
Why3-do: The Way of Harmonious
Distributed System Proofs

Cláudio Belo Lourenço1 and Jorge Sousa Pinto2 �

1 Huawei Research Centre, United Kingdom, claudio.lourenco@huawei.com
2 HASLab/INESC TEC & Universidade do Minho, Portugal, jsp@di.uminho.pt

Abstract. We study principles and models for reasoning inductively
about properties of distributed systems, based on programmed atomic
handlers equipped with contracts. We present the Why3-do library, lever-
aging a state of the art software verifier for reasoning about distributed
systems based on our models. A number of examples involving invariants
containing existential and nested quantifiers (including Dijsktra’s self-
stabilizing systems) illustrate how the library promotes contract-based
modular development, abstraction barriers, and automated proofs.

1 Introduction

The formal verification of properties of distributed algorithms and protocols is
an important and notoriously difficult activity. The dominant approaches are:
(i) Automatic exploration of the state space, known as model checking [10,4],
a technique that can be used for both safety and liveness properties, expressed
using variants of temporal logic. Its application to distributed systems is a consol-
idated area that has held many significant results. However, the state explosion
phenomenon means that in practice only systems of modest size can be verified.
(ii) Deductive reasoning based on the use of inductive invariants. A number of
tools [26,18,13] now exist for the verification of single-threaded systems based
on first-order logic (FOL), loop invariants, and contracts, with solid theoretical
foundations [21,16]. Reasoning about distributed systems using inductive invari-
ants was, until recently, mostly a pen-and-paper activity, but tools like Verdi [42],
IronFleet [20], and Ivy [34] have made significant advances to this state of things
(see Section 7 for details). Relying on external provers (and in the case of Iron-
Fleet, on the Dafny verifier to check the sequential code), these tools support
verification of asynchronous message-passing systems based on atomic handlers,
reusable network/fault models, and different abstract specification mechanisms.

Based on the same principles, we propose in this paper a conceptual contract-
based framework for reasoning about distributed systems, as well as the Why3-do
library for the Why3 verifier [18]. Distinctive aspects of our approach include
the following:

– It allows for reasoning about distributed systems using a standard program
verification tool (rather than a dedicated tool or a proof assistant), and
methods and techniques that are standard for sequential software.

c© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 114–142, 2022.
https://doi.org/10.1007/978-3-030-99336-8_5

http://orcid.org/0000-0001-8828-8843
http://orcid.org/0000-0002-0892-3577
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99336-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-99336-8_5

– Systems and protocols are described algorithmically by means of programmed
handlers equipped with contracts that guarantee the inductiveness of invari-
ants. Thus Why3-do brings modular development using the popular pro-
gramming by contract methodology to the scope of distributed systems.

– Why3-do offers other system models in addition to message-passing. We
illustrate this in this paper by describing a locally shared memory model.

– It takes advantage of Why3’s state of the art proof management (including
replayability, bisection of hypotheses, and inconsistency detection); ability to
interact with all major proof tools (automated and interactive); and internal
transformations that allow for a combination of interactive and automated
development, avoiding the use of proof assistants for inductive proofs.

Contributions of the Paper. We contribute to the state of the art of dis-
tributed system verification, and in general to software verification with Why3:
(i) We introduce (Section 3) principles for modular verification of distributed
systems based on clonable models, capturing in a uniform way different system
semantics. Each model declares a set of handlers equipped with contracts.
(ii) We present (sections 4, 5, 6) a Why3 library with different system models and
fault semantics. A concrete system is defined by cloning a model and defining
its handlers and invariants. Handler implementations are required to respect the
contracts declared in the model, which in particular ensures inductiveness of the
invariants. Although Dafny contracts can also be used in IronFleet, the novelty
in Why3-do is the presence of dedicated contracts in the library models, that
are used to automatically generate verification conditions when cloning.
(iii) We introduce (Section 5) a model-independent specification mechanism
based on system traces, to act as abstraction barrier between specification (ob-
servable properties) and implementation. Traces are a common specification
mechanism; the novelty here is the support for modular development through
the use of model-independent clonable specification modules ; different implemen-
tations can be given for a specification, using different system models.
(iv) We present (Section 6) a locally-shared memory model illustrating how our
approach is applied uniformly beyond message-passing models. As far as we are
aware Verdi, IronFleet and Ivy work with message-passing systems only.
(v) We formalize and verify one of Dijsktra’s self-stabilizing systems [15] and
verify its closure (safety) and convergence (liveness) properties using Why3-do.
This verification is of independent interest: our proof of convergence, using a
measure function, takes advantage of SMT solvers and significantly improves on
previous, much more laborious efforts using proof assistants (Section 6).
(vi) We propose two techniques for reasoning with inductive invariants contain-
ing existential and nested quantifiers: stepwise bounded validation (Section 6),
and the use of dual definitions containing both code and logic (sections 4 and
6). Together with Why3’s ability to interact with multiple solvers with different
strengths, dual definitions allow for more robust and natural specifications, as
well as for easier automated proofs, without the need for tricks like quantifier
hiding [20]. Both techniques are explained by means of examples.

Why3-do: The Way of Harmonious Distributed System Proofs 115

� �
module MapList
use int.Int, list.List, list.Mem, list.Length, list.NthNoOpt

val function f (x:int) : int requires {x >= 0} ensures {result >= 0}

predicate nonNeg (l:list int) = forall x :int. mem x l -> x >= 0

let rec map_list (l:list int) : list int
requires { nonNeg l }
ensures { nonNeg result /\ forall j. 0<=j<length l -> nth j result = f(nth j l) }
variant { l }

= match l with
| Nil -> Nil
| Cons h t -> Cons (f h) (map_list t)
end

end (* module MapList *)

module MapFib
use int.Int, list.List, list.Mem, list.Length, list.NthNoOpt, ref.Ref

inductive fibpred int int =
| zero : fibpred 0 0
| one : fibpred 1 1
| oth : forall n r1 r2 :int. n>=2 -> fibpred (n-1) r1 /\ fibpred (n-2) r2 -> fibpred n (r1+r2)

let function calcfib (m:int) : int
requires { m >= 0 }
ensures { result >= 0 /\ forall r. fibpred m r <-> r=result }

= let n = ref 0 in let x = ref 0 in let y = ref 1 in
while !n < m do

invariant { 0 <= !n <= m /\ !x >= 0 /\ !y >= 0 }
invariant { forall r. (fibpred !n r <-> r = !x) /\ (fibpred (!n+1) r <-> r = !y) }
variant { m - !n }
let tmp = !x in x := !y; y := !y+tmp; n := !n+1;

done;
!x

clone MapList with val f = calcfib

lemma mapFib_lm: forall l:list int.nonNeg l-> let fibl = map_list l in
nonNeg fibl /\ forall j.0<=j<length l-> nth j fibl = calcfib (nth j l)

end (* module MapFib *)� �
Listing 2.1. Why3 example

All the models and example modules mentioned in the paper are available
for experimentation in the Why3-do artifact [28].

2 The Why3 Languages in a Nutshell

The example in Listing 2.1 illustrates the use of Why3’s logic and program-
ming languages, as well as the module cloning mechanism. The MapList module
first imports a number of theories for mathematical integers and lists from the
standard library. Why3 includes a wide range of theories, usable across provers.
A program function f is then declared with the val keyword, including a sim-
ple contract: a precondition requiring its argument to be nonnegative, and a
postcondition stating that the result is also nonnegative. In the rest of the mod-
ule this contract will be assumed to hold for f. Next, a logic predicate nonNeg

Cláudio Belo Lourenço and Jorge Sousa Pinto �116

is defined. It uses a universal quantifier to state that every element of its ar-
gument list is nonnegative. Finally, the map_list program function is defined.
The definition includes both the function’s recursive definition and a contract,
in particular a postcondition that uses a universal quantifier to state the map-
ping property (result refers to the return value). From this module, Why3 will
generate verification conditions (VCs) ensuring that the definition is consistent
with its contract, assuming the definition of f keeps to its own contract. This
interplay between contracts plays a fundamental role in deductive verification.

This little example allows us to elaborate on another aspect of Why3. nonNeg
is also a function (returning a truth value), but it lives in a different namespace
from map_list, which is a WhyML program function. nonNeg belongs to Why3’s
logic language [17], and its definition contains a quantifier, which cannot be
used in programs. However, pure program functions, which do not modify the
global state, may also be used in the logic, if their declaration includes the
function keyword. This is the case of f, used in both the code and the contract
of map_list. We will refer to program functions that can be used in the logic as
“let functions”. map_list is also pure, but is not declared as a let function.

Why3 encodes both the code and contracts of let functions, so one may choose
to write certain logic functions algorithmically or logically, or both. For instance
nonNeg could be defined alternatively as follows (the postcondition is optional):

let rec predicate nonNeg (l:list int)
ensures { result <-> forall x :int. mem x l -> x >= 0 }

= match l with
| Nil -> true | Cons h t -> h>=0 && nonNeg t end

If the postcondition is present, the logic encoding of the predicate will contain
redundancy (no inconsistency can be created since the definition must respect the
contract). Writing such “dual definitions” of logic functions may be a good idea
for a number of reasons, namely the possibility of including preconditions, and
termination checks based on user-provided variants. Moreover, dual definitions
increase the robustness of specifications and may facilitate automated proofs
of results involving quantifiers. Not every logic function can be defined as a
let function: since the latter must remain executable, they may not contain
for instance occurrences of logic equality or quantifiers. In these cases let ghost
functions can be used. These are pure logic definitions that are not meant to be
executed, but are still written as programs.

A second module, MapFib, defines a program function calcfib that com-
putes Fibonacci numbers using a loop. The recursive definition of the Fibonacci
sequence (used in the function and loop invariant of calcfib) cannot be written
as a logic function, since it is not total. It could be defined as a let function with
a precondition restricting its domain, but we use instead an inductive predicate
fibpred: the formula fibpred n f means that f is the nth. Fibonacci number.
Inductive predicates, familiar to readers acquainted with proof assistants, are de-
fined by means of a set of inference rules. They are used in our models to define
non-deterministic transition relations on distributed system configurations.

Why3 will generate and successfully discharge VCs ensuring the correctness
of calcfib with respect to its contract. Now, since calcfib is in accordance with

Why3-do: The Way of Harmonious Distributed System Proofs 117

the contract of f in MapList, this module can be cloned instantiating the latter
function with the former. This imports into the current module a copy of every
element of MapList, with calcfib substituted for f, and generates refinement
VCs, to ensure that calcfib’s contract is stronger than f’s. Finally, the lemma
mapFib_lm states that indeed map_list maps the function calcfib as expected.

3 Distributed Systems and Models

A distributed system consists of a set N of nodes, each of which can at any
moment be in a state taken from a set Σ, together with additional elements,
such as a communication network or a shared memory. We will call the global
state of such a system a world and denote by W the set of all worlds. In general,
worlds will include the local state of every node in the system, captured as
a mapping lS : N → Σ. Different models will specialize this basic setting to
define different notions of distributed system (and consequently also of world),
including for instance different communication and fault models (we will always
write N, Σ, or W in the context of a specific system model, left implicit).

Models are handler-based : systems are described by writing code executed
by nodes in response to certain events, such as receiving a message from the
network or an input from the local environment, or simply being enabled by a
guard predicate that becomes true. Handlers are assumed to execute atomically.
Each model defines a transition semantics describing how worlds evolve step by
step, allowing for all possible schedules (both locally and globally). Each model
contains a set of rules inferring judgments of the form w w′, meaning that
the system’s global state w evolves to w′. The general form of the rules states
the following: if the world w′ results from w when a handler is executed by one
of the system’s nodes, then w w′.

Let w0 correspond to the initial state of the system, and ∗ denote the
reflexive-transitive closure of . A world w is said to be reachable if w0 ∗ w.
Let Φ be some property of worlds; we will write w |= Φ to signify that Φ is
satisfied by the world w . A system is said to be correct with respect to Φ if
w |= Φ holds for every reachable world w. A typical correctness proof involves
finding an inductive invariant : a property I such that (i) w0 |= I, and (ii) for
every pair w, w′ of worlds, if w |= I and w w′, then w′ |= I. If w |= I implies
w |= Φ, this is sufficient to guarantee correctness.

Contract-based Models. We introduce the use of handler contracts for designing
and verifying distributed systems. Let us consider a model with worlds of the
form 〈lS, . . .〉, with . . . standing for other components of worlds in addition to
the state function. The signature and contract of a handling function will be of
the following general form, where I is a candidate invariant predicate, and other
arguments and return values (. . .) may be present:

handle(n : N, lS : N→ Σ, . . .) : (σ : Σ, . . .)
requires I〈lS, . . .〉
ensures I〈lS[n 7→ σ], . . .〉

Cláudio Belo Lourenço and Jorge Sousa Pinto �118

The function returns the new state σ of the node n that executes the handler in
a world with state function lS. This general form will be adapted with modifica-
tions in different models. For instance, handling functions may have access only
to the local state and not to the entire state function lS, or they may return,
in addition to a new state, a list of messages to be sent by n. Transition rules
have the following general form, updating the state of the node that executes
the handler, and reflecting in the world other effects of the execution.

handle(n, lS, . . .) = (σ, . . .)

〈lS, . . .〉 〈lS[n 7→ σ], . . .〉

The handler’s contract, consisting of precondition I〈lS, . . .〉 and postcondition
I〈lS[n 7→ σ], . . .〉, ensures that if the handler is executed in a world satisfying the
invariant I, then the world resulting from this transition still satisfies I.

It is common for handlers to have access only to the state σ of the node n
where they are being executed. In this case it is not possible to include I〈lS, . . .〉
as a precondition in the contract, since lS is not passed as a parameter. Preser-
vation of the invariant can be written instead as a conditional postcondition,
stating that for every world satisfying I in which σ is the state of node n and
this node executes the handler, then the resulting world still satisfies I:

handle(n : N, σ : Σ, . . .) : (σ′ : Σ, . . .)
ensures ∀lS:N→Σ . σ = lSn → I〈lS, . . .〉 → I〈lS[n 7→ σ′], . . .〉

The Why3-do Library. Listing 3.1 illustrates how contract-based models are
written as Why3 modules. The World module declares basic types and func-
tions, and defines the world structured type. The Steps module includes val

declarations for (i) the initial world, (ii) an inductive invariant predicate, and
(iii) a set of handling functions (illustrated here by handle_1). Contracts en-
force that the inductive invariant is satisfied by the initial world, and preserved
by handlers. Each handler’s contract makes use of a step_1 auxiliary function,
that is also used in the definition of the transition semantics through the step

inductive predicate. The module ends with the definition of reachable world, and
a lemma stating that the invariant holds in all reachable worlds (this is proved
inductively for each model, using proof transformations and SMT solvers).

That is all that is required to define a system model, which may now be cloned
to produce concrete distributed systems. Listing 3.2 illustrates how simple this
is. We write a System module that defines, first of all, types for nodes, states,
messages, and other relevant elements, and if appropriate, well-formedness pred-
icates for different entities. The World module from the desired Why3-do library
model can then be cloned, after which the following are defined: (i) the initial
world, (ii) a candidate inductive invariant predicate, and (iii) handler functions
specifying the behavior of the system’s nodes/processes. The Steps module from
the same model is now cloned, instantiating these elements. Why3 will produce
a set of VCs, generated from the contracts contained in the cloned module, en-
suring that the invariant is inductive. Properties of interest can at last be stated
and proved (which may involve writing additional definitions and lemmas).

Why3-do: The Way of Harmonious Distributed System Proofs 119

� �
module World (* file model.mlw *)
type node
type state
type world = (map node state, ...)
function localState (w:world) : map node state = (* projection functions for worlds *)

let (lS, ...) = w in lS
end (* module World *)

module Steps (* file model.mlw *)
...
val function initState (node) : state (* init functions for world components *)
constant initWorld : world = (initState, ...)

val ghost predicate indpred (w:world)
ensures { w=initWorld -> result } (* initial world must satisfy invariant *)

(* specifying the new world that results from w when n executes a handler yielding results r *)
function step_1 (w:world) (n:node) (r:(state, ...)) : world =

let (st, ...) = r in
let newLocalState = set (localState w) n st in

(newLocalState, ...)

(* handlers’ arguments include a node h and its state; results include a new state for h *)
val function handle_1 (h:node) (sig:state) ... : (state, ...)

ensures { forall w :world. indpred w -> sig = localState w h -> ... ->
indpred (step_1 w h result) }

inductive step world world =
| step_1 : forall w :world, n :node.

step w (step_1 w n (handle_1 n (localState w n) ...))
| ...

inductive step_TR world world =
| base : forall w :world. step_TR w w
| step : forall w w’ w’’ :world. step_TR w w’ -> step w’ w’’ -> step_TR w w’’

predicate reachable (w:world) = step_TR initWorld w

(* inductive invariant holds in all reachable worlds *)
lemma indpred_reachable : forall w :world. reachable w -> indpred w
end (* module Steps *)� �

Listing 3.1. Basic structure of a Why3-do model

4 The Basic Message-Passing Model

In this model nodes communicate by exchanging packets : triples of the form
(d, s,m), carrying a message m ∈ Msg from node s ∈ N to node d ∈ N, with
Msg a given set of messages. Worlds are pairs 〈lS , nt〉 where lS : N → Σ is a
function assigning a state to each node and nt : Msg∗ is a network, abstracted as
a list of packets. In a system based on this asynchronous model, nodes execute
a message handler whenever they receive a message, and may in turn send
messages to other nodes. The handleM function implements this local message-
handling behavior. Its parameters include the node h handling the message, the
node that sent the message, the state of the handling node, and the message
itself. It returns a new state for h and a list of packets to be sent to the network.

Cláudio Belo Lourenço and Jorge Sousa Pinto �120

� �
module System (* file system.mlw *)
type node = int
type state = int
clone model.World with type node, type state

let function initState (n:node) : state = ...

let ghost predicate indpred (w:world) = ...

let function handle_1 (h:node) (lS:map node state) : state = ...

clone model.Steps with type node, type state, val initState, val indpred, val handle_1

goal systemProperty : forall w :world. reachable w -> ...

end (* module System *)� �
Listing 3.2. Basic structure of a Why3-do system module

Its signature and contract are (with I a candidate invariant):

handleM(h : N, s : N,m : Msg, σ : Σ) : (σ′ : Σ, nt′ : Msg∗)
ensures ∀lS:N→Σ,nt:Msg∗ . σ = lSh→ (h, s,m) ∈ nt
→ I〈lS, nt〉 → I〈lS[h 7→ σ′], nt′ + nt− {(h, s,m)}〉)

The semantics of the model are given by the following transition rule:

handleM(h, s,m, lS(h)) = (σ, nt′) (h, s,m) ∈ nt

〈lS , nt〉 〈lS[h 7→ σ] , nt′ + nt− {(h, s,m)}〉
(message)

We use notation +, −, and ∈ for list concatenation, difference, and membership.
Any packet that is in transit in the network may be selected by the rule to be
delivered and handled by the receiving node. The rule removes the packet from
the network, updates the state of the handling node, and sends new packets as
prescribed by the handler. The semantics takes into account all possible orders
of message delivery, since any message may be extracted from the packet pool.
The semantics is otherwise idealized, but the library contains additional models
in which messages may be dropped or duplicated by the network (an example
verification of a system assuming message duplication is given in Section 5).

The contract of handleM ensures that executions of (message) preserve the
invariant I. Let okI(handleM) signify that the implementation of the handler
adheres to its contract, instantiated with the candidate invariant I. If I holds in
the initial world then it is indeed inductive and holds in all reachable worlds:

Lemma 1. Let w0, w ∈ W and I be a predicate such that okI(handleM). If
w0 |= I and w0 ∗ w then w |= I.

A simplified version of the corresponding Why3-do model is shown in List-
ing 4.1. The World module defines the tuple types packet and world and
auxiliary functions. Steps declares the following elements to be instantiated
when cloning: the ok_Msg well-formedness predicate; initState and initMsgs,

Why3-do: The Way of Harmonious Distributed System Proofs 121

� �
module World
type node type state type msg
type packet = (node, node, msg)
function dest (p:packet) : node = let (d,_,_)=p in d
function src (p:packet) : node = let (_,s,_)=p in s
function payload (p:packet) : msg = let (_,_,m)=p in m
type world = (map node state, list packet)
function localState (w:world) : map node state = let (lS,_)=w in lS
function inFlightMsgs (w:world) : list packet = let (_,ifM)=w in ifM
end (* module World *)

module Steps
...
predicate ok_Msg (node) (node) (msg)

val function initState (node) : state
val constant initMsgs : list packet
constant initWorld : world = (initState, initMsgs)

val ghost predicate indpred (w:world)
ensures { w=initWorld -> result }
ensures { result -> forall p: packet. mem p (inFlightMsgs w) ->

ok_Msg (dest p) (src p) (payload p) }

function step_message (w:world) (p:packet) (r:(state, list packet)) : world
= let (st, ms) = r in let localState = set (localState w) (dest p) st in

let inFlightMsgs = ms ++ (remove p (inFlightMsgs w)) in (localState, inFlightMsgs)

val function handleMsg (h:node) (s:node) (m:msg) (sig:state) : (state, list packet)
requires { ok_Msg h s m }
ensures { forall w :world. indpred w -> mem (h, s, m) (inFlightMsgs w) ->

sig = localState w h -> indpred (step_message w (h, s, m) result) }

inductive step world world =
| step_msg : forall w :world, p :packet. mem p (inFlightMsgs w) ->

step w (step_message w p
(handleMsg (dest p) (src p) (payload p) (localState w (dest p))))

inductive step_TR world world = ...
predicate reachable (w:world) = step_TR initWorld w

lemma indpred_reachable : forall w :world. reachable w -> indpred w
end (* module Steps *)� �

Listing 4.1. Message-passing model: modelMP

used to construct initWorld; the inductive invariant indpred; and finally the
handleMsg handler. The contract of indpred ensures that it is satisfied by
the initial world, and that all messages in the network are well-formed. Well-
formedness conditions are singled out from the invariant because the handler
function may need to assume basic facts about messages. The module ends with
lemma indpred_reachable, corresponding to Lemma 1 (the okI(handleM) and
w0 |= I premises are enforced by the contracts of indpred and handleMsg). It is
proved using a Why3 transformation for predicate induction, and SMT solvers.

Example: Leader Election on a Ring. Leader Election is a coordination problem,
where a set of processes or nodes collectively designate one of them to act as
leader. One of the simplest solutions to this problem on a unidirectional ring
network is the maximum-finding distributed algorithm devised by Chang and

Cláudio Belo Lourenço and Jorge Sousa Pinto �122

Roberts [7]. Let each node have a distinct identifier of some type equipped with
a total order relation. Informally the algorithm can be described as follows: (i)
messages are node identifiers; each node starts by sending its id to the next node
in the ring. (ii) Each node then enters a message-handling loop. If a received
message has a higher value than the receiver’s id, the message is forwarded to
the next node. Otherwise, it is discarded. (iii) If a node receives back a message
with its own id, it claims to be the leader. The fundamental property to be
proved of this system is that at most one node claims to be leader. The system
has been used as example in [34] and later in [29]. The Ivy description of the
system is based on the decidable EPR fragment of FOL (See Section 7), whereas
our formalization below uses unrestricted quantification.

The Why3-do encoding of this algorithm is given in Listing 4.2, based on
the modelMP library model. The first step is to define types for nodes, identifiers,
states, and messages. Identifiers are uniquely associated to nodes by means of the
id function and the uniqueIds axiom. The constant n_nodes is the number of
nodes in the ring. A minimum of 3 nodes is assumed, with no upper bound. The
constant maxId_global corresponds to the (unique) node having the highest-
value id in the ring. Node states are records having a single field leader of
Boolean type, which indicates when a node claims to be leader. The ok_Msg

predicate describes the notion of well-formed message in the ring topology.

The types for nodes and identifiers could be left undefined, with a set of
axioms for the next function and the maxId_global constant. But in our expe-
rience, using library types, as well as defined constants, predicates, and functions
when adequate, is advantageous from the point of view of provability, and also re-
duces the danger of introducing inconsistencies. For instance the maxId_global

constant is defined algorithmically using a recursive let function maxId_fn with
a “dual definition” (it is equipped with a contract describing precisely what it
does). We could instead simply write an axiom concerning maxId_global, but
using the dual definition let function, containing code, not only increases the
degree of assurance in what is being specified, but also makes it easier to reason
about, since Why3 will generate a more easily provable set of VCs.

Cloning the module modelMP.World introduces new composed types and
auxiliary definitions. The system description then proceeds to give the initial
conditions of the system, by means of a state function initState, and a con-
stant initMsgs for the list of messages that are sent upon booting, also defined
by means of a recursive let function. The handler definition then follows. The
next element in the module is the invariant indpred, defined as a let predicate
(since logic elements like quantifiers and equality are required, it is defined as a
let ghost predicate using an auxiliary predicate inv, see Section 2). It states
that every inflight message is well-formed; it contains the id of some node in the
ring, with value not less than the sender’s id, and it is not the id of any node
i such that maxId_global is located between i and the message’s destination
node (an auxiliary predicate between is used to express this). Moreover if the
message contains its destination’s id then that id is the highest in the network.
Finally, any node that is claiming to be the leader has the highest id in the ring.

Why3-do: The Way of Harmonious Distributed System Proofs 123

� �
type node = int
val constant n_nodes : int
axiom n_nodes_ax : 3 <= n_nodes
let function next (x:node) : node = mod (x+1) n_nodes

type id = int
val function id (node) : id
axiom uniqueIds : forall i j :node. id i = id j <-> i=j

let rec function maxId_fn (n:int) : node
requires { 1 <= n <= n_nodes }
ensures { 0 <= result < n}
ensures { forall k :node. 0<=k<n -> k<>result -> id k < id result}
variant { n }

= if n=1 then 0
else let m = maxId_fn (n-1) in if id (n-1) > id m then n-1 else m

constant maxId_global : id = maxId_fn n_nodes

type state = { leader : bool }

type msg = id
predicate ok_Msg (dest:node) (src:node) (m:msg) =

0 <= dest < n_nodes /\ 0 <= src < n_nodes /\ dest = next src

clone modelMP.World with type node = node, type state = state, type msg = msg

let function initState (i:node) : state = { leader = false }

let rec function initMsgs_fn (n:node) : list packet
requires { 0<=n<=n_nodes }
ensures { forall s d :node, m :msg. mem (d, s, m) result ->

m = id s /\ d = next s /\ n<=s<n_nodes /\
(forall i :node. between i maxId_global d -> m <> id i) /\
(m = id d -> d = maxId_global) }

variant { n_nodes-n }
= if (0<=n<n_nodes) then Cons (next n, n, id n) (initMsgs_fn (n+1))

else Nil

let constant initMsgs : list packet = initMsgs_fn 0

let function handleMsg (h:node) (src:node) (m:msg) (s:state) : (state, list packet)
= if m = (id h) then ({ leader = true }, Nil)

else if m > id h then (s, Cons (next h, h, m) Nil)
else (s, Nil)

predicate between (lo:node) (i:node) (hi:node) =
(lo < i < hi) \/ (hi < lo < i) \/ (i < hi < lo)

lemma btw_next_lm : forall i j k :node.
0 <= i < n_nodes -> 0 <= j < n_nodes -> 0 <= k < n_nodes -> i <> k ->

between (next i) j k -> between i j k

predicate inv (lS:map node state) (iFM:list packet) =
(forall s d :node, m :msg. mem (d, s, m) iFM ->

(ok_Msg d s m /\ m >= id s /\
(exists i :node. 0 <= i < n_nodes /\ m = id i) /\
(forall i :node. between i maxId_global d -> m <> id i) /\
(m = id d -> d = maxId_global))) /\

(forall i:node. 0<=i<n_nodes -> (lS i).leader = true -> i = maxId_global)

let ghost predicate indpred (w:world) = inv (localState w) (inFlightMsgs w)

clone modelMP.Steps with type node, type state, type msg, predicate ok_Msg,
val initState, val initMsgs, val indpred, val handleMsg

goal uniqueLeader :
forall w :world, i j:node.

reachable w -> 0<=i<n_nodes -> 0<=j<n_nodes ->
(localState w i).leader = true -> (localState w j).leader = true -> i = j� �

Listing 4.2. Leader election on a ring (Chang-Roberts)

Cláudio Belo Lourenço and Jorge Sousa Pinto �124

The module then clones the Steps module from modelMP instantiating the
necessary elements, and formulates the uniqueLeader proof goal. The verifica-
tion results depend on the provers that are available. In our setup we were able to
prove automatically all VCs using the Alt-Ergo [11], CVC4 [5], and Vampire [36]
SMT solvers after (i) providing lemma btw_next_lm, proved automatically by
Alt-Ergo; and (ii) including in the postcondition of function initMsgs_fn the
relevant facts relating in-transit messages and maxId_global, as required by
the invariant. Observe that this postcondition is proved automatically by the
program verification engine following the recursive definition of the function.

5 Trace Specifications

In the previous section we have considered a specification property expressed at
the implementation level, with access to internal node states. Other internal ele-
ments of worlds, including messages, could be mentioned in such implementation-
level properties. It is however very useful to introduce an abstraction barrier be-
tween specifications and implementation details. This can be achieved by logging
certain observable events onto a trace of the system, and then writing specifi-
cations as properties of the trace. Models in our setting can be equipped with
traces, allowing for protocols and systems to be specified in this way.

We will illustrate this by equipping the message-passing model of Section 4
with traces. Each system using this model defines an Out type of outputs, and
the model defines external events as Evt = N ×Out, outputs paired with the
node that originated them (other models may use additional notions of external
event, such as inputs received by nodes from their local environments). A trace
is a sequence of external events; the function rec : N→ Out∗ → Evt∗ produces
a trace from a sequence of outputs, pairing them with the source node. Given a
predicate ν on traces and τ ∈ Evt∗, we will write τ |= ν when τ satisfies ν.

A commit specification (µp, µf) consists of a predicate µp(Σ,Σ) and a func-
tion µf (Σ,Σ) : Out∗, expressing respectively when outputs should be produced,
and what those outputs should be. The signature of the message handler is sim-
ilar to that in the model of Section 4, with a trace as additional output. Its
contract states that it complies with a given commit specification.

handleM(h :N, s :N,m :Msg, σ :Σ) : (σ′ :Σ, nt′ :Msg∗, l :Out∗)
ensures ∀lS:N→Σ,nt:Msg∗ . σ = lSh→ (h, s,m) ∈ nt

I〈lS, nt〉 → I〈lS[h 7→ σ′], nt′ + nt− {(h, s,m)}〉)
ensures (µp(σ, σ

′)→ l = µf (σ, σ′)) ∧ (¬µp(σ, σ′)→ l = ε)

We will write okI,µp,µf (handleM) to signify that the implementation of handleM
adheres to its contract, with invariant I and commit specification (µp, µf).

Worlds are tuples 〈lS, nt, τ〉 with lS : N → Σ, nt : Msg∗, and τ : Evt∗. The
semantics will now be given by the relation ⊆ W ×N ×W, with w n w

′

meaning that world w transitions to w′ with node n executing a handler. The
following transition rule commits outputs to the trace:

Why3-do: The Way of Harmonious Distributed System Proofs 125

handleM(h, s,m, lS(h)) = (σ, nt′, l) (h, s,m) ∈ nt

〈lS , nt , τ〉 h〈lS[h 7→ σ] , nt′ + nt− {(h, s,m)} , rech(l) + τ〉
(message)

A specification is a triple (µp, µf , ν) consisting of a commit specification and
a predicate ν(Evt∗) expressing some notion of trace consistency. Correctness
implies that the commit specification is respected and traces are consistent.

Definition 1. A system with initial world w0 ∈ W is said to be correct with
respect to a specification (µp, µf , ν) if

1. for all w = 〈lS, nt, τ〉 ∈ W, w′ = 〈lS′, nt′, τ ′〉 ∈ W and n ∈ N such that
w0 ∗ w n w

′, if µp(lS(n), lS′(n)) then τ ′ = recn(µf (lS(n), lS′(n))) + τ ,
otherwise τ ′ = τ

2. τ |= ν for every world w = 〈lS, nt, τ〉 ∈W such that w0 ∗ w

Lemma 2. Let (µp, µf , ν) be a specification, and I a predicate such that
okI,µp,µf (handleM), w0 |= I, and for every world w = 〈lS , nt , τ〉, w |= I implies
τ |= ν. Then the system is correct with respect to (µp, µf , ν).

As usual the lemma is proved mechanically in the Why3-do module for this
model. Every Why3-do model extended with traces contains a similar lemma.

A simplified version of the modelMPTrace model is shown in Listing 5.1 (...
indicate elements that are preserved from the modelMP module). The world

type extends the tuple of modelMP with a trace of type list externalEvent.
The functions/predicates commitp, commitf, and consistent, corresponding
respectively to µp, µf , and ν, are to be instantiated when cloning the model. The
indpred inductive predicate gains a new postcondition ensuring that it enforces
consistency of the system’s trace (following the conditions of Lemma 2). The
step inductive predicate is modified to include as an additional parameter the
node involved in each transition. The commit_step and consistent_reachable

lemmas (mechanically proved, using the contracts of indpred and handleMsg)
together correspond to Lemma 2 above.

Example: Distributed Lock. This example will show how Why3-do models can
be extended in a flexible way. Its verification was first carried out in [20] and
later also in [34] and [29]. We adapt it here to make use of trace specifications,
which will allow us to demonstrate their effectiveness as an abstraction barrier.
In addition to traces, the example also illustrates the use of guarded actions in
models (through the use of enabling predicates), as well as the use of a non-
idealized network model, in which in-transit messages can be duplicated. Two
implementations will be given: one that is in accordance with the trace spec if the
idealized model is used, and a second implementation that tolerates duplicating
messages. The specification of the distributed lock system is the following:

1. the state of each node must include information on whether it is holding a
lock (a Boolean), together with the lock’s current epoch (an integer);

2. whenever a node acquires a lock it outputs its current epoch;

Cláudio Belo Lourenço and Jorge Sousa Pinto �126

� �
module World ...
type externalEvent ...
type world = (map node state, list packet, list externalEvent) ...
function trace (w:world) : list externalEvent = let (_,_,t)=w in t
end (* module World *)

module Steps ...
type output
type externalEvent
val function record_outputs (n:node) (outs:list output) : list externalEvent
predicate commitp (state) (state)
function commitf (state) (state) : list output
predicate consistent (t:list externalEvent)

val ghost predicate indpred (w:world)
ensures { ... /\ result -> consistent (trace w) }

function step_message (w:world) (p:packet) (r:(state, list packet, list output)) : world =
let (st, ms, outs) = r in let localState = set (localState w) (dest p) st in

let inFlightMsgs = ms ++ (remove p (inFlightMsgs w)) in
let trace = (record_outputs (dest p) outs) ++ (trace w) in

(localState, inFlightMsgs, trace)

val function handleMsg (h:node)(s:node)(m:msg)(sig:state) : (state, list packet, list output)
requires { ... }
ensures { ... /\ let (s’,_,lo) = result in (commitp s s’ ->

lo = commitf s s’) /\ (not (commitp s s’) -> lo = Nil) }

inductive step world node world =
| step_msg : forall w :world, p :packet.

mem p (inFlightMsgs w) -> step w (dest p) (step_message w p
(handleMsg (dest p) (src p) (payload p) (localState w (dest p))))

...
lemma commit_step :

forall w w’ :world, n :node. reachable w -> step w n w’ ->
(commitp (localState w n) (localState w’ n) ->

trace w’ = (record_outputs n (commitf (localState w n) (localState w’ n))) ++ trace w)
/\ (not (commitp (localState w n) (localState w’ n)) -> trace w’ = trace w)

lemma consistent_reachable :
forall w :world. reachable w -> consistent (trace w)

end (* module Steps *)� �
Listing 5.1. Message-passing model: modelMPTrace

3. in every reachable world an output n is stored in position n of the trace.

The system’s trace stores the sequence of outputs sent by different nodes. To-
gether, these requirements mean that a node acquiring the lock at epoch n writes
to position n of the trace, which implies (since traces are only modified by ap-
pending at the head) that no two nodes acquire the lock in the same epoch.

Specifications are written as Why3-do modules defining the output and
externalEvent types, together with projection and the record_outputs func-
tions. Most importantly, they define the commitp and consistent predicates, as
well as the commitf function. However, the specification is abstract and does not
impose the use of any specific system model. It requires the presence of certain
types, but does not specify how the types are implemented. The requirement
that states should contain specific information is included by declaring functions

Why3-do: The Way of Harmonious Distributed System Proofs 127

� �
module Spec

(* to be instantiated when cloning this module *)
type node
type state
function getEpochS (s:state) : int
predicate getHeldS (s:state)

type output = | Locked int
function getEpochO (o:output) : int =

match o with | Locked e -> e end
type externalEvent = (node, output)
function node (e:externalEvent) : node = let (n,_) = e in n
function outp (e:externalEvent) : output = let (_,o) = e in o
let rec function record_outputs (n:node) (outs:list output) : list externalEvent

ensures { forall i :int. 0<=i<length outs -> nth i result = (n, nth i outs) }
= ...
predicate commitp (s:state) (s’:state) = not (getHeldS s) /\ getHeldS s’
function commitf (_:state) (s’:state) : list output = Cons (Locked (getEpochS s’)) Nil
predicate consistent (t:list externalEvent) =

match t with
| Nil -> true
| Cons (_,o) tt -> getEpochO o = length t /\ consistent tt
end

end (* module Spec *)� �
Listing 5.2. Specification module for distributed lock

and/or predicates on states. Implementation modules will define these types and
functions and clone the specification module, instantiating them.

This specification of the distributed lock is written as the Why3-do module
of Listing 5.2. It assumes the use of a system model defining types node, state,
output, and externalEvent. The above requirements are formalized as follows:

1. the functions getEpochS and getHeldS express required state information;
2. the output type has a single constructor carrying an integer; externalEvents

are outputs paired with nodes; the commitp predicate states that outputs
are produced when the state of a node changes from not holding to holding a
lock, and the commitf function returns a list with the node’s current epoch;

3. the consistent predicate uses the list length function to require that the
output stored in each position n of the trace contains epoch n.

We will consider two message-passing implementations for this specification
based on a ring topology, shown in listings 5.3 and 5.4. Node states are records
with two fields: a Boolean held indicating whether the node holds the lock, and
its current epoch. After the appropriate type definitions, both implementation
modules clone the same Spec module, and then the World module from the ap-
propriate model. The idealized model modelMPEnabledTrace is used in the im-
plementation of Listing 5.3, whereas Listing 5.4 uses modelMPEnabledTraceDupl
in which messages can be duplicated. Both are extensions of modelMPTrace (List-
ing 5.1) with an enabling predicate. Enabling predicates allow for nodes to ex-
ecute guarded actions: when cloning the model, the enabled predicate (with a
node and its state as parameters) and the handleEnbld function are instantiated;
the semantics states that the handler may be executed whenever the predicate

Cláudio Belo Lourenço and Jorge Sousa Pinto �128

� �
type node = int
val constant n_nodes : int
axiom n_nodes_ax : 2 <= n_nodes
let function next (x:node) : node = mod (x+1) n_nodes

type state = { held : bool; epoch : int }
function getEpochS (s:state) : int = epoch s
predicate getHeldS (s:state) = held s

type msg = int
predicate ok_Msg (dest:node) (src:node) (_:msg) =

0<=dest<n_nodes /\ 0<=src<n_nodes /\ dest = next src

clone specLDT.Spec with type node, type state, function getEpochS, predicate getHeldS

clone modelMPEnabledTrace.World with type node, type state,
type msg, type output, type externalEvent

let function initState (n:node) : state
= let h = if n=0 then true else false in

let e = if n=0 then 1 else 0 in
{ held = h; epoch = e }

let constant initMsgs : list packet = Nil
let constant initTrace : list externalEvent = Cons (0,Locked(1)) Nil

let function handleMsg (_:node)(_:node) (m:msg) (s:state) :(state, list packet, list output)
= if (not (held s)) then ({ held = True; epoch = m }, Nil, Cons (Locked m) Nil)

else (s, Nil, Nil)

let ghost predicate enabled (s:state) (i:node)
= 0<=i<n_nodes && held s

let function handleEnbld (h:node) (s:state) : (state, list packet, list output)
= let e = epoch s in ({ held = False; epoch = e }, Cons (next h, h, e+1) Nil, Nil)

let rec ghost predicate zeroHeld (lS:map node state) (n:int) = ...
let rec ghost predicate oneHeld (lS:map node state) (n:int) = ...
let rec ghost predicate oneMsg (lp:list packet) = length lp = 1
let rec ghost predicate noMsgs (lp:list packet) = length lp = 0

let rec ghost predicate ok_trace (t:list externalEvent)
ensures { result -> consistent t }

= match t with
| Nil -> true
| Cons (_,o) Nil -> getEpochO o = 1
| Cons (_,o1) os ->

match os with
| Nil -> true
| Cons (_,o2) _ -> getEpochO o1=(getEpochO o2)+1 && ok_trace os
end

end

predicate inv (lS:map node state) (iFM:list packet)
(tr:list externalEvent)

= (forall p: packet. mem p iFM -> ok_Msg(dest p)(src p)(payload p))
/\ ((oneMsg iFM /\ zeroHeld lS n_nodes)

\/ (noMsgs iFM /\ oneHeld lS n_nodes))
/\ (forall n :node. 0<=n<n_nodes -> held (lS n) ->

n = node (hd tr) /\ epoch (lS n) = getEpochO(outp (hd tr)))
/\ (forall p: packet. mem p iFM ->

src p = node (hd tr) /\ payload p=getEpochO(outp (hd tr))+1)
/\ length tr > 0 /\ ok_trace tr

let ghost predicate indpred (w:world)
= inv (localState w) (inFlightMsgs w) (trace w)

clone modelMPEnabledTrace.Steps with ...� �
Listing 5.3. Distributed lock with idealized model

Why3-do: The Way of Harmonious Distributed System Proofs 129

� �
...
let function handleMsg (_:node) (_:node) (m:msg) (s:state)

: (s’:state, lp:list packet, lo:list output)
= let nop = (s, Nil, Nil) in

if (held s) || m <= epoch s then nop
else ({ held = True; epoch = m }, Nil, Cons (Locked m) Nil)

...
(* helper definitions for invariant predicate *)
let rec ghost predicate zeroHeld (lS:map node state)(n:int) ...
let rec ghost predicate atMostOneHeld (lS:map node state)(n:int)...
let rec ghost predicate isFresh (p: packet) (lS:map node state)...
let rec ghost predicate allStale (lS:) (lp:list packet)...
let rec ghost predicate atMostOneFresh (lS:...)(lp:...)...
let rec ghost predicate ok_trace (t:list externalEvent)...

predicate inv (lS:map node state) (iFM:list packet)
(tr:list externalEvent)

= (forall p: packet. mem p iFM -> ok_Msg (dest p)(src p)(payload p))
/\ atMostOneFresh lS iFM /\ atMostOneHeld lS n_nodes
/\ (zeroHeld lS n_nodes \/ allStale lS iFM)
/\ (forall n :node. 0<=n<n_nodes -> held (lS n) ->

n = node (hd tr) /\ epoch (lS n) = getEpochO(outp (hd tr)))
/\ (forall p: packet. mem p iFM -> isFresh p lS ->

src p = node (hd tr) /\ payload p = getEpochO(outp (hd tr))+1)
/\ length tr > 0 /\ ok_trace tr

...� �
Listing 5.4. Distributed lock with duplicating messages model

is true. In the present example, enabled is defined as true when a node holds a
lock, in which case it is free to release it. The lock is released when handleEnbld

executes, sending a message to the next node in the ring. The message includes
the value of the sender’s current epoch, incremented by one.

The system is initialized with node 0 holding the lock (and this fact is reg-
istered in the system trace). The handling functions then follow. The enabling
predicate and the corresponding handler are the same in both implementations;
it is in the message handlers that they differ. With the idealized model nodes
can trust that messages are never stale, so they react by blindly acquiring the
lock. With the duplicating model the receiving node first checks whether the
epoch in the received message is higher than its present epoch (in which case
it cannot be a stale copy of a previous message). The inductive invariants are
also different for both implementations, but both include a property expressed
with the ok_trace predicate, stating that events in the trace contain incremen-
tal epochs, starting from 1. This implies consistency of the trace (as defined in
the specification), and is easier to check for inductiveness.

Let us consider in detail the system of Listing 5.4. A message is fresh if
the current epoch of its destination node is lower than the message. Transfer
messages are always sent from the highest epoch node (holding the lock) and
thus, at the time of sending, the destination has a lower epoch, which will be
updated when the message is received and the lock acquired. Other copies of the
message are stale because their destinations’ epochs have since increased. The
system’s invariant is given as the conjunction of the following properties, using
the zeroHeld, atMostOneHeld, allStale, and atMostOneFresh predicates: (i)

Cláudio Belo Lourenço and Jorge Sousa Pinto �130

in-transit messages are well-formed; (ii) there is at most one in-transit fresh
message, and at most one node holding a lock; if a node holds a lock then all
in-transit messages are stale; (iii) If node n holds the lock then the last Locked x

was written in the trace by n, and x is the current epoch of n; (iv) if there exists a
fresh in-transit message, then it was sent by the last node that output Locked x,
and it carries the value x+ 1; (v) the trace obeys the ok_trace predicate.

The VCs generated for the modules of listings 5.3 and 5.4, proved automati-
cally, establish the correctness of each system with respect to the specification of
Listing 5.2: events are being logged in the specified way, and traces are consistent.

6 Locally Shared Memory Model

Dijkstra described certain distributed systems (including the self-stabilizing sys-
tems described below) using a guarded processes model, in which nodes/pro-
cesses do not exchange messages, but instead have direct read access to each
other’s states. Although particular systems will only require read access to a
limited set of states (typically its immediate neighbors’), our model allows read
access universally. This is not a shared-memory model in all generality, but it
may be implemented over shared memory, with a single-writer multiple-reader
data structure for each node’s state (and readers–writer locks for atomicity).

We formalize this in our setting as a model where worlds are simply of the
form 〈lS〉 with lS : N → Σ a state-assigning function. A system based on this
model is programmed by defining an enabling predicate on nodes and a han-
dling function describing the behavior that can be executed whenever a node
is enabled. Formally we will consider that the enabling predicate has signature
ep(n : N, lS : N→ Σ), taking as parameters a node and a global state assigning
function, and the handling function has the following signature and contract:

handleE(h : N, lS : N→ Σ) : (σ : Σ)
requires ep(h, lS) ∧ I〈lS〉
ensures I〈lS[h 7→ σ]}〉

The enabling predicate and the handler code have read access to every node’s
state, but the handler may only modify the state of the node where it is running.
This semantics is given by the following rule:

handleE(h, lS) = σ ep(h, lS)

〈lS〉 h 〈lS[h 7→ σ]〉
(enabled)

where h means that node h runs the handler. The contract of handleE ensures
that executions of the (enabled) transition rule preserve the property I (the
contract ensures this if the node is enabled, and the semantics only allow for
transitions satisfying this requirement). We will write okI(ep, handleE) when the
implementation of the handling function handleE adheres to its contract, with
invariant I and enabling predicate ep. Listing 6.1 shows a simplified version of
the Why3-do modelReadallEnabled module, including the following Lemma,
proved using an induction transformation and SMT solvers.

Why3-do: The Way of Harmonious Distributed System Proofs 131

� �
module World

type node, type state, type world = map node state
end

module Steps
val predicate validNd (n:node)
val function initState (node) : state
constant initWorld : world = initState

val ghost predicate indpred (w:world)
ensures { w=initWorld -> result }

val ghost predicate enabled (map node state) (i:node)
requires { validNd i }

function step_enbld (w:world) (n:node) (st:state) : world = set w n st

val function handleEnbld (h:node) (lS:map node state) : state
requires { validNd h /\ enabled lS h /\ indpred lS }
ensures { indpred (step_enbld lS h result) }

inductive step world node world =
| step_enbld : forall w :world, n :node. validNd n -> enabled w n ->

step w n (step_enbld w n (handleEnbld n w))

lemma indpred_step :
forall w w’ :world, n :node. step w n w’ -> indpred w -> indpred w’

lemma step_preserves_states :
forall w w’ :world, n i :node. step w n w’ -> i<>n -> w i = w’ i

(* keeps track of number of transition steps *)
inductive step_TR world world int =
| base : forall w :world. step_TR w w 0
| step : forall w w’ w’’ :world, n :node, steps :int.

step_TR w w’ steps -> step w’ n w’’ -> step_TR w w’’ (steps+1)

lemma noNeg_step_TR : forall w w’ :world, steps :int. step_TR w w’ steps -> steps >= 0
lemma indpred_manySteps :

forall w w’ :world, steps :int . step_TR w w’ steps -> indpred w -> indpred w’

predicate reachable (w:world) = exists steps :int. step_TR initWorld w steps
lemma indpred_reachable : forall w :world. reachable w -> indpred w

end� �
Listing 6.1. Locally shared memory model: modelReadallEnabled

Lemma 3. Let w0, w ∈W, with ep and I predicates such that okI(ep, handleE),
w0 |= I, and w0 ∗ w. Then w |= I.

Example: Stabilizing Mutual Exclusion. Self-stabilizing systems [15,38] are de-
signed to tolerate failures resulting from “horrible errors” (such as data cor-
ruption), by including a recovery mechanism. Given some notion of legal con-
figuration, a system is said to be self-stabilizing if (i) starting from an illegal
configuration, all executions eventually converge to a legal configuration (a live-
ness property), and (ii) legal configurations are closed under normal execution
steps, i.e. no illegal configuration is reachable if no corruption of data occurs
(a safety property). One of Dijkstra’s examples of such a system in his seminal
paper [15] was a directed ring of processes sharing a resource, with mutual exclu-
sion enforced by means of a circulating token. Legal configurations are those in

Cláudio Belo Lourenço and Jorge Sousa Pinto �132

� �
module SelfStab_Ring_Closure

type node = int
val constant n_nodes : int
axiom n_nodes_bounds : 2 < n_nodes
let predicate validNd (n:node) = 0 <= n < n_nodes
type state = int
val constant k_states : int axiom k_states_lower_bound : n_nodes < k_states
let function incre (x:state) : state = mod (x+1) k_states

clone modelReadallEnabled.World with type node, type state

let function initState (n:node) : state = if n=n_nodes-1 then 1 else 0

predicate has_token (lS:map node state) (i:node) =
(i = 0 /\ lS i = lS (n_nodes-1)) \/ (i > 0 /\ i < n_nodes /\ lS i <> lS (i-1))

let ghost predicate enabled (lS:map node state) (i:node) = has_token lS i

let function handleEnbld (h:node) (lS:map node state) : state
= if h = 0 then incre (lS (n_nodes-1)) else lS (h-1)

let rec ghost predicate atLeastOneToken (lS:map node state) (n:int)
requires { validNd n }
ensures { result <-> exists k :int. 0<=k<n /\ has_token lS k }
variant { n }

= n > 0 && (has_token lS (n-1) || atLeastOneToken lS (n-1))

predicate atMostOneToken (lS:map node state) (n:int) = validNd n ->
forall i j :int. 0<=i<n -> 0<=j<n -> has_token lS i -> has_token lS j -> i=j

lemma first_last : forall n: int, lS :map node state.
n >= 0 -> (forall j :int. 0<j<=n -> lS j = lS (j-1)) -> lS 0 = lS n

lemma atLeastOneTokenLm : forall w :world. atLeastOneToken w n_nodes

predicate inv (lS:map node state) =
(forall n :int. validNd n -> 0 <= lS n < k_states) /\ atMostOneToken lS n_nodes

let ghost predicate indpred (w:world) = inv w

clone modelReadallEnabled.Steps with type node, type state,
val validNd, val initState, val indpred, val enabled, val handleEnbld

predicate oneToken (w:world) = atMostOneToken w n_nodes /\ atLeastOneToken w n_nodes
goal oneToken : forall w :world. reachable w -> oneToken w

end� �
Listing 6.2. Self-stabilizing mutual exclusion on a ring – Closure

which exactly one process carries a token. In case of failure the system converges
back into a single-token configuration. Dijkstra’s proposal for self-stabilizing mu-
tual exclusion was the following: processes have integer numbers in {0, . . .K−1}
as states, with K greater than the size of the ring. Each process observes the
state of its predecessor in the ring; the process with index 0 holds a token when
its state is the same as that of its predecessor (the last process in the ring);
other processes hold a token when their state is different from their predeces-
sor’s. When holding a token, each process may modify its state by copying its
predecessor’s state; node 0 additionally increments (modulo K) this state.

Listing 6.2 shows the Why3-do formalization of this system, based on the
locally shared memory model. Nodes and states are both integers; n_nodes and
k_states are the size of the ring and the number of different states. The en-

Why3-do: The Way of Harmonious Distributed System Proofs 133

abling predicate is defined as true for a node exactly when it is carrying a token,
as specified by the has_token predicate. The handler defined by handleEnbld

copies states as previously described. Mutual exclusion is expressed using pred-
icates atLeastOneToken and atMostOneToken that apply to the first n nodes.

The module of Listing 6.2 verifies the closure property. The invariant ex-
presses that node states are within bounds, and there is no more than one token
in the ring. One possible (legal) initial configuration of the system is described
by the initState let function. These definitions are instantiated when cloning
modelReadallEnabled. The module ends with the oneToken goal, stating that
there exists exactly one token in all reachable configurations.

Stepwise Bounded Validation. In the verification of closure we use the following
technique: we introduce an axiom bounding the size of the system, passed to
the solvers to make automated proofs easier (soundness of the verification may
be compromised at this point). We then introduce parts of the invariant step
by step, and check them in this bounded system in order to gain insight as to
their validity. Once we feel confident about the elected invariant, we remove
the bounding axiom to achieve soundness of the verification, possibly stating
additional lemmas or strengthening the invariant. For the present system:

1. We started with the following invariant. Inductiveness is proved automatically,
but the oneToken goal cannot be proved from it (as expected):
forall i :int. validNd i -> 0 <= lS i < k_states.

2. Next, we included atMostOnetoken lS n_nodes in the invariant; preservation
was proved automatically, but oneToken could still not be proved. We then added
a bounding axiom n_nodes <= 10, which allowed the goal to be proved.

3. We strengthened the invariant with atLeastOnetoken lS n_nodes and removed
the bounding axiom. The oneToken goal was proved trivially; however, the VC
pertaining to the preservation of the invariant could not be proved.

4. Preservation could be proved by reintroducing a bound on n_nodes (with a
bound of 1000, all VCs could be proved within 30 seconds in our setup).

These bounded proof results indicate that, in all likelihood, (i) the property
atLeastOnetoken lS n_nodes is preserved by system transitions, and thus induc-
tive, but (ii) it is not necessary to include it in the inductive invariant to prove
oneToken: in our development the oneToken goal could be proved for a number
of processes up to 10 without including the former property in the invariant. The
reason for this is that in fact the atLeastOnetoken lS n_nodes property is satis-
fied by definition in all configurations: in order for a token to be present, either
any two adjacent processes have different states, or the first and last processes
have the same state. If all processes have the same state, then the second case
holds. Including the property in the invariant still requires a bound (to prove
preservation), but this can now have a much higher value (1000 rather than 10).

An unbounded proof is obtained by including in the module the first_last

lemma (proved by induction on n). This allows for the goal to be proved au-
tomatically without atLeastOnetoken lS n_nodes in the invariant, and with
no upper bound on n_nodes. We remark that the dual definition (recursive +

Cláudio Belo Lourenço and Jorge Sousa Pinto �134

TLAPS Verdi IronFleet Ivy Why3-do
Contract-based design X(partial) X
DS models generic MP MP MP MP; LSM
Reusable Models X X X
Different fault models X X
Verified system transforms X
Abstract Specifications state machines;

spec to protocol
refinement

observ.
traces

state machines;
spec to protocol
refinement

observ. traces
(model-
independent)

Liveness properties X(TLC) X(TLC)
Logic TLA+ FOL FOL EPR FOL
Invar. discovery support X
Automated provers multiple Z3 Z3 multiple
Proof assistants multiple Coq multiple
Programming language PlusCal Gallina

(F)
state machines;
Dafny (F/I)

RML WhyML
(F/I)

Implementation support UDP model/
machine types

mutable/machine
(WhyML) types

Generation of executables X X

Table 7.1. Comparison of DS deductive verification frameworks
MP: message-passing, LSM: locally shared memory, F: functional, I: imperative

contract) of the atLeastOneToken let function was crucial for proving the goal
automatically (this was not possible with a logic definition).

The convergence property is more challenging; its Why3-do formalization
can be found in the artifact [28]. We have also verified Dijkstra’s version of this
system with a bidirectional array topology. Bounded exploration again allowed
us to validate parts of the invariant; attaining an unbounded verification required
strengthening the invariant, rather than a lemma.

7 Related Work

Deductive verification methods are typically based on first-order logic reasoning
and focus on safety properties, with correctness proofs requiring users to man-
ually provide appropriate invariants and to discharge (either automatically or
interactively) proof obligations generated in the process. Invariants may apply
to loops, recursive functions, or non-deterministic transition relations, and al-
low for correctness proofs by induction on the length of executions. In the last
few years a number of frameworks and tools have been proposed for reasoning
about asynchronous message-passing systems using inductive invariants, based
on atomic handler models and different specification mechanisms. We will now
briefly survey these and compare them with Why3-do in terms of design choices.

Verdi [42] introduced the use of models based on worlds and atomic handlers,
with models capturing different fault semantics. Why3-do’s semantic framework
is inspired by Verdi; we enrich handlers with interface specifications in the form
of contracts, allowing for the use of methods that are standard in deductive
verification of single-thread software. Verdi is a Coq development, and reasoning
is carried out within the Coq proof assistant [22]. The implementation of our

Why3-do: The Way of Harmonious Distributed System Proofs 135

framework as a Why3 library allows for the use of automated tools (all the proofs
in this paper use SMT solvers and a few Why3 transformations).

Whereas Verdi handlers are defined in a purely functional style, in Why3-
do they are written in WhyML, combining functional and imperative features.
Verdi supports system transformations that allow for verified systems to be ob-
tained from systems verified with simpler models (additional mechanisms may
be automatically introduced to compensate for the presence of faults). Trans-
formations are verified once and for all, so the resulting systems do not need to
be verified. An important difference is that Verdi targets exclusively message-
passing systems, whereas Why3-do covers different system models. Verdi sup-
ports traces, but specifications may not be written in a completely abstract,
model-independent way. In Why3-do this is achieved through the use of clonable
specification modules defining commit specifications and trace consistency.

The IronFleet [20] platform is built on top of a deductive verification tool,
Dafny [26], which uses the Z3 [31] SMT solver for proofs. Like Verdi, it supports
only message-passing systems. A major difference with respect to Why3-do and
Verdi is that, instead of a specification mechanism based on traces, IronFleet sep-
arates development in a specification level (where worlds are viewed abstractly)
and a concrete protocol level, both described in FOL as state machines. A refine-
ment function [1] maps protocol worlds to the specification level, and a refine-
ment proof shows that protocol steps are compatible with the abstract behavior
(in Why3-do this is achieved by trace consistency proofs). There is a third, im-
plementation level, where event handlers are programmed using mutable data
structures and machine types, for performance and realism. IronFleet extends
Dafny with a UDP specification to support networking, which allows non-atomic
handlers to be developed assuming low-level interleaving. In order to establish
refinement proofs between low-level implementations and protocols, reduction-
based reasoning is supported. IronFleet also includes an embedding of TLA that
makes possible reasoning about liveness properties. It is overall an ambitious
tool that has been used by its authors to verify practical systems.

Up to a point Why3-do implementations cover both the protocol and imple-
mentation levels, since WhyML accommodates both functional programs and
stateful code with mutable structures and machine types. Why3 supports code
extraction from verified WhyML programs, and it should not be difficult to ob-
tain a distributed implementation from a verified Why3-do system, using one of
the available OCaml libraries. Our framework allows for diverse system models,
with different implementation infrastructure requirements. In general each node
must run a scheduler that will, for instance, receive incoming local inputs and
messages from the network, check enabling predicates, and run the appropriate
handlers, reflecting locally and globally the effects prescribed by the semantics.

The Ivy tool [34] differs from Why3-do and the previous frameworks in sev-
eral important ways. It uses a dedicated modeling/programming language called
RML, and a logic language restricted to the effectively propositional (EPR) class
of formulas, whose satisfiability is decidable (Ivy also uses Z3). Specifications
may refer to any part of the model (no specification/protocol distinct layers or

Cláudio Belo Lourenço and Jorge Sousa Pinto �136

observation traces are used). The use of EPR imposes severe restrictions: RML
does not allow arithmetic operations, so for instance a ring topology cannot be
modeled using integer modulo arithmetic. A verification methodology based on
the use of EPR, and details on how it has been used to verify variants of the
PAXOS protocol, are extensively described in [33] (the method proposed for re-
ducing quantifier alternation is of general interest, even when unrestricted FOL
is used). Leveraging the decidability of the logic, Ivy focuses on assisting the
user in writing the protocol and its specification, and in discovering adequate
inductive invariants. A few initial steps of execution are first considered, which
may allow for bugs to be found in the protocol and/or target properties; Ivy
then assists the user in finding an inductive invariant by performing interactive
strengthening and generalization steps, and representing states visually.

A more general, comprehensive framework for reasoning about distributed
systems has been constructed around the TLA+ specification language, based
on the Temporal Logic of Actions [25]. TLA+ is without any doubt a widely suc-
cessful toolset, and its adoption in practice is well documented [32]. The toolset
comprises the specification language itself; the PlusCal algorithmic language; the
TLC model checker [43]; the TLAPS proof system [8]; and a development envi-
ronment. Correctness proofs are based on the notion of refinement mapping [1]. If
one writes a TLA+ specification and a PlusCal implementation, and then trans-
lates the latter to TLA+, its correctness can be stated as a refinement problem,
whose VC is itself written as a TLA+ formula. The TLAPS proof system is an
ongoing effort but can already be used to prove many such refinements. TLAPS
proofs [12] are constructed using both proof assistants and SMT solvers.

Table 7.1 summarizes the distinctive aspects of the discussed tools. Addition-
ally, the I4 technique has been proposed [29] based on the automatic synthesis
(by model checking) of inductive invariants for small instances of protocols, fol-
lowed by their generalization. Invariants are checked with Ivy, and if necessary
the process is repeated, considering a bigger instance or a pruned invariant.
Kaizen [23] is a verified blockchain system that has been developed using an
approach similar to IronFleet. Implementations of distributed systems that have
been formally verified using different tools have been empirically scrutinized
in [19].

Program logics for distributed systems have also been the subject of recent
work, typically based on or inspired by concurrent separation logics [6], and
mechanized in the Coq proof assistant. Notable examples include Disel [39],
which focuses on modularity and compositionality, and Aneris [24], which in-
cludes support for node-level concurrency in addition to inter-node reasoning.
ModP [14] is an actor-based compositional programming framework that offers
assume-guarantee reasoning principles to support compositional system testing.

The self-stabilizing ring system has been verified interactively using the
PVS [35] and Isabelle [30] proof assistants, and also by symbolic model check-
ing [41,9]. A general framework for building certified proofs of self-stabilizing
algorithms (using Coq) is described in [3].

Why3-do: The Way of Harmonious Distributed System Proofs 137

8 Conclusion

In this paper we have proposed principles for contract-based verification of dis-
tributed systems, based on a library promoting modular development. The ap-
proach enables the use of state of the art sequential software verifiers for reason-
ing about distributed systems, supports model-independent trace specifications,
and is uniform across system models, beyond the message-passing setting.

To implement these principles we have chosen the Why3 verification platform.
We have shown how specific features of Why3, such as the ability to interface
with different solvers and the use of dual definitions, contribute to successful
automated proofs. For instance, we were able to prove the inductiveness of an
invariant for the leader election protocol containing a quantifier ‘alternation’ (a
sequence of the form ∀∃ [33], outside the decidable EPR logic). In particular,
the Alt-Ergo and Vampire solvers were able to prove these VCs, whereas Z3
and CVC4 failed (with a generous timeout value). On the other hand, the dual
definition of the atLeastOneToken predicate in the self-stabilization systems,
when the invariant included this predicate containing an existential quantifier,
allowed Z3 or CVC4 (not the other solvers) to prove inductiveness. In neither
case was it necessary to employ invariant quantifier hiding, as in [20].

Unbounded domains (nodes, messages, etc.) are typical of distributed sys-
tems. Considering bounded systems, in combination with dual definitions, al-
lowed us to explore the inductiveness of invariant properties before tackling the
unbounded case (by strengthening invariants or writing lemmas). This should
not be mistaken with the use of bounded verification in Ivy, which considers the
first few system steps in order to debug models, or in I4, which produces finite
quantifier-free instances of problems, amenable to model checking.

The limitations of the framework are that, in the spirit of verification of se-
quential programs with Why3, Why3-do targets the verification of distributed
systems at the algorithmic level, and is not intended for reasoning about exe-
cutable implementations (but see the discussion on implementation extraction in
Section 7). Also, no support for reasoning with non-atomic handlers is included.

Why3 is a stable tool, actively developed by a solid team, with a growing
user community and very low risk of obsolescence. It is being successfully used
for formal verification in contexts as diverse as safety-critical programming [2],
multicore schedulers [27], or blockchain smart contracts [37,40]. Why3-do brings
Why3’s strengths in terms of usability and proof engineering to the mechanical
verification of distributed systems, making it available to a wider community.

Acknowledgments. The development of Why3-do was initiated during a visit of
the second author to the Toccata team at Inria Saclay-̂Ile-de-France/LRI Univ
Paris-Saclay/CNRS and greatly benefited from the team’s hospitality and Why3
expertise. This work is financed by the ERDF – European Regional Development
Fund through the North Portugal Regional Operational Programme - NORTE
2020 Programme and by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia within project NORTE-01-0145-
FEDER-028550 - PTDC/EEI-COM/28550/2017.

Cláudio Belo Lourenço and Jorge Sousa Pinto �138

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991). https://doi.org/10.1016/0304-3975(91)90224-
P

2. AdaCore and Altran UK Ltd: SPARK 2014 Reference Manual – Release 2020
(2020)

3. Altisen, K., Corbineau, P., Devismes, S.: A framework for certified self-
stabilization. In: Albert, E., Lanese, I. (eds.) Formal Techniques for Distributed
Objects, Components, and Systems. pp. 36–51. Springer International Publishing,
Cham (2016)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
5. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,

Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification. pp. 171–177. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011)

6. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. ACM SIGLOG News
3(3), 47–65 (Aug 2016). https://doi.org/10.1145/2984450.2984457

7. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22(5), 281–283 (May 1979).
https://doi.org/10.1145/359104.359108

8. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties with
the TLA + proof system. In: Giesl, J., Hähnle, R. (eds.) Automated Reasoning.
pp. 142–148. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

9. Chen, J., Abujarad, F., Kulkarni, S.: Towards scalable model checking of self-
stabilizing programs. Journal of Parallel and Distributed Computing 73(4), 400–
410 (2013). https://doi.org/10.1016/j.jpdc.2012.12.009

10. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
11. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT

Workshop: International Workshop on Satisfiability Modulo Theories. Oxford,
United Kingdom (Jul 2018)

12. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA + proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal Methods.
pp. 147–154. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

13. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C - A software analysis perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) Software Engineering and Formal Methods - 10th Interna-
tional Conference, SEFM 2012, Thessaloniki, Greece, October 1-5, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7504, pp. 233–247. Springer (2012).
https://doi.org/10.1007/978-3-642-33826-7 16

14. Desai, A., Phanishayee, A., Qadeer, S., Seshia, S.A.: Compositional program-
ming and testing of dynamic distributed systems. Proc. ACM Program. Lang.
2(OOPSLA) (oct 2018). https://doi.org/10.1145/3276529

15. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (Nov 1974). https://doi.org/10.1145/361179.361202

16. Dijkstra, E.W., Scholten, C.S.: Predicate calculus and program semantics.
Springer-Verlag New York, Inc., New York, NY, USA (1990)

17. Filliâtre, J.: One logic to use them all. In: Bonacina, M.P. (ed.) Automated De-
duction - CADE-24 - 24th International Conference on Automated Deduction,
Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Lecture Notes in Computer

Why3-do: The Way of Harmonious Distributed System Proofs 139

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1145/359104.359108
https://doi.org/10.1016/j.jpdc.2012.12.009
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/3276529
https://doi.org/10.1145/361179.361202

Science, vol. 7898, pp. 1–20. Springer (2013). https://doi.org/10.1007/978-3-642-
38574-2 1

18. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Proceedings of the 22nd European Symposium on Program-
ming. Lecture Notes in Computer Science, vol. 7792, pp. 125–128. Springer (Mar
2013)

19. Fonseca, P., Zhang, K., Wang, X., Krishnamurthy, A.: An empirical study
on the correctness of formally verified distributed systems. In: Proceedings
of the Twelfth European Conference on Computer Systems. p. 328–343. Eu-
roSys’17, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3064176.3064183

20. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Ironfleet: Proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles. p. 1–17.
SOSP’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2815400.2815428

21. Hoare, C.A.R.: An Axiomatic Basis For Computer Programming. Communications
of the ACM 12, 576–580 (1969)

22. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant : A tutorial :
Version 6.1. Tech. rep., INRIA (07 1997)

23. Kalim, F., Palmskog, K., Mehar, J., Murali, A., Gupta, I., Madhusudan, P.: Kaizen:
Building a performant blockchain system verified for consensus and integrity. In:
2019 Formal Methods in Computer Aided Design (FMCAD). pp. 96–104 (2019).
https://doi.org/10.23919/FMCAD.2019.8894248

24. Krogh-Jespersen, M., Timany, A., Ohlenbusch, M.E., Gregersen, S.O., Birkedal,
L.: Aneris: A mechanised logic for modular reasoning about distributed systems.
In: Müller, P. (ed.) Programming Languages and Systems. pp. 336–365. Springer
International Publishing, Cham (2020)

25. Lamport, L.: The temporal logic of actions. Tech. Rep. 79, Digital Equipment Cor-
poration (May 1994), aCM Transactions on Programming Languages and Systems
16

26. Leino, R.: Dafny: An automatic program verifier for functional correctness. In: 16th
International Conference, LPAR-16, Dakar, Senegal. pp. 348–370. Springer Berlin
Heidelberg (April 2010)

27. Lepers, B., Gouicem, R., Carver, D., Lozi, J.P., Palix, N., Aponte, M.V.,
Zwaenepoel, W., Sopena, J., Lawall, J., Muller, G.: Provable multicore
schedulers with ipanema: Application to work conservation. In: Proceed-
ings of the Fifteenth European Conference on Computer Systems. Eu-
roSys’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3342195.3387544

28. Lourenço, C.B., Pinto, J.S.: Why3-do: The way of harmonious distributed system
proofs. ESOP 2022 Artifact (2022). https://doi.org/10.5281/zenodo.5914171

29. Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: I4: In-
cremental inference of inductive invariants for verification of distributed protocols.
In: Proceedings of the 27th ACM Symposium on Operating Systems Principles. p.
370–384. SOSP ’19, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3341301.3359651

30. Merz, S.: On the verification of a self-stabilizing algorithm. Tech. rep., University
of Munich (1998)

31. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver, Lecture Notes in Computer
Science, vol. 4963/2008, pp. 337–340. Springer Berlin (April 2008)

Cláudio Belo Lourenço and Jorge Sousa Pinto �140

https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.23919/FMCAD.2019.8894248
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.5281/zenodo.5914171
https://doi.org/10.1145/3341301.3359651

32. Newcombe, C.: Why amazon chose TLA+. In: Ait Ameur, Y., Schewe, K.D. (eds.)
Abstract State Machines, Alloy, B, TLA, VDM, and Z. pp. 25–39. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

33. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: Decidable reasoning
about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA) (Oct 2017).
https://doi.org/10.1145/3140568

34. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. p. 614–630.
PLDI ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2908080.2908118

35. Qadeer, S., Shankar, N.: Verifying a self-stabilizing mutual exclusion algorithm. In:
Proceedings of the IFIP TC2/WG2.2,2.3 International Conference on Program-
ming Concepts and Methods. pp. 424–443. PROCOMET ’98, Chapman & Hall,
Ltd. (1998)

36. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Commun. 15(2-3), 91–110 (2002)

37. Rognier, B.: Verify a smart contract with archetype. https://medium.com/

coinmonks/verify-a-smart-contract-with-archetype-6e0ea548e2da (2019)
38. Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1), 45–67 (Mar 1993).

https://doi.org/10.1145/151254.151256
39. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with dis-

tributed protocols. Proc. ACM Program. Lang. 2(POPL) (Dec 2017).
https://doi.org/10.1145/3158116

40. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification. ArXiv abs/2008.02712 (2020)

41. Tsuchiya, T., ichi Nagano, S., Paidi, R.B., Kikuno, T.: Symbolic model checking for
self-stabilizing algorithms. IEEE Trans. Parallel Distrib. Syst. 12(1), 81–95 (2001)

42. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D.,
Anderson, T.: Verdi: A framework for implementing and formally verify-
ing distributed systems. In: Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. p. 357–368.
PLDI ’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2737924.2737958

43. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) Correct Hardware Design and Verification Methods. pp. 54–66.
Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

Why3-do: The Way of Harmonious Distributed System Proofs 141

https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://medium.com/coinmonks/verify-a-smart-contract-with-archetype-6e0ea548e2da
https://medium.com/coinmonks/verify-a-smart-contract-with-archetype-6e0ea548e2da
https://doi.org/10.1145/151254.151256
https://doi.org/10.1145/3158116
https://doi.org/10.1145/2737924.2737958

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Cláudio Belo Lourenço and Jorge Sousa Pinto �142

http://creativecommons.org/licenses/by/4.0/

	Why3-do: The Way of Harmonious Distributed System Proofs
	1 Introduction
	2 The Why3 Languages in a Nutshell
	3 Distributed Systems and Models
	4 The Basic Message-Passing Model
	5 Trace Specifications
	6 Locally Shared Memory Model
	7 Related Work
	8 Conclusion
	References

