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Foreword

Leonardo da Vinci’s approximately 60 illustrations for the book The Divine 
Proportion presented polyhedra for the very first time in history so spectacularly 
that they seemed to jump out of the paper as three-dimensional representations. 
1800 years after Plato and Archimedes, they caused a true “polyhedra mania”: 
Nuremberg artists Albrecht Durer, Wenzel Jamnitzer, and Lorenz Stoer drew poly-
hedra extensively; Dutchmen Simon Stevin and Claes Pietersz van Deventer pub-
lished about them; Johannes Kepler rediscovered the complete list of regular 
polyhedra from the time of the Greeks and added two new ones in 1619 by includ-
ing pentagrams. In the seventeenth century, the interest in the artistic presentation of 
polyhedra declined although their mathematical study continued. In 1809, 
Frenchman Louis Poinsot discovered two new solids by allowing intersecting faces. 
Englishman John Flinders Petrie added three infinite regular polyhedra in 1926, in 
collaboration with Canadian Donald Coxeter. American architect Buckminster 
Fuller caused an artistic revival, and his designs were so influential that the 1996 
Nobel Prize winners in chemistry who discovered the C60 molecule gave it the 
name Buckminsterfullerene, although the shape of that molecule corresponds to the 
truncated icosahedron, already known to Archimedes. 2011 Chemistry Nobel Prize 
winner Daniel Shechtman likes to emphasize the divine proportion in his quasicrys-
tals. In Europe, the work of Dutch artist Maurits Cornelis Escher led to a revival of 
the artistic study of polyhedra, and later Belgian Luc Tuymans and Danish Icelander 
Olafur Eliasson also represented them. Eventually, polyhedra conquered the whole 
world as they even inspired versatile Chinese artist Ai Weiwei, for instance. Thus, 
artistically and scientifically the polyhedral topic surely still is of interest. And per-
haps even more than before, as modern 3D-software brings it within reach of any 
motivated computer enthusiast.

This was amply illustrated at the Geometrias'19 Conference in Porto, of which 
this book collects some highlights (not necessarily in order of their presentation at 
the conference). Some contributions were developed further into full papers, for the 
purpose of their inclusion in this book. The participants still hold vivid memories of 
the presentation on synthetic methods for constructing polyhedra, where one could 
actually see a snub cube being created on the screen, as the result of a kind of 



vi

equilibrium process. Anyone who ever tried to draw a snub cube using even the 
most sophisticated 3D-software, quickly experiences this is impossible, thus con-
firming the fact that it can’t be constructed in a finite number of steps with lines and 
circular arcs. Historical aspects are emphasized by a contribution on small stellated 
dodecahedrons in Genoa, Italy, and that is quite unusual, as Kepler-Poinsot solids 
do not seem so popular. A paper on confocal quadratic surfaces gives a more theo-
retical intermezzo, while regular participants of geometry-related conferences are 
probably happy to see a continuation of the work on concave deltahedral rings. This 
contrasts with the considerations on the gyroid, which is probably new to most read-
ers. Admittedly, double-layered polyhedra are beautiful—even if one doesn’t grasp 
what they are about! Geodesic structures can’t be omitted in any self-respecting 
conference on polyhedra, while Vittorio Giorgini’s organic structures are, regretta-
bly, less well-known. Even Gaudí can be a topic, when combined with John 
Pickering’s form-finding method. Several talks and workshops about pedagogical 
aspects were on the conference program too, during the conference, and the intro-
duction to solid tessellations, included in this book, is but one of them. This variety 
of subjects of the Porto Geometrias'19 Conference, presented in an open exchange, 
created a pleasant ambience that will hopefully filter through these selected papers.

Dirk Huylebrouck holds a PhD in mathematics from the University of Ghent, 
Belgium. He lectured in Congo and Burundi for 12 years, interrupted by assign-
ments in Portugal and at Maryland University Europe. Next, he taught at the Faculty 
of Architecture of the KU Leuven (Belgium) and edited the column The Mathematical 
Tourist in the journal The Mathematical Intelligencer. Author of seven books in 
popular mathematics in Dutch, his first, Africa + Mathematics, has already been 
translated in English (2019, Springer).

Ostend, Belgium Dirk Huylebrouck
08 December 2021

Foreword
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Preface

Aproged, the Portuguese Geometry and Drawing Teachers Association, invited us 
to organize its 5th international conference and thus, Geometrias’19: Polyhedra and 
Beyond was held in the Department of Mathematics of the Faculty of Sciences, 
University of Porto, in September 5–7, 2019. The aim of this conference was to 
bring together international experts, scholars, researchers, and students from diverse 
backgrounds to engage in interdisciplinary discussions on theoretical research and 
practical studies on polyhedra and geometrical structures under development in dif-
ferent fields of knowledge and institutions. The Geometrias’19: Book of Abstracts1, 
published in its outcome, summarized the essence of this Conference, offering a 
clear testimony of how the atmosphere of dialog and shared knowledge created 
renewed mutual interests between the participants, encouraging new synergies.

This book reflects a selection of the investigations presented during Geometrias’19 
that were developed into full papers, so some contributions contain materials some-
how beyond the results presented in the talks, addressing different subjects and 
explorations of polyhedral theory within architecture, computer science, mathemat-
ics, and structural design, broadly construed.

For their contribution to the accomplishment of this book, we are especially 
grateful to the Scientific Committee members and additional reviewers for their 
commitment in revisiting these studies, and to all the authors for the development of 
their research and their openness during the reviewing procedures. An additional 
appreciation to our Foreword’s Author, for such an inspirational input.

We thank you all for your contributions and for understanding the time it took us 
to achieve this publication, of which we are very proud of.

Porto, Portugal Vera Viana  
Helena Mena Matos  

João Pedro Xavier  

1 Viana, V. (Ed.). (2019). Geometrias’19: Book of Abstracts. Porto: Aproged. https://doi.
org/10.24840/978-989-98926-8-2
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Chapter 1
Synthetic Methods for Constructing 
Polyhedra

Leonardo Baglioni, Federico Fallavollita, and Riccardo Foschi

Abstract In this paper, we propose an explanation and application of the synthetic 
method to the representation of the Platonic and Archimedean Solids (PS and AS). 
The intention is to illustrate the potential of this method in a historical and theoreti-
cal context. The study of regular and semiregular polyhedra in this sense is an ideal 
theme to illustrate the heuristic potential of drawing. Therefore, some synthetic con-
structions of PS and AS are proposed, defining the constructive algorithms of these 
figures. The working environment used is the mathematical representation method; 
for some constructions, parametric and physical simulating tools were used. 
Particular attention is dedicated to two different synthetic methods: the first, is the 
construction of the snub cube through paper folding and the second, is a more gen-
eral method that exploits a physical simulator engine.

 Introduction

The synthetic method, as Gino Loria explains in the booklet I metodi matematici [1, 
pp. 77–83], is part of mathematical methods. In particular, we refer to what Loria 
defines as method of existential construction. He inserts this method among those 
special to geometry and explains that Euclid never reasoned on a figure whose con-
struction he had not previously taught. In continuation, stating that this serves as a 
demonstration of the existence of the figures of which the definition was given [1, 
p. 77]. As an example, he proposes the proof of the existence of the PS through the 
known Euler formula:

 F V E� �– 2  
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Then he says n is the number of sides of each face and m, the edges. He 
declares this:

 nF E mV E= =2 2,  

He deduces and concludes that the only possible regular solids are the tetrahe-
dron, the hexahedron, the octahedron, the icosahedron, and the dodecahedron and 
that, to prove their arithmetic and geometric existence, it is useful to start from their 
actual construction.

In these constructions, Loria explains how to build the five PS in space by giving 
instructions that are nothing more than algorithms that, step by step, allow us to 
build the solids. This existential method for Loria has a mathematical dignity equal 
to all the other methods illustrated in the essay. In particular, at the beginning of the 
essay, Loria distinguishes the analytical method from the synthetic one and tries to 
give a definition to both. According to his own words, if we follow the first 
(Analysis), the theorem is reduced to be demonstrated or the problem to be solved 
to another one, that is then judged to be simpler. To the new one, the same procedure 
is applied and continued until we get to a known or already treated proposition. 
Following the second one (Synthesis), a series of considerations is established 
which gradually leads to the desired purpose [1, p. 03].

The synthetic method, therefore, is typical of descriptive geometry, that uses 
drawing as a research tool for the study of properties and relationships of figures in 
space. In a more general statement, we can say that a synthetic method uses the con-
struction, representation, and visualization as main instruments to explore geometry.

Today, the synthetic method, thanks to the advent of the digital revolution, has 
acquired particular importance in the world of geometry. The digital drawing has a 
higher accuracy than the analogical one and, above all, allows us to draw directly in 
space. Nevertheless, there is a character of representation that, more than any other, 
has been enhanced by digital, and that is its constructive aspect. Geometry deals in 
abstract terms with procedures and methods that can be replicated in reality by 
means of physical instruments. Construction as a mental process at the base of geo-
metric operations in the plane and in space finds a fertile field of application in the 
virtual world, greatly enhancing the heuristic power of representation. This makes 
it possible to review old and new geometry problems that previously were impos-
sible to solve synthetically, according to Migliari [2, p. 28].

Taking inspiration from Loria’s considerations, we propose the construction of 
some PS and AS through the synthetic method and attempt, in this way, to show the 
experimental potential of drawing. In particular, we focus on the construction of the 
snub cube and the snub dodecahedron and propose procedures that can be imple-
mented in a parametric modeller and a physical engine.1 For example, it is possible 
to construct, through the synthetic method, the snub cube applying the origami 
properties in Hartl and Kwickert [3].

Another interesting construction, and more general, is the one used to build a 
snub cube, or a dodecahedron, starting from its net and exploiting the attractive 

1 In these experimentations, we used Grasshopper (Version 6 SR19) and Kangaroo 2.
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forces of some vertices. In the algorithm proposed through a physical engine in a 
mathematical environment, it is possible to see, in real time, the envelope of 
the solid.

 The Synthetic Approach for the Constrction of PS and AS

The history of polyhedra shows how, for the study of their properties, their physical 
construction through models, generally wooden models, allowed their exploration 
and investigation. If we look at the images attributed to Leonardo Da Vinci which 
accompany the pages of the treatise by Luca Pacioli, De Divina Proportione (1496), 
we can see how they are a kind of perspective representations. To verify this, it is 
sufficient to compare two upper and lower faces of one figure, for example, the 
Duodecedron Planus Vacuus, which in reality are parallel to realize how they 
undergo a perspective foreshortening.

This leads to thinking about the use of a model wooden as a reference and then 
transported on paper, perhaps by means of one of the many perspective machines 
that were developing in those years. The physical realization of a regular polyhe-
dron in its full form is as simple as instructive. Take the case of the dodecahedron: 
from the net of the 12 pentagonal faces, we proceed to their juxtaposition in such a 
way that the various edges coincide with each other, so that three faces identify a 
single vertex; the final model is the regular dodecahedron (Fig. 1.1). In this con-
struction, the existential demonstration method referred to by Gino Loria, fully 
manifests itself, namely the verification that the only spatial configuration that can 
be derived from 12 equal pentagonal faces arranged to define a closed volume, cor-
responds exclusively to that of the dodecahedron.

In digital representation,2 particularly in the mathematical one, it is possible to 
generate the representation of regular polyhedra with the same constructive approach 
that we have just described. In graphical methods, on the other hand, the remarkable 
properties of polyhedra, such as the golden ratios established between the lengths of 
the edges between the various polyhedra, are instrumental to their representation. In 
a digital environment, starting from the net of three pentagonal faces adjacent to 
each other, we rotate them in space, so that the vertices are positioned at the point 
of intersection between the circumferences that describe the movement of the verti-
ces. Once the first solid angle is constructed, we can proceed by radial symmetry to 
identify the other faces. With this approach, it is possible to construct all the regular 

2 By digital representation methods, we mean the set of principles and theories underlying three- 
dimensional representation software. Among these, we distinguish two different digital representa-
tion methods: the mathematical representation method and the polygonal (or numerical) 
representation method. The first one represents entities in a continuous way by means of paramet-
ric mathematical equations (such as, for example, NURBS). The second one approximates shapes 
by means of polyhedral entities (mesh).

1 Synthetic Methods for Constructing Polyhedra
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Fig. 1.1 Construction of a dodecahedron in digital representation

polyhedra, verify their remarkable properties,3 and generate a new net; this can 
allow us to construct its physical model. Finally, the possibility of implementing the 
described steps through VPL (visual programming language) software, integrated in 
a mathematical environment, becomes an excellent tool for communication pur-
poses. Thanks to these applications, it is possible to interact in real time with the 
described entities, to vary their parameters and dimensions, to describe the vacuous 
form of the polyhedron, or to explicit the entire construction process for a complete 
learning of the represented subject (Fig. 1.2).

The semiregular [4] polyhedra4 are all deducible from operations carried out on 
the PS. These operations are flat sections that can be traced to three main types:

 – planar section of the PS symmetric with respect to the vertices;
 – planar section of the PS symmetric with respect to the edges followed by sym-

metrical sections at their vertices;
 – inscribing within the faces of the PS, a polygon having the same number of sides 

but rotated in the same direction through a certain angle.

3 For example, the characteristic of being circumscribable in a sphere and, at the same time, of 
circumscribing a sphere, or the property of having equal solid angles.
4 Semiregular polyhedra are convex polyhedra defined by regular polygons of different types.

L. Baglioni et al.
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Fig. 1.2 Construction process of the dodecahedron through the synthetic method

Each of these main operations is followed by different variations, as shown in 
Table 1.1, to define all the 13 semiregular convex polyhedra, and it is interesting to 
remember that the same operation, carried out on PS dual, leads to the same AS.

The flat sections carried out on the PS are regulated by different types of ratios 
that define the subdivisions of the edges and can be obtained by graphic 

1 Synthetic Methods for Constructing Polyhedra
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Table 1.1 Geometrical operations to construct Archimedean Solids from Platonic Solids

Operation Variation Derivation

1.  Planar section of the PS 
symmetric with respect to the 
vertices and...

1.1  Passing through the edges 
centres

Cuboctahedron
From Cube and Octahedron
Icosidodecahedron
From Dodecahedron and 
Icosahedron

1.2  Passing through the third 
point of the edges

Truncated Tetrahedron
From Tetrahedron
Truncated Octahedron
From Octahedron and Cube
Truncated Icosahedron
From Icosahedron and 
Dodecahedron

1.3  So that the central segment 
of the edge connects twice the 
number of face sides

Truncated Cube
From Cube and Octahedron
Truncated Dodecahedron
From Dodecahedron and 
Icosahedron

1.4  Beyond the midpoints of the 
edges and leading to reversely 
homothetical or inverted 
polygons inscribed within the 
faces

Truncated Tetrahedron
From Tetrahedron
Truncated Octahedron
From Octahedron and Cube
Truncated Cube
From Cube and Octahedron
Truncated Icosahedron
From Icosahedron and 
Dodecahedron
Truncated Dodecahedron
From Dodecahedron and 
Icosahedron

2.  Planar section of the PS 
symmetric with respect to the 
edges followed by symmetrical 
sections at their vertices

2.1  To obtain polygons 
homothetical with respect to the 
faces centres inscribed within the 
faces

Rhombicuboctahedron
From Cube and Octahedron
Rhombicosidodecahedron
From Dodecahedron and 
Icosahedron

2.2  To obtain polygons having 
twice the number of sides 
inscribed within the faces

Truncated Cuboctahedron
From Cube and Octahedron
Truncated 
Icosidodecahedron
From Dodecahedron and 
Icosahedron

3.  Inscribed within the faces of the PS, a polygon having the same 
number of sides, but rotated in the same direction through a 
certain angle

Snub Cube
From Cube and Octahedron
Snub Dodecahedron
From Dodecahedron and 
Icosahedron

L. Baglioni et al.
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constructions by means of straightedge and compass5 (SE&C). For this reason, all 
the proportions that link the PS and the AS by means of graphic constructions allow 
us to represent them graphically with an adequate level of accuracy (Fig. 1.3).

Actually, the semiregular snub cube and snub dodecahedron6 have a geometric 
genesis that makes their representation impossible without admitting the introduc-
tion of obvious approximations. The snub cube is constructed by placing smaller 
squares on the faces of the cube which are slightly rotated. Then the vertices of these 
squares are connected such that, in each vertex, there are one square and four tri-
angles. To draw the snub cube, it is possible to adopt the graphic method proposed 
by Dragomir and Gheroghiu [5, pp. 214–215]. The method consists in dividing the 
edge of the PS starting from a ratio defined by the equation

 2 4 4� � �3 2 1 0– –� �  

from which the α value is equal to 0.352 ... In digital language, we encounter a 
problem in the construction of the mathematical model, because of the approxima-
tion that the procedure involves. In fact, the value of α cannot be expressed through 
a graphic construction with SE&C. This leads to an error in the construction of the 
solid because the tolerance of the program does not recognize the vertices of the 
solid belonging to the circumscribed sphere. The same problem arises for the con-
struction of the last chiral solid, the snub dodecahedron. In 2002, Weissbach and 
Martini [6, pp. 121–133] demonstrated analytically that it is not possible to con-
struct the last two chiral solids via SE&C, but it is possible to construct the two 
polyhedra using the properties of origami. The art of paper folding can be used to 
solve classical construction problems of geometry [7], such as the trisection of an 
arbitrary angle or doubling the cube, using a few paper folds. We propose a reinter-
pretation of the demonstration made by Hartl and Kwickert, conducted with analyti-
cal language, through a synthetic construction that exploits the properties of paper 
folding.

Paper folding can be simulated in parametric drawing, by using geometric con-
straints which control the relationships of objects with respect to each other [8]. In 
this way, digital synthetic language expresses all its constructional power and intro-
duces a new character of geometry, that is the system of logical relations between 
entities. The object of the representation is therefore the whole relational-generative 
process, and no longer the single entity, according to a language that still finds in 
geometry the main interpretative support. In the case of the snub cube, the aim of 
the paper folding construction is to find a vertex A of the semiregular polyhedron 
related to the vertex C of the cube that envelops it.

5 For example, the rhombicuboctahedron can be generated by dividing the edge of a circumscribed 
hexahedron into three parts according to the ratio 1: √2: 1. The length defined by the irrational 
value √2 is easily identifiable from a graphic construction that makes use of the diagonal of a 
square of side equal to 1 unit.
6 These two polyhedra enjoy the chiral property for which the symmetry generates differences.
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Fig. 1.3 Graphical constructions of Archimedean Solids starting from Platonic Solids

Starting from one square face of the cube, we call the top edge, g, and the bottom 
left, corner P (Fig. 1.4 – origami).

We divide the edge of the base into four equal parts and call the second point 
from the left, Q. We trace the two vertical lines from the other two points and name 
the second, h. The problem is to find the folding line (i.e. the symmetry axis) so that 
P goes to P′ in g and Q goes to Q’ in h. This fold is exactly the sixth axiom of 
Humiaki Huzita. Those axioms describe what can be constructed using a sequence 
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Fig. 1.4 Snub cube construction through paper folding

of creases with at most two point or line alignments at once. This fold allows us to 
find the points P′ and Q’, which give the coordinates of the vertex A1 of the 
snub cube.

It is possible to simulate the first fold correctly by inserting constructive con-
straints in the mathematical modeller. Once point A1 has been found, through sym-
metry, it is possible to find all the missing vertices and edges of the snub cube. This 
synthetic method allows us to obtain the accurate construction of the chiral AS.

Hartl and Kwickert [3, 9] did not find a similar elegant folding construction for 
the snub dodecahedron. In the authors’ opinion, this issue is traceable to the infinite 
number of folding constructions, and they found the nicest among them. For this 
reason, we decided to apply a different approach, proposing a parametrical one 
based on Live Physics engine.

 The General Synthetic Method to Construct a Polyhedron

The last synthetic method presented here allows us to construct any regular and 
semiregular polyhedra from its net. This method, therefore, is the most flexible, and 
allows us to accurately construct even the snub cube and the snub dodecahedron. 
The construction principle is very simple and is based on the physical simulation of 

1 Synthetic Methods for Constructing Polyhedra
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Fig. 1.5 The construction of the snub cube, first algorithm

its solid construction. As Loria explains, if you actually try to build a regular poly-
hedron in the real world, the easiest thing to do is to draw a possible net and rotate 
the faces until the free edges touch. In this way, the possible convex final solution is 
the one sought. It is evident that another final combination of faces is not possible 
unless the faces are rotated in the opposite direction: some clockwise and the others 
counterclockwise. In addition, in the latter case, the final result would not be a 
closed polyhedron. We have developed two procedures. The second one is the more 
effective and therefore is the final synthetic method that we here propose. The first 
one worked automatically with polyhedra as the dodecahedron (Fig. 1.5).

For other polyhedra, as the octahedron, you have to manually guide the algo-
rithm to find the right spatial configuration. In fact, the first algorithm can lead to an 
imploded flat configuration. The reason for this is due to the possible mount/valley 
movement of the faces. In order to apply this simple method, we have employed a 
physics engine within a mathematical modelling environment.7

The first procedure (Fig. 1.6) consists of these steps:

 1. plan a possible net of the regular and semiregular polyhedron to be built (in the 
figure, it is a dodecahedron);

 2. set some constraints. Some vertices must remain fixed in the transformation (in 
the case studied, we chose the five vertices of the central face); and all the edges 
must remain the same length;

7 See note 1.

L. Baglioni et al.
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Fig. 1.6 The visualization of the first algorithm for the construction of a polyhedron starting 
from its net

 3. select the pairs of vertices that have to merge in the final configuration; the ver-
tices must be chosen with consistency and, of course, it is not necessary to apply 
these forces to all the vertices of the figure;

 4. start the simulation. If the parameters are correct and well balanced, you will 
obtain the desired polyhedron.

To start the simulation, it is necessary to apply an initial thrust, otherwise, the 
vertices will all remain in the same plane. We applied an initial downthrust to the 
vertices of the central face. In the mathematical virtual space, self-intersections are 
possible, so there is no danger that inconsistent rotations of the faces will be gener-
ated; if this happens, the algorithm just takes more time to reach the result. The 
delicate issue of this physical algorithm is the balancing of forces and the mount/
valley problem. We have noticed that when the individual weights of the forces are 
not well balanced, the algorithm generates imploded solids and fails to close the 
figure in an adequate time. In order to overcome this problem, it is necessary to 
experimentally find the right balance by calibrating the forces involved. Once the 
right balance is found, the figure begins to form and, in a short time, the solid is 
obtained (it is also possible to calibrate the time and speed of construction of the 
figure).

In the case of the dodecahedron, this algorithm gives no problem, because the 
only final spatial configuration is the platonic solid of 12 faces. In other cases, as the 
octahedron, sometimes you have to manually guide the algorithm to avoid the 
mount/valley problem (Fig. 1.7).

The parameters that we can control in the first algorithm are the pairs of vertexes 
(points) that must meet and the amount of attractive power applied to them.

The first procedure has been improved, in order to solve the mount/valley prob-
lem and to transform the algorithm into a complete automatic process. In order to 
accomplish this task, we added a new force in the process. Therefore, the final 
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Fig. 1.8 The construction of the snub cube, second algorithm

Fig. 1.7 The construction of the octahedron, first algorithm: the problem of the mount/valley

procedure consists of four principal steps. The new step consists of applying a fold-
ing power to all the faces of the flat net. This folding power starts to fold the faces 
in the same direction in respect to the normal plane (of the net) and their edges. In 
this way, we can assure the convexity of the final solid and we do not have the 
mount/valley problem (Fig. 1.8). Once the edges and vertices of the solids are close, 
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we stop the first power, and we leave only the second power activated: the attraction 
power of the vertices. Automatically, the faces join and form the final polyhedron. 
The parameters that we can control on the second algorithm are the folding power 
and the folding angles between the faces. In the folding power, we can adjust the 
amount of power and the folding angle to assign. These consent to easily control the 
movement of the folding in an interactive and experimental way; when you assign a 
certain angle, all the faces will fold until they reach that angle. Therefore, after some 
attempts, you can visualize and understand which angle comes closer to the final 
configuration.

Furthermore, this final procedure is simpler than the first one, because we do not 
need to assign the attractive power to the pairs of points. This power is assigned to 
all the vertices within a certain distance range of space. Therefore, only when two 
points reach this distance range, the power can start its influence in the algorithm. In 
conclusion, we can summarize the steps of the final procedure

(Fig. 1.9):

 1. Plan a possible net of the regular and semiregular polyhedron to be built (in the 
figures, it is a snub dodecahedron and a snub dodecahedron).

 2. Select the edges in respect of the desired folding angle you want to assign.
 3. The algorithm consents to select two different folding angles to assign to some 

edges. Select the amount of power you want to apply to the folding power.
 4. You can control the distance range and the amount of power of the attractive 

power between the vertices.
 5. Start the engine. If the algorithm fails to construct the final polyhedron, you just 

need to change the angles of the folding power or the amount of power.

Fig. 1.9 The visualization of the second algorithm for the construction of a polyhedron starting 
from its net

1 Synthetic Methods for Constructing Polyhedra
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Fig. 1.10 The construction of the snub dodecahedron, second algorithm

it is easy to experimentally reach the right angles to obtain the desired polyhe-
dron. The slider of the folding power can control the speed of the construction pro-
cess. The bigger this value, the faster the movement will be and vice versa.

In the algorithm, we have included a check that automatically allows us to under-
stand when the figure is correct, i.e. when the solid is perfectly closed. The software 
is based on the reiteration of the algorithm up to the optimization of the procedure 
after a certain number of attempts; the limit we have established is the tolerance of 
the modeller in recognizing a closed solid; therefore, when the program recognizes 
the presence of a closed polysurface, it stops the process. The method was tested 
with regular and semiregular polyhedra (Fig. 1.10), but we believe that by well bal-
ancing the forces and the attractive weights of the selected vertices, it will be pos-
sible to solve the construction of more complex polyhedra as the Catalan polyhedra. 
In addition, it is possible to verify the correctness of the solid by verifying some 
properties. For example, all the vertices must lie on the sphere that envelopes the 
solids, and the edges must be the same length. These properties are always verified 
at the end of the constructions process. A curious and fascinating thing about this 
method is that we can visualize the process of the construction in real time. 
Therefore, this method consents likewise to visualize the movement of the faces 
from the net to the final polyhedron. We can also calibrate the speed of the move-
ment by adjusting the amount of power of the two forces. Unfortunately, the figures 
of this paper cannot show these interesting visual properties of the proposed proce-
dure, but they can give you a clue.

L. Baglioni et al.
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 Conclusions

In this paper, we are confronted with the representation of regular and semiregular 
polyhedra. We have seen how the traditional graphic methods allow an accurate 
representation of the two families of polyhedra, but they must introduce analytical 
formulas to solve the construction of the snub cube and the snub dodecahedron [9]. 
In the same way, the classical approach with the mathematical representation does 
not allow us to construct and synthetically solve the configuration of the two 
chiral AS.

We have seen how the new forms of parametric digital representation allow us to 
find alternative solutions to known geometric problems, as the particular case of the 
construction of the two solid Archimedean chirals: the snub cube and the snub 
dodecahedron. The representation of these two solids is linked to the impossibility 
of constructing them by means of a ruler and compass. This particular property can 
be solved through the use of analytical formulas that allow us to construct a graphi-
cal representation, as proposed by Gheorghiu and Dragomir. However, this digital 
representation presents two different and important problems. The first must be 
found in the accuracy of the construction that, in today’s digital representation, 
introduces a constructive error; the final configuration, in fact, does not verify the 
remarkable properties of these polyhedra, such as the possibility to circumscribe the 
polyhedron with a sphere. The second problem is that the synthetic method, in this 
way, is not autonomous, because it makes use of a mathematical equation and no 
longer makes use of an exclusively synthetic language such as drawing.8

It is possible to elegantly solve the construction of the snub cube through paper 
folding, of which we have given a representation through the synthetic method.

This approach, applied to the case of the snub dodecahedron, has limitations, due 
to the excessive complexity of the method.

Finally, we have presented a synthetic general approach to the construction of all 
regular and semiregular polyhedra, simulating the constructive genesis using parti-
cle systems. In this way, we can solve the two problems mentioned above, by verify-
ing the topological and metric properties of the solids represented, through a 
completely synthetic and autonomous method.

All the synthetic approaches described are based on a same visual language. 
These approaches, apparently very different, maintain the same constructive charac-
ter typical of descriptive geometry: that is, they simulate the operations that could 
be carried out in reality. For example, the physical simulator allows us to translate 

8 Even if the mathematical digital methods are based on analytical equations (see the NURBS), 
they can still be counted among the synthetic methods, since the control of the forms and their 
relationships take place through a language of visual nature. The classical studies of Descriptive 
Geometry were conducted with the help of a ruler and compass, which made it possible to materi-
alize straight lines and circles on paper without necessarily resorting to their equations. In the same 
way, nowadays, the available tools to scholars have increased, offering much higher accuracy and 
allowing the representation of relationships between entities and the control of time dimension and 
movement.
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into the digital world the operations that would have been carried out by folding a 
sheet of paper and gluing the vertices together.

The analogy with the role that physical models had and have in the study and 
research of form is evident. This role has ancient roots and it is sufficient to recall 
the case cited of the polyhedra models in the images of Leonardo da Vinci. In this 
sense, the use of plastic models for investigation and the discovery of shapes in 
space has a history that unites the world of architecture with that of mathematics. 
For this, we recall the use of models in the Italian mathematical school12 and the 
use of architectural models from the Renaissance to the present day [10].

Today, the new forms of the synthetic method make it possible to explain the 
constructive logic of the entire generative process of the shape (see the visualization 
of the algorithms presented in this paper). This property has a dual value; on the one 
hand, it favours learning and, on the other, amplifies the experimental power of 
representation. Scientific and technological progresses have widened the frontiers 
of the synthetic method and have found in computer graphics a means of inter-
change between different scientific disciplines [11]. The digital image has taken on 
a fundamental role in research. Drawing becomes a tool for research and discovery 
of the properties and relationships of forms in space, increasing the heuristic capac-
ity of the synthetic method.
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Chapter 2
Scientific Sources and Representations 
of the Small Stellated Dodecahedra 
Painted in Genoa

Cristina Càndito and Ilenio Celoria

Abstract The present study investigates the history, significance, and depiction of 
a polyhedron painted in the Room of Leda, as part of the decorative plan of Palazzo 
Balbi Senarega in Genoa, Italy, 1655.

The illusory golden oval vault is the main element in the Room of Leda, painted 
by Valerio Castello, with quadratura by Andrea Seghizzi. It integrates various art 
forms in its painted architectural structure and figurative mythological insertions. In 
this same room, one can observe six small stellated dodecahedra. Although an ear-
lier representation of this polyhedron may be found in a Venetian mosaic, Johannes 
Kepler was the first to describe it comprehensively, in 1619.

This study formulates some hypotheses for the meaning of these representations, 
drawing on scientific and symbolic sources, as well as the objective evidence that 
the authors observed on site, revealing that the representation of these polyhedra 
was altered in order to achieve an ideal shape.

 The Frescoes of Palazzo Balbi Senarega

Palazzo Balbi Senarega is part of the Strada Nuova, a street built by the Genoese 
aristocracy at the time when the Republic of Genoa was at the peak of its financial 
and maritime commerce. Grandiose in their decoration and audacious in their illu-
sionism, the cycle of frescoes in Palazzo Balbi Senarega is one of the most distinc-
tive examples of Genoese Baroque. Palazzo Balbi Senarega has been part of the 
University of Genoa since 1972 (Fig. 2.1) together with other buildings in Via Balbi, 
listed as a UNESCO World Heritage Site in 2006. The building was constructed by 
Bartolomeo Bianco (1590–1657) from around 1616 for the brothers Giacomo and 
Pantaleo Balbi. In 1645, it was passed on to Francesco Maria Balbi (1619–1704). 
Francesco hired Pietro Antonio Corradi (1613 ca. – 1683), who trained at Bianco’s 
workshop, to design new sections of the building, restore the front, and build the 

C. Càndito (*) · I. Celoria 
University of Genoa, Genoa, Italy
e-mail: cristina.candito@unige.it; ilenio.celoria@unige.it

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
V. Viana et al. (eds.), Polyhedra and Beyond, Trends in Mathematics, 
https://doi.org/10.1007/978-3-030-99116-6_2

mailto:cristina.candito@unige.it
mailto:ilenio.celoria@unige.it
https://doi.org/10.1007/978-3-030-99116-6_2


20

Fig. 2.1 Palazzo Balbi Senarega (Genoa, Italy): The Room of Leda in the second noble floor

garden with its nymphaeum.1 From 1655, after the renovation, the second noble 
floor underwent the realisation of its decorative plan.

The subject of this study is the rectangular Room of Leda (mt. 5 × 6 × 7 maxi-
mum height), which belongs to the original nucleus of the building, and is covered 
by a cloister vault consisting of four partial cylindrical surfaces, with rounded inter-
sections. The decoration by Valerio Castello (1624–1659), with quadratura by 
Andrea Seghizzi (1613–1684) displays a grandiose painted structure in the vault 
(Fig. 2.2): a golden oval cupola resting on four sections, each with four ionic col-
umns, standing upon marble pedestals alternated with polylobate cornices.

Above the illusory impost, there are six painted circular windows alternated to 
six stellated polyhedra. The myth of Leda and Zeus, depicted in the form of a swan, 
is represented in a portion of sky inscribed in the central oval oculus, so to fully 
integrate various forms of art in accordance with the Baroque style. The reason 
behind the representation of a sensual but composed Leda, together with the 

1 For the building’s history, with reference to the other sources [1].
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Fig. 2.2 Room of Leda: orthophoto of the vault. The six polyhedra (1–6) and details of the shad-
ows (A-B; Fig. 2.8)

presence of the four deities Venus  – Amor, Minerva  – Prudence and Wisdom, 
Diana – Chastity, Mercury – Peace and Fortune [2, p. 277] could be that Barbara 
Airolo (born in 1624), wife of Francesco Maria Balbi, probably used this room. It 
is, in fact, connected on the north side with the Room of Hercules, which was 
Francesco’s room [2, p. 13].

2 Scientific Sources and Representations of the Small Stellated Dodecahedra Painted…
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 The Small Stellated Dodecahedron: Scientific 
and Iconographic History

As we will try to demonstrate in this paper, the polyhedron represented six times in 
the vault of the Room of Leda is a small stellated dodecahedron, which is a geomet-
ric figure obtained by extending the faces of a regular dodecahedron until 12 pen-
tagonal pyramids are formed (Fig.  2.3). It is a regular polyhedron with regular 
identical faces and edges of the same length although not convex. It can be described 
as a polyhedron composed of 12 stellated pentagonal faces and 12 vertices, which 
are the vertices of an icosahedron.

As it is known, the first systematic reference to the five regular polyhedra (tetra-
hedron, hexahedron, octahedron, icosahedron, and dodecahedron) is in the Timaeus 
by Plato (fifth to fourth centuries BC). Many scholars have studied this topic, but 
only a few showed an interest in the stellated variants of these polyhedra. The pres-
ent paper does not wish to present a dissertation on the history of stellated polyhedra 
[3], and only cites those sources with reference to elevated or stellated dodecahedra. 
Texts on geometry and perspective were analysed in order to find iconographic and 
scientific traces of this extremely peculiar solid. Among these texts, it is worth 
remembering the work by Luca Pacioli (1445–1517): De Divina Proportione 
(Venice, 1509), dated 1498  in the inscription of his manuscript. In the section 
Libellus in tres partiales tractatus divisus quinque corporum regularium dependen-
tium (cc. 1–27), Pacioli inserts 60 woodcut illustrations taken from watercolour 
drawings by Leonardo da Vinci, representing regular solids and their elevated (pun-
tuto) and sectioned (abscissa) variants, in the solid and frame (vacuo) versions [4, 5].

We know of Pacioli’s derivation of the elements on regular solids, thanks to the 
book Libellus de quinque corporibus regularibus2 written by Piero della Francesca 
(1415/1416–1492), who described the relationships between platonic solids, the 
sphere, and some architectural elements. Piero used plan and elevation view 

2 (1478–1482; Biblioteca Apostolica Vaticana, Ms. Cod. Vat. Urb. Lat. 632)

Fig. 2.3 The small stellated dodecahedron: two orthogonal (a, b) and one perspective view of the 
virtual model (c). Construction via extension of the faces of the regular dodecahedron (arch a for 
the rebatement of the pentagon’s height on the apothem of the pyramid). The five-pointed star is 
highlighted in blue
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representations and what is today known as Cavalieri’s axonometry [[6], p. 342]. 
Pacioli described an elevated dodecahedron which, unlike the regular solid previ-
ously described, is a generic elevated construction where the pyramids show a 
reduced protrusion (charts XXXI and XXXII) (Fig. 2.4a). Piero and Pacioli influ-
enced artists who came to accomplish remarkable perspectives of regular solids [7], 
but we did not find, however, trace of something similar to the small stellated 
dodecahedron.

The interest in regular solids was shared by Albrecht Dürer (1471–1528) who, in 
the second book of his Unterweisung der Messung… (Nurnberg 1525), described 
regular solids and probably influenced by Pacioli, illustrated elevated polyhedra [3, 
p. 203]. One of his successors, Wenzel Jamnitzer (1507–1585), expressed an even 
deeper interest in polyhedra in his work Perspectiva Corporum Regularium 
(Nurnberg 1568), in which many complex solids can be found, but no elevated 
dodecahedra.

The texts on perspective by Lorenzo Sirigatti, Guidobaldo del Monte, and Piero 
Accolti discussed platonic polyhedra, but the only author who actually showed an 
elevated dodecahedron seems to be Daniele Barbaro (1514–1570) in La pratica 
della perspettiva [8, p. 111], even if the pyramids he depicted are much higher than 
those of the small stellated polyhedron (Fig. 2.4b). Moreover, Barbaro described a 
method for the perspective drawing of regular solids, and in doing so, it became a 
source of guidance for those who sought to take on this challenge, which was much 
more complex than representing parallel projections.

Drawing on previous analyses, it can be confirmed that a comprehensive descrip-
tion of the small stellated dodecahedron was formulated by Johannes Kepler 
(1571–1630) in his Harmonices Mundi [9, 10]. With his work, he wanted to provide 
a systematic treatise on plane and space tessellations, but developing this study led 
him also to the description of the small stellated dodecahedron (book II, pl. III) 
(Fig. 2.4c),3 although it seems Kepler did not realise that this is, in fact, a regular 

3 Kepler also described the Great Stellated Dodecahedron (12 stellated pentagons, 20 vertices, and 
30 edges), while in 1809, Louis Poinsot demonstrated the duality of two other non-convex regular 
polyhedra: the Great Dodecahedron and the Great Icosahedron.

Fig. 2.4 Representations of stellated dodecahedra. (a) Luca Pacioli, 1509. (b) Daniel. Barbaro, 
1569. (c) Johannes Kepler, 1619. (d) Venetian representation, 1425–1431 (?)
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polyhedron, even if not convex [11, p. 111]. Paolo Uccello (1397–1475), known for 
his interest in geometry and perspective, might have preceded Kepler on this 
(Fig.  2.4d), as can be seen in a marble inlay (Venice, Basilica di San Marco, 
1425–1431  ?), where the solid is represented in a perfect axonometry, with the 
exception of the central pyramid, which is slightly shifted to one side.4

 The Small Stellated Dodecahedron in the Room of Leda: 
Geometric Characteristics and Symbolic Meaning

There was a clear collaboration between Castello e Seghizzi [13, p. 73] in the rep-
resentations found in the Room of Leda, that could explain the numerous revisions 
made to figures and objects during the project’s execution to refine this complex 
composition.5 The representation of the geometric elements in the Room of Leda 
can reasonably be attributed to Andrea Seghizzi. However, even though it is not pos-
sible to state with certainty that the quadratura artist did also conceive and design 
the decorative scheme, it is still interesting for the purpose of this study to research 
his training, and the possible sources he might have used. Andrea Seghizzi learned 
the art of quadratura while working in Bologna (Italy) with Girolamo Curti, known 
as Dentone (1575–1632), Agostino Mitelli (1609–1660), and Angelo Michele 
Colonna (1604–1687) [14, 15]. Further clues might come from the Jesuit College 
adjacent to Palazzo Balbi Senarega, that was partly paid for by the Balbi family 
itself. This connection led us to investigate the scientific literature available at the 
time through maths teachers or texts available in the library of the Jesuit College.

Regarding the people gravitating around the teaching of mathematics in the 
Genoese Jesuit College, it is useful to note that the Advanced Mathematics Course, 
started in 1604, was moved, alongside all other courses, to the building expressly 
built for that purpose in via Balbi, between 1636 and 1642. The first mathematics 
professors were Bernardo Salino (who wrote texts on geometry and was in touch 
with the friar Christoph Clavio), Francesco Arluno, Nicolò Cabeo (1650), and 
Giacomo Bonvicino (1651–56) [16, 17].

The manuscript by Bonvicino Brevis introductio in totam mathematicam (1654),6 
containing notes on his geometry lessons, is dated as the year before the start of the 
cycle of frescoes in Palazzo Balbi Senarega. In its 160 pages, the text deals with 
geometric and trigonometric constructions, consequently applied to the 
measurement of places, astronomy, and mechanics; however, there is no reference 

4 In 1986, this representation caught the attention of Lucio Saffaro (1970), who chose it as the 
symbol for the Venice Biennale [12, p. 123–125]. Moreover, the apparent contour of the drawing 
highlights the characteristics of this polyhedron as a three-dimensional interpretation of the five-
pointed star.
5 According to Gavazza [2, p. 13] this could prove that a collaborator of Valerio Castello partici-
pated in the decoration work.
6 Ms. VI 6, Biblioteca Universitaria di Genova.
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to stellated dodecahedra. It is relevant to observe that the manuscript does not men-
tion regular polyhedra, so one can assume those notes must be missing, because this 
chapter would have been a standard topic in any course of geometry. The College 
community was frequented by other mathematicians who were Jesuits, such as 
Orazio Grassi (1583–1654), rector in Genoa since 1646.

It was useful to consult the original collection of the Jesuit College library in 
Genoa in order to find what printed texts were actually available at the time. The 
library of the Jesuits has a complex history, which is interconnected with the trans-
formation of the adjacent church of Saint Gerolamo and Saint Francesco Saverio. 
The construction work of the church started in 1650, but from 1930 onwards, it was 
used as a library with the construction of an upstairs reading room and a storehouse 
below, thanks to the installation of a metal structure which was connected to the 
original Jesuit library (or room III) [18]. Currently, the church and library complex 
are closed for restoration, but the fact that the original nucleus is still partially 
located in the same space, allowed us to identify a series of texts that actually 
belonged to the original Jesuit storage space. In verifying that these texts were part 
of the original Jesuit library, the Catalogue of Gasparo Luigi Olderico (1785–87),7 
proved to be a useful tool. After the suppression of the Society of Jesus (1773), the 
administration board designated by the Ligurian Republic appointed the former 
Jesuit Olderico as librarian and he worked to enlarge the spaces in order to hold the 
substantial body of material [19, 20].

Following our research, it was evident that during the Jesuit period, no copy of 
the Harmonices mundi by Kepler was available in the library, even though Kepler’s 
famous astronomical tables (Tabulæ Rudolphinæ, quibus astronomicæ scientiæ, 
temporum longinquitate, 1627) were carefully stored there.8 A source for the gener-
ically elevated dodecahedron can be found in the text already mentioned in this 
paper, by Daniele Barbaro9 [8] in which, as previously observed, one may also find 
the perspective representation of geometrical solids.

The Catalogue by Oderico mentions an encyclopaedic text on mathematics by 
Mario Bettini (1582–1637), a Jesuit mathematician from Bologna. His text, which 
is still available today at the library, is the Aerarium Philosophiae Mathematiicae10 
[21] printed in 1648. In the third and last tome of the text, it was possible to see a 
novel representation of a stellated or generically elevated dodecahedron developed 
as a dodecahedron with pyramids built on each face [21, p. tomo III, Sect. 3, 1-9, 
Fig. VII] (Fig. 2.5). Its three-dimensional representation is evident in the form shad-
ows of the pyramids constructed on its faces, the height of which, however, is not 
specified.11

7 Bibliothece Universitatis Genuensis Catalogus secundum auctorum Cognomina Ordine 
Alphabeticus dispositus, 1785-87 (Biblioteca Universitaria di Genova, Atrio Rari Ms. C. 33 1 4).
8 Biblioteca Universitaria di Genova, 3 B 7 61.
9 Biblioteca Universitaria di Genova, 3 LL V 43
10 Biblioteca Universitaria di Genova, 3 X III 63-65
11 The description by Bettini mentioned the internal pyramids of the dodecahedron. He then 
referred to another section of his text on the half-diameter of the circumscribed sphere, coinciding 
with the side of the pyramids, which is different from Kepler’s pyramids.
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Fig. 2.5 M. Bettini 1648, tome III, Figure VII. 010

Mario Bettini also wrote theatrical pieces, that showed his specific interests in 
astronomy and mathematics and were performed in Bologna and other European 
cities. For example, the Tragicum sylviludium (performed for the first time in Parma, 
1612) contains a description of the planet Venus that draws on classical knowledge, 
but also on the recent observations of that time by Tycho Brahe (1546–1601) [22], 
p. 210], with whom Kepler collaborated since 1600. Bettini worked in stagecraft, as 
demonstrated by the optical illusions (projections and anamorphosis) documented 
in tome I of his cited text. Seghizzi also worked as an architect for theatres as can be 
seen by his innovative projects in the Formagliari theatre and the Malvezzi theatre 
in Bologna, respectively, dating 1641 and 1651 [15, p. 2].

A more specific aspect connecting Bettini and Seghizzi, besides sharing the city 
of Bologna and the interest for theatre and perspective, is the allegoric representa-
tion of the title page of Bettini’s book, accomplished by Girolamo Curti [22, p. 236] 
who, as previously stated, had been the teacher of Seghizzi himself. Although there 
are a number of possible references, one cannot identify with certainty the source 
used by Seghizzi but, whatever its origin, the polyhedron in the Room of Leda is the 
regular small stellated dodecahedron, as it was explained, that only Kepler described 
and illustrated correctly 36 years before the representation of the fresco. Comparing 
the six polyhedra, oriented in different directions, shows that the images can be 
superimposed, as it is here illustrated for polyhedra 1 and 2 (Fig. 2.6, at the top), 
thus confirming that they belong to the same drawing transposed six times to the 
surface of the vault.
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Fig. 2.6 At the top: a comparison of two of the six solids showing the superimposition originated 
by the same drawing. In the centre: axonometry with identification of the projection plans of the 
results obtained at the bottom. (a) Orthophoto. (b) Rectilinear projection. (c) Tangent projection
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Before analysing the characteristics of the Genoese stellated polyhedra, it is use-
ful to compare the different survey and representation materials that we used for the 
present research.12 The high-resolution rectilinear projection of the vault was 
extrapolated from a nodal panoramic photo, i.e., a perspective projection that is 
closer to the natural sight of the observer. An orthophoto, a high-resolution orthogo-
nal projection, was obtained thanks to photo-modelling survey. By applying the 
texture of photo-modelling, we obtained a virtual model, and the projection was 
drawn through a plane tangent to the vault near to the dodecahedron that was taken 
into consideration.

As it can be observed by comparing the representations described (Fig. 2.6a–c), 
once they are all brought back to the same dimension, their differences cannot be 
perceived, especially because they are positioned close to the centre of the vault, 
which additionally does not have a steep curvature—for this reason, the representa-
tion of the orthophoto was chosen.

The graphic elaboration in Fig. 2.7, a superimposition of the outline of one of the 
perspective images of the small stellated dodecahedron, highlights certain features 
of the painted polyhedron. One can see that two of the added pyramids should not 
be visible in a frontal view (highlighted in green, in Fig.  2.7), but we can also 
observe the modified position of other pyramids (the most evident of which is 
depicted in orange in Fig. 2.7). Despite these modifications, it is still possible to 
recognise the continuity between the lateral faces of the pyramids with the pentagon 
of the adjoining base (blue line in Fig. 2.7), derived from the construction previ-
ously described (Fig. 2.3).

12 The photographical survey was conducted by Cristina Càndito and Ilenio Celoria. The elabora-
tions on the virtual model were directed by Cristina Càndito and accomplished with the collabora-
tion of Andrea Quartara.

Fig. 2.7 On the left: the stellated dodecahedron in the Room of Leda. On the right: its superimpo-
sition with a perspective view of the virtual model
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The present paper argues that some aspects were wilfully altered to obtain a per-
spective image that was closer to an ideal shape of the polyhedron; in fact, these 
distortions cannot be explained solely by the slight curvature of the cylindrical sur-
face onto which they are projected.

Thanks to this geometric construction, it is possible to visualise the five-pointed 
star and the apparent decagonal contour of the solid. This aspect prompted further 
research into the possible meaning of the polyhedra represented in the Room of 
Leda. Generally, regular solids are connected with the concept of geometric perfec-
tion, as in Mysterium Cosmographicum (Tübingen 1596), where Kepler used regu-
lar polyhedra as the basis of a fascinating—yet not fully convincing—interpretation 
on the orbit of planets, associating them to the cosmos and its creation.

In ancient times, the five-pointed star symbolised health and harmony, after 
Pythagoras identified its golden ratios. This figure is associated particularly with 
Venus, the symbol of beauty [23, p. II, 427]. As we have seen, Venus was also 
painted in one of the allegoric representations on the vault; perhaps a homage to the 
beauty of the future guest of the room, Barbara Airolo.

The reference to Leda, queen of Sparta, and her heroic sons, such as Castor and 
Pollux, can be seen as a celebration of the family lineage residing in this building. 
The reference to Barbara as Leda, mother of Helen of Troy, is dubious in any case, 
because Leda is mostly remembered for her extramarital affair with Zeus, which is 
the scene represented in Barbara’s bedroom.

Many symbolic and mythological interpretations can be put forward; however, 
there is a clear intention in the representation in association with the polyhedron 
recently discovered by Kepler. The oval frame could also be a reference to the ellip-
tical orbit of planets, known as the first law of Kepler (Astronomia Nova, Prague 
1609). The ellipsis, which was common in the seventeenth century, especially in 
Baroque architecture, can also be explained with the intention of uniformly cover-
ing the rectangular surface of the room.

The numeric theme can also be taken into account: why six polyhedra? Is it a 
reference to the six known planets (including the Earth)? Or the six days of cre-
ation? Or simply because six is a perfect number, i.e. equal to the sum of its divi-
sors? In some cases, the number 6 is assimilated to marital love, as it is the product 
of the first feminine number (2) and the first masculine number (3) [23, p. II, 395]. 
Moreover, a different projection of the stellated dodecahedron generates an appar-
ent contour coinciding with a six-pointed star (Fig. 2.3).

Considering all previous observations, the only certainty is the strong connection 
between the arts and science of that period, that surely stimulated the vanity of cer-
tain patrons. In the present paper, we hypothesised that Francesco Maria Balbi 
might have indulged his interests, or those of his wife Barbara Airolo, in new scien-
tific discoveries and, therefore, asked Valerio Castello and Andrea Seghizzi to reach 
out to local academics, perhaps Jesuits, who could collaborate with them to define 
a decorative system that made reference to Kepler’s geometry, its symbolic meaning 
or its connection to cosmology.

Maria Barbara Airolo was the daughter of the wealthy Giovanni Tomaso Airolo. 
She married Francesco Maria Balbi in 1640, but there is no further information 
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about her, the person that inspired this decorative structure, as usually occurs with 
women in history. The only form of recognition she received for her artistic inclina-
tion came from her father’s will (1644), who left her a painting of her choosing from 
his collection [24].

It is important to remember that, during that time in Genoa, there were other 
libraries with texts on cosmology and geometry, as demonstrated by an inventory in 
165113 from the library of a granduncle of Francesco Maria, Gerolamo Balbi 
(1546–1627).14 There were many treatises on mathematics, astronomy, and cosmog-
raphy (Tolomeus, Euclid, Regiomontano, Finè, Gallucci, Brahe, Clavio and Apiano, 
Gemma Frisius and Magini). Even if it was not possible to trace back the direct 
source of the stellated polyhedra in the frescoes, Kepler’s previous work may well 
have found its way to several different sources, which eventually brought it to end 
up on the ceiling of the Room of Leda.

 Observations on Shadows

Further interesting aspects come to light when analysing the shadows of polyhedra, 
the importance of which has already been explained by Magnani [13, p. 73]. The 
first distinct characteristic is the presence of form shadows alone, because cast shad-
ows are observed only in rare cases. The direction of the light that generated these 
form shadows is compatible with the orientation of the windows, as it can be noted 
in some sections of the painted vault as, for example, in the pedestal of the painted 
columns (Fig. 2.8a) or the brackets of the impost cornice (Fig. 2.8b).

Comparing the different polyhedra could end up being quite difficult. In order to 
observe the shadows on the small stellated polyhedra represented on the fresco of 
the vault, the single solids were enlarged, and their position and orientation main-
tained (Fig. 2.9).

Observing the six stellated dodecahedra as a whole, it is clear that the artist con-
sidered the two windows in the room as the main source of light but, in some cases, 
the shadows appear to be generated by the real sources of light as well as the fake 
openings painted in the vault. Further contradictions prompted us to reflect upon the 
meaning of these shadows. For example, polyhedron five mainly seems to receive a 
lateral light with respect to the windows while, in some faces of each polyhedron, 
shadows and light appear to have been placed at random.

A potential reason for this distribution might be that the painter assigned shad-
ows and light on the basis of a better tonal contrast with the background, with the 
aim of giving better visibility to the painted shape, taking into account the relative 
distance of the observer in relation to the dimension of the painted subject.

13 ASG, Notai Antichi, Notaio Calvi Carpenini, 26.8.1649. Per la trascrizione: Montanari 2015
14 Gerolamo is a son of Nicolò, brother of Pantaleone, father of Giacomo, father of Francesco Maria.
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Fig. 2.8 The Room of Leda: detail of the shadows on the vault (see Fig. 2.1). (a) The pedestal at 
east. (b) The brackets of the opening at north

These polyhedra rarely have cast shadows, as can be observed in dodecahedron 
1 (Fig. 2.10c). In fact, the addition of cast shadows to the dodecahedra would have 
required drawing more projected pyramids, thus generating a superimposition of 
lines that would have compromised the artist’s search for clarity, as demonstrated by 
the alteration of the perspective image [25]. One particular shadow drawn on poly-
hedron 4 (circled in red in Fig. 2.9) is somehow difficult to interpret, but it seems to 
be compatible with the shadow cast by the band holding the solid, which is pro-
jected onto its top faces.

If we draw a comparison between the fifteenth century Venetian stellated dodeca-
hedron (Fig. 2.10a), Kepler’s dodecahedron (Fig. 2.10b), and those in the Room of 
Leda (Fig. 2.10c), we observe that the form shadows are correctly represented by 
Kepler, while the other two examples do not attribute the same luminosity to the 
faces belonging to the same plane. Only in Kepler’s polyhedron does each face have 
uniform shading; it is an ideal representation with one single source of light and 
without cast shadows. In the Genoese polyhedron, the faces do not have uniform 
shading, which might reflect the artist’ intention of highlighting a clearer contrast 
with the background. Moreover, shadows could also be influenced by the context in 
the fresco, in the attempt to simulate the complexity of a real space.

 Conclusions

The painted vault in the Room of Leda shows various interesting features, such as 
the first appearance in Genoa of the small stellated dodecahedron, the new geomet-
ric element introduced by Kepler in 1619. For this reason, the present study 
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Fig. 2.9 Orthophoto with enlargement of the six polyhedra. Verification of compatibility of the 
shadows with real and illusory lights. Circled in red a probable cast shadow
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Fig. 2.10 Comparison between three representations of the small stellated dodecahedron. (a) 
Venetian representation. (b) Kepler’s representation. (c) Genoa’s representation and analysis of its 
form shadows

investigated a series of possible iconographic and scientific sources, as well as the 
symbolic meaning of this polyhedron and its method of representation. It is here 
hypothesised that the distortions applied to the representation of the geometric solid 
in the Room of Leda were executed in order to come closer to its ideal form and 
allegorical meaning.

In fact, the perspective layout of the dodecahedron was altered by adding parts 
that should not be visible in a frontal view and by eliminating cast shadows. This 
signals the intention to place attention on the five-pointed star that strengthens the 
allegoric structure of the represented myths, and is a symbol of harmony and beauty, 
as a possible homage to Barbara Airolo, the future guest of the room.
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Chapter 3
Polyhedral Transformation Based 
on Confocal Quadratic Surface Properties. 
Graphical Speculations

Andrés Martín-Pastor 

Abstract Several procedures are presented that allow us to discretize a rotational 
quadratic surface in a simple way while fulfilling various geometric conditions. The 
transformations made are derived from a series of lines of graphical reasoning based 
on certain properties of rotational quadratic surfaces. The graphic procedures 
employed are analysed together with the results produced, upon which a discussion 
is opened regarding the relationship between these graphic procedures with the ste-
reographic projection and 3D homology. The contribution of the article resides, not 
in the field of mathematical discretization, but in the presentation of graphical rea-
soning in order to facilitate the comprehension of the properties of rotational qua-
dratic surfaces and their possible use in the design of polyhedral surfaces.

 Introduction

We want to evince the representation of polyhedra in the history of Descriptive 
Geometry as pieces that, beyond being merely symbolic, enable certain complex 
spatial transformations to be graphically understood. The relationship of polyhedra 
with perspective (the first codified system of representation) has known extraordi-
nary examples in History: Daniele Barbaro, Vignola-Danti, Lorenzo Sirigati, Jean 
François Niceron, Jean Dubreil, Albrecht Dürer, and Wentzel Jamnitzer, among 
many other geometers. The formulae initiated by Luca Paccioli and Barbaro trigger 
an analysis of the internal geometry of polyhedra, which substantially conditions 
their form of representation. Each polyhedron must therefore be known a priori in 
order to be represented on the basis of its internal relations. The proposed strategy 
always links the polyhedron with the space to be represented because, once the 
internal structure of the polyhedron is known, we can ascertain how space is trans-
formed [1].
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Several centuries after the codification of perspective science, the first geometers 
who strove to accurately graph four-dimensional geometries were faced with new 
challenges: on the one hand, they had to represent invisible objects while, on the 
other hand, they had to define a new form of representation that was yet to be codi-
fied.1 In these first attempts, tetra-dimensional polyhedra played a decisive role 
which still is in existence today [3].

Following this inherited tradition, we have also relied on polyhedra to explore 
the properties of a transformation arising from certain properties of rotational qua-
dratic surfaces presented in a recent article [4].

 Generalization of One Property of the Archimedes Paraboloid

Archimedes (287–212 B.C.), in his work On Conoids and Spheroids, Proposition 
XII [5], is the first to comment on the relationship between a section of the rota-
tional paraboloid and its projection (Fig. 3.1a). This relationship is interpreted by 
Professor Gentil-Baldrich as follows: any section of a rotational paraboloid is 
orthogonally projected onto the plane perpendicular to the axis as a circumference 
[6, p. 26].2

1 Llorens-Herrero, in [2], managed to systematize the tetra-dimensional Euclidean space by means 
of a complete Graphic System. His method consists of extrapolating the reasoning of Monge’s 
Dihedral system to the fourth dimension.
2 Translated by the author from “toda sección elíptica de un paraboloide de revolución se proyecta 
ortogonalmente sobre el plano perpendicular a los ejes como una circunferencia” [6, p. 26].

Fig. 3.1 (a) Proposition XII by Archimedes. (b) Three-dimensional extrapolation. Any right rota-
tional cylinder, with its axis parallel to the axis of the paraboloid, produces a planar curve (ellipse) 
at its intersection with the paraboloid
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If this property announced by Archimedes is approached as a relationship 
between the paraboloid and the rotational cylinder, then the problem can be appreci-
ated as a particular case of rotational quadratic intersections; any rotational cylinder, 
with its axis parallel to the axis of the paraboloid, produces a planar curve (ellipse) 
at its intersection with the paraboloid3 (Fig. 3.1b).

Through purely graphic reasoning and with the help of digital graphic tools, this 
property between cylinders and paraboloids can be generalized to all rotational qua-
dratic surfaces (Fig. 3.2) and summarized in

If two rotational quadratic surfaces share the position of one of their foci at the same point, 
then the intersection curves between the two surfaces are always planar. [4, p. 194]

The oblate ellipsoid and one-sheeted hyperboloid are excluded from this 
definition.

3 The use of this property offers interesting solutions to discretize parabolic surfaces. Narvaez-
Rodriguez [7] applies the Archimedes property for the discretization of rotational paraboloids 
using lightweight conical components.

Fig. 3.2 Planar intersection of rotational quadratic surfaces that share the position of one of their 
foci at the same point
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This property, regarding confocal quadrics, was expounded by Poncelet [8] in 
the context of the formulation of projective geometry in the nineteenth century, in 
which many other authors participated.4

Although the property is open to many other applications, in this paper we 
explore its capacity to project a net of cyclic polygons onto a rotational quadratic 
surface, in order to preserve their planarity after the transformation.

 Area of Application, Objectives, and Methodology

In this study, various graphic procedures related to the aforementioned property are 
shown, aimed at converting rotational quadratic surfaces into polyhedral surfaces, 
thanks to which polyhedra can be converted into more complex polyhedra.

In a first attempt to define the scope of this investigation, our study has been 
limited to polyhedra inscribed in rotational quadratic surfaces, that is, in which all 
vertices belong to the surface that defines the latter. The resulting polyhedron, or 
polyhedral network, can be understood as a discretized surface shape, now com-
posed of flat polygons. The graphic procedure itself, shown below, rules out other 
discretization solutions, such as those produced by panelling tangential to the sur-
face or other more complex solutions. However, it should be emphasized that this 
text is not intended to contribute with anything new to the theory of surface discreti-
zation as a general mathematical problem, nor to its practical application in the field 
of panelling.

As a mathematical problem, the discretization of quadratic surfaces, especially 
ellipsoids, constitutes a well-known topic in the field of surface discretization. 
Numerous methods of panelling have been studied for quadratic surfaces. We should 

4 In addition to the text published in [4], we consider the following references, that have been trans-
lated by us:

Chasles’s Aperçu Historique [9] shows us two properties related to the subject of study: 324. 
Two surfaces of the second degree of revolution which have a common focus are homological and 
their centre of homology is this focus [9, p. 786]; and 361. The cone, which has a focal point of a 
surface of revolution for its vertex and a plane section of the surface for its base, is of revolution 
[9, p. 804].

The second edition of Poncelet’s Traité des Propriétés Projectives [8] states that, as the subject 
in question (confocals) had, in his time, been the object of investigation by various geometers, he 
concluded it to be in accordance with his manuscript deposited in 1824 at the Académie des 
Sciences. Poncelet further clarifies his authorship in the discovery of these properties, when he 
refers that, when he read about this Memoir in the session of April 12, 1824, he concluded he had 
developed and highlighted several of the general applications, and, in particular, the angular and 
descriptive properties relating to lines and second-order surfaces that he called homofocal or con-
focal because they have a common focus [8:120]. Furthermore, the main property, to which we 
have alluded, is by him stated this way: any system of confocal second-order surfaces, which can 
also include spheres that have the common focus as their centre, intersect two-by-two in conical 
sections [8, p. 121].

It is important to stress out that Poncelet did not think highly of Chasles, whom he constantly 
accused of maliciously omitting work of other geometers. Regarding the study of confocals, 
Poncelet quotes other authors such as M. Quetelet, M. Ch. Dupin, and Bobillier [8, p. 419].
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bear in mind Monge’s ellipsoid, mentioned by Hachette in 1822 [10], regarding the 
lines of principal curvature and their relation to current panelling methods, a subject 
that was also studied by Jimenez and Pottmann [11]. There are many theses and 
research papers on surface panelling, and various panelling methods proposed are 
indirectly related to the present study [12, 13].

 From Plane to Space. Graphic Methods

We will apply the generalized property in accordance with the following reasoning:

 – The first step consists of making a parallel projection of a circumference on a 
rotational paraboloid in the direction of its axis. According to the property pre-
sented by Archimedes, the circumference is always projected on the paraboloid 
as an ellipse. Therefore, any polygon inscribed within the original circumference 
is contained in the plane of the ellipse after the transformation. It should be borne 
in mind that all the ellipses contained in the paraboloid are also contained in 
cones of revolution whose vertex is in the focus of the paraboloid (Fig. 3.3a).

 – The second step consists of placing a rotational quadratic surface (for example, 
an ellipsoid) in such location that it shares one of their two foci with the 
paraboloid.

 – The third step consists of projecting conically, from the common focus, the poly-
gon contained in the paraboloid on the ellipsoid. According to the property, the 
intersection of the projecting cone (quadric) and the ellipsoid (quadric) is also a 
planar curve since the focus of the cone (the vertex) shares its location with the 
focus of the ellipsoid.

As a result of the transformation, the polygon inscribed in the initial circumfer-
ence has been transformed into a plane polygon whose vertices belong to the ellip-
soid (Fig. 3.3b).

Fig. 3.3 (a) Parallel projection of polygons (inscribed in circumferences) on a rotational parabo-
loid. (b) Conical projection of the polygons contained in the paraboloid on the ellipsoid
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This graphic reasoning, which works from the plane to the space, can be used to 
produce not only the transformation of one polygon, but also a network of polygons. 
Through this graphic reasoning, we produce a discretization in planar surfaces 
based on highly complex polygonal patterns, which include networks of squares, 
hexagons, octagons, dodecagons, etc.

 The Method of the Flat Polygonal Patterns

The condition set forth by Archimedes (Fig. 3.3) requires that the first polygon must 
be inscribed in a circumference. Regular polygons meet this condition and their 
main combination in networks or patterns has also been ascertained. We have 
applied the procedure to the 25 patterns in order to completely fill the plane with 
regular polygons, so that they always share their edges (Fig.  3.4a, b). The best 
known are the eleven Archimedean patterns studied by Kepler (1619) that include 
the three regular patterns (triangles, squares, and hexagons) [14]. The remaining 14 
patterns are part of the demi-regular group [15], and derive from the 2-uniform tes-
sellations, which are a generalization of the k-uniform tessellations in their most 
abstract term, with infinite combinations studied by Grünbaum and Shephard 
[16, p. 65].

The case of the pattern based on regular pentagons, which Kepler also studied, is 
of major interest and is often present in Hispano-Muslim art. Kepler’s proposal, 
studied by researchers such as E. Bindel [17], partially solves the problem of filling 
in the plane with a pentagonal network. The pattern includes equilateral polygons as 
the result of the inability to fill the plane, in its entirety, with regular pentagons. As 
can be observed in Fig. 3.4c, this pattern can also be successfully applied. This takes 
us to the irregular patterns formed, not only by regular polygons or fragments 
thereof, but directly by irregular polygons (Fig. 3.5a).

According to the above, the selected patterns are not the only ones that can be 
applied. In fact, we could panelise any rotational quadratic surface with any kind of 
polygon, regular or irregular, as long as the following generic condition is verified: 
all the polygons of the mesh must be circumscribed and share the edges from vertex 
to vertex. This ensures that all the vertices of the panelling are contained within the 
quadric surface and that the panelling is flat (Fig. 3.5b).

 The Method of the Circumference Mesh

The general problem of projecting from the plane to space can also be developed, 
not from polygons, but from circles. By applying the same transformation, circles 
are transformed into flat ellipses in space and the planes that contain these ellipses 
are cut perimetrically by adjacent planes. Therefore, the function of these 
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Fig. 3.4 (a) Pattern made by regular polygons of 3, 4, 6, and 12 edges. (b) Pattern made by regular 
polygons of 3, 4, and 12 edges. (c) Pattern based on regular pentagons

circumferences, which are transformed into ellipses, is to define each of the differ-
ent planes in space, rather than place the vertices exactly on the surface of the 
paraboloid.
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Fig. 3.5 (a) Pattern formed by the combination of a single irregular polygon. (b) Mesh formed by 
irregular polygons inscribed in circumferences

Circles can be tangent, secant, or even not touching each other, but each circle, 
when projected into space, defines a different plane in space that always intersects 
adjacent planes. Consequently, it can be concluded that, in the case of the parabo-
loid, any random set of circumferences in the plane achieves a possible discretiza-
tion of the quadratic surface.

This problem can be analysed geometrically in depth in connection to the radical 
axis and the radical centre of the circumference [18]. Thanks to these concepts, we 
can ascertain, from the initial plane (Fig. 3.6a) to the subsequent polygonal network 
of the final spatial discretization (Fig. 3.6b). The radical axis defines the intersection 
of the planes defined by two circles, while the radical centre defines the intersection 
of three adjacent planes, or the vertex of the trihedron (Fig. 3.6c).

Each circumference has an associated polygon whose vertices can be located in 
any of three different situations: inside the circle, outside the circle, or (singularly) 
in the circle itself. In the first two cases, the vertices are not contained in the surface, 
but remain either inside the volume of the quadric (vertex inside the circle) or out-
side the said quadric (vertex outside the circle). Only when the vertices of the poly-
gons are contained in the original circumference, are all of them located on the 
surface itself, as occurs in the method of the flat polygonal pattern. If all the 
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Fig. 3.6 (a) Random set of circumferences in the plane. (b) Final spatial discretization. (c) Radical 
axis and radical centre

circumferences are point circles (of zero radius), then each plane of the panelling is 
tangent to the quadric at those points.5

Therefore, for all the vertices to be contained exactly on the surface, it would be 
necessary to impose the previous condition that all the vertices are inscribed in a 
circle. A particular case of imposing this condition is to study the different ways of 
compacting circles tangent to each other within a closed contour: a problem studied 
by Stephenson [19]. Especially applicable is the case of compacting groups of three 
or four tangent circles.6

 Discussion. Beyond the Stereographic Projection

If, within a certain perspective, the aforementioned methods are considered, it can 
be stated that we have developed a transformation that converts circumferences con-
tained in a plane into conics (ellipses) contained in a quadric. The quadric surface 
could be interpreted as the initial plane that has been curved and closed at a point 
which represents infinity. This has a huge resemblance to stereographic projection. 
Spherical stereographic projection produces equivalences between circles in a plane 
and planar sections of a sphere. In fact, stereographic projection has traditionally 

5 Discretization through tangent planes is another type of discretization that has been omitted from 
this study. However, it is interesting to note that, in this case, the closed contour of the radical axes 
of the point circles would correspond to the cells of Voronoi algorithm.
6 In a group of four circles, where each circle is tangent to two others, one circle exists that passes 
through the four points of tangency.
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been employed to project the lines of a celestial vault, onto maps and astrolabes, as 
exact circles.

Interestingly enough, if the transformation based on the method of the flat polyg-
onal patterns is applied to a sphere, then identical results are found to those pro-
duced by spherical stereographic projection. We also arrive at the same equivalence 
when comparing the results with stereographic projections of the same patterns 
made from the umbilical points of rotational quadratic surfaces (Fig. 3.7a, b).

On carrying out a more critical analysis, we observed that the procedure pre-
sented contemplates a field of solutions larger than classic stereographic projection 
(Fig. 3.7c). Limitations of stereography are due to the strict orientation of the pat-
tern plane with respect to the projection centre. In stereographic projection, the 
centre must be an umbilical point of the surface, and the plane must be parallel to 

Fig. 3.7 (a) Stereographic projections from an umbilical point of the ellipsoid. (b) Transformation 
based on the method of the flat polygonal patterns. (c) Stereographic projection on a sphere. (d) 
Affine transformation of Fig. 3.7c. (e) Transformation based on the method of the flat polygonal 
patterns as a combination of stereographic and affine transformation

A. Martín-Pastor



45

the tangent plane in this point. The transformation supported by the generalized 
property (Fig. 3.7e) allows to disorient the plane with respect to the umbilical point. 
It can be understood as the combination of stereographic projection on a sphere 
(Fig. 3.7c) and affine transformation (Fig. 3.7d).

 From Spheres to Other Quadrics. Projecting by Cones

According to the described generalized property, any cone of revolution whose ver-
tex is located in the focus of a rotational quadratic surface cuts this surface in accor-
dance with a planar curve. Therefore, any family of revolution cones, whose vertex 
is located in the centre of any uniform polyhedron, can project the vertices of the 
original polyhedron onto another rotational quadratic surfaces such as ellipsoids 
(Fig. 3.8a), paraboloids, and hyperboloids (Fig. 3.8b). The transformation maintains 
the flatness of the faces of the final projected polyhedron, which is thus inscribed in 
the second quadratic surface.

In general, this property is fulfilled for irregular polyhedra whose vertices are all 
situated on the surface of a sphere, on the condition that the vertex of the projected 
cone is located in the centre of the sphere and in the focus of the rotational quadratic 
surface (Fig. 3.8c).

Fig. 3.8 (a) Projecting by cones. Example of discretization of ellipsoid based on the truncated 
icosahedron. (b) Example of discretization of the paraboloid and hyperboloid based on the trun-
cated icosahedron. (c) Transformation of irregular polyhedra
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 Projecting by Ellipsoids, Paraboloids, or Hyperboloids

Instead of using conical projecting rays—being the generatrixes of a cone whose 
vertex is located at the focus of the quadric—we can also use ellipsoids, parabo-
loids, or hyperboloids as projecting surfaces. These quadratics surfaces must share 
the position of one of their foci with the quadric of reference and pass through the 
vertices of the polyhedron. The projections would be made, not by means of straight 
lines, but by conics (ellipses, parabolas, and hyperbolae) contained in a section that 
passes through the rotation axis of the quadric used as projecting surface. The points 
contained in flat sections of a sphere (the faces of the polyhedron) transform into 
points contained in flat sections of another rotational quadric surface, with the dif-
ference that these flat sections are separated from each other (Fig. 3.9a).

Fig. 3.9 (a) Projecting in ellipsoids, paraboloids, or hyperboloids. Example of discretization 
based on the truncated icosahedron. The vertices are projected by hyperboloids. (b) Graphic pro-
cedure to produce bevelled polyhedra. (c) Truncated icosahedron with bevelled edges
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If we apply this transformation to a polyhedron inscribed in a sphere onto another 
concentric sphere (for example, projecting it by hyperbolae), each edge of the first 
polyhedron is transformed into two different edges in the second polyhedron that is 
also coplanar and forms a new face. Hence, this can be considered as an operation 
that automatically bevels the edges of the first polyhedron, in accordance with dif-
ferent criteria, within the chosen projection surface, ellipsoid, paraboloid, or hyper-
boloid and their eccentricities.

The bevelled polyhedron inscribed in the second sphere may be conically pro-
jected onto a third rotational quadratic surface, on the condition that they share a 
focus with the centre of the sphere. This way, a graphic procedure is established to 
produce bevelled polyhedra (Fig. 3.9b, c).

 Discussion. Graphical Characterization of 3D Homology

The graphic study carried out in case 1 with projecting cones, reveals that this trans-
formation can be generalized for all points of space beyond the surface itself.

If we can perform the transformation of a polyhedron whose vertices are con-
tained in a sphere, we can also carry out the transformation of a polyhedron with 
vertices contained in various spheres. This is the case of the rhombic dodecahedron 
in Fig. 3.10a. The two concentric spheres, which contain the vertices of the polyhe-
dron, become two ellipsoids that share one of their foci with the centre of the two 
spheres. The transformed polyhedron also has planar faces, and this condition deter-
mines the transformation of the second sphere into a unique ellipsoid. The transfor-
mation is determined via the first sphere-ellipsoid set, which we call the reference 
(Fig. 3.10b).

Once this transformation is defined, the problem is generalized for any concen-
tric sphere. Space continuum could therefore be understood as consisting of a set of 
spheres that are concentric to the reference sphere, where each one is transformed 
into a different rotational quadric surface (Fig. 3.10c). The transitions from ellipsoid 
to paraboloid and hyperboloid therefore carry a special importance since these 
determine the singular points of such a transformation.7

As a result of these graphical speculations, we present an intuitive method to 
characterize completely this transformation in graphical terms (Fig. 3.10d). While 
this is a basic transformation of space studied in mathematics, it has not been a 
popular subject in courses in Descriptive Geometry.8

The projective transformation might be better understood if we consider that 
there are two linked spaces—the initial space and the homologous space—such that 

7 We are currently developing a more complete and exhaustive characterization of this same topic, 
to be published in a near future.
8 A rare example is described by Taibo Fernández [20, p. 273]. The graphical elements that define 
this homology (homology centre, homology plane, plane limit 1, and plane limit 2) remains 
implicit on defining the form and the position of the reference sphere and the reference ellipsoid.
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Fig. 3.10 (a, b) Transformation of the rhombic dodecahedron from two spheres (red and blue) to 
two ellipsoids. (c) Generalization for the entire space: each point in space corresponds to one 
sphere and each sphere is transformed into a different rotational quadratic surface. (d) The trans-
formed rhombic dodecahedron shows its relationship with 3D homology

initial points are transformed into homologous points. Once a reference sphere (ini-
tial) and a reference ellipsoid (homologous) have been defined, the transformation 
of any other sphere into a second ellipsoid (paraboloid or hyperboloid) is determined.

A second sphere of greater radius cuts the axis at A and B. The tangents from 
both points to the circumference (which represents the equator of the sphere of ref-
erence) determine points M and N.  Points M and N become their homologous, 
points M1 and N1. From these points, two tangent lines start from the ellipse itself, 
and determine the homologous points A1 and B1 at their intersection with the axis. 
These points define the major axis of the ellipsoid which is then determined by the 
major axis and the position of the focus (Fig. 3.11).

It can be verified that, as we increase the radius of the second sphere, its homolo-
gous ellipsoid has more eccentricity, up to a specific position where the sphere 
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Fig. 3.11 Geometric relationships for the characterization of 3D homology

becomes a paraboloid. This position can be precisely ascertained from the homolo-
gous point P1, located on the minor axis of the reference ellipse, from which we find 
point P (initial), on the circumference. From here, and with the help of the tangent, 
we find point C which determines the radius of the sphere-paraboloid.

Spheres with a radius greater than that of the paraboloid-sphere become hyper-
boloids. The plane limit 1 is tangent to the sphere-paraboloid. This plane represents 
the locus in initial space where all of its points are projected into the infinity of the 
homologous space. If a point is located behind limit 1 plane, it is necessarily con-
tained on a hyperboloid-sphere in initial space and its projection, metaphorically, 
crosses infinity, so to speak, and appear just on the other side, on the second sheet of 
the hyperboloid.

As the initial points move further and further away from the centre of homology, 
they become contained in spheres of greater radius and their homologous projec-
tions are located in increasingly flattened hyperboloids and closer to the limit 2 
plane. Limit 2 plane is, therefore, the place in the homologous space where the ini-
tial points are infinitely distant from the centre of homology.

 Conclusions

For all the reasons outlined above, we conclude that, through a simple graphic pro-
cedure, a way for the discretization of rotational quadratic surfaces can be defined 
from patterns of plane polygons and circles. This provides additional solutions to 
other well-known discretization procedures, such as stereographic projection, and 
to other procedures of a mathematical nature, thereby opening a suggestive field of 
research. Likewise, the transformations of flat polygons inscribed in spheres towards 
other rotational quadratic surfaces, through conical projections (parabolic, elliptic, 
or hyperbolic), produce interesting ways of discretizing these surfaces.
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A second conclusion is related to the way to characterize 3D homology, in accor-
dance with the graphical procedure from which it is derived, by means of a sphere 
and an ellipsoid. This implies that advances in graphical control can completely 
redefine the way to approach a geometric problem.

As a final consideration, it should be borne in mind that it is not the digital and 
parametric graphic tools, by themselves, that make it possible to define, or reinter-
pret, inherited geometric knowledge, but rather the ability that these graphic sys-
tems provide for the generation of augmented graphic thinking [21].
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Chapter 4
Concave Deltahedral Rings Based 
on the Geometry of Concave Antiprisms 
of the Second Sort

Marija Obradović and Slobodan Mišić

Abstract Finding a possibility to create unique polyhedral surfaces with such spe-
cific geometric regularities as the congruence of faces, a high level of symmetry and 
the ability to describe an infinite polyhedron, served as a starting point for the explo-
rations in this study. Such surfaces can be obtained through a single element, the 
equilateral triangle, given that they are deltahedral. Here, we will focus on deltahe-
dral rings composed of fragments of the concave antiprisms of the second sort, type 
major, that we identify as CA-II-n.M. This paper shows not only that it is possible to 
close a full ring using fragments of selected CA-II-n.M, but also that we can predict 
the shape of the ring depending on the number of sides of the base-polygon {n} 
within the chosen CA-II-n.M. The number of solutions obtained for each CA-II- -
n.M’s representative depends on n and can vary from 1 to 5, out of 8 possible 
solutions.

 Introduction

If we aim to explore a variety of polyhedral forms that do not need to satisfy the 
criterion of convexity, we get an infinite number of shapes that may be difficult to 
systematize and describe, unless we rely on previously chosen criteria. Certain reg-
ularities that usually concern the uniformity of faces of the chosen polyhedron and 
the symmetry of the surface itself are requested. In this paper, we examine the pos-
sibilities of defining polyhedral surfaces with the following characteristics:
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 1. the faces are regular polygons;
 2. the surface consists of congruent faces, i.e. it can be produced using a sin-

gle shape;
 3. a high level of symmetry is mandatory, and it may include radial symmetry, 

rotational and point symmetry;
 4. the surface can be translationally repeated to infinity.

In this respect, deltahedral surfaces are particularly suitable, because they fulfil 
the first two conditions. Out of the deltahedral surfaces that meet the remaining 
conditions, ring-like surfaces were chosen as the most convenient. The lateral sur-
faces of uniform antiprisms and polygrammatic antiprisms [1] are those that first 
come to mind, but we looked further in order to explore new forms that meet the 
above criteria. With this research, we examine the possibility of forming concave 
ring-like surfaces (flower-like and star-like), which can be continuously repeated by 
translation (i.e. like antiprisms), thus forming infinite cylindrical polyhedra [2].

For the development of the concave deltahedral rings, we use ready-made com-
ponents: fragments of concave antiprisms of the second sort that we abbreviate as 
CA-II-n1 [3]. Why did we choose these surfaces, instead of, for example, those of 
convex antiprisms? Because the position of the faces of CA-II-n allows adjacent 
lateral surfaces to be joined into a whole, while the bases of the associated units 
remain coplanar. On the other hand, with convex antiprisms, by joining the faces of 
two adjacent units, we would obtain deltahedral surfaces having the bases that 
would not be coplanar (Fig. 4.1c) due to the dihedral angles between lateral triangu-
lar faces and bases. Hence, we choose the CA-II-n, i.e. fragments of its lateral sur-
face as initial elements, not only because they meet the requirements of all the above 
conditions, but also because their properties, measures and all essential parameters 
for their generation and presentation were already known to us, from previous 
research.

Concave antiprisms of the second sort (CA-II-n, hereinafter) are polyhedra that, 
similarly to convex antiprisms, consist of two identical regular polygons connected 
by a deltahedral lateral surface. The lateral surface is generated by 2π polar array of 
the open hexahedral cell composed of six equilateral triangles arranged around a 
common vertex. The term second sort has its origin in the fact that two rows of 
equilateral triangles in the lateral surface exist. There is an infinite number of 
CA-II- n’s representatives, some of which (with base-polygons of n∈{3, 4, 5 … 11}) 
are shown in Fig. 4.1a.2

In this paper, we consider one of the two types of CA-II-n formation, namely the 
one with a greater height which we name as major type (CA-II-n.M). We search for 
deltahedral rings formed by polar array of CA-II-n.M’s fragments, thereby keeping 

1 The notations introduced for the concave antiprisms of the second sort: CA-II-n, CA-II-n.M and 
CA-II-n.m in the current study, are somewhat different from those introduced by the authors in [3] 
(CA II-n, CA II-nM and CA II-nm), for greater clarity.
2 A detailed description of the genesis of CA-II-n, together with their geometric properties is 
given in [3].
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Fig. 4.1 Some representatives of CA-II-n.M. (a) Eight examples of CA-II-n.Ms; (b) Top and front 
view of CA-II-11.M with its symmetry planes σ and τ; (c) A deviation from the coplanarity of the 
bases of two convex antiprisms caused by joining of their triangular faces

the crucial linear and angular measurements of the initial solids. Our goal is to 
obtain highly symmetrical forms derived from a single element—the equilateral 
triangle.

 Investigating a Possibility for the Deltahedral 
Rings’ Formation

To explain the process of creating concave deltahedral rings (CDR), we will start 
with the CA-II-n’s lateral surface, whose fragments will be used in subsequent steps. 
When forming a CA-II-n, we start from the planar net of the open hexahedral cell—
a regular hexagon subdivided into six equilateral triangles (Fig. 4.2). Depending on 
the way the net is folded, similarly to other polyhedra of the second sort (CC-II- -
n.M/m [4], CP-II-n,M/m [5] and CP-II-n.B [6]),3 it is possible to form two types of 
lateral surface. If the central vertex (G) of the open hexahedral cell is protruding, we 
obtain a type with a lower height for the lateral deltahedral surface, which we term 
minor and abbreviate as CA-II-n.m. If the central vertex (G) is indented, we obtain 
the type with a greater height, termed major and abbreviated to CA-II-n.M that will 
be the focus of this paper (Fig. 4.2a).

As shown in Fig. 4.2a (see also Fig. 4.1b), the vertices A, F and E lie in the sym-
metry plane σ1 and the vertices B, C and D lie in another symmetry plane σ2. This 

3 The notations used in this study slightly differ from those in [4–6], due to greater clarity and 
continuity with the notations for concave antiprisms CA-II-n.M/m.
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Fig. 4.2 Lateral surfaces of (a) CA-II-n.M and (b) CA-II-n.m

allows a given open hexahedral cell to be connected to its adjacent, that one to the 
next and so on, until they form a full circle and a closed ring for the lateral surface. 
The same logic will be used in this paper, except that instead of the open hexahedral 
cell, we will use a cell formed of two paired CA-II-n.Ms connected by a pair of joint 
triangular faces. Due to the face disposition of CA-II-n.M, the vertices F, G and C 
belong to plane θ, the traverse symmetry plane of the CA-II-n, which is parallel to 
the bases planes, thus they are at the same height. Additionally, the triangles AGF 
and EFG are plane reflexive with respect to the plane ρ, perpendicular to the edge 
FG. The corresponding relations apply to the pair of triangles BCG and CDG as 
well, since they are plane reflexive to the former pair with respect to plane τ. We use 
these characteristics of the CA-II-n.Ms to form a new unit cell of a deltahedral ring.

The key procedure for the ring’s formation is to bring the two outer pairs of equi-
lateral triangles (AGF, EFG and BCG, CDG) from the open hexahedral cells of the 
two adjacent CA-II-n.Ms into an overlapping position (Fig. 4.3a). The planar sym-
metries of the triangles AGF and EFG make this procedure possible. In this way, we 
get a new unit, an open decahedral cell (Fig. 4.3b), which is a building block for a 
new deltahedral structure. Thereby, it takes over the measurements (points’ heights, 
angles) from the initial CA-II-n.M.

Then, we examine which multilateral reflection of this decahedral cell (Fig. 4.3c) 
may produce a closed deltahedral ring, necessarily concave and of the second sort 
(abbr. CDR-II), forming a full circle with no partial overlaps or gaps. The final 
result, therefore, comes down to the polar distribution of these cells, with K concave 
antiprisms4 in the array, where K is a natural number (K ∈N).

The open decahedral cell can be positioned in such a way that the surrounded 
space it defines (shaded in Fig. 4.3) faces the interior of CDR-II forming a flower- 
like ring, which we named as Case A; or faces its exterior forming a star-like ring, 
named Case B. In both cases, open decahedral cells can be combined with one or 
more hexahedral cells between them that are fragments of the CA-II-n.M. Given that 

4 For the formation of CDR-II, we only use fragments of the same CA-II-n.M.
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Fig. 4.3 The formation of the open decahedral cell: (a) Joining faces of two lateral surfaces of 
CA-II-n.Ms and forming an open decahedral cell; (b) The open decahedral cell in isometric and top 
view; (c) Forming an array of open decahedral cells 

Fig. 4.4 Experiments with rings formation depending on the symmetry axis of the initial 
CA-II-9.M

the two different units are involved in the ring’s construction, such cases of CDR-II 
are denoted by Af and Bf.

CA-II-n.Ms themselves are characterized by radial symmetry and rotational sym-
metry, while in the cases in which the bases have an even number of sides, we also 
encounter point symmetry. Each base-polygon of CA-II-n has n axes of rotational 
symmetry (Fig.  4.4). To solve the task, we take two paired CA-II-n.Ms with a 
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common open decagonal cell. Observing these in orthogonal projection, we apply 
successive reflexive symmetries across the corresponding symmetry axes of their 
polygons until we close the full circle. The solutions differ depending on the selected 
axes of reflection.

Figure 4.4 shows some of the results we get with the example CA-II-9.M, if we 
run the experiment graphically. The basis of the observed concave antiprism is 
nonagonal, so it has 9 axes of symmetry (1–9). When observed in orthogonal pro-
jection, we can adopt each of them as an axis of reflection, i.e. each symmetry plane 
being projected as a line. Across the chosen axis, we transform the adjacent 
CA-II-9.M, the one that shares the common decahedral cell. By successive repeti-
tion of this procedure, we examine whether there will be a complete and precise 
closure of the full circle. We can observe that each symmetry axis produces a differ-
ent result. Most of them will result in overlaps or gaps between adjacent cells, and 
only some of them will provide a closed ring, according to the initial conditions. We 
note that the hexahedral fragments of the CA-II-9.M regularly occur between the 
open decahedral surfaces. This does not affect the validity of the solution and we 
will adopt such cases if they close the ring (as mentioned above, those are Cases Af 
and Cases Bf). Hence, considering them as valid, we adopt those solutions with an 
integer number (K) of the CA-II-n.Ms in the circle.

In the first steps of the research, it is difficult to predict how many solutions will 
be obtained and how they will look like. The clear interdependence between num-
bers n and K, or the very number of solutions we get for an individual representative 
CA-II-n is not immediately noticeable. For instance, for certain representatives, we 
will only get one solution, while for others, we will have as many as five solutions. 
Instead of testing each individual axis in order to determine number K, we use a 
mathematical calculation based on trigonometry of the decahedral cell’s orthogonal 
projections.

In Fig. 4.5, we see the positions of the open decahedral cells after successive 
reflections across the symmetry planes σ and τ of the decahedral cell and the angles 
that these planes determine for the array. The planes (seen as lines σ’ and τ’ in the 
orthogonal projection) are also symmetry planes of the CDR-II formed out of K 
decahedral cells. Each chosen pair of symmetry axes intersects in the same point (A 
or B) and defines the angles of the polar array between them. The angles determine 
the number K of petals in Case A, or the star points in Case B.

We worked on the following formulas that define:

 – the base angle in the congruent isosceles triangles—orthogonal projections of 
the CA II-n.M’s faces, denoted by α (see Fig. 4.3b);

 – the largest angle between two symmetry planes τ’ and τ’ of the CA-II-n.Ms in the 
ring (Fig. 4.5b), denoted by φ;

 – the angle between planes σ1’ and σ2’ defined by the outer vertices of the open 
decahedral cells (Fig. 4.5a), denoted by ω.

 
� ��
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6  
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Fig. 4.5 (a) Formation of a hexahedral cell by joining the lateral surfaces of two CA-II-n.Ms: (b) 
Case A, with open decahedral cells oriented towards the interior of the ring; (c) Case B, with open 
decahedral cells oriented towards the exterior of the ring
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It follows that the amplitude for angles φ and ω can be expressed as f(n), such as
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Once angles φ and ω have been calculated, we determine which number k, as 
their multiplier, produces a full circle creating either Case A or Case B, having that 
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Table 4.1 The number of petals/star points in the CDR-II depending on the n of CA-II-n.M

n ∝ φ ω
k �

2�
� j KA, B

k �
2�
� j KB, A

H = f(a)
a = edge length

3 10° 40° 80° Aa 9 1 9 B 4.5 2 9 1723052a
4 15° 60° 30° Aa 6 1 6 B 12 1 12

3
1711992a

Bf3

5 18° 72° 0° Aa 5
5

1
1

5
5

C ∞ 1 ∞ 1701302a
Bf

6 20° 80° 20° B 4.5 2 9 A 18 1 18 1693377a
7 21.428° 85.715° 34.286° Bf 4.2 5 21

3
Af 10.5 / 10.5 1686999a

Bf3

8 22.5° 90° 45° Aa 4
4

1
1

4
4

A 8
8

1
1

8
8

1681793a
Bf Bf

9 23.333° 93.333° 53.333° Af 3.857 7 27 Bf 6.75 / 6.75 1677478a
10 24° 96° 60° Bf 3.75 8 30

3
A 6 1 6 1673849a

Bf3

11 24.545° 98.182° 65.454° Bf 3.667 3 11 Af 5.5 2 11 167076a

k �
�
2�

� �
 (see Table 4.1).

Note: if n = 3t + 2, we have a third Case, C (Cf), when the angles between all 
symmetry planes equal 0. The amplitude of this angle, ψ, is expressed by the 
formula(s):

 � � �� � � �n t2 0  (4.7)

Case C, in which K = ∞ and an infinite linear ring appears, unites Cases A and 
B because, viewed from different sides of the ring, the open decahedral cell can be 
oriented outward or inward. However, if k is not an integer, we additionally multiply 
it by a minimal integer j that results in the integer K. In fact, if we express the value 
of k as a fraction, j is the reciprocal of its denominator. Thus:

 k j K� �  (4.8)

where K∈N. This way, we get solutions even when it is not possible to close the 
circle solely from open decahedral cells and we have to combine them with open 
hexahedral cells. As we can see from Table 4.1, the resulting solution Cases are 
denoted by A, B, Af, Bf, Bf3 and Aa, with additional Cases C and Cf. The above 
simple formulas (4.1)–(4.8) help us to obtain swift solutions, regardless of the case 
in question, where factor j in formula (4.8) is applied to adjust the value of K up to 
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an integer. Therefore, cases in which j > 1 are those with the additional hexahedral 
fragments of CA-II-n.M, the ones we have denoted by Af and Bf. Accordingly, in the 
general setting, the maximum number of possible cases/solutions is 8. Yet, we can 
never get all 8 of them within the same n, because some of the Cases (i.e. A and B, 
A and Af, B and Bf, C and Cf) cannot exist simultaneously for the same CA-II- -
n.M. The maximum number of solutions is thus 5, as can be seen in the example of 
CA-II-8.M.

To complete all the data needed for the definition of the ring itself, we need the 
heights, i.e. the distance between the parallel planes of the bases. We take them as 
the known value H = f(a), the height of the CA-II-n.M that generated it, where a is 
the length of the polyhedron’s edge. The overview of values k, j, K and H (height) 
for the observed n∈{3, 4, 5 ... 11} is given in Table 4.1.

To obtain what we name as true deltahedral forms, we remove all redundant 
faces, such as the ones that penetrate each other or do not participate in the forma-
tion of the ring. Thus, we obtain concave deltahedral rings (of the second sort) with 
K petals or star points, abbreviated as: CDR-II-K.

 Findings of the Research

Validating the above results using an AutoCAD application, through the gallery of 
3D models within the observed sample of CA-II-n.M’s representatives, we came up 
with interesting observations, which may not be noticeable when relying solely on 
formulas.

For the CA-II-n.Ms with n ∈ {3, 4, 5}, a special type of Case A occurs, so we 
denoted it as Case Aa. When we place two adjacent CA-II-n.Ms in such a position 
that two pairs of triangles in their lateral surfaces (e.g. A1G1F1, and E1F1G1 of the 
observed CA-II-n.M) overlap with the corresponding pair of the adjacent one 
(Fig. 4.6a), we place the next CA-II-n.M in a position that another pair of triangles 
(B1C1G1 and C1D1G1) overlap as well and we then continue the sequence of CA-II-n.
Ms according to the same scheme. With the K number of CA-II-n.Ms in a row, the 
ring will be closed completely. Therefore, instead of forming just an open decahe-
dral cell, we get a fully enclosed deltahedral cell, which forms a ring structure 
for itself.

Such a structure is nothing but a lateral surface of a double convex p-sided anti-
prism (Fig.  4.6b), which, being duplicated, now becomes concave. It follows 
that p = K.

The dihedral angles between adjacent faces of two base-joined antiprismatic sur-
faces are greater than π, so this property also qualifies such a case as a concave 
deltahedral ring of the second sort (CDR-II-p), because:

 – a concave deltahedral surface is obtained,
 – it consists of a double row of equilateral triangles,
 – it has a radial symmetry,

4 Concave Deltahedral Rings Based on the Geometry of Concave Antiprisms…
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Fig. 4.6 Formation of CDR-II of type Aa: (a) Six CA-II-4.Ms joined by pairs of triangular faces; 
(b) CDR-II of type Aa

which are all the characteristic of concave polyhedra of the second sort.
Let us now consider why Case Aa occurs for the CA-II-n.Ms where n ∈ {3, 4, 5} 

and if there is any other n that satisfies the conditions of forming a lateral surface of 
a (double) convex antiprism.

If we observe the angles β found in a 2p-sided polygon that emerges as the inner 
one in the orthogonal projection of a CDR-II of type Aa (Fig. 4.6a), after trigonomet-
ric calculations, we find that:
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n  
(4.9)

Consequently, the number p = K of the base sides of the newly obtained double 
antiprism is:
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Table 4.2 The occurrence of Case Aa in CDR-II for the observed range of 3 ≤ n ≤ 200

Now, if we analyse which n satisfies the condition that p is an integer and posi-
tive, i.e. p ∈ N, we come to the result that n ∈ {3, 4, 5, 8}. No other number satisfies 
this formula, because if n tends to infinity, p tends to 3 (Table 4.2).
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n
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Therefore, only fragments of CA-II-3.M, CA-II-4.M, CA-II-5.M and CA-II-8.M 
can produce a CDR-II-p which corresponds to a double convex antiprism of 
p-sided basis.

In Table 4.2, we can see the value p representing the number of double anti-
prism’s sides, as a f(n) of the initial CA-II-n.M, where p = K, the number of CA-II-n.
Ms needed to close the ring.

Still, by using the decahedral cells formed from CA-II-n.M’s fragments, it is pos-
sible to obtain a star-like deltahedral ring as Case B (see Table 4.1 and Fig. 4.4), 
exactly as we would for any other case.

Here, we can see a pattern of geometric limitation similar to the one observed in 
the formation of convex regular-faced pyramids and cupolas, i.e. as Johnson solids 
J1 – J5 [7], where polygons with number of sides n ≥ 6 will not participate in their 
formation, but now with the exception of n = 8. However, although lateral surfaces 
of double convex antiprisms are no longer regularly found as in Case Aa of the CDR- 
II- Ks (except the square antiprism found as the core-ring within one of the arrays of 
CA-II-8.Ms, as will be shown below), the deltahedral rings of A(f) or/and B(f) vari-
ants can still be formed for any n.

Out of the gallery of CDR-II-Ks obtained from CA-II-n.M fragments, we have 
selected a couple, as most typical examples for the observed sample of 
n ∈ {3, 4, 5, …, 11}. Figs. 4.7, 4.8, 4.9 and 4.10 show the CDR-II-Ks formed from 
CA-II-n.Ms for n = 3, n = 5, n = 7 and n = 8, together with the process of their 
formation.

Through visual insight, by creation of models and comparison of the obtained 
shapes, we noticed that certain regularities in the formation of the rings are group-
able in dependence to number n of the original concave antiprism.

We have noticed that trilateral symmetry appears not only in the array of the 
CA-II-n.M fragments with n divisible by 3 (n = 3t), but also in the array of those in 
which n = 4, n = 7, n = 10, etc. (n=3t + 1), as shown in Fig. 4.9. For such cases, we 
have discovered the existence of a trefoil deltahedral ring which appears as the sec-
ond solution for Case Bf. The number KB of CA-II-n.Ms needed to close the ring is:
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Fig. 4.7 CA-II-3.M with CDR-II-9.Aa and the CDR-II-9.B it forms

Fig. 4.8 CA-II-5.M with CDR-II-5.Aa, CDR-II-5.Bf and the CDR-II-C it forms

 
K n K

n

nB B= = =3
3

3or
 

(4.12)

On the other hand, for n-sided bases where n = 3t + 2, we find even more versa-
tile results, because the most diverse solutions appear within these representatives. 
In such an instance, numbers KA = KB, so we get CDR-II-K variants with an equal 
number of petals and star points. Additionally, besides Cases A(f) and B(f), here we 
regularly find Case C, a ring with infinitely large radius. Therefore, for some n-sided 
bases, by assembling these infinite linear series of CA-II-n.Ms’, both in x, y and z 
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Fig. 4.9 CA-II-7.M with CDR-II-21.Bf and the CDR-II-3.Bf3–7 it forms

direction, a formation of 3D tilings can be considered (Fig. 4.10). This problem is 
closely related to Euclidean tilings with star polygons [8], because if we are to close 
CDR-II-K so to form the solid, it would be possible by using star polygons, regular 
compound polygons or semi-uniform polygons [9]. The determination of these 
polygons and the solids formation will be the subject of future research.

The most interesting results in this regard are obtained with the CA-II-8.M, 
where Cases A and Bf are found within the same structure of arrayed CA-II-n.Ms, 
for the same axes of symmetry and thus with identical angles, φA = φB and ωA = ωB, 
for both cases. Furthermore, two different solutions occur in Cases A(a) and Bf; 
those with 4 and those with 8 CA-II-8.Ms in the ring (Fig. 4.10). In this manner, four 
different concentric solutions are obtained:

 (a) two of Case A,

 – flower-like CDR-II (A), formed of 8 CA-II-8.Ms (Fig. 4.10a);
 – double square antiprism (Aa), formed of 4 CA-II-8.Ms (Fig. 4.10b);

 (b) two of Case Bf:

 – star-like deltahedral ring (Bf) formed of 8 fragments of CA-II-8.M 
(Fig. 4.10a);

 – star-like deltahedral ring (Bf) formed of four fragments of CA-II-8.M 
(Fig. 4.10b);

 – supplemented by the fifth case:

 (c) the Case Cf with the infinite series of CA-II-8.Ms’ fragments (Fig. 4.10b).

In situation (b) which involves eight CA-II-8.Ms, another, ninth (double) 
CA-II-8.M can be inserted inside the CDR-II-8.A, playing the core role which con-
vex antiprisms had in the examples of CA-II-8.Ms with n ∈ {3, 4, 5}. Within this 
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Fig. 4.10 CA-II-8.M with five cases of CDR-II-K it forms: (a) Flower-like CDR-II-8.A and star-
like CDR-II-8.Bf, formed of 8 CA-II-8.Ms; (b) Double square antiprism CDR-II-4.Aa and star-like 
deltahedral ring CDR-II-4.Bf formed of 4 CA-II-8.Ms; (c) The Case C1: CDR-II-Cf-8 with the 
infinite series of CA-II-8.Ms’ fragments

structure, we can then identify eight double square antiprisms surrounding the core 
that double CA-II-8.M makes. The obtained composition can be arrayed in space 
infinitely, creating a 3D tessellation (Fig. 4.10c).

Finally, we look at the representatives of concave antiprisms whose bases are 
polygons with n = 3t sides. Having in mind the immanent trilateral symmetry of the 
CDR-II-Ks, it might seem that they should provide the most special solutions, but it 
is not really so. These examples are limited only to A(f) and B(f) Cases, where 
K = 3n. Often, when it comes to odd values of n, Case B may be completely absent. 
A summary of the research findings is given in Table 4.3.
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Table 4.3 Review of the research findings and predictability of number and form of solutions 
depending on n

n KAa KA KB KB3 = KB/n KC = ∞
3 t 3

2

n

n −

3n

Even: 
3

2

n

Odd: /

/ /

3 t + 1 3

2

n

n −

Even: 6
Odd: /

3n 3 /

3 t + 2 3

2

n

n −

n n / ∞

So, from the initial situation where we could not have predicted either the exis-
tence or the number of possible solutions when using certain CA-II-n.M’s fragments 
in forming the ring, we arrive not only to the predictability of their number, but to 
the certainty of their shape.

 Conclusions

With this paper we have shown that:
An integer number (K) of CA-II-n.M’s fragments can be used to form a closed, 

radially symmetrical ring with a concave deltahedral surface. It can be flower-like 
(Cases A and Af), or star-like (Cases B and Bf) and be obtained for any ∈ℕ. In 
instances where n=3t + 1 it is possible to create an additional form of Case B, a 
trefoil ring (Bf3), while in instances with n = 3t + 2, a ring of infinite diameter (Cases 
C and Cf) can be made.

There is a link between the geometry of the CA-II-nMs with n∈{3, 4, 5, 8} and 
that of the convex antiprisms with the number of base sides p ∈ {9, 6, 5, 4}, respec-
tively. Now, as a form of Case A, a duplicated lateral surface of a convex antiprism 
appears, which is named Case Aa.

In total, eight different ring shapes can be formed: Cases: A, Af, Aa, B, Bf, Bf3, 
C and Cf.

The obtained rings can also be termed of the second sort (denoted by CDR-II-K) 
as they inherit the following from the given CA-II-n.M:

• the linear and angular measurements, H and α, needed for their graphic and 
mathematical elaboration,

• two rows of equilateral triangles in the lateral surface,
• radial multilateral symmetry.

Out of the rings thus obtained, it is possible to form infinite cylindrical deltahe-
dra, and in some cases even 3D tessellations. Formation of CDR-II-Ks whose shapes 
belong to the Cases A and B alone (i.e. excluding Cases Af, Bf and Cf), with the 
number of petals/star points that can be any integer K  ≥  2, may be further 
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investigated. Also, the analysis of the base polygons that would enclose the CDR-II-
Ks into solids may serve as a possible direction for future research.
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Chapter 5
Filling Space with Gyroid Symmetry

Ulrich Reitebuch, Henriette-Sophie Lipschütz, and Konrad Polthier

Abstract The gyroid is a triply periodic minimal surface that belongs to the associ-
ate family of the Schwarz P and D surfaces, and has several point reflection, rota-
tional and translational symmetries. A discrete gyroid can be built from triangles—it 
is a discrete surface with the same symmetries as the smooth gyroid surface, and it 
is discrete minimal. Each, the gyroid and the discrete gyroid, splits 3D space into 
two interlinked half-spaces, which are symmetric to each other. We present a pair of 
solid building blocks that, together, fill space, and each of them fills one of the half- 
spaces created by the discrete gyroid.

 Minimal Surfaces

In differential geometry, a surface that locally minimizes the surface area is called a 
minimal surface. Many minimal surfaces are highly symmetric and have rotational, 
translational, mirror reflection, and point reflection symmetries. According to the 
Weierstrass representation, minimal surfaces can be computed as:
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 ϕ3 = fg  

with suitable complex functions f and g and complex constants ck. If a curvature line 
of the minimal surface is entirely contained in a plane, the surface is mirror sym-
metric at that plane; if the surface contains a straight asymptotic line, this line is an 
axis of 180° rotational symmetry for the surface.

By a factor eiϑ we get a 1-parameter family of minimal surfaces
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called the associate family, and the angle θ is called the Bonnet angle. Changing the 
Bonnet angle by pi/2 transforms planar curvature lines into straight asymptotic lines 
and vice versa [1]. Any rotational symmetry of a minimal surface with rotation axis 
perpendicular to the surface is kept during the Bonnet transformation.

 Discrete Minimal Surface

A discrete surface consists of vertices, straight edges, and planar polygonal faces. 
We call a discrete surface minimal, if the surface area cannot be decreased by mov-
ing a single interior vertex, keeping all the other vertices fixed [2].

 The Gyroid Surface

The gyroid is a triply periodic minimal surface that belongs to the associate family 
of the Schwarz P and D surfaces. It was found by Alan Schoen [1] and proved to be 
embedded in 3D by Karsten Große-Brauckmann and Meinhard Wohlgemuth [3]. 
The gyroid has several point reflection, rotational and translational symmetries but, 
in contrast to the Schwarz P and D surfaces, it does not have any mirror reflection 
symmetries and does not contain any straight lines. However, the gyroid does have 
four-fold and six-fold rotary reflection symmetries with rotational axes perpendicu-
lar to the surface. The gyroid splits 3D space into two halves that are mirror sym-
metric to each other.
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 A Discrete Gyroid Surface

A discrete gyroid surface can be constructed from triangles in such a way that it is 
a discrete minimal surface and has exactly the same symmetries as the smooth 
gyroid surface [4]. Translational units of the smooth and discrete gyroid surface are 
shown in Fig. 5.1. If the translational unit is a cube with edge length 1 and has inte-
ger coordinates at the corners, all vertex coordinates of the discrete gyroid are inte-
ger multiples of 

1

8
.

 Space-Filling Solids

We present a pair of solids that, together, fill 3D space. We start with a truncated 
octahedron. We select a pair of opposite hexagons, and then select a set of short 
diagonals in the remaining six hexagons such that none of these has a common ver-
tex with the first two hexagons and the six diagonals form a cycle. There are two 
possible choices of short diagonals fulfilling these conditions. Now we connect each 
of these six diagonals to the centre of gravity of the truncated octahedron, building 
six triangles. The surface given by these six triangles cuts the truncated octahedron 
into two solids. Each of the two solids is bounded by the six cut triangles, one com-
plete original hexagon and three complete squares from the truncated octahedron, 
and three big and three small parts of hexagons, cut by the selected short diagonals. 
Neither of the two solids has any mirror symmetry, but they are symmetric to each 
other. The cut triangles are shown in Fig. 5.2 as white triangles, the remaining sur-
face of the truncated octahedron is shown in blue.

Fig. 5.1 Translational unit of smooth and discrete gyroid surface
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Fig. 5.2 Cutting the 
truncated octahedron into 
two solids

Fig. 5.3 Four ways of attaching solids: at triangles, squares, pentagons, and hexagons

 Filling Half-Space

Using copies of just one of two solids, half of 3D space can be filled. Since all the 
parts of the original faces of the truncated octahedron have mirror symmetry, the 
solids can be attached to each other at these faces in different ways, as shown in 
Fig. 5.3: attaching small (triangular) parts of hexagons, attaching squares, attaching 
big (pentagonal) parts of hexagons, or attaching complete hexagons. When attach-
ing solids at squares, there are four possibilities; for hexagons there are two possi-
bilities up to symmetry. Here we have to take care that all edges show combinations 
of faces, where a third copy of the solid can be attached to both solids. For the 
square, the vertex at the cut-triangle surface has to be aligned; for the hexagon the 
squares of the two solids must not share an edge. For the triangular and pentagonal 
faces at the original truncated octahedron faces, there is only one possible way of 
attaching a neighbouring solid face to face.

By these gluing rules, solids of the same type can be glued to all the faces that 
are not incident to the point at the centre of gravity of the complete octahedron, in 
such a way that only these cut triangles remain unglued. In this way, the cut trian-
gles form a discrete gyroid surface and one type of solid fills one of the two half- 
spaces bounded by the discrete gyroid; the other type fills the other half-space. A set 
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of glued solids is shown in Fig. 5.4; the blue faces of the solids are glued, and the 
white faces build the discrete gyroid surface.

 A. H. Schoen’s M6 Surface

During his search for the gyroid surface, A. H. Schoen found a surface he called M6 
[5], constructed from a minimal surface spanned by a skew hexahedron. The skew 
hexagon used for this construction has exactly the same boundary as the six-triangle 
patch of our discrete gyroid inside the truncated octahedron. A skew hexagon patch 
of the M6 surface is shown in Fig. 5.5. The gyroid symmetries build an infinite non-
self-intersecting surface from the M6 minimal surface patch; this M6 surface is not 
differentiable at the boundaries of the hexagon patches, but it has the full symme-
tries of the gyroid surface.

Fig. 5.4 Gluing solids fills half the space; the white surface becomes a discrete gyroid
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Fig. 5.5 A 
patch of A. H. Schoen’s 
M6 surface

Fig. 5.6 The smooth 
gyroid splits the truncated 
octahedron into two solids

 Cutting at Smooth Gyroid Surface

The same construction can be done with a curved cut surface through the truncated 
octahedron; if the truncated octahedron is placed with its centre of gravity in one of 
the points with point reflection symmetry of the smooth gyroid surface, the gyroid 
surface cuts the truncated octahedron into two parts that do not have any mirror 
symmetry but are symmetric to each other. If the truncated octahedron has the cor-
rect scale in relation to the gyroid surface, some of the gyroid’s axes of 180° rota-
tional symmetry coincide with face diagonals of the truncated octahedron and the 
solids can thus be used in the same way to fill one half of 3D space, building a 
smooth gyroid surface at the volume boundary. The other solid type again fills the 
remaining half-space. One solid with the smooth gyroid cut is shown in Fig. 5.6.
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A.H. Schoen also experimented with hexagonal patches of the smooth gyroid 
surface and symmetries of the tessellation of 3D space by truncated octahedra [5]. 
He describes a hexagonal surface patch called hex90. This patch is obtained by the 
Bonnet transformation from a hexagonal patch of the Schwarz P surface bounded 
by planar symmetry lines. The same patch is bounded by straight asymptotic lines 
in the Schwarz D surface. The six boundaries of his hexagonal gyroid patch are 
geodesic lines of the gyroid surface, which connect six vertices of the truncated 
octahedron, but they are not contained in the hexagonal faces of the truncated octa-
hedron—some parts of these boundary curves of the patch are inside the truncated 
octahedron, some parts are outside. This patch looks very similar to the patch shown 
in Fig. 5.6, but it is not the same. The boundaries of our patch, which is cut out of 
the gyroid surface by the faces of the truncated octahedron, are not geodesic lines of 
the gyroid surface. The surface is not perpendicular to the hexagonal faces of the 
truncated octahedron except for the midpoint of each hexagonal boundary curve.

Our patch boundary curve is contained in a hexagon of the truncated octahedron, 
and due to the gyroid’s 180° rotational symmetry at certain diagonals of hexagons 
of the truncated octahedron, the curve has a mirror symmetry in the plane of the 
hexagon, so the solids with curved cut surface fit together in the same way as the 
solids cut by the discrete gyroid.

 Conclusions

The truncated octahedron is a space-filling solid and if a tessellation of 3D space by 
truncated octahedra is scaled and positioned appropriately in relation to a discrete 
gyroid surface, the latter splits each of the truncated octahedra in the same way into 
two parts, which are symmetric to each other. Thus, each of the half-spaces bounded 
by the discrete gyroid surface is tessellated by one of the two half truncated octahe-
dron solids.

If the same tessellation of 3D space by truncated octahedra is cut by the smooth 
gyroid surface, it also cuts each truncated octahedron in the same way into two sol-
ids, which are symmetric to each other. In this case, the cut surface is curved, and 
each of the two types of solids tessellates one of the half-spaces bounded by the 
smooth gyroid surface.
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Chapter 6
Odd or Even, Jitterbug Versus 
Grünbaum’s Double Polyhedra

Rinus Roelofs

Abstract Coxeter, Longuet-Higgins & Miller (Coxeter et al. Uniform polyhedra. 
Philosophical Transactions of the Royal Society London 401–450, 1954) define 
uniform polyhedra to be vertex-transitive polyhedra with regular faces. They define 
a polyhedron to be a finite set of polygons such that each side of a polygon is a side 
of just one other polygon, such that no non-empty proper subset of the polygons has 
the same property. By a polygon they implicitly mean a polygon in 3-dimensional 
Euclidean space; these are allowed to be non-convex and to intersect each other. The 
Jitterbug transformation is a transformation that can be applied on uniform polyhe-
dra in which the number of faces that meet in each vertex is even. Face-doubling, a 
method to generate new uniform polyhedra by doubling the faces of a known uni-
form polyhedron, can only be applied if there is at least one vertex in which an odd 
number of faces come together. This is what Grünbaum stated in his paper “New” 
Uniform Polyhedra (Grünbaum, Discrete Geometry: In Honor of W. Kuperberg’s 
60th Birthday. Marcel Dekker, New York, 2003). So, for each uniform polyhedron, 
it seems that either the Jitterbug transformation or face-doubling applies. In this 
paper, I show that this is not always true. And that this fact leads to the discovery of 
a new uniform polyhedron.

 Introduction

The Jitterbug transformation was discovered by Buckminster Fuller in 1948 [1, 
p. 460.00]. In Fig. 6.1, we see how the octahedron transforms into the cuboctahe-
dron by rotating and moving the triangular faces. Each triangular face is connected 
to three other triangular faces, meeting vertex to vertex. The movement of each of 
the triangular faces is a translation along the line that connects the midpoint of the 
face with the centre of the polyhedron, together with a rotation for which this line is 
the axis. The Jitterbug transformation needs two different rotation directions. If one 
triangle rotates clockwise, then all its neighbours rotate counterclockwise. The 
complete Jitterbug transformation transforms an octahedron back to an octahedron. 

R. Roelofs (*) 
Independent Sculptor, Hengelo, The Netherlands
e-mail: rinus@rinusroelofs.nl

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
V. Viana et al. (eds.), Polyhedra and Beyond, Trends in Mathematics, 
https://doi.org/10.1007/978-3-030-99116-6_6

mailto:rinus@rinusroelofs.nl
https://doi.org/10.1007/978-3-030-99116-6_6


78

Fig. 6.1 Jitterbug transformation of the octahedron. Sequence of stills of the animation

Fig. 6.2 (a) Rotation of the faces: clockwise and counterclockwise. (b) The five convex regular 
and semiregular polyhedra with an even number of faces meeting at each vertex

Halfway through this process, the cuboctahedron can be recognized, but the square 
faces are only suggested by the empty spaces in between the triangular faces.

The Jitterbug transformation connects pairs of faces with opposite rotational 
directions at their vertices (Fig. 6.2a). Thus, for the Jitterbug transformation to be 
applicable on a polyhedron, the number of faces meeting at each of the vertices 
must be even. When we restrict ourselves to the convex uniform polyhedra, the fol-
lowing polyhedra meet this requirement: the octahedron, the cuboctahedron, the 
rhombic cuboctahedron, the icosidodecahedron and the rhombicosidodecahedron 
(see Fig. 6.2b) and besides the octahedron also the other antiprisms. Through the 
Jitterbug transformation, each face is subject to a translation along the axis connect-
ing the centre of the face with the centre of the polyhedron. These are helical move-
ments, and the path described by the movements of the vertices of a face lies on the 
cylinder that is an extrusion of the circle determined by the vertices of the face. In 
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the Jitterbug transformation, neighbouring faces always rotate in opposite directions 
and stay connected at a vertex.

H.F.  Verheyen has described the mathematical construction of the Jitterbug 
movement [2, pp. 203–204]. In Fig. 6.3, the construction of the movement of the 
Jitterbug transformation is worked out for the cuboctahedron shown in Fig. 6.3a. 
Figure 6.3b shows one axis for a square face, and another, for a triangular face, as 
well as the cylindrical surfaces deriving from the extrusion of the circumcircle of 
each face. The square face and the triangular face stay connected at a vertex during 
the movement, and thus this vertex lies on both of these cylinders. Thus, the line of 
intersection of these cylinders (Fig. 6.3c) represents the path the vertex follows dur-
ing the movement. Consequently, the position of both the square face and the trian-
gular face is defined at each step of the Jitterbug transformation (Fig.  6.3c, d). 
Accordingly, we can show each step of the cuboctahedron’s transformation.

This method can be applied to the each of the five convex regular and semiregu-
lar polyhedra mentioned before. In Fig. 6.4, the process of the Jitterbug transforma-
tion is shown for the icosidodecahedron.

Fig. 6.3 Constructing the movement of the Jitterbug transformation

Fig. 6.4 Jitterbug transformation of the icosidodecahedron. Sequence of stills of the animation
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 Jitterbug Transformations Applied to Non-Convex Polyhedra

The Jitterbug movement can also be applied to non-convex uniform polyhedra, pro-
viding the starting polyhedron has an even number of faces that meet at each vertex. 
As an example, we will take the great ditrigonal icosidodecahedron. It is possible to 
apply the Jitterbug transformation to the great ditrigonal icosidodecahedron, fol-
lowing the construction rules as described by H. F. Verheyen. The resulting anima-
tion is presented by eight stills in Fig.  6.5. Remarkably, halfway through the 
transformation the red pentagonal faces seem to disappear inside the icosahedron 
formed by the triangular faces.

Looking more closely at the situation (Fig. 6.6), halfway through the transforma-
tion we see that the pentagonal faces are arranged inside the icosahedron in such a 
way that they form Poinsot’s great dodecahedron. The Jitterbug transformation is a 
loop, and so we could also have used this polyhedron as the starting point for the 
Jitterbug transformation.

Fig. 6.5 Jitterbug transformation of the great ditrigonal icosidodecahedron

Fig. 6.6 The (a) outside and (b) inside of the new polyhedron, icosahedron, and great dodecahe-
dron combined
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Fig. 6.7 (a–c) Icosahedron and great dodecahedron combined. (a) Triangular faces. (b) Pentagonal 
faces. (c) The complete polyhedron

Fig. 6.8 Kepler’s stellated dodecahedron and Poinsot’s great icosahedron combined. (a) 
Pentagonal star faces. (b) Triangular faces. (c) The complete polyhedron

Indeed, the total configuration of 12 pentagonal and 20 triangular faces can be 
seen as a uniform polyhedron, according to Grünbaum’s ideas for new polyhedra 
(Fig. 6.7). The icosahedron and the great dodecahedron have the same edge configu-
ration. Therefore, we can combine them to this new uniform polyhedron. There is 
another pair of polyhedra with the same edge configuration; Poinsot’s great icosa-
hedron and Kepler’s small stellated dodecahedron. These two polyhedra can com-
bine to make another new uniform polyhedron (Fig. 6.8).

It turns out that the Jitterbug transformation can also be applied to this new poly-
hedron (see Fig. 6.9). The animation in Fig. 6.9 may seem to show the complete 
loop but in fact it is only the first half.

 Face-Doubling

As we have seen, the octahedron is the only Platonic solid on which the Jitterbug 
transformation can be applied, because it is the only Platonic solid with an even 
number of faces coming together at each vertex. In 1965 Joseph D.  Clinton, a 
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Fig. 6.9 Jitterbug transformation of the Grünbaum-combination of Kepler’s small stellated 
dodecahedron and Poinsot’s great icosahedron. Sequence of stills of the animation

Fig. 6.10 (a) Clinton’s model of the dual face dodecahedron. (b) My interpretation of Grünbaum’s 
double dodecahedron

student of Buckminster Fuller, made the first dual face polyhedral transformation 
model. He doubled the faces of the ‘odd’ Platonic solids (the tetrahedron, cube, 
dodecahedron and icosahedron) to become polyhedra in which each vertex has 
even-valence (meaning that an even number of faces come together at each vertex), 
and then connected, alternately, each vertex of an outer face to a vertex of an inner 
face [3, 4]. Clinton’s construction, as can be seen in Fig. 6.10a, is now suitable for 
the Jitterbug transformation.

There is a great similarity between Clinton’s double face concept and the face- 
doubling of Grünbaum where he says:

Face-doubling replaces each face by one red and one green face, with edges joining only 
faces of different colours; hence the number of edges is also doubled. Face-doubling dou-
bles the valence of odd-valent vertices, replaces even-valent vertices by two vertices each. 
Face-doubling results in a polyhedron if and only if the starting polyhedron has at least one 
odd-valent vertex. Since all vertices of a uniform polyhedron have the same valence, face- 
doubling is applicable only to uniform polyhedra of odd valence. [5, p. 334]

So, in summary, face-doubling can only be applied on the odd-valent uniform 
polyhedra and will result in even-valence uniform polyhedra. Then it is possible to 
apply the Jitterbug transformation.
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 Jitterbug Transformation Applied to Infinite 
Uniform Polyhedra

The vertices of the cube have odd valence. So we first double the faces and after that 
the resulting double-face cube is now ready for the Jitterbug transformation 
(Fig. 6.11).

Grünbaum remarks in his paper that some generalizations are possible: ‘First, 
one may admit infinite polyhedra, provided they are discrete’. [5, p. 339]. Clinton 
too makes use of this generalization in his dual-face models of Archimedean tilings. 
There are two infinite regular tilings with vertices of even valence and thus can be 
considered for the Jitterbug transformation. The even valence verified by the fact 
that these tilings are two-colourable, that is, every white tile is surrounded by black 
tiles and vice versa (Fig. 6.12a). The two colours, black and white, are translated 
into two different rotational directions by the Jitterbug transformation, clockwise 
and anticlockwise. In Fig. 6.12b, the different colours of the tiles are represented by 
the two different coloured arrows. The arrows now show the rotation direction of the 
Jitterbug transformation.

There are more ways to build infinite regular structures with only square faces. 
The column shown in Fig. 6.12c can be seen as a part of an infinite uniform polyhe-
dron. The valence of all vertices is even and thus the Jitterbug transformation can be 
applied (Fig.  6.13). Note that the square faces of this infinite column can be 

Fig. 6.11 (a–c) Cube and Dual-face cube, on which the Jitterbug transformation can be applied

Fig. 6.12 (a) The three regular infinite tilings. (b) A step in the Jitterbug transformation applied 
on the 4.4.4.4-tiling. (c) Square column with square faces. (d) Doubling the square faces of the 
column of Fig. c
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Fig. 6.13 Jitterbug transformation applied on a regular infinite column with square faces

Fig. 6.14 Jitterbug transformation of a fragment of the infinite Petrie-Coxeter 4.4.4.4.4.4 
polyhedron

2-coloured like the checkerboard colouring of the planar tiling by squares. Applying 
Grünbaum’s method of doubling the faces, to this column, will not result in a new 
uniform polyhedron because there is no odd valence vertex. The result will be a 
compound of two entwined polyhedra. On the other hand, the Jitterbug transforma-
tion works as expected, as can be seen in the stills of the animation (Fig. 6.13).

A next step brings us to the infinite Petrie-Coxeter polyhedron 4.4.4.4.4.4  in 
which all vertices have even valence. The Jitterbug transformation should be appli-
cable because all vertices have even valence. Indeed, this is the case, as shown in 
Fig. 6.14, in which we can see a sequence of stills of the animation of the Jitterbug 
transformation of a fragment of the Petrie-Coxeter 4.4.4.4.4.4 polyhedron.

Here too, because there are no odd valence vertices, Grünbaum’s face-doubling 
results in a compound of two entwined polyhedra, shown in Fig. 6.15b [6]. Another 
infinite polyhedron worth investigating is the infinite Petrie-Coxeter polyhedron 
6.6.6.6 (Fig. 6.15c) that is the dual of the infinite Petrie-Coxeter 4.4.4.4.4.4. Here 
too, face-doubling doesn’t result in a new polyhedron because all vertices are even 
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Fig. 6.15 (a) Fragment of the infinite Petrie-Coxeter polyhedron 4.4.4.4.4.4. (b) Compound after 
face-doubling. (c) Fragment of infinite Petrie-Coxeter 6.6.6.6 polyhedron. (d) Compound as a 
result of face-doubling of the infinite Petrie-Coxeter 6.6.6.6 polyhedron

Fig. 6.16 (a) Fragment of the infinite Petrie-Coxeter 6.6.6.6.6.6. (a–c) Colouring the faces to 
investigate if and how the Jitterbug transformation can be applied. (d) Doubling the infinite Petrie- 
Coxeter 6.6.6.6.6.6

valence, but in a compound, a pair of two entwined polyhedra. Again, though face- 
doubling doesn’t work because of the even-valent vertices, the Jitterbug transforma-
tion is possible.

The last infinite regular polyhedron we have to examine is the infinite Petrie- 
Coxeter 6.6.6.6.6.6, shown in Fig. 6.16a. We know that the Jitterbug transformation 
gives each face a rotational direction; if one face rotates clockwise, then its neigh-
bouring faces have to rotate anticlockwise.

In order to assign a rotational direction to the faces of the polyhedron, we begin 
to colour the faces, blue for clockwise, red for anticlockwise (Fig. 6.16b). When we 
continue colouring the faces, we can colour the next hexagon blue again (Fig. 6.16c), 
but then we have a problem. The hexagon that adjoins that face has both a blue and 
a red coloured neighbour. The conclusion is that this polyhedron is not two- 
colourable, so that the Jitterbug transformation cannot be applied to this polyhe-
dron, despite the fact that all its vertices have even valence.

 Conclusion

This example shows that even valence of all vertices is a necessary condition for a 
polyhedron to be able to have the Jitterbug condition applied but is not a sufficient 
condition. The ability for faces to be 2-coloured is also necessary. For the Petrie- 
Coxeter 6.6.6.6.6.6, we now have to analyse face-doubling. The result is a real 
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“new” uniform polyhedron (see Fig. 6.16d). This example shows that when face- 
doubling applied to infinite uniform polyhedra, Grünbaum’s requirement that in 
order to produce a new polyhedron at least one vertex has to be of odd valence [5, 
p. 4] is thus not necessary. It should be replaced by the polyhedron which is not two- 
colourable [5]. For the Jitterbug transformation to be possible, we should replace 
the requirement that all vertices have even valence by the requirement that the poly-
hedron is two-colourable. This is a stronger requirement.
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Chapter 7
From Geometry to Reality: Designing 
Geodesic Structures

Gianluca Stasi

Abstract In order to adequately address the design and construction of geodesic 
structures, it is necessary to analyze the multiplicity of factors that so far have been 
considered as unequivocal. These start with the subdivision methods by which geo-
detic meshes can be generated, through the configuration of sets of specific tools to 
work on their definition and finally their adaptation to specific construction methods.

A given geodesic geometry cannot, in fact, be applied to different construction 
methods without adapting it to their characteristics and peculiarities; each of them 
configures its own specific geometry. For this reason, many of the data and concepts 
necessary for the definition of specific construction methods are not found in the 
existing bibliography.

The approach we propose in our research not only allows for a new reading of the 
existing methods of designing geodesic structures that addresses and tackles the 
source of their recurrent problems, but also allows the configuration of new con-
struction methods that avoid these problems.

 Introduction

In the first part of the twentieth century, Walther Bauersfeld and Richard Buckminster 
Fuller introduced geodesic technology for dome construction. Geodesic structures 
make it possible to cover large spans without intermediate supports, and with a high 
robustness, compared to the weight and characteristics of the constituent materials.

The history of the application of those technologies, however, has been plagued 
by recurrent pathologies due to approaches and work methods with which today, 
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they continue to be produced. Geodesic structures are based on the subdivision of a 
spherical surface into smaller interlocking shapes. As Popko warns, unlike the case 
of the circle, the division of a sphere involves difficulties that are not easily solved 
despite the use of computers [1, p. XIV]. There are, therefore, a great variety of 
strategies or systems of subdivision that, starting from different premises, can be 
used for the distribution of points on a sphere. These strategies are described and 
analyzed in depth by Popko and can be compared by evaluating their results with 
different indicators, such as the number of chord factors or the smallest, absolute or 
relative, variation between the largest and smallest of them, the number of different 
types of triangles formed by the geodesic mesh or variations in their size.

Some systems were created to facilitate calculation; others were created to meet 
specific objectives such as structural efficiency, compliance with technical require-
ments or a better adaptation to production and execution operations.1 The systems 
vary widely, and the choice of a particular system influences both the efficiency and 
applicability of the meshes to the construction method. The measures and angles 
datasets obtained in the designs done during the sixties and the seventies were dis-
seminated in a context in which there was a widespread belief that only one geode-
sic geometry existed that would provide fixed values for each frequency of 
subdivision.2

The presentation of different sets of data without explaining the different systems 
used for subdivision fostered a discussion, still active today, on the accuracy of 
these calculations. To this end and even today, assembly problems and recurrent 
construction pathologies have been attributed to these structures.3 In fact, different 
datasets correspond to the application of different subdivision strategies, and the 
origin of inconsistencies must be sought in other factors.

Geodesic structures are generally defined as triangulated meshes. In fact, inde-
pendently from the used subdivision system, three chords joining three adjacent 
vertexes form a triangle. The illustrations used in the existing bibliography contrib-
uted to this idea, by representing the geodesic systems from the chords, and not 
from the arches which define the corresponding spherical triangles. However, in the 
case of geodesic meshes, the measurement of the three sides is not sufficient to 

1 The applicability and opportunity of a subdivision method depend on the constructive system 
with which a structure is going to be built. This fact has stimulated the creation of a great number 
of different geometrical and non-geometrical subdivision systems that were categorized as Class I, 
Class II, and Class III, and the several methods that can be applied to them.
2 In this regard, Prenis relates an encounter that happened during the winter of 1970 between David 
Kruschke, future author of the self-edited Dome cookbook of geodesic geometry, and the authors 
of the Domebook, in which the latter rejected the possibility of the existence of a set of chord fac-
tors capable of configuring a flat-based ν3, thus both Domebook and Domebook 2 presented con-
ceptual inexactitudes about ν3 and odd frequencies in general [2, p. 99].
3 Lloyd Kahn, author of the Domebook [3] and Domebook 2 [4], two of the most early and influen-
tial references for domes self-construction, included the Domebook 3 in his book Shelter [5]. Lloyd 
dedicates the chapter Smart but not wise to the broken promises of the geodesic designs, reporting 
the nostalgia of the domes pioneers towards traditional ways of building, due to problems with 
domes referring specially to waterproofing, durability, and maintenance.
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characterize those triangles, since they do not belong to a Euclidean plane. Although 
three points define a plane, the triangles defined by the chords still belong to a 
spherical system and, therefore, for their geometric definition, other data is neces-
sary. Some of these data refer to the geometrical definition of a double curvature 
triangulated mesh and can be calculated from the three chords’ factors and the 
radius of the spherical system. Others must necessarily be adapted to the specific 
characteristics of the construction system that will be used. Thus, it will be neces-
sary to define other data, related to the used constructive method, in a subsequent 
phase of calculation and design.

A given geodesic geometry, in fact, cannot be applied to different construction 
methods without adapting it to their characteristics and peculiarities; each of them 
configures its own geometry. For this reason, many of the data and concepts neces-
sary for specific construction methods are not found in the existing bibliography.

During the last ten years, we sought to integrate the development of theoretical 
research on the subject, with the creation of practical experiences of participative, 
real scale self-construction of proposed models.4 Their accomplishment provided 
different communities with equipment and infrastructure they needed, and, at the 
same time, an opportunity for us to check the developed models, collect data for 
further improvements, and endorse the technology transferring protocols used for 
the inclusion of the local community in the involved processes. These experiences 
highlighted the need to consider and define a wide range of new concepts and refine-
ments, for the analysis of construction methods applicable to geodesic structures 
and the different geodesic geometries that generate them.

 The Subdivision Methods

The adaptation of the geometry of a geodesic mesh to the characteristics of the con-
struction method that will be used for its materialization is fundamental to avoid the 
appearance of assembly problems and of those pathologies frequently detected in 
the implementation of buildings based on geodesic meshes. Therefore, it is advis-
able, as a first step, to choose a subdivision system for the configuration of a struc-
ture that is suitable for the chosen constructive method.

For the design of geodesic subdivision meshes, it is convenient to divide the 
surface in an orderly manner following a repetitive pattern to promote structural 
efficiency, facilitate production, and provide harmony and aesthetics to the final 
product. Popko indicates how, by uniformly distributing a set of points over the 

4 The author of this study has designed and built more than 25 experiences during the last ten years, 
e.g., the roofing for the El Nodo cultural centre (Saltillo, Mexico, 2010), the urban gardens equip-
ment Sorbole (Seville, Spain, 2016) or the structure built for the Biennale Architecture Lyon (Lyon, 
France, 2017), all of which were constructed with local community members. Knowledge transfer 
programs were also developed, as the one for the 34th European Architecture Students Assembly 
Festival (Veliko Tarnovo, Bulgaria, 2014) directed to architecture European students, etc. [6]
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surface of the sphere, spherical polyhedra provide an appropriate starting point for 
further subdivisions [1, p. 191].

The use of spherical regular polyhedra as the basis for the configuration of geo-
detic meshes is not a new approach,5 and it has been used since the beginning of the 
study of geodesic tessellations for various reasons, ranging from a greater repetition 
of the base element on the sphere, to aesthetic and even esoteric considerations. 
Most geodesic structures have been realized using the icosahedron as generator 
polyhedron.

Popko himself introduces the concept of Principal Polyhedral Triangle (PPT) as 
the basic unit of a geodesic mesh, proposing the use of the equilateral spherical sec-
tions configured by regular polyhedra as a workbench for subdivision and then 
applying the result to the rest of the sphere without any overlapping or discontinuity 
[1, p. 470]. Figure 7.1 shows the uniform distribution of points on the sphere and the 
Principal Polyhedral Triangle for the five Platonic solids.

In the report Structural Design Concepts for future space missions delivered to 
NASA in 1965 by Joseph D. Clinton [7], the number of equal parts into which the 
edge of the PPT is subdivided is defined as Frequency. This definition is maintained 
in case of subdivisions with different measures. In general, the frequency is indi-
cated by the Greek letter ν (nu) followed by the number of subdivisions.

Clinton divided the subdivision systems in two families: Class I, which includes 
the subdivision Alternate, developed by Don Richter, Jeffrey Lindsay, and Duncan 

5 Prenis [2], Clinton [7], Kenner [8], Wenninger [9], Kahn [3–5] indicate spherical polyhedra and 
the platonic solids as the more appropriate base to start the regular subdivision of a spherical 
surface.

Fig. 7.1 Points’ distribution and Principal Polyhedral Triangle in the five Platonic solids
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Stuart in the early 1950s, and Class II which includes the subdivision Triacon, 
developed in 1952 by Duncan Stuart. The Alternate, also known as Ford Subdivision, 
is characterized by mesh elements approximately parallel to the edges of the base 
polyhedron. In the Triacon, however, they are approximately perpendicular to it.

A Class III mesh was described in Magnus Wenninger’s book Spherical Models 
[9] for those rotated meshes that form an angle with the edges of the PPT. Our study 
will not discuss Class II, or III subdivision meshes. Figure 7.2 shows diagrams of 
the Class I and Class II subdivisions and their most common frequencies.

These subdivisions may be created by the Equal Chords Method (Fig. 7.3a) or 
the Equal Arcs Method (Fig. 7.3b). The more diffuse subdivision method for the 
design of geodesic meshes is the Equal Chords. In this method, once the tessellation 
has been traced over the PPT, the new obtained vertices are projected onto the 
spherical surface. While on the PPT, the distance between vertexes is constant, the 
geometry of the model implies that the greater the distance between the spherical 
surface and the PPT, the greater will be the distances between the vertices and the 
area of the new triangular tessellation created on it. Even if all the chords and tiles 
are equal at the PPT level, their projection creates a very uneven geometric configu-
ration on the spherical surface.

On the other hand, the Equal Arcs (Three Great Circles) subdivision system, 
divides into equal parts the angle defined by each chord of the PPT with the center 

Fig. 7.2 Subdivision Class I/Alternate (frequencies ν2-ν5) y Class II/Triacon (frequencies ν2 y ν4)
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Fig. 7.3 Different subdivision methods for geodesic tessellation: for the same subdivision class 
and frequency each method will generate a different set of chord factors. (a) Equal Chords Method. 
(b) Equal Arcs (Three Great Circles)

of the spherical system, or the arcs of the perimeter of the spherical portion corre-
sponding to the PPT itself. From the new points defined on the perimeter of the 
spherical PPT, new arcs, which are also divided into equal parts, are drawn for the 
definition of the new vertices of the tessellation on the spherical surface, corre-
sponding with their intersections. Popko [1, p. 211] tells us how to proceed in the 
case in which the points defined by the three arcs do not coincide perfectly creating 
small triangular windows: find the centroid of each of these triangles and project it 
on the sphere. Working directly on the arcs formed on the spherical surface, this 
subdivision system promotes a more homogeneous subdivision of the surface.

As mentioned, the icosahedron is at the base of the geometry of most geodesic 
structures. Analyzing the results of the application of these two subdivision systems 
on it for frequencies from v3 to v8 (Class I), it can be noticed how the results of the 
subdivision with the Equal Arcs (Three Great Circles) method remain almost con-
stant or present subtle variations while, when increasing the frequency, those of the 
Equal Chords tend to present more heterogeneous values, due to the projection that 
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Table 7.1 Comparative analysis of subdivision systems Equal Chords and Equal Arcs (Three 
Great Circles) for frequencies from 3 to 8 (Class I)

ν3 (E.C.) ν3 (E.A.3) ν4 (E.C.) ν4 (E.A.3) ν5 (E.C.) ν5 (E.A.3)
Lenght 84.53% 86.53% 77.92% 85.89% 75.74% 85.59%
Surface area 79.04% 87.04% 66.42% 87.52% 65.00% 87.12%
Axial agle 84.36% 86.37% 77.79% 85.79% 75.65% 85.52%

ν6 (E.C.) ν6 (E.A.3) ν7 (E.C.) ν7 (E.A.3) ν8 (E.C.) ν8 (E.A.3)
Lenght 75.04% 85.43% 73.30% 85.33% 72.55% 85.27%
Surface area 61.99% 87.87% 58.94% 88.08% 57.76% 87.99%
Axial agle 74.98% 85.38% 73.25% 85.30% 72.52% 85.24%

this system implies. Table 7.1 presents the results of the application of these two 
subdivision systems for frequency from three to eight, returning the percentage of 
the smallest of the values divided by the largest of each set, analyzing the length, the 
area, and the axial angles.

The heterogeneity of the subdivisions directly influences not only the applicabil-
ity of the produced subdivision to concrete construction systems, but also the struc-
tural efficiency and the appropriateness of materials for its implementation. It is 
necessary to emphasize that the subdivision system by Equal Arcs, presented and 
analyzed in all its variants in Popko’s Divides Spheres is not a recent advance, in 
fact, this kind of focus was already included in the chapter Geodesic Math that 
Joseph D. Clinton prepared for Domebook 2 published in 1971 [4]. The use of the 
Equal Chords subdivision system was preferred in the seventies because it offered, 
in combination with the spherical coordinate system, a fast, reliable, and simple 
method to calculate new subdivisions even for very high frequencies.

Nowadays, the development and technological accessibility, together with the 
understanding that the use of this method contributes to constructive pathologies 
related to this type of structures should discourage its use. Notwithstanding, the 
Equal Chords subdivision method continues to be used as a reference in domes’ 
self-construction manuals and in the most important digital references. This subdi-
vision method is often used to generate datasets for the GoodKarma construction 
that will be analyzed in the second part of this research.

One of the most common defects found in published geodesic tessellation tables 
[7] is that they do not clearly indicate the system used for the subdivision.6 Besides 
the subdivision methods mentioned in this paper, there is a wide range of options 
and variations. For example, the Equal Arcs subdivision method has several variants 
such as the Two Great Circles [1, p. 208] or the Mid Arcs [1, p. 213].

It is fundamental to be aware of the existence of this multitude of classes, sys-
tems, and methods of subdivision. This is the only way to understand how different 

6 Today, the principal digital references are www.desertdomes.com, active since 1999 and www.
simplydifferently.org, active since 2008. Some of the contemporary self-edited manuals are from 
D. Larrauri [10], C. Zambrano [11], or M. Acosta [12]. Although none of these references indicates 
their subdivision method, all of them use the Equal Chords.
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results are developed from different procedures and the importance of the tables that 
report them. Much of the confusions that have characterized the beginnings of these 
technologies, and many of today’s discussions still, lie in the lack of understanding 
of this multiplicity and of their underlying concepts. Having seen how the lack of 
knowledge on these questions has caused confusions and discussions, we will 
address some results of research we have developed, considering this multiplicity 
and its independent applications to the Class, Frequency, System and Method of 
subdivision for the generation of the initial geometry.

 Study Case: The GoodKarma Constructive Method

The operations to be carried out to adapt a geodesic mesh to a specific construction 
method can be presented using the study case of the constructive method popularly 
known as GoodKarma. GoodKarma is one of the most widespread methods for the 
self-construction of geodesic structures, due to the existence of several informal 
manuals, which, starting with self-edited booklets in the seventies, are today dis-
seminated in different formats through the Internet. They are extremely popular 
among dome enthusiasts. This method can be used as an example to explain the 
problems that arise when adapting a generic geodesic geometry to specific methods. 
As shown in Fig. 7.4, the GoodKarma method organizes wooden modules around 
each vertex.

This type of distribution of elements around a vertex can be configured in differ-
ent ways, but each of them requires different adaptation operations. This method 
can be used to introduce new geometrical concepts and at the same time begin to 
glimpse the multiplicity of construction methods applicable to the construction of 
geodesic structures.

Fig. 7.4 Hemispheric structure, module, and vertex detail in the GoodKarma constructive system
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It’s necessary not to confuse the GoodKarma method with some of its variants 
such as the Pease Method. For the house he built in Carbondale, Illinois in 1960, 
Buckminster Fuller opted for this method which, like the GoodKarma, aligns the 
widest face of the section of the constructive element towards the center of the geo-
metric system and, consequently, with the Axial Triangle of the Tetrahedron (ATT) 
of each edge. The ends are cut with the same compound angles used for the configu-
ration of the GoodKarma Method and, in a second moment, each element is cut 
longitudinally according to the Tetrahedron Dihedral Angle (TDA) in its upper and 
lower parts. The Pease Method is, thus, a variation or a direct evolution of the 
GoodKarma Method.

The Pease Manufacturing Company of Hamilton, Ohio, which built the house, 
continued to use the method for years and for this reason this method of construc-
tion is known today as the Pease Method. Similarly, there are other variations, most 
of which include longitudinal cuts for design optimization.

Beyond the increase of the technological level, infrastructures, training needs, 
use of materials, and difficulties in the assembly that they entail, these optimizations 
only represent successive phases of the GoodKarma and the results that are pre-
sented for this method are applicable to its variants.

In our research,7 for each triangle of a given geodesic subdivision mesh that 
independently form the used subdivision method, the triangle formed by the three 
chords is named Principal Tetrahedron Triangle (PTT), and the triangle that each 
one of the chords forms with the center of the spherical system to which they belong 
is named Axial Tetrahedron Triangle (ATT).

Figures 7.5 and 7.6 help in the visualization and definition of those new opera-
tors. The distances between the PTT vertices correspond, by definition, to the mea-
surements of the chord factors that define each PTT. Each ATT has two edges equal 
to the radius of the spherical system, while the remaining are equal to the corre-
sponding chord factor.

Unlikely other systems that are based on linear elements, the GoodKarma con-
structive method is based on triangular modules. Figure 7.6 shows how to configure 
each of those modules. Its components are aligned with the three ATT, so that their 
top faces do not belong to the PTT, but to a plane containing the chord and perpen-
dicular to its corresponding ATT.

To execute the cuts of component’s ends, compound angles are used. One of the 
constituent angles is the axial angle, while the other is not the Internal Angle [IA], 
but the Principal OrthoDihedral Angle [POA] is formed on this new plane. Figure 7.6 
describes how, by definition, each PTT has three IA and six POA. A set of two of 
these six angles is assigned to each of the three components of each module. Being 
oriented towards a spherical and, thus, convex surface, the value of the POA is 
always higher than that of the AI that is formed by the same vertex. Using the IA 
instead of the POA results in the introduction of structural tensions that are, without 

7 As part of his professional activity between 2014 and 2018 and his doctoral studies [13], the 
author has been doing research on the subject since 2010. Some were included in scientific publi-
cations [14–16].
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Fig. 7.5 Generation of the PTT from a PPT, Class I, ν4

Fig. 7.6 Internal Angles (red), Axial Angles (green), and Principal OrthoDihedral Angles (blue)

any doubt, the main cause of the building and maintenance problems imputed to this 
construction system.

As the preparation of each triangular module requires six compound angles and, 
in each vertex of the system, converges five to six modules, the introduced devia-
tions may have significant consequences on the geometry of the whole structure. 
The rotation of the components upper face, with respect to the PTT, depends on 
another angle that we have not found in the bibliography we investigated. The 
Dihedral Angle formed between the PTT under analysis, and those with which it 
shares one side, isn’t, in fact, a functional data to this calculation. It must be noted 
that the ATT plane that each chord forms with the center of the spherical system 
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Fig. 7.7 Dihedral Angle (green) and Tetrahedral Dihedral Angle (violet)

does not divide the corresponding Dihedral Angle in equal parts; the Dihedral is not 
symmetrical with respect to the ATT plane. Figure 7.7 illustrates the definition of 
the Tetrahedral Dihedral Angle [TDA] as the angle between a PTT and each one of 
its three ATT.

 Comparing the Results

A common error is to work on a spherical system as if it were a planar system and 
apply the properties of Euclidean geometry. Unlike a triangle in a Euclidean plane, 
the sum of the amplitude of three POA for each vertex of a spherical triangle, either 
rightwards or leftwards, is always larger than 180°.

For the calculation of the POA in the three vertices and, consequently, for the 
design of the three-dimensional modules of the GoodKarma Method, one doesn’t 
work in the same plane, but in three different planes, because, despite representing 
a geodesic system as a series of plane facets, we continue to work on a spherical 
surface in which the axioms of Euclidean geometry are not valid.

The need to adapt the geometry of an initial geodesic mesh to the specific con-
struction method is mentioned, for instance, by D. Larrauri [10], C. Zambrano [11], 
and M. Acosta [12]. However, the lack of comprehension of the peculiarities and 
specificities of spherical geometry and operating on it as if it were a set of planar 
triangles led them to the application of the laws of Euclidean geometry in a spheri-
cal geometric system. By forcing the sum of the angles to correspond to 180°, they 
fostered more deviations.

7 From Geometry to Reality: Designing Geodesic Structures
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In order to present a comparative analysis of the results, the case of the ν4 of the 
Icosahedron (Class I), obtained with the Equal Chords subdivision system, will be 
used, since this is by far the more commonly used.

As summarized in Table 7.2, comparing the data obtained by applying the con-
cepts and operators introduced by our investigations, with the ones proposed in the 
informal manuals of this construction method, we can see how 80% of the cuts 
would be made using different angles.

In addition, comparing the manuals’ data in Table 7.3 with the IA of the corre-
sponding PTT, the most striking result is that, not only the values do not agree but 
also, in an unexpected way, the values of four of the cutting angles reported in the 
manuals turn out to be smaller with respect to their respective AI. Being that the 
PTT are oriented towards the surface of the sphere, and being that surface convex, 
by definition, this turns out to be simply impossible. Comparing the POA with the 
manuals, 80% of the cuts would be made with a different angle. Comparing the 
POA with the IA, this deviation would fall to 53%, demonstrating that modifying 
the general geometry following the rules of planar geometry can lead to the creation 
of even more geometrical incongruities.

 Conclusions

Throughout its development, this research sought to demonstrate that geodetic 
structures are not, and should not, be considered as governed by a single geometry 
and a single construction system. Several of the areas of knowledge involved in the 
design and construction of geodesic structures have been organized and developed, 
with the aim of establishing the relationships that exist between them.

There are a great variety of concepts, a multiplicity of parameters and factors 
applicable to each geodetic geometry that must be considered to adapt a design to 
the large number of constructive systems that could be used to materialize it.

The indistinct application of general geometric schemes to specific construction 
methods will often produce inconsistencies between the theoretical geometric 
design and the actual geometric configuration of what is intended. Such approaches 
result in incidents in the production and assembly phases and determine the occur-
rence of pathologies during the useful life of buildings. The design geometry must 
be adapted and calibrated to the construction system.

In order to adequately address the design and construction of a geodesic struc-
ture, it is necessary to understand the multiplicity of factors that have so far been 
considered as unequivocal, starting from the multiple subdivision methods with 
which geodetic meshes can be generated. Understanding the geometric peculiarities 
of these double curvature triangulated meshes is essential to configure specific tools 
to work on their definition and adaptation to specific constructive systems.

The development of concepts such as the Principal Tetrahedron Triangle (PTT), 
the Principal OrthoDihedral Angle (POA), and the Axial Tetrahedron Triangle 
(ATT) is the first and fundamental step towards a coherent design process for this 
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Table 7.2 Comparison between Principal OrthoDihedral Angles of the five PTT of an 
“Icosahedron, ν4, equal chords subdivision method” geodesic mesh (In these results, specular 
triangles have been omitted) in our research [13], Larrauri [10] and Zambrano [11] (Larrauri [10] 
and Zambrano [11] propose the angles reported in Tables 7.2 and Table 7.3. Acosta [12] has an 
improved proposal, but still based on the same premises, thus following the rules of planar 
geometry, and presenting the same types of deviations.)

Chords’ Factors
A B C D E F
0.25318 0.29524 0.29453 0.31287 0.32492 0.29859
ν4 Comparison between principal OrthoDihedral angles and manuals’ angles
A B A PTT 1
0.25318 0.29524 0.25318 Chords’ factors PTT’s totals
72 54 54 Manuals’ angles 180
71.8645 71.8645 54.6644 54.5849 54.5849 54.6644 POA 181,1138
CA AB AB BC BC CA

−0.1355 −0.1355 0.6644 0.5849 0.5849 0.6644 Deviation (degrees)
0 0 1 1 1 1 Deviation (cut angles)
C C B PTT 3
0.29453 0.29453 0.29524 Chords’ factors PTT’s totals
60 60 60 Manuals’ angles 180
60.3810 60.3824 60.6248 60.6248 60.3824 60.3810 POA 181.3882
CA AB AB BC BC CA

0.3810 0.3824 0.6248 0.6248 0.3824 0.3810 Deviation (degrees)
0 0 1 1 0 0 Deviation (cut angles)
F D C PTT 5
0.29859 0.31287 0.29453 Chords’ factors PTT’s totals
63 57 60 Manuals’ angles 180
64.2206 64.2137 57.9925 57.9637 59.2430 59.2789 POA 181.4562
CA AB AB BC BC CA

12.206 12.137 0.9925 0.9637 −0.7570 −0.7211 Deviation (degrees)
1 1 1 1 −1 −1 Deviation (cut angles)
D E D PTT 2
0.31287 0.32492 0.31287 Chords’ factors PTT’s totals
64 58 58 Manuals’ angles 180
63.1498 63.1498 59.2427 59.2179 59.2179 59.2427 POA 181.6104
CA AB AB BC BC CA

−0.8502 −0.8502 12.427 12.179 12.179 12.427 Deviation (degrees)
−1 −1 1 1 1 1 Deviation (cut angles)
E E E PTT 4
0.32492 0.32492 0.32492 Chords’ factors PTT’s totals
60 60 60 Manuals’ angles 180
60.5660 60.5660 60.5660 60.5660 60.5660 60.5660 POA 181.6979
CA AB AB BC BC CA

0.5660 0.5660 0.5660 0.5660 0.5660 0.5660 Deviation (degrees)
1 1 1 1 1 1 Deviation (cut angles)
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Table 7.3 Comparison between Internal Angles of the five PTT of an “Icosahedron, ν4, equal 
chords subdivision method” geodesic mesh (In these results, specular triangles have been omitted.) 
in our research [13], Larrauri [10] and Zambrano [11]

Chords’ Factors
A B C D E F
0.25318 0.29524 0.29453 0.31287 0.32492 0.29859
ν4 Comparison between internal angles and manuals’ angles
A B A PTT 1
0.25318 0.29524 0.25318 Chords’ factors PTT’s totals
71.3326 54.3337 54.3337 Internal angles 180
72 54 54 Manuals’ angles 180
CA AB AB BC BC CA

0.6674 −0.3337 −0.3337 Deviation (degrees)
1 0 0 Deviation (cut angles)
C C B PTT 3
0.29453 0.29453 0.29524 Chords’ factors PTT’s totals
59.9202 60.1595 59.9202 Internal angles 180
60 60 60 Manuals’ angles 180
CA AB AB BC BC CA

0.0798 −0.1595 0.0798 Deviation (degrees)
0 0 0 Deviation (cut angles)
F D C PTT 5
0.29859 0.31287 0.29453 Chords’ factors PTT’s totals
63.6689 57.5339 58.7972 Internal angles 180
63 57 60 Manuals’ angles 180
CA AB AB BC BC CA

−0.6689 −0.5339 12.028 Deviation (degrees)
−1 −1 1 Deviation (cut angles)
D E D PTT 2
0.31287 0.32492 0.31287 Chords’ factors PTT’s totals
62.5649 58.7176 58.7176 Internal angles 180
64 58 58 Manuals’ angles 180
CA AB AB BC BC CA

14.351 −0.7176 −0.7176 Deviation (degrees)
1 −1 −1 Deviation (cut angles)
E E E PTT 4
0.32492 0.32492 0.32492 Chords’ factors PTT’s totals
60.0000 60.0000 60.0000 Internal angles 180
60 60 60 Manuals’ angles 180
CA AB AB BC BC CA

0.0000 0.0000 0.0000 Deviation (degrees)
0 0 0 Deviation (cut angles)
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type of construction, enabling the configuration of application schemes to be exe-
cuted in self-construction and low-tech environments. The involvement of local 
communities is an important asset since participation and social inclusion are among 
the main goals of our research.

At the same time, in order to define the variety of existent construction methods, 
it is necessary to approach geodesic geometry with a new focus and analyze the 
relationships established between a given geometric configuration and the specific 
geometric characteristics of each construction method applicable in real scale 
structures.

Existing methods of representation and definitions can easily lead to the error of 
working on geodesic structures as if they were a set of planar triangles. Generations 
of dome enthusiasts, from the sixties to the present day, have fallen into this error, 
generating constructions that, due to recurrent pathologies, have been abandoned in 
the late seventies by the pioneers of this technology, as reported in Domebook 3 [4]. 
Nowadays, new generations are willing to rescue this construction technology,8 but 
they are bound to repeat the same mistakes and face the same problems if Euclidean 
geometry is applied on spherical surfaces. These problems are further amplified in 
construction methods such as GoodKarma, that use three-dimensional elements as 
a basis for construction.

The data obtained with the application of the tools developed through the present 
research on the GoodKarma construction system, here used as a case-study, demon-
strated that certain manuals are not adequate. The divergence between the geodetic 
geometry adapted and calculated for this specific construction method using the 
concepts developed in this research and the data reported in the bibliographic refer-
ences is significant and determine high stresses in the elements of the structures.

The approach proposed in our research not only allows for a new reading of the 
existing methods addressing and tackling the source of the recurrent problems they 
suffer, but also, as demonstrated by numerous experiences carried out in the field, 
allows the configuration of new construction methods, such as Brujodésico or 
Zdésico [6], that may be easily explored by communities without previous knowl-
edge of geodesic structures and are implementable in low-tech environments.
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Marta Molina Huelva.
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8 Nowadays, we witness the sprout of a new generation of dome enthusiasts that gather and discuss 
worldwide in several digital forums as, e.g., www.facebook.com/groups/acidome.calc (since 
2010) or www.facebook.com/groups/1455642741182382 (since 2017).

7 From Geometry to Reality: Designing Geodesic Structures



102

References

 1. Popko, E. (2012). Divided spheres: Geodesics and the orderly subdivision of the sphere. A K 
Peters/CRC Press.

 2. Prenis, J. (1973). The dome Builder’s handbook. Running Press.
 3. Kahn, L. (1970). Domebook. Shelter Publications.
 4. Kahn, L. (1971). Domebook 2. Shelter Publications.
 5. Kahn, L. (1973). Shelter. Shelter Publications.
 6. Ctrl+Z [Internet]. [Updated 2019 Mar 17]. from www.ctrlz.net
 7. Clinton, J. D. (1965). Structural design concepts for future space missions. NASA Contract, 

Progress Report.
 8. Kenner, H. (1976). Geodesic math and how to use it. University of California Press.
 9. Wenninger, M. (1979). Spherical models. Dover.
 10. Larrauri, D. (2010). Como construir un domo geodésico. https://www.academia.edu/19748963/

domo_v4. Accessed 1 Dec 2021.
 11. Zambrano, C. (2013). Cómo construir un domo. https://domosgeodesicos.es/2013/07/28/1/. 

Accessed 1 Dec 2021.
 12. Acosta, M. (2019). Domos geodésicos, manual completo de construcción. Ediciones midomo.
 13. Stasi, G. (2018). Geometrías Geodésicas y Sistemas Costructivos. Diseño e implementación de 

sistemas low-tech. Doctoral Thesis. Spain: Universidad de Sevilla.
 14. Stasi, G. (2020). Physical sculptures as mental space for reflection. Reflection-in-action. 

Taylor and Francis Ltd.
 15. Stasi, G., Barrios-Padura, Á., & Molina- Huelva, M. (2017). Self-built geodesic geometries. 

Congress proceedings, 3rd International Congress on Sustainable Construction and Eco- 
Efficient Solutions. ETSA – Universidad de Sevilla. ISBN 978-84-617-8428-8.

 16. Stasi, G., Barrios-Padura, Á., & Molina- Huelva, M. (2016). Protocolos de empodera-
miento y estructuras geodésicas. Congress proceedings, XXX Jornadas de Investigación. 
Configuraciones, Acciones y Relatos. FADU  - Universidad de Buenos Aires. ISBN 
978-950-29-1637-8.

Gianluca Stasi, Graduated in Architecture at the University la Sapienza of Rome (2005), he 
obtained his PhD at the Universidad de Sevilla (2018). One of the main axes of his research is the 
relation between geodesic geometry and community empowerment, and knowledge and technol-
ogy transfer. In his professional life, he has supported, contributed to, and developed participatory, 
self-construction and low-tech initiatives and processes in local communities in various parts of the 
world. These activated long-lasting social processes that have been recognized at an institutional 
level, such as with the Curry Stone Design Prize, and, most importantly, by the communities 
they serve.

G. Stasi

http://www.ctrlz.net
https://www.academia.edu/19748963/domo_v4
https://www.academia.edu/19748963/domo_v4
https://domosgeodesicos.es/2013/07/28/1/


103

Chapter 8
Vittorio Giorgini’s Architectural 
Experimentations at the Dawn 
of Parametric Modelling

Denise Ulivieri, Marco Giorgio Bevilacqua, and Filippo Iardella

Abstract Vittorio Giorgini (1926–2010) grew in Florence, Italy, where he attended 
the School of Architecture. From the earliest years of his academic studies, Vittorio 
Giorgini showed interest in developing research on natural models with the aim of 
applying them to architecture. Starting from the 1960s, his studies focused on the 
analysis of membrane structures, tensile structures, and on the elaboration of tetra-
hedral and octahedral structural meshes. He experimented spatial meshes in an 
intuitive way, even if he understood, at the end of his career in the late 1990s, that 
only with the help of technology and electronic instruments it would be possible to 
obtain a mathematical control of meshes.

Based on an in-depth analysis of Giorgini’s projects, drawings, and documents 
collected in his private archive, the aim of this paper is to demonstrate how pioneer-
ing Giorgini was anticipating several years of recent investigation in the field of 
parametric modelling and computational design.

 Introduction

Vittorio Giorgini (1926–2010) was born in Florence. His father, Giovanni Battista, 
was a pioneer in promoting Italian high fashion around the world. Vittorio Giorgini 
grew up in Florence, where he attended the School of Architecture. After his gradu-
ation in 1957, he worked in Italy up to 1969; then moved to New York City, where 
he worked as a professor of Architecture and Planning at the Pratt Institute until 
1996, when, going blind, he was forced to end his professional activity and return to 
Italy, where he died in 2010 with the age of 84.
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From the earliest years of his academic studies, Giorgini was fascinated by the 
natural world, which he considered not as a mere repertory of formal solutions, but 
as an enormous catalogue of building techniques and functions (Fig. 8.1). Based on 
the direct observation of natural structures, his intellectual and design studies 
focused on building systems for the design of functional houses. He showed great 
interest in the study of curved systems, such as shells and membranes, passing on to 
tensile structures and organizing his ideas in the elaboration of tetrahedral and octa-
hedral structural meshes. He worked on symmetrical and asymmetrical shell beams, 
and further explored the issues dealt with by topology. At the same time, Giorgini 
developed a series of projects that, to use his own words, belong to those conven-
tional techniques, diagrams of straight lines and planes, relating to polygons and 
polyhedra [1].

Until the first half of the nineteenth century, Euclidean geometry was the only 
instrument used for describing nature, but the advent of non-Euclidean geometry 
led to what Marcos Novak defines a fundamental re-thinking of the meaning of 
space-time, matter and energy, information, and noise [2], which inevitably led to 
the study of new ways of conceiving and materializing architecture. In this context, 
Giorgini fully understood, along with a few others, what Thomas S. Kuhn (1962) in 
his own words, defines, as a new paradigm [3]: the transition to a new vision of the 
physical universe in which instability and fluctuations are at the origin of the incred-
ible variety and richness of forms and structures that could be seen all around us [4]. 
He thought about a different way of understanding architecture, based on the search 
for integration with nature, which, however, is not achieved by the simple imitation 
of the forms of the organic world, but in the design of spaces suitable to the needs 
of everyday life and economic viability.

Fig. 8.1 Photos by Vittorio Giorgini of natural shapes (Courtesy B.A.Co.  – Vittorio Giorgini 
Archive)
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According to Giorgini, geometry is an analysis, verification, and operational tool 
[5, p.  193] and he considered its study as the basis of static and structure. In 
Giorgini’s words, that we translated from the Italian, Geometry has acquired the 
same significance possessed by math, physics, and chemistry and has become the 
support of taxonomy. Like taxonomy itself, geometry can be said to have become a 
tool of analysis, verification, and operational methods. Geometry seems to have 
become a common denominator of all the above, rendering them common and inter-
dependent [5, p. 19]. Giorgini continues, denoting that Geometry is the basic order 
from which models are developed, in his attempt to approach models of nature with 
efficient mechanisms of self-control. Giorgini’s world is, therefore, post-Euclidean, 
within a complex and continuous reality where natural evolution proceeds, as he 
puts it, systematically with dynamic transformations, adaptations, and continuous 
retroactions [6, p.  6], a dynamic and interrelated reality that, from the 1950s 
onwards, he investigated through topological geometry.

Based on an in-depth analysis of Giorgini’s projects, drawings, and documents 
collected in his private archive and in the outcome of a lecture we presented at the 
Nexus Conference in Pisa in 2018 [7], the aim of this paper is to demonstrate how 
pioneering Giorgini was and how he anticipated, in several years, recent investiga-
tions in the field of parametric modelling and computational design. In particular, 
our current research focuses on the case study of symmetrical geometric meshes, 
which, through dynamic transformation, change into asymmetric meshes, as it hap-
pens in nature.

 Giorgini as a Morphologist-Spatiologist Architect

Giorgini defined Spatiology as the research he developed based on the study and 
observation of natural structures to achieve efficient and flexible building models 
similar to nature itself. In his approach, he used the morphological and geometric 
suggestions derived from natural elements to create a free design, meant as rich in 
formal spatial solutions, and economically convenient. Giorgini establishes that 
the scientificization of design neither cramps nor sterilizes the art of which it is a 
part, quite the contrary, it enriches art greatly and widens art’s horizons on the 
ground it claims. The success of the scientificization of design, however, depends on 
bravely accepting the increased difficulty of the challenge it poses. For this reason, 
Giorgini chose the word spatiology to describe the study of geometry as the math-
ematical discipline and backbone of statics, (systemic) taxonomy, and technology 
[5, p. 193].

As a morphologist-spatiologist architect, in 1962, Giorgini created the Saldarini 
House in the Gulf of Baratti (Tuscany), later known as Casa Balena (Whale House) 
or Casa Dinosauro (Dinosaur House), a fanciful morphology, in Del Francias’s 
words [8, p. 26] where the topology of transformation and continuity is linked to the 
architectural concepts of flexibility, fluidity, and dynamism [9, p. 130].

8 Vittorio Giorgini’s Architectural Experimentations at the Dawn of Parametric…
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Fig. 8.2 Casa Saldarini, Gulf of Baratti, Livorno, 1962. On the left, view of the house; on the 
right, detail of a foundation plinth (Courtesy B.A.Co. – Vittorio Giorgini Archive)

The Saldarini House represents Giorgini’s first real opportunity to study curved 
surfaces as generative elements of the space (Fig. 8.2). The project reflects Giorgini’s 
interests in the studies of the Swiss natural scientist Hans Jenny. In those years, 
Jenny was involved in Cymatics: subjecting some materials, such as sand and liq-
uids, to vibrations, which results in an infinite range of morphologies similar to 
natural configurations [10]. The exploration of natural geometries in the dynamics 
of growth and physical processes by the British biologist and mathematician D’Arcy 
Wentworth Thompson was also fundamental for Giorgini [11].

In the Saldarini House, Giorgini experimented for the first time his isoelastic 
structural membrane, that is, an asymmetrical and non-orientable shell beam, char-
acterized by a double curvature, to better absorb deformations. Using common 
materials, such as wire meshes and concrete, he experimented with a new and per-
sonal building technology, conceiving a house characterized by topological surfaces 
and static efficiencies, like those of natural structures. The house lies on a continu-
ous curvilinear foundation and on two original reinforced concrete plinths, where 
the 3 mm-thick galvanized electro-welded mesh with a pattern of 5 × 5 cm, covered 
by a layer of concrete, is fastened. The 8–10 cm thick continuous membrane makes 
the building profile similar to an ingenious zoomorphic morphology.

From the earliest years of his academic studies, Vittorio Giorgini showed interest 
in developing research on natural models with the aim of applying them to architec-
ture, in order to obtain more efficient complex systems. He committed to the sys-
temic vision of contemporary scientific thought, aiming to determine the structure 
of a system as the order in which the elements are organized [5, p. 211], thus devel-
oping a dynamic, articulated, sophisticated architecture, open in all the directions, 
where geometric principles, structural, and functional needs are perfectly integrated.
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 Giorgini as a Pioneer of Parametric Design

For the last several years, we have been watching, in several design practices 
inspired by natural phenomena and organisms, digital modelling that is based on 
computational logic, guides projects focused on the evolutionary aspect of the shape 
and on its optimization based on specific criteria. The first experiments for the 
parameterization of shapes and surfaces are conventionally traced back to the 
embryonic work of Steve Coons in 1967 [12], who was among the first to introduce 
a method to describe curves through parametric equations, although several schol-
ars agree in identifying the formulation of the concept of parametric architecture in 
the 1940s, in the writings of the Italian architect Luigi Moretti [13, 14, p. 21, [15]]. 
A few years later, in 1986, Gross [16] was the first to understand the potential of the 
parametric approach in the elaboration of complex forms in architecture. From the 
1990s to the present day, numerous experiments in parametric modelling and gen-
erative design have multiplied and spread; and among these, a few deserve special 
mention, the work of Serrano in 1993 [17] and certainly that of Dennis Shelden in 
2002 [18], who documented in an organic and systematic way the potential of para-
metric design in architecture.

In the same years of Coons’s research, and in advance of those of Serrano and 
Shelden, Giorgini started his experimental works on spatial meshes and their formal 
deformation under the action of forces in order to adapt them to tensions. In agree-
ment with the statement by D’Arcy Wentworth Thompson, that the shape of an 
object is a diagram of forces and applying Thompson’s theory of transformations to 
symmetrical and asymmetrical meshes alike [11, pp. 1026–1095], Giorgini anal-
ysed their structural behaviour and tried to quantify the forces that modify the origi-
nal model, having concluded that the transitions from the linear (the straight line), 
to the bent (broken) up to the curved, both for lines and for surfaces and meshes, are 
generated by different geometries and are transformed, symmetrically and asym-
metrically, according to the forces action [5, p. 199] (Fig. 8.3).

Vittorio Giorgini’s studies, as much as Le Corbusier’s research on hyperbolic 
geometry or the technological and formal solutions of Richard Buckminster Fuller 
and Frei Otto, coming out of the renaissance static perspective approach, moved 
towards Einstein’s curved space, Gilles Deleuze’s folded space, or the topologically 
deformed space theorized by René Thom [19, p. 55].

The structure of a system can be attributed to a geometrical configuration and to 
the action of forces. Through the transformations of the models, Giorgini investi-
gated the structural organization of the systems, the aggregation relationships 
between the parts, coming to quantify the resultant forces and understand the causes 
of the model’s transformation [7, p. 13]. In some notes and sketches, he explained 
that the point and the force are the first generators of systems which have a certain 
degree of complexity, which is developed from the dynamic interaction between the 
point (sign) and the forces themselves by adding to the three dimensions of geom-
etry (space), the force—potential energy as a fourth physical dimension. The latter 
is understood as the virtual (potential) force which generates systems when applied 
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Fig. 8.3 Studies for the deformation of a mesh (Courtesy B.A.Co. – Vittorio Giorgini Archive)

according to a certain norm (Notebook sketches, B.A.Co.  – Vittorio Giorgini 
Archive).

In a way, Giorgini seems to apply the same method illustrated in Fig. 8.4: The 
Kangaroo workflow, developed in the Grasshopper-Rhinoceros 3D plug-in software 
created by Daniel Piker for interactive simulation, form-finding, optimization, and 
constraint solving. The workflow relies on the same set of rules and operations for 
low-nodal models, such as single digital chains, as for high-nodal models, such as 
multi-supported membranes. In a digital environment, the organic forms are dis-
cretized by meshes; Giorgini used the same method in the pre-digital age. He 

D. Ulivieri et al.



109

Fig. 8.4 ‘The Kangaroo workflow’ (graphic elaboration by Filippo Iardella)

understood the discretization technique, but he did it in a traditional way. In a cer-
tain sense, we can say that he demonstrated to possess a parametric mentality.

 Giorgini Parameterized

To simulate a membrane the same way as in Giorgini’s meshes, a grid of springs 
was defined in Fig. 8.5, that shows the behaviour of two cable networks, one with a 
square mesh, the other with a triangular mesh, subjected to three external forces and 
anchored on one of the smaller sides. Giorgini modelled his meshes in an intuitive 
and experimental way, as in the case of Saldarini House or the unfinished project for 
the Liberty Rural Community Centre placed in Parksville (1976–1979), near 
New  York City, where meshes were modelled manually, in order to obtain the 
desired curvature. In the same way, the wire mesh structure was moulded to the 
shape required with the support of wooden poles (Fig. 8.6).

Giorgini’s approach to design was experimental and intuitive. During the con-
struction of the Saldarini House, he confessed to not being fully aware of the topo-
logical characteristics of his creation, and that its static behaviour was a riddle to 
solve [5, p. 245].

Giorgini’s investigations have been developed in current software of parametric 
modelling, in order to elaborate a critical analysis of his work, verifying, in particu-
lar, the limits induced by the lack of specific software. The experimentation focused 
on the modelling of double-curved asymmetric surface systems with topological 
morphological characteristics, such as the Saldarini House and the unfinished 
Liberty Project. Like Giorgini in his Liberty Project, we simulated, thanks to our 
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Fig. 8.5 Membranes’ simulation. The figures show the behaviour of two cable networks, one with 
a square mesh, the other with a triangular mesh, subjected to three external forces and anchored on 
one of the smaller sides (graphic elaboration by F. Iardella)
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Fig. 8.6 Liberty Rural Community Centre, Parksville (1976–1979). On the left, view of the struc-
ture; on the right, Giorgini walking on the structure for manually modelling the meshes (Courtesy 
B.A.Co. -Vittorio Giorgini Archive)

Fig. 8.7 On the left: like Giorgini in his Liberty Project, digital simulation of a deformed cables- 
net, defining the right elastic behaviour (Hooke’s Law), the probable anchor points and the forces 
to be applied. On the right: Finite Element Method analysis of the mesh (graphic elaboration by 
Filippo Iardella)

digital tools, a deformed cables-net, defining the right elastic behaviour (Hooke’s 
Law), the probable anchor points, and the forces to be applied.

Giorgini attempted to define static diagrams to quantify the forces that trans-
formed the original symmetrical model, with the aim of investigating more efficient 
and economical design techniques. However, he pointed out that, while in nature, it 
is simple for a mesh to become asymmetrical, but that, with our techniques, it is 
difficult and expensive [5, p. 214]. But the most important tool that Giorgini could 
not use was the Finite Element Method analysis software. It is a numerical method 
for solving problems of engineering and mathematical physics, and typical problem 
areas of interest also included structural analysis (Fig. 8.7).

But Giorgini firmly believed in innovation and technology as tools for reducing 
the distance between Man and Nature. He understood that only with the help of 
technology and electronic instruments, it is possible to obtain a mathematical con-
trol of meshes. In 1978, during the 38th edition of the Venice Biennale, where 
Giorgini participated in the section dedicated to Topology and Morphogenesis, he 
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declared that the Euclidean geometry is not the only and most appropriate tool avail-
able, but the only one that, until then, he had been possible to exploit. He was con-
vinced, in fact, that new tools, introduced by the developments of genetics, 
electronics, and information technology, would pave the way for more structurally 
efficient building techniques [20, p. 131] and in the 1980s, he began performing 
experiments with computers.

Leaving aside the orthogonality of the usual space, Giorgini developed an ante- 
litteram morphing process, based on the rectification—a sort of discretization—of 
curved lines. Starting in the 1970s, he developed a series of projects that belong to 
those conventional techniques. In his USA period (1969–1996), he began a far- 
reaching design phase in which the formal interpretation of natural organisms con-
sisted of tetrahedral and octahedral meshes.

Giorgini’s design is the result of a continuously generative process based on a 
system of parameters and relations; this process guides the result, which is almost 
always unknown to the architect. Giorgini’s mindset is dominated by the concept of 
the diagram (process); the form is meant as a dynamic of transformation, in which 
the complex system of relations of the parts, and the internal and external forces that 
define the form itself must be investigated and interpreted. Giorgini realized that 
nature offers models set on a triangular-tetrahedral structure, such as in bone tis-
sues, and asserts that, in nature, geometry is generally only a model and never 
appears as we know it or according to what we call symmetric models, such as the 
square or the equilateral triangle, and their transformation into rhombuses and isos-
celes triangles. In these transformations, Giorgini concludes that the triangle is 
always the basic element of such structures [1].

Natural structures, however complex, composed, and asymmetrical as they can 
be, are reduceable to recognizable models, in other words, to conventional systems, 
identified by the straight line, the flat surface, or polyhedrons. For Giorgini, a curve 
is a shape born under the action of multiple forces, whose conventional representa-
tion is nothing but a straight line. Applying the notions of graphic statics, he trans-
formed curved systems into conventional systems, obtaining symmetrical geometric 
meshes then transformed into asymmetrical meshes through the application of 
forces. Giorgini’s aim was to arrive at the definition of static diagrams capable of 
explaining forces and tensions of a given spatial conformation.

The ideational-design process of Giorgini was as parametric as the approach of 
Luigi Moretti or the intuitions of Sergio Musmeci; for whom, as for our architect, 
the concept of the diagram was central and preceded the introduction of the com-
puter in the design practices. Giorgini’s American projects represent the key to 
understand the application in the architecture of the models and diagrams of static 
forces that he studied in theory.

Our investigation focused on the modelling of the unrealized projects designed 
for Manhattan, like Hydropolis (1981–1982) and Genesis (1984), based on 
Giorgini’s Octa-Frame System, a self-bearing octahedral-tetrahedral base-module. 
Giorgini explained that, given its geometric stability, the regular tetrahedron is the 
most statically efficient figure.
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Simplification and standardization were his response to the lack of specific soft-
ware. We tried to re-create a modular structure like those designed by Giorgini. 
When the shape was defined through the application of external forces, the closed 
volume was found in this step; a certain degree of approximation was taken into 
account to avoid calculation problems by the computer. Once found, the volume 
was discretized with the least number of bounding boxes with the tools of 
Grasshopper and Pufferfish (useful for working on Shape Changing) plug-ins. 
Within these boxes, the modules used by Giorgini were inserted, thus creating a 
modular structure (Fig. 8.8).

In 1981, Giorgini designed Hydropolis, an unusual neighbourhood on the East 
River. In the Octa-Frame System, the basic module defines a self-supporting struc-
ture: a bridge over the river composed of octahedral structures, displaced as interde-
pendent modules, which form a system of self-supporting beams laid on inverted 
tetrahedrons that rest on truncated pyramidal plinths by means of spherical metal 
nodes (Fig. 8.9). Scaling the module established by the proportions of the bounding 
boxes, it was possible to model 3 support points—foundations, as can be seen in the 
Giorgini Hydropolis project (Fig. 8.10). The node is the most technologically com-
plex element in which three or more metal tubular elements of variable sections 
converge.

Giorgini tested and revised the nodes many times during his work, before arriv-
ing to the most complex version, described as universal connective nodes, the Octa- 
Frame System [7].

Fig. 8.8 On the left: Giorgini experimental models of structures based on the tetrahedron. On the 
right: digital elaboration of a modular structure like those designed by Giorgini (graphic elabora-
tion by Filippo Iardella)
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Fig. 8.9 Hydropolis, Manhattan, New York, 1981–1982 (Courtesy B.A.Co. – Vittorio Giorgini 
Archive)

Fig. 8.10 Scaling the module defined by the proportions of the bounding boxes it was possible to 
model 3 support points—foundations as it can be seen in the Giorgini ‘s project called Hydropolis 
(graphic elaboration by Filippo Iardella)
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 Conclusions

In the end, Giorgini continues to surprise us for his cultural and social relationships; 
he was a friend of André Bloc and of the sculptor Isamu Noguchi; he knew the work 
of Frederick Kiesler; he met Richard Buckminster Fuller to discuss architecture; he 
was also a friend of Sebastián Matta, and a good friend of John M.  Johansen. 
Giorgini met many times with Peter Eisenman at the Pratt Institute. In 1979, Giorgini 
took part in the exhibition Transformations in Modern Architecture at the Museum 
of Modern Art of New York, that gave rise to a book (with the same name) edited by 
Arthur Drexler. The Whale House was exposed in the section titled Sculpture: 
Organic Form, next to Frederick Kiesler’s Endless House (1960) [21].

Giorgini foresaw the enormous creative possibilities offered by digital language, 
demonstrating, in a certain sense, to have a parametric mentality, which he could 
not develop due to the lack of tools and other personal reasons. In 1995, a serious 
eye disease affected the last part of his life.

On the one hand, Giorgini’s projects related to curved systems were mostly mis-
understood and labelled as informal while, on the other hand, his pioneering and 
unrealized projects of the American period, mostly characterized by the use of tet-
rahedral and octahedral meshes, were branded as utopian and absurd.

Since the beginning of the twentieth century, the observation and investigation of 
nature, as a resource for architecture, unite the intellectual and design paths of some 
of the most innovative and lively architects, engineers, and artists of the time. 
Certainly, Giorgini should be considered in the eminent company of other person-
alities, such as Nervi, Candela, Otto, Gaudí, Fuller and Wachsmann, Le Corbusier, 
and with the liveliest minds of that time, like Andrè Bloc and Roberto Sebastian 
Matta, whom Giorgini knew personally, as well as Frederick Kiesler.

During the last years of his life, he declared, with profound bitterness, that he had 
been left very alone and that his work had never generated great interest from crit-
ics. In his own words, that we translate from the Italian: My research has remained 
fruitless to this day. What remains is only an intention, a concept, a supposition, but 
no confirmation [1].

Nowadays, digital modelling has made possible rereading, analysing, and criti-
cally evaluating Vittorio Giorgini’s design thinking, highlighting the modernity of 
his investigations full of intuitions, which, however, did not mark their time, but 
nevertheless persist.
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Chapter 9
Architectural Inversions: The Intangible 
Aspect as a Form-Finding Factor 
in the Combined Work of Antoni Gaudí 
and John Pickering

Emmanouil Vermisso

Abstract This paper discusses the working methodology in the design process of 
architect Antoni Gaudí and artist John Pickering and identifies common principles 
in their theoretical and practical underpinnings. While the later work of Gaudí 
(Sagrada Familia cathedral) strictly featured ruled surfaces such as hyperbolic 
paraboloids and hyperboloids of revolution to derive hybrid geometrical surfaces 
for construction, Pickering exclusively focused on making scaffolds of geometrical 
deformations based on a rigorous mathematical procedure. The parallel importance 
of an analogue process and the aspect of the unseen present an opportunity for a 
combined exploration of their work, using the Sagrada Familia as a vessel of 
inquiry. Applying mathematical inversion to combinations of ruled surface families, 
we have tried to produce elements of a new architectural vocabulary which echoes 
these two design references and considers the celebration of design intent by 
describing what is not there. While we offer some insights regarding constraints and 
solutions for fabricating these found geometries, our interest lies in the form-finding 
process.

 Introduction

Inspired by the extensive application of geometry in the later stage (1914–1926) of 
Sagrada Familia’s design by Antoni Gaudí, this work considers generative design 
processes for architecture, using mathematical rules and intersecting topology pro-
tocols (Boolean operations). Examining the rules for generating the cathedral open-
ings, a new window variation is proposed by adopting the inherent use of 
mathematical thought in the work of sculptor John Pickering. Gaudí’s and 
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Pickering’s works regard mathematics as a generative platform for design, defining 
layered steps for the realization of a priori unknown two-dimensional and three- 
dimensional outcomes. These studies originate in the work of Gaudi himself, and 
subsequently, Professor Mark Burry’s contribution to formulating design models of 
the Sagrada Familia cathedral through parametric protocols [1–3], focusing on the 
use of ruled surfaces for architecture. We propose the consideration of Pickering’s 
use of mathematical inversion to transform known geometrical surfaces to generate 
new topological conditions through numerical deformation. This mathematical 
rationale can extend Gaudí’s approach by introducing a second stage of deformation 
in intersected ruled surfaces focusing on hyperboloids of revolution (which occur 
frequently in Sagrada Familia).

 Design Process in Gaudí’s Later Years: 1914–1926

Antoni Gaudí regarded nature as a model for design because he appreciated natural 
systems’ ability to circumvent the crude tectonics of human construction by suc-
cessfully resolving continuity between elements (i.e. connection between the tree 
trunk and branching elements). Most of his work is abundant with fluid geometries 
(i.e. Casa Milà, etc.). By contrast, during the later years of his life, Gaudí shifted 
towards a more austere visual expression for the inherited commission of the 
Sagrada Familia cathedral, adopting a rigorous geometric modulation system. 
Initially, this introduction of a discrete topological definition seems to move away 
from nature. By understanding the mathematical rules inherent in natural systems, 
Gaudí, in fact, further embraced the natural example. His process exploited ruled 
surfaces (i.e. the hyperbolic paraboloid, hyperboloid of revolution of one sheet in 
Fig. 9.1) because they are defined by straight lines (rulings), thereby facilitating 

Fig. 9.1 The use of ruled surface geometry in the walls and ceiling of the Sagrada Familia. (a) 
Sectional model of transept vault with overlaid ruled surface (Exhibit in the Sagrada Familia crypt, 
Barcelona). (b) Reconstructed 1:10 plaster model for the Sagrada Familia transept clerestory win-
dow: the triple points from the intersecting solids and the triangulated surface patterns are visible. 
(c) Interior wall showing lateral nave windows, formed through the use of hyperboloids of 
revolution
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Fig. 9.2 Combined ruled surfaces: A Hyperboloid of Revolution (01) and a Hyperbolic Paraboloid 
A’BC’D (02) are intersected (03, 04, 05); Hexagonal boundary vertices B, D, F move to create a 
3- dimensional outline (06), whose rulings define two hypar surfaces AB’EF’, CB’E D′ (07, 08), 
leading to a relaxed mesh (09) and a Monkey Saddle (10)

formwork for later full-scale construction. Gaudí followed a profoundly layered 
process for designing wall, ceiling and roof openings, which result from combined 
Boolean operations. Specifically, transept vaults and clerestory windows in the 
Sagrada Familia involved subtracting ruled surface volumes from a notional mate-
rial solid [1, p.  114], producing doubly curved hyperboloid surface openings 
(Figs. 9.1 and 9.2):

Gaudí was working in a hands-on manner with his model-makers composing walls, col-
umns, domes, towers and vaulted ceilings predominantly by intersecting hyperboloids of 
revolution. [1, p. 109]

Inspiration from nature, understanding ruled surface advantages and refine-
ment through physical prototyping, all exemplify the Gaudian working method 
which combines theory, applied scientific research and craftsmanship [3, p. 9]. 
This is noteworthy because the collective appreciation and reading of the building 
derive from its visual qualities, specifically its profoundly sculptural nature which 
most people associate with Gaudí’s work; unfortunately, this engenders a partial 
understanding of the building—according to Burry—due to certain publica-
tions which,

Despite their intense and concentrated examinations…fail to provide a ready interpretation 
of the holistic significance of his buildings beyond the sensibilities of art criticism; only one 
predominantly visual side of Gaudí the designer is revealed: design outcome registering 
often as art at the scale of inhabitable sculpture. [4, p. 13]
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 Ruled Surfaces in Design: Hypar & Hyperboloid 
of Revolution of One Sheet

Gaudí’s extensive use of the second-order (ruled) surfaces helped their subsequent 
adoption in early to mid-twentieth century architecture. These types of surfaces 
demonstrate advantages for achieving complex surface effects and enabling full- 
scale construction, thanks to the possibility of a rational subdivision, separate 
manipulation and re-integration of the surfaces into a seamless assembly. Among 
the three surfaces Gaudí employed, the most apparently experienced in the Sagrada 
Familia is the hyperboloid of revolution of one sheet, which results from the rota-
tion of a straight line around a tilted axis. This kind of ruled surface belongs to a 
geometrical class known as second-order surfaces (quadrics), because they are 
described by second degree mathematical equations [5]. Fig. 9.2 illustrates the pro-
cess for generating geometrical complexity from two doubly ruled surfaces 
(Diagram 01). In the first example (Diagrams 02–05), a hyperbolic paraboloid inter-
sects a hyperboloid of revolution to create a geometry that is frequently used by 
Gaudí in the Sagrada Familia ceiling vault. In the second example (Diagrams 
06–10), a 3D scaffold is created from a hexagonal boundary to generate two hypar 
surfaces, AB’EF’ and CB’ED’, which are converted to meshes, relaxed in Kangaroo 
Physics and trimmed with a circle to produce a topology known as Monkey Saddle.

The use of hyperboloids in the Sagrada Familia offered Gaudí some flexibility in 
using physical prototyping as a form-finding method, because this ruled surface 
preserves its overall topology after deformation. As noted by mathematicians David 
Hilbert and Stephan Cohn-Vossen, in their 1932 work Geometry and the Imagination, 
a physical model of rigid rulings which are attached so as to restrict sliding while 
allowing rotation can be manipulated to provide derivative configurations of larger 
or smaller height, whose topology remains a doubly ruled surface [6, p. 16] (the 
fixed intersection of the rulings in this configuration remains constant while chang-
ing the shape of the hyperbola it defines). Hilbert and Cohn-Vossen claim that it can 
be proved this surface is not a hypar, therefore, we must assume that is a hyperbo-
loid of revolution. The consequence of this topological preservation is noteworthy, 
because it indicates that a physical model of this type provides an inherently para-
metric definition of the analogue process, allowing Gaudí to test various hyperbo-
loids with the same prototype. Starting with one hyperboloid model, several window 
variations could have been examined, modifying their proportion before the Boolean 
subtraction stage. The orientation of the subtracted hyperboloid in relation to the 
horizontal plane (XY), and the positioning of the rulings in relation to the axis of 
revolution are also relevant, because they affect the way the light bounces off the 
intersected surfaces which form the walls or vaulted ceiling.
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 Complexity in the Sagrada Familia: Computational Thinking 
& Boolean Logic

The process of understanding Gaudí’s design intent to carry forward the—unfin-
ished during his lifetime—project of the Sagrada Familia was challenging accord-
ing to Professor Mark Burry.1 The absence of any theoretical writings by Gaudí 
bequeathed architects the forensic task of reading the geometric rules he embedded 
in various physical plaster prototypes at scales 1:10 and 1:25. Beyond appearances, 
this modulation system is typical of the building’s underlying complexity and sug-
gests that Gaudí was thinking computationally, quite ahead of his time:

There are highly original computationally generative aspects to his decision to apply second 
order geometry, and the aesthetic, philosophical and practical consequences of choosing 
them have only become better known in recent years, many decades following his death. 
[1, p.106]

Figure 9.3 demonstrates the process for generating the Sagrada Familia clere-
story windows using Gaudí’s method, through Boolean operations of circular and 
elliptical hyperboloids (Gaudí also employed hyperbolic paraboloids elsewhere in 
the building). Intersections between three hyperboloids of revolution were quite 
common, producing what Mark Burry calls triple points, making an analogy of 
these points as the peaks of intersecting surfaces (mountain ridges, to use the words 
of Hilbert and Cohn-Vossen’s [6]). This aspect of intersection and subtractive logic 
is a typical example of parametric complexity, manifested through Gaudí’s applica-
tion of the same geometrical modulation system for form-finding to derive 
ornamentation.

1 Professor Mark Burry is an architect, academic and consultant to the Sagrada Familia Foundation 
since 1979, developing innovative design methods towards the building’s projected completion 
in 2026.

Fig. 9.3 Surface opening generation using Boolean subtraction after Gaudi’s method. Top dia-
grams: Intersection of 3 hyperboloids of revolution (01) and resulting hyperbolic paraboloids 
along ridges of intersection (bold). Bottom diagrams: Intersection of 4 hyperboloids of revolution 
and 2 elliptical hyperboloids (02)
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Wall and ceiling surfaces demonstrate substantial decorative effects which are 
inherent to their geometric properties. Their sculpted-like expression is dictated by 
removing material from the first stage of smooth intersected hyperboloids, based on 
the points where the rulings intersect the aforementioned ridges (Fig.  9.3, top 
diagrams):

…these intersected conglomerates were decoratively embellished by articulating the sur-
face unions with triangular planes or hyperbolic paraboloids, the directrices of the hyper-
bolic paraboloids being designed to coincide with selected generatrixes from the 
hyperboloids. [1, p.109]

Overall, the resulting complexity from the three ruled surfaces Gaudí combined 
in the Sagrada Familia, as Mark Burry explains, is astonishing due to the large 
number of (nine) variables which individually govern each of these surfaces: xc, yc, 
zc, xr, yr, zr, a, b, c. For a typical hyperboloid—xc, yc, zc are the coordinates of the 
hyperboloid’s centroid, xr, yr, zr correspond to the three axes of rotation, a and c cor-
respond to the major and minor axes, respectively, of the hyperboloid collar ellipse 
(circle, if a = c), and c is the asymptote determining the surface slope:

The approach that he took for major wall and ceiling vault elements, for example, is a rich 
one as there are nine parameters that govern the relationship between any two adjacent 
surfaces and the character of the intersection…there is infinite choice with nine dimensions 
of possibility. [1, p. 109]

 Mathematical Inversion as Form-Finding Strategy: 
John Pickering

Mark Burry’s mention of the collective regard of Sagrada Familia as a kind of 
inhabitable sculpture identifies peoples’ limited perspective of Gaudí’s work; mean-
while, the notion of inhabitable art was the ambition of an artist whose work implic-
itly resonates Gaudí’s preoccupation for a rigorous design process, to the point it far 
exceeds the boundaries of art, assuming architectonic dimensions. Sculptor John 
Pickering experienced a shift in his work during the 1970s when—in resemblance 
to Gaudí—he seemingly distanced himself from nature by adopting strict numerical 
rules to guide his creative process. As Professor Mohsen Mostafavi observes, 
Pickering’s application of a mathematical approach through geometry and particu-
larly, inversion, in fact brought him closer to the underlying natural ordering prin-
ciples (as had been the case with Gaudí) [5, p. 7]. His subsequent sculptures from 
this period used a mathematical process called inversion to introduce controlled 
deformation in combinations of intersected solids (Fig. 9.4). The inversion principle 
posits that every point in Euclidean space, has its counterpoint in the hyperbolic 
space, which can be calculated by the formula: R2 = OA x OI. For any given point 
A, I is the inverse point of A and O is the centre of inversion. Geometrically, the 
inverse point is referenced to as circle of inversion, and the inverse point is defined 
by the point’s proximity to this circle’s centre, which regulates the amount of 
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Fig. 9.4 Manual calculations of inverse point coordinates from Pickering’s sketchbook. Sculptures 
with deformation of intersected topologies using mathematical inversion and waffle-grid method 
for fabrication (1981–84, 1987–88, 1992–95, 1996–98). (© John Pickering; © John Pickering 
Foundation)

distortion of the selected geometry. As we bring the centre of inversion closer to the 
original geometry, the distortion increases. The inversion process introduces curva-
ture in all referenced geometries and so, orthodox Euclidean shapes like straight 
lines, rectangles and cubes are represented as two or three-dimensional curves, 
curved shapes and projective cubes in inversive geometry (Fig.  9.5). On a two-
dimensional plane, inversion is relative to a centre of a circle, while in three-dimen-
sions it refers to the centre of a sphere. This type of transformation becomes clearer 
in relation to non- Euclidean geometries like hyperbolic geometry, where the 
inverted equivalents of straight lines are represented as the arcs of a circle within the 
Poincaré disc model.2

Pickering’s working process entailed manual calculations of point coordinates in 
space to generate guidelines for the sculptures. He often used toroidal geometries, 
because their inversion produced what are known as Dupin cyclides, a topology 
defined by circular curves, whose inversion also produces circles (Fig.  9.5) [6, 
pp. 217–218 and 7].

To employ this rule, an inversion script was developed in a parametric modelling 
environment and applied to transform a hyperboloid of revolution (Fig.  9.6). 
Examining it from various angles allows us to investigate topological curvature 
variation, as well as shadow patterns on the resulting topologies. The script extracts 
the edges from a three-dimensional surface topology, divides these into sets of 
points (higher values increase output accuracy), and finds their inverse points in 
space, by calculating the distance of the original points from the centre of the inver-
sion sphere with the inversion formula: R2 = OA x OI.  In the inversion of ruled 

2 For further information on matters of hyperbolic and inversive geometry, the reader may refer to 
relevant online resources like Wolfram’s Math World: https://mathworld.wolfram.com/
Inversion.html
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Fig. 9.5 Geometric solution for the inversion formula R2 = OA x OI. Inversion of orthogonal grids 
returns curvilinear patterns like the inverted chessboard. For three-dimensional input, a torus is 
inverted to a Dupin cyclide. As the geometry approaches the centre of the inversion (01–02-O), 
distortion increases, as illustrated by the red dashed line above

Fig. 9.6 Inversion algorithm in parametric modelling software (Grasshopper®). Four stages of 
deformation are shown for a hyperboloid of revolution
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surface topologies, moving the centre of the inversion sphere closer to the hyperbo-
loid of revolution causes greater deformation (and length increase) of the rulings.

 A Combined Approach to Virtual Presence

We have identified a mathematical logic present in Gaudí’s work vis-à-vis an equally 
rigorous analogue numerical methodology by Pickering. Echoes of an underlying 
codification seem to exist in both; the significance of the intangible aspect which 
drives the final design. In the Sagrada Familia, ruled surfaces manifest in the build-
ing through their absence, what Mark Burry has called an architecture of “real 
absence” and “virtual presence” [2, pp. 128, 136]. To appreciate the built compo-
nents’ complexity, one must imagine the original topologies from which they emerge:

Gaudí was sculpting geometrically rather than ‘physically’ as a sculptor would work with 
hammer and chisel…he was conceiving of the outcome of the geometries’ use just as mate-
rially as would a sculptor working reductively with stone, but Gaudí was pursuing this 
outcome by manipulating the geometry of ‘what is not there’. [2, p. 145]

In Pickering’s work, the translation of certain regular topologies into non- 
Euclidean geometries using mathematical inversion is noteworthy, because it 
switches operations towards the hyperbolic plane. His sculpted volumes warrant 
similar consideration, asking the observer to decipher complex intersecting topolo-
gies by reference to their earlier, straightforward Euclidean counterparts. Pickering 
often conceals the original surface further, offering instead its skeleton in the fin-
ished product, which is constructed with the waffle-grid method; three-dimensional 
objects represented as intersected contour planes (Fig. 9.4).

Pickering doesn’t actually represent the equation directly but instead makes a jig on which 
to hold the answer. It is up to us, as observers, to construct the gossamer mathematical 
surface ourselves. [8, p. 79]

This notion of ambiguity in visual expression is present in the work of both 
designers, as one needs to interpret their geometrical intent by tracing back the 
design transformation steps. If we were to speculate on a possible evolution of 
Gaudí’s methodology by further implementing mathematical rules, it may seem 
appropriate to integrate additional layers of geometrical complexity like inversion. 
This can promote even richer results (and perhaps consider other factors from a dif-
ferent point of view, i.e. wall illumination). To this end, we applied the inversion 
algorithm through a parametric 3D model, generating the inverted option of a win-
dow which mimics Gaudí’s working protocol of intersecting hyperboloids of revo-
lution. The six original intersected hyperboloids (Fig.  9.3) and their inverted 
topology are shown in plan in reference to the sphere of inversion (Fig. 9.7).

While the results naturally echo the original surfaces, they are asymmetrically 
distorted due to the position of the centre of inversion. This asymmetry causes light 
to behave differently, introducing rich shadows (bottom of Fig. 9.7), which can help 
highlight more exaggerated deformations. On a more tangible level, the inversion 
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Fig. 9.7 Comparison of original and inverted topologies (front-back, inverted shape outlines are 
shown in red); conventional isocurve (1) surfaces are re-defined through geodesics (2) to get devel-
opable curves for fabrication from straight lengths of material; surface shadows on the inverted 
window topology are provided at 2-h intervals (6 a.m.–6 p.m.) throughout the day

has changed the properties of the original geometry generators; the rulings are no 
longer straight lines after the process of inversion. From a formal point of view, this 
may prove visually attractive as the inverted rulings could develop into an interest-
ing ornamental feature by guiding the carving of the window surfaces similar to the 
original window ridges in Fig. 9.3. On the other hand, they might present some dif-
ficulty in terms of the window fabrication.

 Fabrication Strategies: Advantages and Constraints

Even after a century since Gaudí’s passing, his design intent for the Sagrada Familia 
proved a challenge to decipher and build, ultimately exploiting parametric model-
ling, design scripting and robotic fabrication methods for precise stone carving of 
the complex intersected surfaces. As we have mentioned, the use of a geometrical 
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language in the Sagrada Familia is attributed to a possible intent on the part of 
Gaudí to help his successors capture his vision for the building and complete the 
construction. Ruled surfaces were meant to further guide architects and contractors, 
facilitating the fabrication of vaults and walls [1, p. 106, 9, pp. 149–150]. Producing 
surfaces which result from combining such intersected geometries with inversive 
deformation will likely pose an interesting challenge with regard to their construc-
tability. Their lack of developability (in the way of most ruled surfaces) raises ques-
tions of feasibility and appropriateness. While the comments of engineer Chris Wise 
refer to Pickering’s work, they may also apply here:

Pickering’s work could certainly be built. As an engineer, I like the rationale of its manufac-
ture (It is a counterpoint to those who doodle away in 3D Studio without a second thought 
about the practicality of their computerised forms…), but there is a fundamental contradic-
tion in attempting to use his favourite equation for something like ‘architecture’. This is 
because the inversion principle is the equation of a weightless structure. Put it on earth and 
the pure maths no longer applies… [8, p. 81]

While the fabrication of ruled surfaces is facilitated by the inherent rational-
ized geometry, relying on straight lines (rulings) to define complex topology, the 
resulting inverted surfaces discussed herewith are quite complex, and require 
other methods. Finding a complete strategy for producing templates for stone 
carving of the inverted surfaces is beyond the scope of this paper, as the inverted 
vault geometries demonstrate substantial difficulty. My interest is limited to iden-
tify possible aspects of interest in various fabrication strategies without going too 
much in depth.

Differentiating the tectonics of Gaudí’s and Pickering’s structures should be 
acknowledged at this point. The Sagrada Familia engenders a stereotomic charac-
ter, using reinforced concrete, stone and brick for walls and vaults, while Pickering’s 
waffle-grids justify another method, likely a metal structural frame. Indicatively, 
our combined proposal of inverted hyperboloid surfaces may be treated as a skin 
which lies on a waffle-grid scaffold. In order to obtain a buildable surface that 
approximates this doubly curved topology, the inverted surfaces would have to 
become developable. This involved identifying an appropriate discretization strat-
egy. We have briefly discussed two alternative scenarios below.

 Fabrication Strategy 1: Unrolling Surfaces to Small Panels 
Using Dual Graphs (186 Panels)

Obtaining a faithful approximation of the inverted surfaces involves discretizing the 
surface into a mesh and an additional rationalization process using a parametric 
plug-in called Ivy. Ivy uses graph representation of mesh geometry to optimize the 
subdivision of complex curved surfaces for unrolling (Fig. 9.8), to anticipate archi-
tectural fabrication requirements [10, p. 447].
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Fig. 9.8 (01) Inverted geometry rationalization for constructability: Surface to Mesh conversion 
using graph maps to calculate optimum discretization for flattening the pieces in Ivy [10] (66 pan-
els); (02) Rendering of 6 panelized, intersected and inverted hyperboloids (compound surface of 
186 panels)

The surface is converted into a mesh, whose faces are then reduced to end up 
with fewer panels. The Ivy software produces what is called a dual graph in order to 
establish optimum paths for surface segmentation, thereby converting mesh faces 
into graph nodes and non-naked edges into graph edges [10, p. 447]. These paths 
guide the boundaries of each panel; longer paths define larger panels (Fig.  9.8). 
Following this process, six inverted hyperboloids unfolded into 186 flat panels for 
fabrication. The three-dimensional surface pieces and the corresponding flat panels 
are shown in Fig. 9.8. The lower left image shows the final mesh graph; thicker 
graph nodes denote larger panels. It is important to note that the mesh was reduced 
significantly (about 25% of its original resolution) prior to the discretization process 
to decrease the number of panels into a reasonable number. Naturally, a finer mesh 
resolution will result in a closer approximation of the initial surface but will gener-
ate considerably more pieces for fabrication.
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Fig. 9.9 Hyperboloid discretization using geodesic lines (compound surface of 60 panels)

 Fabrication Strategy 2: Unrolling Surfaces into Long Panels 
Defined by Geodesic Lines (60 Panels)

In addition to their inherent mathematical structure, ruled surfaces were preferred 
by Gaudí because they could use straight lines to produce the formwork for fabrica-
tion, for example, in the case of the hyperboloid Catalan vaults [9]. Nevertheless, 
inversion alters the topological nature of the surfaces so that they cannot be defined 
by straight rulings anymore. To examine the possibility of a simpler fabrication 
scenario, resulting in a smaller number of panels and higher surface resolution, the 
inverted surfaces were re-modelled based on geodesic lines between two points, 
corresponding to divisions on the two naked edges (rings), shown in Fig. 9.9. Each 
inverted hyperboloid was therefore initially split into 10 surfaces using geodesic3 
lines on connecting division points along the two naked edges of the surface 
(Fig. 9.7). Then these were unrolled using a variety of methods in 3D software, 
producing some loss in surface area (usually reduction). It is also possible to apply 
the first strategy discussed here to subdivide the geodesic-split panels using Ivy, but 
that would result in a larger number of panels. Alternative tessellation methods may 
include attractors to split surfaces in rectangles based on curvature, but this falls 
outside the scope of the current paper.

3 A geodesic is the locally shortest path between two points on a surface [11].
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 Historical Traces of Gaudí’s Method to French 
Baroque Construction

There is a primarily historical significance in resolving developable surfaces for 
fabrication, which can potentially link contemporary software with traditional craft. 
Gaudy’s ability to conceptualize unprecedented three-dimensional assemblies by 
intersection echoes construction insights from another period of great virtuosity in 
stone vault construction, the French Baroque (stereotomy in the sixteenth and sev-
enteenth centuries) and particularly the work of Philibert de L’Orme and his con-
temporaries, i.e. Abraham Bosse, Amédée-François Frézier [12, pp.  179–180]. 
Bernard Cache, architect, and pioneer of digital fabrication software in architecture 
during the 1990s, identified enormous relevance in that period for understanding the 
current representation of complex topologies and the methods for generating their 
developed counterparts for construction:

It is very important to remember that projective geometry has implications much deeper 
than Brunelleschian representation, and…its fundamental concepts still remain to be inte-
grated within computer-aided design (CAD) systems. As a result, we suggest the next gen-
eration of CAD software lies somewhere between 1550 and 1872. [13, p. 103]

Cache’s comment alludes to the projective operations necessary to produce con-
struction templates for carving stone to build a particular kind of vault called Trompe 
de Montpellier4 in sixteenth century’s France. De L’Orme and his contemporaries 
pushed the limits of stereotomy through construction acrobatics which manifest 
through this doubly curved vault resulting from the intersection of a half-cone and 
a half-cylinder, the most famous of which was built in the Château d’Anet to sup-
port the King’s cabinet (1576). The developed surface requires the use of descriptive 
geometry to produce a drawing called a Trait [12, pp.  179–200]. This analogue 
process entails a computational logic, as the three-dimensional understanding of the 
final carved shape of each piece of stone results from projection. By contemporary 
representation standards, the Trait corresponds to the Unroll Surface command in 
Rhino3D software (Fig. 9.10). The beauty of such constructs hinges on removing 
material from a typical support, by intersecting volumes, to give the projecting vault 
a “hanging” impression.

A similar process of material removal by intersection enabled Gaudí to create 
such dramatic sculptural and illumination effects on the walls and ceiling of the 
Sagrada Familia. In Gaudí’s case, the act of intersection assumes a generative role, 
the outcome of which he could nevertheless foresee by means of projective drawing 
(like the Trait in Philibert de L’Orme’s time) and physical prototyping. Pickering, 
on the other hand, had no way of anticipating the intersected geometries from inver-
sion, at least in his early works. Unlike today’s script which automatically computes 
hundreds of three-dimensional coordinates, Pickering had to calculate every point 
coordinate and interpolate the shapes by hand.

4 The English translation for trompe is squinch, referring to the pinched geometry of the vault.
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Fig. 9.10 Process of generating a typical trompe by intersecting a cylinder with a cone (01); 
resulting vault and flat geometry for fabrication (02); A triple Trompe vault at Hôtel de Lamoignon 
(previously Angoulême), Paris, by J. B. Androuet du Cerceau (1584) (03, 04)

 Conclusions

The process we have introduced herewith is able to augment Gaudí’s work by apply-
ing another mathematical layer. Gaudí’s and Pickering’s methods address, implic-
itly or otherwise, questions about efficiency of process, appropriate representation 
and feasibility/commodity of design outcomes (i.e. potential and prospect for 
inhabitation).

Pickering’s process can be automated via either parametric software or spread-
sheets, facilitating the visualization of inverted shapes; this would allow to more 
quickly intuit the families of possibilities. However, it is difficult to determine a 
benchmark for combination of parameters, given the possibility to evolve indefi-
nitely in the virtual domain. The particular settings of inversion need to be further 
calibrated to establish their appropriate application. Which combination of Booleans 
yields the best outcome? Which inversion circle (or sphere) most successfully 
deforms an original topology? Mark Burry wonders about the point when one can 
stop further parametric adjustments and consider the design process as being com-
plete [3]. Because both Gaudí and Pickering were operating with the intangible 
(what is removed), and relied on Boolean combinations, such a calibration may not 
always be clear. So, to our interest, the process remains inherently cumulative.

It seems that, paradoxically, the constraints of the analogue procedures during 
the projects’ time may have helped their design improve. The physical investigation 
of both Gaudí and Pickering may also have turned out fruitful because it was liber-
ated from notational conventions; neither produced much in terms of drawings of 
the Sagrada Familia or inversion. In the former case, the complexity of Sagrada 
Familia required a more direct but enabling approach to visualize what was difficult 
to draw; the prototyping steps undertaken by Gaudí are closer to a pre-Albertian 
way of working, the kind of viva voce tradition used by Brunelleschi for the design 
progression of the Florence Duomo, which—like the Sagrada Familia—was built 
without construction drawings [14, p. 32]. According to Mario Carpo, this direct, 
hands-on working method circumvents the notational mediator between design 
intent and its built expression, introduced by Alberti’s modern approach to 
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describing building design. It also confirms Gaudí’s insight that some intangible 
aspects of the project could not be adequately imagined by drawing, and could be 
figured out faster through physical modelling, prior to applying complex descriptive 
geometry:

…if you can’t draw what you have in mind in order to have others make it for you, you can 
still try to make it yourself. For example, this is what Antoni Gaudí did, …in the Sagrada 
Familia, not coincidentally reviving, …some of the technologies and social organization of 
a late medieval building site. [14, p. 32]

Pickering, similarly, calculated point coordinates and remained on sketching 
before physically modelling the intersections of his found geometries. We find these 
working habits noteworthy because they associate older ways of practice with 
today’s complex computational processes.

In considering the utility of Gaudí’s and Pickering’s work, it is helpful to evalu-
ate their stereotomic character (volume vs surface). Inversive rules open possibili-
ties of spatial inhabitation for Pickering’s work, because the topologies possess an 
interesting quality: due to the inversive deformation, even visually hard shapes pro-
duce curved topological outcomes which seem more pliable. In reality, however, 
this is a hard process because anything unwanted in the final form cannot be indi-
vidually edited out—rather the form is seen as a whole—due to the same mathemat-
ical rule the whole geometry needs to follow. This of course results from Pickering’s 
choice to construct the scaffold (structure) of the topology and not its surface, as 
mentioned earlier. In contrast, Gaudí was interested in the surface topology itself, 
which, together with the mass it envelops, becomes also structural. In both cases, 
the geometrical intersections (the notches in the waffle grid in the former, and the 
ridges ending in double or triple points in the latter [1]) undertake a structural role 
for resolving load distribution.

Overall, it has been instructive to see how the work of both designers relies 
entirely on certain procedures to achieve complexity. As Daniel Giralt-Miracle 
points out, Gaudí’s design was based on “the use of simple geometry and complex 
development” [3, p. 9]; correspondingly, Pickering’s inversion formula is fairly 
simple, yet the design steps progressively afford substantial complexity, illustrat-
ing the importance of a process over a product in the act of design. Pickering’s 
choice to execute his investigations physically—much like Gaudí used his own 
prototypes—lies in a personal, intimate choice, which relates to his ability to 
appreciate the work through some secondary intangibility. As Chris Wise men-
tions, Pickering may have treated these three-dimensional topologies as pure scaf-
folds “onto which the pure numbers can be projected” [8, p.  80], ultimately 
regarding the shapes “as the memory of his mathematical journey” [8, p. 80]. His 
sculptures might preferably remain in the domain of the possible than that of the 
realized. In a similar fashion, the inverted versions of Gaudí’s windows—which 
are harder to construct than their ruled predecessors—may serve as a thought 
experiment, an exercise to help us consider the limits of architectural form-finding 
and its physical manifestation.
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Chapter 10
An Introduction to Solid Tessellations 
with Students of Architecture

João Pedro Xavier, José Pedro Sousa, Alexandra Castro, and Vera Viana

Abstract This paper intends to describe an educational experiment accomplished 
in the Geometry and Architecture course of the first year in the Faculty of Architecture 
of the University of Porto in 2017. In this activity, students were introduced to digi-
tal three-dimensional modelling as an additional tool to develop their knowledge of 
geometry. The subject of solid tessellations was selected as leitmotif because of the 
structural and architectonic interest and creative potential that the situations in 
which polyhedra, other than the cuboid, fill space may have for aspiring architects. 
The time limitations of the academic year impaired the desired breadth for the task, 
so students had to focus their attention only in six uniform solid tessellations, out of 
the possible 28. Besides acquiring digital design modelling skills useful for their 
scholarly and professional practice, this experiment and collaborative assignment 
allowed students to improve knowledge of polyhedral theory and apply newfound 
IT skills in architectural design.

 Introduction

For several years, the syllabus Geometry and Architecture of the first year in the 
Faculty of Architecture of the University of Porto (FAUP) was entirely concerned 
with projective geometry and such traditional systems of representation as cartogra-
phy, topography, orthographic projections, axonometry, and perspective. In FAUP, 
digital design as a supporting tool for the study of representation and architectural 
design is usually introduced only in the third year. Recognizing the limitations of 
this methodological option and, above all, its divergence with contemporary reality 
and the most updated architectural practices, the professors of the syllabus decided, 
in 2015, to introduce the computer in the classroom as a tool for students to learn 
geometry and actively explore digital three-dimensional modelling. Since then, the 
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program of the course has clearly been divided into two parts: the first, correspond-
ing to ca. 2/3 of the total lecturing time, in which traditional representation systems 
are approached through individual assignments and hand-drawing is taken as privi-
leged learning and investigation tool; in the second, a collaborative assignment is 
proposed, and the exploration of three-dimensional modelling with computer-aided 
design (CAD) stimulated.

The investigation of certain concepts in geometry usually takes some time to 
accomplish within traditional representational systems, while digital modelling 
allows students to address a broader range of themes and enhance their abilities for 
spatial visualization, mental rotation, and geometric reasoning, since it provides an 
accurate representation of geometric objects easily navigable within viewports and 
representational systems. The geometrical concepts and transformations are then 
taken as the fundamental concern of their inquiry, rather than the technical proce-
dures of the chosen representational system.

An introduction to digital 3D modelling in the Geometry and Architecture syl-
labus is scheduled for a teamwork activity to be developed in 5–6 weeks so students 
can explore CAD processes to study and research certain geometric subjects that, 
from the professors’ perspective, may have a sturdy impact on architectural design. 
Each year, a different topic is proposed so that students may be introduced into 
themes generally unexplored and whose complexity clearly justifies the use of digi-
tal media. So far, the topics for the students’ investigations were anamorphosis, in 
2015–2016 and 2020–2021, solid tessellations in 2016–2017, surfaces in 2017–2018, 
and vaults, in 2019–2020.

This paper presents the assignment accomplished by the students on the topic of 
solid tessellations. A brief insight on the theoretical framework that supported the 
investigation developed and the goals and methodology proposed for the task will 
be addressed. In the end, a selection of the students’ final works will be presented 
from a critical standpoint, acknowledging the creative potential of didactic experi-
ments that aim to bridge polyhedral theory and architectural design.

 Polyhedra and Solid Tessellations

Polyhedra is a stimulating subject to introduce in any educational context, as 
Pedersen denotes [1, p. 133] when referring to how students react when instructed 
to make their models in paper; they usually do not question why they should make 
them, quite the contrary, they become interested in their characteristics and show a 
keen interest in modelling other examples. Studying polyhedra may also be a gate-
way to enhance the students’ geometrical knowledge, not only because of the myr-
iad of mathematical contents and branches into which students are introduced [1, 
p. 135] but also because, by modelling and manipulating geometry in such a tangi-
ble form, students seem to recognize geometric concepts and operations more effi-
ciently, becoming capable of developing their geometric reasoning to a different 
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level.1 Moreover, studying and virtually modelling different classes of polyhedra 
within an architecture program help students to widen the repertoire of possibilities 
to conceive and design space beyond the rigidity of cuboidal forms [2, 3].

To a more in-depth approach of the subject from a theoretical perspective, an 
expert on polyhedral geometry, who co-authored this study, collaborated with the 
team of professors to establish a content basis that came to be fundamental for the 
research done by the students.

The subject was first introduced from a theoretical standpoint,2 through which 
students widened their knowledge on polyhedra and were given the chance to 
manipulate physical models of less common polyhedra and learn how to model 
some of them virtually. Students then explored geometric transformations and sym-
metry operations in a digital framework, such as translation, rotation, and reflection, 
to better understand important notions, such as the duality of polyhedra and the 
spherical symmetry groups. The words of Coxeter [5, p.  68] were explained to 
illustrate how, in solid tessellations or honeycombs, polyhedra fit together to fill 
space just once and every face of each polyhedron belongs to one other polyhedron, 
as well as the conditions necessary for polyhedra to do so (Fig.  10.1). To better 
understand these notions, the students modelled the six convex parallelohedra that 

1 The authors recognize that the extent through which the students’ geometric reasoning is enhanced 
within a digitally driven educational approach is yet to be fully understood or certified, but this 
experiment aims to introduce a modest contribution to the discussion and, at the same time, to 
stimulate the exploration of polyhedral theory in other higher education settings.
2 A report on the educational resources explored and the students’ opinion on the theoretical seg-
ment of the classes accomplished for this didactical experiment has been included in [4].

Fig. 10.1 Three truncated octahedra with a common edge fill space because the sum of the dihe-
dral angles around that edge equals 360°
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fill space by translation of their replicas [6], besides other examples of convex and 
concave polyhedra that infinitely fill space.

In subsequent classes, the notion of uniformity in a tessellation, through which 
every vertex, equally surrounded, is superimposable under symmetries onto any 
other, was explained. All 28 convex uniform tessellations [7] were illustrated and 
some of them virtually modelled by the students. Special attention was given to the 
13 honeycombs and their duals, respectively, categorized by Conway, Burgiel, and 
Goodman-Strauss [8, p.  292–298] as architectonic and catoptric tessellations 
because of the symmetry properties of their cells.

 The Assignment

Out of the 28 convex uniform tessellations, six of the architectonic (Fig. 10.2) were 
proposed by the team of professors as the leitmotif of the collaborative assignment, 
not only for the sake of concision and feasibility but also because of their potential 
interest for architectural design. The idea was for students to overcome the charac-
teristic abstraction of the underlying geometrical structure in each solid tessellation 
and regard them from an architectural—spatial – standpoint, exploring their intrin-
sic spatiality. With the intention of adopting computer modelling as a driving force 
for the students and preparing the presentation of their response to the assignment, 
Rhinoceros®,3 one of the most efficient software used in architectural practice and 
powerful research tool, was selected due to its versatility and easiness to approach 
geometric modelling.

The time scheduled for the exercise was 6 weeks, and six classes, with an aver-
age of 24 students each, organized in groups of 4 or 5 elements, were involved. Each 
group had to explore one of the six tessellations, with the purpose of creating a 
spatial structure to be placed at the Garden of Quinta da Póvoa, one of the most 
interesting exterior spaces in the faculty’s campus (Fig. 10.3).

The work was developed following a methodology subdivided into steps: (1) 
presentation of the theme and theoretical framework; (2) a brief introduction to the 
software and the commands that would be relevant for the assignment; (3) analysis 
of the geometric concepts involved based on preliminary modelling experiments; 
(4) design and development of the project itself; and (5) presentation of the final 
projects. Each group of students had to manipulate virtual models of the polyhedra 
involved in their tessellation and find out how those could fill space uniformly. One 
of the proposals for the task was for students to consider the geometric structure 
under analysis as a possibility of conceiving a small inhabitable structure but slightly 
deviating from its rigid configuration. After the theoretical introduction, the work in 
the CAD environment was developed according to the following phases:

3 Rhinoceros® is a 3D computer graphics and computer-aided design application software devel-
oped by Robert McNeel & Associates (https://www.rhino3d.com/).
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Fig. 10.2 The six architectonic tessellations selected for the teamwork. The designations of poly-
hedra per vertex according to Wenninger [8]. (a) Tetroctahedrille (8 Tetrahedra and 6 Octahedra). 
(b) Cuboctahedrille (2 Octahedra and 4 Cuboctahedra). (c) Trunctetrahedrille (2 Tetrahedra and 6 
Truncated Tetrahedra). (d) 1-RCO-Hedrille (1 Rhombicuboctahedron, 1 Truncated Cube, 1 Cube, 
and 2 Octagonal Prisms). (e) Truncated Tetroctahedrille (1 Cuboctahedron, 2 Truncated Tetrahedra, 
and 2 Truncated Octahedra). (f) b-tCO-Hedrillle (2 Octagonal Prisms and 2 Rhombitruncated 
Cuboctahedra)

 Phase 1: Modelling the Tessellation

The initial approach began with students modelling each polyhedron in the tessella-
tion, after which the possibilities of multiplication through translation and rotations 
were analyzed, exploring different operations and geometric transformations. This 
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Fig. 10.3 Site Plan of “Casa Cor-de-Rosa, Cavalariças and Pavilhão Carlos Ramos” [10] (left) and 
Faculty of Architecture – University of Porto, Casa Cor-de-Rosa/Álvaro Siza [11] (right)

allowed students to get to know in further detail the tessellation assigned to them 
and begin to recognize its intrinsic spatial characteristics.

 Phase 2: Incorporating the Polyhedral Composition within 
the garden’s Context

Students chose a specific area of the garden and began thinking about adapting the 
structure to the location by refining its overall scale, dimension, and orientation. In 
this stage, architectonic topics, such as the configuration of the structure, its spatial 
features, and how it would physically interact with the site itself, began to be 
considered.

 Phase 3: Definition of the Structure’s Materiality

While combining polyhedra to achieve the desired shape, students were proposed to 
include a cutting plane, meant as a disruptive yet creative element in the overall 
structure. The plane would trim the form either at its base, to facilitate its integration 
in the garden’s ground or elsewhere. Once the spatial structure was outlined, stu-
dents had to conceive its materialization, attending to the following requirements: 
(1) having structural bars in every edge of each polyhedron while some of its faces 
are left open; (2) enclosing the space within some cells in the structure with the 
faces as panels.
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 Phase 4: Presentation of the Project

In the last phase of their project, the students presented a poster based on a template 
provided for the assignment, where they inserted: CAD-produced images aimed to 
display; the architectonic tessellation assigned for the group; the geometric compo-
sition conceived in a wireframe and surface appearance; and the overall result 
shown from complementary points of view. The poster had to include a conceptual 
hand-sketch, a plan and an elevation, and a photomontage of the inhabitable struc-
ture inserted in the garden’s context. In addition to the poster, students produced a 
small video showing the architectonic composition both from the outside and the 
inside or, alternatively, a cardboard model.

 A Selection of the Projects Developed by the Students

The results were diverse, given that, for this assignment, the six classes involved 
conceived a total of 33 geometric structures from six different uniform tessellations. 
The variety in the solutions found by the students for the inhabitable structures and 
the interest they have shown throughout the whole project were a clear testimony of 
the creative potential that polyhedra and solid tessellations meant for the aspiring 
undergraduate architects involved. We will analyze in more detail three of their 
works4 conceived from the same tessellation, the cuboctahedrille (Fig. 10.2b). This 
tessellation turned out to be the one that led to the more interesting results, and the 
reasons for this might be the fact that only two different polyhedra were involved or 
its clear connection to the tetraoctahedral spaceframe and the face-centered cubic 
lattice. Nonetheless, each group conducted their studies independently and con-
ceived very different results, both in the spatial concept and the architectonic image 
of the geometric structure devised.

 Project a: Stopping Point

In this project (Fig. 10.4), the group conceived a small pavilion, very compact in its 
overall form. Placed under a big tree, the pavilion is strongly marked by its closed 
panels and the entrances opposed to each other. One interesting detail of the project 
is the configuration of the cells sectioned by the cutting plane proposed in the 
assignment. Segmenting the overall form was a decisive step in the design process 
that generated an interesting irregularity for the structure, which included three 
small openings on the upper part of the volume so that natural light might penetrate 
its interior.

4 Other examples of the students’ work besides Projects A, B and C, are shown in [9].
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Fig. 10.4 Project A: “Stopping point” by Eliana Santos, Inês Mateus, Joana Gonçalves and 
Matheus Aliseda, 2016/2017 (Presentation poster and cardboard model)

Fig. 10.5 Project B: “Through the gradient” by Ana Francisca, Carolina Pereira, Diana Maudslay, 
Miguel Lopes and Rita Baptista, 2016/2017 (Presentation poster and cardboard model)

 Project B: Through the Gradient

In this project (Fig. 10.5), the students decided to expand the composition and place 
it along an existing path close to a sitting area of the garden so that people would 
walk along and throughout the architectonic structure before reaching the meeting 
point enclosed by a granite bench. A distinctive aspect of the proposal is the compo-
sition configuration that departed from an idea of gradation. As the poster illus-
trates, the inhabitable structure starts with a single open polyhedral cell to which 
more and more elements were added, and the base module multiplied until the 
structure finishes in the preexistent sitting area. Much the same way, the initial cells 
do not include panels to be read as open and progressively developed into closed 
cells. This detail ensures transparency as an important structure element and 
enhances the honeycomb’s legibility.
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 Project C: (In)Tangible

In this example (Fig. 10.6), the students developed a spatial concept very different 
from the last two. Envisaging the structure as a kind of tent-like shape, they placed 
the faceted volume in an open area of the garden, along a connecting path, that visu-
ally links a small door existing on the facade of the Pavilion designed by the archi-
tect Álvaro Siza Vieira and an old gazebo from which one can look out over the river 
and the sea.

 Conclusions

From the results here presented, we may conclude that the impact of this didactic 
experiment was extremely positive on many levels. First, because of the students’ 
engagement with the challenge itself and the easiness and spontaneity with which 
they manipulated the geometric structures in search of an architectural shape. 
Secondly, for the important contribution of the digital tools to support the investiga-
tion and how they provided students the control of such complex forms. In the 
context of the Geometry and Architecture course, this possibility posed a stimulat-
ing challenge since it allowed to open the syllabus to different topics which are less 
commonly explored yet very pertinent in the context of contemporary architectural 

Fig. 10.6 Project C: “(In)Tangible” by Carolina Correia, Cynthia Machado, Nuno Delgado and 
Pedro Gouveia, 2016/2017 (Presentation poster)
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practice. Thirdly, for the contribution of a brief introduction to polyhedral theory to 
the development of the spatial intelligence of the students’ and their overall knowl-
edge on geometry.

In this regard, we must highlight how studying and modelling polyhedra in 
higher education are an interesting subject through which geometry and architecture 
may be creatively explored, not only for the tangibility of the operations involved 
but also for the numerous mathematical concepts and transformations that the stu-
dents are able to interact and better understand. For higher education courses in 
which modelling, materializing and structuring space is a topmost concern, such as 
Architecture, research on polyhedra is certainly a valuable subject matter, especially 
if students are given the possibility to explore 3Dmodelling software to improve 
their knowledge of geometry.
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