
SixthSense:
Debugging Convergence Problems in Probabilistic
Programs via Program Representation Learning

Saikat Dutta(�), Zixin Huang, and Sasa Misailovic

University of Illinois, Urbana, Illinois, 61820, USA
{saikatd2,zixinh2,misailo}@illinois.edu

Abstract. Probabilistic programming aims to open the power of Bayesian
reasoning to software developers and scientists, but identification of problems
during inference and debugging are left entirely to the developers and typically
require significant statistical expertise. A common class of problems when
writing probabilistic programs is the lack of convergence of the probabilistic
programs to their posterior distributions.
We present SixthSense, a novel approach for predicting probabilistic pro-
gram convergence ahead of run and its application to debugging convergence
problems in probabilistic programs. SixthSense’s training algorithm learns a
classifier that can predict whether a previously unseen probabilistic program
will converge. It encodes the syntax of a probabilistic program as motifs
– fragments of the syntactic program paths. The decisions of the classifier
are interpretable and can be used to suggest the program features that con-
tributed significantly to program convergence or non-convergence. We also
present an algorithm for augmenting a set of training probabilistic programs
that uses guided mutation.
We evaluated SixthSense on a broad range of widely used probabilistic pro-
grams. Our results show that SixthSense features are effective in predicting
convergence of programs for given inference algorithms. SixthSense obtained
Accuracy of over 78% for predicting convergence, substantially above the
state-of-the-art techniques for predicting program properties Code2Vec and
Code2Seq. We show the ability of SixthSense to guide the debugging of conver-
gence problems, which pinpoints the causes of non-convergence significantly
better by Stan’s built-in warnings.

Keywords: Probabilistic Programming · Debugging · Machine Learning

1 Introduction

Probabilistic programs (PP) express complicated Bayesian models as simple computer
programs, used in various domains [22, 38, 44, 54], including the important applica-
tions like epidemic modeling [23] and single-cell genomics [42]. Probabilistic languages
extend the conventional languages with constructs for sampling from probabilistic dis-
tributions (prior), conditioning on data, and probabilistic queries, such as the distribu-
tion reshaped by conditioning on the data (posterior) [26]. Probabilistic programming

c© The Author(s) 2022
E. B. Johnsen and M. Wimmer (Eds.): FASE 2022, LNCS 13241, pp. 123–144, 2022.
https://doi.org/10.1007/978-3-030-99429-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99429-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-99429-7_7

systems (PP systems) compile the programs and compute the results using an efficient
inference algorithm, while hiding the intricate details of inference. Most practical
inference algorithms are non-deterministic and approximate. For instance, Markov
Chain Monte Carlo (MCMC) algorithms [28, 40, 48] run a probabilistic program
multiple times (each of which is referred to as an iteration) to sample data points from
the posterior distribution. They drive today’s popular PP systems, such as Stan [9].

MCMC algorithms have a nice theoretical property: in the limit, the samples
they generate come from the correct posterior distribution. But, in practice, a user
can only execute the algorithm for a finite time budget and hence needs to fine-tune
the algorithms to balance between quality of inference and execution time. This
complicates development: the programmer needs to write the program in a way
that interacts well with the algorithm and select some parameters specific for the
inference algorithms. For instance, inference may fail to properly initialize, silently
produce inaccurate results, or generate non-independent samples from the posterior
distribution. Even identifying and afterward resolving these challenges currently
requires significant statistical expertise.

An important property for successful inference is convergence, since non-convergence
is often a cause of inaccurate (or wrong) result. Convergence means the samples gen-
erated by the inference algorithm represent the target distribution. While there exists
metrics for convergence (e.g. Gelman-Rubin diagnostic [25]) in statistic literature,
there lacks a comprehensive study of what model features could cause non-convergence.
Thus, getting a data-driven understanding of the causes could help developers to
debug the non-convergence issues, and does not require expert knowledge. Moreover,
the existing convergence diagnostics are not predictive – they cannot be determined
ahead of time i.e. without running the program. Building prediction model for con-
verges ahead of time would save the time to run programs (often taking minutes or
more). It would also enable a faster program debug/update cycle.

1.1 SixthSense

We present SixthSense, the first approach for identifying convergence problems in
probabilistic programs ahead-of-run. SixthSense adopts a learning approach: its trains
a classifier that can, for a previously unseen probabilistic program and its data, predict
whether the program will converge in a specified number of steps (for a given threshold
of Gelman-Rubin diagnostic). The decisions of the classifier are interpretable and can
be used to suggest which program features leads to the convergence/non-convergence
of the program.

To train such a classifier, SixthSense needs to overcome several challenges that are
beyond the big-code techniques studied for conventional languages [4, 5, 31, 37, 47].
First, probabilistic programs are small (20-100 lines of code) compared to conventional
programs but their execution is complicated, with conditioning statements for data
and non-standard semantics that performs Bayesian inference. Second, due to their
relative novelty, there are few publicly-available probabilistic programs that can be
used for training. Finally, we should be able to interpret why the programs are
predicted to convergence or non-convergence in order to guide developers to debug
the non-convergence issues.

124 S. Dutta et al.

Representing Structural, Data, and Runtime Features: To learn a classifier, we
embed the syntactic and semantic program features in a numerical vector. To encode
program structure, we observe that many snippets of code in probabilistic programs
form patterns (sampling from distributions, hierarchical models, relations between
variables) that may repeat within the single program or across programs. We identify
those patterns asmotifs – fragments of probabilistic program code, consisting of several
adjacent abstract-syntax-tree nodes (e.g., neighboring statements or expressions).

SixthSense learns the set of features from the subset of motifs it identifies in the
code. It groups together similar motifs by calculating a low-dimensional representation
of the motifs using randomized discrete projections [8]. This way, it can balance
the accuracy of prediction and the size of the learned models. We also engineered
a set of data features (e.g., means, variances) and the runtime features – diagnostics
from early warmup iterations that the inference algorithms compute as they exe-
cute. These features cannot be learned by the approaches that focus on static code
features [4, 5, 31, 47].
Mutation-Based Program Generation: We present a novel technique based on
program and data mutations that produces a diverse set of probabilistic programs
with a good balance between converging and non-converging programs, with the goal
to augment the training set. Our technique takes a set of seed programs as input,
analyzes them and applies a set of pre-defined mutations which aim to change the
semantics of generated programs. To obtain better diversity, our algorithm identifies
(via locality-sensitive hashing [6]) and discards any mutant that is too similar to the
one that was generated before.
Interpretable Predictor Results: For problem diagnosis and debugging of proba-
bilistic programs, it is important to be able to interpret why the algorithm predicted
non-convergence. Our learning algorithm leverages random forests for this task. It
relates the likely cause of non-convergence to specific statements or expressions
in the program code.

1.2 Results

In this work, we learn the classifiers for convergence of three popular classes of
probabilistic programs: Regression, Time Series, and Mixture Models. We obtained
166 seed programs, across the three classes, from an open source repository of Stan
programs [52]. For each class, SixthSense generated more than 10,000 mutants. We
train our classifiers for multiple thresholds of the convergence score (Gelman-Rubin
diagnostic) to evaluate the sensitivity of our classifiers.

Our evaluation shows the effectiveness of SixthSense in predicting convergence
of probabilistic programs compared to two state-of-the-art learning algorithms for
conventional code: Code2Vec [5] and Code2Seq [4]. We measure the prediction quality
via Accuracy (ratio of sum of True Positives and True Negatives to total tested
programs), Precision (ratio of True Positives to total classified as Positives) and Recall
(ratio of True Positives to total actual Positives). Here True Positive is a program that
is predicted to converge and it indeed converges; the others are defined analogously.

SixthSense obtains an average Accuracy score across the three model classes of
78% for convergence prediction (with almost equally high prediction and recall). Sixth-
Sense, with just code features outperforms Code2Vec [5] by 8 percentage points on

SixthSense: Debugging Convergence Problems in Probabilistic Programs 125

average and Code2Seq [4] by 5 percentage points on average (for a tight convergence
threshold). Moreover, we also show that Accuracy scores increase to over 83% when
adding runtime features obtained after just the first 10-200 samples from the warmup
stage of the inference algorithm (which is less than 10% of its run-time). SixthSense
also has higher precision for all model classes, and recall higher than Code2Vec but
similar to Code2Seq. SixthSense’s prediction time is less than a second and the model
size is modest – less than 20 MB, which is 25-37% smaller than Code2Vec/Code2Seq.

We further demonstrate, by studying 40 non-converging programs, that SixthSense
can pinpoint the locations in the code that cause non-convergence for 29 programs. In
contrast, Stan’s runtime warnings point to non-convergence causes in only 5 programs.

1.3 Contributions

We highlight the main contributions of this paper:

⋆ SixthSense System1. SixthSense is a system for learning to predict convergence
of probabilistic programs that aids programmers in pinpointing and understanding
the sources of convergence problems in PPs.

⋆ Predicting convergence of probabilistic programs. We present the first
approach for learning predictors for convergence of probabilistic programs based
on encoding the structure of probabilistic programs using code motifs.

⋆ Program generation for training set augmentation. We present a new muta-
tion algorithm for augmenting the training set with PPs that have diverse structural
and runtime characteristics.

⋆ Experimental evaluation. We show that SixthSense predicts convergence for
three popular classes of programs, with higher accuracy, precision, and recall than
two state-of-the-art approaches. In our case study SixthSense helps pinpoint likely
cause of non-convergence for 29 out of 40 non-converging programs, compared to
5 programs for which Stan’s runtime warnings help.

2 Example

We describe how SixthSense computes motifs, trains the predictor and demonstrate
how we can use it to guide the debugging of probabilistic programs. Figure 1 shows
two variants of a Mixture model in Stan. A Mixture Model is a probabilistic model
that assumes that each observed data point comes from one out of N independent
sub-distributions of values. Each sub-distribution has an associated probability (called
mixing ratio) of being chosen.

The programs A and B in Figure 1(a), 1(b) have several (unknown) parameters:
mean mu and variance sigma of the normal sub-distribution; theta is the mixing
ratio of the sub-distributions and p1 is an auxiliary parameter. The programs also
access the array of observations, y, of size K. Each observation in y is assumed
to be sampled from one of these two sub-distributions: a normal distribution (as
normal lpdf) or a uniform distribution (as the constant 0.5). For the program B,

1 SixthSense is publicly available at https://github.com/uiuc-arc/sixthsense.

126 S. Dutta et al.

https://github.com/uiuc-arc/sixthsense

{<39,76,47,10,54>: 3,
<47,10,54,18,98>: 1,
<65,31,43,50,98>: 3
...

}
Param Param Param

theta

log_mix

{<39,76,47,10,54>: 0,
<47,10,54,18,98>: 0,
<65,31,43,50,98>: 3
...

}

Not
Converging

Converging

(h) Trained Random
Forest Model

(e) AST Features
(motif : count)

(f) AST Features
(motif : count)

Most Important
Features

Most Important
Features

(g) Trained Random
Forest Model

(b) Program B (non-converging)

(a) Program A (converging) (c) AST Fragments

(d) AST Fragments
(k) Prediction Results

(j) Prediction Results

parameters {
real mu[1];
real<lower=0> sigma[1];
real<lower=0> p1;
real<lower=0,upper=1> theta;

}
model {

mu ~ normal(0,2);
sigma ~ normal(p1, 2);
p1 ~ normal(0,2.72);
theta ~ beta(5,5);
for(n in 1:K){

target += log_mix(theta,
normal_lpdf(y[n]|mu[1],sigma[1]),0.5);

}
}

normal_lpdf(…) 0.5

Params

Function

NegOp

FunctionCall

-

Param Param Param

theta

log_mix

normal_lpdf(…) 0.5

Params

Function

FunctionCall

Target_stmt

parameters {
real mu[1];
real<lower=0> sigma[1];
real<lower=0> p1;
real<lower=0,upper=1> theta;

}
model {

mu ~ normal(0,p1);
sigma ~ gumbel(0,1);
p2 ~ gamma(1.71,1.71);
theta ~ beta(5,5);
for(n in 1:K){

target += -log_mix(theta,
normal_lpdf(y[n]|mu[1],sigma[1]),0.5);

}
}

Fig. 1: An example of two models with different convergence behaviors. We obtain the
features from the Abstract Syntax Tree (AST) of source code and data (not shown here).
We use them as inputs to the trained Random Forest Model for predicting the label
(Converging/Not Converging). We can also obtain the most important features which likely
contributed to (non)-convergence.

consider a novice developer, who was confused about Stan’s target statement [51],
calculated the negative likelihood instead.

When run with Stan’s default NUTS inference algorithm for 1000 iterations, the
program A converges and the program B does not converge. Our goal is to predict,
before running the programs, whether they will converge. If they do not converge,
we would also want to know why and use this information to debug the program.

Feature Extraction. First, we extract different classes of features for each program
in the corpus of mutants. These include motifs – fragments of the AST, augmented
with data features, and run-time features. To extract motifs, we parse each program
and construct an AST. Then, starting from each node, we obtain all AST paths
of length L by traversing the ancestors of the node. Figures 1(c) and 1(d) present
one sub-tree for the function call statement(in loop) in the programs A and B
respectively and several motifs that SixthSense extracts. The elements in the motif
are the sequence of the node type IDs as feature vectors.

A good learning algorithm should be able to combine similar motifs and operate
only on groups of them. To identify such groups of motifs, we apply random discrete
projections, a well-known technique for reducing the dimensionality of the feature
space. It maps the feature vectors of the IDs onto a hash value with a much smaller
dimension. The random projections algorithm has a distance-preserving property,
which means that the similar vectors (even when they are not grouped together)
will have similar low-dimensional representations. This property allows us to apply
standard learning algorithms on this low-dimensional representation while preserving
the similarity of the original motifs.

Computing Reference Solutions and Labels. To compute the program labels
(i.e., ‘converging’, ‘not-converging’), SixthSense runs them for the default 1000 it-
erations using Stan’s MCMC algorithm (NUTS). For convergence, we calculate a

SixthSense: Debugging Convergence Problems in Probabilistic Programs 127

well-known diagnostic called Gelman-Rubin (R̂) statistic [25]. If the R̂ statistic is
within a certain bound (close to 1.0), it indicates that the program converged.

Training. Given a sufficient number of training programs, SixthSense extracts the
features and gets the labels for convergence. SixthSense then generates precise and
interpretable predictors. We build separate models for predicting convergence for each
model class, since models in three classes are significantly different in both semantics
and the way they interact with inference algorithms. The model classes are easy to
identify for users without expertise or through simple analytical tools.

Prediction.We use the classifier trained using the batch of Mixture Models for conver-
gence. We use a threshold of 1.05 for Gelman-Rubin diagnostic (a very tight bound).
SixthSense correctly predicts True label for program in Figure 1(a) and False label
for program in Figure 1(b). The total time required for computing the features and
doing the prediction for a single program is less than a second, compared to 53
seconds on average to run a program.

Interpretation and Debugging. Our combination of random projections – which
groups very similar motifs together, even if they appear at different locations in the
program – and the random forest classification – which can easily explain its decisions
– proves effective in identifying the parts of the program that impede convergence.
Namely, we can employ SixthSense’s random forest classifier to identify top features.
When SixthSense predicts non-convergence, the user can debug the program according
to the top features.

Now consider the scenario where a novice Stan developer used negative log-
likelihood in Stan’s target statement, and wrote program B (Figure 1(b)). SixthSense
predicts that B does not converge, and gives the topmost feature as the path segment
(motif) starting from the negative sign to the parameters in the log-likelihood calcu-
lation (function log mix). Figure 2 presents this motif. There were three such motifs
in program B (one for each argument of the log mix function), highly contributing
to non-convergence prediction. In contrast, this motif is missing from program A
(Figure 1(a)), and thus has negatively contributed in the converging prediction. This
observation validates our earlier intuition about the cause of difference in the nature
of two programs and is correctly inferred by our prediction model.

Params

Function

NegOp

FunctionCall

<39,76,47,10,54>

-log_mix(param1, ...)

ç

ç

Param

Fig. 2: Topmost motif in
program B

It is intuitive for the user to fix a non-converging
program by altering program code that corresponds to
the top features. For program B, after the topmost motif
indicates the location that contributes to non-convergence,
removing the negative sign would allow program to con-
verge. After applying the change, the user can use Sixth-
Sense to predict again, or even iteratively search for a
good fix. This iterative debugging would be much faster
than running through the full compilation and execution
with Stan. At the same time, SixthSense can provide
more directed warning messages.

128 S. Dutta et al.

3 Overview

Figure 3 shows the architecture of SixthSense. We next describe each of its components.

Program Runner

Feature Extractor
AST
Motifs

Data
DataStats

Program
Generator

Model
Trainer

Metrics
Calc.

Runtime
Feat.

Seed
Programs Mutants

FV. Labels

M1
M2
...

Fig. 3: SixthSense Training Workflow

Feature Computation. SixthSense’s
features can be broadly divided into
three major groups: (1) automatically-
selected AST (Abstract Syntax Tree)
based features - motifs - which represent
fragments of the AST; (2) Data Features,
and (3) runtime features of the inference
algorithm. We present our feature selection and summarization in Section 4.
Program Generation. The generator uses the input set of seed programs to generate
a batch of mutants. We use two sets of transformations to mutate the program:
(1) Expansive Mutations produce more complex models compared to the original
ones (e.g., add a new parameter), and (2) Reducing Mutations simplify the models
by simplifying arithmetic expressions, removing conditional statements, etc. Our
adaptive mutator uses nearest neighbor algorithms to efficiently explore the feature
space of the programs. We explain the mutations and the algorithms in Section 5.
Program Runner. It runs each generated mutant and collects several statistics
such as samples from MCMC iterations and runtimes.
Metric Calculator. Typically, the MCMC algorithms provide samples for each
parameter from the posterior distribution. The metric calculator computes the
convergence for each parameter using the samples from the posterior.
Model Trainer. Using the syntax, data and runtime features and metrics computed
by the previous components, the Model Trainer builds a machine learning model
for predicting the behavior of probabilistic models for the given inference algorithm.
Here, we used Random Forest Classifier.

We build models to predict, for given metric thresholds, (1) Convergence of the
models using static features of model and data, (2) Convergence of the models using
static features and run-time diagnostics from initial phases of sampling, and (3)
Predict iteration count for which the model will converge.
Deploying the Trained Model. Once the trainer produces the model, we can use
it to predict the convergence of new programs. For a given program and its dataset,
SixthSense runs the feature extractor, runs it through the predictor and outputs
the convergence label. It also reports on the features that contributed most to the
prediction, and relates them back to the source code.

4 Learning Program Features

We present the description of the programs and SixthSense’s approach for collecting
code, data, and runtime.
Probabilistic Programs Syntax. A probabilistic program is an imperative program
with additional constructs for sampling from distributions, conditioning the model on
observed data values, and one or more queries for either the posterior distribution or
expected value of a parameter. In this work, we use a subset of syntax of Storm-IR [19]
for representing probabilistic program, as shown in Figure 4.

SixthSense: Debugging Convergence Problems in Probabilistic Programs 129

x ∈ Vars
c ∈ Consts∪{−∞,∞}
aop ∈ {+,−,∗,/,̂}
bop ∈ {=,>,...}
Dist ∈ {Normal,Uniform,...}
ID ∈ String

Type ::= Int | Float
Decl ::= x : Type | x : [c+]
Expr ::= c | x | Expr aop Expr | Expr bop Expr

Stmt ::= x = Expr | Decl | observe(Dist(Expr+),x)

| x ∼ Dist(Expr+) | for x ∈ 1..n;{Stmt∗}
| if (Expr) then Stmt∗ else Stmt∗

Query ::= posterior(x) | expectation(x)
Program ::= Stmt∗ Query∗

Fig. 4: Syntax of Storm-IR [19]

Representing Program Paths. To understand the causes of non-convergence and
for better debuggability, we select a representation that is easy to train and interpret.
Existing approaches Code2Vec/Code2Seq [4, 5] aim to predict variable names through
natural-language semantics, and they encode the path between any two terminal
nodes in the Abstract Syntax Tree (AST). Instead, we encode the sequences of AST
nodes with limited length to pinpoint the semantic issues. We formalize our notions:
Definition 1. (Abstract Syntax Tree) Similar to [5], we define an AST for a program
P as a tuple <N,T,X,s,δ,ϕ,ψ>. N is a set of non-terminal nodes, T is the set of
terminal nodes, X is a set of values, s∈N is the root node, δ :N→ (N∪T)∗ is a
function which maps each non terminal node to a list of its children, ϕ :T→X is a
function which maps each terminal node to some value, and ψ :N→N maps each
non-terminal node to a unique natural number.
Definition 2. (AST Path) An AST path is a path between the nodes in the AST,
which starts from one non-terminal node and ends at another non-terminal node,
passing through the ancestors of each node at each step.
Definition 3. (Motifs) A Motif encodes an AST path from a node passing through
the ancestors of length up to L. For a given AST Path : ⟨N1,N2,...,NL⟩, where
Ni∈ δ(Ni+1), ∀i∈1..L−1, we can define the motif as the list: ⟨I1,I2,...,IL⟩, where
Im=ψ(Nm),∀m∈1..L.

4.1 Extracting Features from Programs

Motivation. Two major challenges in efficiently encoding the motifs in a feature
vector include (1) the large numbers of different paths that a program may have, and
(2) the variability of length between different paths. A general approach to solve both
problems is to design a flexible scheme for dimensionality reduction, which encodes
the rich structures, like our motifs as a smaller set of program properties.

We rest our approach on two observations. First, despite a huge number of possible
syntactic paths, similar motifs repeat often in a single program and across multiple
programs. Therefore, we need to think only about the subsets of all possible paths
that appear in the corpus of programs. Second, the variability between motifs is
often local, and many similar (though not-identical) motifs may lead to the same
program behaviors. Therefore, instead of encoding each motif in the feature vector
independently, we can group similar motifs and encode only the group.

To reduce the dimensionality of available paths and group together similar motifs,
we use Random Discretized Projections (RDP) [8], hashing technique for reducing
dimensionality of large feature vectors. It is well-known in data mining, not been used
for big-code representation. RDP calculates hash values that are used to group similar
items into the same buckets with high probability based on a similarity metric (e.g.
cosine similarity). The hash value represents the motif-group in the feature vector.

130 S. Dutta et al.

Extracting Features from Individual Programs. Line 5-9 in Algorithm 1
describes the procedure to extract motifs from a program. We iterate over the
nodes in the AST and for each node, to extract a sequence of nodes by visiting the
parent nodes up to level L, using the function GetMotifAt (line 6), which we define
recursively as GetMotifAt(N,L)=N ::GetMotifAt(parent(N),L−1) and base cases
GetMotifAt(∅,L)=∅ and GetMotifAt(N,0)=∅.

The function SimilarityHash (line 7) computes a hash key of each motif using the
Random Discretized Projections (RDP) [8]. If the size of the motif is smaller than L
(e.g., because the node does not have sufficient number of parents), PadRight pads
the motif to the maximum size with unused elements. We increase the count for the
hash each time a similar motif has obtained the similar hash function (line 8). The
RDP has a flexible number of projections and the size of bins. These parameters can
be tuned to make similarity more or less fine-grained. They also control, indirectly,
the size of the feature vector, the construction of which we describe next.

Algorithm 1 Compute Feature Vectors
Input: Batch of Programs Batch, Motif depth L
Output: Feature Vectors F

1: procedure CalculateFeatures
2: batchMotifs←∅
3: for prog∈Batch do
4: progMotifCount={0,...,0}
5: for node∈nodes(AST) do
6: m←GetMotifAt(node,L)
7: h←SimilarityHash(PadRight(m,L))
8: progMotifCount[h]←progMotifCount[h]+1

9: batchMotifs(prog)←progMotifCount

10: F,index←InitFVTable(Batch,batchMotifs)
11: for prog∈Batch do
12: for m∈batchMotifs(prog) do
13: F [prog][index(m)]←batchMotifs(prog)[m]

14: return F

Calculating Feature Vectors.
Given a batch of programs Batch
and the motif length L, we iterate
over the batch to extract the mo-
tifs for each program (line 5-9), as
described in the paragraph above.
Then, to store all the motifs, we
first use InitFVTable to create a
feature vector table F whose col-
umn length is equal to the number
of programs and the row length is
equal to the number of unique mo-
tifs (features) across all programs
in the batch (line 10). Each row of
F is the feature vector of the program prog, and each cell stores the count of a motif
m in prog (line 11-13). index maps between the motif hash code and the column
index in F. Finally, we output all the feature vectors.

4.2 Data Features

The nature of the data-set may determine the performance of the probabilistic model
when run using an inference algorithm. For instance, in absence of sufficient data,
the choice of prior distributions become very important. Similarly, a strong prior
with very small variance is unlikely to converge to the correct results in such a
scenario [2]. SixthSense computes data metrics like sparsity (number of non-zero
elements), auto-correlation (correlation between values of a time series), skewness
(asymmetry of the distribution), maximum/minimum variances of the model’s prior
distributions, and several others for observed and predictor data variables.

4.3 Runtime Features

For inference algorithms like MCMC, diagnostics from the early stages (warmup) of
sampling can often indicate the presence or absence of problems with the model and

SixthSense: Debugging Convergence Problems in Probabilistic Programs 131

associated data. Such diagnostics can help in discovering problems earlier so that
the users can update their model for more efficient performance. Unfortunately, they
are not predictive in nature: manually observing the raw values may not provide a
good intuition about the program execution. However, our prediction engine can infer
useful information from them.

To validate this intuition, we collect several runtime features from MCMC chains
during the early stages of warmup iterations. These features are algorithm specific. For
NUTS, they include posterior log density (log probability that the data is produced
by the model using current set of the parameters), tree depth, divergence of the
simulated trajectory, acceptance rate of the generated sample, step-size (the distance
between consecutive samples), leapfrog steps, and energy estimate of Hamiltonian.

5 Program Generation for Training Set Augmentation

In this section, we describe our approach of generating mutant programs from a
corpus of seed programs. To produce mutants from the original seed programs, we
define two kinds of transformations – for code and data.

5.1 Code Mutations

Our Code Mutations can be broadly classified into two sets: (1) expansive muta-
tions, which make more complicated models from the original one, and (2) reducing
mutations, which reduce the complexity of the models.
Expansive Mutations. These include Auxiliary Parameter Creator which converts
a distribution argument to a parameter in the program, Conjugate Replacer which
replaces prior distributions with distributions conjugate [46] to the likelihood when
possible, Dimension Expander which expands the dimension of a scalar parameter
to match the data dimension, Constant Replacer lifts a constant in the program to
a parameter with an appropriate distribution, and Data to Parameter Transformer
randomly replaces a real valued data array with a parameter with the same dimension.
Reducing Mutations. The transformations include Arithmetic Simplifier, which
replaces arithmetic expressions with either of the operands or changes the arithmetic
operation, Conditional Eliminator which replaces conditional statements with either of
the branches Distribution Simplifier which replaces complex distributions like Laplace,
Weibull with common distributions like Normal or Uniform, Math-Function Call
Eliminator which replaces common math functions like log, exp, etc. with constants.
These transformations have been previous used by [19] for testing PP systems.

5.2 Data Mutations

Apart from source code transformations, we also added several data transformations.
Such transformations help in changing the distribution of values in the data set, which
could produce challenging scenarios for the probabilistic model or inference algorithm
to work with. The data mutations include scaling by a constant, adding arbitrary noise,
Box-Cox transformation [49], scaling to new mean and standard deviation, cube root
transform, and random replacement of values with values from the same data set.

132 S. Dutta et al.

5.3 Adaptive Algorithm for Mutant Generation

To generate programs with different runtime behaviors, it is important to explore
programs with diverse semantic and syntactic features. Our mutation algorithm
randomly applies several mutations to the original program. However, to diversify
the generated mutants it uses a nearest neighbor based algorithm (Locality Sensitive
Hashing [12]), which only selects a representative set of mutants in multiple rounds.

Algorithm 2 Selecting Mutants
Input: Seed Programs S, ProgramsM, BatchSize

B
Output: Program Set progs

procedure SelectMutants
rdp←InitializeLSH()
progs←∅
while |progs|<M do

for s∈S do
seed←chooseSeed(s,progs)
p←GeneratePrograms(seed,B)
for k∈p do

fv←feature vector(k)
if rdp.neighbours(fv)<1 then

rdp.store vector(k)
progs←progs.append(k)

return progs

Algorithm 3 Generating Mutants
Input: Seed program S, Programs M,

Max Changes C
Output: Program Set progs

procedure GeneratePrograms
progs←∅
i←0
while i<M do

p′←p
for t∈{1..C} do

m←chooseMutation()
p′←m.mutate(p′)

if p′ ≠p then
progs←progs.append(p’)

i←i+1

return progs

Algorithm 2 presents the mutant selection algorithm. The inputs for the algorithm
are seed programs S, total number of programs to generate M, and the number
of programs to generate in each batch B from each seed program. The algorithm
returns the selected mutant programs set progs as output. First, we initialize the LSH
(Locality Sensitive Hashing) engine. We used four Random Discrete Projections hash
functions. Next, in each round, we first choose a seed program using the chooseSeed
function. The chooseSeed function randomly chooses among the original seed program
s and the mutants generated (in progs) from it in earlier rounds. Next, we generate a
new batch of programs of size B using generatePrograms.

For each new generated program k, we compute its feature vector and number
of neighbors among the already generated programs. We select the program only if
it has no neighbors in the already selected set of programs. Finally, the algorithm
returns the selected set of programs once it has generated the target M programs.
The generatePrograms algorithm (Algorithm 3) generates M mutants for a seed
program S. For each program, in each iteration, it applies a set of randomly chosen
mutations and adds it to the set of new programs. Finally, it returns the set of new
programs to the caller. Using this algorithm, we obtained a diverse set of probabilistic
programs with a good balance of converging/non-converging behavior.

6 Methodology

We present the methodology for collecting seed probabilistic models and the program
features and metrics we compute.

SixthSense: Debugging Convergence Problems in Probabilistic Programs 133

Seed Probabilistic Models. We collected a corpus of probabilistic models from
the most comprehensive open-source repository of Stan Models [52] 2. Out of total
505 models, we selected the three most common categories: Regression (120 models),
Time-Series (23), and Mixture Models (23, augmented with 3 from [33]). The models
come with their datasets.

Inference Engine and Sampling. NUTS, the default inference engine of Stan [24].
We executed all programs using 4 MCMC chains with 1000 iterations each for warmup
phase and sampling. This configuration is default for Stan. We also checked the
eventual convergence by running the programs for many more iterations. We used
100,000 as the maximum number (the convergence metrics do not change significantly
even for 106 iterations for the seed models).

Feature Extraction. We used a Python based implementation of Randomized
Discretized Projection [1]. We set its hyper-parameters P=5 and bin-width B=5,
which worked well to reduce the dimensionality of the vector space.

Random Forests. We used Random Forests Classifier from Scikit-Learn package
in Python for training. We use 5-fold cross validation for training. We extract top
features using TreeInterpreter [56].

Execution Setup. We performed the mutant generation and feature computation
on an Intel Xeon 3.6 GHz machine with 6 cores and 32 GB RAM. We used Azure
Batch Scheduling Service to run all the programs and metrics computations. We
capped the MCMC execution under 240 minutes.

6.1 Baselines, Metrics, and Classification

Baselines. We compare SixthSense to three baselines: The first, Code2Vec [5],
and the second, Code2Seq [4], are state-of-the-art predictors based on Deep Neural
Networks for big-code. They were originally used to predict function names from
code. We adapted these systems to do classification for each threshold of convergence,
by extracting path contexts (subsets of paths similar to our motifs) form the code.
Finally, the third baseline, the majority classifier assigns the most likely label during
the training to all the predicted programs. It indicates the prediction ’hardness’
when the training set is disbalanced.

Metrics. We used a common metric for measuring convergence, called the Gelman-
Rubin (R̂) [25] diagnostic. Ideally, the value of this metric should be close to 1.0. If the
observed value of R̂ is e.g., 1.05 it is considered as good indication of convergence. The
larger values, e.g., 1.5 and greater, are considered as weaker evidences for convergence.
Given the threshold, we assign the label True to a program if the metric value is
within the threshold and False otherwise.

2 The number of publicly available probabilistic programs in public sources is low, compared
to conventional languages. This is in part due to the novelty of these languages and
expertise required to create and interpret those models. As a further challenge, Stan
programs require the corresponding data set of sufficient size, which many Stan programs
on Github do not have. Finally, most of publicly available programs are tuned to converge
to their available data-sets.

134 S. Dutta et al.

6.2 Evaluation Experimental Setup

Training and Test Sets. We generate a corpus of mutants programs for each seed
program using the approach discussed in Section 5.3. We create a test-train split
for every seed program in the following way: (1) Test set consists of a single seed
program and all its mutants; (2) Training set contains all other seeds and mutants.
Thus, the training is not aware of any mutants of the test seed program. For each
such split, we train a classifier using the training set and evaluate its performance
(using the metrics below) on the test set. With this strategy we obtain metrics for
each split (each representing one seed program and its mutants). Finally, we compute
the average performance across the splits.

Training a predictor by leaving out each model and its mutants in test set allows
us to stress-test the model predictor. We choose this evaluation strategy because
the number of original seed programs in each class is low compared to conventional
big-code data-sets. Every seed probabilistic program represents a different statistical
model and using this strategy helps us evaluate the sensitivity of the classifiers for
each such model.
Classification Scores.We used Precision, Recall, Accuracy, and AUC [21] to evaluate
the performance of the learned classifier. They range between 0 and 1 (higher better).
We use the same metric for all the baselines.

Accuracy and AUC are adequate metrics for our scenario: Since we perform train-
ing by creating a test-train split for every seed program and its mutants (Section 6.2),
in some cases the test-set can become imbalanced, e.g. no or few positive labels/no
true and false positives or extremely different sizes of the splits.

Majority Code2Vec Code2Seq

SixthSense SixthSense+RT

1.05 1.10 1.15 1.20

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y
S
co
re

(a) Regression models

Majority Code2Vec Code2Seq

SixthSense SixthSense+RT

1.05 1.10 1.15 1.20

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y
S
co
re

(b) Mixture models

Majority Code2Vec Code2Seq

SixthSense SixthSense+RT

1.05 1.10 1.15 1.20

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y
S
co
re

(c) TimeSeries models

Fig. 5: SixthSense Prediction Accuracy for Convergence (Measured Using Gelman-
Rubin Diagnostic)

7 Evaluation

7.1 Predicting Convergence of Inference

Figure 5 presents the prediction scores for SixthSense when predicting convergence
of MCMC algorithms (NUTS in this case). The Y-axis shows the accuracy scores
for each prediction model (higher is better). The X-axis shows the four thresholds
(1.05-1.2) of the convergence metric, Gelman-Rubin diagnostic, that we considered in
our evaluation. We chose this range to test how general the prediction can be as the

SixthSense: Debugging Convergence Problems in Probabilistic Programs 135

Table 1: Precision (P) and recall (R) (R̂=1.05)
Class 6s-AST Code2Vec Code2Seq

P R P R P R
Regression 0.71 0.71 0.63 0.69 0.66 0.72
Mixture 0.77 0.74 0.67 0.67 0.67 0.72
Time Series 0.79 0.75 0.69 0.74 0.74 0.77

Table 2: AUC scores (R̂=1.05)
Class 6s 6s+RT Code2Vec
Regression 0.82 0.88 0.73
Mixture 0.84 0.90 0.74
Time Series 0.86 0.89 0.79

individual program labels change. For each threshold, we plot the accuracy scores of
our prediction model (SixthSense) together with Code2Vec, Code2Seq and a Majority
Label Classifier, as vertical bars in different colors. We evaluated the trained model
on a held-out test set (see Section 6.2).

Comparison with Code2Vec/Code2Seq. Figure 5 shows that SixthSense, with
solely AST motifs is better than Code2Vec and Code2Seq (see also the ablation study
in Section 8). The results show that SixthSense’s learned classifiers have an accuracy
score close to 0.8. These prediction rates are already useful for the user because it
helps them avoid wasting time for compiling and running programs which would
likely not converge. Our training algorithm is able to learn classifiers that generalize
well across different thresholds.

For Regression and Mixture models, SixthSense has consistently better accuracy
than the other approaches across all thresholds. For the tightest convergence bound
R̂= 1.05, its accuracy is by 5 percentage points higher than the alternatives for
Regression, and 8 percentage points higher for Mixture. For TimeSeries models, the
accuracy scores of SixthSense is by 1 percentage point higher than Code2Seq.

Table 1 presents the precision and recall for R̂ = 1.05. SixthSense exhibits
consistently higher precision over Code2Vec (8 to 10 percentage points) and Code2Seq
(5 to 10 percentage points). SixthSense also has higher recall than Code2Vec (1 to
7 percentage points), while the recalls of SixthSense and Code2Seq are comparable
(within 2 percentage points). Recall that the precision/recall are averaged over those
for different splits and can be more sensitive to small and unbalanced splits.

Table 2 shows the AUC scores for SixthSense, SixthSense with runtime features and
Code2Vec. Code2Seq does not provide its probability of predictions, which prevents
us from computing its AUC score. The results show that SixthSense improves in
AUC score over Code2Vec for all classes.

The prediction accuracy, prediction, and recall from Tables 1 and 2 persist for
higher thresholds of R̂.

Comparison to Majority Label Classifier. Figure 5 shows the comparison of
SixthSense to a naive Majority Label Classifier, which has the classification accuracy of
0.5. It indicates the significant level of improvement of SixthSense over the uninformed
random choice.

Predicting with Warm-up Runtime Features. Figure 5 presents the impact of
SixthSense’s AST features augmented with runtime features (Section 4.3) sampled
from the first 200 iterations of the warmup stage (at this point Stan still does not
issue warnings for our programs). Recall, the results of these iterations are dropped
by the inference algorithm, as in this phase the mixing of the MCMC chains has just
begun. However they can be useful in addition to code features: they help improve
the prediction by further 6 percentage points for Regression and Timeseries, and 8
percentage points for Mixture models (R̂=1.05).Table 2 also shows the improvement

136 S. Dutta et al.

in AUC of both AST and Run-Time features over the AST-only version of SixthSense.
However, note that collecting run-time features still requires compiling the program
and starting its execution. While this time differs among the systems and datasets, it
may be non-trivial, as is the case for Stan (e.g. around 30 seconds for compilation).
This time may be an important factor when deciding to use a runtime-predictor for
different PP systems. We also present a feature ablation study in Section 8.

7.2 Debugging Non-Converging Programs

When SixthSense’s learned model predicts that a model will not converge, two natural
follow-ups are (1) ask which part of the program is likely culprit for non-convergence
and (2) how many iterations would be sufficient to run the model to converge, if it
converges.
Debugging Approach. We interpret the outcomes SixthSense predicts, and leverage
the AST features and the random forests to help pinpoint which part of the program
leads to non-convergence.

To obtain the set of programs, we randomly selected 40 probabilistic programs
from our test sets, equally across the three model classes, which SixthSense correctly
identified as non-converging for 1000 iterations. For each program, we obtained the
most important features from the learned random forest. We selected top-5 features
(motifs) and inspected the model to identify whether the parts of the motifs contains
the culprit of non-convergence. The top-5 features typically only cover 5% of all the
motifs, which means SixthSense points to a relatively small scope to debug.

We make up to two manual updates to each model by making changes only to
the AST elements identified by the motifs or the referenced observed data. These
changes represent simple semantic modifications that a user of probabilistic program
might make as they explore various possible models for their data. We simulate a
try and check interactive search with these localized transformations. For instance,
SixthSense identified a constant array in a regression equation as one of the top
motifs. Converting that constant into a parameter made the model converge. Some
of our attempted updates include changing the variance (constant) of a distribution,
changing the distribution for a parameter, changing a parameter to a constant, and
removing mathematical functions (e,g. abs, log) when they are redundent.

After transforming the model, we run inference to see if it converges. We further
check if the model become accurate (or correct) after the fix, since non-convergence
often causes inaccurate (or wrong) result. For each model, we apply accuracy tests
from Bayesian model checking [25, Ch.6]: we compute the mean squared error to
compare the new model result to its correct data and also do visual inspection on the
result density plot to check if it matches the correct distribution. Multiple student
authors inspected the updates and agreed that these changes followed the protocol
described above.
Results. Table 3 presents the results for this debugging application. Column 1
(Class) presents the classes of randomly sampled models. Column 2 (#Models)
presents the number of mutant models we randomly selected from each class. Column
3 (6s Upd.) presents the number of programs that we manually updated to converge
using the method above. Column 4 (Stan Warn.) presents the number of programs

SixthSense: Debugging Convergence Problems in Probabilistic Programs 137

which Stan issued a warning during sampling. Column 5 (Stan Upd.) presents
the number of programs for which Stan’s warnings helped update the program to
converge.

Table 3: Debugging Non-Converging Models
Class #Models 6s Upd. Stan Warn. Stan Upd.
Regression 14 11 4 2
Mixture 13 9 4 1
TimeSeries 13 9 4 2

Overall, we were able to
identify the problem and let 29
updated models converge out of
40 models. Specifically, we cor-
rected 16 models by replacing
a parameter indicated by SixthSense with a constant; corrected 6 by simplifying
mathematical functions, 3 by changing constants in distributions, 2 by converting
constants to parameters, and 2 by changing distributions for parameters. All the code
elements we changed were pointed by top three motifs SixthSense returned. For 11
models that we were not able to update, we believe that the model correction would
require more complex changes than those we specified in setup above.

Out of 29 updated, now converging models, we ran SixthSense again. It correctly
predicted that 21 will converge (with 8 from Regression, 8 from TimeSeries and 5
from Mixture); this is, interestingly, close to the prediction rates from Section 7.1.
This illustrates that SixthSense can be useful in the iterative debugging loop.

These results demonstrate the advantage of interpretability SixthSense’s learned
model. Using motifs from the AST as features and a simple learning model (random
forests) helps the user easily identify key program components which affect the
runtime behavior of a probabilistic model. In comparison, identifying such important
features is hard for other complex neural network-based models and might require
more low-level handling of the learned model. In particular, Code2Vec and Code2Seq
do not provide a way to interpret how their prediction worked.

Comparison to Stan’s runtime warnings. Compared to Stan’s runtime warnings,
SixthSense motifs reveal more fine-grained patterns that hinder convergence. For most
of the non-converging models (29 out of the 40 in this experiment), Stan did not issue
a warning (beyond the low R̂ value at the end of inference) The 12 warnings issued
by Stan only have regards to function domains. Seven out of 12 were not related to
non-convergence. For instance, one program returns “Warning: normal lpdf: Scale
parameter is -0.0799029, but must be >0.” Changing the scale parameter limits does
not help. Instead SixthSense identifies the fix that is not at this location.

The remaining 5 Stan runs indicate non-convergence and can help with updating
the model. However, they were not as helpful in locating the causes as SixthSense.
One example where both SixthSense and Stan indicated problem is in the program
with the expression normal(exp(w0)+sqrt(abs(w1))∗x1+w2∗x2,s). Stan warned
about the overflow in the first argument of normal, disregarding its sub-expressions.
SixthSense traced the problem to the sqrt and abs sub-expressions that indeed helped
fix the non-convergence, by simplifying the function expressions.

8 Sensitivity Analysis

We present various sensitivity analyses of SixthSense to justify our design choices.

138 S. Dutta et al.

Table 4: Ablation Study (R̂=1.05)
Class A A+D A+RT A+D+RT
Regression 0.77 0.77 0.83 0.83
Mixture 0.78 0.78 0.87 0.87
TimeSeries 0.79 0.79 0.84 0.85

Table 5: Training w. Noisy Labels (R̂=1.05)
Label Flip Pr. 1% 3% 5%
Model Class R B R B R B
Regression 0.765 0.760 0.763 0.765 0.760 0.764
Mixture 0.772 0.784 0.774 0.782 0.783 0.785
TimeSeries 0.786 0.789 0.794 0.781 0.781 0.788

8.1 Feature Ablation Study

Table 4 shows the Accuracy score for convergence predictions when trained with
different combinations of feature groups (AST features, AST and data features, and
all features). Runtime features are from 200 warmup iterations. The AST features
(motifs) alone contribute a major portion to the Accuracy scores in all cases. Data
features do not have much impact on these models. Runtime features, after a certain
number of iterations further improve prediction (they are in fact a strong predictor,
but do not establish a relation with the program code). Obtaining runtime statistics
comes at a cost of compiling and running the program. This cost is often over 30
seconds for Stan.
Impact of the noisy labels on the prediction. To evaluate the robustness of our
prediction, we perturb the class labels in the training set with different noise levels.
We use the version of SixthSense, which applies Rank Pruning [41]. Table 5 shows
the Accuracy scores for the different model classes for several noise levels (1-5%).
For each noise level, Robust column shows the scores when trained using the Rank
pruning algorithm and Basic column shows the scores for baseline SixthSense. Even
in the presence of significant training noise, our learning approach maintains high
Accuracy scores. For instance, the performance of Mixture Models remains almost
constant (close to 78%) even when 5% labels are wrong.
Other sensitivity studies. We also performed other sensitivity studies on the
features and generated programs. First, we looked at different motif sizes. For three
motif sizes (5, 10, 20) on the threshold R̂=1.05, we do not see a significant increase in
the Accuracy score. This reflects that even smaller motifs obtained from probabilistic
programs can be very effective for predicting their runtime behavior. Therefore, we
used Motif size of 5 in all our experiments.

We then removed overlapped motifs, which resulted in the reduction of the
Accuracy scores (by 2 to 5 percentage points). Other experiments, such as different
LSH configurations to remove syntactically similar programs from the training set
did not show substantial deviation from the reported scores.

9 Related Work

Probabilistic Programming. Probabilistic programming languages (PPLs) and
their underlying inference systems have recently gained significant interest from
research and industry [9, 10, 26, 27, 29, 36, 38, 45, 55, 58]. Tyically, PPLs (e.g., Stan)
only provide simple runtime diagnostics and timing information as they run. In con-
trast, SixthSense is a predictive data-driven approach that complements these efforts.

The prior debugging approach for PPLs [39] requires augmenting Bayesian network
representation with additional labels and requires extending the inference algorithm.

SixthSense: Debugging Convergence Problems in Probabilistic Programs 139

However, its applicability is limited since state-of-the-art PP systems typically do not
use Bayesian network representation. Our approach learns program features useful for
debugging without modifications to the inference algorithm. Existing tools [15, 19]
find lower-level implementation bugs in probabilistic programming systems.

Several recent approaches have explored the nature of regression tests in probabilis-
tic andmachine learning applications such as the causes and fixes for flaky tests [17, 18],
usage of seeds in tests [14], and speeding up expensive regression tests [16].
Predicting Program Properties from Big-Code. Much attention has recently
been devoted to uses of machine learning to analyze and predict various program
properties. Notable examples include predicting variable names/types via statistical
program models [47], predicting patches [35], summarizing code [3, 31], and API
discovery [5, 57]. However, all of these works apply learning on conventional programs
(C/Java/Javascript), obtained from massive code repositories. Moreover, many of
these approaches predict static program properties (e.g., names/types), rather than
execution properties like convergence. While some of these approaches benefit from
the natural-language semantics of identifiers [4, 5], we are interested in semantics of
the program itself, which are better represented by the sequence of AST nodes.

We also present how to augment the corpus of programs with diverse programs
via guided mutation. While our approach bears similarity to data augmentation in
machine learning [11, 50, 53], probabilistic programs have complex structure defined
by many syntactic (and often semantic) rules.
Predicting Algorithm Performance. Researchers developed machine learning ap-
proaches that predict hardness of NP-hard problems (e.g., SAT, SMT, ILP) [7, 32, 34].
These works are complementary and their syntax and semantics are considerably
simpler than for probabilistic programs. Researchers also proposed models for perfor-
mance of other machine learning architectures [13, 20, 30, 43], but their techniques
and applications are orthogonal to ours.

10 Conclusion

We presented SixthSense, a novel approach and system, which predicts convergence
for probabilistic programs and helps guide the debugging of convergence issues. We
show SixthSense is effective in extracting features from probabilistic programs and
learning a prediction model. Compared to the state-of-the-art techniques, our results
show significant improvement in accuracy.

Acknowledgments

This research was supported in part by NSF Grants No. CCF-1846354, CCF-1956374,
CCF-2008883, USDA NIFA Grant No. NIFA-2024827, a gift from Facebook, a
Facebook Graduate Fellowship, and Microsoft Azure Credits. We would also like to
thank Prof. Jian Peng for the useful comments on an earlier draft.

140 S. Dutta et al.

References

1. Nearpy (2011), https://github.com/pixelogik/NearPy
2. Prior choice recommendations in stan (2011), https://github.com/stan-dev/stan/wiki/

Prior-Choice-Recommendations
3. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme

summarization of source code. In: International Conference on Machine Learning. pp.
2091–2100 (2016)

4. Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: Generating sequences from structured
representations of code. In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=H1gKYo09tX

5. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: Learning distributed represen-
tations of code. Proceedings of the ACM on Programming Languages 3(POPL), 40
(2019)

6. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Communications of the ACM 51(1), 117 (2008)

7. Balunovic, M., Bielik, P., Vechev, M.: Learning to solve smt formulas. In: Advances in
Neural Information Processing Systems. pp. 10338–10349 (2018)

8. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications
to image and text data. In: Proceedings of the international conference on Knowledge
discovery and data mining (KDD). ACM (2001)

9. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M.A., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming language.
JSTATSOFT 20(2) (2016)

10. Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D., Borgström, J.: Bayesian inference
using data flow analysis. In: FSE (2013)

11. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

12. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme
based on p-stable distributions. In: Proceedings of the twentieth annual symposium on
Computational geometry. pp. 253–262. ACM (2004)

13. Deng, B., Yan, J., Lin, D.: Peephole: Predicting network performance before training.
arXiv preprint arXiv:1712.03351 (2017)

14. Dutta, S., Arunachalam, A., Misailovic, S.: To seed or not to seed? an empirical analysis
of usage of seeds for testing in machine learning projects. In: ICST (2022)

15. Dutta, S., Legunsen, O., Huang, Z., Misailovic, S.: Testing probabilistic programming
systems. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
pp. 574–586. ACM (2018)

16. Dutta, S., Selvam, J., Jain, A., Misailovic, S.: Tera: Optimizing stochastic regression
tests in machine learning projects. In: ISSTA (2021)

17. Dutta, S., Shi, A., Choudhary, R., Zhang, Z., Jain, A., Misailovic, S.: Detecting flaky
tests in probabilistic and machine learning applications. In: ISSTA (2020)

18. Dutta, S., Shi, A., Misailovic, S.: Flex: fixing flaky tests in machine learning projects by
updating assertion bounds. In: FSE (2021)

19. Dutta, S., Zhang, W., Huang, Z., Misailovic, S.: Storm: Program reduction for testing
and debugging probabilistic programming systems. In: FSE (2019)

20. Dutta, S., Joshi, G., Ghosh, S., Dube, P., Nagpurkar, P.: Slow and stale gradients can win
the race: Error-runtime trade-offs in distributed sgd. arXiv preprint arXiv:1803.01113
(2018)

SixthSense: Debugging Convergence Problems in Probabilistic Programs 141

https://github.com/pixelogik/NearPy
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://openreview.net/forum?id=H1gKYo09tX

21. Fawcett, T.: An introduction to roc analysis. Pattern recognition letters 27(8), 861–874
(2006)

22. Flaxman, S., Mishra, S., Gandy, A., Unwin, H.J.T., Mellan, T.A., Coupland, H.,
Whittaker, C., Zhu, H., Berah, T., Eaton, J.W., et al.: Estimating the effects of non-
pharmaceutical interventions on covid-19 in europe. Nature pp. 1–5 (2020)

23. Gelman, A.: Stan being used to study and fight coronavirus (2020), https://discourse.
mc-stan.org/t/stan-being-used-to-study-and-fight-coronavirus/14296, Stan Forums

24. Gelman, A., Lee, D., Guo, J.: Stan a probabilistic programming language for bayesian
inference and optimization. Journal of Educational and Behavioral Statistics (2015)

25. Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian
data analysis. Chapman and Hall/CRC (2013)

26. Goodman, N., Mansinghka, V., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a
language for generative models. arXiv preprint arXiv:1206.3255 (2012)

27. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages (2014)

28. Hoffman, M.D., Gelman, A.: The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. Journal of Machine Learning Research 15(1), 1593–1623
(2014)

29. Huang, Z., Dutta, S., Misailovic, S.: Aqua: Automated quantized inference for probabilis-
tic programs. In: International Symposium on Automated Technology for Verification
and Analysis. pp. 229–246. Springer (2021)

30. Istrate, R., Scheidegger, F., Mariani, G., Nikolopoulos, D., Bekas, C., Malossi,
A.C.I.: Tapas: Train-less accuracy predictor for architecture search. arXiv preprint
arXiv:1806.00250 (2018)

31. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a
neural attention model. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). pp. 2073–2083 (2016)

32. Khalil, E.B., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch in
mixed integer programming. In: Thirtieth AAAI Conference on Artificial Intelligence
(2016)

33. Inference case studies in knitr (2019), https://github.com/betanalpha/knitr case studies
34. Leyton-Brown, K., Hoos, H.H., Hutter, F., Xu, L.: Understanding the empirical hardness

of np-complete problems. Communications of the ACM 57(5), 98–107 (2014)
35. Long, F., Rinard, M.: Automatic patch generation by learning correct code. In: ACM

SIGPLAN Notices. vol. 51, pp. 298–312. ACM (2016)
36. Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilistic programming

platform with programmable inference. arXiv preprint 1404.0099 (2014)
37. Mendis, C., Renda, A., Amarasinghe, S., Carbin, M.: Ithemal: Accurate, portable and

fast basic block throughput estimation using deep neural networks. In: ICML (2019)
38. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spen-

gler, A., Bronskill, J.: Infer.NET 2.5 (2013), microsoft Research Cambridge.
http://research.microsoft.com/infernet

39. Nandi, C., Grossman, D., Sampson, A., Mytkowicz, T., McKinley, K.S.: Debugging
probabilistic programs. In: MAPL (2017)

40. Neal, R.M.: An improved acceptance procedure for the hybrid monte carlo algorithm.
Journal of Computational Physics 111(1), 194–203 (1994)

41. Northcutt, C.G., Wu, T., Chuang, I.L.: Learning with confident examples: Rank pruning
for robust classification with noisy labels. In: Proceedings of the Thirty-Third Conference
on Uncertainty in Artificial Intelligence. UAI’17, AUAI Press (2017), http://auai.org/
uai2017/proceedings/papers/35.pdf

142 S. Dutta et al.

https://discourse.mc-stan.org/t/stan-being-used-to-study-and-fight-coronavirus/14296
https://discourse.mc-stan.org/t/stan-being-used-to-study-and-fight-coronavirus/14296
https://github.com/betanalpha/knitr_case_studies
http://auai.org/uai2017/proceedings/papers/35.pdf
http://auai.org/uai2017/proceedings/papers/35.pdf

42. Obermeyer, F.: Deep probabilistic programming with pyro (2020), https://www.
broadinstitute.org/talks/deep-probabilistic-programming-pyro, models, Inference, and
Algorithms

43. Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzilay, R.: sk p: a neural program corrector
for moocs. In: Companion Proceedings of the 2016 OOPSLA. pp. 39–40. ACM (2016)

44. Modeling censored time-to-event data using pyro (2019), https://eng.uber.com/
modeling-censored-time-to-event-data-using-pyro/

45. Pyro (2018), http://pyro.ai
46. Raiffa, H., Schlaifer, R.: Applied statistical decision theory (1961)
47. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from big code. In:

ACM SIGPLAN Notices. vol. 50, pp. 111–124. ACM (2015)
48. Robert, C., Casella, G.: Monte Carlo statistical methods. Springer Science & Business

Media (2013)
49. Sakia, R.: The box-cox transformation technique: a review. Journal of the Royal

Statistical Society: Series D (The Statistician) 41(2), 169–178 (1992)
50. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks

applied to visual document analysis. In: Icdar. vol. 3 (2003)
51. Stan. using target += syntax (2016), https://stackoverflow.com/questions/40289457/

stan-using-target-syntax
52. Stan Example Models (2018), https://github.com/stan-dev/example-models
53. Taylor, L., Nitschke, G.: Improving deep learning using generic data augmentation.

arXiv preprint arXiv:1708.06020 (2017)
54. Tehrani, N.K., Arora, N.S., Noursi, D., Tingley, M., Torabi, N., Lippert, E.: Bean

machine: A declarative probabilistic programming language for efficient programmable
inference. In: PGM (2020)

55. Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph, M., Liang, D., Blei, D.M.: Edward: A
library for probabilistic modeling, inference, and criticism. arXiv (2016)

56. Tree interpreter package (2020), https://github.com/andosa/treeinterpreter
57. Wang, K., Su, Z.: Learning blended, precise semantic program embeddings. ArXiv, vol.

abs/1907.02136 (2019)
58. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic

programming inference. In: AISTATS (2014)

SixthSense: Debugging Convergence Problems in Probabilistic Programs 143

https://www.broadinstitute.org/talks/deep-probabilistic-programming-pyro
https://www.broadinstitute.org/talks/deep-probabilistic-programming-pyro
https://eng.uber.com/modeling-censored-time-to-event-data-using-pyro/
https://eng.uber.com/modeling-censored-time-to-event-data-using-pyro/
http://pyro.ai
https://stackoverflow.com/questions/40289457/stan-using-target-syntax
https://stackoverflow.com/questions/40289457/stan-using-target-syntax
https://github.com/stan-dev/example-models
https://github.com/andosa/treeinterpreter

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which

permits use, sharing, adaptation, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

144 S. Dutta et al.

http://creativecommons.org/licenses/by/4.0/

	SixthSense: Debugging Convergence Problems in Probabilistic Programs via Program Representation Learning
	1 Introduction
	1.1 SixthSense
	1.2 Results
	1.3 Contributions

	2 Example
	3 Overview
	4 Learning Program Features
	4.1 Extracting Features from Programs
	4.2 Data Features
	4.3 Runtime Features

	5 Program Generation for Training Set Augmentation
	5.1 Code Mutations
	5.2 Data Mutations
	5.3 Adaptive Algorithm for Mutant Generation

	6 Methodology
	6.1 Baselines, Metrics, and Classification
	6.2 Evaluation Experimental Setup

	7 Evaluation
	7.1 Predicting Convergence of Inference
	7.2 Debugging Non-Converging Programs

	8 Sensitivity Analysis
	9 Related Work
	10 Conclusion
	References

