
ZDD Boolean Synthesis⋆

Yi Lin �1 , Lucas M. Tabajara1 ⋆⋆, and Moshe Y. Vardi1

Rice University, Houston TX 77005, USA
vardi@cs.rice.edu, l.martinelli.tabajara@gmail.com, yl182@rice.edu

Abstract. Motivated by applications in boolean-circuit design, boolean
synthesis is the process of synthesizing a boolean function with multi-
ple outputs, given a relation between its inputs and outputs. Previous
work has attempted to solve boolean functional synthesis by converting a
specification formula into a Binary Decision Diagram (BDD) and quan-
tifying existentially the output variables. We make use of the fact that
the specification is usually given in the form of a Conjunctive Normal
Form (CNF) formula, and we can perform resolution on a symbolic rep-
resentation of a CNF formula in the form of a Zero-suppressed Binary
Decision Diagram (ZDD). We adapt the realizability test to the context
of CNF and ZDD, and show that the Cross operation defined in earlier
work can be used for witness construction. Experiments show that our
approach is complementary to BDD-based Boolean synthesis.

Keywords: Boolean synthesis · Binary decision diagram · Zero-suppressed
binary decision diagram · Quantifier elimination · Resolution.

1 Introduction

Boolean functions are widely used in electronic circuits, and thus in many as-
pects of computing, to describe operations over binary values. Often the most
natural way to express such an operation is as a declarative relation between in-
puts and outputs. Implementing these operations in practice, however, requires
a functional, rather than declarative, representation. The process of constructing
a function that generates outputs directly from inputs, based on a given declar-
ative relation between them, is called boolean synthesis. For example, boolean
synthesis can be applied in constructing a full logical circuit from a relational
specification [9,15] or an unknown intermediate component in an existing log-
ical circuit [12]. Boolean synthesis is also useful for computing certificates for
quantified boolean formulas (QBF), and advances in QBF solving and boolean
synthesis are motivated by each other [3,20].

Formally, we are given a specification f(x⃗, y⃗), from Bm × Bn to B, relating
two sets of boolean variables. The specification holds true if and only if y⃗ is a
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correct output for the inputs x⃗. We solve the synthesis problem following the
convention of splitting it into two sub-problems [9]:

1. Realizability : constructing the realizable set R ⊆ Bm of input assignments x⃗
for which there exists an output assignment y⃗ such that f(x⃗, y⃗) = 1.

2. Witness construction : constructing a witness function g ∶ Bm → Bn that
computes an output y⃗ = g(x⃗) from an input x⃗ ∈ R such that f(x⃗, y⃗) = 1.

Given a propositional formula f as the relational specification, we aim to syn-
thesize a boolean function g that is correct by construction, meaning that as
long as the input is realizable the output will satisfy the specification.

Prior work solved the boolean functional synthesis by converting the specifi-
cation formula into a Binary Decision Diagram (BDD), defined in Section 2, and
quantifying the output variables existentially [9]. BDDs constitute a formalism
for representing Boolean functions, supported by mature tools such as CUDD
[22]. The size of a BDD representing a formula can, however, be exponential
in the number of variables. Oftentimes, it is even not possible to construct the
BDD before starting to solve the problem [9]. Noticing how this blow-up in BDD
size has restricted the potential of existing BDD-based synthesis algorithms, we
seek to develop an algorithm that reduces the impact of this exponential blowup.
Hence we look for an alternative data structure that might be more promising
in representing boolean formulas compactly.

We identify here Zero-Suppressed Binary Decision Diagram (ZDD) [16], de-
fined in Section 2, as such an alternative approach. ZDDs have been shown to
sometimes outperform BDDs in the context of QBF solving [19]. Unlike BDDs,
which represent a boolean formula semantically via the set of satisfying assign-
ments, ZDDs are designed to encode sets of sets [14], allowing them to rep-
resent syntactically a formula in Conjunctive Normal Form (CNF) as a set of
clauses, which are themselves sets of literals. This means that it may require an
exponential-size BDD to represent a CNF formula, which can be alternatively
compactly encoded as a polynomial-size ZDD representation.

It can be expected, however, that this more compact representation comes at
a cost. Since ZDDs do not represent the solution sets directly like BDDs do, solv-
ing realizability and synthesis over this representation might require additional
effort. With this in mind. we perform here a full investigation comparing ZDDs
and BDDs for boolean synthesis. We focus on the following research questions:

1. How do the sizes of the ZDD and BDD representations compare, and how
does this affect the time of compiling the formulas into the diagram repre-
sentation? Are ZDDs always more compact?

2. In realizability, how do ZDDs vs. BDDs perform, in time and space?
3. How do ZDDs perform, compared to BDDs, in witness construction?
4. How does the end-to-end synthesis performance of ZDDs compare to BDDs?
5. For scalable families of formulas, how does the time and space performance

scale as the formula grows, comparing ZDDs to BDDs?

Our synthesis problem can often be expressed as boolean synthesis for CNF
specifications, as the boolean specification in synthesis problems is often given
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in CNF form, and even non-CNF specifications can be easily converted to CNF.
Once specification formulas are given in CNF, it is possible to perform real-
izability by using the resolution operation, which is equivalent to existentially
quantifying the output variables directly from the CNF formula. Each resolu-
tion step increases the number of clauses quadratically. But when a ZDD is
used to represent the CNF formula, even when the number of clauses increases
quadratically, the size of the ZDD tends to increase to a lesser extent.

The crux of our contribution is a boolean-synthesis algorithm that performs
resolution on a symbolic, ZDD-based representation of CNF formulas. To solve
the first sub-problem of realizability, we compute the set R ⊆ Bm of all realizable
inputs, and then check the full and partial realizability of the input domain. The
realizable set is generated by applying resolution to the ZDD representation of
the CNF formula, based on operations defined in previous work [4,5,19].

The second sub-problem requires construction of a witness function g ∶ Bm →
Bn for the output variables y⃗ ∈ Bn. We adapt the formulas defined in previous
work [9] to the context of CNF, eliminating one output variable yi ∈ B at a time,
and make use of the fact that resolution is equivalent to existential quantifica-
tion. In this way we can extract a witness gi ∶ Bm → B for variable yi without
abandoning the ZDD representation.

After substituting the witness of an output variable back in the formula, we
need to compute the next witness. This leads to our next challenge, which is how
to guarantee that the formula remains in CNF after performing this substitution.
The overall form of the entire formula after substitution is dependent on the
form of the substituted witness function gi: clauses where yi is positive can be
converted back to CNF if gi is also in CNF, but clauses where yi is negative
require gi to be in Disjunctive Normal Form (DNF). Thus, what we need are
two equivalent witness functions, one in CNF and the other in DNF.

Our solution is to use the Cross ZDD operation, first defined by Knuth [14].
We show that if the Cross operation, defined on “families of sets” [14], is applied
to a ZDD representation of a CNF formula, then the result can be interpreted
as the ZDD for an equivalent DNF. In this way, with the Cross operation, we
can use the CNF version of a witness for positive occurrences of a variable, and
use the equivalent DNF version for negative occurrences, while both preserving
the equivalence and ensuring that the resulting formula remains in CNF.

Our experimental evaluation confirms the advantages of ZDDs in compila-
tion, thanks to their linear size and direct correspondence to the CNF formula
structure. As expected, this more compact representation can come with a trade-
off of increasing the difficulty of constructing witnesses. Therefore, in synthesis
performance, neither ZDDs nor BDDs dominate across the board, each per-
forming better in different families of formulas. We therefore advocate for the
ZDD-based approach as an addition to the portfolio of boolean synthesis tools,
serving as a complement to BDD-based approaches [11].

As shown in related works on boolean synthesis, there exist alternative tools
including CegarSkolem [13], BFSS [1] and Manthan [10]. Our focus of com-
parison here is, however, on improvements to decision-diagrams based tools
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for boolean synthesis, rather than tools based, for example, on QBF solvers.
Decision-diagram based approaches enjoy some unique advantage. For example,
decision diagrams facilitate partitioned-form representation [23]. Also, decision
diagrams can be used as intermediate-step representation in temporal synthesis
[24]. These unique advantages justify, we believe, our focus here on decision-
diagram based approaches. We return to this point in our discussion of future
work.

2 Preliminaries

Boolean Formulas and Functions. Boolean formulas and boolean functions are
built upon the boolean set B = {0,1}. We identify a boolean formula f(x⃗) over
m propositional variables x⃗ = (x1, . . . , xm) with the boolean function f ∶ Bm → B
such that f(a⃗) = 1 for an assignment a⃗ = (a1, . . . , am) ∈ Bm if and only if a⃗ is a
satisfying assignment to x⃗ in the formula. Two boolean formulas f and f ′ are
logically equivalent if they represent the same boolean function (and therefore
have the same set of satisfying assignments). Substitution of a boolean expression
d(x⃗) in place of a variable xi in a boolean formula f(x⃗) is denoted by f[xi ↦ d]
and defined by f[xi ↦ d](x⃗) = f(x1, . . . , xi−1, d(x⃗), xi+1, . . . , xm).

Conjunctive and Disjunctive Normal Forms. A literal is either a variable or
the negation of a variable. A clause is a disjunction of literals, and a cube is a
conjunction of literals. A boolean formula in the form of a conjunction of clauses
is said to be in Conjunctive Normal Form (CNF), and a boolean formula in the
form of a disjunction of cubes is said to be in Disjunctive Normal Form (DNF).

Definition 1 (Boolean Synthesis Problem). Given a boolean formula f(x⃗, y⃗)
in CNF with m + n boolean variables, partitioned into m input variables x⃗ =
(x1, . . . , xm) and n output variables y⃗ = (y1, . . . , yn), construct:

1. The set R ⊆ Bm, called the realizability set, of all assignments a⃗ ∈ Bm to x⃗
for which there exists an assignment b⃗ ∈ Bn to y⃗ such that f(a⃗, b⃗) = 1.

2. A function g ∶ Bm → Bn such that f(a⃗, g(a⃗)) = 1 for all a⃗ ∈ R. This is
called a witness function. In practice, arbitrary formulas can be converted to
equi-realizable CNF formulas with a linear blowup using Tseytin encoding,
quantifying existentially over Tseytin variables. The witnesses for the equi-
realizable formula can then be used for the original formula.

Binary Decision Diagrams. A (Reduced Ordered) Binary Decision Diagram
(BDD) [2] is a directed acyclic graph that represents a boolean function. In-
ternal nodes of the BDD represent boolean variables, and paths on the BDD
correspond to assignments, leading either to a terminal node 1 if satisfying or
0 if unsatisfying. We assume that all BDDs are ordered, meaning that variables
are ordered in the same way along every path, and reduced, meaning that su-
perfluous nodes are removed and identical subgraphs are merged. Given these
two conditions, BDDs are a canonical representation, meaning that two BDDs
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with the same variable order that represent the same function will be identi-
cal [2]. The variable order used can have a major impact on the BDD’s size, and
two BDDs representing the same function but with different orders can have an
exponential difference in size.

Zero-Suppressed Decision Diagrams. A Zero-Suppressed Binary Decision Dia-
gram (ZDD), is a data structure first defined in [16]. ZDDs are similar to BDDs
but use a different reduction rule: while BDDs remove nodes where both edges
point to the same child, ZDDs remove nodes where the 1-edge (edge assigning the
variable to 1) points directly to the 0-terminal. Specifically, the 0-ZDD encodes
formulas that are always valid, and the 1-ZDD encodes contradiction.

Semantics on Families of Sets. ZDDs can be used to implicitly represent families
of subsets of a set S, where the variables in the ZDD correspond to elements
of S that can be either present or absent in a subset [14]. For a ZDD Z, we
denote by JZK the family of subsets represented by Z. We define J0K = ∅ and
J1K = {∅} for the terminals 0 and 1, respectively. Using Z(x,Z0, Z1) to denote
a ZDD with variable x as the root, ZDD Z0 as the 0-child and ZDD Z1 as the
1-child, we define JZ(x,Z0, Z1)K = JZ0K∪{{x}∪α ∣ α ∈ JZ1K}. Note that using this
interpretation every subset in the family corresponds to a path to the terminal
1 on the ZDD. Since CNF formulas can be viewed as sets of clauses, where a
clause can be viewed as a set of literals, we can use ZDDs to represent CNF
formulas syntactically. When representing a formula in CNF by a ZDD, for each
atomic proposition p we treat its positive and negative literals p and (¬p) as
two distinct variables xp and x¬p. Then every path leading to the 1-terminal
corresponds to a clause in the CNF formula, where xl connects to its 1-edge in
the path if and only if the literal l is in the corresponding clause.

ZDD Operations. We use standard ZDD operations such as Subset0, Subset1,
Change, Union, Intersect, and Difference, defined previously in [17] and imple-
mented in the CUDD package [22]. In terms of families of sets, Subset0 (Z , x)
returns the family of all sets α such that α ∈ JZK and x /∈ α, and Subset1 (Z , x)
returns the family of all sets α ∖ {x} such that α ∈ JZK and x ∈ α. Change(Z , x)
returns the family {α ∪ {x} ∣ α ∈ JZK and x /∈ α} ∪ {α ∖ {x} ∣ α ∈ JZK and x ∈ α}.
The operation Resolution(x, Z) returns the ZDD representing the result of ap-
plying resolution to variable x in the CNF represented by Z. It is implemented
following [4], using the operations SubsumptionFreeUnion, which takes the union
of two families of sets while removing subsumed sets, and ClauseDistribution,
which returns the family of sets resulting from applying distribution over two
given sets of clauses. The witness-construction phase also requires the Cross op-
eration defined in [14] to convert between CNF and DNF representations. See
Section 4 for details.
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3 Realizability Using ZDDs

We describe in this work a ZDD-based algorithm to solve the Boolean-Synthesis
Problem described in Definition 1. This means that the specification f(x⃗, y⃗),
the realizability set R and the witness function g are all represented by CNF
formulas encoded as ZDDs, as defined in Section 2. In this section we describe
how to compute the realizability set R and analyze it to answer whether the
specification is partially or fully realizable. In Section 4 we describe how to
compute the witness function g.

3.1 Realizable Set R

In order to construct the set R of realizable assignments to the input variables
x⃗, as described in Definition 1, we need to quantify existentially the output
variables y⃗, analogously to the BDD-based approach of [9].

Let f0, . . . , fn be CNF formulas such that

fn ≡ f
fn−1 ≡ (∃yn)f
. . .

fi ≡ (∃yi+1) . . . (∃yn−1)(∃yn)f
. . .

f1 ≡ (∃y2) . . . (∃yn−1)(∃yn)f
f0 ≡ (∃y1) . . . (∃yn−1)(∃yn)f

As in [9], the last formula f0 = (∃y1) . . . (∃yn−1)(∃yn)f implicitly represents the
realizable set R, describing the set of satisfying assignments of f0.

To compute f0, . . . , fn as CNF formulas, we apply the resolution operation,
which is equivalent to existential quantification [7]. We first state a normal-form
lemma.

Lemma 1. [4] Let f be a CNF formula. Let f+p denote the conjunction of all
clauses α such that (p∨α) is a clause in f . Let f−p denote the conjunction of all
clauses β such that ((¬p) ∨ β) is a clause in f . Let f ′p denote the conjunction
of clauses γ in f where neither p nor (¬p) is a literal in γ. Then f is logically
equivalent to (p ∨ f+p ) ∧ (¬p ∨ f−p ) ∧ f ′p for a boolean variable p.

Proof. The claim follows from [4].

Next we show how to use resolution to existentially quantify a variable from
a formula in the normal form of Lemma 1.

Lemma 2. Let y be a boolean variable, then the boolean formula (∃y)((y∨f+y )∧
(¬y ∨ f−y ) ∧ f ′y) is logically equivalent to ((f+y ∨ f−y ) ∧ f ′y).
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Proof.

(∃y)((y ∨ f+y ) ∧ (¬y ∨ f−y ) ∧ f ′y)
≡ (∃y)(((y ∧ ¬y) ∨ (y ∧ f−y ) ∨ (f+y ∧ ¬y) ∨ (f+y ∧ f−y )) ∧ f ′y)
≡ ((∃y)(y ∧ f−y ) ∨ (∃y)(f+y ∧ ¬y) ∨ (∃y)(f+y ∧ f−y )) ∧ f ′y (f ′y excludes y)

≡ (((∃y)(y ∧ f−y ) ∨ (∃y)(f+y ∧ ¬y) ∨ (f+y ∧ f−y )) ∧ f ′y) (f+y , f
−
y excludes y)

≡ ((f−y ∨ f+y ∨ (f+y ∧ f−y )) ∧ f ′y) (f+y , f
−
y excludes y)

≡ ((f−y ∨ f+y ) ∧ f ′y)

We call the formula ((f+y ∨ f−y ) ∧ f ′y) the resolution of the variable y in f .
Note that this formula (specifically the subformula (f+y ∨f−y )) is not in CNF, but
can be easily rewritten in CNF by distributing the clauses in f+y over the clauses
in f−y . The equivalence of resolution and existential quantification then follows
from Lemmas 1 and 2 above:

Corollary 1. For a formula f and a boolean variable y, the formula (∃y)f is
logically equivalent to ((f+y ∨ f−y ) ∧ f ′y).

Proof. The claim follows from Lemmas 1 and 2.

We represent f+y , f
−
y , f

′
y by ZDDs by applying the Subset0 and Subset1 op-

erations described in Section 2: Z+
y = Subset1(Z, y), Z−

y = Subset1(Z,¬y), and
Z ′
y = Subset0(Subset0(Z, y),¬y). We then use the ClauseDistribution opera-

tion to distribute the clauses of Z+
y over Z−

y , and the SubsumptionFreeUnion
operation to combine all clauses into a single ZDD. This implements the op-
eration Resolution(yi, Z) mentioned in Section 2. In practice, we follow the
Cut-Elimination Algorithm of [4], which also eliminates tautologies by removing
clauses where the same variable appears both positively and negatively. There-
fore we can assume that the ZDD representations of f0, . . . , fn do not include
subsumed and tautological clauses, which may also lead to smaller ZDDs.

The advantage of applying resolution symbolically over a ZDD representa-
tion, rather than directly over the CNF formula is that every resolution step
increases the number of clauses in the formula quadratically. Thus, the number
of clauses after multiple resolution steps can easily grow exponentially. ZDDs,
compared to representing clauses explicitly, are well-equipped for representing
compactly large sets of clauses, often being able to represent an exponential set
of clauses in polynomial space [16]. The ZDD representation also makes it easy
to remove subsumed and tautological clauses, further reducing size.

3.2 Full and Partial Realizability

When the realizable set R is represented by a BDD, as in [9], it is easy to check
whether R = ∅ or R = Bm, as this corresponds to the BDD being equal to 0
or 1, respectively. This is less straightforward for a ZDD representation, which
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expresses R indirectly by the set of clauses in its CNF representation f0, rather
than the set of assignments itself. We say that a CNF specification f(x⃗, y⃗) is
fully realizable if and only if all a⃗ ∈ Bm have some b⃗ ∈ Bn so that f(a⃗, b⃗) holds.
This corresponds to R = Bm. Similarly, we say that f is partially realizable if and
only if there is some a⃗ for which there exists some b⃗ so that f(a⃗, b⃗) holds. This
corresponds to R ≠ ∅. After computing a ZDD representation of R, we wish to
check full and partial realizability over this representation.

Theorem 1. The CNF specification f(x⃗, y⃗) is fully realizable if and only if the
ZDD for f0 is equivalent to the 0-ZDD.

Proof. The specification f(x⃗, y⃗) is fully realizable if and only if the CNF for-
mula f0 representing R is a tautology, which means that every clause of R has
both p and ¬p for some variable p, i.e., every clause is a tautology. Tautologies,
however, are automatically removed by the Resolution operation, as explained
in Section 3.1. Thus, full realizability occurs if and only if the set of clauses is
empty, represented by the ZDD 0.

Note that the realizability R is represented by the CNF formula f0 ≡ (∃y1) . . .
(∃yn)f , which does not contain any free occurrences of y⃗ variables. We then per-
form resolution on the x⃗ variables in the same way as we did for the y⃗ variables.
Then the original formula is partially realizable if and only if (∃x1)(∃x2) . . .
(∃xm)f0 is true, meaning that resolution does not derive a contradiction. If a
contradiction is derived, the resulting ZDD is the terminal 1, representing the
empty clause. Otherwise it is the terminal 0.

Theorem 2. The CNF specification f(x⃗, y⃗) is partially realizable if and only if
the ZDD representing (∃x1)(∃x2) . . . (∃xm)f0 is equivalent to the 0-ZDD.

Proof. Since all variables are existentially quantified, the ZDD must be either
the terminal 0 (representing the empty CNF, equivalent to true) or the terminal
1 (representing a CNF with an empty clause, equivalent to false). In the first
case, the formula (∃x1) . . . (∃xm)(∃y1) . . . (∃yn)f is true, meaning that there
is an assignment that satisfies f(x⃗, y⃗), which by definition makes f partially
realizable. In the second case, the formula is false, meaning that there is no such
assignment, and therefore f is not partially realizable.

4 Synthesis Using ZDDs

As described in [9], once we have computed the formulas f1, . . . , fn with the out-
put variables existentially quantified, we can construct the witness gi for variable
yi from the formula fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1], after having computed the wit-
nesses g1, . . . , gi−1 for the preceding variables. In [9], two witness functions were
presented for variable yi: the default-1 witness fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1][yi ↦
1] and the default-0 witness (¬fi)[y1 ↦ g1] . . . [yi−1 ↦ gi−1][yi ↦ 0]. In this work,
however, we additionally want to ensure that we maintain the CNF form of the
specification after substituting g1, . . . , gi−1 into fi, to enable ZDD representation.
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In this section we show how to construct and substitute witnesses so that the
result remains in CNF.

For ZDD-based algorithms, the iterated substitution approach requires more
sophistication for the construction of the witnesses, compared to the iterated-
substitution approach for BDDs. We solve this problem in Section 4.2. As in [9],
the resulting witnesses guarantee that f(a⃗, g1(a⃗), . . . , gn(a⃗)) = 1 for all realizable
input assignments a⃗ ∈ R.

4.1 Witnesses for Single-Dimension Output Variable

As in [9], we start by defining witnesses for the case when there is a single output
variable:

Lemma 3. Let f be a CNF formula over boolean variables x1, . . . , xm, y. Then
the formulas f−y and ¬f+y are witnesses for the variable y.

Proof. The realizability set, as defined in Section 3.1, is R = {a⃗ ∈ Bm ∣ (∃y)f[x⃗↦
a⃗] ≡ 1}. Thus, by Corollary 1, for all a⃗ ∈ R

((f+y ∨ f−y ) ∧ f ′y)[x⃗↦ a⃗] ≡ 1. (1)

Hence f ′y[x⃗↦ a⃗] ≡ 1 and either f+y [x⃗↦ a⃗] ≡ 1 or f−y [x⃗↦ a⃗] ≡ 1.
Now we want to show f(a⃗, g(a⃗)) = 1, i.e., f[y ↦ g(x⃗)][x⃗ ↦ a⃗] = 1, for both

g(x⃗) = f−y and g(x⃗) = ¬f+y .
For g(x⃗) = f−y , since f ≡ f ′y ∧ (y ∨ f+y ) ∧ ((¬y) ∨ f−y ), we are left to show

f[y ↦ f−y ][x⃗ ↦ a⃗] ≡ (f ′y ∧ (f−y ∨ f+y ) ∧ ((¬f−y ) ∨ f−y ))[x⃗ ↦ a⃗] ≡ 1. By (1) we are
only left to show ((¬f−y ) ∨ f−y )[x⃗↦ a⃗] ≡ 1, which follows from the left-hand side
being a tautology.

Similarly, for g(x⃗) = ¬f+y , we need to show f(a⃗, g(a⃗)) = f[y ↦ (¬f+y )][x⃗ ↦
a⃗] ≡ 1. This is equivalent to showing that (f ′y∧((¬f+y )∨f+y )∧(f+y ∨f−y ))[x⃗↦ a⃗] ≡ 1.
By (1) we are only left to show ((¬f+y ) ∨ f+y )[x⃗↦ a⃗] ≡ 1, a tautology.

Note that the witness f−y is in CNF, while the witness ¬f+y , being the negation
of a CNF formula, can be more easily represented in DNF. Note also that these
witnesses do not correspond exactly to the default-1 and default-0 witnesses
of [9], which would more specifically be equivalent to f−y ∧ f ′y and ¬(f+y ∧ f ′y),
respectively. We choose the alternative witnesses because they contain fewer
clauses, and thus are more likely to produce a more efficient ZDD representation.

4.2 Preserve CNF by Equivalent Witnesses

We now explain how to construct witnesses of multiple output variables. Let
fn, . . . , f0 be as defined in Section 3.1. We can then compute a witness for each
yi iteratively, as in [9]. Using the f−y witness from Lemma 3, for example, this
means gi(x⃗) = (fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1])−yi

, where gi is the witness for variable
yi.
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The substitution fi[y ↦ g], however, is not necessarily in CNF. But Lemma 3
requires that the formula is in CNF in order to extract the next witness. This
means that we need to find a way to perform the substitution in a way that the
result remains in CNF.

Recall that, since our Resolution operation removes tautological clauses, each
variable can only occur in positive or negative form in a clause, but not both. If
the witness g is in CNF, e.g., g = f−y , we can substitute this witness in a clause
(y∨ l1∨ l2∨ . . .) where y occurs in positive form. The result is a disjunction of the
literals l1, l2, . . . and the CNF g = (cl1 ∧ cl2 ∧ . . .). By distribution, we can write
this as an equivalent CNF ((cl1∨ l1∨ l2∨ . . .)∧(cl2∨ l1∨ l2∨ . . .)∧ . . .). Likewise, if
the witness g for y is in DNF, e.g., g = (¬f+y ), then, after the substitution, every
clause (¬y ∨ l1 ∨ l2 ∨ . . .) where y appears in negative form can be converted to
the CNF (¬(¬(cl1 ∧ cl2 ∧ . . .)) ∨ l1 ∨ l2 ∨ . . .) ≡ ((cl1 ∧ cl2 ∧ . . .) ∨ l1 ∨ l2 ∨ . . .) ≡
((cl1 ∨ l1 ∨ l2 ∨ . . .) ∧ (cl2 ∨ l1 ∨ l2 ∨ . . .) ∧ . . .).

The problem, therefore, is that if we want the result to be in CNF, CNF
witnesses work well for positive occurrences, while DNF witnesses work well
for negative occurrences. Thus, as long as we can find an efficient conversion
between CNF formulas and their equivalent DNF formulas, we can ensure that
the substitution formula fi[y ↦ g] can be written as a CNF. For this purpose,
we introduce the Cross operator from [14].

Definition 2 (Cross operation).
Let S be a family of sets of literals. Then

Cross(S) = Minimal{t ∣ ∀si ∈ S ∶ t ∩ si ≠ ∅},

where
Minimal(S) = {t ∈ S ∣ ∀s ∈ S ∶ s ⊆ t→ s = t}.

Hence, Cross(S) is a family of sets of literals, such that every set t of literals in
Cross(S) has at least a common literal with every set of literals in S. Moreover,
every set t in Cross(S) is irredundant [14], meaning they are the smallest possible
sets satisfying this property.

Specifically, if S represents a given CNF f , where every set si ∈ S represents
a clause and the elements of si are the literals in that clause, then Cross(S)
represents the set of smallest possible sets t such that t has at least one com-
mon literal with every disjunctive clause of f . Equivalently speaking, Cross(S)
collects all t such that every disjunctive clause is satisfied, i.e., it is a collec-
tion of all irredundant sets of literals corresponding to irredundant assignments
to variables. This further means Cross(S) is a collection of prime implicants
of f [6,14], whose disjunction has been proved to be a DNF equivalent to the
CNF f . Therefore, whenever a CNF is given, we can construct a set S of sets,
where every set in S collects literals in a disjunctive clause of the CNF. Then
Cross(S) returns a set of sets representing an equivalent DNF. Conversely, when
interpreted as a DNF, Cross(S) is equivalent to S interpreted as a CNF.

By the analysis above, we can extend Definition 2 of the Cross operation to
CNF formulas:
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Definition 3 (CNF Cross operation). Let f be a CNF formula cl1∧ . . .∧clk,
where every cli = ⋁`∈Li

` is a clause formed by the disjunction of a set of literals
Li. Let S = {L1, . . . , Lk} be the representation of f as a family of sets. Then,

Cross(f) = ⋁
L′i∈Cross(S)

⋀
`∈L′i

`

Note that Cross(f) is a DNF formula. We can similarly define in an analogous
way the Cross of a DNF formula as a CNF formula. We can verify that Cross(f)
and f are equivalent:

Lemma 4. For a CNF formula f , Cross(f) ≡ f .

Proof. By analysis above, the set Cross(S) includes elements L′is which are
irredundant smallest sets that each has common literal with every set of literals
in S. Therefore, every conjunction ⋀`∈L′i `, or cube, has common literal with every
disjunctive clauses in CNF f , and thus every cube has the same boolean values
under the same set of truth assignments as a prime implicant [6,21] of CNF f .
Then it follows that the DNF Cross(f), as a disjunction of these conjunctions,
is logically equivalent to the disjunction of all prime implicants of the CNF f ,
as proved by previous works [21].

Note that the same result also holds for DNF formulas, following from the
fact that Cross(f) ≡ f if and only if ¬Cross(f) ≡ ¬f .

Now we aim to show how to construct witnesses one by one, why this con-
struction is correct, and why this construction is viable. First, if we fix the
witness gj = (fi)−yj

, and substitute positive and negative occurrences with gj
and Cross(gj) in the CNF formula fi, then the equivalence and CNF form of
fi[yj ↦ gj] can both be preserved. We use the following lemma:

Lemma 5. Let f and g be given as CNF formulas. Then f[y ↦ g] is equivalent
to (g ∨ f+y ) ∧ (¬Cross(g) ∨ f−y ) ∧ f ′y.

Proof. By Lemmas 1 and 4, f[y ↦ g] ≡ ((y ∨ f+y ) ∧ (¬y ∨ f−y ) ∧ f ′y)[y ↦ g] =
(g ∨ f+y ) ∧ (¬g ∨ f−y ) ∧ f ′y ≡ (g ∨ f+y ) ∧ (¬Cross(g) ∨ f−y ) ∧ f ′y.

Since g = f−y is a CNF formula, Cross(g) is a DNF formula, and ¬Cross(g)
is a CNF. By distribution of f+y over clauses in g, and distribution of f−y over
clauses in ¬Cross(g), the resulting expression (g ∨ f+y ) ∧ (¬Cross(g) ∨ f−y ) ∧ f ′y
can be converted to CNF form.

Alternatively, we can pick the witness g = ¬f+y , and instead substitute Cross(g)
on positive occurrences and g on negative occurrences of y. Similarly, the formula
(Cross(g) ∨ f+y ) ∧ (¬g ∨ f−y ) ∧ f ′y can also be converted to an equivalent CNF.
Therefore, the equivalence and CNF form is preserved for fi[yj ↦ gj], leading
to the following corollary.

Corollary 2. Every step in gi(x⃗) = (fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1])−yi
can be per-

formed so it returns a CNF formula.
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Proof. Corollary 2 follows from Lemma 3, Definition 3, and Lemma 5

Finally, we have the witnesses constructed in this process:

Theorem 3. Let gi(x⃗) = (fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1])−yi
for 0 ≤ i ≤ n. Then,

gi is a witness for yi in f , for every yi. The same applies if gi(x⃗) = ¬(fi[y1 ↦
g1] . . . [yi−1 ↦ gi−1])+yi

Proof. Theorem 3 follows from Lemma 5 and Corollary 2.

4.3 Algorithm for Constructing Witnesses

In the last subsection we described how to uses Knuth’s Cross operation to
facilitate CBF/DNF conversion, enabling the use of iterated substitution. We
describe our novel algorithm for synthesis using ZDDs.

We start by presenting the ZDD implementation of Cross function from
Definition 2, following [14]:

if ZDD Z is the 1-terminal then
return 0-terminal ;

else if ZDD Z is the 0-terminal then
return 1-terminal ;

else
// Zl denotes the ZDD rooted at 0-child of root of Z
// Zh denotes the ZDD rooted at 1-child of root of Z
Zr = Union(Zl, Zh);
Zll = Cross(Zr);
Zr = Cross(Zl);
Zhh = Difference(Zr, Zll);
// Var(Z) denotes the variable at the root node of Z
Z ′ = NewZDD(Var(Z), Zll, Zhh);
return Z’ ;

end
We now explain how to perform the substitution following Lemma 5, where

we want to construct a ZDD of f[y ↦ g], where f and g are CNF formulas and
y is a variable. Denote the ZDD representation of f as Zf and that of g as Zg.
Then we compute the ZDD Cross(Zg) using the algorithm above. Recall that
this ZDD represents a DNF formula that is equivalent to g.

To construct a ZDD for the formula in Lemma 5, we need a ZDD for ¬Cross(g).
But note that the ZDD for the CNF ¬Cross(g) is equal to the ZDD for the DNF
Cross(g) except replacing every positive literal p with the its negative literal ¬p
and vice-versa. Therefore, we want to swap p and ¬p in Cross(Zg).

We retrieve the clauses with neither p nor ¬p by

Z1 = Subset0 (Subset0 (Cross(Zg), p),¬p).

Then we swap p with ¬p in every clause where p appears positively:

Z2 = Change(Subset1 (Cross(Zg), p),¬p).
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And we swap ¬p with p in every clause where p appears negatively:

Z3 = Change(Subset1 (Cross(Zg),¬p), p).

Finally, taking the union of Z1, Z2 and Z3 gives us the ZDD ¬Cross(Zg)
encoding the CNF for the negation of Cross(Zg).

Let Z+
y , Z

−
y and Z ′

y be the ZDDs for f+y , f
−
y and f ′y, respectively, constructed

as described in Section 3.1. We compute the ZDDs for (g∨f+y ) and (¬Cross(g)∨
f−y ) by ClauseDistribution(Zg, Z

+
y ) and ClauseDistribution(¬Cross(Zg), Z−

y ), re-
spectively. We then take the Union of these two ZDDs and Z ′

y to get the ZDD
for (g ∨ f+y ) ∧ (¬Cross(g) ∨ f−y ) ∧ f ′y, which is exactly the ZDD for f[y ↦ g] by
Lemma 5.

5 Experimental Evaluations

5.1 Experimental Methodology and and Setting

We perform a comparison between our ZDD-based synthesizer, ZSynth, and
the tool RSynth described by [9], using challenging ΠP

2 benchmarks from the
QBFEVAL 2016 data set [18], the latest QBFEVAL set that includes a 2QBF
(forall-exists) track, which is the format our benchmarks require. Each bench-
mark ran for 24 hours on Rice University’s NOTS cluster with 64G RAM size. We
focus our comparison on the Fixpoint Detection, MutexP, and QShifter bench-
mark families, omitting those families that are either too easy or too hard to
solve for both tools, namely, the Tree, Ranking Functions, Reduction Finding,
and Sorting Networks families [18]. For those families, either both tools solved
all instances or none. Of these omitted benchmark families, Tree is very simple
and is solved very quickly by both tools, while the others could be synthesized
by neither tool. therefore we choose to focus on the three families that pro-
vide an interesting comparison. Fixpoint Detection, MutexP and QShifter have,
respectively, 146, 7, and 6 instances.

For each tool we evaluate both total time and peak memory consumption
for compilation, realizability, and synthesis, as well as the DD size for the orig-
inal formula in each symbolic representation. We use the maximum cardinal-
ity search (MCS) heuristic [23] to determine the ordering of variables in both
ZDDs and BDDs.Due to restrictions on available time and space resources, some
benchmarks show out-of-time and out-of-memory failures. We measure the per-
formance of both tools on the benchmarks that are solved. The experimental
evaluations conclude that the ZDD-based approach is complementary to the
BDD-based approach.

5.2 Compilation Time and Size of Diagram Representing Original
Formula

We first compare the performance of CNF compilation into ZDDs and BDDs, fol-
lowing the first research question proposed in Section 1. The log-scale bar plot in
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Fig. 1 presents compilation time for the benchmarks from the selection families,
per Section 5.1. The size of the bars representing each formula is proportional
to the compilation time.

The compilation into a ZDD takes polynomial (at most quadratic) time,
because paths in the ZDD correspond to clauses, and therefore the size of the
ZDD is always linear in the size of the formula. In contrast, the compilation into
a BDD can be exponential, because paths in a BDD correspond to assignments,
and therefore the number of paths can be exponential. The advantage of ZDDs as
a compact representation is consistent with our conjecture. Across all benchmark
families in QBFEVAL’16, compilation into ZDDs takes less time and space than
BDDs in most cases.

It is worth noting that we construct here the ZDD representation of the CNF
formulas by adding one clause at a time using the Union operator. Compilation
could be further optimized by using a divide-and-conquer approach, where we
split the set of clauses in half, construct ZDDs for each half recursively, and then
take their union.

Fig. 1: Compilation time of the CNF: red = BDD, blue = ZDD

5.3 Realizability Time

The plot in Fig. 2 summarizes for each family the time spent on constructing
the realizability set and checking partial and full realizability. The dashed lines
in red illustrate RSynth results, while the solid lines in dark blue with the same
shapes show ZSynth results. As each solvers have the families where it has an
advantage in, we note how many instances of each family each solver is able to
solve within a given time. We include data for all benchmarks that completed the
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Fig. 2: Percentage solved for realizability within a given timeout. Dashed red =
BDD, solid blue = ZDD.

realizability phase. The graph plots the percentage of benchmarks in each family
that RSynth and ZSynth complete for a given timeout, with 100% meaning that
all instances of that family were solved.

We see from Fig. 2 that RSynth solves more cases of the Fixpoint Detection
family, and does so faster than ZSynth. Most of the cases it solves are completed
in under 10ms. On the other hand, ZSynth has the advantage in the QShifter
and MutexP families, for which it is able to solve more cases in a shorter time.
Therefore, ZSynth and RSynth each performs better on different families of
benchmarks. This allows us to answer the second research question proposed
in Section 1 with the observation that neither approach dominates across the
board, rather realizability performance is dependent on the benchmark family.
As we see below in Section 5.4, these general results also extend to end-to-end
synthesis.

5.4 End-to-End Time and Peak Memory

Our observations for end-to-end synthesis time–including compilation, realiz-
ability, and witness construction–are plotted in Fig. 3. Similarly to realizability
time, the total end-to-end synthesis time shows strongly family-dependent re-
sults. Both ZSynth and RSynth display better relative performance on the same
families as they did for realizability. In families where ZSynth solves more in-
stances, including QShifter and MutexP, ZSynth also takes less time in most
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Fig. 3: Percentage solved end-to-end within a given timeout. Dashed red = BDD,
solid blue = ZDD.

cases, and vice-versa for those families where RSynth solves more benchmarks
end-to-end.

We observed in our experiments that memory and time were generally cor-
related, meaning that benchmarks that took more time also consumed more
memory. This is expected when dealing with algorithms based on decision dia-
grams, since the biggest factor that impacts the performance of such algorithms
is diagram size. In practice, memory comparison between RSynth and ZSynth
in compilation, realizability and witness construction have similar patterns as
the time comparison. Even if ZDDs have an advantage in representing the initial
specification, the overall memory consumption for realizability and synthesis is,
similarly to running time, largely dependent on the benchmark family.

5.5 Scalable Benchmarks Show ZDD has Slower Growing Demands
of Time and Space

To analyze the scalability of ZDDs in relation to BDDs, as per the fifth research
question in Section 1, we take a closer look at the running time and node counts of
ZSynth and RSynth in the benchmarks of the QShifter family. All benchmarks in
this family follow the same structure, just scaled based on a numerical parameter.
For a parameter n, qshifter_n has 22n+1 clauses, 2n +n input variables and 2n

output variables, so we expect to see exponential trends in the measured values.
The results can be found in Fig. 4, which considers only QShifter because it

can be scaled based on a parameter, and RSynth did not solve enough instances
of MutexP to have an interesting scalability comparison. Since RSynth solves
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only up to the smallest instances in the QShifter family, we use the maximal
time limit, illustrated by the “X” in the plot not connected to any line, as a con-
servative underestimation for the running time of further instances. (Therefore,
the compilation, realizability and end-to-end times for RSynth in qshifter_5
must be higher than the “X” mark.) As QShifter benchmarks are regular in their
constructions, we can observe the trend of the exponent.

The results for RSynth, both for time and number of nodes, always has a
steeper slope in the parameter n. Since the graph is in log scale, straight lines
represent an exponential increase, and the slope represents the coefficient of the
exponent. Therefore, although both ZSynth and RSynth grow exponentially, in
both time and space, ZSynth is more efficient by an exponential factor.

These results suggest that there are families for which we can expect ZDD
synthesizers to require significantly fewer resources in time and space as the size
of the formulas grows. The QShifter family is one example of a family where the
ZDD algorithm performs better by an exponential factor.

Fig. 4: Scalable family evaluations: dashed red = BDD, solid blue = ZDD.

5.6 Overall Comparison

As explained in Section 5.1, we focus on evaluating the synthesizers on the
Fixpoint Detection, QShifter, and MutexP families of benchmarks [18]. ZSynth
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Table 1: Percentage of end-to-end completed instances in each family.
Benchmark Family Name RSynth (BDD) ZSynth (ZDD)

Fixpoint Detection 30.82% 20.55%
MutexP 14.29% 42.86%

QShifter (scalable) 28.57% 100%

shows clear time and space advantages on the MutexP and QShifter families,
while RSynth performs better in the Fixpoint Detection family. In Table 1, we
show how much of each family either tool was able to solve.

Next, we summarize the overall results of our experimental performance com-
parison. In families where ZDD completed more instances end-to-end, we can see
that ZDD has better performance in all bases of comparison, including compi-
lation, realizability, and end-to-end time, as well as diagram node count for the
original formula and peak node count. Additionally, Section 5.5 shows that there
exist families of scalable benchmarks for which the time and space demands of
ZDDs grow more slowly than BDDs by an exponential factor, as illustrated by
the smaller slope in Fig. 4.

Even in the Fixpoint Detection family, where BDDs solve more instances,
ZDDs show advantages in compilation time, initial diagram size, and smaller
scaling slopes in time and space. In realizability and overall synthesis perfor-
mance, neither our ZDD-based algorithm nor the BDD-based algorithm dom-
inates across the board, each performing better in those families where it can
solve more instances.

6 Conclusion

We conclude that ZDD-based algorithms are competitive with those based on
BDDs, and both have their place in a portfolio of solvers for boolean synthe-
sis. Since both BDDs and ZDDs can be converted to circuits, we advocate
that an industrial solver would benefit from both approaches. In CNF-specified
boolean-synthesis problems, BDD and ZDD are orthogonal approaches, and cir-
cumstances exist where each one of the solvers shows leading performance. For
this type of problems, our portfolio advocates a multi-engine approach that is
inclusive of both approaches.

As most tools for QBF solving and synthesis solving handle the input formula
monolithically, future research based on this work includes an exploration of
partitioning of variables [8] and factored synthesis [23] in the context of ZDDs.
Another direction is to explore the usage of ZDD-based techniques in the context
of temporal synthesis, cf. [24].
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