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Abstract. Refactoring a program without changing the program’s func-
tional behavior is challenging. To prevent that behavioral changes remain
undetected, one may apply approaches that compare the functional behav-
ior of original and refactored programs. Difference detection approaches
often use dedicated test generators and may be inefficient (i.e., execute
(some of) the non-modified code twice). In contrast, proving functional
equivalence often requires expensive verification. Therefore, we propose
PEQtest, which aims at localized functional equivalence testing thereby
relying on existing tests or test generators. To this end, PEQtest derives
a test program from the original program by replacing each code seg-
ment being refactored with program code that encodes the equivalence of
the original and its refactored code segment. The encoding is similar to
program encodings used by some verification-based equivalence checkers.
Furthermore, we prove that the test program derived by PEQtest indeed
checks functional equivalence. Moreover, we implemented PEQtest in a
prototype and evaluate it on several examples. Our evaluation shows that
PEQtest successfully detects refactored programs that change the pro-
gram behavior and that it often performs better than the state-of-the-art
equivalence checker PEQcheck.

1 Introduction

Developers refactor programs [16] to improve quality attributes like e.g. perfor-
mance. For instance, a developer may parallelize a program with OpenMP [30]
to improve performance. While a refactoring changes the program code, e.g.,
adds OpenMP pragmas, to improve the program’s quality, the changes must not
alter the program’s functional behavior. To ensure that a refactored program is
reliable, we must check that the refactoring preservers the functional behavior.

Various approaches exist that aim to safeguard refactored programs from
altered behavior. In practice, developers often perform regression testing [54], but
the success of detecting altered behavior depends on the test suite and its test ora-
cle(s). If refactoring rules are applied, one can prove the correctness of the applied
refactoring rules [45,22,44]. In contrast, incremental verification techniques,
e.g., [53,39,8,35], propose solutions for efficient re-verification of changed programs,
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Listing 1.1: Original program

void sum seq (unsigned char N)
{
int a [N+1] ;
a [ 0 ] = 0 ;

for ( int i =1; i<=N; i++)
a [ i ] = a [ i =1] + i ;

}

Listing 1.2: Refactored program

int sum par (unsigned char N)
{
int a [N+1] ;
a [ 0 ] = 0 ;

#pragma omp p a r a l l e l for
for ( int i =1; i <= N; i++)
a [ i ] = ( i *( i +1))/2;

}

Listing 1.3: Generated test program

int sum test (unsigned char N)
{
int a [N+1] ;
a [ 0 ] = 0 ;

s t o r e ( a , 0 ) ;

for ( int i =1; i <= N; i++)
a [ i ] = ( i *( i +1))/2;

s t o r e ( a , 1 ) ;
r e s t o r e ( a , 0 ) ;

#pragma omp p a r a l l e l for
for ( int i =1; i <= N; i++)
a [ i ] = ( i *( i +1))/2;

s t o r e ( a , 2 ) ;
e q s t o r e ( a , 1 , 2 ) ;

}

Fig. 1: Original, sequential program (top left), which initializes each array entry i

with
∑i

j=0 j, the refactored program (bottom left), which parallelizes the array

initialization using OpenMP and utilizing that
∑i

j=0 j =
i·(i+1)

2 , as well as the
generated program for testing functional equivalence (right)

but they typically need a specification of the functional behavior, which rarely ex-
ists. Another solution, which does not require a specification, is to inspect whether
or when the original and the refactored program behave functionally equivalent.
Approaches aiming to detect differences in the behavior [26,52,46,20,31,29,36,47]
are inefficient, i.e., execute each test case on the original and the refactored
program or function, and often use dedicated test generators. Approaches aiming
to prove functional equivalence [5,56,40,14,13,43,49,41,34,4,15,17,38,23,42,19] use
heavyweight verification techniques, rarely support parallel programs, and often
consider all possible variables values.

Our goal is to develop a lightweight, test-based approach for functional equiv-
alence checking, for which we can use existing tests or test generators. Inspired
by equivalence checkers [17,38,23,51,42,2,19] that transform the equivalence of
two programs into a set of verification tasks (i.e., programs with assertions),
our PEQtest approach transforms the equivalence of two programs into a test
program. To restrict equivalence testing to relevant program values and to reduce
the duplicate execution of non-modified code, PEQtest generates a single test
program (verification task) that executes the unchanged code only once and
individually checks equivalence of each refactored code segment in the context of
the original program. The individual checks use a similar idea as UC-KLEE [38],
which verifies equivalence of functions. More concretely, PEQtest derives the
test program from the original program by extending each original code segment
with (a) the refactored code segment and (b) code to store, restore, and compare
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variable values of modified variables. To store, restore, and compare the values
of modified variables, PEQtest relies on checkpoints, which save the values of a
given set of modified variables in a given program state.

In our example (Fig. 1), PEQtest first detects that the original (sequen-
tial) code segment (framed, dark blue) and the refactored (parallelized) code
segment (frameless, light blue) modify variable a1. Thereafter, PEQtest derives
the test program (right) from the original program (top left). It adds the paral-
lelized code segment. To provide the same input to the original and refactored
code segment, PEQtest uses checkpoint 0 to store modified variables. The
test program calls store(a, 0); to save in checkpoint 0 the values of modified
variable abefore the original code segment and calls restore(a,0); to restore
the values of modified variables before the refactored code segment. To make the
result of both code segments available for equivalence checking, the test program
stores the values of modified variable a after each code segment in checkpoint 1
and 2, respectively. Finally, the equivalence test eq store checks whether the
checkpoints 1 and 2 contain equivalent values for the modified variable a.

We proved that PEQtest generates test programs that can indeed detect
inequivalence and that if no execution of the test program reveals an inequiva-
lence, original and refactored program are equivalent. As a proof-of-concept, we
implemented PEQtest and used it to check several program parallelizations
and a few sequential refactorings. Our evaluation shows that PEQtest reliably
detects inequivalences and typically outperforms the state-of-the-art equivalence
checker PEQcheck [19].

2 Background

Program Syntax. To present our approach, we rely on a simple imperative
language on integer variables.2 Since synchronization issues, e.g., deadlocks,
do not affect how our approach works and we want to keep the programming
language simple, our language supports parallel execution, but no synchronization
operations. Below, we show the grammar of the programming language that we
use to present our approach.

S := E | v :=ℓ aexpr; | if ℓ bexpr then S1 else S2 | whileℓ bexpr do S |
S1S2 | [S1∥ . . . ∥Sn]

We use E to denote the empty program and assume that arithmetic expres-
sions aexpr in assignments and Boolean expressions bexpr in if and while state-
ments are built with standard operators on integers. To build more complex
programs S, several subprograms Si may be assembled into a sequence or into a
parallel statement. To unambiguously identify the original and refactored code
segments during test program generation3 and any subprogram in our proofs,

1 Both segments also modify variable i, but it is a local variable, which can be ignored.
2 Our implementation supports a subset of C programs, which may use OpenMP
pragmas for parallelization.

3 For our implementation, one only needs to specify the start and end of code segments i.
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σ(bexpr)=true

(ifℓ bexpr then S1 else S2,σ,ξ)
bexpr−−−→(S1,σ,ξ)

σ(bexpr)=false

(ifℓ bexpr then S1 else S2,σ,ξ)
¬bexpr−−−−→(S2,σ,ξ)

σ(bexpr)=true

(whileℓ bexpr do S,σ,ξ)
bexpr−−−→(S whileℓ bexpr do S,σ,ξ)

σ(bexpr)=false

(whileℓ bexpr do S,σ,ξ)
¬bexpr−−−−→(E,σ,ξ)

(v:=ℓaexpr;,σ,ξ)
v:=aexpr;−−−−−−→(E,σ[v:=σ(aexpr)],ξ)

(Si,σ,ξ)
op−→(S′

i,σ
′,ξ′)

([S1∥...∥Si∥...∥Sn],σ,ξ)
op−→([S1∥...∥S′

i∥...∥Sn],σ′,ξ′)

(S1,σ,ξ)
op−→(S′

1,σ
′,ξ′)

(S1S2,σ,ξ)
op−→(S′

1S2,σ′,ξ′)

∀v∈V :ξ(σ(aexpr1))(v)=ξ(σ(aexpr2))(v)

(eq store(V,aexpr1,aexpr2);,σ,ξ)
eq store−−−−−→(E,σ,ξ)

(restore(V,aexpr);,σ,ξ)
restore−−−−−→(E,σ[V←ξ(σ(aexpr))],ξ) (E S,σ,ξ)

nop−−→(S,σ,ξ)

(store(V,aexpr);,σ,ξ)
store−−−→(E,σ,ξ[σ(aexpr):=ξ(σ(aexpr))[V←σ]]) ([E∥...∥E],σ,ξ)

nop−−→(E,σ,ξ)

Fig. 2: Rules for operational semantics

we assume that each basic statement is annotated with a label ℓ, which must
be unique in the complete program. Moreover, we use the set V to refer to all
program variables and subset V(S) ⊆ V to refer to the variables occurring in
(sub)program S. Similarly, subset V(expr) ⊆ V represents all variables that occur
in an arithmetic or Boolean expression expr.

While the programming language above is sufficient to represent original and
refactored programs, the test programs derived by our approach also use check-
pointing to store, restore, and compare relevant parts (e.g., modified variables) of
program states. To support checkpointing and checkpoint comparison, we extend
the programming language for test programs with the three checkpoint functions
eq store, restore, and store. All three functions get as input a subset V ⊆ V
of relevant variables and one or two arithmetic expressions (typically an integer
constant) to refer to the relevant checkpoints.

S := eq store(V, aexpr1, aexpr2); | restore(V, aexpr); | store(V, aexpr);

Program Semantics We formalize the program semantics using a fairly
standard operational semantics that defines how a program executes. A program
execution is a sequence of transitions between execution states. An execution
state is a triple of a program, a data state, and an additional checkpoint state.
A data state is a function σ : V → Z that provides an integer value for each
program variable. We denote the set of all data states by Σ. A checkpoint state
is a function ξ : N → Σ that maps checkpoints i to data states σ. The set Ξ
denotes all checkpoint states.

The 12 rules shown in Fig. 2, which consists of 7 standard rules plus 5 newly
introduced rules highlighted in light gray, define the possible transitions. As usual,
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we write σ(expr) for the evaluation of expr in data state σ ∈ Σ.4 The state
update σ[v := σ(aexpr)], which is used in the rule for the assignment, returns a
new data state σn with σn(w) = σ(w) for all w ∈ V \ {v} and σn(v) = σ(aexpr).
Similarly, the multi state update σ[V ← σ′], which is used by the new store and
restore rules, returns a new data state σn with σn(w) = σ(w) for all w ∈ V \ V
and σn(v) = σ′(v) for all v ∈ V . In addition, the checkpoint update ξ[c := σu],
which is used in the store rule, returns a new checkpoint state ξn with ξn(i) = ξ(i)
for all i ∈ N \ {c} and ξn(c) = σu.

5 Also, note that instead of assuming that E S
and [E∥ . . . ∥E]S are equivalent to S, we introduce two nop rules, which make
our proofs simpler. After we formalized the transitions, we now inductively define
the executions ex(S) of a program S with two inference rules:

1. σ∈Σ,ξ∈Ξ
(S,σ,ξ)∈ex(S) and

2. (S0,σ0,ξ0)
op1−−→...

opn−−→(Sn,σn,ξn)∈ex(S), (Sn,σn,ξn)
opn+1−−−−→(Sn+1,σn+1,ξn+1)

(S0,σ0)
op1−−→...

opn−−→(Sn,σn,ξn)
opn+1−−−−→(Sn+1,σn+1,ξn+1)∈ex(S)

.

We write (S, σ, ξ) →∗ (S′, σ′, ξ′) if the intermediate steps of the execution
are unimportant. Furthermore, we say that execution (S, σ, ξ) →∗ (S′, σ′, ξ′)
(i) terminates normally if S′ = E and (ii) violates a checkpoint equivalence if
S′ violates a checkpoint equivalence in (σ′, ξ′). In general, a program S′ vio-
lates a checkpoint equivalence in (σ′, ξ′) if either (a) there exists a statement
Seq = eq store(V, aexpr1, aexpr2); such that ∃v ∈ V : ξ′(σ′(aexpr1))(v) ̸=
ξ′(σ′(aexpr2))(v) and S = Seq or S = SeqS

′ or (b) S = [S1∥ . . . ∥Si∥ . . . ∥Sn]
or S = [S1∥ . . . ∥Si∥ . . . ∥Sn]S

′ and there exists at least one subprogram Si that
violates a checkpoint equivalence in (σ′, ξ′). In general, a program S violates a
checkpoint equivalence if there exists an execution (S, σ, ξ)→∗ (S′, σ′, ξ′) ∈ ex(S)
such that S′ violates a checkpoint in (σ′, ξ′).

Partial Equivalence. We are interested whether two (sub)programs behave
functionally equivalent, i.e., compute the same output when given the same
input. Like many other approaches on equivalence checking, we focus on partial
equivalence, i.e., we limit equivalence to executions that terminate normally.6

In addition, we utilize that checkpoint functions are not used in programs, but
are only introduced to test functional equivalence. Therefore, our definition of
partial equivalence focuses on data states and ignores checkpoint states.

Definition 1. (Sub)programs S1 and S2 are partially equivalent (S1 ≡ S2) if

∀σ, σ′, σ′′ ∈ Σ, ξ, ξ′, ξ′′, ξ′′′ ∈ Ξ : ((S1, σ, ξ)→∗ (E, σ′, ξ′) ∈ ex(S1)
∧(S2, σ, ξ′′)→∗ (E, σ′′, ξ′′′) ∈ ex(S2)) =⇒ σ′ = σ′′ .

4 Note that we do not specify the expression evaluation in detail because we have
not fixed the expression syntax. However, we assume that the result of evaluating
integer constant c in data state σ is the constant c (i.e., σ(c) = c) and that expression
evaluation is deterministic (i.e., σ(expr) = x ∧ σ(expr) = y =⇒ x = y).

5 The store rule determines the state σu using a multi state update and the index c
evaluating an arithmetic expression (often a constant) in the current data state.

6 Note that we still may detect that a refactoring introduces non-termination because if
a refactoring introduces non-termination, our test program either detects inequivalence
or does not terminate for some inputs.
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Variable Modification. To make equivalence testing more efficient, we only
want to checkpoint modified variables, i.e., the checkpoint should only store
the value of those variables whose value may change. The following definition
formalizes the set of variables modified by a (sub)program.

Definition 2. Let S be a (sub)program. The variables modified by S are:

M(S) := {v ∈ V | ∃σ, σ′ ∈ Σ, ξ, ξ′ ∈ Ξ : (S, σ, ξ)→∗ (·, σ′, ξ′) ∧ σ(v) ̸= σ′(v)}.

For instance, in programs written in our programming language that do not
use restore statements variables can only be modified by assignments. For those
programs, the setM(S) of modified variables can be overapproximated by the
set of variables that occur in S on the left-hand side of an assignment. In the
following, we describe any overapproximation of the modified variables, e.g. the
one sketched above, by M≈ : S → 2V and assume thatM(S) ⊆M≈(S).

3 Generating Test Programs with PEQtest

Our goal is to test equivalence between an original and refactored program, which
both do not use checkpoint functions. As explained earlier, checkpoint functions
are supposed to be used by test programs only. In this section, we describe how
PEQtest generates the test program for equivalence testing, prove soundness of
the generated test program, i.e., show that the generated test program checks
functional equivalence, and discuss limitations of PEQtest’s program generation
as well as our implementation.

Sound Test Program Generation. To test functional equivalence of two
subprograms, the idea of our PEQtest approach is to execute both subprograms
with the same input and compare their outputs. The test program generated
by PEQtest will execute the two subprograms sequentially to avoid that their
executions can interfere with each other. Furthermore, it will ensure that both
subprograms get equal inputs, which may be produced by the (original) program,
and that their outputs can be compared. Many verification approaches for
functional equivalence [17,38,23,51,42,2,19] use a similar setup, but do not restrict
the inputs. To ensure equal inputs and make outputs available, these approaches
either (1) duplicate (shared, modified) variables, replace the variables in one of
the subprograms by the duplicated ones, and assign equal values to the original
and duplicated inputs [17,42,2,19], (2) add additional variables to store the
input and output values and restore the input after the execution of the first
subprogram [51,23], or (3) use dedicated functions, e.g., checkpoint functions,
to store and restore inputs and outputs [38]. For our test program, we choose
option (3) because it does not change the subprograms and, thus, it simplifies test
program generation as well as it eases the comprehensibility of the test program.

Next, we discuss how we implement option (3). To lower the test effort, we
decide to only store and compare values of variables that may be modified by
one of the two subprograms. Since this set cannot always be determined precisely
and different overapproximations are imaginable, we use parameter V to provide
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this set to the test program generator. Moreover, we aim at localized equiva-
lence testing. Thus, our test program likely includes more than one functional
equivalence test, namely one for each pair of original and refactored subprogram.
While the output must be stored directly after the execution of each subprogram,
the output comparison can be done at the end of the test program or after the
execution of original and refactored subprogram. We choose the second option
because it allows us to reuse checkpoints and lets the test program stop at the first
difference of outputs, which makes it easier to detect which pair of subprograms
is responsible for the failure of the test program, i.e., which pair of subprograms
is inequivalent. We stop at the first difference instead of e.g. logging the difference
because test execution becomes faster, but we address the logging alternative
when discussing the limitations. The following definition shows how we encode
the functional equivalence test for an original subprogram S1 and the refactored
subprogram S2 for a given overapproximation V of the set of modified variables.

test eq(V, S1, S2) :=
store(V, 0); S1 store(V, 1); restore(V, 0); S2 store(V, 2); eq store(V, 1, 2);

Next, we show that our test encoding is sound, i.e., it may detect inequivalences
if the two subprograms S1 and S2 are inequivalent. Our encoding uses checkpoint
equivalence to detect whether two subprograms S1 and S2 are inequivalent, i.e.,
differ in their outputs. Hence, it must violate a checkpoint equivalence if S1 and
S2 are inequivalent. We can ensure even more and show that the test encoding
is also complete. As shown by the following theorem our test encoding violates a
checkpoint equivalence if and only if S1 and S2 are inequivalent.

Theorem 1. Let S1 and S2 be (sub)programs without calls to checkpoint func-
tions and M≈ be an overapproximation of the modified variables. Then, S1 ≡ S2
iff test eq(M≈(S1) ∪M≈(S2), S1, S2) does not violate a checkpoint equivalence.

Proof (Sketch). Let M := M≈(S1) ∪M≈(S2).
⇒ Let (test eq(M,S1, S2), σ, ξ) →∗ (eq store(M, 1, 2); , σ5, ξ5) be arbitrary.

Show with semantics that there exists an execution
(test eq(M,S1, S2), σ, ξ)
→ (S1 store(M, 1); restore(M, 0); S2 store(M, 2); eq store(M, 1, 2); , σ1, ξ1)
→∗ (store(M, 1); restore(M, 0); S2 store(M, 2); eq store(M, 1, 2); , σ2, ξ2)
→∗ (S2 store(M, 2); eq store(M, 1, 2); , σ3, ξ3)
→∗ (store(M, 2); eq store(M, 1, 2); , σ4, ξ4)
→ (eq store(M, 1, 2); , σ5, ξ5)
with σ = σ1 = σ3, for all v ∈ V \M also σ(v) = σ5(v), and for all v ∈ M we
have ξ5(1)(v) = σ2(v) and ξ5(2)(v) = σ4(v).
Conclude that exists (S1, σ1, ξ1) →∗ (E, σ2, ξ2) and (S2, σ3, ξ3) →∗ (E, σ4, ξ4)
with σ = σ1 = σ3 and for all v ∈M we have ξ5(1)(v) = σ2 and ξ5(2)(v) = σ4. By
assumption (S1 ≡ S2), σ2 = σ4 and, thus, ξ5(1)(v) = σ2(v) = σ4(v) = ξ5(2)(v).
By semantics, (test eq(M,S1, S2), σ, ξ)→∗ (eq store(M, 1, 2); , σ5, ξ5) does not
violate a checkpoint equivalence.
⇐ Let (S1, σ1, ξ1)→∗ (E, σ2, ξ2) and (S2, σ3, ξ3)→∗ (E, σ4, ξ4) be arbitrary

with σ1 = σ3. Show with semantics that there exists an execution
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(test eq(M,S1, S2), σ, ξ)
→ (S1 store(M, 1); restore(M, 0); S2 store(M, 2); eq store(M, 1, 2); , σ1, ξ1)
→∗ (store(M, 1); restore(M, 0); S2 store(M, 2); eq store(M, 1, 2); , σ2, ξ2)
→∗ (S2 store(M, 2); eq store(M, 1, 2); , σ3, ξ3)
→∗ (store(M, 2); eq store(M, 1, 2); , σ4, ξ4)
→ (eq store(M, 1, 2); , σ5, ξ5)
with σ = σ1 = σ3, for all v ∈ V \M also σ(v) = σ5(v), and for all v ∈ M we
have ξ5(1)(v) = σ2(v) and ξ5(2)(v) = σ4(v).
Since the test program does not violate a checkpoint equivalence, for all v ∈M
we know σ2(v) = ξ5(1)(v) = ξ5(2)(v) = σ4(v). We conclude that σ2 = σ4. ⊓⊔

So far, we can use the test encoding to test or even verify functional equivalence
of complete programs. Following the idea of PEQcheck [19], which checks
equivalence on the level of subprograms rather than on the level of functions or
programs, our goal is to split testing of equivalence into multiple subtests, namely
one subtest per pair of original and refactored subprogram. While PEQcheck
builds one equivalence task per pair and verifies all tasks on every input, our
PEQtest approach generates one single test program that only provides inputs
produced by the original program7. More concretely, PEQtest derives the test
program from the original program by replacing the subprograms being refactored
with the test encoding test eq of the original and refactored subprogram.

Currently, we assume that PEQtest is informed about the refactored subpro-
grams. More concretely, given original program S and refactored program S′, we
assume that there exists a partial, injective replacement function γ : 2S ⇀ 2S8

such that S′ can be derived from S by replacing all subprograms S1 of S
with S1 ∈ preImg(γ) by γ(S1). Generally, we write S2 = Γ (S1, γ) to de-
note that S2 is derivable from S1 by replacing all subprograms Ss of S1 by
γ(Ss). For the PEQtest approach, we assume that the replacement function γ
only describes the refactoring of the original program S, i.e., preImg(γ) only
contains subprograms of S. In addition, the replacement must be unambigu-
ous. Hence, we do not allow S1, S2 ∈ preImg(γ) such that S2 is a subpro-
gram of S1 nor S1, S1S2 ∈ img(γ) such that S1 is a subprogram of S and
S1 /∈ preImg(γ).9 We also require that E, [E∥ . . . ∥E] /∈ (preImg(γ) ∪ img(γ))
and ¬∃S : E S, [E∥ . . . ∥E]S ∈ (preImg(γ)∪ img(γ)) because they are no proper
programs. To avoid that interference of parallel statements can invalidate the
result of a test, all subprograms in preImg(γ) (img(γ)) must not occur in a
parallel statement of the original (refactored) program. Thus, a refactoring in a
parallel statement must be described by a refactoring of the parallel statement.
Note that for proper programs one can always use γ = {(S, S′)}.10

To generate our test program, PEQtest requires a replacement function γtest
that maps the subprograms being refactored to their test encodings. PEQtest

7 If all original and refactored subprograms are equivalent (which we aim to inspect),
the original and refactored program will provide the same inputs.

8 If γ is not injective, one can make it injective by properly changing statement labels.
9 One can achieve this by proper choices of code segments and statement labels.

10 However, one may need to adapt some of the labels in S′.
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derives γtest from the replacement function γ, which describes the refactoring.
For each subprogram in the domain, PEQtest replaces its image (the refac-
tored subprogram) by the test encoding of that subprogram and its refactored
subprogram thereby using an M≈ to determine the set of modified variables.

γtest(γ,M≈) := {(S1, test eq(M≈(S1) ∪M≈(γ(S1)), S1, γ(S1))) | S1 ∈ preImg(γ)}

Let us briefly discuss why γtest fulfills the requirements on a replacement func-
tion. Since the test encoding contains γ(S1), function γtest inherits injectivity
from γ. By construction, test encodings are unequal to E, E S, [E∥ . . . ∥E], and
[E∥ . . . ∥E]S and start with checkpoint functions, which we assume that the orig-
inal program does not contain. The remaining requirements are fulfilled because
we only replace refactored subprograms by the corresponding test encoding.

Now, we have everything at hand to generate the test program, which can then
be used to detect inequivalences with an existing test approach, e.g., [12,1]. As
explained, we derive the test program from the original program by replacing the
subprograms being refactored with the test encoding test eq of the original and
refactored subprogram. To achieve this, we use the replacement function γtest.

test prog(S, γ,M≈) := Γ (S, γtest(γ,M≈))

Again, let us consider soundness, but now for the test program. Our goal is
to detect inequivalences caused by a refactoring. Thus, we do not give any
guarantees if the original program is non-deterministic, i.e., not equivalent to
itself, which can only occur if it contains non-deterministic parallel statements
or checkpoint functions. We already assumed that checkpoint functions are only
used by the test program, but not by the original or refactored program. For our
soundness discussion, we also exclude programs that contain non-replaced, non-
deterministic parallel statements. More concretely, we assume that all parallel
statements Sp that are not replaced, i.e., for whom there does not exist a
subprogram Ss ∈ preImg(γ) such that Sp = Ss or Sp is a subprogram of Ss, are
deterministic (Sp ≡ Sp). In this case, the following theorem ensures that our
PEQtest approach can soundly detect inequivalences, i.e., the test program
generated by PEQtest is able to detect a violation of a checkpoint equivalence
if original and refactored program are inequivalent.

Theorem 2. Let S and S′ be programs without calls to checkpoint functions,
M≈ an overapproximation of the modified variables, γ be a replacement function
such that S′ = Γ (S, γ), and all non-replaced parallel statements Sp of S are
deterministic (Sp ≡ Sp). If S ̸≡ S′, then there exists (S0, σ0, ξ0)→∗ (Sn, σn, ξn) ∈
ex(test prog(S, γ,M≈)) that violates a checkpoint equivalence.

Finally, let us look at the contraposition of the above theorem. While our
intention for PEQtest is testing and detection of equivalence violations, the
corollary below states that we can alternatively verify the test program generated
by PEQtest to show functional equivalence.
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Listing 1.4: Original program

void swap i o r i g ( int x , int y )
{

tmp=y+1;

y=x ;
x=tmp ;

}

Listing 1.5: Refactored program

void swapi mod ( int x , int y )
{

tmp=y ;

y=x ;
x=tmp+1;

}

Fig. 3: Behaviorally equivalent original and refactored program whose code seg-
ments are not equivalent

Corollary 1. Let S and S′ be programs without calls to checkpoint functions,
M≈ an overapproximation of the modified variables, γ be a replacement func-
tion such that S′ = Γ (S, γ), and all non-replaced parallel statements Sp of
S are deterministic (Sp ≡ Sp). If no execution (S0, σ0, ξ0) →∗ (Sn, σn, ξn) ∈
ex(test prog(S, γ,M≈)) violates a checkpoint equivalence, then S ≡ S′.

Discussion of Limitations. Functional equivalence of two programs is un-
decidable [17]. While our PEQtest approach is sound under certain assumptions.
PEQtest may report violations of checkpoint equivalences, although original
and refactored program are equivalent. Hence, it may be incomplete. One reason
is the wrong choice of code segments. For example, consider Fig. 3. Although
the two code segments of original and refactored program (highlighted in blue
and green, respectively) are inequivalent, the programs are equivalent. For our
experiments, we ensured that we do not make the wrong choice for the code
segments. In practice, one may check whether a reported violation is a false alarm
caused by a wrong choice of code segments by reusing the test input causing
the violation to execute one or more test programs generated by PEQtest that
use the same original and refactored program but larger segments, e.g., using
segments on function or program level, or iteratively merging segments until the
violation is disproved or the segments become the programs.

Next, let us discuss the assumption used in Theorem 2. One can easily get rid
of the assumption that non-replaced parallel statements must be deterministic.
Basically, PEQtest needs to extend γ with pairs (Sp, Sp) for all non-replaced
parallel statements Sp. Supporting checkpoint functions is more challenging
because PEQtest must be able to store and restore checkpoints and it must
ensure that its checkpoints and the program’s checkpoints do not interfere. While
one may find such an encoding, our definition of partial equivalence does not
cover checkpoint states. Also, it does not support non-deterministic programs
since our main motivation for PEQtest is refactoring or parallelization of
sequential programs not the refactoring of non-deterministic, parallel programs. To
properly support checkpointing and all kinds of parallel programs, our definition
of equivalence and PEQtest need to be adapted significantly.

Also, the requirements on the replacement function restrict our PEQtest
approach. While many assumptions can be met by adapting labels of statements,
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the requirement that code segments must be subprograms and they must not
occur in a parallel statement are major restrictions. However, note that this only
limits the granularity of code segments, but not the applicability of the approach.

Finally, we want to mention that in our above formalization we chose to stop
as soon as PEQtest finds a violation because it simplified our proofs. To always
inspect all refactored code segments, one can either move PEQtest’s checks at
the end of the test program and use different checkpoints per test encoding, or
only write a log but do not stop when detecting a difference. To ensure that one
still tests on values of the original program, one must restore the output of the
original program at the end of each test encoding or swap S1 and S2 in the test
encoding test eq, i.e., execute the refactored subprogram S2 before the original
subprogram S1. Our current implementation postpones PEQtest’s checks to
the end of the test program and restores the output of the original program at
the end of each test encoding.

Implementation. We support test program generation for a subset of C pro-
grams with or without OpenMP directives. So far, we do not support programs
with pointer aliasing (except for parameter passing). While we allow pointers
and dynamic memory allocation, we do not support the modification of dynamic
data structures in original or refactored code segments. The reason is that we
checkpoint arrays and structs by recursively checkpointing their elements and
checkpoint pointers by dereferencing them and then checkpoint the dereferenced
non-pointer element. Thus, our current implementation only works correctly in
case that pointers that need to be checkpointed are non-null and do not change
in original or refactored code segments.11

Our test program generation relies on the ROSE compiler framework [37]. To
store and restore checkpoints, we use a minicpr library, but we built our own
library to compare checkpoints. Our implementation assumes that the start and
end of a code segment i is specified by pragma statements #pragma scope i and
#pragma epocs i. Currently, we insert them manually. For OpenMP paralleliza-
tion (our main field of application), insertion is mostly straightforward. Often,
choosing the code blocks associated with the outermost OpenMP directives is a
good choice. This can easily be automated, but has not been implemented yet.

For each code segment, our implementation runs ROSE’s definition-use analy-
sis to detect the modified variables M≈ that are visible after the code segment. If
a code segment contains procedure calls, we also add all global variables and all
variables occurring in the parameter expression of a pointer or array argument to
the modified variables M≈. Based on the computed set M≈ of modified variables,
we then extend the sequential code segment with the refactored code segment
and the calls to the checkpoint library necessary to store and restore checkpoints.
In contrast to our formalization, the store and restore operation only get the
checkpoint name, while additional calls are used to inform the checkpoint library
which variables V to consider. Also note that the test program generated by our
implementation stores the output of the original and refactored code segments

11 Due to internals of the used checkpoint library, pointers must not change after they
are first checkpointed.

194 M.-C. Jakobs, M. Wiesner



in checkpoints that differ for each execution of a test encoding and performs
output comparison at the end of the test program, which allows us to inspect all
checkpoints at once and to possibly find multiple violations.

Next, we describe the checkpoint comparison. For each variable in the two
checkpoints12, we check whether their content is equivalent. Except for floating
point values, we rely on C’s byte level comparison function memcmp. Often,
implementations of floating point operations like + are not associative, but small
differences of floating point values are tolerable. Thus, our comparison of floating
point values succeeds when the difference of the values is within a tolerance ε13.

4 Evaluation

The goals of our experiments are to (a) study how effective and efficient is PEQ-
test’s detection of inequivalences and to (b) compare PEQtest to an existing
equivalence checker. For our comparison, we choose PEQcheck because it also
supports localized checking for OpenMP programs.

4.1 Experimental Setup

Benchmark. To check equivalence of sequential and parallelized programs, we use
the tasks from the DataRaceBench (DRB) benchmark suite [24,50] (version 1.3.2),
which addresses common mistakes in OpenMP parallelization and contains
OpenMP programs with and without data races. From the DataRaceBench, we
exclude all tasks with thread private directives, which we cannot cover with
our segments and all tasks that require at least an OpenMP 4.5 compiler or
that offload computation to a different device (i.e., use the target construct)
because they are neither supported by PEQtest nor PEQcheck. In total, we
get 132 tasks (26 equivalent and 106 inequivalent tasks). We manually selected the
code segments following the idea discussed in the implementation paragraph and
use the DataRaceBench programs without OpenMP constructs for the sequential
(original) programs. To execute the generated test programs, we use the inputs
provided by DataRaceBench.

To check equivalence of two sequential program versions, we consider all
non-recursive programs from Rêve [15]. However, we exclude loop4 and loop5,
which were not available, as well as digits10, digits!10, and barthe2, which declare
different sets of output variables in original and refactored program and, thus,
are detected inequivalent during test program generation. To make the programs
executable, we remove the mark annotations, which have no implementation, and
extend each of the programs with a test driver that generates random inputs.
The code segments are the same as in the evaluation of PEQcheck [19]. In total,
we get 15 sequential tasks (5 equivalent and 10 inequivalent tasks).

Tool Configurations. To study the trade-off between effectiveness and
efficiency, we examine three PEQtest configurations, which differ in the resources

12 By construction, checkpoints that are compared store the same variables.
13 In our evaluation, we use ε = 10−8.
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used during test program execution. The low effort configuration uses one thread
and runs the test program once. The other two configurations use two threads
for the DRB tasks and one thread for the sequential tasks while running the
test program 10- and 100-times. For the competitor PEQcheck [19], we use a
setup similar to [19]. For the DRB tasks, PEQcheck combines the PEQcheck
encoding14 (revision 9dc36b) and verifier CIVL [42] (version 1.20 5259) using the
theorem prover Z3 [27] (version 4.8.7). We restrict CIVL to two threads, set its
timeout to 5min, and disable the division by zero and memory leakage checks.
For the sequential tasks, PEQcheck combines the PEQcheck encoding with
verifier CPAchecker [7] (version 2.0). For verification, we use CPAchecker’s
default analysis, which is also limited to 5min.

Environment. We use a time limit of 5min per task and run our experiments
on an Ubuntu 20.04 machine with an Intel Core i7 (1.8 GHz) and 32GB of RAM.

4.2 Experiments

RQ 1: How effective is PEQtest with minimal resources? To answer this
research question, we look at PEQtest’s results for the low effort configuration
(1 thread, 1 run). For the DataRaceBench (DRB) tasks (left) and the sequen-
tial (SEQ) tasks (right), Tab. 1 shows for all three PEQtest configurations the
absolute and relative number15 of correctly detected inequivalences, the number
of missed inequivalences, i.e., inequivalences that are not detected, the number of
equivalent tasks for which an inequivalence is incorrectly detected (i.e., the false
alarms), and the number of equivalent tasks for which no inequivalence is detected.
For the two classes in which no inequivalence is detected (missed inequivalence or
correctly detected no inequivalence), we also distinguish between the two reasons
for not detecting inequivalences: (1) no inequivalences are reported during test
program execution and (2) task not completed, e.g., test program generation
failed or a timeout occurred during test program generation or execution.

Looking at the first two columns of the DRB tasks and the two columns of
the SEQ tasks in Tab. 1, which show the results of the low effort configuration,
we observe that for our examples PEQtest does not report any false alarms,
i.e., the number of incorrectly detected inequivalences is zero. Thus, we have
100% precision for inequivalence detection. More surprisingly, PEQtest detects
more than half of the inequivalences (i.e., recall > 50%) with its low effort
configuration and, thus, without parallel execution in case of the parallelized
DRB tasks. Studying the detected inequivalences, we observe that almost all the
detected inequivalent DRB tasks use a variable to which data-sharing attribute
(first)private is assigned and that is visible, but typically not live after the
parallelized code segment. The data-sharing attribute makes the variable thread-
local during execution of the parallelized code segment and prevents that the
thread-local variable values become available after the parallelized code segment.

14 https://git.rwth-aachen.de/svpsys-sw/FECheck
15 The relative numbers are the absolute numbers divided by the total number of

equivalent and inequivalent tasks, respectively.
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Table 1: For each of the three PEQtest configurations, shows for the DRB
and sequential (SEQ) tasks the absolute and relative number of tasks for which
inequivalence is detected correctly, is missed, is detected incorrectly, and is
correctly not detected. If no inequivalence is detected, the table also distinguishes
between no inequivalence reported (i.e., no inequivalence observed in runs) and
task is not completed due to a timeout or failure.

DRB tasks SEQ tasks
1 thread 2 threads 1 thread
1 run 10 runs 100 runs 1/10/100 runs

correctly detected inequivalence 58 (55%) 72 (68%) 74 (70%) 6 (60%)
missed inequivalence 48 (45%) 34 (32%) 32 (20%) 4 (40%)

no inequivalence reported 38 (35%) 24 (22%) 22 (17%) 3 (30%)
task not completed 10 (10%) 10 (10%) 10 (10%) 1 (10%)

incorrectly reported inequivalence 0 (0%) 0 (0%) 0 (0%) 0 (0%)
correctly detected no inequivalence 26 (100%) 26 (100%) 26 (100%) 5 (100%)

no inequivalence reported 22 (85%) 22 (85%) 22 (85%) 4 (80%)
task not completed 4 (15%) 4 (15%) 4 (15%) 1 (20%)

Furthermore, many of the detected inequivalent sequential tasks are inequivalent
for many different input values. We conclude that inequivalences caused by the
discussed data-sharing attributes or input-insensitive inequivalences can easily
be detected with a single run and thread.

RQ 2: Does PEQtest’s effectiveness increase when given more
resources and what are the costs? First, we examine whether PEQtest
performs better if we increase the resources for testing, i.e., the number of
runs and for parallelized programs also the number of threads used during test
program execution. Comparing the results of our three PEQtest configurations
(Tab. 1), we observe that there is no difference for the sequential tasks. The
reason is that one can only detect the missed inequivalences with particular
inputs whose random generation is unlikely. For the DRB tasks, however, the
number of correctly detected inequivalences increases and the number of missed
inequivalences decreases when providing more resources. All other entries stay
the same. Hence, PEQtest’s effectiveness may increase (i.e., its recall increases)
when we allow it to use more resources. Especially, using more than one thread
for parallelized programs increases the effectiveness significantly, as one could
have expected. For our examples, using 100 instead of 10 runs hardly improves
PEQtest’s effectiveness. In general, PEQtest misses inequivalences in the
DRB tasks if the generation of the test program fails (10 tasks). In addition, it
misses inequivalences for SIMD constructs (2 tasks), inequivalences depending on
thread scheduling (13 tasks), and inequivalences in I/O behavior (7 tasks), e.g.,
values written via printf, which our implementation does not support yet16.

16 Support for I/O can be added by writing all outputs to the checkpoint.
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Fig. 4: Per task compare execution time of all test program runs (left) and total
runtime of PEQtest (right) in low effort configuration (1 thread, 1 run) against
the other two configurations (2 threads for DRB tasks and 1 thread for sequential
tasks, and 10 (▲) or 100 (■) runs)

Second, we examine the costs for increasing PEQtest’s resources for test
program execution. To this end, we look at the execution times PEQtest
consumes for all test program runs and the total execution time (test program
generation and execution). Figure 4 compares for each task that does not belong to
one of the task not completed categories the times for the low effort configuration
(1 thread, 1 run, x-axis) with the other two configurations of PEQtest. As one
could have expected, the scatter plot on the left-hand side of Fig. 4 shows that
the execution times for the test programs scale linearly with the number of runs.
A similar behavior can often be observed when the total time of the low effort
configuration is not dominated by the test program generation (> 3 s).

In summary, providing more resources often increases PEQtest’s effective-
ness while causing at most a linear increase of runtime costs. In particular for
parallelized tasks, using more than one thread is beneficial. However, we re-
quire many runs of the generated test program to find schedule-dependent or
input-sensitive inequivalences.

RQ 3: How does PEQtest compare against state-of-the-art? We
compare PEQtest’s configuration using 100 runs with equivalence checker PEQ-
check [19], which also performs localized checks, but relies on verification. Since
PEQtest’s and PEQcheck’s definition of functional equivalence differ (PEQ-
test considers all variables, while PEQcheck only considers live variables), we
restrict the comparison of PEQtest and PEQcheck to those 72 DRB tasks
and 8 sequential tasks that (1) are either equivalent or inequivalent for both
notions of equivalence and (2) in which the code segments affect at least one
variable that is live afterwards.

Table 2 shows the results of PEQtest and PEQcheck on the restricted
benchmark. The structure of Tab. 2 is the same as Tab. 1. Looking at Tab. 2, we
first observe that both approaches do not incorrectly detect an inequivalence, i.e.,
they do not report false alarms. Hence, the precision for inequivalence detection is
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Table 2: For PEQtest and PEQcheck, shows for the DRB and sequential (SEQ)
tasks the absolute and relative number of tasks for which inequivalence is detected
correctly, is missed, is detected incorrectly, and is correctly not detected. If no
inequivalence is detected, also distinguishes between no inequivalence reported
and task is not completed due to a timeout or failure.

PEQtest PEQcheck
100 runs

DRB SEQ DRB SEQ

correctly detected inequivalence 39 (74%) 2 (67%) 3 (6%) 3 (100%)
missed inequivalence 14 (26%) 1 (%) 50 (94%) 0 (0%)

no inequivalence reported 11 (21%) 0 (33%) 1 (2%) 0 (0%)
task not completed 3 (5%) 1 (33%) 49 (92%) 0 (0%)

incorrectly detected inequivalence 0 (0%) 0 (0%) 0 (0%) 0 (0%)
correctly detected no inequivalence 19 (100%) 5 (100%) 19 (100%) 5 (100%)

no inequivalence reported 15 (79%) 4 (80%) 5 (26%) 4 (80%)
task not completed 4 (21%) 1 (20%) 14 (74%) 1 (20%)

100%. For the sequential tasks, PEQcheck detects one additional inequivalent
task, for which PEQtest times out. In contrast, PEQtest detects significantly
more inequivalent DRB tasks (i.e., has a higher recall) and, thus, misses less
inequivalent DRB tasks. An important reason for the lower recall of PEQcheck
is that PEQcheck’s inspection fails in 87.5% of the DRB tasks. The major
failure causes are timeouts (30%), missing support for OpenMP constructs in
the verifier CIVL (31%), and the detection of violations that are unrelated to
functional equivalence, e.g., array out of bounds accesses in a verification task,
which is generated by PEQcheck to check functional equivalence. Despite PEQ-
check’s worse performance, it can verify the task DRB076-flush-orig-no.c,
for which PEQtest failed. Finally, we remark that although PEQtest has a
higher time limit than PEQtest (namely, 5 min per run instead of 5 min per
verification task), there exist only two tasks in which PEQtest requires more
than 5 min in total and PEQcheck could have profited from a higher time limit.

Summing up, PEQtest is typically a better choice than PEQcheck when
aiming to find inequivalences. In particular, PEQtest profits from relying on
compiler support of OpenMP constructs and from checking equivalence only for
the test inputs. Thus, PEQtest is well-suited for inequivalence detection, but in
contrast to PEQcheck, which considers all inputs, it rarely proves equivalence.

5 Related Work

Approaches inspecting functional equivalence aim at proving equivalence or
detecting behavioral differences. Alternatively, they characterize for which inputs
equivalence is ensured.

PEQtest: Testing Functional Equivalence 199



Proving Functional Equivalence. Approaches proving functional equiva-
lence may use relational verification [6,5],(bi)simulation relations [56,40,14,13], or
domain-specific checks [55,9,10,18,25]. Other approaches transform the programs
into models and check model equivalence [43,49,41]. ARDiff [4] compares sym-
bolic summaries and Rêve [15] translates the equivalence into Horn constraints.
Several approaches [17,38,23,51,42,2,19] encode equivalence checking into pro-
grams. Their encoding idea is similar to PEQtest’s encoding of the functional
equivalence tests. The closest encoding is the encoding of UCKLEE [38], which
also use checkpointing, while the other approaches duplicate variables. Despite
similar encodings, these approaches do not test, but verify the generated pro-
grams. A further difference is that they typically generate more than one program,
namely one per changed unit (program [42], function [17,38,23,51], or refactored
code segment [2,19]). Each generated program only consists of the functional
equivalence check of the respective unit and typically considers all possible inputs.
In contrast, PEQtest embeds the equivalence tests into the original program
and only considers inputs produced by the original program.

Difference Detection. Relative debugging [3] executes the original and
refactored program in parallel and compares the values of user-defined variables
or data structure at user-defined program locations, which is more fine-grained
than functional equivalence. Nevertheless, several techniques focus on detecting
differences of the functional behavior. Differential monitoring [28] applies runtime
monitoring that runs two programs, e.g., original and refactored program, in
parallel, distributes any input to both programs, compares their outputs, and
forwards equivalent outputs to the environment, while aborting in case of inequiv-
alence. Following the idea of differential testing [26], BERT [20], shadow symbolic
execution [31], and HyDiff [29] generate tests and execute the generated tests on
original and refactored program to detect differences in the behavior. BERT [20]
generates inputs to cover the changed code parts. Shadow symbolic execution [31]
uses a more advanced test generation that is steered towards internal behavioral
differences. HyDiff [29] combines shadow symbolic execution with fuzzing, using
the tests from the shadow symbolic execution to steer the fuzzer AFL. In contrast,
Qi et al. [36] and eXpress [47] directly aim at generating difference revealing
tests. To this end, they steer the test generation to find test inputs that reach a
change that affects the output. While the previous techniques use special test
generators, Diffut [52] and DiffGen [46] rely on standard test generators. Diffut
keeps shadow variables for the original program in the refactored program, wraps
the method of the original program to extend it with equivalence checks, and uses
JML annotations to force the execution of the wrapped method of the original
program while testing the refactored program. DiffGen [46] generates one test
driver per changed method that copies the input, executes original and refactored
method with original and copied input, respectively, and contains one check per
output. DiffGen’s encoding idea is similar to PEQtest’s encoding of functional
equivalence tests, but PEQtest focuses on refactored code segments.

Semantic Characterization of Differences. To provide more information
in case of non-equivalence, a few approaches compute or (under)approximate the
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condition when original and refactored program are equivalent. To this end, they
use symbolic execution [34,48], abstract interpretation [21,32,33], or testing [11].

6 Conclusion

While refactorings are necessary to improve software quality, correct refactoring,
i.e., a refactoring that does not change the functional behavior of the software,
is challenging. Several solutions have been proposed to detect that refactored
programs alter the behavior, some of them compare the functional behavior of
original and refactored programs.

Approaches checking functional equivalence often use heavyweight (formal)
verification. Furthermore, difference detection approaches frequently use dedi-
cated test generators and execute (some of) the non-modified code twice, once for
the original and once for the refactored program (function). To overcome these
restrictions, we propose PEQtest, which can be used to test (the intended appli-
cation) or to formally verify functional equivalence. The test program generated
by PEQtest—for which we proved that it checks functional equivalence—allows
us to rely on compiler support, e.g., for OpenMP, to reuse existing tests or test
generators, and at the same time to utilize that refactorings are often local, thus,
avoiding to execute non-modified code more than once in each test program
execution. To this end, PEQtest replaces each refactored code segment in the
program, e.g., a parallelized code segment, by a local check that inspects the
equivalence of the corresponding original and refactored code segment.

We implemented PEQtest and evaluated it with the DataRaceBench bench-
mark suite and sequential refactorings already used to evaluate other functional
equivalence checkers. Our experiments show that PEQtest detects many of the
inequivalent tasks, e.g., incorrectly parallelized tasks, using a limited amount of
resources, while reporting no false alarm. A comparison with the state-of-the-art
equivalence checker PEQcheck reveals that PEQtest often performs better.

References

1. Technical ”whitepaper” for afl-fuzz, http://lcamtuf.coredump.cx/afl/technical
details.txt (last accessed 2022-01-19)

2. Abadi, M., Keidar-Barner, S., Pidan, D., Veksler, T.: Verifying parallel code after
refactoring using equivalence checking. Int. J. Parallel Program. 47(1), 59–73 (2019)

3. Abramson, D., Foster, I.T., Michalakes, J., Sosič, R.: Relative debugging and its
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