
A first-order logic characterisation of
safety and co-safety languages

Alessandro Cimatti1 , Luca Geatti3(�) , Nicola Gigante3(�) ,
Angelo Montanari2 , and Stefano Tonetta1

1 Fondazione Bruno Kessler, Trento, Italy
{cimatti,tonettas}@fbk.eu
2 University of Udine, Italy
angelo.montanari@uniud.it

3 Free University of Bozen-Bolzano, Italy
{geatti,gigante}@inf.unibz.it

Abstract. Linear Temporal Logic (LTL) is one of the most popular tem-
poral logics, that comes into play in a variety of branches of computer sci-
ence. Its widespread use is also due to its strong foundational properties.
One of them is Kamp’s theorem, showing that LTL and the first-order
theory of one successor (S1S[FO]) are expressively equivalent. Safety and
co-safety languages, where a finite prefix suffices to establish whether a
word does not or does belong to the language, respectively, play a cru-
cial role in lowering the complexity of problems like model checking and
reactive synthesis for LTL. Safety-LTL (resp., coSafety-LTL) is a fragment
of LTL where only universal (resp., existential) temporal modalities are
allowed, that recognises safety (resp., co-safety) languages only.
In this paper, we introduce a fragment of S1S[FO], called Safety-FO, and
its dual coSafety-FO, which are expressively complete with regards to the
LTL-definable safety languages. In particular, we prove that they respec-
tively characterise exactly Safety-LTL and coSafety-LTL, a result that
joins Kamp’s theorem, and provides a clearer view of the charactisations
of (fragments of) LTL in terms of first-order languages. In addition, it
gives a direct, compact, and self-contained proof that any safety language
definable in LTL is definable in Safety-LTL as well. As a by-product, we
obtain some interesting results on the expressive power of the weak to-
morrow operator of Safety-LTL interpreted over finite and infinite traces.

1 Introduction

Linear Temporal Logic (LTL) is the de-facto standard logic for system specifica-
tions [14]. It is a modal logic that is usually interpreted over infinite state se-
quences, but the finite-trace semantics has recently gained attention as well [6,7].
The widespread use of LTL is due to its simple syntax and semantics, and to its
strong foundational properties. Among them, we would like to mention the semi-
nal work by Kamp [10] and Gabbay et al. [8], on its expressive completeness, i.e.,
LTL-definable languages are exactly those definable in the first-order fragment
of the monadic second-order theory of one successor [3] (S1S[FO] for short).

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 244–263, 2022.
https://doi.org/10.1007/978-3-030-99253-8_13

http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-7125-787X
http://orcid.org/0000-0002-2254-4821
http://orcid.org/0000-0002-4322-769X
http://orcid.org/0000-0001-9091-7899
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_13&domain=pdf

In formal verification, an important class of specifications is that of safety
languages. They are languages of infinite words where a finite prefix suffices
to tell whether a word does not belong to the language. As an example, the
set of all and only those infinite sequences where some particular bad event
never happens can be regarded as a safety language. In their duals, co-safety
languages (sometimes called guarantee languages), a finite prefix is sufficient to
tell whether a word belongs to the language, e.g., when some desired event is
mandated to eventually happen. Safety and co-safety languages are important
for verification, model-checking, monitoring, and automated synthesis because
they capture a variety of real-world requirements while being much simpler to
deal with algorithmically [1, 11, 20].

Safety-LTL is the fragment of LTL where only universal temporal modalities
are allowed. Similarly, its dual coSafety-LTL is obtained by only allowing exis-
tential modalities. It has been proved by Chang et al. [5] that Safety-LTL and
coSafety-LTL define exactly the safety and co-safety languages that are definable
in LTL, respectively.

In this paper, we provide a novel characterization of LTL-definable safety lan-
guages, and of their duals, in terms of a fragment of S1S[FO], called Safety-FO,
and its dual coSafety-FO. The presented fragments have a very natural syntax,
and we prove they are expressively complete with regards to LTL-definable safety
and co-safety languages. We prove the correspondence between coSafety-FO and
coSafety-LTL, which extends naturally to their duals and can be considered as
a version of Kamp’s theorem [10] specialized for safety and co-safety properties,
helping to create a clearer picture of the correspondence between (fragments
of) temporal and first-order logics. We exploit such a result to prove the corre-
spondence between co-safety languages definable in LTL and coSafety-FO, thus
establishing also the equivalence between the former and coSafety-LTL. This pro-
vides a proof of the fact that Safety-LTL captures exactly the set of LTL-definable
safety languages [5], which can be regarded as another contribution of the paper.
The interest of our proof is twofold: on the one hand, the original proof by Chang
et al. [5] is only sketched and it relies on two non-trivial translations scattered
across different sources [16, 21]; on the other hand, such an equivalence result
seems not to be very much known, as some authors presented the problem as
open as lately as 2017 [20].4 Thus, a compact and self-contained proof of the
result seems to be a useful contribution for the community. It is worth to note
that both proofs build on the fact that safety/co-safety languages can be cap-
tured by formulas of the form Gα/Fα with α pure-past, but after that, the two
proofs significantly diverge. Finally, as a by-product of this proof, we provide
some results that assess the expressive power of the weak tomorrow operator of
Safety-LTL when interpreted over finite vs. infinite traces.

The paper is organized as follows. After recalling necessary background knowl-
edge in Section 2, Section 3 introduces Safety-FO and coSafety-FO and proves
their correspondence with Safety-LTL and coSafety-LTL. Then, Section 4 proves

4 As a matter of fact, we discovered about Chang et al. [5] after setting up the proof
shown in this paper.

A first-order logic characterisation of safety and co-safety languages 245

their correspondence with the set of safety and co-safety languages definable
in LTL, thus providing a compact and self-contained proof of the equivalence
between Safety-LTL and LTL-definable safety languages. Some properties of the
weak next operator are outlined as well. Finally, Section 5 concludes the paper
with some final considerations and a discussion of future work.

2 Preliminaries

Let A be a finite alphabet. We denote as A∗ and Aω the set of all finite and
infinite words, respectively, over A. We let A+ = A∗ \ {ε}, where ε is the empty
word. Given a word σ ∈ A∗ we denote as |σ| the length of σ. For an infinite
word σ ∈ Aω, |σ| = ω. For a (finite or infinite) word σ, we denote as σi ∈ A,
for 0 ≤ i < |σ|, the letter at the i-th position of the word. With σ[i,j], for
0 ≤ i ≤ j < |σ|, we denote the subword that goes from the i-th to the j-th letter
of the word, extrema included. With σ[i,∞] we denote the suffix of σ starting
from the i-th letter. Given a word σ ∈ A∗ and σ′ ∈ A∗ ∪ Aω, we denote the
concatenation of the two words as σ · σ′, or simply σσ′. A language L, either
L ⊆ A∗ or L ⊆ Aω, is a set of words. Given two languages L and L′ with L ⊆ A∗

and either L′ ⊆ A∗ or L′ ⊆ Aω, we define L ·L′ = {σ · σ′ | σ ∈ L and σ′ ∈ L′}.
For a finite word σ = σ0 . . . σk let σr = σk . . . σ0 be the reverse of σ, and for a
language of finite words L let Lr = {σr | σ ∈ L}. We can now define safety and
co-safety languages.

Definition 1 (Safety language [11, 19]). Let L ⊆ Aω. We say that L is a
safety language if and only if for all the words σ ∈ Aω it holds that, if σ ̸∈ L,
then there exists an i ∈ N such that, for all σ′ ∈ Aω, σ[0,i] · σ′ ̸∈ L. The class of
safety languages is denoted as SAFETY.

Definition 2 (Co-safety language [11, 19]). Let L ⊆ Aω. We say that L
is a co-safety language if and only if for all the words σ ∈ Aω it holds that, if
σ ∈ L, then there exists an i ∈ N such that, for all σ′ ∈ Aω, σ[0,i] · σ′ ∈ L. The
class of co-safety languages is denoted as coSAFETY.

Linear Temporal Logic with Past (LTL+P) is a modal logic interpreted over
infinite or finite words. Given a set Σ of proposition variables, the syntax of an
LTL formula ϕ is generated by the following grammar:

ϕ := p | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 Boolean connectives

| Xϕ1 | X̃ϕ1 | ϕ1 U ϕ2 | ϕ1 R ϕ2 future modalities

| Yϕ1 | Zϕ1 | ϕ1 S ϕ2 | ϕ1 T ϕ2 past modalities

where ϕ1 and ϕ2 are LTL+P formulas and p ∈ Σ. An LTL+P formula is a pure
future formula if it does not make use of past modalities, and it is pure past
if it does not make use of future modalities. We denote with LTL the set of
pure future formulas, and with LTLP the set of pure past formulas. Most of the
temporal operators of the language can be defined in terms of a small number

246 A. Cimatti et al.

of basic ones. In particular, conjunction can be defined in terms of disjunction
(ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)), the release operator can be defined in terms of the
until operator (ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2)), and the triggered operator can be
defined in terms of the since operator (ϕ1 T ϕ2 ≡ ¬(¬ϕ1 S ¬ϕ2)). Nevertheless,
we consider all these connectives and operators as primitive in order to be able
to put any formula in negated normal form (NNF), i.e., a form where negations
are only applied to proposition letters. Note that the syntax includes both a
tomorrow (Xϕ) and weak tomorrow (X̃ϕ) operators, as well as a yesterday (Yϕ)
and weak yesterday (Zϕ) operators, for the same reason. Moreover, standard
shortcut operators are available such as the eventually (Fϕ ≡ ⊤U ϕ), and always
(Gϕ ≡ ¬F¬ϕ) future operators, and the once (Oϕ ≡ ⊤ S ϕ), and historically
(Hϕ ≡ ¬O¬ϕ) past operators.

LTL+P is interpreted over state sequences, which are finite or infinite words
over 2Σ . Given a state sequence σ ∈ (2Σ)+ or σ ∈ (2Σ)ω, the satisfaction of a
formula ϕ by σ at a time point i ≥ 0, denoted as σ, i |= ϕ, is defined as follows:

1. σ, i |= p iff p ∈ σi;
2. σ, i |= ¬ϕ iff σ, i ̸|= ϕ;
3. σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
4. σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
5. σ, i |= Xϕ iff i+ 1 < |σ| and σ, i+ 1 |= ϕ;
6. σ, i |= X̃ϕ iff either i+ 1 = |σ| or σ, i+ 1 |= ϕ;
7. σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ;
8. σ, i |= Zϕ iff either i = 0 or σ, i− 1 |= ϕ;
9. σ, i |= ϕ1 U ϕ2 iff there exists i ≤ j < |σ| such that σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with i ≤ k < j;
10. σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i such that σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with j < k ≤ i;
11. σ, i |= ϕ1 R ϕ2 iff either σ, j |= ϕ2 for all i ≤ j < |σ|, or there exists

k ≥ i such that σ, k |= ϕ1 and
σ, j |= ϕ2 for all i ≤ j ≤ k;

12. σ, i |= ϕ1 T ϕ2 iff either σ, j |= ϕ2 for all 0 ≤ j ≤ i, or there exists
k ≤ i such that σ, k |= ϕ1 and
σ, j |= ϕ2 for all i ≥ j ≥ k

We say that a state sequence σ satisfies ϕ, written σ |= ϕ, if σ, 0 |= ϕ. Note
that, when interpreted over an infinite word, the tomorrow and weak tomorrow
operators have the same semantics. The language of ϕ, denoted as L(ϕ), is the
set of words σ ∈ (2Σ)ω such that σ |= ϕ. The language of finite words of ϕ,
denoted as L<ω(ϕ), is the set of finite words σ ∈ (2Σ)+ such that σ |= ϕ. Given
a logic L (e.g., LTL), we denote as JLK the set of languages L such that there is a
formula ϕ ∈ L such that L = L(ϕ), and we denote as JLK<ω the set of languages
of finite words L such that there is a formula ϕ ∈ L such that L = L<ω(ϕ). Note
that JLTLK<ω is usually called LTLf in the literature [6].

We now define the two fragments of LTL that are the subject of this paper.

Definition 3 (Safety-LTL and coSafety-LTL [17]). The logic Safety-LTL (resp.
coSafety-LTL) is the fragment of LTL where, for formulas in negated normal

A first-order logic characterisation of safety and co-safety languages 247

form, only the tomorrow, weak tomorrow and release (resp. until) temporal
operators are allowed.

We also define the logic coSafety-LTL(−X̃) as the logic coSafety-LTL devoid
of the weak tomorrow operator (this logic will play a central role in our proofs).

In the next Section we present two fragments of the first-order theory of
one successor [2, 3], namely S1S[FO], or simply FO in the following. Fixed
an alphabet Σ, FO is a first-order language with equality over the signature
⟨<, {P}p∈Σ⟩, and is interpreted over structures M = ⟨DM, <M, {PM}p∈Σ⟩
where DM, for our goals, is either the set N of natural numbers or a prefix
{0, . . . , n} thereof, and <M is the usual ordering relation between natural num-
bers. Given an FO formula ϕ(x0, . . . , xm) with m + 1 free variables, the satis-
faction of ϕ by a first-order structure M when x0 = n0, . . . , xm = nm, denoted
as M, n0, . . . , nm |= ϕ(x0, . . . , xm), is defined following the standard first-order
semantics. State sequences over Σ map naturally into such structures. Given a
word σ ∈ (2Σ)∗ or σ ∈ (2Σ)ω, we denote as (σ)s the corresponding first-order
structure. Given a formula ϕ(x) with exactly one free variable, the language of
ϕ, denoted as L(ϕ), is the set of words σ ∈ (2Σ)ω such that (σ)s, 0 |= ϕ. Sim-
ilarly, the language of finite words of ϕ, denoted as L<ω(ϕ), is the set of finite
words σ ∈ (2Σ)+ such that (σ)s |= ϕ. We denote as JFOK and JFOK<ω the set of
languages of infinite and finite words, respectively, definable by a FO formula.

Given a class of languages of finite words JLK<ω, we denote as JLK<ω · (2Σ)ω
the set of languages JLK<ω ·(2Σ)ω = {L ·(2Σ)ω | L ∈ JLK<ω}. We recall now some
known results.

Proposition 1 (Kamp [10] and Gabbay [8]).
JLTLK = JFOK and JLTLK<ω = JFOK<ω.

Finally, we state a normal form for LTL-definable safety/co-safety languages.

Proposition 2 (Chang et al. [5], Thomas [19]). A language L ∈ JLTLK is
safety (resp. co-safety) if and only if it is the language of a formula of the form
Gα (resp. Fα), where α ∈ LTLP.

3 Safety-FO and coSafety-FO

In this section we introduce the core contribution of the paper, i.e., two fragments
of FO that precisely capture Safety-LTL and coSafety-LTL, respectively, and we
prove this relationship. A summary of the results provided by the paper is given
in Fig. 1.

Definition 4 (Safety-FO). The logic Safety-FO is generated by the following
grammar:

atomic := x < y | x = y | x ̸= y | P (x) | ¬P (x)
ϕ := atomic | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃y(x < y < z ∧ ϕ1) | ∀y(x < y → ϕ1)

where x, y, and z are first-order variables, P is a unary predicate, and ϕ1 and
ϕ2 are Safety-FO formulas.

248 A. Cimatti et al.

JcoSafety-FOK

JcoSafety-LTL(−X̃)K<ω · (2Σ)ω

JcoSafety-LTLK

JcoSafety-LTLK<ω · (2Σ)ω

JLTLK ∩ coSAFETY

JLTLK ∩ SAFETY JSafety-LTLK

Lem
m
a
8

Lemmas 6 and 7

Le
m
m
a
2

C
or
ol
la
ry

1

Lemma 1

=

=
Chang et al. [5]

=

JcoSafety-LTLK<ω⊋JcoSafety-LTL(−X̃)K<ω

Theorem 4

JLTLK<ω

JFOK<ω JcoSafety-FOK<ω

Lemma 7

Kamp Corollary 1

⊋

Fig. 1. Summary of the results of the paper, about languages over infinite words on
the left, and over finite words on the right. Solid arrows are own results. Dashed arrows
are known from literature.

Definition 5 (coSafety-FO). The logic coSafety-FO is generated by the following
grammar:

atomic := x < y | x = y | x ̸= y | P (x) | ¬P (x)
ϕ := atomic | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃y(x < y ∧ ϕ1) | ∀y(x < y < z → ϕ1)

where x, y, and z are first-order variables, P is a unary predicate, and ϕ1 and
ϕ2 are coSafety-FO formulas.

We need to make a few observations on the syntax of the two fragments.
First of all, note how any formula of Safety-FO is the negation of a formula
of coSafety-FO and vice versa. Then, note that the two fragments are defined
in negated normal form, i.e., negation only appears on atomic formulas. The
particular kind of existential and universal quantifications allowed are the cul-
prit of these fragments. In particular Safety-FO restricts any existentially quan-
tified variable to be bounded between two already quantified variables. The
same applies to universal quantification in coSafety-FO. Moreover Safety-FO and
coSafety-FO formulas are future formulas, i.e., the quantifiers can only range
over values greater than already quantified variables. These two features are
essential to precisely capture Safety-LTL and coSafety-LTL. Finally, note that
the comparisons in the guards of the quantifiers are strict, but non-strict com-
parisons can be used as well. In particular, ∃y(x ≤ y ∧ ϕ) can be rewritten as
ϕ[y/x] ∨ ∃y(x < y ∧ ϕ), where ϕ[y/x] is the formula obtained by replacing all
occurrences of y with x. Similarly, ∀z(x ≤ z ≤ y → ϕ) can be rewritten as
ϕ[z/x] ∧ ϕ[z/y] ∧ ∀z(x < z < y → ϕ).

To prove the relationship between Safety-LTL, coSafety-LTL, and these frag-
ments, we focus now on coSafety-FO. By duality, all the results transfer to
Safety-FO. We focus on coSafety-FO because the unbounded quantification is ex-
istential, and it is easier to reason about the existence of prefixes than on all the
prefixes at once. We start by observing that, since the weak tomorrow operator,
over infinite words, coincides with the tomorrow operator, the following holds.

Observation 1. JcoSafety-LTLK = JcoSafety-LTL(−X̃)K

A first-order logic characterisation of safety and co-safety languages 249

When reasoning over finite words, the weak tomorrow operator plays a crucial
role, since it can be used to recognize when we are at the last position of a word.
In fact, the formula σ, i |= X̃⊥ is true if and only if i = |σ|−1, for any σ ∈ (2Σ)∗.

Now, let us note that, thanks to the absence of the weak tomorrow operator,
we can in some sense reduce ourselves to reasoning over finite words.

Lemma 1. JcoSafety-LTL(−X̃)K = JcoSafety-LTL(−X̃)K<ω · (2Σ)ω

Proof. We have to prove that, for each formula ϕ ∈ coSafety-LTL(−X̃), it holds
that:

L(ϕ) = L<ω(ϕ) · (2Σ)ω

We proceed by induction on the structure of ϕ. For the base case, consider
ϕ ≡ p ∈ Σ. The case for ϕ ≡ ¬p is similar. Let σ ∈ L(p). It holds that σ0 |= p
and σ0 · σ′ |= p, for all σ′ |= (2Σ)ω, and in particular for σ′ = σ[1,∞). This is
equivalent to say that σ ∈ L<ω(ϕ) · (2Σ)ω. For the inductive step:

1. Let ϕ ≡ ϕ1 ∧ ϕ2. Suppose that σ ∈ L(ϕ). Obviously, σ |= ϕ1 and σ |=
ϕ2, and therefore σ ∈ L(ϕ1) and σ ∈ L(ϕ2). By the inductive hypothesis,
σ ∈ L<ω(ϕ1) · (2Σ)ω and σ ∈ L<ω(ϕ2) · (2Σ)ω. This means that there exist
two indices i, j ∈ N such that σ[0,i] |= ϕ1 and σ[0,j] |= ϕ2. Let m be the
greatest between i and j. It holds that σ[0,m] |= ϕ1 ∧ ϕ2. Therefore σ ∈
L<ω(ϕ1 ∧ ϕ2) · (2Σ)ω.

2. Let ϕ ≡ ϕ1 ∨ ϕ2 and let σ ∈ L(ϕ). We have that σ |= ϕ1 or σ |= ϕ2.
Without loss of generality, we consider the case that σ |= ϕ1 (the other case
is specular). By the inductive hypothesis, σ ∈ L<ω(ϕ1) · (2Σ)ω. Therefore, it
also holds that σ ∈ L<ω(ϕ1 ∨ ϕ2) · (2Σ)ω.

3. Let ϕ ≡ Xϕ1 and let σ ∈ L(Xϕ1). By the semantics of the tomorrow operator,
it holds that σ[1,∞) |= ϕ1. By the inductive hypothesis, σ[1,∞) ∈ L<ω(ϕ1) ·
(2Σ)ω. This means that there exists an index i ≥ 1 such that σ[1,i] |= ϕ1.
Therefore, it also holds that the state sequence σ[0,i] = σ0 ·σ[1,i] satisfies Xϕ1
over finite words, that is, σ[0,i] |= Xϕ1. This means that σ ∈ L<ω(Xϕ1)·(2Σ)ω.

4. Let ϕ ≡ ϕ1Uϕ2. Let σ ∈ L(ϕ). By the semantics of the until operator, it holds
that there exists an index i ∈ N such that σ[i,∞) |= ϕ2 and σ[j,∞) |= ϕ1 for all
0 ≤ j < i. By the inductive hypothesis, we have that σ[i,∞) ∈ L<ω(ϕ2)·(2Σ)ω
and σ[j,∞) ∈ L<ω(ϕ1) · (2Σ)ω for all 0 ≤ j < i. This means that there exists
an index i ∈ N and i + 1 indices k0, . . . , ki ∈ N such that σ[i,ki] |= ϕ2 and
σ[j,kj] |= ϕ1 for all 0 ≤ j < i. Let m be the greatest between k0, . . . , ki. It
holds that there exists an index i ∈ N such that σ[i,m] |= ϕ2 and σ[j,m] |= ϕ1
for all 0 ≤ j < i. Therefore, σ ∈ L<ω(ϕ1 U ϕ2) · (2Σ)ω.

The same property applies to coSafety-FO as well.

Lemma 2. JcoSafety-FOK = JcoSafety-FOK<ω · (2Σ)ω

Proof. We have to prove that, for each formula ψ ∈ coSafety-FO with one
free variable, it holds that L(ψ) = L<ω(ψ) · (2Σ)ω. We proceed by induction,

250 A. Cimatti et al.

but with a more general statement. Let ϕ(x1, . . . , xk) have k free variables.
We prove by induction on ϕ that for any infinite state sequence σ such that
(σ)s, n1, . . . , nk |= ϕ(x1, . . . , xk), there exists a prefix σ[0,i] of σ such that for
all σ′ ∈ (2Σ)ω, (σ[0,i]σ

′)s, n1, . . . , nk |= ϕ(x1, . . . , xk). The base case considers
the four kinds of atomic formulas. If (σ)s, n1, n2 |= x1 < x2, then n1 < n2

and we know that (σ[0,n2]σ
′)s, n1, n2 |= x1 < x2 for all σ′ ∈ (2Σ)∗. The case of

x1 = x2 is similar. Now, if (σ)s, n1 |= P (x1), then p ∈ σn1
and we know that

(σ[0,n1]σ
′)s, n1 |= P (x1) for all σ′ ∈ (2Σ)∗. The case for ¬P (x1) is similar. For

the inductive step:

1. if (σ)s, n1, . . . , nk |= ϕ1(x1, . . . , xk)∧ϕ2(x1, . . . , xk), by the induction hypoth-
esis we know that there are two prefixes σ[0,i] and σ[0,j] such that, respec-
tively, (σ[0,i]σ

′)s, n1, . . . , nk |= ϕ1(x1, . . . , xk) and (σ[0,j]σ
′′)s, n1, . . . , nk |=

ϕ2(x1, . . . , xk), for all σ
′, σ′′ ∈ (2Σ)∗. Then, supposing w.l.o.g. that i ≤ j, we

know that (σ[0,j]σ
′′), n1, . . . , nk |= ϕ1(x1, . . . , xk) ∧ ϕ2(x1, . . . , xk). The case

for ϕ1(x1, . . . , xk) ∨ ϕ2(x1, . . . , xk) is similar.
2. If (σ)s, n1, . . . , nk |= ∃xk+1(xu < xk+1 ∧ ϕ1(x1, . . . , xk+1)) for some 1 ≤
u ≤ k, then there exists an nk+1 > nu such that (σ)s, n1, . . . , nk+1 |=
ϕ1(x1, . . . , xk+1). This implies that (σ[0,i]σ

′), n1, . . . , nk+1 |= ϕ1(x1, . . . , xk+1)
for some i ≥ 0 and all σ′ ∈ (2Σ)∗, by the induction hypothesis. It follows
that (σ[0,i]σ

′), n1, . . . , nk |= ∃xk+1(xi < xk+1 ∧ ϕ1(x1, . . . , xk+1)).
3. if (σ)s, n1, . . . , nk |= ∀xk+1(xu < xk+1 < xv → ϕ1(x1, . . . , xk+1)) for some

1 ≤ u, v ≤ k, then for all nk+1 with nu < nk+1 < nv it holds that
(σ)s, n1 . . . , nk+1 |= ϕ1(x1, . . . , xk+1). Then, for the induction hypothesis,
for all nk+1 with nu < nk+1 < nv there is a prefix σ[0,ink+1

] such that

(σ[0,ink+1
]σ

′)s, n1, . . . , nk+1 |= ϕ1(x1, . . . , xk+1) for all σ′ ∈ (2Σ)∗. Then, if

n∗ = maxnu<nk+1<nv
(ink+1

), it holds that:

(σ[0,n∗]σ
′)s, n1, . . . , nk |= ∀xk+1(xu < xk+1 < xv → ϕ1(x1, . . . , xk+1))

Now, let ψ(x) be a coSafety-FO formula with exactly one free variable x.
Thanks to the above induction we can conclude that each infinite state sequence
σ such that (σ)s, 0 |= ϕ(x) is of the form σ[0,i] · σ′, where (σ[0,i])

s |= ϕ(x), and
this implies that L(ψ) = L<ω(ψ) · (2Σ)ω.

It is worth to note that Lemmas 1 and 2 show that coSafety-LTL(−X̃) and
coSafety-FO are insensitive to infiniteness as defined by De Giacomo et al. [9].

Then, we can focus on coSafety-LTL(−X̃) and coSafety-FO on finite words. If
we can prove that JcoSafety-LTL(−X̃)K<ω = JcoSafety-FOK<ω, we are done. At
first, we show how to encode coSafety-LTL(−X̃) formulas into coSafety-FO.

Lemma 3. JcoSafety-LTL(−X̃)K<ω ⊆ JcoSafety-FOK<ω

Proof. Let L ∈ JcoSafety-LTL(−X̃)K<ω, and let ϕ ∈ coSafety-LTL(−X̃) such that
L = L<ω(ϕ). By following the semantics of the operators in ϕ, we can obtain an
equivalent coSafety-FO formula ϕFO. We inductively define the formula FO(ϕ, x),
where x is a variable, as follows:

A first-order logic characterisation of safety and co-safety languages 251

– FO(p, x) = P (x), for each p ∈ Σ
– FO(¬p, x) = ¬P (x), for each p ∈ Σ
– FO(ϕ1 ∧ ϕ2, x) = FO(ϕ1, x) ∧ FO(ϕ2, x)
– FO(ϕ1 ∨ ϕ2, x) = FO(ϕ1, x) ∨ FO(ϕ2, x)
– FO(Xϕ1, x) = ∃y(x < y ∧ y = x+ 1 ∧ FO(ϕ1, y))

where y = x+ 1 can be expressed as ∀z(x < z < y → ⊥).
– FO(ϕ1 U ϕ2, x) = ∃y(x ≤ y ∧ FO(ϕ2, y) ∧ ∀z(x ≤ z < y → FO(ϕ1, z)))

For each ϕ ∈ coSafety-LTL(−X̃), the formula FO(ϕ, x) has exactly one free vari-
able x. It is easy to see that for all finite state sequences σ ∈ (2Σ)∗, it holds that
σ |= ϕ if and only if (σ)s, 0 |= FO(ϕ, x), and FO(ϕ, x) ∈ coSafety-FO. Therefore,
L ∈ JcoSafety-FOK<ω.

It is time to show the opposite direction, i.e., that any coSafety-FO formula
can be translated into a coSafety-LTL(−X̃) formula which is equivalent over finite
words. To prove this fact we adapt a proof of Kamp’s theorem by Rabinovich [15].
Kamp’s theorem is one of the fundamental results about temporal logics, which
states that LTL corresponds to FO in terms of expressiveness. Here, we prove a
similar result in the context of co-safety languages. The proof goes by introducing
a normal form for FO formulas, and showing that (i) any coSafety-FO formula
can be translated into such normal form and (ii) any formula in normal form
can be straightforwardly translated into a coSafety-LTL(−X̃) formula. We start
by introducing such a normal form.

Definition 6 (∃∀-formulas). An ∃∀-formula ϕ(z0, . . . , zm) with m free vari-
ables is a formula of this form:

ϕ(z0, . . . , zm) := ∃x0 . . . ∃xn
(

x0 < x1 < · · · < xn ordering constraints

∧ z0 = x0 ∧
m∧

k=1

(zk = xik) binding constraints

∧
n∧

j=0

αj(xj) punctual constraints

∧
n∧

j=1

∀y(xj−1 < y < xj → βj(y))
)

interval constraints

where ik ∈ {0, . . . , n} for each 0 ≤ k ≤ m, and αj and βj, for each 1 ≤ j ≤ n,
are quantifier-free formulas with exactly one free variable.

Some explanations are due. Each ∃∀-formula states a number of requirements
for its free variables and for its quantified variables. Through the binding con-
straints, the free variables are identified with a subset of the quantified variables
in order to uniformly state the punctual and interval constraints, and the or-
dering constraints which sort all the variable in a total order. Note that there
is no relationship between n and m: there might be more quantified variables

252 A. Cimatti et al.

than free variables, or less. Note as well that the binding constraint z0 = x0 is
always present, i.e., at least one free variable has to be the minimal element of
the ordering. This ensures that ∃∀-formulas are always future formulas.

We say that a formula of coSafety-FO is in normal form if and only if it is a
disjunction of ∃∀-formulas. To see how formulas in normal form make sense, let
us immediately show how to translate them into coSafety-LTL(−X̃) formulas.

Lemma 4. For any formula ϕ(z) ∈ coSafety-FO in normal form, with a single
free variable, there exists a formula ψ ∈ coSafety-LTL(−X̃) such that L<ω(ϕ(z)) =
L<ω(ψ).

Proof. We show how any ∃∀-formula is equivalent to an coSafety-LTL(−X̃)-
formula, over finite words. Since each formula in normal form is a disjunction of
∃∀-formulas, and since coSafety-LTL(−X̃) is closed under disjunction, this implies
the proposition. Let ϕ(z) be a ∃∀-formula with a single free variable. Having only
one free variable, ϕ(z) is of the form:

∃x0 . . . ∃xn
(
x0 < · · · < xn ∧ z = x0

∧
n∧

j=0

αj(xj) ∧
n∧

j=1

∀y(xj−1 < y < xj → βj(y))
)

Now, let Ai be the temporal formulas corresponding to αi and Bi be the ones
corresponding to βi. Recall that αi and βi are quantifier free with only one free
variable, hence this correspondence is trivial. Since z is the first time point of
the ordering mandated by the formula, we only need future temporal operators
to encode ϕ into a coSafety-LTL(−X̃) formula ψ defined as follows:

ψ ≡ A0 ∧ X(B0 U (A1 ∧ X(B1 U A2 ∧ . . .X(Bn−1 U An) . . .)))

It can be seen that σ, k |= ψ if and only if (σ)s, k |= ϕ(z), for each σ ∈ (2Σ)+

and each k ≥ 0. Thus, L<ω(ϕ(z)) = L<ω(ψ).

Two differences between our ∃∀-formulas and those used by Rabinovich [15]
are crucial: first, we do not have unbounded universal requirements, but all
interval constraints use bounded quantifications, hence we do not need the always
operator to encode them; second, our ∃∀-formulas are future formulas, hence we
only need future operators to encode them.

We now show that any coSafety-FO formula can be translated into normal
form, that is, into a disjunction of ∃∀-formulas.

Lemma 5. Any coSafety-FO formula is equivalent to a disjunction of ∃∀-formulas.

Proof. Let ϕ be a coSafety-FO formula. We proceed by structural induction on
ϕ. For the base case, for each atomic formula ϕ(z0, z1) we provide an equivalent
∃∀-formula ψ(z0, z1):

1. if ϕ ≡ z0 < z1 then ψ ≡ ∃x0∃x1(z0 = x0 ∧ z1 = x1 ∧ x0 < x1);
2. if ϕ ≡ z0 = z1, then ψ ≡ ∃x0(z0 = x0 ∧ z1 = x0).

A first-order logic characterisation of safety and co-safety languages 253

3. if ϕ ≡ z0 ̸= z1, we can note that ϕ ≡ z0 < z1 ∨ z1 < z0 and then apply
Item 1;

4. If ϕ ≡ P (z0) then we define ψ := ∃x0(z0 = x0 ∧ P (x0)). Similarly if ϕ ≡
¬P (z0).

For the inductive step:

1. The case of a disjunction is trivial.
2. If ϕ(z0, . . . , zk) is a conjunction, by the inductive hypothesis each conjunct is

equivalent to a disjunction of ∃∀-formulas. By distributing the conjunction
over the disjunction we can reduce ourselves to the case of a conjunction
ψ1(z0, . . . , zk)∧ψ2(z0, . . . , zk) of two ∃∀-formulas. In this case we have that:

ψ1 ≡ ∃x0 . . . ∃xn
(
x0 < · · · < xn ∧ z0 = x0 ∧ . . .

)
ψ2 ≡ ∃xn+1 . . . ∃xm(xn+1 < · · · < xm ∧ z0 = xn+1 ∧ . . .)

Since the set of quantified variables in ψ1 is disjoint from the set of quan-
tified variables in ψ2, we can distribute the existential quantifiers over the
conjunction ψ1 ∧ ψ2, obtaining:

ψ1 ∧ ψ2 ≡ ∃x0 . . . ∃xn∃xn+1 . . . ∃xm(
x0 < · · · < xn ∧ xn+1 < · · · < xm ∧ z0 = x0 ∧ z0 = xn+1 ∧ . . .

)
Note that we can identify x0 and xn+1, obtaining:

ψ1 ∧ ψ2 ≡ ∃x0 . . . ∃xn∃xn+2, . . . ∃xm(
x0 < · · · < xn ∧ x0 < xn+2 < · · · < xm ∧

z0 = x0 ∧
k∧

i=1

(zi = xj′′i) ∧
m∧

i=0,i ̸=n+1

αi(xi)∧

m∧
i=1,i ̸=n+1

i ̸=n+2

∀y(xi−1 < y < xi → βi(y)) ∧ ∀y(x0 < y < xn+2 → βn+2)
)

Now, to turn this formula into a disjunction of ∃∀-formulas, we consider
all the possible interleavings of the variables that respect the two imposed
orderings and explode the formula into a disjunction that consider each such
interleaving. Let X = {x0, . . . , xn, xn+2, . . . , xm} and let Π be the set of all
the permutations of X compatible with the orderings x0 < · · · < xn and
x0 < xn+1 < · · · < xm. For any π ∈ Π, π(0) = 0. Now, ψ1 ∧ψ2 becomes the
disjunction of a set of ∃∀-formulas ψπ, for each π ∈ Π, defined as:

ψπ ≡ ∃xπ(0) . . . ∃xπ(m)(
xπ(0) < · · · < xπ(m) ∧

z0 = x0 ∧
k∧

i=1

(zi = xπ(j′′i)) ∧
m∧
i=0

αi(xi)∧

m∧
i=0

∀y(xπ(i−1) < y < xπ(i) → β∗
i (y))

)

254 A. Cimatti et al.

where β∗
i suitably combines the formulas β according to the interleaving of

the orderings of the original variables, and is defined as follows:

β∗
i =

{
βπ(i) if both π(i), π(i− 1) ≤ n or both π(i), π(i− 1) > n

βπ(i) ∧ βπ(i−1) if π(i) ≤ n and π(i− 1) > n or vice versa

Then we have that ψ1 ∧ ψ2 ≡
∨

π∈Π(ψπ), which is a disjunction of ∃∀-
formulas.

3. Let ϕ(z0, . . . , zm) ≡ ∃zm+1 . (zi < zm+1 ∧ ϕ1(z0, . . . , zm, zm+1)), for some
0 ≤ i ≤ m. By the inductive hypothesis, this is equivalent to the formula
∃zm+1(zi < zm+1 ∧

∨j
k=0 ψk(z0, . . . , zm, zm+1)), where ψk(z0, . . . , zm, zm+1)

is a ∃∀-formula, for each 0 ≤ k ≤ j, that is:

∃zm+1 . (zi < zm+1 ∧
j∨

k=0

(∃x0 . . .∃xnk
ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

)))

By distributing the conjunction over the disjunction, we obtain:

∃zm+1 . (

j∨
k=0

((zi < zm+1) ∧ ∃x0 . . .∃xnk
ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

)))

and by distributing the existential quantifier over the disjunction, we have:

j∨
k=0

(∃zm+1((zi < zm+1) ∧ ∃x0 . . .∃xnk
ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

)))

Since the subformula zi < zm+1 does not contain the variables x0, . . . , xn,
we can push it inside the existential quantification, obtaining:

j∨
k=0

(∃zm+1 . ∃x0 . . .∃xnk
. ((zi < zm+1) ∧ ψ′

k(z0, . . . , zm+1, x0, . . . , xnk
)))

Now we divide in cases:
(a) suppose that the formula ψ′

k(z0, . . . , zm+1, x0, . . . , xnk
) contains the fol-

lowing conjuncts: zi = xli and zm+1 = xlm+1 , with li = lm+1. It holds
that these formulas are in contradiction with the formula zi < zm+1,
that is:

(zi < zm+1) ∧ (zi = xli) ∧ (zm+1 = xlm+1
) ≡ ⊥

Therefore, the disjunct (zi < zm+1) ∧ ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

) is
equivalent to ⊥, and thus can be safely removed from the disjunction.

(b) suppose that the formula ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

) contains the fol-
lowing conjuncts: zi = xli , zm+1 = xlm+1 (with li ̸= lm+1), and xlm+1 <
· · · < xli . As in the previous case, it holds that:

(zi < zm+1) ∧ (zi = xli) ∧ (zm+1 = xlm+1
) ∧ (xlm+1

< · · · < xli) ≡ ⊥

Thus, also in this case, this disjunct can be safely removed from the
disjunction.

A first-order logic characterisation of safety and co-safety languages 255

(c) otherwise, it holds that the formula ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

) con-
tains the following conjuncts: zi = xli , zm+1 = xlm+1

(with li ̸= lm+1),
and xli < · · · < xlm+1

. Therefore, the subformula zi < zm+1 is redun-
dant, and can be safely removed from ψ′

k(z0, . . . , zm+1, x0, . . . , xnk
). The

resulting formula is a ∃∀-formula.

After the previous transformation, we obtain:

j′∨
k=0

(∃zm+1 . ∃x0 . . .∃xnk
. ψ′′

k (z0, . . . , zm+1, x0, . . . , xnk
))

Finally, since each formula ψ′′
k (z0, . . . , zm+1, x0, . . . , xnk

) contains the con-
junct zm+1 = xlm+1

, we can safely remove the quantifier ∃zm+1. We obtain
the formula:

j′∨
k=0

(∃x0 . . .∃xnk
. ψ′′

k (z0, . . . , zm, x0, . . . , xnk
))

which is a disjunction of ∃∀-formulas.

4. Let ϕ(z0, . . . , zm) ≡ ∀zm+1(zi < zm+1 < zj → ϕ1(z0, . . . , zm, zm+1)), for
some 0 ≤ i, j ≤ m. By the induction hypothesis we know that ϕ1 is equivalent
to a disjunction

∨
k ψk where ψk are ∃∀-formulas, i.e., each ψk is of the form:

ψk ≡ ∃x0, . . . , xn
(
x0 < . . . < xn ∧ z0 = x0 ∧

m+1∧
l=1

(zl = xul
) ∧

n∧
l=0

αl(xl) ∧
n∧

l=1

∀y(xl−1 < y < xl → βl(y))
)

We now note that we can suppose w.l.o.g. that the ordering constraint and
the binding constraint of ψk imply that zi, zm+1 and zj are ordered con-
secutively, i.e., zi < zm+1 < zj with no other variable in between. That is
because otherwise the constraints would be in conflict with the guard of the
universal quantification and the disjunct could be removed from the disjunc-
tion. Take for example a disjunct of ψk with an ordering constraint of the
type zi < zh < zm+1, for some h. The existence of such a zh is not guaran-
teed for each zm+1 between zi and zj because when zm+1 = zi + 1 there is
no value between zi and zi + 1 (we are on discrete time models). That said,
we can now isolate all the parts of ψk that talk about zm+1, bringing them
out of the existential quantification, obtaining ψk ≡ θk ∧ ηk, where:

θk ≡ zi < zm+1 < zj

∧ α(zm+1) ∧ ∀y(zi < y < zm+1 → β(y)) ∧ ∀y(zm+1 < y < zi → β′(y))

256 A. Cimatti et al.

ηk ≡ ∃x0, . . . , xn
(
x0 < . . . < xn ∧ z0 = x0 ∧

m∧
l=1

(zl = xul
)∧

n∧
l=0

l ̸=um+1

αl(xl) ∧
n∧

l=1
l−1 ̸=ui
l ̸=uj

∀y(xl−1 < y < xl → βl(y))
)

Now, we have ϕ ≡ ∀zm+1(zi < zm+1 < zj →
∨

k(θk ∧ ηk)). We can dis-
tribute the head of the implication over the disjunction, and then over the
conjunction, obtaining:

ϕ ≡ ∀zm+1

(∨
k

((zi < zm+1 < zj → θk) ∧ (zi < zm+1 < zj → ηk))
)

In order to simplify the exposition, we now show how to proceed in the case
of two disjuncts, which is easily generalizable. So suppose we have:

ϕ ≡ ∀zm+1

(
∨
(zi < zm+1 < zj → θ1) ∧ (zi < zm+1 < zj → η1)

(zi < zm+1 < zj → θ2) ∧ (zi < zm+1 < zj → η2)

)

Now we can a) distribute the disjunction over the conjunction (i.e., convert
in conjunctive normal form in the case of multiple disjuncts), b) factor out
the head of the implications and c) distribute the universal quantification
over the conjunction, obtaining:

ϕ ≡


∀zm+1(zi < zm+1 < zj → θ1 ∨ θ2)

∧ ∀zm+1(zi < zm+1 < zj → θ1 ∨ η2)
∧ ∀zm+1(zi < zm+1 < zj → η1 ∨ θ2)
∧ ∀zm+1(zi < zm+1 < zj → η1 ∨ η2)


Now, note that η1 and η2 do not contain zm+1 as a free variable, because we
factored out all the parts mentioning zm+1 into θ1 and θ2 before. Therefore
we can push them out from the universal quantifications, obtaining:

ϕ ≡


∀zm+1(zi < zm+1 < zj → θ1 ∨ θ2)

∧ ∀zm+1(zi < zm+1 < zj → θ1) ∨ η2
∧ ∀zm+1(zi < zm+1 < zj → θ2) ∨ η1
∧ ¬∃zm+1(zi < zm+1 < zj) ∨ η1 ∨ η2


Now, note that ¬∃zm+1(zi < zm+1 < zj) is equivalent to zi = zj∨zj = zi+1,
which is the disjunction of two formulas that can be turned into ∃∀-formulas.
Since both η1 and η2 are already ∃∀-formulas and since we already know how
to deal with conjunctions and disjunctions of ∃∀-formulas, it remains to show
that the universal quantifications in the formula above can be turned into

A first-order logic characterisation of safety and co-safety languages 257

∃∀-formulas. Take ∀zm+1(zi < zm+1 < zj → θ1), i.e.:

∀zm+1

zi < zm+1 < zj →

zi < zm+1 < zj

∧ α(zm+1)

∧ ∀y(zi < y < zm+1 → β(y))

∧ ∀y(zm+1 < y < zj → β′(y))


Note that the first conjunct of the consequent can be removed, since it is
redundant. Now, this formula is requesting β(y) for all y between zi and
zm+1, but with zm+1 that ranges between zi and zj − 1, hence effectively
requesting β(y) to hold between zi and zj . Similarly for β′(y), which has to
hold for all y between zi + 1 and zj .
Hence, it is equivalent to:

zi = zj

∨ zj = zi + 1

∨ ∃xi+1(zi < xi+1 ∧ xi+1 = zi + 1 ∧ zj = xi+1 + 1 ∧ α(xi+1))

∨ ∃xi∃xi+1∃xj−1∃xj



xi < xi+1 < xj−1 < xj

∧ zi = xi ∧ zj = xj

∧ α(xi+1) ∧ α(xj−1)

∧ ∀y(xi < y < xi+1 → ⊥)

∧ ∀y(xj−1 < y < xj → ⊥)

∧ ∀y(xi < y < xj−1 → α(y) ∧ β(y))
∧ ∀y(xi+1 < y < xj → α(y) ∧ β′(y))


which is a disjunction of a ∃∀-formula and others that can be turned into
disjunctions of ∃∀-formulas. The reasoning is at all similar for ∀zm+1(zi <
zm+1 < zj → θ1 ∨ θ2).

Any coSafety-FO formula can be translated into a disjunction of ∃∀-formulas by
Lemma 5, and then to a coSafety-LTL(−X̃) formula by Lemma 4. Together with
Lemma 3, we obtain the following.

Corollary 1. JcoSafety-FOK<ω = JcoSafety-LTL(−X̃)K<ω

We are now ready to state the main result of this section.

Theorem 1. JcoSafety-LTLK = JcoSafety-FOK

Proof. We know that JcoSafety-LTLK = JcoSafety-LTL(−X̃)K<ω · (2Σ)ω by Ob-
servation 1 and Lemma 1. Since JcoSafety-LTL(−X̃)K<ω = JcoSafety-FOK<ω by
Corollary 1, we have that JcoSafety-LTL(−X̃)K<ω · (2Σ)ω = JcoSafety-FOK<ω ·
(2Σ)ω. Then, by Lemma 2 we have that JcoSafety-FOK<ω ·(2Σ)ω = JcoSafety-FOK,
hence JcoSafety-LTLK = JcoSafety-FOK.

Corollary 2. JSafety-LTLK = JSafety-FOK

258 A. Cimatti et al.

4 Safety-FO captures LTL-definable safety languages

In this section, we prove that coSafety-FO captures LTL-definable co-safety lan-
guages. By duality, we have that Safety-FO captures LTL-definable safety lan-
guages, and by the equivalence shown in the previous Section, this provides a
novel proof of the fact that Safety-LTL captures LTL-definable safety languages.
We start by characterizing co-safety languages in terms of LTL over finite words.

Lemma 6. JLTLK ∩ coSAFETY = JLTLK<ω · (2Σ)ω

Proof. (⊆) By Proposition 2 we know that each language L ∈ JLTLK∩coSAFETY
is definable by a formula of the form Fα where α ∈ LTLP. Hence for each σ ∈ L
there exists an n such that σ, n |= α, hence σ[0,n], n |= α. Note that σ[n+1,∞]

is unconstrained. By replacing all the since/yesterday/weak yesterday operators
in α with until/tomorrow/weak tomorrow operators, we obtain an LTL formula
αr such that (σ[0,n])

r, 0 |= αr (where σr is the reverse of σ). Since LTL captures
star-free languages [12] and star-free languages are closed by reversal, there is
also an LTL formula β such that σ[0,n], 0 |= β. Hence L = L<ω(β) · (2Σ)ω, and
we proved that JLTLK ∩ coSAFETY ⊆ JLTLK<ω · (2Σ)ω.

(⊇) Given L ∈ JLTLK<ω · (2Σ)ω, we know L = L<ω(β) · (2Σ)ω for some LTL
formula β. Hence, for each σ ∈ L there is an n such that σ[0,n], 0 |= β. Since
LTL captures star-free languages and star-free languages are closed by reversal,
there is an LTL formula αr such that (σ[0,n])

r, 0 |= αr. Now, by replacing all
the until/tomorrow/weak tomorrow operators in αr with since/yesterday/weak
yesterday operators, we obtain an LTLP formula α such that σ[0,n], n |= α. Hence,
σ is such that there is an n such that σ, n |= α, i.e., σ |= Fα. Therefore, by
Proposition 2, L ∈ JLTLK ∩ coSAFETY, and this in turn implies that JLTLK<ω ·
(2Σ)ω ⊆ JLTLK ∩ coSAFETY.

Now, we show that, over finite words, universal temporal operators are unneeded.

Lemma 7. JLTLK<ω = JSafety-LTLK<ω = JcoSafety-LTLK<ω

Proof. Since Safety-LTL and coSafety-LTL are fragments of LTL, we only need
to show one direction, i.e., that JLTLK<ω ⊆ JSafety-LTLK<ω and JLTLK<ω ⊆
JcoSafety-LTLK<ω. At first, we show that universal temporal operators are not
needed over finite words. For each LTL formula ϕ, we can build an equivalent
coSafety-LTL formula with only existential temporal operators. The globally op-
erator can be replaced by means of an until operator whose existential part
always refers to the last position of the word. In turn, this can be done with the
formula X̃⊥, which is true only at the final position:

Gϕ ≡ ϕ U (ϕ ∧ X̃⊥)

Similarly, the release operator can be expressed by means of a globally operator
in disjunction with an until operator:

ϕ1 R ϕ2 ≡ Gϕ2 ∨ (ϕ2 U (ϕ1 ∧ ϕ2)) ≡
(
ϕ2 U (ϕ2 ∧ X̃⊥)

)
∨
(
ϕ2 U (ϕ1 ∧ ϕ2)

)

A first-order logic characterisation of safety and co-safety languages 259

Hence JLTLK<ω = JcoSafety-LTLK<ω. Now, if we exploit the duality between the
eventually/until and the globally/release operators, we obtain:

Fϕ ≡ ϕR (ϕ ∨ X⊤)

ϕ1 U ϕ2 ≡ ϕ2 R (ϕ2 ∨ X⊤) ∧ ϕ2 R (ϕ1 ∨ ϕ2)

Hence JLTLK<ω = JSafety-LTLK<ω.

Then, we relate coSafety-LTL on finite words and coSafety-FO.

Lemma 8. JcoSafety-LTLK<ω · (2Σ)ω = JcoSafety-FOK

Proof. (⊆) We have that JcoSafety-LTLK<ω = JLTLK<ω by Lemma 7, and this
implies that JcoSafety-LTLK<ω · (2Σ)ω = JLTLK<ω · (2Σ)ω, and JcoSafety-LTLK<ω ·
(2Σ)ω = JFOK<ω · (2Σ)ω by Proposition 1. Now, let ϕ ∈ FO, and suppose w.l.o.g.
that ϕ is in negated normal form. We define the formula ϕ′(x, y), where x and
y are two fresh variables that do not occur in ϕ, as the formula obtained from
ϕ by a) replacing each subformula of ϕ of type ∃zϕ1 with ∃z(x ≤ z ∧ ϕ1),
and b) by replacing each subformula of ϕ of type ∀zϕ1 with ∀z(x ≤ z < y →
ϕ1). Now, consider the formula ψ ≡ ∃y(x ≤ y ∧ ϕ′(x, y)). Note that ψ is a
coSafety-FO formula. When interpreted over infinite words, the models of ψ are
exactly those containing a prefix that belongs to L<ω(ϕ), with the remaining
suffix unconstrained, that is L(ψ) = L<ω(ϕ) ·(2Σ)ω, hence JFOK<ω · (2Σ)ω ⊆
JcoSafety-FOK, and this implies that JcoSafety-LTLK<ω · (2Σ)ω ⊆ JcoSafety-FOK.

(⊇) We know by Lemma 2 that JcoSafety-FOK = JcoSafety-FOK<ω · (2Σ)ω.
Since coSafety-FO formulas are also FO formulas, we have JcoSafety-FOK ⊆
JFOK<ω · (2Σ)ω. By Proposition 1 and Lemma 7, we obtain that JcoSafety-FOK ⊆
JcoSafety-LTLK<ω · (2Σ)ω.

We are ready now to state the main result.

Theorem 2. JLTLK ∩ coSAFETY = JcoSafety-FOK

Proof. We know that JLTLK∩ coSAFETY = JLTLK<ω · (2Σ)ω by Lemma 6. Then,
by Lemma 7 we know that JLTLK<ω = JcoSafety-LTLK<ω, and this in turn im-
plies that JLTLK<ω · (2Σ)ω = JcoSafety-LTLK<ω · (2Σ)ω. Since JcoSafety-LTLK<ω ·
(2Σ)ω = JcoSafety-FOK by Lemma 8, we conclude that JLTLK ∩ coSAFETY =
JcoSafety-FOK.

This result together with Theorem 1 allow us to conclude the following.

Theorem 3. JSafety-LTLK = JLTLK ∩ SAFETY

Note that by Observation 1 and Lemma 1 on one hand, and by Lemmas 6
and 7 on the other, the question of whether JSafety-LTLK = JLTLK∩SAFETY can
be reduced to whether JcoSafety-LTLK<ω ·(2Σ)ω = JcoSafety-LTL(−X̃)K<ω ·(2Σ)ω.
If coSafety-LTL and coSafety-LTL(−X̃) were equivalent over finite words, this
would already prove Theorem 3. However, we can prove this is not the case.

Theorem 4. JcoSafety-LTLK<ω ̸= JcoSafety-LTL(−X̃)K<ω

260 A. Cimatti et al.

Proof. Note that in coSafety-LTL(−X̃) we only have existential temporal modali-
ties and we cannot hook the final position of the word without the weak tomorrow
operator. For these reasons, given a coSafety-LTL(−X̃) formula ϕ, with a simple
structural induction we can prove that for each σ ∈ (2Σ)+ such that σ |= ϕ, it
holds that σσ′ |= ϕ for any σ′ ∈ (2Σ)+, i.e., all the extensions of σ satisfy ϕ
as well. This implies that L<ω(ϕ) is either empty (i.e., if ϕ is unsatisfiable) or
infinite. Instead, by using the weak tomorrow operator to hook the last position
of the word, we can describe a finite non-empty language, for example as in the
formula ϕ ≡ a∧X(a∧ X̃⊥). The language of ϕ is L(ϕ) = {aa}, including exactly
one word, hence L(ϕ) cannot be described without the weak tomorrow operator.

Note that Theorem 4 does not contradict Theorem 3, that is, it does not
imply that JcoSafety-LTLK<ω · (2Σ)ω ̸= JcoSafety-LTL(−X̃)K<ω · (2Σ)ω. For exam-
ple, consider again the formula a ∧ X(a ∧ X̃⊥). It cannot be expressed without
the weak tomorrow operator, yet it holds that: L<ω(a ∧ X(a ∧ X̃⊥)) · (2Σ)ω =
L<ω(a ∧ Xa) · (2Σ)ω.

5 Conclusions

In this paper, we gave a first-order characterization of safety and co-safety lan-
guages, by means of two fragments of first-order logic, Safety-FO and coSafety-FO.
These fragments of S1S[FO] provide a very natural syntax and are expressively
complete with regards to LTL-definable safety and co-safety languages.

The core theorem establishes a correspondence between Safety-FO (resp.,
coSafety-FO) and Safety-LTL (resp., coSafety-LTL), and thus it can be viewed
as a special version of Kamp’s theorem for safety (resp., co-safety) properties.
Thanks to these new fragments, we were able to provide a novel, compact, and
self-contained proof of the fact that Safety-LTL captures LTL-definable safety lan-
guages. Such a result was previously proved by Chang et al. [5], but in terms of
the properties of a non-trivial transformation from star-free languages to LTL by
Zuck [21]. As a by-product, we provided a number of results that relate the con-
sidered languages when interpreted over finite and infinite words. In particular,
we highlighted the expressive power of the weak tomorrow temporal modality,
showing it to be essential in coSafety-LTL over finite words.

Different equivalent characterizations of LTL are known, in terms of (i) first-
order logic, (ii) regular expressions, (iii) automata, and (iv) monoids (see the
summary by Thomas in [19]). This work focuses on the first item, but for LTL-
definable safety languages. A natural follow-up would be to investigate the other
items, looking for what kind of automata (resp., regular expressions, monoids)
captures exactly safety and co-safety LTL-definable languages. While on finite
traces simple characterizations in terms of automata and syntactic monoids exist,
the infinite-traces scenario is more complex: there exists a characterization of
LTL in terms of counter-free automata [13] and the one for safety ω-regular
languages seems not to be difficult (see e.g., terminal automata [4, 18]), but
their combination requires to have a canonical (minimal) representation of a
(Muller/Rabin/Streett) automata corresponding to any ω-regular language.

A first-order logic characterisation of safety and co-safety languages 261

References

1. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electronic
Notes in Theoretical Computer Science 66(2), 160–177 (2002)

2. Buchi, J.R.: Weak second-order arithmetic and finite automata. Journal of Sym-
bolic Logic 28(1) (1963)

3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: The
collected works of J. Richard Büchi, pp. 425–435. Springer (1990)

4. Cerná, I., Pelánek, R.: Relating hierarchy of temporal properties to model checking.
In: Rovan, B., Vojtás, P. (eds.) Proceedings of the 28th International Symposium on
Mathematical Foundations of Computer Science 2003. Lecture Notes in Computer
Science, vol. 2747, pp. 318–327. Springer (2003). https://doi.org/10.1007/978-3-
540-45138-9 26

5. Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Kuich, W. (ed.) Proceedings of the 19th International Colloquium on Automata,
Languages and Programming. Lecture Notes in Computer Science, vol. 623, pp.
474–486. Springer (1992). https://doi.org/10.1007/3-540-55719-9 97

6. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint
Conference on Artificial Intelligence. pp. 854–860. IJCAI/AAAI (2013)

7. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence. pp. 1558–1564. AAAI Press (2015)

8. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. pp. 163–173 (1980)

9. Giacomo, G.D., Masellis, R.D., Montali, M.: Reasoning on LTL on finite traces:
Insensitivity to infiniteness. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence. pp. 1027–1033. AAAI
Press (2014)

10. Kamp, J.A.W.: Tense logic and the theory of linear order. University of California,
Los Angeles (1968)

11. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

12. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Workshop on Logic
of Programs. pp. 196–218. Springer (1985)

13. McNaughton, R., Papert, S.A.: Counter-Free Automata (MIT research monograph
no. 65). The MIT Press (1971)

14. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977). pp. 46–57. IEEE (1977)

15. Rabinovich, A.: A Proof of Kamp’s theorem. Logical Methods in Computer Science
Volume 10, Issue 1 (Feb 2014). https://doi.org/10.2168/LMCS-10(1:14)2014,
https://lmcs.episciences.org/730

16. Sherman, R., Pnueli, A., Harel, D.: Is the interesting part of process logic uninter-
esting? A translation from PL to PDL. SIAM J. Comput. 13(4), 825–839 (1984).
https://doi.org/10.1137/0213051

17. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing 6(5), 495–511 (1994)

18. Strejcek, J.: Linear temporal logic: Expressiveness and model checking. Ph.D. the-
sis, Faculty of Informatics, Masaryk University in Brno (2004)

262 A. Cimatti et al.

https://doi.org/10.1007/978-3-540-45138-9_26
https://doi.org/10.1007/978-3-540-45138-9_26
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.2168/LMCS-10(1:14)2014
https://lmcs.episciences.org/730
https://doi.org/10.1137/0213051

19. Thomas, W.: Safety-and liveness-properties in propositional temporal logic: char-
acterizations and decidability. Banach Center Publications 1(21), 403–417 (1988)

20. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A Symbolic Approach to
Safety LTL Synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) Proceedings of
the 13th International Haifa Verification Conference. Lecture Notes in Computer
Science, vol. 10629, pp. 147–162. Springer (2017). https://doi.org/10.1007/978-3-
319-70389-3 10

21. Zuck, L.: Past temporal logic. Weizmann Institute of Science 67 (1986)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

A first-order logic characterisation of safety and co-safety languages 263

https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10
http://creativecommons.org/licenses/by/4.0/

	A first-order logic characterisation of safety and co-safety languages
	1 Introduction
	2 Preliminaries
	3 Safety-FO and coSafety-FO
	4 Safety-FO captures LTL-definable safety languages
	5 Conclusions
	References

