®

Check for
updates

Weather Recognition Using
Self-supervised Deep Learning

Diego Acufia-Escobar!@®, Monserrate Intriago-Pazmino! (&9

and Julio Ibarra-Fiallo?

! Departamento de Informética y Ciencias de la Computacién,
Escuela Politécnica Nacional, Quito, Ecuador
{diego.acuna,monserrate.intriago}@epn.edu.ec
2 Colegio de Ciencias e Ingenierfas, Universidad San Francisco de Quito,
Cumbayé, Ecuador
jibarra@usfq.edu.ec

Abstract. The automatic recognition of weather in images has many
important applications in different fields, such as: land and air traffic con-
trol, autonomous vehicles, road safety warnings, crop control, improve-
ment of images taken in outdoor areas, among others. Despite the great
applicability, this field of study has not yet been explored in detail,
primarily due to the great challenge and difficulty involved in extract-
ing deterministic features for each type of weather. Several works have
focused their efforts on designing binary classifiers that allow determin-
ing just two classes. A difficulty lies especially in the fact that the tar-
get classes are not completely exclusive in an image. Different classes
can share the same features. Another difficulty that previous work has
faced is the need for a large number of labeled images to model the
various weather states. In this work, we propose an approach called
self-supervised deep learning applied to weather recognition in order to
reduce the requirement of the huge amount of labeled images. Our archi-
tecture, a ResNet-50 implementation, is responsible for obtaining the
representations of each unlabeled image with a self-supervised approach
for both pre-training and fine-tuning steps. It has been used transfer
learning for sharing the architecture between these steps. Our results
reached an average accuracy of 0.8833. Based on this result, it can be
concluded that self-supervised learning is a convenient solution to obtain
high performance in the weather recognition task from digital images.

Keywords: Weather recognition - Self-supervised deep learning -
Residual learning - Transfer learning * Fine tuning

1 Introduction

The weather’s state is one of the most important variables to be considered
when deciding on doing one activity or another. It is so important that it can
even influence our mood and the consequences that derive from it. Knowing
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the different weather states in relation to the time has allowed to determine
the biodiversity of species, ecosystems, and natural places generated from them.
Places can be habitable or completely uninhabitable due to the weather [1].
Technological advances have initially allowed the design of analytical systems
that seek to predict the state of the weather based on historical information
on the behavior of the weather over time using variables such as temperature,
atmospheric pressure, winds, humidity, and precipitation.

Currently, with the advancement of machine learning for automatic image
processing, it has been possible to model the state of the weather based on
graphical data extracted from training images containing the different weather
states: cloudy, foggy, rainy, shine and sunrise [18]. These models have allowed
solving problems ranging from approaches as simple as walking or riding a bicycle
in a city to more complex solutions such as autonomous driving assistants [8].

According to the authors in [19], rainstorms, blizzards, and fog are three
kinds of the most studied extreme weather. Figure 1 shows four types of extreme
weather conditions from the Multi-class Weather Dataset(MWD) [18], which will
lead to reduced visibility and friction coeflicient of road, resulting in tremendous
potential dangers. For that reason, automatically recognizing weather is essential
for many applications, such as highway traffic condition warnings, automobile
auxiliary driving, climate analysis, and so on.

© )

Fig. 1. Extreme weather conditions from the MWI dataset [18]

Many approaches and methodologies have been proposed in the field of
weather recognition, like multitask learning [9], dictionary and multiple kernel
learning [18], convolutional neural networks, and others. All these approaches
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have a problem balancing the efficiency of the solution and the number of images
required to train the algorithm in a supervised model.

Training a model with a fully deep learning supervised approach requires
a synergistic effort to obtain adequate and especially correctly labeled training
images that allow the algorithm to learn. The training images require the max-
imum amount of, making it very difficult to apply deep learning when labeled
data is scarce, as in the case of weather recognition. It varies by case, but in most
cases, training a deep learning model requires thousands, hundreds of thousands,
millions, even billions of training images to learn accurate representations of the
images [7].

Once the training images difficulty is solved, another common problem in
Deep Learning approaches is the well known wvanishing/exploding gradients,
which is a cause of increasing the depth of a deep learning model. It is essential to
understand that the network depth is of crucial importance. The leading results
in the ImageNet challenge [12] implement “very deep” models with a depth of
sixteen to thirty stacked layers [16]. The degradation problem is attributed to
an increased depth while the accuracy gets saturated. This is not caused by
overfitting, and while adding more layers the training and test errors get higher

(See Fig. 2).
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Fig. 2. Training and test errors in plain deep networks [6]

In this work, we will deal with the weather recognition problem focused
on five weather types: cloudy, foggy, rainy, shine and sunrise. To extract rel-
evant information from the training images, we follow a “very deep” neural
network architecture following a ResNet-50 implementation for a self-supervised
pre-training and a supervised fine tuning.

The rest of this paper is organized as follows. Section 2 provides fundamental
details of related works. In Sect. 3, the datasets and the method are described.
Next, results, a comparison with other works, and a discussion are stated in
Sect. 4. Finally, some conclusions are presented in Sect. 5.
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2 Related Works

In [18], the authors propose a method to classify the weather among sunny,
rainy, snowy, and haze images. The method is based on multiple weather fea-
tures, learning dictionaries, and kernel learning algorithm. Sky, shadow, rain
streak, snowflake, and dark channel are extracted as local characteristics. These
features are processed using several algorithms, for example, shadow and rain
are represented using Histogram of Gradient (HOG), snowflake is described as
a kind of noise. Then, multi-feature and class specific dictionaries are created.
However, the dictionaries are shared for all weather classes. Finally, the decision
is performed by feature fusion. The multiple kernel learning approach is used to
obtain the best weights for all features. The proposal was evaluated using their
own public dataset, Multi-class Weather Image (MWTI), which is composed of
20K images. The method performance was 0.7139 on the accuracy average.

Images can also be associated with other rich image-weather association
data, like temperature and humidity. In [3], the authors associate visual data
with heterogeneous metadata to build a more robust weather classifier to esti-
mate weather properties from single images. The authors target the properties:
weather types (sunny, cloudy,snowy, rainy, and foggy), temperature (between
—25°C and 45°C), and humidity (between 0% and 100%). Regarding weather
types, the proposal computes several features and creates a random forest clas-
sifier. This proposal was trained and tested using Image2Weather dataset. It
is a public dataset, and the whole targets obtained in this work are included
on its website. The results report 0.766 on average accuracy classifying weather
types. Other interesting work presented in [8], achieved an accuracy of almost
90%, training a CNN model with the Image2Weather dataset which consists of
more than 180000 images of global landmarks of four weather categories, such as
sunny, cloudy, rainy, snowy, and foggy. They introduce a framework of parallel
deep CNN models to recognize weather and visual conditions from street-level
images of urban scenes using four deep CNN models to detect dawn/dusk, day,
night-time, glare, rain, snow, and fog.

The implemented models refer to: 1) NightNet detects the differences between
dawn/dusk, day and night-time. It aims to understand the subtleties of street-
level images despite the dynamics of weather conditions and urban structure,
2) GlareNet detects images with glare regardless of its source (sun or artificial
light) for both dawn/dusk, day and night-time of various weather conditions.

Different network architectures have been proposed to face image recogni-
tion in general tasks. They have been divided into two general groups: plain
and residual architectures. As plain network implementation, we can mention
the VGG nets [15] with convolutional layers mostly of 3 x 3 filters. These imple-
mentations follow two simple design rules: (i) for the same output feature map
size, the layers have the same number of filters; and (ii) if the feature map size
is halved, the number of filters is doubled to preserve the time complexity per
layer. Figure 3 illustrates the general groups for different network architectures.

Residual Learning methods have achieved the highest results in the Imagenet
Dataset challenge [12]. Residual Learning asymptotically approximates residual
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functions in the form, H(z) — x, where x denotes the inputs in the first layer and
H(x) represents the underlying mapping function for some stacked layers. So
rather than approximate H(x), this layers will approximate F'(z) := H(x) — x.
The original function thus becomes F'(x)+ x(1). This way, if adding more layers
as identity mappings, a deeper model should have a training error no greater
than its shallower counterpart.

In experiments, Fig. 4, it has been shown that the learned residual functions
in general have small responses. It suggests that identity mappings provide rea-
sonable preconditioning.

y=F(z,Wi)+z (1)

To reduce the amount of labeled samples, a method called self-supervision
has been proposed, which is one of the most future promising frameworks that
improve the accuracy of the prediction models, not only for image recognition
tasks, also for time-series signals recognition [13]. For image processing, in [4], it
was achieved 85% top-1 accuracy by using only the 10% of the Imagenet data.
Common image transformations or corruptions (see Fig. 5) have been applied to
generate the auto labeled data [11], like: Gaussian Noise, Shot Noise, Impulse
Noise, Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur, Snow, Frost,
Fog, Brightness, Contrast, Elastic, and Pixelate.

These transformations have been tested for image classifier robustness. It
standardizes and expands the corruption robustness topic while showing which
classifiers are preferable in safety-critical applications. It also evaluates perfor-
mance on common corruptions and perturbations, not worst-case adversarial
perturbations.

Self-supervised learning has also been proved to be successful in other criti-
cal tasks like medical image classifications. The authors in [2], introduce a novel
Multi-Instance Contrastive Learning framework that uses multiple images of the
underlying pathology per patient case for medical image classification. In this
work, three steps are proposed: (1) supervised pretraining on a large labeled
dataset such as ImageNet. (2) self-supervised pretraining using contrastive learn-
ing on unlabeled data. (3) Supervised fine-tuning on labeled medical images.

Finally, the study of transfer learning (see Fig.6) also assumes significance
for this study as it is motivated by the fact that people can intelligently apply
knowledge learned previously to solve new problems faster or with better solu-
tions [10].
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Fig. 3. Example network implementations for image recognition [6]
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Fig. 4. Standard deviations(std) of layer responses on CIFAR-10 [6].

3 Materials and Method

3.1 Dataset

The data was extracted from the public dataset called weather dataset [5], which
is available and was used for other weather recognition studies. This data was
analyzed, pre-processed, and then fed to the artificial neural network for the
self-supervised pre-training task. This dataset contains 300 training images for
each class: cloudy, foggy, rainy, shine, and sunrise, along with other 30 images for
testing and validation. These images are in different sizes and utilize the RGB
model for the color description. The images need to be resized to an input size
of 224 x 224 x 3 to have the required size for the ResNet architecture. These
images will be applied to common transformations as shown in Fig.5 in order
to build a binary classifier model. In the first step, the model must learn to
distinguish if an image was previous transformed (class 1) or not transformed
(class 0). To discriminate between these two classes, the model must extract
some general features of each image. In this step, it does not matter which real
class the image belongs to. It is just a pre training step.

Once the self supervised model is pre-trained, it needs a fine tuning process
for which we used other random images from a different weather public dataset
called Multi-Class Images for Weather Classification [14]. From this dataset, we
extracted 200 random images for each class for the fine tuning and 100 other
random were used for validation.
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Fig. 5. Common image transformations [11]
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3.2 Method

Figure 7, shows a general overview of our proposed method, which is composed
by three main features: pre-training, transfer learning and fine tuning.

We implemented a residual learning architecture with 50 layers depth as sug-
gested in [6]. Residual learning minimizes the gradient vanishing problem which
is common while training. Deep neural networks uses shortcuts connections or
identity mappings to connect the features in the building blocks (see Fig. 8a).
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Fig. 8. Residual learning: a) building block [6] b) SE-ResNet block [7] ¢c) RegNet block
[17]

One variation made to the default ResNet architecture is adding Squeeze and
excitation blocks (SE) [7], which aim to improve performance and increase model
complexity. SE blocks adaptively recalibrate channel-wise feature responses by
explicitly modeling interdependencies between channels (see Fig. 8 b). Finally, we
added a regularization module [17], to capture the spatio-temporal dependency
between building blocks while constraining the speed of parameter increasing
(see Fig. ).
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For each residual function, in the ResNet 50 implementation (see Fig.9), it is
used a stack of 3 layers. The three layers are 1 x 1, 3 x 3, and 1 x 1 convolutions,
where the 1x1 layers are responsible for reducing and then increasing dimensions,
leaving the 3 x 3 layer a bottleneck with smaller input/output dimensions.

layer name | output size 18-layer I 34-layer | 50-layer | 101-layer 152-layer
convl 112x112 7x7, 64, stride 2
33 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] [ 1x1,64 ]
—_— 565 . . .
conv2x | 56x56 [ e ]xl [ e ]x} 333,64 | x3 3x3,64 | x3 3x3.64 | x3
o S | 1x1,256 | L 1x1,256 | | 1x1,256 |
[ 1x1,128 ] [ 1x1,128 ] [ 1x1,128 ]
3. 12 3 2
convdx | 28x28 || 3328 | o || BB 1| 3x3 128 | x4 | | 3x3.128 | x4 3x3,128 | x8
3x3,128 3x3,128
1x1,512 1x1,512 1x1,512
1x1,256 [ 1x1,256 ] [ 1x1,256 ]
3% 3, 25 3x3,25 ' ’ '
convd x 14x14 { 1);z ;52 ]xl [ “&i? "i: ]xﬁ 3x3,256 |x6 3x3,256 | x23 3x3,256 | x36
S R L 1x1,1024 | 11,1024 | 1x1,1024 |
1x1,512 ] [ 1x1,512 [ 1x1,512
2 2 d g ’
comvsx | 7x7 [ g ]x: [ s ]xx 333,512 |x3 | | 3x3,512 [x3 | | 3x3,512 |3
2l Hr s | 1x1,2048 | | 1x1,2048 | [ 1x1,2048 |
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x107 [ 3.6x107 [ 3.8x10" [ 7.6x107 11.3x10°

Fig. 9. ResNet architectures [6]

Our proposed method includes three stages: preprocessing, pre-training, and
fine tuning.

Preprocessing. All the images in the dataset have different sizes, and each of
them was cropped randomly to a size of 224 x 224 x 3 to fit the input layer
size. At the same time, the images were transformed and tagged accordingly.
Labels transformed and not transformed were used in this step. Finally, all the
images were saved in a single file with extension .h5. Figure 10 shows some
transformations applied to all the images for the self-supervision pre-training.

Pre-training. Pre training a self-supervised model includes using the image
common transformations [11]. It allows the model to learn and predict if an image
is transformed or if it is not. This step is implemented as a binary classification.
Image is transformed class 1 and image is not transformed class 0. Here we use
the ResNet-50 architecture implemented. Figure 11 shows the architecture and
the results for the binary classification pre-training.
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Fig. 10. Transformations applied
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Fig. 11. a) Pre training network. b) Pre training process

Fine Tuning. We fine tuned the model using 200 random labeled images for
each weather class. Transfer learning is used at this stage, so we can reuse part of
the pre-trained model and just change the dense layer for using the real weather
classes. Figure 12 shows the process for the fine tuning.

4 Results and Discussion

The model was implemented in python, and using the TensorFlow machine learn-
ing framework from Google. It was tested in three different hardware for getting
the best hyperparameters such as: epochs, batch size, learning rate, performance
metrics, and execution time. In most cases, it took three days for pre-training
the model and six hours for the fine tuning.
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We used the confusion matrix (see Fig.13), to demonstrate the results
obtained by our proposed method in the validation predictions. Then, we calcu-
late precision, recall and F1 to measure the performance of our algorithm, see
Table 1.

-250

doudy

-200

foggy

-150

rainy

- 100

shine

sunrise
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Fig. 13. Validation confusion matrix

The experiments achieved an average accuracy of 88%. It is graphically
reported in Fig.12. Table2 shows a comparison with other related works that
have been detailed in a previous section.

As shown below, the results obtained by our proposed method improve the
results obtained by other related works that focused on fully supervised methods,
considering that we drastically reduced the number of labeled images used in the
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Table 1. Metrics obtained by our experiments

Cloudy | Foggy | Rainy | Shine | Sunrise
Precision | 09 0.85 10.85 |0.89 |0.87
Recall 0.86 0.85 [0.86 |0.9 0.89
F1 0.88 0.85 |0.86 |0.86 |0.88

Table 2. Performance of the proposed method and other works

Method Year | Classes Accuracy
[18] 2016 | Sunny, rainy, snowy, haze 0.7139
3] 2017 | Sunny, cloudy, snowy, rainy, foggy | 0.7660
Proposed self-supervised | 2021 | Cloudy, foggy, rainy, shine, sunrise | 0.8833

training stage and were faced with a great limitation in computational resources.
Our results can be further improved by solving the hardware issues to be able
to do a pre-training with a multi-class approach instead of adopting a binary
classification.

5 Conclusions

In this research work, a convolutional neural network has been implemented
with the addition that it is not fully supervised and it introduces self-supervised
learning.

Experiments showed that pre-training a model with self-supervised learning
can help achieve better results compared with some related works about weather
recognition with fully supervised training.

The results achieved are promising. However, it is necessary to recognize that
more computational resources are fundamental in order to derive a convenient
model. It is really important to plan the resource requirements when training
with big images since it might require high physical memory availability.

The network architecture should consider the size of the images and the
computational resources available to get good training and validation results.

In view of the above, there are several suggestions for future works. Among
them, it is required that the model grows and self-learns using a greater number
of rotations. Images can be included from other datasets in the self-supervised
learning phase to find a more generalized solution and to evaluate the model
with a higher number of images.
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