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Abstract

Our analysis shows that the preservation of intact forest ecosystems is indispens-
able to protect climate and biodiversity in the long term, and the health and well- 
being of humanity. Despite this, the destruction of the last intact ecosystems 
(especially primary and old-growth forests) is increasing at rapid pace. This 
applies particularly to tropical forests but also to the last European primeval for-
ests. The cause lies in humankind’s gigantic hunger for resources, whether it be 
woody biomass or arable land to produce beef, feedstuffs such as soya, palm oil, 
rubber, etc. The transition to a post-fossil society and the partial replacement of 
fossil fuels with woody biomass is further pushing this development and there-
fore requires appropriate legal containment to finally achieve sustainable resource 
and forest management. Apart from that, demand-sight mitigation measures that 
steer consumption patterns (particularly but not only) in the western world, i.e. 
meat and biomass consumption, alongside frugality strategies are highly 
necessary.

At the same time, the book critically reviewed the potentials of afforestation 
and reforestation for climate mitigation, which is often presented as the new 
saviour to fulfil the commitments of the Paris Agreement and to reach climate 
neutrality in the future. It became clear that ultimately only biodiverse and thus 
resilient forests can function as a C sink in the long term (!). However, in the 
short term, the C storage capacity of newly planted forests is almost negligible 
and very small. In fact, due to necessary interventions in the soil, young forests 
are frequently a source of CO2 and do not function as a sink. Potential trade-offs 
with regard to food security, biodiversity protection, e.g. of species-rich grass-
lands and wetlands, and the total amount of land available also come into play. In 
addition, existing forests worldwide are currently reducing their original sink 
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capacity and release more CO2 into the atmosphere. This is because of changing 
environmental conditions such as long dry seasons often coupled with unsustain-
able forest management. Overall, the expected future sink capacity of newly 
planted or existing forests is therefore often overestimated.

Nevertheless, monitoring and measuring GHG fluxes in forest ecosystems as 
accurately as possible is a necessary prerequisite for policy approaches (see 
Chap. 5). It became clear that this is very challenging. To date, it is hardly pos-
sible to achieve an accurate measurement of GHG fluxes in forest ecosystems 
and to monitor the development of forest ecosystems in a globally comprehen-
sive and accurate manner. The problem of depicting is comparatively large in 
forest ecosystems as they are influenced by multiple factors. Efforts to reduce the 
problem of depicting as best as possible are therefore necessary. However, the 
problem will always remain to a certain extent which in turn has to be considered 
when developing policy instruments.

In this chapter, the importance of forests in the climate – and biodiversity – dis-
course is discussed on the basis of natural scientific data, which is essential for the 
development of effective policy instruments. Therefore, the forests’ potential to 
function as a nature-based solution to mitigate the climate and biodiversity crises is 
investigated. Firstly, it is outlined why forest ecosystems are essential for the stabil-
ity of the global climate and biological diversity in general, and which factors are 
driving their degradation and destruction. Secondly, their emission saving potential 
is pointed out in more detail taking into consideration afforestation and 
reforestation.

4.1  The Importance of and Risks for Existing 
Forest Ecosystems

This section explains firstly why forest ecosystems are important for the planet and 
humanity and how they can be categorised. Thereupon, it identifies risks, respec-
tively drivers of forest loss and forest degradation.

4.1.1  Importance of the World’s Forest Ecosystems

Today, forests cover approximately 31% of the world’s terrestrial surface, whereby 
49% are evaluated as relatively intact and 9% are fragmented, showing little or no 
connectivity (FAO and UNEP 2020, xvi). Forests provide manifold services to 
nature, humankind and the economy. First of all, they function as an essential basis 
of life on earth, providing numerous ecosystem services. Water and soil protection 
are important to name in this respect, next to the purification of air. They purify the 
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air, prevent soil erosion, regulate water flows and serve as huge water storages, 
which they are also able to purify (Eikermann 2015; Brockerhoff et al. 2017). They 
can be distinguished from forest-free areas by higher humidity, lower temperature 
fluctuation and wind protection (Brockerhoff et al. 2017). Concerning the economy, 
forests deliver wood as a raw material, e.g., as fuelwood and for innumerable manu-
facturing processes (industrial wood, but also non-wood products such as bioplas-
tics) and therefore play a major role in the transition to a post-fossil society. At the 
same time, their social functions: recreation and ecotourism, next to spiritual, cul-
tural and heritage values, continue to play a significant role (Eikermann 2015, 15 
et seq., 2018, 416). As they store about 45% of all terrestrial carbon (Bonan 2008; 
Zhao et al. 2019), forests are potential carbon sinks that help to mitigate the climate 
crisis. In addition, forests accommodate 80% of global biodiversity (IPBES 2019; 
European Commission 2019) and play a key role in protecting biological diversity. 
In the context of their importance for biodiversity, intact forest ecosystems are 
essential to prevent health risks such as pandemics whose major global driver is 
land-use change (IPBES 2020, 6; UNEP and ILRI 2020, 16 et seq.).

As nature-based solutions, forest ecosystems provide different values to biodi-
versity and climate protection depending on their state or type of re-growth (mono-
cultural or species-rich, site-adapted, natural forests). This is why a further definition 
and possible classification of forest ecosystems appears valuable. According to the 
Food and Agriculture Organisation (FAO), forests are defined as an area of at least 
0.5 hectares covered with trees that are higher than 5 meters or are able to reach this 
height in situ, and a canopy cover of more than 10% (FAO 2018, 4). The absence of 
other predominant land use such as agriculture or settlements is crucial. Fruit or oil 
palm plantations, olive chards or most agroforestry systems are thus not considered 
as forests according to the FAO definition. However, according to this definition 
nothing is said concerning the state and the provided ecosystem functions (FAO 
2018, 4). Therefore, it is useful to classify forests further, e.g., into primary, second-
ary or old-growth forests. Primary forests have never been logged but might be used 
by indigenous communities that contribute to their diversity and protection (CBD 
2006). They are characterised by their capacity to naturally regenerate, native tree 
species and functioning ecological processes without significant human influence. 
They account for 34% of the world’s forests (FAO and UNEP 2020, xvi). Secondary 
forests have recovered either artificially or naturally after being logged (CBD 2006). 
Definitions of old-growth forests are ambiguous (Wirth et al. 2009). Here we follow 
the definition of the CBD according to which old- growth forests are old stands 
within either primary or secondary forests where old trees have accumulated in a 
way to form a different ecosystem than any younger class parts of the forest. Intact 
old-growth forests are – as primary forests – mainly characterised by their devel-
oped structures, which act as a distinct forest ecosystem. Plant, animal and microor-
ganism communities and their abiotic environment form a functional unit (CBD 
2006). This is why in particular primary and old growth forests are so-called biodi-
versity hotspots and deliver irreplaceable habitats for plants, animals and fungi 
(Watson et  al. 2018; Di Marco et  al. 2019; Hawes 2018; European Commission 
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2020, 5). Biodiversity hotspots contain at least 1500 endemic species found nowhere 
else on earth and have lost at least 70% of their primary native vegetation (CEPF 
2021). In general, when the recruitment, growth and mortality of trees is balanced, 
their ecosystem is highly resilient and able to regenerate itself (European 
Commission 2020; McDowell et al. 2020). Thus, particularly intact forest ecosys-
tems, provide additionally high resilience against natural disasters and minimise the 
risk of rapidly spreading pandemics (Wilkinson et al. 2018; Gómez- González et al. 
2020; European Commission 2020, 2; UNEP and ILRI 2020). They therefore carry 
a significant value to all human life.

However, forest degradation and deforestation are progressing, particularly at the 
expense of primary forests as will be shown in the following Sect. 4.1.2. This can be 
observed in Latin America (e.g., Brazil, Nicaragua, see INPE Data 2020; Tyukavina 
et  al. 2018; Tobar-López et  al. 2019), Asia (e.g., Indonesia, see Tyukavina et  al. 
2018) and Sub-Saharan Africa (e.g., Congo, see Tyukavina et al. 2018) concerning 
the last remaining tropical rainforests. But also in Europe, the last primary forests 
are threatened, e.g., in Rumania and Poland (Niţă 2015; European Commission 
2017, 38, 2020; Sabatini et al. 2018).

4.1.2  Drivers of Forest Loss and Forest Degradation

Understanding the drivers of forest degradation and deforestation that risk their 
potential to mitigate climate change and biodiversity loss is a prerequisite for suc-
cessful forest governance. The European Commission defines deforestation as “the 
permanent destruction of forests and woodlands and conversion to non-forest uses” 
and forest degradation as “the loss of the forests’ capacity to provide their essential 
goods and services” (European Commission 2021). In general, drivers of forest loss 
can be of natural or anthropogenic origin.

Today, the pressure on forests occurs due to diverse needs, which poses different 
risks to forests: While growing populations and poverty threaten forest conserva-
tion, the consumption patterns of more affluent populations drive deforestation 
(FAO and UNEP 2020, 82). Consumption patterns leading to deforestation and for-
est degradation (embodied deforestation) are linked to an increasing demand for 
agricultural and forest products that in turn is driven by global market pressures, 
dietary preferences and loss and waste along agricultural value chains (IPCC 
2019b). In total, about 75–80% of today’s global deforestation is caused by the 
expansion of agricultural land, followed by the extraction of timber, the expansion 
of infrastructure as well as mining activities and wildfires each accounting for about 
7–10% (Kissinger et al. 2012; Curtis et al. 2018; ECOFYS et al. 2018a; European 
Commission 2019). The expansion of agricultural land is mostly linked to large- 
scale land acquisition and land-grabbing to establish agro-industrial plantations, 
commercial ranching and timber extraction or mining activities (Chen et al. 2019; 
Davis et al. 2020). In this context, also land speculation plays a strong local role 
(WWF 2021a, 7). Drivers of deforestation are therefore old and new; however, they 
are not static but their influence, and those of actors, changes over time as well as 

4 Potential and Limits of Forest Ecosystems on Climate and Biodiversity Protection…



95

across regions which mainly depends on political and market shifts (WWF 2021a, 
10, 28). The major role of livestock farming and fossil fuels in this respect have 
already been mentioned in the introduction of the present volume. A huge part of 
embodied deforestation is based on a demand and associated consumption patterns 
distant from the area of impact and outweighs local causes of deforestation, such as 
subsistence agriculture or small-scale timber extraction, e.g., for fire and fuelwood 
(Kissinger et al. 2012; European Commission 2019; Skutsch and Turnhout 2020). 
This becomes even more significant considering that the average rate of global net 
forest loss is declining Because in some countries forest loss was reduced and in 
others there were forest gains, the average rate of net forest loss declined by 40% 
between 1990–2000 and 2010–2020 (FAO 2020a). However, forest decline differs 
locally: While the forest area in Europe is increasing (Forest Europe 2020, 31), two 
thirds of global forest cover loss occurred in the tropics and sub-tropics from 2000 
to 2018 (WWF 2021a, 20). An accelerating decrease concerns primary tropical for-
est with a loss of 12% from 2019 to 2020, whereas the loss in Brazil, that is linked 
to forest fires and clear-cutting, was particularly high with 25% (Weisse and 
Goldman 2021). In Latin America, most land-use changes at the expense of forests 
are connected to soybean and beef, next to palm oil cultivation (Henders et al. 2015; 
Vijay et al. 2016), while palm oil production is the major driver of deforestation in 
South-East Asia (Vijay et al. 2016). In total, mostly export related soy, beef, palm 
oil, coffee and cocoa cultivation are responsible for almost 80% of tropical defores-
tation (European Commission 2013; detailed overview: ECOFYS et  al. 2018a, 
177). This is why export-oriented agricultural policies can be identified as the main 
drivers of deforestation (Hautala 2018, 33). Apart from that, the production of bio-
ethanol based on starchy (corn, maize) or sugar-containing plants (sugar beet, sugar 
cane) increases land-use pressures worldwide (Lapola et  al. 2010; Hennig 2017; 
Smith et al. 2014, 872), along with investments in large-scale production of paper, 
rubber or shrimp from mangrove areas as well as mining projects (European 
Commission 2013, 2019; ECOFYS et al. 2018b). Unsecured land rights of small- 
scale farmers and/or indigenous peoples combined with insufficient or dismantled 
environmental policies in countries rich in tropical forests further encourage defor-
estation. However, it remains true that tropical deforestation is significantly sup-
ported by China and the EU (Rajão et al. 2020; European Commission 2013) as the 
major importers of goods such as beef, soy or minerals (Ferrante and Fearnside 
2019; Kehoe et al. 2019; Rajão et al. 2020; Scheidel et al. 2020). A recent study by 
the WWF illustrates the impact of European consumption patterns on tropical defor-
estation; in 2017, 16% of deforestation associated with international trade can be 
linked to the EU, with Germany ranking first (WWF 2021b, 12 et seq.). The most 
consumed commodities from 2005 to 2017 were soy (31%), palm oil (24%), beef 
(10%), wood products (8%), coffee (5%), cocoa (6%) (WWF 2021b, 21).

Moreover, human-induced climate change is driving further loss and degradation 
of forests which is another compelling argument to combat climate change itself. 
Tree mortality is estimated to have doubled over the past four decades (Jofre et al. 
2011; Craig et al. 2015; McDowell et al. 2020). Throughout Europe, increasing tree 
mortality leads to younger forests which negatively affects forest biodiversity and 
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carbon storage potential (Senf et al. 2021). Driven by higher temperatures and long 
droughts, forest fires have reached a globally thus far unprecedented extent (Ryan 
et al. 2013; Michael and Tilman 2017; INPE Data 2020). In the future, tree mortality 
might further increase due to extreme weather events, such as extensive droughts 
and storms that further exacerbate wildfires or pest infestation (Ryan et al. 2013; 
Park Williams et al. 2013; Bugmann et al. 2019). Thus, natural causes of deforesta-
tion like wildfires or wind throw by storms and biotic attacks (insects, pathogen 
outbreaks) are exacerbated by human-induced climate change (Bond and Keeley 
2005; Ryan et  al. 2013; Park Williams et  al. 2013; ECOFYS et  al. 2018a, b; 
Bugmann et al. 2019; McDowell et al. 2020). However, the use of forests as a car-
bon sink is disputed, particularly when included in accounting rules, as will be 
shown in Sect. 4.2.2, sink capacity is linked to several uncertain factors. Indeed, 
with deteriorating forest conditions due to the advancing climate crisis, it is not 
certain if and how successful forest regeneration and forest preservation as such will 
be (on the emerging vulnerability of European forests due to climate change see 
Forzieri et al. 2021; see also Sect. 4.2.1). For forest biodiversity, “loss of habitats 
and species due to deforestation and forest degradation” (FAO and UNEP 2020, 82) 
is by far the greatest threat.

4.1.3  Interim Conclusion and Derivable Policy Implications

Today, not least due to the transition to a post-fossil society, forests worldwide are 
under unprecedented pressure of use and are exposed to changing climatic condi-
tions, threatening the existence of the last primary forests in particular. Thus, in the 
future, policy instruments will need to be designed to interact in a way to halt the 
globally accelerating decline of forests and either strictly protect remaining pri-
mary, old growth and species-rich natural forests, following the principle of segre-
gation, or ensure a sustainable and multifunctional forest use in clear favour of 
biodiverse forest ecosystems. Therefore, forest cover worldwide needs to be mapped 
and monitored more sufficiently (Luyssaert et al. 2008; Sabatini et al. 2020).

Considering the problem of embodied deforestation, it is important to highlight 
that the demand-side is neither locally nor globally fixed but is determined by con-
sumption patterns which can (and have to be) changed by effective policy instru-
ments. Thus, a strong focus needs to be set on demand-sight climate mitigation 
measures to minimise land-use pressures in favour of intact forests, tackling the 
livestock farming and the biomass sectors in particular (Smith et al. 2014; Hennig 
2017; Ekardt 2019; Weishaupt et al. 2020). However, the implementation of policy 
instruments addressing the demand-sight and thus the drivers of forest loss are also– 
as we will show in the governance analysis in Chap. 5 in more detail – thus far 
widely missing so that direct and indirect land-use changes accelerate (ECOFYS 
et al. 2018a; European Commission 2013, 2019).

Concerning the use of biomass, not only the construction, textile or chemical 
sectors, but also the substitution of fossil-fuel based plastics might lead to a higher 
demand for timber in the future (Stubenrauch 2019; Verkerk et  al. 2020). It is 
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therefore prudent to foster the reuse of resources, enhanced recycling and the cas-
cade utilisation of wood. Forest governance has to be integrated into a concept of 
circular economy, including efficiency, consistency and frugality strategies (Ted and 
Houten 1994; Claudia and Stern 2017; Ekardt 2019; Stubenrauch 2019; Köhl et al. 
2020). The latter is even relevant when deadwood or agricultural waste is used for 
energy purposes. Coarse woody debris releases carbon more slowly and is more 
compliant with the natural carbon cycle than if energetically used (Smith et al. 2014, 
871; Pfeifer et al. 2015) and agricultural wastes are important organic fertilisers that 
can contribute to the substitution of mineral fertilisers in the future (Smith et al. 
2014; Stubenrauch 2019, 871; Garske 2020).

To guarantee the protection and the reconciliation of both climate and biodiver-
sity, crucial is that conflicting goals are to be avoided and synergies be used. This is 
also essential for facilitating health provisions by forests, as reforestation and affor-
estation in form of plantations can, next to forest clearance, be responsible for out-
breaks of infectious diseases (Morand and Lajaunie 2021). We have already seen so 
far that reducing land-use pressure caused by fossil fuels and animal husbandry 
could be a key element for this. Furthermore, reducing the usage of land-based bio-
mass might therefore bear immense potential to reduce CO2 emissions and decrease 
land use pressures at the same time (Smith et al. 2014, 872).

4.2  A Critical Review of Natural Scientific Data on Forests 
in the Climate Discourse and Implications 
for the Legislative Process

The carbon storage potential of forests is increasingly stressed within the climate 
mitigation debate. Thus, the following two sections seek to answer two main ques-
tions with major significance regarding the development of policy instruments: 
Firstly, which contribution to climate (and biodiversity) protection can be expected 
to be provided by the forest sector and particularly afforestation projects in the 
future, and secondly, can this contribution be reliably measured against a specific 
baseline?

4.2.1  Emission Saving Potential of Forests, Interlinkages 
with Biodiversity Protection and Depictability

Forest ecosystems contribute to approximately 50% of terrestrial net primary pro-
duction and store approximately 45% of total terrestrial carbon and are therefore a 
crucial element in the global carbon cycle (Bonan 2008; Zhao et al. 2019). Forest 
biomass becomes a carbon sink as soon as the biological CO2 uptake is higher than 
the total release of GHGs (e.g., through respiration, forest fire, profound distur-
bances; see Griffiths and Jarvis 2004). The net carbon balance of forest ecosystems 
is regularly positive and even old growth forests are not per se carbon neutral (Odum 
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1969; Lal 2005) and are able to further sequester carbon (Carey et al. 2001; Luyssaert 
et al. 2008; Jiang et al. 2020).

The carbon sequestration rate of forests depends on the type, age and density of 
trees, soil properties as well as latitude and connected climatic influences (e.g., 
temperature, precipitation, CO2 concentration, nitrogen (N) deposition, and ozone 
(O3) exposure) (Jandl et al. 2007; Luyssaert et al. 2008; Grüneberg et al. 2014; de 
Vries et al. 2017; Büntgen et al. 2019). With increasing latitude, the potential of 
forests to store carbon generally decreases due to a reduced net productivity (Erb 
et al. 2018). Tropical forests, that at the same time function as biodiversity hotspots, 
this have the largest potential to store carbon.

The total carbon storage in forest ecosystems consists of carbon sequestered in 
the forest biomass (including stem biomass, coarse woody debris, roots) and in the 
soil organic matter (SOM) (Lal 2005; Luyssaert et al. 2008; Grüneberg et al. 2014). 
Soils store most of the total carbon in forest ecosystems (Jandl et al. 2007; Luyssaert 
et al. 2008; Zhao et al. 2019; Terrer 2021). The amount of carbon sequestered in 
forest soils depends on their specific characteristics, which in turn are influenced by 
the upstanding trees and their productivity. Luyssaert et al. (2008) estimate for old- 
growth forests older than 200 years that they sequester 2.4 ± 0.8 tons of carbon per 
hectare and year (t C ha−1 year−1) on average, thereof 0.4 ± 0.1 t C ha−1 year−1 in the 
stem biomass, 0.7 ± 0.2 t C ha−1 year−1 in the coarse woody debris (deadwood) and 
1.3 ± 0.8 t C ha−1 year−1 in the roots and the SOM. Coarse woody debris is often 
underestimated as a carbon reservoir and releases carbon more slowly and is more 
compliant with the natural carbon cycle than, for example, energetically used woody 
biomass does (Smith et al. 2014, 871; Pfeifer et al. 2015).

Degradation processes or unsustainable forest management might further harm 
the carbon stock of forest ecosystems. This is why the sink capacity of forests is 
regularly overestimated. According to Tubiello et al. (2021), the net contribution of 
worldwide forests for the period 2011–2020 was calculated to be less than −0.2 Gt 
CO2 year−1, when net forest conversion emissions (3.1 Gt CO2 year−1) were offset 
with net removals from forest land (−3.3 Gt CO2 year−1) (Tubiello et al. 2021). For 
the Amazon rainforest it was proven that forest degradation contributed three times 
more to the loss of aboveground biomass than deforestation (Qin et al. 2021). Apart 
from that, the exposure of the soil during silvicultural processes (logging or plant-
ing) can lead to a higher decomposition of SOM and thus to considerable carbon 
losses from belowground biomass (Jandl et  al. 2007; Luyssaert et  al. 2008). 
Moreover, the capacity of forest ecosystems to store carbon might be reduced under 
climate change conditions that do not enhance forest growth over the long term due 
to the expected accelerated life-cycles of forests and additionally lead to compara-
ble high losses of carbon pools in the below ground biomass (Park Williams et al. 
2013; Gatti et al. 2014; Büntgen et al. 2019; Yu et al. 2019; Nottingham et al. 2020; 
Varney et al. 2020):

• Firstly, photosynthetic activity of mature trees is not expected to be further 
enhanced due to higher atmospheric CO2 concentrations (Carey et al. 2001; Jandl 
et al. 2007; Luyssaert et al. 2008; de Vries et al. 2017; Jiang et al. 2020) and even 
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the stimulated growth of younger forests goes along with enhanced respiratory 
fluxes. Thus, large amounts of the additionally sequestered carbon are released 
through enhanced respiration (Jandl et al. 2007; Veldman et al. 2019; Jiang et al. 
2020). Apart from that, a transition to a period dominated by vapor pressure defi-
cits that significantly restrict tree growth, health and thus their longevity, is 
expected (McDowell et  al. 2020). There are various indications that a higher 
stem productivity of trees in their early growth period leads to an earlier biomass 
turnover rate and thus a shorter carbon residence time (Bigler and Veblen 2009; 
Büntgen et al. 2019; Yu et al. 2019; McDowell et al. 2020).

• Secondly, extensive droughts already cause significant carbon losses in tropical 
forests which in regular (more wet) years function as carbon sinks, but due to 
missing precipitation seasonally turn into carbon sources (on the example of the 
Amazon Gatti et al. 2014). Generally, already small changes in precipitation can 
show significant effects on the carbon fluxes between forest ecosystems and the 
atmosphere (Naudts et al. 2016; Zhao et al. 2019).

• Thirdly, also in general, it is expected that soils release more carbon to the atmo-
sphere due to a higher microbial activity. This has been proven for temperate lati-
tudes as well as for the tropics, where carbon losses will be particularly high and 
(Nottingham et al. 2020; Varney et al. 2020) and are expected to increase by up 
to 55% due to further changing climate conditions (Nottingham et al. 2020).

It becomes clear that the sensitivity of forest ecosystems mainly influenced by any 
kind of soil disturbances, climate change and hereby induced weather phenomena, 
next to the expectable earlier tree mortality, means there are significant uncertainties 
in predicting the development of the carbon stock potential of forest ecosystems 
over time. All these factors would need to be considered in earth system model 
(ESM) projections, which is, however, hardly feasible due to the high intrinsic 
uncertainties (Luyssaert et al. 2008; Bigler and Veblen 2009; Steffen et al. 2018; 
Bugmann et al. 2019; Büntgen et al. 2019; Yu et al. 2019; Wieding et al. 2020). This 
is why, e.g., the shortened life span of trees is hardly considered in the modelling so 
far and also self-reinforcing processes regarding the loss of SOM are difficult to 
model accurately (Büntgen et al. 2019; Varney et al. 2020). This demonstrates how 
difficult it is to accurately depict increased or decreased sink capacities of forest 
ecosystems and therefore has far-reaching consequences for policy instruments 
based on them (see the REDD+ approach, Sect. 5.1.6 or the EU’s LULUCF regula-
tion, Sect. 5.2).

4.2.2  Afforestation and Reforestation – A Cheap and Feasible 
Solution to Combat the Climate Crisis? On False Hopes 
and the Problem of Depicting

Afforestation and reforestation are both associated with planting and/or deliberately 
seeding trees on land (FAO 2018, 6). However, in contrast to reforestation, affores-
tation implies land-use changes (FAO 2018, 7) as it includes planting forests on 
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lands that did contain tree cover before (IPCC 2000). Afforestation should therefore 
be assessed differently from the reforestation of areas that are still classified as for-
est, e.g., due to a canopy density higher than 10% (FAO 2018, 6) meaning that for-
ests are planted on land that had already contained forests before (IPCC 2000). The 
FAO, however, connects both with planting and/or deliberate seeding activities, 
only excluding natural forest regeneration processes (FAO 2018, 6). Terms such as 
“global tree restoration potential” (Bastin et al. 2019) therefore usually include both 
afforestation and reforestation as they equally refer to the planting and/or deliberate 
seeding of trees (Bastin et al. 2019; see, e.g., also Doelman et al. 2020). The bound-
aries between afforestation and reforestation become partially blurred in practice. 
Generally, planting trees as a climate change mitigation measure is regularly con-
sidered to be economically feasible already with CO2 prices below USD 50/t CO2 
(see in detail Doelman et al. 2020). In the EU it is envisagedto plant at least 3 billion 
additional trees according to the EU’s biodiversity strategy (critically Selva et al. 
2020). The Bonn Challenge is aiming to globally restore 150 million hectares of 
deforested and degraded land by 2020 and 350 million hectares by 2030 based on 
the concept of forest-landscape restoration (IUCN 2020). Thus far, however, the 
challenge suffers from insufficient participation and requires better forest account-
ing on a national level (Bastin et al. 2019).

Modelling results regarding the potential to sequester carbon globally by the 
additional planting of trees until 2100 is, however, challenging and varies – due to 
contrary assumptions – considerably between 176 Gt CO2 (Sathaye et al. 2006) and 
up to 800 Gt CO2 (Humpenöder et al. 2014). Bastin et al. (2019) claim that globally 
the conversion of 1 billion hectares into forests with a canopy density higher than 
10% could sequester approximately 205 Gt CO2 under current climatic conditions 
(Bastin et al. 2019). Yet, they state that emission reductions might decline under 
changing climate conditions and that, in this regard, the model contains substantial 
uncertainties (Bastin et al. 2019). According to Veldman et al., the calculated cli-
mate effect is overestimated by at least the factor 5, as SOM gains are most probably 
lower, the albedo effect is inadequately considered and the afforestation is included 
in grasslands and savannas rich in biodiversity, where wildfires and omnivores natu-
rally control the forest cover (Veldman et  al. 2019). Therefore, afforestation can 
pose major threats to biodiversity-rich natural ecosystems (Bond and Keeley 2005; 
Veldman et  al. 2019; Scurlock and Hall 1998; Selva et  al. 2020) and can even 
increase the risk for spreading wildfires (de Rigo et  al. 2017; Seidl et  al. 2017). 
Concerning Europe, models of Strandberg and Kjellström reveal that afforestation 
of all unwooded areas in Europe could result in a cooling of 0.5–3 °C of seasonal 
mean temperatures, however, mostly with local and – again – hardly exactly predict-
able effects (Strandberg and Kjellström 2019) and without considering natural site 
conditions sufficiently.

In any case, modelling results and the potential contribution of afforestation and 
reforestation to climate change mitigation have to be reviewed critically due to the 
following:
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• When estimating the climate effect, next to the challenging assessment of the 
potential carbon sequestration in forest biomass (see Sect. 4.2.1), surface albedo 
and evapotranspiration (the sum of evaporation and transpiration) have to be 
considered as interdependent biophysical climatic factors. Forested areas usually 
have a lower surface albedo compared to unforested areas and conceal the high 
albedo of snow. This causes a warming effect, which is particularly prevalent in 
lower latitudes, such as the boreal zone (Bonan 2008; Strandberg and Kjellström 
2019; Kreidenweis et  al. 2016; Hennig 2017; Fuss et  al. 2021). In contrast, 
evapotranspiration of forest ecosystems interacts with clouds and influences pre-
cipitation, so that a cooling effect occurs (Bonan 2008; Strandberg and Kjellström 
2019; Kreidenweis et al. 2016). The cooling effect due to enhanced evapotrans-
piration typically prevails but is particularly pronounced in the humid, tropical 
regions. The extent of these two contradicting effects is therefore determined by 
the amount of water in the ecosystems, positively influencing the evapotranspira-
tion, and the latitude influencing the planar reflectivity together with the land-use 
changes, influencing the magnitude of the albedo effect (Henderson- Sellers and 
Meadows 1979). Therefore, afforestation and reforestation in tropical regions is 
estimated to be more effective than in more temperate regions with lower water 
availability but expectable greater changes in surface albedo (Strandberg and 
Kjellström 2019; Kreidenweis et al. 2016). In contrast, it is anticipated that affor-
estation in the boreal zone may even easily lead to adverse climate effects, mean-
ing that it might contribute to global warming (Bathiany et al. 2010; Arora and 
Montenegro 2011; Gómez-González et al. 2020).

• Apart from that, there might be a limited or even an adverse climate effect of tree 
planting initiatives caused by reinforcing disturbances under changing climate 
conditions (Seidl et  al. 2017; Bergkemper et  al. 2016; Büntgen et  al. 2019; 
Schwärzel et al. 2020; Hennig 2017; Fuss et al. 2021; Harris et al. 2021; Nabuurs 
et al. 2007). Firstly, increased tree growth requires sufficient water and nutrients 
such as nitrogen and phosphorus in order to take advantage of rising CO2 content 
in the atmosphere, which however are limited (Norby et al. 2010; Terrer et al. 
2019; McCarthy et al. 2010). Next to water shortage due to extended droughts 
this could be investigated concerning the plant available phosphorus that becomes 
further restricted under changing climate conditions, particularly but not exclu-
sively in tropical environments (Touhami et al. 2020; Hou et al. 2018; Ellsworth 
et al. 2017). Thus, expectable enhancements in forest productivity might be con-
siderably constrained by a shortage of essential nutrients such as phosphorus and 
might not occur in the expected manner. Secondly, with the increasing rising risk 
of droughts and as a result of the accelerated life cycle of trees, it is highly likely 
that tree mortality rates will continue to increase globally (see Sect. 4.1.2; 
McDowell et  al. 2020). Thirdly, as a result of complex biogeochemical pro-
cesses, the carbon budget of a forest is highly sensitive to any kind of distur-
bance. Soil disturbances regularly occur in the context of tree planting, converting 
young forests to conspicuous sources of CO2 (Luyssaert et  al. 2008, 213). 
Particularly severe and contradictory climate effects are to be expected when 
natural carbon reservoirs and biodiversity-rich wetlands or unmanaged grass-
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lands are afforested (Scurlock and Hall 1998; Baldocchi and Penuelas 2019; 
Veldman et al. 2019; Ekardt et al. 2020). Besides a loss of SOM, natural vegeta-
tion gets lost, threatening biodiversity (Baldocchi and Penuelas 2019; Veldman 
et al. 2019).

• Furthermore, deforestation with successive afforestation might not maintain the 
same effects on warming and cooling as former old growth intact forest ecosys-
tems might have done. Despite the fact that forested lands as part of the LULUCF 
sector in Europe (see Sect. 5.2.2) are still a strong sink in most of the EU Member 
States, a declining sink capacity has been recently measured due to increasing 
demand for timber and biomass for bioenergy as well as natural disturbances 
(EEA 2019, 30). According to the statistics of the FAO, the sink capacity of for-
ested land in 2020 has already declined by nearly 50% compared to 2015 (FAO 
2020b, 5). Naudts et al. (2016) claim in that respect that afforestation and forest 
management in Europe thus far did not contribute to the mitigation of climate 
change. Instead, not sustainably managed forests functioned as a net source of 
carbon (Naudts et al. 2016).

• All of this takes us to a more overarching point (see on the following Wieding 
et al. 2020 with regard to geoengineering and to the IPCC in general; Ekardt 
2021). Discussions about figures and scenarios as such are far less binding for 
sustainability research than is often assumed. Rather, it is crucial to analyse the 
background assumptions of various calculations in detail. This is often difficult 
because sometimes assumptions are not openly revealed or are even completely 
opaque. In any case, scenarios on potentials are not norms, nor are they fore-
casts – they are merely projections.

Notwithstanding, assuming favourable natural constraints for tree cover and a sus-
tainable forest management, successful tree planting projects that are evaluated 
after a longer time span of 50 or even better more than 100 or 200 years, might 
develop as a net carbon sink, especially if the interacting tree species reflect the 
natural, potential vegetation and are not regularly disturbed by logging (Erb et al. 
2018; Naudts et  al. 2016; Lawson and Michler 2014). Compared to the goal of 
reaching zero net emissions in less than two decades or even clearly before 2035, 
this is, however, a long time-span and will not substitute for mitigation measures 
with immediate effect such as phasing out fossil fuel based emissions (Ekardt et al. 
2018b; Baldocchi and Penuelas 2019; Büntgen et al. 2019; Wieding et al. 2020).

Short-term carbon pool gains by afforestation might only be achievable if former 
agriculturally used and widely degraded land is managed sustainably and possibly 
afforested. This is because, especially under intensive arable land use, SOM content 
tends to decrease and soil disturbances are regularly higher than under a forest cover 
(Post 2002, 200; Lal 2005; Fließbach et al. 2007; Scotti et al. 2013; De Mastro et al. 
2019; Fuss et al. 2021; Harris et al. 2021). This leads to another potential conflict 
associated with large-scale afforestation: food security. Particularly small-scale 
farmers could be (further) deprived of their land in the course of afforestation, 
potentially increasing dependency on food imports which might cause food prices 
to rise sharply (Kreidenweis et al. 2016; Griscom et al. 2017; Doelman et al. 2020). 
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Therefore, integrating trees into diversely managed agricultural systems seems to be 
more convincing than to afforest agricultural land on a large scale. This could gener-
ate urgently needed resilient food systems that locally contribute to reach food sov-
ereignty, mitigate climate change and preserve biodiversity (Ausseil et  al. 2014; 
IPBES 2019; Gómez-González et al. 2020). Agroforestry systems or sowing catch 
crops to diversify agricultural practices are first starting points here (Stubenrauch 
2019; Gentsch et al. 2020; Gómez-González et al. 2020). Agroforestry binds carbon 
in vegetation and soil through the combination of trees or other woody plants and 
arable crops or animal husbandry and thus stores more carbon than agriculturally 
used land without trees (Nair et al. 2009; De Stefano and Jacobson 2018).

Keeping all this in mind, the idea of fighting climate change through planting 
trees alone must be generally questioned: The effects might be much lower than 
hoped for or even adverse, as the carbon-sink capacity of young forests and the 
availability of land are overestimated while land competition and potential trade- 
offs regarding food security as well as the need for biodiversity protection are 
underestimated (Black 2011, 150 et seq.; Hennig 2017; Ekardt 2019 Ch. 1.3; Palmer 
2021). If reforestation and afforestation are considered as climate change mitigation 
measures by providing negative emission potentials, the manifold ecosystem func-
tions of forest ecosystems and their resilience, next to site-specific natural and 
socio-economic conditions, require the utmost attention (Verkerk et  al. 2020; 
Yousefpour et al. 2018; Seidl et al. 2017; Büntgen et al. 2019; Luyssaert et al. 2008; 
Forest Europe 2008; European Commission 2019). In other words: The climate 
mitigation potential of large-scale afforestation, partly overlapping with reforesta-
tion, varies widely in particular in the short term – and is regularly overrated (see 
also Table 4.1). Afforestation should only be considered if natural (and cultural) 
site-conditions are favourable and trade-offs regarding biodiversity and food secu-
rity remain low. This is, however, regularly not taken sufficiently into consideration, 
contrasting human rights and the CBD. The IPCC therefore attributes only a medium 
confidence to the climate mitigating effect of afforestation and reforestation mea-
sures, in contrast to the high confidence regarding the potential of measures further 
listed in Table 4.1.

Table 4.1 Estimated global climate effect of different mitigation options according to assess-
ments of the IPCC (2019a, b, c, 585, 586, 588)

Climate change mitigation option (selection) Potential (Gt CO2e year−1) Confidence
Forest management 0.4–2.1 Medium
Reduced deforestation and forest degradation 0.4–5.8 High
Reforestation and forest restoration 1.5–10.1 Medium
Afforestationa 0.5–8.9 Medium
Increased soil organic carbon content 0.4–8.6 High
Dietary change 0.7–8.0 High
Reduced food waste 0.8–4.5 High

aEstimates are partly overlapping with reforestation
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4.2.3  Interim Conclusion and Derivable Policy Implications

The natural scientific data highlights that preserving existing forests and halting not 
only deforestation, but essentially also the degradation of forest ecosystems as well 
as their restoration are more reasonable than large-scale tree planting at any cost. 
Like this, gains in ecosystem resilience, biological diversity and climate change 
mitigation as well as adaptation are achieved, and the latter become connected 
(Schoene and Bernier 2012; Elliot et  al. 2013; European Commission 2019, 4; 
Verkerk et al. 2020). Thus, the protection of old-growth, intact forests ecosystems 
and stopping the accelerating forest degradation and its above-mentioned drivers 
should be given a high priority concerning policy interventions. Besides, policies 
will need to focus on the sustainable restoration of degraded forest ecosystems to 
support the natural capacity of forest ecosystems and re-instate ecological pro-
cesses. In this way, not only biodiversity and climate come along together, but also 
a renewable resource pool to substitute fossil-fuel based materials is maintained in 
the long-term. To support this process, a “global system of dynamic monitoring” 
(Cook-Patton et al. 2021) that aggregates and controls restoration projects and uses 
advanced remote sensing methods is needed (Cook-Patton et al. 2021). Apart from 
that, the aforementioned can only be accomplished if drivers of deforestation and 
forest degradation are successfully addressed by policy interventions in the future 
(see Sect. 4.1.2).

The critical review of natural scientific data above showed that GHG bound in 
forest ecosystems are highly volatile and reversible and therefore much more diffi-
cult to capture than those of fossil-fuel emissions (Tubiello et al. 2021). The amount 
of additional carbon sequestered depends on a large number of mutually reinforcing 
or even opposing factors which impede exact measurement or prediction (Junfang 
et al. 2012, 2019). It can be concluded that both measurability and the prediction of 
the carbon storage capacity of forest ecosystems under future climatic conditions 
will be extremely challenging (Steffen et al. 2018; McDowell et al. 2020). When 
trying to depict the additional carbon storage potential, tree-specific and site- specific 
conditions have to be taken into account, which themselves are influenced by chang-
ing climatic conditions and further anthropogenic interventions (Naudts et al. 2016; 
Zhao et al. 2019). Site-specific soil conditions interact with vegetation and precipi-
tation and are highly sensitive, so that forest ecosystems might even seasonally 
change from a carbon sink to a source. A large number of small actors, difficulties 
in verifying single emission sources as well as problems with the monitoring occur 
additionally.

All of this does not only demonstrate that forests are in serious danger of being 
overestimated regarding their climate protection capabilities. Moreover, the highly 
heterogeneous empirical findings indicate the same massive governance problem 
that we call the problem of depicting (see Chap. 2) and that have already played a 
major role in our earlier contributions on land use in general, on biodiversity and 
especially on peatlands (Ekardt and Hennig 2015; Hennig 2017; Ekardt et al. 2018a, 
2020). This has to be considered when thinking about optimally designed policy 
instruments concerning forest governance since, for example, economic 
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instruments need a governance unit, which is easy to grasp, in order to function well 
(Ekardt 2019; Weishaupt et al. 2020; Garske and Ekardt 2021). Insofar as drivers 
such as fossil fuels or animal husbandry are addressed, such a unit is available; 
however, insofar as additional specific rules for forests are to be formulated, this is 
lacking. Whether successful forest policies should rather be driven by economic or 
command-and-control instruments or a specific mix of both opens up a new research 
question that will be evaluated in the following. In any case, to reconcile different 
policy areas concerning biodiversity protection, climate protection and biomass use 
and to implement coherent policies in line with the targets of the PA and the CBD 
will be of paramount importance for successful policy interventions in a post-fossil 
world. One policy field can never be dealt with without the other. They all have to 
focus on the implementation of a sustainable, climate-smart and biodiversity con-
serving circular economy.

4.3  Interim Conclusion

In this chapter, it was shown that the preservation of intact forest ecosystems is 
indispensable to protect the climate and biodiversity in the long term, and not least 
the health and well-being of humanity as a whole.

Despite this, the destruction of the last intact ecosystems (especially primary and 
old-growth forests) is actually increasing at a rapid pace. This applies particularly to 
tropical forests but also to the last European primeval forests. The cause lies in 
humankind’s insatiable hunger for resources, whether it be woody biomass or arable 
land for the production of beef and feedstuffs such as soya and palm oil, or materials 
such as rubber, etc. The transition to a post-fossil society and the partial replacement 
of fossil fuels with woody biomass is additionally driving this development and 
therefore requires appropriate legal containment in order to finally achieve sustain-
able resource and forest management. Apart from that, demand-sight mitigation 
measures that steer consumption patterns (particularly but not only) in the western 
world concerning meat and biomass consumption and to implement frugality are 
highly necessary.

At the same time, the chapter critically reviewed the potentials of afforestation 
and reforestation in climate mitigation, often presented as the new saviour concern-
ing the aim to fulfil the commitments of the Paris Agreement and reach climate 
neutrality in the future. It became clear that ultimately only biodiverse and thus 
resilient forests can be a carbon sink in the long term. In the short term, however, the 
carbon storage capacity of newly planted forests is almost negligible. In contrast, 
due to necessary interventions in the soil, young forests are regularly initially a 
source of CO2 and do not function as a sink. Potential trade-offs with regard to food 
security, biodiversity protection, e.g. of species-rich grasslands and wetlands, and 
the total amount of land available also come into play. In addition, existing forests 
worldwide are currently reducing their original sink capacity and releasing more 
CO2 into the atmosphere. This is due to changing environmental conditions, such as 
long dry seasons, often coupled with unsustainable forest management. Overall, the 
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expected future sink capacity of newly planted or existing forests is therefore often 
overestimated.

Nevertheless, monitoring and measuring GHG fluxes in forest ecosystems as 
accurately as possible is a necessary prerequisite for policy approaches based on 
this (see Chap. 5). In this context, it became clear that it is very challenging to 
accomplish this. To date, it is hardly possible to achieve an accurate measurement 
of GHG fluxes in forest ecosystems and to monitor the development of forest eco-
systems in a globally comprehensive and accurate manner. The so-called problem 
of depicting is therefore large in the case of forest ecosystems, which are influenced 
by a wide range of factors. Efforts to reduce this problem of depicting as best as 
possible are therefore necessary. However, the problem of depicting will always 
remain to a certain extent, which in turn has to be considered in the choice of policy 
instruments.
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