
Locality-Based Optimizations
in the Chapel Compiler

Engin Kayraklioglu(B), Elliot Ronaghan, Michael P. Ferguson,
and Bradford L. Chamberlain

Hewlett Packard Enterprise, Seattle, USA
{engin,elliot.ronaghan,michael.ferguson,blc}@hpe.com

Abstract. One of the main challenges of distributed memory pro-
gramming is achieving efficient access to data. Low-level programming
paradigms such as MPI and SHMEM require programmers to explic-
itly move data between compute nodes, which typically results in good
execution performance at the expense of programmer productivity. High-
level paradigms such as the Chapel programming language aim to reduce
programming difficulty by supporting a global memory view. However,
implicit communication afforded by the global memory view can make
it easier for the programmers to overlook performance considerations. In
this paper, we show that Chapel’s high-level abstractions such as data-
parallel loops and distributed arrays that enable easier programming can
also enable powerful compiler analyses and optimizations, which can mit-
igate these overheads. We demonstrate two compiler optimizations added
to the Chapel compiler in versions 1.23 and 1.24. These optimizations
rely on the use of data-parallel loops and distributed arrays to strength-
reduce accesses to global memory and aggregate remote accesses. We test
these optimizations with STREAM-Triad and index gather benchmarks
and show that they result in around 2x performance improvements on a
Cray XC supercomputer. Furthermore, we analyze two real-world appli-
cations, chplUltra and Arkouda, that use manual remedies to address the
overheads addressed by these optimizations. We observe that more than
half of the places in the source code where these remedies are applied
can benefit from optimizations without any programmer effort.

Keywords: Parallel programming · Compiler optimizations ·
Productivity

1 Introduction

Chapel is a parallel programming language that supports the partitioned global
address space (PGAS) memory model. The PGAS model allows programmers
to use a single namespace, which improves productivity by making all variables
in the lexical scope accessible without explicit communication. Moreover, unlike
other PGAS languages, Chapel’s execution model is not SPMD by default. This
implies that the variables in a given namespace refer to a single address in the
c© Springer Nature Switzerland AG 2022
X. Li and S. Chandrasekaran (Eds.): LCPC 2021, LNCS 13181, pp. 3–17, 2022.
https://doi.org/10.1007/978-3-030-99372-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99372-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-99372-6_1


4 E. Kayraklioglu et al.

global memory rather than different ones in each processing element. Chapel
combines the PGAS memory model with other high-level concepts such as dis-
tributed arrays and data parallel distributed loops to create an expressive pro-
gramming language.

Chapel’s approach to distributed memory programming empowers several
real-world applications. Chapel Multiphysics Software (CHAMPS) [18] is a CFD
simulation library used for aircraft design and simulation and has close to 50
thousands lines of Chapel code. Arkouda [1] is a data-science-oriented Python
library that is backed by a server implemented in Chapel for distributed memory
programming. Arkouda has around 15 thousands lines of Chapel code. chplUl-
tra [17] is an astrophysics software used for simulating the dynamics of ultralight
dark matter and it consists of around 10 thousands lines of code.

On the other hand, developers using the PGAS model and high-level abstrac-
tions are prone to writing code with poor performance and scalability because
of implicit communication. We show that common programming idioms sup-
ported by Chapel’s high-level language concepts enable the compiler to perform
automatic optimizations that would be impossible in low-level approaches such
as message passing. Moreover, automatic optimizations based on high-level con-
structs tend to be portable as lower-level details are typically handled by the
language runtime and communication middleware. This paper presents two such
optimizations that significantly mitigate common performance overheads with
no programmer effort. Specifically, our contributions are:

– design and implementation of an optimization where accesses to distributed
arrays are made faster by avoiding locality checks in data-parallel loops

– design and implementation of an optimization that aggregates fine grained
accesses in copy operations in data-parallel loops,

– experimental demonstration of performance improvements of these optimiza-
tions, and a discussion on their impact on real-world applications,

– discussion on how these optimizations and the Chapel compiler can be
improved in general.

The rest of the paper is organized as follows. Section 2 gives a background
on related Chapel concepts. Section 3 describes the two optimizations in detail.
Section 4 shows some experimental and anecdotal results. Section 5 proposes
future directions for the Chapel compiler and the optimizations presented here.
Section 6 summarizes some related studies in the literature, and Sect. 7 concludes
the paper.

2 Chapel Background

Our focus in this paper is on Chapel’s high-level, data-parallel concepts. In this
section, we give a short background on distributed arrays and forall loops in
Chapel since both of these are key concepts for this work. For a more complete
introduction to Chapel refer to [5].



Locality-Based Optimizations in the Chapel Compiler 5

2.1 Distributed Arrays

Chapel decouples an array’s distribution from its data thanks to its domain
concept. Domains are index sets that can describe how the indexed data should
be mapped to the system memory. All Chapel arrays have domains. Listing 1
shows how a domain can be declared, and how it can be used to declare an
integer array1.

1 // a local, 1−based, m−by−n domain (index set)
2 var myDomain = {1..m, 1..n};
3

4 // an integer array declared over that domain
5 var myArray: [myDomain] int;

Listing 1. Declaring non-distributed domains and arrays in Chapel

To create a distributed array, one needs only to declare the domain as distributed
by using a standard or a user-defined distribution [7]. Listing 2 shows how a
block-distributed domain and array can be created in Chapel. Note that the
array declaration is identical to that in Listing 1.

1 use BlockDist;
2 var myDomain = {1..m, 1..n} dmapped Block(....);
3 var myArray: [myDomain] real;

Listing 2. Declaring distributed domains and arrays in Chapel

Listing 3 shows some of the most common ways Chapel arrays can be accessed
and manipulated. These include but not limited to; whole-array operations, iter-
ation over their elements, and indexed accesses.

1 // using promoted or whole−array operations
2 myArray = 1.1;
3

4 // using sequential iteration over its elements
5 for elem in myArray do
6 elem = 2.2;
7

8 // using indexing (with sequential iteration over its domain)
9 for idx in myDomain do

10 myArray[idx] = 3.3;

Listing 3. Common ways of accessing a Chapel array serially

2.2 Forall Loops

Chapel has several kinds of loops in order to support different parallel program-
ming patterns. One such loop is the forall loop. A forall loop can parallelize
1 There are shorter syntactic alternatives for creating arrays without an explicit

domain declaration, such as var A: [1..n] int;. Nonetheless, all Chapel arrays
have domains.



6 E. Kayraklioglu et al.

and/or distribute the iteration across the system depending on the iterand that
drives it. For example, a forall loop over a non-distributed domain or array
would typically use all of the cores on the local compute node to implement
the loop; whereas one over a distributed domain or array would use all of the
cores on all of the compute nodes over which the array is distributed. Use of
foralls in conjunction with distributed arrays and domains guarantees that
loop iterations are distributed similarly to the data that it is iterating over. This
observation is key in implementing locality-based optimizations in the compiler.

Listing 4 shows the forall version of the two loops previously shown in
Listing 3.

1 // using parallel/distributed iteration over its elements
2 forall elem in myArray do
3 elem = 2.2;
4

5 // using indexing (with parallel/distributed iteration over its domain)
6 forall idx in myDomain do
7 myArray[idx] = 3.3;

Listing 4. forall Loops Over Domains and Arrays

Note that the only syntactical difference from the loops shown in Listing 3 is
the use of keyword forall instead of for.

3 Compiler Analysis and Optimizations

In this section, we first describe the automatic local access optimization that
analyzes forall loops to determine local array accesses, and avoids dynamic
locality checks for those accesses. This optimization is implemented in Chapel
version 1.23 and it is on-by-default. Second, we summarize the automatic aggre-
gation optimization that aggregates communication in the last statements in
forall loop bodies. This optimization is added to the Chapel compiler in ver-
sion 1.24, and can be enabled with the --auto-aggregation flag.

3.1 Automatic Local Access

Accesses to Chapel arrays are implemented with a method named this on the
array type that is automatically called by the compiler. A simplified implemen-
tation of this for a distributed array type is shown in Listing 5.

1 proc this(idx) {
2 if isLocalIndex(idx) then
3 return localAccess(idx);
4 else
5 return nonLocalAccess(idx);
6 }

Listing 5. A simplified implementation of distributed array access



Locality-Based Optimizations in the Chapel Compiler 7

Note that, in line 2, the implementation checks whether idx is local, because if
it is, the array element can be accessed in a faster manner. However, this check
itself has some small but noticeable overhead. The overhead is exacerbated if
arrays are accessed in a tight inner loop—as is typically the case for conditionals
inside such loops. Consider a STREAM-Triad [23] implementation in Chapel
that uses indexed access into distributed arrays, as shown in Listing 6.

1 use BlockDist;
2 var Dom = {1..n} dmapped Block(....);
3 var A, B, C: [Dom] int;
4

5 forall i in Dom do
6 A[i] = B[i] + alpha * C[i];

Listing 6. STREAM-Triad kernel with indexed access

In this snippet, the three distributed arrays are accessed by index in the
forall loop body, and they would normally incur the locality checks as dis-
cussed above. However, these checks are provably unnecessary because:

– All three distributed arrays are accessed at the ith index, which is the loop
index

– All arrays are distributed the same way as the loop’s domain is distributed
– The forall loop will distribute the work in the same way the loop’s

domain (Dom) is distributed

The automatic local access optimization implemented in the Chapel compiler
uses similar reasoning to improve the performance of local accesses to distributed
arrays.

Finding Candidate Expressions for Optimization. Early in compilation,
array accesses are simply call expressions that are indistinguishable from pro-
cedure calls2. On the other hand, by the time call expressions are resolved,
and array accesses are differentiated, Chapel’s AST is transformed significantly
enough to make some of this analysis difficult. Therefore, during earlier compi-
lation passes, we analyze and transform the AST, replacing all call expressions
that are candidate for optimizations with a special compiler primitive. Listing 7
sketches a simplified version of how this initial analysis and call replacement
works.

First, we iterate over all forall loops in the program. For each, we try
to find the loop domain. A forall can iterate over a domain, which directly
becomes the domain of the loop; or it can iterate over a domain query on an
array (e.g. myArray.domain), in which case we try to find the array’s decla-
ration and deduce the domain from the declaration. If neither, we continue the
analysis and try to optimize using dynamic checks (details are below).

2 In Chapel, postfix parentheses and square brackets can be used interchangeably as
long as the opening and closing delimiter is the same.



8 E. Kayraklioglu et al.

1 void findCandidates(loop) {
2 loopDom = findDomain(loop) // can return NULL
3 for call in loop.body.calls()
4 if (call.localityDominator == loop &&
5 call.arguments == loop.indices)
6 maybeArr = call.base
7 arrDom = findDomain(maybeArr) // can return NULL
8 static = ( loopDom != NULL &&
9 arrDom != NULL &&

10 loopDom == arrDom )
11 if static
12 loop.staticCandidates.insert(call)
13 else
14 loop.dynamicCandidates.insert(call)
15 }

Listing 7. Pseudocode for candidate discovery

Then, for every call inside the loop body which has the same argument(s) as
the loop index(es), we assume that the called expression is an array symbol and
try to find its domain. If we can find symbols representing the loop’s domain
and the array’s domain and they are the same symbol, we say that this access
is a static candidate for automatic local access optimization. If we couldn’t find
the domain for the loop and/or the array, this call is a dynamic candidate for
automatic local access optimization. We add the call to the appropriate list of
candidates.

Transforming AST For Static and Dynamic Checks. After finding can-
didates for the optimization, we transform the AST for the loop to add static
and dynamic checks. Static checks are necessary because the initial analysis and
transformation happens before type resolution. Therefore, we add static checks
for both static and dynamic candidates, and they only check whether what we
assumed to be an array symbol is actually an array symbol (as opposed to a
procedure symbol) and the domain type supports this optimization. A require-
ment for supporting this optimization is that the domain distributes indices in
the same way as it distributes a parallel iteration over itself. All the standard
domain maps in Chapel support this optimization, but a user-defined domain
map could be imagined where this is not the case. To provide a general solution,
we expect domain maps to provide a function that returns a boolean at compile
time that informs the compiler as to whether the domain map supports this
optimization or not.

On the other hand, dynamic checks are added for cases where the relationship
between the array and the loop domains cannot be established statically. This
also supports cases where a forall only traverses a slice of an array’s domain.

For a scenario where there is one static and one dynamic candidate, as in
Listing 8, we create AST equivalent to that shown in Listing 9.



Locality-Based Optimizations in the Chapel Compiler 9

1 var dom1 = {1..n} dmapped Block (...);
2 var dom2 = {1..m} dmapped Block (...);
3 var arr1: [dom1] int, arr2: [dom2] int;
4

5 forall i in dom1 do
6 arr1[i] = arr2[i];

Listing 8. A case where arr1 and arr2 are static and dynamic candidates

1 // check all candidates statically:
2 if (staticCheck(arr1, loopDomain) &&
3 staticCheck(arr2, loopDomain)) then
4

5 // check dynamic candidates at execution time
6 if (dynamicCheck(arr2, loopDomain)) then
7 forall i in dom1 do
8 arr1.maybeLocal[i] = arr2.maybeLocal[i];
9 else

10 forall i in dom1 do
11 arr1.maybeLocal[i] = arr2[i];
12 else
13 forall i in dom1 do
14 arr1[i] = arr2[i];

Listing 9. Sketch of the generated AST for the snippet in Listing 8

The generated AST first does static checks on arrays that are optimiza-
tion candidates. These checks are simple functions that return compile-time (in
Chapel terminology, they are params) booleans. If all the candidates pass static
checks, we dynamically check the dynamic candidates, as well. The first forall
clone is where all static and dynamic candidates pass their checks, where the sec-
ond is for the case for successful static, and failed dynamic checks. The final clone
is identical to the user’s loop, and does not have any optimizations.

Finalizing the Optimization. After the initial transformation is done, the
generated AST is resolved more or less normally. Static checks are computed at
compile time, and the conditional based on the static checks is folded. While
resolving this AST, the only special case for this optimization is for resolving
the maybeLocal calls. First, the compiler tries to resolve them as regular array
accesses. If it can, it replaces them with a call to localAccess which avoids
locality checks. If the compiler cannot resolve them as array accesses, they will
be reverted to regular calls, and will be attempted to be resolved as such.

3.2 Automatic Aggregation

Another common overhead in PGAS languages occurs due to fine-grained com-
munication. In some cases where the fine-grained access is predictable, caching
and/or prefetching the remote data can help mitigate some of these overheads.



10 E. Kayraklioglu et al.

However, especially in cases where remote data is accessed randomly, such
approaches are generally not very impactful. A solution for these scenarios is
aggregating the communication and transferring data in bulk with fewer mes-
sages.

Listing 10 shows a simplified version of the index gather kernel from the bale
effort [2].

1 var cycArr = newCyclicArr(...);
2 var blockArr = newBlockArr(...);
3

4 fillRandom(blockArr);
5

6 var tmp: [blockArr.domain] int;
7

8 forall i in blockArr.domain do
9 tmp[i] = cycArr[blockArr[i]];

Listing 10. Simplified sketch of the index gather kernel

The forall loop iterates over a block-distributed domain, while copying
data from a cyclic-distributed array into a block-distributed one. In a straight-
forward implementation, this element-wise, random-access copy operation causes
fine-grained communication. However, this operation can be done in an aggre-
gated fashion because:

– tmp[i] (and blockArr[i]) are local accesses because the forall is over
the same domain as theirs. Furthermore, this will be recognized as such by
the automatic local access optimization that was discussed in the previous
section,

– Because forall is a parallel loop, individual copy operations that will exe-
cute at each iteration of the loop can be reordered without impacting the
application behavior.

The automatic aggregation optimization implemented in the Chapel compiler
will use reasoning along these lines in order to apply aggregation to optimize
communication performance.

Locality Detection. Currently, automatic aggregation is supported only if the
operation is a simple copy operation where one side is local and the other is not.
To detect whether either side is local, we use the same approach and code as
presented for automatic local access. In fact, there’s a single analysis pass that
collects enough locality information for both optimizations that are presented in
this paper.

Avoiding Data Hazards. The aggregated copy operation requires order
independence—that is, that the iterations of the optimized loop can run in any
order including in parallel. In the context of the Chapel language, the forall
loop implies that the loop body has this property. In addition, the aggregated



Locality-Based Optimizations in the Chapel Compiler 11

copy operation only optimizes the last statements of loop bodies, because it
implies that nothing in the loop body can depend on any writes that occur as a
result of this statement. The Chapel compiler already had an optimization where
such statements are executed in an unordered matter [8], and the automatic
aggregation optimization uses the same analysis as the existing optimization.

Module Support. Aggregating communication requires allocating local buffers
that can be used to store data temporarily before communicating and a mecha-
nism to flush them as they fill up. Implementing this purely by compiler trans-
formations is not very feasible. Instead, our optimization facilitates Aggregator
objects that have been studied in Chapel before and have been heavily used in
Arkouda, a data analytics software that is implemented in Chapel (server) and
Python (client) [1].

Aggregators are module-level objects that represent per-task buffers that
temporarily store data to be communicated along with their address. These
objects are typically created as task intent. A loop using an Aggregator object
typically uses a with clause to create one instance per task, as the following
example shows:

1 forall i in myDomain with (var agg = new Aggregator(int)) {
2 ...
3 agg.copy(arr[i], data); // equivalent to ’arr[i] = data’
4 }
5

Listing 11. Example of manual aggregator usage

Transformations. The forall loop in the index gather kernel as shown in
Listing 10 is transformed into something akin to Listing 12 early in compilation.
1 forall i in blockArr.domain with (var agg = new Aggregator(int)) do
2 if dummyAggregationMarker {
3 tmp[i] = cycArr[blockArr[i]];
4 }
5 else {
6 agg.copy(tmp[i], cycArr[blockArr[i]]);
7 }

Listing 12. Simplified transformation for automatic aggregation

Once hazard detection and other relevant passes, such as loop invariant code
motion, are complete, we choose one of those branches and eliminate the other
one. Therefore, there are no runtime checks of any sorts. Note that removing the
else block also entails cleaning up any aggregator creation because they would
be useless.

4 Results

We evaluate the performance of these optimizations by using the STREAM-
Triad [23] and index gather [2] benchmarks that motivate them. We compare



12 E. Kayraklioglu et al.

the automatically-optimized execution time against their manually-optimized
counterparts which were shown to perform comparably to reference MPI and
SHMEM versions [9,10]. We also analyze the code for chplUltra [17] and Ark-
ouda [1] to assess how the optimizations can improve them. We show that both
of them cause straightforward implementations of benchmarks to perform simi-
larly to manually-optimized versions. They also help avoid significant portion of
the relevant manual optimizations in real-world applications.

We used a Cray XC30 supercomputer for the performance studies. Com-
pute nodes are dual-socket and equipped with 36-core Broadwell CPUs clocked
at 2.1 GHz. Nodes are connected with the Aries interconnect. Automatic local
access comparisons were done against Chapel 1.23 pre-release, whereas auto-
matic aggregation comparisons are against Chapel 1.24 pre-release3, so that
they capture the performance improvement introduced by the optimization on
the release that they were implemented. We used the default configuration for
all of these tests. The executables are compiled with --fast flag. In addition,
the automatic aggregation tests are compiled with --auto-aggregation.

Fig. 1. STREAM-Triad bandwidth

Automatic Local Access. Figure 1 shows how this optimization improves
STREAM-Triad performance. The kernel for this STREAM-Triad implementa-
tion is shown in Listing 13.

1 forall i in Dom do
2 A[i] = B[i] + alpha * C[i];

Listing 13. STREAM-Triad with indexed array access

3 The most current Chapel release version is 1.24.1.



Locality-Based Optimizations in the Chapel Compiler 13

Without the automatic local access optimization, this kernel reaches only
about half of system bandwidth (shown in dark blue with diamond markers),
whereas other idioms for STREAM-Triad are able to reach the full system band-
width. Other idioms are shown in Listings 14 and 15. The difference between the
two types of idioms is that the distributed arrays are accessed by index in the first
one, which causes overheads without the automatic local access optimization.

1 forall (a,b,c) in zip(A,B,C) do
2 a = b + alpha * c;

Listing 14. STREAM-Triad with zippered iteration over arrays

1 A = B + alpha * C;

Listing 15. STREAM-Triad with promoted expression

With this optimization, indexed STREAM-Triad performs about twice as
fast, reaching the limits of the system. This performance is virtually identical to
other idioms that do not use indexed access into distributed arrays.

In addition, we inspected the chplUltra [17] which relies on explicit use of
localAccess for better performance. We have observed that, thanks to the
automatic local access optimization, we can reduce the number of explicit calls
to localAccess from 80 to 21, without sacrificing performance. The remaining
explicit localAccess calls are either not within forall loops, or the index
that they access is a function of the loop index.

Automatic Aggregation. Figure 2 shows that without any optimization, the
index gather benchmark, shown in Listing 10 does not scale (light blue, dashed
line, square markers). The unordered forall optimization [8], firing automatically
with no user effort, improves performance by enabling out-of-order communi-
cation (medium blue). Finally, manual aggregation (dark blue) and automatic
aggregation (solid green) perform very similarly and much better than the other
versions, where the latter does not require any user effort at all.

To explore the impact of this optimization in user code, we analyzed Ark-
ouda, the application for which user-level aggregators were implemented initially.
Thanks to the automatic aggregation optimization, we were able to reduce the
number of explicit aggregators from 61 to 22. The most common causes for the
remaining 22 are identical to those limitations of the automatic local access
optimization: (1) operation is not inside a forall or (2) the array access index
is complicated. These two causes require 12 of the remaining 22 cases to use
explicit aggregation. The remaining 10 require more investigation.



14 E. Kayraklioglu et al.

Fig. 2. Bale index gather (Color figure online)

5 Future Work

We want to investigate extending the automatic local access optimization to
handle array accesses where the index is an affine expression based on the loop
index. Such accesses are common in linear algebra codes, and currently are not
covered by this optimization. Furthermore, many loops in applications use for
and coforall4 loops and it would benefit these cases to extend the optimiza-
tion beyond forall loops. These other loops do not have any guarantees about
data locality, however, there are common idioms where they are used in a way
that can benefit from this optimization.

As of Chapel 1.24, automatic aggregation is off-by-default and can be enabled
by the --auto-aggregation flag. There are two main concerns for enabling
it by default. First, the aggregator objects are not designed for handling all-local
aggregation. This is because the initial use case for them was for the programmer
to explicitly use them and with the assumption that they would use them only
if they know for sure that there is communication. However, the compiler can
automatically use aggregation in cases where both sides of a copy is actually
local, even though some of the static analysis tries to prevent that. We observed
that there can be around 2x slowdown in such cases. However, we believe that we
can adjust the aggregator implementation to reduce the overhead in such cases.
Second, aggregators use per-locale buffers on each Chapel task (typically a core).
This poses issues when aggregators are used in systems with high locale and core
counts. We would like to consider reducing the memory overhead of aggregators,
potentially using multi-hop aggregation where some local aggregation takes place
before communicating the data, thereby reducing its memory footprint.

The automatic aggregation optimization covers assignments that are the last
statements in the loop bodies. This coverage can be expanded in two ways. First,
we can support arbitrary operations to be aggregated. This would mean creating
function pointers representing the operation and using that function to unpack

4 A loop where each iteration is mapped to a parallel Chapel task.



Locality-Based Optimizations in the Chapel Compiler 15

the aggregated data instead of just copying them in local memory. Second, this
optimization can cover all statements inside the loop body. This requires alias
and dataflow analysis inside the loop body to avoid data dependences.

6 Related Work

A relatively early study on how high-level language constructs can enable com-
piler optimizations is done by Choi and Snyder [12]. The authors show that
array operations like shifts can be efficiently optimized by the compiler, if the
language enables expressing such operations using high-level constructs, such
as operators. This work is based on ZPL [6], an array programming language.
However, unlike Chapel, ZPL was not a general-purpose language. As such it
did not support operations like array indexing.

Hayashi et al. [14] implemented several LLVM optimizations for Chapel pro-
grams to reduce costs associated with distributed memory programming. The
authors focus on GET/PUT operations injected by the Chapel compiler and
try to find ways in which they can be coalesced or eliminated. These opti-
mizations achieve significant performance improvements. Currently, some of the
optimizations presented in this work can be used with an experimental flag
--llvm-wide-opt. These optimizations focus on communication calls that
happen inside a lexical scope and do not consider calls that can be invoked
repeatedly inside a loop.

Other distributed memory optimizations have been studied in the contexts
of other PGAS languages with compilers. Chen et al. [11] describes strength-
reduction, communication and computation overlap and message coalescing tech-
niques in the Berkeley UPC compiler. We believe that the set of optimizations
presented in this work are thematically similar to those that were studied by
Hayashi et al.

Other studies pertaining Chapel’s performance include but not limited to;
runtime optimizations, such as caching [13], prefetching [16], inspector/executor
optimizations [20], profile-based optimizations [15]; module optimizations, such
as iteration reorganization [3], complex bulk transfer [21]; GPU-related explo-
rations [4], and finally general performance studies in comparison with other
programming models [22].

Single-node loop optimizations for improving data access performance are
common. A significant portion of the literature focuses on loop and data layout
transformations based on the polyhedral model for related optimizations such as
auto-vectorization [24] and improved cache utilization [19]. We believe, similar
techniques can be used in the Chapel compiler. However, they typically focus on
affine array accesses in loops which are not in scope for this paper.

7 Conclusion

In this paper, we show that well-designed high-level language abstractions not
only make programming easier, but can also express key information about the



16 E. Kayraklioglu et al.

application that can enable powerful compiler optimizations. To demonstrate
this point, we present two optimizations added to the Chapel compiler in recent
releases that have been used in production-level applications. The first opti-
mization, automatic local access, reduces the costs of accessing local parts of
a distributed array. The second optimization, automatic aggregation, gathers
communication operations locally before communicating them in bulk. Both of
these optimizations are enabled by high-level concepts like forall loops and
distributed arrays. They both can increase performance without adding any pro-
gramming burden in benchmarks and real-world applications alike.

Acknowledgement. We would like to thank Michelle Strout for reviewing an early
draft and sharing very valuable insights that contributed to this paper’s quality.

References

1. Arkouda: NumPy-like arrays at massive scale backed by Chapel. https://github.
com/Bears-R-Us/arkouda. Accessed 26 Jul 2021

2. Bale. https://github.com/jdevinney/bale. Accessed 26 Jul 2021
3. Bertolacci, I.J., et al.: Parameterized diamond tiling for stencil computations with

chapel parallel iterators. In: Proceedings of the 29th ACM on International Confer-
ence on Supercomputing, ICS 2015, pp. 197–206. ACM (2015). ISBN 978-1-4503-
3559-1. https://doi.org/10.1145/2751205.2751226

4. Carneiro, T., et al.: Towards Chapel-based Exascale Tree Search Algorithms: deal-
ing with multiple GPU accelerators. In: HPCS 2020, p. 9 (2021)

5. Chamberlain, B.L.: Chapel, chap. 6. In: Balaji, P. (ed.) Programming Models for
Parallel Computing, pp. 129–159. MIT Press (2015)

6. Chamberlain, B.L.: The design and implementation of a region based parallel pro-
gramming language. University of Washington (2001)

7. Chamberlain, B.L., et al.: User-defined distributions and layouts in Chapel: phi-
losophy and framework. In: Proceedings of the 2nd USENIX Conference on Hot
Topics in Parallelism, HotPar 2010, p. 12. USENIX Association (2010)

8. Chapel 1.20 Release Notes: Benchmarks and Performance Optimizations. https://
chapellang.org/releaseNotes/1.20/06-perf-opt.pdf. Accessed 26 Jul 2021

9. Chapel 1.23 Release Notes: Ongoing Efforts. https://chapel-lang.org/releaseNotes/
1.23/05-ongoing.pdf. Accessed 26 Jul 2021

10. Chapel: Performance Highlights: STREAM Triad. https://chapel-lang.org/perf-
stream.html. Accessed 26 Jul 2021

11. Chen, W.-Y., Iancu, C., Yelick, K.: Communication optimizations for fine-grained
UPC applications. In: 14th International Conference on Parallel Architectures and
Compilation Techniques, PACT 2005, pp. 267–278. IEEE (2005)

12. Choi, S.-E., Snyder, L.: Quantifying the effects of communication optimizations. In:
Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.
97TB100162), August 1997, pp. 218–222 (1997). https://doi.org/10.1109/ICPP.
1997.622647

13. Ferguson, M.P., Buettner, D.: Caching puts and gets in a PGAS language runtime.
In: 2015 9th International Conference on Partitioned Global Address Space Pro-
gramming Models, September 2015, pp. 13–24 (2015). https://doi.org/10.1109/
PGAS.2015.10

https://github.com/Bears-R-Us/arkouda
https://github.com/Bears-R-Us/arkouda
https://github.com/jdevinney/bale
https://doi.org/10.1145/2751205.2751226
https://chapellang.org/releaseNotes/1.20/06-perf-opt.pdf
https://chapellang.org/releaseNotes/1.20/06-perf-opt.pdf
https://chapel-lang.org/releaseNotes/1.23/05-ongoing.pdf
https://chapel-lang.org/releaseNotes/1.23/05-ongoing.pdf
https://chapel-lang.org/perf-stream.html
https://chapel-lang.org/perf-stream.html
https://doi.org/10.1109/ICPP.1997.622647
https://doi.org/10.1109/ICPP.1997.622647
https://doi.org/10.1109/PGAS.2015.10
https://doi.org/10.1109/PGAS.2015.10


Locality-Based Optimizations in the Chapel Compiler 17

14. Hayashi, A., et al.: LLVM-based communication optimizations for PGAS programs.
In: LLVM 2015, pp. 1–11. ACM Press (2015). ISBN 978-1-4503-4005-2. https://
doi.org/10.1145/2833157.2833164

15. Kayraklioglu, E., Favry, E., El-Ghazawi, T.: A machine-learning-based framework
for productive locality exploitation. IEEE Trans. Parallel Distrib. Syst. 32(6),
1409–1424 (2021). https://doi.org/10.1109/TPDS.2021.3051348

16. Kayraklioglu, E., Ferguson, M.P., El-Ghazawi, T.: LAPPS: locality-aware produc-
tive prefetching support for PGAS. ACM Trans. Archit. Code Optim. 15(3), 28:1-
28:26 (2018). https://doi.org/10.1145/3233299

17. Padmanabhan, N., et al.: Simulating ultralight dark matter in Chapel. In:
2020 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), May 2020, pp. 678–678 (2020). https://doi.org/10.1109/
IPDPSW50202.2020.00120

18. Parenteau, M., et al.: Development of parallel CFD applications with the Chapel
programming language. In: AIAA Scitech 2021 Forum. American Institute of Aero-
nautics and Astronautics (2021). https://doi.org/10.2514/6.2021-0749

19. Patwardhan, A.A., Upadrasta, R.: PolyhedralModel guided automatic GPU cache
exploitation framework. In: 2019 International Conference on High Performance
Computing Simulation (HPCS), pp. 496–503 (2019). https://doi.org/10.1109/
HPCS48598.2019.9188095

20. Rolinger, T.B., Krieger, C.D., Sussman, A.: Runtime optimizations for irregu-
lar applications in Chapel. https://chapel-lang.org/CHIUW/2021/Rolinger.pdf.
Accessed 26 Jul 2021

21. Sanz, A., et al.: Global data re-allocation via communication aggregation in Chapel.
In: 2012 IEEE 24th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), October 2012, pp. 235–242 (2012). https://
doi.org/10.1109/SBAC-PAD.2012.18

22. Slaughter, E., et al.: Task bench: a parameterized benchmark for evaluating parallel
runtime performance. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press (2020).
ISBN 9781728199986

23. STREAM Benchmark Reference Information. http://www.cs.virginia.edu/stream/
ref.html. Accessed 26 Jul 2021

24. Trifunovic, K., et al.: Polyhedral-model guided loop-nest auto-vectorization. In:
2009 18th International Conference on Parallel Architectures and Compilation
Techniques, pp. 327–337 (2009). https://doi.org/10.1109/PACT.2009.18

https://doi.org/10.1145/2833157.2833164
https://doi.org/10.1145/2833157.2833164
https://doi.org/10.1109/TPDS.2021.3051348
https://doi.org/10.1145/3233299
https://doi.org/10.1109/IPDPSW50202.2020.00120
https://doi.org/10.1109/IPDPSW50202.2020.00120
https://doi.org/10.2514/6.2021-0749
https://doi.org/10.1109/HPCS48598.2019.9188095
https://doi.org/10.1109/HPCS48598.2019.9188095
https://chapel-lang.org/CHIUW/2021/Rolinger.pdf
https://doi.org/10.1109/SBAC-PAD.2012.18
https://doi.org/10.1109/SBAC-PAD.2012.18
http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html
https://doi.org/10.1109/PACT.2009.18

	Locality-Based Optimizations in the Chapel Compiler
	1 Introduction
	2 Chapel Background
	2.1 Distributed Arrays
	2.2 Forall Loops

	3 Compiler Analysis and Optimizations
	3.1 Automatic Local Access
	3.2 Automatic Aggregation

	4 Results
	5 Future Work
	6 Related Work
	7 Conclusion
	References




