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Abstract The problem of the possibility of the existence of a special nonlinear
effect arising in the marine environment, called “rouge waves”, is considered. Rouge
waves are a phenomenon that cannot be described bymeans of the apparatus of linear
wave theory, the existence of which is beyond doubt. There are various hypotheses
explaining the occurrence of rouge waves, but there is no generally accepted point
of view about the nature of their occurrence. The paper presents a formal apparatus
that generalizes the concept of a dynamic system, in which it is possible to formulate
the necessary conditions imposed on the system that determine the occurrence of a
rouge wave.

Keywords Mathematical modelling · Dynamic processes in Geo-environments ·
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1 Introduction

It is known that abnormally large waves occur in the oceans, which have different
shapes and profiles, but there are also characteristic features, such as sudden occur-
rence, a relatively short time span of life and a huge destructive potential. This
phenomenon was called rouge waves [1, 2]. A few decades ago, rouge waves were
perceived as a myth. Only the existence of “extreme waves” was allowed, as a
phenomenon similar at first glance to a phenomenon whose occurrence does not
go beyond the statistical distribution of random wind waves. The precedent for the
independent study of rouge waves was the “NewYear’sWave”, registered on January
1, 1995 on the Drapner oil platform [1, 2], the appearance of which was an unex-
pected event, and the statistical data from the instruments did not agree with the
theory of “extreme waves”.
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Subsequently, several different scenarios were developed to explain the causes of
rouge waves, namely, experimental studies were conducted that allowed for the first
time to generate a rouge wave in the pool by colliding waves at a certain angle [3].
The classical method of describing the dynamics of waves is the use of the apparatus
of partial differential equations, the system of which, as a rule, is a special case
of the Cauchy-Kovalevskaya system, and, at first glance, does not contain a rouge
wave, however, in [5–7], as a result of a computational experiment, it was possible
to register the appearance of a rouge wave.

From the point of view of random processes, there is nothing surprising in the
occurrence of abnormally large waves, even if their statistical indicators go beyond
the framework of linear theory [4], especially with an unlimited time impact on the
system. There is a need to build a formal apparatus that combines different scenarios
of the occurrence of rouge waves, without losing sight of the very nature of the
phenomenon, and each scenario of the occurrence of rouge waves requires taking
into account the energy exchange between waves, which served as the basis for the
creation of the corresponding axiomatic, which is a more general structure compared
to dynamic systems, which allowed to prove the existence of rouge waves.

2 Problem Statement

2.1 Static

Consider a continuous medium V . Lets divide it into disjoint volumes vi and fix
them. We define for any vi evaluation functionality Jt : V → K ⊂ R, where the
parameter t ∈ T ⊂ R

+ describes continuous time. Denote wi (t) energy assessment
of each vi at three time t , defined by the formula

Jt (vi ) = wi (t),

where each number wi (t) displays the number of units of energy in the volume.
Symbol W denotes the set of all estimates wi (t). And for anyone t the inequality is
fulfilled

∑

vi∈V
Jt (vi ) ≤ supK < ∞.

Let’s introduce the notation H = (V, Jt ) and we will call H as energy space.
Finite sequences u off the form u = (v j , ..., vi ) = j i

let’s call the trajectory of energy from the volume vi into volume v j . Next, we assume
that
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i j =
{
i j, i �= j,
eii , i = j.

Consider the set U of all finite sequences u,, by defining an equivalence relation
on it ∼. We investigate the quantitative change of energy in the sequence at a fixed
time moment t regardless of the intermediate volumes.

Definition 1.1 Finite sequences a = (v j , ..., vi ) i b = (vl , ..., vk) belong to the

same equivalence class [u] ⊂ U , if v j = vl and vi = vk . Remark: In this case, we
will consider that a and b indistinguishable from each other a ∼ b.

Let’s introduce the gluing operation «◦», such that for any jk = (v j , ..., vk), ki =
(vk, ..., vi ), j i = (v j , ..., vi ), i j = (vi , ..., v j ) ∈ U the relations are valid

jk ◦ ki = j i,

i j ◦ j i = eii ,

i j ◦ e j j = i j.

As a representative of any class [u]we will consider the sequence u, consisting of
two elements. BymeansG denote the set of all sequences consisting of two elements(
vi , v j

)
. Note that the statement is true.

Statement If for any i and c �= eii there are a �= eii and b �= eii , such that

c = a ◦ b,

where a, b, c ∈ G, then 〈V,G〉− the complete graph.
It follows from the presented statement that the system considered above is closed

and described by a complete graph.

Definition 1.2 Sequence u = (vi , v j ) it is called connected at a time moment t, if
between the elements vi and v j there is an exchange of energy at a time t.
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3 Dynamics

Let in a closed dynamical system for any element wi (t) ∈ W there is a two—
parameter family of closed operators D = {

Du
t : W → W

}
uεG, such that when

t = 0 Du
0 = I , and D ⊂ (T ). The result of the operator’s action Du

t characterizes
the dynamics of energy in the energy space.

Definition 2.1 Let
(
vi , v j

)− a related sequence at a point in time τ. If at u = j i =
(v j , vi ) the equality is fulfilled.

Di j
t Jτ (vi ) = Ji (v j ),

then v j is called the valence point of the operator D ji
t at the time moment t when

τ ≤ t .
If for the operator D ji

t εD there is a valence point vi lets define a norm for it in the
energy space H according to the formula

‖D ji
t ‖H =

∣∣∣∣∣∣

t∫

τ

F
(
D ji

t

)
d Jτ (vi )

∣∣∣∣∣∣
= ∣∣Jt (vi ) − Jτ (v j )

∣∣,

where integration occurs by Lebesgue, the function F has the form

F
(
Du

t

) =
{

Du
t ,

dDu
t

dt ≥ 0,
−Du

t ,
dDu

t
dt < 0.

Lemma For any sequence consisting of two elements vi and v j there is an operator
Du

t , and the only one with accuracy up to the choice of the valence point.

Proof Since the linked sequence consists of elements vi and v j , then there are two
operators D ji

t and Di j
t , where j i = (v j , vi ) and i j = (vi , v j ).

Consider the norm of the difference of these operators in space H

‖D ji
t − Di j

t ‖H =
∣∣∣∣∣∣

t∫

τ

F
(
D ji

t

)
d Jτ (vi ) −

t∫

τ

F
(
Di j

t

)
d Jτ

(
v j

)
∣∣∣∣∣∣
=

= ∣∣(Jt
(
v j

) − Jt (vi )
) − (

Jτ

(
v j

) − Jτ (vi )
)∣∣ = ∣∣wi − w j

∣∣ = w

So w belongs to the set W , then there is an element w∗εW, to which the operator
corresponds Du

t such that the equality holds

Du
t

(
w∗) = w.
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From existence w and the existence of a valence point v, such that

Jt (v) = w.

According to the lemma, taking into account the statement about the completeness
of the graph, it becomes a correct record of the energy exchange process in the space
H for the volume vi in the following form

Dt (w) = Jt (vi ),

in this case, the operator Dt describes energy exchange.

Definition 2.2 Let’s call a class of operators a cycle S ⊂ D such that under any
u ε G,vεV and Du

t εS the equality is fulfilled

‖Du
t ‖H = 0,

where τ ≤ t .
Let’s split the set D = S ∪ L, where S− circles, and L− other operators.

Definition 2.3 . Let’s call a moment in time τ the end of the epoch, if for the operator
Dτ εL equality is valid

‖Dτ‖H = sup
tεT

‖Dt‖H = supK ,

where DtεD.

Example LetV = {A, B,C}, thenG = {AA, BB,CC, AB, BA,CB, BC, AC,CA}..
The amount of energy in the system supK = 15, and Jτ (A) = 5, Jτ (B) =
8, Jτ (C) = 2, Jt (A) = 7, Jt (B) = 3, Jt (C) = 5− energy estimates of volumes at
time points τ and t correspondingly.

Then ‖DBA
t ‖H = ‖DBC

t ‖H = ‖DBB
t ‖H = 5, ‖DAB

t ‖H = ‖DAC
t ‖H =

‖DAA
t ‖H = 2,

‖DCC
t ‖H = ‖DCB

t ‖H = ‖DCA
t ‖H = 3.

For any D
∧a

t , D
b
τ ε D let ‘s define the composition of operators as

D
∧a

t D
b
τ = D̃a◦b

t+τ ,

when τ ≤ t and a ◦ b = c ∼ uεG.
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Let �τ− the time interval taken as a conditional unit, then the following entry
describes a dynamic process

(Dn�τ (w))n = Jt (vi ),

where n ∈ N the number of time intervals. The value �τ can also be interpreted as
a time sampling parameter t, therefore, if, then and n → ∞. Among the operators
Dt ∈ L an ordered hierarchy of operator classes arises [Dt ] = Li regarding the
growth rate of energy estimates. Let 2w �= 0− is the conventional unit of energy
measurement that can be registered is then the exact upper edge of the classS there
will be a representative of the operator class L1 such that if Dt ∈ L1, then

Dt ∈ L1,

Since for each conditional period of time the amount of energy increases by a
constant value 2w, then

supS = O(t).

Consider supL1. Assuming that at a time moment t the amount of energy change
is equal to 2w, for any Dt ∈ L1 the assessment will be valid

‖Dt‖H ≤ 2w + 2 · 2w + · · · + t · 2w = (2w + w(t − 1))t = w(t + 1)t = O
(
t2

)
,

and for any operator Dt ∈ L2, such that at each moment of time, the change in the
amount of energy will be in 2w times more than at the previous time t the assessment
will be valid

‖Dt‖H ≤ 2w + (2w)2 + · · · + (2w)t = 2w
(
1 − (2w)t

)

1 − 2w
≤ Aeαt = O

(
eαt

)
,

where A = 2w
2w−1 and α = ln(2w). For an arbitrary operator Dt of the class Ln , when

n ≥ 2 the assessment will be valid

‖Dt‖H ≤
t∑

k=1

2w↑n−1k,

where ↑n−1 is the hyperoperator designation in Knuth’s annotation [8].
Note that the class of operators L2 contains a set of semigroups of operators Dt ,

describing the evolutionary process, that is Dt (w) = ∂w(t)/∂t , and the record is
valid
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∂w(t)

∂t
= Jt (vi ).

Let the following be the behavior of the operator Dt , at the timemoment t depends
only on the moment t − �τ . Then the operator Dt can be interpreted as a Markov
process.

4 Rouge Waves

The height of the waves in hydrodynamics correlates with the amount of energy, so
the most important thing is to distinguish these physical indicators. Wave height v

we will find by the formula

ht (v) = xmx − (xm f − xms)/2,

where xmx− is wave crest height, and xm f and xms the nearest soles surrounding the
crest.

To determine the rouge wave, it is necessary to introduce the concept of an ampli-
tude criterion μ. Amplitude criterion μ for the wave v it is calculated as the ratio
of the height of the wave itself to the average value among the third of the highest
waves [9].

Definition 3 A rogue wave is the wave v, for which the amplitude criterion is
μ(v) ≥ 2.1 [10].

Amplitude criterion μ(v) it can be represented in the following form

μ(v) = ht (v)

st
= ‖Dt‖H

1
|M |

∑
τεM ‖Dτ‖H

where ‖Dt‖H− displays the height of the wave at the time moment t, M− a set
consisting of a third of the highest waves up to the moment t. Let the operator
Dt /∈ S. Then the following inequality is true.

1

|M |
∑

τεM

‖Dτ‖H ≤ ‖Dt−1‖H + ‖Dt−2‖H

2

taking into account the registration of at least two waves until t.

Then for the value of the amplitude criterion μ the assessment is valid

μ ≥ 2‖Dt‖H

‖Dt−1‖H + ‖Dt−2‖H
. (1)
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Let operator Dt ε L2, and let’s make an upper estimate of the right side of the
inequality (1). Considering that up to the moment t there were at least two waves,
so t ≥ 3, and assuming w = 1, will get

2‖Dt‖H

‖Dt−1‖H + ‖Dt−2‖H
≤ 2‖Dt‖H

2min(‖Dt−1‖H , ‖Dt−2‖H )
≤ ‖Dt‖H

‖Dt−2‖H
≤

≤ 2et ln2w

(2w − 1)(t − 1)(t − 2)

∣∣∣∣
t=3

= 2e3ln2

2
= 8.

Next, we will make a lower estimate of the amplitude criterion μ :
2‖Dt‖H

‖Dt−1‖H + ‖Dt−2‖H
≥ 2‖Dt‖H

2max(‖Dt−1‖H , ‖Dt−2‖H )
≥ ‖Dt‖H

‖Dt−1‖H
≥

≥ (2w − 1)(t + 1)t

2e(t−1)ln2w

∣∣∣∣
t=3

= 4 · 3
2e2ln2

= 1.5.

Hence, there is an operator Dt ε L2, describing the dynamic process in which
rogue waves arise.

So, the analysis allows us to formulate a hypothesis: “The dynamic process is
represented by repeating epochs, each of which is a combination of a cycle and a
trend,which corresponds to a part of the epoch that arises as a result of filtering it from
cycles, while rogue waves are born before the end of the epoch,” for confirmation of
which we turn to computational experiments.

5 Processing of Computational Experiments

Computational experiments were carried out in [6, 7]. The resulting waveform is
shown in Fig. 1. We will interpret it as a time series Xt . We introduce an estimate of
the height of each wave according to the following formula

Jt = xmx − (
xm f + xms

)
/2.

Fig. 1 Visualization of a computational experiment
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Fig. 2 Wave height

Figure 2 shows the result of the time series transformation Xt into Yt , which
displays the change in wave height over time.

According to the amplitude criterion, in the time series Yt 25 rouge waves have
been recorded. For a time series Yt we define an estimate of local uniformity μ(Un),

as the standard deviation calculated for the set Un ⊂ Yt , where n− the number of
elements in the set Un.

5.1 Frequency Response

Time series Yt consist of 29,103 elements, rouger waves occurred only at moments
in time

t = [26925; 27164; 27198; 27232; 27403; ...; 28429; 28463; 28497; 28531].

Denote Tr the set of all the moments of the occurrence of rouge waves. Lets
introduce the set P , consisting of time intervals during which rogue waves occur in
the next control.

pi = ti+1 − ti

where ti , ti + 1 ∈ Tr . We assume that the dynamic process contains cycles, which
means that the occurrence of a rouge wave must be systematic. Moreover, it is more
important that there is only one rouge wave in each cycle, or there are none. There are
several possible options for choosing the value of the number n. First, let’s assume
that n = 67, since the averaging of all elements of the set P up to three digits is equal
to 66.917, where n ∈ N . The number 34 is often found in the set P , therefore, it may
be n = 34. Note that the average value of the elements of the set P close to twice
the value of the most encountered element, decomposing it into prime numbers, we
get 17 and 2, therefore n = 17.

The graphs are shown below in Figs. 3, 4, 5 for μ(Un) when n = 67, 34, 17. The
blue color shows the change in the value μ(Un), denoted as «Origin». Bya «Trend»
the result of exponential smoothing of «Origin» is indicated for α = 0.02. The red
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Fig. 3 The variation of μ(Un) over time, when n = 67

Fig. 4 The variation of μ(Un) over time, when n = 34

Fig. 5 The variation of μ(Un) over time, when n = 17

line marks the moment of registration of the first rouge wave, while it begins with
the value of the indicator μ(Un) and ends at the maximum possible value μ(Un).

Figure 5 shows an epoch consisting explicitly of a cyclic component in the form
of a sine wave and a trend in the form of an exponent.
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Fig. 6 Point-by-point graph μ(Un)

5.2 Minimization of Functionality

According to the hypothesis, the occurrence of a rouge wave should be a systematic
phenomenon. And if this is the case, then you can choose one in which the value
μ(Un) it will be minimal at all points in the time of the occurrence of the rouge wave.
The solution to this problem is reduced to the construction of the objective function
ρ(n) and its minimization. Let the objective function have the form

ρ(n) = 1

25

∑

tεT

(μt (Un))
2 → min.

Before starting optimization, it is necessary to determine the range of acceptable
values. Let n ∈ [3, 500]. By a particle we will understand the implementation of the
annealing simulation method for the objective function ρ(n). The smallest value of
the objective function ρ(n) achieved when n = 17. This value was found most often
and had the smallest value of all those obtained as a result of launching a swarm of
60 particles. Figure 6 shows the function μt (Un) when n = 17.

So, the analysis of the presented computational experiment allows us to conclude
about the validity of the hypothesis formulated above.

6 Conclusions

The presented method of mathematical modeling of anomalous dynamic processes
in continuous media, being more general in comparison with the methods of the
theory of dynamical systems, but more specialized than the methods of the theory
of random processes, whose elements can be introduced and used without any diffi-
culties, allowed us to prove the existence for some differential operators of a special
nonlinear effect arising in a continuous medium, called “rouge waves”.
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