1, ..., k.

With the help of newly introduced assets, we can “fix” initially rectangular
volatility matrix for a set of existing risky assets σ by adding k − n auxiliary
assets with coefficients σj,1

t , . . . , σj,d
t , j = n+1, . . . , k. Then we arrive to properly

shaped (k × k) volatility matrix Σ̃.

Definition 5. The (k − n)−dimensional (Ft)t≤T −adapted process Sc =
(Sn+1

t , ..., Sk
t )t≤T is called a completion for the (B,S) market if the resulting

volatility matrix σ̃t has full rank for all t ≤ T .

1.4 Pricing Functional for RVaR Problem

Useful approach for pricing was offered by Davis [5] and consists in embed-
ding pricing problem into Utility Maximization task. Assume that investors
risk appetite is described with concave, non-decreasing utility function U with
U ∈ C2 on R

+ with U ′ > 0, limx→0 U ′(x) = ∞ and limx→∞ U ′(x) = 0. Having
an initial capital x investor forms a portfolio π with terminal value V π

T (x). His
objective is to maximize expected utility of terminal wealth:

v(x) = sup
π∈A(x)

E [U(V π
T (x))] (11)

It was demonstrated in [5] that for a differentiable v with v′(x) > 0, x ∈ R
+

the fair price p̂(x) is given by

p̂(x) =
E

[
U ′ (V π∗

T (x)
)
B

]
v′(x)

(12)

Applying Method of Market Completions in case of incomplete markets, one
can introduce k − n auxiliary assets in addition to n existing ones on incom-
plete market, driven by the same k-dimensional Brownian motion as n existing
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tradeable assets. Then, the problem of utility maximization can be solved in com-
pleted market with fictitious assets. Further, relative risk process can then be
represented as θ̃t ≡ θt + νt with θT

t νt = 0, and completions are parametrized by
ν which is square integrable, adapted and Rd valued process. Define exponential
local martingale:

Zν
t ≡ exp

{
−

∫ t

0

θ̃T
s dWs − 1

2

∫ t

0

(‖θs‖2 + ‖νs‖2)ds

}
, (13)

the function
∀y > 0, Xν(y) ≡ E[βT Zν

T I(yβT Zν
T )], (14)

and ∀ν ∈ K1(Σ) {ν ∈ K(Σ),Xν(y) < ∞,∀y > 0}:

ξx
ν ≡ I(Yν(x)βT Zν

T ) (15)

where Yν is the inverse function of Xν

Attainable solution will give us value less or equal than that. If we find a
strategy π with initial capital x, which doesn’t require purchase of the artificial
stocks and completion λt ∈ K1(Σ) such that

sup
π∈A(x)

E[U(V π
T )] = E[U(ξx

λ)], (16)

then, (π̂, λ) would be optimal. In [4] it was proven that if we call

1. Optimality of π̂: EU(V π
T ) ≤ EU(V π̂

T ) ∀π ∈ A(x)
2. Financiability of ξx

λ: ∃π̂ ∈ A(x) such that V π̂
T = ξx

λ
3. Least Favorability of λ: EU(ξx

λ) ≤ EU(ξx
ν ) ∀ν ∈ K1(Σ)

4. Parsimony of λ: E[βT Zν
T ξx

λ] ≤ x, ∀ν ∈ K1(Σ)

then 2. ⇐⇒ 4.⇒3. Furthermore, if 2. holds, then π̂ in 2. satisfies 1.
This theorem provides powerful instrument in verifying if one can build opti-

mal strategy without artificial assets in use. In other words, when λ = 0 will
satisfy necessary criteria above, and (12) will be solved on incomplete market.

1.5 Application

Consider utility function U(x) = ln(x) for which:

Xν(y) =
1
y
, Yν(x) =

1
x

(17)

and optimal terminal capital can be calculated as

ξx
ν =

x

βT Zν
T

. (18)

One could check that completion with parameter λ = 0 satisfies 4.

E[βT Zν
T ξx

0 ] = x · E

[
exp

{
−

∫ T

0

νT
s dWs − 1

2

∫ T

0

‖νs‖2ds

}]
≤ x ∀ν ∈ K(Σ)

(19)
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as the process under expectation is a supermartingale. It means that investor
would not use auxiliary stocks (λ = 0) to form an optimal portfolio even for
hedging purposes. Consequently, RVaR problem (10) here becomes

⎧⎨
⎩

min
{0≤d≤V aRα(B),d≤u≤V aRα+β(B)}

{
d + 1

β

∫ α+β

α
(V aRs(B) − u)+ds

}

s.t. E[βT Zλ
T B] ≤ V0

(20)

It is also worth mentioning that proposed approach is not limited by loga-
rithmic utility function and can also be applied to other popular utility functions
such as U(x) = xp

p , p < 1, p �= 0. Method of market completions was developed
in [3] for discrete markets as well as for jump-diffusion model in [8]. In addi-
tion, introducing necessary technical complications, demonstrated approach and
results obtained for diffusion market model can be extended to other models.
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Abstract. We propose a spillover index of external connectedness that
measures the outer influences among countries from estimated return
volatilities of 645 European firms. We find that Gross Domestic Product
per capita is directly related to this index, as countries with lower Gross
Domestic Product per capita are influenced in a greater way than they
influence others, while higher Gross Domestic Product per capita coun-
tries influence others more than they receive. From a risk management
perspective, firms should quantify the influence from markets located in
other countries, in order to predict possible future movements.

Keywords: Financial contagion · Return spillovers · Gross Domestic
Product

1 Introduction

Analyses on how economy moves altogether intrigue most researchers. The inter-
connection of the markets present relevance also for investors and banks [6],
as capital management forms a crucial part of risk assessment. Staying with
one market information has been proven biased, as international effects present
anomalous relationships [11].

Another common point in the literature about financial contagion is the index
usage for calculation of international movements (e.g. [1–4,12]), but while the
results are valid, aggregation always carries error. On the counterpart, firm level
studies usually reduce their analyses to one country, which, as stated before, will
present induce estimation bias. Nevertheless, zooming down to the firm level is
necessary to answer questions about market co-movements. A summarized index
for explaining price foundation of domestic markets biases the estimation of the
models, as we omit information only present at low level granularity, especially
in regions with a high level of economic integration.
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Less studied, is literature about relation of stock price variation with Gross
Domestic Product (GDP onwards). [8] study GDP across countries simulating
shocks and calculating spillovers. They conclude that under floating exchange
regimes, spillovers decrease for small systems. More closely to our contribution is
[13], which correlates oil prices with GDP across oil producing countries like the
United States, Russia, Saudi Arabia or China, and prove relation of oil prices
between Russia and Saudi Arabia. Our contribution goes one step forward and
generalizes the spillovers of a country, with a firm-level starting point of view,
proposing the External Spillover Index, an indicator to measure the direction of
external spillovers of a country.

We estimate risk spillovers in the European stock market. We create a net-
work using data from October 2, 2015 to March 26, 2021. We use firm level stock
return conditional volatilities, estimated daily for 645 firms from 35 European
countries.

2 Methodology

We estimate latent autoregressive processes to model the logarithm of the
squared volatilities proposed by [14], as the logarithm smooths the variation
of the volatility series, and make them more suitable for modeling using a vector
autorregression. We take use of [10] approximation with Markov Chain Monte
Carlo sampling, implemented in the R-package ‘stochvol ’ [9]. The main input to
connectedness analysis is the variance-covariance matrix, for which calculation
we use generalized linear regression solved via elastic net regularization [15].

Following a series of papers [6,7] and [5], we estimate the system’s connect-
edness. The moving average representation of a N -variable VAR of order p, is
given by xt =

∑t
l=1 Alεl, where Al are a succession of N ×N recursive matrices

and A0 is the identity matrix. We denote as σij the elements of the variance-
covariance matrix Σ calculated before. A selector vector ei is included, which
consists of ones in the ith coordinates and zeros elsewhere. Thus, similar to [5],
we define the spillover from firm j to firm i in the system, H steps ahead, as:

θg
ij(H) =

σ−1
jj

∑H−1
h=0 (e′

iAhΣej)2
∑H−1

h=0 (e′
iAhΣA′

hej)
, H = 1, 2, 3, . . . (1)

In order to compare results, we normalize each term defining the directional
connectedness from firm j to firm i as:

θ̃g
ij(H) := CH

i←j =
θg

ij(H)
∑N

j=1 θg
ij(H)

. (2)

Suppose a division of the N firms in K subgroups. Subgroups, in our par-
ticular case, will be the country that each firm belongs to. In particular, for a
subgroup k ∈ {1, . . . , K}, we have a list of indexes Ik ⊆ {1, . . . , N} that define
which firms belong to which subgroup. Therefore, we can calculate the spillover
from a subgroup k to all other firms, and the spillover from all the firms in the
system that do not belong to a subgroup k, to the same subgroup:
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CH
•↼k =

∑
i/∈Ik,j∈Ik

θ̃g
ij(H)

|Ik| , (3)

CH
k↼• =

∑
i∈Ik,j /∈Ik

θ̃g
ij(H)

|Ik| , (4)

Where |Ik| is the number of firms included in subgroup k. Both these equations
represent the part of the weighted connectedness of the system that influences
and receives a subgroup. Thus, the construction of the External Spillover Index
(EI onwards) for a subgroup k in a horizon H appears directly from the division
of both equations (3) and (4):

EIH
k =

CH
•↼k

CH
k↼•

. (5)

A value of the EI greater than 1 represents an economy that has more influ-
ence over other countries that other countries bring back itself. On the counter-
part, an EI under 1 indicates a subgroup that receives spillovers in a greater way
from outside than the opposite.

3 Data

Stock prices data have been retrieved from Bloomberg. They consist on daily
closing prices of 645 firms listed on one of the 35 national stock markets in
Europe from October 2, 2015 to March 26, 2021. The maximum difference in
the closing time of the markets within our sample is 3 h, which minimizes the
issue of asynchronous trading and different market information enclosed by the
prices. This would be an important concern for databases including very distant
markets, such as U.S. and China. The GDP per capita for each country has
been retrieved from the webpage World Bank Open Data. We estimate the log
differences of the original series of prices and the stochastic volatility of the
returns for each firm in our sample. Thus, we calculate the spillovers of the
system and aggregate following methodology stated in Sect. 2.

4 Results

Calculating connectedness spillovers is useful in terms of risk management. More-
over, it is possible to understand firm behaviors during, for example, turmoil
periods. The perspective that we propose is the aggregation of the connected-
ness of several firms that form a subgroup, in our case their home country, and
study their directed spillovers relationship. The horizon used in this study is
10 d.

First, we address the directional spillovers separately, which we present in
Fig. 1. In this figure we show results from both Eqs. (3) and (4) in map form.
On the left, we find the weighted influence that a country has on others. On the
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right, we show the weighted spillovers that a country receives. We see how the
influence on others, left map, has more determinant color variety, as the North-
ern and Western Europe present darker colors than the countries in Eastern
Europe. Regarding the influence received, right map, no particular pattern or
organization is clear, as colors dilute across the map. In general terms, the coun-
tries that influence others is a relevant characteristic for country segmentation,
while the influence that a country receives is indeterministic.

Fig. 1. Weighted spillover maps. Left weighted spillovers on others, and right weighted
received spillovers.
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|Ik| EI10k
Austria AUT 15 1.2
Belgium BEL 13 1.4
Bosnia and Herz. BIH 13 0.2
Bulgaria BGR 10 0.3
Croatia HRV 12 0.6
Cyprus CYP 26 0.2
Czech Rep. CZE 8 0.9
Denmark DNK 13 0.9
Estonia EST 11 0.3
Finland FIN 16 1.0
France FRA 32 1.6
Germany DEU 20 1.5
Greece GRC 37 0.8
Hungary HUN 10 1.0
Iceland ISL 12 0.6
Ireland IRL 22 0.7
Italy ITA 18 1.4
Latvia LVA 12 0.1
Malta MLT 16 0.1
Montenegro MNE 7 0.2
Netherlands NLD 17 1.4
Norway NOR 16 1.2
Poland POL 19 1.5
Portugal PRT 11 0.9
Romania ROU 11 0.8
Russia RUS 27 0.8
Serbia SRB 8 0.2
Slovakia SVK 4 0.2
Slovenia SVN 7 0.4
Spain ESP 22 1.4
Sweden SWE 26 1.3
Switzerland CHE 17 1.5
Turkey TUR 61 1.2
Ukraine UKR 5 0.1
United Kingdom GBR 71 1.5

Fig. 2. External Spillover Index of each country in relation with its GDP per capita
at 2020. Red line represents a linear regression in logarithmic scale. Dotted horizontal
line marks an EI is equal to 1. The table displays the number of firms in each country
together with the EI. (Color figure online)
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We calculate the External Spillover Index for each country presented in (5),
dividing the weighted addition of spillovers from its firms to other countries by
the weighted addition of all spillovers from foreign firms to firms that belong to
that country.

In Fig. 2 we show the relation of EI and GDP per capita for all 35 studied
European countries. In addition, we present a table with the number of firms and
the EI for each country in our analysis. In the figure we find how the majority of
firms accumulate around the red line, which represents a linear regression with
logarithmic scale, meaning possible relation, and proved true. We find how there
is a hub on the bottom left of the plot. This hub represents countries with lower
GDP per capita and lower EI, meaning countries that receive more influence from
other countries than the spillover that they apport to the system. Examples of
countries here are Bosnia and Herzegovina (HRV), Ukraine (UKR) and Latvia
(LVA). On the center-top of the figure we find another hub, which represents
medium-high GDP per capita countries together with an EI greater than one,
meaning countries that influence others more than they receive influence in terms
of return volatility spillovers. We find here Germany (DEU), United Kingdom
(GBR) or Austria (AUT). There are some examples of countries that do not
follow the general regression. Bottom-right we find Iceland (ISL) and Ireland
(IRL), with a large GDP per capita but low EI. On the counterpart, top-left
we find Turkey (TUR) and Poland (POL), whose influence on other countries is
greater than received (EI greater than one), but who have a low GDP per capita
across Europe.

5 Conclusions

We calculate stochastic volatilities together with the spillover network using
individual stock returns of 645 European firms. Our objective was to show the
difference of spillover relations of countries between them regarding their GDP
per capita. We provided the External Spillover Index, an indicator that shows the
direction of external spillovers of a subgroup of firms, in our case the country. We
show that countries with higher GDP per capita tend to influence more other
countries than they receive influence, and we proved an exponential relation
between GDP and EI. However, there are some heterogeneities, as countries like
Ireland and Iceland present a greater received influence from other countries,
while their GDP per capita is higher than most European countries. On the
counterpart, countries like Turkey or Poland have lower GDP per capita but
show a greater influence on other countries relative to their received spillovers.
From a risk management perspective, we believe that the External Spillover
Index is a useful tool for asset management when predicting future volatility
returns.
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