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Abstract. The Oil and Vinegar signature scheme, proposed in 1997 by
Patarin, is one of the oldest and best understood multivariate quadratic
signature schemes. It has excellent performance and signature sizes but
suffers from large key sizes on the order of 50 KB, which makes it less
practical as a general-purpose signature scheme. To solve this problem,
this paper proposes MAYO, a variant of the UOV signature scheme
whose public keys are two orders of magnitude smaller. MAYO works
by using a UOV map P : Fn

q → F
n
q with an unusually small oil space,

which makes it possible to represent the public key very compactly. The
usual UOV signing algorithm fails if the oil space is too small, but MAYO
works around this problem by “whipping up” the oil and vinegar map
P into a larger map P� : Fkn

q → F
m
q , that does have a sufficiently large

oil space. With parameters targeting NISTPQC security level I, MAYO
has a public key size of only 614 Bytes and a signature size of 392 Bytes.
This makes MAYO more compact than state-of-the-art lattice-based sig-
nature schemes such as Falcon and Dilithium. Moreover, we can choose
MAYO parameters such that, unlike traditional UOV signatures, signa-
tures provably only leak a negligible amount of information about the
private key.

1 Introduction

The Oil and Vinegar signature scheme, introduced by Patarin in 1997, is a simple
and seemingly well understood signature scheme in Multivariate Quadratic (MQ)
cryptography. This scheme is based on a trapdoored multivariate map P : Fn

q →
F

m
q , which consists of m multivariate quadratic polynomials in n variables. The

trapdoor is a secret m-dimensional linear subspace O of Fn
q , called the oil space,

on which P vanishes. (I.e., P(o) = 0 for all o in O.) Knowledge of this oil
space allows a user to efficiently sample preimages for P. This trapdoor can be
converted into a post-quantum signature scheme with the Full Domain Hash
approach: to sign a message M , the signer produces a preimage x such that
P(x) = H(M), where H is a hash function that outputs elements of Fm

q .
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Clearly, the security of the scheme relies on the assumption that given P, it
is hard to find the oil space O ⊂ F

n
q on which P vanishes. Not surprisingly, if we

increase n for fixed m = dim(O), then finding O becomes more difficult. Initially
Patarin proposed to use n = 2m, but Kipnis and Shamir showed that in this
case O can be found in polynomial time. Their attack runs in time Õ(qn−m)1,
so the attack quickly becomes infeasible if n is sufficiently larger than 2m. This
is why Kipnis et al. proposed to use UOV with n = 3m. Despite recent progress
in key recovery algorithms [1] (which breaks a parameter set with n = 2.4m),
the n = 3m proposal still seems secure today.

The main drawback of the UOV scheme is that the public keys are large. A
public key consists of a list of m multivariate quadratic polynomials in n vari-
ables, which requires O(mn2 log q) bits to represent. For example, conservative
parameters targeting NIST security level 1 are m = 53, n = 3m, q = 31, which
results in a key size of 421 KB. Petzoldt et al. [10] realized that it is possible to
generate a large part of the public key with a PRNG and choose the remaining
part such that P vanishes on a secret space O. This technique allows to reduce
the key size from O(mn2 log q) to O(m3 log q), which is a significant reduction.
For the previous example, this reduces the key size from 421 KB to 48 KB. How-
ever, the public key remains large compared to other post-quantum signature
schemes.

Contributions. For the UOV trapdoor to work, the dimension of the oil space
needs to be at least as large as the number of polynomials m. In this paper, we
propose a signing algorithm that uses a UOV map with o = dim(O) < m, which
has two immediate benefits:

– By reducing dim(O), the complexity of key recovery attacks increases, which
allows us to choose smaller parameters.

– If dim(O) is smaller, the constraint that P vanishes on O becomes weaker,
so we can generate a larger part of P pseudo-randomly with the technique of
Petzoldt et al. [10]. This reduces the overall key size significantly. We get a
key size of O(mo2 log q) instead of O(m3 log q).

To achieve this, we show how to “whip up” the oil and vinegar: given a UOV map
P : Fn

q → F
m
q that vanishes on some unknown oil space of dimension o, one can

construct a larger map P� : Fkn
q → F

m
q that vanishes on a space of dimension ko.

A simple example of such a map is given by P�(x1, . . . ,xk) = P(x1)+· · ·+P(xk),
although we will see that this choice of P� will not result in a secure signature
scheme. Using this technique, the signature scheme is simple: The public key is
a UOV map P : Fn

q → F
m
q with an oil space of dimension o < m. Both the signer

and the verifier locally whip up this map to get the larger map P� with an oil
space of size ko ≥ m, which they use as if it was a standard UOV trapdoor.

The case where k = 1 (no whipping) and o = m is equivalent to the standard
UOV signature scheme, but choosing larger k allows us to reduce o to �m/k�,
so that we achieve the advantages mentioned earlier.
1 The Õ-notation ignores polynomial factors.
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In this paper, we analyze the security of this construction. We formulate two
hard problems, and we show if these problems are indeed hard, then the MAYO
scheme is EUF-CMA secure in the random oracle model. Since one of the hardness
assumptions is new, this security reduction itself provides little to no evidence
for the security of MAYO. However, we hope that by carefully formulating our
assumptions, we can help others to understand and cryptanalyze our scheme.

We propose parameter sets aiming for NIST security level I, III, and V. For
example, targeting NIST security level I, we propose and implement the param-
eter set q = 31, n = 62,m = 60, o = 6, and k = 10. This results in a signature
size of 420 bytes, and a public key size of only 803 bytes, which is two orders of
magnitude smaller than classic UOV public keys, and even more compact than
lattice-based signature schemes such as Falcon [11] and Dilithium [9]. With our
implementation, the signing operation takes roughly 1 ms and the verification
operation takes 0.5 ms on an intel i5-8400H CPU. Our hope is that the good
communication sizes and performance numbers of MAYO will motivate external
cryptanalysis of our scheme.

2 Preliminaries

Notation. We denote by Fq the finite field of q elements. If X is a finite set, we
write x ← X to denote sampling an element from X uniformly at random and
assigning the result to x. If A is a (possibly probabilistic) algorithm, we write
y ← A(x) to denote running the algorithm A on input x, and assigning the
output to y. We denote the n-by-n identity matrix by In. For a square matrix
A = {aij}1≤i,j≤n, we denote by Upper(A) the upper diagonal matrix that is
equal to A up to the addition of an anti-symmetric matrix, i.e., Upper(A) =
{bij}≤i,j≤n, where bij = aij + aji if i ≤ j, bij = aij if i = j or bij = 0 otherwise.
We say a function f(λ) : N → R is negligible if for every c > 0, there exits λ0

such that |f(λ)| < λ−c for all λ > λ0.

Multivariate Quadratic Maps. The central object in Multivariate Quadratic
cryptography is the multivariate quadratic map. A multivariate quadratic map
P over Fq with n variables and m components is a sequence p1(x), · · · , pm(x)
of m multivariate quadratic polynomials in n variables x = (x1, · · · , xn), with
coefficients in a finite field Fq. We denote the set of multivariate quadratic maps
over F

n
q with n variables and m components by MQn,m,q.

To evaluate a map P ∈ MQn,m,q at a value a ∈ F
n
q , we simply evaluate each of

its component polynomials in a to get a vector b = (b1 = p1(a), · · · , bm = pm(a))
of m output elements. We denote this by P(a) = b.

MQ Problem. The main source of computational hardness for multivariate
cryptosystems is the Multivariate Quadratic (MQ) problem. Given a multivariate
quadratic map P ∈ MQn,m,q, and given a target t ∈ F

m
q , the MQ problem asks

to find a solution s such that P(s) = t. This problem is NP-hard, and even
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though it can be solved in polynomial time if m ≥ n(n + 1)/2 or n ≥ m(m + 1),
it is believed to be exponentially hard on average if n ∼ m, even for quantum
algorithms. Currently, the best algorithms to solve instances of this problem (for
cryptographically relevant parameters) are algorithms such as F4/F5 or XL that
use a Gröbner-basis-like approach [4,6].

Polar Forms. To a homogeneous multivariate quadratic polynomial p(x), we
can associate the symmetric bilinear form

p′(x,y) := p(x + y) − p(x) − p(y),

which is called the polar form of p(x). Similarly, we define the polar form
of a multivariate quadratic map P(x) = p1(x), · · · , pm(x), to be P ′(x,y) =
p′
1(x,y), · · · , p′

m(x,y).

3 The UOV Signature Scheme

As mentioned in the introduction, the Oil and Vinegar signature scheme is based
on an elegant multivariate quadratic trapdoor function P : F

n
q → F

m
q . This

trapdoor function is converted into a signature scheme with the Full Domain
Hash approach: The public key is a description of the trapdoor function P ∈
MQn,m,q, the secret key contains the trapdoor information, and a signature on
a message M is simply an input s such that P(s) = H(M ||salt), where H is
a cryptographic hash function that outputs elements in the range of P and
where salt is a bit string of length 2λ, chosen at random when the signature is
generated. Therefore, to understand the UOV signature scheme, we only need
to understand how the UOV trapdoor function works.

3.1 UOV Trapdoor Function

The UOV trapdoor function is a multivariate quadratic map P : Fn
q → F

m
q that

vanishes on a secret linear subspace O ⊂ F
n
q of dimension dim(O) = m, i.e.

P(o) = 0 for allo ∈ O.

The trapdoor information is nothing more than a basis for O. To generate the
trapdoor function one first picks the subspace O uniformly at random and then
one picks P uniformly at random from the set of multivariate quadratic maps
with m components in n variables that vanish on O. Note that on top of the
qm “artificial” zeros in the subspace O, we expect roughly qn−m “natural” zeros
that do not lie in O.

Given a target t ∈ F
m
q , how do we use this trapdoor to find x ∈ F

n
q such

that P(x) = t? To do this, one picks a vector v ∈ F
n
q and solves the system

P(v + o) = t for a vector o ∈ O. This can simply be done by solving a linear
system for o, because

P(v + o) = P(v)
︸ ︷︷ ︸

fixed by choice ofv

+P(o)
︸ ︷︷ ︸

=0

+ P ′(v,o)
︸ ︷︷ ︸

linear function of o

= t.



MAYO: Practical Post-quantum Signatures from Oil-and-Vinegar Maps 359

With probability roughly 1 − 1/q over the choice of v the linear map P ′(v, ·)
will be non-singular, in which case the linear system P(v + o) = t has a unique
solution. If this is not the case, one can simply pick a new value for v and try
again.

Oil Space Can have Basis of the Form
(

O I0
)�

. In practice, we choose O

as the row space of a random matrix of the form
(

O Io

) ∈ F
o×n
q . Since most

o-dimensional subspaces can be represented in this form, this restriction does
not affect the security of the scheme much.

Last m Entries of v Can be Zero. In the original Oil and Vinegar signature
scheme the vector v is not chosen uniformly at random, but the last m entries
are fixed to zero. This is slightly more efficient, and it does not affect the output
distribution of the signing algorithm. To see why this is the case, notice that
adding a vector o� ∈ O to the choice for v does not affect the output of the
signing algorithm: If o was the solution to P(v + o) = t, then o − o� is the
solution to P(v + o� + o′) = t, so the signing algorithm outputs v + o if it
started from v, or it outputs (v + o�) + (o− o�) if it starts from v + o�. Either
way, the output is the same. Therefore, since every v ∈ F

n
q can be written as

v′ + o, where the last m entries of v′ are zero, it follows that the last m entries
of v can be fixed at zero without affecting the distribution of the signatures.

4 Key Recovery Attacks Against UOV

A straightforward approach to attack the UOV signature scheme is to completely
ignore the existence of the oil subspace and directly try to solve the system
P(s) = H(M ||salt) to produce a signature for the message M . This can be done
with a Gröbner basis-like approach such as XL or F4/F5 [4,6]. This is called a
direct attack.

More interestingly, the attacker can first try to find the oil space O. After O
is found, the attacker can sign any message as if he was a legitimate signer. It
was shown by Kipnis and Shamir [8], that O can be found in polynomial time if
n = 2m, which was the cased for the original oil and vinegar proposal. That is
why the current proposals use n > 2m, which is known as the Unbalanced Oil
and Vinegar (UOV) signature scheme. The conservative recommendation is to
use n = 3m or even n = 4m, and with these choices there are no known attacks
that outperform a direct attack.

In the remainder of this section we summarize the known algorithms for
recovering a linear subspace O of dimension o, given a multivariate quadratic
map P : Fn

q → F
m
q that vanishes on this subspace O. Usually, these algorithms

are specialized to o = m, since this corresponds to the UOV signature use-case.
Here, we will generalize the attacks to the case where o is not necessarily equal to
m because this is relevant for MAYO. The presentation of the attacks is mostly
borrowed from Beullens [1], with slight modifications to generalize to the o ≤ m
case.
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4.1 Reconciliation Attack

The reconciliation attack was developed by Ding et al.. as a stepping stone
towards the Rainbow Band Separation (RBS) attack against the Rainbow sig-
nature scheme [5].

The attack tries to find a number of vectors o1,o2, . . . in O, until a complete
basis for O is found. To find the first vector o1 we simply try to find a solution
to the system P(o1) = 0. By assumption, this system of equations has a o-
dimensional linear space of solutions, so if we impose o affine constraints on the
entries of o1, we expect a unique solution o1 ∈ O such that P(o1) = 0. This
step amounts to finding a solution to a system of m equations in n−o variables,
because we can use the o affine constraints to eliminate o variables in the system.

Once the first vector o1 ∈ O is found, it becomes easier to find additional
vectors, because the second vector o2 satisfies P(o2) = 0, as well as P ′(o1,o2) =
0, which for fixed o1 is a set of m linear equations in the entries of o2. Therefore,
after imposing o additional affine constraints, the second step amounts to solving
a system of m quadratic equations in n−m− o variables. Compared to the first
step, the number of variables is reduced by m, which makes the second step
much more efficient. Similarly, finding subsequent vectors oi ∈ O amounts to
finding a solution to the system

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

P(oi) = 0
P ′(o1,oi) = 0
. . .

P ′(oi−1,oi) = 0

,

which after imposing o additional affine constraints and eliminating variables
amounts to solving a system of m quadratic equations in n − (i − 1)m − o
variables. If n < (i − 1)m + o, then we can ignore the quadratic equations and
just solve a system of linear equations to find oi.

The attack does not work as described if n − o > m, because in this case
the first system P(o1) = 0 is underdetermined, and the system has O(qn−o−m)
solutions, only one of which lies in O. If you start with a solution o1 �∈ O, the
subsequent steps will fail to find additional vectors o2, . . . ,oo. In this case one
can enumerate all the solutions P(o1) = 0, or solve the system

⎧

⎪
⎨

⎪
⎩

P(o1) = 0
P(o2) = 0
P ′(o1,o2) = 0

,

to find o1 and o2 simultaneously. In this paper, we will only use UOV maps with
n − o ≤ m, so this more complicated attack is not relevant for us.

If n−o ≤ m, then the complexity of the attack is dominated by the complexity
of finding the first oil vector o1, which is the complexity of solving a system of
m quadratic equations in n − o variables.
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4.2 Kipnis-Shamir Attack

Historically, the first attack on the OV signature scheme was given by Kipnis
and Shamir [8]. The basic version of this attack works when n = 2o, which was
the case for the parameter sets initially proposed by Patarin.

Attack if n = 2o. The attack looks at the m components of P ′(x,y). Each
component p′

i(x,y) = pi(x + y) − pi(x) − pi(y), defines a matrix Mi such that
p′

i(x,y) = x�Miy. Kipnis and Shamir observed the following useful property of
Mi.

Lemma 1. For each i ∈ {1, · · · ,m}, we have that MiO ⊂ O⊥. That is, each
Mi sends O into its own orthogonal complement O⊥.

Proof. For any o1,o2 ∈ O we need to prove that 〈o2,Mio1〉 = 0. This follows
from the assumption that pi vanishes on O:

〈o2,Mio1〉 = o�
2 Mio1 = p′

i(o1,o2) = pi(o1 + o2) − pi(o1) − pi(o2) = 0. ��
If n = 2o, then dim(O⊥) = n−o = o, so if Mi is nonsingular (which happens with
high probability if q is odd), then Lemma 1 turns into an equality MiO = O⊥.
This means that for any pair of invertible Mi,Mj , we have that M−1

j MiO = O,
i.e. that O is an invariant subspace of M−1

j Mi. It turns out that finding a common
invariant subspace of a large number of linear maps can be done in polynomial
time, so this gives an efficient algorithm for finding O. For more details we refer
to [8].

F
n
q F

n
q

O O⊥M1

M2

F
n
q F

n
q

O
O⊥M1O

M2O

M1

M2

Fig. 1. Behavior of O under M1 and M2, in case n = 2o (on the left) and 2o < n < 3o
(on the right).

Attack if n > 2o. If n > 2o, then it is still the case that Mi sends O into
O⊥, but because dim(O⊥) = n − o > o the equality MiO = MjO may
no longer hold. Therefore, M−1

i Mj is no longer guaranteed to have O as an
invariant subspace and the basic attack fails. However, even though in general
MiO �= MjO, they still have an unusually large intersection (see Fig. 1): MiO
and MjO are both subspaces of O⊥, so their intersection has dimension at least
dim(MiO) + dim(MjO) − dim(O⊥) = 3o − n. Kipnis et al. [7] realized that this
means that vectors in O are more likely to be eigenvectors of M−1

j Mi.
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Heuristically, for x ∈ O, the probability that it gets mapped by Mi to some
point in the intersection MiO ∩ MjO is approximately

|MiO ∩ MjO|
|MiO| = q2o−n.

If this happens, then the probability that M−1
j maps Mix back to a multiple

of x is expected to be (q − 1)/|O| ≈ q1−o. Therefore, we can estimate that the
probability that a vector in O is an eigenvector of M−1

j Mi is approximately
q1+o−n, and the expected number of eigenvectors in O is therefore q1+2o−n.

The same analysis holds when you replace Mi and Mj by arbitrary invertible
linear combinations of the Mi. The attacker can repeatedly compute the eigen-
vectors of F−1G, where F and G are random invertible linear combinations of
the Mi. After qn−2o attempts he can expect to find a vector in O (he can verify
whether a given eigenvector x is in O by checking that P(x) = 0). The complex-
ity of the attack is Õ(qn−2o), so the attack runs in polynomial time if n = 2o,
but quickly becomes infeasible for unbalanced instances of the OV construction.
For more details on the attack, we refer to [7].

4.3 Intersection Attack

The intersection attack, introduced by Beullens [1], is a generalisation of the
reconciliation attack which uses the ideas behind the Kipnis-Shamir attack. After
choosing k matrices M1, . . . , Mk as in the Kipnis-Shamir attack, the attacker tries
to find a vector x in the intersection M1O ∩ · · · ∩ MkO. This intersection has
dimension at least ko − (k − 1)(n − o), so the attacker chooses k such that this
is strictly positive. If a vector x is in this intersection, then M−1

i x ∈ O for all
i ∈ {1, . . . , k}, which means that x satisfies the following system of equations:

{

P(M−1
i x) = 0 ∀i ∈ {1, . . . , k}

P ′(M−1
i x,M−1

j x) ∀i < j ∈ {1, . . . , k}2 . (1)

The attacker uses a Gröbner-basis-like algorithm to find a solution x to this
system, and recovers k vectors M−1

1 x, . . . , M−1
k x in O. Extending these to a

basis of O can be done efficiently, as described in Sect. 4.1.
The complexity of the intersection attack is dominated by the complexity of

solving a system of
(
k+1
2

)

m − 2
(
k
2

)

linearly independent multivariate quadratic
equations (the

(
k+1
2

)

m equations in (1) are linearly dependent) in n−dim(M1O∩
· · · ∩ MkO) = kn − (2k − 1)o variables. For more details, we refer to [1].

5 Whipping Oil and Vinegar

In this section we introduce a “whipping” transformation, that turns a multivari-
ate quadratic map P : Fn

q → F
m
q into a larger map P� : Fkn

q → F
m
q for an integer

k > 1. Our whipping transformation has the property that if P(x) vanishes on
a subspace O ⊂ F

n
q , then P� vanishes on Ok ⊂ F

kn
q . This allows us to transform

a useless UOV map with o < m into a more useful map that vanishes on a space
of dimension at least m.
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First Attempt. A first attempt is to simply use

P�(x1, . . . ,xk) = P(x1) + · · · + P(xk).

If P vanishes on O, then clearly this P� vanishes on Ok. However, it turns
out that this P� is not preimage resistant for k > 1, so we can not use this
construction for our signature scheme. To illustrate the problem, suppose k ≥ 2
and suppose there exists α ∈ Fq such that α2 = −1. Then the attacker can
choose δ ∈ F

n
q at random, put x2 = αx1 + δ, and put xi = 0 for i > 2. Then we

have

P�(x1, . . . ,xk) = P(x1) + P(αx1 + δ)
= P(x1) + P(αx1) + P(δ) + P ′(αx1, δ)
= P(δ) + P ′(αx1, δ),

where we have used that P is homogeneous, such that P(αx1) = −P(x1). What
remains is linear in x1, so an attacker can efficiently solve for x1 such that
P�(x1, αx1 + δ, 0, . . . , 0) = t.

Second Attempt. The first attempt resulted in a whipped up map that could
be made to collapse into a linear map. To fix this problem, we will add some
“emulsifier” maps to the mix.2 Concretely, for the second attempt we choose k
invertible linear m-by-m matrices E1, . . . ,Ek at random and set

P�(x1, . . . ,xk) = E1P(x1) + · · · + EkP(xk).

This blocks attacks of the type that broke our first attempt: Suppose the attacker
sets xi = αix1+δi, for i > 1 and for some αi ∈ Fq and δi ∈ F

n
q , then the quadratic

part of P�(x1, . . . ,xk) becomes
(

E1 +
k
∑

i=2

α2
iEi

)

P(x1).

If the Ei are chosen at random, then for each choice of αi, the probability that
the quadratic terms vanish is q−m2

, so a union bound says that the probability
that there exist αi such that the quadratic part vanishes is at most qk−1−m2

,
which can be made negligibly small by choosing the parameters appropriately.
However, the attacker can still take advantage of αi such that E1 +

∑k
i=2 α2

iEi

has low rank. Therefore, we choose the Ei from a set of qm matrices such that
any non-zero linear combination of these matrices has full rank. We use the set of
matrices that correspond to multiplication by elements of Fqm . In the following,
we fix an embedding of Fqm in the algebra of m-by-m matrices over Fq, and

2 An emulsifier is a chemical that stabilizes an emulsion. An example is Lecithin, which
is found in egg yolks, and which can stabilize a foam of oil droplets in an oil and
vinegar mixture to form mayonnaise.
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with a mild abuse of notation, we will identify the elements of Fqm with the
corresponding matrices. With this choice of “emulsifier maps”, the probability
that there exists a linear combination E1 +

∑k
i=2 α2

iEi with rank lower than n
(i.e. rank 0) is at most qk−1−m, which can still be made negligible.3

However, there is still a different issue. Since P� is the sum of k functions
with independent inputs the problem of finding a preimage for P� reduces to
a k-SUM problem. The attacker constructs k lists of evaluations of Ei(P(x))
respectively, and searches for one value in each list such that their sum is t.
This can be done in time O(qm/�log2(k)�) with Wagner’s k-tree algorithm [14].
For moderately large values of k (e.g. k = 8) this attack will be more efficient
than the other known attacks against our signature scheme, so it is worthwhile
to choose a different P� that is not susceptible to this attack.

Final Construction. To avoid the k-tree attacks, we finally propose to use the
following construction: Let q be odd, choose invertible linear matrices Ei,j for
all (i, j) with 1 ≤ i ≤ j ≤ n (still representing multiplication by an element of
Fqm), and let

P�(x1, . . . ,xk) =
∑

1≤i≤j≤n

Ei,j(P(xi + xj)).

Remark 2. Note that in characteristic 2, the EiiP(xi + xi) terms vanish, so
it would be slightly more natural to consider the maps P�(x1, . . . ,xk) =
∑

i EiiP(xi) +
∑

i<j EijP(xi + xj). Both definitions are equivalent for odd q,
so to keep the notation (and the implementation of our scheme) as simple as
possible, we have chosen to use the simpler definition, and to let q be odd.

The probability that there exist αi such that the quadratic part of
P�(x1, α2x2 + δ2, . . . , αkx1 + δ1) is still bounded by qk−1−m. Moreover, the
cross-terms in Ei,jP(xi + xj) prevent the list-sum attack, because in general
P�(0, . . . ,xi, . . . , 0) + P�(0, . . . ,xj , . . . , 0) �= P�(0, . . . ,xi, . . . ,xj , . . . , 0).

6 Mayo Signatures

In this section we introduce our new signature scheme that uses UOV maps
with o < m. Recall that in the o = m case, the signature generation algorithms
proceeds by picking a random salt of length 2λ and a random vector v ∈ F

n
q ,

and solving for o ∈ O such that P(v + o) = Hash(M ||salt), which is a linear
system of equations. If o < m the same strategy fails because the linear system
has m equations, but only o < m degrees of freedom, such that with large
probability the system will not have any solutions. To solve this problem, we
fix some k such that ko ≥ m and we let the signer whip up P(x) into a larger
map P�(x1, . . . ,xk) with the method from the previous section (with random

3 For odd q we can get a slightly better bound of
(

q+1
2

)k−1
q−m, because each α2

i can
only take (q + 1)/2 distinct values.
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emulsifier maps {Eij}1≤i≤j≤k obtained by hashing M ||salt). Now the signer can
choose (v1, . . . ,vk) ∈ F

kn
q , and solve for (o1, . . . ,ok) ∈ Ok such that P(v1 +

o1, . . . ,vk + ok) = t. This amounts to solving a system of m linear equations
with ko ≥ m degrees of freedom, so solutions can be found with large probability.
The signature consists of the salt, and the preimage {si = vi + oi}i∈[k]. Note
that, as in the original UOV signature algorithm, we can let the last o entries
of the vi be zero to speed up the signing algorithm without affecting its output
distribution.

To verify a signature, the verifier simply hashes M ||salt to obtain
{Eij}1≤i≤j≤k and t, and accepts the signature if and only if P�(si) = t.

To generate a key-pair, a user first chooses a random oilspace by sampling
a uniformly random o-by-(n − o) matrix O, and letting O be the rowspace of
(OIo), where Io is the identity matrix of size o. Then the user generates a
random multivariate quadratic map P(x) that vanishes on O. Recall that every
multivariate quadratic polynomial pi(x) of the public key can be represented
with an upper triangular matrix Pi such that

pi(x) = x�Pix = x�
(

P(i)
i P(2)

i

0 P(3)
i

)

x,

where P(1)
i and P(3)

i are square upper triangular matrices of size n − o and o

respectively, and where P(2)
i is rectangular of size (n − o)-by-o. To reduce the

size of the public key, we choose the matrices P(i)
i and P(2)

i pseudo-randomly
from a random seed value seed ∈ {0, 1}λ. Then we solve for P(3)

i such that pi

vanishes on O. The polynomial pi(x) vanishes on O if

(O Io)

(

P(i)
i P(2)

i

0 P(3)
i

)

(O Io)� = OP(1)
i O� + OP(2)

i + P(3)
i = 0,

so it suffices to set P(3)
i to be Upper(−OP(1)

i O� − OP(2)
i ). Note that taking

Upper does not influence the quadratic polynomial represented by Pi.
The key generation, signing and verification algorithms are described in more

detail in Fig. 2.
The following lemma says the probability that the signing algorithm needs

to restart is small if ok ≥ m. The proof is not particularly interesting, so in the
interest of space we put it in AppendixA.

Lemma 3. Let O,P, {Eij}, and {vi}ı∈[k] in F
n−m
q ×{0}m be chosen at random

as during the key-generation and signing algorithms of the MAYO signature
scheme with parameters n,m, o, k, q. Then as a function of {oi}i∈[k] ∈ O the
affine map

P�(v + o) =
∑

ij

EijP(vi + vj + oi + ok)

has full rank except with probability bounded by 1
qm−1 + qk−(n−o)

q−1 + qm−ko

q−1 .
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KeyGen():

1: O F
o×(n−o)
q

2: seed 0, 1}λ

3: for i from 1 to m do
4: P(1)

i Expand(seed||P1||i) Upper triangular (n − o)-by-(n − o) matrix.
5: P(2)

i Expand(seed||P2||i) -by-(n − o) matrix.
6: P(3)

i Upper(−OP(1)
i O − OP(2)

i )
7: return (pk, sk) = ((seed, {P(3)

i }i∈{i,...,m}), (seed,O)).

Sign(M, sk):
1: (seed,O) sk
2: salt

{

{0, 1}2λ

3: ({Eij}1≤i≤j≤k , t) Hash(M ||salt)
4: P∗(x1, . . .xk) 1≤i≤j≤k EijP(xi + xj)
5: vi F

n−m
q × {0}m

6: If P∗(v1 + o1, . . . ,vk + ok) does not have full rank, return to step 2.
7: Solve P∗(v1 + o1, . . . ,vk + ok) = t for o1, . . . ,ok ∈ RowSpace( OIo ).
8: return σ = (salt, {xi = vi + oi}i∈[k])

Verify(M,pk, σ):
1: (salt, {xi}i∈[k]) σ
2: ({Eij}1≤i≤j≤k , t) Hash(M ||salt)
3: t 1≤i≤j≤k EijP(xi + xj)
4: return accept if t = t and reject otherwise.

Fig. 2. The key generation, signing, and verification algorithms of the MAYO signature
scheme.

7 Security Analysis

Traditional MQ signature algorithms usually rely on ad-hoc assumptions, which
makes it impossible to prove security reductions from well-established hardness
assumptions.4 The MAYO signature scheme is no exception. However, we will
still formally define two assumptions based on which our scheme can be proven
to be secure. Since one of the assumptions is new, this security reduction itself
does not provide any kind of guarantee for the security of the scheme. Still, we
hope the security reduction is valuable for cryptanalysts to understand what is
necessary to attack our scheme. Most notably, we prove that if ko is sufficiently
larger than m, each signature only leaks a negligible amount of information
about the secret key.

Our first hardness assumption says that it is hard to distinguish a random
multivariate quadratic map that vanishes on a random linear subspace from a
uniformly random quadratic map.

Definition 4 (UOV problem). For O ∈ F
o×(n−o)
q , we let MQn,m,q(O) denote

the set of P ∈ MQn,m,q that vanish on the rowspace of
(

O Io

)

. The UOV problem

4 Signature schemes such as MQDSS [3,12] and MUDFISH [2] that do not make use
of trapdoors are an exception because they enjoy security reductions from the one-
wayness of a system of uniformly random multivariate quadratic equations.
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asks to distinguish a random multivariate quadratic map P ∈ MQn,m,q, from a
random multivariate quadratic map in MQn,m,q(O) for a random O ∈ F

o×(n−o)
q .

Let A be a UOV distinguisher algorithm. We say the distinguishing advantage
of A is

AdvUOV
n,m,o,q(A) =

∣

∣

∣

∣
Pr
[A(P) = 1

∣

∣P ← MQm,n,q

]

−Pr
[

A(P) = 1
∣

∣

∣

∣

O ← F
o×(n−o)
q

P ← MQn,m,q(O)

]∣

∣

∣

∣
.

The UOV problem has been studied since the invention of the UOV signature
scheme in 1997 and seems relatively well understood. In contrast, our second
hardness assumption is tailored to the MAYO signature scheme and is therefore
a new assumption. This assumption says that picking a random multivariate
quadratic map P ∈ MQn,m,q, and whipping it up to a larger map P� ∈ MQkn,m,q

results in a preimage resistant function on average.

Definition 5 (Whipped MQ problem). Given random P ∈ MQn,m,q,
{Eij}1≤i≤j≤k ∈ Fqm and t ∈ F

m
q , the whipped MQ problem asks to compute

s1, . . . , sk, such that
∑

i,j EijP(si + sj) = t.
Let A be an adversary. We say that the advantage of A against the whipped

MQ problem is

AdvWMQ
n,m,k,q(A) = Pr

⎡

⎢

⎢

⎣

∑

i,j

EijP(si + sj) = t

∣

∣

∣

∣

∣

∣

∣

∣

P ← MQn,m,q

{Eij}1≤i≤j≤k ← Fqm

t ← F
m
q

(s1, . . . , sk) ← A(P, {Eij}i,j , t)

⎤

⎥

⎥

⎦
.

Finally, we state the standard EUF-CMA and EUF-KOA security definition for
digital signature algorithms in the random oracle model.

Definition 6 (EUF-CMA/EUF-KOA security). Let O be a random oracle, and
let A be an adversary. We say the advantage of A gainst the EUF-CMA game of
a signature scheme S = (KeyGen, SignO, V erifyO) in the random oracle model
is

AdvEUF-CMA
S (A) = Pr

⎡

⎣

VerifyO(pk,m, σ) = 1,

and SignO(sk, ·) was
not queried on input m

∣

∣

∣

∣

∣

∣

(pk, sk) ← KeyGen()
(m,σ) ← AO,SignO(sk,·)(pk)

⎤

⎦ .

The EUF-KOA advantage AdvEUF-KOA
S (A) is defined in the same way, except that

A does not have access to the signing oracle SignO(sk, ·).
With these definitions out of the way we can formulate our security theorem.

Theorem 7. Let A be an EUF-CMA adversary that runs in time T against
the MAYO signature in the random oracle model with parameters n,m, o, k, q,
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and which makes Qs signing queries and Qh queries to the random oracle. Let
B = 1

qm−1 + qk−(n−o)

q−1 + qm−ko

q−1 be the bound on the restarting probability from
Lemma 3 and suppose QsB < 1, then there exist adversaries AUOV and AWMQ

against the UOVn,m,o,q and WMQn,m,k,q assumptions respectively, that run in
time T + (Qs + Qh + 1) · poly(n,m, k, q) such that

AdvEUF−CMA
n,m,o,k,q (A) ≤

(

AdvUOV
n,m,o,q(B) + QhAdv

WMQ
n,m,k,q(B′) + q−m

)

(1 − QsB)−1

+ (Qh + Qs)Qs2−2λ.

We prove the theorem with two lemmas. The first lemma reduces the EUF-CMA
security of the MAYO signature scheme to its EUF-KOA, by showing that we can
simulate a signing oracle if ko is sufficiently larger than m. The second lemma
then finishes the proof by giving a reduction from the UOV and WMQ problems
to the EUF-KOA security game. The reduction from the WMQ problem loses a
factor Qh in advantage, because the reduction programs the random oracle to
output the WMQ instance for one of the Qh random oracle queries, and succeeds
only if the adversary forges a signature for that particular query. The proofs of
Lemmas 8 and 9 can be found in AppendicesB and C respectively.

Lemma 8. If there exists an adversary A, that runs in time T against the
EUF-CMA security of the MAYO signature in the random oracle model with
parameters n,m, o, k, q, with k < (n−o), and which makes Qh queries to the ran-
dom oracle and Qs queries to the signing oracle. Let B = 1

qm−1 + qk−(n−o)

q−1 + qm−ko

q−1
be the bound on the restarting probability from Lemma3 and suppose QsB < 1,
then there exists an adversary B against the EUF-KOA security of the MAYO
signature scheme, that runs in time T + O((Qh + Qs)poly(n,m, k, q)) such that

AdvEUF−CMA
n,m,o,k,q (A) ≤ AdvEUF-KOA

n,m,o,q (B) (1 − QsB)−1

+ (Qh + Qs)Qs2−2λ.

Lemma 9. Let A be an EUF-KOA adversary that runs in time T against the
MAYO signature in the random oracle model with parameters n,m, o, k, q, and
which makes Qh queries to the random oracle. Then there exists an adversary B
against the UOVn,m,o,q problem, and an adversary B′ against the WMQn,m,k,q

problem, that run in time T + O((1 + Qh)poly(n,m, k, q)) such that

AdvEUF-KOA
n,m,o,k,q(A) ≤ AdvUOV

n,m,o,q(B) + (1 + Qh)AdvWMQ
n,m,k,q(B′) + q−m.

8 Parameter Selection and Implementation

In this section, we choose some parameter sets for the MAYO signature scheme.
A parameter set consists of five values n,m, o, k, and q (as well as the length
of the salt, which we choose to be 256, 384 or 512 bits long for NIST security
levels I, III, and V respectively.) The only requirement for the correctness of
the signature scheme is that ko ≥ m because otherwise, the signing algorithm
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will fail with high probability. For security, we need to choose n,m, o, k and
q such that the UOV and WMQ problems are hard. The best known attacks
against the UOV assumption are summarized in Sect. 3. Since we are not aware
of attacks that exploit the whipping structure, we estimate that the hardness
of the WMQ problem is the same as the hardness of breaking the preimage
resistance of a uniformly random multivariate quadratic map P ∈ MQkn,m,q.
These systems are very underdetermined, so we can use the technique of Thomae
and Wolf [13] to reduce the problem of finding a solution to a system in MQkn,m,q,
to a system in MQn′,m′,q, where n′ = m′ = �m + 1 − nk

m �. To achieve NISTPQC
security levels I, III, or V we choose parameters such that finding such a solution
with the Hybrid XL algorithm, or breaking the UOV assumption costs at least
2143, 2207, or 2272 bit operations respectively. The fact that all known attacks
require frequently accessing large amounts of memory provides a comfortable
security margin. Table 1 contains the proposed parameter sets. Estimates of the
bit complexity of known attacks against these parameter sets are given in Table 2.

Our security reduction has a factor Qh advantage loss for the reduction from
the WMQ problem, where Qh is the number of random oracle queries that the
adversary is allowed to make. Therefore, if one wanted the reduction to guarantee
l bits of security, we would have to pick parameters such that the WMQ problem
has 2l bits of hardness. We choose not to do this because it would come at a
significant cost in performance and communication size, and we are not aware of
any attacks that exploit the looseness in the reduction. E.g., for our parameters,
there do not appear to exist multi-target attacks on the WMQ problem that
meaningfully outperform single-target attacks. (This is also the case for the
standard MQ problem.)

Information-theoretically, UOV signatures (and variants such as Rainbow)
leak information about the secret key. Although it seems hard to exploit this
leakage in an attack, one might want to stop this leakage altogether. For the
UOV scheme, it would be possible to stop the leakage by choosing o > m, but
this would come at a very significant cost in terms of performance. For the
MAYO signatures, it is much cheaper to prevent the leakage, because we only
need ko > m. Table 1 proposes two parameter sets per NIST security level:
a first parameter set that does not attempt to prevent leakage, and a second
parameter set that satisfies B ≤ 2−65, such that Lemma 8 gives a tight reduction
from EUF-KOA security to EUF-CMA security for adversaries that are allowed to
make up to 264 signature queries. Figure 3 shows the signature size and public key
size of a variety of MAYO parameter sets (with and without leaky signatures),
compared to the key and signature sizes of the three finalist signature schemes
in the NISTPQC process. We see that by choosing the parameters, we can make
a trade-off between signature size and public key size. We also see that the cost
of making the signatures statistically close to random is small.
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Table 1. Parameter sets for the MAYO signature scheme.

SL No leakage Parameters |pk| (Bytes) |sig| (Bytes)

n m o k q

I ✗ 74 76 6 13 7 614 392

✓ 76 78 7 15 7 835 459

III ✗ 111 117 6 20 7 937 880

✓ 112 117 7 20 7 1244 888

V ✗ 148 152 8 20 7 2068 1174

✓ 149 157 7 26 7 1664 1516

Table 2. Estimated complexities (log2 of number of bit operations) of known attacks
against MAYO parameter sets.

SL No leakage Parameters Direct KS Recon. Inters.

n m o k q

I ✗ 74, 76, 6, 13, 7 145 190 143 245

✓ 76, 78, 7, 15, 7 145 190 144 245

III ✗ 111, 117, 6, 20, 7 210 296 208 374

✓ 112, 117, 7, 20, 7 209 292 208 370

V ✗ 148, 152, 8, 20, 7 273 390 272 486

✓ 149, 157, 7, 26, 7 273 398 272 498

Fig. 3. A comparison of the key and signature sizes of the MAYO signature scheme
with various parameter sets, and the key and signature sizes of the NISTPQC signature
finalists.
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Implementation. We made a C implementation with some preliminary AVX2
optimizations of MAYO for the parameter set (n = 62,m = 60, o = 6, k = 10, q =
31), which aims for NISTPQC security level I. We instantiate the H and Expand
random oracles with the SHAKE128 extendable output function. With these
choices, the public key and signatures have a size of 803 Bytes and 420 Bytes
respectively. On an Intel i5-8400H CPU at 2.5 GHz, a signing operation takes
2.50 million cycles, and a verification operation takes 1.3 million cycles (i.e., 1 ms
or 0.5 ms respectively). A large fraction of the time is spent expanding the public
seed with Expand, therefore, if one can spare 137 KB to store the expanded seed
the signing and verification time can be reduced by 30% and 40%, to 1.7 million
cycles and 820 thousand cycles respectively (i.e., 0.7 ms or 0.3 ms). We leave a
more optimized constant-time implementation of MAYO for future work.

A Proof of Lemma3

Before we prove the lemma, we recall the following result, which is useful to prove
that certain random matrices are of full rank with high probability. In partic-
ular the result applies to uniformly random matrices, and uniformly random
symmetric matrices.

Lemma 10. Let M be a distribution of matrices in F
n×m
q with n ≥ m, such

that for all x ∈ F
m
q \ {0}, we have

Pr
M←M

[Mx = 0] = q−n,

then the probability that M ← M does not have full rank is bounded by qm−n

q−1 .

Proof. From the assumption, it follows that the average number of non-zero
kernel vectors is (qm − 1)q−n. Since every matrix which does not have full rank
has at least q − 1 non-zero kernel vectors, it follows that

Pr
M←M

[rank(M) < m](q − 1) ≤ (qm − 1)q−n < qm−n. ��

A.1 Proof of Lemma 3

Proof. First of all, we show that if v1, · · · ,vk ∈ F
n−o
q × {0}o are linearly inde-

pendent, then the linear maps P ′(v1, ·), . . . ,P ′(vk, ·) from O to F
m
q are all inde-

pendent and uniformly distributed. To see this, it suffices to show that for a basis
y1, · · ·yo of O, the matrices {p′

i(va,yb)}a∈[k],b∈[o] are independent and uniformly
random for all i ∈ [m]. If we choose the basis where yb is the b-th row of

(

O Io

)

,
then a calculation shows that these matrices are

V
(

(P(1)
i + P(1)�

i )O� + P(2)
i

)

,

where the rows of V ∈ F
k×(n−o)
q consists of the first n − o entries of the vi.

Therefore, if the vi are linearly independent, then V has full rank, and if



372 W. Beullens

k < (n − o), then it follows that these matrices are uniformly random and
independent because the P(2)

i matrices are chosen uniformly at random during
the key generation algorithm.

In particular, if M1, . . . ,Mk ∈ F
n×o
q are the matrix representations of

P ′(vi, ·) (i.e. the matrices such that for all i ∈ [k], we have P ′(vi,
∑

i uiyi) =
Miu). Then we have shown that if the vi are linearly independent, then the Mi

are independent and uniformly random matrices.
As a warm-up, let us now look at the case k = 1 first. In this case the linear

part of P�(v+o) is P�′(v,o) = 4E11P ′(v,o). This has the matrix representation
E11M1, where if v �= 0, the matrix M1 is uniformly random. Therefore, we see
that the signing algorithm has to restart with probability bounded by

q−m + qo−n +
qm−o

q − 1

because either E11 = 0 or v = 0, which happens with probability bounded by
q−m + qo−n, and in which case E11P(v + o) is exactly zero, so it definitely is
not full rank, or otherwise the linear part of E11P(v+o) is a uniformly random
linear map from O to F

m
q , so it fails to have full rank with probability bounded

by qm−o

q−1 (Lemma 10).
In general, the linear part of P�(v + o) is equal to

P ′�(v,o) =
∑

ij

EijP ′(vi + vj ,oi + oj) (2)

=
∑

ij

Eij (P ′(vi,oi) + P ′(vi,oj) + P ′(vj ,oi) + P ′(vj ,oj)) (3)

Let M1, . . . ,Mk be the matrix representations of P ′(vi, ·), then the matrix
representation of P�′(v, ·) is

(

M′
1 . . . M′

k

) ∈ F
m×ko
q , where

⎛

⎜

⎝

M′
1

...
M′

k

⎞

⎟

⎠ = E

⎛

⎜

⎝

M′
1

...
M′

k

⎞

⎟

⎠ =

⎛

⎜

⎜

⎜

⎜

⎝

D1 E12 . . . E1k

E12 D2 . . .
...

...
...

. . .
...

E1k . . . . . . Dk

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎝

M′
1

...
M′

k

⎞

⎟

⎠ (4)

where Di =
∑

j<i Eji + 4Eii +
∑

j>i Eij . Since the Eij are chosen uniformly at
random, we see that the matrix E is just a uniformly random symmetric matrix in
F

k×k
qm , so the probability that E is singular is bounded by 1

qm−1 (Lemma 10). Since
the vi are chosen uniformly at random in F

n−o
q ×{0}o, they are linearly dependent

with probability bounded by qk−(n−o)

q−1 (Lemma 10 again), and otherwise the Mi

are independent and uniformly random matrices. Equation (4) shows that if the
vi are linearly independent and E is nonsingular, then the M′

i are also uniformly
random. Therefore, by Lemma10, P ′�(v, ·) has full rank except with probability
bounded by

1
qm − 1

+
qk−(n−o)

q − 1
+

qm−ko

q − 1
. ��
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B Proof of Lemma8

Proof. The EUF-KOA adversary B works as follows. When B is given a public
key P, it starts simulating A on input P. To simulate random oracle queries B
maintains a list of queries L, that is initially empty. When A queries a random
oracle at input m, B responds with (E, t) if there is an entry (m,E, t) ∈ L and
otherwise B samples E = {Eij}1≤i≤j≤k ∈ Fqm and t ∈ F

m
q uniformly at random,

adds (m,E, t) to L and responds with (E, t).
When A makes a query to sign a message M , B chooses a random salt

and aborts if there is an entry (m||salt, �, �) in L. Otherwise, B samples E =
{Eij}1≤i≤j≤k ∈ Fqm and s1, . . . , sk ∈ F

n
q , and sets t =

∑

ij EijP(si + sj). Then
B adds (m||salt,E, t) to L and outputs the signature (salt, s1, · · · , sk).

Finally, when A outputs a message-signature pair (m,σ), B just outputs the
same pair.

It is clear that B runs in time T + O((Qh + Qs + 1)poly(n,m, k, q)), so to
finish the proof we need to show that B succeeds in the EUF-KOA game with a
sufficiently large probability. We prove this with a sequence of games.

– Let Game0 be A’s EUF-CMA game against the MAYO signature scheme. By
definition we have Pr[Game0() = 1] = AdvEUF−CMA

n,m,o,k,q (A).
– Let Game1 be identical to Game0, except that the game aborts and outputs

0 if to answer a signing query m, the challenger picks a salt, such that the
random oracle was already queried at input m||salt. Since there are in total
Qh + Qs queries to the random oracle, the probability of an abort is at most
(Qs + Qh)2−2λ for each signing query, which makes for a total probability
of an abort of (Qs + Qh)Qs2−2λ. Therefore, we have Pr[Game1() = 1] ≥
Pr[Game0() = 1] − (Qs + Qh)Qs2−2λ.

– Let Game2 be the same as Game1 except that the game aborts and out-
puts 0 if during one of the calls to the signing oracle, the challenger
has to restart the signing algorithm because he arrives at a linear system
P�(v1 + o1, . . . ,vk + ok) = t which does not have full rank. Note that the
view of the adversary in Game1 is independent of the number of signing
attempts: if the signing algorithm encounters a system that does not have
full rank, it just restarts from the beginning. Therefore, the output of the
signing algorithm is independent of the number of signing attempts. It fol-
lows from Lemma 3 that

Pr[Game2() = 1] = Pr[Game1() = 1 ∧ no restart] = Pr[Game1() = 1] Pr[no restart]

≥ Pr[Game1() = 1]

(
1 − Qs

(
1

qm − 1
+

qk−(n−o)

q − 1
+

qm−ko

q − 1

))
.

– The final game Game3 is just the EUF-KOA game played by BA. If Game2
does not abort, then the view of A is identical in Game2 and Game3, because
if no salt is chosen more than once for the same message, then B simulates
the random oracle perfectly. Moreover, since all of the linear systems have full
rank, the signatures are computed as s = v+o, where v is chosen uniformly at
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random in (Fn−o
q ×{0}o)k, and o is uniformly random in Ok. By construction

we have (Fn−o
q × {0}o) + O = F

n
q , so the signatures in Game2 are uniformly

distributed, which means that B simulates the signing oracle perfectly by
just choosing random s ∈ F

kn
q . Therefore, the probability that A outputs a

forgery in Game2 is at least as big as the probability that it outputs a forgery
in Game3 (it could be larger, since Game3 aborts less often, but this is not
important for our analysis), so we have Pr[Game3() = 1] > Pr[Game2() = 1].

By combining the 3 inequalities we get that

AdvEUF−CMA
n,m,o,k,q (A) ≤ AdvEUF-KOA

n,m,o,q (B)
(

1 − Qs

(

1
qm − 1

+
qk−(n−o)

q − 1
+

qm−ko

q − 1

))−1

+ (Qh + Qs)Qs2−2λ. ��

C Proof of Lemma9

Proof. We do the proof with a short sequence of games. The first game Game0
is the EUF-KOA game played by A. By definition we have Pr[Game0() = 1] =
AdvEUF-KOA

n,m,o,k,q(A).
The next game is the same as Game0, except that during the key generation

step the challenger chooses a uniformly random P ∈ MQn,m,q, instead of a P
that vanishes on some oil space O. We construct the adversary B against the
UOV assumption as follows. When B is given a multivariate quadratic map P,
it computes the matrix representation {P(1)

i ,P(2)
i ,P(3)

i }i∈[m] of P. Then, B pick
a random seed, and runs A on input pk = (seed, {P(3)

i }i∈[m]), while faithfully
simulating a random oracle, and an Expand oracle that outputs P(1)

i on input
seed||P1||i, that outputs P(2)

i on input seed||P1||i, and that outputs random
matrices of the appropriate shape otherwise. We designed B in such a way, that
if B is given a P that is a (n,m, o, q) UOV map, then B is exactly Game0, and
if B is given a random map P, then B is Game1. Therefore we have

AdvUOV
n,m,o,q(B) = |Pr[Game0() = 1] − Pr[Game1() = 1]| .

For the next game we define the adversary B′ against the whipped MQ prob-
lem. When B′ is given a WMQ instance P, {Eij}ij , t, it does the same thing as
Game1, except that instead of simulating a random oracle honestly, B′ chooses an
integer I ∈ [Qh] uniformly at random, and outputs ({Eij}ij , t) for the I-th dis-
tinct random oracle query (and all the subsequent queries for the same message).
If A outputs a valid message-signature pair (m, (salt, s)), then the B′ adversary
checks if m||salt was the I-th random oracle query. If this is the case, then B′

outputs s, which is a correct solution to the WMQ instance, and otherwise B′

aborts. The view of A in this game is the same as the view of a in Game1, so A
outputs a valid message-signature pair with probability Pr[Game1() = 1]. The
probability that A outputs a valid pair (m, (salt, s)) such that it has not queried
the random oracle on input m||salt is at most q−m. Note that the guess I is
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information-theoretically hidden from A, so if A outputs a valid forgery for the
J-th random oracle query, then the probability that I = J is 1/Qh. Therefore
we have AdvWMQ

n,m,k,q(B′) ≥ (Pr[Game1() = 1] − q−m)/Qh.
We can now finish the proof by combining Pr[Game0() = 1] = AdvEUF-KOA

n,m,o,k,q(A)
with inequalities from the two game transitions to get

AdvEUF-KOA
n,m,o,k,q(A) ≤ AdvUOV

n,m,o,q(B) + QhAdv
WMQ
n,m,k,q(B′) + q−m.

��
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