
Semantic Clone Detection via
Probabilistic Software Modeling

Hannes Thaller1(�) , Lukas Linsbauer2, and Alexander Egyed1?

1 Johannes Kepler University Linz, Austria
{hannes.thaller, alexander.egyed}@jku.at

2 Technical University of Braunschweig, Germany
l.linsbauer@tu-braunschweig.de

Abstract. Semantic clone detection is the process of finding program
elements with similar or equal runtime behavior. For example, detecting
the semantic equality between the recursive and iterative implementation
of the factorial computation. Semantic clone detection is the de facto
technical boundary of clone detectors. In recent years, this boundary has
been tested using interesting new approaches. This article contributes
a semantic clone detection approach that detects clones which have 0 %
syntactic similarity. We present Semantic Clone Detection via Probabilis-
tic Software Modeling (SCD-PSM) as a stable and precise solution to
semantic clone detection. PSM builds a probabilistic model of a program
that is capable of evaluating and generating runtime data. SCD-PSM
leverages this model and its model elements for finding behaviorally equal
model elements. This behavioral equality is then generalized to semantic
equality of the original program elements. It uses the likelihood between
model elements as a distance metric. Then, it employs the likelihood
ratio significance test to decide whether this distance is significant, given
a pre-specified and controllable false-positive rate. The output of SCD-
PSM are pairs of program elements (i.e., methods), their distance, and a
decision on whether they are clones or not. SCD-PSM yields excellent
results with a Matthews Correlation Coefficient greater than 0.9. These
results are obtained on classical semantic clone detection problems such
as detecting recursive and iterative versions of an algorithm, but also on
complex problems used in coding competitions.

Keywords: semantic clone detection · probabilistic software modeling
· clone detection

1 Introduction

Copying and pasting source code fragments leads to code clones, which are con-
sidered an anti-pattern. Code clones increase maintenance costs [31,32], promote
? The research reported in this paper has been supported by the Austrian Ministry
for Transport, Innovation and Technology, the Federal Ministry of Science, Research
and Economy, and the Province of Upper Austria in the frame of the COMET center
SCCH. This research was funded in part, by the Austrian Science Fund (FWF)
[P25513].

c© The Author(s) 2022
E. B. Johnsen and M. Wimmer (Eds.): FASE 2022, LNCS 13241, pp. 288–309, 2022.
https://doi.org/10.1007/978-3-030-99429-7_16

http://orcid.org/0000-0002-3810-0475
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99429-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-99429-7_16

bad software design [29,13,17], and introduce or propagate bugs [4,28,14]. How-
ever, duplicating code fragments also allows faster adaptation to requirements,
the re-use of stable and well-tested solutions [25,26], and helps to overcome
language limitations [21,35], thereby lowering development costs. The impact
of code clones and the contradicting evidence various studies provide are the
topics of an ongoing discussion in the community. Meanwhile, it is certain that
developers will continue duplicating source code to leverage its benefits, despite
its drawbacks. The key is the awareness and management of clones to maximize
efficiency while balancing quality.

Traditionally, the clone taxonomy distinguishes between four types of clones
[35,2,34]. Type 1-3 describe code clones caused by copying and pasting the
source code with or without changes. Type 4 clones describe code clones that
do not have any syntactic similarity but implement the same functionality
(semantic equivalence). For example, the recursive and iterative implementation
of an algorithm (e.g., Fibonacci computation) have no syntactic similarity while
implementing the same functionality. Existing tools have limited or no capabilities
to detect Type 4 clones [19]. Most current studies exclude them because of the
lack of tool support [23,35,2,39,11]. Nevertheless, Type 4 clones exist, and recent
research efforts have tried to deepen the understanding of them [19,49,20]. This
article provides a significant contribution to semantic clone detection in the form
of novel concepts and a prototype implementing them.

We present Semantic Clone Detection via Probabilistic Software Modeling
(SCD-PSM). SCD-PSM extends our work on Probabilistic Software Modeling
(PSM) [43] via a semantic clone detection pipeline. PSM builds Probabilistic
Models (PMs) from programs. It analyzes the static structure and dynamic run-
time behavior and replicates the program in the form of a generative probabilistic
model. These models allow developers to reason about the semantics of a program.
SCD-PSM extends this work by leveraging the PMs and causal reasoning to
find semantically (i.e., behaviorally) equivalent code elements. SCD-PSM allows
full quantification of the behavioral distance of code elements via likelihoods.
Furthermore, the likelihood evaluation via PMs allows for statistical significance
tests to decide whether a pair of code elements are clones. SCD-PSM detects
semantic clones with no textual similarity, such as the iterative and recursive
version of an algorithm. The average performance of the approach reaches a
Matthews Correlation Coefficient of 0.965 on a complex problem set indicating
a robust method for semantic clone detection. This work extends our previous
work [41] with a full evaluation and the theoretical foundation.

Section 2 provides the background needed to understand SCD-PSM including
the basics of PSM. Section 3 clarifies what semantic clones are in the context of
this work. Section 4 presents the approach in which representation, search space,
and the various similarity stages are described. Section 5 evaluates the approach
while Section 6 discusses the results. Limitations of the approach and possible
threats are given in Section 7 and Section 8. Section 9 compares the work to the
state-of-art and Section 10 concludes this article.

Semantic Clone Detection via Probabilistic Software Modeling 289

1 int fa(int n){
2 product = 1
3 for(i = 1; i <= n i++)
4 product *= i
5 return product
6 }

Listing 1.1: for-loop implementation
of factorial

1 int fb(int n){
2 product = 1
3 i = 1
4 while (i <= n)
5 product *= i
6 i++
7 return product
8 }

Listing 1.2: while-loop implementation
of factorial

1 int fc(int n){
2 if(n <= 1) return 1
3 return fc(n - 1) * n
4 }

Listing 1.3: Recursive implementa-
tion of factorial

1 int fd(int n, String guard){
2 if(n < 1 && guard == "val")
3 return -1
4 if(n < 1 && guard == " throw ")
5 throw Exception ()
6 return fc(n)
7 }

Listing 1.4: Delegate implementation of
factorial

2 Background

The clone detection research community has a long history and defines many
concepts, algorithms, and tools. In contrast, Probabilistic Software Modeling
(PSM) is relatively new and combines software engineering and probabilistic
modeling. Some terms need clarification; others require an introduction if they
diverge from their traditional names.

2.1 Clone Detection

Clone detection is the process of finding two similar program fragments. List-
ings 1.1 to 1.4 are four different implementations of the factorial function (n!).
Listing 1.1 is a for-loop implementation, Listing 1.2 uses a while-loop, and List-
ing 1.3 is recursively defined. Finally, Listing 1.4 delegates its implementation to
fc() from Listing 1.3 but may also return −1 in case of invalid inputs (including
n = 0).

Representation, pairing, similarity evaluation, and clone decision are the
core concepts of clone detection. Representations describe on which artifact
the detector operates, such as text, graphs (e.g., AST), or probabilistic models.
Pairing describes the selection of two code fragments that are potentially clones
(e.g., fa() and fb()). Each pair is called a candidate clone pair (or candidate
pair). The similarity evaluation measures the similarity of a candidate pair, e.g.,
by counting the number of different characters. Finally, the clone decision labels
the candidate pair as a clone given a criterion on the similarity, e.g., less than
ten different characters.

The properties of the similarity metric split clones into two groups [35].
Type 1-3 clones capture textual similarity while Type 4 clones capture semantic
similarity [2,23,24,35,34,44]. Type 1 (Exact Clones) clones are program fragments

290 H. Thaller et al.

that are identical except for variations in white-space and comments. Type 2
(Parameterized Clones) clones are program fragments that are structurally or
syntactically similar except for changes in identifiers, literals, types, and comments.
Type 3 (Near-Miss Clones) clones are program fragments that include insertions
or deletions in addition to changes in identifiers, literals, types, and layouts.
Type 4 (Semantic Clones) clones are program fragments that are functionally
or semantically similar (i.e., perform the same computation) without textual
similarities. These types are increasingly challenging to detect, with Type 4 being
the most complex one. Note that the definition of Semantic Clones is often
relaxed, where up-to 50% syntactic similarity of the code fragments is allowed
(e.g., BigCloneBench [39]). However, we consider these clones as complex Type 3
clones (additions, deletions, reordering) and not as semantic clones. This means
that semantic clones in the context of this work are clones with no syntactic
similarity except for per-chance similarities.

We will use a ' b to denote that a is a clone of b. Furthermore, a 6' b denotes
that a is not a clone of b.

2.2 Programs & Code Elements

PSM generalizes object-oriented terms to describe code elements in a program.
Code elements are types T , properties Pr, and executables Ex that refer to,
e.g., classes, fields, and methods in Java [1], or classes, properties, and functions
in Python [45]. Additional code elements are parameters Pr and results Re of
executables that refer to parameters and return values of a method. Properties,
parameters, and results are atomic code elements that have identifiable states at
runtime. Types and executables are compositional elements that act as a collection
of atomic elements. Types declare properties and executables, capturing structural
relationships. Executables have behavioral relationships that are categorized into
Inputs (I) and Outputs (O). Inputs are received parameters PaI , read properties
PrI , and requested invocation results ReI . Outputs are returned executable results
ReO, written properties PrO, and provided parameters PaO. We will denote
atomic elements in lowercase, and compositional elements in bold-face lowercase,
e.g., n and fa in Listing 1.1. Executable results are named after their executables,
e.g., fa in Listing 1.1. fc = {nPa,I , fcRe,I , fcRe,O} denotes the code elements of
Listing 1.3. For the sake of readability, we will omit the superscript classifiers if
it is unambiguously possible, e.g., fa = {n, fa}. The subset of inputs is denoted
by fcI = {nPa,I , fcRe,I} and outputs by fcO = {fcRe,O}. Finally, the set of all
input and output combinations is given by bmexIO = {(i, o) ∈ exI × exO}. For
example, fdIO = {(n, fd), (guard, fd)} describes the IO pairs of fd().

2.3 Probabilistic Software Modeling

Probabilistic Software Modeling (PSM) [40] is a data-driven modeling paradigm
that transforms a program into a Probabilistic Model (PM). PSM extracts the
structure and behavior of a program. Code elements and their dependency graph
represent the structure as described in Section 2.2. All observable events at

Semantic Clone Detection via Probabilistic Software Modeling 291

runtime represent the behavior. The resulting PM and its model elements are a
probabilistic copy of the program.

Model elements in the PM are the equivalent to code elements in the program.
P (x) denotes the probability distribution of variable x, e.g., Pfa(n) denotes the
probability distribution of input parameter n of the fa-method. p(x) denotes
the probability of a specific event of a variable, e.g., pfa(n = 2). This extends
the notation of code elements with probabilistic quantities. However, the nota-
tion reasons about the probabilistic behavior of code elements instead of their
structural properties.

Each model element is a flow-based latent variable model [7] that learns an
invertible mapping between the original observations and an isotropic unit norm
Gaussian N (0,1) with f : X 7→ Z. An example for x ∈ X may be n ∈ fa with
nz ∈ faz being its latent Gaussian representation. The Gaussian latent space
enables the model elements to generate new samples and evaluate the likelihood
of samples.

Generation (or Sampling) draws, either marginally or conditionally, obser-
vations from a model element simulating the execution of the corresponding
code element. For example, drawing 100 observations from fa ∼ Pfa(n, fa), i.e.,
values for nI and faO, simulates 100 program executions of this method. An
example for conditional generation would be fa|n<10 ∼ Pfa(fa | n < 10) that
only draws observations where n < 10. The process involves sampling from the
latent Gaussian variables, and inverting the Gaussian samples to the original
domain via the flow f−1(z) = x. Evaluation takes observations and evaluates
their likelihood under a model element. For example, Pfa(n = 4, fa = 24) evalu-
ates the likelihood of input 4 and output 24 under the fa model element. The
process of evaluation involves mapping a given sample into the latent space and
evaluating it under the Gaussians pN (0,1)(f(x)). Generation and evaluation are
the core of any PSM applications and of SCD-PSM. A detailed description is
given in our previous work [43].

3 Semantic Clones

A clear understanding of what SCD-PSM defines a semantic clone is essential in
understanding the approach and its design choices.

Definition 1. A semantic clone is a pair of executables whose (partial) input,
and output relationships exhibit significant (conditional) similarities.

Definition 1 defines semantic clones over the similarity between IO relationships
of executables. This holds if the IO relationships are only partially similar, i.e.,
not all combinations of IO pairs between executables have to be similar. For
example, fd in Listing 1.4 has two IO pairs (fdIO = {(n, fd), (guard, fd)})
while fa in Listing 1.1 has one IO pair (faIO = {(n, fa))}). According to the
definition, at least one IO pair comparison needs to be similar such that both
executables are declared as a semantic clone (e.g., (n, fd) ' (n, fa)).

Furthermore, the similarities between IO pairs may only be conditional, i.e.,
the similarity of matching IO pairs might be depending on the state of any other

292 H. Thaller et al.

code element in the comparison context. For example, the IO pair (n, fd) ' (n, fa)
is only a perfect clone in case that fd.guard != "val". If fd.guard == "val",
the IO behavior would differ in case of n = 1 (fd(1) 7→ −1 while fa(1) 7→ 1).
According to the definition, at least parts of the behavior need to be similar,
capturing complex multidimensional behavioral patterns in IO relationships.

The rationale behind the comparison of IO relationships is one of cause and
effect. If a pair of executables exhibit similar effects given similar causes, then
their computational behavior is identical. Extending this rationale by multiple
inputs and outputs leads to partial conditional similarity.

4 Approach

Probabilistic
Model

Source
Code

PSM

... ...

Modeling Search Space Static Similarity

mA

mB

Decision
type check

=

≉

null alt

conditioning

nullalt

sampling

pooling

conditioning

null

alt

null

alt

mA

mB

Input Runtime Samples

Output Runtime Samples

Decision
univariate testing

≉

=

Input Data Types

Output Data Types

mA

mB

evaluate

evaluate

Dynamic Similarity Model Similarity

Dynamic
Similarity

Static
Similarity

pairing

Executable
PairsExecutable

Variables

Decision

float

text, integer

likelihoods

likelihoods

Marginal
IO Sample

Conditional
IO Sample

Likelihood Ratio

multivariate testing

7
8

9 10

11 13sampling

12

14

1
2

3 4
5

6

Fig. 1: The modeling phase transforms the program into a PM. The search space
phase then pairs the PM model elements into candidate pairs. Finally, Static-,
Dynamic- and Model Similarity evaluate the behavioral equality of the candidates.

Figure 1 illustrates SCD-PSM. It is a five-fold approach consisting of the
following steps:

A. [Modeling] PSM builds a probabilistic model that reflects the original
program;

B. [Search Space] A search space of candidate pairs is constructed by pairing
executable model elements;

Semantic Clone Detection via Probabilistic Software Modeling 293

C. [Static Similarity] The static similarity stage accepts candidate pairs with
matching data types;

D. [Dynamic Similarity] The dynamic similarity stage accepts candidate pairs
with similar runtime data;

E. [Model Similarity] The model similarity stage accepts candidate pairs with
similar model behavior.

The approach represents a rejecting filter pipeline that candidate pairs must
traverse in order to be declared a clone. Static-, Dynamic-, and Model Similarity
represent filter stages of increasing complexity.

The main contribution of this work is the implementation of a semantic clone
detection pipeline on top of PSM. Further, we provide an effective process of
traversing the potentially large search space of candidate pairs. Finally, we show
that the behavioral equivalence of model elements generalizes to the semantic
equivalence of code elements.

4.1 Modeling

Starting from the Source Code in Figure 1, PSM builds a Probabilistic Model
(PM) [40] of the program (1). The PM is also called the Inference Graph (IG),
which is a cluster graph [22] with Non-Volume Preserving Flows (NVPs) [7] as
clusters. SCD-PSM uses this PM as a representation for the clone detection,
similar to text-based clone detectors that use text fragments. The PM is the
output of PSM and is considered as given in the context of SCD-PSM.

Executable model elements in the PM act as a surrogate to the executables in
the program. SCD-PSM pairs these model elements and computes their similarity.
If a behaviorally equivalent model element pair is found, then it can be seen as a
semantically equivalent code element pair. In conclusion, the SCD-PSM allows
for method-level semantic clone detection based on PMs representing the original
executables in the program.

4.2 Search Space

...

BESProgram BESi WES WESi IO

link

inputs

outputs

Fig. 2: SCD-PSM operates on four levels of abstraction: program, between exe-
cutable, within executable, and the IO level.

SCD-PSM conducts method-level semantic clone detection, which operates
on multiple abstraction levels. Figure 2 illustrates these levels, starting with the
program and ending with the inputs and outputs of an executable.

294 H. Thaller et al.

The second step in Figure 1 builds a within- and between-executable space
that SCD-PSM searches for clones. The Between-Executable Space (BES) is the
set of executable combinations

BES = {{a, b} ∈ Ex×Ex | a 6= b}, (1)

where exa, exb is a candidate pair (or executable pair), and Ex is the set of all
executables in the current analysis (illustrated in Figure 2). The theoretical size of
the between-executable space are all 2-length combinations without replacement,
given by

|BES| = |Ex|!
2 · (|Ex| − 2)! , (2)

where |·| describes the size of the underlying set. Note that the size of the BES
is smaller than the Cartesian product since {a, b} = {b, a}. Figure 1 shows
this pairing process in the Search Space aspect (2) from Figure 1. The Within-
Executable Space (WES) is the product of IO pairs

W ESab = {(i, j) ∈ aIO × bIO}. (3)

Figure 2 illustrates the WES and one IO pair from the WES that we also call
link. The theoretical size of the within-executable space is∣∣W ESab

∣∣ =
∣∣aIO∣∣ · ∣∣bIO∣∣ (4)

For the sake of visualization, IO pairs are not shown in Figure 1 but are abstracted
in their executable elements. The maximum theoretical search space is

S =
∑
i

|wes(BESi)| , (5)

given that wes describes a construction function according to Equation (3), and
BESi is the i’th candidate pair.

In practice, SCD-PSM evaluates only a fraction of possible combinations
because of the skip evaluation. The skip evaluation consists of two search space
limiting factors: greedy evaluation and transitive similarity. Greedy evaluation
stops the search through the WES once a similar pair is found. The initial
detection process only confirms the similarity of a candidate pair. A post-analysis
can then extract all possible IO similarities for potential actions. Transitive
similarity skips evaluations in the BES, because of a ' b ' c then also a ' c
holds. In conclusion, SCD-PSM compares IO pairs of executable model elements
and uses skip evaluation to traverse the search space efficiently.

4.3 Static Similarity

The static similarity stage is a filter that accepts candidate pairs based on their
data type, as shown in Figure 1. Data types in a PSM model are integers, floats,
and text.

Semantic Clone Detection via Probabilistic Software Modeling 295

Input (3) of the stage are the IO pairs W ESab = wes({a, b}) of a candidate.
The filter criteria (4) accepts a candidate pair if at least one link (i.e., IO pair)
has a matching data type, i.e., the input but also the output have a matching
data type. Output (5) is a boolean decision whether the candidate pair is a clone
or not from a static viewpoint. If positive, then the candidate pair is moved to
the next pipeline stage, i.e., the Dynamic Similarity evaluation (see Figure 1).
If negative, then the candidate pair is marked as being not a clone a 6' b and
no further processing is conducted. For example, the IO pairs (n, fa) ' (n, fb)
would be statically accepted as clones as both inputs and outputs have the same
data type (integer). A counterexample is given by (n, fa) ' (guard, fd) where
the input data types are integers and text.

The static similarity indicates that the analyzed program is given in a program-
ming language that allows for static analysis. Programs written in programming
languages without static typing can not make use of this filter stage. In conclusion,
the static similarity stage filters candidates based on their data type.

4.4 Dynamic Similarity

The dynamic similarity stage is a filter that accepts candidate pairs based on
the runtime data, as shown in Figure 1. Candidates pairs are accepted if at least
one IO pair (6) has an insignificant diverging runtime distribution (7). This
boolean decision is evaluated via a Kolmogorov-Smirnov test [30], and determines
whether a pair is a clone from a dynamic viewpoint (8). For example, the IO pair
(n, fa) ' (n, fd) with guard == true would be excluded form the filter given
that runtime events with n = 0 reach a majority. In comparison, (n, fa) ' (n, fb)
would be accepted by the stage.

A requirement is that the candidates use a synthetic trigger. Otherwise, the
comparison of the data distributions may fail because of the different modus
operandi of the program. For example, running fa and fb where nfa = U(0, 4) and
nfb = U(5, 10) would cause the dynamic stage to fail even if the implementations
are equivalent. Property-based [12] or random testing can be used to generate
diverse synthetic inputs.

In conclusion, the dynamic similarity stage pre-filters candidates based on
univariate tests on the input and output events.

4.5 Model Similarity

The model similarity stage is a filter that accepts candidate pairs based on
the models, as shown in Figure 1. This stage conducts a multivariate test by
sampling from the executable models and cross evaluating them. This test
includes the evaluation of conditional influences caused by elements that are not
actively participating in an IO pair. For example, (n, fd) ' (n, fa) holds but is
conditionally dependent on guard. The model similarity can factor guard into
its decision while the dynamic stage can only evaluate the average behavior of
an IO pair.

Input (9) are the IO pairs of a candidate W ESab = wes({a, b}). The cross-
wise log-likelihood ratio of the models is computed by (conditional) generation

296 H. Thaller et al.

and evaluation. Output is a boolean decision on whether the candidate pair is a
clone or not, from a model viewpoint. Figure 1 illustrates the entire process of
the model similarity.

(A) A reference Mnull = a and an alternative model Malt = b is selected.
(B) An IO-pair p = W ESab

i is selected as the target of the comparison (link).
(C) A reference sample Dnull is drawn from Mnull (10).
(D) An alternative sample Dalt|null is drawn from Malt by optimizing towards

the p dimensions in the Dnull, effectively conditioning the drawn samples
(11).

(E) Dnull is evaluated under Mnull resulting the reference log-likelihood LLnull
(F) Dalt|null is evaluated under Malt (12) yielding the alternative log-likelihood

LLnull.
(G) Finally, the likelihood ratio of the link is computed by λ = LLalt − LLnull

The roles between the null and alt models are then swapped, and the process is
repeated. Both log-likelihood ratios are then combined by a pooling operator to
produce the clone decision (14).

The role-swap is needed to avoid sub-model relationships. For example, if
Mnull = N (0, 3) and Malt = N (0, 1) then LLalt will be very high because Malt

is a sub-model from Mnull. Reversing the roles highlights the differences in the
models.

The final decision is based on the Generalized Likelihood Ratio Test (GLRT)
[10]. It measures whether the log-likelihoods are significantly different from 0,
where λ is the test statistic. The null hypothesis is rejected for small ratios λ ≤ c
where c is set to an appropriate false-positive rate. For example, λ < log(0.01)
allows 1 out of 100 candidates to be a false-positive, i.e., wrongly rejecting
semantic equivalence. The pooling operator combines the link results either via
hard or soft pooling. Hard pooling conducts for both links a GLRT yielding a
positive decision if both links are positive. Soft pooling averages the link log-
likelihoods ratios and then computes the GLRT yielding a positive decision if the
joint GLRT is positive. Hard pooling does not allow any sub-model relationships,
while soft pooling relaxes this constraint.

In conclusion, the model similarity conducts a multivariate significance test
between two models, including possible conditional dependencies.

5 Study

This study answers the following research questions.

Q1 Does behavioral equality between model elements generalize to semantic
equality of code elements?

Q2 Does the skip evaluation significantly reduce the computational demand of
SCD-PSM?

Q3 Does the skip evaluation negatively impact the detection performance (i.e.,
precision, recall, and MCC)?

Semantic Clone Detection via Probabilistic Software Modeling 297

Q1 answers whether semantic clones can be detected via SCD-PSM. Q2 answers
whether the search space can be efficiently processed using skip evaluation. Q3
answers how the skip evaluation influences the performance of the detection
process. This is important because candidate pairs might be skipped based on
false-positives or false-negatives.

5.1 Setup

We implemented a prototype for SCD-PSM on top of Gradient [40], a prototype
for PSM. The elements and data flow of the detection process are shown in
Figures 1 and 2.

1. The input Source Code were 13 different clone classes with a total of 108
implementation variants. This includes classical algorithms implemented
recursively and iteratively such as bubble sort, as well as hard problems from
the programming competition Google Code Jam1.

2. The Probabilistic Model was computed via Gradient, a PSM prototype. We
used the same hyper-parameters as reported in our previous work [43].

3. The Search Space, i.e., the BES andWES, was created according to Section 4.2
based on all available examples.

4. Each valid candidate pair was then submitted to the Static-, Dynamic, -
and Model-Similarity stages and filtered according to Sections 4.3 to 4.5.
Candidates that passed the entire filter pipeline were marked as clones.

5.2 Dataset

The study uses three well-known algorithms and 10 Google Code Jam 2017
(GCJ)1 problems. The total dataset contains 108 implementation variants across
13 clone classes described by Instance.

Each clone class was differentially tested to verify the behavior across in-
stances. Factorial, Fibonacci, and Sort do not need any further explanation. The
GCJ problems are well specified complex optimization problems packaged in an
everyday theme.

The dataset contains in total 5778 (see Equation (2)) candidate pairs of which
458 are semantic clones and 5320 are not. This yields a positive to negative ratio
of 1 : 11.6, indicating a highly imbalanced distribution. An even more pronounced
imbalance is to be expected in real-world applications.

Each instance was triggered with input data to allow PSM to model the differ-
ent implementations. Factorial, Fibonacci, and Sort were triggered by sampling
from a uniform distribution U(0, 20). GCJ problems were triggered by the input
data provided by the competition. Each instance received the same trigger.

GCJ problems read from and write to the standard stream, which is im-
practical in terms of reproducibility. Our dataset is constructed such that each
implementation has a run-method representing the cloned executable. The study
results are limited to the run-method even if the solutions use helper methods.
1 https://codingcompetitions.withgoogle.com/codejam/archive

298 H. Thaller et al.

Helper methods may, for example, be methods that compute parts of the final
solution, or reorganize the data. This guarantees a proper problem scope, a
well-defined recall and precision, and a clearly defined benchmark for future
reproducibility.

5.3 Controlled Variables

The study controls for the search space Evaluation strategy, Dynamic False-
Positive Rate (D-FPR), Model False-Positive Rate (M-FPR), and Pooling.

Evaluation describes how the search space is processed: exhaustive, or skip. The
exhaustive evaluation compares each executable candidate with each other.
The skip evaluation uses the transitive similarity (see Section 4.2) and may
skip evaluations if possible.

Dynamic False-Positive Rate (D-FPR) defines the critical value α of the
Kolmogorov-Smirnov test with 0.001 and 0.01, at which similarity is rejected.

Model False-Positive Rate (M-FPR) defines the critical value c of the Gen-
eralized Likelihood Ratio test with 0.001 and 0.01, at which similarity is
rejected.

Pooling defines how the likelihood ratios from the two link directions are
combined (see Figure 1, (8)) with values: hard, or soft. Hard pooling evaluates
whether each link reaches the critical value c and accepts the clone if both
links evaluate as positive with λLinkA

≤ log c
2 and λLinkB

≤ log c
2 . Soft pooling

evaluates the average log-likelihood ratios (geometric mean of likelihoods)
λLinkA

+λLinkB

2 ≤ log c, and compares it against the critical value c.

An additional fixed parameter is the number of particles. It defines the sample
size that is generated during the model similarity |D| = 50.

5.4 Response Variables

The response measures of the study are the number of Skip Evaluations, processing
Duration, TP, FP, TN, FN, Precision, Recall, F1, and Matthews Correlation
Coefficient.

Skip Evaluations measures the number of evaluations that were skipped due
to the skip evaluation strategy.

Duration measures the elapsed time to compute one candidate pair.
TP, FP, TN, FN measures the True Positive (TP), False Positive (FP), True

Negative (TN), and False Negative (FN) detection results compared to the
ground truth.

Precision measures the fraction of detected clones that are truly clones.
Recall measures the fraction of semantic clones that have been found.
F1 measures the accuracy of a binary classification as the harmonic mean of

recall and precision.

Semantic Clone Detection via Probabilistic Software Modeling 299

Table 1: Results of the top-5 and bottom-1 experiment along with the average
performance of the top-5.

Controlled Variables Response Variables
Nr Evaluation D-FPR M-FPR Pooling Duration TP FP TN FN Skip Precision Recall F1 MCC

1 skip 0.100 0.001 soft 1560 437 0 5320 21 345 1.000 0.954 0.977 0.975
2 skip 0.010 0.001 soft 1620 437 0 5320 21 345 1.000 0.954 0.977 0.975
3 exhaustive 0.010 0.001 soft 1680 425 0 5320 33 0 1.000 0.928 0.963 0.960
4 skip 0.010 0.010 soft 1920 423 0 5320 35 332 1.000 0.924 0.960 0.958
5 exhaustive 0.100 0.001 soft 2040 421 0 5320 37 0 1.000 0.919 0.958 0.955
16 exhaustive 0.100 0.010 hard 2820 293 0 5320 165 0 1.000 0.639 0.780 0.787

1-5 skip 0.010 0.001 soft 1740 428 0 5320 29 340 1.000 0.936 0.967 0.965

Duration in seconds

Matthews Correlation Coefficient (MCC) measures the quality of the clone
detection in the form of a correlation ranging from −1 to 1, with 0 being a
random selection. The MCC will be the reference performance metric as it is
the most robust metric in an imbalanced binary classification setting [3]. It is
a correlation coefficient which may be interpreted by the guidelines proposed
by Evans [9].

5.5 Comparison of Clone Detectors

In total, eight alternative approaches are used to contextualize the performance of
SCD-PSM. The alternatives have a wide variety in terms of internal representation
and clone detection capabilities as listed in Table 3. ASTNN (8) and ASTNN
Leaky (9) are the same approach but have different evaluation methods. ASTNN
Leaky (9) uses a random split of the dataset as reported by the authors [50]. It
overestimates the performance of the approach via a lack of isolation between
training and test dataset. For example, fa ' fb and fa ' fc might be in the
train split while fb ' fc might be in the test split. ASTNN (8) uses a group-wise
Cross Validation (CV), where clone classes are entirely isolated either into the
training or test proportion of the dataset. This represents a real-world situation
where first the detector is fitted and then applied to a new system with unknown
code fragments.

Detectors that report lines instead of methods may produce more results (TP,
FP, TN, FN) than present in the dataset. A similar situation is given by ASTNN
Leaky that runs multiple evaluations via the cross validation.

5.6 Experiment Results

Creating the PSM model with Gradient took 2134.38 s, resulting in an average
modeling time of 19.75 s for the 195 executables. This includes 87 helper methods.

Table 1 contains the aggregate results of the top-5 experiments along with
the results of the worst experiment. The bottom line in Table 1 is the average

300 H. Thaller et al.

Table 2: Performance breakdown of the best performing experiment listed as
Nr. 1 in Table 1.

Stage Duration TP FP TN FN Precision Recall F1 MCC

initial – 458 5320 0 0 0.079 1.000 0.147
static 0.0001 458 1504 3816 0 0.233 1.000 0.379 0.409
dynamic 0.208 451 50 5270 7 0.900 0.985 0.941 0.936
model 1.749 437 0 5320 21 1.000 0.954 0.977 0.975

0.344 437 0 5320 21 0.996 0.954 0.977 0.975

Duration in seconds

performance of the top-5 experiments. The generally expected performance of
the approach is very strong with an MCC of 0.965. High confidence for negative
examples is given with no false-positives reflecting the pipeline’s FPR rates
(D-FPR × M-FPR). The best experiment featured a skip evaluation, 0.100
D-FPR and 0.001 M-FPR rates, and soft pooling (Nr. 1) with an MCC of 0.975.
The worst experiment featured a exhaustive evaluation, D-FPR of 0.100, M-FPR
of 0.010, and hard pooling (Nr.16) with a strong MCC of 0.787. A total of 345
candidates were skipped while reaching a recall of 0.933.

Table 2 lists the cumulative performance of the best model, starting with
an initial prediction that all candidates are semantic clones (rejecting pipeline).
The static stage finds 71.729 % (3816) of the FPs, improving the MCC by 0.409.
The dynamic stage additionally removes another 27.330 % (1454) of FPs but
introduces 1.528 % (7) of the possible FNs. An improvement of the MCC by
0.527 is achieved via the dynamic stage. Finally, the model stage removes the
remaining 0.939 % (50) FPs but introduces additional 3.056 % (14) additional
FNs. The model stage improves the MCC by 0.039.

On average, 5.884 % (340) of the total 5778 evaluations could be skipped.
This equals 74.235 % of the total 458 TPs. On average 37.359 % (50 354) of the
total 134 782 IO pair evaluations could be saved via greedy evaluation. The
average duration of the exhaustive experiments was 2394 s, leading to 414 ms per
candidate. Skip experiments lasted on average 1988 s with 344 ms per candidate.
The static stage lasted on average for <0.001 % of the time per candidate (see
Table 2), the dynamic stage for 0.106 %, and the model stage for 0.893 %.

Table 3 lists the detection results of eight alternative clone detectors. Simian,
NiCad, and CCAligner found no clones in the dataset. PMD, SourcererCC, Oreo,
and iClones found some clones (< 20) with a low recall (4 %). Each of these
detectors has a very weak performance below an MCC of 0.20 ASTNN with the
leaky evaluation has a very strong performance with an MCC of 0.976. ASTNN
3-Group CV has a strong performance with an MCC of 0.711. The longest
computational duration is given by ASTNN with 1034 min.

Semantic Clone Detection via Probabilistic Software Modeling 301

Table 3: Detection results of other clone detectors on the dataset.
Nr Tool Note Repr. Type Duration TP FP TN FN Precision Recall F1 MCC

1 Simian [16] Text 1 0.138 0 0 5320 458 0.000
2 NiCad [5] Text 3 1.291 0 0 5320 458 0.000
3 CCAligner [47] Token 3 1.109 0 4 5316 458 0.000 0.000 -0.007
4 PMD [33] Token 2 1.389 8 12 5308 450 0.400 0.017 0.033 0.069
5 SourcererCC [37] Token 3/4 36.86 10 0 5320 448 1.000 0.021 0.042 0.142
6 Oreo [36] Model 3/4 79.00 17 5 5315 441 0.772 0.037 0.070 0.158
7 iClones [15] Token 3/4 0.980 13 0 5320 445 1.000 0.028 0.055 0.161
8 ASTNN [50] 3-Group CV Model 4 1034 296 29 1415 162 0.911 0.646 0.756 0.711
9 ASTNN (Leaky) Random Split Model 4 2028 442 4 5316 16 0.991 0.965 0.978 0.976

10 SCD-PSM Top 1-5 Model 4 1740 428 0 5320 29 1.000 0.936 0.967 0.965

Duration in seconds

6 Discussion

The goal of the study was to provide evidence of whether behavioral equality of
model elements generalizes to semantic equality of code elements (Q1). Further-
more, we were interested in the skip evaluation and its performance implications
(Q2 and Q3).

6.1 Research Question 1 — Detection Performance

Table 1 and Table 2 present strong results in favor of Q1. The MCC for the top-5
experiments was very strong with all MCCs being above 0.9. Even the worst
experiment still yielded a moderate performance of 0.749.

Table 3 provides additional context to the results by presenting the detection
results of alternative clone detectors. As expected, tools relying heavily on the
textual representation of clones have very low recall (Simian, NiCad, CCAligner,
PMD) on the dataset. Most clones found by the alternative tools span only a few
lines of code. In contrast, iClones finds large clones that include array accesses
and manipulations. ASTNN is the best comparison tool and finds many clones
with good precision. The approach is sensitive to hyper-parameters and to the
training and test split, leading in some cases to a test performance close to
MCC of 0. The low recall for Type 1-3 detectors indicate the high quality of the
dataset. The moderate recall for Type 3/4 detectors indicate the high quality of
SCD-PSM. Given this evidence, we conclude that Q1 holds.

Q1 — Behavioral equality between model elements generalizes to se-
mantic equality of code elements, allowing for semantic clone detection via
probabilistic software modeling.

302 H. Thaller et al.

6.2 Research Question 2 — Skip Evaluation Scalability

The goal of the static and dynamic stage is to reduce the number of evaluations
that the model stage must conduct. Each stage incurs an increasing cost of
evaluation per candidate, with the model stage taking the largest share of the
evaluation time, 89 %. Every TP has to pass the model stage to be declared
a clone (rejecting pipeline). The skip evaluation avoided, on average, the re-
computation of 74 % (340) of the TP candidate pairs. The greedy evaluation
avoided, on average, the evaluation of 37 % of IO pairs. This offloads most of
the evaluation time to the earlier stages, which are computationally inexpensive,
while shortcutting the model stage. In comparison to the alternative detectors,
SCD-PSM needs substantially more time to compute (1.32 min vs. 29 min). An
exception is ASTNN which has a similar runtime as SCD-PSM. Most of the
runtime of SCD-PSM is caused by the operational overhead, e.g., loading the
model from the database. Optimizing this overhead, as a theoretical maximum,
could reduce the overall runtime on the dataset to 6.49 min given the average
durations for each stage in Table 2. In conclusion, the skip evaluation reduces the
number of model evaluations, which are responsible for most of the evaluation
time, down to a quarter.

Q2 — Skip evaluation reduces the number of evaluations for the most
expensive stage (model) in the SCD-PSM pipeline significantly.

6.3 Research Question 3 — Skip Evaluation Effects

Skip evaluation can cause cascading errors given an FP. Once an FP is introduced,
every semantic clone related to the FP has a chance to become an FP in the same
(wrong) clone class itself. These cascading FPs are potential sources of serious
performance degradation. Skip evaluation experiments are ranked higher and
are significantly better than experiments that conducted an exhaustive search.
However, the absolute performance gain is only a MCC of 0.056, hinting at a
per-chance significance introduced by the small sample size (16 experiments).
Nevertheless, given the evidence in Table 1 and Section 5.6, we can conclude that
skip evaluation does not affect the performance of the detector.

Q3 — The skip evaluation has no negative impact on the performance of
the detector given low false-positive rates.

7 Limitations

SCD-PSM inherits the limitations of PSM, such as its need for a runnable program
to build the model. PSM only models the application structure and its data, not
references. References are changing addresses with no relation to the running

Semantic Clone Detection via Probabilistic Software Modeling 303

program. Hence, they have no meaningful underlying distribution that can be
modeled. However, once references are dereferenced, e.g., by accessing a field,
their accessed data will be part of the model and therefore usable in SCD-PSM.
Nevertheless, algorithms with the sole purpose of manipulating references do not
work with SCD-PSM.

PSM explodes lists into singular values, since distributions do not contain any
order information. This means executables that change the order of sequences
are matched based on the values, not their order. As a consequence, an ascending
and descending sorting algorithm are semantically equivalent, leading to a false-
positive. Extending PSM to distributions of sequences alleviates the issue but is
not a trivial task.

SCD-PSM cannot detect Type 2-3 clones since textual similarities represent
a different problem set. A proof can easily be constructed by adding an arbitrary
number of statements that do not influence the behavior of the program but mis-
lead text based detectors. Inversely, changing one character, e.g., a multiplication
to a division, may alter the entire behavior while preserving the general textual
similarity.

We employed a controlled laboratory evaluation strategy that allowed us
to exactly evaluate the performance metrics and fairly compare them between
different clone detectors. This follows a recent trend [38,46,48] in the light of
some criticism of opportunistic evaluations on arbitrary open source projects.
The controlled laboratory evaluation provides purely functional performance
results given a fixed and controlled sample of programs. The generalizability of
results obtained from laboratory evaluations is limited; Using an opportunistic
evaluation strategy avoids this problem. However, the strategy is prone to biases
caused by the human oracles (often the authors themselves) or proxy oracles
that evaluate the clones. Moreover, a fair comparison between detectors is hardly
possible because the true recall of clones is in general unknown. A combination
of both evaluation strategies may yield precise and generalizable results. The
extension to this study is part of our future work.

8 Threats to Validity

A threat to validity in any semantic clone detection study is given by the programs
and code fragments used in the evaluation. Semantic clones may not exhibit
the same functional behavior or share too many lexicographical similarities.
This study tested every clone class on its behavioral equality. Furthermore, we
evaluated text-, token-, graph- and model-based detectors capable of detecting
Type 1-3 clones. The low performance of Type 1-3 detectors confirmed the high
quality of semantic clones in the benchmark.

9 Related Work

We started this article by defining what semantic clones means in the context of
our approach (Section 3). While our definition is motivated by the capabilities
of our approach, we can see strong similarities to the definition of Juergens

304 H. Thaller et al.

[19]. Both definitions define behavioral similarity via IO relationships. Also,
Juergens already discussed a notion of partial and conditional similarity. This
understanding of Type 4 clones can be seen in multiple more recent studies
[8,6,27]. In that, we see the progress of the community in terms of Type 4 clones
as the definition becomes more specific.

Many studies evaluated textual clones. However, only a few studies have
reported results on semantic clones without relaxing the definition of Type 4.
Rattan [34] et al. provided a review of clone detection studies including ap-
proaches focused on Type 4 clones. They concluded that some approaches solve
approximations (i.e., complex Type 3 clones) of Type 4 clones.

Test-based methods randomly trigger the execution of candidates and measure
whether equal inputs cause similar outputs. Jiang and Su [18] were able to find
semantically equivalent methods without any syntactic similarities. A similar
approach was presented by Deissenboeck et al. [6]. One issue with test-based clone
detection is that candidates need a similar signature. Differences in data types
or the number of parameters can not be effectively handled. SCD-PSM works
similarly to test-based methods in that it observes the runtime and compares
the resulting behavior. However, SCD-PSM builds generative models from the
observed behavior, capable of generating, conditioning, and evaluating data.
This allows SCD-PSM to bridge signature mismatches by imputing missing code
elements and the using a generalized type system.

Zhao and Huang [51] developed DeepSim, which phrases the problem as a
binary classification task. DeepSim uses neural networks to learn encodings of
the control and data flow without observing the program’s runtime. PSM also
uses neural networks but learns an underlying representation of the data flow
and runtime. DeepSim was also evaluated on a Google Code Jam dataset. It
reached an F1 score of 0.76 on the GCJ 2016 competition, while SCD-PSM
reached 0.967 on the GCJ 2017. While not entirely comparable, the results are a
good approximation given the similarity in the datasets.

10 Conclusions and Future Work

In this article, we presented Semantic Clone Detection via Probabilistic Software
Modeling (SCD-PSM). PSM builds a Probabilistic Model (PM) from a program
that can be used to simulate or evaluate a program. We used these PMs to detect
semantic clones in programs that have 0 % syntactic similarity.

We discussed the representation, search space, static-, dynamic-, and model-
similarity stages forming the main aspects of SCD-PSM. The study evaluated
SCD-PSM in great detail resulting in an average MCC greater than 0.9. Also, the
study showed the capability to control the false-positive rate, which is important
for an industry adoption. Finally, we concluded that behavioral equality of model
elements generalizes to semantic equality of code elements.

Our future work focuses on constructing a comprehensive benchmark covering
controlled and real-world systems for improved generalizability of clone detection
studies. Furthermore, semantic clone detection has the potential to enable new
methods for fault localization applications [42].

Semantic Clone Detection via Probabilistic Software Modeling 305

References

1. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edn. (2000)

2. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and
Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering
33(9), 577–591 (2007). https://doi.org/10.1109/TSE.2007.70725

3. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data
using matthews correlation coefficient metric. PloS one 12(6), e0177678 (2017)

4. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of operating
systems errors. ACM SIGOPS Operating Systems Review 35(5), 73 (Dec 2001).
https://doi.org/10.1145/502059.502042

5. Cordy, J.R., Roy, C.K.: The NiCad Clone Detector. In: 2011 IEEE 19th In-
ternational Conference on Program Comprehension. p. 219–220 (Jun 2011).
https://doi.org/10.1109/ICPC.2011.26

6. Deissenboeck, F., Heinemann, L., Hummel, B., Wagner, S.: Challenges of the
Dynamic Detection of Functionally Similar Code Fragments. In: 2012 16th European
Conference on Software Maintenance and Reengineering. p. 299–308 (Mar 2012).
https://doi.org/10.1109/CSMR.2012.38

7. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP.
arXiv:1605.08803 [cs, stat] (May 2016)

8. Elva, R., Leavens, G.T.: JSCTracker : A Semantic Clone Detection Tool for Java
Code (2012)

9. Evans, J.D.: Straightforward Statistics for the Behavioral Sciences. Brooks/Cole
Pub. Co, Pacific Grove (1996)

10. Fan, J., Zhang, C., Zhang, J.: Generalized Likelihood Ratio Statistics and Wilks
Phenomenon. The Annals of Statistics 29(1), 153–193 (2001)

11. Farmahinifarahani, F., Saini, V., Yang, D., Sajnani, H., Lopes, C.V.: On Precision
of Code Clone Detection Tools. In: 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). p. 84–94 (Feb 2019).
https://doi.org/10.1109/SANER.2019.8668015

12. Fink, G., Bishop, M.: Property-based testing: A new approach to testing for
assurance. ACM SIGSOFT Software Engineering Notes 22(4), 74–80 (Jul 1997).
https://doi.org/10.1145/263244.263267

13. Fowler, M., Beck, K.: Refactoring: Improving the Design of Existing Code. The
Addison-Wesley Object Technology Series, Addison-Wesley, Reading, MA (1999)

14. Geiger, R., Fluri, B., Gall, H.C., Pinzger, M.: Relation of Code Clones and Change
Couplings. In: Baresi, L., Heckel, R. (eds.) Fundamental Approaches to Software
Engineering, vol. 3922, p. 411–425. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006). https://doi.org/10.1007/11693017_31

15. Göde, N., Koschke, R.: Incremental Clone Detection. In: 2009 13th European
Conference on Software Maintenance and Reengineering. p. 219–228 (Mar 2009).
https://doi.org/10.1109/CSMR.2009.20

16. Harris, S.: Simian - Similarity Analyser (2003)
17. Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master.

Addison-Wesley, Reading, Mass (2000)
18. Jiang, L., Su, Z.: Automatic Mining of Functionally Equivalent Code Fragments

via Random Testing. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis. p. 81–92. ISSTA ’09, ACM, New York, NY, USA
(2009). https://doi.org/10.1145/1572272.1572283

306 H. Thaller et al.

https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1145/502059.502042
https://doi.org/10.1109/ICPC.2011.26
https://doi.org/10.1109/CSMR.2012.38
https://doi.org/10.1109/SANER.2019.8668015
https://doi.org/10.1145/263244.263267
https://doi.org/10.1007/11693017_31
https://doi.org/10.1109/CSMR.2009.20
https://doi.org/10.1145/1572272.1572283

19. Juergens, E., Deissenboeck, F., Hummel, B.: Code Similarities Beyond Copy & Paste.
In: 2010 14th European Conference on Software Maintenance and Reengineering. p.
78–87. IEEE, Madrid (Mar 2010). https://doi.org/10.1109/CSMR.2010.33

20. Kafer, V., Wagner, S., Koschke, R.: Are there functionally similar code clones in
practice? In: 2018 IEEE 12th International Workshop on Software Clones (IWSC). p.
2–8. IEEE, Campobasso (Mar 2018). https://doi.org/10.1109/IWSC.2018.8327312

21. Kapser, C.J., Godfrey, M.W.: “Cloning considered harmful” considered harmful:
Patterns of cloning in software. Empirical Software Engineering 13(6), 645–692
(Dec 2008). https://doi.org/10.1007/s10664-008-9076-6

22. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques.
Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA (2009)

23. Koschke, R.: Survey of research on software clones. In: Koschke, R., Merlo, E., Walen-
stein, A. (eds.) Duplication, Redundancy, and Similarity in Software. No. 06301 in
Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany (2007)

24. Krinke, J.: Identifying Similar Code with Program Dependence Graphs. Pro-
ceedings Eighth Working Conference on Reverse Engineering p. 301–309 (2001).
https://doi.org/10.1109/WCRE.2001.957835

25. Krinke, J.: Is Cloned Code More Stable than Non-Cloned Code? Proceedings - 8th
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2008 p. 57–66 (2008). https://doi.org/10.1109/SCAM.2008.14

26. Krinke, J.: Is Cloned Code Older than Non-Cloned Code? (2011)
27. Li, G., Liu, H., Jiang, Y., Jin, J.: Test-Based Clone Detection: An Initial

Try on Semantically Equivalent Methods. IEEE Access 6, 77643–77655 (2018).
https://doi.org/10.1109/ACCESS.2018.2883699

28. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: Finding Copy-Paste and Related
Bugs in Large-Scale Software Code. IEEE Transactions on Software Engineering
32(3), 176–192 (2006). https://doi.org/10.1109/TSE.2006.28

29. Martin, R.C. (ed.): Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, Upper Saddle River, NJ (2009)

30. Massey, F.J.: The Kolmogorov-Smirnov Test for Goodness of Fit. Jour-
nal of the American Statistical Association 46(253), 68–78 (Mar 1951).
https://doi.org/10.1080/01621459.1951.10500769

31. Mayrand, Leblanc, Merlo: Experiment on the automatic detection of function clones
in a software system using metrics. In: Proceedings of International Conference on
Software Maintenance ICSM-96. p. 244–253. IEEE, Monterey, CA, USA (1996).
https://doi.org/10.1109/ICSM.1996.565012

32. Monden, A., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K.: Software quality
analysis by code clones in industrial legacy software. In: Proceedings Eighth IEEE
Symposium on Software Metrics. p. 87–94. IEEE Comput. Soc, Ottawa, Ont.,
Canada (2002). https://doi.org/10.1109/METRIC.2002.1011328

33. PMD: Pmd. PMD (2019)
34. Rattan, D., Bhatia, R., Singh, M.: Software clone detection: A systematic

review. Information and Software Technology 55(7), 1165–1199 (Jul 2013).
https://doi.org/10.1016/j.infsof.2013.01.008

35. Roy, C.K., Cordy, J.R.: A Survey on Software Clone Detection Research. Queen’s
School of Computing TR 115, 115 (2007)

36. Saini, V., Farmahinifarahani, F., Lu, Y., Baldi, P., Lopes, C.V.: Oreo: Detection of
clones in the twilight zone. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2018. p. 354–365. ACM Press, Lake Buena
Vista, FL, USA (2018). https://doi.org/10.1145/3236024.3236026

Semantic Clone Detection via Probabilistic Software Modeling 307

https://doi.org/10.1109/CSMR.2010.33
https://doi.org/10.1109/IWSC.2018.8327312
https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1109/WCRE.2001.957835
https://doi.org/10.1109/SCAM.2008.14
https://doi.org/10.1109/ACCESS.2018.2883699
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.1109/METRIC.2002.1011328
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1145/3236024.3236026

37. Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V.: Sourcerercc: Scal-
ing code clone detection to big-code. In: Proceedings of the 38th International
Conference on Software Engineering. p. 1157–1168 (2016)

38. Su, F.H., Bell, J., Harvey, K., Sethumadhavan, S., Kaiser, G., Jebara, T.: Code
relatives: detecting similarly behaving software. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
- FSE 2016. ACM Press (2016). https://doi.org/10.1145/2950290.2950321

39. Svajlenko, J., Roy, C.K.: Evaluating clone detection tools with BigCloneBench.
In: 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). p. 131–140. IEEE, Bremen, Germany (Sep 2015).
https://doi.org/10.1109/ICSM.2015.7332459

40. Thaller, H., Linsbauer, L., Egyed, A.: Feature Maps: A Comprehensible Software
Representation for Design Pattern Detection. In: 2019 IEEE 26th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). p. 207–217.
IEEE, Hangzhou, China (Feb 2019). https://doi.org/10.1109/SANER.2019.8667978

41. Thaller, H., Linsbauer, L., Egyed, A.: Towards Semantic Clone Detection via
Probabilistic Software Modeling. In: 2020 IEEE 14th International Workshop on
Software Clones (IWSC). p. 64–69. IEEE (2020)

42. Thaller, H., Linsbauer, L., Egyed, A., Fischer, S.: Towards Fault Localization via
Probabilistic Software Modeling. In: 2020 IEEE 3rd International Workshop on
Validation, Analysis, and Evolution of Software Tests (VST). p. 24–27. IEEE (2020)

43. Thaller, H., Linsbauer, L., Ramler, R., Egyed, A.: Probabilistic Software Modeling:
A Data-driven Paradigm for Software Analysis. arXiv:1912.07936 [cs] (Dec 2019)

44. Thaller, H., Ramler, R., Pichler, J., Egyed, A.: Exploring code clones in pro-
grammable logic controller software. In: 2017 22nd IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). p. 1–8. IEEE, Limassol
(Sep 2017). https://doi.org/10.1109/ETFA.2017.8247574

45. Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA (2009)

46. Wagner, S., Abdulkhaleq, A., Bogicevic, I., Ostberg, J.P., Ramadani, J.:
How are functionally similar code clones syntactically different? An empiri-
cal study and a benchmark. PeerJ Computer Science 2, e49 (Mar 2016).
https://doi.org/10.7717/peerj-cs.49

47. Wang, P., Svajlenko, J., Wu, Y., Xu, Y., Roy, C.K.: Ccaligner: a token based
large-gap clone detector. In: Proceedings of the 40th International Conference on
Software Engineering. p. 1066–1077 (2018)

48. Wang, W., Li, G., Ma, B., Xia, X., Jin, Z.: Detecting code clones with graph neural
network and flow-augmented abstract syntax tree. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE
(feb 2020). https://doi.org/10.1109/saner48275.2020.9054857

49. Wei, H.H., Li, M.: Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code. In: Proceedings
of the 26th International Joint Conference on Artificial Intelligence. p. 3034–3040.
IJCAI’17, AAAI Press, Melbourne, Australia (Aug 2017)

50. Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X.: A novel neu-
ral source code representation based on abstract syntax tree (may 2019).
https://doi.org/10.1109/ICSE.2019.00086

51. Zhao, G., Huang, J.: DeepSim: Deep learning code functional similarity. In: Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. p. 141–151.
ESEC/FSE 2018, Association for Computing Machinery, Lake Buena Vista, FL,
USA (Oct 2018). https://doi.org/10.1145/3236024.3236068

308 H. Thaller et al.

https://doi.org/10.1145/2950290.2950321
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/SANER.2019.8667978
https://doi.org/10.1109/ETFA.2017.8247574
https://doi.org/10.7717/peerj-cs.49
https://doi.org/10.1109/saner48275.2020.9054857
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1145/3236024.3236068

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Semantic Clone Detection via Probabilistic Software Modeling 309

http://creativecommons.org/licenses/by/4.0/

	Semantic Clone Detection via Probabilistic Software Modeling
	1 Introduction
	2 Background
	2.1 Clone Detection
	2.2 Programs & Code Elements
	2.3 Probabilistic Software Modeling

	3 Semantic Clones
	4 Approach
	4.1 Modeling
	4.2 Search Space
	4.3 Static Similarity
	4.4 Dynamic Similarity
	4.5 Model Similarity

	5 Study
	5.1 Setup
	5.2 Dataset
	5.3 Controlled Variables
	5.4 Response Variables
	5.5 Comparison of Clone Detectors
	5.6 Experiment Results

	6 Discussion
	6.1 Research Question 1 — Detection Performance
	6.2 Research Question 2 — Skip Evaluation Scalability
	6.3 Research Question 3 — Skip Evaluation Effects

	7 Limitations
	8 Threats to Validity
	9 Related Work
	10 Conclusions and Future Work
	References

