
CoVeriTeam: On-Demand Composition of
Cooperative Verification Systems

Dirk Beyer � and Sudeep Kanav

LMU Munich, Munich, Germany

Abstract. There is no silver bullet for software verification: Different
techniques have different strengths. Thus, it is imperative to combine
the strengths of verification tools via combinations and cooperation.
CoVeriTeam is a language and tool for on-demand composition of cooper-
ative approaches. It provides a systematic and modular way to combine
existing tools (without changing them) in order to leverage their full
potential. The idea of cooperative verification is that different tools help
each other to achieve the goal of correctly solving verification tasks.
The language is based on verification artifacts (programs, specifications,
witnesses) as basic objects and verification actors (verifiers, validators,
testers) as basic operations. We define composition operators that make it
possible to easily describe new compositions. Verification artifacts are the
interface between the different verification actors. CoVeriTeam consists
of a language for composition of verification actors, and its interpreter.
As a result of viewing tools as components, we can now create powerful
verification engines that are beyond the possibilities of single tools, avoid-
ing to develop certain components repeatedly. We illustrate the abilities
of CoVeriTeam on a few case studies. We expect that CoVeriTeam will
help verification researchers and practitioners to easily experiment with
new tools, and assist them in rapid prototyping of tool combinations.

Keywords: Cooperative Verification · Tool Development · Software Verification
· Automatic Verification · Verification Tools · Tool Composition · Tool Reuse

1 Introduction

As research in the field of formal verification advanced, the complexity of the
programs under verification also kept on increasing. As a result, despite its
successful application to the source code of large industrial and open-source
projects [2, 3, 23, 27, 36], the current techniques fall short on solving many im-
portant verification tasks. It seems essential to combine the strengths of dif-
ferent verification techniques and tools to solve these tasks.

The verification community successfully applies different approaches to com-
bine ideas: integrated approaches (source-code-based), where different pieces
of source code are integrated into one tool [28], and off-the-shelf approaches
(executable-based), where different executables from existing tools are combined
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without changing them. The latter can be further classified into sequential and
parallel portfolio [33], algorithm selection [37], and cooperative approaches [22].

The integrated approaches require development effort for adaptation or im-
plementation of integrated components instead of building on existing mature
implementations—the combination is very tight. On the other hand, the standard
off-the-shelf approaches (portfolio [33] and selection [37]) let the tools run in
isolation and the individual tools do not cooperate at all. The components do not
benefit from the knowledge that is produced by other tools in the combination—
the combination is very loose. In this work, we focus on cooperative verification,
which is neither as tight as source-code integration nor as loose as portfolio
and selection approaches—somewhere in between the two extremes.

Cooperative verification [22] is an approach to combine different tools for
verification in such a way that they help each other solving a verification task,
where the combinations are neither too tight nor too loose. Implementations
include using a shared data base to exchange information (e.g., there are co-
operative SAT solvers that use a shared set of learned clauses [34], and coop-
erative software verifiers that use a shared set of reached abstract states [14])
or pass information from one tool to the other (e.g., conditional model check-
ers [13, 25]). Cooperative verification aims to combine the individual strengths
of these technologies to achieve better results. Our thesis is that programming
(meta) verification systems based on combination and cooperation could be a
promising solution. CoVeriTeam provides a framework to achieve this.

Developing such a tool is not straightforward. Various concerns that need
to be addressed for developing a robust solution can be broadly divided in
two categories: concepts and execution. (1) Concepts deal with defining the
interfaces for tools, and with the mechanism for their combination. Before tools
can cooperate, we need a common definition of tools based on their behavior.
We need to categorize what a tool does, what inputs it consumes, and what
outputs it produces, before we can use it in a cooperative framework with ease.
In CoVeriTeam, we categorize tools in various types of verification actors, and
the inputs and outputs produced by these actors in verification artifacts. The
actors can be combined with the help of composition operators that define the
mechanism of cooperation. (2) Execution is concerned with all issues during
the execution of a tool. Actors first need to execute to cooperate. This opens
another dimension of challenges and opportunities to improve the cooperation.
To give two examples: a tool might have a too high resource consumption, thus,
resources must be controlled and limited, and tools might interfere with other
executing processes, thus, tools must be executed in isolated containers.

This paper presents CoVeriTeam, a language and tool for on-demand com-
position of cooperative verification systems that solves the above mentioned
challenges. We contribute a domain-specific language and an execution engine. In
the CoVeriTeam language, we can compose new actors based on existing ones
using built-in composition operators. The existing components are not changed,
but taken off-the-shelf from actor providers (technically: tool archives). We do
not change existing software components: the composition is done on-demand
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(when needed by the user) and on-the-fly (it does not compile a new tool from the
components). In other words, existing verification tools are viewed as off-the-shelf
components, and can be used in a larger context to construct more powerful
verification compositions. Our approach does not require writing code in program-
ming languages used to develop the underlying components. In the CoVeriTeam
language, the user can execute tools without fearing that they interact with the
host system or with other tools in an unspecified way. The execution environment,
as well as input and output, are controlled using the Linux features cgroups,
name spaces, and overlay file systems. We use the BenchExec [20] system as
library for convenient access to those OS features via a Python API.
Contributions. We make the following contributions:

1. a language to compose new verification tools based on existing ones,
2. an execution engine for on-the-fly execution of these compositions,
3. case studies implementing combinations in CoVeriTeam that were previously

achieved only via hard-wired combinations, and
4. an open-source implementation and an artifact for reproduction.

In addition to the above mentioned contributions, CoVeriTeam provides the
following features to the end user: (1) CoVeriTeam takes care of downloading
and installing specified verification tools on the host system. (2) There is no need
to learn command-line parameters of a verification tool because CoVeriTeam
takes care of translating the input to the arguments for the underlying tool. This
provides a uniform interface to a number of similar tools. (3) The off-the-shelf
components (i.e., tools) are executed in a container, with resource limits, such
that the execution cannot change (or even damage) the host system.

These features in turn enable a researcher or practitioner to easily exper-
iment with new tools, and rapidly prototype new verification combinations.
CoVeriTeam liberates the researcher who uses tool combinations from main-
taining scripts that combine tools executions, and worrying about downloading,
installing, and figuring out the command to execute a verification tool.
Impact. CoVeriTeam has already found use cases in the verification community:
(1) It was used in a modular implementation of CEGAR [26] using off-the-shelf
components [12]. (2) It was used for construction and evaluation of various veri-
fier combinations [17]. (3) CoVeriTeam (wrapped in a service) was used in the
software-verification competition 2021 and 2022 to help the participants debug is-
sues with their tools (see Sect. 3 in [7]). Also, according to SV-COMP rules, a team
is granted points only for those tasks whose result can be validated using a valida-
tor. Thus, a verifier-validator combination might be interesting for participants.
With the help of CoVeriTeam such combinations can be easily constructed.

Also, the advent of many high-quality verifiers should lead to a certain
level of standardization of the API and provided features. For example, tools
for SMT or SAT solving are easy to use because of their standardized input
language (e.g., SMTLIB for SMT solvers [4]). Consequently, such tools can be
easily integrated into larger architectures as components. Our vision is that soon
verifiers will be seen also as components that can be used in larger architectures
just like SMT solvers are now integrated into verification tools.
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Example 1 Witness Validation
Input: Program p, Specification s
Output: Verdict
1: verifier := Verifier(“Ultimate Automizer”)
2: validator := Validator(“CPAchecker”)
3: result := verifier.verify(p, s)
4: if result.verdict ∈ {True, False} then
5: result = validator.validate (p, s, result.witness)
6: return (result.verdict, result.witness)

2 Running Example

We explain the idea of CoVeriTeam using a short example. Verifiers are complex
software systems and might have bugs. Therefore, for more assurance a user
might want to validate the result of a verifier based on the verification witness
that the verifier produces [10]. Such a procedure is sketched in Example 1.

The user wanting to execute the procedure sketched in Example 1 would
need to download the tools (verifier and validator), execute the verifier, check
the result of the verifier, and then if needed connect the outputs of the verifier
with the inputs of the validator. The user would quite possibly write a shell
script to do this, which is cumbersome and difficult to maintain.

CoVeriTeam takes care of all the above issues. In the next section, we discuss
the types, namely artifacts and actors, that are used in the CoVeriTeam language.
After this, we explain the design and usage of the CoVeriTeam execution engine,
and discuss the CoVeriTeam program for our validating verifier in Listing 1.

3 Design and Implementation of CoVeriTeam

We now explain details about the design and implementation of CoVeriTeam.
First we discuss conceptual notions of actors, artifacts, and compositions; then
we discuss execution concerns that a cooperative verification tool needs to
handle. Then we delve deeper into implementation details where we discuss
how an actor is created and executed. Last, we briefly explain the API that
CoVeriTeam exposes and extensibility of this API.

3.1 Concepts

This section describes the language that we have designed for cooperative verifica-
tion and on-demand composition. At first we describe the notion of artifacts and
actors, and then the composition language to compose components to new actors.
Artifacts and Actors. Verification artifacts provide the means of information
(and knowledge) exchange between the verification actors (tools). Figure 1 shows
a hierarchy of artifacts, restricted to those that we have used in the case stud-
ies for evaluating our work. On a high level we divide verification artifacts in
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Artifact

Program SpecificationVerdictJustification

ConditionTestSuite Witness BehaviorSpec TestSpec

CoveredGoals CoveredSpace SafetyTermination Overflow CoverageCriterionTestGoal

Fig. 1: Hierachy of Artifacts (arrows indicate an is-a relation)
Actor

Analyzer Transformer

Verifier ValidatorTester ReducerTestGoalExtractor Instrumentor WitnessToTest

ConditionalVerifier ConditionalTester WitnessValidator TestValidator Pruner Annotator WitnessIns TestSpecIns

Fig. 2: Hierachy of Actors (arrows indicate an is-a relation)

the following kinds: Programs, Specifications, Verdicts, and Justifications. Pro-
grams are behavior models (can be further classified into programs, control-flow
graphs, timed automata, etc.). Specifications include behavioral specifications
(for formal verification) and test specifications (coverage criteria for test-case
generation). Verdicts are produced by actors signifying the class of result ob-
tained (True, False, Unknown, Timeout, Error). Justifications for the
verdict are produced by an actor; they include test suites to justify an obtained
coverage, or verification witnesses to justify a verification result.

Verification actors act on the artifacts and as a result either produce new arti-
facts or transform a given artifact for consumption by some other actor. Figure 2
shows a hierarchy of actors, restricted to those that we have used in the case stud-
ies for evaluating our work. We divide verification actors in the following types:
Analyzers and Transformers. Analyzers create new knowledge, e.g., verifiers, val-
idators, and test generators. Transformers instrument, refine, or abstract artifacts.

Composition. Actors can be composed to create new actors. Our language
supports the following compositions: sequence, parallel, if-then-else, and repeat.

CoVeriTeam infers types and type-checks the compositions, and then either
constructs a new actor or throws a type error. In the following, we use the nota-
tion Ia for the input parameter set of an actor a and Oa for the output parameter
set of a. A parameter is a pair of name and artifact type. A name clash between
two sets A and B exists if there is a name in A that is mapped to a different
artifact type in B, more formally: ∃(a, t1) ∈ A, (a, t2) ∈ B : t1 6= t2. The actor
type is a mapping from input parameter set to output parameter set (Ia → Oa).

Sequential. Given two actors a1 and a2, the sequential composition SEQUENCE
(a1, a2) (Fig. 3a) constructs an actor that executes a1 and a2 in sequence,
i.e., one after another. The composition is well-typed if there is no name clash
between Ia1 and (Ia2 \ Oa1). This means that we allow same artifact to be
passed to the second actor in sequence, but disallow the confusing scenario
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Actor a1 Actor a2

(a) SEQUENCE

Actor a1

Actor a2

(b) PARALLEL

Actor a1

Actor a2

?

true

false

(c) ITE

Actor a ?

(d) REPEAT

Fig. 3: Compositions in CoVeriTeam

where both actors expect an artifact with the same name but different type.
The inferred type of the composition is Ia1 ∪ (Ia2 \ Oa1) → Oa2.
Parallel. Given two actors a1 and a2, the parallel composition PARALLEL (a1,
a2) (Fig. 3b) constructs an actor that executes the actors a1 and a2 in par-
allel. The composition is well-typed if (a) there is no name clash between
Ia1 and Ia2 and (b) the names of Oa1 and Oa2 are disjoint. The inferred
type of the composition is Ia1 ∪ Ia2 → Oa1 ∪ Oa2.
ITE. Given a predicate cond and two actors a1 and a2, the if-then-else com-
position ITE (cond, a1, a2) (Fig. 3c) constructs an actor that executes the
actor a1 if predicate cond evaluates to true, and the actor a2 otherwise. The
composition is well-typed if (a) there is no name clash between cond, Ia1, and
Ia2, and (b) the output parameters are the same (Oa1 = Oa2). The inferred
type of the composition is Ia1 ∪ Ia2 ∪ vars(cond) → Oa1, where vars maps the
variables used in a predicate to their artifact types. This allows us to define the
condition cond using artifacts other than the inputs of Ia1 and Ia2.

There are situations where a2 is not required and its explicit specification only
increases complexity. So, we have relaxed the type checker and made a2 optional.
Repeat. Given a set fp and an actor a, the repeat composition REPEAT(fp, a)
(Fig. 3d) constructs an actor that repeatedly executes actor a until a fixed-
point of set fp is reached, that is, fp did not change in the last execution
of a. The repeat composition feeds back the output of a from iteration n to a
for iteration n + 1. Let us partition Ia ∪ Oa into three sets: Ia \ Oa, Oa \ Ia,
and Ia ∩ Oa. The parameters in Ia \ Oa do not change their value and the
parameters in Oa \ Ia are accumulated if accumulatable, otherwise their value
after the execution of the composition is the value from the last iteration. The
composition is well-typed if fp ⊆ dom(Ia ∩ Oa), where dom returns the names
of a parameter set. The inferred type of the composition is Ia → Oa.
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verifier validator?
true

false

Fig. 4: CoVeriTeam implementation of the validating verifier from Example 1

Figure 4 shows the pictorial representation of our running example using
these compositions. First a verifier is executed, then the validator is executed if
the verifier returned True or False, otherwise (in case of Unknown, Timeout,
Error) the validator is not executed and the output of the verifier is forwarded.

3.2 Execution Concerns

A tool for cooperative verification orchestrates the execution of verification tools.
This means it needs to assemble the command for the tool, as well as handle the
output produced by the tool. A verification tool might consume a lot of resources
and a user might want to limit this. It might crash during execution, might
interfere with other processes. CoVeriTeam needs to handle all these concerns.

Instead of developing our own infrastructure to handle these concerns, we
reuse some of the features provided by BenchExec [20]: we use tool-info modules
to assemble command lines and parse log output, RunExec (a component of
BenchExec) to execute tools in a container and limit resource consumption.

Tool-Info modules are integration modules of the benchmarking framework
BenchExec [20]. A typical tool-info module is a few lines of code used for
assembling a command line and parsing the log output produced by the tool. It
takes only a few hours to create one.1 CoVeriTeam uses tool-info modules to
pass artifacts to atomic actors (assemble command-line) and extract artifacts
from the output produced by the atomic actor. Using tool-info modules gave
us integration of more than 80 tools without effort, because such integration
modules exist for most well-known verifiers, validators, and testers (as many
researchers use BenchExec and provide such integration modules for their tools).

CoVeriTeam uses runexec to isolate tool execution to prevent interference
with the execution environment and enforce resource limits. We also report back to
the user the resources consumed by the tool execution as measured by runexec.

3.3 CoVeriTeam

Figure 5 provides an abstract view of the system. CoVeriTeam takes as input
a program written in the CoVeriTeam language and artifacts. At first, the
code generator converts this input program to Python code. This transformed
1 We claim this based on our experience with tool developers creating their tool-info
modules, which is a prerequisite for participating in SV-COMP or Test-Comp.
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Fig. 5: Abstract view of the CoVeriTeam tool

1 verifier = ActorFactory.create(ProgramVerifier,
"actors/uautomizer.yml");

2 validator = ActorFactory.create(ProgramValidator,
"actors/cpa-validate -violation -witnesses.yml");

3

4 // Use validator if verdict is true or false
5 condition = ELEMENTOF(verdict, {TRUE, FALSE});
6 second_component = ITE(condition, validator);
7 // Verifier and second component to be executed in sequence
8 validating_verifier = SEQUENCE(verifier, second_component);
9

10 // Prepare example inputs
11 prog = ArtifactFactory.create(CProgram, prog_path);
12 spec = ArtifactFactory.create(BehaviorSpecification, spec_path);
13 inputs = {’program’:prog, ’spec’:spec};
14 // Execute the new component on the inputs
15 res = execute(validating_verifier, inputs);
16 print(res);

Listing 1: CoVeriTeam implementation of the validating verifier from Example 1

code uses the internal API of CoVeriTeam. Then this Python code is executed,
which means the actor executor is called on the specified actor. This in turn
produces output artifacts on successful execution of the actor.

There are four key parts of executing a CoVeriTeam program: creation of
atomic actors, composition of actors (atomic or composite), creation of arti-
facts, and execution of the actors. We now give a brief explanation of these
parts with the help of our running example. Listing 1 shows a CoVeriTeam
implementation of the running example (Example 1).

Creation of an Atomic Actor. Atomic actors in CoVeriTeam provide an in-
terface for external tools. CoVeriTeam uses the information provided in an actor-
definition file to construct an atomic actor. Lines 1 and 2 in Listing 1 show the cre-
ation of atomic actors verifier and validator using the ActorFactory by provid-
ing the ActorType and the actor-definition file. Once constructed, this actor can be
executed.

An actor definition is specified in a file in YAML format. It contains the
information necessary for executing the actor: location from where to download
the tool, the name of the tool-info module to assemble the command line and parse
tool output, additional command-line parameters for the tool, resource limitations
to enforce, etc. Listing 2 shows the actor definition file for UAutomizer [32]: the
actor name is uautomizer, the identifier for the BenchExec tool-info module is
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1 actor_name: uautomizer
2 toolinfo_module: "ultimateautomizer.py"
3 archive:
4 doi: "10.5281/zenodo.3813788"
5 spdx_license_identifier: "LGPL -3.0-or-later"
6 options: [’--full-output’, ’--architecture’, ’32bit’]
7 resourcelimits:
8 memlimit: "15 GB"
9 timelimit: "15 min"

10 cpuCores: "8"
11 format_version: ’1.1’

Listing 2: Definition of atomic actor in YAML format

ultimateautomizer, the DOI of the tool archive (or the URL for obtaining the
tool archive), the SPDX license identifier, the options passed by CoVeriTeam to
UAutomizer, and resource limits for the execution of the actor. Once an atomic
actor has been constructed using an actor definition, CoVeriTeam has all the
information necessary to execute the underlying tool with the provided artifacts.
Composition of an Actor. The second key part is the composition of an actor.
Lines 6 and 8 in Listing 1 create composite actors using ITE and SEQUENCE,
respectively. It is these compositions that create the validating verifier of our
running example. Verification actors in CoVeriTeam can exchange information
(artifacts) with other actors and cooperate through compositions.
Creation of an Artifact. The notion of artifact in CoVeriTeam is a file
wrapped in an artifact type. The underlying files are the basis of an artifact—
exchangeable information. Lines 11 and 12 in Listing 1 create artifacts using the
ArtifactFactory by providing the ArtifactType and the artifact file. These artifacts
would then be provided to the executor that then executes the actors on them.
Code Generation. The code generator of CoVeriTeam translates the input pro-
gram to Python code that uses the internal API of CoVeriTeam. It is a canonical
transformation in which the statements for creation of actors and artifacts are
converted to Python statements instantiating corresponding classes from the API.
Similarly, statements for composition and execution of actors are also transformed.
Execution. Analogously to the construction of actors, the execution of an actor
in CoVeriTeam is also divided in two: atomic and composition. Line 15 in
Listing 1 executes the actor validating_verifier on the given input artifacts.

Figure 6 shows the actor executor for both atomic and composite actors. It
executes an actor on the provided artifacts. At first it type checks the inputs, i.e.,
check if the input types provided to actor comply with the expected input types of
the actor. It then calls the executor for atomic or composite actor depending on the
actor type. Thereafter, it type checks the outputs, and at last returns the artifacts.

Execution of an atomic actor means the execution of the underlying tool
on the provided artifacts. At first, the executor downloads the tool if necessary.
CoVeriTeam downloads and unzips the archive that contains the tool on the
first execution of an atomic actor. It keeps the tool available in cache for later
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Fig. 6: Abstract view of an actor execution in CoVeriTeam

executions. After this step, the command line for the tool is prepared using the
tool-info module. It then executes the tool in a container, and then processes the
tool output, i.e., extracts the artifacts from the tool output and saves them.

Execution of a composition means executing the composed actors—making
information produced by one available to other during the execution—as per
the rules of composition. The composite-actor executor at first selects the next
child actor to execute. It then computes the inputs for this selected actor. Then
it executes this actor, which can be atomic or another composite actor, on
these inputs. It then processes the outputs produced by the execution of the
selected child actor. This processing could be temporarily saving, filtering, or
modifying the produced artifacts. If needed, it then proceeds to execute the
next child actor, otherwise exits the composition execution.

Output. CoVeriTeam collects all the artifacts produced during the execution of
an actor, and saves them. The output can be divided into three parts: execution
trace, artifacts, and log files. An execution trace is an XML file containing infor-
mation about the artifacts consumed and produced by each actor, and also the
resources consumed by atomic actors (as measured by BenchExec) during the ex-
ecution. CoVeriTeam also saves the artifacts produced during the execution of an
actor. Additionally, for each atomic actor execution, it also saves a log file contain-
ing the command which was actually executed and the messages printed on stdout.

3.4 API

In addition to the above described features, CoVeriTeam exposes an API that is
extensible. We expose actors, artifacts, utility actors, and compositions through
Python packages. In this section, we briefly discuss this API.

Library of Actors and Compositions. CoVeriTeam provides a library of
some actors and a few compositions that can be instantiated with suitable
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actors. We considered actors based on the tools participating in the compe-
titions on software verification and testing [5, 6] (available in the replication
archives), because those are known to be mature and stable.

The library of compositions contains a validating verifier, an execution-based
validator [11], a reducer-based construction of a conditional model checker [15],
CondTest [18], and MetaVal [21]. These are present in the examples/ directory
of the CoVeriTeam repository. We discuss some of these constructions in Sect. 4.1.
New Actors, Artifacts, and Tools. New actors, artifacts, and tools can be
integrated easily in CoVeriTeam. The integration of a new atomic actor requires
only creating a YAML actor definition and, if not already available, implementing
a tool-info module. The integration of a new actor type in the language requires
(1) creating a class for the actor specifying its input and output artifact types,
(2) preparing the parameters to be passed to tool-info module, that in turn
would create a command line for the tool execution, using the options from
the YAML actor definition, and (3) creating output artifacts from the output
files produced by the execution of an atomic actor of that type.

Integration of a new artifact requires creating a new class for the artifact.
A basic artifact requires a path containing the artifact. Some artifacts support
special features, for example, a test suite is a mergeable artifact (i.e., two test
suites for a given input program can be merged into one test suite).

Integrating a new tool in the framework requires: (1) creating the tool-info
module for it, (2) creating an actor definition for the tool, (3) providing a
self-contained archive that can be executed on a Ubuntu machine.

At present, CoVeriTeam supports all verifiers and validators that are listed
on the 2021 competition web sites of SV-COMP2 and Test-Comp3. One needs
only a few hours to create a new tool-info module and an actor-definition
file. Within a couple of hours we were able to create the actor definitions for
about 40 tools participating in SV-COMP and Test-Comp.

4 Evaluation

We now present our evaluation of CoVeriTeam. It consists of a few case studies,
and insights from the experiments to measure performance overhead.

4.1 Case Studies

We evaluated CoVeriTeam on four more case studies, as indicated in the fourth
column of Table 1. We now explain two of these case studies using figures for
compositions. The programs and explanations for all of the case studies are also
available in our project repository (linked from the last column of Table 1).
Conditional Testing à la CondTest. Conditional testing [18] allows coop-
eration between different test generators (testers) by sharing the details of the
2 https://sv-comp.sosy-lab.org/2021/systems.php
3 https://test-comp.sosy-lab.org/2021/systems.php
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Table 1: Examples of cooperative techniques in the literature
Technique Year Reference Case Study More Info

Counterexample Checking [38] 2012 Sect. 5
Conditional Model Checking [13] 2012 Sect. 5

Precision Reuse [19] 2013 Sect. 5
Witness Validation [8, 10] 2015, 2016 Figure 4 3 Sect. 3.3

Execution-Based Validation [11] 2018 Sect. 5 3 More info
Reducer [15] 2018 Sect. 5 3 More info

CoVeriTest [14] 2019 Sect. 5
CondTest [18] 2019 Figures 7 and 8 3 More info
MetaVal [21] 2020 Figure 9 3 More info

already covered test goals. A conditional tester outputs a condition, in addition to
the generated test suite, representing the work already done. Then this condition
is passed as an input to another conditional tester, in addition to the program
and test specification. This tester can then focus on only the uncovered goals.

Condional Tester

Instrumentor Pruning
Reducer Tester Extractor Joiner

Fig. 7: Design of a conditional tester in CoVeriTeam

Conditional testers can be constructed from off-the-shelf testers [18] with
the help of three tools: a reducer, an extractor, and a joiner. A reducer used
in conditional testing (Program× Specification× Condition→ Program) produces
a residual program with the same behavior as the input program with respect
to the remaining test goals. A set of test goals represents the condition. An
extractor (Program×Specification×TestSuite→ Condition) extracts the condition
—a set of test goals— covered by the provided test suite.

Figure 7 shows the composition of a conditional tester. First, the reducer
produces the reduced program. The composition here uses a pruning reducer,
which prunes the program according to the covered goals. Second, the tester
generates the test cases. Third, the extractor extracts the goals covered in these
test cases. Forth, the joiner merges the previously and newly covered goals. The
reducer that we used expects the input program to be in a format containing
certain labels for the purpose of tracking test goals. So, we put an instrumentor
that instruments the test specification into the program, by adding these labels.

The conditional-testing concept can also be used iteratively to generate a test
suite using a tester based on a verifier [18]. Such a composition uses a verifier as a
backend and transforms a counterexample generated by the verifier to a test case.

Figure 8 shows the construction of a cyclic conditional tester. In this case, the
tester itself is a composition of a verifier and a tool, Witness2Test, which generates
test cases based on a witness produced by a verifier. This tester, in composition
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2Test Extractor Joiner ?

Fig. 8: Design of a cyclic conditional tester in CoVeriTeam

with a reducer, extractor, and a joiner is our conditional tester. This construction
uses an annotating reducer, which (i) annotates the program with error labels
for the verifier to find the path to and (ii) filters out the already covered goals,
i.e., the condition, from the list of goals to be annotated. We put the conditional
tester in the REPEAT composition to execute iteratively. The composition tracks
the set ‘covered_goals’ to detect the fixed point to decide termination of the
iteration. This composition will keep on accumulating the test suite generated in
each iteration and finally output the union of all the generated test suites (see
Sect. 3.1). As above, an instrumentor is placed before the conditional tester.

Verification-Based Validation à la MetaVal. MetaVal [21] uses off-the-
shelf verifiers to perform validation tasks. A validator (Program× Specification×
Verdict×Witness→ Verdict×Witness) validates the result produced by a verifier.
MetaVal employs a three-stage process for validation. In the first stage, MetaVal
instruments the input program with the input witness. The instrumented program
—a product of the witness and the original program— is equivalent to the original
program modulo the provided witness. This means that the instrumented program
can be given to an off-the-shelf verifier for verification; and this verification
functions as validation. In the second stage, MetaVal selects the verifier to use
based on the specification. It chooses CPAchecker for reachability, UAutomizer
for integer overflow and termination, and Symbiotic for memory safety.4 In
the third stage, the instrumented program is fed to a verifier along with the
specification for verification. If the verification produces the expected result,
then the result is confirmed and the witness valid, otherwise not.

Selector
Witness

Instrumentor Verifier

Fig. 9: Design of MetaVal in CoVeriTeam

Figure 9 shows the construction of MetaVal. First, the selector is executed
that selects the backend verifier to execute. After this step, the program is

4 These were the best performing tools for a property according to SV-COMP results.
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instrumented with the witness, and then the instrumented program is given
to the selected verifier for checking the specification.

4.2 Performance

CoVeriTeam is a lightweight tool. Its container mode causes an overhead of
around 0.8 s for each actor execution in the composition, and the tool needs
about 44MB memory. This means that if we run a tool 10 times in a sequence
in a shell script unprotected and compare this to using the sequence composition
in CoVeriTeam in protected container mode on the same input, the execution
using CoVeriTeam will take 8 s longer and requires 44MB more memory. In our
experience, this overhead is not an issue for verification as, in general, the time
taken for verification dominates the total execution time. For short-running, high-
performance needs, the container mode can be switched off. We have conducted
extensive experiments for performance evaluation of CoVeriTeam and point the
reader to the supplementary webpage for this article for more details.

5 Related Work

We divide our literature overview into two parts: approaches for tool combinations,
and cooperative verification approaches.

Approaches for Tool Combinations. Evidential Tool Bus (ETB) [29, 30, 39]
is a distributed framework for integration of tools based on a variant of Data-
log [1, 24]. It stores the established claims along with the corresponding files and
their versions. This allows the reuse of partial results in regression verification.
ETB orchestrates tool interaction through scripts, queries, and claims.

Our work seems close to ETB on a quick glance, but on a closer look there
are profound differences. Conceptually, ETB is a query engine that uses claims,
facts, and rules to define and execute a workflow. Whereas, CoVeriTeam has
been designed to create and execute actors based on tools and their compositions.
We give some semantic meaning, arguably simplistic, to the tools using (i)
wrapper types of artifacts for the files produced and consumed by a tool and
(ii) the notion of verification actors that allows us to see a tool as a function.
This allows us to type-check tool compositions and allow only well-defined
compositions. On the implementation side, we support more tools. This task was
simplified by our design choice to use the integration mechanisms provided by
BenchExec (as used in SV-COMP and Test-Comp). Most well known automated
verification tools already have been integrated in CoVeriTeam.

Electronic Tools Integration platform (ETI) [40] was envisioned as a “one stop
shop” for the experimentation and evaluation of tools from the formal-methods
community. It was intended to serve as a tool presentation, tool evaluation,
and benchmarking site. The idea was to allow users to access tools through the
internet without the need to install them. An ETI user is expected to provide an
LTL based specification, based on which an execution scheme is synthesized.
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The key focus of ETI and its incarnations has been remote tool execution,
and their integration over internet. The tools are viewed agnostic to their func-
tion. We, in contrast, (i) have tackled local execution concerns and (ii) see a
tool in its function as an actor that consumes and produces certain kinds of
artifacts. The semantic meaning of a tool is given by this role.

Cooperative Verification Approaches. Our work targets developing a frame-
work to express and execute cooperative verification approaches. In this section
we describe some of these approaches from literature. We have implemented some
of these combinations in CoVeriTeam, some of which are described in Sect. 4.

A reduction of the input program using the counterexample produced by
a verifier was discussed [38], where the key idea is to use the counterxam-
ple to provide the variable assignments to the program.

Conditional model checking (CMC) [13] outputs a condition —a summary
of the knowledge gained— if the model checker fails to produce a verdict. The
condition allows another model checker to save the effort of looking into already
explored state space. Reducers [15] can turn any off-the-shelf model checker into
a conditional model checker. Reducers take a source program and a condition
and produce a residual program whose paths cover the unverified state space
(negation of the condition). Conditional testing [18] applies the principle of
conditional model checking to testing. A conditional tester outputs, in addition
to the generated test cases, the goals for which test cases have been generated.

The idea of reusing the knowledge about already done work to reduce the
workload of another tool was also applied to combine program analysis and
testing [25, 31, 35]. One of these approaches [31] is based on conditional model
checking [13]. In this case, the condition is used to construct a residual program,
which is then fed to a test-case generator. Another approach [25] instruments
the program with assumptions and assertions describing the already completed
verification work. Then a testing tool is used to test the assumptions. Program par-
titioning [35] first performs the testing and then removes the satisfactorily tested
paths and verifies the rest. CoVeriTest [14], cooperative verifier-based testing, is
a tester based on cooperation between different verification-based test-generation
techniques. CoVeriTest uses conditional model checkers [13] as verifier backends.

Precision reuse [19] is based on the use of abstraction precisions. The precision
of an abstract domain is a good candidate for cooperation because it is small
in size, and represents important information, i.e., the level of abstraction at
which the analysis works. A model checker in addition to producing a verdict
also produces a file containing information specifying precision, e.g., predicates.

Model checkers can also produce a witness, in addition to the verdict, as
a justification of the verdict. These witnesses could be counterexamples for
violations of a safety property, invariants as a proof of a safety property, a lasso
for non-termination, a ranking function for termination, etc. These witnesses can
be used later to help validate the result produced by a verifier [8, 9, 10].

Execution-based result validation [11] uses violation witnesses to generate
test cases. A violation witness of a safety specification is refined to a test case.
The test case is then used to validate the result of the verification.
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6 Conclusion

Due to the free availability of many excellent verifiers, the time is ripe to view
verification tools as components. It is necessary to have standardized interfaces,
in order to define the inputs and outputs of verification components. We have
identified a set of verification artifacts and verification actors, and a programming
language for on-demand construction of new, combined verification systems.

So far, the architectural hierarchy ends mostly at the verifiers: verifiers are
based on SMT solvers, which are based on SAT solvers, which are based on
data-structure libraries. CoVeriTeam wants to change this and use verification
artifacts as first-class objects in specifying new verifiers. We show on a few
selected examples how easy it is to construct some verification systems that
were so far hard-coded using glue code and wrapper scripts. We hope that many
researchers and practitioners in the verification community find it interesting
and stimulating to experiment on a high level with verification technology.
Future Work. The approach of CoVeriTeam opens up a whole new area of
possibilities that yet needs to be explored. We have identified three key areas
for the further work: (i) remote execution of tools, (ii) policy specification
and enforcement, and (iii) more compositions and combinations. CoVeriTeam
provides an interface for a verification tool based on its behavior. A web service
wrapped around CoVeriTeam can be used to delegate execution of an actor,
hence verification work, to the host of the service. The client for such a service can
be transparently integrated in CoVeriTeam. In fact, we already provide client
integration for a restricted and experimental version of such a service. Also, a user
executing a combination of tools might want to have some restrictions on which
tools should be allowed to execute. For example, a user might want to execute
only those tools that comply with a certain license, or only those tools that are
downloaded from a trusted source. A cooperative verification tool should support
the specification and enforcement of such user policies. Further, we plan to support
more compositions for cooperative verification in CoVeriTeam as we come across
them. Recently, we were working on a parallel-portfolio composition [17].
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