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Preface

It’s our pleasure to report the papers accepted for the 34th International Workshop on
Languages and Compilers for Parallel Computing (LCPC 2021) held during October
13–14, 2021. The workshop was planned to be hosted physically in Newark, Delaware,
USA, but was changed to a virtual event due to the COVID-19 situation at the time of
the workshop.

Since 1986, LCPC has become a valuable venue for researchers to report research in
the general areas of parallel computing, high-performance computer architecture, and
compilers. LCPC 2021 continued this tradition and offered a highly interactive forum for
the dissemination of innovative research contributions as well as in-depth discussions of
novel and emerging ideas.As inpast years, LCPC2021brought together researchers from
academia, national labs, and industry with the aim of creating and strengthening research
collaborations. In particular, this year’s workshop extended the area of interest to new
high-performance computing paradigms such as such as deep learning and autonomous
vehicles.

We were fortunate to have a diverse set of 20 expert Program Committee (PC)
members, spanning junior and senior researchers, women and under-represented groups,
and researchers from a cross section of the community, including academia, industry,
and national labs.

This year we received 12 submissions from authors in five countries. Each sub-
mission received at least four reviews and most had five reviews. The PC also sought
additional external reviews for contentious papers. The review process was guided by
novelty; reviewers were given explicit instructions to look for novel, intriguing ideas in
the submissions. The inclusion of papers that propose new ideas – a new problem, a new
research topic, radical insight into an existing topic, surprising results, etc. – was one of
the key goals in devising the workshop program. Another important consideration was
whether the paper could provoke interesting discussions during the workshop. Regard-
less of acceptance or rejection, authors were provided with detailed feedback. The PC
held extensive online discussions during the week of August 23 to discuss the papers.
Using an online system, this reviewing process was double-blind with PCmembers who
had a conflict of interest being separated from discussion. From the 12 submissions, the
PC selected 10 full papers to be included in the workshop proceedings. As in past LCPC
workshops, a two-phase revision process was followed for the accepted papers. First, the
authors were asked to incorporate the reviewers’ feedback and prepare a pre-proceedings
version of the paper, which was made available at the workshop. Next, the authors were
asked to incorporate the feedback received during the workshop and prepare a final
camera-ready version, which is included in this proceedings.

We were fortunate to have two keynote speeches, two invited talks, and a panel
discussion in this year’s workshop.

The first keynote talk was given by Shaoshan Liu, Founder and CEO of PerceptIn
Inc., with the title “Building Computing Systems for Autonomous Machines: How
Can Compiler Help?”. Liu shared their experiences of building computing systems
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for autonomous machines, including on-machine computing systems, cloud computing
systems, and cooperative autonomous machine computing systems (e.g., multi robots).
Based on these case studies, he summarized their key findings and explored how com-
pilers can help guarantee the real-time performance, reliability, safety, and security of
autonomous machines.

The second keynote talk, “Systems 2030: The Extended Reality Case” presented by
Sarita Adve from the University of Illinois at Urbana-Champaign, reviewed the end of
Dennard scaling and Moore’s law.Adve introduced their recently released ILLIXR —
Illinois Extended Reality testbed— the first open source XR system and testbed for XR
systems research. Building ILLIXR makes it evident that the systems of 2030 require
researchers to learn how to do application-driven, end-to-end quality of experience-
driven, and hardware-software-application co-designed systems research.

Michelle Mills Strout from the University of Arizona and HPE gave the first invited
talk on “Separating Parallel Performance Concerns Using Chapel”. In the talk, Mills
suggested that to empower programmers tomake decisions about implementation details
at a higher level, we need a programming system that cleanly separates WHAT the code
is trying to do, from HOW it should accomplish it in terms of data and computation
organization. This talk showed how the Chapel parallel programming language achieves
this clean separation by enabling multiresolution programming.

The second invited talk was presented by Zhijia Zhao, from UC Riverside, with the
title “Program Parallelization - A Finite-State Machine-Centric Approach”. A Finite-
State Machine (FSM) is a basic computation model widely used for many applications.
However, due to the inherent dependences among state transitions, it is very challenging
to parallelize FSM-based computations. Zhao introduced several basic techniques for
parallelizing FSM-based computations, including both enumerative parallelization and
speculative parallelization, and demonstrated the conversion of bitstream computations
to FSM computations with the help of a series of program analyses and dependence
modeling techniques.

A special panel was held on October 14 to stimulate the discussion among junior
researchers and new graduates on “Life after leaving the Advisor’s Nest”. The panel was
moderated by Marton Kong from the University of Oklahoma, with the participation
of Riyadh Baghdadi (NYU Abu Dhabi), Doru Popovici (Lawrence Berkeley National
Laboratory), Naser Sedaghati (Cruise) and Richard Veras (University of Oklahoma).
The panelists answered questions about how to jump start your research and career after
leaving grad school and shared their early job experiences, responsibilities, and strategies
to expand their network of collaborators.

We would like to thank the many people whose valuable time and effort made
LCPC 2021 a success. We first want to thank all authors who contributed papers to the
workshop. Furthermore, the success of LCPC is unimaginable without the passionate
commitment of the Steering Committee, as well as the great effort of the Program
Committee members and external reviewers.We also want to express our gratitude to the
networking session chair, Martin Kong (University of Oklahoma), and the publication
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chair, Sanhu Li (University of Delaware), who made significant contributions to the
quality organization of the workshop.

October 2021 Xiaoming Li
Sunita Chandrasekaran
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Locality-Based Optimizations
in the Chapel Compiler

Engin Kayraklioglu(B), Elliot Ronaghan, Michael P. Ferguson,
and Bradford L. Chamberlain

Hewlett Packard Enterprise, Seattle, USA
{engin,elliot.ronaghan,michael.ferguson,blc}@hpe.com

Abstract. One of the main challenges of distributed memory pro-
gramming is achieving efficient access to data. Low-level programming
paradigms such as MPI and SHMEM require programmers to explic-
itly move data between compute nodes, which typically results in good
execution performance at the expense of programmer productivity. High-
level paradigms such as the Chapel programming language aim to reduce
programming difficulty by supporting a global memory view. However,
implicit communication afforded by the global memory view can make
it easier for the programmers to overlook performance considerations. In
this paper, we show that Chapel’s high-level abstractions such as data-
parallel loops and distributed arrays that enable easier programming can
also enable powerful compiler analyses and optimizations, which can mit-
igate these overheads. We demonstrate two compiler optimizations added
to the Chapel compiler in versions 1.23 and 1.24. These optimizations
rely on the use of data-parallel loops and distributed arrays to strength-
reduce accesses to global memory and aggregate remote accesses. We test
these optimizations with STREAM-Triad and index gather benchmarks
and show that they result in around 2x performance improvements on a
Cray XC supercomputer. Furthermore, we analyze two real-world appli-
cations, chplUltra and Arkouda, that use manual remedies to address the
overheads addressed by these optimizations. We observe that more than
half of the places in the source code where these remedies are applied
can benefit from optimizations without any programmer effort.

Keywords: Parallel programming · Compiler optimizations ·
Productivity

1 Introduction

Chapel is a parallel programming language that supports the partitioned global
address space (PGAS) memory model. The PGAS model allows programmers
to use a single namespace, which improves productivity by making all variables
in the lexical scope accessible without explicit communication. Moreover, unlike
other PGAS languages, Chapel’s execution model is not SPMD by default. This
implies that the variables in a given namespace refer to a single address in the
c© Springer Nature Switzerland AG 2022
X. Li and S. Chandrasekaran (Eds.): LCPC 2021, LNCS 13181, pp. 3–17, 2022.
https://doi.org/10.1007/978-3-030-99372-6_1
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global memory rather than different ones in each processing element. Chapel
combines the PGAS memory model with other high-level concepts such as dis-
tributed arrays and data parallel distributed loops to create an expressive pro-
gramming language.

Chapel’s approach to distributed memory programming empowers several
real-world applications. Chapel Multiphysics Software (CHAMPS) [18] is a CFD
simulation library used for aircraft design and simulation and has close to 50
thousands lines of Chapel code. Arkouda [1] is a data-science-oriented Python
library that is backed by a server implemented in Chapel for distributed memory
programming. Arkouda has around 15 thousands lines of Chapel code. chplUl-
tra [17] is an astrophysics software used for simulating the dynamics of ultralight
dark matter and it consists of around 10 thousands lines of code.

On the other hand, developers using the PGAS model and high-level abstrac-
tions are prone to writing code with poor performance and scalability because
of implicit communication. We show that common programming idioms sup-
ported by Chapel’s high-level language concepts enable the compiler to perform
automatic optimizations that would be impossible in low-level approaches such
as message passing. Moreover, automatic optimizations based on high-level con-
structs tend to be portable as lower-level details are typically handled by the
language runtime and communication middleware. This paper presents two such
optimizations that significantly mitigate common performance overheads with
no programmer effort. Specifically, our contributions are:

– design and implementation of an optimization where accesses to distributed
arrays are made faster by avoiding locality checks in data-parallel loops

– design and implementation of an optimization that aggregates fine grained
accesses in copy operations in data-parallel loops,

– experimental demonstration of performance improvements of these optimiza-
tions, and a discussion on their impact on real-world applications,

– discussion on how these optimizations and the Chapel compiler can be
improved in general.

The rest of the paper is organized as follows. Section 2 gives a background
on related Chapel concepts. Section 3 describes the two optimizations in detail.
Section 4 shows some experimental and anecdotal results. Section 5 proposes
future directions for the Chapel compiler and the optimizations presented here.
Section 6 summarizes some related studies in the literature, and Sect. 7 concludes
the paper.

2 Chapel Background

Our focus in this paper is on Chapel’s high-level, data-parallel concepts. In this
section, we give a short background on distributed arrays and forall loops in
Chapel since both of these are key concepts for this work. For a more complete
introduction to Chapel refer to [5].
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2.1 Distributed Arrays

Chapel decouples an array’s distribution from its data thanks to its domain
concept. Domains are index sets that can describe how the indexed data should
be mapped to the system memory. All Chapel arrays have domains. Listing 1
shows how a domain can be declared, and how it can be used to declare an
integer array1.

1 // a local, 1−based, m−by−n domain (index set)
2 var myDomain = {1..m, 1..n};
3

4 // an integer array declared over that domain
5 var myArray: [myDomain] int;

Listing 1. Declaring non-distributed domains and arrays in Chapel

To create a distributed array, one needs only to declare the domain as distributed
by using a standard or a user-defined distribution [7]. Listing 2 shows how a
block-distributed domain and array can be created in Chapel. Note that the
array declaration is identical to that in Listing 1.

1 use BlockDist;
2 var myDomain = {1..m, 1..n} dmapped Block(....);
3 var myArray: [myDomain] real;

Listing 2. Declaring distributed domains and arrays in Chapel

Listing 3 shows some of the most common ways Chapel arrays can be accessed
and manipulated. These include but not limited to; whole-array operations, iter-
ation over their elements, and indexed accesses.

1 // using promoted or whole−array operations
2 myArray = 1.1;
3

4 // using sequential iteration over its elements
5 for elem in myArray do
6 elem = 2.2;
7

8 // using indexing (with sequential iteration over its domain)
9 for idx in myDomain do

10 myArray[idx] = 3.3;

Listing 3. Common ways of accessing a Chapel array serially

2.2 Forall Loops

Chapel has several kinds of loops in order to support different parallel program-
ming patterns. One such loop is the forall loop. A forall loop can parallelize
1 There are shorter syntactic alternatives for creating arrays without an explicit

domain declaration, such as var A: [1..n] int;. Nonetheless, all Chapel arrays
have domains.
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and/or distribute the iteration across the system depending on the iterand that
drives it. For example, a forall loop over a non-distributed domain or array
would typically use all of the cores on the local compute node to implement
the loop; whereas one over a distributed domain or array would use all of the
cores on all of the compute nodes over which the array is distributed. Use of
foralls in conjunction with distributed arrays and domains guarantees that
loop iterations are distributed similarly to the data that it is iterating over. This
observation is key in implementing locality-based optimizations in the compiler.

Listing 4 shows the forall version of the two loops previously shown in
Listing 3.

1 // using parallel/distributed iteration over its elements
2 forall elem in myArray do
3 elem = 2.2;
4

5 // using indexing (with parallel/distributed iteration over its domain)
6 forall idx in myDomain do
7 myArray[idx] = 3.3;

Listing 4. forall Loops Over Domains and Arrays

Note that the only syntactical difference from the loops shown in Listing 3 is
the use of keyword forall instead of for.

3 Compiler Analysis and Optimizations

In this section, we first describe the automatic local access optimization that
analyzes forall loops to determine local array accesses, and avoids dynamic
locality checks for those accesses. This optimization is implemented in Chapel
version 1.23 and it is on-by-default. Second, we summarize the automatic aggre-
gation optimization that aggregates communication in the last statements in
forall loop bodies. This optimization is added to the Chapel compiler in ver-
sion 1.24, and can be enabled with the --auto-aggregation flag.

3.1 Automatic Local Access

Accesses to Chapel arrays are implemented with a method named this on the
array type that is automatically called by the compiler. A simplified implemen-
tation of this for a distributed array type is shown in Listing 5.

1 proc this(idx) {
2 if isLocalIndex(idx) then
3 return localAccess(idx);
4 else
5 return nonLocalAccess(idx);
6 }

Listing 5. A simplified implementation of distributed array access
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Note that, in line 2, the implementation checks whether idx is local, because if
it is, the array element can be accessed in a faster manner. However, this check
itself has some small but noticeable overhead. The overhead is exacerbated if
arrays are accessed in a tight inner loop—as is typically the case for conditionals
inside such loops. Consider a STREAM-Triad [23] implementation in Chapel
that uses indexed access into distributed arrays, as shown in Listing 6.

1 use BlockDist;
2 var Dom = {1..n} dmapped Block(....);
3 var A, B, C: [Dom] int;
4

5 forall i in Dom do
6 A[i] = B[i] + alpha * C[i];

Listing 6. STREAM-Triad kernel with indexed access

In this snippet, the three distributed arrays are accessed by index in the
forall loop body, and they would normally incur the locality checks as dis-
cussed above. However, these checks are provably unnecessary because:

– All three distributed arrays are accessed at the ith index, which is the loop
index

– All arrays are distributed the same way as the loop’s domain is distributed
– The forall loop will distribute the work in the same way the loop’s

domain (Dom) is distributed

The automatic local access optimization implemented in the Chapel compiler
uses similar reasoning to improve the performance of local accesses to distributed
arrays.

Finding Candidate Expressions for Optimization. Early in compilation,
array accesses are simply call expressions that are indistinguishable from pro-
cedure calls2. On the other hand, by the time call expressions are resolved,
and array accesses are differentiated, Chapel’s AST is transformed significantly
enough to make some of this analysis difficult. Therefore, during earlier compi-
lation passes, we analyze and transform the AST, replacing all call expressions
that are candidate for optimizations with a special compiler primitive. Listing 7
sketches a simplified version of how this initial analysis and call replacement
works.

First, we iterate over all forall loops in the program. For each, we try
to find the loop domain. A forall can iterate over a domain, which directly
becomes the domain of the loop; or it can iterate over a domain query on an
array (e.g. myArray.domain), in which case we try to find the array’s decla-
ration and deduce the domain from the declaration. If neither, we continue the
analysis and try to optimize using dynamic checks (details are below).

2 In Chapel, postfix parentheses and square brackets can be used interchangeably as
long as the opening and closing delimiter is the same.
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1 void findCandidates(loop) {
2 loopDom = findDomain(loop) // can return NULL
3 for call in loop.body.calls()
4 if (call.localityDominator == loop &&
5 call.arguments == loop.indices)
6 maybeArr = call.base
7 arrDom = findDomain(maybeArr) // can return NULL
8 static = ( loopDom != NULL &&
9 arrDom != NULL &&

10 loopDom == arrDom )
11 if static
12 loop.staticCandidates.insert(call)
13 else
14 loop.dynamicCandidates.insert(call)
15 }

Listing 7. Pseudocode for candidate discovery

Then, for every call inside the loop body which has the same argument(s) as
the loop index(es), we assume that the called expression is an array symbol and
try to find its domain. If we can find symbols representing the loop’s domain
and the array’s domain and they are the same symbol, we say that this access
is a static candidate for automatic local access optimization. If we couldn’t find
the domain for the loop and/or the array, this call is a dynamic candidate for
automatic local access optimization. We add the call to the appropriate list of
candidates.

Transforming AST For Static and Dynamic Checks. After finding can-
didates for the optimization, we transform the AST for the loop to add static
and dynamic checks. Static checks are necessary because the initial analysis and
transformation happens before type resolution. Therefore, we add static checks
for both static and dynamic candidates, and they only check whether what we
assumed to be an array symbol is actually an array symbol (as opposed to a
procedure symbol) and the domain type supports this optimization. A require-
ment for supporting this optimization is that the domain distributes indices in
the same way as it distributes a parallel iteration over itself. All the standard
domain maps in Chapel support this optimization, but a user-defined domain
map could be imagined where this is not the case. To provide a general solution,
we expect domain maps to provide a function that returns a boolean at compile
time that informs the compiler as to whether the domain map supports this
optimization or not.

On the other hand, dynamic checks are added for cases where the relationship
between the array and the loop domains cannot be established statically. This
also supports cases where a forall only traverses a slice of an array’s domain.

For a scenario where there is one static and one dynamic candidate, as in
Listing 8, we create AST equivalent to that shown in Listing 9.
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1 var dom1 = {1..n} dmapped Block (...);
2 var dom2 = {1..m} dmapped Block (...);
3 var arr1: [dom1] int, arr2: [dom2] int;
4

5 forall i in dom1 do
6 arr1[i] = arr2[i];

Listing 8. A case where arr1 and arr2 are static and dynamic candidates

1 // check all candidates statically:
2 if (staticCheck(arr1, loopDomain) &&
3 staticCheck(arr2, loopDomain)) then
4

5 // check dynamic candidates at execution time
6 if (dynamicCheck(arr2, loopDomain)) then
7 forall i in dom1 do
8 arr1.maybeLocal[i] = arr2.maybeLocal[i];
9 else

10 forall i in dom1 do
11 arr1.maybeLocal[i] = arr2[i];
12 else
13 forall i in dom1 do
14 arr1[i] = arr2[i];

Listing 9. Sketch of the generated AST for the snippet in Listing 8

The generated AST first does static checks on arrays that are optimiza-
tion candidates. These checks are simple functions that return compile-time (in
Chapel terminology, they are params) booleans. If all the candidates pass static
checks, we dynamically check the dynamic candidates, as well. The first forall
clone is where all static and dynamic candidates pass their checks, where the sec-
ond is for the case for successful static, and failed dynamic checks. The final clone
is identical to the user’s loop, and does not have any optimizations.

Finalizing the Optimization. After the initial transformation is done, the
generated AST is resolved more or less normally. Static checks are computed at
compile time, and the conditional based on the static checks is folded. While
resolving this AST, the only special case for this optimization is for resolving
the maybeLocal calls. First, the compiler tries to resolve them as regular array
accesses. If it can, it replaces them with a call to localAccess which avoids
locality checks. If the compiler cannot resolve them as array accesses, they will
be reverted to regular calls, and will be attempted to be resolved as such.

3.2 Automatic Aggregation

Another common overhead in PGAS languages occurs due to fine-grained com-
munication. In some cases where the fine-grained access is predictable, caching
and/or prefetching the remote data can help mitigate some of these overheads.
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However, especially in cases where remote data is accessed randomly, such
approaches are generally not very impactful. A solution for these scenarios is
aggregating the communication and transferring data in bulk with fewer mes-
sages.

Listing 10 shows a simplified version of the index gather kernel from the bale
effort [2].

1 var cycArr = newCyclicArr(...);
2 var blockArr = newBlockArr(...);
3

4 fillRandom(blockArr);
5

6 var tmp: [blockArr.domain] int;
7

8 forall i in blockArr.domain do
9 tmp[i] = cycArr[blockArr[i]];

Listing 10. Simplified sketch of the index gather kernel

The forall loop iterates over a block-distributed domain, while copying
data from a cyclic-distributed array into a block-distributed one. In a straight-
forward implementation, this element-wise, random-access copy operation causes
fine-grained communication. However, this operation can be done in an aggre-
gated fashion because:

– tmp[i] (and blockArr[i]) are local accesses because the forall is over
the same domain as theirs. Furthermore, this will be recognized as such by
the automatic local access optimization that was discussed in the previous
section,

– Because forall is a parallel loop, individual copy operations that will exe-
cute at each iteration of the loop can be reordered without impacting the
application behavior.

The automatic aggregation optimization implemented in the Chapel compiler
will use reasoning along these lines in order to apply aggregation to optimize
communication performance.

Locality Detection. Currently, automatic aggregation is supported only if the
operation is a simple copy operation where one side is local and the other is not.
To detect whether either side is local, we use the same approach and code as
presented for automatic local access. In fact, there’s a single analysis pass that
collects enough locality information for both optimizations that are presented in
this paper.

Avoiding Data Hazards. The aggregated copy operation requires order
independence—that is, that the iterations of the optimized loop can run in any
order including in parallel. In the context of the Chapel language, the forall
loop implies that the loop body has this property. In addition, the aggregated
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copy operation only optimizes the last statements of loop bodies, because it
implies that nothing in the loop body can depend on any writes that occur as a
result of this statement. The Chapel compiler already had an optimization where
such statements are executed in an unordered matter [8], and the automatic
aggregation optimization uses the same analysis as the existing optimization.

Module Support. Aggregating communication requires allocating local buffers
that can be used to store data temporarily before communicating and a mecha-
nism to flush them as they fill up. Implementing this purely by compiler trans-
formations is not very feasible. Instead, our optimization facilitates Aggregator
objects that have been studied in Chapel before and have been heavily used in
Arkouda, a data analytics software that is implemented in Chapel (server) and
Python (client) [1].

Aggregators are module-level objects that represent per-task buffers that
temporarily store data to be communicated along with their address. These
objects are typically created as task intent. A loop using an Aggregator object
typically uses a with clause to create one instance per task, as the following
example shows:

1 forall i in myDomain with (var agg = new Aggregator(int)) {
2 ...
3 agg.copy(arr[i], data); // equivalent to ’arr[i] = data’
4 }
5

Listing 11. Example of manual aggregator usage

Transformations. The forall loop in the index gather kernel as shown in
Listing 10 is transformed into something akin to Listing 12 early in compilation.
1 forall i in blockArr.domain with (var agg = new Aggregator(int)) do
2 if dummyAggregationMarker {
3 tmp[i] = cycArr[blockArr[i]];
4 }
5 else {
6 agg.copy(tmp[i], cycArr[blockArr[i]]);
7 }

Listing 12. Simplified transformation for automatic aggregation

Once hazard detection and other relevant passes, such as loop invariant code
motion, are complete, we choose one of those branches and eliminate the other
one. Therefore, there are no runtime checks of any sorts. Note that removing the
else block also entails cleaning up any aggregator creation because they would
be useless.

4 Results

We evaluate the performance of these optimizations by using the STREAM-
Triad [23] and index gather [2] benchmarks that motivate them. We compare
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the automatically-optimized execution time against their manually-optimized
counterparts which were shown to perform comparably to reference MPI and
SHMEM versions [9,10]. We also analyze the code for chplUltra [17] and Ark-
ouda [1] to assess how the optimizations can improve them. We show that both
of them cause straightforward implementations of benchmarks to perform simi-
larly to manually-optimized versions. They also help avoid significant portion of
the relevant manual optimizations in real-world applications.

We used a Cray XC30 supercomputer for the performance studies. Com-
pute nodes are dual-socket and equipped with 36-core Broadwell CPUs clocked
at 2.1 GHz. Nodes are connected with the Aries interconnect. Automatic local
access comparisons were done against Chapel 1.23 pre-release, whereas auto-
matic aggregation comparisons are against Chapel 1.24 pre-release3, so that
they capture the performance improvement introduced by the optimization on
the release that they were implemented. We used the default configuration for
all of these tests. The executables are compiled with --fast flag. In addition,
the automatic aggregation tests are compiled with --auto-aggregation.

Fig. 1. STREAM-Triad bandwidth

Automatic Local Access. Figure 1 shows how this optimization improves
STREAM-Triad performance. The kernel for this STREAM-Triad implementa-
tion is shown in Listing 13.

1 forall i in Dom do
2 A[i] = B[i] + alpha * C[i];

Listing 13. STREAM-Triad with indexed array access

3 The most current Chapel release version is 1.24.1.
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Without the automatic local access optimization, this kernel reaches only
about half of system bandwidth (shown in dark blue with diamond markers),
whereas other idioms for STREAM-Triad are able to reach the full system band-
width. Other idioms are shown in Listings 14 and 15. The difference between the
two types of idioms is that the distributed arrays are accessed by index in the first
one, which causes overheads without the automatic local access optimization.

1 forall (a,b,c) in zip(A,B,C) do
2 a = b + alpha * c;

Listing 14. STREAM-Triad with zippered iteration over arrays

1 A = B + alpha * C;

Listing 15. STREAM-Triad with promoted expression

With this optimization, indexed STREAM-Triad performs about twice as
fast, reaching the limits of the system. This performance is virtually identical to
other idioms that do not use indexed access into distributed arrays.

In addition, we inspected the chplUltra [17] which relies on explicit use of
localAccess for better performance. We have observed that, thanks to the
automatic local access optimization, we can reduce the number of explicit calls
to localAccess from 80 to 21, without sacrificing performance. The remaining
explicit localAccess calls are either not within forall loops, or the index
that they access is a function of the loop index.

Automatic Aggregation. Figure 2 shows that without any optimization, the
index gather benchmark, shown in Listing 10 does not scale (light blue, dashed
line, square markers). The unordered forall optimization [8], firing automatically
with no user effort, improves performance by enabling out-of-order communi-
cation (medium blue). Finally, manual aggregation (dark blue) and automatic
aggregation (solid green) perform very similarly and much better than the other
versions, where the latter does not require any user effort at all.

To explore the impact of this optimization in user code, we analyzed Ark-
ouda, the application for which user-level aggregators were implemented initially.
Thanks to the automatic aggregation optimization, we were able to reduce the
number of explicit aggregators from 61 to 22. The most common causes for the
remaining 22 are identical to those limitations of the automatic local access
optimization: (1) operation is not inside a forall or (2) the array access index
is complicated. These two causes require 12 of the remaining 22 cases to use
explicit aggregation. The remaining 10 require more investigation.
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Fig. 2. Bale index gather (Color figure online)

5 Future Work

We want to investigate extending the automatic local access optimization to
handle array accesses where the index is an affine expression based on the loop
index. Such accesses are common in linear algebra codes, and currently are not
covered by this optimization. Furthermore, many loops in applications use for
and coforall4 loops and it would benefit these cases to extend the optimiza-
tion beyond forall loops. These other loops do not have any guarantees about
data locality, however, there are common idioms where they are used in a way
that can benefit from this optimization.

As of Chapel 1.24, automatic aggregation is off-by-default and can be enabled
by the --auto-aggregation flag. There are two main concerns for enabling
it by default. First, the aggregator objects are not designed for handling all-local
aggregation. This is because the initial use case for them was for the programmer
to explicitly use them and with the assumption that they would use them only
if they know for sure that there is communication. However, the compiler can
automatically use aggregation in cases where both sides of a copy is actually
local, even though some of the static analysis tries to prevent that. We observed
that there can be around 2x slowdown in such cases. However, we believe that we
can adjust the aggregator implementation to reduce the overhead in such cases.
Second, aggregators use per-locale buffers on each Chapel task (typically a core).
This poses issues when aggregators are used in systems with high locale and core
counts. We would like to consider reducing the memory overhead of aggregators,
potentially using multi-hop aggregation where some local aggregation takes place
before communicating the data, thereby reducing its memory footprint.

The automatic aggregation optimization covers assignments that are the last
statements in the loop bodies. This coverage can be expanded in two ways. First,
we can support arbitrary operations to be aggregated. This would mean creating
function pointers representing the operation and using that function to unpack

4 A loop where each iteration is mapped to a parallel Chapel task.
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the aggregated data instead of just copying them in local memory. Second, this
optimization can cover all statements inside the loop body. This requires alias
and dataflow analysis inside the loop body to avoid data dependences.

6 Related Work

A relatively early study on how high-level language constructs can enable com-
piler optimizations is done by Choi and Snyder [12]. The authors show that
array operations like shifts can be efficiently optimized by the compiler, if the
language enables expressing such operations using high-level constructs, such
as operators. This work is based on ZPL [6], an array programming language.
However, unlike Chapel, ZPL was not a general-purpose language. As such it
did not support operations like array indexing.

Hayashi et al. [14] implemented several LLVM optimizations for Chapel pro-
grams to reduce costs associated with distributed memory programming. The
authors focus on GET/PUT operations injected by the Chapel compiler and
try to find ways in which they can be coalesced or eliminated. These opti-
mizations achieve significant performance improvements. Currently, some of the
optimizations presented in this work can be used with an experimental flag
--llvm-wide-opt. These optimizations focus on communication calls that
happen inside a lexical scope and do not consider calls that can be invoked
repeatedly inside a loop.

Other distributed memory optimizations have been studied in the contexts
of other PGAS languages with compilers. Chen et al. [11] describes strength-
reduction, communication and computation overlap and message coalescing tech-
niques in the Berkeley UPC compiler. We believe that the set of optimizations
presented in this work are thematically similar to those that were studied by
Hayashi et al.

Other studies pertaining Chapel’s performance include but not limited to;
runtime optimizations, such as caching [13], prefetching [16], inspector/executor
optimizations [20], profile-based optimizations [15]; module optimizations, such
as iteration reorganization [3], complex bulk transfer [21]; GPU-related explo-
rations [4], and finally general performance studies in comparison with other
programming models [22].

Single-node loop optimizations for improving data access performance are
common. A significant portion of the literature focuses on loop and data layout
transformations based on the polyhedral model for related optimizations such as
auto-vectorization [24] and improved cache utilization [19]. We believe, similar
techniques can be used in the Chapel compiler. However, they typically focus on
affine array accesses in loops which are not in scope for this paper.

7 Conclusion

In this paper, we show that well-designed high-level language abstractions not
only make programming easier, but can also express key information about the
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application that can enable powerful compiler optimizations. To demonstrate
this point, we present two optimizations added to the Chapel compiler in recent
releases that have been used in production-level applications. The first opti-
mization, automatic local access, reduces the costs of accessing local parts of
a distributed array. The second optimization, automatic aggregation, gathers
communication operations locally before communicating them in bulk. Both of
these optimizations are enabled by high-level concepts like forall loops and
distributed arrays. They both can increase performance without adding any pro-
gramming burden in benchmarks and real-world applications alike.

Acknowledgement. We would like to thank Michelle Strout for reviewing an early
draft and sharing very valuable insights that contributed to this paper’s quality.
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Abstract. The iCetus tool is a new interactive parallelizer, providing
users with a range of capabilities for the source-to-source transformation
of C programs using OpenMP directives in shared memory machines.
While the tool can parallelize code fully automatically for non-experts,
power users can steer the parallelization process in a menu-driven way.
iCetus which is still in its early stages of development is implemented as
a web application for easy access, eliminating the need for user instal-
lation and updates. The tool supports the user through all phases of
the program transformation process, including program analyses, par-
allelization, and optimization. The first phase includes both static and
dynamic analyses, pointing out loops that represent performance bottle-
necks and should be improved. The parallelization phase offers diverse
options to cater to different levels of user skills. By displaying compiler
analyses results in an interactive manner, iCetus supports the user in
pinpointing parallelization impediments and resolving them. During the
optimization phase, the programmer can apply successive improvements
by editing the program, evaluating the performance, and comparing it
to that obtained by previous program versions. iCetus also serves as a
learning tool to help users understand important program patterns and
their parallelization. In this way, it also helps train the user in writing
code that likely yields better performance.

Keywords: Interactive source-to-source compiler · OpenMP parallel
programming model · Shared memory architecture · Code
optimization · Code parallelization

1 Introduction

With the advent of multi-core architectures, the need to fully utilize the capabili-
ties of a computer system has become a topic of great concern among application
developers. Given the difficulties of mastering the skills of manually writing high-
quality parallel code, many attempts have been made in the past to automate
the process of converting sequential to parallel programs. Despite more than four
decades of research in automatic program parallelization and although nearly
all of today’s computer architectures are parallel, current software engineers still
make little use of automatic parallelization tools.
c© Springer Nature Switzerland AG 2022
X. Li and S. Chandrasekaran (Eds.): LCPC 2021, LNCS 13181, pp. 18–32, 2022.
https://doi.org/10.1007/978-3-030-99372-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99372-6_2&domain=pdf
http://orcid.org/0000-0001-7232-3923
http://orcid.org/0000-0003-1651-827X
https://doi.org/10.1007/978-3-030-99372-6_2


iCetus: A Semi-automatic Parallel Programming Assistant 19

The state-of-the-art parallelizer is a batch-oriented optimizing compiler that
offers its users little guidance for and control over its operation, except for a
sizeable number of command-line options.

Typically, parallelizing compilers are able to extract parallelism in about one
in two science/engineering applications. While this is a success from a science
viewpoint, it is unsatisfactory to the end user. It is especially aggravating for the
engineer of novel applications, which may not exhibit the regular data structures
that parallelization technology learned to optimize well.

What’s more, even where the tools succeed in detecting parallelism, mapping
this parallelism to a given architecture may introduce overheads that offset the
gain of automatic optimization. The result is that users see large performance
variations across programs and architectures, ranging from nearly ideal speedup
to significant slowdown compared to the original program.

From a compiler point of view this problem has two major reasons:

1. Parallelization techniques are highly complex and user code may obscure par-
allelism. Furthermore, we demand that compilers perform their optimizations
correctly on all programs. The latter is different from how we think about
parallel programming models. For example, OpenMP permits its users to par-
allelize a loop even if there is a race condition. It is the user’s responsibility
if the execution is incorrect. The strict demand for correctness makes par-
allelizers conservative, bypassing many opportunities for optimization. The
demand also prevents transformations that are considered unsafe. These are
transformations that may produce a different, but user-acceptable result than
the original code.

2. Every program transformation introduces overhead. Estimating this overhead
is highly complex and depends on characteristics of both the program and
the target architecture. Performance models usually include parameters that
are only known once the program executes, making it often infeasible for
the compiler to decide whether or not an applicable technique is beneficial.
The dilemma is that not applying the technique forgoes the optimization
opportunity; applying it, may introduce overhead that offsets the gain or,
worse, degrades performance.

An additional issue motivating the present work is that teaching the skills of
program parallelization lacks educational tools that illustrate concepts, program
analyses & transformations, and report performance results in an intuitive way.

How can we work around these problems?

– Parallel Programming Models: Writing a program using parallel pro-
gramming models, without automatic parallelization, gives full control to the
software engineer. This route may be desirable for experienced programmers
but is often prohibitive for domain scientists and engineers focusing on their
physics, chemistry, or biology, rather than program parallelization.

– Auto-tuning: Platforms have been proposed that try many optimization
variants for a given program and data sets, picking the best. Doing so can
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be extremely time-consuming, due to the combinatorial complexity of try-
ing the many program optimization variants. What’s more, tailoring such a
platform to a user’s specific compilation and execution environment can take
a prohibitive number of engineering parameters. As a result, no available
parallelizer today offers a general auto-tuning platform.

– Hardware Support: Hardware solutions can significantly reduce paralleliza-
tion overhead and enable certain unsafe optimizations. For example, archi-
tectures have explored support for instruction-level launch of parallel loops
(substantially reducing the loop fork-join cost - a major parallelization over-
head), loop-level synchronization (enabling low-overhead parallel execution
of loops with dependences), and speculative parallelization (overcoming some
of compilers’ conservative assumptions). While these techniques are known,
engineering trade offs so far have prevented them from becoming part of
modern computer architectures.

– Interactive Parallelization: The approach pursued in this paper is to
equip a parallelizing compiler with the ability to interact with the users,
involving the user into the decisions that compilers struggle with. The idea is
to consider user feedback in program parallelization. The objectives include
(1) providing the user with information about how the compiler analyzes,
transforms, and parallelizes the program, and (2) creating an interface for
controlling program parallelization, based on this feedback. Doing so com-
bines user knowledge and compiler capabilities. This information will also
help the programmer to write code that is more amenable to automatic par-
allelization as well as help the student understand the involved techniques
and their interactions.

While there are several early projects exploring interactive parallel optimiza-
tion, which will be discussed in Sect. 5, to the best of our knowledge, no inter-
active tool exists that harnesses the power of today’s most successful automatic
parallelizers. This project builds on the Cetus parallelizer, which has shown to
be the most effective, making its capabilities available for interactive use. The
paper presents an initial design of iCetus and then discusses and evaluates fea-
tures requested by an early user community.

The rest of the paper is organized as follows. Section 2 explains automatic
parallelization, the opportunity of interactive parallelization, the features of iCe-
tus, and the limitations of the current version of iCetus. Section 3 describes the
iCetus implementation. Section 4 evaluates existing as well as proposed iCetus
features. Section 5 discusses related work and Sect. 6 presents conclusions.

2 Rationale for the iCetus Interactive Parallelizer
and Tool Features

This section provides a brief overview of the capabilities of automatic paral-
lelization (Sect. 2.1) and then describes how the provision of these capabilities
in an interactive manner can address the issues described in the introduction
(Sect. 2.2). Section 2.3 presents the features of iCetus through an example.
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2.1 Automatic Parallelization in Cetus

The iCetus tool is based on the Cetus parallelizing compiler infrastructure [2].
Cetus performs source-to-source translation, converting C source code into equiv-
alent C code, annotated with OpenMP parallel directives.

To do so, Cetus applies a number of compilation passes that we classify into
program analysis, parallel loop transformations, and performance optimization
techniques. This classification is not strict, serving just the presentation of this
paper. Program analysis passes include range analysis, alias analysis, points-to
analysis, private variable analysis, reduction variable analysis, induction vari-
able analysis, and data dependence analysis. Parallel loop transformations use
the analysis information to determine which loops can safely be executed in par-
allel, annotate these loops as such (using Cetus-internal pragmas), and transform
induction and reduction expressions into their parallel forms, as needed. Perfor-
mance optimizations deal with the efficient mapping of the identified parallel
loops to the target architecture. The involved techniques include loop inter-
change, tiling, and profitability analysis.

The above description is simplified for the presentation of this paper. Addi-
tional passes bring the code into a normalized form for easier analysis and trans-
formation. Also, some passes may be split, such as the actual parallel reduction
expressions being inserted only after profitability analysis has determined that
the parallel execution of a given loop is beneficial.

Cetus generates a report documenting the passes it has applied and providing
details on the operation and findings of the passes. Users can select the verbosity
of this report via command line options. The highest verbosity level can generate
an extensive optimization report.

2.2 The Opportunity of Interactive Parallelization

Recall from Sect. 1 the key problems of batch-oriented compilation, which are
(1) conservative optimizations due to the requirement for absolute correctness,
and (2) insufficient knowledge of the compiler for making informed decisions
about which optimizations to beneficially apply to which program sections.
Section 1 has also expressed the need for intuitive educational instruments. Here,
we describe the opportunity for a tool that presents the capabilities of Sect. 2.1
interactively, addressing these challenges.

Correctness and Conservative Assumptions: Two key compiler capabili-
ties in identifying parallelism are data dependence and private variable analysis.
If a compiler cannot prove that data accesses are dependence free or variables
are private, it conservatively assumes that they are not. Similar holds for other
techniques, such as alias analysis, reduction parallelization, and induction vari-
able recognition. What’s more, certain loops may be correct in their parallel
form, even if dependences provably exist. There may be a race condition that
will lead to results that are different from the original sequential program, and
different parallel executions may yield different results; but all these results may
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be algorithmically correct. An example is a search algorithm that finds a differ-
ent one of multiple elements, all of which match the search criterion. Compilers
must always create sequentially consistent results and thus cannot perform such
transformations.

The opportunity for an interactive tool is to present the results of these
analyses and then let the user decide what is acceptable. In this way, a data
dependence that the compiler cannot disprove or a variable that the compiler
cannot privatize can be tagged as such by the user. This is especially useful in the
fairly common case of a loop where only a few hard-to-detect data dependence
or private variable patterns remain that can be recognized by the user. Cetus’
optimization report will be of help in this situation. By selectively showing the
remaining dependences of a loop and allowing the user to drill down into the
analysis details, an interactive tool can thus help parallelize key loop patterns
that batch-oriented compilers are unable to.

Overheads and Profitability: A major reason that an automatically paral-
lelized loop may execute more slowly than the original is that the loop is too
small so that the cost of invoking and terminating the parallel activity domi-
nates. Recall that not only is modelling the performance of a loop, transformed
with potentially many techniques, highly complex, in most cases the model also
includes parameters that depend on data read from a program input file and
are thus unknown at compile time. The model could be evaluated at run-time,
but such execution itself can introduce excessive overhead. We have observed
that even using the seemingly low-overhead OpenMP conditional parallel loop
construct (run in parallel if a certain condition holds) can yield low profitability.
Transformations that add substantial code to the program, such as reduction
parallelization and loop tiling, are especially prone to low profitability.

The opportunity for an interactive tool lies in informing the user about loops
where profitability is borderline or needs run-time information. The tool can also
disclose high-overhead transformations that have been applied, allowing the user
to be the judge on profitability. While advanced users may have information that
is not available to the compiler for such judgment, the task can still be arduous.

Another tool opportunity is to offer run-time measurements gained through
program execution. The values of critical variables may be evaluated (e.g., the
number of iterations of a loop), the execution time of a loop may be measured,
or the performance of a serial and parallel code version may be compared. An
advanced such scenario would be to “auto-tune” a code section or the entire
program. That is, the interactive tool would execute many optimization variants
and determine the best.

Educational Instrument: Teaching parallel programming techniques, their
correctness, and their automation are highly complex. There are many involved
concepts, program analyses that need to be understood, and transformations
that need to be grasped. Tools that can illustrate these subjects, show the many
aspects of program analyses and transformation with representative examples,
and allow the student to play with what-if scenarios, can improve the learning
experience tremendously.
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2.3 iCetus Features

Fig. 1. Front view of iCetus, available at http://icetus.ece.udel.edu/cetusWeb/. The
availability as a web tool obviates the need for download, install and version updates.

Building on the Cetus source-to-source restructurer, the tool displays the par-
allelized version of a given program in the form of OpenMP-annotated source
code. The tool allows the user to observe the applied transformations and can
serve as a starting point for further, manual optimizations.

iCetus is developed with the purpose of extending the capabilities of the
Cetus compiler. Our intention is not to present just a user-friendly interface to
the Cetus compiler, but to convert an automatic compiler to an interactive one.
The followings are key features of the current iCetus prototype:

– iCetus is developed as a web application, in order to make it easier for the
user to interact with it. Such an implementation introduces lots of benefits
like cross-platform availability, portability, no need for installation, automatic
updates, and being light on client-side computer resources since all processing
would be done on server-side resources.

– Making the parallelization process easily customizable in a menu-driven and
interactive way.

http://icetus.ece.udel.edu/cetusWeb/
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– Making the optimization process less error-prone by guiding the programmer’s
attention to the regions that hinder parallelization.

– Providing an interactive menu-driven display of program analyses and trans-
formations while enabling the user to act on that information and make
required modifications to the input code.

– Providing Run-time measurements gained through program execution, such
as profiling information as well as the speedup and the efficiency of the code.

Figure 1, on page 6 shows the front view of iCetus. The user has typed a
sample input program (alternatively a file can be uploaded or selected from
among examples that illustrate key concepts) and has chosen to customize a
number of compilation options.

Fig. 2. Parallel code & display of data dependency information (Color figure online)

Figure 2 illustrates the menu-driven display of program analysis results. In
the given program that is displayed on the left side, the second loop is not
parallelized and is marked yellow. Color coding is applied to the output for
showing the loop that is not parallelized to the user. That’s why the second
“for” loop is highlighted yellow. Given that information, the user has chosen to
look at the existing data dependences from the drop-down menu. This menu is
designed to let the user easily query the result of different analyses performed by
the compiler on the given program. This feature not only helps the user identify
the impediments of parallelization but also displays the performance gain from
applying parallelization. Based on the query passed by the user, the report on
the right side of the screen updates. In this case, a flow-dependency between a[j]
and a[j+distance] with dependence Vector of “<” in the second loop is displayed.
In this example, the compiler does not know about the value of variables “n”
and “distance”, and it reports on the dependency that might exist in between
a[j] and a[j+distance], in which the “j” variable increases from “0” to “n” in
steps of 1.
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Fig. 3. Determining performance and efficiency

By providing a greater value to variable“distance” comparing to variable “n”
the user manages to resolve the loop-carried flow dependency. Figure 3 shows the
speedup and efficiency gained by the transformations after parallelizing both
loops. The resources for this program execution are part of the web server,
executing in a sandbox environment for security reasons.

The tool allows the user to edit and re-compile the resulting code. In this case,
the data dependence is removed, turning the second loop into a parallel region
as well. Recomputing the speedup shows the effect of this program improvement
immediately.

2.4 Limitations of the Current Version of iCetus

Recall that iCetus is still in the early stages of its development. Some of the
current limitations are given below; they will be resolved in future versions.

– The current version only accepts a source code from the user. It does not
accept any data input file.

– The given program should be self-contained, meaning it must include all
header files that contain developer definitions. The header files that come
with the compiler are recognized by the tool, however.

– Computational resources for program executions to obtain profile runs and
other dynamic measurements are limited to a small machine.

– The focus of the current version is on exploring the functionality needed by
an interactive compiler. Adding the many “bells and whistles” needed for an
easy-to-learn tool will come later.
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3 iCetus System Overview

The iCetus tool is implemented as a dynamic web application, generating the
pages/data in real time, as per the user’s request. The response will trigger from
the server end and reach the client, causing the desired action. Figure 4, on page
9, illustrates this process.

Fig. 4. Processing dynamic web pages

1. Web browser requests dynamic page.
2. Web server finds page and passes it to application server.
3. Application server scans page for instructions.
4. Application server sends query to database driver.
5. Driver executes the query against the database.
6. Record set is returned to driver.
7. Driver passes record set to application server.
8. Application server inserts data in page, and then passes the page to the web

server.
9. Web server sends finished page to requesting browser.

As illustrated in Fig. 4, the current design includes a database that saves user
inquiries. This information will be used for the purpose of evaluating the project.

Since the application server cannot communicate directly with the database,
due to its proprietary format, an intermediary driver acts as an interpreter
between the application server and the database. After the driver establishes
communication, the query is executed against the database, creating a record
set – a set of data extracted from one or more tables. This record set is returned
to the application server to complete the page. The final result is in pure HTML
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format, which the application server passes back to the web server. The page is
then sent to the requesting browser.

Technologies and programming languages used in developing these web pages
are: JSP 2.2, Apache Tomcat version 9.0.41, JSTL 1.2, Servlet API 3, Mysql
connector 8.0, OpenMp 3, Java 11.0.2, GCC 9.2.0, JavaScript 1.0, HTML 5.0,
CSS 2.0.

For software design, we have used an MVC (Model-View-Controller) design
pattern to separate application concerns. In this method, Model represents
objects carrying data, View represents the visualization of the data, and the
Controller acts on both model and view by controlling the data flow into model
objects and updating the view whenever data changes.

4 Evaluation

To evaluate the preliminary results of the project we presented the tool to more
than 20 users with different skill levels with regard to parallelization techniques
and familiarity with the OpenMP parallel programming language. Our goal is
to make a tool that can serve users with different skill levels that’s why the
feedback of all participants matters to us.

The respondents to the survey include users with diverse skill levels. 38.1%
of participants are categorized as for beginners with regard to knowing paral-
lelization techniques. 47.6% of them are categorized as intermediate having some
knowledge with regard to parallelization techniques, and 14.3% of the partici-
pants are categorized as advanced being able to parallelize the code manually.

Of our participants, 66.7% of them were not familiar with OpenMP parallel
programming model, while 33.3% had a good understanding of it.

We also inquired our participants about their level of familiarity with the
Cetus compiler. 61.9% of users did not know the Cetus compiler but 38.1% of
the participants have already tried it at least once.

We presented the list of current iCetus features and also features that we
consider implementing in the next version of the tool. We asked the users to rate
these features on a scale from 1 to 5, where 1 means the feature is unimportant
and 5 means the feature is judged very important. We also asked for a list of
features the users wish to see in such an interactive tool.

Section 4.1 shows the resulting importance of current features of the iCetus
tool, Sect. 4.2 evaluates the importance of features proposed by us to be consid-
ered for the next version of the tool, and Sect. 4.3 describes the features requested
by users for the next release of the project.

4.1 Importance and Usefulness of Existing iCetus Features

Figure 5, on page 11, shows the results collected on the existing features of iCe-
tus. The user scores for all questions are above 4, indicating importance and
usefulness of all implemented features.
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Fig. 5. User feedback on existing features

– Web Application: This question asked about the usefulness of iCetus being
available as a web application. Having the tool implemented as a web appli-
cation eliminates the need for download, install, and updates, and would be
light weight on the client-side considering the fact that all the processing is
done on the server-side. The high score of 4.57 indicates strong agreement
with these advantages.

– Example Inputs: iCetus offers many example input programs that the user
can choose from, illustrating key concepts of parallel programming, and trans-
formations, as well as the tool functionalities. Users gave this feature the high
score of 4.76.

– Interactive Parallelization Options: Users can choose parallelization
options in a menu-driven way. This feature enables skilled users to take
detailed control of the applied analyses and transformation techniques, while
providing reasonable defaults for beginners. This question obtained a 4.71
score.

– OpenMP Annotated Code: Building on the Cetus source-to-source
restructurer, iCetus shows the result of its transformations in the form of
OpenMP-annotated source code. Users scored this feature 4.57. They also
offered the following comments to explain the relevance of this capability:
OpenMP-annotated source code makes it easy to understand the transfor-
mations applied to a code. The portability of OpenMP provides for a good
abstraction of possible underlying machines, eliminating the need for under-
standing many architectural details. Similarly, reasonable performance porta-
bility is appreciated. Last but not least, the users valued the incremental
parallelization process supported by this feature.

– Compiler Analysis: This key feature enables users to understand the
applied compiler passes and inspect specific categories of program analy-
sis results. In this way, users can query the compiler’s reasoning, drilling
down into questions why certain program optimizations could or could not
be applied, and determining possible manual program changes to increase
performance. The score for this feature was also 4.48.

– Performance & Efficiency Analysis: With the highest score of 4.95, users
judged the availability of run-time information, such as performance and effi-
ciency as most important. This result is consistent with the fact that the
lack of run-time information can be viewed as the Achilles heel of static,
batch-oriented automatic parallelization. It also points to an opportunity for
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improving parallelization environments further by including additional types
of dynamic program information.

4.2 Importance and Usefulness of our Proposed iCetus Features

We asked for user feedback on the features we proposed to be added to the next
version of the tool. Figure 6 reports the obtained scores.
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Fig. 6. User feedback on our proposed features

– Auto-tuning: Having an auto-tuning capability that determines the best
combination of compiler options, obtained a score of 4.52. Some users wanted
the tool to find the combination that leads to the best performance, but
wanted some control over the techniques being tuned. Having such control is
important, as auto-tuning can be a highly time-consuming process. Another
reason given was that auto-tuning can help users learn and understand code
parallelization, how it applies in different use cases, and what performance
can be expected.

– Profiling Information: Providing loop-by-loop profiling information in the
serial code and parallel code, as well as loop speedups and efficiencies, are
important aids in the optimization process, indicated by the score of 4.81. The
feature helps users focus attention on relevant code sections and understand
performance bottlenecks.

– Code Transformation Cycle: Being able to modify the input code and
submit it for another round of compilation is essential in an interactive opti-
mization scenario. Applying such modifications in the presence of the avail-
able analyses information goes substantially beyond the features offered by a
standard program editor. The user score for this feature was 4.52.

– Approve Transformations: Giving the user the ability to approve or reject
transformations suggested by the parallelizer provides fine control over the
code optimization process, especially for judging the profitability of a trans-
formation. The score for this feature was 4.38.

– Unsafe Transformations: With a score of 4.14 users judged the importance
of a capability to choose from potentially applicable transformations, even if
they may be unsafe. Some users requested that this option be only available
to advanced skill levels, as program correctness is no longer guaranteed.

While all scores of proposed features are above 4, they are slightly lower than
those of the implemented capabilities. It can be attributed to the fact that it
is easier to understand and judge existing versus projected functionality. The
scores are expected to be higher, once the proposed features are implemented.
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4.3 Requested Features for iCetus

One of the questions in the user interviews asked for additional suggested fea-
tures. Below is the result, including the percentage of users who requested those
features. The priority of implementing each feature will be based on the score.
Table 1 lists these suggestions.

Table 1. Requested features by users

Row Requested features Priority

1 Graphical representations 33%

2 Downloading optimization reports 28%

3 Uploading multiple files 19%

4 Display differences between the input and the parallelized code 19%

– Graphical Representations: 33% of users requested combining text reports
on the result of compiler analyses with graphical reports wherever possible.

– Downloading Optimization Reports: Providing the possibility of down-
loading the parallel code as well as the report of the compiler analyses was
requested by 28% of the users.

– Uploading Multiple Files: 19% of users requested adding the feature to
upload as many files as needed to the web server at once.

– Display Differences Between the Input & the Parallelized Code:
19% of users requested that the differences between the given input and the
parallelized code be displayed. Such a capability would help the developer
further understand the specifics of the applied code transformations.

5 Related Work

Various tools have been built in the past which aim to parallelize the sequential
code. ParTool [5], which is built over the ROSE compiler infrastructure [7],
inserts OpenMP pragmas in serial code. It performs data dependence analysis
provided by ROSE to ascertain whether a loop nest is safe to parallelize. If not,
the dependences that prevent parallelization are displayed. This feedback helps
understand the dependences hindering parallelism and can be used to make
suitable modifications to the source code to eliminate these dependences.

The Parascope parallelization environment [1] provides an editor that sup-
ports multiple views and navigation between views. It displays the results of the
various analyses and transformations carried out by the parallelizer and binds
them with the various representations used. It supports applications written in
Fortran. Users have found the data dependence information to be too low-level,
and they need guidance with program transforms.
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HTGviz is an interactive parallelization environment. It is implemented on
top of the Parafrase-2 parallelizing compiler [6]. It supports several views to
the user such as, Task Graph View, Serial Code View, Directive View to insert
OpenMP tags, Parallel Code View. The interaction between the user and the
compiler is carried out through the use of the Hierarchical Task Graph (HTG)
program representation where task parallelism is represented by precedence rela-
tions (arcs) among task nodes. There is no support for measuring the paralleliza-
tion benefits, or for displaying potential parallelism, at a regional level [3].

The SUIF Explorer [4] builds on the functionality of the SUIF compiler [8]
and offers assistance for both automated and manual parallel programs creation.
The SUIF Explorer offers support for user visualization and provides features
such as a Parallelization Guru that offers tips for parallelization, user involve-
ment in parallel slice creation, Execution Analyzers targeting loops and depen-
dences, Visualizers such as graph browsers and source display, and Assertion
Checkers to help users debug the parallel program.

iCetus distinguishes itself from these previous efforts mainly in three ways.

– Building on one of the most advanced parallelizers, the tool allows the user
to inspect in detail the result of different compiler analyses, such as data
dependence analysis, variable range analysis, private variable analysis, in an
easy to understand format.

– The tool provides the user with dynamic program information, such as the
speedup gained from a transformation, enabling the user to judge when fur-
ther optimizations may be beneficial or have diminishing return.

– The tool supports the user in all phases of the program optimization process,
including profiling, parallelizing, and optimizing.

6 Conclusion

State-of-the-art parallelizing compilers are batch-oriented tools, limited to static
program analyses and transformation. This paper presented the early results of
a project to develop a tool that overcomes this limitation. iCetus is an effort to
involve the user in the code transformation process, supporting several program
development phases. A profiler helps the programmer analyze the code by iden-
tifying execution bottlenecks of the program. The programmer then parallelizes
the code by starting with the most time consuming code sections while focus-
ing on maintaining the correct results of the parallel program. Optimizing the
code for improving observed speed-up from parallelization is the final phase. The
next release of the tool will incorporate more features in support of interactivity
as well as features such as a loop-level profiler, auto-tuner, and a capability to
highlight differences between source and transformed code.
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Abstract. Modern compilers have relied on various best-effort heuris-
tics to solve the register allocation problem due to its high computation
complexity. A “greedy” algorithm that performs a scan of prioritized
live intervals for allocation followed by interval splits and spills is one of
the widely used register allocation mechanisms with consistent perfor-
mance and low compile-time overheads. However, its live interval split-
ting heuristics suffer from making sub-optimal decisions for scenarios
hard to predict, and recent effort to remedy the issue is not free from
unintended side effects with performance degradation. In this paper, we
propose Greedy-SO, a greedy register allocator with a spill cost and
pattern guided optimization that systematically addresses inherent sub-
optimalities in live-interval splitting. Greedy-SO does this by avoiding
splitting codes whose performance are more likely to be impacted by
sub-optimal decisions. Greedy-SO identifies functions with such code
patterns, precisely models the spill cost for them during the greedy allo-
cation process, then when the spill cost starts to deteriorate, switches to
an alternative allocator that does not use interval splitting. Our hybrid
register allocator improves the performance of target benchmarks up to
16.1% (7.3% on average) with a low compilation overhead, while not
impacting non-target benchmarks at all.

1 Introduction

Registers are scarce and valuable hardware resources whose software-managed
utilization can significantly impact code performance. Modern compilers have
solved the problem of register allocation, i.e., mapping infinite registers to limited
architectural registers, by finding an optimal solution that maximizes utilization
and minimizes memory spills [6,14]. However, the task of finding an optimal
register allocation for realistic codes is an NP-complete problem [11], so var-
ious best-effort heuristics have been proposed, including graph-coloring based
algorithms [8,9], linear scan algorithms [22], and their many variants [17,26].
Graph-coloring based algorithms use k-coloring heuristics to assign colors, i.e.,
registers, to conflicting live intervals that are represented as connected graph
nodes, whereas priority-based algorithms exploit program information to deter-
mine the allocation order.

Register allocators in modern compilers implement a version of the above
allocation algorithm(s) with several other heuristics when making register spill
c© Springer Nature Switzerland AG 2022
X. Li and S. Chandrasekaran (Eds.): LCPC 2021, LNCS 13181, pp. 33–49, 2022.
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and live interval coalescing/splitting decisions. For example, the “greedy” algo-
rithm in the LLVM compiler coalesces live intervals first to reduce conflicts, and
allocates registers for them in their priorities computed from variable types and
access patterns. Then it splits remaining unassigned intervals into pieces and
spills occupied registers until the allocation is completed.

These heuristics are carefully designed and fine-tuned with expert knowl-
edge and benchmark testing, but they are bound to suboptimal decisions due
to approximate modeling of the problem. Especially the live interval splitting
heuristic involves complicated logic to determine which live interval to split and
where in an interval as well, which can lead to widely varying code and thus
execution time. Recent work [27] tried to improve the heuristic, but it intro-
duces performance degradation in unintended cases as a result of unpredictable
chains of interactions between the changed heuristic and the rest of the register
allocator.

Our insight is that problem is not the heuristic itself, but the way regis-
ter allocation is performed without a systematic cost model that estimates the
profitability of given heuristics for the code and adaptively selects allocation
approaches. While previous work [10,16] enabled hybrid allocation using differ-
ent allocators per function or code segment, we focus mainly on structuring the
internal phases of the allocation process to use optimal heuristics based on mod-
eled cost. This cost-guided optimization will enable more effective register allo-
cation while minimizing heuristic-engineering effort and negative performance
impact.

Thus, we propose Greedy-SO (Split Optimization), a hybrid register alloca-
tor with spill cost and pattern guided optimization for live-interval splitting logic
in the LLVM greedy allocator. Our allocator uses improved spill cost modeling
to detect whether and when suboptimal splitting decisions occur in the greedy
allocator. Then, it switches to an alternative register allocator to finish the rest
of the allocation process without splitting. We use empirically identified code
patterns and thresholds to determine whether this alternative allocation path
will provide performance gains and apply the path only when it is predicted to
do so. The target code patterns turn out to have heavy computation in large
loop bodies; this observation supports our assumption that such codes with high
register pressure are more likely to suffer from the suboptimal splitting logic and
benefit from our solution.

The evaluation showed that Greedy-SO improves the execution times of five
benchmarks in LLVM test suite by 7.3% on average (up to 16.1%) without degrad-
ing other benchmarks on Intel CPU. These benchmarks can be used as building
blocks for larger applications, so the potential performance gain will be sig-
nificant at an application level. We believe that this paper demonstrates the
promising potential towards optimization-driven back-end code generation.

In the rest of the paper, motivating insights and preliminary analysis are
presented in Sects. 2 and 3. Then we describe the design and implementation of
Greedy-SO in detail in Sect. 4. We describe the experimental setup for Greedy-
SO and other allocators in Sect. 5 and give results in Sect. 6, then conclude with
related work and a conclusion.
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Fig. 1. The ratio of functions entering the split phase in SPEC2017 intspeed

2 Background and Challenges

We made the following observations that reveal the challenges of existing register
allocators that guided our design in Sects. 3 and 4.

Observation 1. Codes compiled with the greedy allocator are subject
to high performance variability from live interval splitting heuristics.
The LLVM greedy register allocator consists of three main phases. As a prelimi-
nary step, it computes live intervals of virtual registers and assigns priorities by
using program-based criteria, e.g., giving a higher priority to global variables and
variables within a loop. The coalescing phase combines related live intervals by
making copies to reduce register pressure. During the allocation phase, the live
intervals sorted in a priority queue are assigned to an available register. The regis-
ter allocation may finish here if no registers remain to be allocated, or may move
on to the final split/spill phase, which splits allocated live intervals into smaller
ones to reassign them or spills live intervals to the memory to make room.

All the heuristics in these phases interact closely to generate final allocation,
and attempts to precisely analyze its workings are likely to be fruitless. However,
we observe that the live interval splitting heuristics have a much larger decision
space than the others, e.g., whether to split or spill, which live interval to split,
where in a live interval to split and at which level (region, block, or local), and
in how many sub-intervals to create, which can lead to higher performance vari-
ability caused by heuristic design. Considering the fact that more than 25% of
the functions in SPEC2017 must go through the split/spill phase when com-
piled with default options for Intel CPU (Fig. 1), optimizing the heuristics in
the split/spill phase can yield performance gain for a wide range of codes on
dominant CPU platforms.

Observation 2. Optimizing heuristics for specific cases often introduces
unexpected performance degradation in others. Carefully designed
heuristics are often updated to handle corner cases that perform pathologically
badly under different circumstances. However, once heuristics are mature, adjust-
ing them to fix specific cases without negative side effects is very difficult and
requires significant engineering and testing effort without a guarantee of success.
For example, recent work [27] identified and addressed the issue of not consider-
ing local interference as weights in the region-level splitting heuristic. Although it
works well for target testcases, it randomly introduces runtime slow-down, because
the changed heuristic can cause unexpected side effects with the rest of the register
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Fig. 2. Cost tracking graph (left) and a case of suboptimal splitting (right) for bicubic
interpolation kernel [4]. The orange box in the left indicates where region and block
splits happen. (Color figure online)

allocator as reported by the community and our evaluation. This observation calls
for detailed cost modeling of the heuristics to reveal potential suboptimal decisions
and adaptively apply optimizations based on cost prediction.

3 Preliminary Analysis

To understand how heuristic decisions affect the potential cost of register allo-
cation, we modeled the register spill cost for each live interval as follows:

Cload =
∑

u∈U

Bfreq (u), Csave = Bfreq (d) (1)

Cspill = R ∗ (Cload + Csave) (2)

Ctotal spill =
∑

i∈I

Cspill (i) (3)

where Bfreq is block frequency and 0 ≤ R ≤ 1 is a rematerialization ratio.
Cload and Csave estimate runtime memory load and save costs by summing

up block frequencies for each use (u) and definition (d) in a given live interval.
A live interval in LLVM is defined per virtual register, for which (d) is unique
per interval in the SSA form [23]. Cspill is computed as a sum of the two costs
discounted by R (=0.5 if all uses are rematerializable). By summing Cspill of the
spilled intervals and that of intervals in the priority queue, Ctotal spill conser-
vatively estimates the memory spill cost of the current register allocation state
assuming the worse cases in which all remaining intervals are spilled.

Similar forms of spill costs have been used to evaluate the efficiency of reg-
ister allocators in prior work [8,24], but they focus on computing the final spill
cost after register allocation has been completed. We designed this spill cost
to estimate the cost of register-to-memory spills at a given point of the regis-
ter allocation process. This spill cost is also different from the weight used in
the greedy allocator for many heuristic decisions including splits and spills. The
greedy allocator normalizes the weight with live-interval length so that it can
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prefer short live intervals for allocation and long live intervals for splitting [21].
We do not factor live interval lengths into our spill cost because it is designed
to keep track of “after-the-fact” states of a heuristic decision.

No live intervals are assigned yet at the beginning of register allocation, so we
start at the highest possible spill cost assuming that they will be all spilled into
the memory and should be loaded to registers for execution. As live intervals are
allocated to registers, the spill cost decreases. Live interval splitting will increase
the spill cost by the sum of block frequency for each inserted instruction, then
decrease it by assigning a split live interval to a register. Register spills increase
the spill cost by the cost of the live interval.

Ideally, the spill cost should decrease continuously throughout the register
allocation process, producing the minimal cost at the end. Splits create spikes but
the spill cost after a split should be lower than before. However, our preliminary
experiments with LLVM test suite benchmarks reveal many non-ideal cases.
The final spill costs obtained by the original greedy allocator and an optimized
version [27] are both higher than the minimal cost obtained early in the split
phase (Fig. 2). A closer look at a suboptimal splitting case as shown on the
right side of Fig. 2 reveals that the final spill cost at Tf ends up higher than
the spill cost before splits at T0. Split attempts at Trs and Tbs allow I1 and
I2 to be allocated and thereby reduce the total cost, but the costs of inserting
copy instructions are higher than this reduction. This suboptimal behavior is
challenging to predict with iterative eviction-assignment chains. Our preliminary
analysis revealed the following.

1. The global-split heuristic, which considers live intervals that span multiple
basic blocks for splitting candidates, makes suboptimal decisions, thus causing
the overall spill cost to increase after a split. This issue is partially addressed
by [27].

2. Cost tracking graphs for many benchmarks show suboptimalities with the
block-split heuristic as well. This result occurs because the current greedy
allocator does not consider the local interference for block splitting, and the
issue has not been reported or addressed by prior work.

3. [27] can make different suboptimal decisions than the baseline greedy alloca-
tor leading to an even higher spill cost at the end, and thus worse performance
(details in Sect. 6). This result shows that [27] cannot be trusted to improve
the allocation quality in general.

The analysis result, combined with the observations in Sect. 2, guides our sys-
tematic cost-driven design of register allocator in the next section that focuses
on addressing suboptimalities at an allocation strategy level rather than an indi-
vidual heuristic design level.

4 Design and Implementation

Figure 3 shows the compilation flow of the Greedy-SO register allocator with
three main components. It consists of two cost models, code pattern rec-
ognizer and spill cost tracking mechanism, and cost-guided allocation
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Fig. 3. The overview of Greedy-SO

optimizer that selectively applies hybrid register allocation based on the com-
bined cost. The code pattern recognizer (CPR) serves as a counter-based fil-
ter to determine whether the compiled code is an optimization candidate that
requires detailed spill cost tracking. Second, for identified candidates, the spill
cost tracking mechanism computes the spill cost as proposed in Sect. 3 during
register allocation to detect potential suboptimalities. The two costs, i.e., code
statistics and spill cost, are evaluated sequentially to eliminate spill cost tracking
overheads for non-target codes. Lastly, after the first register allocation process,
the cost-guided allocation optimizer examines the minimum spill cost (M) and
the final spill cost (F) with a threshold (T), and if the condition is met, reverts
the allocation result and executes an alternative allocation path from when the
minimal spill cost is reached. The following sections describe the design and
implementation of each component in detail.

4.1 Code Pattern Recognizer

The code pattern recognizer (CPR) collects counter-based code statistics by
recursively traversing all loops in a function and computing conditions that rep-
resent the target code pattern of the Greedy-SO register allocator. The goal of
the CPR is to focus on optimizing functions for which suboptimal splits are
likely to be translated into performance gains; i.e., it filters out functions that
are too sensitive to architectural noises such as code alignment and instruction
cache misses [2]. For example, we observed that when most of the innermost
loops are small or instructions in small inner loops dominate the total number
of instructions, non-deterministic side effects caused by changes in register allo-
cation often hide the performance benefit of Greedy-SO. Thus, CPR checks if
any of the following conditions holds for filtering.
1. Small loops only. CPR filters out functions in which basic blocks in loops
all have less than Csmall (= 10) instructions. While small loops can go through
the split/spill phase, they are susceptible to microarchitectural noises and not
likely to have stable performance gains from our optimization.

Fsmall loop =

⎧
⎨

⎩

true if all basic blocks has less than Csmall instructions
in all loops

false otherwise
(4)
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2. Many small innermost loops. CPR applies relaxed filtering criteria with
an increased threshold for Csmall (= 15) and tries to detect functions that have
many innermost loops whose majority are small. This condition targets functions
with many function calls inlined by small loops.

Fsmall inline =
{
true if (Linner > c1) ∧ (ratio small > c2)
false otherwise (5)

where ratio small = Lsmall inner/Linner, c1 = 30, c2 = 0.85.
3. Middle-sized loops. CPR further relaxes the criteria to detect middle-
sized loops, by decreasing the ratio small threshold. We observed that even
when ratio small is moderately high, if a function also has many instructions in
non-small and non-innermost loop bodies, then Greedy-SO can tolerate archi-
tectural performance jitters. This condition is checked by comparing the ratio of
Imiddle loop (# of instructions in non-innermost or non-small loops) and Iinner
(# of instructions in small innermost loops).

f1 =
{
true if (ratio small > c3) ∧ (Imiddle loop < Iinner ∗ c4)
false otherwise (6)

f2 =
{
true if (ratio small > c5) ∧ (Imiddle loop < Iinner ∗ c6)
false otherwise (7)

Fmiddle loop = f1 ∨ f2 (8)

where f1 uses c3 = 0.5 and c4 = 3.5 while f2 uses more relaxed parameters
than f1: c5 = 0.4 and c6 = 4.2.

Finally, CPR filters out a function if any of the previous conditions is true.

F = Fsmall loop ∨ Fsmall inline ∨ Fmiddle loop (9)

The filtering conditions and parameters(Csmall, c1 to c6) were hand-tuned
using results of experiments on Intel and AMD machines. Adopting a more
systematic and learning-based approach such as rule induction [13] can help
improve the heuristic design, and it is part of our future work.

Figure 4 shows examples of target and non-target functions. The function on
the left has an innermost loop that includes many array accesses on distinct
locations (in red). This function must perform numerous live interval splits and
spills due to high register pressure. Also, improved register allocation for the
large inner loops will have high performance impact. In contrast, the function
on the right has only one loop nest with a small innermost loop (in green). Even
if the spill cost modeling reveals suboptimalities, non-deterministic architectural
behaviors could easily offset performance gain by Greedy-SO.

4.2 Spill Cost Tracking Mechanism

We implemented the spill code computation and tracking in the LLVM greedy
allocator as described in Sect. 3. Cspill is computed for every live interval when
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Fig. 4. Example target and non-target functions for Greedy-SO (Color figure online)

created and pushed into a priority queue, then recomputed when a new interval
is generated by live interval splitting. Ctotal spill is computed at the following
tracking points in the register allocation process: (1) when a live interval is
enqueued into the priority queue, (2) when a live interval is dequeued from the
priority queue, and (3) when a spill occurs.

For example, when a split happens, an interval is dequeued from the priority
queue at t0 and split into smaller intervals. The total spill cost does not change
for the dequeue action, because we conservatively count intervals in the queue as
potential spills. Then the split intervals are enqueued back to the priority queue
for allocation at t1. At this point, the total cost will go up as a split introduces
additional copy instructions at interval boundaries. When split intervals are
dequeued and allocated later at t2, a successful allocation will eventually result
in a lower spill cost than the spill cost at t0 as their costs are all deducted from
the total spill cost. However, suboptimal splitting decisions that cause spills for
split intervals will not be able to deduct their costs, so the total spill cost will
stay higher than the cost at t0. The key idea behind Greedy-SO is that if the
total spill cost gets much worse after reaching the minimum early in the process,
stopping when the minimum is reached can avoid suboptimal splitting decisions
afterward.

We keep track of the minimal total spill cost by comparing a newly computed
total spill cost with the current minimal total spill cost at the above tracking
points, then make a checkpoint for when a new minimum appears. A checkpoint
is stored as the number of “dequeue” events of the priority queue. Greedy-SO
uses this checkpoint to determine when an alternate fall-back allocator takes
over the allocation process.
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4.3 Putting it all Together: Cost-Guided Allocation Optimizer

After the first register allocation with the spill cost tracking enabled, the cost-
guided allocation optimizer compares the final spill cost (costf ) and the mini-
mum spill cost (costm) and evaluates the following condition to decide whether
or not to proceed to hybrid register allocation:

(costf ≥ 100 ∧ costm < costf ∗ 0.9) ∨
(50 ≤ costf < 100 ∧ costm < costf ∗ 0.8)

(10)

The condition filter outs codes with a spill cost lower than 50 since such
functions should be very small and not worth optimizing. Conversely, the con-
dition favors codes with a high spill cost (>100) which are likely to have a high
performance impact by giving them a weak threshold. A function that passes
this test is recognized as a target function of Greedy-SO optimization.

Then Greedy-SO starts the second register allocation pass as the greedy allo-
cator using a snapshot of machine functions created before the first allocation
pass (details in Sect. 5). When Greedy-SO arrives at the saved checkpoint, it
passes the analysis result and current allocation information to a fall-back regis-
ter allocator, Partitioned Boolean Quadratic Programming (PBQP) [18,25] or to
an LLVM Basic allocator. PBQP constructs a cost matrix for each pair of virtual
registers and records spill cost, register aliasing information, and optional coa-
lescing profitability. Then it tries a PBQP solver to get a solution. If a solution is
not found, registers with the lowest spill cost are spilled, and the PBQP alloca-
tor repeats the process until all the constraints are satisfied. Greedy-SO passes
a pointer to LLVM spiller (in charge of register spills) to PBQP. Once PBQP
takes over, it solves the remaining allocation problem from the checkpoint.

5 Methodology

Compiler Implementation. We implemented Greedy-SO in LLVM 13 [19] by
modifying the greedy register allocator to follow the compilation flow of Greedy-
SO when a compilation option “use-greedy-so” is given. If a function is identified
as a target function after the first allocation pass, a modified FPPassManager
clones the original function at LLVM IR level and replaces all uses of the tar-
get function with those of the cloned function. Then, the cloned function goes
through the same machine function passes as the original function, then through
the Greedy-SO register allocation pass.

Benchmarks. For experimental results, we evaluated 737 benchmarks from the
LLVM test suite [3] except for the ones under “External” and “CTMark” cat-
egories, with a testing option (TEST SUITE BENCHMARKING ONLY). Experiments
were repeated ten times with a single thread and default inputs using llvm-lit
test tool.
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Experimental Setup. For Greedy-SO, we used 0.1 as the minimal spill cost
threshold to trigger hybrid register allocation (i.e., the difference between the
minimal spill cost and the final spill cost should be higher than 10%), and used
a PBQP register allocator in LLVM whose implementation is based on [18]. We
performed a sensitivity study (Sect. 6.2) to see how the spill cost threshold and
the type of fall-back register allocator affect the performance of Greedy-SO. The
evaluated configurations are as follows:

– greedy and pbqp: The original LLVM greedy and PBQP allocator in LLVM
13 with default options.

– local-intf: greedy with “consider-local-interval-cost” option enabled [27].
– gs and gs-basic: gs is Greedy-SO, and gs-basic replaces the fall-back register

allocator with the LLVM basic register allocator.
– gs-wop-pbqp, gs-wop-pbqp-0.1 and gs-wop-pbqp-0.2: Greedy-SO without the

code pattern recognizer with varying spill cost threshold. gs-wop-pbqp has 0
for the threshold, i.e., it always triggers hybrid register allocation when the
final spill cost is not the minimal spill cost, while 0.1 and 0.2 signify the
required difference ratios between minimum spill cost and final spill cost for
the trigger.

– gs-wop-basic, gs-wop-basic-0.1 and gs-wop-basic-0.2: gs-basic without the code
pattern recognizer with varying spill cost thresholds.

We evaluated LLVM test suite on Intel (Xeon Gold 5218 CPU with 375 GB
RAM), AMD (EPYC 7571 with 64 GB RAM), and ARM (Neoverse N1 with
64 GB RAM) CPU platforms. Hyperthreading and CPU frequency scaling were
disabled for the Intel CPU.

6 Evaluation Result

In our evaluation of the Greedy-SO register allocator, we focus on showing that
Greedy-SO provides improved or comparable performance to the greedy alloca-
tor, for target codes identified by the cost models. We also compared Greedy-SO
with previous work [27] and variations of Greedy-SO to show that both the
spill cost modeling and pattern-based filtering are crucial to provide consistent
speedup without degradation.

6.1 Benchmark Performance

Execution times were evaluated (Figs. 5 and 6) for a set of LLVM test suite
benchmarks (Table 1), normalized to LLVM greedy allocator. We evaluated the
entire test suite with these allocators and found out that 97.7% (97.8% in AMD)
of the total benchmarks show less than 2% of performance variations regardless
of the type of register allocator. While 2.3% (2.2% in AMD) of such benchmarks
include target functions for Greedy-SO optimization, most of them have a negli-
gible performance impact. Thus, we focus on investigating the benchmarks whose
execution time is affected by more than 2% in either direction, with any of the
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Fig. 5. Execution times of LLVM test suite on Intel CPU (normalized to greedy)

Fig. 6. Execution times of LLVM test suite on AMD CPU (normalized to greedy)

Fig. 7. Comparison of target function performance (function) and benchmark perfor-
mance (all) (right) and the runtime proportion of target functions (left).

Table 1. Selected LLVM test suite benchmark list.

Benchmarks

1 BICUCIB INTERPOLATION 9 lencod 17 functionobjects

2 aha 10 lambda 18 MemCmp<4, EqZero, None>

3 miniGMG 11 lua 19 SIBsim4

4 himenobmtxpa 12 siod 20 obsequi

5 pairlocalalign 13 PathFinder 21 sqlite3

6 ENERGY CALC LAMBDA 14 XSBench 22 dynprog

7 TRAP INT RAW 15 yacr2

8 FIND FIRST MIN LAMBDA 16 ks
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evaluated allocators. In Figs. 5 and 6, the benchmarks in the left section show
more than 2% speedup (or slowdown) with Greedy-SO; the benchmarks on the
right are affected more than 2% by other evaluated register allocators, but not
by Greedy-SO.

Target Benchmarks. Greedy-SO showed average speedups of 7.3% (maximum
16.1%) for the target benchmarks on Intel CPU, and 7.9% (maximum 10.1%)
on AMD CPU. Function-level analysis revealed that functions optimized with
Greedy-SO in these benchmarks do contribute mainly to the overall speedup, as
shown in Fig. 7. For benchmark 2, the overall speedup is greater than the per-
function speedup, because some non-target functions are affected by changed
code alignment; these functions tend to have loops that include large, compute-
intensive bodies (some as a result of function inlining) as we modeled with the
code pattern in Sect. 4. Their high register pressure led to a long split/spill pro-
cess that had high likelihood of making suboptimal heuristic decisions substantial
enough to translate into performance degradation.

Greedy-SO showed consistently better or comparable performance than all
the other evaluated allocators for these benchmarks. While local-intf improves
on greedy for several benchmarks, it does not show any performance improve-
ment with some of the benchmarks where Greedy-SO does (2 and 3 on Intel
CPU and 2 on AMD CPU). These benchmarks suffer from suboptimal heuristic
decisions according to our spill cost modeling, but local-intf as another splitting
heuristic seems to be not able to address them consistently. gs-wop-pbqp does not
use the code pattern recognizer, so it optimizes a superset of functions included
in Greedy-SO. It provides comparable performance to Greedy-SO for most of
the benchmark except for 5, for which we suspect gs-wop-pbqp introduces per-
formance degradation for non-target functions. This result strongly supports the
potential for our hybrid approach as a robust and effective solution for register
allocation.

Although the performance gain on Intel and AMD CPU vary due to microar-
chitectural differences, they affect the same set of benchmarks except for 5. This
result shows that the code pattern that we used can generalize across different
hardware.

Non-target Benchmarks. The right section in Figs. 5 and 6 includes the
benchmarks with more than 2% performance jitter with the other register allo-
cators than Greedy-SO. We analyzed those benchmarks to quantify the effec-
tiveness of the combination of the spill cost and code patterns in Greedy-SO
in avoiding potential performance degradation by focusing on profitable cases
only. Only 0.63% (0.55% in AMD) of the functions in these benchmarks are
optimized by Greedy-SO while the rest does not satisfy both conditions. As a
result, Greedy-SO and greedy show little performance difference.

In contrast, the execution times of the other register allocators varied with-
out any consistent trend. For example, the execution time of pbqp and local-intf
fluctuated from -24% to 28%; understanding its source is not in the scope of
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Fig. 8. Sensitivity study for spill cost thresholds and fall-back register type. all shows
average performance for the entire LLVM test suite (737 total), while selective is for
the subset of benchmarks with more than 2% performance difference compared the
greedy allocator in a given configuration and inclusive is for the union of selective sets
(except for pbqp sets; 25 for Intel and 26 for AMD).

Fig. 9. Function performance of the selective benchmark set for configurations with
different fall-back register allocators and spill cost threshold. (Color figure online)

this paper. gs-wop-pbqp generously applies hybrid register allocation whenever
the spill cost indicates suboptimalities. This strategy produces a mixed result of
improving or degrading non-target functions. We found that performance degra-
dation is a result of random negative side effects from changed allocation being
stronger than the speedup gain. We can see that the code pattern recognizer is
crucial in avoiding these cases and applying the optimization only when overall
speedup is expected.

As for the benchmarks with performance improvement (8, 10, 13, 14, 15
and 16), we identified two main sources. In some cases, our code pattern is too
strong and restrictive to identify marginally profitable codes as target functions
(details in Sect. 6.2). We also discovered that a significant speedup for 8 comes
from the internal workings of microarchitectural features in Intel CPU. When a
function has many small innermost loops, its execution time gets very sensitive
to the code size and alignment. We excluded functions likely to trigger this
phenomenon from our code pattern for the stable outcome without performance
degradation.
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In summary, the evaluation shows that Greedy-SO can provide more efficient
register allocation, thus improving performance for most of the affected functions
by suboptimal splitting heuristics in the LLVM greedy allocator without impact-
ing other functions.

ARM CPU. We did not observe any statistically meaningful performance dif-
ferences among all evaluated register allocators on ARM CPU. It is because
ARM CPU generally has much lower register pressure, with more architectural
registers than X86 CPU’s.

6.2 Sensitivity Study

We conducted a sensitivity study with varying spill cost thresholds and types of
fall-back register allocator on Intel and AMD CPU, as shown in Figs. 8 and 9.
Figure 8 presents average execution times of three benchmark sets compiled with
ten different configurations as described in Sect. 5, while Fig. 9 shows statistics
for benchmarks in the selective set.

In terms of spill cost thresholds, both gs-wop-basic-* and gs-wop-pbqp-* show
mixed results on Intel and AMD CPU. In Fig. 9, green bars consistently shrink as
the threshold gets stronger, while red bars stay the same or even increased. These
results show that the spill cost thresholds are neither precise nor sufficient enough
to filter out noisy cases and focus only on promising cases. Comparing Greedy-
SO and gs-wop-* with the spill cost modeling only, we found that Greedy-SO
efficiently excludes noisy cases than the versions with thresholds only.

Another important factor is the efficiency of the fall-back register allocator,
which determines how much improvement over the existing greedy allocator
can be achieved. Figure 8 shows that gs-wop-pbqp-* and gs provide performance
comparable to or higher than gs-wop-basic-* and gs-basic. We observed that a
conservative and quick eviction algorithm of the basic allocator may accidentally
spill high-priority registers. In contrast, when a spill occurs, the PBQP allocator
repeatedly solves the remaining allocation problem until there are no more spills,
preventing bad spills caused by evictions. Comparing Greedy-SO and gs-basic to
isolate the effect of the fall-back register allocator with the same cost models and
the same target functions, Greedy-SO provides 7% and 8% speedup on Intel and
AMD CPU without any performance degradation (no red bar in Fig. 9), while
gs-basic struggles with performance degradation.

Considering the results of this sensitivity study, we used the PBQP allocator
as a fall-back register allocator for Greedy-SO and a threshold of 0.1 for the
Greedy-SO register allocator.

6.3 Compilation Overhead

Greedy-SO introduces the overhead of recompilation only for the functions iden-
tified by both of the cost models as shown in Fig. 3.
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The overhead of performing additional Greedy-SO register allocation path
including IR function cloning and reverting logic is 1.7% (1.1% in AMD) of the
total compilation time for LLVM CTMark benchmarks.

Cloning function at machine function or MIR level or reverting only the
register allocation result could further reduce recompilation overhead, but it is
a non-trivial task [1,5] and not in the scope of the paper.

7 Related Work

Linear scan register allocators [22] have been widely adopted as a cost-efficient
alternative to the graph coloring-based register allocator [8]. [24] showed that the
linear scan allocator can seamlessly combine with SSA forms [20] to outperform
the coloring-based algorithms, and LLVM 3.0 further improved its linear scan
allocator to use priority-based allocation [12] and enable global live interval
splitting. Greedy-SO focuses on solving suboptimal decisions in these splitting
heuristics.

[27] identified pathological cases caused by local interference not being con-
sidered during global-split in the greedy allocator. It examines whether a region
split may produce a local live interval that requires additional splits or spills due
to interference and avoids splitting such candidates by boosting their potential
spill cost. It improves performance for its target test cases, but can have adverse
side effects as shown in our evaluation. [7] recently reported that regional inter-
ference across multiple basic blocks should also be checked if they may introduce
additional spilling, but the issue has not been addressed yet. Instead of tackling
issues one by one at the heuristic design level, Greedy-SO systematically exploits
spill cost modeling to avoid suboptimalities at a higher level.

Some recent work has used hybrid or mixed register allocation schemes for
efficiency and flexibility. [10] chooses between linear scan and graph coloring
register allocators by comparing the spill costs of the two allocators to generate
labels and train a rule induction model with them. Greedy-SO also uses spill cost
tracking, but it builds a cost-guided optimization that integrates the two register
allocators instead of choosing one or the other. It also uses a high-level code pat-
tern recognizer for more fine-grained hybrid register allocation. [16] dynamically
chooses a register allocator for small code segments called “traces” by using
allocation policies based on live interval analysis, loop depth, and block fre-
quencies. Greedy-SO is different in reusing the existing global register allocators
with minimal implementation overheads, but adapting the allocation policies
for Greedy-SO will be interesting future work. [15] suggested feedback-directed
JIT compilation frameworks that formulate register spills as an ILP problem
and make spill decisions using solutions from previous compilation. Greedy-SO
currently focuses on improving the register allocator for AOT (Ahead-Of-Time)
compilation with a single re-compilation.
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8 Conclusion and Future Work

In this paper, we proposed Greedy-SO with the cost models for hybrid reg-
ister allocation. In an effort to overcome the inherent limitations of heuristic
fine-tuning, Greedy-SO provides a systematic way to detect suboptimal heuris-
tic decisions and bypass them altogether and to do so only when performance
benefit is expected. Our experiment showed that Greedy-SO could outperform
the LLVM greedy allocator for target benchmarks without impacting non-target
benchmarks, unlike prior work. Our future work includes extending our approach
to other back-end code generation phases and introducing additional cost-guided
optimization passes, targeting other CPU and GPU platforms, and modeling
learned predictors for the spill cost and code patterns to reduce the compilation
overhead and improve the accuracy.
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Abstract. With an increasing number of shared memory multicore pro-
cessor architectures, there is a requirement for supporting multiple archi-
tectures in automatic parallelizing compilers. The OSCAR (Optimally
Scheduled Advanced Multiprocessor) automatic parallelizing compiler is
able to parallelize many different sequential programs, such as scientific
applications, embedded real-time applications, multimedia applications,
and more. OSCAR compiler’s features include coarse-grain task paral-
lelization with earliest execution condition analysis, analyzing both data
and control dependencies, data locality optimizations over different loop
nests with data dependencies, and the ability to generate parallelized
code using the OSCAR API 2.1. The OSCAR API 2.1 is compatible with
OpenMP for SMP multicores, with additional directives for power con-
trol and supporting heterogeneous multicores. This allows for a C or For-
tran compiler with OpenMP support to generate parallel machine code
for the target multicore. Additionally, using the OSCAR API analyzer
allows a sequential-only compiler without OpenMP support to generate
machine code for each core separately, which is then linked to one paral-
lel application. Overall, only little configuration changes to the OSCAR
compiler are needed to run and optimize OSCAR compiler-generated
code on a specific platform. This paper evaluates the performance of
OSCAR compiler-generated code on different modern SMP multicore
processors, including Intel and AMD x86 processors, an Arm processor,
and a RISC-V processor using scientific and multimedia benchmarks in C
and Fortran. The results show promising speedups on all platforms, such
as a speedup of 7.16 for the swim program of the SPEC2000 benchmarks
on an 8-core Intel x86 processor, a speedup of 9.50 for the CG program
of the NAS parallel benchmarks on 8 cores of an AMD x86 Processor, a
speedup of 3.70 for the BT program of the NAS parallel benchmarks on a
4-core RISC-V processor, and a speedup of 2.64 for the equake program
of the SPEC2000 benchmarks on 4 cores of an Arm processor.
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1 Introduction

With an increasing number of processor architectures, there is a requirement for
supporting multiple architectures in automatic parallelizing compilers.

TheOSCARautomatic parallelizing compiler [10] is one such compiler, capable
of parallelizing different C and Fortran programs, including scientific applications
and simulations, real-time applications, multimedia applications, and more.

Other source-to-source parallelizing compilers have been developed [6,8] to
allow for portability of the generated code between different systems and archi-
tectures. The OSCAR compiler is additionally able to output code using the
OSCARAPI 2.1 [15], which is extended froma subset ofOpenMP.This allows both
OpenMP-capable native compilers to directly compile the OSCAR-compiler gen-
erated program, as well as the OSCAR API analyzer to generate separate sequen-
tial code for each core of a target system. The resulting sequential code generated
by the OSCAR API analyzer for each core then allows a sequential compiler which
does not have support for a parallel API such as OpenMP to compile the code for
each core and link it to a single parallel program for the target architecture.

Previous evaluations show the performance of OSCAR compiler-generated
code on SMP server processors [12], as well as on embedded systems with on-
chip shared memory [16].

In this paper, the OSCAR compiler’s function, based on multi-grain paral-
lelism and including multiple optimizations such as data localization and cache
optimization, will be explained. Additionally, the paper details usage of the
OSCAR compiler, targeting systems with and without native compilers sup-
porting OpenMP. Furthermore, this paper analyzes and discusses the perfor-
mance of programs and benchmarks from the SPEC benchmark suite [9], the
NAS parallel benchmark suite [5] and MediaBench II [7], compiled using the
OSCAR automatic parallelizing compiler with further optimization techniques
such as data localization [22] and cache optimization [13] on different multicore
architectures, including an Intel Xeon E5-2650v4 x86 processor, an AMD EPYC
7702P x86 processor, an NVIDIA Carmel ARM R©v8.2 processor and a SiFive
Freedom U740 RISC-V processor. Neither RISC-V-based processors nor a Zen
2-based processors have been evaluated with the OSCAR compiler before.

2 The OSCAR Automatic Parallelizing Compiler

The OSCAR automatic parallelizing compiler generates parallel code by utiliz-
ing multigrain parallelism. Multigrain parallelism includes parallelism of large
coarse-grain tasks (coarse-grain parallelism), parallelism of loops (loop-level par-
allelism) as well as parallelism of individual instructions (statement-level paral-
lelism) [15].
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To first exploit coarse grain parallelism, the OSCAR compiler splits the sequen-
tial code into macro-tasks. These macro-tasks can be basic blocks of assignments,
loops, or function calls. Loops and function calls themselves are then further split
into macro-tasks as well. From this, the data and control dependencies between
each macro-task can be analyzed, from which, using earliest-execution analysis
[10], the macro-tasks are put into a macro-task-graph.

The earliest-execution condition for macro-tasks is twofold:

1. A macro-task must wait for the completion of macro-tasks it is directly data-
dependent on.

2. A macro-task must wait until preceding control-dependent macro-tasks have
evaluated the conditional branches that guarantee said macro-tasks execution,
but the macro-task does not need to wait for the completion of these preceding
macro-tasks.

Once these two conditions are met, the macro-task can be scheduled into the
macro-task-graph. How these conditions are applied in a real program can be seen
in Fig. 1. The first condition, that all macro-tasks that the current macro-task to
schedule is data dependent on must have finished, can be seen in the bb19 macro-
task. It is scheduled into the macro-task graph once the macro-tasks it is data
dependent on, bb2, dosum15, bb17, and bb18, are finished. The second condition
can be seen for macro-task bb24. It can already be scheduled after macro-task bb5,
since by that time, both its data dependency on bb1 is fulfilled, and, after the con-
ditional branch bb5, it is guaranteed that the control flow will pass bb24.

The tasks in the macro-task graph are occasionally shown to have multiple
outgoing or incoming dependency edges.

If these edges pass through a dotted arc (representing a logical or), it means
that either of the edges passing through the arc will be followed, caused by a
conditional branch in the original program. For outgoing edges, it means that
only one of the edges will be followed to execute latter macro-tasks, and for
incoming edges, it means that only one edge needs to be satisfied to fulfill the
dependency and allow execution of the macro-task.

If the edges pass through a solid arc (representing a logical and), it means that
all these edges will be followed, caused mostly by coarse-grain task parallelization.
For outgoing edges, it means that all these edges will be followed, executing their
respective nodes. For incoming edges, it means that all edges must be satisfied to
fulfill the dependency and allow execution of the macro-task.

From the macro-task graph, the individual tasks are assigned to the available
processor cores. If runtime fluctuation, for example, due to conditional branches,
are expected, the OSCAR compiler utilizes dynamic scheduling at runtime to
execute the macro-tasks, otherwise, static scheduling is used. The resulting pro-
gram uses the one time single level thread generation scheme [19], where the
program creates a thread per processor core at program start, and the macro-
tasks are then run on these threads respectively.

Loop-level parallelism is then applied to doall-loop and reduction-loop type
macro-tasks, if possible. Similarly, statement-level parallelism is applied if it is
available in a given macro-task [14].
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Fig. 1. The macro-flow graph (left) and the macro-task graph (right) of the main
training loop of the art benchmark (see Sect. 4)
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Additionally, data localization and cache optimization can be performed after
macro-task graph generation. Data localization can be performed using loop-
aligned decomposition and subsequent generation of data-localization-groups
[22]. For this, doall-loop type, reduction-loop type, and sequential-loop type
macro-task blocks directly connected only by one data dependence edge are
analyzed. In the example macro-task graph in Fig. 1, this would for example be
applied to the sequence of macro-tasks from doall9 to dosum15. By calculating
which array subscripts in the successive loops are data-dependant on another,
the OSCAR compiler can assign sections of the different loops with respective
data dependencies into one data-localization-group, which will then be run on
one core, in parallel to other data-localization-groups with different sections of
the loops of their own. This allows the different data-localization-groups to run
in parallel with only minimal data sharing needed at the edge of their data
regions. Figure 2 shows an example of loop-aligned decomposition applied.

Further cache optimization can then be performed by using loop-aligned
decomposition, as described above, on loops whose data size exceeds the avail-
able cache [13]. With the additional data-localization-groups then potentially
exceeding the core count for the target system, executing the groups sequen-
tially will improve the cache behavior of the system. This is because the resulting
data-dependent loop sections are small enough to fit their data into the cache,
reducing the need to replace the cache while iterating through each loop section.
Furthermore, by aligning loop-level parallelism borders to the cache lines, per-
formance can be increased.

DO I=69,101DO I=67,68DO I=36,66DO I=34,35DO I=1,33

DO I=1,33

DO I=2,34

DO I=68,100

DO I=67,67

DO I=35,66

DO I=34,34

DO I=68,100DO I=35,67

LR CAR CARLR LR

C RB2(Doseq)
DO I=1,100

B(I)=B(I-1)
+A(I)+A(I+1)

ENDDO

C RB1(Doall)
DO I=1,101
A(I)=2*I

ENDDO

C RB3(Doall)
DO I=2,100

C(I)=B(I)+B(I-1)
ENDDO

Fig. 2. Example of loop-aligned decomposition of three data-dependent loops. The
loops are decomposed into three main localized regions (LR) accessed by one core only,
and two commonly accessed regions (CAR) that need to be accessed by multiple cores.
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3 Investigated Multicore Architectures

For this paper, four different processor architectures were evaluated. Two x86
processors, one Arm processor, and one RISC-V processor.

The first x86 processor is the Intel Xeon E5-2650v4 12-core processor running
at 2.2 GHz with a maximum boost frequency of 2.9 GHz. It has 32 KiB of L1D
cache per core, 256 KiB L2 cache per core, and 30 MiB shared L3 cache with a
cache line size of 64 [11].

The second x86 processor is the AMD EPYC 7702P 64-core processor running
at 2 GHz with a maximum boost frequency of 3.35 GHz. It has 32 KiB of L1D
cache per core, 512 KiB L2 cache per core, and 256 MiB shared L3 cache grouped
into 4-core clusters with a cache line size of 64 [3]. If a miss in the L3 cache is
available in an L2 cache within the same cluster, the L3 cache can load the data
from the L2 cache instead of from the main memory [2].

The Arm processor is the NVIDIA Carmel ARM R©v8.2 64 Bit 6-core proces-
sor running at 1.4 GHz. It is based on ARMv8.2 [4], has 64 KiB L1D cache per
core, 2 MiB L2 cache shared between clusters of two cores, and 4 MiB shared
L3 cache with a cache line size of 64 [18].

The RISC-V processor is the SiFive Freedom U740 4-core SoC running at
1.2 GHz. It has 32 KiB of L1D cache per application core and 2 MiB shared L2
cache with a cache line size of 64 [21] (Fig. 3).

Fig. 3. “FU740-C000 top-level block diagram” by SiFive, Inc. [21]. CC BY-NC-ND 4.0
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4 Benchmark Programs

Benchmarks from three different benchmark suites are evaluated in this paper.
First, some benchmarks of the NAS parallel benchmark suite [5]. Here, the C
version developed by the Real World Computing Project (RWCP), and dis-
tributed by the HPCS lab of the University of Tsukuba [20] are used. The specific
benchmarks of the NPB suite evaluated are BT, CG, and SP. The SP and BT
benchmark both compute the solution of multiple, independent systems of non
diagonally dominant equations, an operation used for some computational fluid
dynamics algorithms. They differ in the ratio of communication to computation.
The CG benchmark applies the conjugate gradient method to a large, sparse,
symmetric positive definite matrix to approximate its smallest eigenvalue.

Furthermore, to represent multimedia applications, the MPEG2 encoding
benchmark of the MediaBench II suite [7] is evaluated. It is similarly written
in C.

Finally, benchmarks of the SPEC2000 floating-point suite [9] are evaluated.
From the benchmarks written in C, art and equake are evaluated, and from the
benchmarks written in Fortran77, swim is evaluated. The art benchmark test
neural network training performance. The equake benchmark simulates seismic
wave propagation. The swim benchmark computes a shallow-water model.

The benchmarks in C are manually edited to conform to parallelizable C [17].
Conforming the code to parallelizable C allows the compiler to utilize the full
potential of data localization and parallelization. The changes made to the bench-
marks are very minor, while some benchmarks do not need any changes at all.

The benchmarks written in Fortran77 are directly passed to the OSCAR
compiler with no changes.

5 Compile Flow

First, the target applications are compiled by the OSCAR compiler. For this, the
source code must be fed to the respective C or Fortran front-end. The front-end
will generate an abstract intermediate representation of the code, which can be
analyzed and processed by the middle path of the OSCAR compiler, depend-
ing on the necessary optimization options in multiple passes. During this stage,
optimization parameters as well as system-dependent optimization information,
like the cache architecture of the system, are fed to the OSCAR compiler. After-
ward, the resulting optimized intermediate representation file will be fed into the
back-end, which generates C or Fortran code respectively [12], which is anno-
tated with the OSCAR API 2.1. As the OSCAR API 2.1 is compatible with
OpenMP [15], the generated source file can be directly fed into a native com-
piler, like the GNU C Compiler or the Intel C Compiler, if OpenMP is supported
on the target system. If not, because the OSCAR compiler generates synchro-
nization and data transfer code automatically, the OSCAR API analyzer can
be utilized to generate code that contains purely sequential code for each CPU
core. This allows a sequential-only compiler to generate machine code for each
core separately, that can then be linked to a single, parallel application.
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(Parallelizable) C Fortran77

Front-End

Intermediate representation

Middle-Path
Multigrain parallelization, optimiza-
tions, etc. as described in section 2

Intermediate representation

Back-End

OSCAR API 2.1 Code

OpenMP CompilerOSCAR API-Analyzer

Parallelized C

Sequential Compiler

Fig. 4. Compile flow using the OSCAR compiler.

6 Performance of OSCAR Compiler-Parallelized
Programs

Unless otherwise noted, all benchmarks, including the sequential reference code
and the OSCAR compiler-generated parallelized code, are compiled using the
GNU C Compiler with the highest optimization setting (-Ofast) and the cor-
rect architecture supplied using -march=. As all architectures investigated in
this paper have native compilers with OpenMP support, the OSCAR compiler-
generated code was directly compiled without the use of the OSCAR API-
Analyzer. In this paper, the parameters of the OSCAR compiler which are
adapted for each target architecture are focused on cache parameters such as
last-level cache size, cache line size, cache associativity, and the number of cores
sharing a last-level cache. Other parameters are kept identical across the dif-
ferent architectures. While micro-optimizations with cost tables for the individ-
ual architectures are possible, this paper analyzes the performance when using
generic cost tables.
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6.1 OSCAR Compiled Benchmark Performance on Intel x86

Figure 5 show the performance of the OSCAR compiler-generated code using a
different number of cores, compared to the sequential version of the benchmark
on the Intel Xeon E5-2650v4 processor.
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Fig. 5. Relative speedup (higher is better) of the respective benchmark using a certain
number of processor cores compared to the sequential version on the Intel x86 processor.

A noticeable result is that the swim benchmark is significantly sped up by
using the OSCAR compiler, even with just one core executing the benchmark. At
an execution time of 58.1 s for the sequential program and 33.2 s for the OSCAR
compiler-generated single-core version, this is a speedup of 1.75. At eight cores,
with an execution time of 8.1 s, the speedup is 7.17. The execution times show
superlinear speedup for up to 4 cores. This is a result of the cache optimization
technique employed by the OSCAR compiler [13] as described in Sect. 2. Table 1
shows the cache statistics of the swim benchmark for the sequential version
and the OSCAR compiler-generated versions. These statistics suggest that the
OSCAR compiler was able to improve the cache access in the generated code,
resulting in the speedup of the benchmark. Furthermore, the MPEG2 encoding
benchmark for example, can reduce its execution time from 2.17 s in the sequen-
tial version to 0.377 s in the OSCAR compiler-generated eight-core version, for
a speedup of 5.75.

To show that the OSCAR compiler can utilize different native compilers, the
performances of OSCAR compiler-parallelized benchmarks were tested using the
Intel C++ and Fortran Compilers as well. For a better comparison, the sequential
reference benchmarks are also compiled using the Intel compilers.

Figure 6 shows both versions’ relative speedup to the sequential execution
time of the respective benchmark, run on the Intel Xeon E5-2650v4 processor.
This shows that the OSCAR compiler can be used in conjunction with the Intel
compilers as well to speed up the final result of the execution. The slightly lower
relative speedups compared to Fig. 5 are mostly due to the lower sequential
execution time of the reference benchmark when compiled with the Intel Com-
pilers at full optimization. For example, while their respective speedups to the
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Table 1. Cache statistics of the swim benchmark as measured by perf, sequential
version compared to OSCAR compiler-generated version.

Program L1 loads L1 load misses L3 loads L3 load misses

Sequential 2.3 · 1011 1.2 · 1011 5.7 · 1010 1.1 · 1010

OSCAR 1 core 2.3 · 1011 6.5 · 1010 1.5 · 1010 8.2 · 109

OSCAR 2 core 2.2 · 1011 6.5 · 1010 1.5 · 1010 7.1 · 109

OSCAR 4 core 2.2 · 1011 6.5 · 1010 1.4 · 1010 6.1 · 109

OSCAR 8 core 2.2 · 1011 6.5 · 1010 1.3 · 1010 4.1 · 109

sequential versions decreased using the Intel compilers, the absolute execution
time of the swim benchmark parallelized using the OSCAR compiler targeting
eight cores decreased to 5.8 s, while the execution time of the MPEG2 encoding
benchmark decreased to 0.234 s.
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Fig. 6. Relative speedup of the respective benchmark auto-parallelized on 8 cores to
its sequential version. Both the sequential version and the OSCAR compiler-generated
code used the Intel compiler as the native compiler. The MPEG2 encoding benchmark
causes a segmentation fault when compiled with Intel compiler auto-parallelization and
run with more than one core, and is thus not shown.

6.2 OSCAR Compiled Benchmark Performance on AMD X86

Figure 7 show the performance of the OSCAR compiler-generated code using a
different number of cores, compared to the sequential version of the benchmark
on the AMD EPYC7702P processor.

Similar to the Intel processor, the swim benchmark exhibits high single-core
performance and some superlinear speedup due to the cache optimization tech-
niques. Additionally, the CG benchmark shows superlinear speedup. As Fig. 8
shows, the main loop of CG features many doall loops and dosum reduction
loops in succession with data dependence on another. This macro-task graph
structure results in data localization similar to the data localization methods
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Fig. 7. Relative speedup of the respective benchmark using a certain number of pro-
cessor cores compared to the sequential version on the AMD x86 processor.
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Fig. 8. The macro-task graph of the main loop of the CG benchmark of the NAS
parallel benchmark suite (see Sect. 4)
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using loop-aligned decomposition [22] described in Sect. 2. The data localization
is able to improve the performance of the benchmark with multiple cores and
causes the superlinear speedup, decreasing overall execution time from 0.86 s in
the sequential version to 0.09 s using the OSCAR compiler-generated eight-core
version for a 9.5 speedup.

The OSCAR compiler uses operation cost tables for estimating task length
for scheduling. These benchmarks used generic tables for all benchmarks. Cus-
tomizing this table for the AMD EPYC 7702P processor would allow for an
improvement of the speedup of the art benchmark on this system. For the art
benchmark without customizing the operation cost table, the execution time was
only reduced from 4.76 s in the sequential version to 3.52 s using the OSCAR
compiler-generated eight-core version for a speedup of 1.35.

6.3 OSCAR Compiled Benchmark Performance on Arm
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Fig. 9. Relative speedup of the respective benchmark using a certain number of pro-
cessor cores compared to the sequential version on the Arm processor.

Figure 9 shows the performance of the OSCAR compiler-generated code using a
different number of cores, compared to the sequential version of the benchmark
on the NVIDIA Carmel ARM R©v8.2 64 Bit processor.

The Arm processor shows overall good speedup for the different benchmarks.
While the cache optimization applied to the swim benchmark is noticeable, it
is much smaller compared to the effects on the Intel and AMD CPU’s. Overall,
good speedup is observed, with for example the equake benchmark’s execution
time decreasing from 19.0 s in the sequential version to 7.18 s using the OSCAR
compiler-generated four-core version for a speedup of 2.64.

6.4 OSCAR Compiled Benchmark Performance on RISC-V

Figure 10 show the performance of the OSCAR compiler-generated code using a
different number of cores, compared to the sequential version of the benchmark
on the SiFive Freedom U740 processor.
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Fig. 10. Relative speedup of the respective benchmark using a certain number of pro-
cessor cores compared to the sequential version on the RISC-V processor.

The RISC-V processor shows good overall speedup as well. Notably, the
observed speedup is much more homogeneous compared to the other platforms.
This is because the RISC-V SoC is comparably slower than the other processors
used, while the memory performance is similar to the other systems. This reduces
the overall effect of memory on the benchmarks, both the bottlenecks, as well as
the positive impact of cache optimization for benchmarks like swim. For example
the BT benchmark’s execution time decreased from 2041 s in the sequential
version to 551 s using the OSCAR compiler-generated four-core version for a
speedup of 3.7.

7 Conclusion

This paper shows how the OSCAR automatic parallelizing compiler can uti-
lize multigrain parallelism to generate parallelized code from different programs
and benchmarks for various architectures from embedded multicores to high-
performance processors. This code can then be compiled for the respective archi-
tectures using a native compiler of the system, like the Intel C and Fortran Com-
pilers or the GNU C and Fortran Compilers. By utilizing the OSCAR API 2.1
and the OSCAR API analyzer, it is even possible to generate sequential code
for each core of a system, which allows OSCAR compiler-generated code to be
run on systems whose native compilers do not support a parallel API such as
OpenMP. Overall, this paper finds that the OSCAR compiler is able to automat-
ically parallelize a variety of benchmarks, including scientific simulations, media
applications, and machine learning applications, written in C and Fortran with
good speedup. Measuring the benchmark programs showed good performances,
such as a speedup of 7.16 for the swim program of the SPEC2000 benchmarks,
a speedup of 6.73 for the CG program of the NAS parallel benchmarks, and a
speedup of 5.75 for the MPEG2 encoding benchmark on 8 cores of an Intel x86
processor. Similarly, on 8 cores of the AMD x86 processor, speedups such as
9.50 for the CG program of the NAS parallel benchmarks, a speedup of 8.39 for
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the swim program of the SPEC2000 benchmarks, and a speedup of 3.94 on the
BT benchmark of the NAS parallel were observed. On the 4-core SiFive RISC-
V processor, speedups including a speedup of 3.70 for the BT program of the
NAS parallel benchmarks on a 4-core, a speedup of 2.80 for the SP program of
the NAS parallel benchmarks, and a speedup of 3.40 for the equake program of
the SPEC2000 benchmarks. Finally, on 4 cores of an NVIDIA Arm processor,
observed speedups include 2.64 for the equake program of the SPEC2000 bench-
marks, 2.87 for the CG program of the NAS parallel benchmarks, and 1.86 for
the art program of the SPEC2000 benchmarks.

These speedups are similar to the previous performance of OSCAR generated
code on the RP2 processor platform [1]. This shows that the OSCAR compiler
can achieve good speedup and performance for benchmarks on different archi-
tectures with different instruction sets as well. The OSCAR compiler proves
to be able to handle parallelizing code for a variety of current architectures,
including embedded systems and high-performance processors, without exten-
sive per-system tuning, using default parameters and cost tables.

Due to advanced optimization techniques such as cache optimization and
data localization, superlinear speedup can be achieved for some benchmarks.
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Abstract. With the advent of heterogeneous architectures, in partic-
ular, with the ubiquity of multi-GPU systems, it is becoming increas-
ingly important to manage device memory efficiently in order to reap
the benefits of the additional core count. To date, such responsibility
mainly falls on the programmer where device-to-host data communi-
cation (and vice versa), if not done properly, may incur costly mem-
ory transfer operations and synchronization. The problem may be com-
pounded by additional requirement to maintain system-wide memory
consistency that may involve expensive synchronization overhead. In this
paper, we present Location Consistency Memory Model for Enhanced
Transfer Operations (LC-MEMENTO). This framework considers incor-
porating runtime techniques for multi-GPU memory management to sup-
port relaxed synchronization semantics and memory transfer operations
automatically. Specifically, we implement a relaxed form of a memory
consistency model based on the Location Consistency (LC) in an Asyn-
chronous Many-Task Runtime (ARTS) and demonstrate that, this mem-
ory model enables additional optimization opportunities for the three
representative applications encompassing different computational pat-
terns (scientific computation, graphs, data streaming, etc.).

1 Introduction

In recent years, the widespread adoption and integration of accelerators as part
of the High-Performance Computing (HPC) ecosystems have presented several
unique challenges to the runtimes and software stacks with regards to effectively
managing massive heterogeneous computational resources and interacting with
the hierarchical memory subsystems. Among these accelerators, General Pur-
pose Graphic Processing Units (GPGPUs) are the most prevalent ones that are
either currently in use or in the roadmaps of the current and future genera-
tion of the most powerful supercomputers [29]. This trend has sparked a new
wave of research in software stacks and runtime libraries to fully utilize the cur-
rent heterogeneity of these designs, e.g., [27]. Some of the most important chal-
lenges in this area include the coordination among computational and memory
c© Springer Nature Switzerland AG 2022
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resources, efficient communication between parallel components, and productive
use of additional resources e.g., high performance networks.

Traditionally, the burden of managing all these challenges have fallen on the
application programmer or the user due to the lack of proper runtime support.
Hence, manually managing these resources have made the development of novel,
high-performance implementations of interesting applications a very onerous pro-
cess. However, one of the most promising programming execution paradigms
to effectively support programmers to exploit massive parallelism available on
recent accelerator-based systems are the Asynchronous Many-Task (AMT) run-
times. These frameworks are designed to utilize the underlying computational
substrates by dividing the computation into well-defined tasks which can be exe-
cuted asynchronously. Nonetheless, support for effective runtime scheduling for
memory management and fine-grained synchronization can be improved.

To support more flexible frameworks that can more effectively map resources
without programmer intervention, we consider a previously proposed memory
consistency model, Location Consistency [10], and re-purpose this consistency
model for multi-GPU systems. Thus, this paper introduces LC-MEMENTO:
a new runtime extension to an AMT runtime named ARTS [25] to support
accelerated architectures. These extensions include a runtime-managed trans-
parent scheduler for multi-GPUs systems designed to exploit new multi-GPU
designs; and a novel memory model extension, designed to increase the produc-
tivity of programmers and the performance of current data analytics workflows.
The contributions of this paper are as follows: (1) A novel GPU cache-based
memory model based on the Location Consistency Model [10] with extensions
for polymorphic1 (relaxed) synchronization/collective operations; (2) a sched-
uler framework that automatically exploits multi-accelerator environments for
task scheduling and memory management without user intervention; and (3)
a performance analysis of three important data analytics kernels (STREAM
and Random Access benchmark from HPC Challenge benchmark suite [17], as
well as the well-known Breadth-first Search (BFS) from graph analytics) that
demonstrate the advantages of our framework. In addition, we also compare our
approach with current technologies such as Unified Virtual Memory (UVM).

This paper is organized as follows. Section 2 explains the necessary concepts
that permeates this paper such memory consistency and the basics of ARTS.
Section 3 introduces and explains the LC-MEMENTO implementation under
ARTS. Section 4 demonstrate the effectiveness of our techniques via experimental
results, obtained on a Summit supercomputer Node and on a DGX-1 Volta
GPU based nodes. In Sect. 5, we showcase select state-of-the-art research that
might complement or enhance our line of research. Finally, Sect. 6 discusses our
conclusions and future directions.

2 Background

To fully explain the design and impact of LC-MEMENTO, this section briefly
discusses the concepts behind memory models and location consistency, as well
1 Their ancillary functionality can be set and reset across different program’s phases.
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as introduces the overall design of the Abstract Runtime System (ARTS), a
runtime in which the concepts of LC-MEMENTO are implemented.

2.1 Memory Consistency Models

As computer architectures are progressively becoming more complex, the expo-
sition of the hierarchical and hybrid memory subsystem requires giving consider-
ation to unique challenges. The introduction of reorder buffers, bypass memory
queues, and the availability of multi-core and many-core processors with differ-
ent cache levels introduced many new complex issues related to the ordering and
the visibility of memory operations in these systems. The challenges associated
with the questions of when operations on memory locations can be reordered or
when two distinct parallel actors will observe an updated value on a fixed memory
address, became the crux of many optimization-related research in architecture
and system software (e.g., [16]). The rules of the ordering and visibility of these
memory operations is roughly collected under a memory consistency model
[3]. Under this paradigm, the strength of a model is inversely dictated by the
allowed cardinality of the set of possible orderings. In other words, the more possi-
ble chains of valid memory operators that a model allows, the weaker it is. Weaker
models can allow for the same variable to have different values across executions
if not correctly synchronized. The most common and one of the strongest models
is called sequential consistency. Under this model, the ordering of the mem-
ory operations and their visibility are as if it follows the program order across all
parallel actors in the system. This may imply a highly synchronized underlying
network (like a bus) for which this type of coordination is possible. Such stringent
model may prevent certain re-ordering operations that may be beneficial from the
perspective of the hardware. For example, a store and a load can be reordered if
they do not pose any dependency or the values of one store that overwrites the
other may not need to be updated outside the local memory buffer or cache line.
For this purpose, several weaker models have been proposed such as CDAG [13]
for distributed systems and lazy release consistency [18]. Memory models are also
very useful to understand the memory behavior in parallel computation. A notable
one is Location Consistency (LC).

Location Consistency. Location Consistency [10] is, arguably, the weakest
“practical”2 memory model. This model weakens the visibility requirements of
the classical execution models by allowing a single variable to have multiple val-
ues at the same time in different parts of the system, typically by residing in a
local piece of memory (cache for example), unless collapsed explicitly by the user.
The aggregated values of a memory location is called its Partial Ordered Set or
POMSET. The model has three operations: a program read, a program write and
the synchronized acquire and release pair. For normal program reads and writes,
2 A practical memory model is one that can be used by application developers to write

non-chaotic codes since all of its non-determinism can be contained by special opera-
tors.
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the location will keep the written values and return a value from it when a read is
requested. The ordering of these operations is not respected when no acquire and
release pairs are presented. In addition, two consecutive reads might return differ-
ent values from the POMSET in the same execution. For example, if T0 follows
the instruction sequence: R1 = X;X = 1 and T1 executes the following instruc-
tion stream: R2 = X;X = 2, the result R1 = 2 and R2 = 1 is not allowed under
other memory models (both sequential and coherence memory models would dis-
allowed this result), but it is considered a legal case under LC since the writes can
be reordered (see [15] for a further discussion about the original LC properties and
proofs). The semantics of the acquire/release pairs operations follow the classical
view of entry consistency [5]. In this model, the acquire and release pair estab-
lishes a region of code for which its constituting instructions must be contained
inside their boundaries in terms of execution and completion. However, instruc-
tions originating before and after the pair can be reordered, started or completed
at any point of the execution (even inside the acquire/release pair code block).
LC enhances this concept by ensuring that the POMSET is collapsed to a single
value after the release operation so that any consequent reads will return that value
and only that value. The enhanced semantics of the acquire and release pairs plus
the relaxed constrains for the other memory operations allow reordering optimiza-
tions to take place in both the software stack and in the hardware. Such freedom
in reordering allows fine-grained asynchronous frameworks to take advantage of
latency hiding techniques as long as the application can support some degree of
error such as in certain data and graph workflows.

2.2 The Abstract Runtime System: ARTS

ARTS is designed as a best of breed runtime from our previous experience with
OCR [9], GMT [7], and AM++ [30] leveraging key features from each run-
time. ARTS supports parallelism via asynchronous tasking, active messages,
and lightweight multithreading. To enable synchronization, ARTS provides a
global address space which can be used to access segments of memory called
data blocks. In order to support data analytic workloads, ARTS provides meth-
ods for termination detection (i.e. quiescence), asynchronous memory operations
(e.g. get/put), and remote atomics. As a dataflow inspired runtime, applications
are expressed as a Directed Acyclic Graph (DAG) of fine-grain tasks, with each
vertex representing a task and an edge between two vertices depicting depen-
dencies between these two tasks. The DAG is constructed dynamically; it is
both created and evaluated at runtime. Data is passed between tasks via typed
segmented memory chunks a.k.a data blocks. Besides basic typing information,
the data blocks under ARTS have no inherent semantic meaning and follow
an enhanced version of Entry Consistency plus DAG consistency called CDAG.
Under this model, acquire and release pairs are defined at the beginning and
end of the computational tasks and the system ordering is imposed by the DAG
structure of the computational graph with the extra caveat that possible concur-
rent writes must be ordered by the DAG explicitly. Dependencies between tasks
are expressed using a signaling API. This API is the vehicle for the movement
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of data blocks around the underlying cluster. Both tasks and data blocks are
identified with a globally unique ID (GUID) facilitating access throughout the
cluster via the runtime. To evaluate the DAG, the runtime employs five layers,
our tasking/scheduling layer, an out-of-order engine that allows reservations of
resources dynamically even when dependencies are not ready, the global address
space/memory model presented above, several network layers, and an introspec-
tion framework. Each layer is informed by the ARTS abstract machine model
which is used to describe the underlying computational substrate. While the
ARTS execution model was originally developed for traditional CPU architec-
tures, the following sections discuss its extension to a multi-GPU substrate.

2.3 NVIDIA CUDA Programming and Execution Environment

CUDA has rapidly become the de-facto language of GPGPU accelerators which
speaks to the fact that NVIDIA GPUs are the dominant force behind the accel-
erator based supercomputers (for the current generation). This notoriety has
amassed a vast of collection of highly optimized libraries for different domains,
from scientific, data processing, and machine learning. Moreover, the multi-GPU
environment has become a staple on the high performance field. Such situations
presents challenges as how to effectively use all available computational resources
and how to coordinate data movement across them (challenges familiar to dis-
tributed computing). The current available solutions include the concepts of
kernel streams [24] that allow the scheduling of individual kernels to separate
GPUs concurrently as well as ordering them in case of dependencies (i.e. kernels
within a stream are executed in order). In the case of memory, current NVIDIA
hardware provide the concept of Unified Memory (UVM) which allows several
GPUs and the host to share a memory space which is controlled at a page level.
These solutions, although very helpful, have severe shortcomings. The stream
based approach would leave the entire scheduling and managing process to the
application users creating a very onerous and error-prone development process.
The UVM-based approach has the disadvantage that accesses and reuse happen
at page boundaries which might be too big for certain applications. Taking all
these concepts together, the reordering capabilities of weak memory models, the
flexibility of asynchronous runtime systems and the building blocks provided by
the current state of the art accelerators, we can build a framework to explore
enhanced scheduler, and memory model extensions that will benefit accelerators
running on the most powerful computers available.

3 LC-MEMENTO Design and Implementation

To create a productive and performance oriented programming framework for
multi accelerator environments, we enhance the existing memory model with
new semantics to combine synchronization and computation in a single oper-
ation (polymorphic collective/synchronization ops) such that the cost of syn-
chronization can be amortized with these collective like operators. This memory
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model is implemented through the use of an accelerator cache which at the same
time can exploit locality when available. Moreover, this is built upon a sched-
uler framework that distributes the work across multiple GPUs while providing
policies to manage work and storage if the user requires. Each enhancement is
explained below.

3.1 Asynchronous Runtime Scheduler for Accelerators

To indicate which tasks should execute on a GPU, we provide a specialized
LC-MEMENTO task. This task also allows the user to enumerate the required
data blocks via their GUIDs. The Data block GUIDs can be provided both at
task creation or during the runtime prior to task execution. These GPU tasks
are not scheduled until all task dependencies are met, and are not executed on
a device until the required data blocks are present in the GPU’s data block
cache. In addition to user written GPU functions, we leverage the vast library
of optimized domain specific libraries by providing concurrency abstractions to
execute existing libraries easing LC-MEMENTO/ARTS GPU development.

When a GPU task’s dependencies have been met, the task is scheduled based
on user configurable predefined load-balancing schemes designed to explore the
trade-off between parallelism and memory consumption. To run parallel kernels
and to facilitate data movement between the host and GPUs, we leverage the
parallel NVIDIA stream constructs. Prior to running a kernel, the appropriate
data blocks are moved to the selected GPU (assuming that the data block is
not already present) by the runtime. Further, the runtime maintains a directory
of data block GUIDs on the host to manage the memory of a given GPU’s
cache. By tracking this information at the runtime level on the host, we are
able to schedule work according to heuristics to promote parallelism, locality, or
memory efficiency. Once a kernel is completed, the appropriate tasks are signaled
and dirty (modified) data blocks are moved back to the host. Copies of valid data
blocks remain on the device, until a garbage collection process is executed by an
idle host thread in order to promote temporal locality.

There are several benefits of the runtime maintaining both memory and
scheduling. First, work can be load balanced across GPUs transparent to the
user since the correctness is being guaranteed by the application DAG. The sec-
ond benefit comes from the runtime managing memory. By specifying the data
block requirements, the user can ensure there is sufficient memory to run a given
kernel prior to execution working to eliminate out-of-memory errors during run-
time. In addition, the runtime ensures the transfer of appropriate data block to
the device prior to the execution of the kernels. The final benefit is the virtu-
alization of memory at a sub-page level which can have significant impact on
irregular applications.

3.2 Memory Models for Accelerators

One of the key limitations to location consistency is the mechanism used to
reduce the POMSET. Particularly, how a user can indicate which value the
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POMSET should be reduced to. For some applications, the most recently written
or random value is acceptable. While this is reasonable from a hardware imple-
mentation perspective, we find this less useful to the application programmer.
Instead we propose performing reduction operations on the POMSET. Appro-
priate operations should be associative and preferably idempotent.3 Since we are
implementing our solution in software, operations are not required to be atomic.
Examples of these operations include addition, subtraction, multiplication, min,
max, AND, OR, and XOR.

Rather than implementing LC for each level of access granularity (memory
location, cache line, data structure, etc.), we maintain consistency at the ARTS’s
memory abstraction: the data block. Under LC-MEMENTO, data blocks are
placed inside a software cache on each accelerator, with the CPU maintaining
a global directory of their GUIDs similar to a directory based distributed mem-
ory cache [14]. Besides each data block being typed as either read or write, we
extend the data block with an LC-MEMENTO based type which we denote as
LC data block or LCDAB. On a cache miss when accessing a LCDAB, the host
transfers a copy to the accelerator. In response, the accelerator is free to access
the LCDAB without any synchronization with other accelerators or other CPU’s
data block (LCDAB or otherwise) copies. When a LCDAB is evicted, the host pulls
the accelerator’s copy and perform a merge operation (which can be user-defined)
between the host and devices copies. If the user requires a consistent state across
all devices, they can use a synchronization API call to ensure that the global view
of the data is consistent. This operation usually translates to merge operations
to be performed on all of the data block copies across the system using both the
ARTS CDAG protocol for internode consistency and LC-MEMENTO for intran-
ode one. Currently, LC-MEMENTO has two different merge techniques. The first
one is a reduction which copies the LCDABs from each accelerators to the host
and performs the merge on the host. While this implementation provides seman-
tically correct results, it is less efficient as the reduction is performed serially on
the host. The second reduction mode implements a dynamic reduction tree across
accelerators using their optimized collective operator libraries. As the tree is cre-
ated, we identify which accelerators have a valid copy of the LCDAB. Next, we
form a reduction tree based on the host/accelerator topology, ensuring that a high
bandwidth is maintained across all participating accelerators. The data block is
then sent to its peer accelerator, where it performs the merge operation in a kernel
based on the size of the LCDAB (e.g., leveraging SIMT parallelism for NVIDIA
GPUs). Once all the accelerator connected through the links have reduced their
data, the results are transferred and merged with the host’s copy.

In some cases, the operations used to perform are not idempotent (i.e. add,
XOR, etc.). In these cases, we provide an API to initialize zero copy LCDABs
on the accelerators. We have found this sufficient for implementing benchmarks
such as HPC Challenge’s Random Access.

3 A concept in computer science and mathematics in which operators can be applied
multiple times without changing the results/state of the computation after the first
application.
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Fig. 1. STREAM benchmark results, demonstrating the usefulness of caching and
larger tile size.

4 Evaluation

We evaluate our proposed framework using three of the cornerstone kernels in
data and graph analytics. We conduct our experiments on a DGX-1 Volta-based
platform. We compile our code with CUDA 9 and GCC 8 to evaluate our frame-
work. The DGX-1 system has 8 Volta GPUs connected to a x86 host with 16
CPU cores. The DGX-1 GPUs are connected in two grids of four and then con-
nected across by their closest GPUs.

4.1 STREAM Benchmark

The STREAM benchmark is a part of the HPC Challenge benchmark suite [17].
It is designed to test the sustainable bandwidth of a memory subsystem focusing
on the performance of its cache. The benchmark consists of four kernels, copy,
scale, add, and triad. Each kernel operates on two to three operands in a loop
with a stride of one. The kernels themselves show little reuse within a kernel,
but data can be cached across kernel invocations. The operation intensity for
copy/scale and add/triad is 16 bytes to 1 op and 24 bytes to two ops respectively.
For LC-MEMENTO, we tile the input arrays so they can be distributed by our
scheduler. This benchmark is written for a single node, and we tested it on the
DGX-1 system with a problem size of 15 MBs. Figure 1 presents our results
across multiple GPUs as we scale the tile size. In the subsequent figures, “X” in
the legend “Cache X” or “UMA X” denotes the number of GPU(s) used.
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Fig. 2. Copy with and without cache

By tiling the data into manageable data blocks (to avoid out-of-memory
error), by transferring the tiled data transparently to the device with the help of
the runtime scheduler as the kernels become ready to execute, and by enabling
reuse of data across different kernels to take advantage of spatial locality, LC-
MEMENTO can achieve better bandwidth utilization, compared to the case with
no available caching (Figure 1). Another insight is that small tile sizes do not
scale well since the cost of launching multiple kernels (tasks) cannot be efficiently
amortized. Thus, the best performance is achieved with the largest tile sizes.
Finally, it is worthwhile to point out the difference in operational intensity and
performance between the different kernels. In these cases, both add and triad
outperform copy and scale in their performance.

Figures 2 and 3 present the relative speedup of the copy and add benchmarks.
In the case of larger tile sizes, we can achieve a peak speed up of 4× running
on 8 GPUs. This is because at this size, we achieve a higher bandwidth when
moving data onto the GPU.

In Fig. 4, we scale the tile size proportionally with the problem size to find the
maximum speedup achievable on a single node using 8 GPUs. We see that the per-
formance levels stabilize around 5×, as we saturate the bandwidth available to the
GPUs. These benchmarks illustrate the importance of data movement. To scale,
we require tasks to either have high reuse, or are large enough to saturate the band-
width to the GPUs. If the reuse is low, we will always be bound by data movement.

Fig. 3. Add with and without cache
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Before delving into more kernel analysis, we should revisit the synergies and
discords of LC-MEMENTO and the Unified Virtual Memory (UVM) technology
since the STREAM benchmark specializes in memory behavior.

Fig. 4. Speedup while varying tile size

Figure 5 shows the STREAM
benchmark with implementation on
both LC-MEMENTO and using Uni-
fied Memory technologies. This imple-
mentation uses the first version of the
UVM implemented in the NVIDIA
Volta architectures. We scale the
problem size and tile size propor-
tionally in each of the eight GPUs.
This figure shows that the maximum
speedup achievable in these experi-
ments is related to the max band-

width and kernel invocation rate. This translates to around of 4× improvement
over UMA at the largest tile size.

Fig. 5. STREAM ARTS vs UVM

Figure 6 showcase that the copy
and add kernels as we increase the
tile size with more GPUs. Although
both frameworks decreases as big-
ger tile sizes and more GPUs are
introduces, we observe that LC-
MEMENTO scales up to the size of
one MB tile while UVM does not scale
in any situation. This seems to be
a side effect of congestion and sat-
uration of bandwidth as we increase
the GPUs. UVM can overcome LC-
MEMENTO in the largest cases when using only one GPU due to its hardware
support. However, LC-MEMENTO helps with concurrency in the other cases.

Fig. 6. LC-MEMENTO versus UVM as GPU and Tile size increases.
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4.2 Random Access Benchmark

The Random Access benchmark is also part of the HPC Challenge benchmark
suite [17]. This benchmark generates random updates to a large table that is
designed to stress the memory subsystem. The benchmark metric is defined as
Giga Updates per Seconds (GUPS). During each table access, a bit-wise XOR
operation is performed to value with a random number. Afterwards, the table
can be check for consistency in case that weak synchronization is used. We
implement this benchmark to first generate the 1024 updates per SIMT thread
in the system. Next, we pass this update frontier to a task with a tile of the
table and perform all the updates that correspond to that tile. At the end, we
synchronize the results using the LC extensions. The benchmark states that
a process should only look ahead by 1024 updates (designed with MPI ranks
in mind). We have relaxed this constraint to 1024 per thread since this better
utilizes the GPU while still maintaining the benchmark’s objective. We run this
benchmark on a single node of the DGX-1 system using 16 host threads and
scaling the number of GPUs from one to eight. We use a table size of 1.25 GB
and divide our tiles evenly across the GPUs. We perform 2684354560 updates.
As a baseline we provide a Unified Memory version for comparison.

Fig. 7. Random Access benchmark on
ARTS vs using Unified Virtual Memory.

From Fig. 7, we observe that LC-
MEMENTO’s performance achieve a
relative speedup of 2.8. While we are
not suffering the effects of synchro-
nization, we still observe the network
bottleneck of data movement and
kernel invocation. Without work to
amortize this cost, scaling the kernel’s
performance is difficult. The Unified
Memory baseline exhibits good scal-
ability for one to five GPUs. We
believe that at six GPUs the cost of
on-demand paging (at a size of 4K)
becomes too onerous and grinds its
performance to a halt. In the case of using above six GPUs, LC-MEMENTO
maintains its performance while UVM is overwhelmed.

4.3 Breadth-First Search

Breadth-first search is one of the most important and common graph kernels that
is widely used to evaluate the performance of HPC systems for irregular work-
loads. We implemented the k-level asynchronous Breadth-first search algorithm
presented in [8]. In this algorithm, the level of asynchronous is controlled with
the k parameter (i.e., when k is equal to one, the algorithm is fully synchronous;
otherwise, the algorithm is fully asynchronous for k steps with redundant work
for straggler computation) which is taken advantage by the LC-MEMENTO
framework. This is thanks to LC-MEMENTO’s flexibility with global reduction
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Fig. 8. Experimental results with the BFS kernel. On the left, we report the execution
time of different variants of the BFS kernel on 8 GPUs. On the right, we report strong
scaling results. Here, Scale X denotes a graph input with 2X vertices, generated with
the RMAT synthetic graph generator from the Graph500 benchmark.

operations and their semantics. This basic variant based on the extended loca-
tion consistency is denoted as LC BFS in Fig. 8. However, notice that, graph
algorithms are highly irregular and thus can generate uneven workload in each
iteration. In particular, the frontier list (i.e. the next set of vertices to explore)
assigned to the GPUs may not be big enough to require GPU execution. To
address this issue, we either engage the CPU or a GPU to explore a frontier,
based on the size of the frontier. This helps to avoid the data transfer and ker-
nel launching overhead to the device. We denote this version of our algorithm
as LC Hybrid. We also implemented two additional versions of BFS, where we
allocate fixed-size buffers on the GPUs as a buffer pool, before the start of the
algorithm. As the frontiers being generated can be of variable size, pre-allocating
these buffers can help by avoiding the cost of re-allocation, in every iteration.
We refer to these versions as LC Buffer and Partition Buffer (partitioned buffer
without LC). Setting the value of k to 1 will also result in a level-synchronous
or label-setting BFS algorithm, similar to Graph500 [28] benchmark, redundant
work is held back and vertices are assigned at the final level.

We evaluate the performance of these algorithms running on a single node
of the DGX-1 system using 16 host CPU threads and eight GPUs ad report
the results in Fig. 8. The input graphs are generated with Graph500’s RMAT
generator. Each vertex has a uniform degree of 16 edges. We generated graphs
of scale 18, 20, 22, and 24. Here, scale X denotes a graph with 2X vertices. We
observe that “partition buffer” variant of the algorithm performs best, while the
LC buffered and hybrid versions demonstrate similar performance. This is not
surprising, since the input graphs have uniform degree distribution, hence the
load is well-balanced and have little chance to benefiting from the extended LC
memory model. However, we anticipate that, graphs with power-law degree dis-
tribution, in which a few high-degree vertices exist, will benefit from the extended
LC memory model. Our strong scaling plot (Fig. 8) shows that scalability suffers
due to the overhead of small search frontiers per tile and no re-use.
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We also vary the frequency of synchronization when applying LC-
MEMENTO and report the results in Fig. 9. As with many graph applications,
we observe that the result tends to be data-dependent (size of the frontier being
generated) and not particularly related to the size of the graphs. For example,
for graphs with scales of 18 and 24, we see that synchronizing in every two iter-
ations performs best. The plot to the right compares the best LC-MEMENTO
synchronization with a partition approach. The partition approach performs
better, since at each iteration, it performs no extra data movement compared
to the LC variant which updates the data on the CPU by flushing its cache.
We anticipate, LC-MEMENTO could perform better with unbalanced graphs as
utilization becomes an issue with fixed partitions.

Fig. 9. LC-MEMENTO versus Partitioned BFS implementations

5 Related Work

Memory Consistency and Cache Coherency Protocols. [22] proposed
a hardware-assisted cache coherency protocol for multi-GPU systems. In con-
trast, our approach is based on runtime software, with possibilities for expansion
and integration of other consistency techniques. Recent proposals for sequential
consistency include [11,21,23]. Although these works demonstrate that relaxed
consistency protocols are no better than sequential consistency, our work shows
that there can be considerable benefit for relaxed-synchronization based memory
consistency models for select data analytics applications.

Scheduling Techniques. Recent works like MAPA [20], WOTIR [19], Gan-
diva [31] and Philly [12] explored placement optimizations of DNN workloads
on multi-node multi-GPU environments. In Effisha [6], the authors proposed
a preemptive scheduler for kernels to better support priority-based scheduling.
Furthermore, Works like [1,2,26], explored hardware optimizations and require
compiler-assisted code transformation and explicit insertion of runtime API calls
in the original code. In contrast, our approach is transparent to runtime-assisted
scheduling.

Programming Models. Groute [4] and Kokkos [27] proposed asynchronous
multi-GPU programming models. However, memory consistency and ownership
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is required to be managed by the programmer in the aforementioned models.
LC-MEMENTO, on the other hand, implements the location consistency mem-
ory model in the runtime and supports asynchronous execution in the runtime
without programmer intervention.

6 Conclusions and Future Work

This paper presents the LC-MEMENTO extensions for an AMT runtime system.
It allows the exploitation of current multi GPU designs with a transparent sched-
uler and a weaker memory models, instantiated as GPU cache with polymorphic
synchronization/collective operators. These extensions were used to implement
three kernels and showcased their performance gains. We found out that for
certain kernels (with high locality) the framework could scale up to 4x while
leaving all the resource allocation decisions to the internal runtime (i.e., com-
pletely transparent to the programmer). Moreover, we compare against UVM
solutions and found that under certain conditions the cache/scheduler based
solution could compete and even beat the hardware/driver based one.

These extensions are promising but they have a much larger optimization
space that remains for improving efficiency of AMT runtime systems. For exam-
ple, new enhancements to unlock new capabilities on the framework (e.g., lower
kernel launch time can produce better execution profiles for the scheduler and
faster throughput) can offer synergistic benefits with LC-MEMENTO and AMT
runtime systems in general.
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Abstract. ORKA-HPC is a new and downloadable OpenMP-to-FPGA
compiler that is easy to set up, easy to use, and easy to extend. It targets
a variety of different FPGA-boards, and is distributed with a “batteries
included” runtime and development environment.

Starting from a set of properties that such a compiler must possess,
we derive how ORKA-HPC achieves these, reason about the underlying
decisions, and evaluate ORKA-HPC’s current state of development. The
paper concludes with future work and provides a download link.

1 Motivation

While some research groups attempted to build OpenMP-to-FPGA compilers
[10], none of them made it into wide-spread use. Without commercial interest by
industry, research funding often only suffices for building prototypes that address
the posed research question but does not make the project’s software valuable
for other research groups. Even if there is open source code, it is hardly useful
once the PhD students have left or the funding has ended. The ORKA-HPC
OpenMP-to-FPGA compiler tries to avoid this fate by avoiding the following
common mistakes and showstoppers.

1) Cross-Platform Issues. While mainstream programs are a part of a Linux
distribution and available as pre-built binaries, research software in general does
not make it into Linux distributions. Hence, there is only the source code plus
instructions on how to compile and build. Interested parties thus have to ensure
every build-time dependency, often by having to install specific versions of other
tools or libraries. As sometimes the authors did not properly document all the
dependencies, this makes it even harder to achieve a successful installation and
thus to reproduce published results. In contrast, ORKA-HPC is easy to install
on different Linux platforms and avoids dependency issues.

2) Shifting Grounds Issues. Where well-funded Linux distributions provide
a stable execution environment with fixed APIs and libraries for a long time,
c© Springer Nature Switzerland AG 2022
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others change more rapidly. Projects that are under active development can
adapt their build- and run-time dependencies to such changes. However, once
developers have left a project, their code often stops working after a short while.
ORKA-HPC employs techniques to enhance its lifetime.

In Sect. 4 we discuss how ORKA-HPC achieves these general goals (portable
cross-platform distribution and longevity). In addition, there are goals for FPGA
projects and for compiler projects.

3) Stand on the Shoulders of Giants. To use an FPGA one needs to synthe-
size a Bitstream that describes the FPGA hardware. In general, special compilers
(1) produce a tree representation for a C/C++ input, (2) generate an intermedi-
ate representation (IR), (3) optimize it, (4) generate a VHDL/Verilog hardware
description from it, and (5) use a VHDL compiler to produce the Bitstream. Since
FPGA vendors typically keep their hardware architectures undisclosed, little can
be done in step 5 (hardware synthesis). In the past, researchers often reinvented
all or some of the steps 1–4 (High-Level Synthesis, HLS). However, they were
in competition with the vendors’ industry-grade HLS tools and their develop-
ers. The ORKA-HPC compiler only builds crucial components from scratch and
makes use of the best performing industry tools for both HLS and hardware
synthesis.

4) Do Not Put all the Eggs in One Basket. Published OpenMP-to-FPGA
compilers often generate FPGA hardware for one specific FPGA board. How-
ever, there are two issues here. First, different FPGA architectures are good for
different computing tasks. Second, specific FPGA boards quickly become out-
dated. Hence, the ORKA-HPC compiler is extensible/portable for new devices
and benefits from future advances of FPGA hardware. For the same reason
the ORKA-HPC compiler is agnostic with respect to the board vendors. While
APIs, options for both the HLS and the hardware synthesis, pipeline feedback,
etc. are often at least upwards compatible for all the boards of a specific vendor,
ORKA-HPC needs extra layers to gloss over differences between vendor tools.

Finally, there are goals for any research compiler, independent of target-
ing FPGAs. It must be (5) easy to use ideally as a drop-in replacement for
Clang/GCC without modifications to the build system and it must be (6) easy
to extend with regards to its internals. It is written in a way that it minimizes
the effort to change the internals or to add new analysis/optimization algorithms.

In Sect. 3 we show how ORKA-HPC achieves these goals (reuse of opti-
mized components as building blocks, retargetability to various FPGA types
and brands, ease of use, and extensibility). Sect. 5 reports on some experiments
to demonstrate that ORKA-HPC is operational.

2 Related Work

We discuss works mentioned in the survey by Mayer et al. [10], but exclude
approaches that either require extensive hardware development knowledge (e.g.
[2]), or that do not focus on offloading the OpenMP target pragma to the FPGA
(e.g. [15]) but map other constructs.
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Fig. 1. Bird’s eye view of ORKA-HPC’s compilation process.

Bosch et al. [1] conduct target offloading for a programming model that is
partially derived from OpenMP. They generate hardware from an annotation
scheme closely resembling OpenMP’s task based parallelism.

Sommer et al. [16] extract target regions and pass them to the TaPaSCo LLP
backend. While being conceptually similar to ORKA-HPC, the tool is restricted
to said backend and thereby inherits its platform dependencies.

In contrast to the above mentioned works (including ORKA-HPC) Knaust
et al. [7] achieve offloading by passing an IR representation of the input region
to a vendor tool. While providing a remarkably simple workflow, the method
comes with a significant drawback, as it relies on an undocumented interface of
one specific vendor tool.

Huthmann et al. [5] also use IR-level representations for Bitstream genera-
tion. But instead of passing them to commercially available tools their system
explores the possibilities of using an open academic HLS infrastructure for target
offloading. In contrast, ORKA-HPC exploits highly optimized vendor tools.

Nepomuneco et al. [12] focus on multi-FPGA environments and evaluate their
speedups for just one specific accelerator platform.

To the best of our knowledge, none of the published systems gives details on
how to achieve portability across Linux platforms, how to achieve longevity, how
to exploit optimized tools as building blocks, how to target various brands and
types of FPGA boards, and how to achieve ease of use and extensibility. ORKA-
HPC tries to stay as accessible as your command line operated C compiler.

3 The ORKA-HPC OpenMP-to-FPGA Compiler

Here we introduce the building blocks of the ORKA-HPC compiler. We discuss
the general architecture, the design options, and the reasons for ORKA-HPC’s
choices to achieve the goals above. We discuss distribution issues in Sect. 4.

The bird’s eye view of the ORKA-HPC compiler in Fig. 1 shows its main
processing paths and intermediate results. After lowering the OpenMP pragmas
in the input source down to an intermediate form at a lower level of abstraction,
the compiler then processes the modified OpenMP code by two distinct tool
chains: An FPGA path offloads work to one or more FPGA devices and a host
path generates the main program that manages the distribution of work.
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Fig. 2. AST-level OpenMP lowering. Hooks to plug in vendor-specific modules.

3.1 OpenMP Lowering

Which Pragmas to Offload to the FPGA? When building an OpenMP-to-
FPGA compiler one has to decide which OpenMP pragmas to leave unchanged
and to forward to a regular OpenMP compiler for a (shared memory) CPU (i.e.,
the host path), and which pragmas to transform so that the affected source
code turns into FPGA hardware. By leaving pragmas for the host path that
were designed for shared-memory systems with operating systems that provide
the necessary synchronization primitives one can tap the general purpose com-
piler’s optimization capabilities. There have been attempts to map OpenMP’s
synchronization primitives and shared-memory behavior to FPGAs, but they
never matured beyond the proof-of-concept state, probably because there is a
too wide gap between the fundamentally different computation models of FPGAs
and CPUs. For instance, FPGAs neither permit easy thread synchronization nor
access to the same shared memory of the CPU. For these reasons, ORKA-HPC
only offloads the OpenMP target and target data pragmas to the FPGA and
lowers pragmas that are nested inside the regions that both pragmas annotate.

How to Lower? In general, compilers (1) convert their input to an Abstract
Syntax Tree (AST), (2) transform this AST, (3) map/lower the AST to a simpler
intermediate representation (IR), and (4) generate assembly from it. Adding
OpenMP support to an existing compiler requires additional AST node types
and extensions to the steps 1, 2, and maybe 3. Compiler writers have two choices.
First, they can replace all new OpenMP nodes with bundles of regular AST
nodes. This so-called AST-level lowering only affects steps 1 and 2. Second, they
can translate OpenMP nodes to intermediate form, just like all other AST nodes.
This so-called AST-to-IR lowering also requires work on step 3.

ORKA-HPC uses an AST-level lowering and here is why: Offloading must
transform a pragma into calls of runtime library functions that control the
FPGA. On AST-level this is as simple as adding a function call node to the
AST. After the transformation, the AST still represents regular C/C++ and
can – after some pretty-printing – be fed into any vendor’s HLS systems.

In contrast, AST-to-IR lowering has three problems. First, it needs the HLS
system to be usable on IR-level but until lately [7], Intel’s or Xilinx’s HLS sys-
tems did only accept C/C++ inputs. Of course, the lowering could generate IR,
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optimize it, and convert it back to C/C++, but it is hard to decompile IR which
is why LLVM for example has removed support for it in an early version [9].
Thus, OpenMP Fortran cannot yet be run on FPGAs, as this either requires
IR-capable HLS systems or IR decompilers. Today, the situation seems to be a
bit better as Vivado’s HLS is now open source. Second, it requires an OpenMP
runtime library in IR format (a set of IR-level routines) that have to be created
somehow. Third, the AST-to-IR approach potentially inherits implementation
details of vendor tool chains (e.g., the LLVM IR version that the tools support)
which makes it hard to support multiple vendors and their FPGA boards [21].

Lowering Details. Figure 2 zooms into the first arrow in Fig. 1. To make
an OpenMP-to-FPGA compiler easy to extend, both normalization steps are
mandatory. Moreover, nested pragmas need to be lowered inside-out. Finally, to
benefit from proven compiler tooling, existing generic outliners can be adjusted
to work with separate memory domains. The following paragraphs explain the
details.

AST Normalization. When an AST is first constructed from an input program,
it often reflects the syntactic sugar that the programmer has used. For exam-
ple, there are if-statements with a missing else branch or with an empty
block; there are variable declarations with or without an initialization to the
default value; there are for statements with a single statement in their bodies
(for() s();) or with a block that holds the same statement (for(){s();}).
Even though the semantics are the same, the AST representations differ and
the compiler would need different cases in all its steps. It is thus common prac-
tice to normalize the AST before processing it. For example, branches of an if
can always be turned into blocks of statements, variable declarations can always
have an explicit initialization, etc. This cuts down on the number of cases in all
compiler steps downstream and makes them easier to extend. The ORKA-HPC
compiler follows this common practice and first reduces the complexity of the
input AST.

#pragma omp target
#pragma omp teams
#pragma omp parallel
#pragma omp for
// equal to
#pragma omp target teams
#pragma omp parallel
#pragma omp for
// equal to
#pragma omp target teams
#pragma omp parallel for

Fig. 3. Combined pragmas.

OpenMP Normalization. OpenMP Normalization
simplifies the AST w.r.t. OpenMP pragmas and
makes an OpenMP-to-FPGA compiler easier to
extend. The idea again is to normalize the input
to a single representation that has all the default
values set explicitly to avoid special cases for syn-
tactic variants that have the same semantics.

In OpenMP several pragmas may or may
not be combined. An example is target teams
parallel for [14]. As illustrated in Fig. 3, the
same can also be expressed in four lines with one
pragma each, or in fewer code lines that hold two

or more of these four pragmas. In essence, the combined form is a concatenation
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of the pragmas retaining their original order. The ORKA-HPC compiler brings
all pragmas into an expanded normal form according to the rules of OpenMP.
This yields fewer cases and reduces the complexity of writing the compiler and
hence make it easier to extend.

Similar to a variable declaration that receives an explicit initialization to a
default value when the programmer has not specified a different value, OpenMP
normalization also adds default values to the AST nodes. Defaults are speci-
fied for most optional OpenMP clauses. Later on, the compiler can lower an
AST node without knowing about default values. This separation of concerns is
common practice applied to OpenMP translation.

// original code:
int a[];
{ /* code that uses a */ }
// after outlining:
int a[];
out(&a);
void out(int **a) {

/* code that uses *a */
}

Fig. 4. Standard outlining.

Target Outlining. An OpenMP-to-FPGA
compiler must partition the original program
to offload parts of it to an FPGA. C-based
HLS systems only accept entire C functions
as input [6,19] and most HLS systems require
these functions to be annotated with vendor
specific pragmas or attributes. Moreover, the
CPU code and the FPGA do not share mem-
ory.

Partitioning of programs for offloading is
not new. OpenMP offloading for GPUs uses

so-called outlining that wraps the piece of code under the target pragma in
a new function and replaces the original region with a call of this function.
ORKA-HPC strives to not reinvent the wheel. Instead of starting from a GPU
outliner, as they are tailored to the demands of GPU vendor tool chains, it starts
from a generic AST-level outliner that, however, is meant for a shared-memory
situation. Figure 4 illustrates what a generic outliner would do. All the data that
an outlined block of code accesses is passed to the outlined function as a set of
pointers, i.e., with one level of indirection. This works well as long as caller and
callee can access the same shared memory, but on an FPGA pointers to data in
the host memory are meaningless, the HLS synthesis in general cannot handle
them.

The ORKA-HPC compiler therefore extends a generic outliner with an
address space cleanup that replaces infeasible pointer indirections with API
calls that access the data in the other address space, depending on what the
programmer has specified in the map clauses. See Data Shipment in Fig. 2.

Since the outlined function cannot simply be called after the synthesis turned
it into FPGA hardware, the ORKA-HPC outliner inserts API calls to ship data
to and from the FPGA and to launch the function’s hardware. To achieve porta-
bility across different board types and vendors, the launch and the shipment APIs
are generic. Most HLS systems require function annotations or special prag-
mas to produce valid and well-performing hardware. Despite the vendor-specific
demands, the ORKA-HPC compiler still achieves portability by bundling the
insertion of these annotations into another pluggable module, specific for each
vendor but hidden behind a generic annotation API.
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Inside-Out Lowering. So far we assumed that there was no nested pragma in
a target region. To limit the engineering effort and to make the ORKA-HPC
compiler easy to extend for new pragmas, it is best to process nested pragmas
inside-out. At the deepest nesting level, a pragma only affects a region of plain,
pragma-free code. At the deepest level, a pragma can be lowered without special
cases for enclosed pragmas because there are none. To understand that such
special cases are problematic, think of a target region that uses the variable a. If
there can still be inner pragmas like for instance parallel shared(a), the target
outlining would need special cases for different flavors of variables. By lowering
the pragmas inside-out, compiler writers only need to reason about one lowering
template per pragma. Such a template replaces the code block affected by the
pragma with a pragma-free code block. In the example, the shared(a) is long
gone, when the outliner works on the target region. Inside-out lowering also
eases experiments with research pragmas, as they can be lowered in isolation (as
any potentially nested pragmas will already have been transformed away). Note
that by climbing up the nesting levels of pragmas, the generated replacement
code may be modified repeatedly, once per pragma layer.

To see why inside-out lowering works for non-trivial pragma situations, con-
sider that in general a pragma only affects the statement or the scope directly
below it. Inside-out lowering cannot handle clauses that affect a preceding line,
i.e., a parent note in the AST. We do not know of such pragmas or clauses but
could handle them with a pre-processing pass that adds attributes to the AST
before the inside-out transformation.

The compiler needs to reject pragma combinations that cannot be mapped
to an FPGA (e.g. there cannot be a target pragma inside another target
pragma). While this check is straightforward to implement as part of the inside-
out transformation, an outside-in approach would require a full subtree traversal
that queries the structure of the pragmas nested below.

3.2 FPGA Path

hostBinary Bitstream
(=LLP+IPs)

Host FPGA

Fig. 5. LLP API.

According to Fig. 1, the OpenMP-to-
FPGA compiler produces two artifacts
geared to seamlessly work together. The
FPGA must be configured to perform the
offloaded work and the host program must
make use of the FPGA, see Fig. 5. An
FPGA is configured with a so-called Bit-
stream, i.e., a binary file that represents

all the wires and logic gates of the circuit. In addition to these circuits that rep-
resent the offloaded function (called IP in FPGA lingo), it is common practice to
capture infrastructure hardware in a so-called Low Level Platform (LLP). The
LLP is used to interface with the host, e.g., via a PCIe interface, and it also
contains the bus system to communicate with or among offloaded functions.

It is infeasible to generate these Bitstreams from scratch in the FPGA path,
because the format of the Bitstream is proprietary. FPGA vendors typically
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Fig. 6. FPGA path. Dashed means ongoing work.

provide hardware synthesis tools that offer many pre-built hardware blocks (e.g.,
for PCIe communication) and thus ease the development process. Such a tool is
still impractical to use from a compiler, because it usually interprets a kind of
abstract recipe to generate the Bitstream. For that reason LLP backends such
as in ORKA-HPC or TaPaSCo [8] have been developed. As shown in Fig. 6, they
get a set of C functions, build standalone hardware entities (IPs) for each of
them, and write recipes that build an LLP plus IPs to form a fully functional
FPGA. They also provide an LLP API to launch the execution of the work in
the Bitstream from the host side, plus the necessary data shipment routines.

As these LLP backends are still mostly vendor specific, ORKA-HPC gener-
alizes LLP functionality so that users can specify which LLP backend to use
per target pragma. Different target regions can thus be offloaded to different
FPGAs of a system. New LLP backends can also be added easily.

3.3 ORKA-HPC LLP-Backend

The ORKA-HPC LLP-backend provides LLPs for FPGA boards. In contrast
to other such backends (like TaPaSCo), it supports multiple FPGA vendors. It
consists of multiple parts: The IP-builder (see Fig. 6) builds IPs starting from
the C-codes emitted by the ORKA-HPC compiler. The LLP-builder integrates
these IPs and generates Bitstreams for the targeted hardware. For host-to-FPGA
communication it also includes an abstraction layer and C API.

Tailored to the functionality and performance necessary for the ORKA-HPC
compiler, the LLP-backend provides the tools necessary to generate Bitstreams
and run OpenMP on FPGAs without any user input. While easily extendable
in capability and fully configurable by the user, predefined and hand-optimized
LLPs are provided for ease of use. With partial reconfiguration support, it allows
for even more logic to be deployed on the FPGAs (sequentially) and reduces
compile times. Its support of FPGAs from various vendors enables ORKA-HPC
to distribute OpenMP workloads to a wide range of hardware configurations
using one or multiple communication interfaces, including PCIe, Ethernet and
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USB concurrently – a unique feature of ORKA-HPC not available in any other
tool. In order to exploit the full potential of the FPGAs it internally uses the
vendor’s tool chains to generate IPs and Bitstreams. Since vendors typically
update their tools alongside new hardware releases, this also facilitates adding
compatibility to future devices and helps extend ORKA-HPC’s lifetime.

The ORKA-HPC Generic Driver encapsulates device drivers and exposes a
unified and vendor independent API for host-to-FPGA communication. FPGA
selection can thus be done at runtime on the fly without the need to recompile
library calls in the host binary, no matter which of the supported boards (brands)
are targeted and how they are connected (e.g., locally via PCIe or remotely
via TCP/IP). The remote-option is in fact a driver virtualization that enables
driving FPGA boards through the internet or cloud solutions.

3.4 Host Path

We have discussed above that as part of the outlining, the ORKA-HPC compiler
adds library calls to the host program that launch the offloaded functionality
on the FPGA and that perform the data shipment to and from the FPGA.
Because of its design goal to be useful for various types and brands of FPGAs,
ORKA-HPC decouples the host binary both statically and dynamically from the
various FPGA-specific LLPs. While decoupling is well known, to the best of our
knowledge ORKA-HPC is the first tool that employs it that way.

For a static decoupling ORKA-HPC uses a generalized LLP API when low-
ering a target region. Adding a new type of FPGA to the ecosystem then only
takes some glue code between the generalized LLP API and the concrete API.

For a dynamic decoupling ORKA-HPC loads concrete LLPs as plugins (at
load-time). This allows to select an FPGA board per target region and it also
allows to bind to a different LLP without recompiling the host code.

One particularly helpful LLP plugin in the ORKA-HPC environment is the
Dummy LLP plugin. It only pretends to talk to an FPGA. In reality it executes
every data shipment and IP control request locally and emulates the behaviour
of the offloaded region on an FPGA. This eases and expedites the debugging of
control messages as it saves the slow synthesis of FPGA hardware and drastically
reduces the round-trip time (from hours to seconds).

ORKA-HPC therefore supports the use of a mixture of different LLPs in the
same program and enables the host binary to switch between different LLPs,
including the Dummy LLP, without recompilation. It is the latter feature that
makes the ORKA-HPC compiler useful for LLP researchers as they can easily
plug in experimental versions of their codes. To demonstrate the extensibility of
the ORKA-HPC solution, we plugged in the TaPaSCo Composer [8] in addition
to the ORKA-HPC LLP backend.

4 Deployment

For easy installation of a compiler on a variety of platforms, both the compiler
and the build process for the compiler must run on different platforms. An
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OpenMP-to-FPGA compiler is harder to get up and running than a regular C
compiler as the former in general relies on specific versions of other components
(e.g., LLP backend, FPGA tool chain, C compiler, etc.).

Well-known challenges of a portable build process are to manage the build-
time dependencies and to ensure them on other systems. There are popular
solutions that unfortunately limit the ease of using ORKA-HPC. First, using a
Virtual Machine to distribute a piece of software is equivalent to shipping a 1:1
image of the developer’s computer. The disadvantages are: The VM approach
only works as long as the VM can be executed. There is almost no extensibility. In
general, the size of such a VM is enormous (several gigabytes). Above all, team
development is severely restricted, since a change of the VM requires a copy
of the entire VM to be shipped to other team members. Second, dependency
managers such as Nix [13] add complexities for both the developers and the
build-process. Third, custom shell scripts that tailor each build environment to
fit a given Linux distribution take effort to write and are hard to maintain.

ORKA-HPC avoids the above disadvantages by using Docker [3] for deploy-
ment. Instead of having to ship a 1:1 image, the ORKA-HPC compiler provides
a small recipe, the so-called Dockerfile, that describes the Docker containers that
act like Virtual Machines in which the specified environment for build- and run-
time are set up correctly. Although we recommend the Docker tools to build the
ORKA-HPC environment automatically from the Dockerfile, users can also sim-
ply follow those human-readable instructions to build ORKA-HPC themselves.
Compiled programs also do not need the Docker container.

5 Evaluation

target
target data
target teams�
target distribute�
target teams distribute�
target parallel�
target parallel for�
target teams distribute simd�
target update
target enter data�
target exit data�
declare target
end declare target

Fig. 7. Supported OpenMP.

In this section we report on the current
state of an ongoing project. We list the
OpenMP pragmas that ORKA-HPC cur-
rently supports, give performance num-
bers on an embarrassingly parallel Man-
delbrot experiment, and discuss the cur-
rent functional completeness on a set of
benchmarks that was never designed to be
offloaded to FPGAs.

Pragma Coverage. Figure 7 lists all the
pragmas that ORKA-HPC currently sup-
ports for FPGA offloading. ORKA-HPC
only covers target pragmas or prag-
mas nested below them. The underlying
generic OpenMP compiler deals with all
other pragma situations. There are three

caveats to Fig. 7. We correctly parse the combined target constructs marked
with �, generate AST nodes, and normalize them; we do not yet exploit their
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Table 1. Mandelbrot performance. Runtimes are given in milliseconds. The Xilinx
VCU118 has the following resources available: FFavail = 2, 364, 480. LUTavail =
1, 182, 240. DSPavail = 6, 840. BRAMavail = 2, 160.

Unroll factor 1 8 32 64 128

Frequency 100 MHz 200 MHz 400 MHz 400 MHz 400 MHz 350 MHz 50 MHz

FFall 6.09% 6.09% 6.09% 7.23% 11.06% 16.16% 26.36%

LUTall 9.49% 9.49% 9.53% 10.44% 13.25% 17.11% 24.95%

DSPall 0.57% 0.57% 0.57% 4.25% 16.89% 33.73% 67.41%

BRAMall 5.19% 5.19% 5.19% 5.19% 5.19% 5.19% 5.19%

FFmandel 5.3% 5.3% 5.3% 20.1% 47.8% 64.3% 78.1%

LUTmandel 3.0% 3.0% 3.3% 11.7% 31.5% 47.3% 63.7%

DSPmandel 92.3% 92.3% 92.3% 99.0% 99.7% 99.9% 99.9%

BRAMmandel 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2%

FPGA runtime 2592.0 1296.0 0648.0 0109.6 0033.4 0023.0 0102.8

transf. to/alloc 0000.8 0000.8 0000.8 0000.8 0000.8 0000.8 0000.8

transf. from 0003.6 0003.6 0003.6 0003.5 0003.6 0003.6 0003.6

semantics to generate efficient parallel FPGA structures, i.e., there is not yet an
automatic mapping for instance of a parallel for to the HLS directives that
would cause parallel FPGA hardware. For the pragmas marked with � we do
not yet emit the library routines. Finally, all translation units must be compiled
with ORKA-HPC before linking. Kernels and library code compiled with other
compilers cannot be called in target regions.

Mandelbrot Performance. We wrote a Mandelbrot code with an explicit loop
unroll parameter to study the performance of the FPGAs that ORKA-HPC
generates. Per unrolled loop iteration there is a sub-block of FPGA hardware
that implements the loop body for a parallel execution. Our code first transfers
all data to the FPGA, triggers the Mandelbrot calculation, and finally transfers
back all the data. The first four rows of Table 1 show the overall utilization of
our VCU118 FPGA board, according to the Vivado Bitstream synthesis report.
The columns hold various unroll factors and FPGA clock frequencies. The rows
report on the fraction of FlipFlop (FF), Look-up-tables (LUT), Digital Signal
Processor (DSP) blocks, and BRAM modules of the full board that our generated
IPs populate.1 There are four rows that show the resource consumption for all
components of the Bitstream, i.e., the LLP and the Mandelbrot IP. The mandel
rows tell how much of those resources the Mandelbrot IP uses. The upper shaded
area shows the significant fixed cost of the LLP plus one Mandelbrot IP. Unrolled
versions of this IP amortize the LLP cost. The lower shaded area holds the cost

1 A LUT can be configured to behave like an arbitrary n-to-1 logic function and FFs
are usually grouped to resemble n-bit registers. Most high-end FPGAs provide DSP
blocks as ASIC components to accelerate floating-point heavy tasks.
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Table 2. Mandelbrot performance on CPUs.

Processor Xeon i7

Num. threads 1 6 1 6

Runtime (secs.) 0.02451 0.01872 0.01184 0.00634

Std. deviation 0.00152 0.00376 0.00185 0.00096

Flags -O3 -O3 -O3 -O3

-fopenmp -fopenmp

GCC version 7.5.0 7.5.0

Xeon = Intel(R) Xeon(R) Gold 5220 CPU (2.20 GHz, 72
log. cores).
i7 = Intel(R) Core(TM) i7-4770 CPU (3,40 GHz, 8 log.
cores).

of one Mandelbrot IP. There again are fixed costs plus variable unrolling costs
for FF, LUT, etc. The variable costs have different growth rates as can be seen
in the columns of the higher unroll factors.

The last three rows show our runtime performance measurements for each
Bitstream. Here, we show the pure FPGA runtime, “transf. to/alloc” gives the
time needed for the data shipment plus the allocation, and “transf. from” is
the duration for the data to return. Shipping the full data to/from the FPGA
is neither affected by the unroll factor nor by the FPGA’s clock frequency. All
runtime durations were calculated by timing measurement routines that ORKA-
HPC automatically placed into the host binary. All durations given are the
averages of ten independent runs of the same program on one Intel(R) Core(TM)
i7-4770 CPU (clocked at 3.40 GHz, consisting of 8 logical cores). The standard
deviations of all durations range from 1.08 · 10−6 (min) and 4.49 · 10−5 (max).

For the first three columns, we left the unroll factor fixed at 1 (i.e., one Man-
delbrot IP) but varied the IP frequencies from 100 MHz to 400 MHz. As expected,
the FPGA utilization did not change much, but the execution speed doubled
each time we doubled the frequency. Our code did not meet hardware timing
requirements for frequencies above 400 MHz. The next four columns show higher
unroll factors and the maximal possible frequency (in multiples of 50 MHz). For
instance, when the unroll factor is 8, our offloaded function fetches eight pixels
from the memory of the VCU118 via a DMA transfer, processes each pixel in
parallel, and writes 8 pixels back into the FPGA memory (also via DMA). The
best execution speed for an unroll factor of 64 and a clock frequency of 350 MHz
is in bold in Table 1. Unfortunately, for an unroll factor of 128, the code did not
compile beyond 50 MHz due to hardware timing issues.

Table 2 shows the performance of the same Mandelbrot code on off-the-
shelves computers without FPGAs. Since generic C compilers ignore the HLS
pragmas, we added a parallel for pragma to the unrollable loop so that is can
use six cores of our hardware. Our FPGA runtimes in Table 1 are about on par.
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Table 3. Functional verification with SPEC ACCEL.

Benchmark stage 503. postencil 504. polbm 514. pomriq 552. pep 554. pcg 557. pcsp 570. pbt

Frontend � � � � � -1 -1

Mock with dummy LLP � � � � �
HLS for x functions 1� 2�of 32 2� 5� 13�of 163

FPGA � � �
Time for Mock 6.13 s 18.26 s 4.23 s 11.71 s 19.91 s

Time for HLS 55.21 s 119.81 s 102.56 s 314.21 s 967.87 s

Time for FPGA 7065.63 s 6928.39 s 9836.89 s
1 Uses the [:]-Syntax in a map clause which we do not yet support.
2 One offloaded function used a pointer cast that the HLS does not support.
3 HLS aborts with unknown error for three offloaded functions.

Multi-board Support. The Mandelbrot code runs on multiple boards. We can
configure ORKA-HPC to pick the ORKA-HPC LLP backend for the Arty board
[11]. For the Vivado VCU118 [20] board, we can pick both the ORKA-HPC and
the TaPaSCo LLP backend. Data transfers to/from the Arty board happen via
Ethernet. The communication with the VCU118 uses the PCIe interface.

SPEC ACCEL. We used ORKA-HPC with the seven unmodified SPEC ACCEL
benchmarks [17] that employ target offloading. Only for 514.pomriq we had
to manually expand #include "computeQ.c" to fix a pre-processor issue. The
benchmarks are not meant to be used with FPGA offloading as they use floats
or doubles which is not among the strength of FPGAs as the HLS synthesis of
standard C floating point data types takes up considerable amounts of resources
[4]. This is why this section is only a report on the functionality of ORKA-HPC,
not on the performance gained.

Table 3 is a work-in-progress report. Its upper part illustrates the current
state of the ORKA-HPC pipeline at the time of writing this paper. For each
of the seven benchmarks it shows which stage of the compilation it successfully
passes. The Frontend stage includes all ORKA-HPC steps that transform the
input code into a host binary that can interact with an FPGA via different LLP
backends. The footnotes show the current limitations. Codes that pass the Mock
stage run with the Dummy LLP plugin that simulates an FPGA. They produce
the same results as a host-only compilation without -fopenmp. A check mark
in the HLS row tells that we can successfully translate the offloaded functions
to hardware blocks. For two benchmarks there are issues in Vivado HLS 2018.2
that prevent synthesis for 1 or 3 functions. A newer version of Vivado’s HLS
fixes some of these bugs, but at the time of writing we still have to migrate to
it. The FPGA row reports on a successful generation of the full Bitstream.

In the lower part of Table 3 we show how long the pipeline phases take (wall
clock time) on a Intel(R) Xeon(R) Gold 5220 CPU (clocked at 2.20 GHz, con-
sisting of 72 logical cores) with 496 GB of available RAM. As we are actively
working on the benchmarks, the table will have more � in the final version.

At the time being, the benchmarks that run with FPGAs are not as fast
as CPU-only versions. (And because of the floating point computations they
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cannot be expected to.) The runtimes can be off by a factor of up to 900. We
identified the top two reasons. First, we currently neither automatically generate
an explicit unrolling nor the pragmas that would tell the HLS where to use
parallel hardware. The Mandelbrot experiment shows the importance of this.
Second, the HLS generates an independent memory request to an off-chip RAM
for every array access, without any caching. Adding suitable HLS pragmas for
this is also in our future work.

6 Contributions and Future Work

We contribute ORKA-HPC, a new OpenMP compiler for FPGAs that has sev-
eral novel properties. First, it is portable across different Linux platforms and
uses Docker to ease the build process (of the compiler) despite of version updates
in the infrastructure tools. Second, ORKA-HPC is designed to reuse many opti-
mized building blocks provided by vendors while also hiding vendor-specific
details behind APIs. This enables ORKA-HPC to use various types and brands of
FPGAs. Third, AST-level transformations that lower pragmas inside-out (after
some normalizations) make it easy to add support for more pragmas and to
hide low-level compiler construction details. Therefore, ORKA-HPC lowers the
bar for future FPGA-based OpenMP research. The ORKA-HPC distribution –
including all sources and benchmarks2 – is available from https://github.com/
ORKA-HPC/orkadistro

Currently, we are working on two main issues. First, as they can drastically
decrease the resource consumption on FPGAs, we make bit-accurate data types
available for programmers [4]. Second, because offloading unmodified C code to
an FPGA in general does not lead to well-performing hardware, we automatically
insert and tune HLS annotations to improve resource utilization on FPGAs.
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Abstract. Graph neural networks (GNNs) are emerging as a powerful
technique for modeling graph structures. Due to the sparsity of real-world
graph data, GNN performance is limited by extensive sparse matrix
multiplication (SpMM) operations involved in computation. While the
right sparse matrix storage format varies across input data, existing
deep learning frameworks employ a single, static storage format, leaving
much room for improvement. This paper investigates how the choice of
sparse matrix storage formats affect the GNN performance. We observe
that choosing a suitable sparse matrix storage format can significantly
improve the GNN training performance, but the right format depends
on the input workloads and can change as the GNN iterates over the
input graph. We then develop a predictive model to dynamically choose
a sparse matrix storage format to be used by a GNN layer based on the
input matrices. Our model is first trained offline using training matrix
samples, and the trained model can be applied to any input matrix and
GNN kernels with SpMM computation. We implement our approach on
top of PyTorch and apply it to 5 representative GNN models running
on a multi-core CPU using real-life and synthetic datasets. Experimental
results show that our approach gives an average speedup of 1.17x (up to
3x) for GNN running time.

1 Introduction

In recent years, graph neural networks (GNNs) [46] are shown to be effective in
extracting information from graph structures like social networks with millions
of nodes and billions of edges [8]. Indeed, GNNs account for over 90% of the
leading models in solving the open graph benchmark suite [16,17].

A GNN is designed to propagate and aggregate information across graph
nodes. This is achieved by applying a kernel function to a feature matrix of graph
nodes, which captures the properties of nodes, as well as an adjacency matrix
that encodes the connectivity of graph edges. The kernel function is typically
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implemented using matrix multiplications [46] that often dominate the GNN
execution time during training and inference. Because most of the nodes in a
real-life graph only have a small number of direct neighbors, the graph adjacency
matrix that a GNN kernel operates on is often sparse (i.e., many matrix elements
are zeros). As a result, the matrix multiplication computation within a GNN is
essentially sparse matrix multiplication (SpMM) operations.

There is an extensive body of work in optimizing SpMM for scientific work-
loads [13]. Various sparse matrix storage formats have been proposed to reduce
the memory and computation overhead of SpMM [14,19]. Studies have also
shown that choosing the right storage format can have a significant impact on
the SpMM performance [21]. Although SpMM performance optimization is a
well-studied field in traditional high-performance computing (HPC) domains,
the benefit of sparse matrix storage format selection is unclear on the new GNN
workloads. Existing deep learning frameworks like PyTorch [23] and Tensorflow
[1] all use a single, static sparse matrix storage format across graph inputs. Since
GNNs are becoming an important application class, it is essential to understand
how GNN performance can benefit from sparse matrix format selection.

This paper presents the first study of sparse matrix storage selection on
GNN performance. We consider five representative GNN architectures and six
commonly used sparse matrix storage formats. We empirically demonstrate that
choosing a suitable sparse matrix storage format can have a significant perfor-
mance benefit, but the right format changes depending on the input matrix.
We show that unlike traditional HPC workloads, the matrix sparsity can change
over time as the GNN iterates over the input graph; and as a result, the suitable
format can vary throughout GNN execution.

In light of this observation, we employ machine learning to automatically
construct a predictive model based on XGBoost [7] for sparse matrix format
selection. Our predictor predicts, at runtime, the sparse matrix storage format
and the associate SpMM computation kernel for each GNN kernel. Our pre-
dictor is first trained off-line using synthetic matrix data. Then, using a set of
automatically tuned features of the matrix input, the predictor determines the
optimal storage format to use before entering a kernel. We showcase that our
approach is generally applicable and can adapt to various optimization goals to
find different trade-offs between the memory overhead and execution time.

We evaluate our approach by applying it to five GNN architectures running
on multi-core CPUs using both real-life and synthetic graph data. We compare
our approach against two prior machine-learning methods [24,27] for selecting
sparse matrix storage formats. Experimental results show that our approach
gives better performance over alternative optimization strategies by giving an
average 1.17x speedup. The performance of our approach translates to average
89% of the oracle, a theoretically perfect predictor for storage form selection
(Sect. 6.3) performance given by a theoretically perfect predictor.

This paper makes the following contributions:

– It is the first paper to study sparse matrix storage format selection on GNN
performance;
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– It shows how machine learning techniques can be employed to develop a
runtime predictor for optimizing GNN sparse matrix format selection;

– It provides quantified performance results of widely used sparse matrix stor-
age formats on representative GNN architectures.

2 Background

2.1 Graph Neural Networks

A GNN operates on a graph structure, where each graph node is associated with
a d-dimensional feature vector of numerical values known as embeddings. Edges
between nodes indicate their relationship, quantified with edge weights. For a
graph with N nodes, the graph edges are encoded in an N×N adjacency matrix,
A, and the node embeddings are stored in an N × d feature matrix, X.

Like most neural networks, a GNN model can have multiple layers. Each layer
is represented by two functions: i) an aggregation function and ii) an update
function (i.e., a combination function). During training, a GNN takes as input
the adjacency matrix, A, of the graph. It then uses a neighbourhood aggregation
scheme to update the feature vector of each graph node based on the feature vec-
tor of its neighboring nodes. Feature aggregation is performed by first applying
the aggregation function (e.g., reductions) to collect the features of the neigh-
bours for a given node and then updating each node’s feature vectors using the
updating function. After repeating this process of updating node features for a
fixed number of times, a readout function is applied to aggregate the feature
matrix to a single numerical vector to be used as the graph representation.

The aggregation and update functions used by a GNN layer are implemented
using matrix multiplications. Because the graph adjacency matrix, A, is sparse
in many real-life graphs, the GNN matrix multiplications are often realized as
SpMM to reduce the memory footprint and processing time [17]. When profiling
5 representative GNN models (Sect. 5.1) on real-life datasets, we find that SpMM
can account for 95% of the GNN processing time.

2.2 Sparse Matrix Storage Formats

Our work considers the following commonly used sparse matrix storage formats:

COO. The coordinate list (COO) stores a list of (row, column, value) tuples of
non-zero elements. This is the default storage format used by PyTorch-geometric
[11] for graph processing.

CSR. The compressed sparse row (CSR) format uses three arrays to represent
non-zero matrix elements, that respectively contain non-zero values, the begin-
ning position of each row, and the column indices of non-zero elements. CSR is
similar to COO, but compresses the row indices, hence the name.

CSC. The compressed sparse column format (CSC) is similar to CSR, with one
exception for using an array to store the target matrix’s row indices of non-zero
elements instead of column indices as in CSR.
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Table 1. Input matrix sparsity from graph datasets

Name Adj. Matrix
Density

Adj. Matrix Size Node Feature
Vector Dimension

CoraFull 0.6% 19, 793 × 8, 710 19,793

Cora 1.27% 2, 708 × 1, 433 2,708

DblpFull 0.31% 17, 716 × 1, 639 17,716

PubmedFull 10.02% 19, 717 × 500 19,717

KarateClub 2.94% 34 × 34 34

CSR BSR
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Fig. 2. Changes of the adjacency matrix
density over GNN training epochs.

DIA. The diagonal format (DIA) stores non-zero elements along the diagonal
direction of a matrix into a row of a 2-dimensional array. It is best suited for
non-zero elements that appear along the diagonals of a matrix.

BSR. The block sparse row format (BSR) evenly divides the input matrix into
blocks. It is CSR with dense sub-matrices of fixed shape instead of scalar items.

DOK. The dictionary of keys format (DOK) stores key-value pairs
<(row,column), value> in a dictionary (e.g., a hash table). Elements that are
not presented in the dictionary are treated as zero elements.

LIL. The linked list (LIL) format stores non-zero elements and their column
indices in a linked list. This format uses a row-based linked list, where each row
is a list of column indices of non-zero elements.

3 Motivation

As a motivating example, consider applying a two-layered graph convolution
network (GCN) model [18] to 5 real-life graph datasets (Table 1) using the 7
sparse matrix storage formats described in Sect. 2.2.

3.1 Setup

In this experiment, we consider five real-life graph datasets used in prior work
[2]. Table 1 summarizes the size and sparsity of the graph adjacency matrix, and
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the dimension of the node feature vector (a dense vector). We run the GCN
model on a 2.0 GHz 20-core Intel Xeon CPU. We note that it is common to run
a GNN on the CPU due to the large memory footprint of graph processing [2].

3.2 Results

Figure 1 shows the best-performing sparse matrix format for each dataset, when
a format is used to encode the initial model input and used throughout the
model training process. Here, we normalize the measured runtime against the
time of the PyTorch-geometric default COO format. While COO gives the best
performance on DBLPFull, it leaves much room for performance improvement on
other datasets. Furthermore, we also observe that the best-performing storage
format varies depending on the input dataset.

1.48 1.53
1.62

1.47 1.43 1.43

CSR CSC BSR LIL DIA DOK
1.0

1.5

2.0

Sp
ee

du
p

Storage Format
(a) CoraFull

1.25

0.85

1.2

0.8

0.01 0.18

CSR CSC BSR LIL DIA DOK

0.0

0.5

1.0

1.5

2.0
Sp

ee
du

p

Storage Format

(b) PubmedFull

Fig. 3. Performance improvement over the PyTorch-geometric default COO format
on the CoraFull (a) and PubmedFull dataset (b) when using different sparse matrix
format to store the output of the first GNN layer.

If we now consider Fig. 2, we see that the density of the input matrix increases
as we iterate over the GNN model on the CoraFull dataset. This is expected as
a GNN tries to incorporate further neighbourhood information by iterating over
the graph, which in turn increases the reach and information propagation of a
graph node. As can be seen in Fig. 3, CSR is the best format used to store the
neural network input (i.e., the feature and the adjacency matrix) for both the
CoraFull and PubmedFull datasets. Thus, for a model with a single layer GNN,
CSR might be the best storage format. However, for a typical GNN model with
multiple GNN layers, the sparsity of the matrices processed by the latter layers
can change, calling for a different storage format to be used. Specifically, for
CoraFull (Fig. 3(a)) used in our setting, using CSC, LIL and DIA after the first
GNN layer can also give a relatively good speedup over COO, but these format
give no benefit on PubmedFull (Fig. 3(b)) because of the changing distribution
of the non-zero elements, the details can be seen in Fig. 3.

Lesson learned. This example shows that choosing the right sparse matrix
storage format can have a significant performance benefit, but the choice depends
on the input data and the GNN layers. Therefore, the decision for storage format
should be made on a per GNN layer basis during runtime.
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4 Our Approach

Our work aims to choose the most efficient sparse matrix storage format for acceler-
ating GNN performance or finding a trade-off between the memory footprint and
runtime. As the right choice depends on the characteristics of the input matrix
processed by a GNN layer, and the optimal storage format can change over the
duration of the training, we wish to develop an approach to automatically derive
a storage format (and the SpMM kernel) on a per input basis.

To this end, we employ machine learning to build a classifier to predict the
sparse matrix storage format to use from a pool of candidate formats. The pre-
dictive model takes as input a feature vector of numerical values, which describe
the essential characteristics of the input matrix. It then produces a label, indi-
cating which of the storage formats to be used by a GNN layer. We provide
APIs (Sect. 4.6) to monitor the input matrix sparsity and dynamically adjust
the storage format to use before entering a GNN layer at runtime. If the chosen
format is different from the one used by the previous layer or a prior training
epoch, our library will convert the input matrix to the chosen format. Note that
we include the overhead of format conversion and feature extraction in all our
experimental results.

Fig. 4. Overview of our predictive model
for choosing sparse matrix storage format.

Learning 
algorithm

s

training matrices
Feature 

extraction

Best storage format
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Fig. 5. Overview of our training process

4.1 Predictive Modeling

Our predictive model builds upon the XGBoost classifier [7]. We have evaluated
a number of alternative classification techniques, including multilayer percep-
tron (MLP) neural networks, K-Nearest neighbour (KNN), and support vector
machines (SVM). We choose XGBoost because of its good generalization abil-
ity [7], its decision-tree-like structure is interpretable, and its better and more
robust performance over alternatives on our problem (Sect. 6.4). In the remain-
der of this section, we describe our predictive model by following the classical
4-step process for supervised learning: i) problem modeling, ii) training data
generation, iii) train a predictor and iv) implement the predictor.

4.2 Problem Modeling

Figure 4 depicts the workflow of our approach. The deployed model extracts
features from the adjacency and feature matrices and uses the feature values
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to predict the sparse matrix storage format to use. Our library automatically
converts the input matrix to the selected storage format if needed. Note that
a SpMM computation kernel can be chosen based on the object type of the
input. Since we implemented our prototype in PyTorch, this computation kernel
selection process is performed automatically by the Python library.

As depicted in Fig. 5, our model is trained offline using training samples. The
trained model can be applied to any previously unseen matrix. Training involves
finding the best storage format, extracting feature values for each training matrix
and learning a model from the training data, described as follows.

4.3 Training Data Generation

We use 300 synthetically generated square matrices to train the XGBoost model.
The matrix size of our training samples ranges from 1, 000 to 15, 000, increased
with a step of 200. We populate the matrix with random values of 0 and 1 with
a sparsity ranging from 0.1% to 70%, to simulate the matrix sparsity seen at the
initial model graph input and later message propagation stages. For each training
matrix, we exhaustively execute the SpMM computation kernel with each sparse
matrix storage format and record the best performing format for each matrix
sample on each kernel. We then label each best-performing configuration with
a unique number (i.e., class label). Note that we apply cross-validation in our
evaluation to make sure we always test the trained model on unseen datasets.
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Fig. 6. How often a storage format is considered to be optimal on our synthetic training
data when varying the weight w in Eq. 1. Noted that there might be multiple optimal
formats for a single input if the final output O is very similar (±0.0001).

Optimization Goal. Our approach allows the user to find a trade-off between
the memory footprint and the GNN performance and train a predictive model
for their optimization goal. Specifically, in this work, we consider the following
optimization formulation, but other formulas can also be used:

min
O

Ol∈L = w ×R + (1.0 − w) ×M (1)

where R and M are the normalized running time and memory footprint for a
sparse matrix storage format from a collection of candidate formats (L), and w
is a configurable weight parameter. Note that we scale the execution time and
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memory footprint to the (0, 1) range using the min-max values found from the
profiled training data. Essentially, our goal is to minimize the weighted sum, O
in Eq. 1 to trade runtime for a lower memory footprint. For example, setting w to
0 and 1.0 means we only optimize for memory overhead and speeds respectively.

Our training data includes the raw measurements of the execution time and
memory footprint for each storage format under each matrix. We then apply
the Eq. 1 to label the storage format that gives the smallest O for each training
sample. Figure 6 lists the frequency of a storage format to be found to be optimal
on our training dataset. Here, the x-axis shows different settings of w in Eq. 1.
As can be seen from the diagram, the optimal storage format can vary depend-
ing on the optimization criterion. Our approach can adapt to such changes by
automatically learning from the training samples (see Sect. 4.5).

For each training data sample, we also extract the values of a selected set of
features (described in Sect. 4.4). We note that training is a one-off cost, and the
trained predictive model can be used by any GNN model to optimize the SpMM
computation kernel.

4.4 Feature Engineering

Feature Selection. A key aspect in building a good machine learning predictor
is finding the right representation, or features, to capture the essential charac-
teristics of the input workload. We start by considering over 30 raw features
chosen based on previous work of SPMV optimization [27]. Most of the features

Table 2. Matrix feature used by in our predictive model

No. Featur. Description No. Featur. Description

F1 numRow # rows F2 numCol # columns

F3 NNZ # Non-zeros F4 N diags # diagonals

F5 aver RD Avg. # non-zero ele-
ments per row

F6 max RD Max. # non-zeros per
row

F7 min RD Min. # non-zeros per
row

F8 dev RD Standard deviation of
non-zero numbers per
row

F9 aver CD Avg. # non-zeros per
column

F10 max CD Max. # non-zero values
per column

F11 min CD Min. # non-zero values
per column

F12 dev CD The deviation number
of non-zeros per col-
umn

F13 ER DIA Ratio of non-zeros in
diagonals

F14 ER CD Ratio of non-zeros
in column-packed
structure

F15 row bounce Avg. differences
between non-zeros
of adjacent rows

F16 col bounce Avg. difference
between non-zeros
of adjacent columns

F17 density Density of non-zeros F18 cv Normalized variation of
non-zeros per row

F19 max mu max. RD - avg. RD
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Fig. 7. Top-8 features which can lead to a high loss in accuracy if they are not used.

are used to capture the distribution of non-zero elements of the input matrix,
which can be extracted in parallel to reduce the overhead of feature extraction.

To learn effectively over a small training dataset, we use the feature score
given as a by-product of the XGBoost training process to select a compact
set of features. The feature score is computed summing up how many times
each feature is split on the decision tree. We then keep features that contribute
to 95% of the aggregated importance scores across all raw features. Using a
fewer number of features also help us to reduce the overhead of runtime feature
extraction. Table 2 summarizes our chosen matrix features.

Feature Normalization. In the final step, we scale each of the extracted feature
values to a common range (between 0 and 1) to prevent the range of any single
feature from being a factor in its importance. We record the minimum and
maximum values of each feature in the training dataset in order to scale the
feature values of an unseen matrix. We also clip a feature value to make sure it
is within the expected range during deployment.

Feature Importance. Figure 7 shows the top 8 dominant features based on
their impact on our predictive model accuracy. We calculate feature importance
by first training a model using all 19 of our chosen features, and record the accu-
racy of our model. In turn, we then remove each of our features, retraining and
evaluating our model on the other 18, noting the drop in prediction accuracy. We
then normalize the values to produce a percentage of importance for each of our
features. Features for measuring the non-zero element distribution, like ER DIA
and cv in Table 2, are important for choosing the storage format. The similar
distribution of feature importance is an indication that each of our features is
able to represent distinct information about the matrix workload, all of which is
important for the prediction task at hand.

4.5 Training the Model

The collected feature values, together with the desired label for each training
matrix, are passed to a supervised learning algorithm to learn the XGBoost
model. The time for training the predictor is dominated by generating the train-
ing data. In this work, it takes less than a week to label all the training samples
using a single multi-core server. In comparison, processing the raw data and
building the models took a negligible amount of time, less than an hour run in
a RTX 2060 GPU. Since training is only performed once, it is a one-off cost.
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4.6 Using the Model

The trained predictor can be applied to a new, unseen matrix used by a SpMM
kernel. We implement our predictive model using the Python Scikit-learn [4]
package, which can be easily integrated with mainstream deep learning frame-
works. We have encapsulated all of the inner workings, such as feature extraction,
prediction and storage format conversion and kernel selection, into a single pack-
age. Prediction is done by calling a dedicated SpMMPredict function (provided
by our library) before each GNN layer. The function takes as input a matrix
object and outputs a matrix object stored using the predicted storage format.
Depending on the matrix object type, the corresponding SpMM kernel will be
automatically chosen. Our current implementation supports PyTorch, but it can
be easily ported to other deep learning frameworks.

5 Experimental Setup

5.1 Software and Hardware

Evaluation Platform. Our hardware platform is a dual-socket multi-core server
with two 20-core Intel Sky Lake Xeon Gold 6138 CPUs running at 2.0 Ghz with
192 GB of RAM. Our evaluation platform runs Centos 7 with Linux kernel version
3.10. We test our approach on PyTorch v1.4.0, running on the CPU.

GNN Models. We apply our approach to 5 representative GNN architectures,
including GCN, graph attention network (GAT) [30], relational graph convo-
lutional neural network (RGCN) [26], GNN with feature-wise linear modula-
tion (FiLM) [3] and efficient graph convolutions (EGN) [28]. We use the open-
source implementation provided by PyTorch-geometric library [11] by stacking
two GNN layers to form a standard graph model.

Datasets. In our evaluation, we use two graph data suites, CoraFull [40] and
Entities [26], containing a total of 5 graph datasets with matrix sizes ranging from
19,793 to 58,086. To evaluate the generalization ability of our approach, we also
apply our approach to 100 synthetic matrices of different sizes and sparsity. For
the synthetic data, we initialize weights in the adjacency matrices by populating
them with random single floating numbers between 0 and 1.0.
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Fig. 8. Speedup given by our approach over COO. GeoMean represents the geometric
mean given by the previous performance.
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5.2 Evaluation Methodology

Competitive methods. We compare our approach against two closely related
predictive methods for using machine learning to choose the sparse matrix stor-
age format. The first approach employs a convolutional neural network (CNN)
[24,45], and the second uses a decision tree model for format selection [27]. We
use an open-source implementation of ResNet [23] as the CNN model. To pro-
vide a fair comparison, we train all machine learning models on the same training
dataset using the methodology described in the source publications.

Performance Report. We consider the end-to-end execution time, including
the overhead of our predictive model (i.e., the time spending on feature extrac-
tion, storage format transformation and model prediction). Our feature extrac-
tion process runs in parallel using all CPU cores. We measure the end-to-end
training time by training each model on each dataset for 10 epochs. We run each
matrix input 5 times and report the geometric mean of the end-to-end training
time and show the variations across different runs as a min-max bar. Note that
we only need to decide the matrix storage format once for each GNN layer across
training epochs. Given that in our evaluation, the sparse matrix distribution is
similar across training epochs, and hence the overhead of our approach can be
further amortised across multiple training epochs.

6 Experimental Results

6.1 Overall Results

Figure 8(a) shows the speedup over the PyTorch COO sparse matrix storage
format for each GNN model across our evaluation datasets. Here, the min-max
bar show the variance across the evaluated datasets. In this experiment, we aim
to optimize for speedups by setting w of Eq. 1. Moreover, in Sect. 6.4 we show
our approach can generalize to other settings of w.

As can be seen from the diagrams, choosing the right sparse matrix storage
format can improve the GNN performance. Our approach delivers an average
speedup of 1.3x (up to 3x) on GCN, which involves many SpMM computations
when performing the graph convolution operations. Our approach gives less per-
formance improvement on RGCN because the dataset that RGCN operates is
a dense edge-based dataset that does not benefit from sparse matrix format
selection. Furthermore, on a small number of datasets, where the COO is the
best format, our approach shows a minor slowdown, less than 7%, due to the
overhead of feature extraction. But for the majority of the evaluated datasets,
our approach gives a noticeable improvement over COO. Overall, our techniques
give an average speedup of 1.17x across GNN models and evaluation datasets.

Figure 8(b) shows the achieved performance per real-world graph dataset
across models. For most of the datasets, our approach gives noticeable speedups
across GNN.
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Table 3. Comparing our XGBoost approach with prior work

Model Inference time (s) Prediction accuracy (%) Realized speedup

XGboost (ours) 0.0008 89.1 1.17

CNN [24,45] 0.002 66.8 0.86

Decision-Tree [27] 0.0002 83.8 1.14
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6.2 Compare to Prior Methods

Table 3 compares our approach against a CNN and a decision tree model for
choosing the matrix storage format, where our approach gives a better overall
prediction accuracy. The CNN model gives a poor prediction accuracy when the
model is trained on 300 synthetic matrices. While the performance of the CNN
model can be improved by using more training data, doing so would incur a
higher overhead. Table 3 confirms that a higher prediction accuracy does trans-
late into better speedup performance, where our approach improves the CNN
and the decision tree model by 27% and 3%, respectively.

6.3 Compare to Oracle Performance

Figure 9 compares our approach against a theoretically perfect predictor for stor-
age form selection, for which we call oracle. We obtain the oracle performance
by exhaustively profiling all candidate storage formats for each GNN layer to
find out the best-performing format. The results show how close our predictive
modeling approach is to the theoretical upper bound. Our approach achieves, on
average, 89% of the oracle performance. Our model can be further improved by
using more training samples together with more representative features to char-
acterise some of the input matrices better to improve the prediction accuracy.
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Fig. 11. Comparing our XGBoost model against alternative modeling techniques.

6.4 Model Analysis

Impact of optimization goal. Our evaluation so far set w to 1 of our optimiza-
tion function (Eq. 1) by solely optimizing for speeds. Figure 10 shows prediction
accuracy when we vary the parameter settings. Our approach has a good gen-
eralization by giving the average accuracy of 90%. This experiment shows that
our approach is flexible and can adapt to different optimization trade-offs.

Alternative Modeling Techniques. Figure 11 compares our XGBoost-based
predictor against three other classification methods used in prior works for code
optimization [34]: MLP neural network [12], KNN (with k = 1) [42], and SVM
[22]. All the alternative techniques were trained and evaluated using the same
method and training data as our model. In this experiment, we consider the
model prediction accuracy and the time for making a prediction. As can be
seen from the diagram, our approach has the lowest runtime overhead while
giving the highest accuracy when compared to alternative modeling techniques.
Since XGBoost is a decision-tree-based model, it also has the advantage of being
interpretable because its decision process can be followed by traversing the tree.

Training and Deployment Overhead. Training of our predictive model only
needs to be performed once, after which the trained model can be applied to
any matrices. Training is dominated by the generation of training data which
takes in total less than a week’s machine time (Sect. 4.3). We can speed this
up by using multiple machines. The overhead for learning the XGBoost model
is negligible, less than 5 min. Our approach has a negligible runtime overhead
compared to the GNN kernel execution time, the overhead of feature extraction
and prediction is less than 3% to the end-to-end kernel execution time.

6.5 Discussion

Supporting Other Storage Formats. Our approach can be easily extended
to support other sparse matrix storage formats. As we formulate the storage
format prediction as a classification problem, this can be achieved by adding
a new class label (for the newly supported format) into our training dataset.
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Doing so would also require providing the relevant SpMM kernel implementation.
Other than these, a large part of the training process and deployment can remain
unchanged.

Supporting GPU Computation. This work focuses on the CPU execution of
GNN models due to the large graph datasets that a GNN model typically pro-
cesses. There are methods to support large-scale graph processing on GPUs such
as GraphSAGE [15]. Our approach can be ported to support GPU processing.
This will require using training data collected from the targeting GPU to train
our predictive model.

Optimize SpMM Algorithms. Optimizing SpMM computation is an active
research field [10]. It is interesting to investigate how the SpMM computation
kernel can be tailored for GNN computation and what parameters can be opened
to a tuning framework. As the best algorithm parameters are likely to change
depending on the matrix input and the underlying hardware, an automatic
machine learning-based approach similar to our approach is highly attractive.

7 Related Work

Several approaches have been proposed to optimize graph processing [39]. Some
provide new programming abstractions to optimize vertex/node-centric or edge-
centric processing [46]. For example, Pytorch-Geometric (PyG) [11] and Deep
Graph Library (DGL) [33] are two major frameworks for GNN computation.
Both libraries rely on a low-level, hand-optimized SpMM library, but they use
a single sparse matrix storage format throughout the execution. Our work com-
plements these prior efforts by dynamically adapting the sparse matrix storage
format and the associated computation kernel for each GNN layer, which can be
easily integrated with existing graph programming models.

Various sparse matrix storage formats have been proposed in the past [19].
Studies have shown that there is no “one-fit-for-all” storage format, and the
right format can change from one matrix to the other [6,20]. Methods have been
proposed to dynamically choose sparse matrix storage format based on the input
workloads [27]. These include approaches build around analytical methods [31]
or machine-learning-based predictive models [5]. The latter has the benefit of
can be easily ported to different architectures as machine learning learns from
empirical observations rather than simplified assumptions used by an analytical
model. However, prior machine-learning-based solutions have been concentrated
on optimizing sparse matrix-vector multiplication (SpMV) of scientific workloads
[45]. They choose a storage format at the beginning of the program execution
but do not adjust the format during application execution. No work so far has
concerned choosing the sparse matrix storage format for GNN SpMM throughout
program execution. Our work is the first to do so.

Machine learning is a proven design methodology for systems modeling
and optimization [25,34,35,38,43,44]. Studies have demonstrated the success
of applying machine learning for a wide range of code optimization tasks
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[9,29,32,36,37,41] In this work, we employ machine learning techniques to
develop an automatic approach to optimize GNN SpMM. We remark that our
work does not seek to advance machine learning algorithms; instead, it explores
and applies a well-established modeling method to tackle the GNN SpMM opti-
mization problem.

8 Conclusions

This paper has presented a machine-learning based predictive model to dynam-
ically choose the sparse matrix storage format and the associate computation
kernel during GNN execution. Our model uses numerical features to characterize
the input matrix to predict the storage format to use for the next GNN layer. We
evaluate our approach by applying it to five representative GNN models running
on a multi-core CPU using both real-world and synthetic datasets. Experimental
results show that our approach gives an average speedup of 1.17x (up to 3x) over
the Pytorch default strategy and exhibits a good generalization ability.
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Abstract. Sparse triangular solve, SpTS, is an important and recur-
ring component of many sparse linear solvers that are extensively used
in many big-data analytics and machine learning algorithms. Despite its
inherent sequential execution, a number of parallel algorithms like level-
set and synchronization-free have been proposed. The coarse-grained
synchronization mechanism of the level-set method uses a synchroniza-
tion barrier between the generated level-sets, while the fine-grained syn-
chronization approach of the sync-free algorithm makes use of atomic
operations for each non-zero access. Both the synchronization mecha-
nisms can prove to be expensive on CPUs for different sparsity structures
of the matrices. We propose a novel and efficient synchronization app-
roach which brings out the best of these two algorithms by avoiding the
synchronization barrier while minimizing the use of atomic operations.
Our web-based and parallel SpTS implementation with this hybrid syn-
chronization mechanism, tested on around 2000 real-life sparse matrices,
shows impressive performance speedups for a number of matrices over
the classic level-set implementation.

Keywords: Sparse Matrix · Sparse Triangular Solve · SpTS ·
Performance · Level-set · Synchronization-free · WebAssembly

1 Introduction

While large and sparse matrices have historically been known to arise frequently
in several scientific and compute-intensive applications, many modern big-data
analytics and machine learning applications [2,10,12] have become their popular
target these days. Likewise, the sparse matrix computations involved in these
applications have also become critically important for their performance. Sparse
triangular solve (SpTS) is one such recurring computation that is a building
block of a number of sparse linear solver algorithms for sparse direct [5] and pre-
conditioned iterative [19] methods in addition to the least-squares problems [3]
which are widely used in the machine learning fields [15,24].

In this paper, we focus on SpTS which computes the solution vector x for the
equation Lx = y, where L is a lower triangular sparse matrix, and y is a dense
vector. It is a forward substitution algorithm where the solution of xi may depend
c© Springer Nature Switzerland AG 2022
X. Li and S. Chandrasekaran (Eds.): LCPC 2021, LNCS 13181, pp. 118–133, 2022.
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on the solution of x0,...,xi−1. The upper triangular case is analogous, and uses
a backward substitution algorithm instead. Unlike other popular sparse kernels
like sparse matrix-vector multiplication (SpMV), it is not straightforward to run
SpTS operation in parallel, and achieve scalable performance due to this inherent
sequential nature of the algorithm.

However, it is still possible to parallelize SpTS by exploiting the very nature of
the sparse matrix. One way is to construct a dependency graph representing the
dependencies between the components of the solution vector x, and then allow
the independent ones to run in parallel. The popular level-set method for CPUs
employs this approach to create the sets of independent components, and uses
a coarse-grained synchronization method to maintain the dependency between
those sets. Another algorithm called synchronization-free or sync-free for short,
primarily used for GPUs, avoids generating the dependency information, and
uses a fine-grained synchronization method to maintain the dependency between
the components themselves. The level-set method uses barrier synchronization,
while the sync-free method uses atomic operations.

Despite their differences, the effectiveness of both of these approaches
depends on the sparsity structure of the matrix, and the machine architecture.
It is highly impractical to use the sync-free method for CPUs due to the heavy
use of expensive atomic operations on the limited number of threads over the
entirety of this algorithm. A number of sparsity structure patterns can degrade
the SpTS performance for the level-set method: (1) large number of sets, a spar-
sity structure with a large number of sets may hurt the SpTS performance due
to the increased number of synchronization barriers; (2) small and varied num-
ber of components per set, a structure pattern with a few and a varying number
of components per set may waste the assigned CPU resources and incur an
unnecessary maintenance overhead; (3) uneven distribution of non-zeros among
the rows, a sparsity structure with a highly uneven number of non-zeros to be
processed for the components within the same set may lead to load imbalance
among the worker threads. In order to address these challenges, we propose a
synchronization mechanism that is less coarse-grained than the level-set method
and less fine-grained than the synchronization-free method at the same time.

Following are the main contributions of our work in this paper:

– We present a novel synchronization approach, a hybrid between the level-
set and sync-free algorithms, to efficiently run SpTS in parallel on CPUs.
Our cost-effective busy-waiting synchronization strategy is built upon the use
of two different synchronization modes and the dynamic switching between
them.

– We employ a row classification technique to minimize the use of expensive
atomic operations in the WebAssembly [8] environment.

– We tackle the issues with costly synchronization barriers between the level-
sets by eliminating them, and developing SpTS to be less sensitive to the
number of worker threads employed in comparison to the level-set method.

– We implement web-based and parallel SpTS using our hybrid synchronization
method on WebAssembly and JavaScript, and evaluate its performance in
comparison to the level-set method over almost 2000 real-life sparse matrices,
and demonstrate impressive performance speedups.



120 P. Sandhu et al.

2 Motivation and Related Work

SpTS, for being a key component of popular sparse linear solvers, continues to
attract the attention of high-performance computing (HPC) researchers. The
level-set method, proposed by Anderson and Saad [1] and Saltz [20] in the early
1990s, is a classic and well-known technique to solve SpTS in a parallel envi-
ronment on CPUs. This graph-based algorithm involves a preprocessing step to
create the level sets, and a costly synchronization barrier after each level to sat-
isfy the dependencies between the levels. As a result, a number of recent research
contributions have been made to analyze and overcome these limitations [18,25]
and also to improve the parallel performance of this sparse kernel on modern
machines [6,7,11,13,16,23].

Wolf et al. [25] analyzed a few factors like barrier type that impact the
performance of multithreaded SpTS, favouring the use of more active barriers
(spin locks) instead of the passive barriers (blocking locks). In order to reduce
the performance overhead of inter-level synchronization, Park et al. [18] pre-
sented a synchronization sparsification technique that performs point-to-point
synchronization between the super tasks, however with an involved and expen-
sive preprocessing stage to reduce the number of dependency edges in the task
dependency graph. While sharing the same goal, our synchronization strategy
avoids both the synchronization barriers and the intricate preprocessing on the
task dependency graph.

On the other hand, for manycore platforms, such as GPUs, Liu et al. [11]
exposed the parallelism in SpTS for CSC storage format by making use of atomic
operations for synchronization rather than creating the level-sets [6,16]. It is
called a synchronization-free algorithm which reduced the preprocessing cost
and completely eliminated the conventional synchronization between the levels.
Dufrechou and Ezzati [7] later showed the performance improvements for sync-
free algorithm using CSR format over the CSC format. Following this, Su et
al. [23] recently proposed CapelliniSpTRSV, a thread-level instead of warp-level
sync-free parallelism technique to improve the performance of matrices with a
large number of rows per level and a small number of non-zeros per row. Lu et
al. [13] implemented a recursive block algorithm to solve SpTS in parallel on
GPUs while improving upon the two-dimensional blocking technique previously
proposed by Mayer [14] to divide the triangular matrix into multiple triangular
sub-matrices and rectangular or square sub-matrices.

Next, Yilmaz et al. [26] presented adaptive level binning to balance the work-
loads among the threads while making use of some features from both level-set
and sync-free methods. Our approach in this paper is to reap the benefits of
both level-set and sync-free methods in a more simplified and distinct manner
to build an efficient sparse triangular solve. Several web-based machine learning
frameworks like TensorFlow.js [17] train and deploy models in web browsers.
Existing studies [9,21,22] have thus analyzed the performance of their exten-
sively used sparse computations like SpMV in a web context. We develop a
web-based sparse triangular solve which is also one of the most critical sparse
BLAS (Basic Linear Algebra Subprograms) routines. In addition to that, our
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for i = 0 to N−1 do
x [ i ] = 0
for j = row ptr [ i ] to row ptr [ i +1] − 2 do

x [ i ] += val [ j ] ∗ x [ co l [ j ] ]
end for
x [ i ] = (y [ i ] − x [ i ] ) / va l [ row ptr [ i +1] − 1 ]

end for

Listing 1.1. A serial SpTS CSR algorithm to solve x in Lx = y

work is a step towards building a web-based scientific computing framework
that will provide optimized and parallel sparse BLAS routines, and has clear
applicability as a high-performance backend for the leading ML frameworks.

3 Preliminaries

In this section, we provide some background details for SpTS operation which
includes its widely used, classic and state-of-the-art serial and parallel algo-
rithms.

3.1 Sparse Matrix and Serial SpTS

Given a nonsingular lower triangular sparse matrix in the external format, it is
stored in the compressed sparse row (CSR) format as shown in Fig. 1. It is the
most widely used internal sparse storage format which consists of three arrays
row ptr, col and val. While col and val arrays store the column index and
the value of each non-zero entry in a row-major order, row ptr array stores the
starting index of each row, pointing at the other two arrays.
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Fig. 1. An example of a lower triangular matrix in the CSR format.

In the serial SpTS CSR algorithm to solve x in the equation Lx = y, the sparse
matrix rows are traversed sequentially, and each value of the solution vector x is
solved accordingly. It is natural to solve it in this way because the solution of xi

may depend on the solution of x0,...,xi−1. As illustrated in Listing 1.1, for each
xi, the sum of the product of non-zero entries (excluding the diagonal entry)
from the sparse matrix row i with the corresponding solutions of x, indicated
via the column index of each non-zero entry, is calculated. Next, the solution of
xi is calculated by subtracting this sum from yi, and then dividing it with the
diagonal entry.
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3.2 Parallel SpTS

Due to the sparse structure of a lower triangular sparse matrix in a SpTS opera-
tion, it is possible to find such matrix rows which are independent of each other,
and can be solved in parallel. The level-set method and the synchronization-free
algorithm are two popular techniques that exploit this property to run SpTS in
parallel.

Level-Set. The preprocessing stage of this method makes sets of the matrix
rows which can be solved independently and simultaneously as shown in Fig. 2
for the example matrix from Fig. 1. The cardinality of these sets describes the
amount of parallelism available. A specific order is maintained between these sets,
also called levels, to satisfy the dependency between them. This process basically
converts the fine-grained dependencies between the rows into a coarse-grained
dependency between the levels. In the parallel SpTS CSR level-set algorithm
as shown in Listing 1.2, this coarse-grained dependency between the levels is
satisfied by the use of a synchronization barrier after the completion of SpTS
computation at each level.

0

1

6

2

4

3 5

7

Level 0

Level 1

Level 2

Level 3

Level-CSR : 

row_ptr

0 3 5 81level_ptr

0 2 31 5 6 74order

Level-set formation: 

0 3 5 181 7 14 1610

1 1 1 1 11 1

0 0 2 11 0 3 1 3 4 0 1 2 5 5

1 1 1 1 1 11 1

col

val

6 3 7

11 1

Fig. 2. An example of level-set formation for a lower triangular sparse matrix.

for l = 0 to n l e v e l s − 1 do
for k = l e v e l p t r [ l ] to l e v e l p t r [ l

+1] − 1 in para l le l do
i = order [ k ]
x [ i ] = 0
for j = row ptr [ i ] to row ptr [ i

+1] − 2 do
x [ i ] += val [ j ] ∗ x [ co l [ j ] ]

end for
x [ i ] = (y [ i ] − x [ i ] ) / va l [ row ptr [

i +1] − 1 ]
end for
// ba r r i e r synchron i za t i on

end for

Listing 1.2. A simplified SpTS CSR
level-set algorithm to solve x in Lx = y

for i = 0 to N−1 in para l le l do
x [ i ] = 0
for j = row ptr [ i ] to row ptr [ i +1]

− 2 do
while atomic read ( f l a g [ c o l [ j ] ] )

!= 1 do
// busy−wait

end while
x [ i ] += val [ j ] ∗ x [ co l [ j ] ]

end for
x [ i ] = (y [ i ] − x [ i ] ) / va l [ row ptr [ i

+1] − 1 ]
atomic wr i te ( f l a g [ i ] , 1)

end for

Listing 1.3. A simplified SpTS CSR
sync-free algorithm to solve x in Lx = y

Synchronization-Free. This algorithm eliminates the cost of barrier synchro-
nizations between the levels by establishing a busy-waiting mechanism and mak-
ing use of expensive atomic load/store operations as shown in Listing 1.3.
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4 Our Approach

In this section, we first give an overview of our approach, and next provide the
details on the internals of our hybrid synchronization strategy.

4.1 Overview

The level-set method employs a coarse-grained synchronization mechanism that
works at each level, while the sync-free method applies a fine-grained synchro-
nization scheme that works at each row. Both of these synchronization mecha-
nisms have their own benefits depending on the structure of the matrix. The-
oretically, the sparse matrices with a few levels and a significant and balanced
workload among the given worker threads will prefer the level-set method. The
sync-free method may prove useful otherwise. However, the situation may be
different at different levels depending on the structure of the matrix. Hence, we
intend to follow a middle path between these two algorithms to reap the ben-
efits of both. The objective of our algorithm is to improve the performance of
parallel SpTS by avoiding the synchronization barrier while minimizing the use
of atomic operations as much as possible.

(1) No Synchronization Barrier with Level-Set Formation. Unlike the
sync-free approach, we choose to keep the preprocessing step of the level-set
method. We build the level-set formation in a simplified manner, and reorder
the rows to bring together the rows from the same level-set to have spatial
locality. We adopt this formation because it is a systematic way to guarantee
that the worker threads at the same level can make progress independently
and simultaneously. This becomes the basis of our simplified synchronization
technique.

However, like the sync-free algorithm, we decide to employ no barrier syn-
chronization after each level because the worker thread does no useful work while
waiting at the barrier. Instead, we allow each worker thread to immediately start
processing the next level after it is done with the current level, without waiting
for other worker threads to reach the end of the same level. In order to main-
tain the accuracy of the algorithm, we employ a novel and effective busy-waiting
synchronization mechanism described in detail in the following sections.

(2) Minimize the Use of Atomic Operations. In the sync-free system as
shown in Listing 1.3, an atomic load operation is performed repeatedly for each
non-zero until the value of vector x at the required row (represented by the
column index of the non-zero) is completely solved and available for use. This
availability is indicated after the complete computation of the value of vector
x at each row by using an atomic store operation. Due to the heavy use of
expensive atomic operations on the limited number of threads over the entirety
of this algorithm, this system proves highly ineffective on the CPUs.
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However, in order to avoid the synchronization barrier, we need another
synchronization strategy to make sure that the value of solution vector x at a
given row is completely solved before its use. As a result, it seems appealing to
develop a hybrid synchronization mechanism that brings out the best of both
the level-set method and the sync-free method for CPUs. A straightforward
candidate solution is to employ the sync-free busy-waiting mechanism for the
worker threads which have been advanced to the next levels, while other worker
threads are still working at the current level. However, it continues to be an
unproductive solution as it still requires an atomic store operation for each row
to indicate the availability of the value of solution vector x at a given row.

Therefore, we employ a number of techniques to minimize the use of atomic
operations, and build a more cost-effective busy-waiting synchronization strat-
egy. In addition to that, we also keep a simplified synchronization mechanism
where no atomic operations and busy-waiting are needed. We call our two syn-
chronization techniques as no-busy-wait and busy-wait, as shown in Fig. 3,
and dynamically switch between the two during the course of SpTS computa-
tion as many times as required.

no-busy-wait busy-wait

start

local_level > global_level

local_level == global_level

Fig. 3. Our synchronization
modes and their dynamic
switching conditions.

(0,0,0) (1,1,0) (1,1,1)

(1,2,0) (1,2,2)

T1
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(2,3,1) (2,3,3)

(2,5,0) (2,5,1) (2,5,2) (2,5,5) (3,6,5)

(3,4,1)

(3,6,6)

(3,4,3) (3,4,4)

(3,7,3) (3,7,7)

Time

(a) Level-set method
(0,0,0) (1,1,0) (1,1,1)

(1,2,0) (1,2,2)

T1

T2

T3

(2,3,1) (2,3,3)

(2,5,0) (2,5,1) (2,5,2) (2,5,5) (3,6,5)

(3,4,1)

(3,6,6)

(3,4,3) (3,4,4)

(3,7,3) (3,7,7)

busy-wait no-busy-wait

(b) Our hybrid method

Fig. 4. An example with a timeline to show the par-
allel SpTS workflow for algorithms with different syn-
chronization mechanisms.

4.2 no-busy-wait

This synchronization mode is set by default at the start of the SpTS computa-
tion. As the name implies, it doesn’t involve any busy-waiting, and each thread
can safely assume that the value of vector x at the required row is completely
solved and available for use. Let’s suppose local level to be the current work-
ing level of a worker thread, and global level to be the maximum working level
achieved by all the worker threads. The value of global level will always be
less than or equal to local level for any worker thread. A worker thread can
work in this synchronization mode if its local level is equal to global level.
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Otherwise, the worker thread continues its work for the next level after switching
its synchronization mode to busy-wait, the details of which will be presented
in the following section.

Let’s use the example matrix and its level-set formation from Figs. 1 and
2 to inspect the SpTS workflow in a parallel environment while applying our
synchronization strategy. We assume three worker threads T1, T2 and T3 in
Fig. 4 to show the SpTS computation timeline with each 3-tuple representing
(local level, row, column) for the processing of each non-zero.

While processing the non-zero, the required row index for the vector x is
represented by the column value of the 3-tuple. For example, the tuple (3,4,3)
for the worker thread T1 means that the current working level of thread T1 is 3,
and it is processing the non-zero at 4th row and 3rd column of the matrix, and it
requires the value of x[3] to proceed with the computation. All the worker threads
start their work in the no-busy-wait mode as illustrated in Fig. 4b. The worker
threads T1 and T3 switch to busy-wait as their local level reaches 3, repre-
sented by the tuples (3,4,1) and (3,7,3) respectively. But at the same time, T2
continues to work in the no-busy-wait mode, keeping the value of global level
to be 2. If it had been the conventional level-set method as shown in Fig. 4a, the
worker threads T1 and T3 must wait at the barrier until global level becomes
equal to their local level, which happens after T2 also finishes its work at
level 2.

4.3 busy-wait

A worker thread switches to this mode when its local level becomes greater
than global level to allow itself to make feasible advancements and avoid
the costly barrier. Unlike no-busy-wait, this mode doesn’t provide any safety
guarantees by default that the value of vector x at the required row is com-
pletely solved and available for use. As indicated earlier, the busy-waiting mech-
anism of the sync-free algorithm is a candidate solution, but it will require the
worker thread to perform atomic store operations for each row even during the
no-busy-wait mode. Therefore, we employed more cost-effective busy-waiting
techniques to enable the worker thread to make progress in a safely manner.

We classify the required rows into four exhaustive categories: (1) previous-
level rows (2) intra-thread rows (3) advanced-worker inter-thread rows (4) inter-
thread rows. The worker thread identifies the required row to be one of these
categories, and decides whether to proceed with the computation or wait. If the
required row belongs to any one of them except (4), it is safe for the worker thread
to perform the computation as illustrated by a flowchart in Fig. 5. It is due to
this classification that we are able to minimize the use of atomic operations.
Listing 1.4 shows a portion of SpTS implementation in WebAssembly, providing
details of the internals of our technique in the busy-wait synchronization mode.
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Previous level
row?

Computation

Intra-thread
row?

Advanced
worker?

Yes

No No

YesYes

No
Start

Fig. 5. An overview of the internals of the busy-wait synchronization mode for each
non-zero in SpTS computation.

( f32.load ( l oca l .get $ c s r v a l ) )
( i32. load ( l oca l .get $ c s r c o l ) )
( l o ca l . s e t $requ i red row )
( i32.atomic.load ( l oca l .get $g loba l row index ) )
( l oca l .get $requ i red row )
( i 3 2 . l e s )
i f

( i32. load ( i32.add ( l oca l .get $row worker index ) ( i 32 . sh l ( l oca l .get
$requ i red row ) ( i32.const 2) ) ) )

( l o ca l . s e t $worker )
( l oca l .get $worker )
( l oca l .get $current worker )
( i32.ne )
i f

( i32. load ( i32.add ( l oca l .get $ row l ev e l i ndex ) ( i 32 . sh l ( l oca l .get
$requ i red row ) ( i32.const 2) ) ) )

( l o ca l . s e t $ r e q u i r e d l e v e l )
( loop $busy wai t loop

( l oca l .get $ r e q u i r e d l e v e l )
( i32.atomic.load ( i32.add ( l oca l .get $worke r l e v e l i ndex ) ( i 32 . sh l (

l oca l .get $worker ) ( i32.const 2) ) ) )
( i 32 .gt s )
( br i f $busy wai t loop )

)
end

end
( f32.load ( i32.add ( l oca l .get $x ) ( i 32 . sh l ( l oca l .get $requ i red row ) ( i32.const 2)

) ) ) ( f32.mul )

Listing 1.4. A portion of SpTS WebAssembly implementation in the busy-wait

synchronization mode

(1) Previous Level Rows are the rows that belong to the preceding levels
which have been completed by all the worker threads. It means the value of
x at the required rows from this category must be available for use. We use
global row index to represent the maximum row index of the level completed
by all the worker threads. This value is atomically updated to the maximum row
index of a particular level when all the worker threads finish their computation at
that level. The worker thread atomically reads this value to identify the category
of its required row. If global row index is greater than the required row, it is
confirmed that the required row belongs to this category.

For example, the worker thread T1 from Fig. 4b in the busy-wait mode at
the tuple (3,4,1) identifies that the required row 1 (represented by the column
value of this tuple) belongs to the previous level category, and hence proceeds
with the computation.

(2) Intra-thread Rows are the rows processed by the worker thread itself. It
means the value of x at those required rows must already be completely solved.
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We statically store the mapping between the rows and the worker threads. The
worker thread uses this information to identify if the required row belongs to this
category. Since this mapping is static, non-atomic loads are sufficient to perform
this check.

For example, in the busy-wait mode, the required row 3 from the tuple
(3,4,3) of the worker thread T1 in Fig. 4b was indeed processed by T1 itself.
Therefore, it qualifies as an intra-thread row, and T1 goes on to carry out the
computation.

(3) Advanced-Worker Inter-thread Rows are the rows that are processed
by other worker threads which are also ahead of global level. In addition to
that, these rows belong to those levels which are already completed by those
worker threads. We statically have the mapping between the rows and the level
sets, and also between the rows and the worker threads. The required level and
the corresponding worker thread information is calculated using these mappings.
Each worker thread atomically updates its recently completed level as it proceeds
with its computations. Therefore, the given worker thread atomically reads the
recently completed level of the corresponding worker thread. If it is greater than
or equal to the required level, the given worker thread can safely assume that
the value of x at the required row is available for use.

For example, the required row 3 belongs to the advanced-worker inter-thread
category for worker thread T3 at the tuple (3,7,3) in Fig. 4b. T3 determines this
by checking that the required row 3 and its corresponding level 2 have been
completely processed by the advanced worker thread T1.

(4) Inter-thread Rows are the rows that are processed by other worker
threads, and belong to the level which is not yet finished by those worker threads.
Hence, the given worker thread needs to wait for the value to become available.
In contrast to the sync-free algorithm, each worker thread atomically declares
the completion of a level instead of the completion of a row as it proceeds with
its computations. We have followed this style to reduce the cost of atomic store
operations.

Since this mode involves busy-waiting, it is naturally more expensive than the
no-busy-wait mode. In order to keep the benefits of not performing the atomic
load operations when not needed, a worker thread checks before the computation
on each non-zero if it is possible to switch back to its default synchronization
mode. Therefore, the worker thread switches back to no-busy-wait mode if its
local level becomes equal to global level.

5 Evaluation

In this section, we first describe our experimental layout. Next, we evaluate the
SpTS performance using our WebAssembly implementations of both hybrid and
level-set synchronization methods on our benchmark matrices.
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5.1 Experimental Setup

We conducted our experiments on an Intel Core i7-3930K with 6 3.20 GHz cores,
12 MB last-level cache and 16 GB memory, running Ubuntu Linux 18.04.5. Our
execution environment for WebAssembly is the Chrome 92 browser (Official build
92.0.4515.107 with V8 JavaScript engine 9.2.230.20). We ran headless Chrome
with two flags, --wasm-no-bounds-checks and --wasm-no-stack-checks to
avoid memory bounds checks and stack guards for performance testing. We used
Date.now(), a JavaScript method to measure the execution time.

Our set of sparse matrix benchmarks consists of 1,957 real-life square sparse
matrices from The SuiteSparse Matrix Collection [4]. We use Matrix Market
external format as an input to our programs, and store the lower triangular
portion of the sparse matrices in the internal format to solve Lx = y. We keep
all the diagonal elements to be non-zeros to avoid the sparse matrix from being
singular.

5.2 SpTS Performance Comparison

Figure 6 shows the single-precision SpTS performance speedup of using hybrid
over level-set synchronization method for our benchmark matrices with CSR
Working Set on the x-axis, which is calculated as ((nlevels + 1) + (N + 1) + 2
* nnz + 2 * N ) * 4, where nlevels is the number of generated levels for a N X
N lower triangular sparse matrix with nnz number of non-zeros.

(a) Speedup vs number of levels (b) Speedup vs avg number of rows per level

Fig. 6. Performance speedup of our hybrid method over the level-set method for dif-
ferent sparse matrices depicted using different structure features

It is evident that the hybrid method shows quite promising performance
speedups for a number of matrices especially with a large number of levels.
Apart from that, we notice various different speedup results for different sparse
matrices from the plot. It indicates that the choice of synchronization method
can have a significant impact on the SpTS performance. Using our observation,
we classify the speedup results into three categories: (1) Below 1 (2) Above 1
(3) Close to 1, and evaluate them on an individual basis.
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Below 1. This category belongs to the set of matrices that shows better SpTS
performance for the level-set synchronization method. Figure 6 clearly shows that
the CSR Working Set size of the matrices from this category is usually small.
In order to understand the properties of this set, we show a small subset of
these matrices in Table 1, which largely represents the whole set of the Below 1
matrices. First of all, we can observe from this table that some of these matrices
have a large number of rows per level. It indicates that each worker thread likely
receives a substantial amount of workload. Further examination uncovers that
there is a nearly balanced workload among the worker threads at each level for
these matrices. Since the cost of synchronization barriers becomes insignificant
due to the nearly balanced and significant workload, these matrices perform
better with the level-set synchronization method.

Table 1. Representative matrices from Below 1 category

Matrix N nnz nlevels N/nlevels
Performance(GFLOPS)

Speedup
Level-set Hybrid

t2dal e 4257 4257 1 4257 1.70 1.52 0.89x

iprob 3001 6001 2 1500.5 2.96 2.71 0.92x

bcsstm11 1473 1473 1 1473 1.37 1.07 0.78x

grid2 3296 9728 3 1098.6 3.36 3.07 0.91x

SmaGri 1059 1117 4 264.7 0.59 0.46 0.78x

fpga dcop 09 1220 3857 6 203.3 1.49 1.34 0.89x

bcspwr08 1624 3837 14 116 0.89 0.74 0.83x

t3dl a 20360 265113 633 32.2 1.32 1.22 0.92x

exdata 1 6001 1137751 1501 3.99 1.47 1.37 0.93x

psmigr 3 3140 278874 1638 1.91 0.89 0.82 0.92x

Next, the matrices with a very small number of rows per level like psmigr 3
indicate that almost no parallelism is available for the worker threads. However,
the large number of non-zeros per row likely reduces the cost of synchroniza-
tion barriers. Therefore, in both of these conditions, our approach suffers from
the overhead of switching the synchronization modes via function calls and the
atomic operations performed.

Above 1. This set of matrices shows better SpTS performance for the hybrid
synchronization method. We list the details and the actual performance numbers
of a small subset of these matrices in Table 2. First of all, we can observe from
this table that these matrices have a large number of levels which means there
are a large number of synchronization barriers involved for the level-set method.

Next, there are a small to moderate number of rows per level which indicates
that a limited amount of workload is available for each worker thread. Our
further investigation reveals that the distribution of rows among the levels is
highly uneven. A small number of levels have a very large number of rows,
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Table 2. Representative matrices from Above 1 category

Matrix N nnz nlevels N/nlevels
Performance(GFLOPS)

Speedup
Level-set Hybrid

lung2 109460 273647 479 228.5 1.47 2.28 1.55x

dblp-2010 326186 1133886 1562 208.8 1.43 1.8 1.25x

delaunay n17 131072 524248 910 144.0 1.36 1.82 1.34x

shallow water1 81920 204800 1016 80.6 0.58 0.87 1.50x

twotone 120750 734744 1695 71.2 1.28 1.72 1.34x

e40r0100 17281 257727 512 33.7 1.49 2.06 1.38x

ted A 10605 313099 1217 8.7 1.10 1.74 1.58x

ship 001 34920 1965708 4654 7.5 1.33 1.66 1.25x

smt 25710 1887646 4646 5.5 1.27 1.72 1.35x

t2em 921632 2756232 871133 1.05 0.012 0.028 2.33x

while others have quite small. This imbalanced distribution of rows among the
levels further limits the amount of workload per worker thread, leading them to
be stuck at the synchronization barrier most of their lifetime for the level-set
method. On the other hand, our approach benefits from allowing the worker
threads to move to further levels to perform some feasible part of the SpTS
computation.

Finally, there are a few matrices like t2em with a large number of levels
and a very small number of rows per level. Although these matrices show great
performance speedup for the hybrid method, they are potentially less interesting
for the comparison due to their nearly nonexistent parallelism, and low absolute
performance numbers.

Close to 1. Finally, this set of matrices shows similar SpTS performance for
both hybrid and level-set synchronization methods. We show a small subset of
these matrices along with their structure parameters in Table 3.

It is intriguing to notice that the matrices from this category have a varied
number of levels, starting from as low as 1 and ranging up to a large number.
We observe the presence of diagonal matrices of different sizes (with a number
of levels equal to 1) in both Below 1 and Close to 1 categories. It shows that
the overhead becomes insignificant for the large matrices with a small number of
levels. However, for the matrices with a large number of levels, we investigated
to find out that the workload among the worker threads at each level is a little
imbalanced. The workload imbalance is such that the SpTS performance gain
from some levels in our approach gets cancelled out by the overhead from other
levels.
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Table 3. Representative matrices from Close to 1 category

Matrix N nnz nlevels N/nlevels
Performance(GFLOPS)

Speedup
Level-set Hybrid

mbeacxc 496 30309 214 2.3 0.76 0.76 1.00x

s3dkq4m2 90449 2259087 2369 38.2 1.39 1.40 1.01x

coPapersCiteseer 434102 16470822 8087 53.7 2.26 2.24 0.99x

TSOPF RS b39 c7 14098 238270 106 133 3.20 3.22 1.01x

kron g500-logn18 262144 10844830 1820 144 1.21 1.19 0.98x

wikipedia-20051105 1634989 15512976 1273 1284.3 1.68 1.68 1.00x

hangGlider 5 16011 89187 6 2668.5 3.97 4.03 1.02x

t3dl e 20360 20360 1 20360 1.87 1.83 0.98x

rajat29 643994 2294300 29 22206.6 3.97 4.03 1.01x

ins2 309412 1530448 8 38676.5 3.11 3.14 1.01x

parabolic fem 525825 2100225 7 75117.8 4.27 4.27 1.00x

The analysis of these three different types of speedup results demonstrates
the impact of the structure of the matrix on the choice of the synchronization
method. A single synchronization method is therefore not appropriate for all the
given input matrices. Our evaluations prove the potential of our hybrid method
to support an adaptive synchronization technique for SpTS on CPUs based on
the structure of the matrix.

6 Conclusion and Future Work

The limitations of the level-set method for different sparsity structures of the
matrices, and the ineffectiveness of the sync-free algorithm on CPUs led us to
develop our hybrid synchronization method. Our strategy specifically targeted
the granularity of the existing synchronization techniques to overcome their per-
formance bottlenecks. While keeping the level-set formation, we avoided the syn-
chronization barriers and minimized the use of atomic operations. We tested our
WebAssembly SpTS implementation with this hybrid synchronization approach
on around 2000 matrices, and demonstrated impressive speedups for several
matrices over the classic level-set implementation.

Our future directions include the exploration of more sparse storage for-
mats and optimization techniques like SIMD in addition to the improvements
over the present parallelization strategies. It involves using the upcoming syn-
chronization constructs like atomic floating-point operations from the rapidly
expanding WebAssembly instruction set. Besides, the non-trivial task to auto-
matically figure out the best synchronization method for SpTS at runtime for a
given sparse matrix has intrigued us to explore the pertinent matrix structure
features for developing such techniques in the future.
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Abstract. Scientific applications, especially legacy applications, con-
tain a wealth of scientific knowledge. As hardware changes, applications
need to be ported to new architectures and extended to include sci-
entific advances. As a result, it is common to encounter problems like
performance bottlenecks and dead code. A visual representation of the
dataflow can help performance experts identify and debug such prob-
lems. The Computation API of the sparse polyhedral framework (SPF)
provides a single entry point for tools to generate and manipulate polyhe-
dral dataflow graphs, and transform applications. However, when view-
ing graphs generated for scientific applications there are several barriers.
The graphs are large, and manipulating their layout to respect execu-
tion order is difficult. This paper presents a case study that uses the
Computation API to represent a scientific application, GeoAc, in the
SPF. Generated polyhedral dataflow graphs were explored for optimiza-
tion opportunities and limitations were addressed using several graph
simplifications to improve their usability.

Keywords: Sparse Polyhedral Framework · Computation API ·
Polyhedral dataflow graph

1 Introduction

Scientific applications, especially legacy applications, contain a wealth of scien-
tific knowledge. However, older codes need to be ported to new architectures
and new generations of computational scientists need to extend them to keep
making scientific progress. As applications age and are passed from programmer
to programmer, problems creep in: logic and memory bugs, performance bottle-
necks, and dead code are just a few of the possibilities. A visual representation
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of the code will speed up the learning process for new programmers and can
help identify existing issues with the code. Additionally, the right abstraction
will allow performance optimizations to be performed by manipulating the visual
representation rather than rewriting code manually.

Polyhedral dataflow graphs (PDFGs) [9] highlight the dataflow, data access
patterns, and execution schedule for applications visually. Originally developed
to identify temporary storage reduction opportunities [15], they have proven to
be useful for learning code bases and identifying opportunities for parallelism.
Previous efforts used manual drawings of the graphs and then automated graph
generation, running only on very small examples. Applying these techniques to
real scientific applications remains a significant challenge. This paper uses a
scientific application, GeoAc, to explore the limitations of PDFGs and proposes
several techniques to ensure correctness and improve their usability.

Fig. 1. Optimization pipeline overview [16].

Polyhedral dataflow graphs are part of the Sparse Polyhedral Framework
(SPF) and are generated automatically from the SPF intermediate representa-
tion [16]. They are referred to as polyhedral because statements are represented
as a combination of statements and iteration spaces that are expressed using
the polyhedral model. The polyhedral model is a mathematical representation
of the source code. Transformations to the execution schedule can be applied
using relations. The relations are applied to the iteration spaces, expressed as
sets. The resulting code may have a different execution order or different control
flow. Importantly, the transformations can be composed. This means that an
arbitrarily long series of transformations can be applied to the same code base.

Figure 1 shows the anticipated workflow for human-in-the-loop optimization
using PDFGs. Once an application is converted to the SPF intermediate repre-
sentation, a performance expert examines the resulting graphs, indicates a series
of transformations as graph operations, and repeats the process until they are
satisfied. Code generation then produces the newly optimized code. It is also
possible to automate the choice of transformations. However, automation is not
part of the current work.

Previous work demonstrated the concept of PDFGs using manually con-
structed graphs that represented the execution scheduling using the layout posi-
tion of nodes and dataflow using edges between nodes. Notably, both data spaces



136 R. Shankar et al.

and statements are represented as nodes in the graph. Due to the limitations
of this format, the execution schedule does not guide the layout of the graphs
as it did in the manually produced graphs. The result is a very large graph.
The full PDFG for GeoAc is not readable as it contains 4616 statement nodes
and several thousand more data space nodes. The goal of PDFGs is to reveal
dataflow optimizations and parallelism opportunities; to make this happen the
graphs need to be manipulated to be smaller and communicate key information
clearly.

This paper documents the steps taken to process the graphs into more infor-
mative and manageable representations. While working with the graphs, we
also identified operations needed for correctness. The contributions of this work
include:

– A method to transform sections of code to static single assignment without
requiring a control flow graph.

– Proposed alternatives to static single assignment for parameters to the com-
putation that are pointers or references.

– Suggested changes to arrays used to pack related variables together.
– Changes to the visualization of graphs to increase usability.

2 Background

This case study uses a portion of a scientific application to explore the capabili-
ties of the Sparse Polyhedral Model and supporting tools. This section describes
the application, GeoAc, and reviews important components of the Sparse Poly-
hedral Model.

2.1 GeoAc

Many earthquakes cause sudden mass displacements at the earth’s surface. When
this type of earthquake occurs under the ocean, is of strong enough magnitude,
and meets certain other criteria, a tsunami is generated. Ground or sea-surface
displacements push on the atmosphere, that in turn generates an atmospheric
disturbance. This disturbance propagates upward as an acoustic wave eventually
inducing a local change in the electron density of the ionosphere. Global Naviga-
tion Satellite Systems (GNSS) monitor ionospheric disturbances induced by such
phenomena. Such satellite-based remote sensing methods are used to estimate
the earth’s surface deformation and predict the arrival time of a tsunami.

IonoSeis [12] is a software package that combines multiple existing codebases
into a single package to model GNSS-derived electron perturbations in the iono-
sphere due to the interaction of the neutral atmosphere and charged particles
in the ionosphere. One of the pieces of IonoSeis is a ray-tracing package called
WASP3D, this is an older tool that does not meet the needs of the workflow.
GeoAc [4] is a ray-tracing package developed at Los Alamos National Laboratory
that better models the physics, and is the proposed replacement for WASP3D.
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The software is written in C++ and models the propagation of acoustic waves
through the atmosphere using a fourth-order Runge-Kutta method (RK4). A
performance analysis indicates that the RK4 function is the most expensive
operation in GeoAc and is thus chosen for further analysis. In this case study,
we consider the practical implications of viewing the full RK4 function as a Poly-
hedral Dataflow Graph. It is to be noted that a newer tool called infraGA/GeoAc
that includes an MPI implementation has replaced GeoAc. This work is based
on the original code base.

2.2 SPF and the Computation API

The Sparse Polyhedral Framework extends the polyhedral model by supporting
non-affine iteration spaces and transforming irregular computations using unin-
terpreted functions [11]. Uninterpreted functions are symbolic constants that rep-
resent data structures such as the index arrays in sparse data formats. Symbolic
constants are constant values that do not change during the course of a com-
putation. The SPF can represent computations with indirect memory accesses,
relations with affine constraints, and constraints involving uninterpreted function
symbols. The SPF represents run-time reordering transformations using integer
tuple sets [22,23]. Run-time data reordering techniques attempt to improve the
spatial and temporal data locality in a loop by reordering the data based upon
the order that it was referenced in the loop [21].

The Computation API [16] is an object-oriented API that provides a precise
specification of how to combine the individual components of the SPF to create
an intermediate representation. This intermediate representation can produce
PDFGs [9] and translates graph operations defined for PDFGs into relations
used by the Inspector/Executor Generator Library (IEGenLib) [22]. It can also
be passed to Omega [17] for code generation.

IEGenLib is a C++ library with data structures and routines that repre-
sent, parse, and visit integer tuple sets and relations with affine constraints and
uninterpreted function symbol equality constraints [22]. The Computation API
is implemented as a C++ class in IEGenLib and contains all of the compo-
nents required to express a Computation or a series of Computations. Dense
and sparse matrix vector multiplication, shown in Figs. 2 and 4, are used as
examples to represent the computations in the SPF.

2.3 Polyhedral Dataflow Graphs

Polyhedral Dataflow graphs [9] represent both the dataflow and execution sched-
ule of a computation. Initially, the graphs were manually drawn using the polyhe-
dral representation as a guide. The current version of the graph is automatically
generated. The SPF Computation intermediate representation is visited and a
dot format graph is created.

Figures 3, 5 show the corresponding PDFGs that are generated using the
intermediate representation created in Figs. 2 and 4. Multiple node types con-
nected by edges comprise the graphs. These node type are variations of statement

https://github.com/LANL-Seismoacoustics/infraGA
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Dense Matrix vector multiply

1 /* Dense vector multiply

2 for (i = 0; i < N; i++) {

3 for (j=0; j<M; j++) {

4 y[i] += A[i][j] * x[j];

5 }}*/

6 Computation* denseComp = new Computation();

7 denseComp->addDataSpace("y", "int*");

8 denseComp->addDataSpace("A", "int*");

9 denseComp->addDataSpace("x", "int*");

10 Stmt* denseS0 = new Stmt(

11 "y(i) += A(i,j) * x(j);", // Source code

12 "{[i,j]: 0 <= i < N && 0 <= j < M}", // Iteration domain

13 "{[i,j] ->[0,i,0,j,0]}", // Scheduling Function

14 { {"y", "{[i,j]->[i]}"}, {"A", "{[i,j]->[i,j]}"},

15 {"x", "{[i,j]->[j]}"} }, // Data reads

16 { {"y", "{[i,j]->[i]}"} } ); // Data writes

17 denseComp->addStmt(denseSO);

Fig. 2. Dense matrix vector multiply represented using the computation API.

Fig. 3. PDFG for dense matrix vector multiply. A, x, y are data spaces, S0 is a state-
ment, and the Domain: labels indicate loop levels.

or data space nodes. Node types include: statements, data spaces, read-only
parameters, parameters, active-out data spaces, read-only-active-out parame-
ters, and active-out parameters.

A statement node is represented as a rectangle with rounded edges. It has
an execution schedule, a statement number, and potentially a debug string.
We generate the execution schedule by applying the scheduling function to the
iteration space. For example, the statement node in Fig. 5 executes the statement
referred to using macro S0 with the execution schedule {[0, a1, 0, a3, 0] : a1 ≥
0 ∧ a3 ≥ 0 ∧ −a1 + N − 1 ≥ 0 ∧ −a3 + M − 1 ≥ 0}. This is generated by
applying the scheduling function {[i, k, j]− > [0, i, 0, k, 0, j, 0]} to the iteration
space {[i, k, j] : 0 ≤ i < N ∧ rowptr(i) ≤ k < rowptr(i + 1) ∧ j = col(k)}. Code
generation uses execution schedules to lexicographically order the statements.
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Sparse matrix vector multiply

1 /*Sparse vector multiply

2 for (i = 0; i < N; i++) {

3 for (k=rowptr[i]; k<rowptr[i+1]; k++) {

4 j = col[k];

5 y[i] += A[k] * x[j];

6 }}*/

7 Computation* sparseComp = new Computation();

8 sparseComp->addDataSpace("y", "int*");

9 sparseComp->addDataSpace("A", "int*");

10 sparseComp->addDataSpace("x", "int*");

11 Stmt* sparseS0 = new Stmt(

12 "y(i) += A(k) * x(j)", // Source code

13 // iteration domain

14 "{[i,k,j]: 0<=i<N && rowptr(i)<=k<rowptr(i+1) && j=col(k)}",

15 "{[i,k,j]->[0,i,0,k,0,j,0]}", // Scheduling Function

16 { {"y", "{[i,k,j]->[i]}"},{"A", "{[i,k,j]->[k]}"},

17 {"x", "{[i,k,j]->[j]}"}}, // Data reads

18 { {"y", "{[i,k,j]->[i]}"} } // Data writes

19 );

20 sparseComp->addStmt(sparseS0);

Fig. 4. Sparse matrix vector multiply represented using the Computation API.

Fig. 5. PDFG for sparse matrix vector multiply. A, x, y are data spaces, S0 is a
statement, and the Domain: labels indicate loop levels.

All edges represent reads and writes to data spaces by statement nodes. The
labels on edges refer to the access parameters. All scalar values are read and
written using 0 as an access parameter. Arrays can be read and written using
any combination of constants or iterators from the iteration space.

Data space nodes are drawn as rectangles with sharp corners. The repre-
sentation splits data space nodes into the types listed above. In static single
assignment form, every data space should have only one edge pointing into it.
An exception is made for parameters to the computation that are pointers or
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references. Shaded rectangles surround groups of statements that are executed
in a common loop nest. A partial form of polyhedral scanning is used to establish
the encapsulating spaces. Visually, this helps identify sections of the code that
are executed more than once, and are more important for performance.

3 Case Study: Expressing GeoAc and Examining
Polyhedral Dataflow Graphs

This case study mimics the behavior of a future automated tool (shown in Fig. 1)
that will consume existing C code and produce the SPF intermediate represen-
tation. In this work, calls to the Computation API are manually written to
create the intermediate representation. The SPF tool chain generates code from
the intermediate representation and generates the graphs presented in the case
study. Results from executing the generated code were compared with those of
the original to ensure correctness.

The case study drove the development of the Computation API and demon-
strated several shortcomings of PDFGs for a full scientific application. This
section overviews the challenges overcome to create accurate dataflow graphs
using a sparse polyhedral representation. The first challenge was to create an
approximation to static single assignment in the absence of a control flow graph.
Special handling of structs, pass-by-reference or pointer parameters, and some
arrays was required. The size of the graphs make them almost impossible to
view. To circumvent this we minimize all statements that are not within loops
and propose future analysis to further simplify the graphs. The polyhedral model
and the SPF require constraints to be affine based on constants. Scientific codes
often use data in control flow. We expanded our representation to handle data in
constraints in limited circumstances. Finally, we implemented a debugging inter-
face that can be used to map graph nodes to a location in the generated code.
Figure 6 shows a section of a graph after applying producer-consumer reduction
(Sect. 3.2) and dead code elimination (Sect. 3.5).

Fig. 6. A subsection of the graph with producer-consumer reductions and dead code
elimination applied. The pink node is a parameter that is written to within the loop
level. (Color figure online)
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3.1 Approximate Static Single Assignment

The Computation API and polyhedral dataflow graphs support intrinsic types,
pointers, and references. User defined types (structs and classes) are not sup-
ported. Scientific codes commonly make extensive use of user defined types. All
structs and classes must be flattened. All GeoAc structs were converted to a
set of data spaces: one corresponding to each member variable. This alteration
was done before using the computation API. The consequence is that any tool
generating calls to the API is responsible for object flattening. These restrictions
allow memory allocation to be delayed until after code generation. The memory
allocation is preprended to the source code. Macros map between the actual
memory and the data space names used in the representation.

The computation is converted to SSA form as it is built. As each statement
is added, the reads and writes are inspected and stored. If the data space written
to by a statement was written to by a previous statement, the data space of the
previous statement gets a revision number. Affected reads are updated as well.
Importantly, the intermediate representation does not keep a control flow graph
and φ or join nodes must be added to ensure proper versioning.

To generate φ nodes in the absence of a control flow graph we use the con-
straints on iteration spaces. We use a dominance frontier method [8] adapted for
use with the polyhedral model rather than a control flow graph. If foo is a data
space that requires a φ node as in Fig. 7, we must locate three statements:

1. read statement - The statement that reads from foo
2. first write - The most recent write to foo under any constraints
3. guaranteed write - The most recent write to foo whose constraints also

apply to the read statement.

φ Node Example

1 foo = 0; // SSA: foo_0 = 0; (guaranteed write)

2 if (i - 1 >= N) {

3 foo = 1; // SSA: foo_1 = 1; (first write)

4 }

5 // SSA: add phi node foo = -N + i - 1 >= 0 ? foo_1 : foo_0;

6 bar = foo; // read statement

Fig. 7. φ node example.

We begin with the read statement and move backwards through our state-
ments, identifying the first and guaranteed writes. We construct a φ node if the
first and guaranteed writes are distinct statements. We extract all conditions
that apply to the first write but not to the read statement. The φ node takes
the general form: foo = conditions ? first write : guaranteed write;.
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Due to SSA, the guaranteed write is versioned while first write is left alone. The
addition of the φ node provides a new write to foo and versions the first write.
This means all three statements write to different versions of foo. Figure 8 shows
the dataflow graph generated from the φ node example in Fig. 7.

Fig. 8. Graph generated from Fig. 7. foo is written to once as foo 0 (S0) and once as
foo 1(S1). foo then chooses between these values based on the given condition (S2)
and is subsequently read by bar (S3).

Parameters that are pointer or reference types have to be handled differ-
ently. Any parameters of those types can be rewritten multiple times. As part of
SSA, the final write to a data space remains unversioned—only previous writes
are versioned. Thus at the end of their dataflow, these parameters retain their
original names and are then correctly recognized as active-out data spaces. It
is important to consider the execution schedule when examining these nodes in
the dataflow graphs as this could allow for illegal schedule transformations to be
applied.

3.2 Producer Consumer Reductions

A producer-consumer relationship that can be safely excluded from the visual
representation of the graph exists between some statements S0 and S1 through
a data space D0 if:

– S0 only writes to D0
– D0 is only written to by S0
– D0 is only read by S1

An example is shown in Fig. 9a.
Hiding these simple chains of statements in the graph is similar to group-

ing statements into basic blocks. This operation should not be mistaken for a
producer-consumer fusion. The reduction improves graph readability but does
not change the actual computation. The steps of the reduction process are:

– S0’s reads are assigned to S1.
– D0 is removed as a read from S1.
– S0 and D0 are removed from the graph.

An example result is shown in Fig. 9b.
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(a) A dataflow graph with a producer-consumer relationship between S0 and S1.

(b) The dataflow graph after producer-consumer fusion.

Fig. 9. Producer-consumer fusion example. R’s: reads and W’s: writes.

3.3 Graph Components

Within a dataflow graph, there are multiple types of nodes that require dis-
tinction. Statements and data spaces are the primary types, denoted by curved
and sharp-cornered rectangles, respectively. Statements do not require further
classification as they only serve to connect data spaces with a line of code.
Data spaces have multiple types: normal, parameter, and active-out. Normal is
equivalent to neither parameter nor active-out. From the latter two, we derive
active-out parameter, read-only parameter, and read-only active-out parameter.
Note that pass-by-reference parameters are active-out parameters and returned
values are active-out non-parameters. If a data space is never read from and not
active-out, we call it an unread data space. Such data spaces are the target of
dead code elimination. Finally, we organize statements into loop levels, corre-
sponding to loops in the source code. Each data space is placed in the loop level
of the statement that write to it. We encapsulate grouped nodes in a filled-in
gray box with black edges. See Fig. 10 for the graph components.

Fig. 10. The different types of components and their colorings



144 R. Shankar et al.

3.4 Data Dependent Control Flow

Each statement in the Computation intermediate representation stores con-
straints on its execution in its iteration space. The SPF requires that those
constraints each be affine or be affine expressions using constant uninterpreted
functions. However, scientific applications often define control flow using data.
An example of this is a Riemann solve where the computation used depends on
the value at that iteration [3]. We support constraints on data by requiring that
they are constant for the duration of the loop nest and treating them as unin-
terpreted functions. Transformations can be performed in the presence of these
constraints, but cannot use them. This is a feature we will explore in the future.
One limitation of this approach is that IEGenLib will not support �= constraints
as this would create a non-convex iteration space.

3.5 Dead Code Elimination

Eliminating redundant computations is an optimization technique that improves
the performance of an application. In a graph, a statement node is dead if it
writes to a data node that is never read from. In our work, we provide this
transformation as an option to the Computation intermediate representation. It
should be noted that this operation removes dead statements from the Compu-
tation intermediate representation. We implement this functionality by perform-
ing a breadth first search from dead data nodes in the graph, we keep removing
statement nodes recursively until we reach data nodes that are read from by
other statements. A breadth first approach allows our algorithm to remove dead
statements per each level when traversing the graph backwards. This operation
results in a significantly smaller dataflow graph.

3.6 Subgraphs

Due to the immense size of the dataflow graph it is very difficult to visually
inspect the dependencies of a single node. To aid in this, it is helpful to remove
edges and nodes not connected to the target node. More formally, we define a
dependency relationship between node A and node B if B can reach A through
either only in-edges or only out-edges. B may reach A through a combination
of in and out-edges, however this only implies that B and A share read/write
dependencies, not that one depends on the output of the other. We say A has
a write dependency with B if B can reach A using only in-edges. We say A has
a read dependency with B if B can reach A using only out-edges. Practically,
a read dependency indicates that A uses B’s output and a write dependency
indicates B uses A’s output. Figure 11 shows the read dependencies for data
space iegen39 iegen 31X.

3.7 Constant Size Arrays

One coding pattern observed in scientific applications such as GeoAc is packing
individual, but related scalar variables into constant sized arrays. The code then
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Fig. 11. The read dependencies for iegen39 iegen 31X (highlighted in yellow). (Color
figure online)

accesses the variables using constants or iterators, the latter often occurring in
loops with small domains.

In our SSA form, arrays are versioned as a whole, meaning that writing
to a single index versions the entire array. This causes extra versioning that
complicates the view of the dataflow and generates incorrect code. One solu-
tion is to detect arrays that are only accessed using literals and replace them
with individual variables. Array accesses using variables whose values can be
determined at compile time are also replaced. This process replaces each array
access with a data space, combining the array name and indices as follows:
arr[i0][i1]...[in] → arr ati1 ati2... atin. If reading from the array, unpacking
adds a statement of the form arr at0 at1 = arr[0][1];”. SSA safely renames
the new data spaces. At the end of the computation, repacking generates state-
ments of the form arr[0][1] = arr at0 at1;. With SSA, the last write to a
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data space is unversioned so repack statements need not consider renamed data
spaces.

Complications arise between constant-access and iterator-access arrays. Iter-
ator accesses do not explicitly write to specific indices. Thus an array must
be repacked, undergo iterator access, and be unpacked. A similar issue occurs
when an array is copied. In the example of arr = arr2; where arr2 has been
previously unpacked, arr2 must be repacked, copied to arr, and unpacked. Cur-
rently, unpacking/repacking only acts on constant-access arrays. This addresses
the motivating case of data placed in an array for convenience, not iteration.
Handling mixed constant/iterator-access arrays and array copying provide moti-
vating cases for future development.

3.8 Debugging Information

While examining the graphs it is necessary to understand the connection between
the nodes in the graph and the original source code. However, there is a discon-
nect between statement nodes on the graph and statement objects from the Com-
putation API due to function inlining and φ nodes. This is important because
object in the Computation API directly correlate to lines in the original source
code. Function inlining causes the same statement object to generate in the graph
multiple times each as a different node. Programmatic addition of φ statements
and array access statements further changes the graph statement order from the
API statement order. To overcome this limitation we added a debugging inter-
face that allows us to tag a statement object with a string. This string shows
up on all statement nodes generated from that object, as shown in Fig. 12. Each
statement node directly maps to a line in the generated code. With a debug
statement, we can connect a statement object to a set of lines in the gener-
ated code. Eventually, this interface will be used by automated tools to provide
filename and line number information from the original input code.

Fig. 12. An example graph that includes a debug statement at S4 (highlighted green
for easy identification). In the scalable vector graphic format, the user-defined debug
string is searchable for easy node identification. (Color figure online)

4 Related Work

This work builds on previous work that can be divided into 3 categories: polyhe-
dral tools, sparse polyhedral tools, and similar macro dataflow graphs. Because
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this work is based on the sparse polyhedral model, the graphs are capable of
representing both regular and irregular computations. Additionally, using a sci-
entific application in a use case reveals many of the issues related to graph size.
The graphs and associated tool chain build on previous work building the Com-
putation API [16], designing polyhedral dataflow graphs [9], and underlying tools
CHiLL [7], IEGenLib [23], and Omega [17].

Polyhedral Tools such as PolyMage [14], Halide [13,18,19] and AlphaZ [24]
use the polyhedral model to transform regular codes. PolyMage and Halide are
domain specific languages and compilers for optimizing parallelism, locality, and
recomputation in image processing pipelines. Halide separates the definition of
algorithms from the concerns of optimization making them simpler, more mod-
ular and more portable. PolyMage’s optimization strategy relies primarily on
the transformation and code generation capabilities of the polyhedral compiler
framework and performs complex fusion, tiling, and storage optimization auto-
matically. AlphaZ [24] expresses transformations using the Alpha equational
language and allows for complex memory remapping. Our work differs from the
aforementioned work due to our support for non affine polyhedral spaces char-
acteristic with sparse computations.

Work done on representing indirect memory accesses in a computation using
the polyhedral model has seen the development of tools such as Omega [10],
Chill [7] and the Computation API [16]. Omega [10] is a C++ library for manip-
ulating integer tuple relations and sets. Codegen+ [6] is built on omega and gen-
erates code with polyhedral scanning in the presence of uninterpreted functions.
Chill [7] is a polyhedral compiler transformation and code generation framework
that uses Codegen+ for code generation. It allows users to specify transforma-
tion sequences through scripts. Our work differs from this work as we represent
a holistic view of a computation and we support more precise transformations
in the presence of sparse computations.

Existing work demonstrates the benefit of polyhedral dataflow optimizations.
Olschanowsky et al. demonstrated this benefit on a computational fluid dynamic
benchmark [15]. Davis et al. automated the experiments from the previous work
using modified macro dataflow graphs [9]. This work distinguishes itself by being
applied to a full application in a different domain. The Concurrent Collections
(CnC) programming model [5] is a dataflow and stream-processing language
where a program is a graph of computation nodes that communicate with each
other. DFGR [20] is based on CnC and Habanero-C [1] programming models
and allows developers to express programs at a high level with dataflow graphs
as an intermediate representation. Our work uses the dataflow graph to focus
on serial code optimization while DFGR and CnC explores parallelism. Stateful
dataflow multigraphs (SDFGs) [2] are a data-centric intermediate representation
that enables separating code definition from its optimization. Our work differ
from SDFGs due to the use of the polyhedral model. The graphs are not the
intermediate representation, but a view of that representation. Any graph oper-
ation performed to transform the graph is translated to relations and applied to
the underlying polyhedral representation.
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5 Conclusion

This paper presents a case study that uses the Computation API to represent
a scientific application, GeoAc, in the sparse polyhedral framework. Polyhedral
dataflow graphs were generated from the Computation intermediate representa-
tion and measures were taken to make the graphs more readable and informative.
The computation is converted to SSA form as it is built to simplify and enable
optimizations like redundancy elimination. In the absence of control flow, con-
straints on the iteration space were used to generate φ nodes for data space
versioning. The large size of the generated graph is made more manageable by
minimizing non-loop statements to keep the graphs simple and easy to read.
Function inlining by the Computation API makes it difficult to map the source
code to the generated code. This limitation is overcome by adding a debugging
interface that can tag statement objects created from the source code with a
string that is then searchable in the graph. PDFGs are generated using the dot
format, making the layout of the graph dependent on the dataflow rather than
execution order. The graph is displayed left to right and different colors are used
to distinguish various graphical elements.
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