
Michael Hanus
Atsushi Igarashi (Eds.)

LN
CS

 1
32

15

Functional and
Logic Programming
16th International Symposium, FLOPS 2022
Kyoto, Japan, May 10–12, 2022
Proceedings

Lecture Notes in Computer Science 13215

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Michael Hanus · Atsushi Igarashi (Eds.)

Functional and
Logic Programming
16th International Symposium, FLOPS 2022
Kyoto, Japan, May 10–12, 2022
Proceedings

Editors
Michael Hanus
Kiel University
Kiel, Germany

Atsushi Igarashi
Kyoto University
Kyoto, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-99460-0 ISBN 978-3-030-99461-7 (eBook)
https://doi.org/10.1007/978-3-030-99461-7

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4953-8202
https://orcid.org/0000-0002-5143-9764
https://doi.org/10.1007/978-3-030-99461-7

Preface

This volume contains the papers presented at the 16th International Symposium on
Functional and Logic Programming (FLOPS 2022) held during May 10–12, 2022, in
Kyoto, Japan.

Writing down detailed computational steps is not the only way of programming.
The alternative, being used increasingly in practice, is to start by writing down the
desired properties of the result. The computational steps are then (semi-)automatically
derived from these higher-level specifications. Examples of this declarative style include
functional and logic programming, program transformation and rewriting, and extracting
programs from proofs of their correctness.

FLOPS aims to bring together practitioners, researchers, and implementors of
declarative programming, to discuss mutually interesting results and common problems:
theoretical advances, their implementations in language systems and tools, and applica-
tions of these systems in practice. The scope includes all aspects of the design, semantics,
theory, applications, implementations, and teaching of declarative programming. FLOPS
specifically aims to promote cross-fertilization between theory and practice and among
different styles of declarative programming.

FLOPS has a long tradition. Previous meetings were held at Fuji Susono (1995),
Shonan Village (1996), Kyoto (1998), Tsukuba (1999), Tokyo (2001), Aizu (2002),
Nara (2004), Fuji Susono (2006), Ise (2008), Sendai (2010), Kobe (2012), Kanazawa
(2014), Kochi (2016), Nagoya (2018), and Akita (online, 2020).

The call for papers resulted in 32 abstract submissions from which 30 were finally
submitted as full papers. The subsequent reviewing process was double-blind. Each
submission was reviewed by at least three reviewers, either members of the Program
Committee (PC) or external referees. After careful and thorough discussions, the PC
accepted 12 regular research papers, two system descriptions, and a declarative pearl
paper. The program also included three invited talks by Lindsey Kuper (University of
California), Akimasa Morihata (University of Tokyo), and Peter J. Stuckey (Monash
University).

Wewould like to thank all invited speakers and authors for their contributions.We are
grateful to all PC members and external reviewers for their hard work, and to EasyChair
for their conference management system that made our work of organizing FLOPS
2022 much easier. We thank the local co-organizers, Keigo Imai and Taro Sekiyama,
who made an invaluable effort in setting up the conference and making sure everything
ran smoothly.

Finally, we would like to thank our sponsor, the Japan Society for Software Science
and Technology (JSSST) SIG-PPL, for their continued support. We acknowledge the

vi Preface

cooperation of ACM SIGPLAN and the Asian Association for Foundation of Software
(AAFS).

March 2022 Michael Hanus
Atsushi Igarashi

Organization

Program Chairs

Michael Hanus Kiel University, Germany
Atsushi Igarashi Kyoto University, Japan

Organizing Committee

Michael Hanus Kiel University, Germany
Atsushi Igarashi Kyoto University, Japan
Keigo Imai Gifu University, Japan
Taro Sekiyama National Institute of Informatics, Japan

Program Committee

Andreas Abel Gothenburg University, Sweden
Elvira Albert Universidad Complutense de Madrid, Spain
Nada Amin Harvard University, USA
Davide Ancona Università di Genova, Italy
William Byrd University of Alabama, USA
Matteo Cimini University of Massachusetts Lowell, USA
Youyou Cong Tokyo Institute of Technology, Japan
Robert Glück University of Copenhagen, Denmark
Makoto Hamana Gunma University, Japan
Michael Hanus Kiel University, Germany
Zhenjiang Hu Peking University, China
Atsushi Igarashi Kyoto University, Japan
Ekaterina Komendantskaya Heriot-Watt University, UK
Shin-Cheng Mu Academia Sinica, Taiwan
Koko Muroya Kyoto University, Japan
Klaus Ostermann University of Tübingen, Germany
Ricardo Rocha University of Porto, Portugal
Tom Schrijvers KU Leuven, Belgium
Harald Sondergaard University of Melbourne, Australia
Hiroshi Unno University of Tsukuba, Japan
Niki Vazou IMDEA, Spain
Janis Voigtländer University of Duisburg-Essen, Germany
Nicolas Wu Imperial College London, UK

viii Organization

Ningning Xie University of Cambridge, UK
Jeremy Yallop University of Cambridge, UK
Neng-Fa Zhou City University of New York, USA

Additional Reviewers

Aaron Bembenek
Niels Bunkenburg
Mário Florido
Samir Genaim
Pablo Gordillo

Anastasiya Kravchuk-Kirilyuk
Leonid Libkin
Enrique Martin-Martin
Marco Paviotti
Takehide Soh

Abstracts of Keynotes

There are No Integers in Discrete Optimisation Models!

Jip Dekker, Peter J. Stuckey, and Guido Tack

Department of Data Science and Artificial Intelligence, Monash University, Australia
{jip.dekker,peter.stuckey,guido.tack}@monash.edu

Abstract. Discrete optimisation problems make decisions from a finite
set of choices. They encompass many important problem classes such
as scheduling, rostering and resource allocation. MiniZinc is a leading
modelling language for discrete optimisation. It allows the expression of
discrete optimisation problems succinctly using high level global con-
straints, and automatically translates them to run on constraint program-
ming (CP), mixed integer programming (MIP), Boolean satisfiability
(SAT), SAT modulo theories (SMT), and local search solvers. Integers
are a key type in MiniZinc since they are used represent all the finite
decisions made during solving. Indeed, handling integer constraints effi-
ciently is one of the key challenges in discrete optimisation solving. Each
solving technology tackles this differently: CP by building specific inte-
ger propagation techniques for each different global constraint, MIP by
relaxing integrality and using branching to enforce it, SAT by encoding
integers using Boolean variables, SMT using a mix of all three methods
above, and local search by converting constraints to penalty functions
and using local moves. All the approaches require search, and for diffi-
cult problems this search can be enormous, requiring millions of deci-
sions or moves to be explored. But in the latest development version
of MiniZinc, we recommend never using integers in models. Why?

Finding errors in discrete optimisation models can be very challeng-
ing. In the worst case when a solver simply returns no answer, we don’t
know if this is because the problem we want to ask is too hard (for this
solver) or the problem we actually asked (because of errors in the model)
is too hard. Looking through solver traces of millions of events to find
a problem is very hard work, and indeed there may be no error. Any
errors we can detect before sending a model to the solver are invaluable.
Hence, strong type systems are crucial for discrete optimisation models,
since errors spotted by the type system may save us a huge amount of
debugging work.

How can we model discrete optimisation problems without inte-
gers? Many discrete optimisation problems reason about sets of named
objects. Since version 2.1 MiniZinc has supported (ordered) enumerated
types (enums), which allow decisions over a such sets. This immediately
improves type safety. But we also need to be able to reason about two or
more sets of objects jointly. Enumerated type extension allows us to build

xii J. Dekker et al.

a supertype that includes both types of objects. Unordered enumerated
types allow us to further strengthen models, if it makes no sense to rank
two different objects. With these tools we never confuse reasoning about
different sets of objects.

But what about themany remaining integers inmodels, that don’t rep-
resent objects? For these we rely on unit types to differentiate between
different integers appearing in the model. All integer decisions in models
are either about a set of objects or some measurable resource type. Using
unit types we can addmore type safety for our models by avoiding confu-
sion of different types of decisions. Unit types in MiniZinc are somewhat
unusual, since often models deal with multiple granularity of the same
resource, e.g. scheduling to the minute, but doing resource allocation on
the half day; or use an unspecified granularity, e.g. the same job-shop
scheduling model could use task durations given in minutes or days. Unit
types in MiniZinc also differentiate between absolute unit types, e.g. the
timewhen an event occurred, and delta unit types, e.g. the time difference
between two events. Errors arising from mixing absolute and delta can
be very hard to debug, so we extend the type system to track this for us.

In a high-level modelling language like MiniZinc, the compiler
ensures that models are type-safe. The underlying solvers can of course
remain completely unaware of complex concepts like enums or unit types,
since the MiniZinc compiler translates them into simple integers.

Overall, armed with a type system that supports enumerated types,
type extension, unit types, and delta unit types, we find that no discrete
optimisation model1 needs to include raw, unsafe integer variables.

1 With the possible exception of some combinatorics models which reason directly over the
integers themselves.

Adventures in Building Reliable Distributed Systems
with Liquid Haskell (Abstract)

Lindsey Kuper

University of California, Santa Cruz, USA
lkuper@ucsc.edu

Today’s most important computer systems are distributed systems: those that consist of
multiple components that communicate by sending messages over a network, and where
individual components or network connections may fail independently. Programming
such systems is hard due to messages being reordered or delayed and the ever-present
possibility of failure.Many liveness guarantees are impossible in such a setting, and even
safety properties (such as “received messages arrive in the order they were sent”) can be
challenging to prove. Protocols meant to ensure, say, a given message delivery order or a
given data consistency policy are widely used in distributed systems, but verification of
the correctness of those protocols is less common—much less machine-checked proofs
about executable implementations.

Language-integrated verification techniques promise to bridge the gap between pro-
tocol specifications and executable implementations, letting programmers carry out ver-
ification directly in the same executable programming language used for implementa-
tion. One such language-level verification approach centers around refinement types:
data types that let programmers specify logical predicates that restrict, or refine, the
set of values that can inhabit the type, and that can be checked at compile time by
an off-the-shelf SMT solver. Refinement types are beginning to make their way into
general-purpose, industrial-strength programming languages through tools such as Liq-
uid Haskell, which adds support for refinement types to the Haskell language. Liquid
Haskell goes beyond last decade’s refinement types: its powerful reflection capabilities
let you prove theorems in an extrinsic style, by defining Haskell functions (with help
from the underlying solver). Furthermore, its integration with an existing programming
language lets programmers work with pre-existing code and add richer specifications
as they go. But is it up to the task of verifying interesting correctness properties of
practically deployable distributed systems?

In this talk, I’ll report on my research group’s recent and ongoing efforts to answer
that question in the affirmative. For example, in amessaging system consisting of several
peer nodes, we can use refinement types to express properties about the order in which
broadcast messages are delivered at a node, and we can use Liquid Haskell to prove
those properties extrinsically. Likewise, in a replicated storage system we can express
and prove properties about the convergence of replicated data structures. I’ll recount the
pleasures and pitfalls of our journey so far, and discuss where we hope to go next.

From Program Synthesis to Program Transformation:
Case Study in Reduction Parallelization

Akimasa Morihata

The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan
morihata@graco.c.u-tokyo.ac.jp

https://www.graco.c.u-tokyo.ac.jp/labs/morihata/

Abstract. Program synthesis is the task of automatically construct-
ing a program that implements the given specification. It is inten-
sively studied in this decade, perhaps because of recent progress
in constraint solvers and program verifiers. Unfortunately, even
state-of-the-art methods tend to fail in generating large programs.
This talk discusses the effectiveness of combining program synthe-

sis with program transformations. One may consider program trans-
formations are merely a subcategory of program synthesis. In real-
ity, they enable us to formally express the outline of the desired pro-
gram and thereby lead to constructing complicated programs by fill-
ing the details by program synthesis. As case studies, we review two
methods of automatically parallelizing programs for summarizing val-
ues in data structures. One is based on quantifier elimination (Morihata
and Matsuzaki, FLOPS 2010 [1]), and the other is a recent proposal
based on reverse engineering (Morihata and Sato, PLDI 2021 [2]).

Keywords: Program synthesis · Program transformation · Parallelization

References
1. Morihata, A., Matsuzaki, K.: Automatic parallelization of recursive functions using quantifier
elimination. In: Blume,M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Programming.
FLOPS 2010. LNCS, vol. 6009. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12251-4_23

2. Morihata, A., Sato, S.: Reverse engineering for reduction parallelization via semiring polyno-
mials. In Freund, S. N., Yahav, E. (eds.). In: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event PLDI ’21, Canada, June
20–25, 2021, pp. 820–834. ACM (2021). https://doi.org/10.1145/3453483.3454079

http://orcid.org/0000-0003-2741-5954
https://doi.org/10.1007/978-3-642-12251-4_23
https://doi.org/10.1145/3453483.3454079

Contents

Enhancing Expressivity of Checked Corecursive Streams . 1
Davide Ancona, Pietro Barbieri, and Elena Zucca

Improving Type Error Reporting for Type Classes . 19
Sheng Chen and Md Rabib Noor

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 39
Mahmudul Faisal Al Ameen, Naoki Kobayashi, and Ryosuke Sato

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 57
Michikazu Hirata, Yasuhiko Minamide, and Tetsuya Sato

Generating C: System Description . 75
Oleg Kiselyov

Translation Certification for Smart Contracts . 94
Jacco O. G. Krijnen, Manuel M. T. Chakravarty, Gabriele Keller,
and Wouter Swierstra

Zipping Strategies and Attribute Grammars . 112
José Nuno Macedo, Marcos Viera, and João Saraiva

Unified Program Generation and Verification: A Case Study
on Number-Theoretic Transform . 133
Masahiro Masuda and Yukiyoshi Kameyama

Scheduling Complexity of Interleaving Search . 152
Dmitry Rozplokhas and Dmitry Boulytchev

Automated Generation of Control Concepts Annotation Rules Using
Inductive Logic Programming: System Description . 171
Basel Shbita and Abha Moitra

A Functional Account of Probabilistic Programming with Possible
Worlds: Declarative Pearl . 186
Birthe van den Berg and Tom Schrijvers

Explanations as Programs in Probabilistic Logic Programming 205
Germán Vidal

xvi Contents

FOLD-R++: A Scalable Toolset for Automated Inductive Learning
of Default Theories from Mixed Data . 224
Huaduo Wang and Gopal Gupta

A Lazy Desugaring System for Evaluating Programs with Sugars 243
Ziyi Yang, Yushuo Xiao, Zhichao Guan, and Zhenjiang Hu

On Transforming Cut- and Quantifier-Free Cyclic Proofs
into Rewriting-Induction Proofs . 262
Shujun Zhang and Naoki Nishida

Author Index . 283

Enhancing Expressivity of Checked
Corecursive Streams

Davide Ancona(B), Pietro Barbieri, and Elena Zucca

DIBRIS, University of Genova, Genoa, Italy

davide.ancona@unige.it

Abstract. We propose a novel approach to stream definition and manip-
ulation. Our solution is based on two key ideas. Regular corecursion,
which avoids non termination by detecting cyclic calls, is enhanced, by
allowing in equations defining streams other operators besides the stream
constructor. In this way, some non-regular streams are definable. Fur-
thermore, execution includes a runtime check to ensure that the stream
generated by a function call is well-defined, in the sense that access to
an arbitrary index always succeeds. We extend the technique beyond the
simple stream operators considered in previous work, notably by adding
an interleaving combinator which has a non-trivial recursion scheme.

Keywords: Operational semantics · Stream programming · Runtime
checking

1 Introduction

Applications often deal with data structures which are conceptually infinite;
among those data streams (unbounded sequences of data) are a paradigmatic
example, important in several application domains as the Internet of Things.
Lazy evaluation is a well-established and widely-used solution to data stream
generation and processing, supported, e.g., in Haskell, and in most stream
libraries offered by mainstream languages, as java.util.stream. In this app-
roach, data streams can be defined as the result of an arbitrary function. For
instance, in Haskell we can write

one_two = 1:2: one_two -- 1:2:1:2:1: ...

from n = n:from(n+1) -- n:n+1:n+2: ...

Functions which only need to inspect a finite portion of the structure, e.g., getting
the i-th element, can be correctly implemented, thanks to the lazy evaluation
strategy as exemplified below.

get_elem 3 (one_two) -- evaluates to 2

get_elem 3 (from 5) -- evaluates to 7

More recently, another approach has been proposed [2,11,14,19], called reg-
ular corecursion, which exploits the fact that streams as one_two above are
c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 1–18, 2022.
https://doi.org/10.1007/978-3-030-99461-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_1

2 D. Ancona et al.

periodic, a.k.a. regular following the terminology in [8], meaning that the term
1:2:1:2:1: ... is infinite but has a finite number of subterms. Regular streams
can be actually represented at runtime by a finite set of equations involving only
the stream constructor, in the example x = 1 : 2 : x. Furthermore, function def-
initions are corecursive, meaning that they do not have the standard inductive
semantics; indeed, even though the evaluation strategy is call-by-value, thanks
to the fact that pending function calls are tracked, cyclic calls are detected,
avoiding in this case non-termination.

For instance, with regular corecursion1 we have:

one_two () = 1:2: one_two ()

from(n) = n:from(n+1)

get_elem(3,one_two ()) -- evaluates to 2

get_elem (3,from (5)) -- leads to non-termination

Despite their differences, in both approaches programmers are allowed to
write intuitively ill-formed definitions such as bad_stream() = bad_stream(); any
access to indexes of the stream returned by this function leads to non-termination
both with lazy evaluation and regular corecursion. However, while in the regular
case it is simple to reject the result of calling bad_stream by checking a guard-
edness syntactic condition, the Haskell compiler does not complain if one calls
such a function. In this paper, we propose a novel approach to stream generation
and manipulation, providing, in a sense, a middle way between those described
above. Our solution is based on two key ideas:

– Corecursion is enhanced, by allowing in stream equations other typical oper-
ators besides the stream constructor; in this way, some non-regular streams
are supported. For instance, we can define from(n)=n:(from(n)[+]repeat(1)),
with [+] the pointwise addition and repeat defined by repeat(n)=n:repeat(n).

– Execution includes a runtime check which rejects the stream generated by
a function call if it is ill-formed, in the sense that access to an index could
possibly diverge. For instance, the call bad_stream() raises a runtime error.

In this way we achieve a convenient trade-off between expressive power and
reliability; indeed, we do not have the full expressive power of Haskell, where
we can manipulate streams generated as results of arbitrary functions, but,
clearly, the well-definedness check described above would be not decidable. On
the other hand, we significantly augment the expressive power of regular core-
cursion, allowing several significant non-regular streams, at the price of making
the well-definedness check non-trivial, but still decidable.

The main formal results are (1) Theorem 1 stating the soundness of the run-
time check; (2) Theorem 2 stating that the optimized definition of the runtime
check in Sect. 5 is equivalent to the simpler one given in Sect. 4. In particular, for
contribution (1) the interleaving operator requires a more involved proof in com-
parison with [3] (see Sect. 6), while for (2) we show that the optimized definition
improves the time complexity from O(N2) to O(N log N).
1 Here we use the syntax of our calculus, where, differently from Haskell, functions are

uncurried, that is, take as arguments possibly empty tuples delimited by parentheses.

Enhancing Expressivity of Checked Corecursive Streams 3

In Sect. 2 we formally define the calculus, in Sect. 3 we show examples, in
Sect. 4 we define the well-formedness check, and in Sect. 5 its optimized ver-
sion. Finally, in Sect. 6 we discuss related and further work. More examples of
derivations and omitted proofs can be found in the extended version [4].

2 Stream Calculus

Figure 1 shows the syntax of the calculus.

fd :: = fd1 . . . fdn program
fd :: = f(x) = se function declaration
e :: = se | ne | be expression
se :: = x | if be then se1 else se2 | ne : se | seˆ | se1op se2 | f(e) stream expression
ne :: = x | se(ne) | ne1 nop ne2 | 0 | 1 | 2 | ... numeric expression
be :: = x | true | false | ... boolean expression
op :: = [nop] binary stream operator
nop :: = + | − | ∗ | / numeric operator

Fig. 1. Stream calculus: syntax

A program is a sequence of (mutually recursive) function declarations, for
simplicity assumed to only return streams. Stream expressions are variables, con-
ditionals, expressions built by stream operators, and function calls. We consider
the following stream operators: constructor (prepending a numeric element), tail,
pointwise arithmetic operators, and interleaving. Numeric expressions include
the access to the i-th2 element of a stream. We use fd to denote a sequence
fd1, . . . , fdn of function declarations, and analogously for other sequences.

The operational semantics, given in Fig. 2, is based on two key ideas:

1. some infinite streams can be represented in a finite way
2. evaluation keeps trace of already considered function calls

To obtain (1), our approach is inspired by capsules [13], which are expres-
sions supporting cyclic references. That is, the result of a stream expression is
a pair (s, ρ), where s is an (open) stream value, built on top of stream vari-
ables, numeric values, the stream constructor, the tail destructor, the pointwise
arithmetic and the interleaving operators, and ρ is an environment mapping
variables into stream values. In this way, cyclic streams can be obtained: for
instance, (x, x �→ n : x) denotes the stream constantly equal to n.

We denote by dom(ρ) the domain of ρ, by vars(ρ) the set of variables occur-
ring in ρ, by fv(ρ) the set of its free variables, that is, vars(ρ) \ dom(ρ), and say
that ρ is closed if fv(ρ) = ∅, open otherwise, and analogously for a result (v, ρ).

2 For simplicity, here indexing and numeric expressions coincide.

4 D. Ancona et al.

c :: = f(v) (evaluated) call
v :: = s | n | b value
s :: = x | n : s | sˆ | s1op s2 (open) stream value
i,n :: = 0 | 1 | 2 | ... index, numeric value
b :: = true | false boolean value
τ :: = c1 x1 . . . cn xn (n ≥ 0) call trace
ρ :: = x1 s1 . . . xn sn (n ≥ 0) environment

(val)
v, ρ, τ ⇓ (v, ρ)

(if-t)
be, ρ, τ ⇓ (true, ρ) se1, ρ, τ ⇓ (s, ρ)
if be then se1 else se2, ρ, τ ⇓ (s, ρ)

(if-f)
be, ρ, τ ⇓ (false, ρ) se2, ρ, τ ⇓ (s, ρ)
if be then se1 else se2, ρ, τ ⇓ (s, ρ)

(cons)
ne, ρ, τ ⇓ (n, ρ) se, ρ, τ ⇓ (s, ρ)

ne : se, ρ, τ ⇓ (n : s, ρ)
(tail)

se, ρ, τ ⇓ (s, ρ)
seˆ, ρ, τ ⇓ (sˆ, ρ)

(op)
se1, ρ, τ ⇓ (s1, ρ1) se2, ρ, τ ⇓ (s2, ρ2)
se1op se2, ρ, τ ⇓ (s1op s2, ρ1 ρ2)

(args)
ei, ρ, τ ⇓ (vi, ρi) ∀i ∈ 1..n f(v), ρ, τ ⇓ (s, ρ)

f(e), ρ, τ ⇓ (s, ρ)

e = e1, . . . , en not of shape v
v = v1, . . . , vn

ρ = i∈1..n ρi

(invk)
se[v/x], ρ, τ{f(v) x}⇓ (s, ρ)

f(v), ρ, τ ⇓ (x, ρ {x s})

f(v) dom(τ)
x fresh
fbody(f) = (x, se)
wd(ρ , x, s)

(corec)
f(v), ρ, τ ⇓ (x, ρ)

τ (f(v)) = x

(at)
se, ρ, τ ⇓ (s, ρ) ne, ρ, τ ⇓ (i, ρ)

se(ne), ρ, τ ⇓ (n, ρ)
atρ (s, i) = n

(at-var)
atρ(ρ(x), i) = n

atρ(x, i) = n
(at-cons-0)

atρ(n : s, 0) = n
(at-cons-succ)

atρ(s, i) = n

atρ(n : s, i + 1) = n

(at-tail)
atρ(s, i + 1) = n

atρ(sˆ, i) = n
(at-nop)

atρ(s1, i) = n1 atρ(s2, i) = n2

atρ(s1[nop]s2, i) = n1 nop n2

(at- -even)
atρ(s1, i) = n

atρ(s1 s2, 2i) = n
(at- -odd)

atρ(s2, i) = n

atρ(s1 s2, 2i + 1) = n

Fig. 2. Stream calculus: operational semantics

To obtain point (2) above, evaluation has an additional parameter which is
a call trace, a map from function calls where arguments are values (dubbed calls
for short in the following) into variables.

Altogether, the semantic judgment has shape e, ρ, τ ⇓ (v, ρ′), where e is the
expression to be evaluated, ρ the current environment defining possibly cyclic
stream values that can occur in e, τ the call trace, and (v, ρ′) the result. The
semantic judgments should be indexed by an underlying (fixed) program, omit-
ted for sake of simplicity. Rules use the following auxiliary definitions:

– ρ � ρ′ is the union of two environments, which is well-defined if they have
disjoint domains; ρ{x �→ s} is the environment which gives s on x, coincides
with ρ elsewhere; we use analogous notations for call traces.

Enhancing Expressivity of Checked Corecursive Streams 5

– se[v/x] is obtained by parallel substitution of variables x with values v.
– fbody(f) returns the pair of the parameters and the body of the declaration

of f, if any, in the assumed program.

Intuitively, a closed result (s, ρ) is well-defined if it denotes a unique stream,
and a closed environment ρ is well-defined if, for each x ∈ dom(ρ), (x, ρ) is well-
defined. In other words, the corresponding set of equations admits a unique
solution. For instance, the environment {x �→ x} is not well-defined, since it
is undetermined (any stream satisfies the equation x = x); the environment
{x �→ x[+]y, y �→ 1 : y} is not well-defined as well, since it is undefined (the two
equations x = x �→ x[+]y, y = 1 : y admit no solutions for x). This notion can
be generalized to open results and environments, assuming that free variables
denote unique streams, as will be formalized in Sect. 4.

Rules for values and conditional are straightforward. In rules (cons), (tail)
and (op), arguments are evaluated and the stream operator is applied without
any further evaluation. That is, we treat all these operators as constructors.

The rules for function call are based on a mechanism of cycle detection [2].
Evaluation of arguments is handled by a separate rule (args), whereas the
following two rules handle (evaluated) calls.

Rule (invk) is applied when a call is considered for the first time, as expressed
by the first side condition. The body is retrieved by using the auxiliary function
fbody, and evaluated in a call trace where the call has been mapped into a fresh
variable. Then, it is checked that adding the association of such variable with
the result of the evaluation of the body keeps the environment well-defined, as
expressed by the judgment wd(ρ, x, s), which will be defined in Sect. 4. If the
check succeeds, then the final result consists of the variable associated with the
call and the updated environment. For simplicity, here execution is stuck if the
check fails; an implementation should raise a runtime error instead. An example
of stuck derivation is shown in [4].

Rule (corec) is applied when a call is considered for the second time, as
expressed by the first side condition. The variable x is returned as result. How-
ever, there is no associated value in the environment yet; in other words, the
result (x, ρ) is open at this point. This means that x is undefined until the envi-
ronment is updated with the corresponding value in rule (invk). However, x can
be safely used as long as the evaluation does not require x to be inspected; for
instance, x can be safely passed as an argument to a function call.

For instance, if we consider the program f()=g() g()=1:f(), then the judg-
ment f(), ∅, ∅ ⇓ (x, ρ), with ρ = {x �→ y, y �→ 1 : x}, is derivable; how-
ever, while the final result (x, ρ) is closed, the derivation contains also judg-
ments with open results, as happens for f(), ∅, {f() �→ x, g() �→ y} ⇓ (x, ∅) and
g(), ∅, {f() �→ x}⇓(y, {y �→ 1 : x}). The full derivation can be found in [4].

Finally, rule (at) computes the i-th element of a stream expression. After
evaluating the arguments, the result is obtained by the auxiliary judgment
atρ(s, i) = n, whose straightforward definition is at the bottom of the figure.

6 D. Ancona et al.

Rules (at-)‖(-even) and (at-)‖(-odd) define the behaviour of the interleaving
operator, which merges two streams together by alternating their elements.

When evaluating atρ(s, i), if s is a variable free in the environment, then exe-
cution is stuck; again, an implementation should raise a runtime error instead.

3 Examples

First we show some simple examples, to explain how corecursive definitions work.
Then we provide some more significant examples.

Consider the following function declarations:

repeat(n) = n:repeat(n)

one_two () = 1: two_one ()

two_one () = 2: one_two ()

With the standard semantics of recursion, the calls, e.g., repeat(0) and one_two()

lead to non-termination. Thanks to corecursion, instead, these calls terminate,
producing as result (x, {x �→ 0 : x}), and (x, {x �→ 1 : y, y �→ 2 : x}), respectively.
Indeed, when initially invoked, the call repeat(0) is added in the call trace with
an associated fresh variable, say x. In this way, when evaluating the body of the
function, the recursive call is detected as cyclic, the variable x is returned as
its result, and, finally, the stream value 0 : x is associated in the environment
with the result x of the initial call. In the sequel, we will use [k] as a shorthand
for repeat(k). The evaluation of one_two() is analogous, except that another
fresh variable y is generated for the intermediate call two_one(). The formal
derivations are given below.

(value) repeat(0), ∅, {repeat(0) �→ x}⇓(x, ∅)
(corec)

0 : repeat(0), ∅, {repeat(0) �→ x}⇓(0 : x, ∅)
(cons)

repeat(0), ∅, ∅⇓(x, {x �→ 0 : x})
(invk)

(value)

(value) one two(), ∅, {one two() �→ x, two one() �→ y}⇓(x, ∅)
(corec)

2 : one two(), ∅, {one two() �→ x, two one() �→ y}⇓(2 : x, ∅)
(cons)

two one(), ∅, {one two() �→ x}⇓(y, {y �→ 2 : x})
(invk)

1 : two one(), ∅, {one two() �→ x}⇓(1 : y, {y �→ 2 : x})
(cons)

one two(), ∅, ∅⇓(x, {x �→ 1 : y, y �→ 2 : x})
(invk)

For space reasons, we did not report the application of rule (value). In both
derivations, note that rule (corec) is applied, without evaluating the body of
one_two once more, when the cyclic call is detected.

The following examples show function definitions whose calls return non-
regular streams, notably, the natural numbers, the natural numbers raised to
the power of a number, the factorials, the powers of a number, the Fibonacci
numbers, and the stream obtained by pointwise increment by one.

Enhancing Expressivity of Checked Corecursive Streams 7

nat() = 0:(nat ()[+][1])

nat_to_pow(n) = // nat_to_pow(n)(i)=i^n

if n <= 0 then [1] else nat_to_pow(n -1)[*] nat()

fact() = 1:((nat ()[+][1])[*] fact ())

pow(n) = 1:([n][*] pow(n)) //pow(n)(i)=n^i

fib() = 0:1:(fib ()[+] fib ()^)

incr(s) = s[+][1]

The definition of nat uses corecursion, since the recursive call nat() is cyclic.
Hence the call nat() returns (x, {x �→ 0 : (x[+]y), y �→ 1 : y}). The definition of
nat_to_pow is a standard inductive one where the argument strictly decreases in
the recursive call. Hence, the call, e.g., nat_to_pow(2), returns
(x2, {x2 �→ x1[∗]x, x1 �→ x0[∗]x, x0 �→ y, y �→ 1 : y, x �→ 0 : (x[+]y′), y′ �→ 1 : y′}).

The definitions of fact, pow, and fib are corecursive. For instance, the call fact()
returns (z, z �→ 1 : ((x[+]y)[∗]z), x �→ 0 : (x[+]y′), y �→ 1 : y, y′ �→ 1 : y′). The def-
inition of incr is non-recursive, hence always converges, and the call incr(s)
returns (x, {x �→ s[+]y, y �→ 1 : y}).

The next few examples show applications of the interleaving operator.

dup_occ () = 0:1:(dup_occ () || dup_occ ())

Function dup_occ() generates the stream which alternates sequences of occur-
rences of 0 and 1, with the number of repetitions of the same number duplicated
at each step, that is, (0:1:0:0:1:1:0:0:0:0...).

A more involved example shows a different way to generate the stream of all
powers of 2 starting from 21:

pow_two =2:4:8:((pow_two ^^[*] pow_two)||(pow_two ^^[*] pow_two ^))

The following definition is an instance of a schema generating the infinite
sequence of labels obtained by a breadth-first visit of an infinite complete binary
tree where the labels of children are defined in terms of that of their parent.

bfs_index () = 1:((bfs_index ()[*][2])||(bfs_index ()[*][2][+][1]))

In particular, the root is labelled by 1, and the left and right child of a node
with label i are labelled by 2*i and 2*i+1, respectively. Hence, the generated
stream is the sequence of natural numbers starting from 1, as it happens in the
array implementation of a binary heap.

In the other instance below, the root is labelled by 0, and children are labelled
with i+1 if their parent has label i. That is, nodes are labelled by their level.

bfs_level () = 0:((bfs_level ()[+][1])||(bfs_level ()[+][1]))

In this case, the generated stream is more interesting; indeed, bfs_level()(n) =

floor(log2(n+1)).
The following function computes the stream of partial sums of the first i + 1

elements of a stream s, that is, sum(s)(i)=
∑i

k=0 s(k):

sum(s) = s(0):(s^[+] sum(s))

8 D. Ancona et al.

Such a function is useful for computing streams whose elements approximate
a series with increasing precision; for instance, the following function returns
the stream of partial sums of the first i + 1 elements of the Taylor series of the
exponential function:

sum_expn(n) = sum(pow(n)[/] fact ())

Function sum_expn calls sum with the argument pow(n)[/]fact() corresponding
to the stream of terms of the Taylor series of the exponential; hence, by accessing
the i-th element of the stream, we have the following approximation of the series:

sum_expn(n)(i)=
i∑

k=0

nk

k!
= 1 + n +

n2

2!
+

n3

3!
+

n4

4!
+ · · · +

ni

i!

Lastly, we present a couple of examples showing how it is possible to define
primitive operations provided by IoT platforms for real time analysis of data
streams; we start with aggr(n,s), which allows aggregation by addition of data
in windows of length n:

aggr(n,s) = if n<=0 then [0] else s[+] aggr(n-1,s^)

For instance, aggr(3,s) returns the stream s′ s.t. s′(i) = s(i)+ s(i+1)+ s(i+2).
On top of aggr, we can easily define avg(n,s) to compute the stream of average
values of s in windows of length n:

avg(n,s) = aggr(n,s)[/][n]

4 Well-Definedness Check

A key feature of our approach is the runtime check ensuring that the stream
generated by a function call is well-defined, see the side condition wd(ρ′, x, s) in
(invk); in this section we formally define the corresponding judgment and prove
its soundness. Before doing this, we provide, for reference, a formal abstract
definition of well-definedness.

Intuitively, an environment is well-defined if each variable in its domain
denotes a unique stream. Semantically, a stream σ is an infinite sequence of
numeric values, that is, a function which returns, for each index i ≥ 0, the i-th
element σ(i). Given a result (s, ρ), we get a stream by instantiating variables in
s with streams, in a way consistent with ρ, and evaluating operators. To make
this formal, we need some preliminary definitions.

A substitution θ is a function from a finite set of variables to streams. We
denote by �s�θ the stream obtained by applying θ to s, and evaluating operators,
as formally defined below.

�x�θ = θ(x)

(�n : s�θ)(i) =

{
n i = 0
(�s�θ)(i − 1) i ≥ 1

Enhancing Expressivity of Checked Corecursive Streams 9

(�sˆ�θ)(i) = �s�θ(i + 1) i ≥ 0

(�s1[nop]s2�θ)(i) = �s1�θ(i) nop �s2�θ(i) i ≥ 0

(�s1‖s2�θ)(2i) = �s1�θ(i) i ≥ 0

(�s1‖s2�θ)(2i + 1) = �s2�θ(i) i ≥ 0

Given an environment ρ and a substitution θ with domain vars(ρ), the sub-
stitution ρ[θ] is defined by:

ρ[θ](x) =

{
�ρ(x)�θ x ∈ dom(ρ)
θ(x) x ∈ fv(ρ)

Then, a solution of ρ is a substitution θ such that ρ[θ] = θ.
A closed environment ρ is well-defined if it has exactly one solution. For

instance, {x �→ 1 : x} and {y �→ 0 : (y[+]x), x �→ 1 : x} are well-defined, since
their unique solutions map x to the infinite stream of ones, and y to the stream
of natural numbers, respectively. Instead, for {x �→ 1[+]x} there are no solu-
tions. Lastly, an environment can be undetermined: for instance, a substitution
mapping x into an arbitrary stream is a solution of {x �→ x}.

An open environment ρ is well-defined if, for each θ with domain fv(ρ), it
has exactly one solution θ′ such that θ ⊆ θ′. For instance, the open environment
{y �→ 0 : (y[+]x)} is well-defined.

In Fig. 3 we provide the operational characterization of well-definedness. The
judgment wd(ρ, x, s) used in the side condition of rule (invk) holds if wdρ′(x, ∅)
holds, with ρ′ = ρ{x �→ v}. The judgment wdρ(s, ∅) means well-definedness of
a result. That is, restricting the domain of ρ to the variables reachable from s
(that is, either occurring in s, or, transitively, in values associated with reachable
variables) we get a well-defined environment; thus, wd(ρ, x, s) holds if adding the
association of s with x preserves well-definedness of ρ.

m :: = x1 n1 . . . xn nk (n ≥ 0) map from variables to integer numbers

(main)
wdρ (x, ∅)
wd(ρ, x, v)

ρ = ρ{x v} (wd-var)
wdρ(ρ(x),m{x 0})

wdρ(x,m)
x dom(m)

(wd-corec)
wdρ(x,m)

x ∈ dom(ρ)
m(x) > 0 (wd-delay)

wdρ(ρ(x),m{x 0})
wdρ(x,m)

m(x) > 0

(wd-fv)
wdρ(x,m)

x dom(ρ) (wd-cons)
wdρ(s,m+1)
wdρ(n : s,m)

(wd-tail)
wdρ(s,m−1)
wdρ(sˆ,m)

(wd-nop)
wdρ(s1,m) wdρ(s2,m)

wdρ(s1[nop]s2,m)
(wd-)

wdρ(s1,m) wdρ(s2,m+1)
wdρ(s1 s2,m)

Fig. 3. Operational definition of well-definedness

10 D. Ancona et al.

The additional argument m in the judgment wdρ(s,m) is a map from vari-
ables to integer numbers. We write m+1 and m−1 for the maps {(x,m(x) + 1) |
x ∈ dom(m)}, and {(x,m(x) − 1) | x ∈ dom(m)}, respectively.

In rule (main), this map is initially empty. In rule (wd-var), when a variable
x defined in the environment is found the first time, it is added in the map with
initial value 0 before propagating the check to the associated value. In rule (wd-
corec), when it is found the second time, it is checked that constructors and
right operands of interleave are traversed more times than tail operators, and if
it is the case the variable is considered well-defined. Rule (wd-delay), which
is only added for the purpose of the soundness proof and should be not part of
an implementation3, performs the same check but then considers the variable
occurrence as it is was the first, so that success of well-definedness is delayed.
Note that rules (wd-var), (wd-corec), and (wd-delay) can only be applied
if x ∈ dom(ρ); in rule (wd-corec), this explicit side condition could be omitted
since satisfied by construction of the proof tree.

In rule (wd-fv), a free variable is considered well-defined.4 In rules (wd-
cons) and (wd-tail) the value associated with a variable is incremented/decre-
mented by one, respectively, before propagating the check to the subterm. In rule
(wd-nop) the check is simply propagated to the subterms. In rule (wd-)‖, the
check is also propagated to the subterms, but on the right-hand side the value
associated with a variable is incremented by one before propagation; this reflects
the fact that, in the worst case, atρ(s1‖s2, i) = atρ(s1, i), and this happens only
for i = 0, while for odd indexes i we have that atρ(s1‖s2, i) = atρ(s2, i−k), with
k ≥ 1; more precisely, k = 1 only when i = 1; for all indexes i > 1 (both even
and odd), k > 1. For instance, the example s() = 1:(s()‖s()^), which has the
same semantics as [1], would be considered not well-defined if we treated the
interleaving as the pointwise arithmetic operators.

Note that the rules in Fig. 3 can be immediately turned into an algorithm
which, given a stream value s, always terminates either successfully (finite proof
tree), or with failure (no proof tree can be constructed). On the other hand,
the rules in Fig. 2 defining the atρ(s, i) = n judgment can be turned into an
algorithm which can possibly diverge (infinite proof tree).

Two examples of derivation of well-definedness and access to the i-th element
can be found in [4] for the results obtained by evaluating the calls nat() and
bfs_level(), respectively, with nat and bfs_level defined as in Sect. 3. Below
we show an example of failing derivation:

As depicted in Fig. 4, the check succeeds for the left-hand component of the
interleaving operator, while the proof tree cannot be completed for the other
side. Indeed, the double application of the tail operator makes undefined access
to stream elements with index greater than 1, since the evaluation of atρ(x, 2)
infinitely triggers the evaluation of itself.

3 Indeed, it does not affect derivability, see Lemma 4 in the following.
4 Non-well-definedness can only be detected on closed results.

Enhancing Expressivity of Checked Corecursive Streams 11

wdρ(x, {x 1}) (wd-corec)

FAIL

wdρ(x, {x 0}) (??)

wdρ(xˆ, {x 1}) (wd-tail)

wdρ(xˆˆ, {x 2}) (wd-tail)

wdρ(x || xˆˆ, {x 1}) (wd-)

wdρ(0 : (x || xˆˆ), {x 0}) (wd-cons)

wdρ(x, ∅)
(wd-var)

Fig. 4. Failing derivation for ρ = {x �→ 0 : (x || xˆˆ)}

To formally express and prove that well-definedness of a result implies ter-
mination of access to an arbitrary index, we introduce some definitions and
notations. First of all, since the result is not relevant for the following technical
treatment, for simplicity we will write atρ(s, i) rather than atρ(s, i) = n. We call
derivation an either finite or infinite proof tree. We write wdρ(s′,m ′) � wdρ(s,m)
to mean that wdρ(s′,m ′) is a premise of a (meta-)rule where wdρ(s,m) is the
conclusion, and �� for the reflexive and transitive closure of this relation.

Lemma 1.

1. A judgment wdρ(s, ∅) has no derivation iff the following condition holds:
(wd-stuck) wdρ(x,m ′) �� wdρ(ρ(x),m{x �→ 0}) � wdρ(x,m) �� wdρ(s, ∅)

for some x ∈ dom(ρ), and m ′,m s.t. x ∈ dom(m),m ′(x) ≤ 0.
2. If the derivation of atρ(s, j) is infinite, then the following condition holds:

(at-∞) atρ(x, i + k) �� atρ(ρ(x), i) � atρ(x, i) �� atρ(s, j)
for some x ∈ dom(ρ), and i, k ≥ 0.

Lemma 2. If atρ(x, i′) �� atρ(s′, i), and wdρ(s′,m) �� wdρ(s, ∅) with wdρ(s, ∅)
derivable, and x ∈ dom(m), then

wdρ(x,m ′) �� wdρ(s′,m) for some m ′ such that m ′(x) − m(x) ≤ i − i′.

Proof. The proof is by induction on the length of the path in atρ(x, i′) ��

atρ(s′, i).

Base. The length of the path is 0, hence we have atρ(x, i) �� atρ(x, i). We also
have wdρ(x,m) �� wdρ(x,m), and we get the thesis since m(x) = m(x)+ i− i.

Inductive step. By cases on the rule applied to derive atρ(s′, i).
(at-var) We have atρ(x, i′) �� atρ(ρ(y), i) � atρ(y, i). There are two cases:

– If y ∈ dom(m) (hence y = x), we have wdρ(ρ(y),m{y �→ 0}) �
wdρ(y,m) by rule (wd-var), the premise is derivable, hence by
inductive hypothesis we have wdρ(x,m ′) �� wdρ(ρ(y),m{y �→ 0}),
and m ′(x) ≤ m{y �→ 0}(x) + i − i′ = m(x) + i − i′, hence we get the
thesis.

– If y ∈ dom(m), then it is necessarily m(y) > 0, otherwise, by
Lemma 1-(1), wdρ(s, ∅) would not be derivable. Hence, we have
wdρ(ρ(y),m{y �→ 0}) � wdρ(y,m) by rule (wd-delay), hence by

12 D. Ancona et al.

inductive hypothesis we have wdρ(x,m ′) �� wdρ(ρ(y),m{y �→ 0}),
and m ′(x) ≤ m{y �→ 0}(x) + i − i′. There are two subcases:

• If y = x, then m{y �→ 0}(x) = m(x), and we get the thesis as in
the previous case.

• If y = x, then m{x �→ 0}(x) = 0, hence m ′(x) ≤ i − i′ ≤ m(x) +
i − i′, since m(x) > 0.

(at-cons-0) Empty case, since the derivation for atρ(n:s, 0) does not contain
a node atρ(x, i′).

(at-cons-succ) We have atρ(n : s, i), and atρ(x, i′) �� atρ(s, i − 1). More-
over, we can derive wdρ(n : s,m) by rule (wd-cons), and by induc-
tive hypothesis we also have wdρ(x,m ′) �� wdρ(s,m+1), with m ′(x) ≤
m+1(x) + (i − 1) − i′, hence we get the thesis.

(at-tail) This case is symmetric to the previous one.
(at-nop) We have atρ(s1[op]s2, i), and either atρ(x, i′) �� atρ(s1, i), or

atρ(x, i′) �� atρ(s2, i). Assume the first case holds, the other is analo-
gous. Moreover, we can derive wdρ(s1[op]s2,m) by rule (wd-nop), and
by inductive hypothesis we also have wdρ(x,m ′) �� wdρ(s1,m), with
m ′(x) ≤ m(x) + i − i′, hence we get the thesis.

(at-‖-even) We have atρ(s1‖s2, 2i) and atρ(x, i′) �� atρ(s1, i). By inductive
hypothesis, we have wdρ(x,m ′) �� wdρ(s1,m), with m ′(x) ≤ m(x)+ i− i′.
Moreover, wdρ(s1,m) � wdρ(s1‖s2,m) holds by rule (wd-)‖, hence we
have wdρ(x,m ′) �� wdρ(s1‖s2,m) with m ′(x) ≤ m(x) + 2i − i′ and, thus,
the thesis.

(at-‖-odd) We have atρ(s1‖s2, 2i + 1) and atρ(x, i′) �� atρ(s2, i). By induc-
tive hypothesis, we have wdρ(x,m ′) �� wdρ(s2,m+1), with m ′(x) ≤
m+1(x) + i − i′. Moreover, wdρ(s2,m) � wdρ(s1‖s2,m) holds by rule
(wd-)‖, hence we have wdρ(x,m ′) �� wdρ(s1‖s2,m) with m ′(x) ≤
m(x) + 2i + 1 − i′ and, thus, the thesis.

Lemma 3. If atρ(x, i′) �� atρ(s, i), and wdρ(s, ∅) derivable, then

wdρ(x,m) �� wdρ(s, ∅) for some m such that x ∈ dom(m).

Proof. Easy variant of the proof of Lemma 2.

Theorem 1. If wdρ(s, ∅) has a derivation then, for all j, atρ(s, j) either has no
derivation or a finite derivation.

Proof. Assume by contradiction that atρ(s, j) has an infinite derivation for some
j, and wdρ(s, ∅) is derivable. By Lemma 1–(2), the following condition holds:

(at-∞) atρ(x, i + k) �� atρ(ρ(x), i) � atρ(x, i) �� atρ(s, j)
for some x ∈ dom(ρ), and i, k ≥ 0.

Then, starting from the right, by Lemma 3 we have wdρ(x,m) �� wdρ(s, ∅) for
some m such that x ∈ dom(m); by rule (wd-var) wdρ(ρ(x),m{x �→ 0}) �
wdρ(x,m), and finally by Lemma 2 we have:

(wd-stuck) wdρ(x,m
′) �� wdρ(ρ(x),m{x �→ 0}) � wdρ(x,m) �� wdρ(s, ∅)

for some x ∈ dom(ρ), and m ′,m s.t. x �∈ dom(m),m ′(x)≤ −k ≤ 0.

hence this is absurd by Lemma 1-(1).

Enhancing Expressivity of Checked Corecursive Streams 13

5 An Optimized Algorithm for Well-Definedness

The definition of well-definedness in Fig. 3 can be easily turned into an algorithm,
since, omitting rule (wd-delay), at each point in the derivation there is at
most one applicable rule. Now we will discuss its time complexity, assuming
that insertion, update and lookup are performed in constant time. It is easy to
see that when we find a stream constructor we need to perform an update of the
map ρ for every variable in its domain. If we consider the following environment:

ρ = (x0, {x0 �→ 0 : x1, x1 �→ 0 : x2, x2 �→ 0 : x3, x3 �→ 0 : x4, . . . , xn �→ 0 :
x0})

we get the derivation presented in Fig. 5. Here, the number of constructor
occurrences for which we have to perform an update of all variables in the domain
of the map is linearly proportional to the number N of nodes in the derivation
tree; since the domain is increased by one for each new variable, and the total
number of variables is again linearly proportional to N , it is easy to see that we
have a time complexity quadratic in N .

...
wdρ(x3, {x0 3, x1 2, x2 1}) (wd-var)

wdρ(0 : x3, {x0 2, x1 1, x2 0}) (wd-cons)

wdρ(x2, {x0 2, x1 1}) (wd-var)

wdρ(0 : x2, {x0 1, x1 0}) (wd-cons)

wdρ(x1, {x0 1}) (wd-var)

wdρ(0 : x1, {x0 0}) (wd-cons)

wdρ(x0, ∅)
(wd-var)

Fig. 5. wd worst case

We propose now an optimized version of the well-definedness check, having
a time complexity of O(N log N). On the other hand, the version we provided
in Fig. 3 is more abstract, hence more convenient for the proof of Theorem1.

In the optimized version, given in Fig. 6, the judgment has shape
owdρ(s,m, π), where π represents a path in the proof tree where each element
corresponds to a visit of either the constructor or the right operand of interleave
(value 1 for both) or the tail operator (value −1), and m associates with each
variable an index (starting from 0) corresponding to the point in the path π
where the variable was found the first time. The only operation performed on a
path π is the addition π · b of an element b at the end.

In rule (main), both the map and the path are initially empty. In rule (owd-
var), a variable x defined in the environment, found for the first time, is added
in the map with as index the length of the current path. In rule (owd-corec),

14 D. Ancona et al.

m :: = x1 i1 . . . xn ik (i ≥ 0) map from variables to indexes
π :: = b1b2 . . . bn sequence of either 1 or -1

(main)
owdρ (x, ∅)
wd(ρ, x, v)

ρ = ρ{x v} (owd-var)
owdρ(ρ(x),m{x i}, π)

owdρ(x,m, π)
x dom(m)
i = length(π)

(owd-corec)
owdρ(x,m, π)

x ∈ dom(m)
sum(m(x), π) > 0

(owd-fv)
owdρ(x,m, π)

x dom(ρ)

(owd-cons)
owdρ(s,m, π · 1)
owdρ(n : s,m, π)

(owd-tail)
owdρ(s,m, π · (−1))

owdρ(sˆ,m, π)

(owd-nop)
owdρ(s1,m, π) owdρ(s2,m, π)

owdρ(s1[nop]s2,m, π)
(owd-)

owdρ(s1,m, π) owdρ(s2,m, π · 1)
owdρ(s1 s2,m, π)

(sum-0)
sum(π) = n

sum(0, π) = n
(sum-n)

sum(n − 1, b2 . . . bn) = n

sum(n, b1b2 . . . bn) = n
n > 0

(sum-b)
sum() = 0

(sum-i)
sum(b2 . . . bn) = n

sum(b1b2 . . . bn) = b1 + n

Fig. 6. Optimized operational definition of well-definedness

when the same variable is found the second time, the auxiliary function sum
checks that more constructors and right operands of interleave have been tra-
versed than tail operators (see below). In rule (owd-fv), a free variable is con-
sidered well-defined as in the corresponding rule in Fig. 3. In rules (owd-cons),
(owd-tail) and (op-wd), the value corresponding to the traversed operator
is added at the end of the path (1 for the constructor and the right operand
of interleave, −1 for the tail operator). Lastly, rules (owd-nop) behaves in a
similar way as in Fig. 3. The semantics of the auxiliary function sum is straight-
forward: starting from the point in the path where the variable was found the
first time, the sum of all the elements is returned.

Let us now consider again the example above:

ρ = (x0, {x0 �→ 0 : x1, x1 �→ 0 : x2, x2 �→ 0 : x3, x3 �→ 0 : x4, . . . , xn �→ 0 : x0})

By the new predicate owd, we get a derivation tree of the same shape as in
Fig. 5. However, sum is applied to the path π only at the leaves, and the length
of π is linearly proportional to the depth of the derivation tree, which coincides
with the number N of nodes in this specific case; hence, the time complexity
to compute sum(0, π) (that is, sum(m(x0), π)) is linear in N . Finally, since for
inner nodes only constant time operations are performed5 (addition at the end
of the path, and map insertion and lookup), the overall time complexity is linear
in N .
5 This holds for any valid derivation tree and not for this specific case.

Enhancing Expressivity of Checked Corecursive Streams 15

As worst case in terms of time complexity for the predicate owd, consider

ρi = (x0, {x0 �→ 0 : x1[+]x1, x1 �→ 0 : x2[+]x2, x2 �→ 0 : x3[+]x3, . . . , xi �→ 0 : x0})

The derivation tree for this environment is shown in Fig. 7, where mi abbre-
viates the map {x0 �→ 0, x1 �→ 1, . . . , xi �→ i}.

...
owdρ(x3[+]x3,m2, [1, 1, 1])

(owd-nop)

owdρ(0 : x3[+]x3,m2, [1, 1])
(owd-cons)

owdρ(x2,m1, [1, 1])
(owd-var)

...
owdρ(x2,m1, [1, 1])

(owd-var)

owdρ(x2[+]x2,m1, [1, 1])
(owd-nop)

owdρ(0 : x2[+]x2,m1, [1])
(owd-cons)

owdρ(x1,m0, [1])
(owd-var)

...
owdρ(x1,m0, [1])

(owd-var)

owdρ(x1[+]x1,m0, [1])
(owd-nop)

owdρ(0 : x1[+]x1,m0)
(owd-cons)

owdρ(x0, ∅,)
(owd-var)

Fig. 7. owd worst case

As already noticed, for inner nodes only constant time operations are per-
formed, and the length of the paths in the leaves is linearly proportional to the
depth D of the derivation tree; however, in this worst case the number of leaves
is not just one, but is linearly proportional to the total number N of nodes in the
derivation tree, hence the depth D is linearly proportional to log N . Therefore
the overall time complexity is O(N · D), that is, O(N · log N).

We now show that the optimized version of the judgment has the same seman-
tics as its counterpart presented in Sect. 4. First of all we formally state that, in
Fig. 3, rule (wd-delay) does not affect derivability.

Lemma 4. A judgment wdρ(s, ∅) has a derivation iff it has a derivation which
does not use rule (wd-delay).

Proof. The right-to-left implication is obvious. If wdρ(s, ∅) uses rule (wd-
delay), all the (first in their path) occurrences of the rule can be replaced
by rule (wd-corec), still getting a derivation.

Then, we define a relation between the auxiliary structures used in the two
judgments:

For all m and (m, π), m �� (m, π) holds iff
dom(m) = dom(m) and, for all x ∈ dom(m), m(x) = sum(m(x), π).

In this way, we have the following generalization, whose straightforward proof
can be found in [4].

Theorem 2. Ifm �� (m, π), then, for all s, wdρ(s,m) is derivable iff owdρ(s,m, π)
is derivable.

Corollary 1. wdρ(s, ∅) is derivable iff owdρ(s, ∅, ε) is derivable.

16 D. Ancona et al.

6 Related and Future Work

As mentioned in Sect. 1, our approach extends regular corecursion, which orig-
inated from co-SLD resolution [1,6,18,19], where already considered goals (up
to unification), called coinductive hypotheses, are successfully solved. Language
constructs that support this programming style have also been proposed in the
functional [14] and object-oriented [2,7] paradigm.

There have been a few attempts of extending the expressive power of regular
corecursion. Notably, structural resolution [15,16] is an operational semantics for
logic programming where infinite derivations that cannot be built in finite time
are generated lazily, and only partial answers are shown. Another approach is
the work in [8], introducing algebraic trees and equations as generalizations of
regular ones. Such proposals share, even though with different techniques and in
a different context, our aim of extending regular corecursion; on the other hand,
the fact that corecursion is checked is, at our knowledge, a novelty of our work.

For the operators considered in the calculus and some examples, our main
sources of inspiration have been the works of Rutten [17], where a coinductive
calculus of streams of real numbers is defined, and Hinze [12], where a calculus
of generic streams is defined in a constructive way and implemented in Haskell.

In this paper, as in all the above mentioned approaches derived from co-SLD
resolution, the aim is to provide an operational semantics, designed to directly
lead to an implementation. That is, even though streams are infinite objects
(terms where the constructor is the only operator, defined coinductively), eval-
uation handles finite representations, and is defined by an inductive inference
system. Coinductive approaches can be adopted to obtain more abstract seman-
tics of calculi with infinite terms. For instance, [9] defines a coinductive semantics
of the infinitary lambda-calculus where, roughly, the semantics of terms with an
infinite reduction sequence is the infinite term obtained as limit. In coinduc-
tive logic programming, co-SLD resolution is the operational counterpart of a
coinductive semantics where a program denotes a set of infinite terms. In [2],
analogously, regular corecursion is shown to be sound with respect to an abstract
coinductive semantics using flexible coinduction [5,10], see below.

Our calculus is an enhancement of that presented in [3], with two main sig-
nificant contributions: (1) the interleaving operator, challenging since it is based
on a non-trivial recursion schema; (2) an optimized definition of the runtime
well-definedness check, as a useful basis for an implementation. Our main tech-
nical results are Theorem 1, stating that passing the runtime well-definedness
check performed for a function call prevents non-termination in accessing ele-
ments in the resulting stream, and Theorem 2, stating that the optimized version
is equivalent.

Whereas in [3] the well-definedness check was also a necessary condition to
guarantee termination, this is not the case here, due to the interleaving oper-
ator. Consider, for instance, the following example: ρ = {s �→ (sˆ‖s)‖0:s}.
The judgment wdρ(s, ∅) is not derivable, in particular because of sˆ, since
wdρ(s, {s �→ −1}) is not derivable and, hence, wdρ(sˆ, {s �→ 0}), wdρ(sˆ‖s, {s �→
0}), and wdρ((sˆ‖s)‖0:s, {s �→ 0}). However, atρ(s, i) is well-defined for all

Enhancing Expressivity of Checked Corecursive Streams 17

indexes i; indeed, atρ(s, 1) = 0 is derivable, atρ(s, 0) = k is derivable iff
atρ(s, 1) = k is derivable, and, for all i > 1, atρ(s, i) = k is derivable iff
atρ(s, j) = k is derivable for some j < i, hence atρ(s, i) = 0 is derivable for
all i. We leave for future work the investigation of a complete check.

In future work, we plan to also prove soundness of the operational well-
definedness with respect to its abstract definition. Completeness does not hold,
as shown by the example zeros() = [0] [*] zeros() which is not well-formed
operationally, but admits as unique solution the stream of all zeros.

Finally, in the presented calculus a cyclic call is detected by rule (corec) if
it is syntactically the same of some in the call trace. Although such a rule allows
cycle detection for all the examples presented in this paper, it is not complete
with respect to the abstract notion where expressions denoting the same stream
are equivalent, as illustrated by the following alternative definition of function
incr as presented in Sect. 3:

incr_reg(s) = (s(0)+1): incr_reg(s^)

If syntactic equivalence is used to detect cycles, then the call incr_reg([0])

diverges, since the terms passed as argument to the recursive calls are all syn-
tactically different; as an example, consider the arguments x and xˆ passed to
the initial call and to the first recursive call, respectively, in the environment
ρ = {x �→ 0 : x}; they are syntactically different, but denote the same stream.

In future work we plan to investigate more expressive operational character-
izations of equivalence.

Other interesting directions for future work are the following.

– Investigate additional operators and the expressive power of the calculus.
– Design a static type system to prevent runtime errors such as the non-well-

definedness of a stream.
– Extend corecursive definition to flexible corecursive definitions [10,11] where

programmers can define specific behaviour when a cycle is detected. In this
way we could get termination in cases where lazy evaluation diverges. For
instance, assuming to allow also booleans results for functions, we could
define the predicate allPos, checking that all the elements of a stream are
positive, specifying as result true when a cycle is detected; in this way, e.g.,
allPos(one_two) would return the correct result.

References

1. Ancona, D.: Regular corecursion in Prolog. Comput. Lang. Syst. Struct. 39(4),
142–162 (2013)

2. Ancona, D., Barbieri, P., Dagnino, F., Zucca, E.: Sound regular corecursion in coFJ.
In: Hirschfeld, R., Pape, T. (eds.) ECOOP’20 - Object-Oriented Programming.
LIPIcs, vol. 166, pp. 1:1–1:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020)

3. Ancona, D., Barbieri, P., Zucca, E.: Enhanced regular corecursion for data streams.
In: ICTCS’21 - Italian Conference on Theoretical Computer Science (2021)

18 D. Ancona et al.

4. Ancona, D., Barbieri, P., Zucca, E.: Enhancing expressivity of checked corecursive
streams (extended version) (2022). https://arxiv.org/abs/2202.06868

5. Ancona, D., Dagnino, F., Zucca, E.: Generalizing inference systems by coaxioms.
In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 29–55. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1 2

6. Ancona, D., Dovier, A.: A theoretical perspective of coinductive logic program-
ming. Fund. Inform. 140(3–4), 221–246 (2015)

7. Ancona, D., Zucca, E.: Corecursive featherweight Java. In: FTfJP’12 - Formal
Techniques for Java-like Programs, pp. 3–10. ACM Press (2012)

8. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25,
95–169 (1983)

9. Czajka, L.: A new coinductive confluence proof for infinitary lambda calculus. Log.
Methods Comput. Sci. 16(1) (2020)

10. Dagnino, F.: Flexible coinduction. Ph.D. thesis, DIBRIS, University of Genova
(2021)

11. Dagnino, F., Ancona, D., Zucca, E.: Flexible coinductive logic programming. The-
ory Pract. Logic Program. 20(6), 818–833 (2020). Issue for ICLP 2020

12. Hinze, R.: Concrete stream calculus: an extended study. J. Funct. Program. 20(5–
6), 463–535 (2010)

13. Jeannin, J.-B., Kozen, D.: Computing with capsules. J. Autom. Lang. Comb. 17(2–
4), 185–204 (2012)

14. Jeannin, J.-B., Kozen, D., Silva, A.: CoCaml: functional programming with regular
coinductive types. Fund. Inform. 150, 347–377 (2017)

15. Komendantskaya, E., Johann, P., Schmidt, M.: A productivity checker for logic
programming. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016.
LNCS, vol. 10184, pp. 168–186. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63139-4 10

16. Komendantskaya, E., Power, J., Schmidt, M.: Coalgebraic logic programming: from
semantics to implementation. J. Log. Comput. 26(2), 745–783 (2016)

17. Rutten, J.J.M.M.: A coinductive calculus of streams. Math. Struct. Comput. Sci.
15(1), 93–147 (2005)

18. Simon, L.: Extending logic programming with coinduction. Ph.D. thesis, University
of Texas at Dallas (2006)

19. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73420-8 42

https://arxiv.org/abs/2202.06868
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1007/978-3-319-63139-4_10
https://doi.org/10.1007/978-3-319-63139-4_10
https://doi.org/10.1007/978-3-540-73420-8_42

Improving Type Error Reporting for Type
Classes

Sheng Chen(B) and Md Rabib Noor

UL Lafayette, Lafayette, LA 70503, USA
{chen,md-rabib.noor1}@louisiana.edu

Abstract. Debugging type errors when type inference fails is a challenging prob-
lem since there are many different ways to remove the type error, and it’s unclear
which way is intended. While numerous approaches have been proposed to more
precisely locate the real error causes, most of them do not deal with popular
type system extensions, such as type classes. A second problem is that most
approaches do not provide enough information for removing the type error or
do so for a few error causes only.

In this work, we develop an approach called TEC to address both problems.
Given an ill-typed expression that may involve type classes, TEC finds compre-
hensive error causes and generates for each cause an error fix with detailed infor-
mation for removing the type error. TEC computes all error fixes, ranks them, and
iteratively presents the most likely error fix to the user until a fix is accepted. TEC
reduces the problem of finding all error fixes to variational typing, which sys-
tematically reuses typing results. Our main technical innovation is a variational
context reduction algorithm that simplifies type class constraints containing vari-
ations. We have evaluated the precision of TEC and found that it outperforms
existing approaches in locating type errors arising from type class uses.

1 Introduction

Type inference allows programs to be statically typed, even without the presence of
type annotations. However, it is particularly difficult to locate the real error causes and
generate informative error messages when type inference fails. In the last thirty years,
numerous approaches have been proposed to address this problem [4,5,10,13,17,18,
23–26,30,31,35,38,39,41–43].

However, while plentiful type system extensions have been proposed and inte-
grated into languages like Haskell, most of the error debugging methods focused on
the Hindley-Milner type system (HM) plus some basic extensions, such as algebraic
data types. On one hand, as type classes in Haskell are so popular nowadays, it is hard
to write a program without involving them, particularly as types for numbers (such as
Int, Integer, and Double) are members of different classes (such as Num, Real, and
Integral) and lists are a member of Traversable. On the other hand, type error debug-
ging for type classes is rudimentary. All Haskell compilers and error debuggers SHEr-
rLoc [43] and Chameleon [33,34] diagnose type errors only and do not provide change

This work is supported by the National Science Foundation under the grant CCF-1750886.

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 19–38, 2022.
https://doi.org/10.1007/978-3-030-99461-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_2

20 S. Chen and Md. R. Noor

suggestions. Moreover, they usually report only several likely error causes and in many
cases miss the real cause.

Consider, for example, the erroneous expression rank1 x = (x 1, x True)

adapted from [2]. This expression is ill-typed because it applies the argument to val-
ues of different types. For this expression the most widely used Haskell compiler GHC
version 8.10.6 displays the following message.

* No instance for (Num Bool) arising from the literal ‘1’

* In the first argument of ‘x’, namely ‘1’

In the expression: x 1

In the expression: (x 1, x True)

This error message is not helpful for removing the type error for several reasons. First,
the type information and the location information is inconsistent. The message seems to
say that 1 requires the type system to prove Bool be an instance of the class Num. While
1 gives rise to the type class Num, it doesn’t have anything to do with Bool. Second, it
doesn’t say how to remove the type error, for example, adding an instance definition
Num Bool, changing 1 to something of Bool, and so on. In this small example, it is not
hard to infer that Num Bool is caused by the conflict of 1 and True. However, when the
program is large, the conflicting subexpressions may be far away, and figuring out the
exact problem can be hard. Third, GHC only reports the problem at 1 while, in fact,
changing any of True or either of x will make rank1 well-typed. Moreover, there is
no evidence that 1 is more likely to cause the type error than True. Thus, reporting
the problem at 1 is biased for users. For this example, SHErrLoc produces a similar
message, except that it mentions both 1 and True.

We will use the terms error causes and error fixes throughout the paper. Given an
expression, an error cause is a set of subexpressions such that changing them appropri-
ately can make the expression well-typed. We omit the set delimiters if the cardinality
is 1. For example, all of x (either occurrence), 1, True, and {1,True} are possible error
causes for rank1. An error fix is an error cause plus change information, for each mem-
ber of the error cause, to make the expression well-typed. For example, the error cause
1 plus the change of 1 to something of type Bool is an error fix for rank1. Given an
oracle (for example, specified by the paper where the example was introduced), we say
an error cause or error fix is correct if it is consistent with the oracle and incorrect oth-
erwise. In these terms, both GHC and SHErrLoc only identify error causes and do not
generate error fixes.

When multi-parameter classes and functional dependencies [22] are involved, the
messages become worse. Consider, for example, the expression insert2 adapted
from [34]. The functional dependency ce -> e specifies that the container type ce

uniquely determines the element type e. Many interesting Collects instances may be
defined, such as lists, characteristic functions, bit sets for representing collections of
characters, etc.

class Collects ce e | ce -> e where

empty :: ce

insert :: e -> ce -> ce

insert2 c = insert 1 (insert True c)

Improving Type Error Reporting for Type Classes 21

The expression insert2 contains a type inconsistency between 1 and True because they
violate the functional dependency [34]. For insert2, GHC generates a similar message
as before while SHErrLoc generates the following message, where the text with a grey
background is the error cause identified by SHErrLoc. The corresponding constraint for
each error given by SHErrLoc is attached to the end of each message in italics. As a
result, according to [34], these messages are incorrect.

2 errors found

A value with type cons_2 (ce_aL3) (e_aL4) is being used at type Collects

insert2 c = insert 1 (insert True c) cons_2 (ce_aL3) (e_aL4) <= Collects

A value with type cons_2 (ce_aHQ) (e_aHR) is being used at type Collects

insert2 c = insert 1 (insert True c) cons_2 (ce_aHQ) (e_aHR) <= Collects

Based on previous examples, we observe that the tool support for debugging type errors
for type systems with type classes is inadequate. To address this problem, we develop
TEC, which (1) finds comprehensive error causes, (2) generates an error fix for each
cause, and (3) ranks all error fixes and presents them iteratively. For insert2, TEC
generates the following error fix.

The expression contains type errors. Possible fix:

Change: "True", of type: "Bool", to something of type: "Num f => f"

the resulting type will be: (Collects c f, Num f) => c -> c

Show more one-change fixes? (y/n)

We can see that each fix includes the error cause (True), the type it has under normal
type inference (Bool), the type it ought to have to remove the type error (Num f => f),
and the type of the resulting expression after applying this fix. We will refer to these
three type parts as source type, target type, and consequent type, respectively.

This message provides abundant information to remove the type error: the conse-
quent type allows the user to quickly decide if this message is useful. For example, if
the user’s expected type of insert2 is Collects c Bool => c -> c, then the user can
simply skip this message and ask for the next one. Otherwise if the consequent type is
intended, the user can turn to the target type to further decide how she can fix the type
error. In this case, the user can figure out that she should change True to something that
is an instance of the Num type class.

If this message is not useful, the user can hit the letter y to ask for the next message,
which suggests to change 1, with the source type Num a => a, the target type Bool, and
the consequent type Collects c Bool => c -> c. This process continues until all error
fixes are displayed. Later error fixes may involve multiple subexpressions. For example,
after the first four fixes, TEC starts to generate fixes involving two subexpressions.

We have evaluated the precision of TEC in more depth for two benchmarks (Sect. 5)
and the result shows that TEC is precise in locating type errors. Also, TEC is fast enough
for practical use. For example, for programs of about 100 LOC and 300 LOC, TEC
delivers the first error message within 1.6s and 5.7s, respectively. While the response
time is still slower than compilers, this cost pays off as effective and informative error

22 S. Chen and Md. R. Noor

messages generated by TEC can save beginners dozens of minutes for fixing type errors,
a view shared by [25].

Overall, our contributions in this paper is developing an error debugger, TEC, that
considers type classes and functional dependencies, finds complete error fixes in leaves
and their combinations under moderate conditions, and is fast enough for practical use.
Each error fix provides abundant information to remove the type error. Along the way,
we formally develop a type system for finding comprehensive error fixes and a varia-
tional context reduction for simplifying type class constraints.

We give an overview of TEC in Sect. 2, present a type system in Sect. 3, develop
constraint generation and variational context reduction in Sect. 4, present evaluation in
Sect. 5, discuss related work in Sect. 6, and conclude in Sect. 7.

2 TEC, Informally

TEC relies on the machineries developed in variational typing [6,7] to efficiently find
comprehensive error fixes. In this section, we first present background on variational
typing and then use an example to illustrate the idea of TEC.

Background. Variational typing introduces variations to the type syntax. For example,
the type A〈Int,Bool〉 contains a variation named A, which has two alternatives: Int

and Bool. An expression having the type A〈Int,Bool〉 means that the expression has
either the type Int or Bool, depending on which alternative is taken. Variations can be
considered as a binary type constructor, so A〈Int,B〈Bool,Int〉〉, A〈Int,Bool〉 → Bool,
and A〈Int,Bool〉 → B〈Bool,Int〉 are all valid types.

Variations can be eliminated through a process called selection, which takes a type
φ and a selector s of the form d.i and replaces all occurrences of variations named d
with their ith alternatives in φ. We write �φ�d.i for selecting φ with d.i. For instance,
�A〈Int,Bool〉�A.2 yields Bool. A decision is a set of selectors. We use ω to range over
decisions. Selection extends naturally to decisions as �φ�sω = ��φ�s�ω. Note that the
ordering of selection doesn’t matter. We say ω is complete with respect to φ if �φ�ω
yields a plain type, which doesn’t contain any choice. Selecting a plain type with
any selector yields the type itself. For instance, �Int�B.2 = Int. Based on the def-
inition of selection, choices with the same name are synchronized in the sense that
we have to select the same alternatives from them and those with different names are
independent. Thus, while A〈Int,Bool〉 → A〈Bool,Int〉 can generate two plain types,
A〈Int,Bool〉 → B〈Bool,Int〉 can generate four with two different parameter types and
two different return types.

An Example of Debugging with TEC. During type inference, compilers infer the
most general types for all the subexpressions visited, which defers the detection of
type errors. Thus, compiler error messages are often biased and incomplete. To find
comprehensive error fixes, TEC systematically assume that each leaf may cause the
type error and find the target type of each leaf to remove the type error in the expression.
TEC also computes the source type and consequent type of changing each leaf (see Page
3 below our error message for the meanings of the terms source type and consequent
type). In fact, TEC also finds error fixes in arbitrary combinations of leaves, and in

Improving Type Error Reporting for Type Classes 23

this case computes related type information for each leaf in the error fix. After the
computation is finished, TEC determines that a leaf indeed causes the type error if the
source type differs from the target type for that leaf.

TEC reduces this computation process to variational typing by traversing the expres-
sion just once. For each leaf, TEC assigns a variational type whose left and right alter-
natives represent the source and target types, respectively. The source type is the type
a leaf has under normal type inference and the target type is the type that makes the
context well-typed. When a leaf is first visited, the target type is a fresh type variable,
which will be refined to the correct type after the typing constraints are solved.

We illustrate this process with type error debugging for abs True, where abs has
the type ∀α1.Num α1 ⇒ α1 → α1. The following table lists types for subexpressions
and the generated constraints, which are numbered. Each leaf receives a choice type
that includes the source type and the target type for it. In the constraint (1), Num α2,
the constraint in the left alternative, is come from the constraint of Num α2 ⇒ α2 → α2,
which is the type of abs. In that constraint, ε in the right alternative means that the type
α3 has no constraint. The constraint (2) expresses the equivalence constraint between
two types, and we use ≡? to denote such constraints.

Subexpr. Types Constraints Idx
abs A〈α2 → α2,α3〉 A〈Num α2,ε〉 (1)
True B〈Bool,α4〉
abs True β1 A〈α2 → α2,α3〉 ≡? B〈Bool,α4〉 → β1 (2)

In general, traversing an expression generates both type class constraints and type
equivalence constraints. Type equivalence constraints are solved with the variational
unification algorithm from [6]. In addition to a unifier, constraint solving also returns a
pattern to indicate at which variants constraint solving is successful and at which it is
not. Specifically, a pattern, written as π, can be
 (denoting constraint solving success),
⊥ (denoting solving failure), or a variation between two patterns (such patterns can be
useful when constraint solving in one variant fails while in the other variant succeeds).
For example, the pattern for solving the constraint A〈Int,Bool〉 ≡? Int is A〈
,⊥〉 since
the constraint solving in the second alternative fails. Type class constraints are solved
using variational context reduction, to be developed in Sect. 4.1. Similarly, a pattern is
returned to indicate where reduction is successful and where is not.

For the constraints (2) above, the solution is as follows. The returned pattern is
,
since constraint solving is successful for all variants. κs in the solution represent fresh
type variables introduced during unification.

θ = {α2 �→ A〈B〈Bool,α4〉,κ1〉,α3 �→ A〈κ3,B〈Bool,α4〉 → κ2〉,β1 �→ A〈B〈Bool,α4〉,κ2〉}

After that, we apply θ to the constraint (1) and remove the dead alternative (κ1), which
yield the new constraintC1 = A〈Num B〈Bool,α4〉,ε〉. With variational context reduction,
C1 is reduced to (π,C) where π = A〈B〈⊥,
〉,
〉 and C = A〈B〈Num Bool,Num α4〉,ε〉.
The π indicates thatC1 can not be reduced to the normal form [21] in variant {A.1,B.1}.
Overall, the result type is φ =C ⇒ θ(β1) with the pattern π.

With φ, θ, and π, we can generate error fixes by considering different decisions. For
any ω, if �π�ω is
, then ω corresponds to an error fix that will remove the type error

24 S. Chen and Md. R. Noor

in the expression. The reason is that, as discussed earlier, only variants where both vari-
ational unification and context reduction are successful will receive
. If either fails,
then the variant contains a ⊥. Given a ω, if d.1 ∈ ω, it means that we do not change the
subexpression where d is created. Otherwise, we change the corresponding subexpres-
sion to something of type �θ(α)�ω, where α is the target type for the subexpression. For
example, let’s consider generating the error fix for the decision ω= {A.1,B.2}. Since
�π�{A.1,B.2} =
, this fix will remove the type error. The decision ω corresponds to
changing True only. The target type is α4 and the constraint for the target type is �C�ω
= Num α4, meaning that the overall target type for True is Num α4 ⇒ α4. The consequent
type type is �φ�ω, which is Num α4 ⇒ α4. This provides all the information needed for
generating our error message in Sect. 1.

3 Type System

This section presents a type system for computing comprehensive error fixes and stud-
ies its properties. While supporting type class constraints, our formalization is made
general so that it can be instantiated to support other type constraints.

3.1 Syntax

Fig. 1. Syntax

Figure 1 collects the syn-
tax for types, expressions,
and related environments.
We consider a formaliza-
tion for HM plus multi-
parameter type classes. We
use c to range over con-
stants. Our formalization
omit functional dependen-
cies for simplicity though
our implementation sup-
ports them. Types are strat-
ified into three layers.
Monotypes include con-
stant types (γ), type variables (α), and function types. Variational types extend mono-
types with choice types. We use τ and φ to range over monotypes and variational types,
respectively. Type schemas, ranged over by σ, has the form ∀α.C ⇒ φ, where C speci-
fies the requirements of types substituting α in φ. We use FV(σ) to return the set of free
type variables in σ.

There are two main forms of primitive constraints. The first form is the type equiv-
alence requirement φ1 ≡ φ2, which specifies that φ1 and φ2 must be equivalent. Two
types are equivalent if selecting them with the same decision always yields the same
type. For example, d〈Int,Int〉 ≡ Int. The second is the type class constraint G τ. Com-
pound constraints include C1 ∧C2, where ∧ is commutative, and d〈C1,C2〉, a variation
between C1 and C2 under the name d.

Improving Type Error Reporting for Type Classes 25

Fig. 2. Entailment relation of constraints

Axiom schemes include constraints (C), abstractions of class declarations (∀α.C ⇐
G α), and those of instance declarations (∀α.C ⇒ G τ). For example, the declaration
class Eq a => Ord a where... gives rise to ∀α.Eq α ⇐ Ord α. We use a left arrow
in the scheme to reflect that any type that is an instance of a subclass (Ord) is also an
instance of the parent class (Eq). Similarly, the instance declaration instance Eq a =>

Eq [a] where... gives rise to ∀α.Eq α ⇒ Eq [α].
We use l to range over program locations. Each program element has a unique

location in the program. We use the function �e(f) to return the location of f in e. We
may omit the subscript e when the context is clear. For simplicity, we assume that f
uniquely determines the location. The exact definition of �(·) doesn’t matter.

The definitions of the type environments Γ and the substitutions θ are conventional,
mapping expression variables to type schemas and type variables to variational types,
respectively. The choice environment Δ associates each program location l to a choice
type d〈φ1,φ2〉, where d, φ1, and φ2 are the choice, the source type, and the target type
for the subexpression at l, respectively.

3.2 Type System

Constraint Entailment. Constraints are related together through the entailment rela-
tion defined in Fig. 2. The relation Q �C specifies that under axiom Q , the constraint
C is satisfied. The first three rules are standard in constrained type systems [19,28]. The
rules E1 and E2 specify that the relation is reflexive and transitive. The rule E3 states

26 S. Chen and Md. R. Noor

Fig. 3. Typing rules

that the entailment relation is stable under type substitution. Type substitution, written
as θ(σ), substitutes free type variables in σ with their corresponding mappings in θ.
For instance and class declaration constraints, substitution has no effect. For other con-
straints, substitution applies to their type components. The rules E4 and E5 show how
to satisfy the compound constraints C1 ∧C2 and d〈C3,C4〉. The rule E6 introduces the
partial entailment relation �π, which specifies that the validity of � is only limited to
the variants where π has
s.

The rest of the rules in Fig. 2 specify the relations between type equivalence con-
straints. The rules T1 through T3 express that this relation is reflexive, symmetric, and
transitive. In T4, we use C[] to denote a constraint context into which we can plug
a type. The rule says that the satisfiability of a constraint is preserved if a type of
it is replaced by an equivalent type. The notation Q � C1 ↔ C2 is a shorthand for
Q ∧C1 �C2 and Q ∧C2 �C1. The rule T5 states that a choice with same alternatives
is equivalent to its alternatives. The rule T6 says that dead alternatives can always be
removed without affecting type equivalence. Here �φ1�d.1 removes all the second alter-
natives of d choices inside φ1, which are unreachable because φ1 is in the first alternative
of d. For example, Q � A〈Int,A〈Char,Bool〉〉 ≡A〈Int,Bool〉. The rules T7 and T8 deal
with entailments brought in by instance and class declarations, respectively. We use CG

to denote type class constraints having type variables as their arguments.

Typing Rules. Typing rules are presented in Fig. 3. Type judgment has the form
C;π;Γ � e : φ|Δ, which is read as: under the type environment Γ and constraint C the
expression e has the type φ with the validity restriction π, with type change information
collected in Δ. Here Γ, C, π, and e are inputs, and φ and Δ are outputs. The π indi-
cates that the typing result is required to be correct only in the alternatives that π has

s and is not required to be correct in alternatives that π has ⊥s. For example, dis-

Improving Type Error Reporting for Type Classes 27

regarding Δ, ε;
;Γ � 1 : Int|Δ is valid. Interestingly, while 1 does not have the type
Bool, ε;⊥;Γ � 1 : Bool|Δ is also a valid type judgment since ⊥ in the judgment says the
result does not need to be correct. However, the judgment ε;
;Γ � 1 : Bool|Δ is invalid
because
 requires the result to be correct but 1 does not have the type Bool. Intuitively,

In many rules, we use the condition ∃ d, where d can be a fresh or existing choice
name. This condition allows us to maintain the flexibility of assigning variations to
leaves. If we assign unique variations to leaves, we can change leaves independently.
Otherwise, if some leaves receive the same variation, then either all or none of them
will be changed. This condition is always satisfied.

The rule CON, dealing with unconstrained constants, says that for a constant c of
the type γ, the source type is γ and the target type is φ, which is unconstrained, meaning
that we can change c to anything to remove the type error. The π component can be
any value since changing a constant will not introduce any error. Here Δ is assigned
{(�(c),d〈γ,φ〉)} to record the change information. The rule for constrained constants
is very similar to VAR and we will not present it here. The rule VAR for variables has a
similar pattern as CON has. The source type for a variable x is any valid instantiation of
the polymorphic type Γ(x) and the target type φ1 is again unconstrained. Since typing a
variable is always correct, π can be any value. The rule records a change for x in Δ.

We also need a rule for unbound variables since we do not want the typing process
to be terminated. As always, the target type can be an unconstrained type. The question
is, what should be the source type for the variable? Since the variable is unbound, we
couldn’t find out the correct source type. Fortunately, we can avoid this problem by
choosing an appropriate π. Specifically, the first alternative of the typing pattern must
be ⊥, denoting that the typing result of the first alternative that accesses the unbound
variable is invalid. As always, the second alternative can be any value.

To formally express this idea, we first define the more-defined relation between
typing patterns as follows. We write π1 ≤ π2 to express that π2 is more-defined than π1.
Intuitively, π1 ≤ π2 if for any alternative π2 has an ⊥ then so does π1.

π ≤
 ⊥ ≤ π
π1 ≤ π2 π2 ≤ π3

π1 ≤ π3

π1 ≤ π3 π2 ≤ π4

d〈π1,π2〉 ≤ d〈π3,π4〉
� π1 ≡ π2

π1 ≤ π2

The first two rules indicate that all typing patterns are more-defined than ⊥ and less-
defined than
. The third rule states that ≤ is transitive. The fourth rule says that two
choice typing patterns satisfy ≤ if both corresponding alternatives satisfy this relation.
Finally, the last rule reuses the entailment relation defined for variational types by inter-
preting
 and ⊥ as two distinct constant types. The rule says that two typing patterns
that satisfy the equivalence relation also satisfy the ≤ relation. This allows us to derive

 ≤ d〈
,
〉 since the two sides are equivalent according to the rule T2 in Fig. 2.

We formalize the idea for typing unbound variables in the rule UNBOUND with the
help of ≤. The rules ABS for abstractions and LET for let expressions are similar to
those in the constraint-based formalization of HM, except for the threading information
for π and Δ here. The rule APP deals with applications. The rules for deriving type
equivalence (≡) are given in the upper part of Fig. 2.

28 S. Chen and Md. R. Noor

Fig. 4. The derivation tree for the expression abs True.

In general, we are interested in generating error fixes for an expression given user
defined axioms Q . We formalize this idea in the rule MAIN in Fig. 3. The type judgment
for this rule is very similar to that for other rules and can be read similarly.

Example. Let’s consider typing abs True under the constraint C4 = A〈B〈Num Bool,
Num α〉,ε〉, where Γ(abs) = ∀α1.Num α1 ⇒ α1 → α1 and True is of the type Bool. We
present the derivation tree, together with values for symbols (such as C4, π4, etc.), for
typing this expression in Fig. 4. Most of the derivations are simple instantiations of the
typing rules in Fig. 3, except the two using E6. We defer the detailed explanation of
deriving them to the long version of this paper [8]. Overall, we derive the typing result
C4;π4;Γ � abs True : A〈B〈Bool,α〉,Bool〉|Δ6 for the expression abs True.

We observe that C4 includes the constraints Num Bool and Num α. What is
the result of typing the expression under the axiom Q6 = Num α? Let π6 =
A〈B〈⊥,
〉,B〈
,⊥〉〉, we have π6 ≤ π4 and Q6 �π6 C4. According to the rule MAIN,
we have Q6;π6;Γ �M abs True : A〈B〈Bool,α〉,Bool〉|Δ6. From π6, Δ6, and the result
type A〈B〈Bool,α〉,Bool〉, we can extract error fixes as we did in Sect. 2. For example,
changing abs to something of type Bool → Bool the resulting expression will have the
type Bool.

Properties. We now investigate the properties of finding error fixes by our type system.
We first present a few definitions. Given an ω and a Δ, we can generate an alteration for
fix type errors as follows, where locToChc(l) returns the variation name generated at l
during the typing process.

alt(ω,Δ) = {(l,�φ�ω)|(l,φ) ∈ Δ∧ locToChc(l).2 ∈ ω}

Improving Type Error Reporting for Type Classes 29

An alteration specifies the target type of each location in it. We use δ to range over
alterations. For example, alt({A.2,B.1},Δ6) yields {(�(abs),Bool → Bool)}, where Δ6

was introduced in Sect. 3.2 for typing abs True.
To reason about the correctness of our type system, we need a notion of applying

alterations to the Hindley-Milner typing process extended with type classes for ill-typed
expressions. For this purpose, we introduce the typing judgment Q ;Γ;δ �ALT e : τ,
which says that under Q , Γ, and the alteration δ, the expression e has the type τ. The
type system is mostly standard but for each subexpression e′ satisfying �(e′) �→ τ′ ∈ δ,
e′ has the type τ′. Since the specification of �ALT is simple, we defer it to [8].

The correctness of our type system consists of the soundness and completeness of
error fixes, shown in the following theorems. The proofs for both theorems are con-
structed through induction on the corresponding typing process.

Theorem 1 (Error fix soundness). If Q ;π;Γ �M e : φ|Δ, then for any ω �π�ω =

implies Q ;Γ;alt(ω,Δ) �ALT e : �φ�ω.

Theorem 2 (Error fix completeness). Given Q , e, and Γ, if Q ;Γ;δ �ALT e : τ, then
there exists some φ and Δ such that Q ;π;Γ �M e : φ|Δ, �φ�ω = τ, and alt(ω,Δ) = δ for
some ω.

4 Constraint Generation and Solving

When an expression is visited, both type constraints and class constraints are generated.
Type constraints are solved using variational unification from [6], yielding substitutions,
which will be applied to class constraints. After that, class constraints are simplified.

Constraint Generation. Since constraint generation rules can be systematically
derived from the typing rules in Fig. 3, we present the rules only for variables and
applications. Other constraint generation rules can be derived similarly.

I-VAR
Γ(x) = ∀α1.C ⇒ φ d,α2,α3 fresh φ1 = [α1 �→ α2](φ)

d〈[α1 �→ α2](C),ε〉;Γ �I x : d〈φ1,α3〉|{(�(x),d〈φ1,α3〉)}

I-APP
C1;Γ �I e1 : φ1|Δ1 C2;Γ �I e2 : φ2|Δ2 β fresh

C1 ∧C2 ∧φ1 ≡? φ2 → β;Γ �I e1 e2 : β|Δ1 ∪Δ2

The judgment for the inference rules has the form C;Γ �I e : φ|Δ, read as: given Γ,
e has the type φ with the generated constraint C and the change information Δ. All
components are output except e and Γ. The I-VAR rule is simple: the variable receives a
choice type where the source type is an instantiation of the type schema and the target
type is a fresh type variable. We use ε for the second alternative of the output constraint
since that alternative is unconstrained. With these rules, we can generate the constraints
shown in Sect. 2 for the example abs True.

30 S. Chen and Md. R. Noor

4.1 Variational Context Reduction

Our algorithm in this subsection follows the idea of Jones [21] but has to deal with
variations. Given a constraint, context reduction first transforms it into a head-normal
form and then simplifies it with an entailment relation. We discuss them below in detail.

Constraint Transformation. We define the function toHnf(C,Q) to transform C
into the head-normal form with the given Q . A type class constraint is in head-
normal form if at least one argument is a type variable. The result is (C2,π), mean-
ing that C2 is the normal form for C but transformation was successful only in vari-
ants where π have
s. When Q is ε, it means that no axiom is given. For example,
toHnf(A〈Num Bool,Num Int〉,ε) yields (ε,A〈⊥,
〉), meaning that the transformation is
failed in A.1 but is successful in A.2. The operation (C1,π1) (op1,op2) (C2,π2) below
is defined as (C1 op1 C2,π1 op2 π2) and o1 d〈,〉 o2 yields d〈o1,o2〉 where o denotes any
object.

toHnf(C1 ∧C2,Q) = toHnf(C1,Q) (∧,⊗) toHnf(C2,Q)
toHnf(d〈C1,C2〉,Q) = toHnf(C1,Q)(d〈,〉,d〈,〉)toHnf(C2,Q)

toHnf(C,Q) = toHnf′(inHnf(C),C,Q)

The operation ⊗ in the rule puts two patterns together. It is defined with three rules: (1)

⊗π = π, (2) ⊥⊗π=⊥, and (3) d〈π1,π2〉⊗π = d〈π1 ⊗π,π2 ⊗π〉. ⊗ can be understood
as logical and if we view
 and ⊥ as logical true and false, respectively.

When the constraint is a class constraint, toHnf delegates the real task to toHnf′,
which, in addition to C and Q , takes a ϖ, a variational boolean value, as its first argu-
ment. This argument indicates whetherC is already normalized or not. It could be True,
False, or a variation over ϖs.

toHnf′(True,C,Q) =(C,
)
toHnf′(d〈ϖ1,ϖ2〉,C,Q) =toHnf′(ϖ1,�C�d.1,Q)(d〈,〉,d〈,〉) toHnf′(ϖ2,�C�d.2,Q)

toHnf′(False,C,Q) =

⎧
⎪⎨

⎪⎩

(ε,
) byInst(C,Q) = (ε,
)
toHnf(C2,Q) byInst(C,Q) = (C2,
)
(ε,⊥) otherwise

toHnf′ pattern matches against ϖ. When ϖ is True, it means thatC is already normalized
and C itself, together with a
, is returned. Note that ϖ equals True doesn’t mean that
C is plain, but rather, all possible variants in C are normalized. When ϖ is a variational
value, it means that at least some variant in C is not normalized. In this case, the con-
straint C is broken down into two constraints �C�d.1 and �C�d.2, which are normalized
and the results are packed back using the choice d. When ϖ is False, then, due to how
ϖ is computed, C must be plain. We call byInst to possibly reduce C using instance
declarations.

There are three possible outcomes of byInst. First, byInst returns (ε,
), which
means that C is successfully reduced with no new constraint generated. For example,
byInst(Ord Bool,Q) belongs to this case if Q includes the default instance declarations
in Haskell. Second, byInst returns (C2,
), which means that C is successfully reduced

Improving Type Error Reporting for Type Classes 31

toC2, which is in turn normalized using toHnf. For example, byInst(Ord [α],Q) belongs
to this case. Third, byInst returns (ε,⊥), which means that no rule in Q can be used
to reduce C and the reduction fails. For example, if Q includes Haskell default class
instances, then byInst(Num Bool,Q) belongs to this case. For each case, toHnf′ returns
corresponding values. Since the argument C to byInst is always plain, the definition of
byInst is very similar to that in [21]. We omit its definition here.

The value ϖ for C is computed with the function inHnf. Thus, the results from
different arguments are combined together through the ⊕ operation, which is defined
below. In this section, we use the notation d〈o〉 to denote d〈o1,o2〉 for any object o.

inHnf(G φ) =
⊕

hnf(φ)

True⊕ϖ = True False⊕ϖ =ϖ d〈ϖ〉⊕ϖ3 = d〈ϖ⊕ϖ3〉

The following function hnf(φ) decides if φ is normalized. The notation True ‖ d〈hnf(φ)〉
means that d〈hnf(φ)〉 is simplified to True if both alternatives of d are True and is
unchanged otherwise.

hnf(α) = True hnf(γ) = False hnf(φ1 → φ2) = False hnf(d〈φ〉) = True ‖ d〈hnf(φ)〉

Algorithmic Constraint Entailment. We define the function entail(C1,C2,Q) to
decide whether C2 is entailed by C1. In [21], entail returns a boolean value. However,
here we need a variational boolean value, reflecting that entailment may only hold for
certain variants. For example, entail(A〈Num α,Ord α〉,Ord α,Q) yields A〈False,True〉,
indicating that the entailment relation holds only in A.2.

Since a normalized constraint can not be simplified by instance declarations any-
more, our definition of entail is quite simple: just checking if C2 belongs to the super
classes of C1, as expressed below.

entail(C1,C2,Q) =belong(C2,bySuper(C1,Q))

bySuper(d〈C〉,Q) =d〈bySuper(C,Q)〉
bySuper(C1 ∧C2,Q) =bySuper(C1,Q)∧bySuper(C2,Q)

bySuper(G φ,Q) =G α∧ bySuper(CG,Q) where ∀α.CG ⇐ G α ∈ Q

The definition of bySuper is quite simple. In the third case we find super classes for
constraints like G φ, which can just be simplified to a sequence of type variables. Given
C1 and C2, belong returns True if they are the same and False if they are primitive and
have different class names. We omit the definition of belong here because it is quite
simple. For plain class constraints, a simple equality testing is enough, and for varia-
tional class constraints, the definition recurse into their alternatives. When the second
argument of belong is a ∧ over two constraint operands, belong returns True if the first
argument of belong belongs to any operand.

With entail, we can now define the simplification operation as follows.
simp(C1,C3,Q) simplifies the constraint C1 with the already simplified constraint C3

32 S. Chen and Md. R. Noor

and the axiom Q .

simp(ε,C3,Q) =C3 simp(d〈C〉,C3,Q) = d〈simp(C,C3,Q)〉
simp(C1 ∧C2,C3,Q) = simp(C2,entail(C2 ∧C3,C1,Q)�C1,Q)

When C1 becomes ε, simp terminates and returns C3. For a variational constraint, simp
simplifies its individual alternatives. To simplify the compound constraint C1 ∧C2, we
check to see if we can simplify each ofC1 andC2 by the other. Formally, we first decide
the result of ϖ = entail(C2 ∧C3,C1,Q). If the result is True, then C1 can simply be
dropped. However, the entailment may hold in certain variants only, and we can not
drop the wholeC1 in this case. We handle this situation by replacing each variants inC1

whose ϖ is True with a ε and leaving other variants unchanged. This process is defined
through the operation ϖ�C1. Its definition is quite simple and is omitted here.

Overall, with toHnf and simp, context reduction forC under the axiom Q is defined
as (simp(C1,ε,Q),π), where (C1,π) = toHnf(C,Q).

5 Evaluation

Following the ideas in this paper, we have implemented a prototype of TEC. The proto-
type supports functional dependencies using the idea from [20]. Our prototype is imple-
mented into Helium [17] rather than GHC due to the overhead of implementing it into
the latter. Our implementation generates constraints and solves them. During constraint
generation, a Δ is generated to record location information and choices created. Con-
straint solving will update Δ with concrete type information. Type error messages are
generated from Δ, the typing pattern from constraint solving, and the result type of the
expression, following the method described in Sect. 2.

TEC reuses the heuristics in counter-factual typing [4] for ranking all the error fixes
calculated and introduces two more heuristics. First, we favor fixes whose consequent
types have lower ratios of unification variables. Given a type, the ratio is defined as the
number of unification variables over the number of primitive types. The rationale of
this rule is that less internal information should be leaked to the outside of the ill-typed
expression. Second, we prefer fixes whose source type and target type have closer class
constraints. Two class constraints are closer if they have a similar number of primitive
constraints or share a class hierarchy. The rationale of this rule is to avoid exotic changes
related to type classes.

Error Locating Precision. To evaluate the precision of TEC, we created two bench-
marks. The first is created by taking all examples involving type classes from all the
papers [33,34,39] in the literature (We do not include class directive examples from [17]
since none of TEC, GHC, and SHErrLoc supports them). This benchmark contains
17 programs. The second benchmark is extracted from student programs [36], which
were logged as undergraduate students in an introductory Haskell course were attempt-
ing their homework assignments. All intermediate program versions were logged. We
obtained about 5000 programs in total, filtered out all programs that have type errors
related to type classes, and then randomly chose 60 from them.

Improving Type Error Reporting for Type Classes 33

We next investigate how different tools perform in the presence of type classes. We
consider TEC, GHC 8.10.6, and SHErrLoc. The precisions of these tools for Bench-
marks 1 and 2 are shown in the following table. In both benchmarks, the first several
messages are already correct and later messages (after 2 messages in Benchmark 1 and
3 in Benchmark 2) do not help.

Tool Precision (%) after # of msgs (Bench. 1) Precision (%) (Bench. 2)

1 2 > 2 1 2 3 > 3

TEC 65 88 88 55 72 78 78

SHErrLoc 47 59 59 42 58 63 63

GHC 41 53 53 33 40 40 40

Figure 5 presents the result for Benchmark 1 in more detail. A tool receives a filled
circle if the first two messages from the tool help to locate the real error cause and
an unfilled circle otherwise. Some examples from the paper contain an accompanying
“oracle” stating how to remove the type error. For these examples, we compare reported
error message against the oracles. For other messages, no oracles are given. Since there
are usually many different causes for a type error, a message is regarded as correct if it
points to at least one error cause. If the message is not helpful at all, then it is classified
as incorrect. One such instance is that SHErrLoc says that Example 3 [34] is well-typed
while in fact it is ill-typed, and the message of SHErrLoc is regarded as incorrect.

Both GHC and SHErrLoc are very good at locating type errors when the type anno-
tations do not subsume the real inferred types. Both of them are successful for all the 6
examples of this kind. TEC also performs quite well for this kind. It can suggest a cor-
rect type annotation as well as find fixes in expressions so that the signature becomes
valid. GHC also performs well in locating type errors violating functional dependencies
when involved literals (for example ’1’ and True) have constant types (for example
Char and Bool). However, when the involved literals have constrained types, the mes-
sages are always not helpful (for example the message for insert2). TEC always works
well since it always finds an alternative type for the erroneous expression. SHErrLoc
doesn’t work well for functional dependencies. For other examples, TEC and SHErrLoc
work better than GHC. The Example 6 [33] requires one to report that Integral and
Fractional has no overlapping instances, and none of the evaluated tools are able to
report this.

The following function demonstrates the shortcoming of TEC.

class Collects ce e where insert :: e -> ce -> ce

insert3 :: Collects ce Bool => ce -> ce

insert3 c = insert 1 (insert False c)

The type error is due to the mismatch between the type 1 and the Bool in the type signa-
ture. TEC doesn’t work well because the target type α4 of 1 gives rise to the wanted con-
straint Collects ce α4, which can not be deduced from the given constraint Collects

34 S. Chen and Md. R. Noor

Fig. 5. A comparison of TEC, SHErrLoc and GHC for examples from the literature. Filled and
unfilled circles denote that the first two messages from the corresponding tool are useful and not
useful, respectively.

ce Bool. Moreover, suggesting (Collects ce Bool, Collects ce α4) => ce -> ce

as the type signature is incorrect since this type is ambiguous [39] as α4 doesn’t appear
in ce -> ce. As a result, we can not identify 1 as an error cause. One way to fix this
problem is to unify the wanted constraint with the given constraint if the deduction
fails. However, it’s unclear how to systematically apply this idea and we leave it for
future work. SHErrLoc again reports that insert3 is well-typed. This example demon-
strates that the folklore knowledge [3,25] about the completeness of error debugging by
searching does not hold when the type system extends to type classes. Note, this is not
inconsistent with Theorem 2 because this happens when the condition Q ;Γ;δ �ALT e : τ
of the Theorem does not hold.

Benchmark 2, among 60 programs, contains 13 programs where type errors are due
to missing or extra parentheses. No existing tools are known to handle such errors well.
The programs for which SHErrLoc doesn’t perform well are those that are ill-typed but
SHErrLoc reports that they are well-typed. GHC doesn’t work well for programs where
no type annotations are present: the reported locations are quite far away from the real
error causes. TEC works well for both situations, and achieves a better precision. In this
benchmark, we did not observe any program like insert3 that TEC could not find an
error fix. In the future, we will investigate how often programs like insert3 happen in
practice.

From the evaluation results of these benchmarks, we conclude that TEC is quite
effective in locating the real error causes. We have also investigated the running time of
TEC in detail. However, due to space limitation, we do not elaborate further. Briefly, the
response time of TEC for programs around 100 LOC is about 1.6 s and that for about
300 LOC is 5.7 s. The reason that TEC has a long response time is that it first calculates
all possible fixes (including changing 1 location, 2 locations, and up to all locations)
at once before they are ranked. In the future, we will work on improving the response
time by computing typing results in phases such that fixes that change only one or two
locations will be returned and ranked before computing other fixes. This strategy works
because in fixing type errors users prefer to change fewer locations.

6 Related Work

Approaches Supporting Type Classes. Besides GHC, SHErrLoc [42,43], Chameleon
[33,34,39], and the Top framework [17] also debug type errors involving type class

Improving Type Error Reporting for Type Classes 35

constraints. SHErrLoc is a general method for locating static inconsistencies, including
type errors. SHErrLoc treats many Haskell features, such as type classes, type families,
and type signatures. Given a program, it works by calling GHC to generate typing con-
straints, builds a graph representation from the constraints, and then locates the most
likely error cause using a Bayesian model. Chameleon is an extensible framework that
supports HM and type classes. Given an ill-typed program, it first expresses typing
constraints in constraint handling rules (CHRs) and then finds the minimal unsolvable
constraints and reports the corresponding program source. Chameleon can also explain
why a type error happens while our approach gives concrete messages for removing the
type error. In this sense, they are complementary to each other. Another difference is
that our approach finds all error causes while Chameleon doesn’t.

Top aims to generate high quality error messages. It supports type classes through
overloading of identifiers. A main feature of Top is that it uses type inference direc-
tives [16] and type class directives [15] to customize error messages. Directives allow
certain type errors to be detected earlier. TEC doesn’t support directives but focuses
on how to change expressions to, for example, avoid class constraints, satisfy class
constraints, and make context reduction successful. While TEC generates informative
messages at all error causes, Top does so for several, usually one or two, locations only.
Therefore, these two approaches are again complementary.

Other Approaches. Due to the large body of previous work in error debugging, we are
able to only give a brief discussion. This work is similar to CFT [4] but we deal with type
errors in type class uses while that does not. As type classes are prevalent in Haskell, we
believe that this difference is significant. This work can be viewed as searching for type
error fixes at the type level, and [37] searches error fixes at the expression level. Thus,
while this work can reuse typing processes to scale to large programs, the scalability of
that work is unclear. Also, the error messages from this work contains more information
than that work. [4] discussed the relation between CFT and discriminative sum types
for locating type errors [27]. As the difference between our work and [27] is similar, we
will not discuss that work further in this paper.

It has been a long history of locating the most likely error cause in the research
community. The first approach, developed by [18], is based on maximal flow of the
graph representation of typing constraints. Essentially, it could be understood as major-
ity voting. Numerous approaches based on reordering the unification process have been
developed, including algorithms M [24], G [12], and the symmetrical versions of W
and M [26]. Recent developments include dedicated heuristics [14] and a Bayesian
model [42] for locating the most likely error cause.

Instead of just finding the mostly likely error causes, many error slicing approaches
have been developed [13,31,35], which highlight all program text that contributes to the
type error. The shortcoming of error slicing approaches, as noted in [17], is that they
usually cover too many locations, and give no hint about which location more likely
causes the type error. The approach by [29,30] takes the advantages of approaches
locating most likely error causes and those slicing type errors in that it can find all error
causes and iteratively presents the most likely one. TEC takes this approach one step
further of providing an informative message for each error cause. A very different line
of research explains type errors from various perspectives [1,9,11,32,38,40].

36 S. Chen and Md. R. Noor

7 Conclusions

We have presented TEC, an efficient approach for debugging type errors in type systems
with type classes and its extensions of multi-parameter classes and functional depen-
dencies. For most expressions, TEC finds error causes in all possible combinations of
leaves of the program AST and generates an informative error message for each error
cause. We have evaluated TEC and the result shows that it can locate type errors quite
precisely.

In some rare cases, TEC fails to find complete error fixes when the generalization
of an error fix causes both context reduction failure and ambiguous types due to class
usage. In the future, we will investigate how we can systematically fix this problem
and integrate our solution into TEC. In the future, we also plan to perform a user study
to find out how well TEC helps students in fixing type errors, such as how many type
errors students investigate for fix type errors and whether TEC helps shorten students’
type error debugging time. Finally, we plan to collect users’ feedback for fine tuning
our heuristics for ranking error fixes.

References

1. Beaven, M., Stansifer, R.: Explaining type errors in polymorphic languages. ACM Lett. Pro-
gram. Lang. Syst. 2, 17–30 (1994)

2. Bernstein, K.L., Stark, E.W.: Debugging Type Errors. State University of New York at Stony
Brook, Technical report (1995)

3. Braßel, B.: Typehope: there is hope for your type errors. In: International Workshop on
Implementation of Functional Languages (2004)

4. Chen, S., Erwig, M.: Counter-factual typing for debugging type errors. In: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 583–594 (2014)

5. Chen, S., Erwig, M.: Guided type debugging. In: Codish, M., Sumii, E. (eds.) FLOPS 2014.
LNCS, vol. 8475, pp. 35–51. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07151-0 3

6. Chen, S., Erwig, M., Walkingshaw, E.: An error-tolerant type system for variational lambda
calculus. In: ACM International Conference on Functional Programming, pp. 29–40 (2012)

7. Chen, S., Erwig, M., Walkingshaw, E.: Extending type inference to variational programs.
ACM Trans. Program. Lang. Syst. 36(1), 1:1–1:54 (2014)

8. Chen, S., Noor, R.: Improving Type Error Reporting for Type Classes. Technical report, UL
Lafayette (2022). https://people.cmix.louisiana.edu/schen/ws/techreport/longtec.pdf

9. Chitil, O.: Compositional explanation of types and algorithmic debugging of type errors. In:
ACM International Conference on Functional Programming, pp. 193–204, September 2001

10. Choppella, V.: Unification source-tracking with application to diagnosis of type inference.
Ph.D. thesis, Indiana University (2002)

11. Duggan, D., Bent, F.: Explaining type inference. Sci. Comput. Program. 27, 37–83 (1995)
12. Eo, H., Lee, O., Yi, K.: Proofs of a set of hybrid let-polymorphic type inference algorithms.

New Gener. Comput. 22(1), 1–36 (2004). https://doi.org/10.1007/BF03037279
13. Haack, C., Wells, J.B.: Type error slicing in implicitly typed higher-order languages. In:

Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 284–301. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36575-3 20

14. Hage, J., Heeren, B.: Heuristics for type error discovery and recovery. In: Horváth, Z., Zsók,
V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 199–216. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74130-5 12

https://doi.org/10.1007/978-3-319-07151-0_3
https://doi.org/10.1007/978-3-319-07151-0_3
https://people.cmix.louisiana.edu/schen/ws/techreport/longtec.pdf
https://doi.org/10.1007/BF03037279
https://doi.org/10.1007/3-540-36575-3_20
https://doi.org/10.1007/978-3-540-74130-5_12

Improving Type Error Reporting for Type Classes 37

15. Heeren, B., Hage, J.: Type class directives. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2005. LNCS, vol. 3350, pp. 253–267. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-30557-6 19

16. Heeren, B., Hage, J., Swierstra, S.D.: Scripting the type inference process. In: Proceedings
of the Eighth ACM SIGPLAN International Conference on Functional Programming, ICFP
2003, pp. 3–13. ACM, New York (2003). https://doi.org/10.1145/944705.944707

17. Heeren, B.J.: Top quality type error messages. Ph.D. thesis, Universiteit Utrecht, The Nether-
lands (2005)

18. Johnson, G.F., Walz, J.A.: A maximum-flow approach to anomaly isolation in unification-
based incremental type inference. In: ACM Symposium on Principles of Programming Lan-
guages, pp. 44–57 (1986)

19. Jones, M.P.: A theory of qualified types. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS,
vol. 582, pp. 287–306. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55253-
7 17

20. Jones, M.P.: Simplifying and improving qualified types. In: Proceedings of the Seventh Inter-
national Conference on Functional Programming Languages and Computer Architecture,
FPCA 1995, pp. 160–169. ACM, New York (1995). https://doi.org/10.1145/224164.224198

21. Jones, M.P.: Typing Haskell in Haskell. In: Haskell Workshop (1999)
22. Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP 2000.

LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
46425-5 15

23. Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algorithm. ACM
Trans. Program. Lang. Syst. 20(4), 707–723 (1998)

24. Lee, O., Yi, K.: A generalized let-polymorphic type inference algorithm. Technical report,
Technical Memorandum ROPAS-2000-5, Research on Program Analysis System, Korea
Advanced Institute of Science and Technology (2000)

25. Lerner, B., Flower, M., Grossman, D., Chambers, C.: Searching for type-error messages. In:
ACM International Conference on Programming Language Design and Implementation, pp.
425–434 (2007)

26. McAdam, B.J.: Repairing type errors in functional programs. Ph.D. thesis, University of
Edinburgh. College of Science and Engineering. School of Informatics (2002)

27. Neubauer, M., Thiemann, P.: Discriminative sum types locate the source of type errors. In:
ACM International Conference on Functional Programming, pp. 15–26 (2003)

28. Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types. Theor. Pract.
Object Syst. 5(1), 35–55 (1999)

29. Pavlinovic, Z., King, T., Wies, T.: Finding minimum type error sources. In: ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2014, pp. 525–542. ACM, New York (2014). https://doi.org/10.1145/2660193.
2660230

30. Pavlinovic, Z., King, T., Wies, T.: Practical SMT-based type error localization. In: ACM
SIGPLAN International Conference on Functional Programming, pp. 412–423 (2015)

31. Schilling, Thomas: Constraint-free type error slicing. In: Peña, R., Page, R. (eds.) TFP 2011.
LNCS, vol. 7193, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32037-8 1

32. Seidel, E.L., Jhala, R., Weimer, W.: Dynamic witnesses for static type errors (or, ill-typed
programs usually go wrong). In: Proceedings of the 21st ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2016, pp. 228–242. ACM, New York (2016).
https://doi.org/10.1145/2951913.2951915

33. Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive type debugging in Haskell. In: ACM
SIGPLAN Workshop on Haskell, pp. 72–83 (2003)

https://doi.org/10.1007/978-3-540-30557-6_19
https://doi.org/10.1007/978-3-540-30557-6_19
https://doi.org/10.1145/944705.944707
https://doi.org/10.1007/3-540-55253-7_17
https://doi.org/10.1007/3-540-55253-7_17
https://doi.org/10.1145/224164.224198
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1007/978-3-642-32037-8_1
https://doi.org/10.1145/2951913.2951915

38 S. Chen and Md. R. Noor

34. Stuckey, P.J., Sulzmann, M., Wazny, J.: Improving type error diagnosis. In: ACM SIGPLAN
Workshop on Haskell, pp. 80–91 (2004)

35. Tip, F., Dinesh, T.B.: A slicing-based approach for locating type errors. ACM Trans. Softw.
Eng. Methodol. 10(1), 5–55 (2001)

36. Tirronen, V., Uusi-Mäkelä, S., Isomöttönen, V.: Understanding beginners’ mistakes with
Haskell. J. Funct. Program. 25, e11 (2015). https://doi.org/10.1017/S0956796815000179

37. Tsushima, K., Chitil, O., Sharrad, J.: Type debugging with counter-factual type error mes-
sages using an existing type checker. In: IFL 2019: Proceedings of the 31st Symposium on
Implementation and Application of Functional Languages, ICPS. ACM, New York (2020).
https://kar.kent.ac.uk/81976/

38. Wand, M.: Finding the source of type errors. In: ACM Symposium on Principles of Program-
ming Languages, pp. 38–43 (1986)

39. Wazny, J.R.: Type inference and type error diagnosis for Hindley/Milner with extensions.
Ph.D. thesis, The University of Melbourne (2006)

40. Yang, J.: Explaining type errors by finding the source of a type conflict. In: Trends in Func-
tional Programming, pp. 58–66. Intellect Books (2000)

41. Yang, J.: Improving Polymorphic Type Explanations. Ph.D. thesis, Heriot-Watt University
(2001)

42. Zhang, D., Myers, A.C.: Toward general diagnosis of static errors. In: ACM Symposium on
Principles of Programming Languages, pp. 569–581 (2014)

43. Zhang, D., Myers, A.C., Vytiniotis, D., Peyton-Jones, S.: Diagnosing type errors with class.
In: ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 12–21 (2015)

https://doi.org/10.1017/S0956796815000179
https://kar.kent.ac.uk/81976/

Asynchronous Unfold/Fold
Transformation for Fixpoint Logic

Mahmudul Faisal Al Ameen(B) , Naoki Kobayashi , and Ryosuke Sato

The University of Tokyo, Tokyo, Japan

faisal@kb.is.s.u-tokyo.ac.jp

Abstract. Various program verification problems for functional pro-
grams can be reduced to the validity checking problem for formulas
of a fixpoint logic. Recently, Kobayashi et al. have shown that the
unfold/fold transformation originally developed for logic programming
can be extended and applied to prove the validity of fixpoint logic for-
mulas. In the present paper, we refine their unfold/fold transformation,
so that each predicate can be unfolded a different number of times in an
asynchronous manner. Inspired by the work of Lee et al. on size change
termination, we use a variant of size change graphs to find an appro-
priate number of unfoldings of each predicate. We have implemented
an unfold/fold transformation tool based on the proposed method, and
evaluated its effectiveness.

Keywords: Unfold/fold transformation · Fixed point logic · Size
change graphs

1 Introduction

Unfold and fold transformation was originally proposed for logic program-
ming [12], and recently generalized and applied for CHC solving [3] and fixpoint
logics [5] in the context of program verification. To understand the idea, consider
the following definitions of predicates Even and Odd:

Even(x) =μ x = 0 ∨ Odd(x − 1);
Odd(y) =μ Even(y − 1).

Here, Even and Odd are defined as the least predicates that satisfy the equa-
tions (in other words, Even and Odd are inductively defined by the equations).
Suppose we wish to prove P (n) := Even(n) ∨ Odd(n) holds for every n ≥ 0. To
this end, we transform P (n) as follows.

P (n) ≡ Even(n) ∨ Odd(n)
≡ (n = 0 ∨ Odd(n − 1)) ∨ Even(n − 1) (“unfold” Even and Odd)
≡ n = 0 ∨ (Even(n − 1) ∨ Odd(n − 1))
≡ n = 0 ∨ P (n − 1) (“fold” Even(n − 1) ∨ Odd(n − 1))

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 39–56, 2022.
https://doi.org/10.1007/978-3-030-99461-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_3&domain=pdf
http://orcid.org/0000-0002-2388-4908
http://orcid.org/0000-0002-0537-0604
http://orcid.org/0000-0001-8679-2747
https://doi.org/10.1007/978-3-030-99461-7_3

40 M. Faisal Al Ameen et al.

Based on the transformation above, we obtain the following new definition of P :

P (n) =μ n = 0 ∨ P (n − 1).

We can then automatically prove that P (n) holds for every n ≥ 0, for example,
by using the tool Mu2CHC for fixpoint arithmetic [6].

The unfold/fold transformations like above require heuristics in general, to
decide which predicate should be unfolded how many times, and how the result-
ing formulas should be folded. For example, suppose that we wish to prove the
validity of Q(n) := Div6(n) ⇒ Even(n), where Even, and Odd are as defined
above, and Div6 is defined by:

Div6(z) =μ z = 0 ∨ Div6(z − 6).

Then, we need to transform Q(n) in a specific manner, as follows.

Q(n) ≡ Div6(n) ⇒ Even(n)
≡ (n = 0 ∨ Div6(n − 6)) ⇒ (n = 0 ∨ n = 2 ∨ n = 4 ∨ Even(n − 6))

(unfold Div6 once and Even six times)
≡ (n = 0 ⇒ (n = 0 ∨ n = 2 ∨ n = 4 ∨ Even(n − 6)))

∧(Div6(n − 6) ⇒ (n = 0 ∨ n = 2 ∨ n = 4 ∨ Even(n − 6)))
(by A ∨ B ⇒ C ≡ (A ⇒ C) ∧ (B ⇒ C))

≡ Div6(n − 6) ⇒ (n = 0 ∨ n = 2 ∨ n = 4 ∨ Even(n − 6))
≡ n = 0 ∨ n = 2 ∨ n = 4 ∨ (Div6(n − 6) ⇒ Even(n − 6))

(by A ⇒ (B ∨ C) ≡ B ∨ (A ⇒ C))
≡ n = 0 ∨ x = 2 ∨ n = 4 ∨ Q(n − 6),

and get the new definition:

Q(n) =ν n = 0 ∨ n = 2 ∨ n = 4 ∨ Q(n − 6),

where =ν indicates that Q(n) is the greatest predicate that satisfies the equation,
which is true.1 As shown above, in general, we need to unfold predicates in an
asynchronous manner, by appropriately choosing the number of times each pred-
icate is unfolded. Besides in the context of unfold/fold transformations, similar
issues would also arise in tupling transformations (used for optimizations [4] and
relational property verification of functional programs [1]), inductive methods
for CHC solving [13], and cyclic proofs [2].

To address the issue above, this paper proposes a systematic method to
determine how predicates should be unfolded. Inspired by size change termina-
tion graphs [8], from recursive definitions of predicates, we construct a graph

1 Actually, because of the negative occurrences of Div6, we have to check some sanity
conditions: see [5] for the sanity condition and the reason why =μ can be replaced
with =ν .

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 41

that represents how the arguments of predicates will change by unfoldings. For
example, for the three predicates above, we prepare the following graphs:

The graphs represent that Div6 is unfolded to itself and Even and Odd are
unfolded to each other. So we need two unfoldings (once from Even to Odd and,
and once more from Odd to Even) to unfold Even to obtain Even again. The
arguments of Div6 and Even will decrease by 6 and 2 respectively while they
are unfolded to themselves. Based on this information, we can determine the
numbers of unfoldings by solving the equation:

6i1 = 2i2,

where i1 and i2 are the numbers of times Div6 and combinedly Even and Odd
should be unfolded. We formalize the idea above in a general setting, where
predicates may have more than one argument and are defined in a mutually
recursive manner.

The contributions of this paper are:

1. the formalization of the method sketched above for asynchronous unfold/fold
transformations;

2. an implementation of the proposed method for improving the validity checker
for a fixpoint logic [5,6]; and

3. evaluation of the proposed method through experiments.

The rest of this paper is structured as follows. Section 2 reviews MuArith [5,6],
a first-order fixpoint logic with integer arithmetic, which is used as the target
of our unfold/fold transformation. Section 3 describes our procedure for asyn-
chronous unfold/fold transformation. Section 4 reports an implementation and
experimental results. Section 5 discusses related work, and Sect. 6 concludes the
paper.

2 Preliminaries: MuArith and Unfold/Fold
Transformations

In this section, we review the first-order fixpoint logic with integer arithmetic
MuArith [5,6], and set out the goal of unfold/fold transformation.

Definition 1 (MuArith formulas). The set of simple formulas, ranged over by
ϕ, is given by:

t (arithmetic terms) :: = c | x | t1 + t2 | t1 − t2 | c × t
ϕ (simple formulas) :: = t1 ≤ t2 | X(k)(t1, . . . , tk) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2.

42 M. Faisal Al Ameen et al.

Here, c ranges over the set Z of integers, x represents an integer variable, and
X(k) represents a predicate variable of arity k; we often omit the superscript k
and just write X for a predicate variable. We write FV(ϕ) for the set of integer
variables occurring in ϕ. A MuArith formula is a pair (D,ϕ), where ϕ is a simple
formula, and D is a finite, possibly empty sequence of predicate definitions of the
form X

(�1)
1 (y1,1, . . . , y1,�1) =σ1 ϕ1; · · · ;X(�m)

m (ym,1, . . . , ym,�m
) =σm

ϕm, where
σi ∈ {μ, ν} and FV(ϕi) ⊆ {yi,1, . . . , yi,�i

} for every i ∈ {1, . . . , m}. We require
that the predicate variables X

(�1)
1 , . . . , X

(�m)
m are distinct from each other.

For the sake of simplicity, we have only t1 ≤ t2 as primitive arithmetic
constraints; other arithmetic constraints can be expressed as derived forms; for
example, t1 = t2 can be expressed as t1 ≤ t2∧t2 ≤ t1. We use them as if they were
primitive constraints below. Intuitively, a predicate definition X(x1, . . . , xk) =μ

ϕ (X(x1, . . . , xk) =ν ϕ, resp.) defines X as the least (greatest, resp.) predicate
such that X(x1, . . . , xk) ≡ ϕ. For example, X(y) =μ y = 0 ∨ X(y − 1) defines
X as the least predicate such that X(y) ≡ y = 0 ∨ X(y − 1) ≡ y = 0 ∨ y − 1 =
0 ∨ X(y − 2) ≡ y = 0 ∨ y − 1 = 0 ∨ y − 2 = 0 ∨ · · ·, i.e., the predicate λy.y ≥ 0.
In contrast, X(y) =ν y = 0 ∨ X(y − 1) is equivalent to the predicate λy.true
(where true may be considered an abbreviation of 0 ≤ 0).

A universal quantifier ∀x.ϕ can be represented as X where (X(x) =ν ϕ ∧
X(x−1)∧X(x+1)) 0. Similarly, an existential quantifier ∃x.ϕ can be represented
as X where (X(x) =μ ϕ ∨ X(x − 1) ∨ X(x + 1)) 0; below we also treat them
as if they were primitives. As for the arguments of predicates, we sometimes
consider terms representing recursive data structures such as lists, in addition
to arithmetic terms.

Example 1. The formula Div6(x) ⇒ Even(x) given in Sect. 1 can be represented
as the MuArith formula (D,Div6(x) ∨ Even(x)), where D is:

Even(x) =μ x = 0 ∨ Odd(x − 1);
Odd(y) =μ Even(y − 1);
Div6(z) =ν z �= 0 ∧ Div6(z − 6).

Here, Div6 corresponds to the negation of Div6. �
The order of the definitions of predicates does not matter in the example above,
though it does matter in general [6]. We omit the (rather complex) formal seman-
tics of MuArith formulas in the paper, as it is unnecessary for understanding the
rest of this paper; interested readers are referred to [6].

We introduce some notations and terminologies to define the goal of
unfold/fold transformation. A (formula) context, written C, is an expression
obtained from a simple formula by replacing an atomic formula X(k)(t1, . . . , tk)
with a hole []. We write C[ϕ] for the simple formula obtained by replacing
the hole in C with ϕ. For example, if C = Div6(x) ∨ [], then C[Even(x)] is
Div6(x)∨Even(x). We write [t1/x1, . . . , tk/xk]ϕ for the simple formula obtained
from ϕ by replacing each occurrence of xi with ti. If the predicate X is defined
by X(y1, . . . , yk) =σ ϕ, then we write C[X(t1, . . . , tk)] �X C[[t1/y1, . . . , tk/yk]ϕ],

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 43

and say “C[[t1/y1, . . . , tk/yk]ϕ] is obtained from C[X(t1, . . . , tk)] by unfolding
X” and also “C[X(t1, . . . , tk)] is obtained from C[[t1/y1, . . . , tk/yk]ϕ] by folding
X”. We write �∗

X1...X�
for the composition of �X1 , . . . , �X�

. We often omit the
subscript and just write � and �∗.

The goal of unfold/fold transformation considered in this paper is, given
a MuArith formula (D,ϕ) with FV(ϕ) = {x1, . . . , xk}, to find an unfold-
ing sequence ϕ �∗ ϕ′ such that ϕ′ is logically equivalent to a formula of the
form C[[t1/x1, . . . , tk/xk]ϕ] for some context C and terms t1, . . . , tk. We can
then replace the formula ϕ with X(x1, . . . , xk), where X is a new predicate
variable defined by X(x1, . . . , xk) =σ C[X(t1, . . . , tk)]. The replacement of ϕ
with X(x1, . . . , xk) typically makes it easier to prove the validity of a for-
mula containing ϕ. The soundness of such replacement depends on the shape
of C and whether σ is μ or ν; see [5] for soundness criteria. In the present
paper, we focus on the issue of how to find an appropriate unfolding sequence
ϕ �∗ ϕ′ ≡ C[[t1/x1, . . . , tk/xk]ϕ], ignoring the soundness criteria.

Example 2. Recall Example 1. The (simple) formula Div6(x) ∨ Even(x) can be
unfolded as follows.

Div6(x) ∨ Even(x)

�Div6 (x �= 0 ∧ Div6(x − 6)) ∨ Even(x)

�Even (x �= 0 ∧ Div6(x − 6)) ∨ x = 0 ∨ Odd(x − 1)

�Odd (x �= 0 ∧ Div6(x − 6)) ∨ x = 0 ∨ Even(x − 2)

�∗
(EvenOdd)2 (x �= 0 ∧ Div6(x − 6)) ∨ x = 0 ∨ x − 2 = 0 ∨ x − 4 = 0 ∨ Even(x − 6)

≡ x = 0 ∨ x − 2 = 0 ∨ x − 4 = 0 ∨ Div6(x − 6) ∨ Even(x − 6)

Thus, we can replace Div6(x) ∨ Even(x) with X(x), where X is defined by:
X(x) =ν x = 0 ∨ x = 2 ∨ x = 4 ∨ X(x − 6). The resulting formula X(x) can be
automatically proved to be valid by the existing tool Mu2CHC [6]. In contrast,
Mu2CHC fails to prove the validity of the original formula Div6(x) ∨ Even(x),
although the original formula is equivalent to X(x). �

3 Finding Unfolding Sequences via Size Change
Abstraction

We now discuss our procedure for finding an appropriate unfolding sequence (like
�Div6(EvenOdd)3 in Example 2) to achieve the desired unfold/fold transformation.

We make the following simplifying assumptions.

1. The target simple formula to be unfolded is either a conjunction
∧

i Xi(t̃i) or
a disjunction

∨
i Xi(t̃i) (where t̃ denotes a sequence of terms t1, . . . , tk).

2. The righthand side of the definition of each predicate contains exactly one
occurrence of a predicate variable. (Thus, X(y) =μ y ≤ 0∨X(y−1) is allowed
but not X(y) =μ y ≤ 0 ∨ X(y − 1) ∨ X(y + 1).)

44 M. Faisal Al Ameen et al.

The first assumption is not a fundamental restriction: for nested formulas, we can
apply unfold/fold transformation in a hierarchical manner as in [5]. For example,
for X(x) ∧ (Y (x) ∨ Z(x)), we can first apply the transformation to Y (x) ∨ Z(x)
and replace it with W (x), and then apply the transformation to X(x) ∧ W (x).
We discuss how to relax the second restriction later.

Our procedure for finding an appropriate unfolding sequence consists of the
following steps.

Step 1: Abstract the recursive definitions of predicates to a size change graph,
which represents how the arguments of each predicate are changed by unfold-
ing the predicate.

Step 2: Compute finite summary information on possible unfolding sequences
and their effects on the arguments of predicates.

Step 3: Compute candidates of appropriate unfolding sequences, based on the
summary information and the target formula.

Step 4: Perform the actual unfolding transformations according to one of the
candidate unfolding sequences; if it fails (i.e., if the formula obtained by the
unfolding sequence cannot be matched with the original formula), try other
candidate unfolding sequences.

To clarify the role of each step, let us explain how our procedure proceeds for
the example of Div6(x) ∨ Even(x) in Example 2.

Step 1: We prepare the graph in Sect. 1 (with Div6 replaced by Div6).
Step 2: Based on the graph, we compute summary information like:

{(Div6
n
, [z−6n→ z]), ((Even · Odd)n, [x−2n→ x]), ((Even · Odd)nEven, [x−2n−1→ y]),

((Odd · Even)n, [y−2n→ y]), ((Odd · Even)nOdd, [y−2n−1→ x])}.

(This notation of the summary information is informal; the actual formal
notation will be introduced.) The first element (Div6

n
, [z −6n→ z]) means that

by unfolding Div6 n times (where n is a parameter), the argument z of Div6
will be decreased by 6n. The second element ((Even ·Odd)n, [x −2n→ x]) means
that by unfolding Even according to the sequence (Even·Odd)n, the argument
x of Even will be decreased by 2n.

Step 3: Since the target formula Div6(x) ∨ Even(x) consists of the predicates
Div6 and Even, we know that appropriate unfolding sequences should be the
combination of Div6

m
and (Even · Odd)n for some m,n (where m + n > 0).

According to the summary information, the resulting formula is (equivalent
to a formula) of the form C[Div6(x − 6m) ∨ Even(x − 2n)]. To match it with
C[[t/x](Div6(x) ∨ Even(x))] for some t, it must be the case that 3m = n. By
choosing the least such m,n, we obtain m = 1 and n = 3. Thus, we obtain
Div6 · (Even · Odd)3 as a candidate unfolding sequence.

Step 4: We apply the unfold transformations according to the candidate
sequence Div6 · (Even · Odd)3, and successfully obtain X(x) where X(x) =ν

x = 0 ∨ x = 2 ∨ x = 4 ∨ X(x − 6), as discussed in Example 2.

In the rest of this section, we discuss each step in more detail.

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 45

3.1 Step 1: Size Change Abstraction

Given a sequence D of predicate definitions, we construct a graph called a size
change graph to represent information about how (the sizes of) arguments will
change by unfolding of each predicate. For a predicate variable X, we write
ArgsD(X) for the set of formal parameters; we often omit D. For example, for
Example 2, Args(Even) = {x}, Args(Odd) = {y}, and Args(Div6) = {z}.

Definition 2. Let D be a (finite) sequence of predicate definitions, and V be
the set of predicate variables defined in D. A size change graph for D is a
labeled graph (V, E) where E is a set of labeled edges of the form (Xi, g,Xj) and
g ⊆ Args(Xi) × Z × Args(Xj).2 We require that for each y ∈ Args(Xj), the
label g contains at most one element of the form (x, n, y). A size change graph
G = (V, E) is a sound abstraction of D, if whenever (Xi, g,Xj) ∈ E, (i) the
definition of Xi is of the form Xi(x1, . . . , xk) = C[Xj(t1, . . . , t�)], and (ii) for
each (xi, n, yj) ∈ g (where yj is the j-th formal parameter of Xj), tj = xi + n.

As indicated by the soundness criteria in the above definition, (Xi, g,Xj) ∈
E means that Xi(x1, . . . , xk) can be unfolded to a formula of the form
Xj(t1, . . . , t�), and g expresses information about how arguments flow from
x1, . . . , xk to t1, . . . , t�.

Example 3. Recall the definitions of Even,Odd, and Div6 in Example 2. The
(sound) size change graph for them consists of the following edges.

{(Even, {(x,−1, y)},Odd), (Odd, {(y,−1, x)},Even), (Div6, {(z,−6, z)},Div6)}.

�
Example 4. Let us consider the following definition.

Mult(x, y, z) =μ (x = 0 ∧ z = 0) ∨ (x > 0 ∧ Mult(y, x − 1, z − y)).

The size change graph for it is ({Mult}, {(Mult, {(x,−1, y), (y, 0, x)},Mult)}).
The edge {(x,−1, y), (y, 0, x)} indicates that the first argument x is decremented
by 1 and flows to the second argument, and the second argument y flows to
the first argument. The label does not contain z, as the change of the third
argument is not a constant; the size change graph expresses only information
about arguments that change by a constant. �

The notion of size change graph is also applicable to predicates over data
structures, by considering the change of the size of each argument. Thus, the
method for calculating candidate unfolding sequences discussed in the next sub-
section can be applied also to predicates over data structures, although we focus
on predicates over integers in the paper.

2 In the original paper on size change termination [8], each label is called a size change
graph; here we call the whole graph a size change graph.

46 M. Faisal Al Ameen et al.

Example 5. Consider the following definition of the predicate Shuffle on lists.

Shuffle(x, y, z) =μ (x = [] ∧ y = z) ∨ (hd(x) = hd(z) ∧ Shuffle(y, tl(x), tl(z)))

By abstracting lists to their lengths, we obtain the following size change graph:
({Shuffle}, {(Shuffle, {(x,−1, y), (y, 0, x), (z,−1, z)},Shuffle)}). �

In the rest of this section, we impose a further restriction that each predicate
variable X has exactly one outgoing edge (of the form (X, g, Y)); this restriction
reflects the assumption that the righthand side of the definition of a predicate
contains exactly one occurrence of a predicate variable.

3.2 Step 2: Computing Summary of Unfolding Sequences

The goal of this step is to construct summary information on all the possible
unfolding sequences for each predicate variable.

For an edge e = (Xi, g,Xj) of a size change graph, we write src(e)
and dst(e) for Xi and Xj respectively. We call a sequence e1 · · · em of
edges of a size change graph a path from src(e1) to dst(em) if dst(ei) =
src(ei+1) for every i ∈ {1, . . . , m − 1}. Each path e1 · · · em from X to Y
expresses information about the effect of the unfolding sequence �∗

src(e1)···src(em)

on the change of predicate arguments. By the assumption that each node
of a size change graph has exactly one outgoing edge, the set of all the
paths from X to Y can be expressed as π1π

∗
2 , where π1 is a path from

X to Y , and π2 is a path from Y to Y . For instance, the set of all the
paths from Even to Odd in the graph given in Example 3 is expressed as
(Even, {(x,−1, y)},Odd)

(
(Odd, {(y,−1, x)},Even)(Even, {(x,−1, y)},Odd)

)∗.
To compress the information expressed by each path, we define the compo-

sition of edges as follows.

Definition 3. Let e1 = (X, g1, Y) and e2 = (Y, g2, Z) be edges of a size change
graph. The composition of e1 and e2, written e1 ◦ e2, is (X, g, Z), where g =
{(x, n1 + n2, z) | (x, n1, y) ∈ g1, (y, n2, z) ∈ g2}. Note that e1 ◦ e2 is undefined if
dst(e1) �= src(e2). We write idX for (X, {(x, 0, x) | x ∈ Args(X)},X). For an
edge e = (X, g,X), we define e◦n by e◦0 = idX and e◦n = e◦(n−1) ◦ e.

By this definition, ◦ is associative. The effect of each path e1 · · · em can be
computed by the composition e1 ◦ · · · ◦ em. For instance, the effect of the path:

(Even, {(x,−1, y)},Odd)
(
(Odd, {(y,−1, x)},Even)(Even, {(x,−1, y)},Odd)

)3

is

(Even,{(x,−1,y)},Odd) ◦ (
(Odd,{(y,−1,x)},Even) ◦ (Even,{(x,−1,y)},Odd)

)◦3

=(Even,{(x,−1,y)},Odd) ◦ (Odd,{(y,−2,y)},Odd)◦3

=(Even,{(x,−7,y)},Odd),

which implies that Even(x) will be unfolded to a formula of the form C[Odd(x−
7)]. For a path π = e1 · · · em, we also write π◦ for e1 ◦ · · · ◦ em (π◦ = idX if
π = ε, where X depends on the context) and call it a summary edge.

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 47

The goal of the current step is to obtain a finite representation of information
about the (infinite) set of paths π1π

∗
2 . Since π1 and π2 are finite paths, they

can be replaced by the summary edges π◦
1 and π◦

2 . Thus, the goal is reduced
to the issue of how to represent the summary information for (π◦

2)
∗. To that

end, the lemma given below is a crucial lemma. We write e1 ≈ e2 if they are
identical except integer labels, i.e., if (i) e1 = (X, g1, Y), (ii) e2 = (X, g2, Y)
and (iii) (x, n, y) ∈ g1 if and only if (x,m, y) ∈ g2 for some m. For example,
(X, {(x1, 1, y2), (x2, 2, y1)}, Y) ≈ (X, {(x1,−1, y2), (x2, 3, y1)}, Y). When e1 ≈
e2, we define e1+e2, e1−e2, and me as the pointwise extension of the operations
on integer labels, i.e.,

(X, g1, Y) + (X, g2, Y) = (X, {(x, n1 + n2, y) | (x, n1, y) ∈ g1, (x, n2, y) ∈ g2}, Y)
(X, g1, Y) − (X, g2, Y) = (X, {(x, n1 − n2, y) | (x, n1, y) ∈ g1, (x, n2, y) ∈ g2}, Y)
m(X, g, Y) = (X, {(x,mn, y) | (x, n, y) ∈ g}, Y).

Lemma 1. Let e = (X, g,X) be an edge of a size change graph. Then, there
exists k and 	 (where k ≥ 0 and 	 > 0) that satisfy the following conditions.

1. e◦k ≈ e◦(k+�).
2. e◦(k+m�) = e◦k + m(e◦(k+�) − e◦k) for every m ≥ 0.

Proof. Since Args(X) is finite, there are only finitely many (summary) edges
of the form (X, g,X) up to ≈. Thus, by the pigeon hole principle, there exist
k ≥ 0 and 	 > 0 such that e◦k ≈ e◦(k+�). Since the relation ≈ is closed under
the composition ◦, we have e◦m ◦ e◦k ≈ e◦m ◦ e◦(k+�) for every m, which implies
e◦k ≈ e◦(k+m�) for any m ≥ 0. Suppose (x, n, y) ∈ ge◦k and (x, n′, y) ∈ ge◦(k+�) .
(Here, for an edge e = (X, g, Y), we write ge for g.) Since e◦(k+�) = e◦� ◦ e◦k,
it must be the case that (x, n′ − n, x) ∈ ge◦� (recall that for each variable x,
there exists at most one incoming edge of the form (x′,m, x) ∈ g). Therefore, we
have (x, n + m(n′ − n), y) ∈ ge◦(k+m�) for every m ≥ 0, which implies e◦(k+m�) =
e◦k + m(e◦(k+�) − e◦k). �
Example 6. Let e = (X, g,X) where g = {(x, 1, y), (y, 2, x), (y,−1, z)}. Then the
lemma holds for k = 1 and 	 = 2. In fact,

e◦3 = (X, {(x, 4, y), (y, 5, x), (y, 2, z)},X) ≈ e,

and

e◦(1+2m) = (X, {(x, 1 + 3m, y), (y, 2 + 3m,x), (y,−1 + 3m, z)}) = e + m(e◦3 − e).

�
Based on the discussions above, we obtain the following procedure for com-

puting a finite representation of the summary of unfolding sequences from X
to Y .

1. Represent the set of paths from X to Y in the form π1π
∗
2 .

2. For e = π◦
2 , obtain the least k and 	 that satisfy the conditions of Lemma 1.

48 M. Faisal Al Ameen et al.

3. Output the following set as the summary (where m is treated as a variable).

{(src(π1), π◦
1), . . . , (src(π1)src(π2)k−1, π◦

1 ◦ e◦(k−1))}
∪ {(src(π1)src(π2)k+i+m�, π◦

1 ◦ (e◦(k+i) + m(e◦(k+�) − e◦k)))|0≤i≤	 − 1}.

Here, for a path π = e1 · · · en, src(π) is defined as src(e1) · · · src(en). The
first component of each element of the summary represents an unfolding
sequence, and the second component represents its effect.

Example 7. Recall Example 3. For the set of paths from Even to Even, π1 =
ε, π2 = (Even, {(x,−1, y)},Odd)(Odd, {(y,−1, x)},Even), k = 0 and 	 = 1.
Therefore, the summary information for all the possible unfolding sequences
from Even to Even is: {((Even · Odd)m, (Even, {(x,−2m,x)},Even)

)}. �

3.3 Step 3: Finding Candidate Unfolding Sequences

Now, we have the summary information of all pairs of predicates from the previ-
ous step. We denote summary information from X to Y by sX,Y . We also have
a target formula to unfold for folding. Our goal is to compute a set of candidate
unfolding sequences in this step by (i) first enumerating the set of all unfolding
sequences that unfold the target formula into a formula that contains the same
set of predicate variables as the target, and (ii) then by filtering the sequences
that gives a foldable formula w.r.t the size change graphs. We call the former
sequences pre-candidate unfolding sequences and the later sequences candidate
unfolding sequences.

Let S = 〈(π1, (X1, w1, Y1)), . . . , (πn, (Xn, wn, Yn))〉 be a tuple of summaries.
We define Path(S) to be 〈π1, . . . , πn〉. For a path πi without Kleene closure, we
write |πi| for the length of πi.

Definition 4. Let X1, . . . , Xn be the sequence of predicate variables occurring
(in this order from left to right) in the target formula to be unfolded. A tuple
S = 〈(π1, (X1, w1, Y1)), . . . , (πn, (Xn, wn, Yn))〉 of summaries is called a pre-
candidate unfolding sequence if {X1, . . . , Xn} = {Y1, . . . , Yn} (as a multiset).

A pre-candidate unfolding sequence gives a sequence of unfoldings by which
the final unfolded formula contains enough predicate variables to match the
target formula.

Example 8. Recall the target formula Div6(x) ∨ Even(x) and definitions of the
predicates in Example 2. Let

sEven,Even =
(
(Even · Odd)m1 , (Even, {(x,−2m1, x)},Even)

)

sDiv6,Div6 =
(
(Div6)m2 , (Div6, {(x,−6m2, x)},Div6)

)
.

Then, 〈sDiv6,Div6, sEven,Even〉 is a pre-candidate unfolding sequence. �

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 49

Example 9. Let the target formula be Odd(x) ∨ Even(x) for the definitions of
the predicates in Example 2. Recall sEven,Even in Example 8. Moreover, we have
the following summaries:

sOdd,Odd =
(
(Odd · Even)m3 , (Odd, {(x,−2m3, x)},Odd)

)

sEven,Odd =
(
Even(Odd · Even)m4 , (Even, {(x,−2m4 − 1, x)},Odd)

)

sOdd,Even =
(
Odd(Even · Odd)m5 , (Odd, {(x,−2m5 − 1, x)},Even)

)

Then, both S1 = 〈sEven,Even, sOdd,Odd〉 and S2 = 〈sEven,Odd, sOdd,Even〉 are pre-
candidate unfolding sequences for the given target formula. �

From a pre-candidate unfolding sequence, we construct constraints on param-
eters m1,m2, . . . for the formula obtained by the unfolding sequence to be folded.
By solving the constraints, we obtain a candidate unfolding sequence.

Definition 5. Let S = 〈(π1,1π
m1
2,1 , (X1, g1, Y1)), . . . , (π1,nπmn

2,n , (Xn, gn, Yn))〉 be
a pre-candidate unfolding sequence where

gi = {(xi,1, li,1 + miwi,1, yi,1), . . . , ((xi,ki
, li,ki

+ miwi,ki
, yi,ki

))}

for i = 1, . . . , n. Let ϕ ≡ X1(t1,1, . . . , t1,k1) ∨ · · · ∨ Xn(tn,1, . . . , tn,kn
) be the

target formula ϕ.3 Suppose FV(ϕ) = {ỹ} and ρ is a permutation over {1, . . . , n}
such that Yρ(i) = Xi for each i. We call [v1/m1,...,vn/mn]Path(S) a candidate
unfolding sequence if {m1 �→ v1, . . . ,mn �→ vn} satisfies the constraint:

n∑

i=1

(|π1,i| + |π2,i| ∗ mi) > 0

∧∃f̃(∀ỹ(
n∧

i=1

ki∧

j=1

∀1 ≤ i ≤ n([f̃(ỹ)/ỹ]ti,j = tρ(i),j + lρ(i),j + mρ(i)wρ(i),j))).

The first part of the constraint
∑n

i=1(|π1,i| + |π2,i| ∗ mi) > 0 ensures that
at least one unfolding must take place. The second part describes a necessary
condition for the target formula ϕ ≡ X1(t̃1) ∨ · · · ∨ Xn(t̃n) to be unfolded to a
formula of the form C[[f̃(ỹ)/ỹ]ϕ].

To solve the constraints above, we restrict f̃ = f1, . . . , fk to be linear
functions over ỹ in the form ci,0 + ci,1y1 + Suppose ti,j is in the form
c′
i,j,0 + c′

i,j,1y1 + Then the part ∀ỹ([f̃(ỹ)/ỹ]ti,j = tρ(i),j + lρ(i),j +mρ(i)wρ(i),j)
can be rewritten to ∀ỹ(c′

i,j,0+ci,j,0c
′
i,j,1+ci,j,1c

′
i,j,1y1+. . . = cρ(i),j,0+cρ(i),j,1y1+

. . .+ lρ(i),j +mρ(i)wρ(i),j), so that we can remove the universal quantifiers ∀ỹ by
comparing the coefficients of y1, . . . , yk on both sides of the equation. Thus, the
whole constraint becomes existentially quantified formulas on linear arithmetic,
which can be solved by an SMT solver. By solving the resulting constraint, we
get a candidate unfolding sequence.

3 Similarly for the case ϕ ≡ X1(t1,1, . . . , t1,k1) ∧ · · · ∧ Xn(tn,1, . . . , tn,kn).

50 M. Faisal Al Ameen et al.

A candidate unfolding sequence 〈π1, . . . , πn〉 of a target formula ϕ = X1(t̃1)∨
· · ·∨Xn(t̃n) means that each Xi in ϕ should be unfolded along the path πi. Below
we often write 〈π1, . . . , πn〉 as π1 . . . πn (hence the name “a candidate unfolding
sequence”) if the unfolding specified by π1 . . . πn is unambiguous (e.g., when the
sets of predicate variables occurring in π1, . . . , πn are disjoint from each other).

Example 10. Recall the target formula and the pre-candidate unfolding sequence
in Example 8. Then we have the following constraint.

∃m1m2(2m1 + 2m2 > 0 ∧ ∃f(∀x(f(x) = x − 2m1 ∧ f(x) = x − 6m2)))

Then it is reduced to the constraint ∃m1m2(m1 + m2 > 0 ∧ m1 = 3m2), and by
solving the constraint, we get m1 = 3 and m2 = 1.

Therefore Div6(Even · Odd)3 is a candidate unfolding sequence. �
Example 11. Recall the target formula and the pre-candidate unfolding
sequences in Example 9. Since |Even| = |Odd| = 1, we have the following con-
straints for the pre-candidate unfolding sequences S1 and S2 respectively.

∃m1m2(2m1 + 2m2 > 0 ∧ ∃f1(∀x(f1(x) = x − 2m1 ∧ f1(x) = x − 2m2))), and

∃m1m2(1 + 1 + 2m1 + 2m2 > 0 ∧ ∃f2(∀x(f2(x) = x − 1 − 2m1 ∧ f2(x) = x − 1 − 2m2)))

Then it is reduced to the constraints ∃m1m2(m1 + m2 > 0 ∧ m1 = m2) and
∃m1m2(2+m1+m2 > 0∧m1 = m2) respectively, and by solving the constraints,
we get m1 = 1 and m2 = 1 for S1 and m1 = 0 and m2 = 0 for S1. Therefore, both
((Even ·Odd), (Odd ·Even)) and (Even,Odd) are candidate unfolding sequences.

�

3.4 Step 4: Checking Candidate Unfolding Sequences

Once a candidate unfolding sequence is given, the actual unfold/fold transfor-
mation is essentially the same as the (synchronous) unfold/fold transforma-
tion given in [5]. Given a target formula ϕ, we just unfold it according to the
unfolding sequence and obtain a formula ϕ′. When ϕ is a disjunctive (conjunc-
tive, resp.) formula

∨
i Xi(t̃i), then convert ϕ′ to a conjunctive (disjunctive,

resp.) normal form. Then for each conjunct of the form (
∨

i Xi(s̃i)) ∨ ϕ′′, check
whether

∨
i Xi(s̃i) can be expressed in the form [ũ/x̃](

∨
i Xi(t̃i)). If so, replace

the target formula with Z(x̃), where Z is a fresh predicate variable defined by
Z(x̃) =σ · · · ∧ (Z(ũ) ∨ ϕ′′) ∧ · · ·.

Here we give an example to demonstrate how CNF is used and folding is
performed after the full unfolding for a candidate unfolding sequence.

Example 12. Recall the definition of Odd in Example 1. We also define the fol-
lowing predicates.

Even(x) =ν x �= 0 ∧ Odd(x − 1);
Odd(y) =ν Even(y − 1);
S(x, y) =ν (x �= 0 ∨ y �= 1) ∧ (x ≤ 0 ∨ S(x − 1, y − 1));

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 51

Here S is the dual of a successor predicate: S(x, y) means that y is not the succes-
sor of x. Suppose we wish to unfold and fold the formula ϕ = S(x, y)∨Even(y)∨
Odd(x). Using the candidate unfolding sequence 〈S2

,Even · Odd,Odd · Even〉,
we can unfold the target formula as follows.

S(x, y) ∨ Even(y) ∨ Odd(x)

�SS ((x�=0 ∨ y �=1) ∧ (x≤0 ∨ ((x�=1 ∨ y �=2) ∧ (x≤1 ∨ S(x − 2, y − 2)))))

∨ Even(y) ∨ Odd(x)

�EvenOdd ((x�=0 ∨ y �=1) ∧ (x≤0 ∨ ((x�=1 ∨ y �=2) ∧ (x≤1 ∨ S(x − 2, y − 2)))))

∨ (y �=0 ∧ Even(y − 2)) ∨ Odd(x)

�OddEven ((x�=0 ∨ y �=1) ∧ (x≤0 ∨ ((x�=1 ∨ y �=2) ∧ (x≤1 ∨ S(x − 2, y − 2)))))

∨ (y �=0 ∧ Even(y − 2)) ∨ (x=1 ∨ Odd(x − 2))

Finally, we compute the CNF form of the unfolded formula as follows.

(x �= 0 ∨y �= 1 ∨ Even(y − 2) ∨ Odd(x − 2)) ∧ (x ≤ 1 ∨ y �= 0 ∨ S(x − 2, y − 2) ∨
Odd(x − 2)) ∧ (x ≤ 1 ∨ S(x − 2, y − 2) ∨ Even(y − 2) ∨ Odd(x − 2)).

Finally we can fold it by defining a new predicate F (x, y) =ν . . . ∧ (x ≤
1 ∨ F (x − 2, y − 2)) and substituting ϕ by F (x, y). �
Example 13. Here we present another example to demonstrate the scenario
where the predicate definitions have a non-constant change of an argument.
Let W (x, y, z) = Mult(x, y, z) ∨ Mult(y, x, z) be the target formula, where Mult
was defined in Example 4. We also define the predicate Mult(x, y, z) =ν (x �=
0 ∨ z �= 0) ∧ (x ≤ 0 ∨ Mult(y, x − 1, z − y)). Similarly to Mult, the size change
graph for Mult contains the edge (Mult, {(x,−1, y), (y, 0, x)},Mult). The sum-
mary information for unfolding sequences on Mult and Mult contains:

sMult,Mult = {(
(Mult)2m1 , (Mult, {(x,−m1, x)(y,−m1, y)},Mult)

)}
sMult,Mult = {(

(Mult)2m2 , (Mult, {(x,−m1, x)(y,−m1, y)},Mult)
)}

Therefore, 〈sMult,Mult, sMult,Mult〉 is a pre-candidate unfolding sequence or
the given target formula. Then we have the following constraints for the pre-
candidate unfolding sequence.

∃m1m2(m1 + m2 > 0 ∧ ∃f1f2 (∀x, y, z(f1(x, y, z) = x − m1 ∧ f1(x, y, z) = x − m2

∧f2(x, y, z) = y − m1 ∧ f2(x, y, z) = y − m2)))

Then it is reduced to the constraint ∃m1m2(m1 + m2 > 0 ∧ m1 = m2), and by
solving the constraint, we get m1 = 1 and m2 = 1. Therefore, (Mult)2(Mult)2

is a candidate unfolding sequence. By actually unfolding the target formula
W (x, y, z) according to the above candidate unfolding sequence, and then by
computing CNF, we obtain a formula C[Mult(x − 1, y − 1, z − y − x + 1) ∨
Mult(y−1, x−1, z −x−y+1)] for some formula context C, which can be folded
to C[W (x − 1, y − 1, z − x − y + 1)]. �

52 M. Faisal Al Ameen et al.

3.5 Extensions

We have so far imposed the restriction that the righthand side of each predicate
definition contains exactly one occurrence of a predicate variable. This section
briefly discusses how to remove the restriction.

To see what issues arise without the restriction, let us consider the following
predicate definitions:

P (x) =μ x = 0 ∨ P (x − 2) ∨ P (x + 1)
Q(y) =μ y = 1 ∨ Q(y − 2).

Here, the body of P contains two occurrences of P , combined with disjunc-
tion. The following two issues arise in unfolding a formula containing P and Q,
depending on the logical connective that combines P and Q.

– If the target formula is X(x) ≡ P (x) ∨ Q(x), then the number of predicates
increases each time P is unfolded. In fact, we obtain x = 0 ∨ P (x − 2) ∨
P (x + 1) ∨ x = 1 ∨ Q(x − 2) by unfolding P and Q once. Thus, to fold the
resulting formula, we have to choose between the two occurrences of P . (In
this example, we should pick P (x − 2), and fold the resulting formula to
x = 0 ∨ x = 1 ∨ P (x + 1) ∨ X(x − 2).)

– If the target formula is Y (x, y) ≡ P (x) ∧ Q(y), then by unfolding P , we
obtain a formula of the form (P (x − 2) ∧ Q(y)) ∨ (P (x + 1) ∧ Q(y)) ∨ (x =
0∧Q(y)). We should then fold each disjunct separately, possibly after further
unfoldings of P and Q. For example, the formula above can be folded to
Y (x − 2, y) ∨ Y (x + 1, y) ∨ (x = 0 ∧ Q(y)).

In general, the first case (where the number of predicate variables increases upon
each unfolding) arises when the logical connectives of the target formula and the
body of a predicate definition are the same, and the second case (where the
unfolding process splits into multiple branches, although the number of predi-
cates in each branch remains the same) arises when the logical connectives are
dual. (We can also have a combination of the two cases, when predicates are
combined with both conjunction and disjunction in the body of a predicate def-
inition).

To deal with the first case, it suffices to allow multiple edges from each
node. For example, the size change graph for P would consist of two edges
(P, {(x,−2, x)}, P) and (P, {(x, 1, x)}, P), where the former (latter, resp.) edge
corresponds to the case where we pick P (x − 2) (P (x + 1), resp.) as the target
for further unfolding and folding. We can still compute the summary of all the
possible unfolding sequences as in Sect. 3.2.

To deal with the second case, we need to generalize unfolding sequences to
unfolding trees, and extend the representation of summary information accord-
ingly. We leave it to future work to formalize the details and implement the
extension.

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 53

Table 1. Experimental results for the first benchmark set [7].

Target formula ϕ ◦/×? MuHFL time
(T (ϕ)) sec

MuHFL time
(ϕ) sec

7 Plus(x, y, p) ∨ Neq(p, z) ∨ (Plus(y, x, q) ∧
Eq(q, z))

× N/A Timeout

11 S(x, p) ∨ S(y, q) ∨ S(z, r) ∨ Plus(p, q, s) ∨
Neq(s, r) ∨ ∃m.∃n.(Plus(x, y, m) ∧
S(m, n) ∧ Eq(n, z))

◦ 0.656 14.343

13 S(x, z) ∨ S(y, w) ∨ Leq(z, w) ∨ Leq(x, y) ◦ 0.190 0.870

16 Leq(x, y) ∨ Leq(y, z) ∨ Leq(x, z) ◦ 0.348 Timeout

17 Leq(y, x) ∨ ∃z.(x + 1 = z ∧ Leq(y, z)) ◦ 0.198 Timeout

20 Leq(z, x) ∨ ∃w.(Plus(x, y, w) ∧ Leq(z, w)) × N/A 28.602

22 Plus(x, y, z) ∨ Leq(y, z) ◦ 0.328 Timeout

23 Even(x) ∨ Odd(x) ◦ 0.180 Timeout

24 Even(x) ∨ Odd(x + 1) ◦ 0.178 Timeout

25 x < 0 ∨ Even(x + 1) ∨ Odd(x) ◦ 0.179 Timeout

4 Experiments

We have implemented a transformation tool based on the discussions of this
paper. It uses Z3 [9] in the backend for solving the constraints. Our tool currently
supports only integers as basic data; an extension with data structures is left for
future work.

We have conducted experiments to evaluate the effectiveness of our unfold
and fold procedures and to know if it indeed transform formulas to aid to enhance
their validity checking. To that end, we have first experimented our tool with the
benchmark provided in the work of Kurita and Aoto [7] on automated theorem
proving by rewriting induction. We have also evaluated the tool with our own
benchmark set to further investigate its capabilities, limitations, and efficiency.
The experiments were conducted on an Elementary OS 5.1.7 (on Ubuntu 18.04)
system with 8 GB memory and 2.40 GHz Quad-Core Intel R© CoreTM i5-9300H
CPU.

First we present a summary of the evaluation results for the first bench-
mark set. The original benchmark set [7] consists of 31 formula examples; we
tested 28 instances and checked their validity by the automated theorem prover
MuHFL (https://github.com/hopv/muhfl) for higher order mu-arithmetic for-
mulas (which subsumes MuArith)) and the rest three examples are beyond the
scope of the tool since they use ‘List’ data structure. Among 28 tested examples,
there are 6 instances where validity checking of the original formula failed (due to
timeout) but succeeded after transformation by our tool. For other 8 instances,
our transformation clearly improved the time for validity checking and it failed
to transform two other instances where a different transformation is needed. For
the rest of the examples, the performance of validity checking was almost the

https://github.com/hopv/muhfl

54 M. Faisal Al Ameen et al.

Table 2. Experimental results for our own benchmark.

Target formula Transformed formula Unfold T Exec T (sec)

Div6(n) ⇒ Even(n) F (n − 6) (1, 6) 0.647

Div2(n) ∧ Div3(n) ⇒ Div6(n) F (n − 6) (3, 2, 1) 1.853

Plus(x, y, u) ∧ Plus(u, z, v) F (x − 1, y, u − 1, z, v − 1) (1,1) 0.710

Plus(y, z, w) ∧ Plus(x, w, v) F (x − 1, y, z, w, v − 1) (0,1) 0.310

Even(x)∨ Odd(x) F (x − 1) (1, 1) 0.190

Even(x)∨ Odd(x − 1) F (x − 2) (2, 2) 0.370

Even(x)∨ Odd(x + 1) F (x − 2) (2, 2) 0.319

Even(x)∨ Odd(x) F (x − 2) (2, 2) 0.385

Div1(x)∨ Div2(x)∨ Div3(x) F (x − 6) (6, 3, 2) 0.436

Div2(x)∨ Div3(x)∨ Div5(x) F (x − 30) (15, 10, 6) 1.078

Sum1(x, y, z) ∨ Sum2(x, y, z) Not foldable N/A N/A

Sum1(x, y, 2z) ∨ Sum2(x, y, 2z) F (x − 1, y − 1, z − 1) (4, 4) 0.162

Sum1(x, y, 2z) ∨ Sum2(2x, 2y, 4z) F (x − 1, y − 1, z − 1) (4, 8) 0.235

Sum3(x, y, 2z)∨ Sum4(2x, 2y, 4z) F (x − 1, y − 1, z − 1) (4, 8) 110.121

Sum1(x, 2y, 2z) ∨ Sum2(2x, 4y, 4z) F (x − 2, y − 1, z − 2) (8, 16) 0.182

Sum3(x, 2y, 2z)∨ Sum4(2x, 4y, 4z) N/A (8, 16) Timeout

Sum1(2x, 3y, 4z)∨Sum2(6x, 9y, 12z) F (x − 3, y − 2, z − 3) (24, 72) 0.198

Sum5(2x, 4y, 5z)∨
Sum6(8x, 16y, 20z)∨
Sum7(4x, 8y, 10z)

F (x − 10, y − 5, z − 8) (120, 480, 240) 0.347

A(x) ∨ A(2x − 3) ∨ C(3x − 1) ∨
A(4x) ∨ B(x) ∨ D(x − 2)

F (x − 4) (4, 8, 9, 16, 4, 3) 0.426

Mult(x, y, z) ∨ Mult(y, x, z) F (x − 1, y − 1, z − x − y + 1) (1, 1) 34.807

same for the original formula and the transformed formula. Table 1 summarizes
interesting experimental results. In the table, the column ‘◦/×?’ represents the
transformation status of the target formula, where the successful transformations
and the failures are indicated by ◦ and × respectively. The column ‘MuHFL time
(T (f)) sec’ represents the time required for validity checking of the transformed
formula by MuHFL. The next column ‘MuHFL time (f) sec’ does the same
for the original formula (i.e. without transformation). The entry ’N/A’ in the
column ‘MuHFL time (T (f)) sec’ means that our unfold/fold transformation
was inapplicable. The rows where ‘MuHFL time (f) sec’ is ‘Timeout’ (where
the timeouts were set to 60 s). but ‘MuHFL time (T (f)) sec’ is not, indicate
that validity checking by MuHFL was enabled by our transformation.

Table 2 summarizes the experimental results for our own benchmark set,
which includes the examples presented in this paper. The column ‘Unfold T’
shows how many times the predicate variables in the target formula are unfolded
to be transformed, and the column ‘Exec T’ shows the time our tool took to
transform the given formula. For example, the first row presents that our tool
took 0.647 s to transform Div6(n) ⇒ Even(n) into F (n − 6) by first unfolding
the predicate variables Div6 and Even respectively once and six times and then
folding the resulting formula.

Asynchronous Unfold/Fold Transformation for Fixpoint Logic 55

Among the predicates in the benchmarks presented in Table 2, the definitions
of Even, Odd, Div6, Mult, and Mult are as given in examples given earlier in this
paper. Among the rest of the predicates, here we provide definitions of some other
predicates: Sum1(p, q, r) =μ Sum2(q−1, p, r−1), Sum2(s, t, u) =μ Sum1(s, t, u),
Sum3(p, q, r) =μ (q = 0 ∧ p = r) ∨ (q > 0 ∧ Sum4(q − 1, p, r − 1)), and
Sum4(s, t, u) =μ Sum3(s, t, u). Note that Sum3 and Sum4 are the same as Sum1
and Sum2 respectively, except that the definition of Sum3 contains an addi-
tional constraint. The timeout (at 60 s) for Sum3(x, 2y, 2z)∨Sum4(2x, 4y, 4z) is
probably due to the bottleneck of the CNF and DNF computation, which is not
currently optimized.

5 Related Work

As mentioned in Sect. 1, unfold/fold transformation was originally proposed by
Tamaki and Sato [12] for logic programming, and various extensions have been
studied [3,5,10,11]. In the present paper, we have addressed the issue of how
to find an appropriate unfolding sequence efficiently, which has not been much
studied, to our knowledge. The issue of how to unfold recursive definitions often
arises also in other contexts, such as tupling transformations [1,4] and cyclic
proofs [2]. We expect that our idea of using size change graphs would also be
useful in those contexts.

The notion of size change graphs has been inspired by the work of Lee et al. [8]
on size-change termination analysis, but the details are different (due to the
difference of the applications). In their original work, the edges of a size change
graph were either (x, ↓, y) (which means y < x) or (x,=↓, y) (which means y ≤ x).
In contrast, the corresponding edges of our size change graph are of the form
(x, c, y) (which means y = x + c), which represent information about a constant
change. Consequently, (unlike in the original size change graphs) there can be
infinitely many edges in the summary of unfolding sequences (because c can
be an arbitrary integer), but since the set of possible c’s is semi-linear, we can
finitely represent the summary information, as discussed in Sect. 3.2.

6 Conclusion

We have proposed an unfold/fold transformation procedure for fixed-point logic
formulas, which allows each predicate to be unfolded in an asynchronous man-
ner. The key idea is the use of size change graphs to estimate an appropriate
unfolding sequence. We have implemented the proposed method and confirmed
its effectiveness through experiments.

Acknowledgments. We would like to thank anonymous referees for useful comments.
This work was supported by JSPS KAKENHI Grant Numbers JP20H05703.

56 M. Faisal Al Ameen et al.

References

1. Asada, K., Sato, R., Kobayashi, N.: Verifying relational properties of functional
programs by first-order refinement. Sci. Comput. Program. 137, 2–62 (2017).
https://doi.org/10.1016/j.scico.2016.02.007

2. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011)

3. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Solving Horn clauses on
inductive data types without induction. TPLP 18(3–4), 452–469 (2018). https://
doi.org/10.1017/S1471068418000157

4. Hu, Z., Iwasaki, H., Takeichi, M., Takano, A.: Tupling calculation eliminates mul-
tiple data traversals. In: Proceedings of the ICFP, pp. 164–175 (1997)

5. Kobayashi, N., Fedyukovich, G., Gupta, A.: Fold/unfold transformations for fix-
point logic. In: TACAS 2020. LNCS, vol. 12079, pp. 195–214. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45237-7 12

6. Kobayashi, N., Nishikawa, T., Igarashi, A., Unno, H.: Temporal verification of
programs via first-order fixpoint logic. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS,
vol. 11822, pp. 413–436. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32304-2 20

7. Kurita, T., Aoto, T.: Automated proofs of horn-clause inductive theorems for con-
ditional term rewriting systems. Comput. Softw. 36(2), 261–275 (2019). https://
doi.org/10.11309/jssst.36.2 61. (in Japanese)

8. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Hankin, C., Schmidt, D. (eds.) Conference Record of POPL 2001:
The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, London, UK, 17–19 January 2001, pp. 81–92. ACM (2001). https://
doi.org/10.1145/360204.360210

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. Seki, H.: On inductive and coinductive proofs via unfold/fold transformations.
In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 82–96. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12592-8 7

11. Seki, H.: Proving properties of co-logic programs by unfold/fold transformations.
In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 205–220. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32211-2 14

12. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: Tärnlund,
S. (ed.) Proceedings of the Second International Logic Programming Conference,
Uppsala University, Uppsala, Sweden, 2–6 July 1984, pp. 127–138. Uppsala Uni-
versity (1984)

13. Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving horn clauses.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 571–591.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 30

https://doi.org/10.1016/j.scico.2016.02.007
https://doi.org/10.1017/S1471068418000157
https://doi.org/10.1017/S1471068418000157
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.11309/jssst.36.2_61
https://doi.org/10.11309/jssst.36.2_61
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-12592-8_7
https://doi.org/10.1007/978-3-642-32211-2_14
https://doi.org/10.1007/978-3-319-63390-9_30

Program Logic for Higher-Order
Probabilistic Programs in Isabelle/HOL

Michikazu Hirata(B), Yasuhiko Minamide, and Tetsuya Sato

School of Computing, Tokyo Institute of Technology, Tokyo, Japan

hirata.m.ac@m.titech.ac.jp, minamide@is.titech.ac.jp, tsato@c.titech.ac.jp

Abstract. The verification framework PPV (Probabilistic Program
Verification) verifies functional probabilistic programs supporting higher-
order functions, continuous distributions, and conditional inference. PPV
is based on the theory of quasi-Borel spaces which is introduced to give
a semantics of higher-order probabilistic programming languages with
continuous distributions. In this paper, we formalize a theory of quasi-
Borel spaces and a core part of PPV in Isabelle/HOL. We first construct
a probability monad on quasi-Borel spaces based on the Giry monad in
the Isabelle/HOL library. Our formalization of PPV is extended so that
integrability of functions can be discussed formally. Finally, we prove
integrability and convergence of the Monte Carlo approximation in our
mechanized PPV.

Keywords: Higher-order probabilistic programming language ·
Program logic · Formal verification · Isabelle/HOL

1 Introduction

Probabilistic programming languages provide a generic way to describe sophis-
ticated probabilistic models. Programmers can directly write generative proba-
bilistic models in the languages and work with the models without constructing
the complicated inference algorithms by themselves.

Some languages, such as Anglican [32] and Church [12], support higher-order
functions that make the languages more expressive. Unfortunately, its combi-
nation with continuous distributions causes difficulty in their semantics. Prob-
abilistic programming languages without higher-order functions can be inter-
preted using the category of measurable spaces and a probability monad, called
the Giry monad, on it [11]. However, Aumann’s result [3] shows that we cannot
interpret functions as first class objects using the category of measurable spaces.
To overcome this difficulty, Heunen et al. introduced quasi-Borel spaces [15],
which provide a suitable denotational model for higher-order probabilistic pro-
grams.

To verify the programs written in a higher-order probabilistic programs, Sato
et al. introduced the verification framework PPV [28] (Probabilistic Program
Verification framework). PPV consists of the language HPProg and three kind
c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 57–74, 2022.
https://doi.org/10.1007/978-3-030-99461-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_4

58 M. Hirata et al.

of logics PL, UPL, and RPL. The semantic foundation of the language is based
on the theory of quasi-Borel spaces, and the language supports sampling, contin-
uous distributions, conditional inference, and higher-order functions. With the
framework PPV, we can verify properties of algorithms used in statistics and
machine learning area.

Formal verification of probabilistic programs with proof assistants has been
actively studied. Hurd et al. formalized an imperative probabilistic and non-
deterministic language pGCL [20] in HOL4 [13], Cock also formalized pGCL [8]
in Isabelle/HOL [27]. Audebaud and Paulin-Mohring shallowly embedded a func-
tional probabilistic language [2] in Coq [6]. Eberl et al. constructed an exe-
cutable first-order functional probabilistic programming language in Isabelle,
and proved its correctness [10]. Lochbihler shallowly embedded a functional pro-
gramming language, where the probabilities are restricted to only discrete spaces,
in Isabelle/HOL, and verified cryptographic algorithms [22]. Bagnall and Stewart
embedded MLCERT [5], a system for verified machine learning, in Coq. Tristan
et al. partially automated probabilistic program verification [31] with Lean [26].
These previous works cannot support both higher-order functions and contin-
uous distributions since they are based on the measure theory or restrict the
probability spaces to discrete spaces.

Contributions of our work are the following.

– We formalize the theory of quasi-Borel spaces in Isabelle/HOL. Our formaliza-
tion contains constructions of quasi-Borel spaces (product, coproduct, func-
tion space), the adjunction between the category of measurable spaces and
the category of quasi-Borel spaces, and the probability monad on quasi-Borel
spaces. Our formalization also contains the example of the Bayesian regres-
sion in the work of Heunen et al. [15], but we omit it in this paper due to
space limitation.

– We construct the core part of the framework PPV in Isabelle/HOL which
does not support the conditional inference. We formalize the programming
language HPProg, the assertion logic PL and the program logic UPL. It
should be noted that our system is extended so that we can formally reason
about integrability.

– As an example of program verification, we prove the weak convergence (the
weak law of large number) of the Monte Carlo approximation in our mecha-
nized PPV. Our verification includes the integrability of the program, that is
assumed implicitly in the previous work [28].

Our work enables verification of probabilistic programs with both higher-order
functions and continuous distributions because we use the theory of quasi-Borel
spaces. To the best of our knowledge, the theory of quasi-Borel spaces and veri-
fication based on the theory have not been implemented in any proof assistants.

There are two major differences between the original PPV and our formalized
PPV. Firstly, the former supports the command query (observe in Anglican)
for conditional inference, but the latter does not. Our formalization is based
on the work of Heunen et al. [15], which introduces the monad P for proba-
bility measures on quasi-Borel spaces. However, the original PPV is based on

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 59

the monad M for σ-finite measures introduced by Ścibior et al. [29], which sup-
ports denotational semantics for the command query. We choose the probability
monad P because it is constructed from the Giry monad which has been already
formalized in Isabelle/HOL. Secondly, we explicitly introduce the notion of inte-
grability in the logics of PPV. There are informal discussions about expectations
in the PPV of Sato et al. [28]. To mechanize the informal discussion, we need
to introduce the notion of integrability in the logics. We explain the detail in
Sect. 2.

Our source code is available online1. The formalization of quasi-Borel spaces
is also available at [16].

2 Program Verification in PPV

We briefly review the verification framework PPV and show how a probabilistic
program is verified with PPV.

2.1 A Verification Framework: PPV

PPV [28] is a verification framework for higher-order probabilistic programs. The
basic structure comes from the program logic introduced by Aguirre et al. [1].
PPV consists of the probabilistic programming language HPProg and the logics
PL and UPL2. The language HPProg supports sampling from distributions, con-
ditional inference, higher-order functions, and terminating recursive functions.
For a type T , P [T] denotes the type of probability distribution on T .

The logic PL for assertions has the judgments Γ | Ψ �PL φ where Γ is a
typing context, Ψ is a set of assumptions, and φ is a conclusion. The judgment
means that in the context Γ , if Ψ holds, then φ also holds.

The program logic UPL has the judgments Γ | Ψ �UPL e : T | φ where e is
an expression (program) and T is its type. In addition, the conclusion φ may
contain the special variable r of type T that is used to refer to the value of e.
The judgment means that in the context Γ , e has type T and if Ψ holds, then
φ[e/r] also holds. PL and UPL are equi-derivable in the sense Theorem 2.

The language HPProg has a denotational semantics based on quasi-Borel
spaces. The notion of quasi-Borel spaces is introduced by Heunen et al. [15]
in order to give denotational semantics to probabilistic programming languages
with higher-order functions and continuous distributions. The assertions Ψ and
φ in the logics PL and UPL are interpreted as predicates over quasi-Borel spaces.

2.2 Verification of Monte Carlo Approximation

We verify integrability and convergence of the Monte Carlo approximation in our
mechanized PPV. For a given probability distribution d on X and h : X → R, it
1 https://github.com/HirataMichi/PPV.
2 The original PPV also includes the relational program logic RPL. Since we have not

formalized RPL, we omit the explanation of RPL.

https://github.com/HirataMichi/PPV

60 M. Hirata et al.

montecarlo : nat ⇒ P [real]
montecarlo n ≡ if (n = 0) then return 0

else do {
m ← montecarlo (n-1);
x ← d;
return ((1/n)*(h(x)+m*(n-1)))

}

Fig. 1. Monte Carlo Approximation, written in pseudocode.

Γ ≡ ε : real, μ : real, σ : real, d : P [X], h : X ⇒ real

Ψ ≡ {σ2 = Vx∼d[h x], μ = Ex∼d[h x], ε > 0, integrable d h, integrable d h
2}

Γ | Ψ UPL montecarlo : nat ⇒ P [real]|∀n : nat.n > 0 → Pr
y∼r n

[|y − μ| ≥ ε] ≤ σ2/nε2

Γ | Ψ PL ∀n : nat.integrable (montecarlo n)(λx.x) ∧ integrable (montecarlo n)(λx.x2)

Fig. 2. Weak law of large numbers in PPV.

computes an approximation of the expectation Ex∼d[h(x)]. Let x1, . . . , xn be a
sequence of samples generated from the distribution d, then the approximation
value μ̂n is defined by

μ̂n =
h(x1) + · · · + h(xn)

n
.

The program in Fig. 1 is an implementation of this algorithm. It computes the
mean value of h(x1), . . . , h(xn) recursively. In the program, d : P[X] is a proba-
bility distribution on X and h : X ⇒ real is a function. Notice that the program
is higher-order with respect to h. The program montecarlo receives a natural
number n, then returns the distribution of μ̂n on real numbers. The distribution
of μ̂n has the following familiar property.

Proposition 1 (Weak law of large numbers). Let (Xi)i=1,2,... be a sequence
of i.i.d. real-valued random variables with finite mean μ and variance σ2. Then
for any ε > 0, we have

lim
n→∞ Pr

[∣∣∣∣X1 + · · · + Xn

n
− μ

∣∣∣∣ ≥ ε

]
= 0. (1)

This property is stated in UPL as in Fig. 2, where Vx∼d[h x] and Ex∼d[h x] are the
variance and expectation of h x where x is sampled from d, and Pry∼r n[|y−μ| ≥ ε]
corresponds to the probability of the left hand side in the Eq. (1). The assertion
Ψ provides the integrability assumptions on that ensures the existence of finite
mean μ and variance σ2. The UPL-judgment provides a concrete upper bound
of the probability in the Eq. (1) for each n. To prove this UPL-judgment, we
need to prove the PL-judgment of the integrability condition that ensures the
existence of the expectation and the variance of μ̂n since we use the linearity
of expectation, which requires the integrability assumptions, in the proof of the

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 61

UPL-judgment. The judgments in Fig. 2 are proved in our mechanized PPV. In
Sect. 5, we will show how we mechanize them and their proofs.

The original PPV informally uses the linearity of expectation. The linearity
of expectation Ex∼d[f x + g x] = Ex∼d[f x] + Ex∼d[g x] holds if both f and
g are non-negative. For general real-valued functions f and g, we additionally
need to assume that f and g are integrable with respect to d. In the proof of the
UPL-judgement, we use the following property.

V(x,y)∼d1⊗d2 [f x + g y] = Vx∼d1 [f x] + Vy∼d2 [g y]. (2)

This equation is shown as follows.

V(x,y)∼d1⊗d2 [f x + g y]

=E(x,y)∼d1⊗d2 [(f x + g y − E(x,y)∼d1⊗d2 [f x + g y])2]

=E(x,y)∼d1⊗d2 [(f x − Ex∼d1 [f x])2 + (g y − Ey∼d2 [g y])2

+ 2(f x − Ex∼d1 [f x])(g y − Ey∼d2 [g y])] (3)

=Ex∼d1 [(f x − Ex∼d1 [f x])2] + Ey∼d2 [(g y − Ey∼d2 [g y])2]
+ 2Ex∼d1 [f x − Ex∼d1 [f x]]Ey∼d2 [g y − Ey∼d2 [g y]]

=Vx∼d1 [f x] + Vy∼d2 [g y].

Notice that the term 2(f x − Ex∼d1 [f x])(g y − Ey∼d2 [g y]) in (3) may be
negative, and hence we need the integrability assumptions to apply the linearity
of expectation. In the original paper, they implicitly assume the integrability of
functions and use the Eq. (2).

3 Quick Review: Measure Theory and the Giry Monad

The theory of quasi-Borel spaces is based on measure and probability theory. In
this section, we recall some basic definitions and properties in those theories.

A measurable space is a pair (X,ΣX) of a set X together with a σ-algebra ΣX

over X that is a nonempty family of subset of X closed under countable union
and complement. Any topological space (X,OX) is regarded as the measurable
space (X,B[OX]), called Borel space, whose σ-algebra B[OX] is the least one
containing all its open sets. In this paper, we regard topological spaces, such as
R and N, as its Borel spaces. A measurable function from (X,ΣX) to (Y,ΣY)
is a function f : X → Y satisfying f−1(A) ∈ ΣX for any A ∈ ΣY . Measurable
spaces and measurable functions form the category Meas. It has small products
and coproducts.

A measure μ on (X,ΣX) is a σ-additive mapping μ : ΣX → [0,∞] such that
μ(∅) = 0. A measure space is a triple (X,ΣX , μ) where (X,ΣX) is a measur-
able space and μ is a measure on (X,ΣX). If μ(X) = 1, we call the measure
space (X,ΣX , μ) a probability space, and μ a probability measure. A measur-
able function f : X → R is integrable with respect to a measure μ on X when∫ |f | dμ < ∞. Then the integral

∫
f dμ exists as a finite value.

62 M. Hirata et al.

The Giry Monad. Probabilistic computations with samplings from continu-
ous distributions are captured by the Giry monad (G, ηG,	=G) on the category
Meas [11]. For any measurable space X, G(X) is the measurable space of all
probability measures on X, and ηG

X assigns to each x ∈ X the Dirac measure3 δx

centered at x. The bind assigns to all f : X → G(Y) and μ ∈ G(X) the proba-
bility measure (μ	=G f) ∈ G(Y) defined by (μ	=G f)(A) def=

∫
X

f(x)(A) dμ(x).
We can interpret first-order probabilistic programs with continuous random

sampling using the Giry monad. A program of type Γ � e : P [T] can be inter-
preted as a measurable function �e� : �Γ � → G(�T �) where �Γ � and �T � are
measurable spaces. For example, the following program written in pseudocode

m : real, s : real � x ← Gauss(m, s); y ← Gauss(m, s); return(x + y) : P [real]

is interpreted as the measurable function of type R × R → G(R) given by

λ(m,σ). (N (m,σ2) 	=G (λx. (N (m,σ2) 	=G (λy. ηG
R

(x + y))))).

Here, N (m,σ2) is the Gaussian distribution with mean m and standard devia-
tion σ. The command Gauss is interpreted by �Gauss�(m,σ) = N (m,σ2). This
program computes the distribution of x + y where both x and y are sampled
independently from N (m,σ2).

A Difficulty on Higher-Order Functions. However, the semantic model
based on measurable functions does not support higher-order functions.
Aumann [3] showed that the category Meas is not cartesian closed4: there is
no σ-algebra over R

R = {f : R → R | f is measurable} such that the evaluation
mapping (f, x) �→ f(x) is a measurable function of type R

R × R → R. Hence, a
higher-order program

f : real ⇒ real, x : real � f(x) : real

of function application cannot be interpreted as a measurable function. This
means that there is no suitable interpretation of the function type real ⇒ real
as a measurable space.

4 Quasi-Borel Spaces

In this section, we review basic concepts on quasi-Borel spaces, and present our
formalization of quasi-Borel spaces in Isabelle/HOL. We construct quasi-Borel
spaces with the measure and probability theories in the standard Isabelle/HOL
theory libraries: HOL-Analysis and HOL-Probability [4,10,17,18,22,27]. We
expect that the theory of quasi-Borel spaces could be formalized in other proof
assistants which have measure theory libraries [7,14,21,23,24,30].
3 δx(U) is 1 if x ∈ U and 0 otherwise.
4 The standard Isabelle/HOL theory library includes a proof of this result:

Isabelle2021-1.app/src/HOL/Probability/ex/Measure Not CCC.thy.

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 63

4.1 Standard Borel Spaces

Before formalizing quasi-Borel spaces, we first formalize standard Borel spaces
which have not been formalized yet. Standard Borel spaces play an important
role in the theory of quasi-Borel spaces. In general, a standard Borel space is the
Borel space (X,B[OX]) of a separable completely metrizable topological space
(X,OX). According to Kuratowski’s theorem, a standard Borel spaces is either
a countable discrete space or a space isomorphic to R. In our work, we choose
another, but equivalent, definition for standard Borel spaces.

Definition 1. A measurable space X is called a standard Borel space if there
exists a pair of measurable functions X

f−→ R
g−→ X such that g ◦ f = idX .

This form of definition is suitable for our purpose since we use these measurable
functions in later proofs.

The following lemma is key to construct the probability monad on the cate-
gory of quasi-Borel spaces.

Lemma 1. N × R and R × R are standard Borel spaces.

We have proved the second statement above according to the following proof
sketch. Although it is not a main part of our formalization, it is one of the most
cumbersome proofs in our formalization since we need to discuss about the limits.
If we have two measurable functions (0, 1)× (0, 1) α−→ (0, 1) β−→ (0, 1)× (0, 1) such
that β ◦ α = id(0,1)×(0,1), we can construct two measurable functions R × R

f−→
R

g−→ R × R such that g ◦ f = idR×R with isomorphisms between R and (0, 1).
We construct α and β as follows: let us denote the binary fraction of r ∈ (0, 1)
by r = 0.r1r2 . . . 5. Let α be a function that maps (r, r′) ∈ (0, 1) × (0, 1) to
0.r1r

′
1r2r

′
2 . . . and β be a function that maps r ∈ (0, 1) to (0.r1r3 . . . , 0.r2r4 . . .).6

These functions are limits of measurable functions. Hence they are measurable,
and the composition β ◦ α is equal to id(0,1)×(0,1) from the definitions.

4.2 Quasi-Borel Spaces

In the standard probability theory, we consider a measurable space (Ω,ΣΩ),
where Ω is called a sample space and ΣΩ is a set of random events. We observe
random events through a measurable function called a random variable. Thus
we first axiomatize measurable spaces and then the notion of random variables
comes later. In contrast, in the theory of quasi-Borel spaces, we first axiomatize
random variables where the sample space is restricted to R.

Definition 2 ([15, Definition 7]). A quasi-Borel space is a pair of a set X
and a set MX ⊆ R → X that satisfies

5 We choose the sequence that does not include infinite sequence of 1 at the tail. That
is, we choose 0.100 . . . rather than 0.011 . . . for 1/2.

6 Actually, the domain of β is not (0, 1) × (0, 1)since β maps 0.1010 . . . to (1, 0). In
the actual proof, some modification is neededwhen constructing f and g.

64 M. Hirata et al.

– If α ∈ MX and f : R → R is measurable, then α ◦ f ∈ MX .
– If α is a constant map, then α ∈ MX .
– If {αi}i∈N ⊆ MX and P : R → N is measurable, then (λr.αP (r)(r)) ∈ MX .

Intuitively, MX is the set of random variables over the sample space R. We
sometimes write X for a quasi-Borel space (X,MX) if the structure is obvious
from the context. As an example, the standard Borel space R is the quasi-Borel
space (R,MR) where MR is the set of measurable functions from R to R.

We define the type of quasi-Borel spaces ’a quasi_borel with the typedef

command in Isabelle/HOL. The typedef command allows users to define a
new type which denotes a non-empty subset of an existing type. For X::’a

quasi_borel, we extract its components by the following projections.

qbs_space X::’a set qbs_Mx X::(real ⇒ ’a) set

A function f : X → Y is called a morphism from (X,MX) to (Y,MY) if
f ◦ α ∈ MY for all α ∈ MX . Quasi-Borel spaces and morphisms between them
form the category QBS. It has products, countable coproducts and function
spaces, where the function space Y X is the set QBS(X,Y) of morphisms from
X to Y (thus it is Cartesian closed). Our formalization includes binary products,
binary coproducts, function spaces, products, and countable coproducts. In our
formalization, for a product space

∏
i∈I Xi and a coproduct space

∐
i∈I Xi, every

Xi has to be a quasi-Borel space over the same type due to Isabelle’s type system.

4.3 Connection Between Measurable Spaces and Quasi-Borel
Spaces

There are convenient conversions between measurable spaces and quasi-Borel
spaces in both directions. Using the conversions, when we discuss about mor-
phisms between quasi-Borel spaces, we can transform statements about mor-
phisms to ones about measurable functions where we can use the Isabelle/HOL’s
automated measurability prover. Both directions of conversions are given by two
functors L : QBS → Meas and R : Meas → QBS defined as follows:

L(X,MX) def= (X,ΣMX
), ΣMX

def= {U | ∀α ∈ MX .α−1(U) ∈ ΣR}, L(f) def= f,

R(X,ΣX) def= (X,MΣX
), MΣX

def= {f : R → X | f : measurable}, R(f) def= f.

These conversions do not change functions. Hence, we can regard a morphism
f : X → Y of quasi-Borel spaces as a measurable function f : (X,ΣMX

) →
(Y,ΣMY

), and conversely we can regard a measurable function f : X → Y as a
morphism f : (X,MΣX

) → (Y,MΣY
). The conversions L and R have the follow-

ing properties.

Lemma 2 ([15, Propositions 15, 19]).

– For all quasi-Borel space X and measurable space Y , f is a measurable func-
tion from (X,ΣMX

) to Y iff f is a morphism from X to (Y,MΣY
).

– For any standard Borel space X, L(R(X)) = X holds.
– R preserves products and countable coproducts of standard Borel spaces.

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 65

4.4 The Probability Monad on QBS

We formalize probability measures on quasi-Borel spaces and the probability
monad P on QBS. This monad inherits basic properties from the Giry monad.

First, we formalize probability measures on quasi-Borel spaces. In standard
probability theory, a S-valued random variable Z is a measurable function from
the probability space (Ω,ΣΩ , P) to S. The distribution of Z is the probability
measure Z∗P on S where Z∗P is defined by Z∗P (U) = P (Z−1(U)) for U ∈ ΣS .
Intuitively, a probability measure on a quasi-Borel space X is a distribution of
a random variable α : (R, ΣR, μ) → X. Recall that α ∈ MX is regarded as a
random variable over the sample space R.

Definition 3 (Probability measures, [15]). A probability measure on a quasi-
Borel space X is an equivalence class [α, μ]∼, where α ∈ MX and μ ∈ G(R), and
the equivalence relation ∼ is defined by (α, μ) ∼ (α′, μ′) iff α∗μ = α′

∗μ
′.

We define the integral of a morphism f : X → R with respect to a probability
measure [α, μ]∼ on X by

∫
f d[α, μ]∼

def=
∫

f d(α∗μ). (4)

The notion of integrability is also defined similarly: a morphism f : X → R

is integrable with respect to [α, μ]∼ if f is integrable with respect to α∗μ.
We have defined the type of probability measure ’a qbs_prob_space with the

quotient type command [19] in Isabelle/HOL. The quotient type command
enables users to define a quotient type when a equivalence relation over a raw
type is given.

Next, we construct the probability monad (P, η,	=) on QBS.

Lemma 3 ([15]). Let X be a quasi-Borel space and

P (X) def= {Probability measures on X}
MP (X)

def= {β | ∃α ∈ MX .∃g ∈ Meas(R, G(R)).∀r ∈ R.β(r) = [α, g(r)]∼}.

Then (P (X),MP (X)) is a quasi-Borel space.

We reconstruct the proof since the original paper have not suggested its hints.
In the proof, we use Lemma 1 which says that N×R is a standard Borel space.

We define a function which converts a probability measure on a quasi-Borel
space into the corresponding probability measure on a measurable space. Let lX
be a function that maps [α, μ]∼ ∈ P (X) to α∗μ ∈ G(X). Then lX is an injective
measurable function from L(P (X)) to G(L(X)). Furthermore, lX is bijective if
X is a standard Borel space.

The monad operators η and 	= are defined as follows. Let X be a quasi-
Borel space and μ an arbitrary probability measure on R. ηX is defined by
ηX(x) = [λr.x, μ]∼. Let [α, μ]∼ ∈ P (X) and f : X → P (Y) be a morphism. Then
we have β ∈ MY and a measurable function g : R → G(R), such that f ◦ α =
(λr.[β, g(r)]∼). The bind operator is defined by [α, μ]∼ 	= f = [β, μ 	=G g]∼.

66 M. Hirata et al.

Equations on η and 	= are inherited from ones of the Giry monad, because
the injection lX : L(P (X)) → G(L(X)) satisfy the following equations:

lX(ηX(x)) = δx, lX([α, μ]∼ 	= f) = lX([α, μ]∼) 	=G lY ◦ f.

Theorem 1 ([15, Theorem 21]). The triple (P, η,	=) is a commutative strong
monad on QBS.

For X::’a quasi_borel, we define the following functions in Isabelle/HOL.

monadP_qbs X :: ’a qbs_prob_space quasi_borel

qbs_return X :: ’a ⇒ ’a qbs_prob_space

qbs_bind :: ’a qbs_prob_space ⇒ (’a ⇒ ’b qbs_prob_space)

⇒ ’b qbs_prob_space

In the proofs of the monad laws, strength and commutativity, we use the prop-
erties of the Giry monad and Lemma 1 indicating that R × R is a standard
Borel space. We explicitly give the strength and reconstruct the proofs while the
details are omitted in the original paper.

Translating Integrations to the Quasi-Borel Setting. As we mentioned,
lX : L(P (X)) → G(L(X)) is bijective for a standard Borel space X. We can
simulate integral on X with respect to a probability measure as follows. Let
f : X → R be a measurable function, equivalently f : R(X) → R is a morphism
(Lemma 2), and μ be a probability measure on X. Since X is standard Borel,
we have some measurable function α : R → X and probability measure ν on R

such that μ = α∗ν. Then we have
∫

f dμ =
∫

f d(α∗ν) =
∫

f d[α, ν]∼.
For instance, expectations for Gauss distribution and Bernoulli distribution

is expressed as integrals on quasi-Borel spaces.

lemma qbs_normal_distribution_expectation:

assumes "f ∈ real_borel →M real_borel" and "σ > 0"

shows "(
∫

Q x. f x ∂(qbs_normal_distribution μ σ))
= (

∫
x. normal_density μ σ x * f x ∂ lborel)"

The left hand side of the equation is the integral of the function f with respect
to the probability measure on the quasi-Borel space R and the right hand side
is the integral with respect to the probability measure on the measurable space
R. In the right hand side of the equation, respect to the probability measure
normal_density μ σ x denotes the density function of Gauss distribution with
mean μ and standard deviation σ, and lborel denotes the Lebesgue measure7

on R.
The expectation for Bernoulli distribution is described as integral on the

quasi-Borel space of boolean in the similar way.
7 Strictly speaking, completion lborel is the Lebesgue measure.

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 67

lemma qbs_bernoulli_expectation:

assumes "0 ≤ p" "p ≤ 1"

shows "(
∫

Q x. f x ∂qbs_bernoulli p) = f True * p + f False * (1 - p)"

5 Verification Framework PPV in Isabelle/HOL

PPV consists of the language HPProg, logic PL, and program logic UPL. In this
section, we shallowly embed them on Isabelle/HOL.

5.1 Probabilistic Programming Language HPProg

HPProg is a functional probabilistic programming language used in PPV. The
types and expressions of HPProg are defined as follows.

T ::= unit | nat | bool | real | preal | T × T | T ⇒ T | P [T],
e ::= x | c | f | e e | λx.e | 〈e, e〉 | πi(e) | rec nat e e

| return e | bind e e | Bernoulli(e) | Gauss(e, e).

The type preal denotes the type of non-negative extended real numbers [0,∞],
and P [T] is the type of probability measures on T .

The typing rules of expressions are standard. We show selected rules.

Γ � e : T
Γ � return e : P [T]

Γ � e : P [T] Γ � f : T ⇒ P [T ′]
Γ � bind e f : P [T ′]

Γ � e : real
Γ � Bernoulli(e) : P [bool]

Γ � e : real Γ � e′ : real
Γ � Gauss(e, e′) : P [real]

The semantics of HPProg is based on the Moggi’s categorical denotational
semantics [25]. In the semantics, a type T is interpreted as a quasi-Borel space
�T � and a typed expression Γ � e : T is interpreted as a morphism �Γ � → �T � in
QBS. In contrast to measurable spaces, we can interpret function types, lambda
abstractions and function applications since QBS is Cartesian closed.

In Isabelle/HOL, the typing judgment is defined according to the semantics.

definition "hpprog_typing Γ e T ≡ e ∈ Γ →Q T"

Here, Γ →Q T denotes the set of all morphisms from Γ to T. Each typing rule
is obtained as a lemma. For instance, real constants and their typing rule are
formulated as follows.

definition hp_const :: "’a ⇒ ’env ⇒ ’a" where
"hp_const k ≡ (λenv. k)"

lemma hpt_realc:"Γ �t (hp_const (r :: real)) ;; IRQ"

The programs are written with de Bruijn indices [9], thus the variables are
distinguished by natural numbers. In the following examples, X,,Y denotes the
binary product of quasi-Borel spaces X and Y.

68 M. Hirata et al.

definition var1 :: "’a × ’b ⇒ ’b" where "var1 ≡ snd"

lemma hpt_var1: "Γ,,Z �t var1 ;; Z"

definition var2 :: "(’a × ’b) × ’c ⇒ ’b" where "var2 ≡ snd ◦ fst"

lemma hpt_var2: "Γ,,Z,,Y �t var2 ;; Z"

The lambda abstraction is currying according to the semantics.

definition "λt ≡ curry"

lemma hpt_abs:

assumes "Γ,,X �t t ;; T"

shows "Γ �t λt t ;; X ⇒Q T"

For instance, the judgments Γ, y : Y � (λx.x) y : Y and Γ �
(λμσ.Gauss(μ, σ)) : real ⇒ real ⇒ P [real] are written in our formalization as
follows.

lemma "Γ,, Y �t λt var1 $t var1 ;; Y"

lemma "Γ �t λt (λt (hp_normal var2 var1)) ;; IRQ ⇒Q IRQ ⇒Q Pt IRQ"

In the first lemma, the var1 in λt var1 is bound and the other var1 is free.

5.2 Assertion Logic PL

The logic PL is a higher-order logic for quasi-Borel spaces. The syntax of formulas
in PL is defined by

φ ::= (t = t) | (t < t) | � | ⊥ | φ ∧ φ | φ → φ | ∀x : T.φ | integrable t t

where t is an expression of HPProg or an expectation Ex∼t[t x]. We abbreviate
Ex∼t[(t′ x−Ex∼t[t′ x])2] to Vx∼t[t′ x] which denotes the variance. A PL judgment
has the form Γ | Ψ �PL φ, where Γ is a context, Ψ is a set of assumptions, and
φ is a conclusion. We show selected inference rules of PL.

φ ∈ Ψ
AX

Γ | Ψ �PL φ

Γ | Ψ �PL ψ → φ Γ | Ψ �PL ψ →E
Γ | Ψ �PL φ

Γ | Ψ �PL φ[t/x] Γ | Ψ �PL t = u
SUBST

Γ | Ψ �PL φ[u/x]

We extend the logic with the integrability in our formalization. Another dif-
ference is the treatment of an expectation Ex∼t[t x]. In the original PL, it is
defined through the σ-finite measure monad M on QBS. On the other hand,
in our version of PL, it is formulated directly by the integral on a quasi-Borel
space. The following are some of the inference rules related to integrability and
expectations.

Γ | Ψ �PL integrable μ f Γ | Ψ �PL integrable μ g

Γ | Ψ �PL Ex∼μ[f x] + Ex∼μ[g x] = Ex∼μ[f x + g x]

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 69

Γ � e : P [Y] Γ, y : Y � e′ : Z Γ � e′′ : Z ⇒ real

Γ | Ψ �PL Ex∼bind e (λy.return(e′))[e′′] = Ey∼e[e′′[e′/x]]

In the original PPV, PL/UPL judgments are interpreted with the category
Pred(QBS) of predicates over quasi-Borel spaces. However, we interpret
PL/UPL judgments as Isabelle/HOL’s predicates, because it is easier to formal-
ize and has the same mathematical meanings. The meaning of a PL judgment
Γ | Ψ �PL φ is that for any x ∈ �Γ � if Ψ x holds then ψ x holds. We formalize
PL judgments according to its semantics.

definition "hp_conjall Ψ ≡ (λenv. ∀ ϕ∈Ψ. ϕ env)"

definition "pl_der Γ Ψ ϕ ≡ (∀ x∈ qbs_space Γ. hp_conjall Ψ x −→ ϕ x)"

Inference rules in PL are formalized as lemmas.
lemma pl_ax:

assumes "ϕ ∈ Ψ"

shows "Γ | Ψ �PL ϕ"

lemma pl_impE:

assumes "Γ | Ψ �P L ψ −→P L ϕ"
and "Γ | Ψ �PL ψ"

shows "Γ | Ψ �P L ϕ"

lemma pl_expect_add:

assumes "Γ | Ψ �P L hp_integrable t e1"

and "Γ | Ψ �P L hp_integrable t e2"

shows "Γ | Ψ �P L hp_expect t (e1 +t e2) =P L

hp_expect t e1 +t hp_expect t e2"

As other formalization of higher-order logics, the axiom SUBST is formalized by
considering the predicate φ as a function.

lemma pl_subst:

assumes "ϕ = (λt. λk. ϕ’ k (t k))"

"Γ | Ψ �P L t =P L u" and "Γ | Ψ �P L ϕ t"

shows "Γ | Ψ �P L ϕ u"

We need to restrict the way the substitution applied with the first assumption.

5.3 Program Logic UPL

The PPV framework equips with the program logic UPL in the style of [1].
A UPL judgment has the form Γ | Ψ �UPL e : T | φ, where e is an HPProg
expression e and T is its type. The conclusion φ may refer to the special variable
r of type T that is used to refer to the value of e. The following rules are some
of the UPL inference rules.

Γ | Ψ �UPL e : T | ϕ1 Γ | Ψ �PL ϕ1[e/r] → ϕ2[e/r]
Γ | Ψ �UPL e : T | ϕ2

Γ | Ψ �UPL f : τ ⇒ σ | ∀x.φ′[x/r] → φ[r x/r] Γ | Ψ �UPL e : τ | φ′

Γ | Ψ �UPL f e : σ | φ[e/x]

The meaning of a UPL judgment Γ | Ψ �UPL e : T | φ is that Γ � e : T and
for any x ∈ �Γ � if Ψ x holds then ψ[e/r] x holds. UPL judgments are defined
according to its semantics.

70 M. Hirata et al.

definition hp_montecarlo :: "(’b × ’a qbs_prob_space) × (’a ⇒ real) ⇒
nat ⇒ real qbs_prob_space" where "hp_montecarlo ≡
hp_rec_nat (hp_return IRQ (hp_const 0))

(λt (λt (var1 >>=t

λt (var5 >>=t

λt (hp_return IRQ

(((var5 $t var1) +t var2 *t hp_real var4) /t
hp_real (hp_suc var4)))))))"

Fig. 3. Monte Carlo Approximation program, written in our formalization.

definition "Φmon ≡
{hp_const 0 <P L var5, var4 =P L hp_expect var2 var1, var3^t2 =P L hp_var

var2 var1, hp_integrable var2 var1, hp_integrable var2 (var1 *t var1)}"

lemma montecarlo_judgement:

",IRQ,,IRQ,,IRQ,,Pt X,,(X ⇒Q IRQ) | Φmon

UP L hp_montecarlo ;; INQ ⇒Q Pt IRQ

| λr. ∀ P L n ∈P LINQ. hp_const 0 <P L hp_const n

−→P L hp_prob (r $t hp_const n) {y. var5 ≤PL |hp_const y -t var4|t}t
≤P L (var3^t2 /t hp_real (hp_const n)) *t (hp_const 1 /tvar5^

t2)"

lemma montecalro_integrable:

",IRQ,,IRQ,,IRQ,,Pt X,,(X ⇒Q IRQ) | Φmon P L ∀ P L n ∈P LINQ.

hp_integrable (hp_montecarlo $t hp_const n) hp_id ∧P L

hp_integrable (hp_montecarlo $t hp_const n) (hp_id *t hp_id)"

Fig. 4. Weak law of large numbers and integrability, written in our formalization.

definition "upl_der Γ Ψ e T ϕ ≡
((Γ �t e ;; T) ∧ (∃ ϕ’. ϕ = (λt k. ϕ’ k (t k)))

∧ (∀ k∈qbs_space Γ. hp_conjall Ψ k −→ ϕ e k))"

As the axiom SUBST, we need the formula ∃ ϕ’. ϕ = (λt k. ϕ’ k (t k)) to
restrict the way the substitution is applied. The special variable r in a conclusion
is represented as the bound variable of Isabelle/HOL’s lambda expression. The
following is an example of UPL judgments, which is proved easily because 1 ≤
(r + r)[1/r].

lemma "Γ | Ψ �UPL hp_const 1 ;; INQ | λr. hp_const 1 ≤P L r +t r"

Each UPL rule is provided as lemma. The logic UPL is sound and complete with
respect to the logic PL.

Theorem 2 (Equi-derivability, [28, Theorem 6.1]). A judgment Γ | Ψ �PL

φ[e/r] is derivable in PL iff Γ | Ψ �UPL e : T | φ is derivable in UPL.

In Isabelle/HOL, the above completeness theorem is proved directly from the
definitions since we define the judgments semantically.

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 71

5.4 Verification of Monte Carlo Approximation

We have described the program of the Monte Carlo approximation in pseudocode
and explained what we have proved in Sect. 2. In this section, we explain how
we actually write the program and prove the PL and UPL judgments on it in
our formalization.

The program of the Monte Carlo approximation is defined in our formal-
ization as in Fig. 3. The program hp_montecarlo is a function from (’b × ’a

qbs_prob_space) × (’a ⇒ real), where the second and third components corre-
spond to the variables d and h in Fig. 1, respectively. Although they are obtained
by var2 and var1 in the global context, both appear as var5 in the program
because the indices are shifted by lambda abstractions. The extra context of
type ’b is used to accommodate ε, μ, and σ in the PL and UPL judgments of
Fig. 2. In those judgments, the program is a function from the following type:

((((unit × real) × real) × real) × ’a qbs_prob_space) × (’a ⇒ real)

where var3, var4, and var5 correspond to σ, μ, and ε, respectively.
We have first proved the PL judgment about integrability. This judgment is

required for applying linearity of expectation used in the proof of the main UPL
judgment. Then we have proved the main UPL judgment following the proof
outline shown in [28]. Both of judgments in Fig. 4 require similar equational
reasoning. There are no major difficulties in formalizing the proof. However, it
requires a large number of steps of equational reasoning. For instance, let us
consider the following equation appearing in the proof where i > 1.

Vy∼montecarlo(i−1)
=(λm.d
=(λx.return (1
i (h(x)+m(i−1)))))[y] = σ2/i

Although the pen and paper proof spends only 7 lines8, our formalization consists
of more than 100 steps. A proper support of simplification may greatly reduces
the number of steps which are manually conducted.

6 Conclusion

We have formalized quasi-Borel spaces and shallowly embedded a core part of the
framework PPV. Fundamental properties of the Monte Carlo approximation are
verified according to the proof outline shown in [28], although the proof in our
formalization is rather lengthy and it is cumbersome to reason about programs
written with de Bruijn indices. Our formalization contains around 13450 lines
(9600 lines for quasi-Borel spaces and 3850 lines for PPV) including blank lines
and comments.

There are two major future extensions of our formalized PPV. The first one
is the query command for conditional inference. To support the query com-
mand, we need to implement the σ-finite measure M on QBS. We are planning

8 It should be noted that the original proof does not include the discussion on inte-
grability.

72 M. Hirata et al.

to formalize it. We expect more efforts to formalize the σ-finite measure monad
M since there is no σ-finite measure monad on Meas while we have formal-
ized the probability monad P on QBS using the Giry monad on Meas in the
Isabelle/HOL library.

The second extension is the relational program logic. The original PPV con-
tains a relational program logic RPL. It allows us to reason about relational
properties of programs. For instance, we can prove a property of importance
sampling algorithm and a property of Gaussian mean learning using RPL. We
expect no essential difficulty to extend our formalization for RPL.

Acknowledgments. Minamide was supported by JSPS KAKENHI Grant Number
19K11899, and Sato was supported by JSPS KAKENHI Grant Number 20K19775.

References

1. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.Y.: A relational logic
for higher-order programs. Proc. ACM Program. Lang. 1(ICFP) (2017). https://
doi.org/10.1145/3110265

2. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. In:
Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 49–68. Springer, Heidelberg
(2006). https://doi.org/10.1007/11783596 6

3. Aumann, R.J.: Borel structures for function spaces. Ill. J. Math. 5(4), 614–630
(1961). https://doi.org/10.1215/ijm/1255631584

4. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the central limit the-
orem. J. Autom. Reason. 59(4), 389–423 (2017). https://doi.org/10.1007/s10817-
017-9404-x

5. Bagnall, A., Stewart, G.: Certifying the true error: machine learning in Coq with
verified generalization guarantees. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 2662–2669 (2019). https://doi.org/10.1609/aaai.
v33i01.33012662

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013)

7. Boldo, S., Clément, F., Faissole, F., Martin, V., Mayero, M.: A Coq formalization
of Lebesgue integration of nonnegative functions. Research Report RR-9401, Inria,
France (2021). https://hal.inria.fr/hal-03194113

8. Cock, D.: Verifying probabilistic correctness in Isabelle with pGCL. Electron. Proc.
Theor. Comput. Sci. 102, 167–178 (2012). https://doi.org/10.4204/eptcs.102.15

9. de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the church-rosser theorem. Inda-
gationes Mathematicae (Proceedings) 75(5), 381–392 (1972). https://doi.org/10.
1016/1385-7258(72)90034-0

10. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46669-8 4

11. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0092872

https://doi.org/10.1145/3110265
https://doi.org/10.1145/3110265
https://doi.org/10.1007/11783596_6
https://doi.org/10.1215/ijm/1255631584
https://doi.org/10.1007/s10817-017-9404-x
https://doi.org/10.1007/s10817-017-9404-x
https://doi.org/10.1609/aaai.v33i01.33012662
https://doi.org/10.1609/aaai.v33i01.33012662
https://hal.inria.fr/hal-03194113
https://doi.org/10.4204/eptcs.102.15
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/978-3-662-46669-8_4
https://doi.org/10.1007/BFb0092872

Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL 73

12. Goodman, N.D., et al.: Church: a language for generative models. In: Proceedings
of the 24th Conference in Uncertainty in Artificial Intelligence, UAI 2008, pp.
220–229. AUAI Press (2008)

13. Gordon, M.J.C., Melham, T.F.: Introduction to HOL (A Theorem Proving Envi-
ronment for Higher Order Logic). Cambridge University Press (1993)

14. Harrison, J.: The HOL Light theory of Euclidean space. J. Autom. Reason. 50,
173–190 (2013). https://doi.org/10.1007/s10817-012-9250-9

15. Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-
order probability theory. In: Proceedings of the 32nd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2017. IEEE Press (2017). https://doi.
org/10.1109/lics.2017.8005137

16. Hirata, M., Minamide, Y., Sato, T.: Quasi-Borel spaces. Archive of Formal Proofs
(2022). https://isa-afp.org/entries/Quasi Borel Spaces.html. Formal proof devel-
opment

17. Hölzl, J.: Markov processes in Isabelle/HOL. In: Proceedings of the 6th ACM
SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, pp. 100–111.
Association for Computing Machinery (2017). https://doi.org/10.1145/3018610.
3018628

18. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van
Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol.
6898, pp. 135–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22863-6 12

19. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 9

20. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in
HOL. Theor. Comput. Sci. 346(1), 96–112 (2005). https://doi.org/10.1016/j.tcs.
2005.08.005. Quantitative Aspects of Programming Languages (QAPL 2004)

21. Lester, D.R.: Topology in PVS: continuous mathematics with applications. In:
Proceedings of the Second Workshop on Automated Formal Methods, pp. 11–
20. AFM, Association for Computing Machinery (2007). https://doi.org/10.1145/
1345169.1345171

22. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 20

23. Mathematical Components. https://math-comp.github.io. Accessed 12 Dec 2021
24. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of measure theory and Lebesgue

integration for probabilistic analysis in HOL. ACM Trans. Embed. Comput. Syst.
12(1) (2013). https://doi.org/10.1145/2406336.2406349

25. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4. Selections from 1989 IEEE Sym-
posium on Logic in Computer Science

26. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

27. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

https://doi.org/10.1007/s10817-012-9250-9
https://doi.org/10.1109/lics.2017.8005137
https://doi.org/10.1109/lics.2017.8005137
https://isa-afp.org/entries/Quasi_Borel_Spaces.html
https://doi.org/10.1145/3018610.3018628
https://doi.org/10.1145/3018610.3018628
https://doi.org/10.1007/978-3-642-22863-6_12
https://doi.org/10.1007/978-3-642-22863-6_12
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1016/j.tcs.2005.08.005
https://doi.org/10.1016/j.tcs.2005.08.005
https://doi.org/10.1145/1345169.1345171
https://doi.org/10.1145/1345169.1345171
https://doi.org/10.1007/978-3-662-49498-1_20
https://math-comp.github.io
https://doi.org/10.1145/2406336.2406349
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26

74 M. Hirata et al.

28. Sato, T., Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Hsu, J.: Formal ver-
ification of higher-order probabilistic programs: reasoning about approximation,
convergence, Bayesian inference, and optimization. Proc. ACM Program. Lang.
3(POPL), 1–30 (2019). https://doi.org/10.1145/3290351

29. Ścibior, A., et al.: Denotational validation of higher-order Bayesian inference. Proc.
ACM Program. Lang. 2(POPL) (2017). https://doi.org/10.1145/3158148

30. The mathlib community: the lean mathematical library. In: Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2020, pp. 367–381. Association for Computing Machinery (2020). https://doi.org/
10.1145/3372885.3373824

31. Tristan, J.B., Tassarotti, J., Vajjha, K., Wick, M.L., Banerjee, A.: Verification of
ML systems via reparameterization (2020). https://arxiv.org/abs/2007.06776

32. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic
programming inference. In: Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics, pp. 1024–1032 (2014)

https://doi.org/10.1145/3290351
https://doi.org/10.1145/3158148
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2007.06776

Generating C

System Description

Oleg Kiselyov(B)

Tohoku University, Sendai, Japan

oleg@okmij.org

Abstract. Heterogeneous metaprogramming is using a generally higher-
level host language to generate code in a lower-lever object language. Its
appeal is taking advantage of the module system, higher-order functions,
data types, type system and verification tools of the host language to
quicker produce high-performant lower-level code with some correctness
guarantees.

We present two heterogeneous metaprogramming systems whose host
language is OCaml and object language is C. The first relies on off-
shoring : treating a subset of (MetaOCaml-generated) OCaml as a dif-
ferent notation for (a subset of) C. The second embeds C in OCaml
in tagless-final style. The systems have been used in several projects,
including the generation of C supersets OpenCL and OpenMP.

Generating C with some correctness guarantees is far less trivial than
it may appear, with pitfalls abound. Not coincidentally, the most subtle
ones accompany the introduction of variables into the code. Maintaining
the offshoring system has traps of its own. We expound the pitfalls we
have came across in our experience, and describe counter-measures.

1 Introduction

Generating C is an odd problem: at first glance, it is trivial and nothing to
write about. Beyond simple applications, however, complexity, traps, hazards
snowball. One may as well write code directly in C to start with, or use a
compiler.

Neither of these two choices may be palatable, especially in high-performance
computing (HPC). For one, high-performant code is often voluminous and
obscure – and hence hard to write directly by hand.1 It also has to be re-adjusted
for each new architecture and processor configuration. Hopes that an optimizing
compiler save us such trouble were dashed two decades ago: see [3] for expo-
sition and many references.2 The alternative to writing performant low-level
1 For an example, see the manually written high-performance BLAS code in https://

www.openblas.net/, e.g., dot-product https://github.com/xianyi/OpenBLAS/blob/
develop/kernel/x86 64/ddot.c and its kernel for a particular, already obso-
lete processor architecture https://github.com/xianyi/OpenBLAS/blob/develop/
kernel/x86 64/ddot microk sandy-2.c.

2 Furthermore, compiler-generated C code typically can only be executed within the
specific run-time environment and cannot be freely linked with other C code.

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 75–93, 2022.
https://doi.org/10.1007/978-3-030-99461-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_5&domain=pdf
http://orcid.org/0000-0002-2570-2186
https://www.openblas.net/
https://www.openblas.net/
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot.c
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot.c
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot_microk_sandy-2.c
https://github.com/xianyi/OpenBLAS/blob/develop/kernel/x86_64/ddot_microk_sandy-2.c
https://doi.org/10.1007/978-3-030-99461-7_5

76 O. Kiselyov

code by hand or to relying on a general-purpose compiler is code generation.
Being domain-specific, a generator may employ very profitable but not widely-
applicable expert knowledge and optimizations. Such code generation is being
increasingly used in HPC, becoming dominant in some areas: ATLAS [23] for
BLAS (Basic Linear Algebra Subroutines), FFTW [6] and SPIRAL [17] for FFT
and related transforms, Halide [18] for image filtering, Firedrake [19] for partial
differential equations using finite element method.

The present paper describes two orthogonal approaches for generating C
using OCaml, with some guarantees and convenience. We take OCaml as a rep-
resentative high-level language for writing generators, and C as a representa-
tive low-level language. The approaches extend to other languages (e.g., [21] for
LLVM IR).

The first (also historically, [5]) approach is offshoring: It is based on the idea
of generating simple OCaml code with certain correctness guarantees, and then
translating this subset of OCaml to C, preserving the guarantees. The second
approach is embedding C in OCaml as typed combinators, in tagless-final style
[2,8]. Both ensure the generated C code compiles without errors or warnings.
Both explore the metaphor of a subset of OCaml as a notation for C.

Offshoring is a particularly attractive idea – and has been implemented twice
before, see Sect. 5. There are also pitfalls and challenges, which may explain why
these implementations have become unmaintainable and are no longer available.
The current implementation of offshoring in BER MetaOCaml is done from
scratch, in complete re-design and re-thinking of the earlier implementations
to clearly expose and address the challenges and ensure maintainability. It has
been publicly available since 2018 (but privately, quite earlier) and used in several
Master and Bachelor projects, among others, for generating performant OpenCL
(GPGPU) [7] and OpenMP [1] code and for robot control code. Alas, there is
no published description.

Our Contributions. (i) Explicate the challenges in generating low-level (C) code,
many of which have only become clear from our experience; (ii) Present the
implementations of the two approaches, which are freely available and have been
used in practice, see Sect. 6; (iii) Describe how the two systems are designed to
address or mitigate the challenges.

We concentrate on offshoring, with which we have more experience. The
challenges and pitfalls are common to both approaches; the lessons learned with
offshoring have directly carried towards the tagless-final embedding.

There are two sorts of challenges we have encountered in designing and using
assured C code generation: technical and engineering.

Technically, the metaphor ‘simple OCaml as a notation for C’ does not actu-
ally hold: see, for example, control operators such as break, continue and goto,
as well as the general for and do-while loops, which have no analogue in OCaml
(Sect. 3.3). More subtly, and hence insidiously, is the difference between vari-
ables in C and variables of reference types in OCaml – which can easily lead to
the generation of type-correct but ill-behaving code (Sect. 3.4). These problems
make the embedding of C difficult, and all but doom offshoring.

Generating C System Description 77

The key idea reverberating throughout the paper is to keep the eyes on the
goal: expressing an algorithm in an efficient-to-execute way – which can be done
in a subset of C. For an example, see the manually written high-performance
C code in OpenBLAS,3 which is syntactically spartan. After all, C, as many
languages, is redundant, with many ways of expressing the same algorithm. Some
expressions may be more elegant or idiomatic – but we only care about efficiency.
Covering all of C and generating every its construct is hence explicitly not the
goal. A subset suffices, which is easier to put in correspondence with a subset of
OCaml.

Among the engineering challenges is the unexpected need for type inference
(Sect. 3.1), and, mainly, extensibility, Sect. 3.2. If a system is not easy to extend,
it falls into disuse. We should be able to support architecture-specific types of
C and its extensions (SIMD, CUDA, OpenMP, etc.) and generate code that
interacts with external libraries.

The next section reminds the straightforward C generation, and the reasons
one may quickly move beyond it. Section 3 describes the offshoring and its chal-
lenges, and Sect. 4 presents the tagless-final embedding of C. Section 6 briefly
evaluates the usefulness and adequacy of the approaches and compares them.

MetaOCaml (which includes offshoring) is available from Opam,4 among
other sources (the current version is N111). The complete code for all exam-
ples and the tagless-final embedding are available at http://okmij.org/ftp/meta-
programming/tutorial/0README.dr.

2 Prelude: Direct C Generation

What springs to mind when talking about code generation is directly emitting
the code as strings. It also quickly becomes apparent why some abstractions and
guarantees are desirable – as this section illustrates.

A notable example of directly emitting C code as strings is ATLAS [23]:
a generator of automatically tuned linear algebra routines, which “is often the
first or even only optimized BLAS implementation available on new systems
and is a large improvement over the generic BLAS”.5 Figure 1 shows a typical
snippet of ATLAS code, itself written in C and using fprintf to generate C code.
The variable spc is whitespace for indentation, and the variables rC, i, and j are
combined to name identifiers declared elsewhere. Nothing guarantees that these
identifiers are indeed all declared and the declarations are in scope – nor that
the result is syntactically well-formed. Even if a fprintf output is syntactically
correct, the presence of loops and branching in the generator makes it hard to
see that the overall generated code will be too. (It is also not at all obvious that
the generated code performs matrix multiplication.)

Syntactically incorrect generated code (as well as code with unbound vari-
ables, etc.) will certainly be discovered when trying to compile it. However,
3 https://www.openblas.net/.
4 https://opam.ocaml.org/.
5 https://en.wikipedia.org/wiki/Automatically Tuned Linear Algebra Software.

http://okmij.org/ftp/meta-programming/tutorial/0README.dr
http://okmij.org/ftp/meta-programming/tutorial/0README.dr
https://www.openblas.net/
https://opam.ocaml.org/
https://en.wikipedia.org/wiki/Automatically_Tuned_Linear_Algebra_Software

78 O. Kiselyov

Fig. 1. A snippet of ATLAS: generation of the inner loop body for matrix-matrix
multiplication

figuring out which part of the generator to blame and to fix is non-trivial –
as, e.g., [15] confirm from their experience of debugging unbound variables in
the generated code. Incidentally, the implementor of ATLAS himself is quite
frustrated:

“As you have seen, this note and the protocols it describes have plenty
of room for improvement. Now, as the end-user of this function, you may
have a naturally strong and negative reaction to these crude mechanisms,
tempting you to send messages decrying my lack of humanity, decency, and
legal parentage to the atlas or developer mailing lists. . . . So, the proper
bitch format involves

– First, thanking me for spending time in hell getting things to their
present crude state

– Then, supplying your constructive ideas”
(R. Clint Whaley: User contribution to ATLAS. Conclusion. 2012-07-10.
math-atlas.sourceforge.net/devel/atlas contrib/)

That is why some correctness assurances are needed.
What comes to mind next is a sort of an abstract syntax tree for C (several

of which are available just in OCaml, see Sect. 5 for details). The generator
then produces the tree data structure, which is pretty-printed into C code at
the end. The pretty-printing ensures the result syntactically well-formed – but
makes no further guarantees. One would have liked, at the very least, that the
generated code compiles without errors or warnings and contains no problematic
expressions, like the ones involving several increment operators. Full correctness
of the generated code is hard to assure; however, at least the above problems,
which often arise by misediting or typos, should be preventable.

3 Offshoring

As we have seen, emitting C code is better done not directly but through a
level of abstraction that provides some guarantees. Which guarantees is an engi-
neering decision, balancing against the ease of use and the implementation and
maintenance effort.

Generating C System Description 79

One particularly attractive balance is offshoring [5]: treating a subset of
OCaml as if it were a (non-canonical) notation for C. For example, consider
the following OCaml code for vector addition (a typical BLAS operation):

let addv = fun n vout v1 v2 → for i=0 to n−1 do vout.(i) ← v1.(i) + v2.(i) done

It is rather easy to imagine the C code it corresponds to:

void addv(int n, int∗ vout, int∗ v1, int∗ v2) {
int i;
for(i=0; i≤n−1; i++)

vout[i] = v1[i] + v2[i];
}

One may even argue [5] that OCaml’s addv is C’s addv, written in a different but
easily relatable way. Offshoring is the facility that realizes such correspondence
between a subset of OCaml and C (or other low-level language). With offshoring,
by generating OCaml we, in effect, generate C. Offshoring hence turns homoge-
neous metaprogramming into heterogeneous.

The first premise of offshoring is the ability to convert well-typed OCaml
code into C code that surely compiles, without errors or warnings. Paper [5]
formalized the OCaml subset-to-C translation and proved it type preserving.
Bussone has formally (in Coq) shown the meaning preservation of the offshoring
translation, in a yet unpublished work.6

The second premise is the ability to produce OCaml with some correctness
guarantees. It is fulfilled by MetaOCaml [9,11], which generates OCaml code that
surely compiles (meaning, i.a., it is well-typed and has no unbound variables).
We now illustrate how it is all put together, continuing the vector addition
example.7

Definition 1 (Generating C via offshoring).

1. implement the algorithm in OCaml
2. stage it (add staging annotations) and generate possibly specialized code

(a) test the generated OCaml code
3. convert the generated OCaml code to C, saving into a file
4. (a) compile and link the generated C code as ordinary C library code

(b) compile the generated C code and (dynamically) link into an OCaml pro-
gram, via an FFI such as [24].

Definition 1 presents the overall flow of offshoring. In our example, the first
step has already been accomplished, by addv above. The next step is to turn
it into a generator of OCaml vector addition, with the help of MetaOCaml’s
staging annotations – specifically, so-called brackets .< and >., which enclose the
code to generate, the code template:

6 Grègoire Bussone, private communication.
7 The complete code with tests and further examples is in offshore simple.ml of the

accompanying code.

80 O. Kiselyov

let addv staged =
.<fun n vout v1 v2 → for i=0 to n−1 do vout.(i) ← v1.(i) + v2.(i) done>.

The result of evaluating addv staged is

val addv staged : (int → int array → int array → int array → unit) code =
.<fun n 1 vout 2 v1 3 v2 4 →

for i 5 = 0 to n 1 − 1 do
Array.set vout 2 i 5 (Array.get v1 3 i 5 + Array.get v2 4 i 5)

done>.

It is a so-called code value: a value of the type t code that represents the gen-
erated OCaml expression, where t is its type. Code values can be printed. In
our case, the printout shows the original addv after desugaring and renaming of
all identifiers. Such code value is the outcome of Step 2 of offshoring. Passing
addv staged to the function offshore to c, to be explained in detail later, accom-
plishes Step 3 and produces a .c file with exactly the addv C code shown earlier.
It is an ordinary C code and can be linked with any C or other program that
needs vector addition. It can also be called from OCaml, via an FFI such as [24].

Real-life use of offshoring is more interesting. For example, suppose that the
size of vectors to add is known in advance, and is small enough to want to unroll
the loop in addv. The generator of unrolled code cannot be obtained from addv
merely by placing brackets; quite a few other modifications are required. It helps
to generalize addv first:

let addvg n vout v1 v2 = iota n |> List.iter (fun i → vout.(i) ← v1.(i) + v2.(i))

where iota n generates a list of integers 0 through n−1 and List.iter performs a
given action on each element of the list. We may stage it similarly to addv staged,
by enclosing everything in brackets:

let addvg staged full =
.<fun n vout v1 v2 → iota n |> List.iter (fun i → vout.(i) ← v1.(i) + v2.(i))>.

Passing this code value to offshore to c, however, results in an exception: this
code outside of domain of offshoring. It is not hard to see why: the argument of
List.iter is a first-class function, which cannot be simply represented in C. If the
array size n is known at the generation time, a different placement of brackets
becomes possible:

let addvg staged n =
.<fun vout v1 v2 → .˜(iota n |> iter seq (fun i → .<vout.(i) ← v1.(i) + v2.(i)>.))>.

where

let iter seq f = List.map f |> seq
let seq : unit code list → unit code = fun l → reduce (fun x y → .<.˜x; .˜y>.) l

Here, besides brackets we used the other staging annotation, .˜ (pronounced
‘escape’) that denotes a hole in the code template (bracketed expression), to be

Generating C System Description 81

filled by the code produced by the escaped expression. The function seq builds a
sequence of code values. Evaluating addvg staged 4 gives the fully unrolled code:

val addvg staged4 : (int array → int array → int array → unit) code =
.<fun vout 16 v1 17 v2 18 →

Array.set vout 16 0 ((Array.get v1 17 0) + (Array.get v2 18 0));
Array.set vout 16 1 ((Array.get v1 17 1) + (Array.get v2 18 1));
Array.set vout 16 2 ((Array.get v1 17 2) + (Array.get v2 18 2));
Array.set vout 16 3 ((Array.get v1 17 3) + (Array.get v2 18 3))>.

MetaOCaml offers the facility to compile and run this code, so we can test it on
sample 4-element arrays and compare the result with addv or addvg. It is easier
to test OCaml code, if not for other reason that the out-of-bound indexing into
an array results in an exception rather than undefined behavior.

Once we are satisfied that the generated OCaml code works, we pass it to
offshore to c obtaining:

void addv4(int ∗ vout 16,int ∗ v1 17,int ∗ v2 18)
{ (vout 16[0]) = (v1 17[0]) + (v2 18[0]);

(vout 16[1]) = (v1 17[1]) + (v2 18[1]);
(vout 16[2]) = (v1 17[2]) + (v2 18[2]);
(vout 16[3]) = (v1 17[3]) + (v2 18[3]);}

It is unsettling that addv can be easily staged and offshored to produce a for
loop but not an unrolled loop; addvg is the other way around. By generalizing
addvg a bit more:8

let addv abs vout v1 v2 = iter assign vout (zip with add v1 v2)

we not only express vector addition clearly but also, by appropriately instan-
tiating iter assign, zip with and add combinators, may generate from the same
expression a variety of programs (unrolled, not unrolled or partially unrolled
for-loop) and apply strip mining and scalar promotion optimizations. App. A
of the extended version of the paper, and addv.ml in the accompanying code
show the details. We indeed produce the code with the look and feel of the HPC
BLAS.9

As we have seen for addvg staged full, offshoring applies only to a small imper-
ative subset of OCaml. Therefore, offshoring is much simpler than an OCaml-
to-C compiler, which must deal with the full language and support closures, tail
recursion, GC, etc. None of this matters in offshoring, which hence produces
C code that does not need any special run-time. Albeit simple, the offshorable
subset of OCaml is adequate for numeric and embedded programming.

Although the offshorable subset is easy to define in theory (see [5]) it is hard
to express in types, especially in the extant OCaml type system. Therefore,
nothing actually prevents offshore to c from being applied to the code outside

8 see Sects. 4 and 5 of [10] for detailed explanation.
9 https://raw.githubusercontent.com/xianyi/OpenBLAS/develop/kernel/x86 64/

daxpy.c.

https://raw.githubusercontent.com/xianyi/OpenBLAS/develop/kernel/x86_64/daxpy.c
https://raw.githubusercontent.com/xianyi/OpenBLAS/develop/kernel/x86_64/daxpy.c

82 O. Kiselyov

the supported subset – in which case it throws an exception. It is not a sound-
ness problem: soundness is about C code, if successfully produced, being well-
formed and well-typed. The problem is that this exception is raised late, after
the code to offshore has all been generated. MetaOCaml (OCaml, actually) sup-
ports location information, which could be used to emit detailed error messages
(not implemented in the current version however). The best mitigation is to
generate OCaml code not via brackets and escapes but via further abstraction
layers (combinators), with OCaml type system enforcing abstraction – as shown
App. A.

As attractive the metaphor of OCaml as C is, upon close inspection it breaks
down, as the rest of Sect. 3 describes. Fortunately, it can eventually be held
together, by workarounds and the design of the library that implements, enforces
and steers towards the workarounds, and away from the problematic cases. As
our refrain goes, the goal is to express an algorithm in C efficiently, not to
generate idiomatic code and every C construct.

3.1 Type Inference

Looking closer at the earlier addv OCaml and the corresponding C code one
notices that the correspondence is not as straightforward as one may have ini-
tially thought: the OCaml code mentions no types, whereas in C any declaration,
of arguments and local variables, must be accompanied by their type. The need
for type inference is an unpleasant surprise.

Fortunately, a MetaOCaml compiler is an extension of an OCaml and hence
may use the OCaml type checker to infer types in the code to offshore. The
result is an OCaml compiler internal data structure typedtree: type-annotated
abstract syntax tree. Unfortunately, this data structure, and especially the type
representation, is rather difficult to deal with: for example, checking if a type
is int is not a simple pattern-match but requires a sequence of obscure and
undocumented internal compiler function calls.

For these reasons, the original implementation of offshoring [5] was tightly
integrated with the OCaml type checker. Since the type checker (including the
typedtree structure and often the type representation) notably change in every
release of OCaml, the original offshoring almost immediately became unmain-
tainable and was removed when porting MetaOCaml to OCaml 3.12, which
introduced especially many changes to the type checker.

The lesson was learned when resurrecting offshoring in BER MetaOCaml.
The new offshoring is disentangled as much as possible from the OCaml type
checker. The key idea is an intermediary language, Offshoring IR (Fig. 2), an
abstraction barrier between typedtree and the rest of offshoring. In terms of
Definition 1, Step 3 is hence split into two: converting the generated OCaml
code to the Offshoring IR, and pretty-printing this IR as C code. The function
offshore implements the first substep: takes the closed code value produced by
MetaOCaml, invokes the OCaml type checker to infer types, and converts the

Generating C System Description 83

resulting typedtree to the Offshoring IR. (The function’s first argument,
converters, is explained in Sect. 3.2). It raises an exception if the input is outside
the supported subset of OCaml. The function encapsulates all peculiarities of the
OCaml type checker. When OCaml internal data structures change, only that
function needs to be adjusted. It is engineered to be an ordinary library func-
tion, outside the OCaml compiler and using only what is exposed in compiler-libs
library. The offshoring function also enforces soundness side conditions, described
in Sect. 3.4.

Offshoring IR, Fig. 2, is a simple, typed, imperative language, with expres-
sions exp and statements cmd. The data structure proc t represents the complete
program, which is either a function returning a result or a procedure.

Continuing the example of vector addition from Sect. 3, the invocation
offshore (module DefaultConv) addv staged produces the following IR code:

Proc

([("n_1", TInt); ("vout_2", TArray1 TInt); ("v1_3", TArray1 TInt); ("v2_4", TArray1 TInt)],

For {id = "i_5"; ty = TInt;

lwb = Const (Const_int 0); upb = LocalVar ("n_1", TInt); step = Const (Const_int 1);

body =

FunCallC ("array1_set",

[LocalVar ("vout_2", TArray1 TInt); LocalVar ("i_5", TInt);

FunCall ("+",

[FunCall ("array1_get",

[LocalVar ("v1_3", TArray1 TInt); LocalVar ("i_5", TInt)]);

FunCall ("array1_get",

[LocalVar ("v2_4", TArray1 TInt); LocalVar ("i_5", TInt)])])])})

The translation from OCaml to OffshoringIR is really as straightforward as it
looks from the example.10 We see that in the IR, all identifier references and
declarations are type-annotated, which makes it easy to produce C declarations
later on. The local identifier names are all unique: courtesy of MetaOCaml.
Therefore, no shadowing may occur – and identifier declarations may safely be
lifted to a wider scope, which is sometimes necessary when emitting C, where
all declarations must occur at the beginning of a block.

Pretty-printing this Offshoring IR expression to C gives the code we have
seen in Sect. 3. The pretty-printing is straightforward, in this case (we describe
the complications later on). One may just as easily pretty-print the IR to other
low-level imperative language, such as Fortran or LLVM IR. Extensibility was
another design decision behind the IR.

3.2 Extensibility

The original offshoring [5] was not extensible at all: any change required recom-
piling of the entire MetaOCaml system. Extensibility is the must however. We
should be able to accommodate the ever increasing assortment of integer and
floating-point types of C as well as the short-vector types of various SIMD
extensions. The generated C code often needs to interact with external libraries:

10 That said, offshore does need to do some work: e.g., function application is repre-
sented in typedtree in a rather complex way, due to OCaml’s optional and named
arguments. The type representation is far more involved than mere TInt.

84 O. Kiselyov

Fig. 2. The intermediate language (IR) of offshoring (defined in offshoringIR.mli)

therefore, we have to generate calls to library functions and deal with their data
types. OpenCL/CUDA and OpenMP bring further challenges: generating prag-
mas, local and global annotations, and their own vector and scalar data types.
All these extensions in the target of offshoring have to be representatable in its
source, i.e., OCaml.

Generating C System Description 85

The current implementation of offshoring is designed for extensibility. Not
only it is an ordinary library, which can be changed and recompiled indepen-
dently of the MetaOCaml compiler. It is designed so that no recompilation should
be needed. We illustrate using the example of offshoring the code to print an
array of 32-bit floating-point numbers into a file. The example shows off calls to
external library functions (FILE i/o of C) with their own data types (the pointer
to the FILE structure), as well as dealing with 32-bit floating-point numbers with
no equivalent in OCaml (OCaml float corresponds to double in C). The exam-
ple is designed to answer some of the most frequently asked questions about
offshoring. The complete code accompanies the paper; Fig. 3 shows the salient
parts.

The first puzzle is how to generate OCaml code that represents calls to
external C functions and uses their data types – the functions that are not
generally callable from OCaml as they are. The answer is to define a module to
represent that external library: lines 1–11 of Fig. 3. For the purpose of offshoring,
all the library data types can be abstract and all functions dummy: we only need
their signatures.11 The type float32 (line 7) is the type of short floats, introduced
by the Offshoring IR interface as an alias to OCaml’s float and translated to
TFloat of OffshoringIR.12

With the module File stub in scope we may generate code. Lines 13–19 show
the result, the (well-typed) MetaOCaml code value. Passing it to offshore from
Fig. 2 ends in an exception however: “unknown type: file”. Indeed, the offshoring
library knows nothing about this data type. We need to tell it. First, we add
to the IR types the new base type TFile (meant to correspond to FILE of C).
As OffshoringIR.typ is an extensible data type, its extension is as simple as line
21. Defining the correspondence between the OCaml type File stub.file and the
just introduced TFile is the job of the converters module, whose implementa-
tion DefaultConv is provided by default. Lines 23–32 extend this module: line 25
maps File stub.file to TArray1 TFile (so that File stub.fopen matches fopen in the
C standard library). Lines 28–30 specify that the names in the File stub module
(namespace) are to be understood as OffshoringIR.KnownVar names: global iden-
tifiers. With thus set-up module Conv, offshoring succeeds and produces an IR
program, which can then be straightforwardly pretty-printed to C (offshore to c
combines the IR translation and pretty-printing). The result is shown at the end
of Fig. 3.

The grouping of C library functions and types as an OCaml module, in the
manner of File stub, has an unexpected benefit: C gets a module system, which
it never had.

11 If one plans to run the generated code as OCaml as well, e.g., for testing, one needs
the working implementation of File stub. The complete code of the running example
contains such an implementation, emulating C FILE i/o using OCaml i/o.

12 The original OCaml float is translated to TDouble.

86 O. Kiselyov

Fig. 3. Extensibility example, slightly abbreviated

Generating C System Description 87

3.3 Control Structures: Loops and Exits

One place where C and OCaml differ significantly is control structures. Although
while loop has the same syntax and meaning in both languages, do-while has no
analogue in OCaml. The for loop is present in both, but rather restricted in
OCaml: the loop variable must be an integer, stepping only by one, up or down.
Since loops with an arbitrary stride are common in HPC, the offshoring library
offers a workaround. It defines the function:

let forloop : int → int → int → (int → unit) → unit = fun lwb upb step body →
let rec loop i = if i ≥ upb then () else (body i; loop (i+step))
in loop lwb

It is an ordinary OCaml function and can be used as is, in OCaml and in the
generated code, e.g.:

let sum ar = .<fun arr n → let sum = ref 0 in
forloop 0 n 4 (fun i → for j=i to min (i+3) (n−1) do sum := !sum + arr.(j) done);

!sum>.

Its applications, however, are translated to OffshoringIR by a special rule, which
is better understood by looking at the result of translating the two nested loops
in sum ar:

For {id = ”i 4”; ty = TInt; lwb = Const (Const int 0); upb = LocalVar (”n 2”, TInt);
step = Const (Const int 4);
body = For {id = ”j 5”; ty = TInt; lwb = LocalVar (”i 4”, TInt);

upb = FunCall (”+”, [Const (Const int 1); FunCall (”min”, [. . .])]);
step = Const (Const int 1); body = FunCallC (”:=”, [. . .])}}

Pretty-printing the result as C for-loops is straightforward (see App. A).
The do-while can be supported similarly; however, it rarely occurs in prac-

tice – and it can always be converted to the ordinary while.
C also has break, continue, return and goto. In principle, one may define

dummy OCaml ‘functions’ like break : unit→unit, whose applications are pretty-
printed as C in a special way. The code with those functions can only be off-
shored, not executed as OCaml. Mainly, nothing prevents using such ‘functions’
outside loop bodies, hence breaking the guarantee that the result of offshoring
always compiles. A better idea is to introduce iteration combinators with an
early exit, like forloop above (Example: cloop in Appendix).

3.4 Pointers and References

The metaphor of OCaml as C is strained the most when it comes to variables. In
OCaml, names (variables) stand for values, which may be mutable-cell values.
In C, ordinary variables always denote inherently mutable memory locations.

At first, the difference does not seem insurmountable. Compare

let exr1 = fun y → let x = ref 0 in x := 1; incr x; !x + y

int exr1(int y) {int x; x = 0; x = 1; x++; return (x+y);}

88 O. Kiselyov

which suggests the correspondence in Table 1(a), to be used in offshoring. How-
ever, applying blindly this translation to

let exr2 = fun y → let x = ref 0 in let z = x in z := 42; !x + y

gives

int exr2(int y) {int x; int z; x = 0; z = x; z = 42; return (x+y);}
which has a very different meaning: in OCaml, exr2 0 returns 42, but in C, zero.

Table 1. Variables and pointers in OCaml vs. C (whereas in OCaml an introduced vari-
able is immediately bound to a value, in C we split the declaration from initialization,
because declarations have to be grouped at the beginning of a block.)

One modest proposal is to avoid ordinary mutable C variables completely –
relying on array references instead. An array name in C refers to a mutable
location, but itself is immutable – just like an OCaml variable of a reference
type. The proposed translation is summarized in Table 1(b). With it, OCaml’s
exr1 and exr2 are translated into

int exr1 alt(int y) {int x[1]; ∗x = 0; ∗x = 1; (∗x)++; return (∗x+y);}
int exr2 alt(int y) {int x[1]; int ∗ z[1]; ∗x = 0; ∗z = x; ∗∗z = 42; return (∗x+y);}

The translation results in highly un-idiomatic C, but it compiles to the same
machine code (gcc 8.2.2 -O2, x86 64): The efficiency does not suffer.

Although the proposal is attractive, BER MetaOCaml N111 implements a
more conservative approach: using Table 1(a) but with side conditions that pro-
hibit aliasing. (These side-conditions are used already in [5] but not described
explicitly. They can be gleaned from typing rules in App. A2 of that paper.) That
is, in the type t ref, t must be a base type, and the RHS of a let-expression must
not be an expression of a ref-type, with an exception of ref e. In other words,
when binding a reference-type OCaml variable, it should be clear, syntactically,
that the mutable-cell value is fresh. The function offshore that translates OCaml
to OffshoringIR checks these side conditions, raising an exception if they are vio-
lated. Although the side-conditions seem severe, (for example, preventing incr x,
which has to be written as x:=!x+1; both result in the same machine code how-
ever), from our experience generating (mostly numeric) code, they do not seem
overly restrictive.

Generating C System Description 89

4 Tagless-Final Embedding

A different way to generate C from OCaml is to embed it in OCaml, in tagless-
final style [2,8]. This embedding is emphatically different from the mere repre-
sentation of C AST in OCaml (Sects. 2, 5): the latter gives no assurances about
well-typedness, absence of unbound variables or unexpected shadowing. Tagless-
final embedding makes such assurances and hence guarantees that the generated
C code compiles without errors or warnings.

In the tagless-final style, the embedded language is represented as a (multi-
sorted) algebra whose operations are the syntactic forms of the language. The fol-
lowing collection of operations (an OCaml signature) represents a simple imper-
ative language (not unlike the Offshoring IR, Fig. 2): a simple subset of C.

type α cde (∗ Abstract type of code ∗)

val int : int → int cde
val (+) : int cde → int cde → int cde
val (=) : int cde → int cde → bool cde
val if : bool cde → unit cde → unit cde → unit cde

val seq : unit cde → α cde → α cde
val for : int cde → int cde → (int cde → unit cde) → unit cde
val while : bool cde → unit cde → unit cde

val newref : α cde → (α ref cde → ω cde) → ω cde
val dref : α ref cde → α cde
val (:=) : α ref cde → α cde → unit cde
val array get’ : α array cde → int cde → α cde
val array set : α array cde → int cde → α cde → unit cde

The body of the vector addition procedure (cf. addv staged in Sect. 3 and espe-
cially its result) has then the form

for (int 0) (n − int 1) @@ fun i →
array set vout i ((array get’ v1 i) + (array get’ v2 i))

(given n, vout, v1, and v2 in scope). This OCaml expression, of the type unit cde,
clearly describes the for-loop of the vector addition. Once again we use OCaml as
a metaphor for C. The embedding is typed: t cde represents a C code expression
(or statement, for unit cde) of C type t. The type of while , for example, ensures
that the loop condition is a comparison or dereference expression, and the loop
body is a statement. A well-typed OCaml expression over the above signature
thus represents well-typed C code.

An implementation of signature may realize α cde as string, of C code. Then
while builds the code of while-loop from the code for loop condition and loop
body. (The actual implementation uses the C AST, Sect. 5, pretty-printed at the
end). Given an appropriate function header the above sample produces the code
that looks quite like the addv C code in Sect. 3.

90 O. Kiselyov

More extensive signature is in Appendix; it has been used in practice to
generate stream-processing code. More operations can be added at any time:
extensibility is the strongest point of the tagless-final style.

There are also complications, not unlike the ones described for offshoring.
For example, newref can be used at several types, inferred by OCaml. Gener-
ating C variable declarations needs a run-time representation of that inferred
type. Unlike offshoring, we implement our own inference (which is simple for a
first-order language), relying on the OCaml type system to ensure OCaml’s and
our run-time types agree. The implementation also enforces side-conditions in
Sect. 3.4. Another challenge is the handling of local variables, which in C have
to be all declared at the beginning of a block. The salient points of the imple-
mentation are summarized in App. B.13 The accompanying code also shows the
advanced example in App. A implemented in the tagless-final style.

This approach can be traced back to C-code–generating combinators in [3].
Those combinators were monomorphic, and the explicit passing of the C variable
environment made them ungainly: Compare [3, Fig. 18]

gen inst (gen assign y (gen add (lvrv x) (gen int cst 3))) env

with y := x + int 3 in our approach. Ensuring well-scoping of the C code was
also the responsibility of a programmer, to pass the environment env in the
disciplined way.

5 Related Work

Offshoring was first proposed in [5], which we have discussed already. Its imple-
mentation is no longer available. Asuna [22] was an attempt to resurrect off-
shoring and extend to SIMD extensions, parallelism and LLVM. The paper pre-
sented a few applications of offshoring HPC kernels, with few details about the
implementation. Curiously the paper does not mention any restrictions on let-
bindings in the source language (raising doubts about correctness). The imple-
mentation has not been available.

KreMLin [16] introduces Low*, a subset of F* that is easily mapped to a
small subset of C. Because F* is a dependently-typed language, one may state
and verify sophisticated correctness properties (including functional correctness).
The paper proves that the mapping preserves not just typing but also semantics
and side-channel resistance. Like in offshoring, the translatable subset of F*
is not easy to state in types; therefore, C code extraction (‘offshoring’) is best
effort. Also related is C code extraction from constructive Coq proofs – although
Coq is quite harder to program in; it is also harder to control the form of the
produced C code and ensure high performance.

Among other heterogeneous metaprogramming system we should mention
MetaHaskell [13], LMS [20] and Terra [4] (which offers weak guarantees: it does
not assure the absence of unbound variables).
13 Lack of space precludes the description of performing online partial evaluation and

generating not only C but also OCaml (and flowcharts, WASM, etc.) from the same
tagless-final expression.

Generating C System Description 91

FrontC by Hugues Cassé defines the abstract syntax for C, as an OCaml
data structure, and includes the parser and the pretty-printer. It is used (with
significant modifications) in CIL (C Intermediate Language)14 [14] and Binary
Analysis Platform.15 Our abstract C syntax (produced by combinators in Sect. 4)
is heavily influenced by Cassé’s, but re-written from scratch. FrontC is developed
to represent any existing C program (so to analyze it). We are interested only
in C generation, and so chose a small but just as expressive and ‘sane’ subset of
C – quite in the spirit of CIL but with different design choices: In our subset, a
declaration introduces only one variable. Mainly, we distinguish statements and
expressions, and regard assignment and increment as statements. Therefore, such
C constructions as x=y=0 and --x * y++ are not representable in our abstract
syntax and hence never produced.

6 Evaluation and Conclusions

We have presented two implemented approaches for generating high-performance
C code that compiles without errors or warnings and can be freely linked with
other C libraries. Offering correctness guarantees requires generator abstractions,
which is a challenge to design and maintain. We have described the notable
problems we experienced and the ways we mitigated them. One of the main
problems turns out maintainability. The current systems are explicitly designed
to be extensible and to last.

Offshoring was used in [1] to generate OpenMP matrix-matrix multiplica-
tion code that is faster, sometimes 2×, than the state of the art BLAS code
generated by ATLAS; tuning was also faster. In [7] offshoring has generated
GPGPU (OpenCL) matrix-matrix multiplication and k-means clustering code.
The tagless-final approach is used in the new version of [12], e.g., to generate C
code for the FM radio application (∼3,000 lines of code). Both approaches thus
proved adequate for their intended tasks.

The two approaches share the metaphor of OCaml as C: representing a small
imperative language (a subset of C) in the form of OCaml expressions. One
approach (offshoring) relies on MetaOCaml, thus offering a better syntax for
loops and control structures, let-insertion and type inference. The other approach
uses the bare OCaml and is more portable and extensible.

The future work involves proving the meaning preservation, designing let-
insertion for tagless-final embedding, and emitting better error messages.

Acknowledgments. We thank anonymous reviewers for many, helpful comments and
suggestions. This work was partially supported by JSPS KAKENHI Grants Number
18H03218, 17K12662 and 21K11821.

14 http://cil-project.github.io/cil/doc/html/cil/cil001.html.
15 https://githubhelp.com/BinaryAnalysisPlatform/bap.

http://cil-project.github.io/cil/doc/html/cil/cil001.html
https://githubhelp.com/BinaryAnalysisPlatform/bap

92 O. Kiselyov

References

1. Bussone, G.: Generating OpenMP code from high-level specifications, August 2020.
Internship report to ENS

2. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009)

3. Cohen, A., Donadio, S., Garzarán, M.J., Herrmann, C.A., Kiselyov, O., Padua,
D.A.: In search of a program generator to implement generic transformations for
high-performance computing. Sci. Comput. Program. 62(1), 25–46 (2006)

4. DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., Vitek, J.: Terra: a multi-stage
language for high-performance computing. In: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2013, Seattle, WA, USA,
16–19 June 2013, pp. 105–116. ACM (2013)

5. Eckhardt, J., Kaiabachev, R., Pasalic, E., Swadi, K.N., Taha, W.: Implicitly het-
erogeneous multi-stage programming. N. Gener. Comput. 25(3), 305–336 (2007)

6. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

7. Hirohara, K.: Generating GPU kernels from high-level specifications using Meta-
OCaml, February 2019. Tohoku University, Master Thesis, in Japanese

8. Kiselyov, O.: Typed tagless final interpreters. In: Gibbons, J. (ed.) Generic and
Indexed Programming. LNCS, vol. 7470, pp. 130–174. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32202-0 3

9. Kiselyov, O.: The design and implementation of BER MetaOCaml. In: Codish,
M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 86–102. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07151-0 6

10. Kiselyov, O.: Reconciling Abstraction with High Performance: A MetaOCaml App-
roach. Foundations and Trends in Programming Languages, Now Publishers (2018)

11. Kiselyov, O.: BER MetaOCaml N111, October 2020. http://okmij.org/ftp/ML/
MetaOCaml.html

12. Kiselyov, O., Biboudis, A., Palladinos, N., Smaragdakis, Y.: Stream fusion, to
completeness. In: Conference Record of the Annual ACM Symposium on Principles
of Programming Languages, POPL 2017, pp. 285–299. ACM Press, New York,
January 2017

13. Mainland, G.: Explicitly heterogeneous metaprogramming with MetaHaskell. In:
ICFP, pp. 311–322. ACM Press, New York (2012)

14. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 16

15. Ofenbeck, G., Rompf, T., Püschel, M.: RandIR: differential testing for embedded
compilers. In: Biboudis, A., Jonnalagedda, M., Stucki, S., Ureche, V. (eds.) Pro-
ceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH 2016,
pp. 21–30. ACM, 30 October–4 November 2016

16. Protzenko, J., et al.: Verified low-level programming embedded in F*. Proc. ACM
Program. Lang 1(ICFP), 17:1–17:29 (2017)

17. Püschel, M., et al.: SPIRAL: code generation for DSP transforms. Proc. IEEE
93(2), 232–275 (2005)

https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-319-07151-0_6
http://okmij.org/ftp/ML/MetaOCaml.html
http://okmij.org/ftp/ML/MetaOCaml.html
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16

Generating C System Description 93

18. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.P.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: Boehm, H.J., Flanagan, C. (eds.) ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2013, pp. 519–530. ACM, June 2013

19. Rathgeber, F., et al.: Firedrake: automating the finite element method by com-
posing abstractions. ACM Trans. Math. Softw. 43(3) (2016). https://www.
firedrakeproject.org/

20. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. Commun. ACM 55(6), 121–130
(2012)

21. Takashima, N., Kiselyov, O., Kameyama, Y.: MetaOCaml as a high-level LLVM
macro. In: Japan Society for Software Science and Technology (JSSST), 31st
Annual Meeting, September 2014 (2014). (in Japanese)

22. Takashima, N., Sakamoto, H., Kameyama, Y.: Generate and offshore: type-safe and
modular code generation for low-level optimization. In: Proceedings of the ACM
SIGPLAN Workshop on Functional High-Performance Computing, FHPC@ICFP
2015, Vancouver, BC, Canada, 3 September 2015, pp. 45–53. ACM (2015)

23. Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in sup-
porting persistently optimized BLAS. Softw.-Pract. Experience 35(2), 101–121
(2005)

24. Yallop, J., Sheets, D., Madhavapeddy, A.: A modular foreign function interface.
Sci. Comput. Program. 164, 82–97 (2018)

https://www.firedrakeproject.org/
https://www.firedrakeproject.org/

Translation Certification for Smart
Contracts

Jacco O.G. Krijnen1(B) , Manuel M. T. Chakravarty2, Gabriele Keller1 ,
and Wouter Swierstra1

1 Utrecht University, Utrecht, The Netherlands
{j.o.g.krijnen,g.k.keller,w.s.swierstra}@uu.nl

2 IOHK, Singapore, Singapore
manuel.chakravarty@iohk.io

Abstract. Compiler correctness is an old problem, but with the emer-
gence of smart contracts on blockchains that problem presents itself in
a new light. Smart contracts are self-contained pieces of software that
control (valuable) assets in an adversarial environment; once commit-
ted to the blockchain, these smart contracts cannot be modified. Smart
contracts are typically developed in a high-level contract language and
compiled to low-level virtual machine code before being committed to the
blockchain. For a smart contract user to trust a given piece of low-level
code on the blockchain, they must convince themselves that (a) they are
in possession of the matching source code and (b) that the compiler has
correctly translated the source code to the given low-level code.

Classic approaches to compiler correctness tackle the second point. We
argue that translation certification also squarely addresses the first. We
describe the proof architecture of a novel translation certification frame-
work, implemented in Coq, for a functional smart contract language. We
demonstrate that we can model the compilation pipeline as a sequence of
translation relations that facilitate a modular verification methodology
and are robust in the face of an evolving compiler implementation.

1 Introduction

Compiler correctness is an old problem that has received renewed interest in the
context of smart contracts—that is, compiled code on public blockchains, such as
Ethereum or Cardano. This code often controls a significant amount of financial
assets, must operate under adversarial conditions, and can no longer be updated
once it has been committed to the blockchain. Bugs in smart contracts are a
significant problem in practice [5]. Recent work has also established that smart
contract language compilers can exacerbate this problem [26, Section 3] (in this
case, the Vyper compiler). More specifically, the authors report (a) that they
did find bugs in the Vyper compiler that compromised smart contract security
and (b) that they performed verification on generated low-level code, because
they were wary of compiler bugs.

Hence, to support reasoning about smart contract source code, we need to
get a handle on the correctness of smart contract compilers. On top of that, we
c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 94–111, 2022.
https://doi.org/10.1007/978-3-030-99461-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_6&domain=pdf
http://orcid.org/0000-0002-1840-472X
http://orcid.org/0000-0003-1442-5387
http://orcid.org/0000-0002-0295-7944
https://doi.org/10.1007/978-3-030-99461-7_6

Translation Certification for Smart Contracts 95

do also need a verifiable link between the source code and its compiled code
to prevent code substitution attacks, where an adversary presents the user with
source code that doesn’t match the low-level code committed on-chain.

In this paper, we are reporting on our ongoing effort to develop a certification
engine for the open-source on-chain code compiler of the Plutus smart contract
system1 for the Cardano blockchain.2 Specifically, we make the following contri-
butions:

– We describe a novel architecture for a translation certifier based on translation
relations, which enables us to generate translation certificates—proof objects
that relate the source code to the resulting compiled code and establish the
correctness of the translation (Sect. 2).

– We provide formal definitions for the transformation passes that step-by-step
translate PIR (Plutus Intermediate Representation) to PLC (Plutus Core)
and briefly discuss the challenges associated with the certification of each of
these passes (Sect. 3).

– We present a summary of existing approaches to compiler correctness and
discuss the importance of generating translation certificates in the domain of
smart contracts (Sect. 4).

We also evaluate how our approach to gradual certification copes with changes
to the compiler, which is being developed in an independent open source project.
Finally, we discuss related work in Sect. 5 and future work in Sect. 6.

2 The Architecture of the Certifier

On-chain code in the Plutus smart contract system is written in a subset of
Haskell called Plutus Tx [18]. The Plutus Tx compiler is implemented as a
plugin for the widely-used, industrial-strength GHC Haskell compiler, combining
large parts of the GHC’s compilation pipeline with custom translation steps to
generate Plutus Core. In this context, it seems infeasible to apply full-scale
compiler verification à la CompCert [21]. We will therefore outline the design of
a certification engine that, using the Coq proof assistant [6,9], generates a proof
object, a translation certificate, asserting the validity of a Plutus Core program
with respect to a given Plutus Tx source contract. In addition to asserting the
correct translation of this one program, the translation certificate serves as a
verifiable link between source and generated code.

We model the compiler as a composition of pure functions that transform
one abstract syntax tree into another. Figure 1 illustrates the architecture for a
single transformation, where the grey area marks the compiler implementation as
a function fi : ASTi → ASTi+1. We use a family of types ASTi to illustrate that
the representation of the abstract syntax might change after each transformation.

1 https://developers.cardano.org/docs/smart-contracts/plutus/.
2 http://cardano.org is, at the time of writing, the 5th largest public blockchain by

market capitalisation.

https://developers.cardano.org/docs/smart-contracts/plutus/
http://cardano.org

96 J. O. G. Krijnen et al.

Fig. 1. Architecture for a single compiler pass. The grey area (left) represents the
compiler, orange (center) and blue (right) represent the certification component in
Coq. (Color figure online)

To support certification, the compiler outputs each intermediate tree ti, so
that we can parse these in our Coq implementation of the certifier. Within Coq,
we define a high-level specification of each pass. We call this specification a
translation relation: a binary relation on abstract syntax trees that specifies the
intended behaviour of the compiler pass. The orange area in Fig. 1 displays the
translation relation Ri of pass i, where the vertical dashed line indicates that
Ri(ti, ti+1) holds. To establish this, we define a search procedure that, given two
subsequent trees produced by the compiler, can construct a derivation relating
the two.

The translation relation is purely syntactic—it does not assert anything
about the correctness of the compiler—but rather specifies the behaviour of
a particular compiler pass. To verify that the compilation preserves language
semantics requires an additional proof, the blue area in Fig. 1, that establishes
that any two terms related by Ri have the same semantics.

We have implemented this approach for a range of concrete passes of the
Plutus Tx compiler. To illustrate our approach in this section, we will use an
untyped lambda calculus, extended with non-recursive let-bindings.

t :: = x | λx. t | t t | let x = t in t

In the following section, we will extend this to a lambda calculus that is closer
to the intermediate language used by the Plutus Tx compiler.

2.1 Characterising a Transformation

To assert the correctness of a single compiler stage fi, we begin by defining
a translation relation Ri on a pair of source and target terms ti and ti+1,

Translation Certification for Smart Contracts 97

Γ(x) = t′ Γ � t′ � t
[Inline-Var1]

Γ � x � t

[Inline-Var2]
Γ � x � x

Γ � t1 � t′
1 (x, t1), Γ � t2 � t′

2
[Inline-Let]

Γ � let x = t1 in t2 � let x = t′
1 in t′

2

Γ � t1 � t′
1 Γ � t2 � t′

2 [Inline-App]
Γ � t1 t2 � t′

1 t′
2

Γ � t1 � t′
1 [Inline-Lam]

Γ � λx.t1 � λx.t′
1

Fig. 2. Characterisation of an inliner

respectively. This relation characterises the admissible translations of that com-
piler stage. That is, for all ti, ti+1, we have fi(ti) = ti+1 implies Ri(ti, ti+1).

As a concrete example, consider an inlining pass. We have characterised this
as an inductively defined relation in Fig. 2. Here, Γ � s � t asserts that program
s can be translated into t given an environment Γ of let-bound variables, paired
with their definition. According to Rule [Inline-Var1] the variable x may be
replaced by t when the pair (x, t′) can be looked up in Γ and t′ can be translated
to t, accounting for repeated inlining. The remaining rules are congruence rules,
where Rule [Inline-Let] also extends the environment Γ . We omitted details about
handling variable capture to keep the presentation simple: hence, we assume that
variable names are globally unique.

Crucially, these rules do not prescribe which variable occurrences should be
inlined, since the [Inline-Var1] and [Inline-Var2] rules overlap. The choice in the
implementation of the pass may rely on a complex set of heuristics internal to
the compiler. Instead, we merely define a relation capturing the possible ways
in which the compiler may behave. This allows for a certification engine that is
robust with respect to changes in the compiler, such as the particular heuristics
used to decide when to replace a variable with its definition or not.

We can then encode the relation · � · � · in Coq as an inductive type Inline,
which is indexed by an environment and two ASTs, as shown in Fig. 3. This
type corresponds closely to the rules of Fig. 2: we define exactly one construc-
tor per rule. However, there are some small differences. Since we cannot omit
details about variable capture anymore, we choose a de Bruijn representation
for variables and implement the environment Γ as a cons-list. In the Inline_Let
constructor, we extend the list with the bound term and furthermore shift
free variables in the other bound terms. For a let-bound variable n, its cor-
responding bound term can then be found at the n’th position in the list using
Coq’s nth_error list-indexing function. For this indexing to work properly, the

98 J. O. G. Krijnen et al.

Inductive binding :=

| LetBound : term -> binding

| LambdaBound : binding.

Inductive Inline : list binding -> term -> term -> Type :=

| Inline_Var_1 : forall {env n t},

nth_error env n = Some (LetBound t) ->

Inline env (Var n) t

| Inline_Var_2 : forall {env n},

Inline env (Var n) (Var n)

| Inline_Let : forall {env s t s' t'},

Inline env s s' ->

Inline (LetBound s :: shiftEnv env) t t' ->

Inline env (Let s t) (Let s' t')

| Inline_Lam : forall {env s t},

Inline (LambdaBound :: shiftEnv env) s t ->

Inline env (Lam s) (Lam t)

| Inline_App : forall {env s sx t tx},

Inline env s t -> Inline env sx tx ->

Inline env (App s sx) (App t tx)

.

Fig. 3. Characterisation of an inliner in Coq

environment also has to be extended at every lambda, as seen in Inline_Lam.
We distinguish the two types of binding sites with the type binding.

These inductive types implement the translation relation: its inhabitants are
proof derivations which will be a key ingredient of a compilation certificate.

2.2 Proof Search

After defining a translation relation Ri characterising one compiler stage, we now
define a decision procedure to construct a proof that for two particular terms ti
and ti+1, produced by a run of the compiler, the relation Ri(ti, ti+1) holds. To
find and implement such a search procedure, we generally follow these steps:

1. We write proofs for specific compilations by hand using Coq’s tactics, a form
of metaprogamming. For simple relations, like the inline example sketched
above, a proof can often be found with a handful of tactics such as auto or
constructor. This is particularly useful for debugging the design of our rela-
tions describing compiler passes. The drawback of this approach is, however,
that it is difficult to reason when such proof search may fail. Furthermore,
proofs written using such tactics quickly become slow for large terms.

Translation Certification for Smart Contracts 99

2. Once we are sufficiently confident that a relation accurately captures admissi-
ble compiler behaviour, we write a decision procedure of the form forall (t1
t2 : term), option (R t1 t2). These procedures can still produce large
proof terms and may not always successfully construct a proof, but they form
a useful intermediate step towards full-on proof by reflection.

3. Finally, we write a boolean decision procedure in the style of ssreflect [17] of
type term -> term -> bool, together with a soundness proof stating that
it will only return true when two terms are related through Ri. Verifying
such boolean functions for complex compilation passes is non-trivial; hence,
we only invest the effort once we have a reasonable degree of confidence that
the relation we have defined accurately describes a given compiler pass.

2.3 Semantics Preservation

Given the relational specification of each individual compiler pass, we can now
establish the correctness properties for each pass. In the simplest case, this could
be asserting the preservation of a program’s static semantics, i.e., a proof of
type preservation. On the other end of the spectrum, we can demonstrate that
the translated term is semantically equivalent to the original program. Proving
such properties for PIR and Plutus Core passes, however, requires advanced
techniques such as step-indexed logical relations [2], which go beyond the scope
of the current paper.

In Fig. 1, we denote Ri’s correctness properties in the blue area by means of
an abstract binary relation ∼i on the semantic objects �ti�i of ASTs ti. In the
case of static semantics, we can choose typing derivations as semantic objects,
and (for most passes) relate these by simply comparing types syntactically.

We can construct these proofs independently and gradually for each step
in the translation. In fact, even without any formal proof about the seman-
tics, inspection of the (relatively concise) definition of a translation relation may
already provide some degree of confidence that the translation step was per-
formed correctly. After all, the translation relation asserts the specification of
this compiler pass’ admissible behaviour.

2.4 Certificate Generation

A complete translation certificate includes at least the entire set of ASTs
t1, . . . , tn together with a proof term witnessing the translation relations of
type R1(t1, t2) ∧ . . . ∧ Rn−1(tn−1, tn). In addition, any semantic preserva-
tion results on translation relations can be instantiated and included as a proof
of �ti� ∼i �ti+1�.

Together with the source and compiled program, one can now independently
check the certificate using a trusted proof checker, such as the Coq kernel [9]. The
definitions of the abstract syntax, translation relations and semantic preservation
can be inspected to confirm that the certificate proves the right theorem. One
can then be confident that the compiled program is a faithful translation of the
source code.

100 J. O. G. Krijnen et al.

t ::= x | λ(x : τ). t | t t variable, lambda, function application

| Λ(α : κ). t | t {τ} type abstraction, type application

| letsr x = t in t term bindings

| data T α = Ci τi with x in t datatype binding

r ::= rec | nonrec recursion type of binding

s ::= strict | nonstrict strictness of binding

τ ::= . . . types

Fig. 4. Simplified PIR

3 Translation Relations of the Plutus Tx Compiler

The Plutus Tx compiler translates Plutus Tx (a subset of Haskell) to Plutus
Core, a variant of System Fμ

ω [13]. The Plutus Core code is committed to the
Cardano blockchain, constituting the definitive reference to any deployed smart
contract.

Plutus Core programs are pure, self-contained functions (i.e., they do not
link to other code) and are passed a representation of the transaction whose
validation they contribute to. The programs are run by an interpreter during
the transaction validation phase of the blockchain.

The Plutus Tx compiler reuses parts of the GHC infrastructure and imple-
ments its custom passes by installing a core-to-core pass plugin [15] in the GHC
compiler pipeline. On a high level, the compiler comprises three steps:

1. The parsing, type-checking and desugaring phases of GHC are reused to trans-
late a surface-level Haskell program into a GHC Core program.

2. A large subset of GHC Core is directly translated into an intermediate lan-
guage named Plutus Intermediate Representation (PIR). These languages are
similar and both based on System F, with some extensions. Additionally, all
referred definitions are included as local definitions so that the program is
self-contained.

3. The PIR program is then transformed and compiled down into Plutus Core.

The certification effort reported here focuses on Step 3, which consists of several
optimisation passes and translation steps. PIR is a superset of the Plutus Core
language: it adds several conveniences, such as user-defined datatypes, strict and
non-strict let-bindings that may be (mutually) recursive. The compilation steps
translate these constructs into simpler language constructs.

In Fig. 4 we present a simplified version of the PIR syntax, where we omit
some constructs for the sake of presentation. The full PIR language specification
has been formalised elsewhere [13,19]. In particular, we ignore the fact that in
PIR, let-bindings may contain a group of (mutually recursive) bindings. Simi-
larly, we do not include mutually-recursive datatypes. Furthermore, we omit the
syntax of types, and the term-level witnesses of iso-recursive types. We occasion-
ally omit type annotations, when they are not relevant.

Translation Certification for Smart Contracts 101

We introduce the individual compiler passes that the Plutus Tx compiler
performs using the following Haskell program to illustrate their behaviour:

-- | Either a specific end date, or "never".

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

let inlineMe = False

in case end of

Fixed n -> (let floatMe = if current `greaterThanEqInteger` 0

then n else 0 in floatMe) `lessThanEqInteger` current

Never -> inlineMe

This program is a basic implementation of a timelock, a contract that states
that funds may be moved after a certain date, or not at all. It contains a few
contrived bindings (inlineMe and floatMe) that will be useful to illustrate some
transformations. After the program is desugared to GHC Core, it is converted
to a term in PIR that corresponds to the following Simplified PIR term:

data Bool = True | False with Bool_match in
data Unit = Unit with Unit_match in

let nonrec strict lessThanEqInteger = ... in
data EndDate = Fixed Integer | Never with EndDate_match in

\(end : EndDate).
\(current : Integer).

let nonrec nonstrict inlineMe = False in
EndDate_match end

(\unit n -> lessThanEqInteger
(let nonrect nonstrict floatMe =

Bool_match (greaterThanEqInteger current 0)
(\unit -> n) (\unit -> 0)
Unit

in floatMe)
current)

(\unit -> inlineMe)
Unit

Note that case distinction of a type T is encoded as the application of a pattern
match function T_match, which is introduced as part of a data definition. Fur-
thermore, branches of a case distinction are delayed by abstracting over a unit
value, since PIR is a strict language.

Next we will discuss the compiler passes, we have included each intermediate
form of the above program with some commentary in the appendix which can
be found online3.

3 https://arxiv.org/abs/2201.04919.

https://arxiv.org/abs/2201.04919

102 J. O. G. Krijnen et al.

3.1 Variable Renaming

In the renaming pass, the compiler transforms a program into an α-equivalent
program, such that all variable names are globally unique, a property also known
as the Barendregt-convention. The implementation of some subsequent compiler
passes depend on it. We can express variable renaming as a translation relation
Δ � t �α t′, stating that under the renaming environment Δ (consisting of pairs
of variables), t is renamed to t′. The environment Δ records all variables that
are free in t, paired with their corresponding name in t′.

The case for lambda abstractions is defined as follows:
(x, y),Δ � t �α t′ {z | (z, y) ∈ Δ} ∩ FV (t) = ∅

[Rename-Abs]
Δ � λx.t �α λy.t′

The [Rename-Abs] rule states that a lambda-bound variable x may be
renamed at its binding-site to y, when t and t′ are related under the extended
environment. Of course, x may equal y, indicating that no renaming was per-
formed. Additionally, the new binder y should not capture any other free variable
z in t that was also renamed to y. Very similar rules can be stated for other bind-
ing constructs such as let.

Note that this relation does not establish global uniqueness of variables: we
consider that an implementation detail internal to the compiler. If this property
would be required or convenient in semantic preservation proofs, we will establish
it separately, allowing this renaming relation to be as general as possible.

The variable case simply follows from the environment Δ:

(x, y) ∈ Δ
[Rename-Var]

Δ � x �α y

3.2 Inlining

The rules of the translation relation for inlining in PIR are similar to those in
Sect. 2.1. However, the Plutus Tx compiler does more than just inlining let-bound
definitions. It also performs dead-code elimination (removing those let-bindings
that have been inlined exhaustively) and it renames variables to ensure the global
uniqueness of bound variables. This introduces a problem for our certification
approach, as we cannot observe and dump the intermediate ASTs, since the
transformations are fused into a single pass in the compiler.

We solve this by modeling the individual transformations, composing them
using relational composition, ∃t2.R1(t1, t2)∧R2(t2, t3). To construct a proof relat-
ing two terms, then amounts to also finding the intermediate term, t2 witnessing
the composite transformation. To simplify the search of this intermediate AST,
we adjust the compiler to emit supporting information about the performed
pass; in this case, a list of the eliminated variables. If the compiler emits incor-
rect information, we may fail to construct a certificate, but we will never produce
an incorrect certificate.

Translation Certification for Smart Contracts 103

3.3 Let-Floating

During let-floating, let-bindings can be moved upwards in the program. This
may save unnecessarily repeated computation and makes the generated code
more readable. The Plutus Tx compiler constructs a dependency graph to main-
tain a correct ordering when multiple definitions are floated. For the translation
relation, we first consider the interaction of a let expression with its parent
node in the AST. For example, consider the case of a lambda with a non-strict
let directly under it:

x /∈ FV (t1) x
= y t1 �let t′1 t2 �let t′2 [Float-Let-Lam]
λx.letnonstrictr y = t1 in t2

�let

letnonstrictr y = t′1 in λx.t′2

This rule states that a non-strict let-binding may float up past a lambda, if
the bound term does not reference the lambda-bound variable. Furthermore,
we require x
= y, to avoid variable capture in t2. This rule does not apply
to strict let-bindings, as floating them outside a lambda might change termi-
nation behaviour of the program. Similar rules express when a let may float
upwards past the other language constructs. Most of these are much simpler,
only binding constructs pose additional constraints on scoping and strictness.
Since the compiler pass may float lets more than just one step up, we define
the translation relation as the transitive closure of �let. Note that we do not need
to maintain a dependency graph in the certifier, but only need to assert that
transformations do not break dependencies.

3.4 Dead-Code Elimination

By means of a live variable analysis, the compiler determines which let-bound
definitions are unused. This is mainly useful for definitions that are introduced
by other compiler passes. Since PIR is a strict language, however, the compiler
can only eliminate those bindings for which it can determine they have no side-
effects. For example, a let-bound expression that is unused but diverges cannot
be removed, as that could change the termination behaviour of the program.

The analysis in the compiler is not as straightforward as counting occurences.
Even a let-bound variable that does occur in the code, may be dead-code, if it
is only used in other dead bindings. This is also known as strongly live variable
analysis [16]. We define a translation relation t �dce t′ that captures dead code
elimination. The crucial rule is for let-bindings.

t2 �dce t′2 x /∈ FV (t′2)
let nonstrict

r x = t1 in t2 �dce t′2
[DCE-Let-nonstrict]

Note that the condition x /∈ FV (t′2) mentions the resulting body of the let
t′2. This is justified since the rules of �dce can remove bindings only, but can-
not change any other language constructs. This illustrates how succinct we can
describe the specification of a complex compiler pass.

104 J. O. G. Krijnen et al.

In practice, the Plutus Tx compiler also eliminates some strict bindings that
obviously do not diverge, such as values.

3.5 Encoding of Non-strict Bindings

The PIR language allows both for strict and non-strict let-bindings, but Plutus
Core does not. The thunking transformation is used to obtain semantic equivalent
definitions which use a strict let-binding. We define the rules as a relation Γ �
t �thunk t′, where Γ records for every bound variable whether it was bound
strictly or non-strictly. The rule for a non-strict binding site is:

Γ � t1 �thunk t′1
(x, nonstrict), Γ � t2 �thunk t′2 y /∈ FV (t1)

[Thunk-Let-nonstrict]
Γ �

let nonstrict
nonrec x = t1 in t2

�thunk

let strict
nonrec x = λy. t′1 in t′2

This rule states that a right hand side is thunked by introducing a lambda
abstraction that expects a trivial unit value y as its argument.

The rules for other variable binders extend Γ . The rule for a recursive let-
binding also extends the environment under which t1 is transformed. Finally, we
also replace the occurrences of nonstrict variables, adding an application to the
unit value, thereby forcing evaluation.

(x, nonstrict) ∈ Γ
[Thunk-Var]

Γ � x �thunk x ()

3.6 Encoding of Recursive Bindings

The Plutus Tx compiler translates (mutually) recursive let-bindings in non-
recursive ones using fixpoint combinators. Here we only consider the rule for
individual recursive lets in simplified PIR:

t1 �μ t′1 t2 �μ t′2 y /∈ FV (t1)
[EncRec-Let]

let s
rec x = t1 in t2

�μ

let strict
nonrec fix = ... in let s

nonrec x = fix (λx. t′1) in t′2

This rule relates recursive bindings to non-recursive ones, and expects an explicit
definition of the fixpoint operator as well. Since PIR has no primitive construct
for term-level fix-points, the compiler generates a definition fix . Note that fix is
defined in a non-recursive let, its construction relies on recursive types [19].

The actual transformation for PIR is much more involved, since mutually
recursive binding groups require a more involved fixpoint combinator of which
the definition depends on the size of the group.

Translation Certification for Smart Contracts 105

3.7 Encoding of Datatypes

Datatype definitions are encoded using lambda and type abstractions according
to the Scott encoding [1]. To show the idea of the rather general �data translation
relation, we show a rule specialised to the Maybe datatype.

t �data t′
[Scott-Maybe]

data Maybe α = Just α | Nothing with maybe in t
�data

(ΛMaybe.λJust .λNothing .λmaybe. t′) τMaybe tJust tNothing tmaybe

The [Scott-Maybe] rule relates the datatype definition to a term that abstracts
over the type Maybe, its constructors Just and Nothing and the matching func-
tion maybe, which are each lambda encoded. For the exact definitions of τMaybe ,
tJust , tNothing and tmaybe we refer to the general formalisation of PIR [19].

3.8 Encoding of Non-recursive Bindings

A non-recursive let-binding is simply compiled into a β redex:

t1 �β t′1 t2 �β t′2
let strict

nonrec x = t1 in t2 �β (λx. t′2) t′1
[Redex-Let]

Note that at this point in the compiler pipeline, letstrictnonrec is the only type of
let-binding that can still occur.

4 Evaluation

In this section, we evaluate our approach to proof engineering for an indepen-
dently developed, constantly evolving compiler under the application constraints
imposed by smart contracts.

4.1 Compilers and Correctness

The standard approach to compiler correctness is full compiler verification: a
proof that asserts that the compiler is correct as it demonstrates that, for any
valid source program, the translation produces a semantically equivalent target
program. Examples of this approach include the CompCert [21] and CakeML [20]
projects, showing that (with significant effort) it is possible to verify a compiler
end-to-end. To do so, the compiler is typically implemented in a language suitable
for verification, such as the Coq proof assistant or the HOL theorem prover.

In contrast, the technique that we propose for the Plutus Tx compiler is based
on translation validation [27]. Instead of asserting an entire compiler correct,
translation validation establishes the correctness of individual compiler runs.

106 J. O. G. Krijnen et al.

A statement of full compiler correctness is, of course, the stronger of the two
statements. Translation validation may fail to assert the correctness of some com-
piler runs; either because the compiler did not produce correct code or because
the translation certifier is incomplete. In exchange for being the weaker prop-
erty, translation validation is potentially (1) less costly to realise, (2) easier to
retrofit to an existing compiler, and (3) more robust in the face of changes to
the compiler.

The idea of proof-carrying code [23] is closely related to translation validation,
shifting the focus to compiled programs, rather than the compiler itself. A pro-
gram is distributed together with a proof of a property such as memory or type
safety. Such a proof excludes certain classes of bugs and gives direct evidence
to the users of such a program, who may independently check the proof before
running it. Our certification effort, while related, differs in that we keep proof
and program separate and in that we are interested in full semantic correctness
and not just certain properties like memory and type safety.

4.2 Certificates and Smart Contracts

Smart contracts often manage significant amounts of financial and other assets.
Before a user engages with such a contract, which has been committed to the
blockchain as compiled code, they may want to inspect the source code to assert
that it behaves as they expect. In order to be able to rely on that inspection,
they need to know without doubt that (1) they are looking at the correct source
code and (2) that the source code has been compiled correctly.

While a verified smart contract compiler addresses the second point, it
doesn’t help with the first. An infrastructure of reproducible builds, on the other
hand, solves only the first point. The latter is the approach taken by Etherscan4:
to verify that a deployed Ethereum smart contract was the result of a compiler
run, one provides the source code and build information such as the compiler
version and optimisation settings.

In contrast, a certifying compiler [24] that generates an independently verifi-
able certificate of correct translation, squarely addresses both points. By verify-
ing a smart contract’s translation certificate, a smart contract user can convince
themselves that they are in possession of the matching source code and that this
was correctly compiled to the code committed to the blockchain.

4.3 Engineering Considerations

Gradual Verification. The certifier architecture outlined in this paper allows
for a gradual approach to verification: during the development of the certification
engine, each individual step in the process increases our overall confidence in the
compiler’s correctness, even if we have not yet completed the end-to-end semantic
verification of the compiler pipeline.

4 https://etherscan.io/verifyContract.

https://etherscan.io/verifyContract

Translation Certification for Smart Contracts 107

By defining only the translation relations, we have an independent formal
specification of the compiler’s behaviour. This makes it easier to reason infor-
mally and to spot potential mistakes or problems with the implementation.

Implementing the decision procedures for translation relations ties the imple-
mentation to the specification: we can show on a per-compilation basis that a
pass is sound with respect to its specification as a translation relation. Further-
more, we can test and debug translation relations by automatically constructing
evidence for various input programs.

Finally, by proving semantics preservation of a translation relation, we gain
full confidence in the corresponding pass for compiler runs that abide by that
translation relation.

Agility. The Plutus Tx compiler is developed independently of our certification
effort. Moreover, it depends on large parts of a large code base—namely, that
of the Glasgow Haskell Compiler (GHC). In addition, both GHC and the Plu-
tus Tx-specific parts evolve on a constant basis; for example, to improve code
optimisation or to fix bugs.

In that context, full verification appears an insurmountable task and a proof
on the basis of the compiler source code would constantly have to adapt to the
evolving compiler source. Hence, the architecture of our certification engine is
based on a grey box approach, where the certifier matches the general outline
(such as the phases of the compiler pipeline), but not all of the implementation
details of the compiler. For example, our translation relation for the inliner
admits any valid inlining. Improvements of the compiler heuristics to produce
more efficient programs by being selective about what precisely to inline don’t
affect the inliner’s translation relation, and hence, don’t affect the certifier.

Trusted Computing Base (TCB). The fact that the Plutus Tx compiler is
not implemented in a proof assistant, but in Haskell complicates direct compiler
verification. It might be possible to use a tool like hs-to-coq [29], which translates
a subset of Haskell into Coq’s Gallina and has been used for proving various prop-
erties about Haskell code [11]. However, given that those tools often only cover
language subsets, it is not clear that they are applicable. More importantly, such
an approach would increase the size of the trusted computing base (TCB), as the
translation from Haskell into Coq’s Gallina is not verified. Similarly, extraction-
based approaches suffer from the same problem if the extraction itself is not
verified, although there are projects like CertiCoq [3] that try to address that
issue.

In any case, our architecture has a small TCB. We directly relate the source
and target programs, taking the compiler implementation out of the equation.
Trusting a translation certificate comes down to trusting the Coq kernel that
checks the proof, the theorem with its supporting definitions and soundness of
the Plutus Core interpreter with respect to the formalised semantics. Of course,
these components are part of the TCB of a verified compiler too. This aspect

108 J. O. G. Krijnen et al.

also motivated our choice of Coq over other languages such as Agda, due to its
relatively small and mature kernel.

5 Related Work

Ethereum was the first blockchain to popularise use of smart contracts, written
in the Solidity programming language. Solidity is an imperative programming
language that is compiled to EVM bytecode, which runs on a stack machine oper-
ating on persistent mutable state. The DAO vulnerability [12] has underlined
the importance of formal verification of smart contracts. Notably, a verifica-
tion framework has been presented [10] for reasoning about embedded Solidity
programs in F*. The work includes a decompiler to convert EVM bytecode, gen-
erated by a compiler, into Solidity programs in F*. The authors propose that
correctness of compilation can be shown by proving equivalence of the embedded
source and (decompiled) target program using relational reasoning [7]. However,
this would involve a manual proof effort on a per-program basis, and relies on
the F* semantics since the embeddings are shallow. Furthermore, components
such as the decompiler are not formally verified, adding to the size of the TCB.

The translation validation technique has been used for the verification of a
particular critical Ethereum smart contract [26] using the K framework. The
work demonstrates how translation validation can succesfully be applied to con-
struct proofs about the low-level EVM bytecode by mostly reasoning on the
(much more understandable) source code. The actual refinement proof is still
constructed manually, however.

The Tezos blockchain also uses a stack-like language, called Michelson. The
Mi-Cho-Coq framework [8] formalises the language and supports reasoning with
a weakest precondition logic. There is ongoing work for developing a certified
compiler in Coq for the Albert intermediate language, intended as a target lan-
guage for certified compilers of higher-level languages. This differs from our app-
roach as it requires the compiler to be implemented in the proof assistant.

ConCert is a smart contract verification framework in Coq [4]. It enables for-
mal reasoning about the source code of a smart contracts, defined in a different
(functional) language. The programs are translated and shallowly embedded in
Coq’s Gallina. Interestingly, the translation is proven sound, in contrast with
approaches such as hs-to-coq [29], since it is implemented using Coq’s metapro-
gramming and reasoning facility MetaCoq [28].

The Cogent certifying compiler [25] has shown that it is possible to use trans-
lation validation for lowering the cost of functional verification of low-level code:
a program can be written and reasoned about in a high-level functional lan-
guage, which is compiled down to C. The generated certificate then proves a
refinement relation, capable of transporting the verification results to the cor-
responding C code. The situation is different from ours: the Cogent compiler
goes through a range of languages with different semantic models and uses the
forward-simulation technique as a consequence. In contrast, we are working with
variations of lambda calculi that have similar semantics, allowing us to use logical
relations and translation relations.

Translation Certification for Smart Contracts 109

In their Coq framework [22], Li and Appel use a similar technique for speci-
fying compiler passes as inductive relations in Coq. Their tool reduces the effort
of implementing program transformations and corresponding correctness proofs.
The tool is able to generate large parts of an implementation together with a
partial soundess proof with respect to those relations. The approach is used to
implement parts of the CertiCoq backend.

6 Conclusions and Further Work

The Plutus Tx compiler translates a Haskell subset into Plutus Core. The com-
piler consists of three main parts: the first one reuses various stages of GHC
to compile the Haskell subset to GHC Core—GHC’s principal intermediate lan-
guage. The second part translates GHC Core to PIR and the final part com-
piles PIR to Plutus Core. As Plutus Core is strict and doesn’t directly support
datatypes, these parts are quite complex. Moreover, they consist of a significant
number of successive transformation steps.

In this paper, we focused on the certification effort covering the third part
of that pipeline; specifically, the translation steps from PIR to Plutus Core. We
developed translation relations for all passes described in Sect. 3, such that we
can, for example, produce a proof relating the previously described timelock
example in PIR to its final form in Plutus Core. For some of these passes,
such as inlining, we have implemented a verified decision procedure, but most
of the evidence is generated semi-automatically by using Coq tactics. We have
not yet covered all transformations in their full generality; for example, we do
not cover (mutually) recursive datatypes yet. We have also started the semantic
verification of key passes of the translation [14] and are investigating different
ways to improve the efficiency of proof search for larger programs.

Our next steps comprise the following: (1) filling in the remaining gaps in
translation relations (such as covering mutually recursive datatypes); (2) com-
plete all decision procedures; (3) drive the semantic verification forward; and (4)
develop techniques to further automate our approach and improve the efficiency
of the certifier.

The first three steps pose a significant amount of work, but we do not expect
major new conceptual questions or obstacles. This is different for Step (4), where
we anticipate the need for further research work. This includes more composi-
tional definitions of the translation relations, such that we can generate at least
part of the decision procedures (semi-)automatically. Moreover, we already per-
ceive efficiency to be a bottleneck and we plan to work on optimising the proof
search. Finally, we plan to apply our approach to the first part of the Plutus Tx
compiler (Haskell subset to GHC Core).

110 J. O. G. Krijnen et al.

References

1. Abadi, M., Cardelli, L., Plotkin, G.: Types for the Scott numerals (1993)
2. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified

types. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 69–83. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693024 6

3. Anand, A., et al.: CertiCoq: a verified compiler for Coq. In: The Third International
Workshop on Coq for Programming Languages (CoqPL) (2017)

4. Annenkov, D., Nielsen, J.B., Spitters, B.: ConCert: a smart contract certification
framework in Coq. In: Proceedings of the 9th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, pp. 215–228 (2020)

5. Maffei, M., Ryan, M. (eds.): POST 2017. LNCS, vol. 10204. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54455-6

6. Barras, B., et al.: The Coq proof assistant reference manual: Version 6.1. Ph.D.
thesis, Inria (1997)

7. Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella-Béguelin,
S.: Probabilistic relational verification for cryptographic implementations. ACM
SIGPLAN Not. 49(1), 193–205 (2014)

8. Bernardo, B., Cauderlier, R., Hu, Z., Pesin, B., Tesson, J.: Mi-Cho-Coq, a frame-
work for certifying tezos smart contracts. In: Sekerinski, E., et al. (eds.) FM 2019.
LNCS, vol. 12232, pp. 368–379. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-54994-7 28

9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

10. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96 (2016)

11. Breitner, J., Spector-Zabusky, A., Li, Y., Rizkallah, C., Wiegley, J., Weirich,
S.: Ready, set, verify! applying hs-to-coq to real-world Haskell code (experience
report). In: Proceedings of the ACM on Programming Languages 2(ICFP), pp.
1–16 (2018)

12. Buterin, V.: CRITICAL UPDATE Re: DAO Vulnerability (2016). https://blog.
ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/, Accessed 10 Dec
2021

13. Hutton, G. (ed.): MPC 2019. LNCS, vol. 11825. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-33636-3

14. Dral, J.: Verified Compiler Optimisations. Master’s thesis, Utrecht University
(2022)

15. GHC Team: GHC 9.0 User Manual. https://downloads.haskell.org/∼ghc/9.0.1/
docs/html/users guide/extending ghc.html

16. Giegerich, R., Möncke, U.: Invariance of approximative semantics with respect to
program transformations. In: GI-11. Jahrestagung, pp. 1–10. Springer, Heidelberg
(1981). https://doi.org/10.1007/978-3-662-01089-1 1

17. Gonthier, G., Le, R.S.: An Ssreflect Tutorial. Ph.D. thesis, INRIA (2009)
18. IOHK: The Plutus Platform and Marlowe 1.0.0 documentation. https://plutus.

readthedocs.io/en/latest/plutus/tutorials/plutus-tx.html
19. Jones, M.P., Gkoumas, V., Kireev, R., MacKenzie, K., Nester, C., Wadler, P.:

Unraveling recursion: compiling an IR with recursion to system F. In: Hutton, G.
(ed.) MPC 2019. LNCS, vol. 11825, pp. 414–443. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-33636-3 15

https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/978-3-662-54455-6
https://doi.org/10.1007/978-3-030-54994-7_28
https://doi.org/10.1007/978-3-030-54994-7_28
https://doi.org/10.1007/978-3-662-07964-5
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://doi.org/10.1007/978-3-030-33636-3
https://doi.org/10.1007/978-3-030-33636-3
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/extending_ghc.html
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/extending_ghc.html
https://doi.org/10.1007/978-3-662-01089-1_1
https://plutus.readthedocs.io/en/latest/plutus/tutorials/plutus-tx.html
https://plutus.readthedocs.io/en/latest/plutus/tutorials/plutus-tx.html
https://doi.org/10.1007/978-3-030-33636-3_15
https://doi.org/10.1007/978-3-030-33636-3_15

Translation Certification for Smart Contracts 111

20. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. ACM SIGPLAN Not. 49(1), 179–191 (2014)

21. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.:
CompCert–a formally verified optimizing compiler. In: ERTS 2016: Embedded Real
Time Software and Systems, 8th European Congress (2016)

22. Li, J.M., Appel, A.W.: Deriving efficient program transformations from rewrite
rules. Proc. ACM Program. Lang. 5(ICFP), 1–29 (2021)

23. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 106–119 (1997)

24. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler.
SIGPLAN Not. 39(4), 612–625 (2004)

25. O’Connor, L., et al.: Cogent: uniqueness types and certifying compilation. J. Funct.
Program. 31, e25 (2021)

26. Lahiri, S.K., Wang, C. (eds.): CAV 2020. LNCS, vol. 12224. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53288-8

27. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054170

28. Sozeau, M., et al.: The MetaCoq project. J. Autom. Reas. 64, 947–999 (2020)
29. Spector-Zabusky, A., Breitner, J., Rizkallah, C., Weirich, S.: Total Haskell is rea-

sonable Coq. In: Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs, pp. 14–27 (2018)

https://doi.org/10.1007/978-3-030-53288-8
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170

Zipping Strategies and Attribute
Grammars

José Nuno Macedo1(B), Marcos Viera2, and João Saraiva1

1 Department of Informatics and HASLab/INESC TEC, University of Minho,
Braga, Portugal

jose.n.macedo@inesctec.pt, saraiva@di.uminho.pt
2 Universidad de la República, Montevideo, Uruguay

mviera@fing.edu.uy

Abstract. Strategic term rewriting and attribute grammars are two
powerful programming techniques widely used in language engineering.
The former relies on strategies (recursion schemes) to apply term rewrite
rules in defining transformations, while the latter is suitable for express-
ing context-dependent language processing algorithms. Each of these
techniques, however, is usually implemented by its own powerful and
large processor system. As a result, it makes such systems harder to
extend and to combine.

We present the embedding of both strategic tree rewriting and
attribute grammars in a zipper-based, purely functional setting. The
embedding of the two techniques in the same setting has several advan-
tages: First, we easily combine/zip attribute grammars and strategies,
thus providing language engineers the best of the two worlds. Second,
the combined embedding is easier to maintain and extend since it is
written in a concise and uniform setting. We show the expressive power
of our library in optimizing Haskell let expressions, expressing several
Haskell refactorings and solving several language processing tasks for an
Oberon-0 compiler.

Keywords: Attribute grammars · Zippers · Strategic term rewriting

1 Introduction

Since Algol was designed in the 60’s, as the first high-level programming lan-
guage [38], languages have evolved dramatically. In fact, modern languages offer
powerful syntactic and semantic mechanisms that improve programmers pro-
ductivity. In response to such developments, the software language engineering
community also developed advanced techniques to specify such new mechanisms.

Strategic term rewriting [19] and Attribute Grammars (AG) [14] have a
long history in supporting the development of modern software language anal-
ysis, transformations and optimizations. The former relies on strategies (recur-
sion schemes) to traverse a tree while applying a set of rewrite rules, while

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 112–132, 2022.
https://doi.org/10.1007/978-3-030-99461-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_7

Zipping Strategies and Attribute Grammars 113

the latter is suitable to express context-dependent language processing algo-
rithms. Many language engineering systems have been developed supporting
both AGs [8,9,11,16,23,26,36] and rewriting strategies [4–6,17,30,37]. These
powerful systems, however, are large systems supporting their own AG or strate-
gic specification language, thus requiring a considerable development effort to
extend and combine.

A more flexible approach is obtained when we consider the embedding of
such techniques in a general purpose language. Language embeddings, however,
usually rely on advanced mechanisms of the host language, which makes them
difficult to combine. For example, Strafunski [17] offers a powerful embedding of
strategic term rewriting in Haskell, but it can not be easily combined with the
Haskell embedding of AGs as provided in [21,25]. The former works directly on
the underlying tree, while the latter on a zipper representation of the tree.

In this paper, we present the embedding of both strategic tree rewriting
and attribute grammars in a zipper-based, purely functional setting. Generic
zippers [12] is a simple generic tree-walk mechanism to navigate on both homo-
geneous and heterogeneous data structures. Traversals on heterogeneous data
structures (i.e. data structures composed of different data structures) is the main
ingredient of both strategies and AGs. Thus, zippers provide the building block
mechanism we will reuse for expressing the purely-functional embedding of both
techniques. The embedding of the two techniques in the same setting has several
advantages: First, we easily combine/zip attribute grammars and strategies, thus
providing language engineers the best of the two worlds. Second, the combined
embedding is easier to maintain and extend since it is written in a concise and
uniform setting. This results in a very small library (200 lines of Haskell code)
which is able to express advanced (static) analyses and transformation tasks.
The purpose of this paper is three-fold:

– Firstly, we present a simple, yet powerful embedding of strategic term rewrit-
ing using generic zippers. This results in a concise library, named Ztrategic,
that is easy to maintain and update. Moreover, our embedding has the expres-
siveness of the Strafunski library [17], as we showcase in Sect. 4.

– Secondly, this new strategic term rewriting embedding can easily be combined
with an existing zipper-based embedding of attribute grammars [10,22]. By
relying on the same generic tree-traversal mechanism, the zipper, (zipper-
based) strategies can access (zipper-based) AG functional definitions, and vice
versa. Such a joint embedding results in a multi-paradigm embedding of the
two language engineering techniques. We show two examples of the expressive
power of such embedding: First, we access attribute values in strategies to
express non-trivial context-dependent tree rewriting. Second, strategies are
used to define attribute propagation patterns [8,11], which are widely used to
eliminate (polluting) copy rules from AGs.

– Thirdly, we apply Ztrategic in real language engineering problems, namely,
in optimizing Haskell let expressions, expressing a set of refactorings that
eliminate several Haskell smells, and solving the LDTA Tool Challenge [35]
tasks for name binding, type checking and desugaring of Oberon-0 programs.

114 J. N. Macedo et al.

This paper is organized as follows: Sect. 2 presents generic zippers and
describes Ztrategic, our zipper-based embedding of strategic term rewriting. In
Sect. 3, we describe zipper-based embedding of attribute grammars and we show
how the two techniques/embeddings can be easily combined. In Sect. 4 we use the
library to define several usage examples, such as refactorings of Haskell source
code and name binding, type checking and desugaring Oberon-0 source code.
Section 5 discusses related work, and in Sect. 6 we present our conclusions.

2 Ztrategic: Zipper-Based Strategic Programming

Before we present our embedding in detail later in the section, let us con-
sider a motivating example we will use throughout the paper. Consider the
(sub)language of Let expressions as incorporated into most functional languages,
including Haskell. Next, we show an example of a valid Haskell let expression
and we define the heterogeneous data type Let , taken from [22], that models
such expressions in Haskell itself.

p = let a = b + 0
c = 2
b = let c = 3 in c + c

in a + 7 − c

data Let = Let List Exp
data List = NestedLet String Let List

| Assign String Exp List
| EmptyList

data Exp = Add Exp Exp | Sub Exp Exp
| Neg Exp | Const Int | Var String

We can write p as a Haskell value with type Let :

p = Let (Assign "a" (Add (Var "b") (Const 0))
(Assign "c" (Const 2)
(NestedLet "b" (Let (Assign "c" (Const 3) EmptyList)

(Add (Var "c") (Var "c")))
EmptyList)))
(Sub (Add (Var "a") (Const 7)) (Var "c"))

Consider now that we wish to implement a simple arithmetic optimizer for
our language. Let us start with a trivial optimization: the elimination of addi-
tions with 0. In this context, strategic term rewriting is an extremely suitable
formalism, since it provides a solution that just defines the work to be done in
the constructors (tree nodes) of interest, and “ignores” all the others. In our
example, the optimization is defined in Add nodes, and thus we express the
worker function as follows:

expr :: Exp → Maybe Exp
expr (Add e (Const 0)) = Just e
expr (Add (Const 0) e) = Just e
expr = Nothing

Zipping Strategies and Attribute Grammars 115

The first two alternatives define the optimization: when either of the sub-
expressions of an Add expression is the constant 0, then it returns the other
sub-expression. A type-specific transformation function returns a Maybe result,
transformations that fail or do not change the input return Nothing . This is the
case of the last alternative of expr , that defines the default behaviour.

This function applies to Exp nodes only. To express our Let optimization,
however, we need a generic mechanism that traverses Let trees, applying this
function when visiting Add expressions. This is where strategic term rewriting
comes to the rescue: It provides recursion patterns (i.e., strategies) to traverse
the (generic) tree, like, for example, top-down or bottom-up traversals. It also
includes functions to apply a node specific rewriting function (like expr) accord-
ing to a given strategy. Next, we show the strategic solution of our optimization
where expr is applied to the input tree in a full top-down strategy. This is a
Type Preserving (TP) transformation since the input and result trees have the
same type:

opt :: Zipper Let → Maybe (Zipper Let)
opt t = applyTP (full tdTP step) t

where step = idTP ‘adhocTP ’ expr

We have just presented our first zipper-based strategic function. Here, step
is a transformation to be applied by function applyTP to all nodes of the input
tree t (of type Zipper Let) using a full top-down traversal scheme (function
full tdTP). The rewrite step behaves like the identity function (idTP) by default
with our expr function to perform the type-specific transformation, and the
adhocTP combinator joins them into a single function.

This strategic solution relies on our Ztrategic [20] library: a purely functional
embedding of strategic term rewriting in Haskell. In this solution we clearly see
that the traversal function full tdTP needs to navigate heterogeneous trees, as
it is the case of the Let expression p. In a functional programming setting,
zippers [12] provide a simple, but generic tree-walk mechanism that we will use
to embed strategic programming in Haskell. In fact, our strategic combinators
work with zippers as in the definition of opt . In the remaining of this section, we
start by briefly describing zippers, and, next, we present in detail the embedding
of strategies using this powerful mechanism.

2.1 The Zipper Data Structure

Zippers were introduced by Huet [12] to represent a tree together with a subtree
that is the focus of attention. During a computation the focus may move left,
up, down or right within the tree. Generic manipulation of a zipper is provided
through a set of predefined functions that allow access to all of the nodes of a
tree for inspection or modification.

A generic implementation of this concept is available as the generic zipper
Haskell library [1], which works for both homogeneous and heterogeneous data
types. In order to illustrate the use of zippers, let us consider again the tree

116 J. N. Macedo et al.

used as an example for our Let program. We build a zipper t1 from the previous
Let expression p through the use of the toZipper :: Data a ⇒ a → Zipper a
function. This function produces a zipper out of any data type, requiring only
that the data types have an instance of the Data and Typeable type classes1.

t1 = toZipper p

We can navigate t1 using pre-defined functions from the zipper library. The
function down’ moves the focus down to the leftmost child of a node, while
down moves the focus to the rightmost child instead. Similarly, functions right,
left and up, move towards the corresponding directions. They all have type
Zipper a → Maybe (Zipper a), meaning that such functions take a zipper and
return a new zipper in case the navigation does not fail.

Finally, the zipper function getHole :: Typeable b ⇒ Zipper a → Maybe b
extracts the actual node the zipper is focusing on. Notice that the type of the
hole (b) can be different than the type of the root of the Zipper (a), since the
tree can be heterogeneous. Using these functions, we can freely navigate through
this newly created zipper. Consider our expression p, we can unsafely2 move the
focus of the zipper towards the b+0 subexpression and obtain its value as follows:

sumBZero ::Maybe Exp
sumBZero = (getHole . fromJust . right . fromJust . down’ . fromJust . down’) t1

The zipper library also contains functions for the transformation of the data
structure being traversed. The function trans :: GenericT → Zipper a →
Zipper a applies a generic transformation to the node the zipper is currently
pointing to; while transM ::GenericM m → Zipper a → m (Zipper a) applies
a generic monadic transformation.

2.2 Strategic Programming

In this section we introduce Ztrategic, our embedding of strategic programming
using generic zippers. The embedding directly follows the work of Laemmel and
Visser [17] on the Strafunski library [18].

We start by defining a function that elevates a transformation to the zipper
level. In other words, we define how a function that is supposed to operate
directly on one data type is converted into a zipper transformation.

zTryApplyM :: (Typeable a,Typeable b) ⇒ (a → Maybe b) → TP c

The definition of zTryApplyM , which we omit for brevity, relies on transfor-
mations on zippers, thus reusing the generic zipper library transM function.

1 These can be easily obtained via the Haskell data type deriving mechanism.
2 By using the function fromJust ::Maybe a → a we assume a Just value is returned.

Zipping Strategies and Attribute Grammars 117

zTryApplyM returns a TP c, in which TP is a type for specifying Type-
Preserving transformations on zippers, and c is the type of the zipper. For
example, if we are applying transformations on a zipper built upon the Let
data type, then those transformations are of type TP Let .

type TP a = Zipper a → Maybe (Zipper a)

Very much like Strafunski, we introduce the type TU m d for Type-Unifying
operations, which aim to gather data of type d into the data structure m.

type TU m d = (forall a . Zipper a → m d)

For example, to collect in a list all the defined names in a Let expression, the
corresponding type-unifying strategy would be of type TU [] String . We will
present such a transformation and implement it later in this section.

Next, we define a combinator to compose two transformations, building a
more complex zipper transformation that tries to apply each of the initial trans-
formations in sequence, skipping transformations that fail.

adhocTP :: Typeable a ⇒ TP e → (a → Maybe a) → TP e
adhocTP f g z = maybeKeep f (zTryApplyM g) z

The adhocTP function receives transformations f and g as parameters, as
well as zipper z . It converts g , which is a simple (i.e. non-zipper) Haskell function,
into a zipper. Then, the zipper transformations f and g are passed as arguments
to maybeKeep, which is an auxiliary function that applies the transformations in
sequence, discarding either failing transformation (i.e. that produces Nothing).
We omit the definition of maybeKeep for brevity.

Next, we use adhocTP , written as an infix operator, which combines the
zipper function failTP with our basic transformation expr function:

step = failTP ‘adhocTP ’ expr

Thus, we do not need to express type-specific transformations as functions
that work on zippers. It is the use of zTryApplyM in adhocTP that transforms a
Haskell function (expr in this case) to a zipper one, hidden from these definitions.

The transformation failTP is a pre-defined transformation that always fails
(returning Nothing) and idTP is the identity transformation that always suc-
ceeds (returning the input unchanged). They provide the basis for construction
of complex transformations through composition. We omit here their simple def-
initions.

The functions we have presented already allow the definition of arbitrarily
complex transformations for zippers. Such transformations, however, are always
applied on the node the zipper is focusing on. Let us consider a combinator that
navigates in the zipper.

118 J. N. Macedo et al.

allTPright :: TP a → TP a
allTPright f z = case right z of

Nothing → return z
Just r → fmap (fromJust . left) (f r)

This function is a combinator that, given a type-preserving transformation
f for zipper z , will attempt to apply f to the node that is located to the right
of the node the zipper is pointing to. To do this, the zipper function right is
used to try to navigate to the right; if it fails, we return the original zipper. If it
succeeds, we apply transformation f and then we navigate left again. There is
a similar combinator allTPdown that navigates downwards and then upwards.

With all these tools at our disposal, we can define generic traversal schemes
by combining them. Next, we define the traversal scheme used in the function opt
we defined at the start of the section. This traversal scheme navigates through
the whole data structure, in a top-down approach.

full tdTP :: TP a → TP a
full tdTP f = allTPdown (full tdTP f) ‘seqTP ’ allTPright (full tdTP f) ‘seqTP ’ f

We skip the explanation of the seqTP operator as it is relatively similar to
the adhocTP operator we described before, albeit simpler; we interpret this as a
sequence operator. This function receives as input a type-preserving transforma-
tion f , and (reading the code from right to left) it applies it to the focused node
itself, then to the nodes below the currently focused node, then to the nodes to
the right of the focused node. To apply this transformation to the nodes below
the current node, for example, we use the allTPdown combinator we mentioned
above, and we recursively apply full tdTP f to the node below. The same logic
applies in regards to navigating to the right.

We can define several traversal schemes similar to this one by changing the
combinators used, or their sequence. For example, by inverting the order in
which the combinators are sequenced, we define a bottom-up traversal. By using
different combinators, we can define choice, allowing for partial traversals in the
data structure. We previously defined a rewrite strategy where we use full tdTP
to define a full, top-down traversal, which is not ideal. Because we intend to
optimize Exp nodes, changing one node might make it possible to optimize the
node above, which would have already been processed in a top-down traversal.
Instead, we define a different traversal scheme, for repeated application of a
transformation until a fixed point is reached:

innermost :: TP a → TP a
innermost s = repeatTP (once buTP s)

We omit the definitions of once buTP and repeatTP as they are similar to the
presented definitions. The combinator repeatTP applies a given transformation
repeatedly until a fixed point is reached, that is, until the data structure stops

Zipping Strategies and Attribute Grammars 119

expr :: Exp → Maybe Exp
expr (Add e (Const 0)) = Just e
expr (Add (Const 0) t) = Just t
expr (Add (Const a) (Const b)) = Just (Const (a + b))
expr (Sub a b) = Just (Add a (Neg b))
expr (Neg (Neg f)) = Just f
expr (Neg (Const n)) = Just (Const (−n))
expr = Nothing

add(e, const(0)) → e (1)

add(const(0), e) → e (2)

add(const(a), const(b)) → const(a+ b) (3)

sub(e1, e2) → add(e1, neg(e2)) (4)

neg(neg(e)) → e (5)

neg(const(a)) → const(−a) (6)

var(id) | (id, just(e)) ∈ env → e (7)

Fig. 1. Optimization rules

being changed by the transformation. The transformation being applied repeat-
edly is defined with the once buTP combinator, which applies s once, anywhere
on the data structure. When the application once buTP fails, repeatTP under-
stands a fixed point is reached. Because the once buTP bottom-up combinator is
used, the traversal scheme is innermost , since it prioritizes the innermost nodes.
The pre-defined outermost strategy uses the once tdTP combinator instead.

Let us return to our Let running example. Obviously there are more arith-
metic rules that we may use to optimize let expressions. In Fig. 1 we present the
rules given in [15].

In our definition of the function expr , we already defined rewriting rules for
optimizations 1 and 2. Rules 3 through 6 can also be trivially defined in Haskell:

expr :: Exp → Maybe Exp
expr (Add e (Const 0)) = Just e
expr (Add (Const 0) t) = Just t
expr (Add (Const a) (Const b)) = Just (Const (a + b))
expr (Sub a b) = Just (Add a (Neg b))
expr (Neg (Neg f)) = Just f
expr (Neg (Const n)) = Just (Const (−n))
expr = Nothing

Rule 7, however, is context dependent and it is not easily expressed within
strategic term rewriting. In fact, this rule requires to first compute the environ-
ment where a name is used (according to the scope rules of the Let language).
We will return to this rule in Sect. 3.

120 J. N. Macedo et al.

Having expressed all rewriting rules from 1 to 6 in function expr , now we
need to use our strategic combinators that navigate in the tree while applying
the rules. To guarantee that all the possible optimizations are applied we use an
innermost traversal scheme. Thus, our optimization is expressed as:

opt ′ :: Zipper Let → Maybe (Zipper Let)
opt ′ t = applyTP (innermost step) t

where step = failTP ‘adhocTP ’ expr

Function opt ′ combines all the steps we have built until now. We define an
auxiliary function step, which is the composition of the failTP default failing
strategy with expr , the optimization function; we compose them with adhocTP .
Our resulting Type-Preserving strategy will be innermost step, which applies
step to the zipper repeatedly until a fixed-point is reached. The use of failTP
as the default strategy is required, as innermost reaches the fixed-point when
step fails. If we use idTP instead, step always succeeds, resulting in an infinite
loop. We apply this strategy using the function applyTP ::TP c → Zipper c →
Maybe (Zipper c), which effectively applies a strategy to a zipper. This function
is defined in our library, but we omit the code as it is trivial.

Next, we show an example using a Type-Unifying strategy. We define a func-
tion names that collects all defined names in a Let expression. First, we define
a function select that focuses on the Let tree nodes where names are defined,
namely, Assign and NestedLet . This function returns a singleton list (with the
defined name) when applied to these nodes, and an empty list in the other cases.

select :: List → [String]
select (Assign s) = [s]
select (NestedLet s) = [s]
select = []

Now, names is a Type-Unifying function that traverses a given Let tree
(inside a zipper, in our case), and produces a list with the declared names.

names :: Zipper Let → [String]
names r = applyTU (full tdTU step) r

where step = failTU ‘adhocTU ’ select

The traversal strategy influences the order of the names in the resulting
list. We use a top-down traversal so that the list result follows the order of the
input. This is to say that names t1 ≡ ["a", "c", "b", "c"] (a bottom-up strategy
produces the reverse of this list).

As we have shown, our strategic term rewriting functions rely on zippers built
upon the data (trees) to be traversed. This results in strategic functions that can
easily be combined with a zipper-based embedding of attribute grammars [10,22],
since both functions/embedding work on zippers. In the next section we present
in detail the zipping of strategies and AGs.

Zipping Strategies and Attribute Grammars 121

3 Strategic Attribute Grammars

Zipper-based strategic term rewriting provides a powerful mechanism to express
tree transformations. There are, however, transformations that rely on contex-
tual information that needs to be collected so the transformation can be applied.
Our optimization rule 7 of Fig. 1 is such an example. In this section we will
briefly explain the Zipper-based embedding of attribute grammars, through the
Let example. Then, we are going to explain how to combine strategies and AGs,
ending with an implementation of rule 7.

3.1 Zipper-Based Attribute Grammars

The attribute grammar formalism is particularly suitable for specifying language-
based algorithms, where contextual information needs to be collected before
it can be used. Language-based algorithms such as name analysis [22], pretty
printing [34], type inference [24], etc. are elegantly specified using AGs.

Our running example is no exception and the name analysis task of Let is a
non-trivial one. Despite being a concise example, it has central characteristics of
software languages, such as (nested) block-based structures and mandatory but
unique declarations of names. In addition, the semantics of this implementation
of Let does not force a declare-before-use discipline, meaning that a variable
can be declared after its first use. Consequently, a conventional implementation
of name analysis naturally leads to a processor that traverses each block twice:
once for processing the declarations of names and constructing an environment
and a second time to process the uses of names (using the computed environ-
ment) in order to check for the use of non-declared identifiers. The uniqueness of
identifiers is efficiently checked in the first traversal: for each newly encountered
name it is checked whether that it has already been declared at the same lexical
level (block). As a consequence, semantic errors resulting from duplicate defini-
tions are computed during the first traversal, and errors resulting from missing
declarations in the second one. In fact, expressing this straightforward algorithm
is a complex task in most programming paradigms, since it requires a complex
scheduling of tree traversals3, and intrusive code may be needed to pass infor-
mation computed in one traversal to a specific node and used in a subsequent
one4.

In the attribute grammar paradigm, the programmer does not need to be
concerned with scheduling of traversals, nor the use of intrusive code to glue
traversals together. As a consequence, they do not need to adapt algorithms
in order to avoid those issues. AGs associate attributes to grammar symbols
(types in a functional setting), which are called synthesized attributes if they are
computed bottom-up or inherited attributes if they are computed top-down.

3 Note that only after building the environment of an outer block can nested ones be
traversed: they inherited that environment. Thus, traversals are intermingled.

4 This is the case when we wish to produce a list of errors that follows the sequential
structure of the input program [27].

122 J. N. Macedo et al.

Fig. 2. Attribute grammar specifying the scope rules of Let

Fig. 3. Definitions of dclo, lev, dcli and env attributes

Very much like strategic term rewriting, AGs also rely on a generic tree
walk mechanism, usually called tree-walk evaluators [2], to walk up and down
the tree to evaluate attributes. In fact, generic zippers also offer the neces-
sary abstractions to express the embedding of AGs in a functional program-
ming setting [10,22]. Next, we briefly describe this embedding, and after that we
present the embedded AG that express the scope rules of Let . It also computes
(attribute) env, that is needed by the optimization rule 7.

To allow programmers to write zipper-based functions as AG writers do, the
generic zippers library [1] is extended with some combinators:

– The combinator “child”, written as the infix function .$ to access the child
of a tree node given its index (starting from 1).

(.$) :: Zipper a → Int → Zipper a

– The combinator parent to move the focus to the parent of a tree node.

parent :: Zipper a → Zipper a

Zipping Strategies and Attribute Grammars 123

Having presented these zipper-based AG combinators, we now show in Fig. 3
the scope rules specified in the Let AG directly as a Haskell-based AG. We also
show a visual representation of the AG in Fig. 2. Productions are shown with the
parent node above and children nodes below, inherited attributes are on their
left and synthesized attributes on their right, and arrows show how information
flows between productions and their children to compute attributes.

In this AG the inherited attribute dcli is used as an accumulator to collect
all Names defined in a Let : it starts as an empty list in the Root production, and
when a new Name is defined (productions Assign and NestedLet) it is added to
the accumulator. The total list of defined Name is synthesized in attribute dclo,
which at the Root node is passed down as the environment (inherited attribute
env). The type of the three attributes is a list of triples, associating the Name
to the level it is defined (used to distingish declarations with the same name)
and its Let expression definition5. Thus, we define a type synonym

type Env = [(Name, Int ,Maybe Exp)]

We start by defining the equations of the synthesized attribute dclo. For each
definition of an occurrence of dclo we define an equation in our zipper-based
function. For example, in the diagrams of the NestedLet and Assign productions
in Fig. 2 we see that dclo is defined as the dclo of the third child. Moreover, in
production EmptyList attribute dclo is a copy of dcli. Let us consider the case of
defining the inherited attribute env. In most diagrams an occurrence of attribute
env is defined as a copy of the parent. There are two exceptions: in productions
Root and NestedLet where Let subtrees occur. In both cases, env gets its value
from the synthesized attribute dclo of the same non-terminal/type. We use the
default rule of the case statement to express similar AG copy equations.

The inherited attribute lev is used to distinguish declarations with the same
name in different scopes. We omitted this attribute in the visual AG of Fig. 2
since its equations are simple. This attribute is passed downwards as a copy of
the parent node/symbol, with two exceptions: when visiting a Let subtree whose
parent is a Root, and when visiting a NestedLet . In the former the (initial) level
is 0, while in the latter since we are descending to a nested block, we increment
the level of the outer one.

Finally, let us define now the accumulator attribute dcli. The zipper function,
when visiting nodes of type Let (which have dcli attributes) has to consider two
alternatives: the parent node can be a Root or a NestedLet (the two occurrences
of Let as a child in the diagrams of Fig. 2). This happens because the rules to
define its value differ: in the Root node it corresponds to an empty list (our
outermost Let is context-free), while in a nested block, the accumulator dcli
starts as the env of the outer block. When visiting all other subtrees (expressed
by the default rule), we need to define the inherited attribute dcli of List sub-
trees. There are three different cases: when the parent is a Let node, dcli is a
copy of the parent. When the parent is an Assign then the Name, level and the

5 We will use this definition to expand the Name as required by optimization rule 7.

124 J. N. Macedo et al.

associated Exp are accumulated in the dcli of the parent. Finally, in the case of
NestedLet the Name, level and a Nothing expression is accumulated in dcli6.

In order to specify the complete name analysis task of Let expression we need
to report which names violate the scope rules of the language. We can modular
and incrementally extend our AG [28], and define a new attribute errors to
report such violations. In the next section errors is expressed as a strategic
function.

3.2 Strategic Attribute Grammars

By having embedding both strategic term rewriting and attribute grammars in
the same zipper-based setting, and given that both are embedded as first-class
citizens, we can easily combine these two powerful language engineering tech-
niques. As a result, attribute computations that do useful work on few produc-
tions/nodes can be efficiently expressed via our Ztrategic library, while rewriting
rules that rely on context information can access attribute values.

Accessing Attribute Values from Strategies: As we mentioned in Sect. 3, rule 7
of Fig. 1 cannot be implemented using a trivial strategy, since it depends on
the context. The rule states that a variable occurrence can be changed by its
definition. Thus, we need to compute an environment of definitions, which is
what we have done with the attribute env, previously. If we had access to such
attribute in the definition of a strategy, we would be able to implement this rule.

Given that both attribute grammars and strategies use the zipper to walk
through the tree, such combinations can be easily performed if the strategy
exposes the zipper, so it can be used to apply the given attribute. This is done
in our library by the adhocTPZ combinator:

adhocTPZ :: Typeable a ⇒ TP e → (a → Zipper e → Maybe a) → TP e

Notice that instead of taking a function of type (a → Maybe a), as does the
combinator adhocTP introduced in Sect. 2, it receives a function of type (a →
Zipper e → Maybe a), with the zipper as a parameter. Then, we can define a
worker function with this type, that implements rule 7:

expC :: Exp → Zipper Root → Maybe Exp
expC (Var x) z = expand (i , lev z) (env z)
expC = Nothing

where expand is a simple lookup function that replaces a name x for its definition
in the environment (given by attribute env). This strategic function also uses
attribute lev to look for the current or closest scope where name x is defined.

6 In this AG function we use boilerplate code lexemeName and lexemeExp , which imple-
ment the so-called syntactic references in attribute equations [26]. They return the
Name and Exp arguments of constructor Assign, respectively.

Zipping Strategies and Attribute Grammars 125

As a final step, we combine this rule with the previously defined expr (rules 1
to 6) and apply them to all nodes.

opt ′′ :: Zipper Root → Maybe (Zipper Root)
opt ′′ r = applyTP (innermost (failTP ‘adhocTPZ ’ expC ‘adhocTP ’ expr)) r

Synthesizing Attributes via Strategies: We showed how attributes and strategies
are combined by using the former while defining the latter. Now we show how
to combine them the other way around; i.e. to express attribute computations
as strategies. As an example, let us define the errors attribute, that returns the
list of names that violate the scope rules. Note that duplicated definitions are
efficiently detected when a new Name (defined in nodes Assign and NestedLet)
is accumulated in dcli. The newly defined Name must not be in the environment
dcli accumulated prior to that definition. Invalid uses are detected when a Name
is used in an arithmetic expression (Exp). In this case, the Name must be in7

the accumulated environment env. This is expressed by the following zipper
functions:

decls :: List → Zipper Root → [Name]
decls (Assign) z = mNBIn (lexemeName z , lev z) (dcli z)
decls (NestedLet) z = mNBIn (lexemeName z , lev z) (dcli z)
decls = []

uses :: Exp → Zipper Root → [Name]
uses (Var) z = mBIn (lexemeName z) (env z)
uses z = []

Now, we define a type-unifying strategy that produces the list of errors.

errors :: Zipper Root → [Name]
errors t = applyTU (full tdTU (failTU ‘adhocTUZ ’ uses ‘adhocTUZ ’ decls)) t

Although the applied function combines decls and uses in this order, the
resulting list does not report duplicates first, and invalid uses after. The strategic
function adhocTUZ combines the two functions and the default failing function
into one, which is applied while traversing the tree in a top-down traversal,
producing the errors in the order they occur. If we define errors as an attribute,
most of the attribute equations are just propagating attribute values upwards
without doing useful work! This is particularly relevant when we consider the
Let sub-language as part of a real programming language (such as Haskell with
its 116 constructors across 30 data types). Thus, combining attribute grammars
with strategic term rewriting allows the leverage of the best of both worlds.

7 Functions mNBIn and mBIn are trivial lookup functions. They are presented in [20].

126 J. N. Macedo et al.

4 Expressiveness and Performance

In order to evaluate our combined zipper-based embedding of attribute gram-
mars and strategic term-rewriting we consider three language engineering prob-
lems: First, we define a refactoring that eliminates the monadic do-notation
from Haskell programs. Second, we evaluate the performance of our library by
comparing the runtimes of an implementation in Ztrategic of a Haskell smell
eliminator with its Strafunski counterpart when processing a large set of smelly
Haskell programs. Third, we express in Ztrategic the largest language specifi-
cation developed in this setting: the Oberon-0 language. The construction of a
processor for Oberon-0 was proposed in the LDTA Tool Challenge [35], and it
was concisely and efficiently specified using AGs and strategies in Kiama [31].

Do-Notation Elimination: We start by defining a refactoring that eliminates the
syntactic sugar introduced by the monadic do-notation. In order to automate
this refactoring, a type-preserving strategy is used to perform a full traversal in
the Haskell tree, since such expressions can be arbitrarily nested. The rewrite
step behaves like the identity function by default with a type-specific case for
pattern matching the do-notation in the Haskell tree (constructor HsDo).

The following type-specific transformation function doElim just matches
HsDo nodes and returns the correct desugared node, expressed at abstract syn-
tax tree level. We omit the details of its representation as Haskell data types.

refactor :: Zipper HsModule → Maybe (Zipper HsModule)
refactor h = applyTP (innermost step) h where step = failTP ‘adhocTP ’ doElim

doElim :: HsExp → Maybe HsExp
doElim (HsDo [HsQualifier e]) = Just e
doElim (HsDo (HsQualifier e : stmts))

= Just ((HsInfixApp e (HsQVarOp (hsSymbol ">>")) (HsDo stmts)))
doElim (HsDo (HsGenerator p e : stmts)) = Just (letPattern p e stmts))
doElim (HsDo (HsLetStmt decls : stmts)) = Just (HsLet decls (HsDo stmts))
doElim = Nothing

We conclude that our library allows for the definition of powerful source
code transformations in a concise manner. We also include a list desugaring
implementation in our work’s repository.

Smells Elimination: Source code smells make code harder to comprehend. A
smell is not an error, but it indicates a bad programming practice. For example,
inexperienced Haskell programmers often write l ≡ [] to check whether a list is
empty, instead of using the predefined null function. Next, we present a strategic
function that eliminates several Haskell smells as reported in [7].

smellElim h = applyTP (innermost step) h
where step = failTP ‘adhocTP ’ joinList ‘adhocTP ’ nullList

‘adhocTP ’ redundantBoolean ‘adhocTP ’ reduntantIf

Zipping Strategies and Attribute Grammars 127

where joinList detects patterns where list concatenations are inefficiently
defined, nullList detects patterns where a list is checked for emptiness,
redundantBoolean detects redundant boolean checks, and reduntantIf detects
redundant if clauses.

In order to assess the runtime performance of our zipper-based strategic
term rewriting implementation, we compare it with the state-of-the-art, fully
optimized Strafunski system. A detailed analysis of runtime performance of the
zipper-based embedding of AGs is presented in [10], in which memoized zipper-
based attribute grammars with very large inputs are benchmarked, showing that
this AG embedding is not only concise and elegant, but also efficient.

Table 1. Haskell smell eliminators in Ztrate-
gic and Strafunski.

Ztrategic Strafunski

Lines of code 22 22

Runtime 16.2 s 10.2 s

Average memory 6607 Kb 6580 Kb

Let us consider the Haskell smell
eliminator expressed in both Ztrate-
gic and Strafunski. To run both
tools with large smelly inputs, we
consider 150 Haskell projects devel-
oped by first-year students as pre-
sented in [3]. In these projects there
are 1139 Haskell files totaling 82124
lines of code, of which exactly 1000 files were syntactically correct8. Both Ztrate-
gic and Strafunski smell eliminators detected and eliminated 850 code smells in
those files. To compare the runtime performance of both implementations, we
computed an average of 5 runs, on a Ubuntu 16.04 machine, i5-7200U Dual Core,
with 8 GB RAM. In this case, the very first version of Ztrategic, while being
more expressive, is only 60% slower than the Strafunski library (Table 1).

Table 2. Numbers of lines of code for
the Oberon-0 L2 tasks.

Task Ztrategic Kiama

Oberon-0 tree 57 99

Name analyzer 50 222

Type analyzer 34 117

Lifter 6 23

Desugarer 76 123

Total 223 584

Oberon-0 in Ztrategic: The LDTA Tool
Challenge [35] was a challenge focused
on the construction of a compiler for the
Oberon-0 language, with the goal of com-
paring the formalisms and toolsets used in
it. The challenge was divided into 5 tasks:
parsing and pretty-printing, name bind-
ing, type checking, desugaring and C code
generation. These tasks were to be per-
formed on the Oberon-0 language, which
in itself was divided into 5 increasingly
complex levels. We consider the level 2
(L2) of the Oberon-0 problem, and we specified the name binding, type checking
and desugaring tasks in our Ztrategic AG approach. We use attributes for contex-
tual information when needed, for example in name analysis to check whether a
used name has been declared. This language level requires the desugaring of For
and Case statements into semantically equivalent While and (nested) If state-
ments. Such desugaring is implemented using Ztrategic type-preserving strate-
gies, and the result is a new tree in which name analysis and type checking is
performed through strategic traversals that use attributes. Because desugaring
8 The student projects used in this benchmark are available at this work’s repository.

128 J. N. Macedo et al.

a For statement induces a new assignment (before the new WhileStmt state-
ment) whose variable needs to be added to the declarations part of the original
AST, we use the attribute numForDown which is a synthesized attribute of
the original tree. Having the desugared AST and the number of For statements
refactored, then we return the final higher-order tree where the induced variables
are properly declared.

desugar m = let numberOfFors = numForsDown (toZipper m)
step = failTP ‘adhocTP ’ desugarFor ‘adhocTPZ ’ desugarCase
ata = fromJust (applyTP (innermost step) (toZipper m))

in injectForVars numberOfFors (fromZipper ata)

We omit here the definition of the worker function desugarFor . Its definition
is fully included in [20], and it is also similar to the Kiama definition presented
in [31]. In Table 2, we compare our approach to the results presented in [31] for
the L2 language level. Notably, we show that our approach, even in its earliest
versions, is suited for large-scale and real world usage.

5 Related Work

The work we present in this paper is inspired by the pioneering work of Sloane
who developed Kiama [13,30]: an embedding of strategic term rewriting and
AGs in the Scala programming language. While our approach expresses both
attribute computations and strategic term rewriting as pure functions, Kiama
caches attribute values in a global cache, in order to reuse attribute values com-
puted in the original tree that are not affected by the rewriting. Such global
caching, however, induces an overhead in order to keep it updated, for exam-
ple, attribute values associated to subtrees discarded by the rewriting process
need to be purged from the cache [32]. In our purely functional setting, we
only compute attributes in the desired re-written tree (as is the case of the let
example shown in Sect. 3.1). Influenced by Kiama, Kramer and Van Wyk [15]
present strategy attributes, which is an integration of strategic term rewriting
into attribute grammars. Strategic rewriting rules can use the attributes of a
tree to reference contextual information during rewriting, much like we present
in our work. They present several practical application, namely the evaluation
of λ-calculus, a regular expression matching via Brzozowski derivatives, and the
normalization of for-loops. All these examples can be directly expressed in our
setting. They also present an application to optimize translation of strategies.
Because our techniques rely on shallow embeddings, we are unable to express
strategy optimizations without relying on meta-programming techniques [29].
Nevertheless, our embeddings result in very simple libraries that are easier to
extend and maintain, specially when compared to the complexity of extending a
full language system such as Silver [36]. JastAdd is a reference attribute gram-
mar based system [9]. It supports most of AG extensions, including reference
and circular AGs [33]. It also supports tree rewriting, with rewrite rules that

Zipping Strategies and Attribute Grammars 129

can reference attributes. JastAdd, however, provides no support for strategic
programming, that is to say, there is no mechanism to control how the rewrite
rules are applied. The zipper-based AG embedding we integrate in Ztrategic sup-
ports all modern AG extensions, including reference and circular AGs [10,22].
Because strategies and AGs are first-class citizens we can smoothly combine any
such extensions with strategic term rewriting.

In the context of strategic term rewriting, our Ztrategic library is inspired by
Strafunski [17]. In fact, Ztrategic already provides almost all Strafunski function-
ality. There is, however, a key difference between these libraries: while Strafunski
accesses the data structure directly, Ztrategic operates on zippers. As a conse-
quence, we can easily access attributes from strategic functions and strategic
functions from attribute equations.

6 Conclusions

This paper presented a zipper-based embedding of strategic term rewriting. By
relying on zippers, we combine it with a zipper-based embedding of attribute
grammars so that (zipper-based) strategies can access (zipper-based) AG func-
tional definitions, and vice versa. We developed Ztrategic, a small but powerful
strategic programming library and we have used it to implement several language
engineering tasks.

To evaluate the expressiveness of our approach we compared our Ztrategic
solution to the largest strategic AG developed with the state-of-the-art Kiama
system. In terms of runtime performance we compared our Ztrategic library to
the well established and fully optimized Strafusnki solution. The preliminary
results show that in fact zippers provided a uniform setting in which to express
both strategic term rewriting and AGs that are on par with the state-of-the-art.
Moreover, our approach can easily be implemented in any programming language
in which a zipper abstraction can be defined. In order to improve performance,
we are considering extending Ztrategic to work with a memoized version of the
AG library.

Acknowledgements. This work is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project
LA/P/0063/2020. The first author is also sponsored by FCT grant 2021.08184.BD.

References

1. Adams, M.D.: Scrap your zippers: a generic zipper for heterogeneous types. In:
WGP 2010: Proceedings of the 2010 ACM SIGPLAN Workshop on Generic Pro-
gramming, pp. 13–24. ACM, New York (2010). https://doi.org/10.1145/1863495.
1863499

2. Alblas, H.: Attribute evaluation methods. In: Alblas, H., Melichar, B. (eds.) SAGA
School 1991. LNCS, vol. 545, pp. 48–113. Springer, Heidelberg (1991). https://doi.
org/10.1007/3-540-54572-7 3

https://doi.org/10.1145/1863495.1863499
https://doi.org/10.1145/1863495.1863499
https://doi.org/10.1007/3-540-54572-7_3
https://doi.org/10.1007/3-540-54572-7_3

130 J. N. Macedo et al.

3. Almeida, J.B., Cunha, A., Macedo, N., Pacheco, H., Proença, J.: Teaching how
to program using automated assessment and functional glossy games (experience
report). Proc. ACM Program. Lang. 2(ICFP) (2018). https://doi.org/10.1145/
3236777

4. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: piggybacking
rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9 5

5. van den Brand, M.G.J., et al.: The Asf+Sdf meta-environment: a component-
based language development environment. In: Wilhelm, R. (ed.) CC 2001. LNCS,
vol. 2027, pp. 365–370. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45306-7 26

6. Cordy, J.R.: TXL - a language for programming language tools and applications.
Electron. Notes Theor. Comput. Sci. 110, 3–31 (2004). https://doi.org/10.1016/j.
entcs.2004.11.006

7. Cowie, J.: Detecting bad smells in haskell. Technical report, University of Kent,
UK (2005)

8. Dijkstra, A., Swierstra, S.D.: Typing haskell with an attribute grammar. In: Vene,
V., Uustalu, T. (eds.) AFP 2004. LNCS, vol. 3622, pp. 1–72. Springer, Heidelberg
(2005). https://doi.org/10.1007/11546382 1

9. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. SIGPLAN Not.
42(10), 1–18 (2007). http://doi.acm.org/10.1145/1297105.1297029

10. Fernandes, J.P., Martins, P., Pardo, A., Saraiva, J., Viera, M.: Memoized zipper-
based attribute grammars and their higher order extension. Sci. Comput. Program.
173, 71–94 (2019). https://doi.org/10.1016/j.scico.2018.10.006

11. Gray, R.W., Levi, S.P., Heuring, V.P., Sloane, A.M., Waite, W.M.: Eli: a complete,
flexible compiler construction system. Commun. ACM 35(2), 121–130 (1992).
https://doi.org/10.1145/129630.129637

12. Huet, G.: The zipper. J. Funct. Program. 7(5), 549–554 (1997)
13. Kats, L.C.L., Sloane, A.M., Visser, E.: Decorated attribute grammars: attribute

evaluation meets strategic programming. In: de Moor, O., Schwartzbach, M.I. (eds.)
CC 2009. LNCS, vol. 5501, pp. 142–157. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-00722-4 11

14. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–
145 (1968)

15. Kramer, L., Van Wyk, E.: Strategic tree rewriting in attribute grammars. In: Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Software Lan-
guage Engineering, SLE 2020, pp. 210–229. Association for Computing Machinery,
New York (2020). https://doi.org/10.1145/3426425.3426943

16. Kuiper, M., Saraiva, J.: Lrc - a generator for incremental language-oriented tools.
In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 298–301. Springer, Heidel-
berg (1998). https://doi.org/10.1007/BFb0026440

17. Lämmel, R., Visser, J.: Typed combinators for generic traversal. In: Krishnamurthi,
S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 137–154. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45587-6 10

18. Lämmel, R., Visser, J.: A Strafunski application letter. In: Dahl, V., Wadler, P.
(eds.) PADL 2003. LNCS, vol. 2562, pp. 357–375. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36388-2 24

19. Luttik, S.P., Visser, E.: Specification of rewriting strategies. In: Proceedings of the
2nd International Conference on Theory and Practice of Algebraic Specifications,
Algebraic 1997, p. 9. BCS Learning & Development Ltd., Swindon (1997)

https://doi.org/10.1145/3236777
https://doi.org/10.1145/3236777
https://doi.org/10.1007/978-3-540-73449-9_5
https://doi.org/10.1007/3-540-45306-7_26
https://doi.org/10.1007/3-540-45306-7_26
https://doi.org/10.1016/j.entcs.2004.11.006
https://doi.org/10.1016/j.entcs.2004.11.006
https://doi.org/10.1007/11546382_1
http://doi.acm.org/10.1145/1297105.1297029
https://doi.org/10.1016/j.scico.2018.10.006
https://doi.org/10.1145/129630.129637
https://doi.org/10.1007/978-3-642-00722-4_11
https://doi.org/10.1007/978-3-642-00722-4_11
https://doi.org/10.1145/3426425.3426943
https://doi.org/10.1007/BFb0026440
https://doi.org/10.1007/3-540-45587-6_10
https://doi.org/10.1007/3-540-36388-2_24

Zipping Strategies and Attribute Grammars 131

20. Macedo, J.N., Viera, M., Saraiva, J.: The Ztrategic library (2022). https://
bitbucket.org/zenunomacedo/ztrategic/

21. Martins, P., Fernandes, J.P., Saraiva, J.: Zipper-based attribute grammars and
their extensions. In: Du Bois, A.R., Trinder, P. (eds.) SBLP 2013. LNCS, vol.
8129, pp. 135–149. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40922-6 10

22. Martins, P., Fernandes, J.P., Saraiva, J., Van Wyk, E., Sloane, A.: Embedding
attribute grammars and their extensions using functional zippers. Sci. Comput.
Program. 132(P1), 2–28 (2016). https://doi.org/10.1016/j.scico.2016.03.005

23. Mernik, M., Korbar, N., Žumer, V.: LISA: a tool for automatic language imple-
mentation. SIGPLAN Not. 30(4), 71–79 (1995). https://doi.org/10.1145/202176.
202185

24. Middelkoop, A., Dijkstra, A., Swierstra, S.D.: Iterative type inference with
attribute grammars. In: Proceedings of the Ninth International Conference on
Generative Programming and Component Engineering, GPCE 2010, pp. 43–52.
Association for Computing Machinery, New York (2010). https://doi.org/10.1145/
1868294.1868302

25. de Moor, O., Backhouse, K., Swierstra, D.: First-class attribute grammars. Infor-
matica (Slovenia) 24(3) (2000). citeseer.ist.psu.edu/demoor00firstclass.html

26. Reps, T., Teitelbaum, T.: The synthesizer generator. SIGPLAN Not. 19(5), 42–48
(1984). https://doi.org/10.1145/390011.808247

27. Saraiva, J.: Purely functional implementation of attribute grammars. Ph.D. thesis,
Utrecht University, The Netherlands, December 1999

28. Saraiva, J.: Component-based programming for higher-order attribute grammars.
In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp.
268–282. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45821-2 17

29. Sheard, T., Jones, S.P.: Template meta-programming for haskell. In: Proceedings
of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell 2002, pp. 1–16. Associa-
tion for Computing Machinery, New York (2002). https://doi.org/10.1145/581690.
581691

30. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of
attribute grammars. Electron. Notes Theor. Comput. Sci. 253(7), 205–219 (2010).
https://doi.org/10.1016/j.entcs.2010.08.043

31. Sloane, A.M., Roberts, M.: Oberon-0 in kiama. Sci. Comput. Program. 114, 20–32
(2015). https://doi.org/10.1016/j.scico.2015.10.010. lDTA (Language Descriptions,
Tools, and Applications) Tool Challenge

32. Sloane, A.M., Roberts, M., Hamey, L.G.C.: Respect your parents: how attribution
and rewriting can get along. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J.
(eds.) SLE 2014. LNCS, vol. 8706, pp. 191–210. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11245-9 11

33. Söderberg, E., Hedin, G.: Circular higher-order reference attribute grammars. In:
Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 302–
321. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 17

34. Swierstra, S.D., Azero Alcocer, P.R., Saraiva, J.: Designing and implementing com-
binator languages. In: Swierstra, S.D., Oliveira, J.N., Henriques, P.R. (eds.) AFP
1998. LNCS, vol. 1608, pp. 150–206. Springer, Heidelberg (1999). https://doi.org/
10.1007/10704973 4

35. van den Brand, M.: Introduction - the LDTA tool challenge. Sci. Comput. Program.
114, 1–6 (2015). https://doi.org/10.1016/j.scico.2015.10.015

https://bitbucket.org/zenunomacedo/ztrategic/
https://bitbucket.org/zenunomacedo/ztrategic/
https://doi.org/10.1007/978-3-642-40922-6_10
https://doi.org/10.1007/978-3-642-40922-6_10
https://doi.org/10.1016/j.scico.2016.03.005
https://doi.org/10.1145/202176.202185
https://doi.org/10.1145/202176.202185
https://doi.org/10.1145/1868294.1868302
https://doi.org/10.1145/1868294.1868302
http://citeseer.ist.psu.edu/demoor00firstclass.html
https://doi.org/10.1145/390011.808247
https://doi.org/10.1007/3-540-45821-2_17
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1016/j.entcs.2010.08.043
https://doi.org/10.1016/j.scico.2015.10.010
https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1007/978-3-319-02654-1_17
https://doi.org/10.1007/10704973_4
https://doi.org/10.1007/10704973_4
https://doi.org/10.1016/j.scico.2015.10.015

132 J. N. Macedo et al.

36. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Electron. Notes Theor. Comput. Sci. 203(2), 103–116 (2008).
https://doi.org/10.1016/j.entcs.2008.03.047

37. Visser, E.: Stratego: a language for program transformation based on rewriting
strategies system description of Stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001.
LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45127-7 27

38. van Wijngaarcien, A., et al.: Revised report on the algorithmic language Algol 68.
SIGPLAN Not. 12(5), 1–70 (1977). https://doi.org/10.1145/954652.1781176

https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1145/954652.1781176

Unified Program Generation
and Verification: A Case Study
on Number-Theoretic Transform

Masahiro Masuda(B) and Yukiyoshi Kameyama

University of Tsukuba, Tsukuba, Japan
masa@logic.cs.tsukuba.ac.jp,kameyama@acm.org

Abstract. Giving correctness assurance to the generated code in the
context of generative programming is a poorly explored problem. Such
assurance is particularly desired for applications where correctness of the
optimized code is far from obvious, such as cryptography.

This work presents a unified approach to program generation and
verification, and applies it to an implementation of Number-Theoretic
Transform, a key building block in lattice-based cryptography. Our strat-
egy for verification is based on problem decomposition: While we found
that an attempt to prove functional correctness of the whole program all
at once is intractable, low-level components in the optimized program
and its high-level algorithm structure can be separately verified using
procedures of appropriate levels of abstraction.

We demonstrate that such a decomposition and subsequent verifica-
tion of each component are naturally realized in a program-generation
approach based on the tagless-final style, leading to an end-to-end func-
tional correctness verification of a highly optimized program.

1 Introduction

State-of-the-art multi-stage programming languages and systems can generate
highly performant code [14,15,24,25]. In terms of reliability, however, assuring
correctness beyond type safety of generated code has been rarely provided and
thus it remains a relatively unexplored problem. For applications where code
correctness is as important as performance, this is an undesirable situation.

Cryptography is an example of such application domains. Expert cryptogra-
phers still write performance-critical code in assembly. Assembly code makes it
hard to be confident in the correctness of its implementation, as well as com-
plicates the development and maintenance process. Although there has been
remarkable progress on verifying and generating code for low-level cryptographic
primitives that are used today [11,26], doing full-scale verification of bleeding-
edge primitives that are still being developed is costly and unrealistic. Number-
Theoretic Transform (NTT) is one example of recent primitives that is of increas-
ing interest in lattice-based cryptography. More specifically, NTT is a variant
of Fast Fourier Transform specialized to a finite field; It is used to accelerate
c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 133–151, 2022.
https://doi.org/10.1007/978-3-030-99461-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_8

134 M. Masuda and Y. Kameyama

polynomial multiplication on prime-field coefficients, which is at the heart of
cryptographic constructions based on the Ring learning with errors (RLWE)
problem [18]. Since the RLWE problem is widely recognized as a promising hard-
ness assumption for post-quantum cryptography, many cryptographic schemes
based on the hardness of the RLWE problem have been developed, along with
optimized assembly implementations of NTT [3,13,17,23]. We believe that the
programming language community should be able to help implement correct and
efficient code for such state-of-the-art primitives.

This work contributes a DSL-based approach to an NTT implementation,
which uniformly represents code generation and verification in a single frame-
work. Our approach is based on module-based abstraction techniques for embed-
ded DSL implementations that are well-known in the functional programming
community: Specifically, the tagless-final style [9] is used for code generation.
Our framework extends our previous work on code generation [19] to accommo-
date program verification as an instance of interpretations of a DSL program.
By exploiting the highly parameterized nature of the framework, we can realize
interval analysis and symbolic computation at the level of an abstract DSL, while
taking into account low-level details that are present in the generated code.

We have performed both safety property and functional correctness verifi-
cation, which led us to several interesting findings. First, we found that a DSL
framework based on the tagless-final style naturally enables a custom imple-
mentation of interval analysis, and that it can yield more precise bounds than
those estimated by the state-of-the-art static analyzer for C programs, Frama-C
value analysis tool [7], applied to the generated code. Moreover, the more pre-
cise bounds allowed us to discover a new optimization opportunity that was not
known before. Second, we found that decoupling the low-level details of modu-
lar reductions from the high-level structure of the NTT algorithm is the key to
carrying out the end-to-end equivalence checking against the DFT reference. We
summarize our contributions as follows1.

– A unified treatment of code generation and verification in a single framework
– Interval analysis for NTT that verifies the absence of integer overflow

(Sects. 4.1 and 4.2)
– A verified derivation of a new code optimization based on interval analysis

(Sect. 4.3)
– End-to-end verification of functional correctness of the highly optimized NTT

code against a textbook DFT algorithm (Sect. 5)

The rest of the paper is organized as follows: Sect. 2 gives background to this
work. We describe our verification tasks concretely in Sect. 3 before we go into
our technical contributions in Sects. 4 and 5. We recap the pros and cons of our
approach in Sect. 6. Section 7 discusses related work and we conclude in Sect. 8.

1 Our code is available in https://github.com/masahi/nttverify.

https://github.com/masahi/nttverify

Unified Program Generation and Verification 135

2 Background

2.1 Number-Theoretic Transform

NTT is an O(n log n) time algorithm to compute Discrete Fourier Trans-
form (DFT) on a finite field. DFT is defined as follows: Given an input
a = (a0, a1, ..., an−1) such that ai ∈ Zq, the finite field of integers modulo q,
it computes y = (y0, y1, ..., yn−1), yi ∈ Zq by the following formula [10]:

yk =
n−1∑

j=0

ajω
kj
n (1)

Here, ωn is the nth primitive root of unity modulo q, satisfying ωn
n ≡ 1

(mod q). All addition and multiplication are done in modulo q. As an example
of the choice of parameters, the NTT implementation in NewHope [3], which
our previous work on code generation is based on, uses n = 1024 and q = 12289.

Algorithm 1 shows the pseudocode of a textbook NTT algorithm. It uses the
standard Cooley-Tukey algorithm [10] and all powers of ωn, called twiddle fac-
tors, are precomputed and stored in an array Ω. Each iteration of the outermost
loop is often called a stage.

Algorithm 1. The pseudocode for the iterative, in-place NTT
1: procedure NTT

Input: a = (a0, a1, ..., an−1) ∈ Z
n
q , precomputed constants table Ω ∈ Z

n
q

2: Output: y = DFT(a), in standard order
3: bit-reverse(a)
4: for (s = 1; s ≤ log2(n); s = s + 1) do
5: m = 2s

6: o = 2s−1 − 1
7: for (k = 0; k < m; k = k + m) do
8: for (j = 0; j < m/2; j = j + 1) do
9: u = a[k + j]
10: t = (a[k + j + m/2] · Ω[o + j]) mod q
11: a[k + j] = (u + t) mod q
12: a[k + j + m/2] = (u − t) mod q
13: end for
14: end for
15: end for
16: end procedure

The innermost loop performs the Cooly-Tukey butterfly operation with mod-
ular arithmetic. Existing work [3,23] and our code-generation framework use spe-
cialized algorithms for modular reductions. We follow their choice of algorithms
and use Barrett reduction [6] to reduce the results of addition and subtraction,
and Montgomery multiplication [20] for multiplication followed by reduction. We
also follow the setting in NewHope for the choice of parameters: The modulus
parameter q is 12289, and the input size n is 1024. The input is an array of
integers whose values fit in 14 bits. Modular-reduction algorithms take one or
two 16-bit values and compute a 14-bit output.

136 M. Masuda and Y. Kameyama

2.2 NTT Code Generation in the Tagless-Final Style

In our previous work [19], we introduced a code-generation framework for NTT,
based on the tagless-final style [9]. Since this work builds heavily on our code-
generation framework, this section gives a brief introduction to that work.

The tagless-final style is a way to realize a typed DSL via embedding into a
typed host language [9]. It uses abstraction facilities in host languages, such as
Haskell type classes or the ML module system, to define the syntax of the DSL
parameterized by an abstract type for the DSL semantics. Different type class
instances or implementations of the module signature give distinct interpreta-
tions of a single DSL program2.

Our code generator is parameterized in two ways: The first one is the seman-
tics of DSL, which follows the standard practice of the tagless-final style. The
second one is the semantics of the arithmetic domain the NTT program operates
on. We call the first abstraction the language abstraction and the second one
the domain abstraction. Both abstractions are represented in the ML-module
system described below.

The language abstraction represents the DSL syntax by a module signature,
and its semantics by a module structure. The following module signature C_lang
represents the syntax of our DSL for generating code in the programming lan-
guage C. The DSL has sufficient constructs for expressing the NTT algorithm
in this paper.

module type C_lang = sig

type 'a expr

type 'a stmt = 'a expr

val int_ : int -> int expr (* constant *)

val (%+) : int expr -> int expr -> int expr (* addition *)

val for_ : int expr -> int expr -> int expr -> (int expr -> unit stmt)

-> unit stmt

...

end

The domain abstraction is represented by the following signature:

module type Domain = sig

type 'a expr

type t

val lift: t -> t expr

val add: t expr -> t expr -> t expr

val sub: t expr -> t expr -> t expr

val mul: t expr -> t expr -> t expr

end

Using these signatures, we describe the innermost loop of Algorithm 1 as
follows:
2 In the module system of ML-family languages, a signature is an interface of a module,

and a structure is its implementation.

Unified Program Generation and Verification 137

for_ (int_ 0) m_half (int_ 1) (fun j ->

let index = k %+ j in

let omega = arr_get prim_root_powers (coeff_offset %+ j) in

let2

(arr_get input index)

(D.mul (arr_get input (index %+ m_half)) omega)

(fun u t ->

seq

(arr_set input index (D.add u t))

(arr_set input (index %+ m_half) (D.sub u t))))

arr get and arr set are array access and assignment, respectively. let2 V1
V2 (fun t u -> V3) is syntactic sugar for the doubly-nested let binding: let
t = V1 in let u = V2 in V3. The variable prim root powers stores precom-
puted twiddle factors in an array. All modular-arithmetic operations are per-
formed by the module D which implements the Domain signature.

The meaning of this program depends on concrete instantiations of the two
abstractions. For this work, we use the term interpretation to refer to a con-
crete instantiation of the language abstraction, and domain implementation
to refer to a corresponding one for the domain abstraction.

The behavior of DSL programs is determined by giving an interpretation of
the module signature C lang including the type ’a expr. In our previous work,
the type ’a expr is interpreted as an OCaml string, since their purpose was
solely to generate C programs. For instance, a DSL term for is translated to
the string representation of the for loop in the C language. In this work, we use
another interpretation that evaluates DSL terms in OCaml by interpreting the
type ’a expr as ’a as follows:

module R = struct

type 'a expr = 'a

let int_ n = n

let (%+) x y = x + y

...

let for_ low high step body =

let index = ref low in

for _ = 0 to (high - low) / step - 1 do

body !index;

index := !index + step

done

...

end

When the NTT program is instantiated with this interpretation, we can
directly execute the program under the normal semantics for OCaml. The out-
put depends on the domain implementation. The most canonical one, also used
in C-code generation, is the domain of integers modulo q with low-level imple-
mentations of modular reductions. But we can also use entirely different domains
for analysis or verification purposes. For example, we can lift implementations

138 M. Masuda and Y. Kameyama

of modular reductions to the domain of intervals of integers modulo q: This lets
us analyze the NTT program to verify the absence of integer overflow, as we
will discuss in Sect. 4. Similarly, by using a domain representing purely symbolic
operations on a finite field, the NTT program would be able to compute a poly-
nomial representation of the outputs with respect to symbolic inputs. Such a
highly abstract representation of the NTT computation facilitates verification of
functional correctness, as discussed in Sect. 5.

3 Verification Tasks and Strategy

Before going into our technical contributions, we summarize the verification tasks
at hand and our strategy for tackling them.

To generate a highly efficient C program, our NTT program contains vari-
ous low-level tricks that make it vulnerable to subtle errors. We highlight sev-
eral issues that are particularly unique to our program, using the pseudocode
of the innermost loop of the NTT program shown in Algorithm 2. The pseu-
docode differs from Algorithm 1 in that we use low-level modular reductions
barrett reduce and montgomery multiply reduce for Barrett reduction and
Montgomery multiplication, respectively. We have also introduced an optimiza-
tion technique called lazy reduction [3,19] for Barrett reduction.

Algorithm 2. The pseudocode for the innermost loop
for (j = 0; j < m/2; j = j + 1) do

u = a[k + j]
t = montgomery multiply reduce(a[k + j + m/2], Ω[o + j])
if s mod 2 == 0 then

a[k + j] = barrett reduce(u + t) � lazy reduction
else

a[k + j] = u + t
end if
a[k + j + m/2] = barrett reduce(u + 2q − t)

end for

Highly Non-trivial Implementation of Modular Reductions. Given a
16-bit integer, barrett reduce computes a value that is congruent to the input
and fits in 14 bits3. montgomery multiply reduce multiplies 16-bit and 14-bit
integers and reduces the product to fit in 14 bits. To be efficient and safe against
timing attacks, these algorithms are implemented in a tricky way. Listing 1 shows
a C implementation of Montgomery multiplication. They rely on the instructions
mullo (and mulhi, resp.) to compute the lower 16 bits (and the upper 16 bits,
resp.) of the 32-bit product, to keep all intermediate values within 16 bits4. The
implementation is carefully constructed to make sure that an occasional carry
bit is correctly accounted and the output is guaranteed to fit in 14 bits. The
latter requirement is satisfied by inserting conditional subtraction csub, which
3 We use 12289, which fits in 14 bits, as the modulus parameter q (See Sect. 2.1).
4 This is for maximizing parallelism from vectorization.

Unified Program Generation and Verification 139

subtracts the modulus parameter q from its argument if it is greater than or
equal to q, and returns it otherwise. csub computes such a value in constant
time5.

uint16_t csub(uint16_t arg0) {

int16_t v_0 = ((int16_t)arg0 - Q);

return (uint16_t)(v_0 + ((v_0 >> 15) & Q));

}

uint16_t montgomery_multiply_reduce(uint16_t x, uint16_t y) {

uint16_t mlo = mullo(x, y);

uint16_t mhi = mulhi(x, y);

uint16_t mlo_qinv = mullo(mlo, Q_INV);

uint16_t t = mulhi(mlo_qinv, Q);

uint16_t has_carry = mlo != 0;

return csub(mhi + t + has_carry);

}

Listing 1: Montgomery multiplication implemented in C (non-vectorized version)

Subtraction in Unsigned Integers. Since data values in our generated code
are unsigned integers, we need to be careful with subtraction. to avoid underflow.
We need to add to the first operand a multiple of q that is greater than the second
operand. We must also ensure that this addition never causes overflow. For our
choice of q, the correct multiple of q meeting these conditions turned out to be
2q.

Lazy Reduction. As observed in the work on NewHope [3], we do not have
to apply Barrett reduction after every addition: Since the result of adding two
14-bit values fits in 15 bits, in the next stage we can add two 15-bit values
without the risk of 16-bit overflow. Therefore, Barrett reduction only has to be
applied at every other stage. Sect. 4.3 will show that we can further eliminate
Barrett reductions. A more aggressive optimization makes the generated code
more vulnerable to integer overflow.

End-to-End Verification. We are not merely interested in verifying individ-
ual pieces of low-level code: The computation of the innermost loop shown in
Algorithm 2 is executed O(n log n) times over an entire execution of NTT, where
n = 1024 in our case. Our goal is to show that such an accumulated computation
gives rise to the value that is equivalent (modulo q) to the one computed by the
DFT formula (1).

In this work, we consider both safety and functional correctness. In particular,
for the safety aspect, we consider the problem of verifying the absence of integer
5 In cryptography implementations, being constant-time refers to having no data-

dependent control flow, which can become a security hole for timing attacks.

140 M. Masuda and Y. Kameyama

overflow, and for the functional correctness, we consider the equivalence of the
NTT program against DFT. We consider the safety aspect separately because
(1) it simplifies the latter task and (2) interval analysis we develop for verifying
the absence of integer overflow uncovers a new optimization opportunity. So we
believe our safety verification is of independent interest.

For verifying functional correctness, we do not pursue an approach using an
interactive proof assistant such as Coq, which can give us the highest level of
correctness guarantee. Since we aim at generating and verifying highly efficient
cryptographic code whose implementation strategy changes frequently, we stick
to a lightweight approach that allows one to change the implementation and
adapt the verification component quickly and easily.

Thus, we have developed a dedicated procedure for our verification problem.
Our approach works on a DSL program, not on the generated C program. But the
DSL program contains all low-level details that are present in the C program, so
our verification procedure takes all of such details into account. Thus, correctness
assurance we give to the DSL program directly translates to the generated C
program6. We have found that an attempt to prove functional correctness of
the whole program all at once is intractable: Instead, our overall strategy for
end-to-end verification is based on decoupling low-level components in the NTT
program from the high-level aspect of the NTT algorithm. Verification of low-
level components can be done straightforwardly, while we developed a simple and
effective verification procedure to show the equivalence of the NTT program
and the DFT formula in a purely mathematical setting. The decision to do
verification at the DSL level and the highly parameterized nature of our DSL
program make such decoupling and subsequent verification possible.

4 Interval Analysis on the NTT Program

To verify the absence of integer overflow, we present a simple interval analysis
as part of a program-generation framework for NTT programs. We have imple-
mented our own analyzer, rather than using an off-the-shelf tool for C programs,
to exploit domain-specific knowledge and compute more precise bounds than the
ones computed by the latter tools such as Frame-C [7]. We will show that our
analysis not only verifies the absence of integer overflow but also allows us to
derive a new optimization that was not known previously.

4.1 Modular Arithmetic on Intervals

We have designed an abstract interpreter for our modular-arithmetic routines,
building on the two abstractions we described in Sect. 2.2: We use the inter-
pretation of DSL that evaluates DSL terms directly in OCaml, and the set of
6 For simplicity, we do not consider the effect of vectorization for our verification

purpose, although the generated program is fully vectorized with multiple SIMD
instruction sets. All of the low-level issues that motivate our verification effort are
manifested in the non-vectorized implementation.

Unified Program Generation and Verification 141

intervals (low, high) as our domain implementation where low and high are inte-
gers representing the lower and upper bounds, respectively. The Domain module
in Sect. 2.2 is instantiated to the following structure:

module IntegerModulo_interval : Domain = struct

type t = int * int

let add (x1, y1) (x2, y2) = ...

let sub (x1, y1) (x2, y2) = barrett_reduce([x1 + 2q - y2, y1 + 2q - x2])

let mul (x1, y1) (x2, y2) = ...

end

Simple operations such as addition can be directly lifted to the intervals,
building on the standard definition of interval arithmetic. Montgomery multi-
plication, represented by mul above, is lifted to intervals by composing basic
operations, such as mullo and mulhi, lifted to the interval domain.

Lifting Barrett reduction to interval domains requires more care. As shown
below, Barrett reduction requires only three operations.

uint16_t barrett_reduce(uint16_t x) {

uint16_t v = mulhi(x, 5);

return x - mullo(v, Q);

}

We could have lifted Barrett reduction by composing the interval version of
high product, low product, and subtraction. But this approach faces difficulty
in the subtraction x - mullo(v, Q): Its second operand is the result of low
product, which, when lifted to intervals, always results in the least precise range
[0, 65535]. Even though the first operand x is always greater than the second
one7, it cannot be automatically inferred by applying interval analysis naively. To
get maximally precise bounds, we lift Barrett reduction to intervals by applying
the integer domain operation to all integers in the input interval, and taking the
minimum and maximum of the results of these operations. This comes at the
cost of higher runtime, but since the input to Barrett reduction is at most 16
bits, it does not significantly slow down the analysis8.

4.2 Verifying Bounds

Each low-level modular-arithmetic operation has certain conditions on its inputs
and output that need to be satisfied. We formulate these conditions as assertions
to be checked during interval analysis, summarized in Table 1.

For example, the second operand of addition and subtraction has a tighter
bound of max uint14, because it is the result of modular multiplication which
must fit in 14 bits where max uint14 refers to the maximum of unsigned 14-
bit integers, namely (1 � 14) − 1. Similarly for max uint15 and max uint16.

7 mullo(mulhi(x,5),q) is not greater than
⌊
x 1

q

⌋
q, since 5q < 65535 for our choice of

q.
8 It took only a few seconds for the input of size 1024.

142 M. Masuda and Y. Kameyama

The bound of max uint15 on the first operand is due to lazy reduction. Bounds
in Table 1 in turn depend on the validity of bounds on Barrett reduction and
conditional subtraction, shown in Table 2.

Table 1. Pre/Post-conditions for input [x1, y1], [x2, y2] and output [x3, y3]

Operations Precondition Postcondition

add y1 ≤ max uint15 ∧ y2 ≤ max uint14 y3 ≤ max uint16

sub y1 ≤ max uint15 ∧ y2 ≤ max uint14 y3 ≤ max uint14

mul y1 ≤ max uint15 ∧ y2 < q y3 ≤ max uint14

Table 2. Pre/Post-conditions for input [x1, y1] and output [x2, y2]

Operations Precondition Postcondition

barrett reduce y1 ≤ max uint16 y2 ≤ max uint14

csub y1 < 2q y2 < q

For Barrett reduction, we need to verify an additional assertion saying that
the first argument of the final subtraction is not smaller than the second argu-
ment. This is realized by inserting an assertion as follows:

let barrett_reduce x =

...

let y = mullo(v, Q) in

assert (x >= y);

let res = x - y in

...

Note that the assertion is inserted in the structure IntegerModulo interval
only. We do not have to modify the DSL program, because it is parameterized
with respect to domain interpretations.

We have confirmed that, given an array of intervals [0, q − 1] as input, all of
our assertions are not violated. Hence, there is no possibility for integer overflow
for our code.

We have also conducted the same verification experiment on the generated
C code using the Frama-C value analysis plugin [7]. For this purpose, we added
the above assertions as ACSL specifications [1] to the generated C code. Frama-
C was able to verify all but two assertions: the postcondition in Table 2 and
the assertion on the bound before the final subtraction9. We suspect that this
outcome arises from directly translating Barrett reduction on integers to intervals
by composing interval operations, which, as we observed in Sect. 4.1, can lead to
a loss in precision.

9 We have chosen options that maximize the precision of the analysis.

Unified Program Generation and Verification 143

4.3 Improving Lazy Reduction

During the course of interval analysis in the previous subsection, we found a way
to optimize the generated code even further: Barrett reduction after addition,
which we refer to as lazy Barrett reduction for brevity, needs to be applied
only once in three stages, rather than every other stage as we adopted from
NewHope. Realization of lazy reductions comes from the following observations:

– An operation that is most vulnerable to unsigned overflow is the addition
of 2q in subtraction, (x + 2q) − y. Since x is an unsigned 16-bit integer, the
maximum value that x can take without causing overflow in the addition is
65535 − 2q = 65535 − 2 ∗ 12289 = 40957, where 65535 is the maximum value
of an unsigned 16-bit integer.

– Our analysis showed that the maximum value that an input to lazy Barrett
reduction can take is 39319.

The first observation suggests that there is no need to apply Barrett reduction
before the value reaches 40957, while from the second one we know that the
input to lazy Barrett reduction is at most 39319. Therefore, we can omit one
more reduction before we need to reduce the value to 14 bits. Since each stage
has 512 additions, and we have reduced the number of stages where lazy Barrett
reduction is applied from 5 to 3, in total we are able to remove 2 ∗ 512 Barrett
reductions. The actual speedup over our previous work is summarized in Table 3.
On AVX2, the improved lazy reduction brought good speedup (14%) compared
to the baseline, while on AVX512 the speedup is modest (1.5%).

Table 3. Speedup by the improved lazy reduction (CPU: Intel Core i7-1065G7)

Cycle counts Speedup

AVX2 baseline 5398

AVX2 backend + improved lazy reduction 4744 14%

AVX512 baseline 4381

AVX512 backend + improved lazy reduction 4317 1.5%

The interval estimated by Frama-C is not precise enough to derive the same
conclusion as above: Frama-C computed the maximum value an input to lazy
Barrett reduction can take to be 40959, which is slightly bigger than the hard
threshold of 40957 required for safely enabling the optimization above. This
difference in bounds comes from the increased precision in our implementation
of lifted Barrett reduction: Our analysis shows that the maximum value after
interval subtraction is 14743, in contrast to 16383 computed by Frama-C. The
difference in the precision, (16383–14743), is equal to (40959–39319), that is the
difference in the maximum values an input to lazy Barrett reduction can take.

As a sanity check, we confirmed that our analysis fails to verify the assertions
if we omit one more Barrett reduction from our code. We also tested the gen-
erated C program with the improved lazy reduction on 10000 randomly chosen

144 M. Masuda and Y. Kameyama

concrete values as an input, and confirmed that all outputs were correct with
respect to the DFT formula, and that each output belongs to the corresponding
interval computed by our interval analysis.

5 Verifying Functional Correctness

The goal is to show that the output computed by the optimized NTT program
is equivalent to the one computed by DFT. We first discuss the first attempt
which did not work out, and then explain the final solution we developed.

5.1 Naive Approach

One straightforward but naive approach is to translate the entire NTT program
into a formula in the bit-vector theory [16], and verify using an SMT solver
the equivalence of the formula and the one obtained from the DFT formula.
The translation to a formula is easily done by symbolically computing the NTT
program in the bit-vector theory.

This approach did not work, since the resulting formulas were so large that
Z3, the SMT solver we used, did not terminate after more than six hours and
before it ran out of memory. We also tried replacing complicated implementations
of modular reductions with the naive ones using the modulo operator (bv urem
in SMT-LIB), but the end-to-end verification was still not tractable.

5.2 Decomposition of Verification Task

A natural idea to overcome the difficulty of verifying a program like optimized
NTT, which has both low-level details and a high-level algorithmic structure, is
to decompose the original verification problem into several components, in a way
that separate verification of each component would imply functional correctness
of the whole program. We give an overview of the decomposition here; a more
detailed account on the whole verification process is shown in Appendix A.

Recall the pseudocode in Algorithm 2. Our interval analysis in Section 4 has
shown that, on an end-to-end execution of the NTT program, there will be no
possibility of integer overflow. This means that, to verify program equivalence
modulo q, we can replace lazy reduction by an eager one that always applies

u = a[k + j]
t = montgomery multiply reduce(...)
if s mod 2 == 0 then

a[k + j] = barrett reduce(u + t)
else

a[k + j] = u + t
end if
a[k + j + m/2] = barrett reduce(u + 2q − t)

u = a[k + j]
t = montgomery multiply reduce(...)
a[k + j] = barrett reduce(u + t)
a[k + j + m/2] = barrett reduce(u + 2q − t)

Fig. 1. Simplifying the lazy reduction (left) to the eager one (right)

Unified Program Generation and Verification 145

Barrett reduction after addition. This simplifies the original psuedocode on the
left of Fig. 1 to the one on the right.

The next step for simplification is to replace low-level implementations of
modular arithmetic with much simpler operations. For this purpose, we need
to prove correctness of Barrett reduction and Montgomery multiplication by
(u + t) % q = csub(barrett reduce(u + t)) for Barrett reduction and sim-
ilarly for Montgomery multiplication10. We describe our verification procedure
in Sect. 5.3. The simplified arithmetic operations, represented by +′, −′, and ∗′

in Fig. 2, are interpreted as symbolic operations on a finite field with built-in
modular arithmetic.

u = a[k + j]
t = a[k + j + m/2] ∗′ Ω[o + j]
a[k + j] = u +′ t
a[k + j + m/2] = u −′ t

Fig. 2. Simplified butterfly computation on a finite field

Section 5.4 describes how such symbolic operations facilitate equivalence
checking against the DFT formula. Since all low-level concerns have been
resolved until this point, we can focus on the algorithmic aspect of the NTT
program.

5.3 Verifying Modular-Reduction Algorithms

We have verified the equivalence of Barrett reduction and Montgomery multi-
plication implementations against the naive approach of using a built-in modulo
operator (the % operator in C). We encode both approaches into Z3 formulas
using the bit-vector theory, and check their equivalence. For example, Mont-
gomery multiplication is implemented in the DSL as follows:

let montgomery_multiply_reduce x y =

let mlo = mullo x y in

let mhi = mulhi x y in

let mlo_qinv = mullo mlo (const Param.qinv) in

let t = mulhi mlo_qinv (const Param.q) in

let carry = not_zero mlo in

let res = mhi %+ t %+ carry in

csub res

Listing 2: Montgomery multiplication implementation from [19]

10 The symbol = represents the exact equality on integers. The additional conditional
subtraction is necessary since the outputs of Barrett reduction can be larger than q.

146 M. Masuda and Y. Kameyama

We provide an implementation of the domain abstraction that, together with
the direct evaluation of DSL terms by the host language, translates the DSL
expression into a bit-vector formula. All DSL constructs required for Mont-
gomery multiplication have a direct counterpart in the bit-vector theory, except
for the high-product instruction mulhi which can be emulated easily11.

By these ingredients, we can apply Z3 to verify Montgomery multiplication.
More concretely, let opt formula and ref formula be the Z3 formulas for the
implementation in Listing 2 and the naive multiplication followed by a mod-
ulo operation, respectively. We ran Z3 to check unsatisfiability of the formula
opt formula �= ref formula, which has been successful. Similarly, correctness
of the Barrett reduction has been proved using Z3.

5.4 Proving Correctness of the Simplified NTT Program

Our strategy for verifying the simplified NTT program is based on the follow-
ing observation: Since DFT is a linear transformation, each output element can
be represented as a linear polynomial on input variables. Since NTT also rep-
resents a linear transformation, we only have to prove that all coefficients on
each variable in the two polynomials coincide up to congruence12. Therefore,
we symbolically execute the simplified NTT program to compute such a linear
polynomial for all output elements, and test if all coefficients are congruent to
the corresponding rows of the DFT matrix. Thanks to the simplification stated
before, the polynomial is truly linear in the sense that it consists of addition,
subtraction, and multiplication by a constant (no explicit modulo operations)
only. We can extract coefficients from the polynomials and compare them.

To make this idea concrete, we introduce a domain implementation that
represents symbolic computations on polynomials:

module D_symbolic : Domain = struct

type exp =

| Const of int

| Sym of string

| Add of exp * exp

| Sub of exp * exp

| Mul of exp * exp

type t = exp

let add x y = Add(x, y)

...

end

When we symbolically execute the NTT program using this domain, with an
array of symbolic integers (represented by Sym constructor of exp type above)
as an input, we end up with an output array whose i-th element represents all
11 Refer to our source code for details on the translation from DSL to Z3 formulas.
12 The coefficients computed by the NTT program may contain negative values due to

subtraction in the butterfly operation.

Unified Program Generation and Verification 147

computations that contribute to the i-th output. For each output, we simplify
such a nested polynomial expression to obtain a linear polynomial, and compare
the coefficients array with the corresponding row of the DFT matrix. We have
confirmed that, for all output elements, our verification succeeded in establishing
congruence of the NTT outputs and the DFT matrix.

Note how the two abstractions, the language and domain abstractions, simpli-
fied equivalence checking via symbolic computation: By composing the language
interpretation that evaluates DSL terms directly in the host language, and the
domain implementation representing symbolic operations, symbolic computation
of NTT is naturally realized. Such a high degree of program abstraction would
be nearly impossible if we would have operated on the low-level C program.

6 Discussion

Why a “unified” approach? In a traditional approach where generated code
is verified directly, one has to reconstruct the original high-level structure in
a DSL program from the generated low-level program, before doing any kind
of analysis or verification. Even if such reconstruction was possible, we believe
that the kind of program abstraction we rely on, such as the reinterpretation
of the DSL program for symbolically computing polynomials, is extremely hard
to accomplish automatically. In our unified approach, a verification procedure
starts with a high-level DSL program. This makes the verification task simpler
and paves a way for verifying more challenging properties than those handled
by off-the-shelf automatic tools. At the same time, since program generation
is based on the same DSL program, all interesting low-level concerns in the
generated program are taken into account during verification.

The downsides of our approach are in (1) not verifying the generated code
directly and (2) relying on unconventional trusted base13. Since we regard verifi-
cation of the DSL program as a proxy for verification of the generated program,
there is always a question on the gap between what is generated and what is
verified. In addition, our approach assumes that our implementation of the two
DSL interpretations, the program generator and the verifier, correctly respects
the semantics of the original DSL program14.

Despite the major disadvantages above, we believe that our approach is a
promising step toward verifying functional correctness of a low-level, highly opti-
mized program. We view the pros and cons of our approach as a trade-off between
more possibilities for verification and larger trusted base.

13 See Appendix A for our trusted base.
14 However, note that both interpretations are based on the tagless-final style and thus

they operate on DSL constructs at the most primitive level (such as translating the
DSL for loop to that of OCaml or C). Therefore, we believe that their correctness is
a reasonable assumption.

148 M. Masuda and Y. Kameyama

7 Related Work

Earlier work on verifying FFT focused on establishing equivalence of a textbook-
style, recursive formulation of the FFT algorithm against DFT using a proof
assistant [2,8,12]. Recently, Navas et al. [21] verified the absence of integer over-
flow in an implementation of NTT [17]. However, verification of functional cor-
rectness has been largely left open. To the best of our knowledge, there has been
no prior work on verifying functional correctness of a highly optimized NTT
implementation.

Verified implementations of low-level cryptographic primitives have been an
active research topic [4,11,22,26]. Existing work targets those primitives that
are already used widely, for example those in the Internet protocols, and pro-
poses optimized implementations that are thoroughly verified using Coq or F*.
We think that such full-scale verification is realistic only for primitives that
are important today and whose implementations are more or less stable, due
to its high cost: For bleeding-edge primitives such as NTT, more lightweight
approaches like ours would be more accessible and useful for practitioners.

Outside of cryptography, the pioneering work by Amin et al. [5] considered
correctness issues in the context of staging and generative programming. Their
approach is based on generating C code together with correctness contracts as
ACSL specifications, which can be verified by an external tool. Since they verify
the generated code directly, they do not have to trust the code generator or a
verifier for the DSL program. Although the approach of Amin et al. has a major
advantage in this respect, what they can verify are fundamentally limited by the
capability of external tools operating on the generated C program. For example,
the case studies in [5] are limited to verifying safety properties such as memory
safety of an HTTP parser or functional correctness of simple programs such as
sorting. Our approach is complementary to theirs in the sense that we can verify
more challenging properties in exchange for bigger trusted computing base.

8 Conclusion

We have proposed an approach for giving correctness assurance to the gener-
ated code in the context of generative programming. Integration of code gener-
ation and verification under one DSL framework enabled us to (1) incorporate
an abstract interpretation to prove, for instance, the absence of integer overflow,
and (2) decompose the end-to-end correctness verification problem into low-level
and high-level parts, each of which can be verified separately. Our approach is
lightweight in the sense that we make use of automation via abstract interpreta-
tion and symbolic computation. We have applied our approach to a highly opti-
mized implementation of NTT, which is a key building block of next-generation
cryptographic protocols, and successfully verified its functional correctness.

For future work, we plan to generalize our approach so that existing schemes
other than NewHope or new ones can be similarly reimplemented and verified.
We are also interested in exploring whether our unified approach is applicable
to other domains, outside of NTT or cryptography.

Unified Program Generation and Verification 149

Acknowledgements. We thank Hiroshi Unno for the helpful discussion. Feedback
from anonymous reviewers helped improve this paper and is greatly appreciated. The
second author is supported in part by JSPS Grant-in-Aid for Scientific Research (B)
18H03218.

Appendix A Programs to be Verified and their
Semantics

The verification procedure in Sect. 5 is a series of step-by-step simplifications of
programs and their correctness proofs. The following table lists the programs
and the domain interpretations in the procedure.

Program Domain Arithmetic operation

P0 DFT formula (1) Zq Arithmetic operations in Zq

P1 DSL program in Sect. 2.2 Zq Arithmetic operations in Zq

P2 The same as P1 Unsigned int Arithmetic with modulo-q

P3 The same as P1 Unsigned int Low-level operations

P4 P1 + lazy reduction Unsigned int Low-level operations

P5 Generated C code Unsigned int in C Arithmetic operations in C

P0 is the DFT formula (1) in Sect. 2.1. P1, P2, and P3 are the DSL program
whose inner-most loop was given in Sect. 2.2 with different domain interpreta-
tions. For the interpretation of DSL, we take the natural ‘interpreter’ semantics,
which is essentially the same as the module R in Sect. 2.2.

P1, P2, and P3 differ in the domain interpretations. For P1, the domain
is interpreted as Zq. For P2, the domain is interpreted as the set of 16 bit
unsigned integers, and the arithmetic operations are those for unsigned integers
followed by the modulo-q operation. To treat multiplication within 16 bits, we
use mullo and mulhi in Sect. 3. For P3, the domain remains the same as P2, while
the arithmetic operations are replaced by low-level operations such as Barrett
reduction. The semantics of unsigned integers and their operations is specified
by the bit-vector theory [16]. P4 is the same as P3 except that it employs lazy
reduction in Sect. 3.

P5 is the C code generated by interpreting the DSL constructs as generators
for strings that represent the corresponding C code. This process (called off-
shoring in the literature) is conceptually a trivial injection, however, formalizing
it involves the semantics of the C language and is beyond the scope of this paper,
and we put the equivalence of P4 and P5 into our trusted base.

Besides it, our trusted base includes correctness of our interval analysis, sym-
bolic execution, and the implementations of helper functions such as mullo and
mulhi. With this trusted base as well as the language and domain interpretations
explained above, this paper has verified that, for 0 ≤ k ≤ 3, Pk is extensionally
equal (modulo q) to Pk+1 (written Pk =ext Pk+1): P3 =ext P4 and P1 =ext P2

in Sect. 4, P2 =ext P3 in Sect. 5.3, and P0 =ext P1 in Sect. 5.4.

150 M. Masuda and Y. Kameyama

References

1. ANSI/ISO C specification language. https://frama-c.com/html/acsl.html
2. Akbarpour, B., Tahar, S.: A methodology for the formal verification of FFT algo-

rithms in HOL. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312,
pp. 37–51. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-
4 4

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange: a
new hope. In: Proceedings of the 25th USENIX Conference on Security Symposium,
SEC 2016, pp. 327–343. USENIX Association, USA (2016)

4. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, pp. 1807–1823. Association for Computing Machinery, New
York (2017). https://doi.org/10.1145/3133956.3134078

5. Amin, N., Rompf, T.: LMS-Verify: abstraction without regret for verified systems
programming. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, 18–20 January 2017. pp. 859–873. ACM (2017). https://doi.org/
10.1145/3009837.3009867

6. Barrett, P.: Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 24

7. Bühler, D.: Structuring an abstract interpreter through value and state abstrac-
tions: EVA, an LC. (Structurer un interpréteur abstrait au moyen d’abstractions
de valeurs et d’états: Eva, une analyse de valeur évoluée pour Frama-C). Ph.D.
thesis, University of Rennes 1, France (2017), https://tel.archives-ouvertes.fr/tel-
01664726

8. Capretta, V.: Certifying the fast fourier transform with Coq. In: Boulton, R.J.,
Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 154–168. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44755-5 12

9. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009). https://doi.org/10.1017/S0956796809007205

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

11. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23
May 2019, pp. 1202–1219. IEEE (2019). https://doi.org/10.1109/SP.2019.00005

12. Gamboa, R.A.: The correctness of the fast fourier transform: a structured proof in
ACL2. Form. Methods Syst. Des. 20(1), 91–106 (2002). https://doi.org/10.1023/
A:1012912614285

13. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-
9 5

14. Kiselyov, O., Biboudis, A., Palladinos, N., Smaragdakis, Y.: Stream fusion, to com-
pleteness. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, pp. 285–299. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3009837.3009880

https://frama-c.com/html/acsl.html
https://doi.org/10.1007/978-3-540-30494-4_4
https://doi.org/10.1007/978-3-540-30494-4_4
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3009837.3009867
https://doi.org/10.1145/3009837.3009867
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://tel.archives-ouvertes.fr/tel-01664726
https://tel.archives-ouvertes.fr/tel-01664726
https://doi.org/10.1007/3-540-44755-5_12
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1023/A:1012912614285
https://doi.org/10.1023/A:1012912614285
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1145/3009837.3009880

Unified Program Generation and Verification 151

15. Krishnaswami, N.R., Yallop, J.: A typed, algebraic approach to parsing. In: Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, pp. 379–393. Association for Comput-
ing Machinery, New York (2019). https://doi.org/10.1145/3314221.3314625

16. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of
View, Second Edition. Texts in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-50497-0

17. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

19. Masuda, M., Kameyama, Y.: FFT program generation for ring LWE-based cryp-
tography. In: Nakanishi, T., Nojima, R. (eds.) IWSEC 2021. LNCS, vol. 12835, pp.
151–171. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85987-9 9

20. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44, 519–521 (1985)

21. Navas, J.A., Dutertre, B., Mason, I.A.: Verification of an optimized NTT algo-
rithm. In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.)
NSV/VSTTE -2020. LNCS, vol. 12549, pp. 144–160. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63618-0 9

22. Protzenko, J., et al.: Evercrypt: a fast, verified, cross-platform cryptographic
provider. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 983–1002
(2020). https://doi.org/10.1109/SP40000.2020.00114

23. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. IACR Cryptol. ePrint Arch. 2018, 39 (2018)

24. Shaikhha, A., Klonatos, Y., Koch, C.: Building efficient query engines in a high-
level language. ACM Trans. Database Syst. 43(1) (2018). https://doi.org/10.1145/
3183653

25. Wei, G., Chen, Y., Rompf, T.: Staged abstract interpreters: fast and modu-
lar whole-program analysis via meta-programming. Proc. ACM Program. Lang.
3(OOPSLA), 126:1–126:32 (2019). https://doi.org/10.1145/3360552

26. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a ver-
ified modern cryptographic library. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, pp. 1789–1806.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3133956.3134043

https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-030-85987-9_9
https://doi.org/10.1007/978-3-030-63618-0_9
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1145/3183653
https://doi.org/10.1145/3183653
https://doi.org/10.1145/3360552
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

Scheduling Complexity of Interleaving
Search

Dmitry Rozplokhas(B) and Dmitry Boulytchev

St Petersburg University and JetBrains Research, Saint Petersburg, Russia

rozplokhas@gmail.com, dboulytchev@math.spbu.ru

Abstract. miniKanren is a lightweight embedded language for logic
and relational programming. Many of its useful features come from
a distinctive search strategy, called interleaving search. However, with
interleaving search conventional ways of reasoning about the complex-
ity and performance of logical programs become irrelevant. We identify
an important key component—scheduling—which makes the reasoning
for miniKanren so different, and present a semi-automatic technique to
estimate the scheduling impact via symbolic execution for a reasonably
wide class of programs.

Keywords: miniKanren · Interleaving search · Time complexity ·
Symbolic execution

1 Introduction

A family of embedded languages for logic and, more specifically, relational pro-
gramming miniKanren [10] has demonstrated an interesting potential in various
fields of program synthesis and declarative programming [5,6,14]. A distinctive
feature of miniKanren is interleaving search [13] which, in particular, delivers
such an important feature as completeness.

However, being a different search strategy than conventional BFS/DFS/it-
erative deepening, etc., interleaving search makes the conventional ways of rea-
soning about the complexity of logical programs not applicable. Moreover, some
intrinsic properties of interleaving search can manifest themselves in a number
of astounding and, at the first glance, unexplainable performance effects.

As an example, let’s consider two implementations of list concatenation rela-
tion (Fig. 1, left side); we respect here a conventional tradition for miniKanren
programming to superscript all relational names with “o”. The only difference
between the two is the position of the recursive call. The evaluation of these
implementations on the same problem (Fig. 1, right side) shows that the first
implementation works significantly slower, although it performs exactly the same
number of unifications. As a matter of fact, these two implementations even have
different asymptotic complexity under the assumption that occurs check is dis-
abled.1 Although the better performance of the appendo

opt relation is expected

1 The role of occurs check is discussed in Sect. 5.

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 152–170, 2022.
https://doi.org/10.1007/978-3-030-99461-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_9&domain=pdf
http://orcid.org/0000-0001-7882-4497
http://orcid.org/0000-0001-8363-7143
https://doi.org/10.1007/978-3-030-99461-7_9

Scheduling Complexity of Interleaving Search 153

appendo =λ a b ab .
((a ≡ Nil) ∧ (ab ≡ b)) ∨
(fresh (h t tb)

(a ≡ Cons(h , t)) ∧
(appendo t b tb) ∧
(ab ≡ Cons(h , tb)))

appendo
opt =λ a b ab .

((a ≡ Nil) ∧ (ab ≡ b)) ∨
(fresh (h t tb)

(a ≡ Cons(h , t)) ∧
(ab ≡ Cons(h , tb) ∧
(appendo

opt t b tb)))

Fig. 1. Two implementations of list concatenation and their performance for a =
[1, . . . , n], b = [1, . . . , 100], and ab left free.

even under conventional strategies due to tail recursion, the asymptotic differ-
ence is striking.

A careful analysis discovers that the difference is caused not by unifications,
but by the process of scheduling goals during the search. In miniKanren a lazy
structure is maintained to decompose the goals into unifications, perform these
unifications in a certain order, and thread the results appropriately. For the
appendo

opt relation the size of this structure is constant, while for the appendo

this structure becomes linear in size, reducing the performance.
This paper presents a formal framework for scheduling cost complexity anal-

ysis for interleaving search in miniKanren. We use the reference operational
semantics, reflecting the behaviour of actual implementations [15], and prove the
soundness of our approach w.r.t. this semantics. The roadmap of the approach is
as follows: we identify two complexity measures (one of which captures schedul-
ing complexity) and give exact and approximate recursive formulae to calculate
them (Sect. 3); then we present a procedure to automatically extract inequali-
ties for the measures for a given goal using symbolic execution (Sect. 4). These
inequalities have to be reformulated and solved manually in terms of a certain
metatheory, which, on success, provides asymptotic bounds for the scheduling
complexity of a goal evaluation. Our approach puts a number of restrictions on
the goal being analyzed as well as on the relational program as a whole. We
explicitly state these restrictions in Sect. 2 and discuss their impact in Sect. 7.
The proofs of all lemmas and theorems can be found in the extended version of
this paper.2

2 Background: Syntax and Semantics of miniKanren

In this section, we recollect some known formal descriptions for miniKanren lan-
guage that will be used as a basis for our development. The descriptions here are
2 https://arxiv.org/abs/2202.08511.

https://arxiv.org/abs/2202.08511

154 D. Rozplokhas and D. Boulytchev

C = {Cki
i } constructors

TX = X ∪ {Cki
i (t1, . . . , tki) | tj ∈ TX} terms over the set of variables X

D = T∅ ground terms
X = {x, y, z, . . . } syntactic variables
A = {x, y, z . . . } logic variables
R = {Rki

i } relational symbols with arities

G = TX ≡ TX equality
G ∧ G conjunction
G ∨ G disjunction
fresh X . G fresh variable introduction
Rki

i (t1, . . . , tki), tj ∈ TX relational symbol invocation

S = {Rki
i = λ xi

1 . . . xi
ki

. gi; } g, gi, g ∈ G specification

Fig. 2. The syntax of miniKanren

Σ = A → TA substitutions S = 〈G, E〉 task
E = Σ × N environments S ⊕ S sum

S ⊗ G product
L = ◦ | E labels Ŝ = | S states

Fig. 3. States and labels in the LTS for miniKanren

taken from [15] (with a few non-essential adjustments for presentation purposes)
to make the paper self-contained, more details and explanations can be found
there.

The syntax of core miniKanren is shown in Fig. 2. All data is presented
using terms TX built from a fixed set of constructors C with known arities and
variables from a given set X. We parameterize the terms with an alphabet of
variables since in the semantic description we will need two kinds of variables:
syntactic variables X , used for bindings in the definitions, and logic variables A,
which are introduced and unified during the evaluation. We assume the set A is
ordered and use the notation αi to specify a position of a logical variable w.r.t.
this order.

There are five types of goals: unification of two terms, conjunction and dis-
junction of goals, fresh logic variable introduction, and invocation of some rela-
tional definition. For the sake of brevity, in code snippets, we abbreviate imme-
diately nested “ fresh ” constructs into the one, writing “ fresh x y g”
instead of “ fresh x . fresh y g”. The specification S consists of a set
of relational definitions and a top-level goal. A top-level goal represents a search
procedure that returns a stream of substitutions for the free variables of the
goal.

During the evaluation of miniKanren program an environment, consisting
of a substitution for logic variables and a counter of allocated logic variables, is
threaded through the computation and updated in every unification and fresh

Scheduling Complexity of Interleaving Search 155

〈t1 ≡ t2, (σ, n)〉 ◦−→ ♦, � mgu (t1σ, t2σ) [UnifyFail]

〈t1 ≡ t2, (σ, n)〉 (mgu (t1σ,t2σ)◦σ), n)−−−−−−−−−−−−−−→ ♦ [UnifySuccess]

〈 fresh x . g, (σ, n)〉 ◦−→ 〈g [αn+1 /x], (σ, n + 1)〉 [Fresh]

Rki
i = λ x1 . . . xki . g

〈Rki
i (t1, . . . , tki), e〉 ◦−→ 〈g [t1

/
x1 . . . tki

/
xki

], e〉
[Invoke]

〈g1 ∨ g2, e〉 ◦−→ 〈g1, e〉 ⊕ 〈g2, e〉 [Disj] 〈g1 ∧ g2, e〉 ◦−→ 〈g1, e〉 ⊗ g2 [Conj]

s1
l−→ ♦

(s1 ⊕ s2)
l−→ s2

[DisjStop]
s1

l−→ s′
1

(s1 ⊕ s2)
l−→ (s2 ⊕ s′

1)
[DisjStep]

s
◦−→ ♦

(s ⊗ g) ◦−→ ♦
[ConjStop]

s
e−→ ♦

(s ⊗ g) ◦−→ 〈g, e〉
[ConjStopAns]

s
◦−→ s′

(s ⊗ g) ◦−→ (s′ ⊗ g)
[ConjStep]

s
e−→ s′

(s ⊗ g) ◦−→ (〈g, e〉 ⊕ (s′ ⊗ g))
[ConjStepAns]

Fig. 4. Operational semantics of interleaving search

variable introduction. The substitution in the environment at a given point and
given branch of evaluation contains all the information about relations between
the logical variables at this point. Different branches are combined via interleav-
ing search procedure [13]. The answers for a given goal are extracted from the
final environments.

This search procedure is formally described by operational semantics in the
form of a labeled transition system. This semantics corresponds to the canonical
implementation of interleaving search.

The form of states and labels in the transition system is defined in Fig. 3.
Non-terminal states S have a tree-like structure with intermediate nodes corre-
sponding to partially evaluated conjunctions (“⊗”) or disjunctions (“⊕”). A leaf
in the form 〈g, e〉 determines a task to evaluate a goal g in an environment e. For
a conjunction node, its right child is always a goal since it cannot be evaluated
unless some result is provided by the left conjunct. We also need a terminal state
� to represent the end of the evaluation. The label “◦” is used to mark those
steps which do not provide an answer; otherwise, a transition is labeled by an
updated environment.

The transition rules are shown in Fig. 4. The first six rules define the evalua-
tion of leaf states. For the disjunction and conjunction, the corresponding node
states are constructed. For other types of goals the environment and the eval-
uated goal are updated in accordance with the task given by the goal: for an
equality the most general unifier of the terms is incorporated into the substitu-
tion (or execution halts if the terms are non-unifiable); for a fresh construction a
new variable is introduced and the counter of allocated variables is incremented;
for a relational call the body of the relation is taken as the next goal. The rest
of the rules define composition of evaluation of substates for partial disjunctions
and conjunctions. For a partial disjunction, the first constituent is evaluated for

156 D. Rozplokhas and D. Boulytchev

Bnf = TX ≡ TX | Rk (TX , . . . , TX)
Cnf = Bnf | Cnf ∧ Bnf

Fnf = Cnf | fresh X . Fnf

Dnf = Fnf | Dnf ∨ Fnf

Fig. 5. Disjunctive normal form for goals

one step, then the constituents are swapped (which constitutes the interleav-
ing), and the label is propagated. When the evaluation of the first constituent
of partial disjunction halts, the evaluation proceeds with the second constituent.
For a partial conjunction, the first constituent is evaluated until the answer
is obtained, then the evaluation of the second constituent with this answer as
the environment is scheduled for evaluation together with the remaining par-
tial conjunction (via partial disjunction node). When the evaluation of the first
constituent of partial conjunction halts, the evaluation of the conjunction halts,
too.

The introduced transition system is completely deterministic, therefore a
derivation sequence for a state s determines a certain trace—a sequence of states
and labeled transitions between them. It may be either finite (ending with the
terminal state ♦) or infinite. We will denote by T rst(s) the sequence of states in
the trace for initial state s and by T rans(s) the sequence of answers in the trace
for initial state s. The sequence T rans(s) corresponds to the stream of answers
in the reference miniKanren implementations.

In the following we rely on the following property of leaf states:

Definition 2.1. A leaf state 〈g, (σ, n)〉 is well-formed iff FV (g) ∪ Dom (σ) ∪
VRan (σ) ⊆ {α1, . . . , αn}, where FV (g) denotes the set of free variables in a
goal g, Dom (σ) and VRan (σ)—the domain of a substitution σ and a set of all
free variables in its image respectively.

Informally, in a well-formed leaf state all free variables in goals and substi-
tution respect the counter of free logical variables. This definition is in fact an
instance of a more general definition of well-formedness for all states, introduced
in [15], where it is proven that the initial state is well-formed and any transition
from a well-formed state results in a well-formed one.

Besides operational semantics, we will make use of a denotational one analo-
gous to the least Herbrand model. For a relation Rk, its denotational semantics
�Rk� is treated as a k-ary relation on the set of all ground terms, where each
“dimension” corresponds to a certain argument of Rk. For example, �appendo�
is a set of all triplets of ground lists, in which the third component is a concate-
nation of the first two. The concrete description of the denotational semantics
is given in [15] as well as the proof of the soundness and completeness of the
operational semantics w.r.t. to the denotational one.

Scheduling Complexity of Interleaving Search 157

Finally, we explicitly enumerate all the restrictions required by our method
to work:

– All relations have to be in DNF (set Dnf in Fig. 5).
– We only consider goals which converge with a finite number of answers.
– All answers have to be ground (groundness condition) for all relation invoca-

tions encountered during the evaluation.
– All answers have to be unique (answer uniqueness condition) for all relation

invocations encountered during the evaluation.

3 Scheduling Complexity

We may notice that the operational semantics described in the previous section
can be used to calculate the exact number of elementary scheduling steps. Our
first idea is to take the number of states d (s) in the finite trace for a given
state s:

d (s) def= |T rst(s)|

However, it turns out that this value alone does not provide an accurate
scheduling complexity estimation. The reason is that some elementary steps in
the semantics are not elementary in existing implementations. Namely, a careful
analysis discovers that each semantic step involves navigation to the leftmost
leaf of the state which in implementations corresponds to multiple elementary
actions, whose number is proportional to the height of the leftmost branch of
the state in question. Here we provide an ad-hoc definition for this value, t (s),
which we call the scheduling factor :

t (s) def=
∑

si∈T rst(s)

lh (si)

where lh (si) is the height of the leftmost branch of the state.
In the rest of the section, we derive recurrent equations which would relate the

scheduling complexity for states to the scheduling complexity for their (imme-
diate) substates. It turns out that to come up with such equations both t and d
values have to be estimated simultaneously.

The next lemma provides the equations for ⊕-states:

Lemma 3.1. For any two states s1 and s2

d (s1 ⊕ s2) = d (s1) + d (s2)
t (s1 ⊕ s2) = t (s1) + t (s2) + cost⊕(s1 ⊕ s2)

where cost⊕(s1 ⊕ s2) = min {2 · d (s1) − 1, 2 · d (s2)}

158 D. Rozplokhas and D. Boulytchev

Informally, for a state in the form s1 ⊕ s2 the substates are evaluated sep-
arately, one step at a time for each substate, so the total number of semantic
steps is the sum of those for the substates. However, for the scheduling factor,
there is an extra summand cost⊕(s1 ⊕ s2) since the “leftmost heights” of the
states in the trace are one node greater than those for the original substates due
to the introduction of one additional ⊕-node on the top. This additional node
persists in the trace until the evaluation of one of the substates comes to an end,
so the scheduling factor is increased by the number of steps until that.

The next lemma provides the equations for ⊗-states:3

Lemma 3.2. For any state s and any goal g

d (s ⊗ g) = d (s) +
∑

ai∈T rans(s)

d (〈g, ai〉) (�)

t (s ⊗ g) = t (s) + cost⊗(s ⊗ g) +
∑

ai∈T rans(s)

(t (〈g, ai〉) + cost⊕(〈g, ai〉 ⊕ (s′
i ⊗ g))) (†)

where

cost⊗(s ⊗ g) = d (s)
s′

i = the first state in the trace for s after
a transition delivering the answer ai

For the states of the form s ⊗ g the reasoning is the same, but the resulting
equations are more complicated. In an ⊗-state the left substate is evaluated until
an answer is found, which is then taken as an environment for the evaluation
of the right subgoal. Thus, in the equations for ⊗-states the evaluation times of
the second goal for all the answers generated for the first substate are summed
up. The evaluation of the right subgoal in different environments is added to the
evaluation of the left substate via creation of an ⊕-state, so for the scheduling
factor there is an additional summand cost⊕(〈g, ai〉 ⊕ s′

i) for each answer with
s′

i being the state after discovering the answer. There is also an extra summand
cost⊗(s ⊗ g) for the scheduling factor because of the ⊗-node that increases the
height in the trace, analogous to the one caused by ⊕-nodes. Note, a ⊗-node is
always placed immediately over the left substate so this addition is exactly the
number of steps for the left substate.

Unfolding costs definitions in (†) gives us a cumbersome formula that includes
some intermediate states s′

i encountered during the evaluation. However, as ulti-
mately we are interested in asymptotic estimations, we can approximate these
costs up to a multiplicative constant. We can notice that the value d (s′

i ⊗ g)
occurring in the second argument of cost⊕ includes values d (〈g, aj〉) (like in
the first argument) for all answers aj after this intermediate state. So in the
sum of all cost⊕ values d (〈g, ai〉) may be excluded for at most one answer,
and in fact, if we take the maximal one of these values we will get a rather

3 We assume ♦ ⊗ g = ♦.

Scheduling Complexity of Interleaving Search 159

precise approximation. Specifically, we can state the following approximation4

for t (s ⊗ g).

Lemma 3.3.

t (s ⊗ g) = t (s) +

⎛

⎝
∑

ai∈T rans(s)

t (〈g, ai〉)

⎞

⎠ + Θ (d (s) +
∑

ai∈T rans(s)

d (〈g, ai〉) − •
max

ai∈T rans(s)
d (〈g, ai〉))

Hereafter we use the following notation:
•

max S = max (S ∪ {0}). We can see
that the part under Θ is very similar to the (�) except that here we exclude d
value for one of the answers from the sum. This difference is essential and, as we
will see later, it is in fact responsible for the difference in complexities for our
motivating example.

4 Complexity Analysis via Symbolic Execution

Our approach to complexity analysis is based on a semi-automatic procedure
involving symbolic execution. In the previous section, we presented formulae to
compositionally estimate the complexity factors for non-leaf states of operational
semantics under the assumption that corresponding estimations for leaf states
are given. In order to obtain corresponding estimations for relations as a whole,
we would need to take into account the effects of relational invocations, including
the recursive ones.

Another observation is that as a rule we are interested in complexity estima-
tions in terms of some metatheory. For example, dealing with relations on lists
we would be interested in estimations in terms of list lengths, with trees—in
terms of depth or number of nodes, with numbers—in terms of their values, etc.
It is unlikely that a generic term-based framework would provide such specific
information automatically. Thus, a viable approach would be to extract some
inequalities involving the complexity factors of certain relational calls automat-
ically and then let a human being solve these inequalities in terms of a relevant
metatheory.

For the sake of clarity we will provide a demonstration of complexity analysis
for a specific example—appendo relation from the introduction—throughout the
section.

The extraction procedure utilizes a symbolic execution technique and is com-
pletely automatic. It turns out that the semantics we have is already abstract
enough to be used for symbolic execution with minor adjustments. In this sym-
bolic procedure, we mark some of the logic variables as “grounded” and at cer-
tain moments substitute them with ground terms. Informally, for some goal with

4 We assume the following definition for f (x) = g (x) + Θ (h (x)):

∃C1, C2 ∈ R+, ∀x : g (x) + C1 · h (x) ≤ f (x) ≤ g (x) + C2 · h (x)

.

160 D. Rozplokhas and D. Boulytchev

some free logic variables we consider the complexity of a search procedure which
finds the bindings for all non-grounded variables based on the ground values
substituted for the grounded ones. This search procedure is defined precisely by
the operational semantics; however, as the concrete values of grounded variables
are unknown (only the fact of their groundness), the whole procedure becomes
symbolic. In particular, in unification the groundness can be propagated to some
non-grounded free variables. Thus, the symbolic execution is determined by a
set of grounded variables (hereafter denoted as V ⊂ A). The initial choice of V
determines the problem we analyze.

In our example the objective is to study the execution when we specialize the
first two arguments with ground values and leave the last argument free. Thus,
we start with the goal appendo a b ab (where a, b and ab are distinct free logic
variables) and set the initial V = {a, b}.

We can make an important observation that both complexity factors (d and t)
are stable w.r.t. the renaming of free variables; moreover, they are also stable
w.r.t. the change of the fresh variables counter as long as it stays adequate,
and change of current substitution, as long as it gives the same terms after
application. Formally, the following lemma holds.

Lemma 4.1. Let s = 〈g, (σ, n)〉 and s′ = 〈g′, (σ′, n′)〉 be two well-formed
states. If there exists a bijective substitution π : FV (gσ) → FV (g′σ′) such that
gσπ = g′σ′, then d (s) = d (s′) and t (s) = t (s′).

The lemma shows that the set of states for which a call to relation has to be
analyzed can be narrowed down to a certain family of states.

Definition 4.1. Let g be a goal. An initial state for g is init (g) =
〈g, (ε, ninit (g))〉 with ninit (g) = min {n | FV (g) ⊆ {α1 . . . αn}}.

Due to the Lemma 4.1 it is sufficient for analysis of a relational call to con-
sider only the family of initial states since an arbitrary call state encountered
throughout the execution can be transformed into an initial one while preserving
both complexity factors. Thus, the analysis can be performed in a compositional
manner where each call can be analyzed separately. For our example the family
of initial states is qapp(a,b) = init (appendo a b ab) for arbitrary ground terms
a and b.

As we are aiming at the complexity estimation depending on specific ground
values substituted for grounded variables, in general case extracted inequalities
have to be parameterized by valuations—mappings from the set of grounded
variables to ground terms. As the new variables are added to this set during
the execution, the valuations need to be extended for these new variables. The
following definition introduces this notion.

Definition 4.2. Let V ⊂ U ⊂ A and ρ : V → T∅ and ρ′ : U → T∅ be two
valuations. We say that ρ′ extends ρ (denotation: ρ′ � ρ) if ρ′ (x) = ρ (x) for all
x ∈ V .

Scheduling Complexity of Interleaving Search 161

The main objective of the symbolic execution in our case is to find constraints
on valuations for every leaf goal in the body of a relation that determine whether
the execution will continue and how a valuation changes after this goal. For inter-
nal relational calls, we describe constraints in terms of denotational semantics
(to be given some meaning in terms of metatheory later). We can do it because
of a precise equivalence between the answers found by operational semantics and
values described by denotational semantics thanks to soundness and complete-
ness as well as our requirements of grounding and uniqueness of answers. Our
symbolic treatment of equalities relies on the fact that substitutions of ground
terms commute, in a certain sense, with unifications. More specifically, we can
use the most general unifier for two terms to see how unification goes for two
terms with some free variables substituted with ground terms. The most gen-
eral unifier may contain bindings for both grounded and non-grounded variables.
A potential most general unifier for terms after substitution contains the same
bindings for non-grounding terms (with valuation applied to their rhs), while
bindings for grounding variables turn into equations that should be satisfied by
the unifier with ground value on the left and bound term on the right. In par-
ticular, this means that all variables in bindings for grounded variables become
grounded, too. We can use this observation to define an iterative process that
determines the updated set of grounded variables upd (U, δ) for a current set U
and a most general unifier δ and a set of equations constr (δ, U) that should be
respected by the valuation.

upd (U, δ) =

⎧
⎨
⎩

U ∀x ∈ U : FV (δ (x)) ⊂ U

upd (U ∪
⋃

x∈U

FV (δ (x)), δ) otherwise

constr (δ, U) = {x = δ (x) | x ∈ U ∩ Dom (δ)}
Using these definitions we can describe symbolic unification by the following

lemma.

Lemma 4.2. Let t1, t2 be terms, V ⊂ A and ρ : V → T∅ be a valuation. If
mgu (t1, t2) = δ and U = upd (V, δ) then t1ρ and t2ρ are unifiable iff there is
some ρ′ : U → T∅ such that ρ′ � ρ and ∀(y = t) ∈ constr (δ, U) : ρ′(y) = tρ′. In
such case ρ′ is unique and ρ◦mgu (t1ρ, t2ρ) = δ ◦ρ′ up to alpha-equivalence (e.g.
there exists a bijective substitution π : FV (t1) → FV (t2), s.t. ρ◦mgu (t1ρ, t2ρ) =
δ ◦ ρ′ ◦ π).

In our description of the extraction process, we use a visual representation
of symbolic execution of a relation body for a given set of grounded variables
in a form of a symbolic scheme. A symbolic scheme is a tree-like structure with
different branches corresponding to execution of different disjuncts and nodes
corresponding to equalities and relational calls in the body augmented with sub-
sets of grounded variables at the point of execution.5 Constraints for substituted
5 Note the difference with conventional symbolic execution graphs with different

branches representing mutually exclusive paths of evaluation, not the different parts
within one evaluation.

162 D. Rozplokhas and D. Boulytchev

Fig. 6. Symbolic scheme forms

grounded variables that determine whether the execution continues are presented
as labels on the edges of a scheme.

Each scheme is built as a composition of the five patterns, shown in Fig. 6
(all schemes are indexed by subsets of grounded variables with Υ = 2A denoting
such subsets).

Note, the constraints after nodes of different types differ: unification puts
a constraint in a form of a set of equations on substituted ground values that
should be respected while relational call puts a constraint in a form of a tuple
of ground terms that should belong to the denotational semantics of a relation.

The construction of a scheme for a given goal (initially, the body of a relation)
mimics a regular execution of a relational program. The derivation rules for
scheme formation have the following form 〈Γ, σ, n, V 〉 � g ���� SV . Here g is
a goal, Γ is a list of deferred goals (these goals have to be executed after the
execution of g in every branch in the same order, initially this list is empty;
this resembles continuations, but the analogy is not complete), σ and n are
substitution and counter from the current environment respectively, V is a set
of grounded variables at the moment.

The rules are shown in Fig. 7. [ConjS] and [DisjS] are structural rules: when
investigating conjunctions we defer the second conjunct by adding it to Γ and
continue with the first conjunct; disjunctions simply result in forks. [FreshS]
introduces a fresh logic variable (not grounded) and updates the counter of
occupied variables. When the investigated goal is equality or relational call it is
added as a node to the scheme. If there are no deferred goals, then this node is
a leaf (rules [UnifyLeafS] and [InvokeLeafS]). Equality is also added as a
leaf if there are some deferred goals, but the terms are non-unifiable and so the
execution stops (rule [UnifyFailS]). If the terms in the equality are unifiable
and there are deferred goals (rule [UnifySuccessS]), the equality is added as
a node and the execution continues for the deferred goals, starting from the
leftmost one; also the set of grounded variables is updated and constraint labels
are added for the edge in accordance with Lemma 4.2. For relational calls the

Scheduling Complexity of Interleaving Search 163

Fig. 7. Scheme formation rules

proccess is similar: if there are some deferred goals (rule [InvokeS]), all variables
occurring in a call become grounded (due to the grounding condition we imposed)
and should satisfy the denotational semantics of the invoked relation.

The scheme constructed by these rules for our appendo example is shown
in Fig. 8. For simplicity, we do not show the set of grounded variables for each
node, but instead overline grounded variables in-place. Note, all variables that
occur in constraints on the edges are grounded after parent node execution.

Now, we can use schemes to see how the information for leaf goals in rela-
tion body is combined with conjunctions and disjunctions. Then we can apply
formulae from Sect. 3 to get recursive inequalities (providing lower and upper
bounds simultaneously) for both complexity factors.

In these inequalities we need to sum up the values of d and t-factor for all leaf
goals of a body and for all environments these goals are evaluated for. The leaf

164 D. Rozplokhas and D. Boulytchev

goals are the nodes of the scheme and evaluated environments can be derived
from the constraints attached to the edges. So, for this summation we introduce
the following notions: D is the sum of d-factor values and T is the sum of t-factor
values for the execution of the body with specific valuation ρ.

Fig. 8. Symbolic execution scheme for the
goal appendo a b ab with initial set of grounded
variables V = {a, b}. For each node, variables
that are grounded at the point of execution of
this node are overlined.

Their definitions are shown in
Fig. 9 (both formulas are given
in the same figure as the defini-
tions coincide modulo factor deno-
tations). For nodes, we take the
corresponding value (for equality
it always equals 1). When going
through an equality we sum up the
rest with an updated valuation (by
Lemma 4.2 this sum always has
one or zero summands depending
on whether the unification succeeds
or not). When going through a rela-
tional call we take a sum of all valu-
ations that satisfy the denotational
semantics (these valuations will correspond exactly to the set of all answers pro-
duced by the call since operational semantics is sound and complete w.r.t. the
denotational one and because we require all answers to be unique). For disjunc-
tions, we take the sum of both branches.

As we saw in Sect. 3 when computing the scheduling factors we need to
exclude from the additional cost the value of d-factor for one of the environments
(the largest one). This is true for the generalized formula for a whole scheme,
too. This time we need to take all executed environments for all the leaves of
a scheme and exclude the d-factor value for a maximal one (the formula for
conjunction ensures that we make the exclusion for the leaf, and the formula for
disjunction ensures that we make it for only one of the leaves). So, we will need
additional notion L, similar to D and T that will collect all the goals of the form
init (giρ), where gi is a leaf goal and ρ is a valuation corresponding to one of the
environments this leaf is evaluated for. The definition of L is shown in Fig. 10.

Now we can formulate the following main theorem that provides the principal
recursive inequalities, extracted from the scheme for a given goal.

Theorem 4.1. Let g be a goal, and let 〈ε, ε, ninit(g), V 〉 � g ���� SV . Then

d (init (g ρ)) = D (SV)(ρ) + Θ (1)
t (init (g ρ)) = T (SV)(ρ) + Θ (D (SV)(ρ) − •

max
〈gi, ei〉∈L(SV)(ρ)

d (〈gi, ei〉) + 1)

being considered as functions on ρ : V → T∅.

The theorem allows us to extract two inequalities (upper and lower bounds)
for both factors with a multiplicative constant that is the same for all valuations.

Scheduling Complexity of Interleaving Search 165

Fig. 9. Complexity factors extraction: D and T

Fig. 10. Complexity factors extraction: L

For our example, we can extract the following recursive inequalities from
the scheme in Fig. 8. For presentation purposes, we will not show valuation in
inequalities explicitly, but instead show the ground values of grounded variables
(using variables in bold font) that determine each valuation. We can do such a
simplification for any concrete relation.

d (qapp (a,b)) = (1 +
∑

a=Nil

1) + (1 +
∑

h,t:a=Cons(h, t)

(d (qapp (t,b)) +
∑

tb:(t,b,tb)∈�appendo�

1)) + Θ (1)

166 D. Rozplokhas and D. Boulytchev

t (qapp (a,b)) = (1 +
∑

a=Nil

1) + (1 +
∑

h,t:a=Cons(h, t)

(t (qapp (t,b)) +
∑

tb:(t,b,tb)∈�appendo�

1))

+Θ((1 +
∑

a=Nil

1) + (1 +
∑

h,t:a=Cons(h, t)

(d (qapp (t,b)) +
∑

tb:(t,b,tb)∈�appendo�

1))

− •
max

h,t,tb:a=Cons(h, t)∧
(t,b,tb)∈�appendo�

{d (init (ab ≡ b)), d (init (ab ≡ Cons(h, tb)))} +1)

Automatically extracted recursive inequalities, as a rule, are cumbersome,
but they contain all the information on how scheduling affects the complexity.
Often they can be drastically simplified by using metatheory-level reasoning.

For our example, we are only interested in the case when substituted values
represent some lists. We thus perform the usual for lists case analysis considering
the first list empty or non-empty. We can also notice that the excluded summand
equals one. So we can rewrite the inequalities in the following way:

d (qapp (Nil,b)) = Θ (1)
d (qapp (Cons(h, t),b)) = d (qapp (t,b)) + Θ (1)
t (qapp (Nil,b)) = Θ (1)
t (qapp (Cons(h, t),b)) = t (qapp (t,b)) + Θ (d (qapp (t,b)))

These trivial linear inequalities can be easily solved:

d (qapp (a,b)) = Θ (len (a))
t (qapp (a,b)) = Θ (len2 (a))

In this case, scheduling makes a big difference and changes the asymptotics.
Note, we expressed the result using notions from metatheory (len for the length
of the list represented by a term).

In contrast, if we consider the optimal definition appendo
opt the analysis of

the call qapp-opt (a,b) = init (appendo
opt ab ab) is analogous, but among the can-

didates for exclusion there is the value d (qapp-opt (t,b)) since the recursive call
is placed in a leaf. So the last simplified recursive approximation is the following
(the rest is the same as in our main example):

t (qapp-opt (Cons (h, t),b)) = t (qapp-opt (t,b)) + Θ (1)

So in this case the complexity of both factors is linear on len (a).

5 Evaluation

The theory we have built was so far applied to only one relation—appendo—
which we used as a motivating example. With our framework, it turned out
to be possible to explain the difference in performance between two nearly
identical implementations, and the difference—linear vs. quadratic asymptotic

Scheduling Complexity of Interleaving Search 167

d t d t

appendo a b ab len (a) len2 (a) pluso n m r |n| |n|
appendo

opt a b ab len (a) len (a) pluso n m r min {|n|, |r|} min {|n|, |r|}
appendo

opt a b ab len (ab) len (ab) pluso n m r |r| |r|
reverso a r len2 (a) len3 (a) multo n m r |n| · |m| |n|2 · |m|
reverso a r len2 (r) len2 (r) multo (S n) (S m) r |r|2 |r|2

Fig. 11. Derived d- and t-factors for some goals; len (•) stands for the length of a
ground list, | • |—for the value of a Peano number, represented as ground term.

complexity—was just as expected from the experimental performance evalua-
tion. In this section, we present some other results of complexity estimations
and discuss the adequacy of these estimations w.r.t. the real miniKanren
implementations.

Derived complexity estimations for a few other relations are shown in Fig. 11.
Besides concatenation, we deal with naive list reversing and Peano numbers
addition and multiplication. We show both d− and t− factors since the differ-
ence between the two indicates the cases when scheduling strikes in. We expect
that for simple relations like those presented the procedure of deriving estima-
tions should be easy; however, for more complex ones the dealing with extracted
inequalities may involve a non-trivial metatheory reasoning.

The justification of the adequacy of our complexity estimations w.r.t. the
existing miniKanren implementations faces the following problem: it is not
an easy task to separate the contribution of scheduling from other components
of the search procedure—unification and occurs check. However, it is common
knowledge among Prolog users that in practice unification takes a constant
time almost always; some theoretical basis for this is given in [1]. There are
some specifics of unification implementation in miniKanren. First, for the sim-
plicity of backtracking in a non-mutable fashion triangular substitution [3] is
used instead of the idempotent one. It brings in an additional overhead which
is analyzed in some detail in [4], but the experience shows that in the majority
of practical cases this overhead is insignificant. Second, miniKanren by default
performs the “occurs check”, which contributes a significant overhead and often
subsumes the complexity of all other search components. Meanwhile, it is known,
that occurs checks are rarely violated [2]. Having said this, we expect that in
the majority of the cases the performance of miniKanren programs with the
occurs check disabled are described by scheduling complexity alone. In particu-
lar, this is true for all cases in Fig. 11. To confirm the adequacy of our model we
evaluated the running time of these and some other goals (under the conditions
we’ve mentioned) and found that it confirms the estimations derived using our
framework. The details of implementation, evaluation, and results can be found
in an accompanying repository.6

6 https://www.dropbox.com/sh/ciceovnogkeeibz/AAAoclpTSDeY3OMagOBJHNiSa
?dl=0.

https://www.dropbox.com/sh/ciceovnogkeeibz/AAAoclpTSDeY3OMagOBJHNiSa?dl=0
https://www.dropbox.com/sh/ciceovnogkeeibz/AAAoclpTSDeY3OMagOBJHNiSa?dl=0

168 D. Rozplokhas and D. Boulytchev

6 Related Work

To our knowledge, our work is the first attempt of comprehensive time com-
plexity analysis for interleaving search in miniKanren. There is a number of
separate observations on how certain patterns in relational programming affect
performance and a number of “rules of thumb” based on these observations [4].
Some papers [9,12,16] tackle specific problems with relational programming
using quantitative time measuring for evaluation. These approaches to perfor-
mance analysis, being sufficient for specific relational problems, do not provide
the general understanding of interleaving search and its cost.

At the same time complexity analysis was studied extensively in the broader
context of logic programming (primarily, for Prolog). As one important moti-
vation for complexity analysis is granularity control in parallel execution, the
main focus was set on the automated approaches.

Probably the best known among them is the framework [7] for cost analysis
of logic programs (demonstrated on plain Prolog), implemented in the system
CASLOG. It uses data dependency information to estimate the sizes of the
arguments and the number of solutions for executed atoms. These estimations are
formulated as recursive inequalities (more precisely, as difference equations for
upper bounds), which are then automatically solved with known methods. The
time and space complexity are expressed using these estimations, the variations
of this approach can provide both upper [7] and lower [8] bounds.

An alternative approach is suggested in [11] for symbolic analysis of logic
programs (demonstrated in Prolog with cuts). It constructs symbolic evalu-
ation graphs capturing grounding propagation and reduction of recursive calls
to previous ones, in the process of construction some heuristic approximations
are used. These graphs may look similar to the symbolic schemes described in
the Sect. 4 at first glance, but there is a principal difference: symbolic graphs
capture the whole execution with all invoked calls (using inverse edges to repre-
sent cycles with recursive calls), while our schemes capture only the execution
inside the body of a specific relation (representing the information about inter-
nal calls in terms of denotational semantics). The graphs are then transformed
into term rewriting systems, for which the problem of the complexity analysis is
well-studied (specifically, AProVE tool is used).

While these two approaches can be seen as partial bases for our technique,
they are mainly focused on how the information about the arguments and results
of the evaluated clauses can be derived automatically, since the calculation of
time complexity of SLD-resolution is trivial when this information is available.
In contrast, we are interested in the penalty of non-trivial scheduling of relational
calls under interleaving search, so we delegate handling the information about
calls to the reasoning in terms of a specific metatheory.

7 Discussion and Future Work

The formal framework presented in this paper analyzes the basic aspects of
scheduling cost for interleaving search strategy from the theoretical viewpoint. As

Scheduling Complexity of Interleaving Search 169

we have shown, it is sufficiently powerful to explain some surprising asymptotic
behaviour for simple standard programs in miniKanren, but the applicability
of this framework in practice for real implementations of miniKanren requires
further investigation. Two key aspects that determine practical applicability
are the admissibility of the imposed requirements and the correspondence of
specific miniKanren implementations to the reference operational semantics,
which should be studied individually for each application. We see our work as
the ground for the future development of methods for analyzing the cost of
interleaving search.

Our approach imposes three requirements on the analyzed programs: dis-
junctive normal form, uniqueness of answers, and grounding of relational calls.
The first two are rather non-restrictive: DNF is equivalent to the description of
relation as a set of Horn clauses in Prolog, and the majority of well-known
examples in miniKanren are written in this or very similar form. Repetition
of answers is usually an indication of a mistake in a program [4]. The ground-
ness condition is more serious: it prohibits program execution from presenting
infinitely many individual ground solutions in one answer using free variables,
which is a useful pattern. At the same time, this requirement is not unique for
our work (the framework for CASLOG system mentioned above imposes exactly
the same condition) and the experience shows that many important kinds of pro-
grams satisfy it (although it is hard to characterize the class of such programs
precisely). Relaxing any of these restrictions will likely mess up the current rela-
tively compact description of symbolic execution (for the conditions on relational
calls) or the form of the extracted inequalities (for the DNF condition).

Also, for now, we confine ourselves to the problem of estimating the time of
the full search for a given goal. Estimating the time before the first (or some
specific) answer is believed to be an important and probably more practical
task. Unfortunately, the technique we describe can not be easily adjusted for
this case. The reason for this is that the reasoning about time (scheduling time
in particular) in our terms becomes non-compositional for the case of interrupted
search: if an answer is found in some branch, the search is cut short in other
branches, too. Dealing with such a non-compositionality is a subject of future
research.

References

1. Albert, L., Casas, R., Fages, F.: Average-case analysis of unification algo-
rithms. Theor. Comput. Sci. 113(1), 3–34 (1993). https://doi.org/10.1016/0304-
3975(93)90208-B

2. Apt, K.R., Pellegrini, A.: Why the occur-check is not a problem. In: Bruynooghe,
M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 69–86. Springer, Heidel-
berg (1992). https://doi.org/10.1007/3-540-55844-6 128

3. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning (in 2 volumes), pp. 445–532. Elsevier and MIT
Press (2001). https://doi.org/10.1016/b978-044450813-3/50010-2

4. Byrd, W.E.: Relational Programming in Minikanren: techniques, applications, and
implementations. Ph.D. thesis, USA (2009)

https://doi.org/10.1016/0304-3975(93)90208-B
https://doi.org/10.1016/0304-3975(93)90208-B
https://doi.org/10.1007/3-540-55844-6_128
https://doi.org/10.1016/b978-044450813-3/50010-2

170 D. Rozplokhas and D. Boulytchev

5. Byrd, W.E., Ballantyne, A., Rosenblatt, G., Might, M.: A unified approach to solv-
ing seven programming problems (functional pearl). Proc. ACM Program. Lang.
1(ICFP), 8:1–8:26 (2017). https://doi.org/10.1145/3110252

6. Byrd, W.E., Holk, E., Friedman, D.P.: miniKanren, live and untagged: quine gen-
eration via relational interpreters (programming pearl). In: Danvy, O. (ed.) Pro-
ceedings of the 2012 Annual Workshop on Scheme and Functional Programming,
Scheme 2012, Copenhagen, Denmark, 9–15 September 2012, pp. 8–29. ACM (2012).
https://doi.org/10.1145/2661103.2661105

7. Debray, S.K., Lin, N.: Cost analysis of logic programs. ACM Trans. Program. Lang.
Syst. 15(5), 826–875 (1993). https://doi.org/10.1145/161468.161472

8. Debray, S.K., López-Garćıa, P., Hermenegildo, M.V., Lin, N.: Lower bound cost
estimation for logic programs. In: Maluszynski, J. (ed.) Logic Programming, Pro-
ceedings of the 1997 International Symposium, Port Jefferson, Long Island, NY,
USA, 13–16 October 1997, pp. 291–305. MIT Press (1997)

9. Donahue, E.: Guarded fresh goals: dependency-directed introduction of fresh logic
variables. In: third miniKanren and Relational Programming Workshop (2021)

10. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT Press,
Cambridge (2005)

11. Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic evalu-
ation graphs and term rewriting: a general methodology for analyzing logic pro-
grams. In: Schreye, D.D., Janssens, G., King, A. (eds.) Principles and Practice of
Declarative Programming, PPDP 2012, Leuven, Belgium - 19–21 September 2012,
pp. 1–12. ACM (2012). https://doi.org/10.1145/2370776.2370778

12. Jin, E., Rosenblatt, G., Might, M., Zhang, L.: Universal quantification and implica-
tion in miniKanren. In: Third miniKanren and Relational Programming Workshop
(2021)

13. Kiselyov, O., Shan, C., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and
terminating monad transformers: (functional pearl). In: Danvy, O., Pierce, B.C.
(eds.) Proceedings of the 10th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2005, Tallinn, Estonia, 26–28 September 2005, pp. 192–
203. ACM (2005). https://doi.org/10.1145/1086365.1086390

14. Kosarev, D., Lozov, P., Boulytchev, D.: Relational synthesis for pattern matching.
In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 293–310. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64437-6 15

15. Rozplokhas, D., Vyatkin, A., Boulytchev, D.: Certified semantics for relational
programming. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 167–
185. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6 9

16. Sandre, L., Zaidi, M., Zhang, L.: Relational floating-point arithmetic. In: Third
miniKanren and Relational Programming Workshop (2021)

https://doi.org/10.1145/3110252
https://doi.org/10.1145/2661103.2661105
https://doi.org/10.1145/161468.161472
https://doi.org/10.1145/2370776.2370778
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1007/978-3-030-64437-6_15
https://doi.org/10.1007/978-3-030-64437-6_9

Automated Generation of Control
Concepts Annotation Rules Using

Inductive Logic Programming
System Description

Basel Shbita1(B) and Abha Moitra2(B)

1 University of Southern California, Los Angeles, CA, USA
shbita@usc.edu

2 General Electric Research, Niskayuna, NY, USA

moitraa@ge.com

Abstract. Capturing domain knowledge is a time-consuming procedure
that usually requires the collaboration of a Subject Matter Expert (SME)
and a modeling expert to encode the knowledge. This situation is fur-
ther exacerbated in some domains and applications. The SME may find
it challenging to articulate the domain knowledge as a procedure or a
set of rules but may find it easier to classify instance data. In the cyber-
physical domain, inferring the implemented mathematical concepts in the
source code or a different form of representation, such as the Resource
Description Framework (RDF), is difficult for the SME, requiring par-
ticular expertise in low-level programming or knowledge in Semantic
Web technologies. To facilitate this knowledge elicitation from SMEs,
we developed a system that automatically generates classification and
annotation rules for control concepts in cyber-physical systems (CPS).
Our proposed approach leverages the RDF representation of CPS source
code and generates the rules using Inductive Logic Programming and
semantic technologies. The resulting rules require a small set of labeled
instance data that is provided interactively by the SME through a user
interface within our system. The generated rules can be inspected, iter-
ated and manually refined.

Keywords: Knowledge capture · Semantic model · Knowledge
graphs · Rules · Rule annotation · Cyber-physical systems

1 Introduction

Capturing domain knowledge is a critical task in many domains and applications.
This process may involve knowledge elicitation followed by knowledge represen-
tation to facilitate inferencing, reasoning, or integration in some decision sup-
port systems. Knowledge capture frequently poses a roadblock in developing and

B. Shbita—This work was done while the author was at GE Global Research.

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 171–185, 2022.
https://doi.org/10.1007/978-3-030-99461-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_10

172 B. Shbita and A. Moitra

deploying systems that automate processing or reasoning tasks. For instance, a
Subject Matter Expert (SME) might have deep domain knowledge but may not
be able to describe it in terms of concepts and relationships that can be used to
represent the knowledge. Also, at times, the SME may not describe the knowl-
edge at the right level of detail that may be needed for making automated deci-
sions. For example, in the cyber-physical domain, we are often required to ana-
lyze a legacy product without an adequate description of its software, imposing a
challenge on the system operator. In the same domain, we frequently require the
recovery of mathematical structures implemented without having the required
software proficiency. Considering the vast amount of code presently used in such
systems, the problem becomes intractable and tedious even for an SME and is
often susceptible to human error.

To overcome such issues, we use an Inductive Logic Programming (ILP) based
approach wherein the SME identifies positive and negative examples for describ-
ing a concept in the code. The ILP system uses these examples to derive logic
programming rules (i.e., annotation or classification rules) for formally defin-
ing those concepts. This allows the SME to quickly detect the desired software
modules in his task and route the software’s relevant components to designated
experts. Our approach is iterative in that the SME can refine the rules learned
by adding more positive and negative examples.

Our approach is based on a semantic model (consisting of an ontology and
rules), which first describes the basic concepts and relationships of the domain.
In order to learn the definition of more complex concepts, the SME provides
positive and negative examples that are automatically translated into a formal
representation using the basic semantic concepts and relationships.

Our approach tackles both issues described above. Since we automatically
translate the example data provided by the SME into a logical representation, the
SME does not need to have an understanding of the concepts and relationships
in the ontology. In addition, since the SME only identifies positive and negative
examples and repeats the learning approach until the acquired knowledge is
satisfactory, it provides a way to derive complete and accurate descriptions of
the concepts in the domain.

1.1 Inductive Logic Programming

Inductive Logic Programming (ILP) [8] is a branch of Machine Learning that
deals with learning theories in logic programs where there is a uniform represen-
tation for examples, background knowledge, and hypotheses.

Given background knowledge (B) in the form of a logic program, and positive
and negative examples as conjunctions E+ and E− of positive and negative
literals respectively, an ILP system derives a logic program H such that:

– All the examples in E+ can be logically derived from B ∧ H, and
– No negative example in E− can be logically derived from B ∧ H.

ILP has been successfully used in applications such as Bioinformatics and
Natural Language Processing [1,2,5]. A number of ILP implementations are

Automated Generation of CPS Annotation Rules Using ILP 173

available. In our work we use Aleph [10] and run it using SWI-Prolog [11].
Aleph bounds the hypothesis space from the most general hypothesis to the
most specific one. It starts the search from the most general hypothesis and
specialises it by adding literals from the bottom clause until it finds the best
hypothesis.

Aleph requires three files to construct theories:

– Text file with a .b extension containing background knowledge in the form of
logic clauses that encode information relevant to the domain and the instance
data.

– Text file with a .f extension that includes the positive ground facts of the
concept to be learned.

– Text file with a .n extension that includes the negative ground facts of the
concept to be learned.

As an example, consider an ILP task with the following sets of background
knowledge, positive examples, and negative examples:

B =

⎧
⎪⎨

⎪⎩

builder(alice).

builder(bob).

enjoys lego(alice).

enjoys lego(claire).

⎫
⎪⎬

⎪⎭
E+ = {happy(alice).}E− =

{
happy(bob).

happy(claire).

}

Given these three sets, ILP induces the following hypothesis (written in
reverse implication form, as usually done in logic programs):

H =
{
happy(X) :- builder(X),enjoys lego(X).

}

This hypothesis contains one rule that says: if builder(X) and
enjoys lego(X) are true, then happy(X) must also be true for all X. In other
words, this rule says that if persons are builders and enjoy lego then they are
happy. Having induced a rule, we can deduce knowledge from it. Cropper et al.
[4] provides a comprehensive survey of ILP along with various applications.

1.2 Cyber-Physical Systems

Cyber-Physical System (CPS) is a term describing a broad range of complex,
multi-disciplinary, physically-aware engineered systems that integrate embedded
computing technologies and software into the physical world. The control aspect
of the physical phenomena and the theory behind control systems are the basis
for all state-of-the-art continuous time dynamical systems and thus have a cru-
cial role in CPS design. In control theory, SMEs describe a system using a set
of primitive and higher-level concepts that represent and govern the system’s
signals and enforce its desired behavior. Table 1 presents several math primi-
tives and higher-level control concepts that are widely used in industrial control
systems and a variety of other applications requiring continuously modulated
control (e.g., water systems, robotics systems).

174 B. Shbita and A. Moitra

Table 1. A partial list of control concepts and math primitives employed in control
mechanisms in cyber-physical systems and their description

Concept Description and associated properties

Constant Variables that are initialized and not updated

Reference signal Variable/signal that represent desired behavior or setpoint

Output signal Variable/signal that goes as output from a control block

Difference Control block generating a subtraction of two signals

Sum Control block generating an addition of two signals

Error signal Variable/signal that is an output of a difference operation
with a reference and measured (output) signal

Gain Control block generating a multiplication between signals
and/or scalars

Division Control block generating a division between signals
and/or scalars (often includes some divide by zero
protection)

Switch Control block that selects an input to be an output based
on a condition or discrete/boolean input

Magnitude saturation Control block that limits the input signal to the upper
and lower saturation values, where the limit values are
pre-defined constants

PI controller Control block that continuously calculates an error signal
and applies a correction based on proportional and
integral terms

PID controller Control block that continuously calculates an error signal
and applies a correction based on proportional, integral,
and derivative terms

Conventionally, control-policy software are completely separate from the sys-
tem infrastructure and implemented after manufacturing the system prototype.
This presents a challenge for SMEs who are proficient with the required mathe-
matical knowledge and control theory background but are not equipped with a
sufficient knowledge in low-level programming or software design. Locating the
appropriate code blocks that correspond to a specific control concept (e.g., an
integrator) that is of interest to the SME, either for the purpose of validation
or reverse engineering, imposes a significant challenge. It is extremely difficult
for the SME to recover mathematical structures implemented in the software.
Further, the SME can find it challenging to articulate their domain knowledge
in a form of code or the formalism required to address their task.

1.3 From Source Code to a Knowledge Graph

Knowledge Graphs (KGs), in the form of RDF statements, are the appropri-
ate representations to store and link complex data. KGs combine expressivity,

Automated Generation of CPS Annotation Rules Using ILP 175

interoperability, and standardization in the Semantic Web stack, thus providing
a strong foundation for querying and analysis.

The RDF representation of the desired CPS system source code is obtained
in two steps. First, from the source code a JSON file is extracted with the
method of Pyarelal et al. [9] to describe the function networks and expression
trees (i.e., representations of arithmetic expressions). Next, the RDF data is pro-
duced by generating RDF triples following a pre-defined semantic model using
the materialized JSON instance data. Listing 1.1 shows a portion of the pre-
defined semantic model that is used to model the instance data into RDF,
expressed in SADL [3] (Semantic Application Design Language). SADL is an
open-sourced domain-independent language that provides a formal yet easily
understandable representation of models. The SADL tool, which is available as
a plugin to Eclipse1, automatically translates statements in SADL to a Web
Ontology Language (OWL) [6] file, which contains the RDF statements (i.e.,
triples). For example, in our model (as shown in Listing 1.1), a HyperEdge is
related to a single Function via the property function, and has multiple input
and output of type Variable. It is important to note that this pre-defined model
does not vary and is similar for any given code input; it is merely required to
define the ontological elements needed to describe code in an RDF form.

Finally, the resulting RDF contains representations of basic code elements
found in a given source code. Listing 1.2 shows an excerpt from the resulting
knowledge graph of the file simple PI controller.c shown in Appendix A,
expressed in SADL as well.

1 HyperEdge is a type of Node
2 described by inputs with values of type Variable
3 described by function with a single value of type Function
4 described by outputs with values of type Variable.
5 Function is a type of Node
6 described by ftype with a single value of type string
7 described by lambda with a single value of type string
8 described by expression tree with a single value of type ExpressionTree.
9 Variable is a type of ExpNode

10 described by object ref with a single value of type string
11 described by data type with a single value of type string.

Listing 1.1. A portion of the semantic model used to model the data (written in
SADL). A Function is a Node with the relations ftype (function type) and lambda

with a range of type string and an expression tree of type ExpressionTree

1 21df3f15-1763-9632-e936-8aca2281a699 is a grfnem:Function,

2 has grfnem:metadata (a grfnem:Metadata with grfnem:line begin 12),

3 has grfnem:ftype "ASSIGN",

4 has grfnem:lambda "lambda error,Kp_M,Ki_M,integrator_state: ((error * Kp_M) + (Ki_M *

↪→ integrator_state))".

5 d4000e07-fe4a-aa23-b882-1030d655eee0 is a grfnem:Variable,

6 has grfnem:metadata (a grfnem:Metadata with grfnem:line begin 27, with grfnem:from source true),

7 has grfnem:identifier "simple_PI_controller::simple_PI_controller.main::Kp_M::0".

Listing 1.2. An excerpt from the resulting knowledge graph representation (written
in SADL) of the file simple PI controller.c (see Appendix A). The Function shown
above is of type ASSIGN and starts at line 12. This is the resulting instance data that
is automatically generated from the c source code

1 https://www.eclipse.org/.

https://www.eclipse.org/

176 B. Shbita and A. Moitra

2 Integrated Control-Concept Induction Platform

The question we are addressing is how can we streamline and leverage the CPS
program knowledge graph data to capture domain-knowledge and assist the SME
with additional knowledge discovery? Knowledge discovery in data is the non-
trivial extraction of implicit, previously unknown, and potentially useful infor-
mation from data.

As we mentioned earlier, and in order to overcome this challenge, we use an
ILP-based approach wherein the SME essentially identifies positive and negative
examples for describing a concept. The ILP system uses them to derive logic
programming rules for formally defining that concept.

2.1 Problem Definition

The task we address here is as follows: Given an input in the form of an OWL file
containing RDF triples that represent basic code elements found in the source
code (as seen in Listing 1.2 in SADL format), we want to generate logic pro-
gramming rules for formally defining control concepts and math primitives (e.g.,
a Constant, see Table 1) that are provided as example instances interactively
by the SME. The rules should be expressed with Horn logic clauses, similarly to
the example we have shown in Sect. 1.1. We require the solution to be iterative
in the sense that the SME can refine the learned rules by adding more positive
and negative examples.

2.2 Overview of Our Approach: An ILP Platform

As described in Sect. 1.3, the knowledge graph, constructed from the function
networks and expression trees, is materialized in an OWL format. Our suggested
platform and approach consists of several steps and components, as illustrated
in Fig. 1. The platform consists of a module (owl2aleph) that automatically
translates the OWL data into background knowledge (clauses and instances),
namely B, in a format required by Aleph, the ILP system. The module then
invokes an interactive user interface in which the SME selects positive and neg-
ative instances, namely E+ and E− respectively. Lastly, Aleph is invoked using
SWI-Prolog to produce a hypothesized clause H (i.e., the learned rule) and pro-
vide a list of new positive instances that adhere to H, so that the SME can
evaluate the accuracy of the learned rule and select new examples to refine it.

Since we automatically translate the example data provided by the SME into
a logical representation (i.e., “Aleph format”), the SME is not required to have
knowledge of the concepts and relationships in the ontology. Also, since the SME
only identifies positive and negative examples and repeats the learning approach
until the knowledge learned is satisfactory, it provides a convenient and fast way
for deriving complete and accurate descriptions of the concepts in the domain.
The iterative nature of the approach is illustrated via the loop seen in the lower
right side of Fig. 1. The loop runs through the SME (i.e., User), the Examples
Selection UI (producing E+ and E−), then through Aleph to produce a new
learned rule (i.e., H) then back to the SME.

Automated Generation of CPS Annotation Rules Using ILP 177

Fig. 1. The integrated control-concept induction platform for deriving math primitives
and control concepts classification rules

2.3 Generating the ILP Data

The owl2aleph module, which generates the ILP data, consists of two main
components (as seen previously in Fig. 1). The architecture of the module is
detailed in Fig. 2. We construct the ILP instances based on hyperedges, function
nodes, variable nodes, and expression trees based on the semantic model that
describes the basic concepts and relationships of the domain (Listing 1.1) and
executed over the instance data (Listing 1.2).

Fig. 2. Architecture of the owl2aleph module, generator of the ILP data files

As seen in Fig. 2, there are several sub-components, each one is designed to
tackle a different task:

– Triples Graph Data Manager reads the OWL data and provides an easy
serialization functionality over the given RDF statements. The manager clas-
sifies each statement by their functionality to serve other components (i.e.,
Functions Manager, Variables Manager, HyperEdges).

– Variables Manager performs variables disambiguation to enable linking
variable nodes (explicit and implicit variables in the source code) and is
also responsible for generating attributes regarding their usage (assignments,
updates, usage inside other blocks, etc...).

178 B. Shbita and A. Moitra

– Functions Manager generates the relevant information about the code
statement (hyperedge) functionality, the arithmetic operations (expression
tree attributes such as multiplication, division, etc...) present in the code
statement, and block level attributes (e.g., in a loop call).

– HyperEdges is a database of hyperedges, each one represents a code state-
ment. Each hyperedge corresponds to zero or more variable nodes and a single
function node. Hyperedges are the primary instances we use to aggregate the
information about the math primitives and the control concepts we would
like to form logic programs about. In the final pre-inference stage (upon
selection of the positive and negative examples), a hyperedge is named as
“newfeature” for each example, so that the same process and structure can
be used for generating rules for any given concept.

– Aleph Data Manager generates the background knowledge in an Aleph
format (.b file). This also includes the construction of definite clauses and
additional constraints (rules about predicates and their inputs and outputs)
from the source code and materializes the instance data.

– ILP Flask Server Runs a Flask2 application (local HTTP server) to enable
an interaction with the SME (User) via a web browser. The application pro-
vides a user-friendly interface to inspect and select the hyperedge instances
that are positive and negative and to generate them in the required Aleph
format (.f and .n files).

Fig. 3. An excerpt of a resulting background knowledge (.b) file

In Fig. 3, we show an excerpt from a background knowledge (.b) file. The
file includes four different sections of encoded knowledge. First, the modeh clause
2 https://flask.palletsprojects.com/.

https://flask.palletsprojects.com/

Automated Generation of CPS Annotation Rules Using ILP 179

defines the hypothesis and takes a hyperedge as an input (highlighted with yel-
low). Second, the modeb clauses define the signatures of the predicate functions.
Third, the determination clauses specify what concepts can be used in rules
and how many arguments each one takes. The last section includes the instance
data describing the entire CPS program in a logic formalism. All of the above is
generated automatically from the RDF data.

The example files (.f/.n) we provide as input to Aleph simply list a collec-
tion of positive or negative hyperedges that correspond to the desired concept
we want to learn. These files are generated automatically using the Examples
Selection User Interface by simply inspecting their attributes and then adding
them either as positives or negatives.

A snapshot of the user interface (UI) is shown in Fig. 4. It is fairly straight-
forward to operate the UI. The system lists all available hyperedges with their
relevant information (line numbers, functionality types, etc...). The user can add
a hyperedge as a positive or negative example or simply ignore it. Once ready,
the user can generate the example files to trigger the next step in the pipeline.

Fig. 4. The examples selection user interface for generating Aleph example files

By automating the translation and modeling of the semantic data into ILP
rules, clauses, and instances, and by enabling a straightforward process of exam-
ple files creation, we can quickly generate classification rules for formally identi-
fying math primitives and control concepts in an iterative, fast, and interactive
fashion.

2.4 Rule Generation from ILP Data via an Illustrative Example

Given the ILP data (B, E+, E−) in Aleph format, we can now trigger the
execution of the ILP platform using SWI-Prolog to induce the learned rule, i.e.,
the hypothesis (H). The outcome is classification rules, expressed in domain

180 B. Shbita and A. Moitra

terms, for formally identifying math primitives and control concepts. The SME
identifies positive and negative examples and repeats the learning approach until
the knowledge learned rule is satisfactory.

Fig. 5. An illustrative example of the learning of the control concept of “Constant”
(Color figure online)

In Fig. 5, we illustrate the working of the developed ILP infrastructure to
learn a simple classification rule to identify the mathematical concept of “Con-
stant” (i.e., an expression with a variable assignment that is initialized and not
updated in the code). The selected examples in Fig. 5, and the ones discussed in
this section, correspond to code statements in the file simple PI controller.c
shown in Appendix A. In the first iteration in this scenario, the SME selects two
positive examples and a single negative example (upper orange box in Fig. 5)
corresponding to the code statements in lines 26 and 27 as positives, and line
8 as a negative. As explained in Sect. 1.1, the ILP system constructs the most
specific clause (given B and entailing E+), which is shown highlighted in blue.
The generated rule in this execution produces the rule (also seen highlighted in
yellow inside the lower orange box):

newfeature(A) :- xfunction(A,B), xliteral(B).

Which basically means that hyperedge A corresponds to a “Constant” (the
newfeature) if A has a function B that is an assignment to a literal.

Automated Generation of CPS Annotation Rules Using ILP 181

Upon query of the instances that adhere to the generated rule, the SME can
add more examples, either as a positive or a negative. The SME then selects an
additional positive and negative example in a second iteration (upper green box
in Fig. 5) corresponding to the code statement in line 29 as a positive, and line
38 as a negative. The generated rule in this execution produces the rule (also
seen highlighted in yellow inside the lower green box):

newfeature(A) :- outputs(A,B), var assigned once(B),

xfunction(A,C), func not in loop block(C).

Which means that hyperedge A corresponds to a “Constant” if A has a variable
B that is assigned only once and the hyperedge A has a function C in which the
assignment is not inside any loop, as we would have expected.

The ILP infrastructure enables an automatic, iterative, and fast process for
capturing domain knowledge for math primitives and control concepts in the
form of classification rules. The resulting rules are used as feedback for the SME
and can be further utilized to learn additional levels of knowledge.

3 Evaluation and Discussion

We evaluate the ILP-based approach for learning classification rules for control
and math primitives on a dataset consisting of three OWL files originating from
three source code files driving proportional-integral (PI) controllers with a sim-
ple plant model. The dataset consists of 8974 triples pertaining to 61 different
instances of math and control concepts.

We have been successful in generating classification rules for simple math
primitives and several control concepts. Table 2 shows a summary of the results.
For each concept, we show the size of the training data (number of positive
and negative examples provided), the number of bottom clause literals before
the learning, the total number of reduced clause literals after the learning, the
learning time, number of true positives, number of false positives, number of
false negatives, precision, recall, and the F1 score. We note that the concepts of
“Switch”, “Magnitude saturation”, and “PID controller” could not be learned
due to an insufficient number of positive examples. We require at least two
positive examples per concept to generate the most specific clause that initiates
the ILP process.

As seen in Table 2, for 7 out of the applicable 9 concepts, the resulting
generated rules had a perfect F1 score (maximum precision and recall) and a
significant reduction in the number of literals in the generated rule (from bottom
clause, pre-learning, to reduced clause, post-learning). Additionally, the process
took less than a second to complete for all concepts shown in the table, which
is a crucial and important ability to have in such a problem setting. Further,
it required no more than two positive examples (and no more than 5 negatives,
depending on the complexity of the concept in our data) to generate the final
rule for all concepts.

182 B. Shbita and A. Moitra

Table 2. Results summary for the ILP generated rules for our targeted math and
control concepts

Concept (E+,

E−)

Bottom

clause

size

Reduced

clause

size

Time

[sec-

onds]

True

posi-

tives

False

posi-

tives

False

nega-

tives

Precision Recall F1

Difference (2, 1) 24 3 0.063 4 0 0 1.0 1.0 1.0

Sum (2, 2) 29 3 0.063 9 0 0 1.0 1.0 1.0

Gain (2, 1) 23 3 0.047 9 0 0 1.0 1.0 1.0

Division (2, 2) 24 3 0.094 3 0 0 1.0 1.0 1.0

Constant (2, 5) 11 6 0.125 23 0 0 1.0 1.0 1.0

Error signal (2, 5) 24 6 0.859 2 0 0 1.0 1.0 1.0

PI controller (2, 5) 45 5 0.453 3 0 0 1.0 1.0 1.0

Output signal (2, 3) 12 12 0.859 3 3 0 0.50 1.0 0.67

Reference signal (2, 2) 11 11 0.375 3 17 0 0.15 1.0 0.26

Switch Not enough positives (E+)

Magnitude

saturation

PID controller

One must note that the number of iterations needed is dependent on how
many and which positive and negative examples are selected by the SME. For
example, suppose a user chooses similar positive or negative examples. In that
case, it could be not very meaningful in converging towards a more reduced
clause, requiring the user to pick additional and substantially different examples.

The remaining two concepts out of the applicable 9 concepts (“Output Sig-
nal” and “Reference Signal”) did not achieve a high F1 score (or any reduction
in the size of the clause literals) since there is not enough data to separate the
positive examples from the negative examples in these concepts. The training
data must have a sufficient number of positive examples with a certain amount
of “richness” (diversity in implementation and usage) to enable the separation
of the examples to generate an accurate and satisfying rule. This is an expected
requirement, as there are some concepts that can be coded in different approaches
(logic vs. arithmetic). Further, the code can have several mutations even if imple-
mented using the same “approach”. For example, the code could include pointers
that get allocated dynamically, imposing a difficulty in our approach, which relies
on a static semantic analysis.

One must note that these scores reflect the accuracy of the rules within our
dataset. The same rules, if executed on a different dataset, may not necessarily
produce similar results. We inspected the generated rules with the prefect F1
scores. We noticed that some of the rules are aligned with our expectations. For
example, the generated rule for the concept of “Gain” was:

gain(A) :- xfunction(A,B), has operator mult(B).

Which means the hyperedge A has a function B that includes the multiplication
operator, as expected.

Automated Generation of CPS Annotation Rules Using ILP 183

Other rules were not completely aligned to what we would expect the SME
to define. For example, the generated rule for the concept of “PI Controller”
was:

picontroller(A) :- outputs(A,B), var implicit(B),

xfunction(A,C), has operator add(C).

Which is not sufficient to capture the two control terms of proportional and
integral operations of addition and multiplication that are required to define a
PI controller, but it was sufficient to capture the 3 instances that exist in our
dataset accurately.

The quality of the ILP generated rules is dependent on the supplied input.
Sub-par rules result from inadequate input data that does not hold sufficient
information about the targeted concept. By providing additional code examples
and richer data, we provide better coverage and generate more accurate rules.

4 Related Work and Conclusions

Since a vast amount of domain knowledge has already been captured in text,
considerable effort has been made in extracting this written knowledge into for-
mal models. Wong et al. [12] provides a survey of various approaches. Most of
this effort has been in extracting concepts and relationships between the con-
cepts and representing it in a semantic model. We have also previously used ILP
in the domain of Design for Manufacturability (DFM) where the goal was to
design products that are easier to manufacture by providing early manufactura-
bility feedback in Moitra et al. [7].

In this work we have considered how we can automate the capture of Cyber-
Physical Systems (CPS) domain knowledge by applying Inductive Logic Pro-
gramming (ILP) to positive and negative instance data in RDF format, origi-
nating from a CPS program source code. We have shown this by developing an
Integrated Control-Concept Induction Platform for generating annotation and
classification rules for control concepts and math primitives. Our approach is fea-
sible and effective in terms of time, completeness, and robustness. These early
results we have shown are encouraging and provide promising opportunities and
applications.

Acknowledgements. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited). This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) under the Agreement No.
HR00112190017. The views, opinions and/or findings expressed are those of the authors
and should not be interpreted as representing the official views or policies of the Depart-
ment of Defense or the U.S. Government.

184 B. Shbita and A. Moitra

A simple PI controller.c

A PI controller simple PI controller.c used in Sect. 2.4 is shown below. The
selected examples in Fig. 5 correspond to code statements in this file.

1 #include <stdio.h>
2
3 double integrator_state = 0.0;
4
5 /* Simple PI controller */
6 double PI_calc(double Input_dmd, double Input_sensed, double Kp_M, double Ki_M, double

↪→ timestep)
7 {
8 double error = Input_dmd - Input_sensed; // negative example for ILP (iteration 1)
9

10 integrator_state = integrator_state + timestep*error;
11
12 return error*Kp_M + integrator_state*Ki_M;
13 }
14
15 /* Proportional plant! */
16 double plant_model(double input, double gain)
17 {
18 return input*gain;
19 }
20
21 int main(int argc, char **argv)
22 {
23 double t_final = 100.5;
24 double time_step = 0.015;
25
26 double Ki_M = 20.0; // positive example for ILP (iteration 1)
27 double Kp_M = 75.0; // positive example for ILP (iteration 1)
28
29 int num_steps = t_final / time_step; // positive example for ILP (iteration 2)
30
31 double desired_output = 10.0;
32
33 double plant_command;
34 double sensed_output;
35
36 double plant_gain = 0.01;
37
38 sensed_output = 0.0; // negative example for ILP (iteration 2)
39
40 for (int i = 0; i < num_steps; i++)
41 {
42 plant_command = PI_calc(desired_output, sensed_output, Kp_M, Ki_M, time_step);
43
44 sensed_output = plant_model(plant_command, plant_gain);
45
46 printf("%f, %f, %f", (double)i*time_step, plant_command, sensed_output);
47 }
48
49 return 0;
50 }

Listing 1.3. simple PI controller.c

Automated Generation of CPS Annotation Rules Using ILP 185

References

1. Bratko, I., Muggleton, S.: Applications of inductive logic programming. Commun.
ACM 38(11), 65–70 (1995)

2. Chen, D., Mooney, R.: Learning to interpret natural language navigation instruc-
tions from observations. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 25 (2011)

3. Crapo, A., Moitra, A.: Toward a unified English-like representation of semantic
models, data, and graph patterns for subject matter experts. Int. J. Semant. Com-
put. 7(03), 215–236 (2013)

4. Cropper, A., Dumančić, S., Evans, R., Muggleton, S.H.: Inductive logic program-
ming at 30. Mach. Learn. 111(1), 147–172 (2022). Springer

5. Faruquie, T.A., Srinivasan, A., King, R.D.: Topic models with relational features
for drug design. In: Riguzzi, F., Železný, F. (eds.) ILP 2012. LNCS (LNAI), vol.
7842, pp. 45–57. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38812-5 4

6. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview.
W3C Recommend. 10(10), 2004 (2004)

7. Moitra, A., Palla, R., Rangarajan, A.: Automated capture and execution of man-
ufacturability rules using inductive logic programming. In: Twenty-Eighth IAAI
Conference (2016)

8. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318
(1991)

9. Pyarelal, A., et al.: Automates: automated model assembly from text, equations,
and software. arXiv preprint arXiv:2001.07295 (2020)

10. Srinivasan, A.: The aleph manual (2001)
11. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Pract.

Logic Program. 12(1–2), 67–96 (2012)
12. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look back and

into the future. ACM Comput. Surv. (CSUR) 44(4), 1–36 (2012)

https://doi.org/10.1007/978-3-642-38812-5_4
https://doi.org/10.1007/978-3-642-38812-5_4
http://arxiv.org/abs/2001.07295

A Functional Account of Probabilistic
Programming with Possible Worlds

Declarative Pearl

Birthe van den Berg(B) and Tom Schrijvers

KU Leuven, Leuven, Belgium
{birthe.vandenberg,tom.schrijvers}@kuleuven.be

Abstract. While there has been much cross-fertilization between func-
tional and logic programming—e.g., leading to functional models of many
Prolog features—this appears to be much less the case regarding prob-
abilistic programming, even though this is an area of mutual interest.
Whereas functional programming often focuses on modeling probabilis-
tic processes, logic programming typically focuses on modeling possible
worlds. These worlds are made up of facts that each carry a probabil-
ity and together give rise to a distribution semantics. The latter app-
roach appears to be little-known in the functional programming com-
munity. This paper aims to remedy this situation by presenting a func-
tional account of the distribution semantics of probabilistic logic pro-
gramming that is based on possible worlds. We present a term monad
for the monadic syntax of queries together with a natural interpretation
in terms of boolean algebras. Then we explain that, because probabilities
do not form a boolean algebra, they—and other interpretations in terms
of commutative semirings—can only be computed after query normali-
sation to deterministic, decomposable negation normal form (d-DNNF).
While computing the possible worlds readily gives such a normal form, it
suffers from exponential blow-up. Using heuristic algorithms yields much
better results in practice.

Keywords: Possible worlds · Monad · Functional programming ·
Probabilistic programming · Logic programming

1 Introduction

Thanks to the FLOPS conference and related venues, there is a large body of
research at the crossroads between Functional (FP) and Logic Programming
(LP), which has lead to much cross-fertilization between the two communities.

Although many programming-related aspects are of common interest, both
communities have a somewhat different focus, with FP tending more towards
processes (“doing”) and LP more towards probabilistic models (“being”). This
is quite prominent in the FP view of logic programming, which mostly focuses
on the operational aspects such as backtracking search [21,23,29,38], least fixed-
points of non-determinstic computations [41] and unification algorithms [6,36].
c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 186–204, 2022.
https://doi.org/10.1007/978-3-030-99461-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_11&domain=pdf
http://orcid.org/0000-0002-0088-9546
http://orcid.org/0000-0001-8771-5559
https://doi.org/10.1007/978-3-030-99461-7_11

A Functional Account of Probabilistic Programming with Possible Worlds 187

In contrast, non-operational matters, such as well-founded semantics [39] and
stable model semantics [16], have received less attention from the FP community.

Of particular interest here is the subarea of probabilistic programming, which,
under the aegis of Artificial Intelligence, is receiving much attention. Again,
both communities have developed a somewhat different focus on the matter:
probabilistic processes for FP, probabilistic models for LP. This difference in
focus is not always very pronounced and of course there is still much overlap.
Yet, there are also subtle differences that may be overlooked or misunderstood.

In this paper we aim to raise awareness for probabilistic LP aspects that
are less well-known in the FP community. In particular, we provide a functional
programming incarnation of probabilistic logic programming based on Sato’s dis-
tribution semantics [35]. This distribution semantics is derived from intensionally
modeling possible worlds in terms of formulas over facts and associating prob-
ability distributions with those facts. This approach underlies most contempo-
rary probabilistic LP languages (Probabilistic Logic Programs [8], Probabilistic
Horn Abduction [31], Independent Choice Logic [32], PRISM [35], LPADs [42],
ProbLog [15], and PITA [34]) and lends itself well to declarative modeling of com-
plex systems, even ones that have a cyclic structure (e.g., graphs or networks).
Computing probabilities in these models gives rise to problems that simply do
not arise in typical FP approaches.

Our specific contributions are as follows.

– We present a term monad for queries over possible worlds, and assign a general
and quite natural semantics in terms of boolean algebras to those queries.
This semantics has the typical models judgment (|=) and possible worlds
interpretation as special cases.

– We explain that the probabilistic interpretation does not fit in the boolean
algebra representation. However, it can be admitted by means of normalisa-
tion. In fact, after normalisation the interpretation of queries can be further
generalized from boolean algebras to arbitrary commutative semirings.

– We show how a least fixed-point operator enables cyclic models, e.g., of net-
works.

The code presented in this paper is available at https://github.com/
birthevdb/functional-possible-worlds.

2 Background: Possible Worlds

In logic programming the subsets W of a finite set B (usually called the Herbrand
base) of possible facts A1, . . . , An are known as worlds. The notation Ai ∈ W
means that Ai is true in that world; otherwise it is false. Thus, for n facts, there
are 2n worlds. Other ways to characterize worlds are as partitions of B into true
and false facts, or as sets with both positive occurrences (written just Ai) and
negative occurrences (write Āi) where all facts must be accounted for and no
fact can appear both positively and negatively.

https://github.com/birthevdb/functional-possible-worlds
https://github.com/birthevdb/functional-possible-worlds

188 B. van den Berg and T. Schrijvers

For example, there could be two facts A1 and A2 where A1 means that the
sky is blue and A2 that Hyppolyta is a queen. Two facts give rise to four different
worlds,

W1 = {} W2 = {A1}
W3 = {A2} W4 = {A1, A2}

For example, the world W4 has a blue sky and Hyppolyta as a queen.
Among all the worlds, only some may be possible. The possible worlds are

typically expressed intentionally, by means of a logical formula Q (often called
query) over the facts. A formula expresses those worlds in which the formula
holds; this is captured in the judgement W |= Q. Usually, formulas are made of
positive and negative occurrences of facts, the literals true and false, and the
logical connectives ∧, ∨, and ¬. In fact, negation is often omitted and then the
formula is known as definite. The W |= Q relation is then defined as follows:

A ∈ W

W |= A

A �∈ W

W |= Ā

W |= Q1

W |= Q1 ∨ Q2

W |= Q2

W |= Q1 ∨ Q2

W |= Q1W |= Q2

W |= Q1 ∧ Q2

For example, the possible worlds of formula A1∨Ā2 are W1, W2 and W4 because
they do model the formula and W3 does not.

Often (parts) of formulas are abstracted over by Horn clauses. When these
clauses are circularly defined, a more sophisticated semantics is needed. We
return to this matter in Sect. 5.

Probabilities are introduced at the level of facts. An interpretation function
I : B → [0, 1] associates each fact with a probability. Then the probability P (W)
of a world W follows from its facts.

P (W) =
∏

Ai∈W

I(Ai) ×
∏

Ai �∈W

(1 − I(Ai))

Likewise, the probability of a query is the sum of the probabilities of the
worlds in which it holds.

P (Q) =
∑

W |=Q

P (W)

Example. Consider the following example. “Toss a coin and draw a ball from
each of two urns. The two urns contain both red and blue balls. You win if you
toss heads and draw a red ball or if you draw two balls of the same color. What
are the odds of that if the probability of tossing heads is 0.4, that of drawing a
red ball form the first urn 0.3 and from the second urn 0.2?”

The facts in this example are H (heads), R1 (the first ball is red) and R2 (the
second ball is red). We give them an interpretation in terms of their probability.

I(H) = 0.4 I(R1) = 0.3 I(R2) = 0.2

A Functional Account of Probabilistic Programming with Possible Worlds 189

We compute the probabilities of the worlds.

P (W1) = I(H̄) × I(R̄1) × I(R̄2) = (1 − 0.4) × (1 − 0.3) × (1 − 0.2) = 0.336
P (W2) = I(H̄) × I(R̄1) × I(R2) = (1 − 0.4) × (1 − 0.3) × 0.2 = 0.084
P (W3) = I(H̄) × I(R1) × I(R̄2) = (1 − 0.4) × 0.3 × (1 − 0.2) = 0.144
P (W4) = I(H̄) × I(R1) × I(R2) = (1 − 0.4) × 0.3 × 0.2 = 0.036
P (W5) = I(H) × I(R̄1) × I(R̄2) = 0.4 × (1 − 0.3) × (1 − 0.2) = 0.224
P (W6) = I(H) × I(R̄1) × I(R2) = 0.4 × (1 − 0.3) × 0.2 = 0.056
P (W7) = I(H) × I(R1) × I(R̄2) = 0.4 × 0.3 × (1 − 0.2) = 0.096
P (W8) = I(H) × I(R1) × I(R2) = 0.4 × 0.3 × 0.2 = 0.024

You win the game when you toss heads and draw a red ball, or when you draw
two red balls or two blue balls. This is expressed by the following query:

Win = (H ∧ (R1 ∨ R2)) ∨ (R1 ∧ R2) ∨ (R̄1 ∧ R̄2)

The worlds that model this query are W1, W4, W5, W6, W7 and W8. The prob-
ability to win is then computed as follows:

P (Win) = P (W1) + P (W4) + P (W5) + P (W6) + P (W7) + P (W8)
= 0.336 + 0.036 + 0.224 + 0.056 + 0.096 + 0.024
= 0.772

3 The Possible Worlds Monad

This section presents our functional model of many-worlds logic programming. It
represents queries with a term monad and interprets them with boolean algebras.

3.1 Facts and Worlds

We use designated types, which we name fact types, to denote the different avail-
able facts. For example, fact type FEx provides two possible facts F1 and F2.

data FEx = F1 | F2

We require that fact types provide a finite number of facts and instantiate a
type class with a method facts that enumerates them.

class Ord f ⇒ Fact f where
facts :: [f]

instance Fact FEx where
facts = [F1,F2]

A world over these facts is then a (sub)set of values of the fact type.

type World f = Set f

For example, the world where F1 is true and F2 is not, is represented by

wF1 :: World FEx
wF1 = Set .fromList [F1]

190 B. van den Berg and T. Schrijvers

The universe is the list of all possible worlds. We compute all the subsequences
of the facts, convert them to sets and collect them in a list.

universe :: Fact f ⇒ [World f]
universe = [Set .fromList l | l ← subsequences facts]

3.2 The Monad

Finally, we have the possible worlds monad Q f which captures formulas or
queries over the facts f . We realise this monad through the algebraic effects and
handlers methodology [30]. Its representation is a term monad1, which allows
to construct syntactic structures in the functional programming context, similar
to terms in Prolog. Its interpretations—the handlers—are expressed in terms of
the structural recursion scheme over this representation.

Term Monad. To define the term monad Q f , which is parameterized in the fact
type f , we adopt the approach of Wu et al. [45] to model the free nondeterminism
monad with a free monad. Its definition is as follows:

data Q f a where
Var :: a → Q f a
Fail :: Q f a
Or :: Q f a → Q f a → Q f a

This has the typical term monad structure where the Var constructor is the
return method of the monad and denotes a non-terminal. The remaining con-
structors denote algebraic operations that have distribute with the monadic bind
operator (>>=), which recursively descends into the terms and fills in the non-
terminal variables. Moreover, Or and Fail provide Alternative structure.

instance Monad (Q f) where
return = Var
Var x >>= k = k x
Fail >>= k = Fail
Or p q >>= k = Or (p >>= k) (q >>= k)

instance Alternative (Q f)
where

empty = Fail
(|) = Or

The type Q f (), where the result type a is the unit type (), corresponds to
the syntax of boolean formulas.

true :: Q f ()
true = return ()
(∧) :: Q f () → Q f () → Q f ()
p ∧ q = p >> q

false :: Q f ()
false = empty
(∨) :: Q f () → Q f () → Q f ()
p ∨ q = p |	 q

Indeed, the monadic structure of the term monad aligns with the conjunctive
structure of formulas, while the Fail and Or constructors align with their dis-
junctive structure.
1 Also called free monad.

A Functional Account of Probabilistic Programming with Possible Worlds 191

Adding Literals. Finally, formula literals are captured in the Lit constructor. We
extend our term monad with literals as follows:

data Q f a where
...
Lit :: Lit f → Q f a → Q f a

The Lit constructor has two fields: a literal (Lit f) and, to distribute with >>=,
another formula. As >>= means conjunction, Lit l p represents the conjunction of
the the literal l with the query p; the lit function conveniently fills in the trivial
query true. The literal l itself is a positive or negative occurrence of a fact.

lit :: Lit f → Q f ()
lit l = Lit l true data Lit f = Pos f | Neg f

For example, we can capture the example formula F1 ∨ F̄2 as

query :: Q FEx ()
query = lit (Pos F1)∨ lit (Neg F2)

Compositional Programming. Although most of our examples consider the syn-
tax of boolean formulas (using Q f ()), we can use type Q f a to construct
programs from program fragments. The return values of those fragments can
influence the remainder of the program. For example, consider the following
three booleans, which encode the possible outcomes of rolling a dice.

Fdice = B1 | B2 | B3

•

B1 B̄1

B2 B̄2 B2 B̄2

B3 B̄3 B3 B̄3 B3 B̄3 B3 B̄3

1
2

1
2

1
3

2
3

1
3

2
3

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Consequently, we represent the six sides of a dice as follows:

one = lit (Pos B1)∧ lit (Pos B2) >> return 1
two = lit (Pos B1)∧ lit (Neg B2)∧ lit (Pos B3) >> return 2
...
six = lit (Neg B1)∧ lit (Neg B2)∧ lit (Neg B3) >> return 6

192 B. van den Berg and T. Schrijvers

We can define two independent dice as follows:

dice1 = one1 |	 ... |	 six 1

dice2 = one2 |	 ... |	 six 2

A winning condition of throwing these dice can be defined in terms of their
returned values. The guard function comes in handy to transform the boolean
condition into a query of type Q f ().

guard :: Bool → Q f ()
guard True = true
guard False = false
win = do x ← dice1; y ← dice2; guard (x + y > 10)

Handlers and Laws. As usual with the algebraic effects approach, Q f a pro-
grams do not respect any particular laws other than the monad laws on the nose.
Instead, the interpretation functions, known as handlers, must ensure that the
interpretations they produce respect further laws. To enable this we provide a
structural recursion scheme, the fold .

fold :: BooleanAlgebra b ⇒ (a → b) → (f → b) → Q f a → b
fold gen inj (Var x) = gen x
fold gen inj Fail = ⊥
fold gen inj (Or p q) = fold gen inj p ∨ fold gen inj q
fold gen inj (Lit (Pos f) p) = inj f ∧ fold gen inj p
fold gen inj (Lit (Neg f) p) = ¬ (inj f)∧ fold gen inj p

This recursion scheme enforces that programs are interpreted compositionally in
terms of a boolean algebra given interpretations (a → b) of the non-terminals
or variables and (f → b) of the facts. In what follows, we discuss these boolean
algebras in more detail.

3.3 Boolean Algebras

Boolean algebras [3] generalize the notion of booleans and thus provide a natural
framework for the interpretation of logical formulas; they are subject to Fig. 1’s
laws. A boolean algebra is captured in the following type class.

class BooleanAlgebra b where
⊥ :: b
� :: b
¬ :: b → b
(∧) :: b → b → b
(∨) :: b → b → b

A Functional Account of Probabilistic Programming with Possible Worlds 193

Idempotence

a ∧ a ≡ a ∨ a = a

Commutativity

a ∧ b ≡ b ∧ a

a ∨ b ≡ b ∨ a

Associativity

a ∧(b ∧ c) ≡ (a ∧ b)∧ c

a ∨(b ∨ c) ≡ (a ∨ b)∨ c

Absorption

a ∧(a ∨ b) ≡ a ∨(a ∧ b) ≡ a

Distributivity

a ∧(b ∨ c) ≡ (a ∧ b)∨(a ∧ c)

a ∨(b ∧ c) ≡ (a ∨ b)∧(a ∨ c)

Universal Bounds

⊥ ∧ a ≡ ⊥
⊥ ∨ a ≡ a

� ∧ a ≡ a

� ∨ a ≡ �
Complementation

a ∧ ¬ a ≡ ⊥
a ∨ ¬ a ≡ �

Fig. 1. Laws of boolean algebras.

We give three well-known examples of boolean algebras with their implemen-
tation using the BooleanAlgebra class and with their application to our many-
worlds semantics: booleans, the pointwise construction and powersets.

Booleans. The standard instance for boolean algebras is of course that of Bool .

instance BooleanAlgebra Bool where
� = True
⊥ = False
¬ = not
(∧) = (&&)
(∨) = (‖)

For example, we can evaluate the truth of a formula of type Q f () with fold by
interpreting it in terms of Bool and by supplying the truth of the facts.

truth :: (f → Bool) → Q f () → Bool
truth truthf = fold (λ() → True) truthf

This interpretation maps the variable () to True, indicating effectively that Var ()
means True.

The Pointwise Construction. The function type w → b is a boolean algebra
provided that b is a boolean algebra:

instance BooleanAlgebra b ⇒ BooleanAlgebra (w → b) where
� = const �
⊥ = const ⊥

194 B. van den Berg and T. Schrijvers

¬ = λf w → ¬ (f w)
(∧) = λf g w → f w ∧ g w
(∨) = λf g w → f w ∨ g w

For instance, we can use the pointwise algebra for World f → Bool to write
a models function that captures the W |= Q judgement as a straightforward
handler. The function elem checks the membership of an element in a set.

models :: Eq f ⇒ Q f a → World f → Bool
models = fold � elem

Powersets. The subsets of a set also form a boolean algebra. This is particularly
relevant if the elements of the set are facts and thus the set represents a world.
We use functions from the Data.Set library, of which the behaviour is reflected
by their name.

instance Fact f ⇒ BooleanAlgebra (Set (World f)) where
� = Set .fromList universe
⊥ = Set .empty
¬ = Set .difference �
(∧) = Set .intersection
(∨) = Set .union

With this boolean algebra we can compute the possible worlds of a query:

possibleWorlds :: Fact f ⇒ Q f a → Set (World f)
possibleWorlds = fold � lit where

lit f = Set .filter (elem f) �
This implementation of the possible worlds is naive; we present an optimized
version using heuristics in Sect. 4.3.

3.4 Example: A Bit of Gambling

Let us revisit the example in Sect. 2 and express it in terms of our possible
worlds monad. We model the three relevant facts with the FGmb fact type.

data FGmb = Heads | Red1 | Red2
instance Fact FGmb where

facts = [Heads,Red1,Red2]

The win query models the winning condition.

win :: Q FGmb ()
win = (heads ∧(red1 ∨ red2))∨((red1 ∧ red2)∨(blue1 ∧ blue2))

where
heads = lit (Pos Heads)
red1 = lit (Pos Red1)
blue1 = lit (Neg Red1)

A Functional Account of Probabilistic Programming with Possible Worlds 195

red2 = lit (Pos Red2)
blue2 = lit (Neg Red2)

For example,

> possibleWorlds win
fromList [fromList [], -- W1

fromList [Heads], -- W5

fromList [Heads,Red1], -- W6

fromList [Heads,Red1,Red2], -- W8

fromList [Heads,Red2], -- W6

fromList [Red1,Red2]] -- W4

With this example, we have shown that the possible worlds interpretation in
terms of boolean algebras is straightforward and intuitive. In what follows, we
propose a more expressive and efficient form of interpretation in terms of com-
mutative semirings, which are enabled by prior normalization of the query.

4 Commutative Semiring Interpretation

The typical interpretation of queries in probabilistic logic programming is their
probability, given the independent probabilities of the facts.

newtype Prob = P Float deriving (Eq ,Ord ,Num,Fractional)

Unfortunately, probabilities do not form a boolean algebra with (∗) for (∧)
and (+) for (∨). Indeed, several of the boolean algebra laws are not satisfied:
idempotence, absorption, �∨ a ≡ �, and a ∧ ¬ a ≡ ⊥.

Hence, the probability of queries cannot be expressed compositionally in
terms of a fold . This makes sense at a conceptual level where we know, for
example, that in general it holds that P (Q1∨Q2) = P (Q1)+P (Q2)−P (Q1∧Q2)
which contains the non-compositional summand −P (Q1 ∧ Q2). Also, in general
we compute P (Q1 ∧ Q2) = P (Q1) × P (Q2|Q1) where we read P (Q2|Q1) as the
probability of Q2 given Q1.

4.1 Commutative Semirings

Restricted forms of queries do admit compositional computation of probabilities:

Determinism: Two queries Q1 and Q2 are mutually exclusive when no world
makes both queries true. This means, we get the compositional form

P (Q1 ∨ Q2) = P (Q1) + P (Q2)

Here, indeed, P (Q1 ∧ Q2) equals zero. A query in which all branches of or-
nodes are mutually exclusive is known as deterministic.

196 B. van den Berg and T. Schrijvers

Commutativity

a ⊗ b ≡ b ⊗ a

a ⊕ b ≡ b ⊕ a

Associativity

a ⊗(b ⊗ c) ≡ (a ⊗ b)⊗ c

a ⊕(b ⊕ c) ≡ (a ⊕ b)⊕ c

Annihilation

zero ⊗ a ≡ zero

Distributivity

a ⊗(b ⊕ c) ≡ (a ⊗ b)⊕(a ⊗ c)

a ⊕(b ⊗ c) ≡ (a ⊕ b)⊗(a ⊕ c)

Identities

zero ⊕ a ≡ a

one ⊗ a ≡ a

Fig. 2. Laws of commutative semirings.

Decomposability. Similarly, the probability of the conjunction of two queries
Q1 and Q2 is compositional if they are independent. Then

P (Q1 ∧ Q2) = P (Q1) × P (Q2)

Thus, in this case, P (Q2|Q1) = P (Q2), making Q2 independent of Q1. A query
in which this is true for all children of and-nodes is known as decomposable.

Queries that are deterministic, decomposable and also only feature negations
on facts are said to be in deterministic, decomposable negation normal form
(d-DNNF) [9,10]. For example, the query q is equivalent to its deterministic,
decomposable negation normal form qd-DNNF:

q = (heads ∧ red1)∨(red1 ∧ red2)
qd-DNNF = ((tails ∧ red2)∨ heads)∨ red1

where heads = lit (Pos Heads)
tails = lit (Neg Heads)
red1 = lit (Pos Red1)
red2 = lit (Pos Red2)

Such d-DNNF queries do have a well-defined mapping from possible worlds to
probabilities, and, more generally, to any other interpretation that satisfies the
remaining laws (see Fig. 2), which are those of commutative semirings. Proba-
bilities are indeed a special case of commutative semirings.

class Semiring r where
zero :: r
one :: r
(⊕) :: r → r → r
(⊗) :: r → r → r

instance Semiring Prob where
zero = 0
one = 1
(⊕) = (+)
(⊗) = (∗)

A Functional Account of Probabilistic Programming with Possible Worlds 197

The main advantage of the d-DNNF is that we can interpret queries in lin-
ear time. For example, the interpretation of the above query q in terms of a
commutative semiring, yields the following:

I(qd-DNNF) = (I(tails) ⊗ I(red2) ⊕ I(heads)) ⊗ I(red1)
= (0.6 ∗ 0.2 + 0.4) ∗ 0.3 = 0.156

4.2 The Possible Worlds as d-DNNF

We need not look far for a d-DNNF: the possible worlds representation, which
is essentially isomorphic to a query with the d-DNNF structure. That is, it
corresponds to a disjunction of mutually exclusive worlds. Each world is a con-
junction of independent facts. In this form, � and ⊥ are absent, and negations
are in normal form: they only appear on facts.

We can define a valuation val function, which interprets possible worlds in
terms of a commutative semiring. Given an interpretation of the literals in terms
of a commutative semiring, it valuates a set of possible worlds over those literals.

val :: (Fact f ,Semiring r) ⇒ (Lit f → r) → (Set (World f) → r)
val gen lit = sum ◦ map (prod ◦ lits) ◦ Set .toList where

prod = foldr (⊗) one
sum = foldr (⊕) zero
lits s = map lit facts where

lit f | Set .member f s = gen lit (Pos f)
| otherwise = gen lit (Neg f)

Interpreting a query means computing its possible worlds and valuating these
worlds. For example, we capture the probability for each fact in our gambling
example in the function gmbProb.

gmbProb :: Lit FGmb → Prob
gmbProb (Pos Heads) = 0.4
gmbProb (Pos Red1) = 0.3
gmbProb (Pos Red2) = 0.2
gmbProb (Neg f) = 1 − gmbProb (Pos f)

From that we can derive the probability of winning.

> val gmbProb (possibleWorlds win)
0.7720001

Note that the val function allows additional interpretations beyond probabilities.

Dual Numbers. A useful commutative semiring is that of the so-called dual
numbers [7]. Dual number have applications in physics [43], robotics [20] and
automatic differentiation algorithms [44]. In the latter context, a dual number
D x dx represents a number x together with its derivative dx .

198 B. van den Berg and T. Schrijvers

data Dual d = D d d
instance Semiring d ⇒ Semiring (Dual d) where

zero = D zero zero
one = D one zero
D x dx ⊕D y dy = D (x ⊕ y) (dx ⊕ dy)
D x dx ⊗D y dy = D (x ⊗ y) (x ⊗ dy ⊕ y ⊗ dx)

This can be used to perform gradient-descent style learning of the facts’ proba-
bilities based on the observed probability of a query.

Tropical Semiring. The tropical max-semiring selects the maximum among dis-
juncts and adds conjuncts. It is an example of a commutative semirings without
a notion of an additive inverse.

data Max n = Max n
instance (Num n,Ord n) ⇒ Semiring (Max n) where

zero = Max 0 -- for positive numbers only
one = Max 0
Max n ⊕Max m = Max (max n m)
Max n ⊗Max m = Max (n + m)

With this semiring, we can for example find the highest cost if we interpret
positive facts as carrying a cost and negative facts as the absence of that cost.

4.3 Optimized d-DNNF Representations

The above way of interpreting a query in terms of the possible worlds is correct
but highly expensive due to its O(2n) time complexity (with n the number of
facts). Fortunately, the possible worlds representation is not the only d-DNNF.
For example, qd-DNNF (Sect. 4.1) represents a more compact d-DNNF query:

∧
∨

∧
tails red2

heads
red1

Several compilers exist that use heuristics to efficiently compute compact d-
DNNFs for a query, e.g., c2d [11], dsharp [27] and d4 [24]. All three compil-
ers improve efficiency with orders of magnitude compared to state-of-the-art
model counters, with d4 the most efficient one, substantially saving computa-
tional power in terms of time and size over the other two [24]. We have created
an alternative for val that interprets a query into a commutative semiring by
way of the d4 compiler.

vald4 :: (Fact f ,Semiring r ,Eq a) ⇒ (Lit f → r) → Q f a → r

This function turns the query first into conjunctive normal form (CNF), which
is the expected input of d4, and afterwards interprets d4’s output format using
the commutative semiring operations.

A Functional Account of Probabilistic Programming with Possible Worlds 199

For example, win is transformed and interpreted, yielding the same result as
ProbLog does.

> vald4 gmbProb win
0.772

Note that, while the boolean algebra interpretation is naturally compositional,
that is not the case with the commutative semiring interpretation. Indeed, the
normalization procedure is a whole program transformation. This means that
there is no room for variables as non-terminals with arbitrary interpretations.
Therefore, we consider variables Var to denote the terminal true or one in case
of a positive occurrence and false or zero in case of a negative occurrence.

In summary, although the interpretation of a query in terms of a commutative
semiring is more expressive and efficient than that in terms of a boolean algebra,
it also requires an additional normalization step, which forces us to use a trivial
implementation for interpreting variables. Ongoing research, especially on so-
called lifted inference techniques [4], develops additional optimization heuristics
to exploit common structure in subqueries.

5 Circular Queries

An advanced but key feature of probabilistic logic programming are circular
queries, which is often illustrated by the social smokers problem. This problem
models a group of people that may or may not smoke. If a person p smokes that
may be either due to stress or due to being influenced by another smoker q . This
can be modelled by the query:

smokes p = stress p ∨(exists person (λq → influences q p ∧ smokes q))

where auxiliary definitions are given in Fig. 3. The problem with this definition
is that it is circular. Alice may smoke because she is influenced by Bob who may
smoke because he is influenced by Alice who may smoke because. . .

5.1 Least Fixed-Points

Fortunately, cyclic queries readily have a least fixed-point interpretation. This is
a consequence of the Kleene fixed-point theorem: Monotone functions φ over a
directed-complete partial order 〈L,�〉 with a least element ⊥ have a least fixed
point that is the supremum of the ascending Kleene chain

⊥ � φ(⊥) � φ(φ(⊥)) � . . .

Finite Boolean algebras are indeed a directed-complete partial orders, where
a � b is defined as a ∧ b = a. Also, since the queries do not involve circularity
through negation, they can indeed be expressed as fixed-points of monotone
functions. For instance, we can see smokes as the fixed point of the monotone
function smokesF over a finite pointwise boolean algebra.

200 B. van den Berg and T. Schrijvers

People:

data Person = Alice | Bob
person = [Alice,Bob]

Auxiliary Functions:

exists l f = foldr Or Fail (map f l)

stress p = lit (Pos (Stress p))

influences p1 p2 = lit (Pos (Influences p1 p2))

Facts:

data FSS = Stress Person | Influences Person Person

instance Fact FSS where
facts = [Stress p | p ← person] ++ [Influences p1 p2 | p1 ← person, p2 ← person]

Fig. 3. Auxiliary definitions for the social smokers problem.

smokesF smk p = stress p ∨(exists person (λq → influences q p ∧ smk q))

With a “top-down” tabulation-based strategy, the fixed-point for pointwise
boolean algebras can be obtained. We proceed with an approach based on that
of Vandenbroucke et al. [41]. For this purpose, we extend the query type Q with
two additional type parameters i and o and a constructor Rec. All former uses
of Q can have i = Void and o = Void .

data Q i o f a where
...

Rec :: i → (o → Q i o f a) → Q i o f a

rec :: i → Q i o f o
rec i = Rec i Var

The Rec constructor is used by the fixed-point combinator fix to mark the recur-
sive function invocations. The i type is the parameter type of the recursive
function, e.g., i = Person in the social smokers example. Similarly, o is the
output type of the recursion function, e.g., o = () in the social smokers example.

Our approach simplifies that of Vandenbroucke et al. [41], which detects
cycles in the call graph and then iteratively computes ascending chains based on
those cycles. Because, following the logician Charles Sanders Peirce [12], mono-
tone functions over a boolean algebra reach a least fixed-point in one step (i.e.,
φ(φ(⊥)) = φ(⊥)), we do not need to iterate and inspect intermediate results
to see whether a fixed-point has been reached. Instead, we know that one step
is sufficient and thus can perform it syntactically at the level of queries, rather
than semantically in a boolean algebra domain. Having the result as a syntactic
query is convenient for the subsequent efficient interpretation of Sect. 4.3.

fix :: Ord i ⇒ ((i → Q i o f o) → (i → Q i o f o)) → (i → Q Void Void f o)
fix f x = go (f rec x) (Set .singleton x) where

go (Var x) h = Var x
go Fail h = Fail
go (Or p q) h = Or (go p h) (go q h)
go (Lit l p) h = Lit l (go p h)
go (Rec i p) h | Set .member i h = Fail

| otherwise = go (f rec i >>= p) (Set .insert i h)

A Functional Account of Probabilistic Programming with Possible Worlds 201

The fixed-point strategy traverses the query structure and copies all query con-
structors except for Rec. When a Rec is encountered, the recursive call is unfolded
and its parameter added to the history. Yet, in case the Rec’s parameter appears
in the history and thus closes a cycle, the bottom element Fail is returned instead.
With this fixed-point operator, we have that smokes = fix smokesF . Using the
following probabilities of the facts:

smkProb :: Lit FSS → Prob
smkProb (Pos (Stress p)) = 0.3
smkProb (Pos (Influences x y)) = 0.2
smkProb (Neg f) = 1 − smkProb (Pos f)

We can now compute the probability that Alice smokes.

> vald4 smkProb (smokes Alice)
0.34200004

6 Related Work

There is much literature that studies either logic programming or probabilistic
programming from the point of view of functional programming.

Many works focus on functional models of logic programming. Most focus on
monads to model the backtracking search aspects of Prolog [21,23,29,38] and
some on logical variables [6,36]. Moreover, there is a range of languages that
combine functional and logic programming, such as Curry [13], DataFun [1],
Mercury [37], miniKanren [5], and Toy [26]. Probabilistic programming has been
based on the monadic structure of probability distributions [14,18,33]. Again,
there are many languages that combine elements of both functional and prob-
abilistic programming, such as Anglican [25], Church [19], and Hakaru [28]. As
far as we know, there is very little work that combines all three and studies, e.g.,
functional models of probabilistic logic programming. Gibbons [17] studies the
possible interactions between nondeterministic and probabilistic choice. More
closely related is the applicative-functor model of ProbLog of Vandenbroucke
and Schrijvers [40] which corresponds to our naive exponential enumeration of
possible worlds. Kimmig et al. [22] have argued that weighted model counting
should be generalized to arbitrary commutative semirings, and Belle and De
Raedt [2] have argued that commutative semirings have many artificial intelli-
gence applications.

7 Conclusion

In summary, this paper has presented a functional account of probabilistic logic
programming in terms of possible worlds. We believe that this account is of inter-
est, not only because it makes functional programmers aware of this alternative
flavor of probabilistic programming, but also because it involves many typical

202 B. van den Berg and T. Schrijvers

functional programming concepts: We represent queries using a term monad and
interpret these queries with a structural recursion scheme and boolean algebras.
Computing the probability of a query requires normalisation into deterministic,
decomposable negation normal form before interpretation in terms of a commu-
tative semiring. While the possible world semantics are in this normal form, they
take exponential time to compute. Heuristic compilers, such as d4, are more effi-
cient in practice. To support circular queries, a key feature of probabilistic logic
programming languages, we employ a custom fixed-point combinator . We hope
that this bridging development enables further cross-fertilization.

References

1. Arntzenius, M., Krishnaswami, N.R.: Datafun: a functional datalog. In: Garrigue,
J., Keller, G., Sumii, E. (eds.) Proceedings of the 21st ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2016, Nara, Japan, 18–
22 September 2016, pp. 214–227. ACM (2016). https://doi.org/10.1145/2951913.
2951948

2. Belle, V., Raedt, L.D.: Semiring programming: a framework for search, inference
and learning. CoRR abs/1609.06954 (2016). http://arxiv.org/abs/1609.06954

3. Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra. Taylor & Francis (1997)
4. Van den Broeck, G., Kersting, K., Natarajan, S., Poole, D.: An Introduction to

Lifted Probabilistic Inference. MIT Press, Cambridge (2021)
5. Byrd, W.E.: Relational programming in miniKanren: techniques, applications, and

implementations. Ph.D. thesis, Indiana University (2009)
6. Claessen, K., Ljunglöf, P.: Typed logical variables in haskell. Electron. Notes Theor.

Comput. Sci. 41(1), 37 (2000). https://doi.org/10.1016/S1571-0661(05)80544-4
7. Clifford: Preliminary Sketch of Biquaternions. Proc. London Math. Soc. s1-4(1),

381–395 (1871). https://doi.org/10.1112/plms/s1-4.1.381
8. Dantsin, E.: Probabilistic logic programs and their semantics. In: Voronkov, A. (ed.)

RCLP -1990. LNCS, vol. 592, pp. 152–164. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55460-2 11

9. Darwiche, A.: On the tractable counting of theory models and its application to
belief revision and truth maintenance. CoRR cs.AI/0003044 (2000). https://arxiv.
org/abs/cs/0003044

10. Darwiche, A.: A compiler for deterministic, decomposable negation normal form. In:
Eighteenth National Conference on Artificial Intelligence, pp. 627–634. American
Association for Artificial Intelligence, USA (2002)

11. Darwiche, A.: New advances in compiling CNF to decomposable negation normal
form. In: Proceedings of the 16th European Conference on Artificial Intelligence,
ECAI 2004, pp. 318–322. IOS Press, NLD (2004)

12. Dau, F.: Some Notes on proofs with alpha graphs. In: Schärfe, H., Hitzler, P.,
Øhrstrøm, P. (eds.) ICCS-ConceptStruct 2006. LNCS (LNAI), vol. 4068, pp. 172–
188. Springer, Heidelberg (2006). https://doi.org/10.1007/11787181 13

13. Dylus, S., Christiansen, J., Teegen, F.: Implementing a library for probabilistic pro-
gramming using non-strict non-determinism. Theory Pract. Logic Program. 20(1),
147–175 (2020). https://doi.org/10.1017/S1471068419000085

14. Erwig, M., Kollmansberger, S.: Functional pearls: probabilistic functional program-
ming in haskell. J. Funct. Program. 16(1), 21–34 (2006). https://doi.org/10.1017/
S0956796805005721

https://doi.org/10.1145/2951913.2951948
https://doi.org/10.1145/2951913.2951948
http://arxiv.org/abs/1609.06954
https://doi.org/10.1016/S1571-0661(05)80544-4
https://doi.org/10.1112/plms/s1-4.1.381
https://doi.org/10.1007/3-540-55460-2_11
https://doi.org/10.1007/3-540-55460-2_11
https://arxiv.org/abs/cs/0003044
https://arxiv.org/abs/cs/0003044
https://doi.org/10.1007/11787181_13
https://doi.org/10.1017/S1471068419000085
https://doi.org/10.1017/S0956796805005721
https://doi.org/10.1017/S0956796805005721

A Functional Account of Probabilistic Programming with Possible Worlds 203

15. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted boolean formulas. Theory Pract. Logic Program. 15(3), 358–401 (2015)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming, Proceedings of the
Fifth International Conference and Symposium, Seattle, Washington, USA, 15–19
August 1988, vol. 2, pp. 1070–1080. MIT Press (1988)

17. Gibbons, J.: Unifying theories of programming with monads. In: Wolff, B., Gaudel,
M.-C., Feliachi, A. (eds.) UTP 2012. LNCS, vol. 7681, pp. 23–67. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-35705-3 2

18. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0092872

19. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI 2008, pp. 220–229. AUAI
Press, Arlington (2008)

20. Gu, Y.L., Luh, J.: Dual-number transformation and its applications to robotics.
IEEE J. Robot. Autom. 3(6), 615–623 (1987). https://doi.org/10.1109/JRA.1987.
1087138

21. Hinze, R.: Prological features in a functional setting axioms and implementation.
In: Sato, M., Toyama, Y. (eds.) Third Fuji International Symposium on Functional
and Logic Programming, FLOPS 1998, Kyoto, Japan, 2–4 April 1998, pp. 98–122.
World Scientific, Singapore (1998)

22. Kimmig, A., Van den Broeck, G., De Raedt, L.: An algebraic prolog for reasoning
about possible worlds, vol. 1, pp. 209–214. AAAI Press, Burgard (2011). http://
www.informatik.uni-trier.de/∼ley/db/conf/aaai/aaai2011.html

23. Kiselyov, O., Shan, C., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and
terminating monad transformers: (functional pearl). In: Danvy, O., Pierce, B.C.
(eds.) Proceedings of the 10th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2005, Tallinn, Estonia, 26–28 September 2005, pp. 192–
203. ACM (2005). https://doi.org/10.1145/1086365.1086390

24. Lagniez, J.M., Marquis, P.: An improved decision-DNNF compiler. In: Proceedings
of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017,
pp. 667–673. AAAI Press (2017)

25. Le, T.A., Baydin, A.G., Wood, F.: Inference compilation and universal probabilis-
tic programming. In: 20th International Conference on Artificial Intelligence and
Statistics, 20–22 April 2017, Fort Lauderdale, FL, USA (2017)

26. López Fraguas, F.J., Sánchez Hernández, J.: TOY: a multiparadigm declarative
system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp.
244–247. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48685-2 19

27. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: fast d-DNNF compi-
lation with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI),
vol. 7310, pp. 356–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30353-1 36

28. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic infer-
ence by program transformation in Hakaru (system description). In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29604-3 5

29. Piróg, M., Staton, S.: Backtracking with cut via a distributive law and left-
zero monoids. J. Funct. Program. 27, e17 (2017). https://doi.org/10.1017/
S0956796817000077

https://doi.org/10.1007/978-3-642-35705-3_2
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1109/JRA.1987.1087138
https://doi.org/10.1109/JRA.1987.1087138
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2011.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2011.html
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1007/3-540-48685-2_19
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1017/S0956796817000077
https://doi.org/10.1017/S0956796817000077

204 B. van den Berg and T. Schrijvers

30. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP
2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00590-9 7

31. Poole, D.: Logic programming, abduction and probability: a top-down anytime
algorithm for estimating prior and posterior probabilities. In: Selected Papers of
International Conference on Fifth Generation Computer Systems, vol. 92, pp. 377–
400. Springer, Heidelberg (1993)

32. Poole, D.: The independent choice logic for modelling multiple agents under
uncertainty. Artif. Intell. 94(1–2), 7–56 (1997). https://doi.org/10.1016/S0004-
3702(97)00027-1

33. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Launchbury, J., Mitchell, J.C. (eds.) Conference Record of POPL
2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Portland, OR, USA, 16–18 January 2002, pp. 154–165. ACM (2002).
https://doi.org/10.1145/503272.503288

34. Riguzzi, F., Swift, T.: The PITA system: tabling and answer subsumption for
reasoning under uncertainty. Theory Pract. Log. Program. 11(4–5), 433–449 (2011).
https://doi.org/10.1017/S147106841100010X

35. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) Logic Programming, Proceedings of the Twelfth Inter-
national Conference on Logic Programming, Tokyo, Japan, 13–16 June 1995, pp.
715–729. MIT Press (1995)

36. Seres, S., Spivey, J.M., Hoare, C.A.R.: Algebra of logic programming. In: Schreye,
D.D. (ed.) Logic Programming: The 1999 International Conference, Las Cruces,
New Mexico, USA, 29 November–4 December 1999, pp. 184–199. MIT Press (1999)

37. Somogyi, Z., Henderson, F.J., Conway, T.C.: Mercury, an efficient purely declar-
ative logic programming language. Austral. Comput. Sci. Commun. 17, 499–512
(1995)

38. Spivey, J.M.: Algebras for combinatorial search. J. Funct. Program. 19(3–4), 469–
487 (2009). https://doi.org/10.1017/S0956796809007321

39. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 619–649 (1991). https://doi.org/10.1145/116825.
116838

40. Vandenbroucke, A., Schrijvers, T.: ProbLog and applicative probabilistic program-
ming, January 2017. https://lirias.kuleuven.be/1656686. Workshop on Probabilis-
tic Programming Semantics (PPS), Paris, France, 17 January 2017

41. Vandenbroucke, A., Schrijvers, T., Piessens, F.: Fixing non-determinism. In:
Lämmel, R. (ed.) Proceedings of the 27th Symposium on the Implementation
and Application of Functional Programming Languages, IFL 2015, Koblenz, Ger-
many, 14–16 September 2015, pp. 5:1–5:12. ACM (2015). https://doi.org/10.1145/
2897336.2897342

42. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated dis-
junctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–
445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0 30

43. Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-D location parameters using
dual number quaternions. CVGIP Image Underst. 54(3), 358–367 (1991). https://
doi.org/10.1016/1049-9660(91)90036-O

44. Wengert, R.E.: A simple automatic derivative evaluation program. Commun. ACM
7(8), 463–464 (1964). https://doi.org/10.1145/355586.364791

45. Wu, N., Schrijvers, T., Hinze, R.: Effect handlers in scope. In: Proceedings of the
2014 ACM SIGPLAN Symposium on Haskell, pp. 1–12 (2014)

https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1016/S0004-3702(97)00027-1
https://doi.org/10.1016/S0004-3702(97)00027-1
https://doi.org/10.1145/503272.503288
https://doi.org/10.1017/S147106841100010X
https://doi.org/10.1017/S0956796809007321
https://doi.org/10.1145/116825.116838
https://doi.org/10.1145/116825.116838
https://lirias.kuleuven.be/1656686
https://doi.org/10.1145/2897336.2897342
https://doi.org/10.1145/2897336.2897342
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1016/1049-9660(91)90036-O
https://doi.org/10.1016/1049-9660(91)90036-O
https://doi.org/10.1145/355586.364791

Explanations as Programs in Probabilistic
Logic Programming

Germán Vidal(B)

VRAIN, Universitat Politècnica de València, Valencia, Spain

gvidal@dsic.upv.es

Abstract. The generation of comprehensible explanations is an essen-
tial feature of modern artificial intelligence systems. In this work, we
consider probabilistic logic programming, an extension of logic program-
ming which can be useful to model domains with relational structure
and uncertainty. Essentially, a program specifies a probability distribu-
tion over possible worlds (i.e., sets of facts). The notion of explanation
is typically associated with that of a world, so that one often looks for
the most probable world as well as for the worlds where the query is
true. Unfortunately, such explanations exhibit no causal structure. In
particular, the chain of inferences required for a specific prediction (rep-
resented by a query) is not shown. In this paper, we propose a novel
approach where explanations are represented as programs that are gen-
erated from a given query by a number of unfolding-like transformations.
Here, the chain of inferences that proves a given query is made explicit.
Furthermore, the generated explanations are minimal (i.e., contain no
irrelevant information) and can be parameterized w.r.t. a specification
of visible predicates, so that the user may hide uninteresting details from
explanations.

1 Introduction

Artificial intelligence (AI) and, especially, machine learning systems are becom-
ing ubiquitous in many areas, like medical diagnosis [9], intelligent transporta-
tion [33], or different types of recommendation systems [26], to name a few.
While prediction errors are sometimes acceptable, there are areas where blindly
following the assessment of an AI system is not desirable (e.g., medical diag-
nosis). In these cases, generating explanations that are comprehensible by non-
expert users would allow them to verify the reliability of the prediction as well
as to improve the system when the prediction is not correct. Furthermore, the
last regulation on data protection in the European Union [10] has introduced

This work has been partially supported by the EU (FEDER) and the Spanish MCI
under grant PID2019-104735RB-C41/ AEI/10.13039/501100011033 (SAFER), by the
Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust), and by TAILOR,
a project funded by EU Horizon 2020 research and innovation programme under GA
No. 952215.

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 205–223, 2022.
https://doi.org/10.1007/978-3-030-99461-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_12

206 G. Vidal

a “right to explanation” for algorithmic decisions. All in all, the generation of
comprehensible explanations is an essential feature of modern AI systems.

Currently, there exist many approaches to explainable AI (XAI) [3], which
greatly differ depending on the considered application. In particular, so-called
interpretable machine learning [18] puts the emphasis on the interpretability of
the models and their predictions. In this work, we consider probabilistic logic
programming (PLP) [24], which can be useful to model domains with relational
structure and uncertainty. PLP has been used for both inference—e.g., comput-
ing the marginal probability of a set of random variables given some evidence—
and learning [11,30]. Among the different approaches to PLP, we consider those
that are based on Sato’s distribution semantics [29]. This is the case of several
proposals that combine logic programming and probability, like Logic Programs
with Annotated Disjunctions (LPADs) [32], ProbLog [25], Probabilistic Horn
Abduction (PHA) [22], Independent Choice Logic (ICL) [23], and PRISM [30].

In particular, we consider the ProbLog approach for its simplicity, but we
note that the expressive power of all languages mentioned above is the same
(see, e.g., [27, Chapter 2]). A ProbLog program extends a logic program with
a set of probabilistic facts. A probabilistic fact has the form p :: a and denotes
a random variable which is true with probability p and false with probability
1− p. Here, a program defines a probability distribution over worlds, i.e., sets of
(possibly negated) atoms corresponding to the probabilistic facts of the program.
Essentially, the probability of a world is equal to the product of the probabili-
ties of its true and false facts, while the probability of a query is computed by
marginalization, i.e., by summing up the probabilities of the worlds where the
query is true.

The notion of explanation of a query is often associated with that of a world.
For instance, the MPE task [31], which stands for Most Probable Explanation,
consists in finding the world with the highest probability. However, a world
exhibits no causal structure and, thus, it is up to the user to understand why
the given collection of facts actually allow one to infer a particular prediction
(it might even be counterintuitive; see Example 4). Moreover, a world typically
contains facts whose truth value is irrelevant for the query, which might be an
additional source of confusion. Alternatively, one could consider a proof tree of
a query as an explanation. While the chain of inferences and the links to the
query are now explicit, proof trees are typically very large and can be complex
to understand by non-experts.

In this paper, we propose a novel approach where explanations are repre-
sented as programs that are generated from a given query by a number of
unfolding-like transformations. In this way, we have the same advantages of using
proof trees as explanations (the chain of inferences and the link to the query are
explicit), but they are often easier to understand by non-experts because of the
following reasons: first, an explanation is associated with a single proof, so it
is conceptually simpler than a proof tree (that might comprise several proofs);
second, facts and rules have a more intuitive reading than a proof tree (and could
easily be represented using natural language); finally, the generated explanations

Explanations as Programs in Probabilistic Logic Programming 207

can be parameterized w.r.t. a set of visible predicates. If no predicate is visible,
our explanations are not very different from a (partial) world, since they just
contain the probabilistic facts that make a query true in a particular proof. On
the other hand, if all predicates are visible, the computation of an explanation
essentially boils down to computing the (relevant) grounding of a program for a
given proof of the query. It is thus up to the user to determine the appropriate
level of detail in the explanation so that only the most interesting relations are
shown.

In this work, we present a constructive algorithm for generating the explana-
tions of a query such that the following essential properties hold: i) the probabil-
ity of each proof is preserved in the corresponding explanation, ii) explanations
do not contain facts that are irrelevant for the given query, and iii) the (marginal)
probability of the query in the original program is equivalent to that in the union
of the computed explanations. In order to check the viability of the approach, we
have developed a proof-of-concept implementation, xgen,1 that takes a ProbLog
program and a query and produces a set of explanations for this query, together
with their associated probabilities.

2 Probabilistic Logic Programming (PLP)

In this section, we briefly introduce PLP following the ProbLog approach (see,
e.g., [11,14,24,25,27] for a detailed account).

Let us first recall some basic terminology from logic programming [1,15]. We
consider a first-order language with a fixed vocabulary of predicate symbols,
constants, and variables denoted by Π, C and V, respectively.2 An atom has the
form f(t1, . . . , tn) with f/n ∈ Π and ti ∈ (C ∪ V) for i = 1, . . . , n. A definite
clause has the form h ← B, where h (the head) is an atom and B (the body) is a
conjunction of atoms, typically denoted by a sequence a1, . . . , an, n ≥ 0; if n = 0,
the clause is called a fact and denoted by h; otherwise (n > 0), it is called a rule.
A query is a clause with no head, and is denoted by a sequence of atoms. var(s)
denotes the set of variables in the syntactic object s, where s can be an atom,
a query or a clause. A syntactic object s is ground if var(s) = ∅. Substitutions
and their operations are defined as usual; the application of a substitution θ to a
syntactic object s is denoted by juxtaposition, i.e., we write sθ rather than θ(s).

In the following, we consider that Π = Πp � Πd, where Πp are the prob-
abilistic predicates and Πd are the derived predicates, which are disjoint. An
atom f(t1, . . . , tn) is called a probabilistic atom if f ∈ Πp and a derived atom if
f ∈ Πd. A probabilistic logic program (or just program when no confusion can
arise) P = Pp � Pd consists of a set of ground probabilistic facts Pp and a set of
definite clauses Pd. A probabilistic fact has the form p :: a, where a is a ground
atom and p ∈ [0, 1] is a probability such that a is true with probability p and
false with probability 1 − p. These ground facts represent the Boolean random
variables of the model, which we assume mutually independent.
1 Publicly available from https://github.com/mistupv/xgen.
2 We do not consider function symbols in this work.

https://github.com/mistupv/xgen

208 G. Vidal

In this paper, we also allow nonground probabilistic facts, that are replaced
by their finite groundings using the Herbrand universe, i.e., using the constants
from C. More generally, we consider intensional probabilistic facts defined by
(probabilistic) clauses of the form p :: f(x1, . . . , xn) ← B, where B only contains
derived atoms. Such a rule represents the set of ground probabilistic facts p ::
f(x1, . . . , xn)θ such that Bθ is true in the underlying model.

Example 1. Consider the following program (a variation of an example in [11]):3

0.8::stress(X) :- person(X). person(ann).
0.3::influences(bob,carl). person(bob).
smokes(X) :- stress(X).
smokes(X) :- influences(Y,X),smokes(Y).

Here, we have two probabilistic predicates, stress/1 and influences/2, and a
logic program that defines the relation smokes/1. Basically, the program states
that a person (either ann or bob) is stressed with probability 0.8, bob influences
carl with probability 0.3, and that a person smokes either if (s)he is stressed or
is influenced by someone who smokes.

Observe that the first probabilistic clause is equivalent to the following set
of ground probabilistic facts: 0.8::stress(ann), 0.8::stress(bob).

We note that probabilistic clauses can always be rewritten to a combina-
tion of probabilistic facts and non-probabilistic clauses [11]. For instance, the
probabilistic clause in the example above could be replaced by

0.8::p(X). stress(X) :- person(X),p(X).

In this work, we assume that the Herbrand universe is finite (and coincides with
the domain C of constants) and, thus, the set of ground instances of each prob-
abilistic fact is finite.4 Given a program P, we let G(P) denote the set of its
ground probabilistic facts (after grounding nonground probabilistic and inten-
sional facts, if any). An atomic choice determines whether a ground probabilistic
fact is chosen or not. A total choice makes a selection for all ground probabilis-
tic facts; it is typically represented as a set of ground probabilistic atoms (the
ones that are true). Note that, given n ground probabilistic atoms, we have 2n

possible total choices.
A program P then defines a probability distribution over the total choices.

Moreover, since the random variables associated with the ground probabilistic
facts are mutually independent, the probability of a total choice L ⊆ G(P) can
be obtained from the product of the probabilities of its atomic choices:

P (L) =
∏

aθ∈L

π(a) ·
∏

aθ∈G(P)\L

1 − π(a)

3 We follow Prolog’s notation in examples: variables start with an uppercase letter
and the implication “←” is denoted by “:-”.

4 See Sato’s seminal paper [29] for the distribution semantics in the infinite case.

Explanations as Programs in Probabilistic Logic Programming 209

P (wi)
w1 {stress(ann),stress(bob),influences(bob, carl)} 0.8 · 0.8 · 0.3 = 0.192
w2 {stress(ann),stress(bob) } 0.8 · 0.8 · 0.7 = 0.448
w3 {stress(ann), influences(bob, carl)} 0.8 · 0.2 · 0.3 = 0.048
w4 {stress(ann) } 0.8 · 0.2 · 0.7 = 0.112
w5 { stress(bob),influences(bob, carl)} 0.2 · 0.8 · 0.3 = 0.048
w6 { stress(bob) } 0.2 · 0.8 · 0.7 = 0.112
w7 { influences(bob, carl)} 0.2 · 0.2 · 0.3 = 0.012
w8 { } 0.2 · 0.2 · 0.7 = 0.028

Fig. 1. Possible worlds for Example 1

where π(a) denotes the probability of the fact, i.e., π(a) = p if p :: a ∈ Pp. A
possible world is then defined as the least Herbrand model of L ∪ Pd, which is
unique. Typically, we denote a world by a total choice, omitting the (uniquely
determined) truth values for derived atoms. By definition, the sum of the prob-
abilities of all possible worlds is equal to 1.

In the following, we only consider atomic queries. Nevertheless, note that
an arbitrary query B could be encoded using an additional clause of the form
q ← B. The probability of a query q in a program P, called the success probability
of q in P, in symbols P (q), is defined as the marginal of P (L) w.r.t. query q:

P (q) =
∑

L⊆G(P)

P (q|L) · P (L)

where P (q|L) = 1 if there exists a substitution θ such that L ∪ Pd |= qθ and
P (q|L) = 0 otherwise. Intuitively speaking, the success probability of a query is
the sum of the probabilities of all the worlds where this query is provable.5

Example 2. Consider again the program in Example 1. Here, we have eight pos-
sible worlds, which are shown in Fig. 1. Observe that the sum of the probabilities
of all worlds is 1. Here, the query smokes(carl) is true in worlds w1 and w5.
Thus, its probability is 0.192 + 0.048 = 0.24.

Since the number of worlds is finite, one could compute the success probability of
a query by enumerating all worlds and, then, checking whether the query is true
in each of them. Unfortunately, this approach is generally unfeasible in practice
due to the large number of possible worlds. Instead, a combination of inference
and a conversion to a Boolean formula is often used (see, e.g., [11]).

3 Explanations as Programs

In this section, we focus on the notion of explanation in the contect of PLP.
Here, we advocate that a good explanation should have the following properties:
5 Equivalently, has a successful SLD derivation; see Sect. 3.1 for a precise definition

of SLD (Selective Linear Definite clause) resolution.

210 G. Vidal

– Causal structure. An explanation should include the chain of inferences that
supports a given prediction. It is not sufficient to just show a collection of
facts. It should answer why a given query is true, so that the user can follow
the reasoning from the query back to the considered probabilistic facts.

– Minimality. An explanation should not include irrelevant information. In par-
ticular, those facts whose truth value is indifferent for a given query should
not be part of the explanation.

– Understandable. The explanation should be easy to follow by non-experts in
PLP. Moreover, it is also desirable for explanations to be parametric w.r.t.
the information that is considered relevant by the user.

In the following, we briefly review some possible notions of an explanation and,
then, introduce our new proposal.

3.1 Explanations in PLP

Typically, explanations have been associated with worlds. For instance, the MPE
(Most Probable Explanation) task [31] consists in finding the world with the
highest probability given some evidence (in our context, given that some query
is true). However, a world does not show the chain of inferences of a given query
and, moreover, it is not minimal by definition, since it usually includes a (possibly
large) number of probabilistic facts whose truth value is irrelevant for the query.

Alternatively, one can consider a probabilistic logic program itself as an expla-
nation. Here, the causal structure is explicit (given by the program clauses).
Moreover, derived rules are easy to understand or can easily be explained using
natural language. However, the program explains the complete model but it is
not so useful to explain a particular query: the chain of inferences is not obvi-
ous and, moreover, programs are not usually minimal since they often contain a
(possibly large) number of facts and rules which are not relevant for a particular
query.

Another alternative consists in using the proof of a query as an explanation.
Following [14], one can associate a proof of a query with a (minimal) partial
world w′ such that for all worlds w ⊇ w′, the query is true in w. In this case,
one can easily ensure minimality (e.g., by using SLD resolution to determine the
ground probabilistic atoms that are needed to prove the query). However, even
if the partial world contains no irrelevant facts, it is still not useful to determine
the chain of inferences behind a given query. In order to avoid this shortcoming,
one could represent the proofs of a query by means of an SLD tree. Let us further
explore this possibility.

First, we recall some background from logic programming [15]. Given a logic
program P, we say that B1, a, B2 �θ (B1, B,B2)θ is an SLD resolution step if
h ← B is a renamed apart clause (i.e., with fresh variables) of program P, in
symbols, h ← B << P, and θ = mgu(a, h) is the most general unifier of atoms
a and h. An SLD derivation is a (finite or infinite) sequence of SLD resolution
steps. As is common, �∗ denotes the reflexive and transitive closure of �. In
particular, we denote by A0 �∗

θ An a derivation A0 �θ1 A1 �θ2 . . . �θn
An,

Explanations as Programs in Probabilistic Logic Programming 211

where θ = θ1 . . . θn if n > 0 (and θ = id otherwise). An SLD derivation is called
successful if it ends with the query true (an empty conjunction), and it is called
failed if there is an atom that does not unify with the head of any clause. Given a
successful SLD derivation A �∗

θ true, the associated computed answer, θ |̀var(A),
is the restriction of θ to the variables of the initial query A. SLD derivations are
represented by a (possibly infinite) finitely branching tree called SLD tree.

All the previous notions (SLD step, derivation and tree, successful derivation,
computed answer, etc.) can be naturally extended to deal with probabilistic logic
programs by simply ignoring the probabilities in probabilistic clauses.

Following [14], the probability of a single proof is the marginal over all pro-
grams where such a proof holds. Thus, it can be obtained from the product of
the probabilities of the ground probabilistic facts used in the corresponding SLD
derivation.6 In principle, one could first apply a grounding stage—where all non-
ground and intensional probabilistic facts are replaced by ground probabilistic
facts—and, then, apply the above definition. Often, only a partial grounding is
required (see, e.g., [11]). Since grounding is orthogonal to the topics of this paper,
in the following we assume that the following property holds: for each consid-
ered successful SLD derivation q �∗

θ true that uses probabilistic clauses (i.e.,
probabilistic facts and rules) p1 :: c1, . . . , pn :: cn, we have that c1θ, . . . , cnθ are
ground, i.e., it suffices if the probabilistic clauses used in the derivation become
eventually ground.

In practice, range-restrictedness is often required for ensuring that all proba-
bilistic facts become eventually ground in an SLD derivation, where a program is
range-restricted if all variables in the head of a clause also appear in some atom
of the body [28]. Moreover, one can still allow some probabilistic facts with non-
ground arguments (which are not range-restricted) as long as they are called
with a ground term in these arguments; see [4, Theorem 1]. A similar condition
is required in ProbLog, where a program containing a probabilistic fact of the
form 0.6::p(X) is only acceptable if the query bounds variable X, e.g., p(a).
However, if the query is also non-ground, e.g., p(X), then ProbLog outputs an
error: “Encountered a non-ground probabilistic clause”.7

In the following, given a successful SLD derivation D = (q �∗
θ true), we let

prob facts(D) be the set of ground probabilistic clauses used in D, i.e., cθ for
each probabilistic clause c used in D. The probability of a proof (represented by
a successful SLD derivation) can then be formalized as follows:

Definition 1 (probability of a proof). Let P be a program and D a suc-
cessful SLD derivation for some (atomic) query q in P. The probability of the
proof represented by D is obtained as follows: P (D) = Πcθ∈prob facts(D) π(c).

Let us illustrate this definition with an example:

6 Observe that each fact should only be considered once. E.g., given a successful SLD
derivation that uses the ground probabilistic fact 0.4 :: person(ann) twice, the asso-
ciated probability is 0.4 rather than 0.4 · 0.4 = 0.16.

7 The interested reader can try the online ProbLog interpreter at https://dtai.cs.
kuleuven.be/problog/editor.html.

https://dtai.cs.kuleuven.be/problog/editor.html
https://dtai.cs.kuleuven.be/problog/editor.html

212 G. Vidal

Example 3. Consider again our running example. Here, we have the following
successful SLD derivation D for the query smokes(carl):8

smokes(carl) � influences(Y, carl), smokes(Y)
�{Y/bob} smokes(bob)
� stress(bob)
� true

Here, prob facts(D) = {influence(bob, carl), stress(bob) :- person(bob)},
whose probabilities are 0.3 and 0.8, respectively. Hence, P (D) = 0.3 · 0.8 = 0.24.

One might think that the probability of a query can then be computed as the sum
of the probabilities of its successful derivations. This is not generally true though,
since the successful derivations may overlap (e.g., two successful derivations may
use some common probabilistic facts). Nevertheless, several techniques use the
SLD tree as a first stage to compute the success probability (see, e.g., [11,14]).

Computing the most likely proof of a query attracted considerable interest
in the PLP field (where it is also called Viterbi proof [14]). Here, one aims at
finding the most probable partial world that entails the query (which can be
obtained from the proof with the highest probability). Note that, although it
may seem counterintuitive, the MPE cannot always be obtained by extending
the most likely proof of a query, as the following example illustrates:

Example 4. Consider the following program from [31, Example 6]:

0.4::red. 0.9::green. win :- red, green.
0.5::blue. 0.6::yellow. win :- blue, yellow.

Here, win has two proofs: one uses the probabilistic facts red and green, with
probability 0.4 ·0.9 = 0.36, and another one uses the probabilistic facts blue and
yellow, with probability 0.5 ·0.6 = 0.30. Hence, the most likely proof is the first
one, represented by the partial world {red, green}. However, the MPE is the
world {green, blue, yellow}, with probability (1 − 0.4) · 0.9 · 0.5 · 0.6 = 0.162,
which does not extend the partial world {red, green}. This counterintuitive
result can be seen as a drawback of representing explanations as worlds.

Considering proofs or SLD trees as explanations has obvious advantages: they
allows one to follow the chain of inferences from the query back to the considered
probabilistic facts and, moreover, can be considered minimal. However, their
main weaknesses are their complexity and size, which might be a problem for
non-experts.

3.2 Explanations as Programs

In this section, we propose to represent explanations as programs. In principle,
we consider that rules and facts are easier to understand than proof trees for

8 We only show the relevant bindings of the computed mgu’s in the examples.

Explanations as Programs in Probabilistic Logic Programming 213

non-experts (and could more easily be translated into natural language).9 Each
program thus represents a minimal and more understandable explanation of a
proof. Moreover, the generation of explanations is now parametric w.r.t. a set
of visible predicates, thus hiding unnecessary information. We will then prove
that the probability of a query in an explanation is equivalent to that of the
associated proof in the original program, and that the marginal probability of a
query is preserved when considering the union of all generated explanations.

The explanations of a query are essentially obtained using unfolding, a well-
known transformation in the area of logic programming [21]. Let h ← B, a,B′

be a clause and h1 ← B1,. . . ,hn ← Bn be all the (renamed apart) clauses whose
head unifies with a. Then, unfolding replaces

h ← B, a,B′

with the clauses

(h ← B,B1, B
′)θ1, . . . , (h ← B,Bn, B′)θn

where mgu(a, hi) = θi, i = 1, . . . , n. In the following, we assume that derived
predicates are split into visible and hidden predicates. In practice, both predi-
cates will be unfolded, but we introduce a special treatment for visible atoms
so that their calls are kept in the unfolded clause, and a separate definition
is added. Intuitively speaking, visible predicates represent information that the
user considers relevant, while hidden predicates represent intermediate or less
relevant relations that the user prefers not to see in an explanation.

Given an atom a, we let visible(a) be true if a is rooted by a visible predicate
and false otherwise. The list of visible predicates should be given by the user,
though a default specification can be considered (e.g., our tool xgen assumes that
all predicates are hidden unless otherwise specified).

The generation of explanations is modeled by a number of transition rules.
Given a query q, the initial explanation has the form {query(q) ← q}, where we
assume that query is a fresh predicate that does not appear in the considered
probabilistic program. Then, we aim at unfolding this clause as much as pos-
sible. However, there are some relevant differences with the standard unfolding
transformation (as in, e.g., [21]):

– First, we do not unfold the clauses of the original program but consider a new
program (i.e., the initial explanation). This is sensible in our context since we
are only interested in those clauses of the original program that are necessary
for proving the query q.

– Second, we keep every nondeterministic unfolding separated in different expla-
nations. This is due to the fact that our explanations represent a single proof
rather than a complete proof tree.

– Finally, as mentioned above, we distinguish visible and hidden predicates.
While unfolding a hidden predicate follows a standard unfolding, the case of
visible predicates is slightly different (see Example 5 below).

9 The use of rule-based models to explain the predictions of AI systems is not new in
the field of XAI (see, e.g., [3]).

214 G. Vidal

During unfolding, we might find four different cases depending on whether
the considered clause is probabilistic or not, and whether the considered atom
is a derived or a probabilistic atom. In the following, we consider each case
separately.

Unfolding of Derived Atoms in Derived Clauses. This is the simplest case.
Here, unfolding can be performed using the following transition rules, depending
on whether the atom is visible or not:

¬visible(a) ∧ h′ ← B << P ∧ mgu(a, h′) = θ

E ∪ {h ← B1, a, B2} � (E ∪ {h ← B1, B,B2})θ
(unf1)

visible(a) ∧ h′ ← B << P ∧ mgu(a, h′) = θ ∧ ρ(aθ) = a′

E ∪ {h ← B1, a, B2} � Eθ ∪ {a′ ← Bθ, hθ ← B1θ, a′, B2θ} (unf2)

where atoms marked with an underscore (e.g., atom a′ in rule unf2 above) cannot
be selected for unfolding anymore, and ρ is a simple renaming function that
takes an atom and returns a new atom with a fresh predicate name and the
same arguments (e.g., by adding a suffix to the original predicate name in order
to keep its original meaning). For instance, ρ(smokes(carl)) = smokes1(carl).
While rule (unf1) denotes a standard unfolding rule (unf2) is a bit more involved.
The fact that an atom is visible does not mean that the atom should not be
unfolded. It only means that the call should be kept in the unfolded clause in
order to preserve the visible components of the inference chain. Indeed, observe
that the computed mgu is applied to all clauses in the current explanation. This
is sensible since all clauses in an explanation actually represent one single proof
(i.e., a successful SLD derivation).

Example 5. Consider the following logic program:

p(X) :- r(X,Y). r(X,Y) :- s(Y). s(b).

and the query p(a). A successful SLD derivation for this query is as follows:

p(a) � r(a, Y) � s(Y) �{Y �→b} true

Given the initial explanation E0 = {query(p(a)) :- p(a)}, and assuming that
no predicate is visible, the (repeated) unfolding of E0 using rule (unf1) would
eventually produce the explanation E′ = {query(p(a))}, which can be read as
“the query q(a) is true”. In contrast, if we consider that r/2 is visible, we get
the following unfolding sequence:

E0 = {query(p(a)) :- p(a)}
E1 = {query(p(a)) :- r(a, Y)} //using rule p(X) :- r(X, Y)
E2 = {r1(a, Y) :- s(Y), query(p(a)) :- r1(a, Y)} //using rule r(X, Y) :- s(Y)
E3 = {r1(a, b), query(p(a)) :- r1(a, b)} //using fact s(b)

The generated explanation (E3) is a bit more informative than E′ above: “the
query p(a) is true because r(a, b) is true”, where r/2 is renamed as r1/2 in E3.

Explanations as Programs in Probabilistic Logic Programming 215

In the example above, renaming r/2 is not really needed. However, in general,
the renaming of visible atoms is necessary to avoid confusion when unfolding
nondeterministic predicates, since we want each explanation to represent one,
and only one, proof. Consider, e.g., the following program:

p :- q,q. q :- a. q :- b. a. b.

ant the query q. Assume that predicate q/0 is visible and that the first call to q is
unfolded using clause q :- a and the second one using clause q :- b. Without
predicate renaming, we will produce an explanation including a clause of the
form query(p) :- q, q, together with the two clauses defining q. Unfortunately,
this explanation does not represent a single proof (as intended) since every call
to q could be unfolded with either clause. Renaming is then needed to ensure
that only one unfolding is possible: query(p) :- q1, q2, together with the clauses
q1 :- a and q2 :- b.

Unfolding of Derived Atoms in Probabilistic Clauses. As mentioned
before, probabilistic rules are used to provide an intensional representation of a
set of ground probabilistic facts. One could think that the unfolding a derived
atom in such a clause will always preserve the probability of a query. However,
some caution is required:

Example 6. Consider the following program:

q(a,a). q(a,b). 0.8::p(X) :- q(X,Y).

By unfolding clause 0.8::p(X) :- q(X,Y), we would get the following program:

q(a,a). q(a,b). 0.8::p(a). 0.8::p(a).

Here, P (p(a)) = 0.8 in the first program but P (p(a)) = 0.8 · 0.2 + 0.2 · 0.8 + 0.8·
0.8 = 0.96 in the second one.

The problem with the above example is related to the interpretation of inten-
sional facts. Observe that prob facts in Definition 1 returns a set. This is essential
to compute the right probability and to avoid duplicates when there are several
successful derivations computing the same ground answer.

Therefore, if we want to preserve the probability of a query, we can only
unfold derived atoms when they do not have several proofs computing the same
ground answer. Since we are assuming that derivations are finite, this prop-
erty could be dynamically checked. In the following, for simplicity, we assume
instead that programs cannot contain several occurrences of the same (ground)
probabilistic fact.10 The new unfolding rule is thus as follows:

h′ ← B << P ∧ mgu(a, h′) = θ

E ∪ {p :: h ← B1, a, B2} � (E ∪ {p :: h ← B1, B,B2})θ
(unf3)

10 Nevertheless, our tool xgen considers more general programs by requiring the speci-
fication of those predicates that may violate the above condition (see Sect. 4).

216 G. Vidal

Unfolding of a Probabilistic Atom in a Derived Clause. In this case, one
might be tempted to define the unfolding of clause h ← B1, a, B2 using clause
p :: h′ ← B and mgu(a, h) = θ as the clause p :: (h ← B1, B,B2)θ. However,
such a transformation would generally change the success probability of a query,
as illustrated in the following example:

Example 7. Consider the following program

p :- a,b. p :- b,c. 0.6::a. 0.7::b. 0.8::c.

where p holds either because a and b are true or because b and c are true. By
unfolding b in the first clause of p using the strategy above, we would get

0.7::p :- a. p :- b,c. 0.6::a. 0.7::b. 0.8::c.

However, P (p) = P (a, b) + P (b, c) − P (a, b, c) = 0.6 · 0.7 + 0.7 · 0.8 − 0.6 · 0.7·
0.8 = 0.644 in the original program but P (p) = 0.7448 in the unfolded one.
Intuitively speaking, the issue is that, by embedding the probability of b into the
unfolded clause of p, the worlds associated with the two proofs of p no longer
overlap. To be precise, the clause 0.7: :p :- a. is equivalent to p :- a,pp
with 0.7: :pp. Thus, we now have P (p) = P (a, pp) + P (b, c) − P (a, pp, b, c) =
0.6 · 0.7 + 0.7 · 0.8 − 0.6 · 0.7 · 0.7 · 0.8 = 0.7448.

Therefore, in the following, probabilistic atoms are always (implicitly) considered
as visible atoms:

p :: h′ ← B << P ∧ mgu(a, h′) = θ

E ∪ {h ← B1, a, B2} � (E ∪ {p :: h′ ← B, h ← B1, a, B2})θ
(unf4)

Note that the probabilistic atom is not renamed, in contrast to the renaming
of visible atoms in rule (unf2) above. Renaming would be required only if a
program could have several probabilistic atoms with different probabilities, thus
introducing some undesired nondeterminism (but we ruled out this possibility,
as mentioned before).

Unfolding of a Probabilistic Atom in a Probabilistic Rule. Although
this situation cannot happen in the original program (we required intensional
facts to have only derived atoms in their bodies), such a situation may show up
after a number of unfolding steps. This case is similar to unfolding a probabilistic
atom in a derived clause:

p′ :: h′ ← B << P ∧ mgu(a, h′) = θ

E ∪ {p :: h ← B1, a, B2} � (E ∪ {p′ :: h′ ← B, p :: h ← B1, a, B2})θ
(unf5)

In the following, given some initial explanation E0, we refer to a sequence E0 �
E1 � . . . � En, n ≥ 0, as an unfolding sequence. If further unfolding steps are
possible, we say that En is a partial explanation. Otherwise, if En ��, we have
two possibilities:

Explanations as Programs in Probabilistic Logic Programming 217

– If the clauses in En contain no selectable atom (i.e., all atoms in the bodies
of the clauses are either true or have the form a), then En is called a suc-
cessful explanation and we refer to E0 � . . . � En as a successful unfolding
sequence. The probability of a successful explanation, P (En), can be simply
obtained as the product of the probabilities of the probabilistic clauses in this
explanation.

– If the clauses in En contain some selectable atom which does not unify with
the head of any program clause, then En is called a failing explanation and
it is discarded from the generation process.

By construction, there exists one successful unfolding sequence associated with
each successful SLD derivation of a query.

Example 8. Consider again the program in Example 1, where we now add one
additional ground probabilistic fact: 0.1: :influences(ann,bob). Moreover,
assume that predicate smokes/1 is visible. Then, we have the following successful
explanation sequence:

E0 = { query(smokes(carl)) :- smokes(carl) }
E1 = { query(smokes(carl)) :- influences(bob, carl), smokes(bob) }
E2 = { query(smokes(carl)) :- influences(bob, carl), smokes(bob),

0.3 :: influences(bob, carl) }
E3 = { query(smokes(carl)) :- influences(bob, carl), smokes1(bob),

0.3 :: influences(bob, carl), smokes1(bob) :- stress(bob) }
E4 = { query(smokes(carl)) :- influences(bob, carl), smokes1(bob),

0.3 :: influences(bob, carl), smokes1(bob) :- stress(bob),
0.8 :: stress(bob) }

Therefore, E4 is a successful explanation for the query with probability P (E4) =
0.24, and can be read as “carl smokes because bob influences carl (with prob-
ability 0.3) and bob smokes, and bob smokes because he is stressed (with prob-
ability 0.8)”. There exists another (less likely) explanation E′ as follows:

E′ = { smokes(carl) :- influences(bob, carl), smokes1(bob),
smokes1(bob) :- influences(ann, bob), smokes2(ann),
smokes2(ann) :- stress(ann), 0.1 :: influences(ann, bob),
0.3 :: influences(bob, carl), 0.8 :: stress(ann) }

with probability P (E′) = 0.024. Note that the probability of the query in E4 ∪ E′

is the same as in the original program: 0.2448 (and different from P (E4)+P (E′)).

Correctness. Our main result states the soundness and completeness of suc-
cessful explanations:11

11 Proofs of technical results can be found in [35].

218 G. Vidal

Theorem 1. Let P be a program and q a query. Then, q has a successful SLD
derivation in P with (ground) computed answer θ iff there exists a successful
explanation E such that query(q) has one, and only one, successful SLD deriva-
tion in E computing the same answer θ and using the same probabilistic clauses.

As a consequence, we have the following property that states that the probability
of a successful derivation can be obtained from the product of the probabilistic
clauses in the associated explanation:

Corollary 1. Let P be a program and q a query. Then, there is a successful
derivation D for q in P iff there is a successful explanation E with P (D) = P (E).
Moreover, P (E) = P (query(q)) in E.

The above result is an easy consequence of Theorem 1 and the fact that E con-
tains all, and only, the probabilistic facts required for the considered derivation.
Note that the success probability of a query and that of a proof trivially coincide
in successful explanations since only one proof per explanation exists.

Finally, we consider the preservation of the success probability of a query in
the union of generated explanations:

Theorem 2. Let P be a program and q a query. Let E1, . . . , En be all an only
the successful explanations for q in P. Then, P (q) in P is equal to P (query(q))
in E1 ∪ . . . ∪ En, n ≥ 0.

4 The Explanation Generator xgen

In order to put into practice the ideas introduced so far, we have developed
a proof-of-concept implementation of the explanation generator, called xgen.
The tool has been implemented in SWI Prolog and includes four modules and
approximately one thousand lines of code. The main module implementing the
transition rules of the previous section has some 300 lines of Prolog code. This
module also implements an unfolding strategy that ensures termination in many
cases (see the discussion below). The remaining modules implement some utility
predicates as well as the parser of ProbLog files with visibility annotations. The
tool can be downloaded from https://github.com/mistupv/xgen.

The tool accepts ProbLog programs containing probabilistic facts defined
by (not necessarily ground) facts and rules (i.e., intensional facts). The user
can also (optionally) specify which predicates are visible (if any) by means of
annotations. Furthermore, xgen accepts duplicated probabilistic facts as long as
the corresponding predicates are declared unsafe using an annotation. Unsafe
atoms are dealt with similarly to visible atoms when they occur in probabilistic
clauses, but can be unfolded freely when they appear in a derived clause (this is
why a new annotation is required). An example specifying an unsafe predicate
can be found in the above URL.

As in ProbLog, a query q is added to the program as a fact of the form
query(q). Let us consider, for instance, the program from Example 8, where we

https://github.com/mistupv/xgen

Explanations as Programs in Probabilistic Logic Programming 219

$ swipl
Welcome to SWI-Prolog (version 8.2.4)
[...]
?- [xgen].
true.
?- xgen(’examples/smokes_paper.pl’).
% Explanation #1:
0.3::infl(bob,carl).
0.8::stress(bob).
smokes(bob) :- stress(bob).
smokes(carl) :- infl(bob,carl),smokes(bob).
query(smokes(carl)).
% Success probability: 0.24

% Explanation #2:
0.1::infl(ann,bob).
0.3::infl(bob,carl).
0.8::stress(ann).
smokes(bob) :- infl(ann,bob),smokes0(ann).
smokes(carl) :- infl(bob,carl),smokes(bob).

smokes0(ann) :- stress(ann).
query(smokes(carl)).
% Success probability: 0.024

% No more explanations...

% Combined explanations:
0.1::infl(ann,bob).
0.3::infl(bob,carl).
0.8::stress(ann).
0.8::stress(bob).
smokes(bob) :- stress(bob).
smokes(bob) :- infl(ann,bob),smokes0(ann).
smokes(carl) :- infl(bob,carl),smokes(bob).
smokes0(ann) :- stress(ann).
query(smokes(carl)).
% Success probability: 0.2448

Output files can be found in folder
"explanations".

Fig. 2. A typical session with xgen

now add the query as the fact query(smokes(carl)). If the program is stored in
file smokes paper.pl, a typical session proceeds as shown in Fig. 2, where the
predicate influences/2 is abbreviated to infl/2.

In order to deal with cyclic definitions, we have implemented the following
unfolding strategy in xgen: we select the leftmost atom in the body of a clause
that is not underlined nor a variant of any of its (instantiated) ancestors.12 For
instance, our tool can deal with programs containing cyclic definitions like

path(X,Y) :- edge(X,Y).
path(X,Y) :- path(Z,Y), edge(X,Z).

(together with a set of probabilistic facts defining edge/2). Similar strategies
have been used, e.g., in partial deduction [5]. Although this strategy is clearly
sound—an infinite derivation must necessarily select the same atom once and
again, since the Herbrand universe is finite—completeness does not generally
hold (a counterexample can be found in [6]). As a consequence, our unfolding
strategy could prune some derivations despite the fact that they can eventually
give rise to a successful SLD derivation. Nevertheless, completeness can still be
guaranteed for certain classes of programs, like the restricted programs of [6]
that, intuitively speaking, only allow one recursive call in the bodies of recursive
predicates (as in the definition of predicate path/2 above), so that no infinitely
growing queries can be obtained. The class of restricted programs is similar to
that of B-stratifiable logic programs [12] and its generalization, strongly regular
logic programs [34], both used in the context of partial deduction [16]. As an
alternative to using a terminating unfolding strategy as we do in xgen, one could

12 Let B1, a, B2 �θ (B1, B, B2)θ an SLD resolution step using clause h ← B and
mgu(a, h) = θ. Then, a is the direct ancestor of the atoms in B. The notion of
ancestor is the transitive closure of this relation.

220 G. Vidal

also consider an implementation of tabled SLD resolution (as in [11]) or an iter-
ative deepening strategy (as in [17]). Nevertheless, termination is not decidable
for general logic programs no matter the considered strategy.

5 Related Work

An obvious related work is the definition of fold/unfold transformations for logic
programs (see [21] and references herein). Indeed, rules (unf1) and (unf3) can be
seen as standard unfolding transformations (except for the differences already
mentioned in Sect. 3.2). In general, given a program P and an initial explana-
tion E0 = {query(q) ← q}, a standard unfolding transformation on P ∪E0 would
return P ∪ E1 ∪ . . . ∪ En, where E0 � E1, . . . , E0 � En are all the possible
unfolding steps using rules (unf1) and (unf3). Rules for visible or probabilistic
atoms, i.e., rules (unf2), (unf4) and (unf5), resemble a combination of definition
introduction and folding, followed by unfolding. Nevertheless, a distinctive fea-
ture of our approach is that the computed bindings are shared by all the clauses
in the explanation. Indeed, applying the computed mgu’s to all clauses in the
current explanation is sensible in our context since all clauses together represent
a single proof.

To the best of our knowledge, the only previous approach to defining an
unfolding transformation in the context of a probabilistic logic formalism is that
in [20]. However, this work considers stochastic logic programs (SLPs) [19], a
generalization of stochastic grammars and hidden Markov models. SLPs do not
follow the distribution semantics (as PLP does). Actually, the unfolding transfor-
mation in [20] is the standard one for logic programs [21]. Here, the probability is
always preserved by the unfolding transformation because of the way the prob-
ability of SLPs is computed (i.e., the probability of a query is obtained directly
from the successful SLD derivations of the query).

In the context of PLP with a distribution semantics, we are not aware of
any previous work focused on unfolding transformations or on the generation of
explanations other than computing the MPE [31] or Viturbi proof [14]. Actu-
ally, we find more similarities between our approach and the technique called
knowledge-based model construction [13] used to compute the grounding of the
program clauses which are relevant for a given query (see also [11]). However,
both the aim and the technique are different from ours.

Finally, let us mention some recent advances to improve the quality of expla-
nations in a closely related field: Answer Set Programming (ASP) [7]. First,
[8] presents a tool, xclingo, for generating explanations from annotated ASP
programs. Annotations are then used to construct derivation trees containing
textual explanations. Moreover, the language allows the user to select which
atoms or rules should be included in the explanations. And, second, [2] presents
so-called justifications for ASP programs with constraints, now based on a goal-
directed semantics. As in the previous work, the user can decide the level of detail
required in a justification tree, as well as add annotations to produce justifica-
tions using natural language. Obviously, our work shares the aim of these papers
regarding the generation of minimal and understandable explanations. However,

Explanations as Programs in Probabilistic Logic Programming 221

the considered language and the applied techniques are different. Nevertheless,
we find it very interesting to extend our work with some of the ideas in [2,8],
e.g., the use of annotations to produce explanations using natural language.

6 Concluding Remarks and Future Work

In this paper, we have presented a novel approach to generate explanations in
the context of PLP languages like ProbLog [25]. In particular, and in contrast to
previous approaches, we have proposed explanations to be represented as pro-
grams, one for each proof of a given query. In this way, the user can analyze each
(minimal) proof separately, understand why the considered prediction (query)
is true following the chain of inferences (an intuitive process) and using a famil-
iar control structure, that of conditional rules. We have formally proved that
explanations preserve the probability of the original proofs, and that the success
probability of a query can also be computed from the union of the generated
explanations. A proof-of-concept tool for generating explanations, xgen, has been
implemented, demonstrating the viability of the approach.

We consider several avenues for future work. On the one hand, we plan to
extend the features of the considered language in order to include negation,13

disjunctive probabilistic clauses, evidences, some Prolog built-in’s, etc. This will
surely improve the applicability of our approach and will allow us to carry on
an experimental evaluation of the technique. In particular, we plan to study
both the scalability of the approach as well as the usefulness of the generated
explanations w.r.t. some selected case studies.

Another interesting research line consists in allowing the addition of annota-
tions in program clauses so that natural language explanations can be generated
(as in [2,8]). Finally, we would also like to explore the use of our unfolding trans-
formation as a pre-processing stage for computing the probability of a query. In
particular, when no predicate is declared as visible, our transformation pro-
duces a number of explanations of the form {p1 :: a1, . . . , pn :: an, query(q) ←
a1, . . . , an}, where p1 :: a1, . . . , pn :: an are ground probabilistic facts. Appar-
ently, computing the probability of a query from the union of the generated
explanations seems much simpler than computing it for an arbitrary program.

Acknowledgements. I would like to thank the anonymous reviewers for their sug-
gestions to improve this paper.

References

1. Apt, K.R.: From Logic Programming to Prolog. Prentice Hall, Hoboken (1997)
2. Arias, J., Carro, M., Chen, Z., Gupta, G.: Justifications for goal-directed constraint

answer set programming. In: Ricca, F., et al. (eds.) Proceedings of the 36th Interna-
tional Conference on Logic Programming (ICLP Technical Communications 2020).
EPTCS, vol. 325, pp. 59–72 (2020). https://doi.org/10.4204/EPTCS.325.12

13 Considering negated ground probabilistic facts is straightforward, but dealing with
negated derived atoms is much more challenging.

https://doi.org/10.4204/EPTCS.325.12

222 G. Vidal

3. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020).
https://doi.org/10.1016/j.inffus.2019.12.012

4. Azzolini, D., Riguzzi, F.: Syntactic requirements for well-defined hybrid probabilis-
tic logic programs. In: Formisano, A., et al. (eds.) Proceedings of the 37th Inter-
national Conference on Logic Programming (Technical Communications) (ICLP
Technical Communications 2021). EPTCS, vol. 345, pp. 14–26 (2021). https://doi.
org/10.4204/EPTCS.345.12

5. Bol, R.N.: Loop checking in partial deduction. J. Log. Program. 16(1), 25–46
(1993). https://doi.org/10.1016/0743-1066(93)90022-9

6. Bol, R.N., Apt, K.R., Klop, J.W.: An analysis of loop checking mechanisms for
logic programs. Theor. Comput. Sci. 86(1), 35–79 (1991)

7. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

8. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set program-
ming. In: Ricca, F., et al. (eds.) Proceedings of the 36th International Conference
on Logic Programming (ICLP Technical Communications 2020). EPTCS, vol. 325,
pp. 124–136 (2020). https://doi.org/10.4204/EPTCS.325.19

9. Choudhury, A., Gupta, D.: A survey on medical diagnosis of diabetes using machine
learning techniques. In: Kalita, J., Balas, V.E., Borah, S., Pradhan, R. (eds.) Recent
Developments in Machine Learning and Data Analytics. AISC, vol. 740, pp. 67–78.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1280-9 6

10. EU, EEA: Regulation (EU) 2016/679 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data.
https://eur-lex.europa.eu/eli/reg/2016/679/oj

11. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted boolean formulas. Theory Pract. Log. Program. 15(3), 358–401 (2015).
https://doi.org/10.1017/S1471068414000076

12. Hruza, J., Stepánek, P.: Speedup of logic programs by binarization and partial
deduction. Theory Pract. Log. Program. 4(3), 355–380 (2004). https://doi.org/10.
1017/S147106840300190X

13. Kersting, K., Raedt, L.D.: Bayesian logic programs. CoRR cs.AI/0111058 (2001).
https://arxiv.org/abs/cs/0111058

14. Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implementa-
tion of the probabilistic logic programming language ProbLog. Theory Pract. Log.
Program. 11(2–3), 235–262 (2011). https://doi.org/10.1017/S1471068410000566

15. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-83189-8

16. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log.
Program. 11(3&4), 217–242 (1991). https://doi.org/10.1016/0743-1066(91)90027-
M

17. Mantadelis, T., Rocha, R.: Using iterative deepening for probabilistic logic infer-
ence. In: Lierler, Y., Taha, W. (eds.) PADL 2017. LNCS, vol. 10137, pp. 198–213.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51676-9 14

18. Molnar, C., Casalicchio, G., Bischl, B.: Interpretable machine learning – a brief
history, state-of-the-art and challenges. In: Koprinska, I., et al. (eds.) ECML PKDD
2020. CCIS, vol. 1323, pp. 417–431. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-65965-3 28

19. Muggleton, S.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in Induc-
tive Logic Programming, pp. 254–264. IOS Press (1996)

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.4204/EPTCS.345.12
https://doi.org/10.4204/EPTCS.345.12
https://doi.org/10.1016/0743-1066(93)90022-9
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.4204/EPTCS.325.19
https://doi.org/10.1007/978-981-13-1280-9_6
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1017/S1471068414000076
https://doi.org/10.1017/S147106840300190X
https://doi.org/10.1017/S147106840300190X
https://arxiv.org/abs/cs/0111058
https://doi.org/10.1017/S1471068410000566
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1016/0743-1066(91)90027-M
https://doi.org/10.1016/0743-1066(91)90027-M
https://doi.org/10.1007/978-3-319-51676-9_14
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28

Explanations as Programs in Probabilistic Logic Programming 223

20. Muggleton, S.: Semantics and derivation for stochastic logic programs. In: Pro-
ceedings of the UAI-2000 Workshop on Fusion of Domain Knowledge with Data
for Decision Support (2000)

21. Pettorossi, A., Proietti, M.: Transformation of logic programs: foundations and
techniques. J. Log. Program. 19(20), 261–320 (1994). https://doi.org/10.1016/
0743-1066(94)90028-0

22. Poole, D.: Probabilistic horn abduction and Bayesian networks. Artif. Intell. 64(1),
81–129 (1993). https://doi.org/10.1016/0004-3702(93)90061-F

23. Poole, D.: The independent choice logic for modelling multiple agents under
uncertainty. Artif. Intell. 94(1–2), 7–56 (1997). https://doi.org/10.1016/S0004-
3702(97)00027-1

24. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach.
Learn. 100(1), 5–47 (2015). https://doi.org/10.1007/s10994-015-5494-z

25. Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic Prolog and its
application in link discovery. In: Veloso, M.M. (ed.) Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2462–2467
(2007). http://ijcai.org/Proceedings/07/Papers/396.pdf

26. Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook.
Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6

27. Riguzzi, F.: Foundations of Probabilistic Logic Programming: Languages, Seman-
tics, Inference and Learning. River Publishers (2018)

28. Riguzzi, F., Swift, T.: Well-definedness and efficient inference for probabilistic
logic programming under the distribution semantics. Theory Pract. Log. Program.
13(2), 279–302 (2013)

29. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) Logic Programming, Proceedings of the Twelfth Inter-
national Conference on Logic Programming, Tokyo, Japan, 13–16 June 1995, pp.
715–729. MIT Press (1995)

30. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In:
Proceedings of the Fifteenth International Joint Conference on Artificial Intelli-
gence, IJCAI 1997, Nagoya, Japan, 23–29 August 1997, vol. 2, pp. 1330–1339.
Morgan Kaufmann (1997). http://ijcai.org/Proceedings/97-2/Papers/078.pdf

31. Shterionov, D., Renkens, J., Vlasselaer, J., Kimmig, A., Meert, W., Janssens, G.:
The most probable explanation for probabilistic logic programs with annotated
disjunctions. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS (LNAI), vol. 9046, pp.
139–153. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23708-4 10

32. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp.
431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-
0 30

33. Veres, M., Moussa, M.: Deep learning for intelligent transportation systems: a
survey of emerging trends. IEEE Trans. Intell. Transp. Syst. 21(8), 3152–3168
(2020). https://doi.org/10.1109/TITS.2019.2929020

34. Vidal, G.: A hybrid approach to conjunctive partial evaluation of logic programs.
In: Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20551-4 13

35. Vidal, G.: Explanations as programs in probabilistic logic programming (2022).
http://personales.upv.es/gvidal/german/flops22/tr.pdf

https://doi.org/10.1016/0743-1066(94)90028-0
https://doi.org/10.1016/0743-1066(94)90028-0
https://doi.org/10.1016/0004-3702(93)90061-F
https://doi.org/10.1016/S0004-3702(97)00027-1
https://doi.org/10.1016/S0004-3702(97)00027-1
https://doi.org/10.1007/s10994-015-5494-z
http://ijcai.org/Proceedings/07/Papers/396.pdf
https://doi.org/10.1007/978-1-4899-7637-6
http://ijcai.org/Proceedings/97-2/Papers/078.pdf
https://doi.org/10.1007/978-3-319-23708-4_10
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1109/TITS.2019.2929020
https://doi.org/10.1007/978-3-642-20551-4_13
http://personales.upv.es/gvidal/german/flops22/tr.pdf

FOLD-R++: A Scalable Toolset
for Automated Inductive Learning

of Default Theories from Mixed Data

Huaduo Wang(B) and Gopal Gupta(B)

Department of Computer Science, The University of Texas at Dallas, Richardson,
TX, USA

{huaduo.wang,gupta}@utdallas.edu

Abstract. FOLD-R is an automated inductive learning algorithm for
learning default rules for mixed (numerical and categorical) data. It gen-
erates an (explainable) normal logic program (NLP) rule set for classifi-
cation tasks. We present an improved FOLD-R algorithm, called FOLD-
R++, that significantly increases the efficiency and scalability of FOLD-
R by orders of magnitude. FOLD-R++ improves upon FOLD-R without
compromising or losing information in the input training data during the
encoding or feature selection phase. The FOLD-R++ algorithm is com-
petitive in performance with the widely-used XGBoost algorithm, how-
ever, unlike XGBoost, the FOLD-R++ algorithm produces an explain-
able model. FOLD-R++ is also competitive in performance with the
RIPPER system, however, on large datasets FOLD-R++ outperforms
RIPPER. We also create a powerful tool-set by combining FOLD-R++
with s(CASP)—a goal-directed answer set programming (ASP) execu-
tion engine—to make predictions on new data samples using the normal
logic program generated by FOLD-R++. The s(CASP) system also pro-
duces a justification for the prediction. Experiments presented in this
paper show that our improved FOLD-R++ algorithm is a significant
improvement over the original design and that the s(CASP) system can
make predictions in an efficient manner as well.

Keywords: Inductive logic programming · Machine learning ·
Explainable AI · Negation as failure · Normal logic programs · Data
mining

1 Introduction

Dramatic success of machine learning has led to a torrent of Artificial Intelligence
(AI) applications. However, the effectiveness of these systems is limited by the
machines’ current inability to explain their decisions and actions to human users.
That’s mainly because the statistical machine learning methods produce models
that are complex algebraic solutions to optimization problems such as risk mini-
mization or geometric margin maximization. Lack of intuitive descriptions makes
it hard for users to understand and verify the underlying rules that govern the

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 224–242, 2022.
https://doi.org/10.1007/978-3-030-99461-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_13

FOLD-R++ Toolset 225

model. Also, these methods cannot produce a justification for a prediction they
arrive at for a new data sample. The Explainable AI program [8] aims to create a
suite of machine learning techniques that: a) Produce more explainable models,
while maintaining a high level of prediction accuracy; and b) Enable human users
to understand, appropriately trust, and effectively manage the emerging genera-
tion of artificially intelligent systems. Inductive Logic Programming (ILP) [14] is
one Machine Learning technique where the learned model is in the form of logic
programming rules that are comprehensible to humans. It allows the background
knowledge to be incrementally extended without requiring the entire model to
be re-learned. Meanwhile, the comprehensibility of symbolic rules makes it easier
for users to understand and verify induced models and even refine them.

The ILP learning problem can be regarded as a search problem for a set of
clauses that deduce the training examples. The search is performed either top
down or bottom-up. A bottom-up approach builds most-specific clauses from
the training examples and searches the hypothesis space by using generalization.
This approach is not applicable to large-scale datasets, nor it can incorporate
negation-as-failure into the hypotheses. A survey of bottom-up ILP systems
and their shortcomings can be found at [22]. In contrast, the top-down approach
starts with the most general clause and then specializes it. A top-down algorithm
guided by heuristics is better suited for large-scale and/or noisy datasets [28].

The FOIL algorithm [19] by Quinlan is a popular top-down inductive logic
programming algorithm that generates logic programs. FOIL uses weighted infor-
mation gain (IG) as the heuristics to guide the search for best literals. The
FOLD algorithm by Shakerin [23,24] is a new top-down algorithm inspired by
the FOIL algorithm. It generalizes the FOIL algorithm by learning default rules
with exceptions. It does so by first learning the default predicate that covers pos-
itive examples while avoiding negative examples, then next it swaps the positive
and negative examples and calls itself recursively to learn the exception to the
default. Both FOIL and FOLD cannot deal with numeric features directly; an
encoding process is needed in the preparation phase of the training data that
discretizes the continuous numbers into intervals. However, this process not only
adds a huge computational overhead to the algorithm but also leads to loss of
information in the training data.

To deal with the above problems, Shakerin developed an extension of the
FOLD algorithm, called FOLD-R, to handle mixed (i.e., both numerical and
categorical) features which avoids the discretization process for numerical data
[23,24]. However, FOLD-R still suffers from efficiency and scalability issues when
compared to other popular machine learning systems for classification. In this
paper we report on a novel implementation method we have developed to improve
the design of the FOLD-R system. In particular, we use the prefix sum technique
[27] to optimize the process of calculation of information gain, the most time
consuming component of the FOLD family of algorithms [23]. Our optimization,
in fact, reduces the time complexity of the algorithm. If N is the number of
unique values from a specific feature and M is the number of training examples,
then the complexity of computing information gain for all the possible literals
of a feature is reduced from O(M ∗ N) for FOLD-R to O(M) in FOLD-R++.

226 H. Wang and G. Gupta

In addition to using prefix sum, we also improved the FOLD-R algorithm by
allowing negated literals in the default portion of the learned rules (explained
later). Finally, a hyper-parameter, called exception ratio, which controls the
training process that learns exception rules, is also introduced. This hyper-
parameter helps improve efficiency and classification performance. These three
changes make FOLD-R++ significantly better than FOLD-R and competitive
with well-known algorithms such as XGBoost and RIPPER.

Our experimental results indicate that the FOLD-R++ algorithm is compa-
rable to popular machine learning algorithms such as XGBoost [3] and RIPPER
[4] wrt various metrics (accuracy, recall, precision, and F1-score) as well as in
efficiency and scalability. However, in addition, FOLD-R++ produces an explain-
able and interpretable model in the form of a normal logic program. A normal
logic program is a logic program extended with negation-as-failure [13]. Note that
RIPPER also generates a set of CNF formulas to explain the model, however,
as we will see later, FOLD-R++ outperforms RIPPER on large datasets.

This paper makes the following novel contribution: it presents the FOLD-
R++ algorithm that significantly improves the efficiency and scalability of the
FOLD-R ILP algorithm without adding overhead during pre-processing or losing
information in the training data. As mentioned, the new approach is competitive
with popular classification models such as the XGBoost classifier [3] and the
RIPPER system [4]. The FOLD-R++ algorithm outputs a normal logic program
(NLP) [7,13] that serves as an explainable/interpretable model. This generated
normal logic program is compatible with s(CASP) [2], a goal-directed ASP solver,
that can efficiently justify the prediction generated by the ASP model.1

2 Background

2.1 Inductive Logic Programming

Inductive Logic Programming (ILP) [14] is a subfield of machine learning that
learns models in the form of logic programming rules that are comprehensible
to humans. This problem is formally defined as:

Given

1. A background theory B, in the form of an extended logic program, i.e., clauses
of the form h ← l1, ..., lm, not lm+1, ..., not ln, where l1, ..., ln are positive
literals and not denotes negation-as-failure (NAF) [7,13]. We require that B
has no loops through negation, i.e., it is stratified [13].

2. Two disjoint sets of ground target predicates E+, E− known as positive and
negative examples, respectively

3. A hypothesis language of function free predicates L, and a refinement operator
ρ under θ-subsumption [18] that would disallow loops over negation.

1 The s(CASP) system is freely available at https://gitlab.software.imdea.org/ciao-
lang/sCASP.

https://gitlab.software.imdea.org/ciao-lang/sCASP
https://gitlab.software.imdea.org/ciao-lang/sCASP

FOLD-R++ Toolset 227

Find a set of clauses H such that:

– ∀e ∈ E+, B ∪ H |= e
– ∀e ∈ E−, B ∪ H �|= e
– B ∧ H is consistent.

2.2 Default Rules

Default Logic [7,21] is a non-monotonic logic to formalize commonsense reason-
ing. A default D is an expression of the form

A : MB

Γ

which states that the conclusion Γ can be inferred if pre-requisite A holds and
B is justified. MB stands for “it is consistent to believe B” [7]. Normal logic
programs can encode a default quite elegantly. A default of the form:

α1 ∧ α2 ∧ · · · ∧ αn : M¬β1,M¬β2 . . .M¬βm

γ

can be formalized as the following normal logic program rule:

γ :- α1, α2, . . . , αn, not β1, not β2, . . . , not βm.

where α’s and β’s are positive predicates and not represents negation-as-failure.
We call such rules default rules. Thus, the default bird(X):M¬penguin(X)

fly(X) will be
represented as the following default rule in normal logic programming:

fly(X) :- bird(X), not penguin(X).
We call bird(X), the condition that allows us to jump to the default conclusion
that X can fly, the default part of the rule, and not penguin(X) the exception
part of the rule.

Default rules closely represent the human thought process (commonsense
reasoning). FOLD-R and FOLD-R++ learn default rules represented as normal
logic programs. An advantage of learning default rules is that we can distin-
guish between exceptions and noise [23,24]. Note that the programs currently
generated by the FOLD-R++ system are stratified normal logic programs [13].

3 The FOLD-R Algorithm

The FOLD algorithm [23,24] is a top-down ILP algorithm that searches for best
literals to add to the body of the clauses for hypothesis, H, with the guidance of
an information gain-based heuristic. The FOLD-R algorithm is a numeric exten-
sion of the FOLD algorithm that adopts the approach of the well-known C4.5
algorithm [20] for finding literals. Algorithm1 gives an overview of the FOLD-R
algorithm. The extended algorithm will directly select the best numerical lit-
eral, in addition to selecting the categorical literals. Thus, the best numerical
function (line 37 in Algorithm1) finds the best numerical literal and adds it to

228 H. Wang and G. Gupta

Algorithm 1. FOLD-R Algorithm
Input: B: background knowledge, E+: positive example, E−: negative example
Output: D = {c1, ..., cn}: a set of defaults rules with exceptions
1: function Fold(E+, E−) � target, B: global vars
2: D ← Ø
3: while |E+| > 0 do
4: c ← specialize(target :- true, E+, E−)
5: E+ ← E+ \ covers(c, E+) � rule out already covered examples
6: D ← D ∪ {c}
7: end while
8: return D
9: end function

10: function Specialize(c, E+, E−)
11: while |E−| > 0 do
12: c′, ig ← add best literal(c, E+, E−)
13: if ig > 0 then
14: c ← c′

15: else
16: c ← exception(c, E+, E−)
17: if c is null then
18: c ← enumerate(c, E+) � generate clause to maximally cover E+

19: end if
20: end if
21: E+ ← covers(c, E+)
22: E− ← covers(c, E−)
23: end while
24: return c
25: end function
26: function Exception(c, E+, E−)
27: AB ← fold(E−, E+) � recursively call FOLD after swapping E+ and E−

28: if AB is Ø then
29: c ← null
30: else
31: c ← set exception(c, AB) � set exception part of clause c as AB
32: end if
33: return c
34: end function
35: function Add best literal(c, E+, E−)

� return the clause with the best literal added and its corresponding info gain
36: c1, ig1 ← best categorical(c, E+, E−)
37: c2, ig2 ← best numerical(c, E+, E−) � FOLD-R extension
38: if c1 > c2 then
39: return c1, ig1
40: else
41: return c2, ig2
42: end if
43: end function

FOLD-R++ Toolset 229

the clause after classifying all the training examples for each numerical split on
all the features. The other functions remain the same as the FOLD algorithm
[23,24]. We illustrate the FOLD-R algorithm through an example.

Example 1. In the FOLD-R algorithm, the target is to learn rules for fly(X).
B,E+, E− are background knowledge, positive and negative examples, respectively.

B: bird(X) :- penguin(X).
bird(tweety). bird(et).
cat(kitty). penguin(polly).

E+: fly(tweety). fly(et).
E-: fly(kitty). fly(polly).

The target predicate {fly(X) :- true.} is specified when calling the spe-
cialize function at line 4 in Algorithm1. The add best literal function selects the
literal bird(X) as a result and adds it to the clause r = fly(X) :- bird(X)
because it has the best information gain among {bird,penguin,cat} at line 12.
Then, the training set gets updated to E+ = {tweety, et}, E− = {polly} at
line 21–22 in SPECIALIZE function. The negative example polly is still falsely
implied by the generated clause. The default learning of SPECIALIZE function
is finished because the information gain of candidate literal c′ is zero. Therefore,
the exception learning starts by calling FOLD function recursively with swapped
positive and negative examples, E+ = {polly}, E− = {tweety, et} at line 27.
In this case, an abnormal predicate {ab0(X) :- penguin(X)} is generated and
returned as the only exception to the previous learned clause as r = fly(X) :-
bird(X), not ab0(X). The abnormal rule {ab0(X) :- penguin(X)} is added
to the final rule set producing the program below:

fly(X) :- bird(X), not ab0(X).
ab0(X) :- penguin(X).

4 The FOLD-R++ Algorithm

The FOLD-R++ algorithm refactors the FOLD-R algorithm. FOLD-R++
makes three main improvements to FOLD-R: (i) it can learn and add negated lit-
erals to the default (positive) part of the rule; in the FOLD-R algorithm negated
literals can only be in the exception part, (ii) prefix sum algorithm is used to
speed up computation, and (iii) a hyper parameter called ratio is introduced
to control the level of nesting of exceptions. These three improvements make
FOLD-R significantly more efficient.

The FOLD-R++ algorithm is summarized in Algorithm 2. The output of
the FOLD-R++ algorithm is a set of default rules [7] coded as a normal logic
program. An example implied by any rule in the set would be classified as posi-
tive. Therefore, the FOLD-R++ algorithm rules out the already covered positive
examples at line 9 after learning a new rule. To learn a particular rule, the best

230 H. Wang and G. Gupta

literal would be repeatedly selected—and added to the default part of the rule’s
body—based on information gain using the remaining training examples (line
17). Next, only the examples that can be covered by learned default literals
would be used for further learning (specializing) of the current rule (line 20–21).
When the information gain becomes zero or the number of negative examples
drops below the ratio threshold, the learning of the default part is done. FOLD-
R++ next learns exceptions after first learning default literals. This is done by
swapping the residual positive and negative examples and calling itself recur-
sively in line 26. The remaining positive and negative examples can be swapped
again and exceptions to exceptions learned (and then swapped further to learn
exceptions to exceptions of exceptions, and so on). The ratio parameter in Algo-
rithm2 represents the ratio of training examples that are part of the exception
to the examples implied by only the default conclusion part of the rule. It allows
users to control the nesting level of exceptions.

Generally, avoiding falsely covering negative examples by adding literals to
the default part of a rule will reduce the number of positive examples the rule
can imply. Explicitly activating the exception learning procedure (line 26) could
increase the number of positive examples a rule can cover while reducing the
total number of rules generated. As a result, the interpretability is increased
due to fewer rules and literals being generated. For the Adult Income Census
dataset, for example, without the hyper-parameter exception ratio (equivalent
to setting the ratio to 0), the FOLD-R++ algorithm would take around 10 min
to finish the training and generate hundreds of rules. With the ratio parameter
set to 0.5, only 13 rules are generated in around 10 s.

Additionally, The FOLD and FOLD-R algorithms disabled the negated lit-
erals in the default theories to make the generated rules look more elegant (only
exceptions included negated literals). However, a negated literal sometimes is
the optimal literal with the most useful information gain. FOLD-R++ allows
for negated literals in the default part of the generated rules. We cannot make
sure that FOLD-R++ generates optimal combination of literals because it is a
greedy algorithm, however, it is an improvement over FOLD and FOLD-R.

4.1 Literal Selection

The literal selection process for Shakerin’s FOLD-R algorithm can be summa-
rized as function SPECIALIZE in Algorithm1. The FOLD-R algorithm [23,24]
selects the best literal based on the weighted information gain for learning
defaults, similar to the original FOLD algorithm described in [24]. For numeric
features, the FOLD-R algorithm would enumerate all the possible splits. Then, it
classifies the data and computes information gain for literals for each split. The
literal with the best information gain would be selected as a result. In contrast,
the FOLD-R++ algorithm uses a new, more efficient method employing prefix
sums to calculate the information gain based on the classification categories.
The FOLD-R++ algorithm divides features into two categories: categorical and
numerical. All the values in a categorical feature would be considered as cate-
gorical values even if some of them are numbers. Only equality and inequality

FOLD-R++ Toolset 231

Algorithm 2. FOLD-R++ Algorithm
Input: E+: positive examples, E−: negative examples

� Global Parameters: target, B: background knowledge, ratio: exception ratio
Output: R = {r1, ..., rn}: a set of defaults rules with exceptions
1: function Fold rpp(E+, E−, Lused) � Lused: used literals, initially empty
2: R ← Ø
3: while |E+| > 0 do
4: r ← learn rule(E+, E−, Lused)
5: Etp ← covers(r, E+) � Etp: true positive examples implied by rule r
6: if |Etp| = 0 then
7: break
8: end if
9: E+ ← E+ \ Etp � rule out the already covered examples

10: R ← R ∪ {r}
11: end while
12: return R
13: end function
14: function Learn rule(E+, E−, Lused)
15: L ← Ø � L: default literals for the result rule r
16: while true do
17: l ← find best literal(E+, E−, Lused)
18: L ← L ∪ {l}
19: r ← set default(r, L) � set default part of rule r as L
20: E+ ← covers(r, E+)
21: E− ← covers(r, E−)
22: if l is invalid or |E−| ≤ |E+| ∗ ratio then
23: if l is invalid then
24: r ← set default(r, L \ {l}) � remove the invalid literal l from rule r
25: else
26: AB ← fold rpp(E−, E+, Lused + L) � learn exception rules for r
27: r ← set exception(r, AB) � set exception part of rule r as AB
28: end if
29: break
30: end if
31: end while
32: return r � the head of rule r is target
33: end function

literals would be generated for categorical features. For numerical features, the
FOLD-R++ algorithm would try to read each value as a number, converting
it to a categorical value if the conversion fails. Additional numerical compari-
son (≤ and >) literal candidates would be generated for numerical features. A
mixed type feature that contains both categorical and numerical values would
be treated as a numerical feature.

In FOLD-R++, information gain for a given literal is calculated as shown in
Algorithm 3. The variables tp, fn, tn, fp for finding the information gain repre-
sent the numbers of true positive, false negative, true negative, and false positive

232 H. Wang and G. Gupta

examples, respectively. With the simplified information gain function IG in Algo-
rithm3, the new approach employs the prefix sum technique to speed up the
calculation. Only one round of classification is needed for a single feature, even
with mixed types of values.

Algorithm 3. FOLD-R++ Algorithm, Information Gain function
Input: tp, fn, tn, fp: the number of Etp, Efn, Etn, Efp implied by literal
Output: information gain
1: function IG(tp, fn, tn, fp) � IG is the function that computes information gain
2: if fp + fn > tp + tn then
3: return −∞
4: end if
5: return 1

tp+fp+tn+fn
·(F(tp, fp) + F(fp, tp) + F(tn, fn) + F(fn, tn))

6: end function
7: function F(a, b)
8: if a = 0 then
9: return 0

10: end if
11: return a · log2(

a
a+b

)
12: end function

In the FOLD-R++ algorithm, two types of literals would be generated: equal-
ity comparison literals and numerical comparison literals. The equality (resp.
inequality) comparison is straightforward in FOLD-R++: two values are equal
if they are same type and identical, else they are unequal. However, a differ-
ent assumption is made for comparisons between a numerical value and cat-
egorical value in FOLD-R++. Numerical comparisons (≤ and >) between a
numerical value and a categorical value is always false. A comparison exam-
ple is shown in Table 1 (Left), while an evaluation example for a given literal,
literal(i,≤, 3), based on the comparison assumption is shown in Table 1 (Right).
Given E+ = {1, 2, 3, 3, 5, 6, 6, b}, E− = {2, 4, 6, 7, a}, and literal(i,≤, 3), the true
positive example Etp, false negative examples Efn, true negative examples Etn,
and false positive examples Efp implied by the literal are {1, 2, 3, 3}, {5, 6, 6, b},
{4, 6, 7, a}, {2} respectively. Then, the information gain of literal(i,≤, 3) is cal-
culated IG(i,≤,3)(4, 4, 4, 1) = −0.619 through Algorithm3.

The new approach to find the best literal that provides most useful informa-
tion is summarized in Algorithm4. In line 12, pos (neg) is the dictionary that
holds the numbers of positive (negative) examples for each unique value. In line
13, xs (cs) is the list that holds the unique numerical (categorical) values. In line
14, xp (xn) is the total number of positive (negative) examples with numerical
values; cp (cn) is the total number of positive (negative) examples with categor-
ical values. After computing the prefix sum at line 16, pos[x] (neg[x]) holds the
total number of positive (negative) examples that have a value less than or equal
to x. Therefore, xp−pos[x] (xn−neg[x]) represents the total number of positive

FOLD-R++ Toolset 233

Algorithm 4. FOLD-R++ Algorithm, Find Best Literal function
Input: E+: positive examples, E−: negative examples, Lused: used literals
Output: best lit: the best literal that provides the most information
1: function Find best literal(E+, E−, Lused)
2: best ig, best lit ← −∞, invalid
3: for i ← 1 to N do � N is the number of features
4: ig, lit ← best info gain(E+, E−, i, Lused)
5: if best ig < ig then
6: best ig, best lit ← ig, lit
7: end if
8: end for
9: return best lit

10: end function
11: function Best info gain(E+, E−, i, Lused) � i: feature index
12: pos, neg ← count classification(E+, E−, i)

� pos (neg): dicts that holds the numbers of E+ (E−) for each unique value
13: xs, cs ← collect unique values(E+, E−, i)

� xs (cs): lists that holds the unique numerical (categorical) values
14: xp, xn, cp, cn ← count total(E+, E−, i)

� xp (xn): the total number of E+ (E−) with numerical value.
� cp (cn): the total number of E+ (E−) with categorical value.

15: xs ← couting sort(xs)
16: for j ← 1 to size(xs) do � compute prefix sum for E+ & E− numerical values
17: pos[xsi] ← pos[xsi] + pos[xsi−1]
18: neg[xsi] ← neg[xsi] + neg[xsi−1]
19: end for
20: for x ∈ xs do � compute info gain for numerical comparison literals
21: lit dict[literal(i, ≤, x)] ← IG(pos[x], xp−pos[x]+cp, xn−neg[x]+cn, neg[x])
22: lit dict[literal(i, >, x)] ← IG(xp−pos[x], pos[x]+cp, neg[x]+cn, xn−neg[x])
23: end for
24: for c ∈ cs do � compute info gain for equality comparison literals
25: lit dict[literal(i, =, x)] ← IG(pos[c], cp−pos[c]+xp, cn−neg[c]+xn, neg[c])
26: lit dict[literal(i, �=, x)] ← IG(cp−pos[c]+xp, pos[c], neg[c], cn−neg[c]+xn)
27: end for
28: best ig, lit ← best pair(lit dict, Lused)
29: return best ig, lit � return the best info gain and its corresponding literal
30: end function

(negative) examples that have a value greater than x. In line 21, the informa-
tion gain of literal (i,≤, x) is calculated by calling Algorithm 3. Note that pos[x]
(neg[x]) is the actual value for the formal parameter tp (fp) of function IG in
Algorithm 3. Likewise, xp − pos[x] + cp (xn − neg[x] + cn) substitute for formal
parameter fn (tn) of the function IG. cp (cn) is included in the actual parame-
ter for formal parameter fn (tn) of function IG because of the assumption that
any numerical comparison between a numerical value and a categorical value is
false. The information gain calculation processes of other literals also follow the
comparison assumption mentioned above. Finally, the best info gain function

234 H. Wang and G. Gupta

Table 1. Left: Comparisons between a numerical value and a categorical value. Right:
Evaluation and count for literal (i, ≤, 3).

comparison evaluation
3 = ‘a’ False
3 = ‘a’ True
3 ≤ ‘a’ False
3 > ‘a’ False

ith feature values count
E+ 1 2 3 3 5 6 6 b 8
E− 2 4 6 7 a 5

Etp(i,≤,3) 1 2 3 3 4
Efn(i,≤,3) 5 6 6 b 4
Etn(i,≤,3) 4 6 7 a 4
Efp(i,≤,3) 2 1

comparison evaluation
3 = ‘a’ False
3 == ‘a’ TrTT ue
3 ≤ ‘a’ False
3 > ‘a’ False

ith feff ature vavv lues count
E+ 1 2 3 3 5 6 6 b 8
E− 2 4 6 7 a 5

Etp(i,≤,3) 1 2 3 3 4
Efnff (i,≤,3) 5 6 6 b 4
Etn(i,≤,3) 4 6 7 a 4
Efpff (i,≤,3) 2 1

(Algorithm 4) returns the best score on information gain and the corresponding
literal except the literals that have been used in current rule-learning process.
For each feature, we compute the best literal, then the find best literal function
returns the best literal among this set of best literals. FOLD-R algorithm selects
only positive literals in default part of rules during literal selection even if a neg-
ative literal provides better information gain. Unlike FOLD-R, the FOLD-R++
algorithm can also select negated literals for the default part of a rule at line 26
in Algorithm 4.

It is easy to justify the O(M) complexity of information gain calculation in
FOLD-R++ mentioned earlier. The time complexity of Algorithm 3 is obviously
O(1). Algorithm 3 is called in line 21, 22, 25, and 26 of Algorithm4. Line 12–
15 in Algorithm 4 can be considered as the preparation process for calculating
information gain and has complexity O(M), assuming that we use counting sort
(complexity O(M)) with a pre-sorted list in line 15; it is easy to see that lines
16–29 take time O(N).

Example 2. Given positive and negative examples, E+, E−, with mixed type of
values on feature i, the target is to find the literal with the best information gain
on the given feature. There are 8 positive examples, their values on feature i are
[1, 2, 3, 3, 5, 6, 6, b]. And, the values on feature i of the 5 negative examples are
[2, 4, 6, 7, a].

With the given examples and specified feature, the numbers of positive examples
and negative examples for each unique value are counted first, which are shown
as pos, neg at right side of Table 2. Then, the prefix sum arrays are calculated
for computing the heuristic as psum+, psum−. Table 3 shows the information
gain for each literal, the literal(i, �=, a) has been selected with the highest score.

4.2 Explainability

Explainability is very important for some tasks like loan approval, credit card
approval, and disease diagnosis system. Inductive logic programming provides
explicit rules for how a prediction is generated compared to black box models
like those based on neural networks. To efficiently justify the prediction, the
FOLD-R++ system outputs normal logic programs that are compatible with
the s(CASP) goal-directed answer set programming system [2]. The s(CASP)

FOLD-R++ Toolset 235

Table 2. Left: Examples and values on ith feature. Right: positive/negative count and
prefix sum on each value

ith feature values

E+ 1 2 3 3 5 6 6 b
E− 2 4 6 7 a

value 1 2 3 4 5 6 7 a b
pos 1 1 2 0 1 2 0 0 1
psum+ 1 2 4 4 5 7 7 na na
neg 0 1 0 1 0 1 1 1 0
psum− 0 1 1 2 2 3 4 na na

ith feff ature values

E+ 1 2 3 3 5 6 6 b
E− 2 4 6 7 a

vavv lue 1 2 3 4 5 6 7 a b
pos 1 1 2 0 1 2 0 0 1
psum+ 1 2 4 4 5 7 7 na na
neg 0 1 0 1 0 1 1 1 0
psum− 0 1 1 2 2 3 4 na na

Table 3. The info gain on ith feature with given examples

Info Gain
value 1 2 3 4 5 6 7 a b
≤ value −∞ −∞ -0.619 -0.661 -0.642 -0.616 -0.661 na na
> value -0.664 -0.666 −∞ −∞ −∞ −∞ −∞ na na
= value na na na na na na na −∞ −∞
= value na na na na na na na -0.588 -0.627

system executes answer set programs in a goal-directed manner [2]. Stratified
normal logic programs output by FOLD-R++ are a special case of answer set
programs.

Example 3. The “Adult Census Income” is a classical classification task that
contains 32561 records. We treat 80% of the data as training examples and
20% as testing examples. The task is to learn the income status of individu-
als (more/less than 50K/year) based on features such as gender, age, education,
marital status, etc. FOLD-R++ generates the following program that contains
only 13 rules:

(1) income(X,’=<50k’) :- not marital_status(X,’married-civ-spouse’), not ab4(X), not ab5(X).
(2) income(X,’=<50k’) :- education_num(X,N4), N4=<12.0, capital_gain(X,N10), N10=<5013.0,

not ab6(X), not ab8(X).
(3) income(X,’=<50k’) :- occupation(X,’farming-fishing’), age(X,N0), N0>62.0, N0=<63.0,

education_num(X,N4), N4>12.0, capital_gain(X,N10), N10>5013.0.
(4) income(X,’=<50k’) :- age(X,N0), N0>65.0, education_num(X,N4), N4>12.0,

capital_gain(X,N10), N10>9386.0, N10=<10566.0.
(5) income(X,’=<50k’) :- age(X,N0), N0>35.0, fnlwgt(X,N2), N2>199136.0, education_num(X,N4),

N4>12.0, capital_gain(X,N10), N10>5013.0, hours_per_week(X,N12),
N12=<20.0.

(6) ab1(X) :- age(X,N0), N0=<20.0.
(7) ab2(X) :- education_num(X,N4), N4=<10.0, capital_gain(X,N10), N10=<7978.0.
(8) ab3(X) :- capital_gain(X,N10), N10>27828.0, N10=<34095.0.
(9) ab4(X) :- capital_gain(X,N10), N10>6849.0, not ab1(X), not ab2(X), not ab3(X).
(10) ab5(X) :- age(X,N0), N0=<27.0, education_num(X,N4), N4>12.0, capital_loss(X,N11),

N11>1974.0, N11=<2258.0.
(11) ab6(X) :- not marital_status(X,’married-civ-spouse’).
(12) ab7(X) :- occupation(X,’transport-moving’), age(X,N0), N0>39.0.
(13) ab8(X) :- education_num(X,N4), N4=<8.0, capital_loss(X,N11), N11>1672.0, N11=<1977.0,

not ab7(X).

The above program achieves 0.86 accuracy, 0.88 precision, 0.95 recall, and 0.91
F1 score. Given a new data sample, the predicted answer for this data sample

236 H. Wang and G. Gupta

using the above logic program can be efficiently produced by the s(CASP) system
[2]. Since s(CASP) is query driven, an example query such as ?- income(30,
Y) which checks the income status of the person with ID 30, will succeed if the
income is indeed predicted as less than or equal to 50K by the model represented
by the logic program above.

The s(CASP) system will also produce a justification (a proof tree) for this
prediction query. It can even generate this proof tree in English, i.e., in a more
human understandable form [1]. The justification tree generated for the person
with ID 30 is shown below:

?- income(30,Y).
% QUERY:I would like to know if

‘income’ holds (for 30, and Y).
ANSWER: 1 (in 2.246 ms)
JUSTIFICATION_TREE:
‘income’ holds (for 30, and ‘=<50k’), because

there is no evidence that ‘marital_status’ holds (for 30, and married-civ-spouse), and
there is no evidence that ‘ab4’ holds (for 30), because

there is no evidence that ‘capital_gain’ holds (for 30, and Var1),
with Var1 not equal 0.0, and ‘capital_gain’ holds (for 30, and 0.0).

there is no evidence that ‘ab5’ holds (for 30), because
there is no evidence that ‘age’ holds (for 30, and Var2), with Var2 not equal 18.0,
and ‘age’ holds (for 30, and 18.0), and
there is no evidence that ‘education_num’ holds (for 30, and Var3),
with Var3 not equal 7.0, and ‘age’ holds (for 30, and 18.0), justified above, and
‘education_num’ holds (for 30, and 7.0).

The global constraints hold.
BINDINGS:
Y equal ‘=<50k’

With the justification tree, the reason for the prediction can be easily under-
stood by human beings. The generated NLP rule-set can also be understood by
a human. If there is any unreasonable logic generated in the rule set, it can also
be modified directly by the human without retraining. Thus, any bias in the
data that is captured in the generated NLP rules can be corrected by the human
user, and the updated NLP rule-set used for making new predictions.

The RIPPER system [4] is a well-known rule-induction algorithm that gener-
ates formulas in conjunctive normal form (CNF) as an explanation of the model.
RIPPER generates 53 formulas for Example 3 and achieves 0.61 accuracy, 0.98
precision, 0.50 recall, and 0.66 F1 score. A few of the fifty three rules generated
by RIPPER for this dataset are shown below.

(1) marital_status=Never-married & education_num=7.0-9.0 & workclass=Private &
hours_per_week=35.0-40.0 & capital_gain=<9999.9 & sex=Female

(2) marital_status=Never-married & capital_gain=<9999.9 & education_num=7.0-9.0 &
hours_per_week=35.0-40.0 & relationship=Own-child

(3) marital_status=Never-married & capital_gain=<9999.9 & education_num=7.0-9.0 &
hours_per_week=35.0-40.0 & race=White & age=22.0-26.0

(4) marital_status=Never-married & capital_gain=<9999.9 & education_num=7.0-9.0 &
hours_per_week=24.0-35.0
... ...

(50) education_num=7.0-9.0 & age=26.0-30.0 & fnlwgt=177927.0-196123.0 & workclass=Private
(51) relationship=Not-in-family & capital_gain=<9999.9 & hours_per_week=35.0-40.0 &

sex=Female & education=Assoc-voc
(52) education_num=<7.0 & workclass=Private & fnlwgt=260549.8-329055.0
(53) relationship=Not-in-family & capital_gain=<9999.9 & hours_per_week=35.0-40.0 &

education_num=11.0-13.0 & occupation=Adm-clerical

FOLD-R++ Toolset 237

Generally, a set of default rules is a more succinct description of a given
concept compared to a set of CNFs, especially when nested (multiple) exceptions
are allowed. For this reason, we believe that FOLD-R++ performs better than
RIPPER on large datasets, as shown later. For similar reasons, FOLD-R++ can
provide more intuitive and more succinct explanations than decision tree based
methods.

5 Experiments

In this section, we present our experiments on UCI standard benchmarks [12].2

The XGBoost Classifier is a popular classification model and used as a baseline in
our experiment. We used simple settings for XGBoost classifier without limiting
its performance. However, XGBoost cannot deal with mixed type (numerical
and categorical) of examples directly. One-hot encoding has been used for data
preparation. We use precision, recall, accuracy, F1 score, and execution time to
compare the results.

FOLD-R++ does not require any encoding before training. We implemented
FOLD-R++ with Python (the original FOLD-R implementation is in Java). To
make inferences using the generated rules, we developed a simple logic program-
ming interpreter for our application that is part of the FOLD-R++ system. Note
that the generated programs are stratified, so implementing an interpreter for
such a restricted class in Python is relatively easy. However, for obtaining the
justification/proof tree, or for translating the NLP rules into equivalent English
text, one must use the s(CASP) system.

The time complexity for computing information gain on a feature is sig-
nificantly reduced in FOLD-R++ due to the use of prefix-sum, resulting in
rather large improvements in efficiency. For the credit-a dataset with only 690
instances, the new FOLD-R++ algorithm is a hundred times faster than the
original FOLD-R. The hyper-parameter ratio is simply set as 0.5 for all the
experiments. All the learning experiments have been conducted on a desktop
with Intel i5-10400 CPU @ 2.9 GHz and 32 GB ram. To measure performance
metrics, we conducted 10-fold cross-validation on each dataset and the average
of accuracy, precision, recall, F1 score and execution time are presented (See
Table 4, Table 5, and Table 6). The best performer is highlighted in boldface.

Experiments reported in Table 4 are based on our re-implementation of
FOLD-R in Python. The Python re-implementation is 6 to 10 times faster
than Shakerin’s original Java implementation according to the common tested
datasets. However, the re-implementation still lacks efficiency on large datasets
due to the original design. The FOLD-R experiments on the Adult Census
Income and the Credit Card Approval datasets are performed with improvements
in heuristic calculation while for other datasets the method of calculation remains
as in Shakerin’s original design. In these two cases, the efficiency improves sig-
nificantly but the output is identical to original FOLD-R. The average execution

2 The FOLD-R++ system is available at https://github.com/hwd404/FOLD-R-PP.

https://github.com/hwd404/FOLD-R-PP

238 H. Wang and G. Gupta

Table 4. Comparison of FOLD-R and FOLD-R++ on various datasets

Data set FOLD-R FOLD-R++

Name #Rows #Cols Acc. Prec. Rec. F1 T(ms) #Rules Acc. Prec. Rec. F1 T(ms) #Rules

acute 120 7 0.99 1 0.98 0.99 12 2.0 0.99 1 0.99 0.99 2.3 2.6

autism 704 18 0.95 0.97 0.97 0.96 321 18.4 0.93 0.96 0.95 0.95 62 24.3

breast-w 699 10 0.95 0.96 0.96 0.96 373 11.2 0.95 0.97 0.95 0.96 32 10.2

cars 1728 7 0.99 0.99 1 0.99 134 17.9 0.97 1 0.97 0.98 50 12.2

credit-a 690 16 0.82 0.83 0.85 0.84 11,316 33.4 0.85 0.92 0.79 0.85 111 10.0

ecoli 336 9 0.93 0.92 0.92 0.91 686 7.7 0.94 0.95 0.92 0.93 34 11.4

heart 270 14 0.74 0.75 0.80 0.77 888 15.9 0.79 0.80 0.83 0.80 40 11.7

ionosphere 351 35 0.89 0.90 0.93 0.91 9,297 5.9 0.91 0.93 0.93 0.93 385 12.0

kidney 400 25 0.98 0.99 0.98 0.99 451 5.7 0.99 1 0.98 0.99 28 5.0

kr vs. kp 3196 37 0.99 0.99 0.99 0.99 1,259 16.8 0.99 0.99 0.99 0.99 319 18.4

mushroom 8124 23 1 1 1 1 1,556 8.6 1 1 1 1 523 8.0

voting 435 17 0.95 0.93 0.94 0.93 96 13.7 0.95 0.92 0.95 0.93 16 10.5

adult 32561 15 0.77 0.94 0.74 0.83 4+ days 595.5 0.84 0.86 0.95 0.90 10,066 16.7

credit card 30000 24 0.64 0.87 0.63 0.73 24+ days 514.9 0.82 0.83 0.96 0.89 21,349 19.1

time of these two datasets is still quite large, however, we use polynomial regres-
sion to estimate it. The estimated average execution time of the Adult Census
Income dataset ranges from 4 to 7 days, and a random single test took 4.5 days.
The estimated execution time of the Credit Card Approval dataset ranges from
24 to 55 days. For small datasets, the classification performance are similar,
however, wrt execution time, the FOLD-R++ algorithm is order of magnitude
faster than (the re-implemented Python version of) FOLD-R. For large datasets,
FOLD-R++ significantly improves the efficiency, classification performance, and
explainability over FOLD-R. For the Adult Census Income and the Credit Card
Approval datasets, the average number of rules generated by FOLD-R are over
500 while the number for FOLD-R++ is less than 20.

Table 5. Comparison of RIPPER and FOLD-R++ on various datasets

Data set RIPPER FOLD-R++

Name #Rows #Cols Acc. Prec. Rec. F1 T(ms) #Rules Acc. Prec. Rec. F1 T(ms) #Rules

acute 120 7 0.93 1 0.84 0.91 73 2.0 0.99 1 0.99 0.99 2.3 2.6

autism 704 18 0.93 0.96 0.95 0.95 444 9.6 0.93 0.96 0.95 0.95 62 24.3

breast-w 699 10 0.91 0.97 0.89 0.93 267 7.7 0.95 0.97 0.95 0.96 32 10.2

cars 1728 7 0.99 0.99 0.99 0.99 379 15.4 0.97 1 0.97 0.98 50 12.2

credit-a 690 16 0.89 0.94 0.86 0.90 972 11.1 0.85 0.92 0.79 0.85 111 10.0

ecoli 336 9 0.90 0.91 0.86 0.88 494 8.0 0.94 0.95 0.92 0.93 34 11.4

heart 270 14 0.73 0.82 0.69 0.72 338 6.2 0.79 0.80 0.83 0.80 40 11.7

ionosphere 351 35 0.81 0.85 0.86 0.85 1,431 9.9 0.91 0.93 0.93 0.93 385 12.0

kidney 400 25 0.98 0.99 0.98 0.99 451 5.7 0.99 1 0.98 0.99 28 5.0

kr vs. kp 3196 37 0.99 0.99 0.99 0.99 553 8.1 0.99 0.99 0.99 0.99 319 18.4

mushroom 8124 23 1 1 1 1 795 8.0 1 1 1 1 523 8.0

voting 435 17 0.94 0.92 0.92 0.92 146 4.3 0.95 0.92 0.95 0.93 16 10.5

adult 32561 15 0.70 0.96 0.63 0.76 59,505 46.9 0.84 0.86 0.95 0.90 10,066 16.7

credit card 30000 24 0.77 0.87 0.83 0.85 47,422 38.4 0.82 0.83 0.96 0.89 21,349 19.1

rain in aus 145460 24 0.65 0.93 0.57 0.71 2,850,997 175.4 0.78 0.87 0.84 0.85 223,116 40.5

FOLD-R++ Toolset 239

The RIPPER system is another rule-induction algorithm that generates for-
mulas in conjunctive normal form as an explanation of the model. As Table 5
shows, FOLD-R++ system’s performance is comparable to RIPPER, however,
it significantly outperforms RIPPER on large datasets (Rain in Australia [taken
from Kaggle], Adult Census Income, Credit Card Approval). FOLD-R++ gener-
ates much smaller numbers of rules for these large datasets. Additionally, default
rules capture more semantic information than CNF formulas.

Performance of the XGBoost system and FOLD-R++ is compared in Table 6.
The XGBoost Classifier employs a decision tree ensemble method for classifica-
tion tasks and provides quite good performance. FOLD-R++ almost always
spends less time to finish learning compared to XGBoost classifier, especially for
the (large) Adult Census Income dataset where numerical features have many
unique values. For most datasets, FOLD-R++ can achieve equivalent scores.
FOLD-R++ achieves higher scores on ecoli dataset. For the credit card dataset,
the baseline XGBoost model failed training due to 32 GB memory limitation,
but FOLD-R++ performed well.

Table 6. Comparison of XGBoost and FOLD-R++ on various datasets

Data set XGBoost.Classifier FOLD-R++

Name #Rows #Cols Acc. Prec. Rec. F1 T(ms) Acc. Prec. Rec. F1 T(ms)

acute 120 7 1 1 1 1 35 0.99 1 0.99 0.99 2.5

autism 704 18 0.97 0.98 0.98 0.97 76 0.95 0.96 0.97 0.97 47

breast-w 699 10 0.95 0.97 0.96 0.96 78 0.96 0.97 0.96 0.97 28

cars 1728 7 1 1 1 1 77 0.98 1 0.97 0.98 48

credit-a 690 16 0.85 0.83 0.83 0.83 368 0.84 0.92 0.79 0.84 100

ecoli 336 9 0.76 0.76 0.62 0.68 165 0.96 0.95 0.94 0.95 28

heart 270 14 0.80 0.81 0.83 0.81 112 0.79 0.79 0.83 0.81 44

ionosphere 351 35 0.88 0.86 0.96 0.90 1,126 0.92 0.93 0.94 0.93 392

kidney 400 25 0.98 0.98 0.98 0.98 126 0.99 1 0.98 0.99 27

kr vs. kp 3196 37 0.99 0.99 0.99 0.99 210 0.99 0.99 0.99 0.99 361

mushroom 8124 23 1 1 1 1 378 1 1 1 1 476

voting 435 17 0.95 0.94 0.95 0.94 49 0.95 0.94 0.94 0.94 16

adult 32561 15 0.86 0.88 0.94 0.91 274,655 0.84 0.86 0.95 0.90 10,069

credit card 30000 24 – – – – – 0.82 0.83 0.96 0.89 21,349

rain in aus 145460 24 0.83 0.84 0.95 0.89 285,307 0.78 0.87 0.84 0.85 279,320

6 Related Work and Conclusion

ALEPH [25] is one of the most popular ILP system, which induces theories by
using bottom-up generalization search. However, it cannot deal with numeric
features and its specialization step is manual, there is no automation option.
Takemura and Inoue’s method [26] relies on tree-ensembles to generate explain-
able rule sets with pattern mining techniques. Its performance depends on the
tree-ensemble model. While their algorithm advances the state of the art, it may
not be scalable as it is exponential in the number of valid rules.

240 H. Wang and G. Gupta

A survey of ILP can be found in [16]. Rule extraction from statistical Machine
Learning models has been a long-standing goal of the community. These algo-
rithms are classified into two categories: 1) Pedagogical (i.e., learning symbolic
rules from black-box classifiers without opening them); and 2) Decompositional
(i.e., to open the classifier and look into the internals). TREPAN [5] is a suc-
cessful pedagogical algorithm that learns decision trees from neural networks.
SVM+Prototypes [17] is a decompositional rule extraction algorithm that makes
use of KMeans clustering to extract rules from SVM classifiers by focusing on
support vectors. Another rule extraction technique that is gaining attention
recently is “RuleFit” [6]. RuleFit learns a set of weighted rules from ensemble
of shallow decision trees combined with original features. In the ILP commu-
nity also, researchers have tried to combine statistical methods with ILP tech-
niques. Support Vector ILP [15] uses ILP hypotheses as the kernel in dual form
of the SVM algorithm. kFOIL [10] learns an incremental kernel for the SVM
algorithm using a FOIL-style specialization. nFOIL [9] integrates the Naive-
Bayes algorithm with FOIL. The advantage of our research over these is that we
generate logic programs containing negation-as-failure that correspond closely
to the human thought process. Thus, the descriptions are more concise. Sec-
ond, the greedy nature of our clause search guarantees scalability. ILASP [11] is
another novel ILP system that learns answer set programs. ILASP can learn non-
stratified programs, however, it requires a set of rules to describe the hypothesis
space. In contrast, the FOLD-R++ algorithm only needs the target predicate’s
name.

In this paper we presented an efficient and highly scalable algorithm, FOLD-
R++, to induce default theories represented as a normal logic program. The
resulting normal logic program has good performance wrt prediction and justifi-
cation for the predicted classification. In this new approach, unlike other machine
learning methods, the encoding of data is not needed anymore and no informa-
tion from training data is discarded. Compared with the popular classification
system XGBoost, our new approach has similar performance in terms of accu-
racy, precision, recall, and F1-score, but better training efficiency. In addition,
the FOLD-R++ algorithm produces an explainable model. Predictions made
by this model can be computed efficiently and their justification automatically
produced using the s(CASP) system.

The main advantage of the FOLD-R++ system is that it is an ILP sys-
tem that is competitive with main-stream machine learning algorithms (such
as XGBoost). Almost all ILP systems (except RIPPER) are not competitive
with mainstream machine learning systems. However, as we showed in Sect. 5,
FOLD-R++ significantly outperforms the RIPPER system on large datasets.
Compared to known existing ILP systems in its class, FOLD-R++ produces the
most succinct set of rules, especially for larger datasets.

Acknowledgement. Authors gratefully acknowledge support from NSF grants IIS
1718945, IIS 1910131, IIP 1916206, and from Amazon Corp, Atos Corp and US DoD.
We are grateful to Joaquin Arias and the s(CASP) team for their work on providing
facilities for generating the justification tree and English encoding of rules in s(CASP).

FOLD-R++ Toolset 241

References

1. Arias, J., Carro, M., Chen, Z., Gupta, G.: Justifications for goal-directed constraint
answer set programming. In: Proceedings 36th International Conference on Logic
Programming (Technical Communications). EPTCS, vol. 325, pp. 59–72 (2020)

2. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set
programming without grounding. Theory Pract. Logic Program. 18(3–4), 337–354
(2018)

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD, KDD 2016, pp. 785–794 (2016)

4. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th ICML,
ICML 1995, pp. 115–123. Morgan Kaufmann Publishers Inc., San Francisco (1995).
http://dl.acm.org/citation.cfm?id=3091622.3091637

5. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained
networks. In: Proceedings of the 8th International Conference on Neural Informa-
tion Processing Systems, NIPS 1995, pp. 24–30. MIT Press, Cambridge (1995)

6. Friedman, J.H., Popescu, B.E., et al.: Predictive learning via rule ensembles. Ann.
Appl. Stat. 2(3), 916–954 (2008)

7. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press (2014)

8. Gunning, D.: Explainable Artificial Intelligence (XAI) (2015). https://www.darpa.
mil/program/explainable-artificial-intelligence

9. Landwehr, N., Kersting, K., Raedt, L.D.: nFOIL: integrating Näıve Bayes and
FOIL. In: Proceedings of the Twentieth National Conference on Artificial Intelli-
gence and the Seventeenth Innovative Applications of Artificial Intelligence Con-
ference, Pittsburgh, Pennsylvania, USA, 9–13 July 2005, pp. 795–800 (2005)

10. Landwehr, N., Passerini, A., Raedt, L.D., Frasconi, P.: kFOIL: learning simple
relational kernels. In: Proceedings of the Twenty-First National Conference on
Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intel-
ligence Conference, MA, USA, 16–20 July 2006, pp. 389–394 (2006)

11. Law, M.: Inductive learning of answer set programs. Ph.D. thesis, Imperial College
London, UK (2018)

12. Lichman, M.: UCI, Machine Learning Repository (2013). http://archive.ics.uci.
edu/ml

13. Lloyd, J.: Foundations of Logic Programming, 2nd Ext. edn. Springer, Heidelberg
(1987)

14. Muggleton, S.: Inductive logic programming. New Gen. Comput. 8(4) (1991)
15. Muggleton, S., Lodhi, H., Amini, A., Sternberg, M.J.E.: Support vector inductive

logic programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005.
LNCS (LNAI), vol. 3735, pp. 163–175. Springer, Heidelberg (2005). https://doi.
org/10.1007/11563983 15

16. Muggleton, S., et al.: ILP turns 20. Mach. Learn. 86(1), 3–23 (2011). https://doi.
org/10.1007/s10994-011-5259-2

17. Núñez, H., Angulo, C., Catalá, A.: Rule extraction from support vector machines.
In: Proceedings of European Symposium on Artificial Neural Networks, pp. 107–
112 (2002)

18. Plotkin, G.D.: A further note on inductive generalization. Mach. Intell. 6, 101–124
(1971)

http://dl.acm.org/citation.cfm?id=3091622.3091637
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/11563983_15
https://doi.org/10.1007/11563983_15
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1007/s10994-011-5259-2

242 H. Wang and G. Gupta

19. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266
(1990)

20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

21. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
22. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM

Trans. Comput. Log. 6(2), 203–231 (2005)
23. Shakerin, F.: Logic programming-based approaches in explainable AI and natural

language processing. Ph.D. thesis, Department of Computer Science, The Univer-
sity of Texas at Dallas (2020)

24. Shakerin, F., Salazar, E., Gupta, G.: A new algorithm to automate inductive learn-
ing of default theories. TPLP 17(5–6), 1010–1026 (2017)

25. Srinivasan, A.: The Aleph Manual (2001). https://www.cs.ox.ac.uk/activities/
programinduction/Aleph/aleph.html

26. Takemura, A., Inoue, K.: Generating explainable rule sets from tree-ensemble learn-
ing methods by answer set programming. Electron. Proc. Theor. Comput. Sci. 345,
127–140 (2021)

27. Wikipedia contributors: Prefix sum Wikipedia, the free encyclopedia (2021).
https://en.wikipedia.org/wiki/Prefix sum. Accessed 5 Oct 2021

28. Zeng, Q., Patel, J.M., Page, D.: QuickFOIL: scalable inductive logic programming.
Proc. VLDB Endow. 8(3), 197–208 (2014)

https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
https://en.wikipedia.org/wiki/Prefix_sum

A Lazy Desugaring System for Evaluating
Programs with Sugars

Ziyi Yang1, Yushuo Xiao2,3, Zhichao Guan2,3, and Zhenjiang Hu2,3(B)

1 School of Computing, National University of Singapore, Singapore, Singapore
yangziyi@u.nus.edu

2 Key Lab of High Confidence Software Technologies, Ministry of Education,
Beijing, China

3 School of Computer Science, Peking University, Beijing, China
{xiaoyushuo,guanzhichao,huzj}@pku.edu.cn

Abstract. Extending a programming language with syntactic sugars is
common practice in language design. Given a core language, one can
define a surface language on top of it with sugars. We propose a lazy
desugaring system, which can generate the evaluation sequences of sugar
programs in the syntax of the surface language. Specifically, we define
an evaluation strategy on a mixed language which combines syntactic
sugars with the core language. We formulate two properties, emulation
and laziness, and prove that the evaluation strategy produces correct
evaluation sequences. Besides, we have implemented a system based on
this novel method and demonstrate its usefulness with several examples.

1 Introduction

Syntactic sugar, first coined by Landin [13] in 1964, was introduced to describe
the surface syntax of a simple ALGOL-like programming language which was
defined semantically in terms of the applicative expressions of the core lambda
calculus. It has been proved to be very useful for defining domain-specific lan-
guages (DSLs) and extending existing languages [4,6]. Unfortunately, when syn-
tactic sugar is eliminated by transformation, it obscures the relationship between
the user’s source program and the transformed program. As a result, a program-
mer who only knows the surface language cannot understand the execution of
programs in the core language, which makes the debugging of programs with
sugars hard.

Resugaring [14,15] is a powerful existing method to resolve this problem. It
reverses the application of the desugaring transformation. As a typical example of
resugaring, consider the sugars Or1 and Not, defined by the following desugaring
rules1.
1 Throughout the paper, we use #t and #f to represent the Boolean constants true
and false, respectively.

Z. Yang and Y. Xiao—Co-first authors, contributing equally to this work.
This work was partly supported by the National Key Research and Development Pro-
gram of China (No. 2021ZD0110202).

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 243–261, 2022.
https://doi.org/10.1007/978-3-030-99461-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_14

244 Z. Yang et al.

Surface Language Core Language

(Or1 (Not #t)
desugar−−−−−→ (let (x (if #t #f #t))

(Not #f)) ←−−−−−
resugar

(if x x (if #f #f #t)))

↓ ↓
(Or1 #f (let (x #f)

(Not #f)) ←−−−−−
resugar

(if x x (if #f #f #t)))

↓ ↓
no resugaring (if #f #f (if #f #f #t))

↓ ↓
(Not #f) ←−−−−−

resugar
(if #f #f #t)

↓ ↓
#t #t

Fig. 1. A resugaring example.

(Or1 t1 t2)
def
== (let (x t1) (if x x t2))

(Not t1)
def
== (if t1 #f #t)

The resugaring process for

(Or1 (Not #t) (Not #f))

is shown in Fig. 1. The sequence of terms on the left shows the evaluation steps
in the surface language, which is obtained from the evaluation sequence of the
desugared program (in the core language) on the right by repeated attempts of
reverse expansion of each sugar.

While this approach is natural, there are two practical problems. First, as
the reverse expansion of sugars needs to match the desugared terms against
the desugaring rules to check whether they can be resugared, it would be very
expensive if the surface program uses a large number of syntactic sugars, or some
syntactic sugars are desugared to complex core terms. Second, in the resugaring
process, many core programs cannot be reverted to surface programs, which
means that many attempts at reverse application of desugaring rules fail and
introduce lots of useless work.

In this paper, we propose a lazy desugaring system, which produces the eval-
uation sequence in the surface language without reverse desugaring. Our key
observation is that if we consider desugaring rules as reduction rules like those
in the core language, then the evaluation sequence of a surface program should
exist in the reduction sequence by these reduction rules. To see this, recalling
the example in Fig. 1, we can see from Fig. 2 that the reduction sequence can

A Lazy Desugaring System for Evaluating Programs with Sugars 245

be generated by the given desugaring rules and the reduction rules of the core
language; the underlined part is the same as the resugaring sequence on the left
of Fig. 1.

(Or1 (Not #t) (Not #f))
desugar−−−−−→ (Or1 (if #t #f #t) (Not #f))
core−−−→ (Or1 #f (Not #f))
desugar−−−−−→ (let (x #f) (if x x (Not #f)))
core−−−→ (if #f #f (Not #f))
core−−−→ (Not #f)
desugar−−−−−→ (if #f #f #t)
core−−−→ #t

Fig. 2. Proper desugaring for resugaring.

Attention should be paid here. There could be many possible reduction
sequences if we do not restrict how to apply desugaring rules. For instance,
Fig. 3 gives another possible evaluation sequence. Here, from this sequence, we
could not extract the sequence we want, because the term (Or1 #f (Not #f))
is lost. How can we make sure that a sequence which contains all the evaluation
steps wanted is produced?

(Or1 (Not #t) (Not #f))
desugar−−−−−→ (let (x (Not #t)) (if x x (Not #f)))
desugar−−−−−→ (let (x (if #t #f #t)) (if x x (Not #f)))
core−−−→ (let (x #f) (if x x (Not #f)))
core−−−→ (if #f #f (Not #f))
core−−−→ (Not #f)
desugar−−−−−→ (if #f #f #t)
core−−−→ #t

Fig. 3. Improper desugaring.

The key insight of our approach is that we can delay the application of desug-
aring rules (sugar expansion) until it becomes necessary so that later reverse
expansion in the original resugaring becomes unnecessary. To do so, we treat the
surface language and the core language as one mixed language, regard desugar-
ing rules as reduction rules of the mixed language, and derive the context rules
of the mixed language to indicate when desugaring should take place. Our main
technical contributions can be summarized as follows.

246 Z. Yang et al.

– We propose a lazy desugaring method, which evaluates sugar programs on the
surface level. It guarantees that the evaluation sequence of a program in the
mixed language is correct in the sense that it corresponds to the evaluation
sequence of the fully desugared program in the core language, and that it is
sufficient (complete) in the sense that it contains all evaluation steps we want
in the surface language.

– We present a novel algorithm to calculate the context rules and the reduction
rules for syntactic sugars to achieve lazy desugaring. Using the algorithm, we
can get a new reduction strategy for the mixed language, based on which the
evaluation sequence in the syntax of the surface language can be obtained.

– We have implemented a system based on this approach, and tested it with
many non-trivial examples, which shows the promise of the system.

The rest of our paper is organized as follows. We start with an overview of our
approach in Sect. 2. We give the template for language definition in Sect. 3, which
makes clear what languages are supported. We then present the algorithm of lazy
desugaring with its properties in Sect. 4. We briefly discuss the implementation
of the system, and give some examples in Sect. 5. We discuss related work in
Sect. 6 and conclude the paper in Sect. 7.

2 Overview

In this section, we give a brief overview of our approach. Given a very tiny
core language and a surface language defined by a set of syntactic sugars, we
shall demonstrate how we can obtain the evaluation sequence of a program with
sugars in the syntax of the surface language by lazy desugaring.

Consider the following simple core language, which contains Boolean expres-
sions using the if construct.

t ::= (if t t t)
| #t
| #f

The semantics of the language is given by reduction semantics: we have two
reduction rules:

(if #t t1 t2) → t1
(if #f t1 t2) → t2

together with the following context rules specifying the reduction order.

C := (if C t t)
| • � context hole

The surface language is defined by two syntactic sugars:

(And t1 t2)
def
== (if t1 t2 #f)

(Or t1 t2)
def
== (if t1 #t t2)

A Lazy Desugaring System for Evaluating Programs with Sugars 247

Now let us demonstrate how to evaluate (And (Or #t #f) (And #f #t)) by
lazy desugaring to obtain the evaluation sequence on the surface level as follows.

(And (Or #t #f) (And #f #t))
−→ (And #t (And #f #t))
−→ (And #f #t)
−→ #f

Step 1: Calculating Context Rules and Reduction Rules for Sugars

In lazy desugaring, we first decide when a sugar should be desugared. To this
end, from the context rules of the core language, we automatically derive the
following context rules for the sugars.

C ::= (And C t2)
| (Or C t2)
| •

The idea of derivation will be discussed in Sect. 4. Intuitively, from the context
rules of (if t1 t2 #f), we can see that the condition, t1, is always evaluated first,
so (And t1 t2) should also have t1 evaluated first. This is indicated by the context
rule of And. Similarly, we can calculate the context rule for Or.

Step 2: Forming Mixed Language with Mixed Reduction Rules

To treat desugaring rules and the reduction rules (of the core language) in one
reduction system, we mix the surface language with the core language as in
Fig. 4, and define →m, a one-step reduction for the mixed language (the letter
m stands for “mixed”). It is derived from the reduction rules of the core lan-
guage and the desugaring rules of the surface language. Note that the desugaring
rules are a bit different from the initial definition. For instance, the desugaring
rule (And t1 t2)

def
== (if t1 t2 #f) has been changed to the reduction rule

(And v1 t2) → (if v1 t2 #f) in Fig. 4, indicating that this reduction rule can be
applied only when the first argument of Add has been reduced to a value. This
change in fact follows from the context rules ontained at step 1.

Now, by using →m, we can get the evaluation sequence in the mixed language
for the program

(And (Or #t #f) (And #f #t))

based on the computation order determined by the context rules obtained at
step 1. The evaluation sequence in the mixed language is shown below.

(And (Or #t #f) (And #f #t))
→m (And (if #t #t #f) (And #f #t))
→m (And #t (And #f #t))
→m (if #t (And #f #t) #f)
→m (And #f #t)
→m (if #f #t #f)
→m #f

248 Z. Yang et al.

t ::= (if t1 t2 t3)
| (And t1 t2)
| (Or t1 t2)
| #t
| #f

(a) Syntax.

C ::= (if C t2 t3)
| (And C t2)
| (Or C t2)
| •

(b) Context rules.

(And v1 t2) → (if v1 t2 #f)
(Or v1 t2) → (if v1 #t t2)

(if #t t1 t2) → t1
(if #f t1 t2) → t2

(c) Reduction rules.

Fig. 4. A small mixed language.

Step 3: Removing Unnecessary Terms

As seen above, our evaluation sequence in the mixed language may contain
constructs in the core language (e.g. (if #t (And #f #t) #f)). Since our goal
is to show the evaluation sequence of sugar programs, we give a flexible method
to clearly specify a filter showing which terms should be displayed. (A default
filter can be generated automatically.) For example, we may define the following
subset of the mixed language as a filter for displaying:

dt ::= (And dt dt)
| (Or dt dt)
| #t
| #f

With this filter, the sugars And and Or, together with Boolean constants #t and
#f, will be displayed. Notice that we make Boolean values displayable even if
they are in the core language. By clearly specifying what should be displayed,
we can always get the evaluation sequences we need. This practical step is not
essential to our system, so we will not go into detail in the rest of the paper.

In short, given a core language and a surface language defined by syntactic
sugars, the major effort to build an evaluator of the surface language is to derive
context rules and reduction rules from sugar definitions, which can be done
automatically by our method and will be explained in detail in the rest of this
paper.

3 Defining Languages and Sugars

As seen in previous sections, by introducing sugars we construct a language
hierarchy, which contains a “core language”, and “surface languages” extended
by sugars. Since our approach needs to inspect and manipulate context rules
and reduction rules explicitly, we give a language template for the definition of
the core language and sugars, which stipulates what languages are allowed in
our setting. These definitions and notations will be used when discussing the
algorithm and its properties in Sect. 4.

A Lazy Desugaring System for Evaluating Programs with Sugars 249

Syntax
t ::= (head t1 · · · tn) language constructs
v ::= (head t1/v1 · · · tn/vn) values

Context
C ::= (head t/v · · · C t/v · · ·)∗ zero or more context rules

| • context hole

Notion of reduction
R((head t/v · · ·)) one-step reduction without context

Fig. 5. Basic template for core language definition.

3.1 Core Language

We follow the syntax convention of Lisp for a core language, using S-expressions
to represent programs, and we use reduction semantics to formalize the semantics
of the core language.

The basic template for defining syntax, contexts, and reduction rules is shown
in Fig. 5. This is merely a template for language definitions, with which we can
encode more complex languages. In the template, all elements that are under-
lined will be replaced with some language-specific constructs. For example, head
should be chosen from a set of language constructs specified by the user, such
as lambda, if, let, etc. So the production of t may become t ::= (if t1 t2 t3).
In addition, a language also needs to specify a set of values, which is the set of
terms that can not be further reduced. Values must be defined in the format of
v in Fig. 5. Here t/v means either t or v, and whether it is t or v is fixed in a
given language. To encode the reduction semantics of the language, the user also
needs to specify a set of context rules, in the form of the right-hand side of the
production of C. Finally, the notion of reduction (as described in the literature
[5]) needs to be defined, which is the one-step reduction without context. For
simplicity, we define it using a partial function, R, which yields the reduced
term if the input is reducible, and ⊥ if the input is not reducible. The notion of
reduction should be extensible, in the sense that it can be extended to any mixed
language. The exact meaning of “extensible” will be made clear in Sect. 3.2.

The languages defined using this template, while having a restricted form
of syntax, can be arbitrarily complex, since the notion of reduction, R, can be
any partial function as long as it is extensible. We encode the language in the
running example, the Boolean language, using our template, in Fig. 6. Note that
constants can be encoded as language constructs with zero arguments, such as
(true). And #t is merely a shorthand of (true). In Sect. 4, we use Cc to denote
contexts generated by the non-terminal C of any given core language. In this
example, one valid context is

(if (if • #t #f) #f #t).

250 Z. Yang et al.

Syntax
t ::= (if t1 t2 t3) language constructs

| (true) | (false) constants
v ::= (true) | (false) constants are values

Context
C ::= (if C t1 t2) evaluating the condition first

| • context hole

Notion of reduction
R((if (true) t2 t3)) = t2 one-step reduction without context (true branch)
R((if (false) t2 t3)) = t3 (false branch)

Fig. 6. Core language example: Boolean expressions.

Sugar definition

(Sg t1/v1 · · · tn/vn)
def
== t

Fig. 7. Sugar definition.

Given a language definition, we can describe a small-step reduction of the
core language with a partial function as follows.

Rc(t) =
{

Cc[t′] � if t = Cc[t0] and R(t0) = t′

⊥ � otherwise (1)

And we naturally require that the reduction of any term t is deterministic, i.e.,
there does not exist more than one term t′ such that t can be reduced to.

3.2 Mixed Language

Given a core language, we can define syntactic sugars on top of it. In the theo-
retical discussion, we assume for simplicity that only one sugar is defined based
on the given language. The sugar definition follows a strict pattern, as illus-
trated in Fig. 7. We use Sg to denote a new sugar name, and use ti’s and vi’s
as metavariables (for terms and values), which appear on the right-hand side
(rhs). To distinguish the constructs from the core language and the names of
sugars, we make the head of the core language constructs in lowercase and the
first letter of sugar names in uppercase. Below is an example of a sugar definition
based on pre-defined sugars And, Or and core language’s construct not.

(Sg1 t1 t2 mt3)
def
== (And (Or t1 t3) (not t2))

To simplify later discussion of our algorithm, we assume that any metavari-
able on the left-hand side (lhs) of a sugar definition appears only once on the

A Lazy Desugaring System for Evaluating Programs with Sugars 251

Syntax
t ::= ... terms in the core language form

| (Sg t1 · · · tn) sugars
v ::= ... values in the core language
Context
C ::= ... context rules of the core language and hole

| (Sg t/v · · · C t/v · · ·)∗ zero or more Sg’s context rules

Notion of reduction
(head t/v · · ·) →m1 t remained reduction rules of core language
(Sg t/v · · ·) →m1 t reduction rule derived from desugaring rules

Fig. 8. Template for the mixed language.

rhs (linear expansion). (The restriction can be lifted with a simple extension.)
Given a sugar definition, we now define the mixed language. The mixed language
simply allows the sugar to appear as any part of a term. Formally, the syntax
of the mixed language is defined in Fig. 8. Notice that the arguments of a core
language’s head can also be a sugar now, like in

(if (And #t #f) #f #t).

We use D to denote the outermost desugaring function induced by the sugar
definition. For example, we have

D((And (And #t #f) #t)) = (if (And #t #f) #t #f)

for the And sugar above. Then we can naturally define the fully desugaring
function, DF , which works as traditional desugaring, recursively expanding all
sugars of the input term. Formally, DF is defined as follows.

DF ((Sg t1 · · · tn)) = DF (D((Sg t1 · · · tn)))
DF ((head t1 · · · tn)) = (head DF (t1) · · · DF (tn))

With the definition of DF , we can now make the meaning of the extensible
property of the core language clear.

Definition 1 (Extensible). The notion of reduction R of a core language is
extensible, if for any possible sugar, and for any term t in the mixed language,

DF (R(t)) = R(DF (t)), if R(t) �= ⊥.

It is saying that, for any term t that is reducible by the notion of reduction,
reducing it first and then fully desugaring it will be the same as fully desugaring
it first and then reducing it. One can easily check that reductions of our familiar
language constructs are usually extensible. For example, the reduction rules of
if is extensible, since it treats t2 and t3 as a whole, and thus the order of the
reduction and the desugaring does not matter.

252 Z. Yang et al.

4 Lazy Desugaring Algorithm

As shown in Sect. 2, given a core language, sugar definition and any term with
sugars, we can get the evaluation sequence of the term as the output. To obtain
the sequence, the first step is to generate the reduction semantics for the mixed
language, which is non-trivial. Then the sequence can be obtained easily by
recursively applying the one-step reduction on the term in the mixed language.
In this section, we start by describing a procedure that generates the reduction
semantics of the mixed language in Sect. 4.1, and then show that the semantics
gives the correct evaluation sequence in Sect. 4.2.

4.1 Algorithm Desciption

Supposing that we have a core language, we use the following function getRules
to generate the reduction semantics for a given desugaring rule (i.e., a sugar
definition):

Dlhs
def
== trhs, where Dlhs = (Sg t1/v1 · · · tn/vn),

and the generated semantics consist of zero or more context rules of the sugar,
and exactly one reduction rule corresponding to the original desugaring rule.
These rules, together with the context rules and reduction rules of the core
language, form the semantics of the mixed language. The following function
getRules calculates the context rules and the reduction rule of Sg, which are
put in a set.

getRules(Dlhs
def
== trhs) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{[ti := C] Dlhs} ∪
getRules

(
[ti := vi]

(
Dlhs

def
== trhs

))
� if ∃ i, Cc, s.t. trhs = Cc[ti]

{Dlhs →m1 trhs}
� otherwise

The substitutions are on the metalanguage level. For example, [ti := C] means
substituting a context hole C for metavariable ti. Metavariables ti and vi are
implicitly replaced with symbols ti and vi, respectively (because our sugar def-
inition and context rules use different notations). The substitution produces a
new rule. Rules need to be interpreted properly to represent actual contexts.
Intuitively, the function tries to match the rhs of sugar definition with context
rules of the core language, and calculates the context rules of the sugar accord-
ingly. When the expansion cannot be matched with any core context rules, we
acquire the last item of the returned list, Dlhs →m1 trhs, which is the reduction
rule (notion of reduction) of the sugar in the mixed language.

To demonstrate how getRules runs, we explain how the following invocation
executes.

getRules((And t1 t2)
def
== (if t1 t2 #f))

A Lazy Desugaring System for Evaluating Programs with Sugars 253

In the first step, trhs is Cc[t1], where Cc is (if • t2 #f). The metavariable
t1 is matched with the hole, so the first rule to be output is the context rule
(And C t2), indicating that the first operand of And sugar should be evaluated
first. Then the algorithm runs recursively, calling

getRules((And v1 t2)
def
== (if v1 t2 #f)).

This time there does not exist i, Cc, such that trhs = Cc[ti], so the second rule
output is the reduction rule

(And v1 t2) →m1 (if v1 t2 #f).

Finally, with the context rule and the reduction rule, the reduction semantics
of the mixed language can be formed (as partly seen in Fig. 4), following the
template in Fig. 8.

Based on the setting in the previous section, we can generate the semantics
of the mixed language by the rules of the core language and the calculated rules.
Following the definition of Cc and Rc in Sect. 3.1, we define the contexts of
the mixed language, Cm, and the partial reduction function, Rm, based on the
mixed language’s semantics as well. If there are more than one sugar definition,
we calculate their rules and add them to the mixed language one by one. With
the first sugar’s rules calculated, the language mixed by the core and the first
sugar becomes the new core language of the second sugar, and so on. If one
desugaring rule’s rhs depends on another syntactic sugar, the previous one’s
rules should be obtained first. Therefore, the context rules of sugars derived by
the algorithm must not be cyclically dependent for mutual recursive sugars.2

Finally, given any term in the mixed language, we can evaluate it by the mixed
semantics.

4.2 Properties

What will the semantics of the mixed language do? It is important to answer the
question because the evaluation sequences produced by lazy desugaring should
be meaningful enough to have a practical use. In this section, we state and prove
two important properties about the mixed semantics: emulation and laziness.

Emulation. The first property, emulation, adapted from the original resugaring
work by [14], is described as follows (a diagram illustrating the property graphi-
cally is shown in Fig. 9). It says that, a one-step reduction of any t in the mixed
language either (1) corresponds to a reduction of the desugared program in the
core language, or (2) corresponds to a single-step expansion of the sugar.

Property 4.1 (Emulation). For any term t = (H t1 · · · tn) where H is a
core construct head or a sugar name Sg, either Rm(t) is not defined, or one of
2 The sugars with cyclic dependence on evaluation contexts are ill-formed for general
desugaring.

254 Z. Yang et al.

t DF (t)

Rm(t) Rc(DF (t))

Mixed language Core language

desugar

desugar
(case 1)

des
uga

r

(ca
se

2)mixed reduction core reduction

Fig. 9. Illustration of emulation.

the following statements holds: (Case 1) DF (Rm(t)) = Rc(DF (t)); and (Case 2)
DF (Rm(t)) = DF (t).

Proof. By structural induction on the term t.

– Base case. If t is a normal form, Rm(t) = ⊥, which clearly satisfies the
property.

– Induction hypothesis. Every sub-term of t, namely ti, follows the emula-
tion property.

– Induction step. If t is not a normal form, we conduct the proof with a case
analysis.
1. H = Sg, and Rm(t) expands the outermost Sg in t. Thus, we have

DF (Rm(t)) = DF (t).

It turns out that the equation of case 2 holds.
2. H = Sg, and Rm(t) reduces ti, i.e.,

Rm(t) = (Sg t1 · · · Rm(ti) · · · tn).

In this case,

DF (Rm(t)) = D((Sg DF (t1) · · · DF (Rm(ti)) · · · DF (tn))).

On the other hand,

DF (t) = D((Sg DF (t1) · · · DF (ti) · · · DF (tn))).

If DF (Rm(ti)) = DF (ti), case 2 holds. Otherwise, if DF (Rm(ti)) =
Rc(DF (ti)), with Lemma 4.1 (which we state and prove later), we have

Rc(DF (t)) = D((Sg DF (t1) · · · Rc(DF (ti)) · · · DF (tn))).

Thus, we conclude that either DF (Rm(t)) = DF (t) or DF (Rm(t)) =
Rc(DF (t)) holds.

A Lazy Desugaring System for Evaluating Programs with Sugars 255

3. H = head, and Rm(t) is an application of the notion of reduction to t
itself (the outermost head). In this case, we are going to prove that the
equation of case 1 holds. That is,

DF (R((head t1 · · · tn))) = R((head DF (t1) · · · DF (tn))).

This is exactly the definition of the extensible requirement of the notion
of reduction in the core language.

4. H = head, and Rm(t) reduces ti. First, Rm and Rc will reduce a term
with the same index in

(head t1 · · · tn)

and
(head DF (t1) · · · DF (tn)),

respectively. The left-hand-side

DF (Rc(t)) = (head DF (t1) · · · DF (Rm(ti)) · · · DF (tn)).

As for the rhs of case 1 and 2, we have

DF (t) = (head DF (t1) · · · DF (ti) · · · DF (tn))

and

Rc(DF (t)) = (head DF (t1) · · · Rc(DF (ti)) · · · DF (tn)).

By induction hypothesis, we can conclude that either DF (Rm(t)) = DF (t)
or DF (Rm(t)) = Rc(DF (t)) holds.

��
In the above proof, we use Lemma 4.1 (for the second case at the induction

step), which is stated and proved as follows.

Lemma 4.1. For a term
t = (Sg t1 · · · tn),

if
Rm(t) = (Sg t1 · · · Rm(ti) · · · tn), (2)

and DF (Rm(ti)) �= DF (ti), then

Rc(DF (t)) = D((Sg DF (t1) · · · Rc(DF (ti)) · · · DF (tn))).

Proof. Equation (2) suggests that the sugar Sg is given a context rule like

(Sg t/v · · · Ci · · · t/v)

in the mixed semantics by the getRules algorithm. According to the algo-
rithm, D(t) will also reduce at ti’s location for core context rule. Because
DF (Rm(ti)) �= DF (ti), Rm(ti) reduces ti by core language’s reduction rule (as
opposed to desugaring), so DF (ti) can be reduced by core language’s reduction.
Thus, the lemma holds. ��

256 Z. Yang et al.

Laziness. Another property is laziness, which guarantees that desugaring acts
as “lazy” as possible. In other words, the algorithm exposes as many terms in
the surface level as possible. This property is crucial to the usefulness of lazy
desugaring.

With the desugaring rule of a sugar Sg, we can define a termn → term
function DSG (the terms can be natually extended to metavariables) such that

DSG(t1, · · · , tn) = D((Sg t1 · · · tn)).

Then it is obvious that

DF ((Sg t1 · · · tn)) = DSG(DF (t1), · · · , DF (tn)). (3)

Property 4.2 (Laziness). For any term t = (Sg t1 · · · tn), if

Rc(DF (t)) = DSG(DF (t1), · · · ,Rc(DF (ti)), · · · , DF (tn)) (4)

then there exists j, such that

Rm(t) = (Sg t1 · · · Rm(tj) · · · tn).

That is to say, the sugar Sg will not be expanded in the mixed language, if the
reduction occurs at one of the expanded DF (ti) in DF (t).

Proof. Equations 3 and 4 imply

DSG(t1/v1, · · · , tn/vn) = Cc[ti]

where the j-th sub-metavariable is vk when DF (tk) is a value, or tk otherwise.
Then according to the first branch of function getRules, the context rule

[ti := C] Dlhs will be obtained, where Dlhs = (Sg t1/v1 cdots tn/vn). Then
for any k, such that DF (tk) is a value,

– if all tk are also values, then based on the context rule above, equation j = i
holds;

– otherwise, simply assume that th is the only sub-term which is not a value,
when DF (tk) is. Based on the function getRules, one of the context rule
before computing [ti := C] Dlhs will make th be a context hole, equation
j = h holds. (If th is not the only one, there must be one of th corresponding
to the former context hole.) ��

5 Case Studies

We have implemented our lazy desugaring system in PLT Redex [5], a semantic
engineering tool based on reduction semantics [7]. It provides a useful environ-
ment for combining the core language’s semantics with rules from our algorithm.

We have successfully tested a bunch of syntactic sugars with our system.
In this paper, for the lack of space, we only describe the core algorithm of our
method in Sect. 4, but other features like hygienic, (mutual) recursive, pattern
based can be handled by simple extensions of our basic algorithm.

A Lazy Desugaring System for Evaluating Programs with Sugars 257

5.1 Simple Examples

We have seen several simple sugars in our running example, and we will give
other examples to demonstrate some interesting observations.

It is not hard to convert from SKI combinator to call-by-need lambda calcu-
lus. Consider the S combinator as an example, which can be defined as a sugar
below.

S
def
== (λN (x1 x2 x3) (x1 x3 (x2 x3)))

The interesting point is that we can use the call-by-need lambda calculus to
force an expansion of a sugar in case we need it. For example, we may consider
defining S in another form:

(S t1 t2 t3)
def
== (let (x t3) (t1 x (t2 x))).

In this case, the expansion of S will not happen until enough sub-terms have
been normal-formed, which is different from the original combinator.

Similarly, recall the And sugar defined before. We may redefine it with call-
by-need lambda calculus as follows.

ForceAnd
def
== (λN (x1 x2) (if x1 x2 #f))

Given any program with (ForceAnd t1 t2) as its sub-term, when (ForceAnd t1
t2) should be reduced, the evaluation sequence will look like this.

(. . . (ForceAnd t1 t2) . . .)
−→ (. . . ((λN (x1 x2) (if x1 x2 #f)) t1 t2) . . .)
−→ (. . . (if t1 t2 #f) . . .)
−→ . . .

5.2 More Examples

Since the essential idea of our approach is not complex, it is possible to extend
the basic algorithm to handle many kinds of complex sugar features. In this
section, we give two examples of hygienic sugar and higher-order sugar.

Given a typical hygienic sugar

(HygienicAdd t1 t2)
def
== (let (x t1) (+ x t2)),

for the program
(let (x 2) (HygienicAdd 1 x)),

the existing resugaring approach [15] uses an abstract syntax DAG to distinguish
different variables x in the desugared term

(let (x 2) (let (x 1) (+ x x))).

258 Z. Yang et al.

But in our lazy desugaring setting, the HygienicAdd sugar is not expanded until
necessary. The sequence will be as follows.

(let (x 2) (HygienicAdd 1 x))
−→ (HygienicAdd 1 2)
−→ (+ 1 2)
−→ 3

Higher-order functions from the functional language are introduced to many
other programming languages as important features. We attempt to process the
higher-order sugar with our method, for example, with the sugar3

(Filter t (list v1 v2 ...))
def
== (let (f t)

(if (f v1)
(cons v1 (Filter f (list v2 ...)))

(Filter f (list v2 ...))))

(Filter t (list))
def
== (list)

and we obtain the following sequence with the example.

(Filter (λ (x) (and (> x 1) (< x 4))) (list 1 2 3 4))

−→ (Filter (λ (x) (and (> x 1) (< x 4))) (list 2 3 4))

−→ (cons 2 (Filter (λ (x) (and (> x 1) (< x 4))) (list 3 4)))

−→ (cons 2 (cons 3 (Filter (λ (x) (and (> x 1) (< x 4))) (list 4))))

−→ (cons 2 (cons 3 (Filter (λ (x) (and (> x 1) (< x 4))) (list))))

−→ (cons 2 (cons 3 (list)))

−→ (cons 2 (list 3))

−→ (list 2 3)

6 Related Work

As we discussed before, our work is closely related to the pioneering work of
resugaring [14]. The idea of “tagging” and “reverse desugaring” is a clear expla-
nation of “resugaring”, but it becomes very complex when the rhs of the desug-
aring rule becomes complex. Our approach does not need reverse desugaring,
which is both more powerful and efficient. For hygienic sugar, compared with the
approach of using DAG to solve the variable binding problem [15], our approach
of “lazy desugaring” can achieve natural hygiene with a hygienic expansion.

Macros as multi-stage computations [10] is a work related to our lazy expan-
sion of sugars. Some other work [16] on multi-stage programming [18] indicates
that it is useful for implementing domain-specific languages. However, multi-
stage programming is a meta-programming method, which mainly aims for run-
time code generation and optimization. In contrast, our lazy desugaring method
treats sugars as part of a mixed language, rather than separating them by stag-
ing. Moreover, lazy desugaring gives us a chance to derive evaluation rules of
sugars, which is an advantage over multi-stage programming.
3 The expression ‘t ...’ means zero or more t as a pattern.

A Lazy Desugaring System for Evaluating Programs with Sugars 259

The lazy desugaring used to be explored [3]. They model the expansion with
explicit substitutions [1] and delay the expansion by subtle rules. They also
declare the benefit to avoid unnecessary expansions. While their main contribu-
tion is a formal semantics of macro expansion, the macros in a program do not
preserve their original formats. In contrast, our lazy desugaring can preserve the
sugars as long as they do not have to be expanded.

There is a long history of hygienic macro expansion [12], and a formal specific
hygiene definition was given by specifying the binding scopes of macros [11].
Another formal definition of the hygienic macro [2] is based on nominal logic
[9]. Instead of designing something special for the hygienic sugar as by [15], our
method can be easily combined with the existing hygienic method, because the
reverse desugaring is not needed.

Our implementation is built upon PLT Redex [5], a semantics engineering
tool, but it is possible to implement our approach with other semantics engineer-
ing tools [17,19] which aim to test or verify the semantics of languages. Their
methods can be easily combined with our approach to implementing more general
rule derivation. Ziggurat [8] is a semantics extension framework, also allowing
defining new macros with semantics based on existing terms of a language. It
should be useful for static analysis of the mixed language in our approach.

7 Conclusion

In this paper, we propose a novel lazy desugaring method which smartly evalu-
ates the programs with sugar. Our algorithm automatically generates the mixed
language semantics from the core language and the sugar definition, and achieves
“resugaring” by outputting the evaluation sequence of a program with sugars
based on the mixed language semantics. In our method, the most important
point is delaying the expansion of syntactic sugars by deriving suitable context
rules, which decide whether the mixed language should reduce the sub-term by
reduction rules of the core language or expand a sugar term. Our approach is
flexible for more extensions.

There are some interesting future works. One is to extend the framework
from evaluation to other language components such as type system, analyzer,
and optimizer. Also, we find it possible to derive stand-alone evaluation rules
for the surface language by means similar to how we calculate context rules.
This would make it more convenient to develop domain-specific languages. The
usefulness of lazy desugaring’s expressiveness is also worth exploring, since some
ill-formed sugar definitions4 for the general desugaring can be handled by lazy
desugaring.

4 For example, (Odd t)
def
== (let (x t) (if (> x 0) (not (Odd (- x 1))) #f)) is

ill-formed because of expansion without termination, but can be avoided by lazy
desugaring.

260 Z. Yang et al.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Levy, J.J.: Explicit substitutions. In: Proceed-
ings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 1990, pp. 31–46. Association for Computing Machinery,
New York (1989). https://doi.org/10.1145/96709.96712

2. Adams, M.D.: Towards the essence of hygiene. SIGPLAN Not. 50(1), 457–469
(2015). https://doi.org/10.1145/2775051.2677013

3. Bove, A., Arbilla, L.: A confluent calculus of macro expansion and evaluation. In:
Proceedings of the 1992 ACM Conference on LISP and Functional Programming,
LFP 1992, pp. 278–287. Association for Computing Machinery, New York (1992).
https://doi.org/10.1145/141471.141562

4. Culpepper, R., Felleisen, M., Flatt, M., Krishnamurthi, S.: From Macros to DSLs:
the evolution of racket. In: Lerner, B.S., Bod́ık, R., Krishnamurthi, S. (eds.) 3rd
Summit on Advances in Programming Languages, SNAPL 2019, Providence, RI,
USA, 16–17 May 2019. LIPIcs, vol. 136, pp. 5:1–5:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019)

5. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex,
1st edn. The MIT Press (2009)

6. Felleisen, M., et al.: A programmable programming language. Commun. ACM
61(3), 62–71 (2018)

7. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992). https://doi.org/
10.1016/0304-3975(92)90014-7

8. Fisher, D., Shivers, O.: Static analysis for syntax objects. In: Proceedings of the
Eleventh ACM SIGPLAN International Conference on Functional Programming,
ICFP 2006, pp. 111–121. Association for Computing Machinery, New York (2006).
https://doi.org/10.1145/1159803.1159817

9. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Form. Asp. Comput. 13(3–5), 341–363 (2002). https://doi.org/10.1007/
s001650200016

10. Ganz, S.E., Sabry, A., Taha, W.: Macros as multi-stage computations: type-safe,
generative, binding macros in MacroML. In: Proceedings of the Sixth ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2001, pp. 74–
85. Association for Computing Machinery, New York (2001). https://doi.org/10.
1145/507635.507646

11. Herman, D., Wand, M.: A theory of hygienic macros. In: Drossopoulou, S. (ed.)
ESOP 2008. LNCS, vol. 4960, pp. 48–62. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78739-6 4

12. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: Proceedings of the 1986 ACM Conference on LISP and Functional Program-
ming, LFP 1986, pp. 151–161. Association for Computing Machinery, New York
(1986). https://doi.org/10.1145/319838.319859

13. Landin, P.J.: The mechanical evaluation of expressions. Comput. J. 6(4), 308–320
(1964). https://doi.org/10.1093/comjnl/6.4.308

14. Pombrio, J., Krishnamurthi, S.: Resugaring: lifting evaluation sequences through
syntactic sugar. SIGPLAN Not. 49(6), 361–371 (2014). https://doi.org/10.1145/
2666356.2594319

15. Pombrio, J., Krishnamurthi, S.: Hygienic resugaring of compositional desugaring.
IGPLAN Not. 50(9), 75–87 (2015). https://doi.org/10.1145/2858949.2784755

https://doi.org/10.1145/96709.96712
https://doi.org/10.1145/2775051.2677013
https://doi.org/10.1145/141471.141562
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/1159803.1159817
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1145/507635.507646
https://doi.org/10.1145/507635.507646
https://doi.org/10.1007/978-3-540-78739-6_4
https://doi.org/10.1007/978-3-540-78739-6_4
https://doi.org/10.1145/319838.319859
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1145/2666356.2594319
https://doi.org/10.1145/2666356.2594319
https://doi.org/10.1145/2858949.2784755

A Lazy Desugaring System for Evaluating Programs with Sugars 261

16. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach
to runtime code generation and compiled DSLs. SIGPLAN Not. 46(2), 127–136
(2010). https://doi.org/10.1145/1942788.1868314

17. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

18. Taha, W.: A Gentle Introduction to Multi-stage Programming, pp. 30–50, January
2003

19. Vergu, V., Neron, P., Visser, E.: DynSem: a DSL for dynamic semantics spec-
ification. In: Fernández, M. (ed.) 26th International Conference on Rewriting
Techniques and Applications (RTA 2015). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 36, pp. 365–378. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.365.
http://drops.dagstuhl.de/opus/volltexte/2015/5208

https://doi.org/10.1145/1942788.1868314
https://doi.org/10.4230/LIPIcs.RTA.2015.365
http://drops.dagstuhl.de/opus/volltexte/2015/5208

On Transforming Cut- and
Quantifier-Free Cyclic Proofs

into Rewriting-Induction Proofs

Shujun Zhang(B) and Naoki Nishida(B)

Graduate School of Informatics, Nagoya University, Nagoya 4648601, Japan

shujun@trs.css.i.nagoya-u.ac.jp, nishida@i.nagoya-u.ac.jp

Abstract. An inductive definition set (IDS, for short) of first-order
predicate logic can be transformed into a many-sorted term rewrite sys-
tem (TRS, for short) such that a quantifier-free sequent is valid w.r.t. the
IDS if and only if a term equation representing the sequent is an induc-
tive theorem of the TRS. In this paper, to compare rewriting induction
(RI, for short) with cyclic proof systems, under certain assumptions, we
show that if a sequent has a cut- and quantifier-free cyclic proof, then
there exists an RI proof for a term equation of the sequent. To this end,
we propose a transformation of a cut- and quantifier-free cyclic proof of
the sequent into an RI proof for the corresponding equation.

Keywords: Term rewriting · Rewriting induction · Cyclic proof ·
Inductive theorem proving · Sequent calculus

1 Introduction

Inductive theorem proving is well investigated in functional programming and
term rewriting. In the field of term rewriting, rewriting induction [16] (RI, for
short) is one of the most powerful principles to prove equations to be inductive
theorems. Here, an equation s ≈ t of terms is called an inductive theorem of
a given (many-sorted) term rewrite system (TRS, for short) if the equation is
inductively valid w.r.t. the reduction of the TRS. RI has been extended to several
kinds of rewrite systems, e.g., logically constrained term rewrite systems [11]
(LCTRS, for short) that are models of not only functional but also imperative
programs [8].

RI consists of inference rules that are applied to RI processes (E ,H), where
E is a finite set of term equations and H is a TRS. The application of rewrite
rules in H corresponds to the application of induction hypotheses to subsequent
RI processes. Given a TRS R and a finite set E0 of term equations, we start
with the initial RI process (E0, ∅), and succeed in proving all equations in E0 to
be inductive theorems of R if the initial process is reduced to (∅,H′) for some

This work was partially supported by JSPS KAKENHI Grant Number 18K11160. The
first author was partially supported by Aichi Scholarship Program.

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 262–281, 2022.
https://doi.org/10.1007/978-3-030-99461-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_15&domain=pdf
http://orcid.org/0000-0003-2377-1679
http://orcid.org/0000-0001-8697-4970
https://doi.org/10.1007/978-3-030-99461-7_15

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 263

TRS H′, i.e., we find an RI proof (E0, ∅) � · · · � (∅,H′), where � denotes the
application of RI inference rules.

A cyclic proof system [6] is a proof system in sequent-calculus style for first-
order logics with inductive predicates which are defined by productions. In con-
trast to structural proofs which are (possibly infinite) derivation trees, cyclic
proofs are finite derivation trees with back-links from bud nodes to inner nodes
which are called companions. Such back-links allow explicit induction rules, mak-
ing trees finite. For the last decade, cyclic proof systems have been well investi-
gated for several logics, e.g., separation logic [17].

RI and cyclic proof systems have similar inference rules: Case analysis, the
application of rules in given systems, generalization, and so on. RI is based
on implicit induction by means of the application of rewrite rules representing
induction hypotheses; the measure of the induction is the terminating reduction
of the combined system of a given system and the induction hypotheses such
as R ∪ H′ above. Cyclic proofs have bud nodes that are connected with their
companion, and the back-link corresponding to induction; the measure of the
induction is that every (possibly infinite) path from the root passes infinitely
many times through the application of the case rule which is based on the
inductive definition of predicates.

From the above observation, RI and cyclic proof systems seem very similar
and we are interested in differences between RI and cyclic proof systems. If RI
and cyclic proof systems have the same proof power, then it would be easy to
apply several developed techniques for one to the other; otherwise, we must be
able to know something new for inductive theorem proving, e.g., one of them
could be improved by the advantage of the other. For this reason, it is worth
comparing RI and cyclic proof systems.

For the comparison, we need a common setting for target systems: RI proves
given equations to be inductive theorems of a given TRS; cyclic proof systems
prove validity of given sequents w.r.t. a given inductive definition set (IDS, for
short) which is a set of productions of the form A1 ... Am

A . For a common setting,
it has been shown in [26,27] that a (A1) GSC-terminating and (A2) orthogonal
IDS Φ such that

(A3) there is no ordinary predicate in Φ, and
(A4) any variable in A1, . . . , Am appears in A for any production A1 ... Am

A ∈ Φ,

can be transformed into a GSC-terminating confluent TRS RΦ such that a
quantifier-free sequent Γ � Δ is valid w.r.t. Φ if and only if the correspond-
ing equation seq(̂Γ ,

̂

Δ) ≈ � is an inductive theorem of RΦ ∪ Rseq . Here, ̂Γ and̂

Δ are terms representing the conjunction and disjunction of formulas in Γ and
Δ, respectively, Rseq is a TRS for seq, a TRS is called GSC-terminating if its ter-
mination is proved by the generalized subterm criterion [25, Theorem 33], and Φ
is called orthogonal (GSC-terminating) if {A → Ai | A1 ... An

A ∈ Φ, 1 ≤ i ≤ n}
is orthogonal (GSC-terminating) [27].

To compare RI with cyclic proof systems, we would like to show that a sequent
Γ � Δ has a cyclic proof if and only if there exists an RI proof for seq(̂Γ ,

̂

Δ) ≈ �.

264 S. Zhang and N. Nishida

To be more precise, we would like to transform cyclic proofs and RI proofs into
each other. For a common setting of cyclic proof systems and RI, we employ the
above transformation in [26,27]. In the following, we use Φ and RΦ as an IDS
with (A1)–(A4) and the TRS obtained from Φ by the transformation in [26,27],
respectively, without notice.

In this paper, for the goal above, we transform a quantifier-free cyclic proof
into an RI proof. As in [26,27], we assume (A1)–(A4). RI does not deal with
quantifiers directly, while every variable is universally quantified. For this reason,
we consider (A5) quantifier-free sequents and cyclic proofs. As the first step of
the transformation, we assume all of the following in addition to (A1)–(A5):

(A6) Cyclic proofs are cut-free,
(A7) each inductive definition has at most one premise,
(A8) for any sequent Γ � Δ in a cyclic proof, the multiset Γ is empty or

singleton and the multiset Δ is singleton,1

(A9) cyclic proofs do not include the application of (∧L1), (∧L2), (∨R1), (∨R2),
and (WL), and

(A10) any companion in cyclic proofs is the conclusion of an instance of the case
rule which corresponds to a case distinction depending on rules in Φ.

Note that (A8) implies (A7), but we explicitly assume (A7) to emphasize it.
The application of some sequent-calculus rules replaces a sequent by two

sequents. To simulate such a replacement by an RI inference step, we need rewrite
rules because RI inference rules replace equations with others by referring to
rewrite rules. Sequent-calculus rules (Axiom), (∨L), and (∧R) are represented
by rewrite rules that are inductive theorems of RΦ ∪ Rseq . For this reason, from
(Axiom), (∨L), and (∧R), we generate a GSC-terminating TRS Rscr such that
an equation is an inductive theorem of RΦ ∪ Rseq ∪ Rscr if and only if the
equation is an inductive theorem of RΦ ∪ Rseq (Sect. 3.2). This enables us to
use RΦ ∪ Rseq ∪ Rscr instead of RΦ ∪ Rseq to prove equations to be inductive
theorems. On the other hand, none of rewrite rules for (∧L1), (∧L2), (∨R1),
(∨R2), and (WL) is an inductive theorem of RΦ ∪ Rseq . For this reason, we
assume (A9). Rewrite rules representing the cut rule and some other inference
rules for sequent calculus may violate termination of RΦ ∪ Rseq ∪ Rscr . For this
reason, we assume (A6) and (A8), while (A8) sets a limit to the use of inference
rules of sequent calculus in cyclic proofs.

As our main result, we transform a cyclic proof for a sequent F � F ′ into
an RI proof ({ seq(˜F , ˜F ′) ≈ � }, ∅) �∗ (∅,H′) for some TRS H′ (Sect. 4), where
˜F , ˜F ′ are terms representing formulas F, F ′, respectively. The transformation
starts with the root of the cyclic proof, and proceeds step-by-step. We transform
a bud node into two continuous RI steps of rules Simplify and Delete. For the
step of Simplify at (E ,H), the companion has to be included in H as a rewrite
rule. To add the companion to H, Expand has been applied in advance in order
to transform the companion into an RI step. For this reason, we assume (A10).

1 This assumption indirectly implies that none of (¬L), (¬R), (CL), (CR), (WR),
(PL), and (PR) is used in cyclic proofs.

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 265

We have technical reasons of the assumptions (A1)–(A10), and we will discuss
the possibility of relaxing them in the conclusion of this paper (Sect. 5).

The contribution of this paper is the first step to compare RI with cyclic proof
systems. To the best of our knowledge, this is the first work for the comparison.
RI and cyclic proof systems have similar inference rules, but transformations
between RI proofs and cyclic proofs are not so trivial.

Related Work. A related work is a comparison between RI and Hoare-triple
proofs [13]: A proof of Hoare triples for a simple imperative program is equivalent
to an RI proof w.r.t. the LCTRS obtained from the imperative program. Proofs of
Hoare triples are not based on induction, while they often rely on loop invariants.
The other related work is the comparison between structural proofs and cyclic
induction [21]. This work may help us in the sense to compare RI and structural
proofs; instead of comparing RI and cyclic proof systems, we may compare RI
and structural proofs and then we may be able to indirectly compare RI and
cyclic proof systems. In [20], the relationship between term- and formula-based
induction principles has been discussed. This work would help us e.g., drop the
assumptions in this paper.

2 Preliminaries

In this section, we briefly recall basic notions and notations of many-sorted
term rewriting [22], RI [2,16], and cyclic proofs [6]. Basic familiarity with term
rewriting is assumed [3,15].

2.1 Many-Sorted Term Rewriting

Let S be a set of sorts. Throughout the paper, we use X as a family of S-
sorted sets of variables: X =

⊎

s∈S Xs. Each function symbol f in a signature
Σ is equipped with its sort declaration α1 × · · · × αn → α, written as f :
α1 × · · · × αn → α, where α1, . . . , αn, α ∈ S and n ≥ 0. The set of (well-sorted)
terms is denoted by T (Σ,X). The set of ground terms, T (Σ, ∅), is abbreviated
to T (Σ). The set of variables appearing in any of terms t1, . . . , tn is denoted by
Var(t1, . . . , tn). Let t be a term. The set of positions of t is denoted by Pos(t).
The function symbol at the root position ε of t is denoted by root(t). The subterm
of t at a position p ∈ Pos(t) is denoted by t|p; we write t � t|p, and t � t|p if
p = ε. Given a term s, we denote by t[s]p the term obtained from t by replacing
the subterm t|p at p ∈ Pos(t) by s.

A substitution σ is a sort-preserving mapping from variables to terms such
that the number of variables x with σ(x) = x is finite, which is naturally
extended over terms. The domain and range of σ are denoted by Dom(σ)
and Ran(σ), respectively. We may denote σ by {x1 �→ t1, . . . , xn �→ tn} if
Dom(σ) = {x1, . . . , xn} and σ(xi) = ti for all 1 ≤ i ≤ n. The application of a
substitution σ to a term t, σ(t), is abbreviated to tσ, and tσ is called an instance
of t. A most general unifier of terms s, t is denoted by mgu(s, t).

266 S. Zhang and N. Nishida

An S-sorted term rewrite system (TRS, for short) is a set of rewrite rules of
the form 	 → r such that the sorts of the LHS 	 and the RHS r coincide, 	 is
not a variable, and Var() ⊇ Var(r). The reduction relation →R of a TRS R is
defined as follows: s →R t if and only if there exist a rewrite rule 	 → r ∈ R, a
position p ∈ Pos(s), and a substitution θ such that s|p = 	θ and t = s[rθ]p.

The sets of defined symbols and constructors of R are denoted by DR and
CR, respectively: DR = {root() | 	 → r ∈ R} and CR = Σ \ DR. Terms in
T (CR,X) are called constructor terms (of R). A substitution σ is called ground
constructor if Ran(σ) ⊆ T (CR). A term t is called basic if t is of the form
f(t1, . . . , tn) such that f ∈ DR and t1, . . . , tn ∈ T (CR,X). A position p of a term
t is called basic if t|p is basic. The set of basic positions of t is denoted by B(t).
R is called quasi-reductive if every ground basic term is reducible.

We denote the set of dependency pairs of R by DP(R), and the estimated
dependency graph of R by EDG(R) (cf. [15, Section 5.4.1]). As a termination
criterion, we use a simplified variant of the generalized subterm criterion [25].
A multi-projection π for a set F of function symbols is a mapping that assigns
every symbol f ∈ F a non-empty multiset of its argument positions. We extend
π for terms as follows:

– π(t) = π(ti1) ⊕ · · · ⊕ π(tim
) if t = f(t1, . . . , tn), f ∈ F , and π(f) =

{i1, . . . , im} = ∅, and
– π(t) = {t}, otherwise,

where ⊕ is the union of multisets. For a binary relation � on terms, we denote
the multiset extension of � by �mul , and we write s �π t if π(s) �mul π(t).
R is said to be GSC-terminating if for every cycle P in EDG(R) there exists a
multi-projection π for D#

R such that P ⊆ �π and P ∩ �π = ∅ [27]. Note that
GSC-termination of R implies termination of R.

2.2 Rewriting Induction

Our formulation of RI [4,16] with the generalization (cf. [8]) follows [1,19]. In
the RI setting below, R is assumed to be terminating and quasi-reductive.

An equation (over a signature Σ) is a pair of terms, written as s ≈ t, such
that s, t ∈ T (Σ,X). We write s � t to denote either s ≈ t or t ≈ s. An equation
s ≈ t is called an inductive theorem (of R) if sθ ↔∗

R tθ for all ground constructor
substitutions θ with Var(s, t) ⊆ Dom(θ).

A pair (E ,H) consisting of an equation set E and a TRS H is called an RI pro-
cess. Inference rules of RI defined below replace an equation by some equations,
drop an equation, and insert some equations. From viewpoint of the replace-
ment, to explicitly show descendant/ancestor relationships between equations,
we attach to each equation s ≈ t a unique label ρ, written (ρ) s ≈ t, that is
a sequence of non-zero integers such as positions of terms;2 We may use nega-
2 E of an RI process (E , H) is a set, but due to attached labels, E may contain an

equation s ≈ t as ρ1 : s ≈ t and ρ2 : s ≈ t such that ρ1 �= ρ2. This is not a problem
because we can apply the same inference rules to both equations in order.

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 267

tive integers for freshly introduced labels. For case distinctions based on rewrite
rules, we assume some fixed order of rewrite rules for each function symbol f .

The basic inference rules of rewriting induction are defined over RI processes
as follows:

Simplify (E � {(ρ) s � t},H) �s (E ∪ {(ρ.1) s′ ≈ t},H),3 where s →R∪H s′.
Delete (E � {(ρ) s ≈ t},H) �d (E ,H), where s ↔∗

R∪E t.4

Expand (E � {(ρ) s � t},H) �e (E ∪Expdp(s, t),H ∪ {s → t}), where p ∈ B(s),
R ∪ H ∪ {s → t} is terminating, and Expdp(s, t) = {(ρ.i) (s[r]p)σ ≈ tσ | σ =
mgu(s|p,), 	 → r ∈ R is the i-th rule of root(s|p)}.

Generalize (E � {(ρ) sθ � tθ},H) �g (E ∪ {(ρ.1) s ≈ t},H).
Postulate (E ,H) �p (E ∪ {(δ.i) si ≈ ti | 1 ≤ i ≤ n},H), where δ is a fresh

negative integer to indicate that s1 ≈ t1, . . . , sn ≈ tn are newly introduced.5

We denote �s ∪ �d ∪ �e ∪ �g ∪ �p by �. In addition, �s with →R and
→H for side condition →R∪H are denoted by �sR and �sH, respectively. The
proof based on RI starts with the initial RI process (E , ∅) and proceeds by
applying the inference rules above to RI processes. We attach labels to equations
in E as follows: If E is singleton, then E = {(ε) s ≈ t}, and otherwise, E =
{(1) s1 ≈ t1, (2) s2 ≈ t2, . . .}. A sequence (E , ∅) = (E0,H0) � (E1,H1) � · · · �
(En,Hn) = (∅,H) is called an RI proof (of E).

Theorem 2.1 ([1,16]). For a finite set E of equations, if (E , ∅) �∗ (∅,H) for
some TRS H, then every equation in E is an inductive theorem of R.

Example 2.2. Let us consider the signature Σ1 = {+ : nat × nat → nat , s :
nat → nat , 0 : nat } and the TRS R1 = { 0 + y → y, s(x) + y → s(x + y) }
representing addition over natural numbers. Using RI, we can prove that x+0 ≈
x is an inductive theorem of R1 as follows:

({(ε) x + 0 ≈ x}, ∅) �e ({(1) 0 ≈ 0, (2) s(x1 + 0) ≈ s(x1)}, {(ε) x + 0 → x})
�d ({(2) s(x1 + 0) ≈ s(x1)}, {(ε) x + 0 → x})
�sH ({(2.1) s(x1) ≈ s(x1)}, {(ε) x + 0 → x})
�d (∅, {(ε) x + 0 → x})

2.3 First-Order Formulas with Inductive Definition Sets

In the rest of this paper, we consider a signature Σ with sorts S ⊇ {bool} such
that true, false : bool ∈ Σ. A symbol P : α1 × · · · × αn → bool ∈ Σ is called a
predicate symbol. A term P (t1, . . . , tn) with predicate symbol P : α1×· · ·×αn →
bool is called an atomic formula. For brevity, we assume that S = {α, bool}, and
every predicate symbol P has sort α × · · · × α → bool . In addition, we do not
deal with ordinary predicates but inductive predicates as in [26,27].

3 We may reuse (ρ) instead of (ρ.1).
4 We use a simplified side condition, which is enough for our purpose.
5 We may use (1)–(n) instead of (δ.1)–(δ.n) if none of (1)–(n) is used in E .

268 S. Zhang and N. Nishida

An inductive definition set (IDS, for short) Φ over Σ is a finite set of pro-

ductions of the form
A1 . . . Am

A
, where A,A1, . . . , Am are atomic formulas

over Σ. We denote the set of productions for a predicate symbol P by Φ|P :
Φ|P = {A1 ... Am

A ∈ Φ | root(A) = P}. We say that Φ is orthogonal (GSC-
terminating, resp.) if {A → Ai | A1 ... An

A ∈ Φ, 1 ≤ i ≤ n} is orthogonal (GSC-
terminating, resp.). In the rest of this paper, we assume that (A4) and (A7), i.e.,
every production in Φ is of the form either A or A′

A such that Var(A) ⊇ Var(A′).
For brevity, we allow A′ to be true, writing both A as A′

A .

Example 2.3 ([6]). Let us consider the signature Σ2 = { 0 : nat , s : nat →
nat , true, false : bool , E,O,N : nat → bool } and the following inductive defini-
tion set:

Φ2 =
{

N(0)
N(x)

N(s(x)) E(0)
O(x)

E(s(x))
E(x)

O(s(x))

}

Note that the symbols E, O, and N stand for predicates Even, Odd , and Nat ,
respectively. This IDS is orthogonal and GSC-terminating.

We now consider standard first-order quantifier-free formulas over Σ. Struc-
tures for Σ are irrelevant because we do not deal with any ordinary predicate. For
this reason, we do not deal with any structure for Σ, and define the semantics
of formulas over the term structure for Σ in the syntactic way as usual: For an
IDS Φ and a ground formula F , we write Φ |= F if F holds w.r.t. Φ (cf. [26,27]).
We say that a formula F ′ is valid w.r.t. Φ if Φ |= F ′θ for all ground substitutions
θ with Dom(θ) ⊇ Var(F ′).

A sequent is a pair Γ � Δ such that Γ,Δ are finite multisets of formulas,
which can be written like lists of formulas. Recall that we assume (A8), i.e., both
Γ and Δ are singleton. A sequent F � F ′ is said to be valid (w.r.t. Φ) if ¬F ∨F ′

is valid w.r.t. Φ.

Example 2.4. For Φ2 in Example 2.3, the sequent E(x) ∨ O(x) � N(x) is valid
w.r.t. Φ2 because ¬(E(x) ∨ O(x)) ∨ N(x) is valid w.r.t. Φ2.

2.4 Cyclic Proofs

In this section, we consider proofs in the sequent-calculus style. We follow the
formulation in [6] to define cyclic proofs. Thanks to our assumptions (A8) and
(A10), we do not have to consider infinitely progressing traces and simplify the
definition of cyclic proofs: Every infinite path of cyclic proofs we deal with has
exactly one trace, and every companion goes through a progressing point which
is the conclusion of (Case P) below.

Due to (A8), we consider simplified rules for sequent calculus illustrated in
Fig. 1, while none of (WL), (∧L1), (∧L2), (∨R1), and (∨R2) is used in cyclic
proofs due to (A9). For example, we do not consider the following full version of
(∨L):

Γ, F1 � Δ Γ ′, F2 � Δ′

Γ, Γ ′, F1 ∨ F2 � Δ,Δ′ (∨L)

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 269

Γ, F1 Δ Γ , F2 Δ

Γ, Γ , F1 ∨ F2 Δ, Δ
(∨L)

F F
(Axiom)

F F

Fθ F θ
(Subst)

F

F F
(WL)

F1 F

F1 ∧ F2 F
(∧L1)

F F1

F F1 ∨ F2
(∨R1)

F1 F F2 F

F1 ∨ F2 F
(∨L)

F2 F

F1 ∧ F2 F
(∧L2)

F F2

F F1 ∨ F2
(∨R2)

F F1 F F2

F F1 ∧ F2
(∧R)

Fig. 1. Sequent-calculus rules considered in this paper.

Instead, we use the simplified version in Fig. 1, which is derived by (∨L) above
and (CR) (Γ�F,F,Δ

Γ�F,Δ).
The rule of applying a production in Φ is defined as follows:

F � P (t1, . . . , tn)θ
(App Pi)

F � Aθ

F � P (u1, . . . , un)θ
(App Pj)

where P (t1,...,tn) ,
A

P (u1,...,un) ∈ Φ are the i- and j-th rules of P , respectively.
The rule for case distinctions based on productions in Φ is defined as follows:

A1 � F{yj �→ t1,j | 1 ≤ j ≤ n} . . . Ak � F{yj �→ tk,j | 1 ≤ j ≤ n}
P (y1, . . . , yn) � F

(Case P)

where Φ|P = { Ai

P (ti,1,...,ti,n) | 1 ≤ i ≤ k} for some k, and Ai

P (ti,1,...,ti,n) is renamed
as Var(ti,1, . . . , ti,n, Ai) ∩ Var(F) = ∅.

Next, for cyclic proofs, we define some notions. Note that given a function
f , we write f : X ⇀ Y and f : X → Y if f is partial and total, respectively.

Definition 2.5 (derivation tree and bud/companion nodes [6]). Let Seqs
be the set of well-formed sequents in some language, Rules some set of rules,
and n the maximum number of premises of any rule in Rules. A derivation tree
is a rooted tree T represented by a quadruple (V, s, r, p) such that

– V is a set of nodes,
– s : V → Seqs is a mapping that assigns a sequent to a node,
– r : V ⇀ Rules is a mapping that assigns a rule to a node,
– p : V ⇀ V n is a mapping that assigns premises nodes to a node, where pj(v)

denotes the j-th component of p(v), and
– for all nodes v ∈ V , pj(v) is defined just in case r(v) is a rule with m premises

(1 ≤ j ≤ m), and s(p1(v)) ... s(pm(v))
s(v) is an instance of rule r(v).

Note that the edges of the derivation tree is {(v, pj(v)) | v ∈ V, pj(v) is defined}.
A node v ∈ V is called

270 S. Zhang and N. Nishida

(App N1)
(1.1) N(0)

(1.2.1.1) O(x) N(x) †
(Subst)

(1.2.1) O(y) N(y)
(App N2)

(1.2) O(y) N(s(y))
(Case E)

(1) E(x) N(x) ‡

(2.1.1.1) E(x) N(x) ‡
(Subst)

(2.1.1) E(y) N(y)
(App N2)

(2.1) E(y) N(s(y))
(Case O)

(2) O(x) N(x) †
(∨L)

(ε) E(x) ∨ O(x) N(x)

Fig. 2. A cyclic proof for E(x) ∨ O(x) � N(x) [6].

– a bud node (of T) if r(v) is undefined, i.e., v is not the conclusion of any
proof-rule instance in T , and

– a companion for a bud node v′ if r(v) is defined and s(v) = s(v′).

Note that a companion does not have to be an ancestor of its bud nodes.

For readability, in illustrating a derivation tree, we attach to each node a label
as well as RI proofs; such labels are sequences of positive integers indicating
positions in the tree.

Definition 2.6 (cyclic proof [6]). A cyclic proof of a sequent F � F ′ is a pair
(T , ξ) of a finite derivation tree T = (V, s, r, p) (with v0 the root node) and a
mapping ξ : V ⇀ V such that

– the codomain of s is the set of well-formed sequents,
– s(v0) = (F � F ′),
– the codomain of r comprises the sequent calculus rules in this section, and
– every bud node v of T is assigned by ξ a companion, i.e., ξ(v) is a companion.

Theorem 2.7 ([6]). If a sequent F � F ′ has a cyclic proof, then F |=Φ F ′.

Example 2.8. Consider the IDS Φ2 in Example 2.3 again. Figure 2 illustrates a
cyclic proof for E(x) ∨ O(x) � N(x) [6]. Therefore, E(x) ∨ O(x) |=Φ2 N(x) holds.

3 From IDSs and Sequent-Calculus Rules into TRSs

In this section, we transform an IDS and sequent calculus rules into a TRS.

3.1 Transformation of IDSs into TRSs

First, we briefly recall a transformation of a GSC-terminating orthogonal IDS
Φ into a terminating confluent TRS RΦ in [26,27]. Logical connectives ∧,∨,¬
are represented by and, or : bool × bool → bool , not : bool → bool , respectively,
and for a formula F , ˜F is terms representing F : ˜b = b for b ∈ {true, false},
˜A = A for an atomic formula A, ˜¬F = not(˜F), ˜F1 ∧ F2 = and(˜F1, ˜F2), and
˜F1 ∨ F2 = or(˜F1, ˜F2).

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 271

We transform an orthogonal IDS Φ into a TRS RΦ as follows [26,27]:

RΦ = { A → A′ | A′
A ∈ Φ } ∪ { t → false | t ∈ Cop } ∪ Rpl

where Cop is a finite set of co-patterns [12] of {A → A′ | A′
A ∈ Φ }, and

Rpl =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

and(false, false) → false, or(false, false) → false, not(false) → true,
and(false, true) → false, or(false, true) → true, not(true) → false,
and(true, false) → false, or(true, false) → true,
and(true, true) → true, or(true, true) → true

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Theorem 3.1 ([27]). Let Φ is a GSC-terminating orthogonal. RΦ is a GSC-
terminating, confluent, and quasi-reductive constructor TRS such that for any
ground formula F ,

(1) Φ |= F if and only if ˜F →∗
RΦ

true, and
(2) Φ |= F if and only if ˜F →∗

RΦ
false.

Example 3.2 ([26,27]). We transform Φ2 in Example 2.3 into the following TRS:

RΦ2 =
{

N(0) → true, E(0) → true, O(0) → false,
N(s(x)) → N(x), E(s(x)) → O(x), O(s(x)) → E(x)

}

∪ Rpl

3.2 Transformation of Sequent-Calculus Rules into Rewrite Rules

In this section, we show rewrite rules for sequents and inference rules of sequent
calculus.

As explained in Sect. 1, we represent a sequent F � F ′ by a term seq(˜F , ˜F ′).
Unlike [26,27], we introduce a sort prop for sequents, i.e., seq : bool×bool → prop.
Let us consider an inference rule in the following form:

F1 � F ′
1 F2 � F ′

2

F � F ′

To show validity of F � F ′, we consider validity of F1 � F ′
1 and F2 � F ′

2. We
can use and to represent such a meta logical-connective “and”, but we avoid
nests of sequents in the term representation such as seq(seq(E(x),O(x)),N(x)),
which are not necessary in our setting. To avoid such nests, we distinguish meta-
logical connectives from logical connectives in formulas by means of prop. For
meta truth-values, we prepare � : prop and ⊥ : prop. For meta conjunction,
we prepare & : prop × prop → prop, and we use infix notation for & under
left-associativity. We define rewrite rules for seq, which are almost the same as
those in [26,27], as follows:

Rseq =
{

seq(false, false) → �, seq(false, true) → �, ⊥& ⊥ → ⊥, ⊥& � → ⊥,
seq(true, false) → ⊥, seq(true, true) → �, �& ⊥ → ⊥, �& � → �

}

Note that �,⊥ mean validity and invalidity of sequents, respectively.

272 S. Zhang and N. Nishida

Theorem 3.3. For a GSC-terminating orthogonal IDS Φ, RΦ ∪Rseq is a GSC-
terminating, confluent, and quasi-reductive constructor TRS such that a sequent
F � F ′ is valid w.r.t. Φ if and only if seq(˜F , ˜F ′) ≈ � is an inductive theorem of
RΦ ∪ Rseq .

Proof (Sketch). The difference of RΦ ∪ Rseq from [26,27] is the use of sort prop,
constants �,⊥, and binary symbol &. This difference does not affect the proof
of the same claim in [26,27]. Note that as in [26,27], the proof of this theorem
relies on Theorem 3.1. ��

As described in Sect. 1, we need rewrite rules to simulate the applica-
tion of some sequent-calculus rules in Fig. 1, except for rule (Subst) which is
simulated by rule Generalize. We transform an inference rule of the form
F1�F ′

1 ... Fn�F ′
n

F�F ′ into the following rewrite rule:

seq(˜F , ˜F ′) → seq(˜F1, ˜F ′
1)& · · · & seq(˜Fn, ˜F ′

n)

Note that if n = 0, then the rule is seq(˜F , ˜F ′) → �, and if n = 1, then it
is seq(˜F , ˜F ′) → seq(˜F1, ˜F ′

1). For example, we transform rule (∨L) in Fig. 1
into seq(or(x, y), z) → seq(x, z)& seq(y, z). This rule (i.e., seq(or(x, y), z) ≈
seq(x, z)& seq(y, z)) is an inductive theorem of Rpl ∪ Rseq (⊆ RΦ ∪ Rseq). This
means that to prove an equation to be an inductive theorem of RΦ, we can use
the above rule in an RI proof for the equation.

Theorem 3.4. Let R be a quasi-reductive and terminating TRS over a signa-
ture Σ, and R′ a TRS over Σ such that for each rule 	′ → r′ ∈ R′, 	′ ≈ r′ is an
inductive theorem of R. An equation s ≈ t over Σ is an inductive theorem of R
if and only if it is an inductive theorem of R ∪ R′.

Proof. Since rules in R′ are inductive theorems of R, we have that ↔R′ ⊆ ↔∗
R ⊆

↔∗
R∪R′ on ground terms. Therefore, this claim holds. ��

For rules (Axiom), (∨L), and (∧R) in Fig. 1, we define the following TRS:

Rscr =

⎧

⎨

⎩

(Axiom) seq(x, x) → true,
(∨L) seq(or(x, y), z) → seq(x, z)& seq(y, z),
(∧R) seq(x, and(y, z)) → seq(x, y)& seq(x, z)

⎫

⎬

⎭

None of the other rules in Fig. 1 is an inductive theorem of Rpl∪Rseq : Let us rep-
resent (∧L1) by seq(and(x, y), z) → seq(x, z); then, seq(and(x, y), z) ≈ seq(x, z)
is not an inductive theorem of Rpl ∪Rseq because e.g., seq(and(true, false), false)
→∗

Rpl∪Rseq
� and seq(true, false) →∗

Rpl∪Rseq
⊥. The treatment of (∧L1), (∧L2),

(∨R1), and (∨R2) will be discussed in the conclusion.

Theorem 3.5. If an equation seq(s, t) ≈ � is an inductive theorem of RΦ ∪
Rseq ∪ Rscr , then it is an inductive theorem of RΦ ∪ Rseq .

Proof. For each rule 	 → r in Rscr , 	 ≈ r is an inductive theorem of RΦ ∪ Rseq .
Therefore, by Theorem 3.4, this claim holds. ��

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 273

Thanks to Theorem 3.5, we can use RΦ ∪ Rseq ∪ Rscr for RI proofs of equations
to be proved inductive theorems of RΦ ∪ Rseq .

In transforming a cyclic proof into an RI proof in Sect. 4, we need to ensure
termination of RΦ ∪Rseq ∪Rscr with rewrite rules of the form seq(. . .) → �. To
prove the termination, we use the following termination criterion.

Theorem 3.6 ([27]). Let R1 and R2 be TRSs such that

Cycles(EDG(R1)) ∪ Cycles(EDG(R2)) ⊇ Cycles(EDG(R1 ∪ R2))

where Cycles(EDG(R′)) denotes the set of cycles in EDG(R′). Then, both R1

and R2 are GSC-terminating if and only if R1 ∪ R2 is so.

Theorem 3.7. Let Φ be a GSC-terminating orthogonal IDS, and H be a TRS
such that every rule in H is of the form seq(F, F ′) → �. Then, RΦ ∪ Rseq ∪
Rscr ∪ H is GSC-terminating.

Proof. It follows from Theorem 3.3 that RΦ ∪ Rseq is GSC-terminating. By def-
inition, Rseq ∪ H is GSC-terminating, Cycles(EDG(RΦ)) = Cycles(EDG(RΦ ∪
Rseq)), and Cycles(EDG(Rscr))) = Cycles(EDG(Rscr ∪ H)). Because of seq :
bool×bool → prop, Rscr∪H and RΦ∪Rseq do not affect edges of EDG(RΦ∪Rseq)
and EDG(Rscr ∪ H), respectively, and hence Cycles(EDG(RΦ ∪ Rseq ∪ Rscr ∪
H)) = Cycles(EDG(RΦ)) ∪ Cycles(EDG(Rscr ∪ H)). Therefore, it follows from
Theorem 3.7 that RΦ ∪ Rseq ∪ Rscr ∪ H is GSC-terminating. ��

4 Transformation of Cyclic Proofs into RI Proofs

In this section, we show our main result by means of a transformation of cyclic
proofs into RI proofs.

4.1 Overview of Our Transformation

Using the cyclic proof in Fig. 2, we show our idea of transforming a cyclic proof
into an RI proof. As described in Sect. 1, the transformation starts with the
root of the cyclic proof, and proceeds step-by-step. The resulting RI proof is
illustrated in Fig. 3.

The initial equation of the resulting RI proof is seq(˜F , ˜F ′) ≈ �, equations in
the RI proof are of the form seq(˜F , ˜F ′) ≈ � and thus, oriented rules are of the
form seq(˜F , ˜F ′) → �.

The application of (∨L) to the root node is transformed into steps (1)–(4),
(Case E) for node (1) into step (4)–(5), (Case O) for node (2) into steps (5)–
(8); (App E1) for node (1.1) into steps (8)–(11); (App E2) for node (1.2) into
step (11)–(12); (Subst) for node (1.2.1) into step (12)–(13); bud node (1.2.1.1)
with † into steps (13)–(15); (App N2) for node (2.1) into step (15)–(16); (Subst)
for node (2.1.1) into step (16)–(17); bud node (2.1.1.1) with ‡ into steps (17)–
(19). Companions ‡, † are oriented and included in the second elements of RI
processes.

274 S. Zhang and N. Nishida

Fig. 3. An RI proof obtained from the cyclic proof in Fig. 2.

Steps (6)–(8) in Fig. 3 show that equations generated by rules of the form 	 →
false can be dropped by Simplify and Delete. In our setting, such equations
can always be dropped. Expand is applied to (E�{seq(P (s1, . . . , sn), t) ≈ �},H)
making a case distinction for P (s1, . . . , sn). For this reason, s, t, and p in the
definition of Expand are seq(P (s1, . . . , sn), t), �, and 1, respectively, and all of
the following side conditions hold:

– p ∈ B(s) (by definition), and
– RΦ ∪ Rseq ∪ Rscr ∪ H ∪ {seq(s, t) → �} is terminating (by Theorem 3.7).

This implies that the above side conditions can be dropped from the definition.
For this reason, we simplify Expand, replacing it by the following one which is
specialized to seq(. . .) ≈ �:

Expand+ (E � {(ρ) seq(P (s1, . . . , sn), t) � �},H)
�e (E ∪ E ′,H ∪ {seq(P (s1, . . . , sn), t) → �})

where E ′ = {(ρ.i) seq(rσ, tσ) ≈ � | σ = mgu(P (s1, . . . , sn),), 	 → r ∈ R is

the i-th rule of P , r = false}.

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 275

Table 1. A transformation of the application of rules in cyclic proofs into RI steps.

Rules r(v) in cyclic proofs RI steps

(Case P) Expand+ (�e)

(App Pi) for inner nodes Simplify with P (. . .) → P ′(. . .) ∈ RΦ (�sR)

(App Pi) for leaves Simplify with P (. . .) → true ∈ RΦ & Delete (�sR · �d)

bud nodes Simplify with H & Delete (�sH · �d)

(Axiom), (∨L), (∧R) Simplify with Rscr & Delete (�sR · �d)

(Subst) Generalize (�g)

For rules of the form 	 → false with root() = P , the equations of the form
seq(false, tσ) ≈ � are generated, and such equations are dropped by Delete.
For this reason, Expand+ is a derived rule of Expand and Delete.

In summary, the application of rules in cyclic proofs are simulated by RI
steps as shown in Table 1.

4.2 Formulation of Our Transformation

In this section, we formulate a transformation of cyclic proofs into RI proofs.
Since we can transform cyclic proof choosing nodes non-deterministically, the
proof can be transformed into several RI proofs, and thus, the transformation is
non-deterministic.

Definition 4.1 (transformation TΦ of cyclic proofs into RI proofs). Let
Φ be a GSC-terminating orthogonal IDS. We define a transformation TΦ of a
cyclic proof P = ((V, s, r, p), ξ) with v0 the root node into an RI proof as

TΦ(P) = TΦ(V, ({˜s(v0) ≈ �}, ∅))

where TΦ takes a set of nodes in V and an RI process (E ,H) as input and returns
a sequence of RI processes, and is inductively defined as follows:

– TΦ(∅, (E ,H)) = (E ,H),
– TΦ({v} � V ′, (E � {˜s(v) � �},H)) =

• (E ∪ {˜s(v) ≈ �},H) �e TΦ(V ′, (E ∪ {(vi) ˜s(vi) ≈ � | 1 ≤ i ≤ n},H ∪
{˜s(v) → �})) if r(v) = (Case P), where p(v) = v1 . . . vn,

• (E ∪ {˜s(v) ≈ �},H) �sR TΦ(V ′, (E ∪ {(v1) ˜s(v1) ≈ �},H)) if r(v) =
(AppPi) and v is not a leaf, where p(v) = v1,6

• (E ∪ {˜s(v) ≈ �},H) �+
sR (E ∪ {� ≈ �},H) �d TΦ(V ′, (E ,H)) if either

r(v) = (AppPi) and v is a leaf or r(v) = (Axiom),
• (E ∪ {˜s(v) ≈ �},H) �sH (E ∪ {� ≈ �},H) �d TΦ(V ′, (E ,H)) if v is a

bud node and V has no companion of v, i.e., ξ(v) /∈ V ′,

6 In this case, by definition, v has an exactly one child.

276 S. Zhang and N. Nishida

• (E ∪ {˜s(v) ≈ �},H) �sR (E ∪ {˜s(v1) & ˜s(v2) ≈ �},H)
�p (E ∪ {˜s(v1) & ˜s(v2) ≈ �} ∪ {(v1) ˜s(v1) ≈ �, (v2) ˜s(v2) ≈ �},H)
�d TΦ(V ′, (E ∪ {(v1) ˜s(v1) ≈ �, (v2) ˜s(v2) ≈ �},H)) if r(v) is either
(∨L) or (∨R), where p(v) = v1v2,

• (E ∪ {˜s(v) ≈ �},H) �g TΦ(V ′, (E ∪ {(v1) ˜s(v1) ≈ �},H)) if r(v) =
(Subst), where p(v) = v1,

where V ′ has no ancestor of v.

In the definition of TΦ, we required that V ′ has no ancestor of v. This is
because a node in P cannot be transformed before its parent. To transform a
bud node v, we need to transform its companion in advance because the rule in
H obtained from the companion is applied to ˜s(v) ≈ � to be reduced to � ≈ �.
It would be usual to use the breadth-first search to choose nodes in applying TΦ.

Theorem 4.2 (correctness of TΦ). Let Φ be a GSC-terminating orthogonal
IDS, P = ((V, s, r, p), ξ) a cyclic proof with v0 the root node. Then, TΦ(P) is an
RI proof for ˜s(v0) ≈ �.

Proof. For V ′ ⊆ V , we denote the set {v ∈ V ′ | the parent of v is not in V ′} by
anc(V ′). By definition, TΦ(P) = TΦ(V, ({˜s(v0) ≈ �}, ∅)) = TΦ(V, ({˜s(v) ≈
� | v ∈ anc(V)}, ∅)). It suffices to show that for a descendant-closed7 set

V ′ ⊆ V , E = {˜s(v) ≈ � | v ∈ anc(V ′)}, and H ⊇ { ˜s(ξ(v′)) → � | v′ ∈
V ′, ξ(v′) is defined}, TΦ(V ′, (E ,H)) is an RI proof such that

– the head of the resulting sequence of TΦ(V ′, (E ,H)) is (E ,H), and
– for each call of TΦ with TΦ(V1, (E1,H1)) during the computation,

• E1 = {˜s(v1) � � | v1 ∈ anc(V1)}, and

• H1 ⊇ H ∪ { ˜s(ξ(v1)) → � | v1 ∈ V1, ξ(v1) is defined}.

We prove this claim by induction on |V ′|. Since the case where V ′ = ∅ is trivial,
we consider the remaining case where V ′ = ∅. Let V ′ = {v} � V ′′ and E =
E ′ � {˜s(v) � �} such that V ′′ has no ancestor of v. By definition, suppose that

TΦ({v} � V ′′, (E ′ � {˜s(v) � �},H)) =
(E ′ � {˜s(v) � �},H) �∗ (E ′′,H′′) � TΦ(V ′′, (E ′′′,H′′′))

It follows from the definition of TΦ that (E ′ � {˜s(v) � �},H) �∗ (E ′′,H′′) �
(E ′′′,H′′′) is an RI step, and E ′′′ = { ˜s(v′′) � � | v′′ ∈ anc(V ′′)}. By induction
hypothesis, TΦ(V ′′, (E ′′′,H′′′)) is an RI proof such that

– the head of the resulting sequence of TΦ(V ′′, (E ′′′,H′′′)) is (E ′′′,H′′′), and
– for each call of TΦ with TΦ(V2, (E2,H2)) during the computation,

• E2 = {˜s(v2) � � | v2 ∈ anc(V2)}, and

7 V ′ is descendant-closed if for any v′ ∈ V ′, all descendants v′′ of v′ are in V ′.

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 277

• H2 ⊇ H′′′ ∪ { ˜s(ξ(v2)) → � | v2 ∈ V2, ξ(v2) is defined}.

Note that if V2 = ∅, then E2 = ∅, and thus, the RI proof ends with (∅,H2).
Therefore, TΦ({v} � V ′′, (E ′ � {˜s(v) � �},H)) is an RI proof such that

– the head of the resulting sequence of TΦ(V ′, (E ,H)) is (E ,H), and
– for each call of TΦ with TΦ(V1, (E1,H1)) during the computation,

• E1 = {˜s(v1) � � | v1 ∈ anc(V1)}, and

• H1 ⊇ H ∪ { ˜s(ξ(v1)) → � | v1 ∈ V1, ξ(v1) is defined}. ��

Finally, we show our main result.

Theorem 4.3 (main result). Let Φ be a GSC-terminating orthogonal IDS. If
a sequent F � F ′ has a cyclic proof w.r.t. Φ, then there exists an RI proof of
{ seq(˜F , ˜F ′) ≈ �}, i.e., ({ seq(˜F , ˜F ′) ≈ �}, ∅) �∗ (∅,H) for some TRS H.

Proof. Let P be a cyclic proof for F � F ′. Then, by Theorem 4.2, TΦ(P) is an
RI proof for seq(˜F , ˜F ′) ≈ �. ��

5 Conclusion

In this paper, under the assumptions (A1)–(A10), we proved that if a sequent
F � F ′ has a cyclic proof w.r.t. a GSC-terminating orthogonal IDS Φ, then
there exists an RI proof ({ seq(˜F , ˜F ′) ≈ �}, ∅) �∗ (∅,H) for some TRS H. To
this end, we showed a transformation of cyclic proofs into RI proofs. Due to
our restrictive assumptions, we limit the scope of cyclic proofs and the result in
this paper does not imply that RI is more powerful than cyclic proof systems.
For example, termination of given systems (RΦ ∪ Rseq ∪ Rscr in this paper)
is necessary for RI proofs and we assume GSC-termination of IDSs (Φ in this
paper), which is not necessary for cyclic proofs.

As future work for the comparison of RI with cyclic proof systems, under the
same assumptions, we will show that for a sequent F � F ′, if there exists an RI
proof for seq(˜F , ˜F ′) ≈ �, then there exists a cyclic proof for the sequent. Since
(Case P) of cyclic proof systems is only applicable to P (y) of P (y) � F ′, but
Expand of RI is applicable to seq(C[P (. . .)], F ′) ≈ � and seq(F,C[P (. . .)]) ≈
� w.r.t. P (y) below logical connective (e.g., ¬P (y)) in the first and second
argument of seq. In addition, Expand can make a case distinction on P (y) below
a logical connective, e.g., ¬P (y). Such a difference makes the transformation of
RI proofs into cyclic proofs more difficult. Due to the difference, we will show that
for an IDS Φ and a sequent F � F ′, if there exists an RI proof for seq(˜F , ˜F ′), then
there exists a cyclic proof for Γ, F � F ′ w.r.t. Φ′ (⊇ Φ) such that Γ is a multiset
of valid instances Q(t) of new predicates Q, i.e., Q(t) is valid w.r.t. Φ′ \ Φ. Such
a cyclic proof implies that F � F ′ is valid w.r.t. Φ. After showing the conjecture
above, from the comparison, we will have some insights into differences between
RI and cyclic proof systems w.r.t. e.g., inference rules.

Finally, we briefly discuss the possibility of relaxing assumptions (A1)–(A10).

278 S. Zhang and N. Nishida

(A1) As mentioned above, termination of given systems is necessary for RI,
and thus, we have this assumption, limiting the scope of IDSs. Given a
terminating IDS Φ, to ensure the existence of RI proofs, we have to ensure
termination of RΦ ∪ Rseq ∪ Rseq ∪ H such that H ⊆ {seq(F, F ′) → � |
F � F ′appears in a given cyclic proof}. In relaxing GSC-termination of
Φ to termination of {A → Ai | A1 ... An

A ∈ Φ, 1 ≤ i ≤ n}, we have not
established a method to to ensure termination of RΦ because termination
is not modular in general and we have to take rules for co-patterns into
account. On the other hand, GSC-termination is modular under some
property (Theorem 3.6), and termination is proved by referring to depen-
dency pairs only.
On the other hand, we will try to drop this assumption because cyclic
proof systems work for coinductively defined predicates which are useful
in applying inductive theorem proving to verification (cf. [24]). Termina-
tion of RΦ is necessary for Theorem 3.1 (2). Though, the transformation of
cyclic proofs into RI proofs may not rely on Theorem 3.1 (2). Since equa-
tions corresponding to sequents are of the form seq(F, F ′) ≈ �, validity of
sequents may be reduced to one-pass reachability [18], a proof system of
which is based on coinduction and is similar to RI. One of possibilities for
coinductively defined predicates is to consider e.g., a one-pass reachability
proof system instead of RI.

(A2) Orthogonality of Φ is assumed to compute co-patterns and to ensure con-
fluence of RΦ, which is necessary for Theorem 3.1 (2), as well as termi-
nation. In dropping (A1), we may also drop this assumption.

(A3) As described in Sect. 1, RI has been extended to LCTRSs. An extension
of the result in this paper to RI for LCTRSs which can naturally deal
with ordinary predicates may allow us to use ordinary predicates.

(A4) RI has been extended to conditional rewriting [4,5]. An extension of the
result in this paper to RI for conditional rewriting may enable us to drop
this assumption. For such an extension, we will refer to a transformation
of Horn clauses into TRSs (cf. [7]) because IDSs can be considered Horn
clauses.

(A5) As described in Sect. 1, the usual setting of RI cannot deal with existential
quantifiers in equations. To overcome such a downside, RI for LCTRSs
has been extended to existentially quantified equations [14]. An extension
of the result in this paper to such a setting may allow us to consider cyclic
proofs with quantifiers.

(A6) It would be very challenging to drop this assumption. We must have two
possibilities: One is to leave (A6), and apply cut elimination—a transfor-
mation of proofs into an equivalent cut-free one—to cyclic proofs as much
as possible in advance; the other is to generate a conditional rewrite rule
for the cut rule, extending our result to conditional rewriting. It is known
that cut elimination is not successful for all cyclic proofs [9,10], and the
cut rule plays an important role in e.g., verifying software as well as quan-
tifiers [23]. For these reasons, we would like to take the second approach
above to dropping this assumption.

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 279

(A7) As mentioned in Sect. 1, this assumption is automatically implied by (A8).
This is not for any technical reason.

(A8) To partially relax this assumption, we have to consider multisets Γ,Δ of
formulas for a sequent Γ � Δ, extend our result to the setting of e.g., AC -
TRSs. For the extension, we will adapt Theorem 3.6 to AC-termination.
Note that the generalized subterm criterion is defined for AC-termination.

(A9) We did not allow cyclic proofs to have the application of (∧L1), (∧L2),
(∨R1), (∨R2), and (WL). To deal with them, we have to show a stronger
property of our RI setting. For the page limitation, we leave the property
as future work, while we have already proved it.

(A10) One of possibilities to drop this assumption is to show that a cyclic proof
is transformed into another one which satisfies this assumption. Under
(A8), such a transformation would be possible. The case without (A8)
would be challenging as future work.

We leave the above relaxation for future work.

Acknowledgement. We gratefully acknowledge the anonymous reviewers for their
useful comments and suggestions to improve the paper.

References

1. Aoto, T.: Rewriting induction using termination checkers. In: Proceedings of the
JSSST 24th Annual Conference, pp. 1–4. No. 3C-C (2007). http://www.nue.ie.
niigata-u.ac.jp/∼aoto/research/papers/report/itp.pdf. (in Japanese)

2. Aoto, T., Toyama, Y.: Ground confluence prover based on rewriting induction.
In: Kesner, D., Pientka, B. (eds.) Proceedings of the 1st International Conference
on Formal Structures for Computation and Deduction. LIPIcs, vol. 52, pp. 33:1–
33:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/
10.4230/LIPIcs.FSCD.2016.33

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998). https://doi.org/10.1017/CBO9781139172752

4. Bouhoula, A.: Automated theorem proving by test set induction. J. Symb. Comput.
23(1), 47–77 (1997). https://doi.org/10.1006/jsco.1996.0076

5. Bouhoula, A., Jacquemard, F.: Sufficient completeness verification for conditional
and constrained TRS. J. Appl. Log. 10(1), 127–143 (2012). https://doi.org/10.
1016/j.jal.2011.09.001

6. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). https://doi.org/10.1007/11554554 8

7. Fu, P., Komendantskaya, E.: Operational semantics of resolution and productivity
in Horn clause logic. Formal Aspects Comput. 29(3), 453–474 (2016). https://doi.
org/10.1007/s00165-016-0403-1

8. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. ACM Trans. Comput. Logic 18(2), 14:1–14:50 (2017). https://
doi.org/10.1145/3060143

http://www.nue.ie.niigata-u.ac.jp/~aoto/research/papers/report/itp.pdf
http://www.nue.ie.niigata-u.ac.jp/~aoto/research/papers/report/itp.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2016.33
https://doi.org/10.4230/LIPIcs.FSCD.2016.33
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1006/jsco.1996.0076
https://doi.org/10.1016/j.jal.2011.09.001
https://doi.org/10.1016/j.jal.2011.09.001
https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/s00165-016-0403-1
https://doi.org/10.1007/s00165-016-0403-1
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143

280 S. Zhang and N. Nishida

9. Kimura, D., Nakazawa, K., Terauchi, T., Unno, H.: Failure of cut-elimination in
cyclic proofs of separation logic. Comput. Softw. 37(1), 39–52 (2020). https://doi.
org/10.11309/jssst.37.1 39

10. Komendantskaya, E., Rozplokhas, D., Basold, H.: The new normal: We cannot
eliminate cuts in coinductive calculi, but we can explore them. Theory Pract. Logic
Program. 20(6), 990–1005 (2020). https://doi.org/10.1017/S1471068420000423

11. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp.
343–358. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4
24

12. Lazrek, A., Lescanne, P., Thiel, J.: Tools for proving inductive equalities, relative
completeness, and omega-completeness. Inf. Comput. 84(1), 47–70 (1990). https://
doi.org/10.1016/0890-5401(90)90033-E

13. Mizutani, S., Nishida, N.: Transforming proof tableaux of Hoare logic into inference
sequences of rewriting induction. In: Cirstea, H., Sabel, D. (eds.) Proceedings of the
4th International Workshop on Rewriting Techniques for Program Transformations
and Evaluation. Electronic Proceedings in Theoretical Computer Science, vol. 265,
pp. 35–51. Open Publishing Association (2018). https://doi.org/10.4204/EPTCS.
265.4

14. Nishie, K., Nishida, N., Sakai, M.: Extending rewriting induction to existentially
quantified equations. IEICE Tech. Rep. SS2019-17 Inst. Electron. Inf. Commun.
Eng. 119(246), 25–30 (2019). (in Japanese)

15. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
https://doi.org/10.1007/978-1-4757-3661-8

16. Reddy, U.S.: Term rewriting induction. In: Stickel, M.E. (ed.) CADE 1990. LNCS,
vol. 449, pp. 162–177. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-
52885-7 86

17. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th IEEE Symposium on Logic in Computer Science, pp. 55–
74. IEEE Computer Society (2002). https://doi.org/10.1109/LICS.2002.1029817

18. Rosu, G., Stefanescu, A., Ciobâcă, Ş., Moore, B.M.: One-path reachability logic.
In: Proceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, pp. 358–367. IEEE Computer Society (2013). https://doi.org/10.1109/
LICS.2013.42

19. Sato, H., Kurihara, M.: Multi-context rewriting induction with termination check-
ers. IEICE Trans. Inf. Syst. 93-D(5), 942–952 (2010). https://doi.org/10.1587/
transinf.E93.D.942

20. Stratulat, S.: A unified view of induction reasoning for first-order logic. In: Turing-
100. The Alan Turing Centenary. EPiC Series in Computing, vol. 10, pp. 326–352.
EasyChair (2012)

21. Stratulat, S.: Structural vs. cyclic induction: a report on some experiments with
Coq. In: Davenport, J.H., et al. (eds.) Proceedings of the 18th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 29–36.
IEEE (2016). https://doi.org/10.1109/SYNASC.2016.018

22. Terese: Term Rewriting Systems. No. 55 in Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, Cambridge (2003)

23. Tsukada, T., Unno, H.: Software model-checking as cyclic-proof search. Proc. ACM
Program. Lang. 6, 1–29 (2022). https://doi.org/10.1145/3498725

https://doi.org/10.11309/jssst.37.1_39
https://doi.org/10.11309/jssst.37.1_39
https://doi.org/10.1017/S1471068420000423
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1016/0890-5401(90)90033-E
https://doi.org/10.1016/0890-5401(90)90033-E
https://doi.org/10.4204/EPTCS.265.4
https://doi.org/10.4204/EPTCS.265.4
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/3-540-52885-7_86
https://doi.org/10.1007/3-540-52885-7_86
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2013.42
https://doi.org/10.1109/LICS.2013.42
https://doi.org/10.1587/transinf.E93.D.942
https://doi.org/10.1587/transinf.E93.D.942
https://doi.org/10.1109/SYNASC.2016.018
https://doi.org/10.1145/3498725

On Transforming Cut- and Quantifier-Free Cyclic Proofs into RI Proofs 281

24. Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving horn clauses.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 571–591.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 30

25. Yamada, A., Sternagel, C., Thiemann, R., Kusakari, K.: AC dependency pairs
revisited. In: Talbot, J., Regnier, L. (eds.) Proceedings of the 25th EACSL
Annual Conference on Computer Science Logic. LIPIcs, vol. 62, pp. 8:1–8:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.
4230/LIPIcs.CSL.2016.8

26. Zhang, S., Nishida, N.: On transforming inductive definition sets into term rewrite
systems. In: Nakano, K., Riesco, A. (eds.) Informal Proceedings of the 8th Interna-
tional Workshop on Rewriting Techniques for Program Transformations and Evalu-
ation, pp. 1–10 (2021). https://www.ipl.riec.tohoku.ac.jp/wpte2021/Zhang21wpte.
pdf

27. Zhang, S., Nishida, N.: Transforming orthogonal inductive definition sets into con-
fluent term rewrite systems, November 2021, https://www.trs.css.i.nagoya-u.ac.jp/
∼nishida/DB/pdf/ZhangNishida 21 wpte21-journal-submission.pdf. An extended
version of [26] under submission to a journal

https://doi.org/10.1007/978-3-319-63390-9_30
https://doi.org/10.4230/LIPIcs.CSL.2016.8
https://doi.org/10.4230/LIPIcs.CSL.2016.8
https://www.ipl.riec.tohoku.ac.jp/wpte2021/Zhang21wpte.pdf
https://www.ipl.riec.tohoku.ac.jp/wpte2021/Zhang21wpte.pdf
https://www.trs.css.i.nagoya-u.ac.jp/~nishida/DB/pdf/ZhangNishida_21_wpte21-journal-submission.pdf
https://www.trs.css.i.nagoya-u.ac.jp/~nishida/DB/pdf/ZhangNishida_21_wpte21-journal-submission.pdf

Author Index

Ancona, Davide 1

Barbieri, Pietro 1
Boulytchev, Dmitry 152

Chakravarty, Manuel M. T. 94
Chen, Sheng 19

Faisal Al Ameen, Mahmudul 39

Guan, Zhichao 243
Gupta, Gopal 224

Hirata, Michikazu 57
Hu, Zhenjiang 243

Kameyama, Yukiyoshi 133
Keller, Gabriele 94
Kiselyov, Oleg 75
Kobayashi, Naoki 39
Krijnen, Jacco O. G. 94

Macedo, José Nuno 112
Masuda, Masahiro 133
Minamide, Yasuhiko 57
Moitra, Abha 171

Nishida, Naoki 262
Noor, Md Rabib 19

Rozplokhas, Dmitry 152

Saraiva, João 112
Sato, Ryosuke 39
Sato, Tetsuya 57
Schrijvers, Tom 186
Shbita, Basel 171
Swierstra, Wouter 94

van den Berg, Birthe 186
Vidal, Germán 205
Viera, Marcos 112

Wang, Huaduo 224

Xiao, Yushuo 243

Yang, Ziyi 243

Zhang, Shujun 262
Zucca, Elena 1

	 Preface
	 Organization
	Abstracts of Keynotes
	 There are No Integers in Discrete Optimisation Models!
	 Adventures in Building Reliable Distributed Systems with Liquid Haskell (Abstract)
	 From Program Synthesis to Program Transformation: Case Study in Reduction Parallelization
	 Contents

	Enhancing Expressivity of Checked Corecursive Streams
	1 Introduction
	2 Stream Calculus
	3 Examples
	4 Well-Definedness Check
	5 An Optimized Algorithm for Well-Definedness
	6 Related and Future Work
	References

	Improving Type Error Reporting for Type Classes
	1 Introduction
	2 TEC, Informally
	3 Type System
	3.1 Syntax
	3.2 Type System

	4 Constraint Generation and Solving
	4.1 Variational Context Reduction

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Asynchronous Unfold/Fold Transformation for Fixpoint Logic
	1 Introduction
	2 Preliminaries: MuArith and Unfold/Fold Transformations
	3 Finding Unfolding Sequences via Size Change Abstraction
	3.1 Step 1: Size Change Abstraction
	3.2 Step 2: Computing Summary of Unfolding Sequences
	3.3 Step 3: Finding Candidate Unfolding Sequences
	3.4 Step 4: Checking Candidate Unfolding Sequences
	3.5 Extensions

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Program Logic for Higher-Order Probabilistic Programs in Isabelle/HOL
	1 Introduction
	2 Program Verification in PPV
	2.1 A Verification Framework: PPV
	2.2 Verification of Monte Carlo Approximation

	3 Quick Review: Measure Theory and the Giry Monad
	4 Quasi-Borel Spaces
	4.1 Standard Borel Spaces
	4.2 Quasi-Borel Spaces
	4.3 Connection Between Measurable Spaces and Quasi-Borel Spaces
	4.4 The Probability Monad on QBS

	5 Verification Framework PPV in Isabelle/HOL
	5.1 Probabilistic Programming Language HPProg
	5.2 Assertion Logic PL
	5.3 Program Logic UPL
	5.4 Verification of Monte Carlo Approximation

	6 Conclusion
	References

	Generating C
	1 Introduction
	2 Prelude: Direct C Generation
	3 Offshoring
	3.1 Type Inference
	3.2 Extensibility
	3.3 Control Structures: Loops and Exits
	3.4 Pointers and References

	4 Tagless-Final Embedding
	5 Related Work
	6 Evaluation and Conclusions
	References

	Translation Certification for Smart Contracts
	1 Introduction
	2 The Architecture of the Certifier
	2.1 Characterising a Transformation
	2.2 Proof Search
	2.3 Semantics Preservation
	2.4 Certificate Generation

	3 Translation Relations of the Plutus Tx Compiler
	3.1 Variable Renaming
	3.2 Inlining
	3.3 Let-Floating
	3.4 Dead-Code Elimination
	3.5 Encoding of Non-strict Bindings
	3.6 Encoding of Recursive Bindings
	3.7 Encoding of Datatypes
	3.8 Encoding of Non-recursive Bindings

	4 Evaluation
	4.1 Compilers and Correctness
	4.2 Certificates and Smart Contracts
	4.3 Engineering Considerations

	5 Related Work
	6 Conclusions and Further Work
	References

	Zipping Strategies and Attribute Grammars
	1 Introduction
	2 Ztrategic: Zipper-Based Strategic Programming
	2.1 The Zipper Data Structure
	2.2 Strategic Programming

	3 Strategic Attribute Grammars
	3.1 Zipper-Based Attribute Grammars
	3.2 Strategic Attribute Grammars

	4 Expressiveness and Performance
	5 Related Work
	6 Conclusions
	References

	Unified Program Generation and Verification: A Case Study on Number-Theoretic Transform
	1 Introduction
	2 Background
	2.1 Number-Theoretic Transform
	2.2 NTT Code Generation in the Tagless-Final Style

	3 Verification Tasks and Strategy
	4 Interval Analysis on the NTT Program
	4.1 Modular Arithmetic on Intervals
	4.2 Verifying Bounds
	4.3 Improving Lazy Reduction

	5 Verifying Functional Correctness
	5.1 Naive Approach
	5.2 Decomposition of Verification Task
	5.3 Verifying Modular-Reduction Algorithms
	5.4 Proving Correctness of the Simplified NTT Program

	6 Discussion
	7 Related Work
	8 Conclusion
	Appendix A Programs to be Verified and their Semantics
	References

	Scheduling Complexity of Interleaving Search
	1 Introduction
	2 Background: Syntax and Semantics of miniKanren
	3 Scheduling Complexity
	4 Complexity Analysis via Symbolic Execution
	5 Evaluation
	6 Related Work
	7 Discussion and Future Work
	References

	Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming
	1 Introduction
	1.1 Inductive Logic Programming
	1.2 Cyber-Physical Systems
	1.3 From Source Code to a Knowledge Graph

	2 Integrated Control-Concept Induction Platform
	2.1 Problem Definition
	2.2 Overview of Our Approach: An ILP Platform
	2.3 Generating the ILP Data
	2.4 Rule Generation from ILP Data via an Illustrative Example

	3 Evaluation and Discussion
	4 Related Work and Conclusions
	A simple_PI_controller.c
	References

	A Functional Account of Probabilistic Programming with Possible Worlds
	1 Introduction
	2 Background: Possible Worlds
	3 The Possible Worlds Monad
	3.1 Facts and Worlds
	3.2 The Monad
	3.3 Boolean Algebras
	3.4 Example: A Bit of Gambling

	4 Commutative Semiring Interpretation
	4.1 Commutative Semirings
	4.2 The Possible Worlds as d-DNNF
	4.3 Optimized d-DNNF Representations

	5 Circular Queries
	5.1 Least Fixed-Points

	6 Related Work
	7 Conclusion
	References

	Explanations as Programs in Probabilistic Logic Programming
	1 Introduction
	2 Probabilistic Logic Programming (PLP)
	3 Explanations as Programs
	3.1 Explanations in PLP
	3.2 Explanations as Programs

	4 The Explanation Generator xgen
	5 Related Work
	6 Concluding Remarks and Future Work
	References

	FOLD-R++: A Scalable Toolset for Automated Inductive Learning of Default Theories from Mixed Data
	1 Introduction
	2 Background
	2.1 Inductive Logic Programming
	2.2 Default Rules

	3 The FOLD-R Algorithm
	4 The FOLD-R++ Algorithm
	4.1 Literal Selection
	4.2 Explainability

	5 Experiments
	6 Related Work and Conclusion
	References

	A Lazy Desugaring System for Evaluating Programs with Sugars
	1 Introduction
	2 Overview
	3 Defining Languages and Sugars
	3.1 Core Language
	3.2 Mixed Language

	4 Lazy Desugaring Algorithm
	4.1 Algorithm Desciption
	4.2 Properties

	5 Case Studies
	5.1 Simple Examples
	5.2 More Examples

	6 Related Work
	7 Conclusion
	References

	On Transforming Cut- and Quantifier-Free Cyclic Proofs into Rewriting-Induction Proofs
	1 Introduction
	2 Preliminaries
	2.1 Many-Sorted Term Rewriting
	2.2 Rewriting Induction
	2.3 First-Order Formulas with Inductive Definition Sets
	2.4 Cyclic Proofs

	3 From IDSs and Sequent-Calculus Rules into TRSs
	3.1 Transformation of IDSs into TRSs
	3.2 Transformation of Sequent-Calculus Rules into Rewrite Rules

	4 Transformation of Cyclic Proofs into RI Proofs
	4.1 Overview of Our Transformation
	4.2 Formulation of Our Transformation

	5 Conclusion
	References

	Author Index

