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Chapter 18
Molecular Modeling Approaches 
to Investigate Essential Oils (Volatile 
Compounds) Interacting with Molecular 
Targets

Suraj Narayan Mali, Srushti Tambe, Amit P. Pratap, and Jorddy Neves Cruz

18.1 � Introduction to Molecular Modeling

The term molecular modeling comprises two words, “molecular’ and ‘modeling’. 
The term ‘molecular’ itself denotes the fact that molecules are involved, wherein, 
the second term ‘modeling’ indicates the process of representing various molecular 
structures numerically and correlating or expressing them so as to correlate with 
their biological activity or to model or mimic the behaviour of molecules (Verma 
et  al. 2010). This has been done with the help of various quantum and classical 
physics equations (Vanommeslaeghe et al. 2014).

Since last decade, a new drug designing approach called CADD (Computer-
aided drug design) has emerged as crucial technique for the drug discovery pro-
cesses including identifying potential hits and development of a potential lead 
(Abdolmaleki et  al. 2017) . Some of key examples are dorzolamide (carbonic 
anhydrase inhibitor); captopril (the angiotensin-converting enzyme); ritonavir, 
and indinavir (anti- human immunodeficiency virus (HIV), etc. It is proven that 
CADD approach utilizes more target-based searches as compared with tradi-
tional approach of finding hits (Pinto et al. 2019). Thus, this technique is not only 
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capable of explaining various molecular basis involved for pharmacological 
activities but also useful to predict plausible bioactivities of various synthesized 
derivatives. (Vucicevic et al. 2019).

It is also important to note that molecular modeling techniques look at biological 
processes at the molecular level while trying to understand the root cause of under-
lying disease conditions (Sun and Scott 2010).

Usually, this technique has been classified into two categories as (1) direct 
drug designing (the fact that 3Dimensional structure of the receptor is known) 
and (2) indirect drug designing (where, 3D structure of the receptor is not 
known and based on active and in-active ligand sets, a hypothetical receptor 
site would be assumed) (Santos et al. 2020). It is well evident that such tech-
niques have a common feature depicting the atomistic level description of 
whole system (Leelananda and Lindert 2016). This involves two fundamental 
approaches (1) a molecular mechanics approach and (2) a quantum chemistry 
approach. Molecular modeling techniques have wide range of applications 
such as their use in drug discovery, computational biology, materials science, 
and in drug designing. The pharmaceutical field has been largely benefited 
from this technique. Considering the recent pandemic of COVID-19, such tech-
niques would play important role in identifying possible hits against such virus 
within short span of time (Wang et  al. 2017; Prajapat et  al. 2020; Gurung 
et al. 2021).

18.2 � Molecular Modeling Methods

18.2.1 � Molecular Descriptors

Molecular descriptors are usually physicochemical properties. Such properties 
would contribute towards biological activity of molecule (Redžepović and 
Furtula 2021). This was also defined by Todeschini and Consonni as: “The 
molecular descriptor is the final result of a logic and mathematical procedure 
which transforms chemical information encoded within a symbolic representa-
tion of a molecule into a useful number or the result of some standardized 
experiment.”(Alves et al. 2020; Pinzi et al. 2021) Although many physicochemi-
cal properties have been studied by medicinal chemists, only three of them are 
highly important and those are (1) hydrophobic (e.g., partition coefficient (P)), 
(2) steric and (3) electronic properties (e.g., Hammett substitution constant) or 
descriptors (Grisoni et al. 2018; Costa et al. 2020).
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18.2.2 � SAR and QSAR

In general, biological properties of compounds are dependent on their chemical 
structure. Furthermore, it is believed that structurally similar molecules would show 
similar properties (Huang et al. 2021b). Thus, the understanding of such relation-
ships has given rise to a concept called structure–activity relationship (SAR). The 
structure activity relationships (SAR) are basically a qualitative expression. 
However, same relationship when established in a mathematical form by utilizing a 
set of molecular properties or descriptors along with their corresponding bioactivi-
ties would give rise to Quantitative Structure–Activity Relationship models (QSAR 
models) (Idakwo et al. 2019; Almeida et al. 2021). QSAR models are regression 
based or classification-based models. QSAR regression models relate two variables; 
(X) ‘prediction variable’ (physico-chemical properties or theoretical molecular 
descriptors) to the potency of the response variable (Y). Statistically robust and vali-
dated QSAR models can be also be used for predicting biological activity of newer 
chemical structures (Halder et al. 2018).

Quantitative structure–activity relationship models (QSAR models) can be 
expressed in the form of a mathematical model:

Biological Activity = f (physiochemical properties and/or structural properties) + error
 

In order to quantify the activity of a set of molecules, one need to usually have 
Half maximal inhibitory concentration (IC50) or inhibition constant (Ki) measures. 
QSAR models, unlike various pharmacophoric models can be useful to see how 
particular features to drug molecule can have positive or negative effects upon intro-
ductions (Zhong et al. 2018). The selection of a proper set of molecular descriptors 
governs successful QSAR model development. Furthermore, its ability to predict 
biological activity has also been taken into consideration while deciding best QSAR 
model among various developed QSAR models. Various statistical measures would 
be applied to decide best QSAR model (Gupta et al. 2018). For the development of 
a good predictive QSAR model, one need to have enough biological activity data 
(training data), otherwise QSARs cannot perform well. MLR (multivariable linear 
regression) and Machine learning approaches (neural networks (NN) and support 
vector machine (SVM)) methods can be also used for building successful QSAR 
models. MLR methods can only be used when there is linear relationship between 
descriptors and activity (Achary 2020; Hadrup et al. 2021). Principal component 
analysis (PCA) technique would simplify the complexity of selecting molecular 
descriptors and building QSAR models by removing descriptors that are not inde-
pendent. Various statistical validations were reported by various researchers 
(Sharma and Bhatia 2020). Although, good QSAR models have better predictivities 
still they should be used cautiously and applied only to the particular set of com-
pounds with varied structural features on similar scaffold (Fukuchi et al. 2019).
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18.2.3 � Molecular Docking

The study of how two molecular structures would fit into each other, usually drug 
molecule and receptor or enzyme or proteins is called as ‘molecular docking’. In a 
simpler way, it is a technique used to see or predict binding interactions of small 
molecules with target forming a complex that may indicate inhibition or enhance-
ment of biological activity (Saikia and Bordoloi 2018; Pinzi and Rastelli 2019). 
Such behaviour of ligands (small molecules) can be established with molecular 
docking simulations by predicting affinity between the small molecules and pro-
teins (Ramos et al. 2020). Based on such behaviours, docking can be classified into 
three types viz., (1) protein-ligand docking; (2) protein–nucleic acid docking; and 
(3) protein–protein docking (Torres et  al. 2019; Mohammad et  al. 2021). The 
protein-ligand docking is comparatively simple than protein-protein docking. As 
proteins are flexible in nature, their conformational space is so wide and thus mak-
ing protein-protein docking more complex. Docking simulations are based on vari-
eties of search algorithms like e.g., genetic algorithms (GAs), distance geometry 
methods, MC methods, fragment-based methods, Tabu searches, etc. (Li et al. 2019; 
Castro et al. 2021). Docking methodology typically includes three main steps as 
depicted below:

	1.	 Retrieving X-ray co-crystallized structure from the protein data bank (PDB), and 
identifying active site. (Protein Preparation)

	2.	 Ligand Preparation (Drawing of chemical structures and converting into 3D 
form, generating least energy conformers, etc.)

	3.	 Docking of ligand into active site via Grid generation or site mapping.

Several docking engines have been reported over last decades which include Glide, 
GOLD, AutoDock, iGEMDOCK, DOCK, etc. Identifying correct binding site, re-
docking validation and setting up of input files for docking are crucial steps in the 
molecular docking to get suitable acceptable results (Pagadala et  al. 2017; Liu 
et al. 2018b).

18.2.4 � Molecular Dynamics Simulations

Molecular dynamics simulation (MDs) is extensively used molecular modeling tool 
for understanding protein motions and conformational space (Van Der Spoel et al. 
2005; Neves Cruz et al. 2020). There are many famous and widely used MD simula-
tion software packages available such as GROMACS, AMBER, NAMD, Desmond, 
etc. One must note that for it has typical timescale ranges from nanoseconds to 
microseconds (Salomon-Ferrer et al. 2013; Lima et al. 2020). Basically, MD simu-
lation is computer-based method to analyse physical movements of atoms. MD 
simulation typically finds its application in material science, chemical science, and 
in biophysics (Moradi et  al. 2019). Apart from several MD simulation success 
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stories, the application of MD simulation is still limited due to two main challenges: 
(1) the force field used and (2) high computational demand. For example, if some-
one wants to run a 1 microsecond simulation for a smaller system of 25,000 atoms 
using 24 processors, it will still take several months to complete the same (Liu et al. 
2018a). Moreover, force fields are also approximations of the quantum-mechanical 
reality. The MD simulation is poorly suitable for systems, where quantum effects 
are important (Venable et al. 2019).

18.2.5 � Binding Free Energy Calculations

In order to estimate binding affinity of the binding affinity of target–ligand com-
plexes, binding free energy calculations are used. Binding affinity calculations can 
be used to understand the effects of target mutations. Moreover, the drug potency 
can be correlated directly with binding affinities (Gohlke and Case 2004; Cournia 
et al. 2017; Leão et al. 2020; Neto et al. 2020).

	
� � � �G G G Gbind complex protein ligand� � �� �

	

Where,

Δ Gbind = the free energy of binding,
Δ Gcomplex = the free energy of the protein–ligand complex,
Δ Gprotein and Δ Gligand = the free energies of the protein and ligand, respectively.

Rigorous approaches are considered as most accuratHe approaches to calculate 
binding free energies. The FEP (free energy perturbation) methods and thermody-
namic integration (TI) methods are the two important rigorous binding free energy 
approaches. The FEP methods were introduced by Zwanzig in the 1950s. Such 
method uses molecular dynamics and Monte Carlo simulations. Another method 
called BEDAM (binding energy distribution analysis method) is also used to calcu-
late binding free energy calculations. It is well understood that the free energy is 
overall sum of all local energy minima (Wang et al. 2019; Kuhn et al. 2020).

18.2.6 � In-silico ADMEtox Properties

After obtaining hit molecules, lead optimization would be carried out. During the 
lead optimization, various parameters should be taken into consideration like drug 
safety, pharmacokinetic properties and ADME profiles (absorption, distribution, 
metabolism, and excretion/elimination) (Bueno 2020; Araújo et  al. 2020). Thus, 
carrying out ADME analysis is a crucial step. It is important to note that affinity 
changes with atom modifications. Considering drug absorption, permeability and 
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solubility are two most important factors for the enhancement of drug potency. 
Henceforth, in-silico ADME analysis is important for predicting solubility and 
membrane permeability (Farouk and Shamma 2019; dos Santos et al. 2020). The 
experimental measurement of solubility is quite tedious, while in-silico solubility 
calculations are faster. One of published review on computational approaches 
explains various approaches to predict drug solubility. Human intestinal absorption 
is important while considering bioavailability of drug. Thus, the Lipinski’s ‘Rule of 
5’ (there should not be more than 5 H-bond donors, Log P is over 5, more than 10 
H-bond acceptors, and the molecular weight is over 500) would be taken into con-
sideration (Li 2001; Alqahtani 2017). The calculation of the Lipinski’s ‘Rule of 5’ 
via computational methods would help medicinal chemists to design drug molecule 
with high bioavailability. QikProp, admetSAR, FAF-Drugs2, etc. are some of 
widely used ADMET calculation programs. For generating ADME models and cal-
culations, ‘VolSurf’ package can be utilized. Qikprop, a program by Schrodinger is 
able to calculate large number of physically significant physicochemical properties, 
toxicity indicating descriptors for small molecules (Huang et  al. 2021a). Even 
though many experimental verifications are required to assess the pharmacokinetic 
properties and toxicity of molecules, in-silico ADMET analysis offers several ben-
efits by reducing the actual costs. The assessment of ADME properties is a key step 
in drug screening. However, one must take into consideration of several limitations 
of computational methodologies and thus, would use such techniques with caution 
(Stouch et al. 2003; Durán-Iturbide et al. 2020).

18.3 � Investigation of the Mechanism of Action 
of Volatile Compounds

18.3.1 � Background

Medicinal plants have been used to treat human diseases since antiquity as the 
world’s greatest biochemical and pharmacological living reservoirs. Natural 
products originating from plants are an important option in the quest for thera-
peutic agents because they contain a diverse range of bioactive chemical compo-
nents (Fowler 2006; de Carvalho et  al. 2019). Phytochemicals have biological 
pre-validation concerning drug-like properties: their basic scaffolds can be seen 
as natural structures in drug discovery because they have interacted with diverse 
enzymes and proteins during their biosynthesis (Bezerra et al. 2020a; Barbosa 
et  al. 2021). They thereby fall into the biologically relevant chemical region, 
which is predetermined for interaction with drug targets. Computational chemis-
try, in conjunction with bioinformatics, has aided in the development of new 
drugs with various biological activities (Kellenberger et al. 2011; Maier 2015). 
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Natural products are, unfortunately, disadvantaged since their isolation is diffi-
cult and time-consuming, and because of their high structural complexity and 
relatively large molecular weight their total synthesis is not as favorable for 
large-scale manufacture (de Oliveira et  al. 2020). In addition, these traits can 
transmit poor absorption, distribution, metabolism, discharge, and toxicity pro-
files (ADMET) (Hazzaa et  al. 2020). Molecular docking is a computer-based 
technology that predicts the positioning (orientation and configuration) of the 
ligand (drug or molecule of therapeutic interest) at a target site of interaction and 
helps comprehend the biological activity of volatile compounds. Thus, for thera-
peutic compounds, molecular docking serves as a predictive model that can help 
with in vivo pharmacological activity evaluations (Meng et  al. 2011; Bezerra 
et  al. 2020b). Plants that produce volatile compounds are classified into more 
than 17,500 species of plants from many angiosperm families, e.g., Rutaceae, 
Alliaceae, Lamiaceae, Apiaceae, Poaceae, Asteraceae, and Myrtaceae (de Paulo 
et al. 2020). They are well-known for their ability to produce commercial and 
therapeutic volatile compounds. Volatile compounds are complex chemicals with 
a strong odor that are produced as secondary metabolites by aromatic plants 
(Michel et  al. 2020). Methyl-d-erythritol-4-phosphate (MEP), mevalonic acid, 
and malonic acid pathways are responsible for the synthesis of volatile oils in the 
cytoplasm and plastids of plant cells. They are found as liquid droplets in the 
roots, stems, fruits, flowers, bark and leaves of the plants, and are generated and 
preserved in secretory cavities, glands, and resin conduits which are some of the 
complex secretory structures (Arsenijevic et al. 2021). Volatile oils are exceed-
ingly complex combinations of predominantly terpenoids phenylpropanoids, and 
terpenes, while comprising two or three major components at a level of 20–70% 
(Ferreira et al. 2020). The other components are aromatic and aliphatic constitu-
ents, all characterized by low molecular weight and are present in trace amounts. 
They may also comprise several other compounds such as sulfur derivatives fatty, 
oxides, and fatty acids. These primary components, in general, determine the 
biological features of volatile oils. Terpenes are divided into two categories 
based on their structural and functional features (Aremu and Van Staden 2013). 
They are the most common molecules, accounting for 90% of volatile oils and 
allowing for a wide range of configurations. They are made up of isoprene, which 
is a compound made up of multiple 5-carbon-base (C5) units. Monoterpenes 
(C10H16) and sesquiterpenes (C15H24) are the most common terpenes, but diter-
penes (C20H32), triterpenes (C30H40), and other longer chains occur as well 
(Maltarollo et  al. 2015). Examples of terpene compounds include limonene, 
pinene, p-cymene, sabinene, and terpinene. The aromatic compounds are found 
in lesser proportions than the terpenes. Figure 18.1 represents the chemical struc-
tures of few volatile components. The design of target metabolites, as well as the 
mechanism of action of pharmacologically active compounds, can be determined 
through molecular docking studies (Ma et al. 2011b).
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Fig. 18.1  The chemical structures of few volatile compounds

18.3.2 � Molecular Modeling of Volatile Compounds 
with Antimicrobial Activity

Volatile compounds are secondary metabolites that are vital for plant defence 
because they often possess antibacterial capabilities (De Oliveira et al. 2019; Do 
Nascimento et al. 2020). De la Croix used volatile oil vapours to test the bactericidal 
activities of secondary metabolites for the first time in 1881. Since then, volatile oils 
and their components have been found to exhibit antibacterial effects across a wide 
range of bacteria. Volatile oils contain complex combinations of up to 45 distinct 
ingredients, making it difficult to identify the most active antibacterial molecules. 
The antibacterial effects of most volatile compounds are due to the disruption of 
bacterial membranes (Ooms 2012). Damage to membrane proteins (such as 
enzymes), motive proton force depletion, cell content leakage (leakage of cellular 
ions, Na+, H+, and K+), and cytoplasm coagulation all seem to be common side 
effects. After treatment with volatile oils, disruption of plasma membrane integrity 
leads to efflux of DNA, RNA, and proteins, which has been identified as a key anti-
microbial mode of action (Diao et al. 2014). Reduced membrane potentials, disrup-
tion of proton pumps, and ATP depletion are all linked to volatile compounds’ 
antimicrobial properties as well (Carson et  al. 2002). Nonetheless, inhibition of 
efflux pumps, which are responsible for antibiotic resistance, has been considered 
as a specific target for volatile compounds (Costa et al. 2019). This change in cell 
arrangement could trigger a cascade effect, affecting other cell organelles as well. 
These effects are almost certainly the outcome of the volatile compound’s initial 
mode of bacterial membrane instability. Because of the effective hydroxyl group in 
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chemical structures of volatile compounds, phenolic content in them exhibits greater 
specificity for the inhibition of microbial growth that contributes in disruption of 
plasma membrane structure and hence disorganization of membrane permeability, 
particularly, by altering the activity of the enzymes involved in Krebs’s cycle. 
However, the terpenoids in volatile oils have a significant impact on plasma mem-
brane fatty acids, resulting in changes in membrane dynamicity, permeability, and 
cytoplasmic constituent leakage (Bouyahya et al. 2017; Antunes et al. 2021). The 
lipophilic characteristic of volatile oils is closely linked to their antibacterial activ-
ity. The major target of volatile oils and bioactive components is the cell wall and 
plasma membrane, which leads to interactions with cellular polysaccharides, fatty 
acids, and phospholipids (Burt 2004). Changes in antibacterial action between 
gram-positive bacteria and gram-negative are explained by differences in cell wall 
construction, with gram-positive strains being far more sensitive to volatile com-
pounds. In various bacterial species, volatile compounds suppress cell-to-cell trans-
mission and biofilm development (Calo et  al. 2015). Moreover, an efficient 
breakdown in the sensory transmission is triggered by the impact of volatile com-
pounds on biofilm formation inhibitions in bacterial species. The mechanism of 
quorum sensing modulation via volatile compounds involves complicated interac-
tions of the compounds with bacterial cell wall receptors, which lowers signal mol-
ecule reception and impairs cell-to-cell signal transmission (Camele et al. 2019). 
The antibacterial activity of volatile oils is mainly attributed to the low proportion 
of terpenoids and phenolic compounds present in them, thereby exhibiting antibac-
terial activity in their pure form. The primary components of volatile oils from 
plants in the Lamiaceae family, carvacrol and thymol, have the most well-researched 
antibacterial action. 1,8-cineole, α-pinene, citral, perillaldehyde, eugenol, 
terpinen-4-ol, and geraniol are some of the other constituents with antibacterial 
activity (Singh et al. 2009). The anti-bacterial mechanism of action of volatile com-
pounds is shown in Fig. 18.2.

Several volatile oils are currently being investigated as a potential treatment for 
viral infections. Clove and oregano volatile oils have potent antiviral properties 
against a variety of non-enveloped RNA and DNA viruses, including poliovirus, 
coxsackievirus B1, and adenovirus type 3 (Allahverdiyev et al. 2004) . Antiviral 
activity of some sesquiterpenes, triterpenes, and phenylpropanes has been con-
firmed against various herpesviruses and rhinoviruses (Hayashi et al. 1996). Volatile 
oils are thought to mask viral components or influence the viral envelope that is 
required for adsorption or entrance into host cells, according to most studies 
(Niedermeyer et al. 2005). They inhibit the virus replication by hindering cellular 
DNA polymerase and alter the phenylpropanoid pathways. Monoterpenes, in par-
ticular, increase the fluidity and permeability of the cytoplasmic membrane and 
disrupt the order of membrane-embedded proteins. Virion envelopes are found to be 
more sensitive to volatile oils than host-cell membranes (Benencia and Courrèges 
1999). Because volatile oils are lipophilic, their antiviral activity is thought to dis-
rupt or interfere with viral membrane proteins involved in host cell attachment. The 
schematic representation of the anti-viral mechanism of volatile compounds is 
shown in Fig. 18.3 (Schuhmacher et al. 2003).
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Fig. 18.2  The mechanism of action of volatile compounds against bacterial pathogens

Volatile oils have also been shown to have marked antifungal properties. Different 
species of fungus, including dermatophytes fungi, moulds, phytopathogenic fungi, 
and yeasts, have been reported to exhibit anti-fungal properties. The antifungal 
activity of volatile oils is governed by the existence of many active ingredients such 
as monoterpenes, sesquiterpenes, phenols, aldehyde, and ketones, all of which 
interact to produce synergistic, additive, and complementary effects (Soković et al. 
2010). The majority of hypotheses about volatile compounds’ antifungal effect have 
been postulated because of their hydrophobic character, which affects ergosterol 
synthesis in fungi’s plasma membrane. Ergosterol is a sterol found only in the fun-
gal plasma membrane, where it is responsible for maintaining membrane fluidity, 
viability, and integrity, as well as assisting in the biogenesis of certain membrane-
bound enzymes (Hyldgaard et al. 2012).

The direct disruption of the plasma membrane is another important mechanism 
of anti-fungal action. When volatile compounds destabilize the plasma membrane, 
critical cellular ions like K+, Ca2+, and Mg2+ leak out. Volatile compounds have a 
significant impact on plasma membrane fluidity and permeability, causing damage 
to the structures of the membrane proteins. Furthermore, the cellular organelles 
such as the Golgi body, mitochondria, ribosome, and the endoplasmic reticulum are 
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Fig. 18.3  A schematic representation of anti-viral mechanism of volatile compounds

also able to interact with the volatile compounds, resulting in reduced membrane 
potential (Ma et al. 2011a). This leads to proton pump disintegration, and eventually 
inhibition of the ATP generating enzyme, H+ -ATPase, which helps to develop elec-
trochemical gradients and maintain cell pH across the membrane. The normal 
growth and reproduction of fungal cells is also hampered by the volatile compounds 
due to damage to nuclear contents (Diniz et al. 2021). The mechanism of action of 
volatile compounds against fungi is shown in Fig. 18.4.

Nowadays, many researchers have carried out molecular docking of essential oil 
components to find out the possible mechanism of action for their observed antimi-
crobial activities (Sun et al. 2009). Depending on type of antimicrobial analysis, one 
can choose rightly protein database id (pdb id) for molecular docking analysis. The 
selection of appropriate pdb id is a crucial step while carrying out molecular dock-
ing and is based on the resolution of crystal structure of protein or enzyme. One 
should select the pdb id of the target with the lesser resolution based on previous 
literature analysis. Recently, Melaku et al., 2021 carried out a molecular docking 
analysis of essential oil components of plant Ocimum cufodontii ((Lanza) A.J. Paton) 
(Aliye et  al. 2021). Their results suggested that essential oil components of this 
plant have strong interactions with bacterial DNA gyrase. The docking analysis was 
carried out with the help of AutoDock Vina (Chen et al. 2017). Further, elaboration 
of the use of molecular docking analysis has been summarized in Table 18.1.
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Fig. 18.4  A schematic representation of anti-fungal mechanism of volatile compounds

Table 18.1  Compounds present in essential oils used in molecular modeling

Plant name Component used Type of microorganism

Molecular 
modeling 
technique 
used Ref.

Mentha 
species 
(Lamiaceae)

Carvone (55.71%), 
limonene (18.83%), 
trans-carveol (3.54%), 
cis-carveol (2.72%), 
beta-bourbonene 
(1.94%), and 
caryophyllene oxide 
(1.59%)

Candida albicans and 
Candida parapsilosis; 
Salmonella enterica 
serotype Typhimurium 
(ATCC 14028), Escherichia 
coli (ATCC 25922), 
Pseudomonas aeruginosa 
(ATCC 27853), Shigella 
flexneri serotype 2b (ATCC 
12022), Staphylococcus 
aureus (ATCC 25923)

Molecular 
docking

Jianu 
et al. 
(2021)

Siparuna 
guianensis

Trans-β-Elemenone 
(11.78%) and 
Atractylone (18.65%), 
followed by δ-Elemene 
(5.38%), β-Elemene 
(3.13%), β- Yerangene 
(4.14%), γ-Elemene 
(7.04%), Germacrene D 
(7.61%), Curzerene 
(7.1%), and Germacrone 
(5.26%)

Streptococcus mutans 
(ATCC 3440), Enterococcus 
faecalis (ATCC 4083), 
Escherichia coli (ATCC 
25922), and Candida 
albicans (ATCC 10231)

Molecular 
docking 
(Molegro 
Virtual 
Docker 6);
Molecular 
Dynamics 
(MD) 
Simulation; 
and
Free Energy 
Calculations

de 
Oliveira 
et al. 
(2020)
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Plant name Component used Type of microorganism

Molecular 
modeling 
technique 
used Ref.

Eryngium 
campestre

Essential Oils Staphylococcus aureus 
(ATCC 6538), S. 
epidermidis (ATCC 12228), 
Streptococcus pyogenes 
(ATCC 19615), 
Enterococcus faecalis 
(ATCC 19433); Escherichia 
coli (ATCC 8739), 
Pseudomonas aeruginosa 
(ATCC 9027), Proteus 
mirabilis (ATCC 12453), 
Klebsiella pneumoniae 
(ATCC 10031)

Molecular 
docking 
(Molegro 
Virtual 
Docker 6)

Matejić 
et al. 
(2018)

Table 18.1  (continued)

18.3.3 � Molecular Modeling of Volatile Compounds 
with Anticancer Activity

Cancer has recently emerged as one of the most pressing public health issues, as 
well as the second leading cause of death after heart disease (da Silva Júnior et al. 
2021). Cancer is defined by uncontrolled cell proliferation that results in tumor 
formation. It develops as a result of somatic mutations in upstream cell signalling 
pathways or genetic abnormalities in any gene that encodes cell cycle proteins. 
Many standard therapeutic approaches have been unsuccessful against many malig-
nant cancers due to cancer cell metastasis, recurrence, heterogeneity, and resistance 
to chemotherapy and radiotherapy (Siegel et  al. 2016; de Oliveira et  al. 2021). 
Another explanation for therapy failure has been linked to cancer cells’ ability to 
evade immune responses. Natural products have recently become more popular as a 
therapy option for various types of cancers. The majority of volatile oils were first 
discovered and utilized to treat inflammatory and oxidative disorders. These volatile 
compounds demonstrate anticancer properties owing to the relationship between the 
production of ROS (reactive oxygen species) and the onset of inflammation and 
oxidation, both of which are known to cause cancer in humans (Sun 2015; Cascaes 
et al. 2021b). It is difficult to pinpoint a single mode of action for volatile com-
pounds because of their highly varied compositions. A chemical may, in fact, affect 
one form of the tumor but not on others. Murata et al., for example, discovered that 
1,8-cineole/eucalyptol causes apoptosis in human colon cancer cells (Jackson and 
Loeb 2001). This chemical, on the other hand, does not influence the survival of 
prostate cancer and glioblastoma cells. Furthermore, depending on the concentra-
tion of active chemicals, multiple processes, such as an effect on the cell cycle, cell 
proliferation, and/or death, may be observed (Murata et al. 2013; Silva et al. 2021).
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Apoptosis is one of volatile oil’s cancer-prevention methods which can be trig-
gered by effects on genetic material, multiple signalling pathways, and other cellu-
lar events such as intracellular protein alterations by volatile compounds. In cancer 
cells, the cleavage of poly (ADP-ribose) polymerase-1 (PARP) by volatile oil com-
ponents is an indication of both alteration of the DNA repair process and apoptosis 
(Cardile et al. 2009). The aberrant cells also undergo apoptosis as a result of ele-
vated ROS levels. Cell death as a result of volatile oils treatment in cancer cells is 
characterized by reduced levels of cellular antioxidants like glutathione as well as 
increased production of ROS in the presence of the volatile oils (Santana de Oliveira 
et al. 2021). Increased ROS production damages DNA, which often leads the cancer 
cells towards cell death. This activity is particularly detrimental to cancer cells, 
whilst it does not affect normal cells (Itani et al. 2008). One of the unique aspects of 
volatile compounds is that, while they are cytotoxic to cancer cells, they promote 
normal cell proliferation. Downregulation of repair genes (DNA polymerases 𝛼, 𝛿, 
and 𝜀) volatile compounds may prove to be a viable approach for preventing DNA 
damage. The protein kinase B, often known as Akt, which regulates p53, is another 
target for volatile oils (Kelley et al. 2001). It has been demonstrated that upregula-
tion of p21, which occurs from the deactivation of mdm2 as a result of the dephos-
phorylation of the Akt protein, causes the cell cycle to be interrupted in lung 
carcinoma cells. The G1-S phase transition was suppressed by increasing the bind-
ing of p21 to cyclins (Legault et al. 2003). A transcription factor (TF) called Nuclear 
factor, often known as NF- κB, is triggered in cancer cells. As a result, it is a promis-
ing target for developing anticancer therapeutics. Another TF called AP-1 (Activator 
protein-1) is involved in a variety of cell activities including differentiation, prolif-
eration, transformation, and apoptosis. MAPK proteins, which are likewise impacted 
by volatile oils therapy in cancer cells, govern its activity. Furthermore, various 
MAPKs, such as p38 kinase, ERK, and JNK are the key signalling molecules in the 
MAPK pathway that are implicated in cancer cell apoptosis (Jaafari et al. 2007).

Volatile compounds are highly potent anticancer agents because they target sev-
eral cell cycles phases in cancer cells. Volatile compounds such as thymol, carva-
crol, and geraniol have shown to inhibit different phases of cell cycle (Frank et al. 
2009). Monoterpenes exert their effects through modulating the expression of cell 
cycle regulators. Volatile oils have also shown to possess antimetastatic and antian-
giogenic properties. They have shown to suppress tumor growth and metastasis 
(Mitoshi et al. 2012). The major sign of antiangiogenic behavior demonstrated by 
the volatile compounds is the suppression of vascular endothelial growth factor 
(VEGF), which is vital in the process of angiogenesis. In cell line models, certain 
volatile compounds function as inducers of several detoxifying enzymes (catalase, 
CAT; superoxide dismutase, SOD; glutathione reductase, GR; and glutathione per-
oxidase, GPx) preventing induced damage and even cancer (Suhail et al. 2011). A 
marked increase in these antioxidant enzymes after the treatment with volatile oils 
has been demonstrated as a chemo preventive activity (Seal et al. 2012). The cancer 
cell cycle can be seen in Fig. 18.5.

Natural essential oils are beneficial to human health. They are important to pre-
vent as well as to treat varieties of cancers. A large number of essential oil 
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Fig. 18.5  Cancer cell cycle

components from varieties of aromatic herbs and dietary plants have been reported 
(Kim et al. 2000; Manjamalai and Grace 2012). These include oxygenated monoter-
penes, oxygenated sesquiterpenes, phenolics, monoterpenes, sesquiterpenes, etc. 
(Chidambara Murthy et al. 2012). It is also known that various mechanisms such as 
antimutagenic, antiproliferative, enzyme induction, detoxification, modulation of 
drug resistance, antioxidant, etc. would be responsible for the chemoprotection 
properties of volatile oils (Cha et al. 2009). There are a large number of literatures 
reports available depicting the anticancer activity of volatile oils or essential oil 
components against various cancer types using molecular modeling techniques 
(Jaafari et al. 2012). Below are few examples showing implications of molecular 
modeling to predict the anticancer mechanism of volatile or essential oils from 
plants, Table 18.2.

18.3.4 � Molecular Modeling of Volatile Compounds Against 
Neglected Diseases

A disease of poverty (DoP) is defined by the WHO (World Health Organization) 
Special Programme for Research and Training in Tropical Diseases (WHO-TDR) as 
a disease that mostly affects the poor in developing nations and is split into two 
classe. The “big three” DoPs are included in the first class: malaria, HIV/AIDS, and 
tuberculosis (Cascaes et al. 2021a). The community has paid close attention to these 
diseases and has invested much in their eradication. Around 70% of pharmaceutical 
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Table 18.2  Compounds present in essential oils used in potential cancer treatment and mechanism 
of action

Plant name Component used Type of cancer cell line

Molecular 
modeling 
technique 
used Ref.

Ocimum viride 
Willd. (family: 
Lamiaceae)

Thymol (~50%) and 
γ-terpinene (~18%)

DU-145 (prostate), HEP-2 
(liver), IMR-32 
(neuroblastoma), HT-29 
(colon), 502,713 (colon) 
and SW-620 (colon)

Molecular 
docking

Bhagat 
et al. 
(2020)

Ocimum 
basilicum 
(sweet basil) 
(family: 
Lamiaceae)

Essential Oil components HeLa and FemX Molecular 
docking

Zarlaha 
et al. 
(2014)

Mentha 
longifolia, M. 
spicata, and 
Origanum. 
majorana

Essential Oil components
(Carvone (35.14%), 
limonene
(27.11%), germacrene D 
(4.73%), β-caryophyllene 
(3.02%), γ-muurolene 
(2.75%), and 
α-bourbonene (2.27%))

Antioxidant and 
Anticancer

Molecular 
docking

Farouk 
et al. 
(2021)

development is devoted to these disorders. The other is a group of tropical diseases 
that are often overlooked, called Neglected Tropical Diseases (NTD) (Lenk et al. 
2018). There are 17 NTDs, and they affect groups that have minimal visibility and 
political power. They create discrimination and stigma, as well as having a signifi-
cant impact on morbidity and mortality; these diseases are mostly ignored by 
researchers, yet they can be prevented, controlled, and, in many cases, eliminated 
with the right solutions (Chen et al. 2017).

Leprosy, commonly known as Hansen’s disease, is one of the neglected diseases 
which is caused by Mycobacterium leprae, an intracellular parasitic mycobacterium 
that causes skin lesions and nerve damage (Fotakis et  al. 2020). Various plant-
derived antileprotic agents have been found to be extremely effective in the manage-
ment of leprosy. Centella asiatica, commonly known as Gotu kola or kodavan is a 
well-known and reputed herbal medicinal plant that constitutes saponin-containing 
triterpene acids along with sugar esters such as madecassic acid, asiatic acid, and 
asiaticosides (asiaticoside A, asiaticoside B, and asiaticoside) (Sharma et al. 2020). 
Asiaticosides have shown to accelerate wound healing and alleviate the symptoms 
of leprosy. Other volatile oils exhibiting antileprotic activity are Chaulmoogra oil 
(chaulmoogric acid and hydnocarpic acid), Abutilon indicum (β-sitosterol and 
α-amyrin), Azadirachta indica (azadirachtin), Hemidesmus indicus (hemidesmins 
and hemidesmosides A-C), Butea monosperma (Butin), etc. (Balasubramani 
et al. 2018).
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Malaria kills one to three million people globally each year, the most portion 
involving pregnant women and children, but it remains a low priority for public 
health. Resistance to chloroquine, the first-line antimalarial treatment, has reached 
90% in many parts of Africa, and resistance to sulfadoxine pyrimethamine is also on 
the rise (Vatandoost et al. 2018). Below are few examples showing the usefulness of 
molecular docking to predict the mechanism of volatile or essential oils from plants 
against two neglected diseases; malaria and dengue, the information is summarized 
in the Table 18.3.

Trypanosomiases are parasitic protozoan trypanosome illnesses caused by 
Trypanosoma genus parasites. The Chagas disease, Human African trypanosomia-
sis, and leishmaniases are all classified as neglected tropical illnesses by the 
WHO.  There are roughly 20 Trypanosoma species, but only two species, 
Trypanosoma brucei (T. brucei) and Trypanosoma cruzi (T. cruzi) are the species 
that mainly infect humans. T. cruzi is the parasite that causes American trypanoso-
miasis, generally known as Chagas disease, which is found all over America. 
Triatominae insects, also known as “kissing bugs,” spread it (de Morais et al. 2020). 
The parasite multiplies in the bloodstream and can spread to other organs such as 
the liver, spleen, and heart, where it can cause serious damage. African trypanoso-
miasis, sometimes known as sleeping sickness, is caused by T. brucei, which is most 
typically seen in equatorial Africa. If left untreated, both forms of trypanosomes 
infect the brain, causing mental degeneration, coma, and death. Several volatile oils 
from various species have found to be biologically active against trypanosomiasis 
(Bottieau and Clerinx 2019). Some volatile oils activity may be linked to the lipo-
philic properties of their constituents. Lipophilic substances can pass the cell mem-
brane and interact with several proteins, inactivating enzymes and influencing 
cellular activity once within the cells (Yang and Hinner 2015). Depolarization of the 
mitochondrial membrane is linked to alterations in calcium channels and the pro-
duction of ROS, both of which can lead to cell death via apoptosis and necrosis. Cell 
death through necrosis is characterized by a discontinuous plasma membrane, 
which indicates that the parasite has lost its integrity (Yoon et al. 2000). There are 
also changes to the mitochondria, ROS production, ATP depletion, and cytoplasm 
vacuolization in this kind of cell death. The essential oils of Melaleuca alternifolia, 
Xylopia frutescens, Xylopia laevigata, Cymbopogon citratus, exert this type of 

Table 18.3  Molecular docking in neglected diseases

Plant name
Components of Oil 
Detected

neglected 
disease

Molecular 
modeling 
technique used Ref.

Artemisia vulgaris α-humulene (0.72%), 
βcaryophyllene (0.81%)

Dengue 
Fever

Molecular 
docking

Balasubramani 
et al. (2018)

Neem (Azadirachta 
indica)

Bitter principles of 
neem oil

Malaria Molecular 
docking

Ghosh et al. 
(2021)

Eucalyptus globulus 
and Syzygium 
aromaticum

1,8-Cineol (78.20%), 
2-methoxy-3-(2-
propenyl) (77.04%)

Malaria Molecular 
docking

Sheikh et al. 
(2021)
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action (Giorgio et al. 2018). Loss of mitochondrial membrane potential, cytoplas-
mic blebbing, nuclear chromatin condensation, cell volume reduction, and DNA 
fragmentation are among the changes that occur during apoptosis. Such character-
istics were also observed from the volatile oils of Cinnamomum verum, Lippia dul-
cis, Achyrocline satureioides (Menna-Barreto et al. 2005).

18.4 � Conclusion and Future Perspectives

This chapter emphasizes the relevance of volatile oils investigations, particularly 
those involving pharmacology and bioinformatics/computational tools, which are 
now complementing and facilitating the identification of new compounds by steer-
ing and orienting studies toward specific molecular targets. The diversity of volatile 
compounds that make up volatile oils are becoming increasingly well characterized. 
Similarly, the range of biological activity of volatile oils and their constituents is 
beginning to be known and comprehended. Computational methods contribute to 
the selection of chemical structures with the highest probability of biological activ-
ity and the rationalization of natural volatile compounds. Moreover, these methods 
aid in the identification of chemical and structural descriptors thus providing insight 
into the active molecules’ modes of action, and all of this information can be used 
to build novel structures that can be synthesized as small molecules. The discovery 
of new leads may thus provide an interesting platform for this research avenue in the 
future. Nonetheless, there is a broad scope for utilizing volatile oils not only as 
antimicrobial and anticancer agents but also in the treatment of neglected diseases 
in an array of settings, providing those critical issues such as effective delivery sys-
tems and potential toxicity the environment is addressed. Furthermore, pre-clinical 
studies are needed to ensure the security of the use of these compounds in humans. 
Likewise, administration strategies should be studied to enhance the effect of such 
compounds.
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