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Preface

It’s our pleasure to report the papers accepted for the 34th International Workshop on
Languages and Compilers for Parallel Computing (LCPC 2021) held during October
13-14, 2021. The workshop was planned to be hosted physically in Newark, Delaware,
USA, but was changed to a virtual event due to the COVID-19 situation at the time of
the workshop.

Since 1986, LCPC has become a valuable venue for researchers to report research in
the general areas of parallel computing, high-performance computer architecture, and
compilers. LCPC 2021 continued this tradition and offered a highly interactive forum for
the dissemination of innovative research contributions as well as in-depth discussions of
novel and emerging ideas. As in past years, LCPC 2021 brought together researchers from
academia, national labs, and industry with the aim of creating and strengthening research
collaborations. In particular, this year’s workshop extended the area of interest to new
high-performance computing paradigms such as such as deep learning and autonomous
vehicles.

We were fortunate to have a diverse set of 20 expert Program Committee (PC)
members, spanning junior and senior researchers, women and under-represented groups,
and researchers from a cross section of the community, including academia, industry,
and national labs.

This year we received 12 submissions from authors in five countries. Each sub-
mission received at least four reviews and most had five reviews. The PC also sought
additional external reviews for contentious papers. The review process was guided by
novelty; reviewers were given explicit instructions to look for novel, intriguing ideas in
the submissions. The inclusion of papers that propose new ideas — a new problem, a new
research topic, radical insight into an existing topic, surprising results, etc. — was one of
the key goals in devising the workshop program. Another important consideration was
whether the paper could provoke interesting discussions during the workshop. Regard-
less of acceptance or rejection, authors were provided with detailed feedback. The PC
held extensive online discussions during the week of August 23 to discuss the papers.
Using an online system, this reviewing process was double-blind with PC members who
had a conflict of interest being separated from discussion. From the 12 submissions, the
PC selected 10 full papers to be included in the workshop proceedings. As in past LCPC
workshops, a two-phase revision process was followed for the accepted papers. First, the
authors were asked to incorporate the reviewers’ feedback and prepare a pre-proceedings
version of the paper, which was made available at the workshop. Next, the authors were
asked to incorporate the feedback received during the workshop and prepare a final
camera-ready version, which is included in this proceedings.

We were fortunate to have two keynote speeches, two invited talks, and a panel
discussion in this year’s workshop.

The first keynote talk was given by Shaoshan Liu, Founder and CEO of Perceptin
Inc., with the title “Building Computing Systems for Autonomous Machines: How
Can Compiler Help?”. Liu shared their experiences of building computing systems



vi Preface

for autonomous machines, including on-machine computing systems, cloud computing
systems, and cooperative autonomous machine computing systems (e.g., multi robots).
Based on these case studies, he summarized their key findings and explored how com-
pilers can help guarantee the real-time performance, reliability, safety, and security of
autonomous machines.

The second keynote talk, “Systems 2030: The Extended Reality Case” presented by
Sarita Adve from the University of Illinois at Urbana-Champaign, reviewed the end of
Dennard scaling and Moore’s law.Adve introduced their recently released ILLIXR —
[linois Extended Reality testbed— the first open source XR system and testbed for XR
systems research. Building ILLIXR makes it evident that the systems of 2030 require
researchers to learn how to do application-driven, end-to-end quality of experience-
driven, and hardware-software-application co-designed systems research.

Michelle Mills Strout from the University of Arizona and HPE gave the first invited
talk on “Separating Parallel Performance Concerns Using Chapel”. In the talk, Mills
suggested that to empower programmers to make decisions about implementation details
at a higher level, we need a programming system that cleanly separates WHAT the code
is trying to do, from HOW it should accomplish it in terms of data and computation
organization. This talk showed how the Chapel parallel programming language achieves
this clean separation by enabling multiresolution programming.

The second invited talk was presented by Zhijia Zhao, from UC Riverside, with the
title “Program Parallelization - A Finite-State Machine-Centric Approach”. A Finite-
State Machine (FSM) is a basic computation model widely used for many applications.
However, due to the inherent dependences among state transitions, it is very challenging
to parallelize FSM-based computations. Zhao introduced several basic techniques for
parallelizing FSM-based computations, including both enumerative parallelization and
speculative parallelization, and demonstrated the conversion of bitstream computations
to FSM computations with the help of a series of program analyses and dependence
modeling techniques.

A special panel was held on October 14 to stimulate the discussion among junior
researchers and new graduates on “Life after leaving the Advisor’s Nest”. The panel was
moderated by Marton Kong from the University of Oklahoma, with the participation
of Riyadh Baghdadi (NYU Abu Dhabi), Doru Popovici (Lawrence Berkeley National
Laboratory), Naser Sedaghati (Cruise) and Richard Veras (University of Oklahoma).
The panelists answered questions about how to jump start your research and career after
leaving grad school and shared their early job experiences, responsibilities, and strategies
to expand their network of collaborators.

We would like to thank the many people whose valuable time and effort made
LCPC 2021 a success. We first want to thank all authors who contributed papers to the
workshop. Furthermore, the success of LCPC is unimaginable without the passionate
commitment of the Steering Committee, as well as the great effort of the Program
Committee members and external reviewers. We also want to express our gratitude to the
networking session chair, Martin Kong (University of Oklahoma), and the publication
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chair, Sanhu Li (University of Delaware), who made significant contributions to the
quality organization of the workshop.

October 2021 Xiaoming Li
Sunita Chandrasekaran
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Locality-Based Optimizations
in the Chapel Compiler

Engin Kayraklioglu®, Elliot Ronaghan, Michael P. Ferguson,
and Bradford L. Chamberlain

Hewlett Packard Enterprise, Seattle, USA
{engin, elliot.ronaghan,michael. ferguson, blc}@hpe .com

Abstract. One of the main challenges of distributed memory pro-
gramming is achieving efficient access to data. Low-level programming
paradigms such as MPI and SHMEM require programmers to explic-
itly move data between compute nodes, which typically results in good
execution performance at the expense of programmer productivity. High-
level paradigms such as the Chapel programming language aim to reduce
programming difficulty by supporting a global memory view. However,
implicit communication afforded by the global memory view can make
it easier for the programmers to overlook performance considerations. In
this paper, we show that Chapel’s high-level abstractions such as data-
parallel loops and distributed arrays that enable easier programming can
also enable powerful compiler analyses and optimizations, which can mit-
igate these overheads. We demonstrate two compiler optimizations added
to the Chapel compiler in versions 1.23 and 1.24. These optimizations
rely on the use of data-parallel loops and distributed arrays to strength-
reduce accesses to global memory and aggregate remote accesses. We test
these optimizations with STREAM-Triad and index_gather benchmarks
and show that they result in around 2x performance improvements on a
Cray XC supercomputer. Furthermore, we analyze two real-world appli-
cations, chplUltra and Arkouda, that use manual remedies to address the
overheads addressed by these optimizations. We observe that more than
half of the places in the source code where these remedies are applied
can benefit from optimizations without any programmer effort.

Keywords: Parallel programming -+ Compiler optimizations -
Productivity

1 Introduction

Chapel is a parallel programming language that supports the partitioned global
address space (PGAS) memory model. The PGAS model allows programmers
to use a single namespace, which improves productivity by making all variables
in the lexical scope accessible without explicit communication. Moreover, unlike
other PGAS languages, Chapel’s execution model is not SPMD by default. This
implies that the variables in a given namespace refer to a single address in the

© Springer Nature Switzerland AG 2022
X. Li and S. Chandrasekaran (Eds.): LCPC 2021, LNCS 13181, pp. 3-17, 2022.
https://doi.org/10.1007/978-3-030-99372-6_1
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global memory rather than different ones in each processing element. Chapel
combines the PGAS memory model with other high-level concepts such as dis-
tributed arrays and data parallel distributed loops to create an expressive pro-
gramming language.

Chapel’s approach to distributed memory programming empowers several
real-world applications. Chapel Multiphysics Software (CHAMPS) [18] is a CFD
simulation library used for aircraft design and simulation and has close to 50
thousands lines of Chapel code. Arkouda [1] is a data-science-oriented Python
library that is backed by a server implemented in Chapel for distributed memory
programming. Arkouda has around 15 thousands lines of Chapel code. chplUl-
tra [17] is an astrophysics software used for simulating the dynamics of ultralight
dark matter and it consists of around 10 thousands lines of code.

On the other hand, developers using the PGAS model and high-level abstrac-
tions are prone to writing code with poor performance and scalability because
of implicit communication. We show that common programming idioms sup-
ported by Chapel’s high-level language concepts enable the compiler to perform
automatic optimizations that would be impossible in low-level approaches such
as message passing. Moreover, automatic optimizations based on high-level con-
structs tend to be portable as lower-level details are typically handled by the
language runtime and communication middleware. This paper presents two such
optimizations that significantly mitigate common performance overheads with
no programmer effort. Specifically, our contributions are:

— design and implementation of an optimization where accesses to distributed
arrays are made faster by avoiding locality checks in data-parallel loops

— design and implementation of an optimization that aggregates fine grained
accesses in copy operations in data-parallel loops,

— experimental demonstration of performance improvements of these optimiza-
tions, and a discussion on their impact on real-world applications,

— discussion on how these optimizations and the Chapel compiler can be
improved in general.

The rest of the paper is organized as follows. Section 2 gives a background
on related Chapel concepts. Section 3 describes the two optimizations in detail.
Section4 shows some experimental and anecdotal results. Section5 proposes
future directions for the Chapel compiler and the optimizations presented here.
Section 6 summarizes some related studies in the literature, and Sect. 7 concludes
the paper.

2 Chapel Background

Our focus in this paper is on Chapel’s high-level, data-parallel concepts. In this
section, we give a short background on distributed arrays and forall loops in
Chapel since both of these are key concepts for this work. For a more complete
introduction to Chapel refer to [5].
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2.1 Distributed Arrays

Chapel decouples an array’s distribution from its data thanks to its domain
concept. Domains are index sets that can describe how the indexed data should
be mapped to the system memory. All Chapel arrays have domains. Listing 1
shows how a domain can be declared, and how it can be used to declare an
integer array'.

1| // a local, 1—based, m—by—n domain (index set)
2| var myDomain = {1..m, 1..n};

3

4| // an integer array declared over that domain

5| var myArray: [myDomain] int;

Listing 1. Declaring non-distributed domains and arrays in Chapel

To create a distributed array, one needs only to declare the domain as distributed
by using a standard or a user-defined distribution [7]. Listing2 shows how a
block-distributed domain and array can be created in Chapel. Note that the
array declaration is identical to that in Listing 1.

1|luse BlockDist;
2| var myDomain = {1..m, 1..n} dmapped Block(....);
3| var myArray: [myDomain] real;

Listing 2. Declaring distributed domains and arrays in Chapel

Listing 3 shows some of the most common ways Chapel arrays can be accessed
and manipulated. These include but not limited to; whole-array operations, iter-
ation over their elements, and indexed accesses.

// using promoted or whole—array operations
myArray = 1.1;

// using sequential iteration over its elements
for elem in myArray do
elem = 2.2;

// using indexing (with sequential iteration over its domain)
for idx in myDomain do
myArray[idx] = 3.3;

© 0 N O A W N e

[
=3

Listing 3. Common ways of accessing a Chapel array serially

2.2 Forall Loops

Chapel has several kinds of loops in order to support different parallel program-
ming patterns. One such loop is the forall loop. A forall loop can parallelize

! There are shorter syntactic alternatives for creating arrays without an explicit
domain declaration, such as var A: [1..n] int;. Nonetheless, all Chapel arrays
have domains.
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and/or distribute the iteration across the system depending on the iterand that
drives it. For example, a forall loop over a non-distributed domain or array
would typically use all of the cores on the local compute node to implement
the loop; whereas one over a distributed domain or array would use all of the
cores on all of the compute nodes over which the array is distributed. Use of
foralls in conjunction with distributed arrays and domains guarantees that
loop iterations are distributed similarly to the data that it is iterating over. This
observation is key in implementing locality-based optimizations in the compiler.

Listing4 shows the forall version of the two loops previously shown in
Listing 3.

// using parallel/distributed iteration over its elements
forall elem in myArray do
elem = 2.2;

// using indexing (with parallel/distributed iteration over its domain)
forall idx in myDomain do
myArray[idx] = 3.3;

I - R N N

Listing 4. forall Loops Over Domains and Arrays

Note that the only syntactical difference from the loops shown in Listing 3 is
the use of keyword forall instead of for.

3 Compiler Analysis and Optimizations

In this section, we first describe the automatic local access optimization that
analyzes forall loops to determine local array accesses, and avoids dynamic
locality checks for those accesses. This optimization is implemented in Chapel
version 1.23 and it is on-by-default. Second, we summarize the automatic aggre-
gation optimization that aggregates communication in the last statements in
forall loop bodies. This optimization is added to the Chapel compiler in ver-
sion 1.24, and can be enabled with the --auto-aggregation flag.

3.1 Automatic Local Access

Accesses to Chapel arrays are implemented with a method named this on the
array type that is automatically called by the compiler. A simplified implemen-
tation of this for a distributed array type is shown in Listing 5.

1|proc this (idx) {

2| if isLocalIndex(idx) then

3 return localAccess (i1dx) ;

4| else

5 return nonLocalAccess (idx) ;
6

Listing 5. A simplified implementation of distributed array access
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Note that, in line 2, the implementation checks whether idx is local, because if
it is, the array element can be accessed in a faster manner. However, this check
itself has some small but noticeable overhead. The overhead is exacerbated if
arrays are accessed in a tight inner loop—as is typically the case for conditionals
inside such loops. Consider a STREAM-Triad [23] implementation in Chapel
that uses indexed access into distributed arrays, as shown in Listing 6.

1|use BlockDist;

2|var Dom = {1..n} dmapped Block(....);
s|lvar A, B, C: [Dom] int;

4

5| forall i in Dom do

6/ A[i] = B[i] + alpha %= C[i];

Listing 6. STREAM-Triad kernel with indexed access

In this snippet, the three distributed arrays are accessed by index in the
forall loop body, and they would normally incur the locality checks as dis-
cussed above. However, these checks are provably unnecessary because:

— All three distributed arrays are accessed at the ith index, which is the loop
index

— All arrays are distributed the same way as the loop’s domain is distributed

— The forall loop will distribute the work in the same way the loop’s
domain (Dom) is distributed

The automatic local access optimization implemented in the Chapel compiler
uses similar reasoning to improve the performance of local accesses to distributed
arrays.

Finding Candidate Expressions for Optimization. Early in compilation,
array accesses are simply call expressions that are indistinguishable from pro-
cedure calls?. On the other hand, by the time call expressions are resolved,
and array accesses are differentiated, Chapel’s AST is transformed significantly
enough to make some of this analysis difficult. Therefore, during earlier compi-
lation passes, we analyze and transform the AST, replacing all call expressions
that are candidate for optimizations with a special compiler primitive. Listing 7
sketches a simplified version of how this initial analysis and call replacement
works.

First, we iterate over all forall loops in the program. For each, we try
to find the loop domain. A forall can iterate over a domain, which directly
becomes the domain of the loop; or it can iterate over a domain query on an
array (e.g. myArray.domain), in which case we try to find the array’s decla-
ration and deduce the domain from the declaration. If neither, we continue the
analysis and try to optimize using dynamic checks (details are below).

2 In Chapel, postfix parentheses and square brackets can be used interchangeably as
long as the opening and closing delimiter is the same.
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1|void findCandidates(loop) {

2| loopDom = findDomain (loop) // can return NULL
3 for call in loop.body.calls()

4 if (call.localityDominator == loop &&

5 call.arguments == loop.indices)

6 maybeArr = call.base

7 arrDom = findDomain (maybeArr) // can return NULL
8 static = ( loopDom != NULL &&

9 arrDom != NULL &&

10 loopDom == arrDom )

11 if static

12 loop.staticCandidates.insert (call)

13 else

14 loop.dynamicCandidates.insert (call)

15| }

Listing 7. Pseudocode for candidate discovery

Then, for every call inside the loop body which has the same argument(s) as
the loop index(es), we assume that the called expression is an array symbol and
try to find its domain. If we can find symbols representing the loop’s domain
and the array’s domain and they are the same symbol, we say that this access
is a static candidate for automatic local access optimization. If we couldn’t find
the domain for the loop and/or the array, this call is a dynamic candidate for
automatic local access optimization. We add the call to the appropriate list of
candidates.

Transforming AST For Static and Dynamic Checks. After finding can-
didates for the optimization, we transform the AST for the loop to add static
and dynamic checks. Static checks are necessary because the initial analysis and
transformation happens before type resolution. Therefore, we add static checks
for both static and dynamic candidates, and they only check whether what we
assumed to be an array symbol is actually an array symbol (as opposed to a
procedure symbol) and the domain type supports this optimization. A require-
ment for supporting this optimization is that the domain distributes indices in
the same way as it distributes a parallel iteration over itself. All the standard
domain maps in Chapel support this optimization, but a user-defined domain
map could be imagined where this is not the case. To provide a general solution,
we expect domain maps to provide a function that returns a boolean at compile
time that informs the compiler as to whether the domain map supports this
optimization or not.

On the other hand, dynamic checks are added for cases where the relationship
between the array and the loop domains cannot be established statically. This
also supports cases where a forall only traverses a slice of an array’s domain.

For a scenario where there is one static and one dynamic candidate, as in
Listing 8, we create AST equivalent to that shown in Listing9.
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ilvar doml = {1..n} dmapped Block (...);
2|var dom2 = {1..m} dmapped Block (...);
3|var arrl: [doml] int, arr2: [dom2] int;
4
5| forall i in doml do
6] arrl[i] = arr2[i];
Listing 8. A case where arrl and arr2 are static and dynamic candidates
1| // check all candidates statically:
2| if (staticCheck(arrl, loopDomain) &&
3 staticCheck (arr2, loopDomain)) then
4
5| // check dynamic candidates at execution time
6| 1if (dynamicCheck(arr2, loopDomain)) then
7 forall i in doml do
8 arrl.maybeLocal[i] = arr2.maybeLocallil];
9| else
10 forall i in doml do
11 arrl.maybeLocal[i] = arr2[i];
12| else
13| forall i in doml do
14 arrl([i] = arr2[i];

Listing 9. Sketch of the generated AST for the snippet in Listing 8

The generated AST first does static checks on arrays that are optimiza-
tion candidates. These checks are simple functions that return compile-time (in
Chapel terminology, they are params) booleans. If all the candidates pass static
checks, we dynamically check the dynamic candidates, as well. The first forall
clone is where all static and dynamic candidates pass their checks, where the sec-
ond is for the case for successful static, and failed dynamic checks. The final clone
is identical to the user’s loop, and does not have any optimizations.

Finalizing the Optimization. After the initial transformation is done, the
generated AST is resolved more or less normally. Static checks are computed at
compile time, and the conditional based on the static checks is folded. While
resolving this AST, the only special case for this optimization is for resolving
the maybeLocal calls. First, the compiler tries to resolve them as regular array
accesses. If it can, it replaces them with a call to localAccess which avoids
locality checks. If the compiler cannot resolve them as array accesses, they will
be reverted to regular calls, and will be attempted to be resolved as such.

3.2 Automatic Aggregation

Another common overhead in PGAS languages occurs due to fine-grained com-
munication. In some cases where the fine-grained access is predictable, caching
and/or prefetching the remote data can help mitigate some of these overheads.
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However, especially in cases where remote data is accessed randomly, such
approaches are generally not very impactful. A solution for these scenarios is
aggregating the communication and transferring data in bulk with fewer mes-
sages.

Listing 10 shows a simplified version of the index_gather kernel from the bale
effort [2].

var cycArr = newCyclicArr(...);
var blockArr = newBlockArr(...);

fillRandom(blockArr) ;
var tmp: [blockArr.domain] int;

forall i in blockArr.domain do
tmp[i] = cycArr[blockArr([i]];

Listing 10. Simplified sketch of the index_gather kernel

1
2
3
4
5
6
7
8
9

The forall loop iterates over a block-distributed domain, while copying
data from a cyclic-distributed array into a block-distributed one. In a straight-
forward implementation, this element-wise, random-access copy operation causes
fine-grained communication. However, this operation can be done in an aggre-
gated fashion because:

— tmp[1i] (and blockArr[i]) are local accesses because the forall is over
the same domain as theirs. Furthermore, this will be recognized as such by
the automatic local access optimization that was discussed in the previous
section,

— Because forall is a parallel loop, individual copy operations that will exe-
cute at each iteration of the loop can be reordered without impacting the
application behavior.

The automatic aggregation optimization implemented in the Chapel compiler
will use reasoning along these lines in order to apply aggregation to optimize
communication performance.

Locality Detection. Currently, automatic aggregation is supported only if the
operation is a simple copy operation where one side is local and the other is not.
To detect whether either side is local, we use the same approach and code as
presented for automatic local access. In fact, there’s a single analysis pass that
collects enough locality information for both optimizations that are presented in
this paper.

Avoiding Data Hazards. The aggregated copy operation requires order
independence—that is, that the iterations of the optimized loop can run in any
order including in parallel. In the context of the Chapel language, the forall
loop implies that the loop body has this property. In addition, the aggregated
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copy operation only optimizes the last statements of loop bodies, because it
implies that nothing in the loop body can depend on any writes that occur as a
result of this statement. The Chapel compiler already had an optimization where
such statements are executed in an unordered matter [8], and the automatic
aggregation optimization uses the same analysis as the existing optimization.

Module Support. Aggregating communication requires allocating local buffers
that can be used to store data temporarily before communicating and a mecha-
nism to flush them as they fill up. Implementing this purely by compiler trans-
formations is not very feasible. Instead, our optimization facilitates Aggregator
objects that have been studied in Chapel before and have been heavily used in
Arkouda, a data analytics software that is implemented in Chapel (server) and
Python (client) [1].

Aggregators are module-level objects that represent per-task buffers that

temporarily store data to be communicated along with their address. These
objects are typically created as task intent. A loop using an Aggregator object
typically uses a with clause to create one instance per task, as the following
example shows:
1| forall i in myDomain with (var agg = new Aggregator (int)) ({
2 P
3| agg.copylarr[i], data); // equivalent to ‘arr[i] = data’
4|}
5

Listing 11. Example of manual aggregator usage

Transformations. The forall loop in the index_gather kernel as shown in
Listing 10 is transformed into something akin to Listing 12 early in compilation.

agg.copy (tmp[i], cycArr[blockArr[il]);

1| forall i in blockArr.domain with (var agg = new Aggregator (int)) do
2| if dummyAggregationMarker {

3 tmp[i] = cycArr[blockArr[i]];

40}

5 else {

6

7

}

Listing 12. Simplified transformation for automatic aggregation

Once hazard detection and other relevant passes, such as loop invariant code
motion, are complete, we choose one of those branches and eliminate the other
one. Therefore, there are no runtime checks of any sorts. Note that removing the
else block also entails cleaning up any aggregator creation because they would
be useless.

4 Results

We evaluate the performance of these optimizations by using the STREAM-
Triad [23] and index_gather [2] benchmarks that motivate them. We compare
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the automatically-optimized execution time against their manually-optimized
counterparts which were shown to perform comparably to reference MPI and
SHMEM versions [9,10]. We also analyze the code for chplUltra [17] and Ark-
ouda [1] to assess how the optimizations can improve them. We show that both
of them cause straightforward implementations of benchmarks to perform simi-
larly to manually-optimized versions. They also help avoid significant portion of
the relevant manual optimizations in real-world applications.

We used a Cray XC30 supercomputer for the performance studies. Com-
pute nodes are dual-socket and equipped with 36-core Broadwell CPUs clocked
at 2.1 GHz. Nodes are connected with the Aries interconnect. Automatic local
access comparisons were done against Chapel 1.23 pre-release, whereas auto-
matic aggregation comparisons are against Chapel 1.24 pre-release®, so that
they capture the performance improvement introduced by the optimization on
the release that they were implemented. We used the default configuration for
all of these tests. The executables are compiled with --fast flag. In addition,
the automatic aggregation tests are compiled with --auto-aggregation.

STREAM

=3 With automatic local access
—@- Without automatic local access

Bandwidth (TB/s)
Better

Number of Locales (x 36 cores/locale)

Fig. 1. STREAM-Triad bandwidth

Automatic Local Access. Figurel shows how this optimization improves
STREAM-Triad performance. The kernel for this STREAM-Triad implementa-
tion is shown in Listing 13.

1| forall i in Dom do
2| A[i] = B[i] + alpha » C[i];

Listing 13. STREAM-Triad with indexed array access

3 The most current Chapel release version is 1.24.1.
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Without the automatic local access optimization, this kernel reaches only
about half of system bandwidth (shown in dark blue with diamond markers),
whereas other idioms for STREAM-Triad are able to reach the full system band-
width. Other idioms are shown in Listings 14 and 15. The difference between the
two types of idioms is that the distributed arrays are accessed by index in the first
one, which causes overheads without the automatic local access optimization.

1| forall (a,b,c) in zip(A,B,C) do
2 a = b + alpha * c;

Listing 14. STREAM-Triad with zippered iteration over arrays

1‘A = B + alpha » C;
Listing 15. STREAM-Triad with promoted expression

With this optimization, indexed STREAM-Triad performs about twice as
fast, reaching the limits of the system. This performance is virtually identical to
other idioms that do not use indexed access into distributed arrays.

In addition, we inspected the chplUltra [17] which relies on explicit use of
localAccess for better performance. We have observed that, thanks to the
automatic local access optimization, we can reduce the number of explicit calls
to localAccess from 80 to 21, without sacrificing performance. The remaining
explicit localAccess calls are either not within forall loops, or the index
that they access is a function of the loop index.

Automatic Aggregation. Figure2 shows that without any optimization, the
index_gather benchmark, shown in Listing 10 does not scale (light blue, dashed
line, square markers). The unordered forall optimization [8], firing automatically
with no user effort, improves performance by enabling out-of-order communi-
cation (medium blue). Finally, manual aggregation (dark blue) and automatic
aggregation (solid green) perform very similarly and much better than the other
versions, where the latter does not require any user effort at all.

To explore the impact of this optimization in user code, we analyzed Ark-
ouda, the application for which user-level aggregators were implemented initially.
Thanks to the automatic aggregation optimization, we were able to reduce the
number of explicit aggregators from 61 to 22. The most common causes for the
remaining 22 are identical to those limitations of the automatic local access
optimization: (1) operation is not inside a forall or (2) the array access index
is complicated. These two causes require 12 of the remaining 22 cases to use
explicit aggregation. The remaining 10 require more investigation.
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5 Future Work

We want to investigate extending the automatic local access optimization to
handle array accesses where the index is an affine expression based on the loop
index. Such accesses are common in linear algebra codes, and currently are not
covered by this optimization. Furthermore, many loops in applications use for
and coforall? loops and it would benefit these cases to extend the optimiza-
tion beyond forall loops. These other loops do not have any guarantees about
data locality, however, there are common idioms where they are used in a way
that can benefit from this optimization.

As of Chapel 1.24, automatic aggregation is off-by-default and can be enabled
by the —--auto-aggregation flag. There are two main concerns for enabling
it by default. First, the aggregator objects are not designed for handling all-local
aggregation. This is because the initial use case for them was for the programmer
to explicitly use them and with the assumption that they would use them only
if they know for sure that there is communication. However, the compiler can
automatically use aggregation in cases where both sides of a copy is actually
local, even though some of the static analysis tries to prevent that. We observed
that there can be around 2x slowdown in such cases. However, we believe that we
can adjust the aggregator implementation to reduce the overhead in such cases.
Second, aggregators use per-locale buffers on each Chapel task (typically a core).
This poses issues when aggregators are used in systems with high locale and core
counts. We would like to consider reducing the memory overhead of aggregators,
potentially using multi-hop aggregation where some local aggregation takes place
before communicating the data, thereby reducing its memory footprint.

The automatic aggregation optimization covers assignments that are the last
statements in the loop bodies. This coverage can be expanded in two ways. First,
we can support arbitrary operations to be aggregated. This would mean creating
function pointers representing the operation and using that function to unpack

4 A loop where each iteration is mapped to a parallel Chapel task.
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the aggregated data instead of just copying them in local memory. Second, this
optimization can cover all statements inside the loop body. This requires alias
and dataflow analysis inside the loop body to avoid data dependences.

6 Related Work

A relatively early study on how high-level language constructs can enable com-
piler optimizations is done by Choi and Snyder [12]. The authors show that
array operations like shifts can be efficiently optimized by the compiler, if the
language enables expressing such operations using high-level constructs, such
as operators. This work is based on ZPL [6], an array programming language.
However, unlike Chapel, ZPL was not a general-purpose language. As such it
did not support operations like array indexing.

Hayashi et al. [14] implemented several LLVM optimizations for Chapel pro-
grams to reduce costs associated with distributed memory programming. The
authors focus on GET/PUT operations injected by the Chapel compiler and
try to find ways in which they can be coalesced or eliminated. These opti-
mizations achieve significant performance improvements. Currently, some of the
optimizations presented in this work can be used with an experimental flag
--11lvm-wide-opt. These optimizations focus on communication calls that
happen inside a lexical scope and do not consider calls that can be invoked
repeatedly inside a loop.

Other distributed memory optimizations have been studied in the contexts
of other PGAS languages with compilers. Chen et al. [11] describes strength-
reduction, communication and computation overlap and message coalescing tech-
niques in the Berkeley UPC compiler. We believe that the set of optimizations
presented in this work are thematically similar to those that were studied by
Hayashi et al.

Other studies pertaining Chapel’s performance include but not limited to;
runtime optimizations, such as caching [13], prefetching [16], inspector/executor
optimizations [20], profile-based optimizations [15]; module optimizations, such
as iteration reorganization [3], complex bulk transfer [21]; GPU-related explo-
rations [4], and finally general performance studies in comparison with other
programming models [22].

Single-node loop optimizations for improving data access performance are
common. A significant portion of the literature focuses on loop and data layout
transformations based on the polyhedral model for related optimizations such as
auto-vectorization [24] and improved cache utilization [19]. We believe, similar
techniques can be used in the Chapel compiler. However, they typically focus on
affine array accesses in loops which are not in scope for this paper.

7 Conclusion

In this paper, we show that well-designed high-level language abstractions not
only make programming easier, but can also express key information about the
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application that can enable powerful compiler optimizations. To demonstrate
this point, we present two optimizations added to the Chapel compiler in recent
releases that have been used in production-level applications. The first opti-
mization, automatic local access, reduces the costs of accessing local parts of
a distributed array. The second optimization, automatic aggregation, gathers
communication operations locally before communicating them in bulk. Both of
these optimizations are enabled by high-level concepts like forall loops and
distributed arrays. They both can increase performance without adding any pro-
gramming burden in benchmarks and real-world applications alike.

Acknowledgement. We would like to thank Michelle Strout for reviewing an early
draft and sharing very valuable insights that contributed to this paper’s quality.
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Abstract. The iCetus tool is a new interactive parallelizer, providing
users with a range of capabilities for the source-to-source transformation
of C programs using OpenMP directives in shared memory machines.
While the tool can parallelize code fully automatically for non-experts,
power users can steer the parallelization process in a menu-driven way.
iCetus which is still in its early stages of development is implemented as
a web application for easy access, eliminating the need for user instal-
lation and updates. The tool supports the user through all phases of
the program transformation process, including program analyses, par-
allelization, and optimization. The first phase includes both static and
dynamic analyses, pointing out loops that represent performance bottle-
necks and should be improved. The parallelization phase offers diverse
options to cater to different levels of user skills. By displaying compiler
analyses results in an interactive manner, iCetus supports the user in
pinpointing parallelization impediments and resolving them. During the
optimization phase, the programmer can apply successive improvements
by editing the program, evaluating the performance, and comparing it
to that obtained by previous program versions. iCetus also serves as a
learning tool to help users understand important program patterns and
their parallelization. In this way, it also helps train the user in writing
code that likely yields better performance.

Keywords: Interactive source-to-source compiler - OpenMP parallel
programming model + Shared memory architecture - Code
optimization - Code parallelization

1 Introduction

With the advent of multi-core architectures, the need to fully utilize the capabili-
ties of a computer system has become a topic of great concern among application
developers. Given the difficulties of mastering the skills of manually writing high-
quality parallel code, many attempts have been made in the past to automate
the process of converting sequential to parallel programs. Despite more than four
decades of research in automatic program parallelization and although nearly
all of today’s computer architectures are parallel, current software engineers still

make little use of automatic parallelization tools.
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The state-of-the-art parallelizer is a batch-oriented optimizing compiler that
offers its users little guidance for and control over its operation, except for a
sizeable number of command-line options.

Typically, parallelizing compilers are able to extract parallelism in about one
in two science/engineering applications. While this is a success from a science
viewpoint, it is unsatisfactory to the end user. It is especially aggravating for the
engineer of novel applications, which may not exhibit the regular data structures
that parallelization technology learned to optimize well.

What’s more, even where the tools succeed in detecting parallelism, mapping
this parallelism to a given architecture may introduce overheads that offset the
gain of automatic optimization. The result is that users see large performance
variations across programs and architectures, ranging from nearly ideal speedup
to significant slowdown compared to the original program.

From a compiler point of view this problem has two major reasons:

1. Parallelization techniques are highly complex and user code may obscure par-
allelism. Furthermore, we demand that compilers perform their optimizations
correctly on all programs. The latter is different from how we think about
parallel programming models. For example, OpenMP permits its users to par-
allelize a loop even if there is a race condition. It is the user’s responsibility
if the execution is incorrect. The strict demand for correctness makes par-
allelizers conservative, bypassing many opportunities for optimization. The
demand also prevents transformations that are considered unsafe. These are
transformations that may produce a different, but user-acceptable result than
the original code.

2. Every program transformation introduces overhead. Estimating this overhead
is highly complex and depends on characteristics of both the program and
the target architecture. Performance models usually include parameters that
are only known once the program executes, making it often infeasible for
the compiler to decide whether or not an applicable technique is beneficial.
The dilemma is that not applying the technique forgoes the optimization
opportunity; applying it, may introduce overhead that offsets the gain or,
worse, degrades performance.

An additional issue motivating the present work is that teaching the skills of
program parallelization lacks educational tools that illustrate concepts, program
analyses & transformations, and report performance results in an intuitive way.

How can we work around these problems?

— Parallel Programming Models: Writing a program using parallel pro-
gramming models, without automatic parallelization, gives full control to the
software engineer. This route may be desirable for experienced programmers
but is often prohibitive for domain scientists and engineers focusing on their
physics, chemistry, or biology, rather than program parallelization.

— Auto-tuning: Platforms have been proposed that try many optimization
variants for a given program and data sets, picking the best. Doing so can
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be extremely time-consuming, due to the combinatorial complexity of try-
ing the many program optimization variants. What’s more, tailoring such a
platform to a user’s specific compilation and execution environment can take
a prohibitive number of engineering parameters. As a result, no available
parallelizer today offers a general auto-tuning platform.

— Hardware Support: Hardware solutions can significantly reduce paralleliza-
tion overhead and enable certain unsafe optimizations. For example, archi-
tectures have explored support for instruction-level launch of parallel loops
(substantially reducing the loop fork-join cost - a major parallelization over-
head), loop-level synchronization (enabling low-overhead parallel execution
of loops with dependences), and speculative parallelization (overcoming some
of compilers’ conservative assumptions). While these techniques are known,
engineering trade offs so far have prevented them from becoming part of
modern computer architectures.

— Interactive Parallelization: The approach pursued in this paper is to
equip a parallelizing compiler with the ability to interact with the users,
involving the user into the decisions that compilers struggle with. The idea is
to consider user feedback in program parallelization. The objectives include
(1) providing the user with information about how the compiler analyzes,
transforms, and parallelizes the program, and (2) creating an interface for
controlling program parallelization, based on this feedback. Doing so com-
bines user knowledge and compiler capabilities. This information will also
help the programmer to write code that is more amenable to automatic par-
allelization as well as help the student understand the involved techniques
and their interactions.

While there are several early projects exploring interactive parallel optimiza-
tion, which will be discussed in Sect. 5, to the best of our knowledge, no inter-
active tool exists that harnesses the power of today’s most successful automatic
parallelizers. This project builds on the Cetus parallelizer, which has shown to
be the most effective, making its capabilities available for interactive use. The
paper presents an initial design of iCetus and then discusses and evaluates fea-
tures requested by an early user community.

The rest of the paper is organized as follows. Section 2 explains automatic
parallelization, the opportunity of interactive parallelization, the features of iCe-
tus, and the limitations of the current version of iCetus. Section 3 describes the
iCetus implementation. Section 4 evaluates existing as well as proposed iCetus
features. Section 5 discusses related work and Sect. 6 presents conclusions.

2 Rationale for the iCetus Interactive Parallelizer
and Tool Features

This section provides a brief overview of the capabilities of automatic paral-
lelization (Sect.2.1) and then describes how the provision of these capabilities
in an interactive manner can address the issues described in the introduction
(Sect. 2.2). Section 2.3 presents the features of iCetus through an example.
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2.1 Automatic Parallelization in Cetus

The iCetus tool is based on the Cetus parallelizing compiler infrastructure [2].
Cetus performs source-to-source translation, converting C source code into equiv-
alent C code, annotated with OpenMP parallel directives.

To do so, Cetus applies a number of compilation passes that we classify into
program analysis, parallel loop transformations, and performance optimization
techniques. This classification is not strict, serving just the presentation of this
paper. Program analysis passes include range analysis, alias analysis, points-to
analysis, private variable analysis, reduction variable analysis, induction vari-
able analysis, and data dependence analysis. Parallel loop transformations use
the analysis information to determine which loops can safely be executed in par-
allel, annotate these loops as such (using Cetus-internal pragmas), and transform
induction and reduction expressions into their parallel forms, as needed. Perfor-
mance optimizations deal with the efficient mapping of the identified parallel
loops to the target architecture. The involved techniques include loop inter-
change, tiling, and profitability analysis.

The above description is simplified for the presentation of this paper. Addi-
tional passes bring the code into a normalized form for easier analysis and trans-
formation. Also, some passes may be split, such as the actual parallel reduction
expressions being inserted only after profitability analysis has determined that
the parallel execution of a given loop is beneficial.

Cetus generates a report documenting the passes it has applied and providing
details on the operation and findings of the passes. Users can select the verbosity
of this report via command line options. The highest verbosity level can generate
an extensive optimization report.

2.2 The Opportunity of Interactive Parallelization

Recall from Sect.1 the key problems of batch-oriented compilation, which are
(1) conservative optimizations due to the requirement for absolute correctness,
and (2) insufficient knowledge of the compiler for making informed decisions
about which optimizations to beneficially apply to which program sections.
Section 1 has also expressed the need for intuitive educational instruments. Here,
we describe the opportunity for a tool that presents the capabilities of Sect. 2.1
interactively, addressing these challenges.

Correctness and Conservative Assumptions: Two key compiler capabili-
ties in identifying parallelism are data dependence and private variable analysis.
If a compiler cannot prove that data accesses are dependence free or variables
are private, it conservatively assumes that they are not. Similar holds for other
techniques, such as alias analysis, reduction parallelization, and induction vari-
able recognition. What’s more, certain loops may be correct in their parallel
form, even if dependences provably exist. There may be a race condition that
will lead to results that are different from the original sequential program, and
different parallel executions may yield different results; but all these results may
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be algorithmically correct. An example is a search algorithm that finds a differ-
ent one of multiple elements, all of which match the search criterion. Compilers
must always create sequentially consistent results and thus cannot perform such
transformations.

The opportunity for an interactive tool is to present the results of these
analyses and then let the user decide what is acceptable. In this way, a data
dependence that the compiler cannot disprove or a variable that the compiler
cannot privatize can be tagged as such by the user. This is especially useful in the
fairly common case of a loop where only a few hard-to-detect data dependence
or private variable patterns remain that can be recognized by the user. Cetus’
optimization report will be of help in this situation. By selectively showing the
remaining dependences of a loop and allowing the user to drill down into the
analysis details, an interactive tool can thus help parallelize key loop patterns
that batch-oriented compilers are unable to.

Overheads and Profitability: A major reason that an automatically paral-
lelized loop may execute more slowly than the original is that the loop is too
small so that the cost of invoking and terminating the parallel activity domi-
nates. Recall that not only is modelling the performance of a loop, transformed
with potentially many techniques, highly complex, in most cases the model also
includes parameters that depend on data read from a program input file and
are thus unknown at compile time. The model could be evaluated at run-time,
but such execution itself can introduce excessive overhead. We have observed
that even using the seemingly low-overhead OpenMP conditional parallel loop
construct (run in parallel if a certain condition holds) can yield low profitability.
Transformations that add substantial code to the program, such as reduction
parallelization and loop tiling, are especially prone to low profitability.

The opportunity for an interactive tool lies in informing the user about loops
where profitability is borderline or needs run-time information. The tool can also
disclose high-overhead transformations that have been applied, allowing the user
to be the judge on profitability. While advanced users may have information that
is not available to the compiler for such judgment, the task can still be arduous.

Another tool opportunity is to offer run-time measurements gained through
program execution. The values of critical variables may be evaluated (e.g., the
number of iterations of a loop), the execution time of a loop may be measured,
or the performance of a serial and parallel code version may be compared. An
advanced such scenario would be to “auto-tune” a code section or the entire
program. That is, the interactive tool would execute many optimization variants
and determine the best.

Educational Instrument: Teaching parallel programming techniques, their
correctness, and their automation are highly complex. There are many involved
concepts, program analyses that need to be understood, and transformations
that need to be grasped. Tools that can illustrate these subjects, show the many
aspects of program analyses and transformation with representative examples,
and allow the student to play with what-if scenarios, can improve the learning
experience tremendously.
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2.3 iCetus Features
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Home Aboutus About the project

jcetus iCetus, A Source-to-Source Compiler Infrastructure for C Programs

Enter Your Input Program ©

® Write your code
O Run our examples( Modifiable )

Choose the Operation
Run Cetus with default options
® Run Cetus with customized options

Customize Cetus Options

If no option is selected in this section, Cetus would run with its default options.
0 Print the Static Call graph (~callgraph)
0 Normalize for loops so they begin at 0 and have a step of 1(-normalize-loops)
) Normalize retur statements for all procedures (-normalize-return-stmt)
) Transform all statements so they contain at most one function call (-tsingle-call)
O Transform all variable declarations so they contain at most one declarator (-tsingle-declarator)

O Transform all procedures so they have a single return statement (-tsingle-return)

Run auto-tuner on the input code @

Run Profiler on the input code & parallel code @

int main(int n, int distance)(
double a[1000000]
intj = 0 sum=0;
for (= 0;j <mje+) {
afj] = j = 1000;
suma=sum-+af:
}
for (= 0:j < mjes)
afj] = afj+distance]
}
return ¢}

)

(Data Dependence Test (Range Test - Default) v]e
(Range Analysis Type (Local Range tation - Default) v]e
(Alias Analysis Type (Advanced Analysis - Default) _v] @
(Loop Format (Parallelize outermost loops - Default) v] @
(Privatization Type (Scalar & Array Privatization - Default) v]o
(Reduction Analysis Type (Array Reduction Analysis - Default) v]e
(Induction Variable Substitution Method (Runtime Test - Default) v] @
(&pply Loop-Profiling Calls to vje
(Eliminate unreachable branch targets (Enable - Default) v]e

(Profitable OMP Parallel Region (Model-based loop selection - Defa v] @

Fig. 1. Front view of iCetus, available at http://icetus.ece.udel.edu/cetusWeb/. The
availability as a web tool obviates the need for download, install and version updates.

Building on the Cetus source-to-source restructurer, the tool displays the par-
allelized version of a given program in the form of OpenMP-annotated source
code. The tool allows the user to observe the applied transformations and can
serve as a starting point for further, manual optimizations.

iCetus is developed with the purpose of extending the capabilities of the
Cetus compiler. Our intention is not to present just a user-friendly interface to
the Cetus compiler, but to convert an automatic compiler to an interactive one.
The followings are key features of the current iCetus prototype:

— iCetus is developed as a web application, in order to make it easier for the
user to interact with it. Such an implementation introduces lots of benefits
like cross-platform availability, portability, no need for installation, automatic
updates, and being light on client-side computer resources since all processing
would be done on server-side resources.

— Making the parallelization process easily customizable in a menu-driven and

interactive way.


http://icetus.ece.udel.edu/cetusWeb/

24 P. Barakhshan and R. Eigenmann

— Making the optimization process less error-prone by guiding the programmer’s
attention to the regions that hinder parallelization.

— Providing an interactive menu-driven display of program analyses and trans-
formations while enabling the user to act on that information and make
required modifications to the input code.

— Providing Run-time measurements gained through program execution, such
as profiling information as well as the speedup and the efficiency of the code.

Figure 1, on page 6 shows the front view of iCetus. The user has typed a
sample input program (alternatively a file can be uploaded or selected from
among examples that illustrate key concepts) and has chosen to customize a
number of compilation options.

Run a Query on your program [Show me data dependencie:

Editable Cetus Output with Cetus Pragmas Query Result

int main(int n, int distance) o
¢ {DDT] Number of eligible outermost loops = 2
double a[1000000] ArcSource: ArrayAccess: usercode.c:NAalj] AccessType:Write ArcSink: ArrayAccess

m=0; usercode.c:NA:a[j] AccessType:Read depType:Flow-Dej  depVector: =
ArcSource: ArrayAccess: usercode.c:NA'alj] AccessTyp: reSink: ArayAccess
usercode.c:NAa[(j+distance)] AccessType:Read depType:Flow-Dependence depVector: <
ArcSource: ArrayAccess: usercode.c:NA:al(+distance)] AccessType:Read ArcSink: ArrayAccess
usercode.c:NA'alj] AccessType:Write depType:Anti-Dependence depVector: *

ali}=(+1000),
sum=(sum+a[j))

for (=0;j < n;j++)

aljl=alj+distance] 5@ .

Fig. 2. Parallel code & display of data dependency information (Color figure online)

Figure 2 illustrates the menu-driven display of program analysis results. In
the given program that is displayed on the left side, the second loop is not
parallelized and is marked yellow. Color coding is applied to the output for
showing the loop that is not parallelized to the user. That’s why the second
“for” loop is highlighted yellow. Given that information, the user has chosen to
look at the existing data dependences from the drop-down menu. This menu is
designed to let the user easily query the result of different analyses performed by
the compiler on the given program. This feature not only helps the user identify
the impediments of parallelization but also displays the performance gain from
applying parallelization. Based on the query passed by the user, the report on
the right side of the screen updates. In this case, a flow-dependency between alj]
and a[j+distance] with dependence Vector of “<” in the second loop is displayed.
In this example, the compiler does not know about the value of variables “n”
and “distance”, and it reports on the dependency that might exist in between
a[j] and a[j+distance], in which the “j” variable increases from “0” to “n” in
steps of 1.
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Run a Query on your program Show me speedup 2nd efficiency analysis v

Editable Cetus Output with Cetus Pragmas Query Result

int_ret_val_0; B
n=1000000. [Execution] Sequential code running time in seconds = 0.027
distance=2000000; [Execution] Parallel code running time in seconds = 0.017
us private [Execution] Number of threads used = 4
s [Execution] Speedup (sequential RunTime/parrallel RunTime)= 1.588
[Execution] Efficiency (speed up/ number of Threads) = 0.397

#oragma omp pa
for (=0;j < n;j +
¢

r private() reduction(+: sum)

a[j}=(+1000)
sum=(sum-+afj))

#pragma omp paraliel for private()
for (=0;j < n;j++)

afjeagedistance] 8@ .

}

Fig. 3. Determining performance and efficiency

[13})

By providing a greater value to variable “distance” comparing to variable “n
the user manages to resolve the loop-carried flow dependency. Figure 3 shows the
speedup and efficiency gained by the transformations after parallelizing both
loops. The resources for this program execution are part of the web server,
executing in a sandbox environment for security reasons.

The tool allows the user to edit and re-compile the resulting code. In this case,
the data dependence is removed, turning the second loop into a parallel region
as well. Recomputing the speedup shows the effect of this program improvement
immediately.

2.4 Limitations of the Current Version of iCetus

Recall that iCetus is still in the early stages of its development. Some of the
current limitations are given below; they will be resolved in future versions.

— The current version only accepts a source code from the user. It does not
accept any data input file.

— The given program should be self-contained, meaning it must include all
header files that contain developer definitions. The header files that come
with the compiler are recognized by the tool, however.

— Computational resources for program executions to obtain profile runs and
other dynamic measurements are limited to a small machine.

— The focus of the current version is on exploring the functionality needed by
an interactive compiler. Adding the many “bells and whistles” needed for an
easy-to-learn tool will come later.
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3 iCetus System Overview
The iCetus tool is implemented as a dynamic web application, generating the
pages/data in real time, as per the user’s request. The response will trigger from

the server end and reach the client, causing the desired action. Figure 4, on page
9, illustrates this process.

WEB SERVER

<HTML>

Response <p>data <— <€— Recordset —
{ </HTML> |

server driver

Web browser

L <HTML>
Request —3 e —  Query —
</HTML>

Fig. 4. Processing dynamic web pages

Web browser requests dynamic page.

Web server finds page and passes it to application server.

Application server scans page for instructions.

Application server sends query to database driver.

Driver executes the query against the database.

Record set is returned to driver.

Driver passes record set to application server.

Application server inserts data in page, and then passes the page to the web
server.

9. Web server sends finished page to requesting browser.

N oot W

As illustrated in Fig. 4, the current design includes a database that saves user
inquiries. This information will be used for the purpose of evaluating the project.

Since the application server cannot communicate directly with the database,
due to its proprietary format, an intermediary driver acts as an interpreter
between the application server and the database. After the driver establishes
communication, the query is executed against the database, creating a record
set — a set of data extracted from one or more tables. This record set is returned
to the application server to complete the page. The final result is in pure HTML
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format, which the application server passes back to the web server. The page is
then sent to the requesting browser.

Technologies and programming languages used in developing these web pages
are: JSP 2.2, Apache Tomcat version 9.0.41, JSTL 1.2, Servlet API 3, Mysql
connector 8.0, OpenMp 3, Java 11.0.2, GCC 9.2.0, JavaScript 1.0, HTML 5.0,
CSS 2.0.

For software design, we have used an MVC (Model-View-Controller) design
pattern to separate application concerns. In this method, Model represents
objects carrying data, View represents the visualization of the data, and the
Controller acts on both model and view by controlling the data flow into model
objects and updating the view whenever data changes.

4 FEvaluation

To evaluate the preliminary results of the project we presented the tool to more
than 20 users with different skill levels with regard to parallelization techniques
and familiarity with the OpenMP parallel programming language. Our goal is
to make a tool that can serve users with different skill levels that’s why the
feedback of all participants matters to us.

The respondents to the survey include users with diverse skill levels. 38.1%
of participants are categorized as for beginners with regard to knowing paral-
lelization techniques. 47.6% of them are categorized as intermediate having some
knowledge with regard to parallelization techniques, and 14.3% of the partici-
pants are categorized as advanced being able to parallelize the code manually.

Of our participants, 66.7% of them were not familiar with OpenMP parallel
programming model, while 33.3% had a good understanding of it.

We also inquired our participants about their level of familiarity with the
Cetus compiler. 61.9% of users did not know the Cetus compiler but 38.1% of
the participants have already tried it at least once.

We presented the list of current iCetus features and also features that we
consider implementing in the next version of the tool. We asked the users to rate
these features on a scale from 1 to 5, where 1 means the feature is unimportant
and 5 means the feature is judged very important. We also asked for a list of
features the users wish to see in such an interactive tool.

Section 4.1 shows the resulting importance of current features of the iCetus
tool, Sect. 4.2 evaluates the importance of features proposed by us to be consid-
ered for the next version of the tool, and Sect. 4.3 describes the features requested
by users for the next release of the project.

4.1 Importance and Usefulness of Existing iCetus Features

Figure 5, on page 11, shows the results collected on the existing features of iCe-
tus. The user scores for all questions are above 4, indicating importance and
usefulness of all implemented features.
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Fig. 5. User feedback on existing features

‘Web Application: This question asked about the usefulness of iCetus being
available as a web application. Having the tool implemented as a web appli-
cation eliminates the need for download, install, and updates, and would be
light weight on the client-side considering the fact that all the processing is
done on the server-side. The high score of 4.57 indicates strong agreement
with these advantages.

Example Inputs: iCetus offers many example input programs that the user
can choose from, illustrating key concepts of parallel programming, and trans-
formations, as well as the tool functionalities. Users gave this feature the high
score of 4.76.

Interactive Parallelization Options: Users can choose parallelization
options in a menu-driven way. This feature enables skilled users to take
detailed control of the applied analyses and transformation techniques, while
providing reasonable defaults for beginners. This question obtained a 4.71
score.

OpenMP Annotated Code: Building on the Cetus source-to-source
restructurer, iCetus shows the result of its transformations in the form of
OpenMP-annotated source code. Users scored this feature 4.57. They also
offered the following comments to explain the relevance of this capability:
OpenMP-annotated source code makes it easy to understand the transfor-
mations applied to a code. The portability of OpenMP provides for a good
abstraction of possible underlying machines, eliminating the need for under-
standing many architectural details. Similarly, reasonable performance porta-
bility is appreciated. Last but not least, the users valued the incremental
parallelization process supported by this feature.

Compiler Analysis: This key feature enables users to understand the
applied compiler passes and inspect specific categories of program analy-
sis results. In this way, users can query the compiler’s reasoning, drilling
down into questions why certain program optimizations could or could not
be applied, and determining possible manual program changes to increase
performance. The score for this feature was also 4.48.

Performance & Efficiency Analysis: With the highest score of 4.95, users
judged the availability of run-time information, such as performance and effi-
ciency as most important. This result is consistent with the fact that the
lack of run-time information can be viewed as the Achilles heel of static,
batch-oriented automatic parallelization. It also points to an opportunity for
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improving parallelization environments further by including additional types
of dynamic program information.

4.2 Importance and Usefulness of our Proposed iCetus Features

We asked for user feedback on the features we proposed to be added to the next
version of the tool. Figure 6 reports the obtained scores.

452 481 452 138 ala

=

o

Average Score

Auto Tuning Profiling Information Code Transfor- Approve Transformations Unsafe Transformations
mation Cycle

Fig. 6. User feedback on our proposed features

— Auto-tuning: Having an auto-tuning capability that determines the best
combination of compiler options, obtained a score of 4.52. Some users wanted
the tool to find the combination that leads to the best performance, but
wanted some control over the techniques being tuned. Having such control is
important, as auto-tuning can be a highly time-consuming process. Another
reason given was that auto-tuning can help users learn and understand code
parallelization, how it applies in different use cases, and what performance
can be expected.

— Profiling Information: Providing loop-by-loop profiling information in the
serial code and parallel code, as well as loop speedups and efficiencies, are
important aids in the optimization process, indicated by the score of 4.81. The
feature helps users focus attention on relevant code sections and understand
performance bottlenecks.

— Code Transformation Cycle: Being able to modify the input code and
submit it for another round of compilation is essential in an interactive opti-
mization scenario. Applying such modifications in the presence of the avail-
able analyses information goes substantially beyond the features offered by a
standard program editor. The user score for this feature was 4.52.

— Approve Transformations: Giving the user the ability to approve or reject
transformations suggested by the parallelizer provides fine control over the
code optimization process, especially for judging the profitability of a trans-
formation. The score for this feature was 4.38.

— Unsafe Transformations: With a score of 4.14 users judged the importance
of a capability to choose from potentially applicable transformations, even if
they may be unsafe. Some users requested that this option be only available
to advanced skill levels, as program correctness is no longer guaranteed.

While all scores of proposed features are above 4, they are slightly lower than
those of the implemented capabilities. It can be attributed to the fact that it
is easier to understand and judge existing versus projected functionality. The
scores are expected to be higher, once the proposed features are implemented.
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4.3 Requested Features for iCetus

One of the questions in the user interviews asked for additional suggested fea-
tures. Below is the result, including the percentage of users who requested those
features. The priority of implementing each feature will be based on the score.
Table 1 lists these suggestions.

Table 1. Requested features by users

Row Requested features Priority
1 Graphical representations ‘ 33%
2 Downloading optimization reports 28%
3 Uploading multiple files ‘ 19%
4 Display differences between the input and the parallelized code 19%

— Graphical Representations: 33% of users requested combining text reports
on the result of compiler analyses with graphical reports wherever possible.

— Downloading Optimization Reports: Providing the possibility of down-
loading the parallel code as well as the report of the compiler analyses was
requested by 28% of the users.

— Uploading Multiple Files: 19% of users requested adding the feature to
upload as many files as needed to the web server at once.

— Display Differences Between the Input & the Parallelized Code:
19% of users requested that the differences between the given input and the
parallelized code be displayed. Such a capability would help the developer
further understand the specifics of the applied code transformations.

5 Related Work

Various tools have been built in the past which aim to parallelize the sequential
code. ParTool [5], which is built over the ROSE compiler infrastructure [7],
inserts OpenMP pragmas in serial code. It performs data dependence analysis
provided by ROSE to ascertain whether a loop nest is safe to parallelize. If not,
the dependences that prevent parallelization are displayed. This feedback helps
understand the dependences hindering parallelism and can be used to make
suitable modifications to the source code to eliminate these dependences.

The Parascope parallelization environment [1] provides an editor that sup-
ports multiple views and navigation between views. It displays the results of the
various analyses and transformations carried out by the parallelizer and binds
them with the various representations used. It supports applications written in
Fortran. Users have found the data dependence information to be too low-level,
and they need guidance with program transforms.
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HTGviz is an interactive parallelization environment. It is implemented on
top of the Parafrase-2 parallelizing compiler [6]. It supports several views to
the user such as, Task Graph View, Serial Code View, Directive View to insert
OpenMP tags, Parallel Code View. The interaction between the user and the
compiler is carried out through the use of the Hierarchical Task Graph (HTG)
program representation where task parallelism is represented by precedence rela-
tions (arcs) among task nodes. There is no support for measuring the paralleliza-
tion benefits, or for displaying potential parallelism, at a regional level [3].

The SUIF Explorer [4] builds on the functionality of the SUIF compiler [§]
and offers assistance for both automated and manual parallel programs creation.
The SUIF Explorer offers support for user visualization and provides features
such as a Parallelization Guru that offers tips for parallelization, user involve-
ment in parallel slice creation, Execution Analyzers targeting loops and depen-
dences, Visualizers such as graph browsers and source display, and Assertion
Checkers to help users debug the parallel program.

iCetus distinguishes itself from these previous efforts mainly in three ways.

— Building on one of the most advanced parallelizers, the tool allows the user
to inspect in detail the result of different compiler analyses, such as data
dependence analysis, variable range analysis, private variable analysis, in an
easy to understand format.

— The tool provides the user with dynamic program information, such as the
speedup gained from a transformation, enabling the user to judge when fur-
ther optimizations may be beneficial or have diminishing return.

— The tool supports the user in all phases of the program optimization process,
including profiling, parallelizing, and optimizing.

6 Conclusion

State-of-the-art parallelizing compilers are batch-oriented tools, limited to static
program analyses and transformation. This paper presented the early results of
a project to develop a tool that overcomes this limitation. iCetus is an effort to
involve the user in the code transformation process, supporting several program
development phases. A profiler helps the programmer analyze the code by iden-
tifying execution bottlenecks of the program. The programmer then parallelizes
the code by starting with the most time consuming code sections while focus-
ing on maintaining the correct results of the parallel program. Optimizing the
code for improving observed speed-up from parallelization is the final phase. The
next release of the tool will incorporate more features in support of interactivity
as well as features such as a loop-level profiler, auto-tuner, and a capability to
highlight differences between source and transformed code.



32

P. Barakhshan and R. Eigenmann

References

Balasundaram, V., Kennedy, K., Kremer, U., McKinley, K., Subhlok, J.: The paras-
cope editor: an interactive parallel programming tool. In: Proceedings of the 1989
ACM/IEEE Conference on Supercomputing, Supercomputing 1989, pp. 540-550
(1989). https://doi.org/10.1145/76263.76323

Dave, C., Bae, H., Min, S.J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-
to-source compiler infrastructure for multicores. Computer 42(12), 36-42 (2009).
https://doi.org/10.1109/MC.2009.385

Giordano, M., Furnari, M.M.: HTGvVIz: a graphic tool for the synthesis of auto-
matic and user-driven program parallelization in the compilation process. In: Poly-
chronopoulos, C., Fukuda, K.J.A., Tomita, S. (eds.) ISHPC 1999. LNCS, vol. 1615,
pp- 312-319. Springer, Heidelberg (1999). https://doi.org/10.1007/BFb0094932
Liao, S.W., Diwan, A., Bosch, R.P., Ghuloum, A., Lam, M.S.: SUIF Explorer:
an interactive and interprocedural parallelizer. ACM SIGPLAN Not. 34(8), 37-48
(1999). https://doi.org/10.1145/329366.301108

Mishra, V., Aggarwal, S.K.: ParTool: a feedback-directed parallelizer. In: Temam,
0., Yew, P.-C., Zang, B. (eds.) APPT 2011. LNCS, vol. 6965, pp. 157-171. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24151-2_12
Polychronopoulos, C.D., Girkar, M.B., Haghighat, M.R., Lee, C.L., Leung, B.,
Schouten, D.: PARAFRASE-2: an environment for parallelizing, partitioning, syn-
chronizing, and scheduling programs on multiprocessors. Int. J. High Speed Comput.
01(01), 45-72 (1989). https://doi.org/10.1142/S0129053389000044

Quinlan, D., Liao, C.: The ROSE source-to-source compiler infrastructure. In: Cetus
Users and Compiler Infrastructure Workshop, in conjunction with PACT 2011, p.
1. Citeseer (2011)

Wilson, R.P., et al.: The SUIF compiler system: a parallelizing and optimizing
research compiler. ACM SIGPLAN Not. (1994)


https://doi.org/10.1145/76263.76323
https://doi.org/10.1109/MC.2009.385
https://doi.org/10.1007/BFb0094932
https://doi.org/10.1145/329366.301108
https://doi.org/10.1007/978-3-642-24151-2_12
https://doi.org/10.1142/S0129053389000044

®

Check for
updates

Hybrid Register Allocation with Spill
Cost and Pattern Guided Optimization

Yongwon Shin and Hyojin Sung(®®

Pohang University of Science and Technology (POSTECH), Pohang, South Korea
{ywshin,hsung}@postech.ac.kr

Abstract. Modern compilers have relied on various best-effort heuris-
tics to solve the register allocation problem due to its high computation
complexity. A “greedy” algorithm that performs a scan of prioritized
live intervals for allocation followed by interval splits and spills is one of
the widely used register allocation mechanisms with consistent perfor-
mance and low compile-time overheads. However, its live interval split-
ting heuristics suffer from making sub-optimal decisions for scenarios
hard to predict, and recent effort to remedy the issue is not free from
unintended side effects with performance degradation. In this paper, we
propose Greedy-SO, a greedy register allocator with a spill cost and
pattern guided optimization that systematically addresses inherent sub-
optimalities in live-interval splitting. Greedy-SO does this by avoiding
splitting codes whose performance are more likely to be impacted by
sub-optimal decisions. Greedy-SO identifies functions with such code
patterns, precisely models the spill cost for them during the greedy allo-
cation process, then when the spill cost starts to deteriorate, switches to
an alternative allocator that does not use interval splitting. Our hybrid
register allocator improves the performance of target benchmarks up to
16.1% (7.3% on average) with a low compilation overhead, while not
impacting non-target benchmarks at all.

1 Introduction

Registers are scarce and valuable hardware resources whose software-managed
utilization can significantly impact code performance. Modern compilers have
solved the problem of register allocation, i.e., mapping infinite registers to limited
architectural registers, by finding an optimal solution that maximizes utilization
and minimizes memory spills [6,14]. However, the task of finding an optimal
register allocation for realistic codes is an NP-complete problem [11], so var-
ious best-effort heuristics have been proposed, including graph-coloring based
algorithms [8,9], linear scan algorithms [22], and their many variants [17,26].
Graph-coloring based algorithms use k-coloring heuristics to assign colors, i.e.,
registers, to conflicting live intervals that are represented as connected graph
nodes, whereas priority-based algorithms exploit program information to deter-
mine the allocation order.

Register allocators in modern compilers implement a version of the above
allocation algorithm(s) with several other heuristics when making register spill
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and live interval coalescing/splitting decisions. For example, the “greedy” algo-
rithm in the LLVM compiler coalesces live intervals first to reduce conflicts, and
allocates registers for them in their priorities computed from variable types and
access patterns. Then it splits remaining unassigned intervals into pieces and
spills occupied registers until the allocation is completed.

These heuristics are carefully designed and fine-tuned with expert knowl-
edge and benchmark testing, but they are bound to suboptimal decisions due
to approximate modeling of the problem. Especially the live interval splitting
heuristic involves complicated logic to determine which live interval to split and
where in an interval as well, which can lead to widely varying code and thus
execution time. Recent work [27] tried to improve the heuristic, but it intro-
duces performance degradation in unintended cases as a result of unpredictable
chains of interactions between the changed heuristic and the rest of the register
allocator.

Our insight is that problem is not the heuristic itself, but the way regis-
ter allocation is performed without a systematic cost model that estimates the
profitability of given heuristics for the code and adaptively selects allocation
approaches. While previous work [10,16] enabled hybrid allocation using differ-
ent allocators per function or code segment, we focus mainly on structuring the
internal phases of the allocation process to use optimal heuristics based on mod-
eled cost. This cost-guided optimization will enable more effective register allo-
cation while minimizing heuristic-engineering effort and negative performance
impact.

Thus, we propose Greedy-SO (Split Optimization), a hybrid register alloca-
tor with spill cost and pattern guided optimization for live-interval splitting logic
in the LLVM greedy allocator. Our allocator uses improved spill cost modeling
to detect whether and when suboptimal splitting decisions occur in the greedy
allocator. Then, it switches to an alternative register allocator to finish the rest
of the allocation process without splitting. We use empirically identified code
patterns and thresholds to determine whether this alternative allocation path
will provide performance gains and apply the path only when it is predicted to
do so. The target code patterns turn out to have heavy computation in large
loop bodies; this observation supports our assumption that such codes with high
register pressure are more likely to suffer from the suboptimal splitting logic and
benefit from our solution.

The evaluation showed that Greedy-SO improves the execution times of five
benchmarks in LLVM test suite by 7.3% on average (up to 16.1%) without degrad-
ing other benchmarks on Intel CPU. These benchmarks can be used as building
blocks for larger applications, so the potential performance gain will be sig-
nificant at an application level. We believe that this paper demonstrates the
promising potential towards optimization-driven back-end code generation.

In the rest of the paper, motivating insights and preliminary analysis are
presented in Sects. 2 and 3. Then we describe the design and implementation of
Greedy-SO in detail in Sect. 4. We describe the experimental setup for Greedy-
SO and other allocators in Sect. 5 and give results in Sect. 6, then conclude with
related work and a conclusion.
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2 Background and Challenges

We made the following observations that reveal the challenges of existing register
allocators that guided our design in Sects. 3 and 4.

Observation 1. Codes compiled with the greedy allocator are subject
to high performance variability from live interval splitting heuristics.
The LLVM greedy register allocator consists of three main phases. As a prelimi-
nary step, it computes live intervals of virtual registers and assigns priorities by
using program-based criteria, e.g., giving a higher priority to global variables and
variables within a loop. The coalescing phase combines related live intervals by
making copies to reduce register pressure. During the allocation phase, the live
intervals sorted in a priority queue are assigned to an available register. The regis-
ter allocation may finish here if no registers remain to be allocated, or may move
on to the final split/spill phase, which splits allocated live intervals into smaller
ones to reassign them or spills live intervals to the memory to make room.

All the heuristics in these phases interact closely to generate final allocation,
and attempts to precisely analyze its workings are likely to be fruitless. However,
we observe that the live interval splitting heuristics have a much larger decision
space than the others, e.g., whether to split or spill, which live interval to split,
where in a live interval to split and at which level (region, block, or local), and
in how many sub-intervals to create, which can lead to higher performance vari-
ability caused by heuristic design. Considering the fact that more than 25% of
the functions in SPEC2017 must go through the split/spill phase when com-
piled with default options for Intel CPU (Fig. 1), optimizing the heuristics in
the split/spill phase can yield performance gain for a wide range of codes on
dominant CPU platforms.

Observation 2. Optimizing heuristics for specific cases often introduces
unexpected performance degradation in others. Carefully designed
heuristics are often updated to handle corner cases that perform pathologically
badly under different circumstances. However, once heuristics are mature, adjust-
ing them to fix specific cases without negative side effects is very difficult and
requires significant engineering and testing effort without a guarantee of success.
For example, recent work [27] identified and addressed the issue of not consider-
ing local interference as weights in the region-level splitting heuristic. Although it
works well for target testcases, it randomly introduces runtime slow-down, because
the changed heuristic can cause unexpected side effects with the rest of the register
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Fig. 2. Cost tracking graph (left) and a case of suboptimal splitting (right) for bicubic
interpolation kernel [4]. The orange box in the left indicates where region and block
splits happen. (Color figure online)

allocator as reported by the community and our evaluation. This observation calls
for detailed cost modeling of the heuristics to reveal potential suboptimal decisions
and adaptively apply optimizations based on cost prediction.

3 Preliminary Analysis

To understand how heuristic decisions affect the potential cost of register allo-
cation, we modeled the register spill cost for each live interval as follows:

Cload = Z Bfreq (U), Csave = Bfreq (d) (1)
uelU
Cspill =R (Cload + Csave) (2)
Ctotal,spill = Z Cspill (Z) (3)
i€l

where Byqq is block frequency and 0 < R < 1 is a rematerialization ratio.

Cload and Cygqe estimate runtime memory load and save costs by summing
up block frequencies for each use (u) and definition (d) in a given live interval.
A live interval in LLVM is defined per virtual register, for which (d) is unique
per interval in the SSA form [23]. Cypiy is computed as a sum of the two costs
discounted by R (=0.5 if all uses are rematerializable). By summing C,;y; of the
spilled intervals and that of intervals in the priority queue, Ctotai_spini conser-
vatively estimates the memory spill cost of the current register allocation state
assuming the worse cases in which all remaining intervals are spilled.

Similar forms of spill costs have been used to evaluate the efficiency of reg-
ister allocators in prior work [8,24], but they focus on computing the final spill
cost after register allocation has been completed. We designed this spill cost
to estimate the cost of register-to-memory spills at a given point of the regis-
ter allocation process. This spill cost is also different from the weight used in
the greedy allocator for many heuristic decisions including splits and spills. The
greedy allocator normalizes the weight with live-interval length so that it can
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prefer short live intervals for allocation and long live intervals for splitting [21].
We do not factor live interval lengths into our spill cost because it is designed
to keep track of “after-the-fact” states of a heuristic decision.

No live intervals are assigned yet at the beginning of register allocation, so we
start at the highest possible spill cost assuming that they will be all spilled into
the memory and should be loaded to registers for execution. As live intervals are
allocated to registers, the spill cost decreases. Live interval splitting will increase
the spill cost by the sum of block frequency for each inserted instruction, then
decrease it by assigning a split live interval to a register. Register spills increase
the spill cost by the cost of the live interval.

Ideally, the spill cost should decrease continuously throughout the register
allocation process, producing the minimal cost at the end. Splits create spikes but
the spill cost after a split should be lower than before. However, our preliminary
experiments with LLVM test suite benchmarks reveal many non-ideal cases.
The final spill costs obtained by the original greedy allocator and an optimized
version [27] are both higher than the minimal cost obtained early in the split
phase (Fig.2). A closer look at a suboptimal splitting case as shown on the
right side of Fig.2 reveals that the final spill cost at Ty ends up higher than
the spill cost before splits at Ty. Split attempts at 7,5 and Tps allow I; and
I5 to be allocated and thereby reduce the total cost, but the costs of inserting
copy instructions are higher than this reduction. This suboptimal behavior is
challenging to predict with iterative eviction-assignment chains. Our preliminary
analysis revealed the following.

1. The global-split heuristic, which considers live intervals that span multiple
basic blocks for splitting candidates, makes suboptimal decisions, thus causing
the overall spill cost to increase after a split. This issue is partially addressed
by [27].

2. Cost tracking graphs for many benchmarks show suboptimalities with the
block-split heuristic as well. This result occurs because the current greedy
allocator does not consider the local interference for block splitting, and the
issue has not been reported or addressed by prior work.

3. [27] can make different suboptimal decisions than the baseline greedy alloca-
tor leading to an even higher spill cost at the end, and thus worse performance
(details in Sect. 6). This result shows that [27] cannot be trusted to improve
the allocation quality in general.

The analysis result, combined with the observations in Sect. 2, guides our sys-
tematic cost-driven design of register allocator in the next section that focuses
on addressing suboptimalities at an allocation strategy level rather than an indi-
vidual heuristic design level.

4 Design and Implementation

Figure 3 shows the compilation flow of the Greedy-SO register allocator with
three main components. It consists of two cost models, code pattern rec-
ognizer and spill cost tracking mechanism, and cost-guided allocation
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Fig. 3. The overview of Greedy-SO

optimizer that selectively applies hybrid register allocation based on the com-
bined cost. The code pattern recognizer (CPR) serves as a counter-based fil-
ter to determine whether the compiled code is an optimization candidate that
requires detailed spill cost tracking. Second, for identified candidates, the spill
cost tracking mechanism computes the spill cost as proposed in Sect. 3 during
register allocation to detect potential suboptimalities. The two costs, i.e., code
statistics and spill cost, are evaluated sequentially to eliminate spill cost tracking
overheads for non-target codes. Lastly, after the first register allocation process,
the cost-guided allocation optimizer examines the minimum spill cost (M) and
the final spill cost (F) with a threshold (T), and if the condition is met, reverts
the allocation result and executes an alternative allocation path from when the
minimal spill cost is reached. The following sections describe the design and
implementation of each component in detail.

4.1 Code Pattern Recognizer

The code pattern recognizer (CPR) collects counter-based code statistics by
recursively traversing all loops in a function and computing conditions that rep-
resent the target code pattern of the Greedy-SO register allocator. The goal of
the CPR is to focus on optimizing functions for which suboptimal splits are
likely to be translated into performance gains; i.e., it filters out functions that
are too sensitive to architectural noises such as code alignment and instruction
cache misses [2]. For example, we observed that when most of the innermost
loops are small or instructions in small inner loops dominate the total number
of instructions, non-deterministic side effects caused by changes in register allo-
cation often hide the performance benefit of Greedy-SO. Thus, CPR checks if
any of the following conditions holds for filtering.

1. Small loops only. CPR filters out functions in which basic blocks in loops
all have less than Cgnan (= 10) instructions. While small loops can go through
the split/spill phase, they are susceptible to microarchitectural noises and not
likely to have stable performance gains from our optimization.

true if all basic blocks has less than Cj,, 4y instructions
Esmall,loop = in all 100pS (4)
false otherwise
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2. Many small innermost loops. CPR applies relaxed filtering criteria with
an increased threshold for Cyna (= 15) and tries to detect functions that have
many innermost loops whose majority are small. This condition targets functions
with many function calls inlined by small loops.

true if (Lipner > 1) A (ratio_small > c¢3)
false otherwise

Fsmall,inline = { (5)
where ratio_small = Lgmai_inner/Linner, c1 = 30, ca = 0.85.
3. Middle-sized loops. CPR further relaxes the criteria to detect middle-
sized loops, by decreasing the ratio_small threshold. We observed that even
when ratio_small is moderately high, if a function also has many instructions in
non-small and non-innermost loop bodies, then Greedy-SO can tolerate archi-
tectural performance jitters. This condition is checked by comparing the ratio of
Inmiddieioop (# of instructions in non-innermost or non-small loops) and Iipner

(# of instructions in small innermost loops).

(6)

f= true if (ratio_small > c3) A (Imiddie_toop < Linner * C4)
L7 false otherwise

= true if (ratio_small > ¢5) A (Imiddie_toop < Linner * Co)
27\ false otherwise

(7)
Fmiddle,loop = fl \ f2 (8)

where f; uses c3 = 0.5 and ¢4 = 3.5 while f5 uses more relaxed parameters
than f1: ¢5 = 0.4 and cg = 4.2.
Finally, CPR filters out a function if any of the previous conditions is true.

F= Fsmall,loop \ Fsmall,inline \ Fmiddle,loop (9)

The filtering conditions and parameters(Csmair, ¢1 t0o ¢g) were hand-tuned
using results of experiments on Intel and AMD machines. Adopting a more
systematic and learning-based approach such as rule induction [13] can help
improve the heuristic design, and it is part of our future work.

Figure 4 shows examples of target and non-target functions. The function on
the left has an innermost loop that includes many array accesses on distinct
locations (in red). This function must perform numerous live interval splits and
spills due to high register pressure. Also, improved register allocation for the
large inner loops will have high performance impact. In contrast, the function
on the right has only one loop nest with a small innermost loop (in green). Even
if the spill cost modeling reveals suboptimalities, non-deterministic architectural
behaviors could easily offset performance gain by Greedy-SO.

4.2 Spill Cost Tracking Mechanism

We implemented the spill code computation and tracking in the LLVM greedy
allocator as described in Sect. 3. Cypiy; is computed for every live interval when
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float jacobi(...) {... int dfilter(...) ... {
for(n=0 ; n<nn ; n++){ e
gosa = 0.9; for (i=0; i<high; i++)
for(i=1 ; i<imax; i++) for (j=0; j<larg; j++) {
for(j=1 ; j<jmax ; j++) for (1=-(tm_g/2); 1l<=(tm_g/2); 1++) {
for(k=1 ; k<kmax ; k++) { if ((j+1) < @) nv = (float) image[i*larg];
s@= MR(a,0,1,j,k)*MR(p,0,i+1,j, k) else if ((j+1) >= larg) nv = (float) image[((i+1)*larg)-1];
+ MR(a,1,i,j,k)*MR(p,0,1, j+1,k) else nv = (float) image[(i*larg)+j+1];
+ MR(a,2,1,3,k)*MR(p,0,1, J, k+1) *d = (nv * g[(tm_g/2)-1]) + *d;
+ MR(b,0,1,3,k) ¥
*( MR(p,0,i+1,j+1,k) - MR(p,@,i+1,j-1,k) dt+;
- MR(p,0,i-1,j+1,k) + MR(p,0,i-1,j-1,k) ) }
+ MR(b,1,1,3,k)
*( MR(p,0,1,j+1,k+1) - MR(p,0,i,j-1,k+1) d2 = (float *) calloc(nc*nr, FWS);
- MR(p,@,i,j+1,k-1) + MR(p,0,i,j-1,k-1) ) if (1d2) {
+ MR(b,2,1,3,k) sprintf(err,"Out of memory");
*( MR(p,0,1+1,j,k+1) - MR(p,0,i-1,j,k+1) return(l);

- MR(p,0,i+1,j,k-1) + MR(p,0,i-1,j,k-1) ) }
+ MR(c,0,i,j,k) * MR(p,0,i-1,j, k)
+ MR(c,1,1,3,k) * MR(p,0,i, j-1,k)
+ MR(c,2,1,3,k) * MR(p,0,i, j, k-1)
+ MR(wrk1,0,i,3j,k);
-}

A Non-target function with low register pressure in the loop

<« Target function of high register pressure and local interferences in the loop

Fig. 4. Example target and non-target functions for Greedy-SO (Color figure online)

created and pushed into a priority queue, then recomputed when a new interval
is generated by live interval splitting. Ciotai_spini is computed at the following
tracking points in the register allocation process: (1) when a live interval is
enqueued into the priority queue, (2) when a live interval is dequeued from the
priority queue, and (3) when a spill occurs.

For example, when a split happens, an interval is dequeued from the priority
queue at tg and split into smaller intervals. The total spill cost does not change
for the dequeue action, because we conservatively count intervals in the queue as
potential spills. Then the split intervals are enqueued back to the priority queue
for allocation at t;. At this point, the total cost will go up as a split introduces
additional copy instructions at interval boundaries. When split intervals are
dequeued and allocated later at to, a successful allocation will eventually result
in a lower spill cost than the spill cost at ¢ty as their costs are all deducted from
the total spill cost. However, suboptimal splitting decisions that cause spills for
split intervals will not be able to deduct their costs, so the total spill cost will
stay higher than the cost at ty. The key idea behind Greedy-SO is that if the
total spill cost gets much worse after reaching the minimum early in the process,
stopping when the minimum is reached can avoid suboptimal splitting decisions
afterward.

We keep track of the minimal total spill cost by comparing a newly computed
total spill cost with the current minimal total spill cost at the above tracking
points, then make a checkpoint for when a new minimum appears. A checkpoint
is stored as the number of “dequeue” events of the priority queue. Greedy-SO
uses this checkpoint to determine when an alternate fall-back allocator takes
over the allocation process.
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4.3 Putting it all Together: Cost-Guided Allocation Optimizer

After the first register allocation with the spill cost tracking enabled, the cost-
guided allocation optimizer compares the final spill cost (costy) and the mini-
mum spill cost (cost,,) and evaluates the following condition to decide whether
or not to proceed to hybrid register allocation:

(costy > 100 A costy, < costy*0.9) V

10
(50 < costy < 100 A cost,, < costy *0.8) (10)

The condition filter outs codes with a spill cost lower than 50 since such
functions should be very small and not worth optimizing. Conversely, the con-
dition favors codes with a high spill cost (>100) which are likely to have a high
performance impact by giving them a weak threshold. A function that passes
this test is recognized as a target function of Greedy-SO optimization.

Then Greedy-SO starts the second register allocation pass as the greedy allo-
cator using a snapshot of machine functions created before the first allocation
pass (details in Sect.5). When Greedy-SO arrives at the saved checkpoint, it
passes the analysis result and current allocation information to a fall-back regis-
ter allocator, Partitioned Boolean Quadratic Programming (PBQP) [18,25] or to
an LLVM Basic allocator. PBQP constructs a cost matrix for each pair of virtual
registers and records spill cost, register aliasing information, and optional coa-
lescing profitability. Then it tries a PBQP solver to get a solution. If a solution is
not found, registers with the lowest spill cost are spilled, and the PBQP alloca-
tor repeats the process until all the constraints are satisfied. Greedy-SO passes
a pointer to LLVM spiller (in charge of register spills) to PBQP. Once PBQP
takes over, it solves the remaining allocation problem from the checkpoint.

5 Methodology

Compiler Implementation. We implemented Greedy-SO in LLVM 13 [19] by
modifying the greedy register allocator to follow the compilation flow of Greedy-
SO when a compilation option “use-greedy-so” is given. If a function is identified
as a target function after the first allocation pass, a modified FPPassManager
clones the original function at LLVM IR level and replaces all uses of the tar-
get function with those of the cloned function. Then, the cloned function goes
through the same machine function passes as the original function, then through
the Greedy-SO register allocation pass.

Benchmarks. For experimental results, we evaluated 737 benchmarks from the
LLVM test suite [3] except for the ones under “External” and “CTMark” cat-
egories, with a testing option (TEST_SUITE_BENCHMARKING ONLY). Experiments
were repeated ten times with a single thread and default inputs using 11vm-1it
test tool.
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Experimental Setup. For Greedy-SO, we used 0.1 as the minimal spill cost
threshold to trigger hybrid register allocation (i.e., the difference between the
minimal spill cost and the final spill cost should be higher than 10%), and used
a PBQP register allocator in LLVM whose implementation is based on [18]. We
performed a sensitivity study (Sect.6.2) to see how the spill cost threshold and
the type of fall-back register allocator affect the performance of Greedy-SO. The
evaluated configurations are as follows:

— greedy and pbgp: The original LLVM greedy and PBQP allocator in LLVM
13 with default options.

— local-intf: greedy with “consider-local-interval-cost” option enabled [27].

— gs and gs-basic: gs is Greedy-SO, and gs-basic replaces the fall-back register
allocator with the LLVM basic register allocator.

— gs-wop-pbqp, gs-wop-pbgp-0.1 and gs-wop-pbgp-0.2: Greedy-SO without the
code pattern recognizer with varying spill cost threshold. gs-wop-pbgp has 0
for the threshold, i.e., it always triggers hybrid register allocation when the
final spill cost is not the minimal spill cost, while 0.1 and 0.2 signify the
required difference ratios between minimum spill cost and final spill cost for
the trigger.

— gs-wop-basic, gs-wop-basic-0.1 and gs-wop-basic-0.2: gs-basic without the code
pattern recognizer with varying spill cost thresholds.

We evaluated LLVM test suite on Intel (Xeon Gold 5218 CPU with 375 GB
RAM), AMD (EPYC 7571 with 64 GB RAM), and ARM (Neoverse N1 with
64 GB RAM) CPU platforms. Hyperthreading and CPU frequency scaling were
disabled for the Intel CPU.

6 Evaluation Result

In our evaluation of the Greedy-SO register allocator, we focus on showing that
Greedy-SO provides improved or comparable performance to the greedy alloca-
tor, for target codes identified by the cost models. We also compared Greedy-SO
with previous work [27] and variations of Greedy-SO to show that both the
spill cost modeling and pattern-based filtering are crucial to provide consistent
speedup without degradation.

6.1 Benchmark Performance

Execution times were evaluated (Figs.5 and 6) for a set of LLVM test suite
benchmarks (Table 1), normalized to LLVM greedy allocator. We evaluated the
entire test suite with these allocators and found out that 97.7% (97.8% in AMD)
of the total benchmarks show less than 2% of performance variations regardless
of the type of register allocator. While 2.3% (2.2% in AMD) of such benchmarks
include target functions for Greedy-SO optimization, most of them have a negli-
gible performance impact. Thus, we focus on investigating the benchmarks whose
execution time is affected by more than 2% in either direction, with any of the
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Table 1. Selected LLVM test suite benchmark list.
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evaluated allocators. In Figs.5 and 6, the benchmarks in the left section show
more than 2% speedup (or slowdown) with Greedy-SO; the benchmarks on the
right are affected more than 2% by other evaluated register allocators, but not
by Greedy-SO.

Target Benchmarks. Greedy-SO showed average speedups of 7.3% (maximum
16.1%) for the target benchmarks on Intel CPU, and 7.9% (maximum 10.1%)
on AMD CPU. Function-level analysis revealed that functions optimized with
Greedy-SO in these benchmarks do contribute mainly to the overall speedup, as
shown in Fig. 7. For benchmark 2, the overall speedup is greater than the per-
function speedup, because some non-target functions are affected by changed
code alignment; these functions tend to have loops that include large, compute-
intensive bodies (some as a result of function inlining) as we modeled with the
code pattern in Sect. 4. Their high register pressure led to a long split/spill pro-
cess that had high likelihood of making suboptimal heuristic decisions substantial
enough to translate into performance degradation.

Greedy-SO showed consistently better or comparable performance than all
the other evaluated allocators for these benchmarks. While local-intf improves
on greedy for several benchmarks, it does not show any performance improve-
ment with some of the benchmarks where Greedy-SO does (2 and 3 on Intel
CPU and 2 on AMD CPU). These benchmarks suffer from suboptimal heuristic
decisions according to our spill cost modeling, but local-intf as another splitting
heuristic seems to be not able to address them consistently. gs-wop-pbgp does not
use the code pattern recognizer, so it optimizes a superset of functions included
in Greedy-SO. It provides comparable performance to Greedy-SO for most of
the benchmark except for 5, for which we suspect gs-wop-pbgp introduces per-
formance degradation for non-target functions. This result strongly supports the
potential for our hybrid approach as a robust and effective solution for register
allocation.

Although the performance gain on Intel and AMD CPU vary due to microar-
chitectural differences, they affect the same set of benchmarks except for 5. This
result shows that the code pattern that we used can generalize across different
hardware.

Non-target Benchmarks. The right section in Figs.5 and 6 includes the
benchmarks with more than 2% performance jitter with the other register allo-
cators than Greedy-SO. We analyzed those benchmarks to quantify the effec-
tiveness of the combination of the spill cost and code patterns in Greedy-SO
in avoiding potential performance degradation by focusing on profitable cases
only. Only 0.63% (0.55% in AMD) of the functions in these benchmarks are
optimized by Greedy-SO while the rest does not satisfy both conditions. As a
result, Greedy-SO and greedy show little performance difference.

In contrast, the execution times of the other register allocators varied with-
out any consistent trend. For example, the execution time of pbgp and local-intf
fluctuated from -24% to 28%; understanding its source is not in the scope of
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Fig. 9. Function performance of the selective benchmark set for configurations with
different fall-back register allocators and spill cost threshold. (Color figure online)

this paper. gs-wop-pbgp generously applies hybrid register allocation whenever
the spill cost indicates suboptimalities. This strategy produces a mixed result of
improving or degrading non-target functions. We found that performance degra-
dation is a result of random negative side effects from changed allocation being
stronger than the speedup gain. We can see that the code pattern recognizer is
crucial in avoiding these cases and applying the optimization only when overall
speedup is expected.

As for the benchmarks with performance improvement (8, 10, 13, 14, 15
and 16), we identified two main sources. In some cases, our code pattern is too
strong and restrictive to identify marginally profitable codes as target functions
(details in Sect.6.2). We also discovered that a significant speedup for 8 comes
from the internal workings of microarchitectural features in Intel CPU. When a
function has many small innermost loops, its execution time gets very sensitive
to the code size and alignment. We excluded functions likely to trigger this
phenomenon from our code pattern for the stable outcome without performance
degradation.
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In summary, the evaluation shows that Greedy-SO can provide more efficient
register allocation, thus improving performance for most of the affected functions
by suboptimal splitting heuristics in the LLVM greedy allocator without impact-
ing other functions.

ARM CPU. We did not observe any statistically meaningful performance dif-
ferences among all evaluated register allocators on ARM CPU. It is because
ARM CPU generally has much lower register pressure, with more architectural
registers than X86 CPU’s.

6.2 Sensitivity Study

We conducted a sensitivity study with varying spill cost thresholds and types of
fall-back register allocator on Intel and AMD CPU, as shown in Figs.8 and 9.
Figure 8 presents average execution times of three benchmark sets compiled with
ten different configurations as described in Sect. 5, while Fig. 9 shows statistics
for benchmarks in the selective set.

In terms of spill cost thresholds, both gs-wop-basic-* and gs-wop-pbgp-* show
mixed results on Intel and AMD CPU. In Fig. 9, green bars consistently shrink as
the threshold gets stronger, while red bars stay the same or even increased. These
results show that the spill cost thresholds are neither precise nor sufficient enough
to filter out noisy cases and focus only on promising cases. Comparing Greedy-
SO and gs-wop-* with the spill cost modeling only, we found that Greedy-SO
efficiently excludes noisy cases than the versions with thresholds only.

Another important factor is the efficiency of the fall-back register allocator,
which determines how much improvement over the existing greedy allocator
can be achieved. Figure 8 shows that gs-wop-pbgp-* and gs provide performance
comparable to or higher than gs-wop-basic-* and gs-basic. We observed that a
conservative and quick eviction algorithm of the basic allocator may accidentally
spill high-priority registers. In contrast, when a spill occurs, the PBQP allocator
repeatedly solves the remaining allocation problem until there are no more spills,
preventing bad spills caused by evictions. Comparing Greedy-SO and gs-basic to
isolate the effect of the fall-back register allocator with the same cost models and
the same target functions, Greedy-SO provides 7% and 8% speedup on Intel and
AMD CPU without any performance degradation (no red bar in Fig.9), while
gs-basic struggles with performance degradation.

Considering the results of this sensitivity study, we used the PBQP allocator
as a fall-back register allocator for Greedy-SO and a threshold of 0.1 for the
Greedy-SO register allocator.

6.3 Compilation Overhead

Greedy-SO introduces the overhead of recompilation only for the functions iden-
tified by both of the cost models as shown in Fig. 3.
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The overhead of performing additional Greedy-SO register allocation path
including IR function cloning and reverting logic is 1.7% (1.1% in AMD) of the
total compilation time for LLVM CTMark benchmarks.

Cloning function at machine function or MIR level or reverting only the
register allocation result could further reduce recompilation overhead, but it is
a non-trivial task [1,5] and not in the scope of the paper.

7 Related Work

Linear scan register allocators [22] have been widely adopted as a cost-efficient
alternative to the graph coloring-based register allocator [8]. [24] showed that the
linear scan allocator can seamlessly combine with SSA forms [20] to outperform
the coloring-based algorithms, and LLVM 3.0 further improved its linear scan
allocator to use priority-based allocation [12] and enable global live interval
splitting. Greedy-SO focuses on solving suboptimal decisions in these splitting
heuristics.

[27] identified pathological cases caused by local interference not being con-
sidered during global-split in the greedy allocator. It examines whether a region
split may produce a local live interval that requires additional splits or spills due
to interference and avoids splitting such candidates by boosting their potential
spill cost. It improves performance for its target test cases, but can have adverse
side effects as shown in our evaluation. 7] recently reported that regional inter-
ference across multiple basic blocks should also be checked if they may introduce
additional spilling, but the issue has not been addressed yet. Instead of tackling
issues one by one at the heuristic design level, Greedy-SO systematically exploits
spill cost modeling to avoid suboptimalities at a higher level.

Some recent work has used hybrid or mixed register allocation schemes for
efficiency and flexibility. [10] chooses between linear scan and graph coloring
register allocators by comparing the spill costs of the two allocators to generate
labels and train a rule induction model with them. Greedy-SO also uses spill cost
tracking, but it builds a cost-guided optimization that integrates the two register
allocators instead of choosing one or the other. It also uses a high-level code pat-
tern recognizer for more fine-grained hybrid register allocation. [16] dynamically
chooses a register allocator for small code segments called “traces” by using
allocation policies based on live interval analysis, loop depth, and block fre-
quencies. Greedy-SO is different in reusing the existing global register allocators
with minimal implementation overheads, but adapting the allocation policies
for Greedy-SO will be interesting future work. [15] suggested feedback-directed
JIT compilation frameworks that formulate register spills as an ILP problem
and make spill decisions using solutions from previous compilation. Greedy-SO
currently focuses on improving the register allocator for AOT (Ahead-Of-Time)
compilation with a single re-compilation.
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8 Conclusion and Future Work

In this paper, we proposed Greedy-SO with the cost models for hybrid reg-
ister allocation. In an effort to overcome the inherent limitations of heuristic
fine-tuning, Greedy-SO provides a systematic way to detect suboptimal heuris-
tic decisions and bypass them altogether and to do so only when performance
benefit is expected. Our experiment showed that Greedy-SO could outperform
the LLVM greedy allocator for target benchmarks without impacting non-target
benchmarks, unlike prior work. Our future work includes extending our approach
to other back-end code generation phases and introducing additional cost-guided
optimization passes, targeting other CPU and GPU platforms, and modeling
learned predictors for the spill cost and code patterns to reduce the compilation
overhead and improve the accuracy.
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Abstract. With an increasing number of shared memory multicore pro-
cessor architectures, there is a requirement for supporting multiple archi-
tectures in automatic parallelizing compilers. The OSCAR (Optimally
Scheduled Advanced Multiprocessor) automatic parallelizing compiler is
able to parallelize many different sequential programs, such as scientific
applications, embedded real-time applications, multimedia applications,
and more. OSCAR compiler’s features include coarse-grain task paral-
lelization with earliest execution condition analysis, analyzing both data
and control dependencies, data locality optimizations over different loop
nests with data dependencies, and the ability to generate parallelized
code using the OSCAR API 2.1. The OSCAR API 2.1 is compatible with
OpenMP for SMP multicores, with additional directives for power con-
trol and supporting heterogeneous multicores. This allows for a C or For-
tran compiler with OpenMP support to generate parallel machine code
for the target multicore. Additionally, using the OSCAR API analyzer
allows a sequential-only compiler without OpenMP support to generate
machine code for each core separately, which is then linked to one paral-
lel application. Overall, only little configuration changes to the OSCAR
compiler are needed to run and optimize OSCAR compiler-generated
code on a specific platform. This paper evaluates the performance of
OSCAR compiler-generated code on different modern SMP multicore
processors, including Intel and AMD x86 processors, an Arm processor,
and a RISC-V processor using scientific and multimedia benchmarks in C
and Fortran. The results show promising speedups on all platforms, such
as a speedup of 7.16 for the swim program of the SPEC2000 benchmarks
on an 8-core Intel x86 processor, a speedup of 9.50 for the CG program
of the NAS parallel benchmarks on 8 cores of an AMD x86 Processor, a
speedup of 3.70 for the BT program of the NAS parallel benchmarks on a
4-core RISC-V processor, and a speedup of 2.64 for the equake program
of the SPEC2000 benchmarks on 4 cores of an Arm processor.
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1 Introduction

With an increasing number of processor architectures, there is a requirement for
supporting multiple architectures in automatic parallelizing compilers.

The OSCAR automatic parallelizing compiler [10] is one such compiler, capable
of parallelizing different C and Fortran programs, including scientific applications
and simulations, real-time applications, multimedia applications, and more.

Other source-to-source parallelizing compilers have been developed [6,8] to
allow for portability of the generated code between different systems and archi-
tectures. The OSCAR compiler is additionally able to output code using the
OSCAR API2.1[15], which is extended from a subset of OpenMP. This allows both
OpenMP-capable native compilers to directly compile the OSCAR-compiler gen-
erated program, as well as the OSCAR, API analyzer to generate separate sequen-
tial code for each core of a target system. The resulting sequential code generated
by the OSCAR API analyzer for each core then allows a sequential compiler which
does not have support for a parallel API such as OpenMP to compile the code for
each core and link it to a single parallel program for the target architecture.

Previous evaluations show the performance of OSCAR compiler-generated
code on SMP server processors [12], as well as on embedded systems with on-
chip shared memory [16].

In this paper, the OSCAR compiler’s function, based on multi-grain paral-
lelism and including multiple optimizations such as data localization and cache
optimization, will be explained. Additionally, the paper details usage of the
OSCAR compiler, targeting systems with and without native compilers sup-
porting OpenMP. Furthermore, this paper analyzes and discusses the perfor-
mance of programs and benchmarks from the SPEC benchmark suite [9], the
NAS parallel benchmark suite [5] and MediaBench II [7], compiled using the
OSCAR automatic parallelizing compiler with further optimization techniques
such as data localization [22] and cache optimization [13] on different multicore
architectures, including an Intel Xeon E5-2650v4 x86 processor, an AMD EPYC
7702P x86 processor, an NVIDIA Carmel ARM®)vS8.2 processor and a SiFive
Freedom U740 RISC-V processor. Neither RISC-V-based processors nor a Zen
2-based processors have been evaluated with the OSCAR compiler before.

2 The OSCAR Automatic Parallelizing Compiler

The OSCAR automatic parallelizing compiler generates parallel code by utiliz-
ing multigrain parallelism. Multigrain parallelism includes parallelism of large
coarse-grain tasks (coarse-grain parallelism), parallelism of loops (loop-level par-
allelism) as well as parallelism of individual instructions (statement-level paral-
lelism) [15].
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To first exploit coarse grain parallelism, the OSCAR compiler splits the sequen-
tial code into macro-tasks. These macro-tasks can be basic blocks of assignments,
loops, or function calls. Loops and function calls themselves are then further split
into macro-tasks as well. From this, the data and control dependencies between
each macro-task can be analyzed, from which, using earliest-execution analysis
[10], the macro-tasks are put into a macro-task-graph.

The earliest-execution condition for macro-tasks is twofold:

1. A macro-task must wait for the completion of macro-tasks it is directly data-
dependent on.

2. A macro-task must wait until preceding control-dependent macro-tasks have
evaluated the conditional branches that guarantee said macro-tasks execution,
but the macro-task does not need to wait for the completion of these preceding
macro-tasks.

Once these two conditions are met, the macro-task can be scheduled into the
macro-task-graph. How these conditions are applied in a real program can be seen
in Fig. 1. The first condition, that all macro-tasks that the current macro-task to
schedule is data dependent on must have finished, can be seen in the bb19 macro-
task. It is scheduled into the macro-task graph once the macro-tasks it is data
dependent on, bb2, dosum15, bb17, and bb18, are finished. The second condition
can be seen for macro-task bb24. It can already be scheduled after macro-task bb5,
since by that time, both its data dependency on bb1 is fulfilled, and, after the con-
ditional branch bbb5, it is guaranteed that the control flow will pass bb24.

The tasks in the macro-task graph are occasionally shown to have multiple
outgoing or incoming dependency edges.

If these edges pass through a dotted arc (representing a logical or), it means
that either of the edges passing through the arc will be followed, caused by a
conditional branch in the original program. For outgoing edges, it means that
only one of the edges will be followed to execute latter macro-tasks, and for
incoming edges, it means that only one edge needs to be satisfied to fulfill the
dependency and allow execution of the macro-task.

If the edges pass through a solid arc (representing a logical and), it means that
all these edges will be followed, caused mostly by coarse-grain task parallelization.
For outgoing edges, it means that all these edges will be followed, executing their
respective nodes. For incoming edges, it means that all edges must be satisfied to
fulfill the dependency and allow execution of the macro-task.

From the macro-task graph, the individual tasks are assigned to the available
processor cores. If runtime fluctuation, for example, due to conditional branches,
are expected, the OSCAR compiler utilizes dynamic scheduling at runtime to
execute the macro-tasks, otherwise, static scheduling is used. The resulting pro-
gram uses the one time single level thread generation scheme [19], where the
program creates a thread per processor core at program start, and the macro-
tasks are then run on these threads respectively.

Loop-level parallelism is then applied to doall-loop and reduction-loop type
macro-tasks, if possible. Similarly, statement-level parallelism is applied if it is
available in a given macro-task [14].
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Fig. 1. The macro-flow graph (left) and the macro-task graph (right) of the main

training loop of the art benchmark (see Sect. 4)
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Additionally, data localization and cache optimization can be performed after
macro-task graph generation. Data localization can be performed using loop-
aligned decomposition and subsequent generation of data-localization-groups
[22]. For this, doall-loop type, reduction-loop type, and sequential-loop type
macro-task blocks directly connected only by one data dependence edge are
analyzed. In the example macro-task graph in Fig. 1, this would for example be
applied to the sequence of macro-tasks from doall9 to dosum15. By calculating
which array subscripts in the successive loops are data-dependant on another,
the OSCAR compiler can assign sections of the different loops with respective
data dependencies into one data-localization-group, which will then be run on
one core, in parallel to other data-localization-groups with different sections of
the loops of their own. This allows the different data-localization-groups to run
in parallel with only minimal data sharing needed at the edge of their data
regions. Figure 2 shows an example of loop-aligned decomposition applied.

Further cache optimization can then be performed by using loop-aligned
decomposition, as described above, on loops whose data size exceeds the avail-
able cache [13]. With the additional data-localization-groups then potentially
exceeding the core count for the target system, executing the groups sequen-
tially will improve the cache behavior of the system. This is because the resulting
data-dependent loop sections are small enough to fit their data into the cache,
reducing the need to replace the cache while iterating through each loop section.
Furthermore, by aligning loop-level parallelism borders to the cache lines, per-
formance can be increased.

C RBA(Doall
00 11 101 LR |(CAR [ LR |[CAR )| LR
A(l)=2"1 DO I1=1,33 DOI=34,35 || DOI=36,66 || DOI=67,68 || DO I=69,101
ENDDO ——
I DO I=1,33

C RB2(Doseq)

DO I=1,100 DO I=34,34

B(1)=B(l-1) a

+A(I)+A(I+1) DO 1=35,66 |

E"DD? DO I=67,67
C RB3(Doall) ,/I\ DO 1=68,100
DO I=2,100 H—
C(1)=B(I)+B(-1) DO I=2,34 DO 1=35,67 DO I=68,100
ENDDO )

Fig. 2. Example of loop-aligned decomposition of three data-dependent loops. The
loops are decomposed into three main localized regions (LR) accessed by one core only,
and two commonly accessed regions (CAR) that need to be accessed by multiple cores.
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3 Investigated Multicore Architectures

For this paper, four different processor architectures were evaluated. Two x86
processors, one Arm processor, and one RISC-V processor.

The first x86 processor is the Intel Xeon E5-2650v4 12-core processor running
at 2.2 GHz with a maximum boost frequency of 2.9 GHz. It has 32 KiB of L1D
cache per core, 256 KiB L2 cache per core, and 30 MiB shared L3 cache with a
cache line size of 64 [11].

The second x86 processor is the AMD EPYC 7702P 64-core processor running
at 2 GHz with a maximum boost frequency of 3.35 GHz. It has 32 KiB of L1D
cache per core, 512 KiB L2 cache per core, and 256 MiB shared L3 cache grouped
into 4-core clusters with a cache line size of 64 [3]. If a miss in the L3 cache is
available in an L2 cache within the same cluster, the L3 cache can load the data
from the L2 cache instead of from the main memory [2].

The Arm processor is