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Abstract. We present L#, a new and simple approach to active automata
learning. Instead of focusing on equivalence of observations, like the L*
algorithm and its descendants, L# takes a different perspective: it tries to
establish apartness, a constructive form of inequality. L# does not require
auxiliary notions such as observation tables or discrimination trees, but
operates directly on tree-shaped automata. L# has the same asymptotic
query and symbol complexities as the best existing learning algorithms,
but we show that adaptive distinguishing sequences can be naturally
integrated to boost the performance of L# in practice. Experiments
with a prototype implementation, written in Rust, suggest that L¥ is
competitive with existing algorithms.
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1 Introduction

In 1987, Dana Angluin published a seminal paper [5], in which she showed that
the class of regular languages can be learned efficiently using queries. In Angluin’s
approach of a minimally adequate teacher (MAT), learning is viewed as a game
in which a learner has to infer a deterministic finite automaton (DFA) for an
unknown regular language L by asking queries to a teacher. The learner may
pose two types of queries: “Is the word w in L?” (membership queries), and “Is
the language recognized by DFA H equal to L?” (equivalence queries). In case of
a mo answer to an equivalence query, the teacher supplies a counterexample that
distinguishes hypothesis H from L. The L* algorithm proposed by Angluin [5] is
able to learn L by asking a polynomial number of membership and equivalence
queries (polynomial in the size of the corresponding canonical DFA).

Angluin’s approach triggered a lot of subsequent research on active automata
learning and has numerous applications in the area of software and hardware
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analysis, for instance for generating conformance test suites of software compo-
nents 28], finding bugs in implementations of security-critical protocols [22,23,21],
learning interfaces of classes in software libraries [33], inferring interface protocols
of legacy software components [8], and checking that a legacy component and a
refactored implementation have the same behavior [55]. We refer to [63,34] for
surveys and further references.

Since 1987, major improvements of the original L* algorithm have been
proposed, for instance by [52,53,38,41,56,35,45,50,32,37,25]. Yet, all these im-
provements are variations of L* in the sense that they approximate the Nerode
congruence by means of refinement. Isberner [36] shows that these descendants
of L* can be described in a single, general framework.!

Variations of L* have also been used as a basis for learning extensions of DFAs
such as Mealy machines [48], I/O automata [2], non-deterministic automata [16],
alternating automata [6], register automata [1,17], nominal automata [46], sym-
bolic automata [40,7], weighted automata [14,11,30], Mealy machines with timers
[64], visibly pushdown automata [36], and categorical generalisations of au-
tomata [62,29,12,18]. It is fair to say that L*-like algorithms completely dominate
the research area of active automata learning.

In this paper we present L#, a fresh approach to automata learning that differs
from L* and its descendants. Instead of focusing on equivalence of observations,
L# tries to establish apartness, a constructive form of inequality [61,26]. The
notion of apartness is standard in constructive real analysis and goes back to
Brouwer, with Heyting giving an axiomatic treatment in [31]. This change in
perspective has several key consequences, developed and presented in this paper:

— L# does not maintain auxiliary data structures such as observation tables or
discrimination trees, but operates directly on the observation tree. This tree
is a partial Mealy machine itself, and is very close to an actual hypothesis
that can be submitted to the teacher. As a result, our algorithm is simple.

— The asymptotic query complexity of L# is O(kn? + nlogm) and the asymp-
totic symbol complexity? is O(kmn? 4+ nmlogm). Here k is the number of
input symbols, n is the number of states, and m is the length of the longest
counterexample. These are the same asymptotic complexities as the best
existing (L*-like) learning algorithms [52,53,32,37,36,25].

— The use of observation trees as primary data structure makes it easy to
integrate concepts from conformance testing to improve the performance
of L#. In particular, adaptive distinguishing sequences [39], which we can
compute directly from the observation tree, turn out to be an effective boost
in practice, even if their use does not affect asymptotic complexities. Through
L# testing and learning become even more intertwined [13,4].

! Except for the ZQ algorithm of [50], which was developed independently, and the
ADT algorithm of [25], that was developed later and uses adaptive distinguishing
sequences which are not covered in Isberner’s framework.

2 The symbol complexity is the number of input symbols required to learn an automaton.
This is a relevant measure for practical learning scenarios, where the total time needed
to learn a model is proportional to the number of input symbols.
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— Experiments on benchmarks of [47], with a prototype implementation written
in Rust, suggest that L# is competitive with existing, highly optimized
algorithms implemented in LearnLib [51].

Related work. Despite the different data structures, L# and L* [5] still have
many similarities, since both store all the information gained from all queries so
far. Moreover, both maintain a set of those states that have been learned with
absolute certainty already. A few other algorithms have been proposed that follow
a different approach than L*. Meinke [43,44] developed a dual approach where,
instead of starting with a maximally coarse approximating relation and refining
it during learning, one starts with a maximally fine relation and coarsens it by
merging equivalence classes. Although Meinke reports superior performance in
the application to learning-based testing, these algorithms have exponential worst-
case query complexities. Using ideas from [53], Groz et al. [27] use a combination
of homing sequences and characterization sets to develop an algorithm for active
model learning that does not require the ability to reset the system. Via an
extensive experimental evaluation involving benchmarks from [47] they show
that the performance of their algorithm is competitive with the L* descendant of
[56], but there can be huge differences in the performance of their algorithm for
models that are similar in size and structure. Several authors have explored the
use of SAT and SMT solvers for obtaining learning algorithms, see for instance
[49,58], but these approaches suffer from fundamental scalability problems. In
a recent paper, Soucha & Bogdanov [60] outline an active learning algorithm
which also takes the observation tree as the primary data structure, and use
results from conformance testing to speed up learning. They report that an
implementation of their approach outperforms standard learning algorithms
like L*, but they have no explicit apartness relation and associated theoretical
framework. It is precisely this theoretical underpinning which allowed us to
establish complexity and correctness results, and define efficient procedures for
counterexample processing and computing adaptive distinguishing sequences.

In the present paper, we first define partial Mealy machines, observation trees,
and apartness (Section 2). Then, we present the full L# algorithm (Section 3)
and benchmark our prototype implementation (Section 4). The proofs of all
theorems and complete benchmark results can be found in the appendix of the
full version [65] of this paper.

2 Partial Mealy Machines and Apartness

The L# algorithm learns a hidden (complete) Mealy machine, and its primary
data structure is a partial Mealy machine. We first fix notation for partial maps.

We write f: X — Y to denote that f is a partial function from X to Y
and write f(x)] to mean that f is defined on x, that is, Jy € Y: f(z) = vy,
and conversely write f(x)1 if f is undefined for z. Often, we identify a partial
function f: X — Y with the set {(z,y) € X xY | f(z) = y}. The composition of
partial maps f: X =Y and g: Y — Z is denoted by go f: X — Z, and we have
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(go f)(z)) iff f(x)] and g(f(x)){. There is a partial order on X — Y defined by
fEgfor fig: X =Y if for all z € X, f(z)] implies g(z){ and f(z) = g(z).
Throughout this paper, we fix a finite set I of inputs and a set O of outputs.

Definition 2.1. A Mealy machine is a tuple M = (Q, qo, 9, \), where

— Q is a finite set of states and qy € Q is the initial state,

- (A\0): Q@ x I = O xQ is a partial map whose components are an output
function \: Q x I — O and a transition function §: Q x I — Q (hence,
0(q, )} © Mg, i), forqe Q and i € I).

We use superscript M to disambiguate to which Mealy machine we refer, e.g.
QM, @, oM and AWM. We write q Z/—O> q, forq,qd €Q, i€ 1, o€ O to denote
Agq,1) = o and §(q,1) = ¢'. We call M complete if § is total, i.e., 6(q,i) is
defined for all states q and inputs i. We generalize the transition and output

functions to input words of length n € N by composing (\,§) n times with itself:
we define maps (Ap, ) Q@ X I — O™ x Q by (Ao, do) = idg and

<)\n75n>><id1 idon X(A,é
— N - TN\

M1y 0np1) s Q x I+ O xQxI L omt x Q

Whenever it is clear from the context, we use A and 0 also for words.

Definition 2.2. The semantics of a state q is a map [q]: I* — O* defined by
[al(o) = A(q, o). States q,q" in possibly different Mealy machines are equivalent,
written q = ¢, if [q] = [q'].- Mealy machines M and N are equivalent if their
respective initial states are equivalent: ¢ ~ q{)‘/ .

In our learning setting, an undefined value in the partial transition map
represents lack of knowledge. We consider maps between Mealy machines that
preserve existing transitions, but possibly extend the knowledge of transitions:

Definition 2.3. For Mealy machines M and N, a functional simulation
f: M= Nisamap f: QM — QN with

i/o . . i/o
f@) =) and  q > ¢ implies f(q) > f(¢').

Intuitively, a functional simulation preserves transitions. In the literature, a
functional simulation is also called refinement mapping [3].

Lemma 2.4. For a functional simulation f: M — N and q € Q™, we have

lql E [f(a)]-

For a given machine M, an observation tree is simply a Mealy machine itself
which represents the inputs and outputs we have observed so far during learning.
Using functional simulations, we define it formally as follows.

Definition 2.5 ((Observation) Tree). A Mealy machine T is a tree if for
each ¢ € Q7 there is a unique sequence o € I* s.t. 5T(qOT,U) = q. We write
access(q) for the sequence of inputs leading to q. A tree T is an observation
tree for a Mealy machine M if there is a functional simulation f: T — M.
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Fig. 1: An observation tree (left) for a Mealy machine (right).

Figure 1 shows an observation tree for the Mealy machine displayed on the
right. The functional simulation f is indicated via coloring of the states.

By performing output and equivalence queries, the learner can build an
observation tree for the unknown Mealy machine M of the teacher. However,
the learner does not know the functional simulation. Nevertheless, by analysis of
the observation tree, the learner may infer that certain states in the tree cannot
have the same color, that is, they cannot be mapped to same states of M by a
functional simulation. In this analysis, the concept of apartness, a constructive
form of inequality, plays a crucial role [61,26]. A similar concept has previously
been studied in the context of automata learning under the name inequivalence
constraints in work on passive learning of DFAs, see for instance [15,24].

Definition 2.6. For a Mealy machine M, we say that states q,p € Q™ are
apart (written q # p) if there is some o € I* such that [q](o)!, [p](o), and
[q] (o) # [p](c). We say that o is the witness of ¢ # p and write o - q # p.

Note that the apartness relation # C @ x @ is irreflexive and symmetric. A
witness is also called separating sequence [59]. For the observation tree of Figure 1
we may derive the following apartness pairs and corresponding witnesses:

CLFto#tg aktg#tg bakto#tg

The apartness of states g # p expresses that there is a conflict in their semantics,
and consequently, apart states can never be identified by a functional simulation:

Lemma 2.7. For a functional simulation f: T — M,

g#pinT = fl@#flp)inM  foralqpeQ”.

Thus, whenever states are apart in the observation tree 7, the learner knows
that these are distinct states in the hidden Mealy machine M.

The apartness relation satisfies a weaker version of co-transitivity, stating
that if o -7 # 7’ and ¢ has the transitions for o, then ¢ must be apart from at
least one of r and 7/, or maybe even both:

Lemma 2.8 (Weak co-transitivity). In every Mealy machine M,

obr#r ANdqo)l = r#qV r'H#q for allr,r',q e QM 0 € I*.
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We use the weak co-transitivity property during learning. For instance in Fig. 1, by
posing the output query aba, consisting of the access sequence for ¢; concatenated
with the witness ba for ty # to, co-transitivity ensures that tg # t1 or to # t1.
By inspecting the outputs, the learner may conclude that to # t;.

3 Learning Algorithm

The task solved by L# is to find a strategy for the learner in the following game:

Definition 3.1. In the learning game between a learner and a teacher, the
teacher has a complete Mealy machine M and answers the following queries from
the learner:

OUTPUTQUERY(0): For o € I*, the teacher replies with the corresponding
output sequence NM (¢!, o) € O*.3

EQUIVQUERY (H): For a complete Mealy machine H, the teacher replies yes
if H =~ M or no, providing some o € I* with M (gg!, o) # N (¢lt, o).

Our L# algorithm operates on an observation tree 7 = (Q, qo, d, \) for the
unknown complete Mealy machine M, where 7 contains the results of all output
and equivalence queries so far. An observation tree is similar to the cache which
is commonly used in implementations of L*-based learning algorithms to store
the answers to previously asked queries, avoiding duplicates [10,42]. But whereas
for L*-based learning algorithms the cache is an auxiliary data structure and
only used for efficiency reasons, it is a first-class citizen in L¥.

Remark 3.2. The learner has no information about the teacher’s hidden Mealy
machine. In particular, whenever we write #, we always refer to the apartness
relation on the observation tree T .

The observation tree is structured in a very similar way as Dijkstra’s shortest
path algorithm [19] structures a graph. Recall that during the execution of
Dijkstra’s algorithm ‘the nodes are subdivided into three sets’ [19]:

1. the nodes S to which a shortest path from the initial node is known. S
initially only contains the initial node and grows from there.

2. the nodes F from which the next node to be added to S will be selected.

3. the remaining nodes.

This scheme adapts to the observation tree as follows and is visualized in Fig. 2a.

1. The states S C Q7 , which already have been fully identified, i.e. the learner
found out that these must represent distinct states in the teacher’s hidden
Mealy machine. We call S the basis. Initially, S := {¢J }, and throughout
the execution S forms a subtree of 7 and all states in S are pairwise apart:

Vp,q € S,p# q:p#q.

3 In fact, later on we will assume that the teacher responds to slightly more general
output queries to enable the use of adaptive distinguishing sequences, see Section 3.5.
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Fig. 2: From the observation tree to the hypothesis (|I| = 2)

2. the frontier F C Q7 , from which the next node to be added to S is chosen.
Throughout the execution, F' is the set of immediate non-basis successors of
basis states: F := {¢ € Q\S|3qe S,iel:q¢ =g, i)}

3. the remaining states @ \ (SU F).

Initially, 7 consists of only an initial state q{)r with no transitions. For every
OUTPUTQUERY (o) during the execution, the input o € I'* and the corresponding
response of type O* is added automatically to the observation tree 7, and
similarly every negative response to a EQUIVQUERY leads to new states and
transitions in the observation tree. With every extension 7' of the observation
tree T, the apartness relation can only grow: whenever p # ¢ in 7, then still
p # ¢ in T'. Thus, along the learning game, 7 and # grow steadily:

Assumption 3.3 We implicitly require that via output and equivalence queries,
the observation tree T and the basis S are gradually extended, with the frontier
F automatically moving along while S grows.

3.1 Hypothesis construction

At almost any point during the learning game, the learner can come up with a
hypothesis ‘H based on the knowledge in the observation tree 7. Since the basis
S contains the states already discovered, the set of states of such a hypothesis is
simply set to Q™ := S, and it contains every transition between basis states (in
T). The hypothesis must also reflect the transitions in 7 that leave the basis S,
i.e. the transitions to the frontier. Those are resolved by finding for every frontier
state a base state, for which the learner conjectures that they are equivalent
states in the hidden Mealy machine. This choice boils down to a map h: ' — §

(— in Fig. 2b). Then, a transition ¢ i% pin T with ¢ € S, p € F leads to a
transition ¢ e, h(p) in H (Fig. 2¢). These ideas are formally defined as follows.

Definition 3.4. Let T be an observation tree with basis S and frontier F.

1. A Mealy machine H contains the basis if Q™ = S and 6™ (¢}t access(q)) =
q for allqg € S.
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2. A hypothesis is a complete Mealy machine H containing the basis such that

qi/—o>p’ inH (qeS) andqi/—0>p in T imply o=10" and =(p # p') (in T).
3. A hypothesis H is consistent if there is a functional simulation f: T — H.

4. For a Mealy machine H containing the basis, an input sequence o € I* is
said to lead to a conflict if 67 (qf , o) # 6" (q}t,0) (in T).

Intuitively, the first three notions describe how confident we are in the correctness
of the ‘back loops’ in H obtained from a choice h: F — S. Notion 1 does not
provide any warranty, notion 2 asserts that —(q # h(q)) for all ¢ € F, and
notion 3 (by definition) means that 7 is an observation tree for H, that is, all
observations so far are consistent with the hypothesis H. The learner can verify
the consistency of a hypothesis without querying the teacher (algorithm is in
Section 3.3 below). The existence and uniqueness of a hypothesis are related to
criteria on 7

Definition 3.5. In an observation tree T, a state in F' is 1. isolated if it is
apart from all states in S and 2. is identified if it is apart from all states in S
except one. 3. The basis S is complete if each state in S has a transition for
each input in I.

Lemma 3.6. For an observation tree T, if F' has no isolated states then there
exists a hypothesis H for T. If S is complete and all states in F are identified
then the hypothesis is unique.

With a growing observation tree 7, the hidden Mealy machine is found as
soon as the basis is big enough:

Theorem 3.7. Suppose T is an observation tree for a (hidden) Mealy machine
M such that S is complete, all states in F are identified, and |S| is the number
of equivalence classes of ~™. Then H ~ M for the unique hypothesis H.

The theorem itself is not necessary for the correctness of L#, but guarantees
feasibility of learning.

3.2 Main loop of the algorithm

The L# algorithm is listed in Algorithm 1 in pseudocode. The code uses Dijkstra’s
guarded command notation [20], which means that the following rules are applied
non-deterministically until none of them can be applied anymore:

(R1) If F contains an isolated state, then this means that we have discovered a
new state not yet present in S, hence we move it from F' to S.

(R2) When a state ¢ € S has no outgoing i-transition, for some ¢ € I, the output
query for access(q) 7 will add the generated i successor, implicitly extending
the frontier F.
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Algorithm 1 Overall L# algorithm
procedure LSHARP

do g isolated, for some ¢ € F' — > Rule (R1)
S+ SuU{q}

067 (q,9) 1, for some g € S,i € [ — > Rule (R2)
OUuTPUTQUERY (access(q) 7)

U-(qg#r), ~(q# '), for some g € F, r,7' €S, r#1 — > Rule (R3)

o + witness of r # 7’
OUTPUTQUERY (access(q) o)

[l F has no isolated states and basis S is complete — > Rule (R4)
‘H < BUILDHYPOTHESIS
(b,0) + CHECKCONSISTENCY (H)
if b = yes then
(b, p) + EQUIVQUERY (H)
if b = yes then: return H
else: o + shortest prefix of p such that 87 (¢}t o) # 67 (¢f ,0) (in T)
end if
ProcCoOUNTEREX(H, o)

end do
end procedure

(R3) When ¢ € F is a state in the frontier that is not yet identified, then there are
at least two states in S that are not apart from ¢. In this case, the algorithm
picks a witness o € I* for r # r’. After the OUTPUTQUERY (access(q) o), the
observation tree is extended and thus ¢ will be apart from at least r or 7’ by
weak co-transitivity (Lemma 2.8).

(R4) When F has no isolated states and S is complete, BUILDHYPOTHESIS
picks a hypothesis H (at least one exists Lemma 3.6). If A is not consistent
with observation tree T we get a conflict o for free. Otherwise, we pose an
equivalence query for . If the hypothesis is correct, L# terminates, and
otherwise we obtain a counterexample p. The counterexample decomposes
into two words om, where o leads to a conflict and 7 witnesses it. The conflict
o means that one of the frontier states was merged with an apart basis state
in H, causing a wrong transition in H. Since o can be very long, the task
of PROCCOUNTEREX(0) is to shorten o until we know which frontier state
caused the conflict. So after PROCCOUNTEREX, H is not a hypothesis for
the updated 7 anymore.

We will show the correctness of L# in a top-down approach discussing the
subroutines later and only assuming now that:

1. BUILDHYPOTHESIS picks one of the possible hypotheses (Lemma 3.6)

2. CHECKCONSISTENCY (H) tells if there is a functional simulation 7 — H, and
if not, provides o € I'* leading to a conflict (Lemma 3.10 below).

3. If H contains the basis and o leads to a conflict, then PROCCOUNTEREX(H, 7),
extends T such that #H is not a hypothesis anymore (Lemma 3.11 below).
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Whenever the algorithm terminates, the learner has found the correct model.
Therefore, correctness amounts to showing termination. The rough idea is that
each rule will let S, F', or # restricted to S x F' grow, and each of these sets are
bounded by the hidden Mealy machine M. We define the norm N(7) by

1S[-(S[+ 1)

5 + (g0 € SxT[67(q, )1} + [{(¢,4) € SxFlq#q'} (1)

The first summand increases whenever a state is moved from F to S (R1); it is
quadratic in |S| because (R1) reduces the third summand. The second summand
records the progress achieved by extending the frontier (R2). The third summand
counts how much the states in the frontier are identified (R3). Rule (R4) extends
the apartness relation, leading to an increase of the third summand.

Theorem 3.8. Every rule application in L¥ increases the norm N(T) in (1).

The norm N(7) and therefore also the number of rule applications is bounded:

Theorem 3.9. If T is an observation tree for M with n equivalence classes of
states and |I| = k, then N(T) < % -n-(n+1)+kn+ (n—1)(kn+1) € O(kn?).

At any point of execution, either rule (R1), (R2), or (R4) is applicable, so L#
never blocks. As soon as the norm N(7) hits the bound, the only applicable rule
is rule (R4) with the teacher accepting the hypothesis. Thus, the correct Mealy
machine is learned within O(k - n?) rule applications. The complexity in terms of
the input parameters is studied in Section 3.6.

We now continue defining the subroutines and proving them correct.

3.3 Consistency checking

A hypothesis H is not necessarily consistent with T, in the sense of a functional
simulation 7 — H. Via a breadth-first search of the Cartesian product of T
and H (Algorithm 2), we may check in time linear in the size of 7 whether a
functional simulation 7 — H exists. In the negative case, we obtain o € I*
leading to a conflict without any equivalence or output query to the teacher
needed. Thus, this is also called ‘counterexample milking’ [10].

Lemma 3.10. Algorithm 2 terminates and is correct, that is, if H is a hypothesis
for T with a complete basis, then CHECKCONSISTENCY (H)

1. returns yes, if H is consistent,

2. returns no and p € I*, if p leads to a conflict (57 (q¢f ,p) # 6™ (a3, p) in T).

3.4 Counterexample processing

The L* algorithm [5] performs O(m) queries to analyze a counterexample of
length m. So if a teacher returns really long counterexamples, their analysis will
dominate the learning process. Rivest & Schapire [52,53] improve counterexample
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Algorithm 2 Check if hypothesis H is consistent with observation tree T

procedure CHECKCONSISTENCY (H)
Q < new queue C S x S
enqueue(Q, (47 , ¢8*)))
while (g, r) < dequeue(Q)
if ¢ # r then: return no: access(q)

for allqz/—o>pin7’d0
enqueue(Q, (p, 6™ (r, 1))
end for
end while
return yes
end procedure

analysis of L* using binary search, requiring only O(logm) queries. A similar
trick is applied in L#.

Suppose o leads to a conflict ¢ # r for ¢ = 6™ (¢ft,0) and r = §7 (¢, 0).
Then, PROCCOUNTEREX(0) (Algorithm 3) extends 7 such that H will never be
a hypothesis for T again.

If r € SU F, then the conflict ¢ # r is obvious and H is not a hypothesis
again. If otherwise r ¢ S U F', the binary search will successively reduce the
number of transitions of ¢ outside S U F' by a factor of 2 until we reach the
above base case S U F. Let 01 02 := o such that the run of o1 in 7 ends halfway
between the frontier and r. By an additional output query, the binary search
checks whether already o7 leads to a conflict. In the two cases, we can either
avoid oy or og, so we reduce the number of transitions outside S U F' to half the
amount. The precise argument is in:

Lemma 3.11. Suppose basis S is complete, H is a complete Mealy machine
containing the basis, and o € I* leads to a conflict. Then PROCCOUNTEREX(H, o)
terminates, performs at most O(log, |o|) output queries and is correct: upon
termination, the machine H is not a hypothesis for T anymore.

3.5 Adaptive distinguishing sequences

As an optimization in practice, we may extend the rules (R2) and (R3) by
incorporating adaptive distinguishing sequences (ADS) into the respective output
queries. Adaptive distinguishing sequences, which are commonly used in the
area of conformance testing [39], are input sequences where the choice of an
input may depend on the outputs received in response to previous inputs. Thus,
strictly speaking, an ADS is a decision graph rather than a sequence. This mild
extension of the learning framework reflects the actual black box behaviour of
Mealy machines: for every input in I sent to the hidden Mealy machine, the
learner observes the output O before sending the next input symbol. Use of
adaptive distinguishing sequences may reduce the number of output queries that
are required for the identification of frontier states.
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Algorithm 3 Processing o that leads to a conflict, i.e. 6% (qo, o) # 67 (go,0)

procedure PROCCOUNTEREX(H, o € I*)

q 4« 6™ (qi",0)

r 68" (qd ,0)

if r € SUF then
return

else
p + unique prefix of ¢ with 67 (¢f ,p) € F
h LIP\QIU\J
o1+ o[l..h]
o2 < olh+ 1..|0]]
q 8" (qdt, o)
7 67 (¢ ,01)
1 < witness for ¢ # r
OuTPUTQUERY (access(q’) o2 1)
if ¢’ # r’ then

ProcCoUNTEREX (H, o1)
else
ProcCoUNTEREX (H, access(q’) o2)

end if

end if

end procedure o

As an example, consider the observation tree of Figure 3(left). The basis for
this tree consists of 5 states, which are pairwise apart (separating sequences are
a, ab and aa). Frontier states can be identified by the single adaptive sequence
of Figure 3(right). The ADS starts with input a. If the response is 2 we have
identified our frontier state as t4. If the response is 0 then the frontier state
is either tg or t3, and we may identify the state with a subsequent input a.
Similarly, if the response is 1 then the frontier state is either ¢; or t3, and we
may identify the state by a subsequent input b. We can therefore identify (or
isolate) frontier state t5 with a single (extended) output query that starts with
the access sequence for t5 (bbbba) followed by the ADS of Figure 3(right). If we
used separating sequences, we would need at least 2 output queries.

In the setting of L¥, we can directly compute an optimal ADS from the
current observation tree. To this end, we recursively define an expected reward
function E, which sends a set U C Q7 of states to the maximal expected number
of apartness pairs (in the absence of unexpected outputs).

Lo (U S | = U L |+ B

€0 ‘U_>‘

(2)

where inp(U) :={i €I |3q€ U 87 (q,i) }, U ={q€U | (gi)l} and
Ul/—0> {€Q7|3qeU:q —> q'}. We define the maximum over the empty
set to be 0. Then ADs(U) is the decision tree constructed as follows:



A New Approach for Active Automata Learning 235

L AON 2O

o/l o/l 0 |2
b/O b/1 b/O b/l Q 1
1 0
a/O a/O a/2 2 Q

cﬂ@t@@ L O

Fig.3: An observation tree (left) and an ADS for its basis (right)

=

— If UL = 0 then ADS(U) consists of a single node U without a label.
— If UL # ) then Aps(U) is constructed by choosing an input i that witnesses
the maximum E(U), creating a node U with label ¢, and, for each output o

with U-% # (), adding an o-transition to ADS(U 1/0 ——).
For the observation tree of Figure 3(left) we may compute E({to,...,ts4}) =4
and obtain the decision tree of Figure 3(right) as ADS. Running the ADS from

state t5 will create 4 new apartness pairs with basis states (or 5 in case an
unexpected output occurs, e.g. a(1)b(2)).

Proposition 3.12. Define LﬁDs by replacing the output queries in L¥ with

(R2’) OuTPUTQUERY (access(q) ¢ ADS(S)) in (R2) and
(R3’) OuTPUTQUERY (access(q) ADs({be S| —=(b# q)})) in (R3).

Then, LﬁDS lets the norm N(T) grow for each rule application and thus is correct.

3.6 Complexity

Since equivalence queries are costly in practice and since processing of long
counterexamples of length m requires O(logm) output queries, it makes sense to
postpone equivalence queries as long as possible:

Definition 3.13. Strategic L* (resp. LﬁDs) is the special case of Algorithm 1
where rule (R4) is only applied if none of the other rules is applicable.

Then we obtain the following query complexity for the L# algorithm.

Theorem 3.14. Strategic L¥ (resp. LADB) learns the correct Mealy machine
within O(kn? 4+ nlogm) output queries and at most n — 1 equivalence queries.

The query complexity of L# equals the best known query complexity for
active learning algorithms, as achieved by Rivest & Schapire’s algorithm [52,53],
the observation pack algorithm [32], the TTT algorithm [37,36], and the ADT
algorithm [25].



236 F. Vaandrager et al.

In a black box learning setting in practice, answering an output query for
o € I* grows linearly with the length o. Therefore, the (asymptotic) total
number of input symbols sent by the learner is also a metric for comparing
learning algorithms:

Theorem 3.15. Let n € O(m). Then the strategic L* algorithm learns the
correct Mealy machine with O(kmn? + nmlogm) input symbols.

This matches the asymptotic symbol complexity of the best known active
learning algorithms. Although PROCCOUNTEREX reduces the length of the
sequence leading to the conflict, the witness of the conflict remains of size ©(m)
in the worst case. This means that we need O(mlogm) symbols to process a
single counterexample and O(nmlogm) symbols to process all counterexamples.

4 Experimental Evaluation

In the previous sections, we have introduced and discussed the L# algorithm. We
now present a short experimental evaluation of the algorithm to demonstrate its
performance when compared to other state-of-art algorithms. We run two versions
of L#: the base version (Algorithm 1), and the ADS optimised variant (Lﬁm)7 and
compare these with the (highly optimized) LearnLib* implementations of TTT,
ADT,? and ‘RS’, by which we refer to L* with Rivest-Schapire counterexample
processing [52,53|. All source-code and data is available online.®

Implementing EQUIVQUERY: We implement equivalence queries using confor-
mance testing, which also makes output queries. We have fixed the testing tool
to Hybrid-ADS” [57]. Hybrid-ADS has multiple configuration options, and we
have set the state cover mode to “buggy”, the number of extra states to check for
to 10, the number of infix symbols to 10, and the mode of execution to “random”,
generating an infinite test-suite. Note that with these settings, the equivalence
queries are not exact in general but approximated via random testing.

Data-set and metrics: We use a subset of the models available from the Au-
tomataWiki (see [47]): we learn models for the SSH, TCP, and TLS protocols,
alongside the BankCard models. The largest model in this subset has 66 states
and 13 input symbols. We record the number of output queries and input symbols
used during learning and testing, alongside the number of equivalence queries
required to learn each model. An output query is a sequence o € I* of |o| input
symbols and one reset symbol. A reset symbol returns the system under test
(SUT) to its initial state. So resets denotes the number of output queries and
inputs denotes the total number of symbols sent to the SUT. We believe that
these metrics accurately portray the effort required to learn a model.

* https://learnlib.de/

5 The ADT algorithm makes use of some heuristics to guide the learning process, we
have selected the “Best-Effort” settings.

6 https://gitlab.science.ru.nl/sws/Isharp and 10.5281/zenodo.5735533

7 https://github.com/Jaxan /hybrid-ads
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Experiment Set-up: All experiments were run on a Ryzen 3700X processor with
32GB of memory, running Linux. Each experiment refers to completely learning a
model of the SUT. Due to the effects of randomization in the equivalence oracle,
we repeat each experiment 100 times.

& ADT o ¢ ADT
e RS . L) e RS * 3
0°F m TIT o * 10 W TIT ’
® L#-ADS ® L#-ADS . g W
> L# 3 ,»»’g > oL# Lfe
¥ X ]
!. 10° '.
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| :?::z”%j':f"’ ﬁ“

R L 148 )
s »

104
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Total input symbols and resets (log scale)
Total input symbols and resets (log scale)

Models (ascending order of size) Models (ascending order of size)

(a) Symbols used during learning phase (b) Symbols used both learning and testing

Fig. 4: Performance plots of the selected learning algorithms (lower is better.)

Results and Discussion Fig. 4a shows the total size of data sent by the learning
algorithms via output queries — so both the number and the size of output queries
are counted. In order to incorporate the equivalence queries, Fig. 4b shows the
total size of data sent to the SUT during learning and testing. Note, in both
plots the y-axis is log-scaled. The x-axis indicates the models, sorted in increasing
number of states. The bars indicate standard deviation.

We can observe from the learning phase plot (Fig. 4a) that L# expectedly does
not perform better than the TTT and ADT algorithms, while the RS algorithm
performs the worst among all four. However, LﬁDS usually performs better than —
or, at least, is competitive with — ADT and TTT. Furthermore, the error bars in
the learning phase are very small, indicating that the measurements are stable.
Generally, depending on the models a different algorithm is the fastest, but for
every model, LﬁDS is among the fastest, with and without the exclusion of the
testing phase.

Fig. 4b presents the total number of input symbols and resets sent to the SUT.
All algorithms seem to be very close in performance, which may be explained by
the testing phase dominating the process. Indeed, Aslam et al. [8] experimentally
demonstrated that it is largely the testing phase which influences learning effort.

The complete benchmark results (in the appendix of [65]) show more detailed
information of the learned models, and highlights the smallest number per column
and model. We can see that the number of equivalence queries are roughly similar
for almost all the algorithms, while L# seems to perform better for some models
in the learning phase.
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5 Conclusions and Future Work

We presented L#, a new algorithm for the classical problem of active automata
learning. The key idea behind the approach is to focus on establishing apartness,
or inequivalence of states, instead of approximating equivalence as in L* and its
descendants. Concretely, the table/discrimination tree in L*-like algorithms is
replaced in L# by an observation tree, together with an apartness relation. This
change in perspective leads to a simple but effective algorithm, which reduces the
total number of symbols required for learning when compared to state-of-the-art
algorithms. In particular, the use of observation trees, which are essentially
tree-shaped Mealy machines, enables a modular integration of testing techniques,
such as the ADS method, to identify states. Although the asymptotic output
query complexity of L# is O(kn? 4+ nlogm), in our experiments L# only needs
in between kn and 4kn output queries (resets) to learn the benchmark models
(with n < 66), which means that on average L* needs in between 1 and 4 output
queries to identify a frontier state.

Of course there are also similarities between L# and L*. The basis of L# is
comparable to the top half of the L* table: both in L# and in ([53]’s version of)
L* these prefixes induce a spanning tree. The frontier of L# is comparable to
the bottom half of the L* table. But whereas L* constructs residual classes of
the language, L# builds an automaton directly from the observation tree. As a
consequence, L* asks redundant queries, and optimizations of L* try to avoid
this redundancy. In contrast, L# does not even think about asking redundant
queries since it operates directly on the observation tree and only poses queries
that increase the norm.

There is still much work to do to improve our prototype implementation, to
include additional conformance testing algorithms, and to extend the experimental
evaluation to a richer set of benchmarks and algorithms. One issue that we need
to address is scaling of L# to bigger models. Our prototype implementation
easily learns Mealy machines with hundreds of states, but fails to learn larger
models such as the ESM benchmark of [57] (3410 states, 78 inputs) because the
observation tree becomes too big (/25 million nodes will be required for the
ESM). We see several ways to address this issue, e.g., pruning the observation
tree, only keeping short ADSs to separate the basis states, storing parts of the
tree on disk, distributing the tree over multiple processors (parallelizing the
learning process), and using existing platforms for big graph processing [54].

Aslam et al. [9] report on experiments in which active learning techniques
are applied to 202 industrial software components from ASML. Out of these,
interface protocols could be successfully derived for 134 components (within a
give time bound). One of the main conclusions of the study is that the equivalence
checking phase (i.e. conformance testing of hypothesis models) is the bottleneck
for scalability in industry. We believe that a tighter integration of learning and
testing, as enabled by L#, will be key to address this challenging problem.

It will be interesting to extend L# to richer frameworks such as register
automata, symbolic automata and weighted automata. In fact, we discovered L#
while working on a grey-box learning algorithm for symbolic automata.
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