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Abstract. The Galvanic Skin Response (GSR) signal, measured as the
electrical conductance between a pair of electrodes placed over a person’s
skin, consists of a tonic component superposed by a phasic component. In
the GSR phasic component several peaks appear corresponding to spe-
cific events. Therefore, the information content of peaks is very useful
in a wide range of applications. This work investigates the effectiveness
of a decomposition-based Compressed Sensing (CS) approach for extrac-
tion of peaks from GSR signals acquired with an IoT-enabled wrist-worn
device, during unpleasant sound stimulation. Then, once the sparse peaks
are detected, the overall GSR phasic component is reconstructed, too.
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1 Introduction

Galvanic Skin Response (GSR), also known as ElectroDermal Activity (EDA)
or Skin Conductance (SC), is the electrical signal of the sympathetic activity of
sweat glands. In detail, GSR is typically recorded as the electric conductance
between a pair of electrodes placed over a person’s skin, near high density regions
of sweat glands (e.g., hand palm or fingertips). The GSR signal is characterized
by two main components: (i) a slowly varying tonic component, or SC level
(SCL); (ii) a phasic component or SC response (SCR) where several peaks appear
corresponding to specific events. The hypothesized connection between variations
in a subject’s skin conductance and psychological state has been confirmed at
the beginning of the 21st century by means of a simultaneous analysis of brain
function, using functional Magnetic Resonance Imaging and GSR [10]. In the
last decade, wearable devices have given us the opportunity of a non-invasive
measure of the GSR signal through simple settings [8].
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GSR peaks are difficult to extract from an observed GSR signal for a num-
ber of reasons, such as potentially overlapping SCR, or a predominant SCL
[29]. In recent years, various signal decomposition approaches have been pro-
posed to overcome these difficulties [1,5,6] but the problem still remains. The
conventional approach to evaluate GSR peaks is based on the trough-to-peak
detection [25] and it has already been explored depending on three different
types of acoustic stimuli in [23]. This work investigates, instead, a Compressed
Sensing (CS) [16] approach that exploits the intrinsic sparse nature of peaks. CS
is, indeed, a technique able to exploit the signal sparsity in some domains [11–
15,22]. As shown in [24], CS exhibits better performance in terms of peak count,
if compared to Ledalab automatic toolbox for GSR processing. It is important
to consider that not only CS allows to perform a correct count of the number of
GSR peaks, but it also works on compressed samples, while automatic toolboxes
(such as Ledalab or EDA Explorer) do not implement any compression mech-
anism. Moreover, compression mechanisms are generally a valid instrument to
solve the problems in Internet-of-Things (IoT) paradigm adopted for healthcare
monitoring and management (such as big data quantity, security, privacy) [18].

The aim of this work is to investigate the effectiveness of a decomposition-
based CS method [26] for reconstruction of GSR phasic component. The method
proposed in [26] is firstly evaluated by using synthetically generated signals.
Then, the method is analyzed also on GSR signals experimentally acquired by
an IoT-enabled wrist-worn device, the Empatica E4 wristband [20], in reaction
to unpleasant acoustic stimuli.

The paper is organized as follows: Sect. 2 shortly describes the GSR signal,
reviewing the state-of-the-art about GSR signal analysis in time domain with
the related issues. Section 3 presents the acquisition IoT-enabled sensing device,
the protocol to collect data, as well as the methods used to process it. Section 5
presents and discusses the results obtained. Finally, Sect. 6 concludes the paper.

2 Background

2.1 GSR Signal

The GSR signal is a physiological signal reflecting changes in the electrical prop-
erties of the human skin, resulting from the activity of the Sympathetic Nervous
System (SNS, a branch of the autonomic nervous system) [17]. As such, GSR val-
ues provide an optimal marker of both psychological and physiological arousal,
being associated to emotional and cognitive human activities [9].

Research studies have proposed two different approaches to measure GSR
signals: the exosomatic method (applying a direct current (DC) or an alternat-
ing current (AC)) and the endosomatic method (without applying any external
current or voltage) [30]. The former approach is the most commonly used, with
an external constant voltage source that is connected to the human skin through
electrodes. Generally, a GSR sensing device consists of the following components:
two electrodes to collect signal, an amplifier to increase the signal amplitude, and
a digitizer to convert analog raw signals into digital form; in the case of a wire-
less device, also data transmission modules (e.g., Bluetooth or WiFi transceivers)
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are added for communicating with a recording system [25]. Both the measuring
methods mentioned above produce a GSR signal, that can be always decom-
posed in the two components: SCL and SCR. A single SCR, as shown in Fig.
1 from [3], is characterized by: i) peak amplitude (amplitude difference between
the onset and the maximum of the peak - SCR amplitude); ii) latency (time
interval between the stimulus onset and the GSR peak onset - SCR latency); iii)
rise time (time interval between the onset and the maximum of the peak - rise
time); iv) recovery time (time interval from peak to total recovery - rec.t/2 and
rec.tc, 50% and 63% recovery respectively).

Fig. 1. Shape of a SCR and the related descriptive metrics [3].

2.2 GSR Signal Analysis in Time Domain

For the purpose of both emotion detection and recognition, the GSR signal is
one of the most investigated physiological signals. In particular, the response to
specific external stimuli, such as audio [23] and video [31], is analysed in time
domain in terms of SCR peaks and number of peaks over time.

Among the algorithms developed to analyse the SCR signal, the detection of
both SCR peaks and troughs is the most used. Such algorithm identifies a peak or
trough, by determining the time-series points where the derivative of the signal is
zero; then, the corresponding SCR peaks amplitude and rise-time are computed
with respect to the peak onset [1]. However, a weakness of this implementation
is evident when short inter-stimulus intervals are established. In fact, it may
happen that two close SCR peaks overlap, with the tail of the preceding SCR
peak hiding the initial onset of the next SCR peak [21]. A misdetection can result
in a distorted estimation of the event-related values, and a pair of events may
be detected as a single one. To face this problem, several studies have proposed
mathematical models to decompose the GSR signal into its two components. As
an example, Alexander et al. [1] proposed an automated analysis based on the
mathematical process of deconvolution to extract the phasic activity from the
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GSR signal [6]. This approach relies on the physiological assumption, according
to which the GSR signal results from a convolution between the sudomotor nerve
activity (corresponding to a driver function) exhibiting peaks in response to a
stimulus, and an Impulse Response Function (IRF). By deconvolving the GSR
signal with a specific IRF, the driver function (sequence of discrete peaks) is
revealed, and the peaks can be identified to reconstruct the corresponding SCR
[5]. In particular, the IRF depicts the SCR shape resulting from an impulse.
In 1987, Schneider et al. [28] modeled the SCR shape with a bi-exponential
function, called Bateman function, in which time constants represent the steep
onset and slow recovery. However, the inter- and intra- individual variability,
that are significantly evident in SCR shape, can affect the performance of this
approach [27].

Another GSR signal decomposition method, presented by Benedek and
Kaernbach in [6], is based on nonnegative deconvolution, called Discrete Decom-
position Analysis (DDA). This approach lies on the nonnegativity of the driver
function and maximal compactness of its impulses (i.e. peaks). Same authors
also proposed the Continuous Decomposition Analysis (CDA) based on a stan-
dard deconvolution algorithm. Both the overmentioned decomposition methods
are widely used and freely available in the Ledalab toolbox [4]. In this case, the
concept of single and discrete response is replaced by a continuous measure of
SCR (i.e. phasic activity - an indicator of sympathetic activity) and a response
window (indicator of event-related activity).

3 Materials and Methods

3.1 The IoT-Enabled Sensing Device

Experimental sessions were performed using a single wearable, the Empatica E4
[19], an IoT-enabled and multi-sensor wristband device designed to comfortably
acquire in real-time data during everyday life. As specified by the manufacturer,
the device hosts four sensors, namely a photoplethysmographic sensor (PPG)
sampled at 64 Hz, a 3-axial MEMS accelerometer (sampling frequency, fs = 32
Hz), a GSR sensor (fs = 4 Hz), and an optical thermopile (fs = 4 Hz).

This study only considers the signals generated by the GSR sensor (see Table
1 for further technical details), which measures the electrical conductance of the
skin from the bottom of the wrist, by applying an extremely small amount
of alternating current between two silver-coated electrodes embedded into the
device bracelet.

Experimental tests involving the IoT-enabled E4 device can be conducted
in two different modalities: streaming and recording mode, with a claimed bat-
tery life >20 hours and >36 hours, respectively. In our study, participants used
the Empatica device in real-time streaming mode, connected via Bluetooth Low
Energy (BLE) to the mobile App (i.e., E4 realtime) running on a smartphone.
The recorded samples are automatically uploaded and safely stored in the E4
Connect cloud-based repository, where also the session duration, device serial
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Table 1. Technical specification of the GSR sensor.

Parameter Value [Units]

Sampling frequency 4 [Hz]

Resolution 1 digit ∼900 [pS]

Range 0.01–100 [µS]

Alternating current (max 100 µA) frequency 8 [Hz]

number and session date are available as well. Following the data collection ses-
sion, data acquired can be downloaded as a compressed folder (.zip), containing
one .csv file for each sensor and an additional file (named tags.csv) related to
events marked during a session. The overall GSR sensing and data acquisition
process is graphically shown in Fig. 2.

Fig. 2. The E4 IoT-enabled GSR data acquisition process: following the measuring
session, data can be retrieved from the Empatica cloud platform.

Concerning the GSR files, data samples given in microSiemens (μS) are listed
in a single-column format, after indicating the starting time (t0, expressed in
UTC) of the acquisition process in the first row, and the sampling rate in the
second one.

3.2 Data Collection

Six healthy subjects (3 males and 3 females, aged between 20 and 60 years old)
were enrolled in this study. Before starting the data collection, participants were
briefed on the study procedure, and an informed consent was signed.

To avoid as much as possible any distraction during the signal acquisition
sessions, the participants were left alone in their room, and asked to lay on a bed
and relax with closed eyes. The E4 was placed on the dominant wrist to acquire
the skin electrical signal. Prior to signals registration performed, volunteers were
asked to push the event-marker button located on the wristband, at the start
and at the end of each acoustic stimulus, to enable the automatic real-time
annotation of sessions (in the tags.csv file).
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The overall data acquisition lasted about 12 min (see Fig. 3): i) 5 min at
resting condition where the physiological reference baseline was collected with
the subject relaxed; ii) 2 min (from 05:30 to 07:00 min:s; minutes:seconds) where
physiological changes were measured. In particular, sound stimuli were played
at 05:30 min:s, 06:30 min:s, and 07:00 min:s through headphones to the subject;
iii) 5 min again at resting condition.

Fig. 3. Schematic representation of the temporal structure of the auditory stimulation
sessions presented to the participants.

Audio clips, lasting 6 seconds per each, were extracted from the Interna-
tional Affective Digitized Sounds (IADS-2) database [33], that contains a col-
lection of sounds rated in terms of valence (pleasantness), arousal (intensity
of sensations) and dominance (control over sensations) according to the 9-point
Self-Assessment Manikin (SAM) scale [7]. Based on the unpleasant valence score,
the sounds listed in Table 2 were selected for the current study.

Table 2. Valence, arousal and dominance scores (dimensionless values, mean value ±
standard deviation) of the selected sounds.

Sound (no. IADS) Valence Arousal Dominance

Scream (no. 275) 2.05 ± 1.62 8.16 ± 2.15 2.55 ± 2.01

Car wreck (no. 424) 2.04 ± 1.52 7.99 ± 1.66 2.29 ± 1.74

Buzzer (no. 712) 2.42 ± 1.62 7.98 ± 1.99 2.84 ± 2.11

4 Data Processing

The GSR signal acquired has to be first pre-processed in order to remove noise
and possible motion artefacts. Electrical noise is reduced by applying a low-pass
filter with a small cut-off frequency (generally <1 Hz), and similarly the motion
artefacts with both a low pass filtering and manual inspection of the signal [32].
Once the GSR signal has been pre-processed, it can be decomposed in SCL and
SCR components.
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4.1 Synthethic GSR Signals

Based on the work by Jain et al. [26], and in order to evaluate the recovery
accuracy of the proposed approach, the following parameters were defined:

– impulse response vector h;
– time steps γ and δ;
– approximately sparse vectors x ∈ Xs

δ and b ∈ Bc
γ with a certain number s

of peaks and a number c of baseline jumps; x was obtained by taking the s
significant components uniformly at random, filling such components with a
random vector (characterized by independent and identically exponentially
distributed entries) and then, by adding a rescaled standard Gaussian ran-
dom vector with l1 norm δ; Db was computed by selecting the c significant
components uniformly at random, filling such components with a standard
Gaussian variable, and then by adding a rescaled standard Gaussian random
vector with l1 norm γ;

– the noise n, as rescaled Gaussian random vector with l2 norm equal to ε =
0.01;

All these parameters allow to define:

Dy = DThx + αDb + n, (1)

where α is the scaling factor applied to Db related to DThx and T a Toeplitz
matrix constructed from the vector h.

5 Test Implementation and Results

To verify the feasibility and accuracy of the proposed CS-based approach, the
experimental tests were preliminarily carried out on synthetic GSR signals, for
which the amount of SCR peaks was defined a priori, and then on real GSR
signals to acoustic stimuli of Table 2.

5.1 Preliminary Analysis on Synthetic GSR Signals

In a preliminary analysis the feasibility of CS framework for GSR signals was
evaluated on synthetic GSR signals. In this test only the peak vector x was recon-
structed. The figure of merit used to analyze the reconstruction performance is
the Recovery Error (RE) [2], defined as the norm of the difference between the
original peak vector x and the reconstructed peak vector x̂, divided by the norm
of the original peak vector. Thus, RE can be written as:

RE =
‖x − x̂‖2

‖x‖2
. (2)
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Figure 4 illustrates the RE diagrams obtained for three different values of the
scaling factor α = {0.01, 0.1, 1}. The diagrams were computed depending on the
number of SCR peaks chosen in the set s = {10, 20, . . . , 240} and the number
of baseline jumps in the set c = {10, 20, . . . , 350}. Specifically, 5 synthetic GSR
signals were randomly generated for each value of peaks amount in the set s. RE
was firstly computed for each synthetic GSR signal and, then, the obtained RE
values were averaged. All the possible combinations between peaks and baseline
jumps of average RE are reported as colored pixels. The three diagrams show
that when scaling the magnitude of the baseline component, through a lower
factor α, a lower average RE is obtained.

Fig. 4. Diagrams of RE depending on the number of GSR peaks s and baseline jumps
c, for three values of the scaling factor α: a) 0.01, b) 0.1, c) 1.

5.2 Test on Real GSR Signals

In the second test the entire phasic component of real GSR signals was recovered.
In particular, the phasic component was estimated as the convolution between
the reconstructed peak vector x̂ and the impulse response vector h, obtained by
sampling at 4 Samples/s the bi-exponential function:
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f(u) = 2(e−u/τ1 − e−u/τ2) (3)

with u ∈ [0, 40], τ1 = 10 and τ2 = 1.
Figures 5, 6, 7, 8, 9 and 10 show the reconstruction of the phasic component

of the GSR signals acquired by 6 subjects, as described in Subsect. 3.2. The fig-
ures report all the intermediate signals step-by-step, till the final reconstruction
phase. The colored vertical lines indicate the moments when the acoustic stimuli

Fig. 5. Step-by-step reconstruction for subject 1.

Fig. 6. Step-by-step reconstruction for subject 2.
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occurred. In particular, each figure illustrates: a) the acquired GSR signal y; b)
the GSR signal filtered by the matrix D; c) the reconstructed peak vector x̂; d)
the reconstructed phasic component x̂ ∗ h. The obtained results exhibit a good
reconstruction of GSR phasic component for all the 6 subjects.

Fig. 7. Step-by-step reconstruction for subject 3.

Fig. 8. Step-by-step reconstruction for subject 4.
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Fig. 9. Step-by-step reconstruction for subject 5.

Fig. 10. Step-by-step reconstruction for subject 6.

6 Conclusion

In this work, a decomposition method based on the approach proposed by Jain et
al. [26] has been employed, to reconstruct GSR signals through CS framework.
In particular, the reconstruction was preliminarly evaluated on peaks of GSR
signals that were synthetically generated, in order to verify the feasibility of the
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decomposition method and its reliability in peaks reconstruction. Subsequently,
the reconstruction was tested on real signals, experimentally acquired with a
wearable device from 6 subjects, in response to unpleasant acoustic stimuli. In
this case, the entire phasic component of the GSR signal was reconstructed.
From the obtained results, a good reconstruction of GSR phasic component can
be observed. The proposed method could be exploited to analyse the reaction of
subjects exposed to unpleasant sounds in the long-term, as it may be the case
for workers in constructions or harsh industrial environments.

Future investigations will be devoted to recover the whole GSR signal, includ-
ing the tonic component, that is determined by several individual factors (e.g.
gender and age), irrespective of any stimulus. Besides, future studies will be
performed on a bigger set of signals, by involving more subjects as well as other
devices for GSR acquisition.
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