
Temporal Stream Logic modulo Theories∗

Bernd Finkbeiner , Philippe Heim� , and Noemi Passing

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{finkbeiner, philippe.heim, noemi.passing}@cispa.de

Abstract. Temporal stream logic (TSL) extends LTL with updates and
predicates over arbitrary function terms. This allows for specifying data-
intensive systems for which LTL is not expressive enough. In the se-
mantics of TSL, functions and predicates are left uninterpreted. In this
paper, we extend TSL with first-order theories, enabling us to specify
systems using interpreted functions and predicates such as incrementa-
tion or equality. We investigate the satisfiability problem of TSL mod-
ulo the standard underlying theory of uninterpreted functions as well as
with respect to Presburger arithmetic and the theory of equality: For all
three theories, TSL satisfiability is neither semi-decidable nor co-semi-
decidable. Nevertheless, we identify three fragments of TSL for which the
satisfiability problem is (semi-)decidable in the theory of uninterpreted
functions. Despite the undecidability, we present an algorithm – which
is not guaranteed to terminate – for checking the satisfiability of a TSL
formula in the theory of uninterpreted functions and evaluate it: It scales
well and is able to validate assumptions in a real-world system design.

1 Introduction

Linear-time temporal logic (LTL) [32] is one of the standard specification lan-
guages to describe properties of reactive systems. The success of LTL is largely
due to its ability to abstract from the detailed data manipulations and to fo-
cus on the change of control over time. In data-intensive applications, such as
smartphone apps, LTL is, however, often not expressive enough to capture the
relevant properties. When specifying a music player app, for instance, we would
like to state that if the user leaves the app, the track that is currently playing
will be stored and will resume playing once the user returns to the app.

To specify data-intensive systems, extensions of LTL such as Constraint LTL
(CLTL) [6] and, more recently, Temporal Stream Logic (TSL) [15] have been
proposed. In CLTL, the atomic propositions of LTL are replaced with atomic
constraints over a concrete domain D and an interpretation for relations. Relat-
ing variables with the equality relation, such as x = y, denoting that the value

∗This work was partially supported by the German Research Foundation (DFG)
as part of the Collaborative Research Center “Foundations of Perspicuous Software
Systems” (TRR 248, 389792660), and by the European Research Council (ERC) Grant
OSARES (No. 683300). Philippe Heim and Noemi Passing carried out this work as PhD
candidates at Saarland University, Germany.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 325–346, 2022.
https://doi.org/10.1007/978-3-030-99253-8_17

http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0002-5433-8133
http://orcid.org/0000-0001-7781-043X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_17&domain=pdf

of x is equal to the value of y, allows for specifying assignment-like statements. In
this paper, however, we focus on the logic TSL to specify data-intensive systems.

TSL extends LTL with updates and predicates over arbitrary function terms.
An update Jx ֋ f(y)K denotes that the result of applying function f to variable y
is assigned to variable x. For the music player app, for instance, the update
Jpaused ֋ track(current)K specifies that the track that is currently playing,
obtained by applying function track to variable current , is stored in variable
paused . Updates are the main characteristic of TSL that differentiates it from
other first-order extensions of LTL: They allow for specifying the evolution of
variables over time. Thus, programs can be represented in TSL and therefore,
for instance, the model checking problem can be encoded.

In the semantics of TSL, functions and predicates are left uninterpreted,
i.e., a system satisfies a TSL formula if the formula evaluates to true for all
possible interpretations of the function and predicate symbols. This semantics
has proven especially useful in the synthesis of reactive programs [15,17], where
the synthesis algorithm builds a control structure, while the implementation
of the functions and predicates is either done manually or provided by some
library. One exemplary success story of TSL-based specification and synthesis of
a reactive system is the arcade game Syntroids [17] realized on an FPGA.

In this paper, we define and investigate the satisfiability problem of TSL
modulo the standard underlying theory of uninterpreted functions and with re-
spect to other first-order theories such as the theory of equality and Presburger
arithmetic. Intuitively, a TSL formula ϕ is satisfiable in a theory T if there is
an execution satisfying ϕ that matches the function applications and predicate
constraints of an interpretation in T . TSL validity in T is dual: A TSL formula ϕ

is valid in a theory T if, and only if, ¬ϕ is unsatisfiable in T .

For LTL, satisfiability is decidable [37] and efficient algorithms for check-
ing the satisfiability of an LTL formula have been implemented in tools like
Aalta [25]. Satisfiability checking has numerous applications in the specification
and analysis of reactive systems, such as identifying inconsistent system require-
ments during the design process, comparing different formalizations of the same
requirements, and various types of vacuity checking. TSL satisfiability checking
extends these applications to data-intensive systems.

We present an algorithm for checking the satisfiability of a TSL formula in the
theory of uninterpreted functions. It is based on Büchi stream automata (BSAs),
a new kind of ω-automata that we introduce in this paper. BSAs can handle the
predicates and updates occurring in TSL formulas. Similar to the relationship
between LTL formulas and nondeterministic Büchi automata, BSAs are an au-
tomaton representation of TSL formulas, i.e., there exists an equivalent BSA
for every TSL formula. Given a TSL formula ϕ, our algorithm constructs an
equivalent BSA Bϕ and then tries to prove satisfiability and unsatisfiability in
parallel: For proving satisfiability, it searches for a lasso that ensures consistency
of the function terms in an accepting run of Bϕ. If such a lasso is found, ϕ is
satisfiable. For proving unsatisfiability, the algorithm discards inconsistent runs
of Bϕ. If no accepting run is left, ϕ is unsatisfiable.

326 B. Finkbeiner et al.

The algorithm does not always terminate. In fact, we show that TSL satisfi-
ability is neither semi-decidable nor co-semi-decidable in the theory of uninter-
preted functions. Thus, no complete algorithm exists. The undecidability result
extends to the theory of equality and Presburger arithmetic. There exist, how-
ever, (semi-)decidable fragments of TSL in the theory of uninterpreted functions:
For satisfiable formulas with a single variable as well as satisfiable reachability
formulas, our algorithm is guaranteed to terminate. For slightly more restricted
reachability formulas, satisfiability is decidable.

We have implemented the algorithm and evaluated it, clearly illustrating its
applicability: It terminates within one second on many randomly generated for-
mulas and scales particularly well for satisfiable formulas. Moreover, it is able to
check realistic benchmarks for consistency and to (in-)validate their assumptions.
Most notably, we successfully validate the assumptions of a Syntroids module.

A preliminary version of this paper has been published on arXiv [13]. This al-
ready lead to further research on TSL modulo theories: Maderbacher and Bloem
show that the synthesis problem for TSL modulo theories is undecidable in
general and present a synthesis procedure for TSL modulo theories based on a
counter-example guided LTL synthesis loop [27].

Further details and proofs are available in the full version of this paper [14].

2 Preliminaries

We assume time to be discrete. A value can be of arbitrary type and we denote
the set of all values by V. The Boolean values are denoted by B ⊆ V. Given n

values, an n-ary function f : Vn → V computes a new value. An n-ary predicate
p : Vn → B determines whether a property over n values is satisfied. The sets of
all functions and predicates are denoted by F and P ⊆ F , respectively. Constants
are both functions of arity zero and values. Starting from 0, we denote the i-th
position of an infinite word σ by σi and the i-th component of a tuple t by πi(t).

To argue about functions and predicates, we use a term based notation. Func-
tion terms τf are constructed from variables and functions, recursively applied
to a set of function terms. Predicate terms τp are constructed by applying a
predicate to function terms. The sets of all function and predicate terms are
denoted by TF and TP ⊆ TF , respectively. Given sets ΣF , ΣP of function and
predicate symbols with ΣP ⊆ ΣF , a set V of variables, and a set V of values, let
〈·〉 : V ∪ ΣF → V ∪ F be an assignment function assigning a concrete function
(predicate) to each function (predicate) symbol and an initial value to each vari-
able. We require 〈v〉 ∈ V, 〈f〉 ∈ F , and 〈p〉 ∈ P for v ∈ V , f ∈ ΣF , p ∈ ΣP . The
evaluation χ〈·〉 : TF → V ∪ B of function terms is defined by χ〈·〉(v) := 〈v〉 for
v ∈ V , and by χ〈·〉(f(τ0, . . . , τn)) := 〈f〉(χ〈·〉(τ0), . . . , χ〈·〉(τn)) for f ∈ ΣF ∪ΣP .

Functions and predicates are not tied to a specific interpretation. To restrict
the possible interpretations, we utilize first-order theories. A first-order theory T

is a tuple (ΣF , ΣP ,A), where ΣF and ΣP are sets of function and predicate sym-
bols, respectively, and A is a set of closed first-order logic formulas over ΣF , ΣP ,
and a set of variables V . For an introduction to first-order logic, we refer to the

Temporal Stream Logic modulo Theories 327

full version [14]. The elements of A are called the axioms of T and ΣF ∪ΣP is
called the signature of T . A model M for a theory T = (ΣF , ΣP ,A) is a tuple
(V, 〈·〉), where V is a set of values and 〈·〉 is an assignment function as introduced
above. Furthermore, (V, 〈·〉) is required to entail ϕA for each axiom ϕA ∈ A. The
set of all models of a theory T is denoted by Models(T).

In the remainder of this paper, we focus on the following three theories: The
theory of uninterpreted functions TU is a theory without any axioms, i.e., every
symbol is uninterpreted. It allows for arbitrarily many function and predicate
symbols. The theory of equality TE additionally includes equality, i.e., its ax-
ioms enforce the equality symbol = to indeed represent equality. The theory of
Presburger arithmetic TN implements the idea of numbers. Its axioms define the
constants 0 and 1 as well as equality and addition.

3 Temporal Stream Logic modulo Theories

In this section, we introduce Temporal Stream Logic modulo theories, an exten-
sion of the recently introduced logic Temporal Stream Logic (TSL) [15] with
first-order theories. First, we recap the main idea of TSL as well as its syntax
and semantics. Afterwards, we extend TSL with first-order theories and define
the basic notions of satisfiability and validity for TSL formulas modulo theories.

3.1 Temporal Stream Logic

Temporal Stream Logic (TSL) [15] is a temporal logic that separates tempo-
ral control and pure data. Data is represented as infinite streams of arbitrary
type. TSL allows for checks and manipulations of streams on an abstract level:
It focuses on the control flow and abstracts away concrete implementation de-
tails. The temporal structure of the data is expressed by temporal operators as
in LTL [32]. TSL is especially designed for reactive synthesis and thus distin-
guishes between uncontrollable input streams and controllable output streams,
so-called cells. In this paper, this distinction is not necessary since we consider
TSL independent of its usage in synthesis. Thus, we use the notions of streams
and cells as synonyms. The finite set of all cells is denoted by C.

In TSL, we use functions f ∈ F to modify cells and predicates p ∈ P to
perform checks on cells. The cells c ∈ C serve as variables for function terms.
The sets of all function and predicate terms over ΣF , ΣP , and C are denoted by
TF and TP . TSL formulas are built according to the following grammar:

ϕ,ψ := true | ¬ϕ | ϕ ∧ ψ | ϕ | ϕU ψ | τp | Jc ֋ τf K

where c ∈ C, τp ∈ TP , and τf ∈ TF . An update Jc ֋ τf K denotes that the value
of the function term τf is assigned to cell c. The value of τf may depend on
the value of the cells occurring in τf . The temporal operators ϕ and ϕU ψ are
similar to the ones in LTL. We define ϕ = true U ϕ and ϕ = ¬ ¬ϕ.

Since functions and predicates are represented symbolically, they are not tied
to a specific implementation. To assign an interpretation to them, we use an

328 B. Finkbeiner et al.

assignment function 〈·〉 : C∪ΣF → V ∪F , where V is a set of values. We require
〈c〉 ∈ V, 〈f〉 ∈ F and 〈p〉 ∈ P for c ∈ C, f ∈ ΣF , and p ∈ ΣP Note that 〈·〉 also
assigns an initial value to each cell. Terms can be compared syntactically with
the equivalence relation ≡. The set of all assignments of cells c ∈ C to function
terms τf ∈ TF is denoted by C. A computation ς ∈ Cω is an infinite sequence
of assignments of cells to function terms, capturing the behavior of cells over
time. The satisfaction of a TSL formula ϕ with respect to ς, a set of values V,
an assignment function 〈·〉, and a time step t is defined by:1

ς, t |=V,〈·〉 ¬ϕ :⇔ ς, t 6|=V,〈·〉 ϕ

ς, t |=V,〈·〉 ϕ ∧ ψ :⇔ ς, t |=V,〈·〉 ϕ ∧ ς, t |=V,〈·〉 ψ

ς, t |=V,〈·〉 ϕ :⇔ ς, t+ 1 |=V,〈·〉 ϕ

ς, t |=V,〈·〉 ϕU ψ :⇔ ∃t′′ ≥ t.∀t ≤ t′ < t′′. ς, t′ |=V,〈·〉 ϕ ∧ ς, t′′ |=V,〈·〉 ψ

ς, t |=V,〈·〉 Jc ֋ τK :⇔ ςt(c) ≡ τ

ς, t |=V,〈·〉 p(τ0, . . . , τm) :⇔ χ〈·〉(η(ς, t, p(τ0, . . . , τm))),

where η : Cω × N× TF → TF is a symbolic evaluation function defined by

η(ς, t, c) =

{
c if t = 0

η(ς, t− 1, ςt−1(c)) if t > 0

η(ς, t, f(τ0, . . . , τm)) = f(η(ς, t, τ0), . . . , η(ς, t, τm))

We call (ς,V, 〈·〉) an execution. The satisfaction of a predicate depends on
the current and the past steps in the computation. For updates, the satisfaction
depends solely on the current step. While updates are only checked syntactically,
the satisfaction of predicates depends on the given assignment 〈·〉. An execution
(ς,V, 〈·〉) satisfies a TSL formula ϕ, denoted ς |=V,〈·〉 ϕ, if ς, 0 |=V,〈·〉 ϕ holds.

Example 1. Suppose that we have a single cell x, i.e., C = {x}. Consider the
computation ς = ({λc.f(x)})ω, i.e., f(x) is assigned to cell x in every time step.
Let V = N be the set of values and let 〈·〉 be an assignment function such that the
initial value of x is 1, function f corresponds to incrementation, and predicate p

determines whether its argument is even (true) or odd (false). Consider the TSL
formula ϕ := Jx ֋ f(x)K ∧ ¬p(x) ∧ p(x). By the semantics of TSL, we have
ς, 0 |=V,〈·〉 ϕ if, and only if, (ς0(x) = f(x)) ∧ (¬〈p〉(〈x〉)) ∧ (〈p〉(〈f〉(〈x〉))) holds.
The first conjunct clearly holds by construction of ς. Since 1 is odd and 1+1 = 2
is even, the other two conjuncts hold as well for the chosen assignment function.
Hence, (ς,V, 〈·〉) satisfies ϕ for ς = ({λc.f(x)})ω, V = N and 〈·〉.

A computation ς is called finitary with respect to ϕ, denoted finϕ(ς), if for
all cells c ∈ C and for all points in time t, either ςt(c) ≡ c holds, or there is
an update Jc ֋ τK in ϕ such that ςt(c) ≡ τ , i.e., a finitary computation only
contains updates occurring in ϕ and self-updates. For ς and ϕ from Example 1,
for instance, ς is finitary with respect to ϕ.

1Note that we use a slightly different, but equivalent, definition than [15]: Instead
of evaluating the function and predicate symbols on the fly, we construct the whole
term first and then evaluate it recursively using the evaluation function χ〈·〉.

Temporal Stream Logic modulo Theories 329

3.2 Extending TSL with Theories

In this paper, we extend TSL with first-order theories. That is, we restrict the
possible interpretations of predicate and function symbols to a theory. Hence,
we define the notions of satisfiability and validity of a TSL formula modulo a
theory T . Intuitively, a TSL formula ϕ is satisfiable in a theory T if there exists
an execution satisfying ϕ whose domain and assignment function represent a
model in T , i.e., that entail all axioms of T . Formally:

Definition 1 (TSL Satisfiability). Let T = (ΣF , ΣP ,A) be a theory and let ϕ
be a TSL formula over ΣF , ΣP , and C. We call ϕ satisfiable in T if, and only if,
there exists an execution (ς,V, 〈·〉), such that ς |=V,〈·〉 ϕ and (V, 〈·〉) ∈ Models(T)
hold. If additionally finϕ(ς) holds, then ϕ is called finitary satisfiable in T .

Intuitively, a formula ϕ is valid in a theory T , if for all executions and all
matching models of the theory the formula is satisfied. Formally:

Definition 2 (TSL Validity). Let T = (ΣF , ΣP ,A) be a theory and let ϕ be
a TSL formula over ΣF , ΣP , and C. The formula ϕ is called valid in T if, and
only if, for all executions (ς,V, 〈·〉) with (V, 〈·〉) ∈ Models(T), we have ς |=V,〈·〉 ϕ.
If ς |=V,〈·〉 ϕ holds for all executions (ς,V, 〈·〉) with both (V, 〈·〉) ∈ Models(T) and
finϕ(ς), then ϕ is called finitary valid in T .

It follows directly from their definitions that (finitary) TSL satisfiability and
(finitary) TSL validity are dual. Thus, we focus on TSL satisfiability in the
remainder of this paper as the results can easily be extended to TSL validity.

Theorem 1 (Duality of TSL Satisfiability and Validity). Let ϕ be a TSL
formula over ΣF , ΣP , and C and let T = (ΣF , ΣP ,A) be a theory. Then, ϕ is
(finitary) satisfiable in T if, and only if, ¬ϕ is not (finitary) valid in T .

4 TSL modulo TU Satisfiability Checking

In this section, we investigate the satisfiability of TSL modulo the theory of
uninterpreted functions TU . Since TU has no axioms, there are no restrictions
on how a model for TU evaluates the function and predicate symbols. The only
condition is that the evaluated symbols are indeed functions. Therefore, we have
(ς,V, 〈·〉) ∈ Models(TU) for all executions. Thus, finding some execution satisfy-
ing a TSL formula ϕ is sufficient for showing that ϕ is satisfied in TU :

Lemma 1. Let ϕ be a TSL formula over ΣF , ΣP , and C. If there exists an
execution (ς,V, 〈·〉) with ς |=V,〈·〉 ϕ, then ϕ is satisfiable in TU . If additionally
finϕ(ς) holds, then ϕ is finitary satisfiable in TU .

In the following, we introduce an (incomplete) algorithm for checking the
satisfiability of a TSL formula ϕ in the theory of uninterpreted functions. By

330 B. Finkbeiner et al.

Lemma 1, it suffices to find an execution satisfying ϕ to prove its satisfiabil-
ity in TU . To search for such an execution, we introduce Büchi stream au-
tomata (BSAs), a new kind of ω-automata that reads executions and allows
for dealing with predicates and updates. BSAs are, similar to the connection
between LTL and Büchi automata, an automaton representation for TSL. Then,
we present the algorithm for checking satisfiability in TU based on BSAs.

4.1 Büchi Stream Automata

Intuitively, a Büchi stream automaton (BSA) is an ω-automaton with Büchi
acceptance condition that reads infinite executions instead of infinite words.
Furthermore, it is able to deal with predicates and updates occurring in TSL
formulas. To do so, the transitions of a BSA are labeled with guards and update
terms. Intuitively, the former define which predicates need to hold when taking
the transition. The latter define how the corresponding cells are updated when
taking the transition. Formally, a BSA is defined as follows:

Definition 3 (Büchi Stream Automaton). Let ΣF , ΣP be sets of function
and predicate symbols, respectively, and let C be a finite set of cells. A Büchi
Stream automaton B over ΣF , ΣP , and C is a tuple (Q,Q0, F, •,G,U , δ), where
Q is a finite set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of
accepting states, • is a fresh term symbol such that • 6∈ C∪ΣF ∪ΣP , G ⊆ TP is
a finite set of predicate terms over ΣF , ΣP , and C, called guards, U ⊆ TF ∪{•}
is a finite set of function terms over ΣF , ΣP , and C, called update terms, and
δ ⊆ Q× (G → B)× (C → U)×Q is a finite transition relation.

Note that by requiring the update terms U to be a finite set of function
terms, not all executions can be read by a BSA: Non-finitary executions contain
updates with function terms that do not occur in the given TSL formula. Thus,
they may require infinitely many update terms. Therefore, we introduce the fresh
term symbol • 6∈ C∪ΣF ∪ΣP . If a transition in a BSA assigns • to a cell c ∈ C,
then any function term can be assigned to c. This allows for reading non-finitary
executions while maintaining finite representability of BSAs.

Example 2. Consider the three BSAs depicted in Figure 1. If B1 is in state q0 and
p(x) holds, then cell x is updated with f(x) and B1 chooses nondeterministically
to either stay in q0 or to move to the accepting state q1. In contrast, B2 is
deterministic. Yet, it is incomplete: In both q0 and q1, no guard is satisfied if
¬p(x) holds. Hence, B2 gets stuck, preventing satisfaction of the Büchi winning
condition for any execution containing ¬p(x). The BSA B3 makes use of the
fresh term symbol •: If p(x) holds, any function term can be assigned to x.

Given sets ΣF , ΣP , C and a BSA B = (Q,Q0, F, •,G,U , δ) over ΣF , ΣP , C,
an infinite word c ∈ (Q × (G → B) × (C → U) × Q)ω is called run of B if, and
only if, the first state of c is an initial state, i.e., π1(c0) ∈ Q0, and both ct ∈ δ

and π4(ct) = π1(ct+1) hold for all points in time t ∈ N0. Intuitively, a run c is an
infinite sequence of tuples (q, g, u, q′) encoding transitions in the BSA: q is the

Temporal Stream Logic modulo Theories 331

q0 q1

¬p(x):
Jx ֋ f(x)K

p(x):
Jx ֋ f(x)K

p(x):
Jx ֋ f(x)K

¬p(x):
Jx ֋ f(x)K

(a) BSA B1

q0 q1

p(x), p(f(x)):
Jx ֋ f(x)K

p(x),¬p(f(x)):
Jx ֋ f(x)K

p(x), p(f(x)):
Jx ֋ f(x)K

p(x),¬p(f(x)):
Jx ֋ f(x)K

(b) BSA B2

q0

p(x):
Jx ֋ •K

(c) BSA B3

Fig. 1: Three exemplary Büchi stream automata. Accepting states are marked
with double circles. Guards are highlighted in red, update terms in blue.

source state, q′ is the target state, g determines which predicate terms hold, and
u defines which updates are performed when taking the transition. A run c is
called accepting if it contains infinitely many accepting states, i.e., for all points
in time t ∈ N0, there exists a t′ > t such that π1(ct′) ∈ F holds.

Example 3. Let g1(p(x)) = true, g2(p(x)) = false, and u(x) = f(x). The infi-
nite word c = (q0, g1, u, q1)(q1, g2, u, q0)(q0, g1, u, q1)(q1, g2, u, q0) . . . is a run of
BSA B1 from Figure 1a. It is accepting as it visits q1 infinitely often.

The characteristics of a BSA are its predicates and updates. Thus, it is not
sufficient to solely consider accepting runs since the constraints produced by
the predicates might be inconsistent. Therefore, we define the execution of a
BSA that only permits consistent accepting runs. Intuitively, given a run c of a
BSA B, an execution of c consists of a computation ς ∈ Cω, a domain V, and an
assignment 〈·〉 such that the updates in ς match the updates in c and such that
the recursive evaluation of a predicate term using 〈·〉 matches its truth value
in ς. To capture the constraints accumulated in ς as well as their truth values,
we define the constraint trace ̺ : (τp ×B)ω of ς and c: Formally, ̺ for ς and c is
defined by ̺t := ∅ if t = 0, and ̺t := ̺t−1∪{(η(ς, t−1, τp), π2(ct−1)(τp)) | τp ∈ G}
if t > 0. As an example, reconsider the computation ς from Example 1 and the
run c of BSA B1 from Example 3. The constraint trace of ς and c is given
by ̺ = ∅{(p(x), true)}{(p(x), true), (p(f(x)), false)} A constraint trace ̺ is
called consistent if there is no predicate term τp ∈ TP such that both (τp, true)
and (τp, false) occur in

⋃
t∈N0

̺t. ̺ from the example above is consistent. Using
constraint traces, we now formally define the execution of a BSA:

Definition 4 (Execution of a BSA). Let ΣF and ΣP be sets of function
and predicate symbols, respectively, and let C be a finite set of cells. Let B be a
BSA over ΣF , ΣP , and C and let c be a run of B. Let ς ∈ Cω be an infinite
computation and let 〈·〉 : C ∪ ΣF → V ∪ F be an assignment function. Let ̺ be
the constraint trace of ς and c. We call (ς,V, 〈·〉) execution for c if (1) for all
points in time t ∈ N0 and all cells c ∈ C, we have either π3(ct)(c) = ςt(c) or
π3(ct)(c) = •, and (2) for all (τp, b) ∈

⋃
t∈N0

̺t, we have χ〈·〉(τp) = b.

332 B. Finkbeiner et al.

Note that the second requirement can only be fulfilled if the constraint trace
is consistent. Consider the computation ς and the assignment function 〈·〉 from
Example 1, the run c of B1 from Example 3, and the constraint trace ̺ of ς and
c given above. Then, (ς,N, 〈·〉) is an execution for c: Since in both ς and c, cell
x is always updated with f(x), the updates in ς and c coincide at every point in
time. Furthermore, by construction of 〈·〉, the constraints of ̺ match the truth
values obtained by recursively evaluating 〈·〉 for all predicate terms.

We define two languages of a BSA B: The symbolic language L(B) is the set
of all executions that have a respective accepting run, i.e., (ς,V, 〈·〉) ∈ L(B) if,
and only if, there exists an accepting run c such that (ς,V, 〈·〉) is an execution
for c. The language LT (B) in a theory T is the set of all executions whose domain
and assignment function additionally form a model in T , i.e., (ς,V, 〈·〉) ∈ LT (B)
if, and only if, (ς,V, 〈·〉) ∈ L(B) and (V, 〈·〉) ∈ Models(T).

We call a BSA B = (Q,Q0, F, •,G,U , δ) finitary if • 6∈ U holds. Hence, every
run c of a finitary BSA, has a unique computation ς and thus a unique constraint
trace ̺. Therefore, for a finite prefix cp of c, we can compute its execution effect
effect(cp) := (λc. η(ς, |cp|, c), ̺|cp|) from cp itself, i.e., without considering ς and ̺

explicitly. Intuitively, cp’s execution effect consists of the function terms assigned
to the cells during the execution of cp as well as the constraints and their truth
values on the transitions taken with cp in the BSA. The BSAs B1 and B2, depicted
in Figure 1, are finitary while B3 is not. Since B1 is finitary, consider the prefix
cp = (q0, g1, u, q1)(q1, g2, u, q0) of the run c of B1 presented in Example 3. Its exe-
cution effect is given by effect(cp) = (λc.f(f(x)), {(p(x), true), (p(f(x)), false)}).

An LTL formula ϕ can be translated into a nondeterministic Büchi automa-
ton (NBA) Aϕ with L(ϕ) = L(Aϕ) [38]. An analogous relation exists between
TSL formulas and BSAs: A TSL formula ϕ can be translated into an equiva-
lent BSA Bϕ: First, we approximate ϕ by an LTL formula ϕLTL, similarly to
the approximation described in [15]. The main idea of the approximation is to
represent every function and predicate term as well as every update occurring
in ϕLTL by an atomic proposition and to add conjuncts that ensure that exactly
one update is performed for every cell in every time step. Second, we build an
equivalent NBA AϕLTL

from ϕLTL. Third, we construct a BSA Bϕ from AϕLTL

by, intuitively, translating the atomic propositions back into predicate terms and
updates and by dividing them into guards and update terms, while maintaining
the structure of the NBA AϕLTL

. The full construction of an equivalent BSA Bϕ

from a TSL formula ϕ is given in the full version [14].

Theorem 2 (TSL to BSA Translation). Given a TSL formula ϕ, there
exists an equivalent (finitary) Büchi stream automaton B such that for all theo-
ries T , LT (B) 6= ∅ holds if, and only if, ϕ is (finitary) satisfiable in T .

For instance, the TSL formula ϕ1 := Jx ֋ f(x)K ∧ (p(x) ∧ ¬p(x)) is
finitary satisfiable in a theory T if, and only if, LT (B1) 6= ∅ holds for the BSA B1

from Figure 1a. Analogously, ϕ2 := (Jx ֋ f(x)K ∧ p(x)) ∧ ¬p(f(x)), and
ϕ3 := p(x) correspond to the BSAs B2 and B3 from Figure 1b and Figure 1c.

Temporal Stream Logic modulo Theories 333

Algorithm 1: Algorithm for Checking TSL modulo TU Satisfiability

Input: ϕ: TSL Formula
Output: SAT, UNSAT

1 B := Finitary BSA for ϕ as defined in Theorem 2;
2 R := Set of runs of B;
3 Function SatSearch
4 for pref .recω ∈ {c | c ∈ R ∧ accepting(c)} do
5 (vp,):=effect(pref);
6 (vr, P):=effect(pref .rec);

7 if SMT

((

∧

(tp,v)∈P

{

tp if v = true

¬tp if v = false

)

∧
∧

c∈C

vp(c) = vr(c)

)

=SAT then

8 return SAT

9 Function UnsatSearch
10 for n ∈ N0 do
11 for c ∈ {c | c ∈ finiteSubwords(R) ∧ |c| = n} do
12 (, P):=effect(c);
13 if ∃tp. (tp, true), (tp, false) ∈ P then
14 R := R \ {c′ | ∃m ∈ N0. ∀0 ≤ i < n. c′i+m = ci}

15 if {c | c ∈ R ∧ accepting(c)} = ∅ then
16 return UNSAT

17 return parallel(SatSearch, UnsatSearch)

4.2 An Algorithm for TSL modulo TU Satisfiability Checking

Utilizing BSAs, we present an algorithm for checking the satisfiability of a TSL
formula in the theory of uninterpreted functions TU in the following. First, recall
that finitary computations only perform self-updates or updates that occur in
the given TSL formula. Since there are only finitely many cells, the behavior
of finitary computations is thus restricted to a finite set of possibilities in each
step. Hence, reasoning with finitary computations is easier than reasoning with
non-finitary ones. In the algorithm, we make use of the fact that satisfiability
can be reduced to finitary satisfiability in the theory of uninterpreted functions,
enabling us to focus on finitary computations. The main idea of the reduction is
to introduce a new cell for each cell of a given TSL formula. The new cells then
capture the values that are constructed by the non-finitary parts of a computa-
tion. The proof is given in the full version [14].

Lemma 2. Let ϕ be a TSL formula. Then, there is a TSL formula ϕfin such
that ϕ is satisfiable in TU if, and only if, ϕ ∧ ϕfin is finitary satisfiable in TU .

Algorithm 1 shows the algorithm for checking TSL modulo TU satisfiability.
It directly works on Büchi stream automata. First, an equivalent BSA B is
generated for the input formula ϕ. Then, in parallel, SatSearch tries to prove
that ϕ is satisfiable in TU while UnsatSearch tries to prove unsatisfiability of ϕ.

334 B. Finkbeiner et al.

SatSearch enumerates all lasso-shaped accepting runs pref.recω of B, i.e.,
accepting runs consisting of a finite prefix pref and a finite recurring part rec that
is repeated infinitely often. Both pref and rec need to end in the same state of B.
Then, the execution effects of pref and pref.rec are computed. SatSearch checks
if it is possible to satisfy all predicate constraints induced by pref.rec under the
condition that, for each cell, pref and pref.rec construct equal function terms.
For this, it utilizes an SMT solver to check the satisfiability of a quantifier-free
first-order logic formula, encoding the consistency requirement, in the theory of
equality. If the check succeeds, adding rec to pref des not create an inconsistency
and hence repeating rec infinitely often is consistent. Therefore, there exists an
execution for pref.recω and thus ϕ is finitary satisfiable in TU by Lemma 1.

UnsatSearch computes the execution effect of finite subwords of runs of B and
checks whether they are consistent. If a subword is inconsistent, then every run
that contains this subword is inconsistent. Hence, there do not exist executions
for these runs and therefore they are removed from the set of candidate runs. If
there is no accepting candidate run left, then B has an empty symbolic language
and thus, by Theorem 2, ϕ is unsatisfiable in TU .

Example 4. Consider the finitary BSAs B1 and B2 from Figures 1a and 1b as
well as their respective TSL formulas ϕ1 := Jx ֋ f(x)K ∧ (p(x) ∧ ¬p(x))
and ϕ2 := ((Jx ֋ f(x)K∧p(x))∧ ¬p(f(x)). If we execute Algorithm 1 on ϕ1,
SatSearch considers the accepting lasso q0 → q1 → q0 in B1 at some point.
Then, pref = ε and rec = (q0, g1, u, q1)(q1, g2, u, q0). Note that pref.rec is the
finite prefix cp of a run of B1 from Example 3. Thus, effect(pref.rec) is given by
(λc.f(f(x)), {(p(x), true), (p(f(x)), false)}). Since effect(pref) = (λc.c, ∅) holds,
SatSearch generates the query p(x)∧¬p(f(x))∧ x = f(f(x)) which is satisfiable
in TE . Hence, we can repeat the lasso q0 → q1 → q0 infinitely often without
getting any inconsistent constraints and thus ϕ1 is satisfiable.

If we execute Algorithm 1 on ϕ2, UnsatSearch checks at some point wether
in B2 the transition sequence q0 → q1 followed by the upper self-loop is con-
sistent. This is not the case as it requires p(f(x)) to be true (first transition)
and false (second transition): We have ̺1 = {(p(x), true), (p(f(x)), false)} and
̺2 = ̺1 ∪ {(p(f(x)), true), (p(f(f(x))), true)} by definition of the constraint
trace. UnsatSearch also checks the transition sequence q0 → q1 followed by the
lower self-loop which is also inconsistent. Hence, there is no consistent transition
after q0 → q1 and thus there is no valid accepting run. Hence, ϕ2 is unsatisfiable.

Note that the presentation of Algorithm 1 omits implementation details such
as the enumeration of accepting loops and the implementation of the infinite
set R. A more detailed description addressing these issues is given in [14].

Algorithm 1 is correct. Intuitively, it terminates with SAT if the constraint
trace ̺ of the unique computation ς of pref.recω is consistent. Hence, ̺ defines
an assignment 〈·〉 such that (ς,V, 〈·〉) is an execution of pref.recω, implying satis-
fiability of ϕ in TU . If the algorithm terminates with UNSAT, then all accepting
runs of the BSA are inconsistent and thus no finitary execution satisfying ϕ

exists. For the proof, we refer the reader to the full version [14].

Temporal Stream Logic modulo Theories 335

Theorem 3 (Correctness of Algorithm 1). Let ϕ be a TSL formula. If
Algorithm 1 terminates on ϕ with SAT, then there exists an execution (ς,V, 〈·〉)
such that both ς |=V,〈·〉 ϕ and finϕ(ς) hold. If Algorithm 1 terminates with UN-
SAT, then for all executions (ς,V, 〈·〉) with finϕ(ctr), ς 6|=V,〈·〉 ϕ holds.

5 Undecidability of TSL modulo TU Satisfiability

The algorithm for TSL satisfiability checking in TU presented in the previous sec-
tion does not necessarily terminate. In this section, we show that no complete al-
gorithm exists: The satisfiability of a TSL formula in the theory of uninterpreted
functions TU (TSL-TU -SAT) is neither semi-decidable nor co-semi-decidable:

Theorem 4 (Undecidability of TSL-TU -SAT). The satisfiability (validity)
problem of TSL in TU is neither semi-decidable nor co-semi-decidable.

The main intuition behind the undecidability result is that we can encode
numbers with TSL in the theory of uninterpreted functions. That is, we are able
to encode incrementation, resetting some variable to zero, and equality. We only
give the encoding here, for the proof of its correctness we refer to [14].

Lemma 3. Let f be a unary function, let =̂ be a binary predicate, and let z be
a constant. Let fx(z) correspond to applying f x-times to z. There exists a TSL
formula ϕnum such that every execution entailing ϕnum requires from its models
that for all a, b ∈ N0, a = b holds if, and only if, fa(z) =̂ f b(z) holds.

Proof (Sketch). We construct ϕnum = ϕ1 ∧ ϕ2 as follows: The first conjunct is
defined by ϕ1 := Je ֋ zK ∧ (Je ֋ f(e)K ∧ e =̂ e). Let

ϕeq := (x =̂ b) → (Jx ֋ zK ∧ Jb ֋ f(b)K ∧ ¬ (b =̂ f(b)) ∧ ¬ (f(b) =̂ b))

ϕneq := ¬ (x =̂ b) → (Jx ֋ f(x)K ∧ Jb ֋ bK ∧ ¬ (x =̂ f(b)) ∧ ¬ (f(b) =̂ x)) .

Then, ϕ2 is defined by ϕ2 := Jx ֋ zK ∧ Jb ֋ zK ∧ (ϕeq ∧ ϕneq).

Intuitively, f corresponds to incrementation, z to resetting a variable to zero,
and =̂ to equality: ϕ1 ensures that fn(z) =̂ fn(z) holds for all n ∈ N0. In
contrast, ϕ2 ensures that if a 6= b holds, then ¬(fa(z) =̂ f b(z)): Starting with
x = b = z, ϕ1 ensures that x =̂ b holds initially. Then, ϕeq resets x to z and
“increments” b, while ensuring that ¬(fk(z) =̂ fk+1(z)) holds, where b = fk(z).
Then, ¬(x =̂ b) holds and thus ϕneq “increments” x until it reaches b = fk+1(z),
while ensuring that ¬(fk+1(z) =̂ f ℓ(z)) holds for all ℓ < k + 1.

Using this encoding in TSL modulo TU , we can construct a TSL formula ϕG

for every Goto-program G such that ϕG ∧ϕnum is satisfiable in TU if, and only
if, G terminates on every input. Intuitively, ϕG “simulates” G on different inputs
by starting with input zero and incrementing the input if the halting location was
reached. The temporal operators of TSL allow for requiring that G terminates
infinitely often. The construction of ϕG is given in the full version [14]. Since
the universal halting problem for Goto programs is neither semi-decidable nor

336 B. Finkbeiner et al.

co-semi-decidable, the same undecidability result follows for the satisfiability of
a TSL formula modulo TU , proving Theorem 4.

Since the theory of Presburger arithmetic TN allows for incrementation, re-
setting a variable to zero, and equality, we can reuse the TSL formula ϕG from
above to reduce the universal halting problem for Goto programs to TSL satis-
fiability modulo TN (TSL-TN-SAT), proving undecidability of TSL-TN-SAT. Note
that this result holds for other theories that can express incrementation, reset,
and equality, for instance Peano Arithmetic, as well.

Theorem 5 (Undecidability of TSL-TN-SAT). The satisfiability (validity)
problem of TSL in TN is neither semi-decidable nor co-semi-decidable.

Furthermore, equality allows for encoding incrementation and resetting a
variable to zero. Hence, similarly to TU , there exists a TSL formula ϕenc that, if
entailed, enforces a binary function and a constant to behave as incrementation
and a reset, respectively. The construction of ϕenc is given in the full version [14].
Thus, the TSL formula ϕG constructed as above for a Goto program G ensures
that ϕG ∧ ϕenc is satisfiable in the theory of equality TE if, and only if, G
terminates on every input. Hence, undecidability of TSL-TE-SAT follows:

Theorem 6 (Undecidability of TSL-TE-SAT). The satisfiability (validity)
problem of TSL in TE is neither semi-decidable nor co-semi-decidable.

6 (Semi-)Decidable Fragments

In Section 5, we showed that TSL satisfiability is undecidable in TU . In this
section, however, we identify fragments of TSL on which Algorithm 1 terminates
for certain inputs. In fact, we present one fragment for which TSL-TU -SAT is
decidable and two fragments for which TSL-TU -SAT is semi-decidable.

First, we consider the TSL reachability fragment, i.e., the fragment of TSL
that only permits the next operator and the eventually operator as temporal
operators. In our applications, this fragment corresponds to finding counterex-
amples to safety properties. For satisfiable reachability formulas, Algorithm 1
terminates. The main idea behind the termination is that the BSA of a reacha-
bility formula has an accepting lasso-shaped run and since ϕ is satisfiable, this
run is consistent. For the proof, we refer to the full version [14].

Lemma 4. Let ϕ be a TSL formula in the reachability fragment. If ϕ is finitary
satisfiable in TU , then Algorithm 1 terminates on ϕ.

Restricting the reachability fragment further, we consider TSL formulas with
updates, predicates, logical operators, next operators, and at most one top-level
eventually operator. Such formulas are either completely time-bounded or they
are of the form ϕ = ϕ′, where ϕ′ is time-bounded. In the dual validity problem,
such formulas correspond to invariants on a fixed time window, a useful property
for many applications. Algorithm 1 is guaranteed to terminate for satisfiable and
unsatisfiable formulas of the above form if a suitable BSA is constructed. Such a

Temporal Stream Logic modulo Theories 337

suitable BSA has a single accepting state q indicating that the time-bounded part
has been satisfied. Intuitively, a suitable BSA ensures that all runs reaching q are
accepting and that only finitely many transition sequences lead to q. Then, if ϕ is
unsatisfiable, Algorithm 1 is able to exclude all transition sequences leading to q

and thus to terminate. A BSA with infinitely many transition sequences leading
to q, in contrast, may cause the algorithm to diverge as it may consider infinitely
many consistent subsequences before finding the inconsistent one yielding the
exclusion of the sequences leading to q. A suitable BSA exists for every TSL
formula in the considered fragment. For the proof, including a more detailed
description of suitable BSAs, we refer to the full version [14].

Lemma 5. Let ϕ be a TSL formula with only logical operators, predicates, up-
dates, next operators, and at most one top-level eventually operator. Algorithm 1
terminates on ϕ if it picks a suitable respective BSA.

Note that Algorithm 1 is only a formal decider for this fragment if we ensure
that a suitable BSA is always generated. In practice, we experienced that this
is usually the case even without posing restrictions on the BSA construction.
Lastly, we consider a fragment of TSL that does not restrict the temporal struc-
ture of the formula but the number of used cells. For TSL formulas with a single
cell, Algorithm 1 always terminates on satisfiable inputs:

Lemma 6. Let ϕ be a TSL formula such that |C| = 1. If ϕ is finitary satisfiable
in the theory of uninterpreted functions, then Algorithm 1 terminates on ϕ.

Intuitively, restricting the TSL formula to use only a single cell prevents
us from simulating arbitrary computations and thus from reducing from the
universal halting problem of Goto programs as in the general undecidability
proof. The formal proof, given in the full version [14], however, is unrelated to
the above intuition. Combining the three observations, we obtain the following
(semi-)decidability results for the satisfiability of fragments of TSL modulo TU :

Theorem 7. The satisfiability problem of TSL formulas in TU is (1) semi-
decidable for the reachability fragment of TSL, (2) decidable for formulas consist-
ing of only logical operators, predicates, updates, next operators, and at most one
top-level eventually operator, and (3) semi-decidable for formulas with one cell.

7 Evaluation

We implemented the algorithm for checking TSL modulo TU satisfiability2. We
used TSL tools3 to handle TSL, spot [11] to transform the approximated LTL for-
mulas into NBAs, SyFCo [20] for LTL transformations, and z3 [31] to solve SMT
queries. The implementation follows the extended algorithm described in [14].
Since in some cases the default optimizations of spot produce a large overhead in

2https://github.com/reactive-systems/tsl-satisfiability-modulo-theories
3https://github.com/reactive-systems/tsltools

338 B. Finkbeiner et al.

https://github.com/reactive-systems/tsl-satisfiability-modulo-theories
https://github.com/reactive-systems/tsltools

0 5 10 15

102

103

104

105

TO (60s)

Scaling Factor n

T
im

e(
m
s)

ϕsat

ϕunsat

Fig. 2: Execution times in milliseconds
of the scalability benchmark series.

0 200 400 600

102

103

104 TO (30s)

Accumulated Instances

T
im

e(
m
s)

Fig. 3: Execution times in milliseconds
of the random benchmark series.

computation time, we first execute it with these and if this does not terminate
within 20s, we execute it without optimizations. We evaluated the implementa-
tion on three benchmark classes and a machine with an AMD Ryzen 7 processor,
using a virtual machine with two logical cores and 6 GB of RAM.

Scalability Benchmark Series. We test the scalability of the algorithm with pa-
rameterized decidable benchmarks. The timeout is one minute. Note that spot
can always perform its optimizations. The satisfiable benchmarks are defined by
ϕsat(n) := (Jx ֋ f(x)K) ∧ (¬p(x)) ∧

(∧n
i=0

p(f i(x))
)
. The parameter n cor-

responds to the number of updates that have to be performed to find a satis-
fiable lasso. By Lemma 6, the algorithm always terminates. The TSL formula
ϕunsat(n) := ((q(x) ↔ ¬q(fn(x))))∧ (Jx ֋ f(x)K)∧ (q(x)∧ n q(x)) defines
the unsatisfiable benchmarks. The parameter n corresponds to the “distance”
in time and number of updates of the conflict causing unsatisfiability. The algo-
rithm always terminates. The results are shown in Figure 2. The algorithm scales
particularly well for the satisfiable formulas. However, the experiments indicate
an exponential complexity of the algorithm for the unsatisfiable formulas.

Random Benchmark Series. We implemented a random TSL formula generator
that uses spot ’s ltlrand to generate random LTL formulas and then substitutes
the atomic propositions with random updates and predicates. The generated
TSL formulas have one to three cells, one to three different updates and one to
three different predicates. For the LTL formulas generated by ltlrand we use
tree sizes from 5 to 95 in steps of five. For each of the tree sizes, we generate 30
formulas; 570 in total. The execution times are shown in Figure 3. On many for-
mulas, the algorithm terminates within one second. The implementation returns
SAT for 513 of the 570 formulas. It times out after 30s on 29 formulas. How-
ever, the timeouts already occur in the automaton construction, both with and
without spot ’s optimizations. Only 28 formulas are unsatisfiable. For 25 of these
unsatisfiable formulas, the intermediate LTL approximation formula is already
unsatisfiable, i.e., only for three formulas there is some conflict due to updates
and predicate evaluation.

Temporal Stream Logic modulo Theories 339

Table 1: Execution times in seconds of the application benchmark series.
Benchmark Result Time

Chain SAT 7.06
Filter UNSAT 0.33
Gamemodechooser Ass. UNSAT 35.55
Holding Arbiter SAT 11.75
Small Holding Arbiter SAT 36.69
P. T. Arbiter UNSAT 56.03
Approx. P. T. Arbiter UNSAT 940.03

Benchmark Result Time

Inductive Ass. UNSAT 0.25
One Of Two UNSAT 1.20
One Of Three UNSAT 4.25
Injector UNSAT 1.52
Invariant Holding UNSAT 2.33
Scheduler UNSAT 3.87

Applications Benchmark Series. These benchmarks correspond to checking con-
sistency of a specification and validating assumptions of a system. Hence, they
illustrate how satisfiability results can aid the system design. The results are
presented in Table 1. We introduce two of the benchmarks in more detail here.
The other, slightly larger, ones, including different kinds of arbiters, a scheduler,
and modules of the Syntroids [17] arcade game, are described in [14].

The Chain benchmark considers a compound system of two chained modules
m1 and m2 that receive an input value, store it, and forward it to the next
system: ϕi := (Jmemi ֋ iniK ∧ Jini+1 ֋ memiK) for i ∈ {1, 2}. To simulate
the input of the first module, we use an update with an uninterpreted function:
ϕinp := Jin1 ֋ f(in1)K. We require that if some property p holds on m1’s
input, p also needs to hold hold on m2’s output: ϕspec := (p(in1) → p(in3)).
Our algorithm determines within 8s that (ϕinp ∧ϕ1 ∧ϕ2)∧¬ϕspec is satisfiable,
detecting an inconsistency: If m1 stores some value on which p holds, it may
overwrite it before m2 copies it, preventing the value to reach m2’s output.

The Filter benchmark studies a system that “passes through” an input value
to a cell if it fulfills a certain property p and holds the previous value otherwise:
ϕfilter := Jout ֋ d()K∧ ((p(in) → Jout ֋ inK)∧ (¬p(in) → Jout ֋ outK)),
where d is a constant representing an initial default value. The default value
fulfills p, i.e., ϕfact := p(d()). As for the chain, ϕinp := Jin ֋ f(in)K
simulates the input. The filter is valid if p holds on all outputs after the ini-
tialization: ϕspec := p(out). Within 400ms, the algorithm confirms that
(ϕinp ∧ ϕfact ∧ ϕfilter) ∧ ¬ϕspec is unsatisfiable, validating the filter.

8 Related Work

Linear-time temporal logic (LTL) [32] is one of the most popular specification
languages for reactive systems. It is based on an underlying assertion logic, such
as propositional logic, which is extended with temporal modalities. Satisfiability
of propositional LTL has long known to be decidable [37] and there are efficient
tools for LTL satisfiability checking [36,25].

While propositional LTL is very common, especially in hardware verification,
LTL with richer assertion logics, such as first-order logic and various theories,
have long been used in verification (cf. [28]). Temporal Stream Logic (TSL) [15]

340 B. Finkbeiner et al.

was introduced as a new temporal logic for reactive synthesis. In the original
TSL semantics, all functions and predicates are uninterpreted. TSL synthesis
is undecidable in general, even without inputs or equality, but can be under-
approximated by the decidable LTL synthesis problem [15]. TSL has been used
to specify and synthesize an arcade game realized on an FPGA [17].

Constraint LTL (CLTL) [6] extends LTL with the possibility of expressing
constraints between variables at bounded distance. A constraint system D con-
sists of a concrete domain and an interpretation of relations on the domain.
In Constraint LTL over D (CLTL(D)), one can relate variables with relations
defined in D. Similar to updates in TSL, CLTL can specify assignment-like state-
ments by utilizing the equality relation. Like for all constraints allowing for a
counting mechanism, LTL with Presburger constraints, i.e., CLTL(Z,=,+), is
undecidable [6]. However, there exist decidable fragments such as LTL with finite
constraint systems [4] and LTL with integer periodicity constraints [5]. Permit-
ting constraints between variables at an unbounded distance leads to undecid-
ability even for constraint systems that only allow equality checks on natural
numbers. Restricting such systems to a finite number of constraints yields decid-
ability again [9]. In TSL modulo theories, a theory is given from which a model
can be chosen. In CLTL, in contrast, the concrete model is fixed. Therefore, TSL
modulo theories cannot be encoded into CLTL in general.

LTL has been extended with the freeze operator [8,7], allowing for storing
an input in a register. Then, the stored value can be compared with a current
value for equality. Freeze LTL with two registers is undecidable [26,10] . For flat
formulas, i.e., formulas where the possible occurrences of the freeze operator are
restricted, decidability is regained [10]. Similar to the freeze operator, updates
in TSL allow for storing values in cells and in TSL modulo the theory of equality
the equality check can be performed. In TSL, we can perform computations on
the stored values which is not possible in freeze LTL. Hence, freeze LTL can
be seen as a special case of TSL. Constraint LTL has been augmented with the
freeze operator as well [10]. For an infinite domain equipped with the equality
relation, it is undecidable. For flat formulas, decidability is regained [10].

The temporal logic of actions (TLA) [24] is designed to model computer
systems. States are assignments of values to variables and actions relate states.
Actions can, similar to updates in TSL, describe assignments of variables. A TLA
formula may contain state functions and predicates. Actions and state functions
are combined with the temporal operators and . In contrast to TSL, and U
are not permitted. The validity problem for the propositional fragment of TLA,
i.e., with uninterpreted functions and predicates, is PSPACE complete [35].

Similar to temporal logics, dynamic logic [33,19] is an extension of modal
logic to reason about computer programs. Dynamic logic allows for stating that
after action a, it is necessarily the case that p holds, or it is possible that p

holds. Compound actions can be build up from smaller actions. In propositional
dynamic logic (PDL) [16], data is omitted, i.e., its terms are actions and propo-
sitions. PDL satisfiability is decidable in EXPTIME [34]. First-order dynamic
logic (FODL) [18] allows for including data: First-order quantification over a

Temporal Stream Logic modulo Theories 341

first-order structure, the so-called domain of computation, is allowed. Dynamic
logic does not contain temporal operators such as or . Since we consider
reactive systems, i.e., systems that continually interact with their environment,
temporal logics are better suited than dynamic logics for our setting.

Symbolic automata (see e.g. [2,3]) and register automata [21] are extensions
of finite automata that are capable of handling large or infinite alphabets. Reg-
ister automata have additionally been considered over infinite words in some
works (see e.g. [8,22,12]). Similar to BSAs, transitions of symbolic automata are
labeled with predicates over a domain of alphabet symbols. Register automata
are equipped with a finite amount of registers that, similar to cells in BSAs, can
store input values. Symbolic register automata (SRAs) [1] combine the features
of both automata models. BSAs have the additional ability to modify the stored
values and thus to perform actual computations on them. Moreover, they read
infinite instead of finite words. Thus, SRAs can be seen as a special case of BSAs.

More recently, the verification of uninterpreted programs has been investi-
gated [29]. Uninterpreted programs are similar toWhile-programs with equality
and uninterpreted functions and predicates. They are annotated with assump-
tions. The verification of uninterpreted programs is undecidable in general; for
the subclass of coherent uninterpreted programs, however, it is decidable [29].
The verification problem has been extended with theories, i.e., with axioms over
the functions and predicates [30]. Adding axioms to coherent uninterpreted pro-
grams preserves decidability for some axioms, e.g., idempotence, while it yields
undecidability for others, e.g., associativity. The synthesis problem for uninter-
preted programs is undecidable in general, but decidable for coherent ones [23].

9 Conclusion

We have extended Temporal Stream Logic (TSL) with first-order theories and
formalized the satisfiability and validity of a TSL formula in a theory. While we
show that TSL satisfiability is neither semi-decidable nor co-semi-decidable in
the theory of uninterpreted functions TU , the theory of equality TE , and Pres-
burger arithmetic TN, we identify three fragments for which satisfiability in TU

is (semi-)decidable: For reachability formulas as well as for formulas with a sin-
gle cell, TSL satisfiability in TU is semi-decidable. For slightly more restricted
reachability formulas, it is decidable. Moreover, we have presented an algorithm
for checking the satisfiability of a TSL formula in the theory of uninterpreted
functions that is based on Büchi stream automata, an automaton representation
of TSL formulas introduced in this paper. Satisfiability checking has various ap-
plications in the specification and analysis of reactive systems such as identifying
inconsistent requirements during the design process. We have implemented the
algorithm and evaluated it on three different benchmark series, including con-
sistency checks and assumption validations: The algorithm terminates on many
randomly generated formulas within one second and scales particularly well for
satisfiable formulas. Moreover, it is able to prove or disprove consistency of re-
alistic benchmarks and to validate or invalidate their assumptions.

342 B. Finkbeiner et al.

References

1. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic Register Automata.
In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 11561, pp. 3–21. Springer (2019),
https://doi.org/10.1007/978-3-030-25540-4 1

2. D’Antoni, L., Veanes, M.: The Power of Symbolic Automata and Transducers. In:
Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 10426, pp. 47–67. Springer (2017),
https://doi.org/10.1007/978-3-319-63387-9 3

3. D’Antoni, L., Veanes, M.: Automata modulo Theories. Commun. ACM 64(5), 86–
95 (2021), https://doi.org/10.1145/3419404

4. Demri, S.: Linear-time Temporal Logics with Presburger Constraints:
An Overview. J. Appl. Non Class. Logics 16(3-4), 311–348 (2006),
https://doi.org/10.3166/jancl.16.311-347

5. Demri, S.: LTL Over Integer Periodicity Constraints. Theor. Comput. Sci. 360(1-
3), 96–123 (2006), https://doi.org/10.1016/j.tcs.2006.02.019

6. Demri, S., D’Souza, D.: An Automata-Theoretic Approach to Constraint LTL. Inf.
Comput. 205(3), 380–415 (2007), https://doi.org/10.1016/j.ic.2006.09.006

7. Demri, S., D’Souza, D., Gascon, R.: A Decidable Temporal Logic of Repeating
Values. In: Artëmov, S.N., Nerode, A. (eds.) Logical Foundations of Computer
Science, International Symposium, LFCS 2007, New York, NY, USA, June 4-7,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4514, pp. 180–194.
Springer (2007), https://doi.org/10.1007/978-3-540-72734-7 13

8. Demri, S., Lazic, R.: LTL with the Freeze Quantifier and Register Automata. In:
21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August
2006, Seattle, WA, USA, Proceedings. pp. 17–26. IEEE Computer Society (2006),
https://doi.org/10.1109/LICS.2006.31

9. Demri, S., Lazic, R., Nowak, D.: On the Freeze Quantifier in Constraint
LTL: Decidability and Complexity. In: 12th International Symposium on
Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005,
Burlington, Vermont, USA. pp. 113–121. IEEE Computer Society (2005),
https://doi.org/10.1109/TIME.2005.28

10. Demri, S., Lazic, R., Nowak, D.: On the Freeze Quantifier in Constraint
LTL: Decidability and Complexity. In: 12th International Symposium on
Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005,
Burlington, Vermont, USA. pp. 113–121. IEEE Computer Society (2005),
https://doi.org/10.1109/TIME.2005.28

11. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A Framework for LTL and ω-Automata Manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) Automated Technology for Verification and Analysis -
14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9938, pp. 122–129 (2016),
https://doi.org/10.1007/978-3-319-46520-3 8

12. Exibard, L., Filiot, E., Reynier, P.: Synthesis of Data Word Transducers. Log.
Methods Comput. Sci. 17(1) (2021), https://lmcs.episciences.org/7279

13. Finkbeiner, B., Heim, P., Passing, N.: Temporal Stream Logic modulo Theories.
CoRR abs/2104.14988v1 (2021), https://arxiv.org/abs/2104.14988v1

Temporal Stream Logic modulo Theories 343

https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1145/3419404
https://doi.org/10.3166/jancl.16.311-347
https://doi.org/10.1016/j.tcs.2006.02.019
https://doi.org/10.1016/j.ic.2006.09.006
https://doi.org/10.1007/978-3-540-72734-7_13
https://doi.org/10.1109/LICS.2006.31
https://doi.org/10.1109/TIME.2005.28
https://doi.org/10.1109/TIME.2005.28
https://doi.org/10.1007/978-3-319-46520-3_8
https://lmcs.episciences.org/7279
https://arxiv.org/abs/2104.14988v1

14. Finkbeiner, B., Heim, P., Passing, N.: Temporal Stream Logic mod-
ulo Theories (Full Version). CoRR abs/2104.14988v2 (2021),
https://arxiv.org/abs/2104.14988v2

15. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Temporal Stream Logic:
Synthesis Beyond the Bools. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Veri-
fication - 31st International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561,
pp. 609–629. Springer (2019), https://doi.org/10.1007/978-3-030-25540-4 35

16. Fischer, M.J., Ladner, R.E.: Propositional Dynamic Logic of Reg-
ular Programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979),
https://doi.org/10.1016/0022-0000(79)90046-1

17. Geier, G., Heim, P., Klein, F., Finkbeiner, B.: Syntroids: Synthesizing a Game for
FPGAs using Temporal Logic Specifications. In: 2019 Formal Methods in Com-
puter Aided Design, FMCAD 2019, San Jose, CA, USA, October 22-25, 2019. pp.
138–146. IEEE (2019), https://doi.org/10.23919/FMCAD.2019.8894261

18. Harel, D.: First-Order Dynamic Logic, Lecture Notes in Computer Science, vol. 68.
Springer (1979), https://doi.org/10.1007/3-540-09237-4

19. Harel, D., Meyer, A.R., Pratt, V.R.: Computability and Completeness in Log-
ics of Programs (Preliminary Report). In: Hopcroft, J.E., Friedman, E.P., Harri-
son, M.A. (eds.) Proceedings of the 9th Annual ACM Symposium on Theory of
Computing, May 4-6, 1977, Boulder, Colorado, USA. pp. 261–268. ACM (1977),
https://doi.org/10.1145/800105.803416

20. Jacobs, S., Klein, F., Schirmer, S.: A High-level LTL Synthesis Format: TLSF
v1.1. In: Piskac, R., Dimitrova, R. (eds.) Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016. EPTCS, vol. 229, pp. 112–
132 (2016), https://doi.org/10.4204/EPTCS.229.10

21. Kaminski, M., Francez, N.: Finite-Memory Automata. Theor. Comput. Sci. 134(2),
329–363 (1994), https://doi.org/10.1016/0304-3975(94)90242-9

22. Khalimov, A., Maderbacher, B., Bloem, R.: Bounded Synthesis of Register Trans-
ducers. In: Lahiri, S.K., Wang, C. (eds.) Automated Technology for Verification
and Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA,
October 7-10, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11138,
pp. 494–510. Springer (2018), https://doi.org/10.1007/978-3-030-01090-4 29

23. Krogmeier, P., Mathur, U., Murali, A., Madhusudan, P., Viswanathan, M.: De-
cidable Synthesis of Programs with Uninterpreted Functions. In: Lahiri, S.K.,
Wang, C. (eds.) Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12225, pp. 634–657. Springer (2020),
https://doi.org/10.1007/978-3-030-53291-8 32

24. Lamport, L.: The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994), https://doi.org/10.1145/177492.177726

25. Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTL Satisfiability Checking
Revisited. In: Sánchez, C., Venable, K.B., Zimányi, E. (eds.) 2013 20th In-
ternational Symposium on Temporal Representation and Reasoning, Pensacola,
FL, USA, September 26-28, 2013. pp. 91–98. IEEE Computer Society (2013),
https://doi.org/10.1109/TIME.2013.19

26. Lisitsa, A., Potapov, I.: Temporal Logic with Predicate λ-Abstraction. In: 12th In-
ternational Symposium on Temporal Representation and Reasoning (TIME 2005),
23-25 June 2005, Burlington, Vermont, USA. pp. 147–155. IEEE Computer Society
(2005), https://doi.org/10.1109/TIME.2005.34

344 B. Finkbeiner et al.

https://arxiv.org/abs/2104.14988v2
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.23919/FMCAD.2019.8894261
https://doi.org/10.1007/3-540-09237-4
https://doi.org/10.1145/800105.803416
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/978-3-030-01090-4_29
https://doi.org/10.1007/978-3-030-53291-8_32
https://doi.org/10.1145/177492.177726
https://doi.org/10.1109/TIME.2013.19
https://doi.org/10.1109/TIME.2005.34

27. Maderbacher, B., Bloem, R.: Reactive Synthesis Modulo Theo-
ries Using Abstraction Refinement. CoRR abs/2108.00090 (2021),
https://arxiv.org/abs/2108.00090

28. Manna, Z., Pnueli, A.: Verification of Concurrent Programs: The Temporal Frame-
work. In: Boyer, R.S., Moore, J.S. (eds.) The Correctness Problem in Computer
Science. Academic Press, London (1981)

29. Mathur, U., Madhusudan, P., Viswanathan, M.: Decidable Verification of Unin-
terpreted Programs. Proc. ACM Program. Lang. 3(POPL), 46:1–46:29 (2019),
https://doi.org/10.1145/3290359

30. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s Decidable About Program
Verification Modulo Axioms? In: Biere, A., Parker, D. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 26th International Conference,
TACAS 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12079, pp. 158–177. Springer
(2020), https://doi.org/10.1007/978-3-030-45237-7 10

31. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008),
https://doi.org/10.1007/978-3-540-78800-3 24

32. Pnueli, A.: The Temporal Logic of Programs. In: Annual Symposium on Founda-
tions of Computer Science, 1977. pp. 46–57. IEEE Computer Society (1977)

33. Pratt, V.R.: Semantical Considerations on Floyd-Hoare Logic. In: 17th An-
nual Symposium on Foundations of Computer Science, Houston, Texas,
USA, 25-27 October 1976. pp. 109–121. IEEE Computer Society (1976),
https://doi.org/10.1109/SFCS.1976.27

34. Pratt, V.R.: A Practical Decision Method for Propositional Dynamic Logic: Pre-
liminary Report. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P.,
Aho, A.V. (eds.) Proceedings of the 10th Annual ACM Symposium on Theory of
Computing, May 1-3, 1978, San Diego, California, USA. pp. 326–337. ACM (1978),
https://doi.org/10.1145/800133.804362

35. Ramakrishna, Y.S.: On the Satisfiability Problem for Lamport’s Propositional
Temporal Logic of Actions and Some of Its Extensions. Fundam. Informaticae
24(4), 387–405 (1995), https://doi.org/10.3233/FI-1995-2444

36. Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bosnacki,
D., Edelkamp, S. (eds.) Model Checking Software, 14th International
SPIN Workshop, Berlin, Germany, July 1-3, 2007, Proceedings. Lecture
Notes in Computer Science, vol. 4595, pp. 149–167. Springer (2007),
https://doi.org/10.1007/978-3-540-73370-6 11

37. Sistla, A.P., Clarke, E.M.: The Complexity of Propositional Linear Temporal Log-
ics. J. ACM 32(3), 733–749 (1985), https://doi.org/10.1145/3828.3837

38. Vardi, M.Y., Wolper, P.: Reasoning About Infinite Computations. Inf. Comput.
115(1), 1–37 (1994), https://doi.org/10.1006/inco.1994.1092

Temporal Stream Logic modulo Theories 345

https://arxiv.org/abs/2108.00090
https://doi.org/10.1145/3290359
https://doi.org/10.1007/978-3-030-45237-7_10
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1145/800133.804362
https://doi.org/10.3233/FI-1995-2444
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1145/3828.3837
https://doi.org/10.1006/inco.1994.1092

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

346 B. Finkbeiner et al.

http://creativecommons.org/licenses/by/4.0/

	Temporal Stream Logic modulo Theories
	1 Introduction
	2 Preliminaries
	3 Temporal Stream Logic modulo Theories
	3.1 Temporal Stream Logic
	3.2 Extending TSL with Theories

	4 TSL modulo TU Satisfiability Checking
	4.1 Buchi Stream Automata
	4.2 An Algorithm for TSL modulo TU Satisfiability Checking

	5 Undecidability of TSL modulo TU Satisfiability
	6 (Semi-)Decidable Fragments
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

