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Abstract. Cloud native information systems engineering enables scal-
able and resilient software architectures powering major online offerings.
Today, these are built following agile development practices. At the same
time, a growing demand for privacy-friendly services is articulated by
societal norms and policy through effective legislative frameworks. In this
paper, we (i) identify conceptual dimensions of cloud native privacy engi-
neering – that is, bringing together cloud computing fundamentals and
privacy regulation – and propose an integrative approach to be addressed
to overcome the shortcomings of existing privacy enhancing technologies
in practice and evaluating existing system designs. Furthermore, we (ii)
propose a reference software development lifecycle called DevPrivOps to
enhance established agile development methods with respect to privacy.
Altogether, we show that cloud native privacy engineering opens up key
advances to the state of the art of privacy by design and by default using
latest technologies.
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1 Introduction

The enormous and unstoppable rise of digital services for people’s lives already
resulted in globally interconnected digital societies. During this long-lasting pro-
cess the inter- and trans-disciplinary questions on how to achieve an adequate
level of privacy are still to be solved – while privacy itself is an essentially con-
tested concept [46]. Although some seem to have accepted sheer insurmountable
hurdles or are actively supporting a post-privacy age (as shown by [55]), many
others, fortunately, fight for autonomy and against a “surveillance capitalism”
[74]; may it be through political advocacy, privacy law, or key technological
advances. In this paper, we mainly focus on the latter with respect to current
trends in the field of privacy engineering.

All major digital service offerings are enabled through the extensive use of
highly distributed cloud computing systems. These provision compute, storage,
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and network resources, that are used to build and run scalable and dynamic
infrastructure and applications [10]. Within the last decade, the service portfo-
lio of public cloud vendors has bloomed from distributed databases over service
meshes to highly-specific AI-based programming and execution platforms. How-
ever, not only the technical infrastructure has drastically changed, but also devel-
opment models to create and operate distributed services. Software is crafted by
diverse teams in agile programming, testing and design prototyping phases, and
through iterative requirements engineering and using project management tools.
Namely, agile development processes like scrum allow to develop and deploy new
functionalities and complete services to production continuously (DevOps), i.e.
potentially multiple times per hour [5].

Inherently, distributed services are highly complex, which is why software
engineering increasingly focuses on manageability, resilience and robustness, or
observability to cope with the engineering challenges and – as a secondary con-
cern – legal obligations of privacy and cloud computing. At the same time, the
still emerging field of privacy engineering [29] has to provide the most acces-
sible conceptual methods and technical tools to achieve privacy by design and
by default, as legally required by the European General Data Protection Regu-
lation (GDPR) [20] and commonly agreed upon in privacy research. Although,
fundamental privacy principles [8] such as transparency, purpose limitation, and
accountability, have been long established and are more often enforced [67], so
far, many developers lack a solid understanding and the concrete technologies
to construct privacy-friendly cloud native systems. In short, we observe three
major challenges:

– Cloud native application architectures introduce new privacy chal-
lenges w.r.t. distributed (personal) data management across countries, avail-
ability under immense loads, compliant information flow control, restrictive
access policies et cetera.

– Software engineers are ill-equipped with privacy-preserving meth-
ods and tools addressing all privacy principles, including, among oth-
ers, lawfulness, transparency, or accountability; while privacy is often misin-
terpreted as only subject to security-related research.

– Agile development practices still (mostly) neglect or even contra-
dict privacy principles (beyond data minimization and security) as cross-
cutting themes of software engineering.

Addressing these issues well aligns with related work on privacy and (early)
cloud computing [72], engineering privacy by design [6,7], and, how privacy is
affected by agile development practices [31]. In a similar vein, this paper aims to
provide a more clear viewpoint on the term of cloud native privacy engineering
through a two-fold contribution:

– A conceptual model on the dimensions of cloud native privacy engi-
neering accompanied by different use case scenarios from an information
systems engineering perspective, and
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– Proposing a privacy-aware DevPrivOps reference lifecycle addressing
the shortcomings of established agile practices explicitly tailored to cloud
native environments.

The journey through this paper takes place as follows: First, we briefly intro-
duce the established concepts of cloud native application architectures and agile
software development and, further, compare to related work in Sect. 2. On this
basis, we observe the dimensions of cloud native privacy engineering in Sect. 3
illustrated by several use case scenarios. Afterwards, we introduce the software
development cycle called DevPrivOps proposed for privacy-aware information
systems engineering in Sect. 4. Finally, we discuss our findings and conclude in
Sect. 5.

2 Background and Related Work

This section introduces a brief background on the field of cloud native engineering
and agile software development. Moreover, we summarize the latest findings in
the field of privacy engineering.

2.1 Cloud Native and Agile Software Development

Within the last decade, the technical evolution of distributed service-oriented
architectures has been rapid and disruptive [47]. The emergence of cloud com-
puting, mainly characterized by on-demand access to shared compute, storage,
and network resources [44,45], has led to a diverse and powerful infrastructure,
platform, and software service portfolio [41,62]. Without doubt, the transforma-
tive power of cloud-based systems serves as an important utility across many
dimensions of today’s societies [25]. Most prominently, major public cloud ven-
dors such as Amazon Web Services, the Google Cloud Platform, Microsoft Azure,
and IBM Cloud, showcase their offerings, which are adopted by a multitude
of private and governmental customers. Furthermore, private and hybrid cloud
approaches also enable online services. The latter are often powered by open
source projects such as OpenStack1.

To build and operate applications, which are scalable for millions of users,
developers rely on so-called cloud native technologies. The Cloud Native Com-
puting Foundation (CNCF) highlights the usage of “containers, service meshes,
microservices, immutable infrastructure, and declarative APIs” [10]. In prac-
tice, modern applications may consist of hundreds of loosely-coupled microser-
vices that communicate through well-defined programming interfaces following
paradigms such as REST [16] or (g)RPC2.

At the same time, we observe a transformation from a (often waterfall-like)
legacy software development culture towards a more flexible, iterative and agile
1 See https://www.openstack.org/.
2 See, e.g., https://developers.googleblog.com/2015/02/introducing-grpc-new-open-

source-http2.html.
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organizational setup [5,54]. DevOps is widely acknowledged as the best way to
deal with the complexity of large microservice architectures [19]. In doing so, the
development team should be responsible for the entire lifecycle (incl. plan, code,
build, test, release, deploy, operate, and monitor phases) of a software compo-
nent and their expertise may be used to make individual technology decisions
[38]. Together with an adhered framework for managing tasks and responsibil-
ities (such as scrum [56]), which integrates reasonable tool support for assist-
ing all phases, fast-paced development with which high quality software can be
achieved.

Finally, cloud native architecture, engineering, and management techniques
heavily focus on the possible trade-offs between different software qualities and,
moreover, ultimate technology decisions [4,24]. Such trade-offs occur in different
shapes and sizes. They vary from evidence-based benchmarking experiments
for choosing a best-fit technology to multilateral discussions on, e.g., what an
adequate level of fair computing practice actually is in the context of cloud-based
systems [65].

2.2 Privacy

Privacy is a fundamental human right according to Art. 12 of the Universal
Declaration of Human Rights [66]. Moreover, it has an even longer tradition as a
societal norm and guideline for legislation and jurisdiction [69]. Consequently, it
is subject to inter- and trans-disciplinary research with legal, social, economic,
political, psychological, and technical discourse. Predominantly, the notion of
privacy is shaped by two different western cultures [70]. Being well aware of the
different interpretations of privacy and data protection (including informational
self-determination), hereafter we use these terms interchangeably.

Today, privacy law (and the public discussion it is complemented by3) sig-
nificantly influences business practices. Regulations, such as the GDPR or the
California Consumer Privacy Act (CCPA) [11] provide strong regulatory frame-
works which are accompanied by landmark case law decisions (such as “Schrems
II”4). Eventually, the legal perspective of privacy boils down to several founda-
tional principles (e.g., transparency, data minimization, or accountability) which
have been accepted as common ground (inter alia, [8,48]). Therefore, in Sect. 3
we extract the central privacy principles which are encoded in the GDPR to be
reflected with the cloud native and agile software development trends laid out
above. Before that, we briefly introduce the discipline of privacy engineering.

2.3 Privacy Engineering

Privacy engineering is the discipline of technically addressing the aforementioned
privacy principles to protect data subjects and to avoid threats and vulnerabili-
3 As prominent examples may serve the Snowden, Cambridge Analytica, or lately,

Pegasus revelations.
4 See https://curia.europa.eu/juris/document/document.jsf?text=&docid=228677&

doclang=en.

https://curia.europa.eu/juris/document/document.jsf?text=&docid=228677&doclang=en
https://curia.europa.eu/juris/document/document.jsf?text=&docid=228677&doclang=en


126 E. Grünewald

ties (inducing risks) while meeting all functional and non-functional requirements
of data controllers and processors. Clearly, this does not only include the opera-
tionalization of producing source code, but also encompasses the holistic view on
software architecture, business organization and culture including all stakehold-
ers. This perspective led to the umbrella term Privacy by Design and By Default
[8,30,32,59]. From a legal perspective, privacy engineering is motivated through
said motto in Art. 25 GDPR. Controllers, therefore, have to take into account
the “state of the art, the cost of implementation and the nature, scope, context
and purposes of processing as well as the risks of varying likelihood and severity”
of processing personal data. Further, “appropriate technical and organisational
measures” need to be implemented. As a consequence, there is a steady and
momentous incentive for building applicable technical components. Since they
may advance the state of the art, they then have to be used by data controllers
in practice to protect data subjects. Naturally, when exactly the state of the art
might be significantly advanced is questionable from case to case. However, the
GDPR, for instance, enables certification procedures in Art. 42, which also take
into consideration the differences between dominant economic players and small
and medium-sized enterprises. Additionally, among others, the European Data
Protection Board, constantly publishes guidelines and recommendations which
are clear indicators on compliant technical and organizations measures. Likewise,
other civic or research institutions provide their expertise to the public.

Focusing on the implementation, Privacy Enhancing Technologies (PETs) are
subject to the core of privacy engineering research. With each generation of new
technologies, the conceptual frameworks further matured: From early visions
[26], over elaborated strategies for software architecture in practice [32,34,35]
and related privacy patterns5, to topical challenges of software engineering and
service architectures [37].

Reputed early projects such as Cranor’s P3P [13] or the European PRIME
[33] and PrimeLife [52] catalysed the discourse around PETs further. More recent
projects then focused on privacy and especially transparency, also in distributed
contexts (e.g., Privacy & Us6, PRISMACloud7, SPECIAL8, or DaSKITA9).
While many approaches focus on (not less important) data subject facing tech-
nologies (such as privacy dashboards), key advances that keep pace with the
rising complexity of distributed cloud native systems are hard to identify.

Still, product managers and software engineers are ill-equipped with the right
tools to put privacy by design in practice. Studies show, that there is a funda-
mental responsibility issue among engineers [61].

Although the majority of them is aware of the threats of non-compliant
software systems and the potential harm they could produce to data subjects,
they lack the means to proactively implement countermeasures against attack

5 See https://privacypatterns.org/.
6 See https://privacyus.eu/.
7 See https://prismacloud.eu/.
8 See https://specialprivacy.ercim.eu/.
9 See https://daskita.github.io/.
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vectors or the ethical design of IT infrastructures [61]. Further, extensive liter-
ature review reveals that there are (i) a lack of viable tools and practices for
the complete software development cycle, and (ii) misconceptions when such
implementations achieve their goals [2].

As introduced above, the way software is developed has fundamentally
changed (“The Agile Turn”). Traditional shrink-wrap products are to be replaced
by interconnected online service offerings powered by cloud native architectures
[31]. This, in turn, makes it inevitable to rethink both, the complexity of inter-
relations of data processors and the functional and non-functional requirements
the future generation of PETs needs to address. The same is true for the result-
ing automation potentials, e.g., within data protection impact assessments [73].
Furthermore, cloud native engineering is constantly in flux and will be extended
through IoT and fog computing scenarios [50]. Therefore, we continue examining
which dimensions cloud native privacy engineering is subject to in the following
section.

3 Dimensions of Cloud Native Privacy Engineering

In the following section, we propose a cloud native privacy engineering matrix,
that illustrates conceptual dimensions, which will be exemplified by subsequent
use case scenarios.

First, we reiterate the importance of regulatory frameworks such as the
GDPR [20] or the CCPA [11] in the context of privacy-aware cloud systems –
we refer to legislation . Through further legislative proposals such as the Euro-
pean ePrivacy Regulation10, Data Governance Act11, and the Digital Services
Act12 the future guidelines will be complemented. Together with evolving social
norms and expectations or professional privacy threat analysis frameworks, such
as LINDDUN [14], these will and already are highly influencing the compliance
strategies of enterprises. Therefore, the discipline of privacy engineering has to
keep track of all these legal requirements to be implemented in their software
products.

Second, enterprises are changing their organization through more inno-
vative workforce structures. On the one hand, many firms are no longer just
supported by software, but software development is at the core of their business
activity. With these changes come shifts in personnel and governance structures,
roles and responsibilities, and more flexible methods of operation. This is why,
from a business perspective, established models to integrate privacy need to
be reviewed. These concerns are of utmost importance for decision-makers and
strategists within companies to align with the aforementioned regulatory require-
ments (i.e. in order to avoid penalties), but also to keep being competitive. In
10 See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017PC

0010.
11 See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC

0767.
12 See https://eur-lex.europa.eu/legal-content/en/TXT/?uri=COM:2020:825:FIN.
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https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0767
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=COM:2020:825:FIN
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the cloud native context, this includes, for instance, make-or-buy or vendor lock-
in decisions with regard to (multi-/hybrid-) cloud computing infrastructure or
(external) privacy consulting.

Third, we emphasize a process -related dimension. Closely related to the
organizational questions are the handling of effective communication and clear
privacy by policy [60] responsibilities. From a computer science and engineer-
ing perspective, technical components are aspired to automate as many things
as possible. As we will see later on, the smart implementation of privacy-
related tools into the continuous integration and deployment (CI/CD) work-
flows can greatly heighten the level of data protection. However, “purely techni-
cal approaches might prove insufficient for aligning nuanced legal policies with
engineering artifacts” [29]. As a consequence, engineers need to be engaged and
cherished for their individual contributions to all cloud native privacy engineer-
ing efforts. This can be done through a supportive and efficient culture, incentive
schemes and, most importantly, developer-centric privacy engineering solutions.
These are primarily characterized through developer-friendliness (including intu-
itive usage, appropriate documentation etc.) and low implementation overhead
[27,51]. At the same time, already established cloud native tooling provides
tremendous potential to be unlocked for (i) aligning with privacy law, (ii) sup-
porting organizational efficacy, and (iii) automating many steps of the process of
dealing with hundreds of services. All of these reflect the highly-specific perspec-
tives driven by the business model and implementation of fulfillment processes
of a data controller.

Furthermore, cloud native engineering is heavily focused on the specifics of (at
least) three different layers. Usually, these layers are denoted as Infrastructure,
Platform, and Software as a Service (XaaS). These terms emphasize the share
between self-managed and fully provided solutions by the cloud provider. Since
we are discussing software development in general, we rename “Software” to
“Application” layer to avoid confusion. Thus, all major cloud vendors offer13

three layers:

– Infrastructure that consists of compute, storage, and network resources (vir-
tual and/or pooled)
• Examples: Virtual machines, Storage buckets, Software Defined Networks

– Platform for building, testing, deploying, running, and scaling services on
managed infrastructure
• Examples: Container orchestrators, Serverless/Functions as a Service,
Pre-trained machine learning environments, Managed databases, Elastic
load balancers

– Application that is handling the business logic and may contain several user
or application programming interfaces.

13 Note that some of these example attributions may differ in details depending on
their concrete system design. Some of the abstraction levels also increasingly blur
together.



Cloud Native Privacy Engineering through DevPrivOps 129

• Examples: Depending on the business scenario, any application written
in any programming language incl. interface and communication specifi-
cations.

All of the latter are building blocks for large-scale data processing. From this
follows, privacy engineering needs a bouquet of solutions to cope with the dif-
ferent deployment models and configurations of cloud native architecture, since
personal data is processed in many different ways. We have now identified the
first six dimensions of cloud native privacy engineering. Three of them (Legis-
lation, Organization, and Process) are addressing mainly the external factors
privacy engineers are influenced by.

Oriented orthogonally to the dimensions already mentioned, we will there-
fore now add 10 more to complete the proposed view of cloud native privacy
engineering. All of the following ones are distilled from both literature and the
GDPR, who we denote as essential privacy principles. Note that none of the fol-
lowing principles is new per se, however, it is of utmost importance to see them
in conjunction with the aforementioned cloud engineering layers of abstraction.
For an in-depth study, we refer to extensive related work [8,39,68]. We only list
them very briefly for the sake of simplicity:

– Lawfulness (Art. 5(1a), 6–11 GDPR) comprises the prohibition of all per-
sonal data processing activities unless there is one of the well-defined permis-
sion options present (e.g. consent).

– Fairness (Art. 5(1a) GDPR) refers to proportionality between interests and
necessities of both data controllers and data subjects. Moreover, it can be
interpreted as procedural fairness which includes timeliness or burden of care
[9]. Fairness is also an umbrella term for multiple concepts as defined by the
OCED guidelines [48] and the Fair Information Practices [21].14

– Transparency (Art. 5(1a), 12, 13, 14, 30 GDPR) includes transparent infor-
mation, communication and modalities for the exercise of data subjects and
the respective obligations for data controllers or processors which allows inde-
pendent verification and enables trust [8].

– Accountability (Art. 5(2), 24 GDPR) entails the responsibility and ability
for demonstration of compliance with all the other principles. Therefore, it is
closely related to enforcement and audit strategies of supervisory authorities.

– Purpose limitation (Art. 5(1b) GDPR) requires specific, explicit, and legiti-
mate purpose specifications. This prohibits overly broad statements and data
processing upon retrospective amendments or further incompatible processing
with the initially stated purpose.

– Data minimization (Art. 5(1c) GDPR) limits the collection of personal data
for further processing. Frequent tactics are excluding, selecting, stripping,
perturbating, and deleting personal data as much as possible [35]. Possible
safeguards include anonymization and (to a limited degree) pseudonymiza-
tion.

14 Note, although fairness “remains under-defined from a legal perspective”, it still has
to be considered in explicit design trade-offs; see also [23].
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– Accuracy (Art. 5(1d) GDPR) determines that all personal data are to be
kept up-to-date and correct. Therefore, data subjects have the right to recti-
fication (Art. 16), which is important to reduce possible algorithmic discrim-
ination because of false assumptions.

– Storage limitation (Art. 5(1e) GDPR) specifies period for which personal
data can be processed. This period is strongly coupled to the lawfulness and
the specific purpose for which the processing is permitted.

– Security (Art. 5(1f), 32 GDPR) safeguards against unauthorized and unlaw-
ful data processing. The technical and organizational measures need to ensure
confidentiality, integrity, and availability (CIA triad) [1].

– Access & Data portability (Art. 15, 20 GDPR) refer to all data subjects’
right to get a copy of all personal data relating to them. Closely related, the
GDPR guarantees the freedom - where technically feasible - to transmit their
personal data from one controller to another. The latter also enables a (in
theory) effective mean against dominant market positions [15].

Privacy by design needs to target a positive-sum, not zero-sum to unfold
its real societal impact [8]. Although within systems engineering trade-offs need
to be discussed during the development process, the ultimate goal has to be to
align with all the privacy principles best. In this context, we also acknowledge
the classifications of privacy engineering by architecture [60], policy [60], and
interaction [29] which clear the mist for evaluating proposed systems. In addi-
tion, we can contextualize (again) the privacy design strategies [35] that can be
directly mapped to many of the resulting matrix elements which are depicted in
Fig. 1.

Fig. 1. Dimensions of cloud native privacy engineering
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We now examine two different use cases, illustrating the range of different
privacy engineering mechanisms:

Use Case 1. Transparency in large service-based
cloud architectures is key to strengthen data sub-
jects’ level of informedness. Traditionally, written
privacy policies try to convey transparency infor-
mation in legalese language. However, they are not
only hard to understand for users, but also incom-
patible with agile development practices, as they
– by design – cannot be changed multiple times per day. Cloud native architec-
tures, in turn, need a machine-readable representation and additional tooling for
processing said transparency information in order to describe the multitude of
services in real-time. TILT [27] and TIRA [28], as technical mechanisms, address
this issue being explicitly tailored to large-scale cloud native systems, agile devel-
opment practices, and the legal requirements. Consequently, the proposed pol-
icy language and programming toolkit of TILT, and the OpenAPI extension
and dashboard of TIRA address transparency, accountability, and lawfulness on
many different levels.

Use Case 2. The Right to Data Portability
(RtDP) is still uncharted territory in real-world
systems. At least, many data controllers provide
so-called takeouts15 for semi-automatically fulfill-
ing the right to access according to Art. 15 GDPR.
Also the CCPA clearly specifies in Sec. III that
data controllers “shall promptly take steps to dis-
close and deliver, free of charge to the consumer,
the personal information required”. Closely related, Art. 20 GDPR states the
right to data portability. As a consequence, the data also has to be provided in
a machine-readable format. However, the automatic transfer of all personal data
from controller A to B is still somewhat disregarded. At least, one major PET
has been proposed by a consortium of big technology companies, namely the
Data Transfer Project (DTP)16. The DTP addresses the RtDP through three
main components. First, there are several data models that can be extended
by the community, and are to be used for describing the personal data to be
transferred. Next, they propose company-specific adapters for authentication
and how to communicate with the provider’s core infrastructure (preferably
through well-defined APIs). Third, they connect these components through var-
ious middleware components enabling in-transit encryption or failure handling.
The project is in an experimental state, however, it is a serious attempt to enable
the RtDP. Notably, the tool is built using common cloud native techniques such

15 E.g. Google’s takeout under https://takeout.google.com/settings/takeout.
16 See https://datatransferproject.dev/.

https://takeout.google.com/settings/takeout
https://datatransferproject.dev/
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as containerization and well-defined web APIs for developer-friendly integration
at application level.

As we can infer from these two examples, cloud native privacy engineering
is still a difficult endeavour. On the one hand, there is no such option as free
lunch, since not a single or two tools can possibly cover the complete range of
the dimensions at hand. Secondly, a remaining question is as to whether a PET
is considered as “appropriate” measure. Calculating the security-related risk of
a password brute-force attack is fairly easy, while, in comparison, measuring
an adequate level of fair or transparent data processing is an unsolved prob-
lem. Especially in these cases, as in other compliance contexts, we need to put
the organizational and process-related dimensions into the center of attention.
Notwithstanding, by the help of the proposed model, we can now compare differ-
ent architectures by checking how sparse or dense the matrix is filled. As a rule
of thumb, the more privacy principles at different levels are met (indicated by
a colored matrix element), the better is the overall rating. Salient privacy engi-
neering solutions then cover complete columns or even span rows. In contrast, a
system described by a sparse matrix faces a substantial need for remedial action.
In a second step, case-specific data protection impact assessments (DPIAs) fol-
lowing a risk-based approach should be carried out. By its very nature, the
level of ensured privacy cannot be put into a single evaluation model. However,
evidence-based experiments and research shall complement the discussion: On
the one hand, we need to consider the cost of implementation efforts accord-
ing to Art. 25(1) in relation to the (risks associated with the) processing. On
the other hand, we argue that all phases of development and operations need
to be taken into account. Consequently, we need empirical studies for various
kinds of PETs relating to all dimensions of cloud native privacy engineering.
Having these, we can better compare and evaluate complete systems w.r.t. to
architecture, engineering, and management.

After having discussed the dimensions of cloud native privacy engineering,
we head over towards the software development cycle to demonstrate the imple-
mentation in practice.

4 DevPrivOps: Privacy Engineering in Practice

In this section, we suggest an enhanced DevPrivOps lifecycle complementing
the model of [57], that illustrates how privacy can be ensured in cloud native
architectures and through which tools the privacy-friendly and agile development
of large-scale service infrastructures can be exemplified.

DevOps emphasizes cross-functional collaboration to operate systems and
accelerate delivery of any occurring changes [17]. For this purpose, it is practiced
as a software development culture that integrates the following eight phases con-
ducted in an endless cycle [71]. We will explain them briefly in our own words (for
long-reads we recommend [5,63]). Additionally, we will hint at tangible activ-
ities that complement the phase with cloud native privacy engineering tactics.
Therefore, we can now introduce a DevPrivOps lifecycle, that consists of the
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already established DevOps loop (depicted in blue) and an enveloping “ring”
that illustrates the possibility to add privacy-related activities in every phase
(cf. Fig. 2).

First, the lifecycle is initialized by a planning phase. Working with agile
project management tools, this could be a scrum planning phase, in which the
tasks for the next sprint are to be defined. Moreover, this phase serves as a
checkpoint to plan either a new functionality or fixes and enhancements to an
existing one. Changes can, e.g., be prioritized based on the developer’s skill or
the strategic business reason why a change is requested. In traditional software
engineering, the plan phase is comparable to the requirements engineering phase,
in which all functional and non-functional items are to be collected. Within the
planning phase, it is convenient for the team to discuss which privacy pattern or
design strategy (see Sect. 2.3) to employ. This phase may also entail the threat
modelling or risk analysis to decide which technologies fit best.

Second, writing of source code begins. This activity is not meant be lim-
ited to programming in the general purpose languages at hand, but can also
be used to write configuration files, infrastructure as code definitions [3], test
cases, API specifications or database queries (non-exhaustive list). Coding is
assisted by integrated development environments (IDEs), a collection of tools to
assist writing code, debugging, reading documentation and so on. With regard
to privacy engineering, this phase is used to employ libraries or plugging in com-
ponents that feature a design goal. For the security dimension one would, e.g.,
choose the encryption cipher suite and library. When focusing on transparency,
all personal data indicators [28] would be documented (which also streamlines
auditability) or (manual or automatic) instrumentation for logging, tracing, and
monitoring tools would be added. Basically, this phase is crucial for every pro-
cessing activity. Some IDEs automatically hint at uncatched exceptions, possible
SQL injections, non-documented function parameters, missing type checking and
many possible other security flaws in the source code [42]. In addition, version
control systems are used to organize multiple developers working on the same
files in different development branches. These can further be used to review
code changes by another team member. This enables shared responsibilities and
better code quality.

Third, the application is built using build automation tools. These tools help
to check if all external and internal dependencies can be resolved or supervise
the compilation process of respective programming languages. With regard to
security, outdated versions of external libraries could be identified. Taking the
data minimization and purpose limitation dimensions as examples, the tools can
assist in building different versions for disparate target groups. For instance,
if the business model contains a paid version without targeted advertising, the
build automation could exclude third party tracking functionalities. Besides, in
trustless setups, for instance, zero-knowledge proofs are generated in order to
keep sensitive information private [18].

After the build phase, automatic tests are executed. Software testing can be
an exhaustive task that includes thousands of test cases. Using the testing phase
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for privacy-related tasks, the test suite can check several functions with different
inputs if the expected accuracy or integrity are ensured. Test data sets can
be used to check different behaviours or the correct calculation of obfuscation
mechanisms. For instance, parts of a threat analysis and management can be
automated in a CI pipeline [58]. Generally, integration tests can also be used to
check the platform or infrastructure in various dimensions (esp. with security in
mind) [36].

Next, the changes are released. Therefore, DevOps engineers automate an
integration pipeline that is executed automatically. Such a pipeline may again
carry out tests on different target platforms and then create a package for
later delivery. Privacy engineering can play a role here again, e.g., by executing
integrity checks or adding transparency-related information that can be gen-
erated out of automated analysis tasks. With this phase we leave the rather
development-focused phases and enter the operation part of the loop.

Afterwards, the software is deployed to compute, storage, and network
resources, provided by the cloud infrastructure. In automated scenarios, this may
include the decision which (virtual) machine is used or at which edge device a
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container is placed (in a fog computing scenario). In highly distributed scenarios
these decisions can have a huge impact on the regulatory obligations that apply.
Thinking about services that are deployed to a data center in a third country;
this has direct implications on transparency, accountability or security dimen-
sions [12]. However, also organizational responsibilities naturally change when
software is deployed to infrastructure at different locations. Advanced deploy-
ment strategies (e.g., canary releases or A/B tests) are natural candidates for
reducing the risks of potentially harmful processing of personal data.

Subsequently, operating the software is a key task for the responsible team.
This does not only include to keep running the software technically, but may also
include process-related activities like internal support or bug tracking. From a
privacy perspective, security-related tasks such as pen testing or research for
vulnerabilities are important. Moreover, during operation potentially lots of
personal data is accessed, changed, added, or deleted. These activities need to
be observed and cross-checked with the prior-made assumptions about, e.g., to
which degree k/ks-anonymity [49,64], �-diversity [43] or ε-differential [40] privacy
can be guaranteed in real-world scenarios. In another dimension, data accuracy
could be validated after each change.

Thereafter, the monitoring phase is entered. During this phase, cloud native
architectures are watched using observability techniques. The most common
tools perform logging, distributed tracing and collecting metrics [53]. These tools
can also be used to achieve a higher level of privacy. First, logging helps to build
an accountable system, since the controller can historically demonstrate that
the system worked as intended by keeping the records of processing activity
[22]. Secondly, distributed tracing can be used to observe service compositions.
Thus, a data controller has full transparency over all personal data processing
and can provide a summary to the data subject or supervisory authority in real-
time. Moreover, all joint controllerships or de-facto processors are automatically
detected independently from what was manually documented before. Addition-
ally, purpose limitation can be guaranteed when there is a “watchdog” that
detects unwanted or unlawful behaviour. Third, by the help of collected metrics
we can detect adverse intrusions and therefore threats for personal data leakage.
At the same time, key performance indicators allow to prove that data access
or portability tasks were timely executed. As shown, this phase is exceptionally
well suitable for all different kinds of cloud native privacy engineering.

In this section we showed how privacy engineering can be integrated into all
phases of DevOps engineering. The term DevPrivOps was mentioned first in a
recent position paper [57]. With this paper we want to further coin the term
with regard to cloud computing environments and the chances of cloud-native
tools to implement all privacy principles in practice. So far, the term DevOps
was only augmented as DevSecOps. However, this perspective does not reflect
the complexity of the privacy engineering discipline as a whole.
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5 Discussion and Conclusion

Future privacy engineering tools need to be in line with the actual givens of
practical information systems engineering. Without doubt, conceptual models
provide us with guidelines for a better architecture of real-world systems. At the
same time, a reality check is necessary to align with the environment of industry-
grade cloud native computing. So far, we observed that the goal of privacy by
design can then be reached when the software development lifecycle is focused
on all dimensions as laid out in Sect. 3.

In this paper, malicious practices from within the corporation were not con-
sidered. It is evident that appropriate measures must also be taken in this regard.
These are, however, primarily of an organizational nature. Consequently, clear
processes and, above all, automated tests can also be effective protective safe-
guards. Manual manipulation away from the log is made significantly more dif-
ficult by DevPrivOps practices, e.g., when CI/CD pipelines alert or stop non-
compliant code from running in production.

To the best of our knowledge, there have been no studies on the acceptance
of privacy engineering methods that encompass all the dimensions identified
above. Rather, there is the impression that priority is given to security- and data
minimization related measures, while most other principles are neglected. To
counteract this, further incentive models and easy-to-integrate technical options
need to be developed. In this paper, we have provided first suggestions; in turn,
a more comprehensive set of options for implementing privacy by design needs
to be extracted from existing DevOps implementations.

In the same vein, we need evaluation methods for each of the elements in the
cloud native privacy engineering matrix. For the development of these, we can
first borrow ideas from both legal and technical methodology. Then, we need to
carry out a cross-disciplinary discourse on the exact design of said approaches.
This process is considered future work needed to be coming up next. Having
these evaluation methods set up, we then can also better evaluate the “level
of coverage” within each matrix element (possibly indicated by a filling level
instead of binary hatching).

Finally, technological possibilities continue to grow at a rapid pace. With
increasing connectivity through powerful mobile networks, the number of
internet-enabled devices that will process personal data is exploding. For com-
puting approaches such as fog computing and (I)IoT (Industrial Internet of
Things), appropriate strategies need to be developed and tested to effectively
implement the above privacy dimensions. However, they can also be beneficial
and helpful for said principles [50].

So far, this work has presented two key models that bring privacy engineering
by design and by default closer to the realities of information systems engineer-
ing. At the same time, it is intended to improve these designs in future iterations
– just as suggested by the infinite loop presented above.
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30. Gürses, S., Troncoso, C., Diaz, C.: Engineering privacy by design. Comput. Priv.
Data Protect. 14(3), 25 (2011)
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