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Abstract Rolling bearing is a kind of easily damaged mechanical equipment. The
quality of rolling bearing is related to the normal operation of the equipment. Because
the resonance demodulation method is susceptible to noise interference, and the
band-pass filter parameters are largely dependent on personal experience selection.
This paper proposes an analysis method based on the combination of Ensemble
Empirical Mode Decomposition (EEMD) and the selection criterion of kurtosis-
cross-correlation coefficient. Firstly, the vibration signal is decomposed by EEMD to
get intrinsic mode functions (IMFs); Secondly, since the decomposed IMF compo-
nents will produce mode aliasing, two criteria of cross-correlation coefficient and
kurtosis are introduced to extract effective IMF components for signal reconstruc-
tion; Finally, the reconstructed signal is subjected to Hilbert transform and envelope
analysis. Compared with the resonance demodulation analysis method, the EEMD
decomposition method is selected to replace the band-pass filter to reduce the noise
of the signal, which enhances signal to noise ratio and makes the fault characteris-
tics more obvious. The experimental signal analysis results of rolling bearing faults
show that a refinement ofmethodology presented in this article can effectively extract
the fault characteristics of rolling bearing, and has more advantages than traditional
envelope analysis methods.
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1 Introduction

The rolling bearing is in each kind of revolving machinery applies one of most
widespread general machine parts. The normal running state of rolling bearing
often directly affects the performance of the whole device, so fault diagnosis is
very important [1].

The fault diagnosis of rolling bearing includes four steps: vibration signal acqui-
sition, signal preprocessing, fault feature extraction and pattern recognition. Because
there will be interference factors such as noise when the signal is collected, signal
preprocessing is an indispensable part of the fault diagnosis process [2]. The signal
processing method can be performed in the time domain, frequency domain, and
time–frequency domain. Time domain analysis is widely applied in the breakdown
diagnosis domain due to their intuitive, easy-to-understand, easy-to-calculate, and
high-efficiency advantages [3]. In the time domain index, kurtosis is extremely sensi-
tive to impact characteristics and plays the vital role in the bearing partial expiration
[4]. Compared with the time domain analysis, the frequency range analysis mainly
separates or the strengthened breakdown characteristic frequency component. When
the rolling bearing fails, a modulation component will appear in the collected signal.
Envelope spectrum analysis is a powerful tool for processing modulated signals [5].
In these methods, envelope spectrum analysis based on Hilbert transform is the most
widely applied. However, the frequency domain analysis method is based on Fast
Fourier Transform (FFT). FFT lacks local information for the analysis of non-smooth
signals, and is not appropriate for analyzing non-smooth signals [6, 7].

The actual vibration signal is usually unstable. The analysis of nonstationary signal
has been studied by many people in the field of signal processing. Empirical mode
decomposition (EMD) is a method of analyzing non-stationary signals proposed by
Huang [8], and its essence is to process non-stationary signals. EMD is equivalent to
an adaptive filter. It can decompose non-smooth signals into a series of IntrinsicMode
Function (IMF). Each IMF component has its physical meaning, and the adaptive
and noise reduction characteristics of EMD make it more and more widely used
in rolling bearings [9–11]. Literature [12] proposed EMD to reduce the noise of
rolling bearing vibration signals, and realizes fault diagnosis of rolling bearing with
envelope spectrum analysis. However, the EMD method still has many defects such
asmodal aliasing, end effect, over-envelope and under-envelope phenomena. In order
to improve the modal aliasing phenomenon of EMD, Ref. [13] proposed the total
integrated empirical mode decomposition method (EEMD). EEMD through many
times joins thewhite noise to the primary signal in,may suppress themodality aliasing
effectively. In Ref. [14], the author used the decomposition method of EEMD and
compared it with the EMDdecomposition results. Finally, it is concluded that EEMD
decomposition has more advantages.

Because the traditional resonance demodulation method needs to select a reso-
nance high frequency band to design a bandpass filter based on personal experience
and knowledge reserves. In order to improve this shortcoming, this paper uses EEMD
decomposition to replace the filtering method of the band-pass filter, and selects the
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IMF component of the reconstructed signal through the cross-correlation coeffi-
cient and kurtosis. Then Hilbert transform and envelope analysis are performed on
the reconstructed signal, and finally the fault features are extracted. The method
proposed in this paper can effectively avoid the interference of artificial selection
of bandwidth factors on fault analysis, and the correctness of fault diagnosis and
analysis is enormously enhanced.

2 Methodology

2.1 Resonance Demodulation Algorithm

Resonance demodulation technology uses band-pass filter to extract the high
frequency resonance signal of low frequency fault pulsemodulation, and then obtains
the low frequency signal spectrum through envelope demodulation. The fault type
is determined by comparing the actual characteristic frequency with the theoretical
fault characteristic frequency. The diagnosis effect mainly depends on the parameter
selection of band-pass filter: center frequency and bandwidth. Appropriate band-
pass filter can effectively filter noise and other interference factors, and improve
the accuracy of fault feature frequency extraction [15]. The specific algorithm is as
follows:

(1) The signal is transformed by fast Fourier transform to get the spectrum;
(2) Observe the frequency band where the modulation phenomenon is more

obvious from the spectrogram, and select this frequency band as the bandwidth
of the band-pass filter;

(3) After determining the bandwidth, design a band-pass filter to filter the signal;
(4) PerformHilbert transform and envelope analysis on the filtered signal to obtain

its envelope spectrum;
(5) Observe the envelope spectrum, extract the characteristic frequency of the fault,

and compare it with the theoretical value to judge the fault type.

In the fault diagnosis of rolling bearing, resonance demodulation is the most
widely used method, but because the information generated by early small faults of
bearing is often disturbed by background noise, the application of resonance demod-
ulation method in improving signal-to-noise ratio is limited, and the diagnosis effect
is not obvious. In recent years, some new denoising methods have been developed
rapidly.Wavelet denoising has the advantage of multi-resolution. However, the effect
of wavelet denoising largely depends on the selection of basis function and threshold,
so designers need to have rich experience. EMD is a new signal processing method,
which is very suitable for processing nonlinear and non-stationary signals. However,
the EMD decomposition is prone to mode aliasing. In order to solve this problem,
some scholars put forward the EEMD method based on the research of white noise
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EMD decomposition. This method effectively overcomes the shortcoming of mode
aliasing in EMD method.

2.2 Ensemble Empirical Model Decomposition

EMD can adaptively process nonlinear and non-stationary signals, but this method
has problems and shortcomings, mainly the phenomenon of modal aliasing. The
EEMD method adds multiple groups of different white noises to the original signal
and then performs EMD decomposition, and then uses the random characteristic of
zero white noise to average the IMF components obtained from all EMD decomposi-
tions as the components of theEEMDdecomposition IMF to eliminate thewhite noise
[16].At the same time, the problemofmodal aliasing is solved.EEMDdecomposition
steps are as follows:

(1) Select the total average number of decomposition M;
(2) A white noise ni (t) with normal distribution is added to the original vibration

signal x(t) to form a new signal:

xi (t) = x(t) + ni (t) (1)

where ni (t) represents the ith additive white noise sequence, and xi (t)
represents the additional noise signal of the ith experiment, i = 1,2……M;

(3) The new signal xi (t) is decomposed by EMD to get the respective IMF:

xi (t) =
J∑

j=1

ci, j (t) + ri, j (t) (2)

where ci, j (t) is the jth IMF decomposed after adding white noise for the ith
time,ri, j (t) is the residual function, which represents the average trend of the
signal, and J is the number of IMF;

(4) Repeat steps (2) and (3) forM times, and add white noise signals with different
amplitudes each time to get the set of IMF:

c1, j (t)c2, j (t)......cM, j (t), j = 1, 2, 3.....J

(5) Based on the principle that the statistical mean value of uncorrelated sequence
is 0. The final IMF component can be obtained by calculating the above IMF
components, namely:

c j (t) = 1

M

M∑

i=1

ci, j (t) (3)
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where c j (t) is the jth IMF decomposed by EEMD, i = 1,2……M; j = 1,2……J.
In the EEMD decomposition method, two parameters are needed: the number of

average M and the amplitude of white noise. The amplitude of white noise is usually
characterized by the ratio of the standard deviation of white noise amplitude to the
standard deviation of original signal amplitude [17].

The EEMD algorithm is an effective method to deal with non-linear and non-
stationary signals. It solves the mode aliasing in the process of signal decomposition,
but it also has some disadvantages, such as residual white noise in the process of
signal decomposition. The choice of an effective IMFdepends entirely on experience.
All these affect the accuracy of EEMD decomposition and reconstruction. For this
reason, two criteria, cross-correlation coefficient and kurtosis, are introduced to select
and reconstruct IMF components.

2.3 Kurtosis and Cross-Correlation Coefficient

Kurtosis is a measure of how much the distribution of a set of random variables
deviates from the Gaussian distribution. The signal of normal rolling bearing is close
to Gaussian distribution, and its kurtosis value is about 0. When the rolling bearing
fails, its kurtosis value is greater than 0, and the impact component of the fault signal
is prominent. The magnitude of the kurtosis value reflects the degree of impact of
the impact component, and a value between 3 and 8 has a significant effect on the
extraction of weak faults.

The cross-correlation coefficient indicates the degree of correlation between two
signals. The greater the correlation coefficient between two random signals, the
stronger the correlation degree [18]. Generally, the correlation coefficient should be
greater than 0.1. Equation (4) is the definition of the correlation coefficient in this
article:

R(x, im f ) =
∑N

i=1 [x(t) − x]
[
im f (t) − im f

]
√∑N

i=1 [x(t) − x]2
√∑N

i=1

[
im f (t) − im f

]2 (4)

where N is the number of sampling points; x(t) is the original vibration signal;
im fi (t) is the ith IMF component, and x = 1

N

∑N
i=1 x(t).

From the cross-correlation coefficient between each IMF component and the orig-
inal signal, we can find the first im fk with the local minimum value of the cross-
correlation coefficient and the im fk+1 is considered to be the modal aliasing compo-
nent. Then the first k IMF components are highly correlated with the original signal
and contain more fault information. In addition, since the IMF component is from
high frequency to low frequency, the high frequency part contains more fault infor-
mation, so we give priority to the high frequency part. The remaining components
can be directly eliminated, and then the selected components can be accumulated
and reconstructed to obtain the denoised signal [19, 20].
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3 Improved EEMD Decomposition Algorithm

Due to the modal aliasing phenomenon in the IMF components decomposed by the
EMD method, and the end effect affects the decomposition effect. In order to avoid
such problems in the experiment, this paper chooses to improve the EMD method,
that is, the EEMD method, which effectively solves the above problems. Because
the spectrum of white noise is evenly distributed, when we add white noise to the
signal to be analyzed, it will be automatically distributed to the appropriate location.
Because the mean value of noise is 0, the influence of white noise can be eliminated
after several average calculations. The final result can be obtained by integrating
and averaging each IMF. Therefore, the shortcomings of EMD decomposition are
improved. The signal is decomposed byEEMD to get IMF component. Generally, the
first component will be selected as the next signal to be studied, which will lose some
fault information. Here, we make a little improvement: by calculating the kurtosis
of IMF component and the cross-correlation coefficient between IMF component
and original signal, we select the component reconstruction signal according to the
selection criteria in Sect. 2.3. The steps of the improved EEMD algorithm are as
follows:

(1) EEMD decomposition of the vibration signal will result in a number of IMF
components;

(2) Compute the kurtosis of IMF and the cross-correlation coefficient between
IMF and signal;

(3) According to the selection criteria proposed earlier in the thesis, compare
the correlation values and kurtosis values, and select the appropriate IMF
component to reconstitute the signal;

(4) Perform Hilbert transform on the reconstructed signal, and perform envelope
demodulation analysis to obtain an envelope spectrogram;

(5) Observe the envelope spectrum, look for the characteristic frequency of the
fault, and compare it with the theoretical value to judge the fault type.

EEMDdecomposition can effectively denoise the signal. The selection component
is improved slightly. In the next analysis, it is used to replace the band-pass filter,
which avoids the shortcomings of choosing the band-pass filter parameters according
to personal experience. This paper considers the shortcomings of traditionalmethods,
and uses an improved EEMD method instead of a band-pass filter to analyze the
signal. Figure 1 shows the algorithmflowof the traditionalHilbert envelope spectrum,
and Fig. 2 shows the algorithm flow of the Hilbert envelope spectrum based on the
improved EEMD method.
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Fig. 1 Flow chart of resonance demodulation method based on fixed bandwidth
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Fig. 2 Flow chart of resonance demodulation method based on improved EEMD

4 Experiment and Analysis

4.1 Data Sources

The data used in this paper are from the life cycle bearing data provided by the
University of Cincinnati [21]. Figure 3 shows the physical picture of the bearing in
the experiment and the simulation picture which is easy to watch. The experimental
equipment consists of an AC motor, four bearings (Rexnord za-2115 double row
bearings) and a vibration sensor. In this experiment, the number of rolling elements
is 16 (z = 16), and the pitch diameter of bearing raceway is 2.815 inches (D = 2.815
in); The diameter of rolling element is 0.331 inch (d = 0.331 in); The contact angle
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is 15.17°(α = 15.17°). The rotation speed of the bearing is 2000 rpm ( fr = 33.33 Hz)
and the sampling rate is 20 kHz. The vibration signal is collected every ten minutes.
Each file in the dataset consists of 20,480 points. NI DAQ 6062E was used to collect
data in the experiment.

The formula for outer ring fault frequency [22] is

fo = N

2

(
1 − D

d
cosα

)
f (5)

According to Eq. (5), the outer ring fault frequency is 236.4 Hz.

4.2 Data Analysis Based on Fixed Bandwidth

Firstly, we select four time-domain indicators of RMS, absolute average, variance
and kurtosis to make a preliminary analysis and judgment on the signal. Figure 4
shows the waveforms of the four indicators of this signal. RMS is the reflection of
signal impulse characteristics. The absolute average reflects the energy of the signal.
Variance reflects the degree of signal dispersion. From the change trend of the four
indicators in Fig. 4, we can determine that the bearing must have a fault in the later
stage.

According to the changing trends of the four indicators, the failure of the entire
cycle initially occurred near Document 500. Next, we use the content of Sect. 2.1 to
analyze the vibration signal. Because the traditional resonance demodulationmethod
needs to rely on experience to select the bandwidth of the band-pass filter. In order
to better select the bandwidth, here we select the data collected without failure (file
number 30), the data collected at the initial stage of the failure (file number 533),
and the data collected after the failure (file number 800) for analysis. Figure 5 shows

Fig. 4 Four time-domain indicators of vibration signals: a RMS. b Absolute mean. c Variance. d
Kurtosis
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Fig. 5 Resonance frequency band: a [600, 1400 Hz]; b [1600, 2400 Hz]; c [3000, 3800 Hz]; d
[4000, 5000 Hz]; e [5500, 6500 Hz]

the selection of resonance frequency band in the spectrum of the three files. It can be
found from the figure that when the center frequency is 1000, 2000, 3400, 4500 and
6000, the resonance frequency band is more prominent. Based on this, the bandwidth
of the band-pass filter is designed to be [600, 1400 Hz], [1600, 2400 Hz], [3000,
3800 Hz], [4000, 5000 Hz], [5500, 6500 Hz] to band-pass filter the signal. Choose
different bandwidths to design the band-pass filter, and then analyze the signals
separately according to Sect. 2.1. Finally, it is found that the envelope spectrum
obtained by [4000, 5000 Hz] has the most obvious fault characteristics. Figure 6
shows the envelope spectrum at file numbers 30, 500, and 800, with a bandwidth of
[4000, 5000 Hz].

It is obvious from the Fig. 6 that the fault has occurred in the later stage of the
signal, and the characteristic frequency is 230.5 Hz, which is very close to the result

Fig. 6 Envelope spectrum obtained with a bandwidth of [4000, 5000 Hz] at file number 30 500
and 800
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Fig. 7 Trend chart of fault characteristic frequency: aWhole cycle; b Partially enlarged trend graph

Fig. 8 Envelope spectrogram at file number 532 and 533

calculated byEq. (5) of 236.4Hz, and it also can find that the twice fault characteristic
frequency. Based on this, it can be judged that the actual fault characteristic frequency
is 230.5 Hz.

In order to know the time of the initial failure of the fault more accurately, we
know the fault characteristic frequency of the bearing through the above analysis.
Figure 7 shows the trend diagram of the extracted fault feature frequency and its
partial enlarged diagram.

It can be found from Fig. 7b that the rolling bearing failure at file number 533
began to occur. Then the file number 532 and 533 are analyzed by the resonance
demodulation method to obtain the envelope spectrum. Figure 8 shows the envelope
spectrogram obtained after the resonance demodulation method at file number 532
and 533. We can find that no clear fault characteristic frequency can be found in
the envelope spectrum at file number 532. The fault characteristic frequency and its
twice fault characteristic frequency can be found at file number 533. Therefore, it
can be known that the bearing started to fail at file number 533.

4.3 Data Analysis Based on Improved EEMD

Through the analysis of the traditional resonance demodulation method, we know
that the initial fault location is at file number 533, and then use the improved method
proposed in this paper for this set of data. The signal is decomposed by EEMD, and
then each IMF component can be obtained. The kurtosis of each component and the
cross-correlation coefficient between each IMF component and the original signal
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Table 1 Cross-correlation
coefficients and Kurtosis

IMF Cross-correlation coefficients Kurtosis

IMF1 0.7614 3.7983

IMF2 0.4543 3.6152

IMF3 0.4630 2.4166

IMF4 0.2171 3.1758

IMF5 0.1393 3.3171

IMF6 0.1061 2.8522

IMF7 0.1643 3.0198

IMF8 0.1287 2.3135

IMF9 0.0256 2.7608

IMF10 0.0070 3.7430

IMF11 0.0020 3.2776

are calculated. Table 1. shows the cross-correlation number and kurtosis of each IMF
component.

Because the resonance caused by the fault is mostly obvious in the high frequency
part, and the IMF component is from high frequency to low frequency. Therefore, we
prefer to choose the kurtosis and cross-correlation coefficients of the first few IMF
components to observe and compare. According to the selection rules described in
Sect. 2.3, from Table 1, we can find that the kurtosis of IMF1 and IMF2 components
are between 3 and 8, while the kurtosis of IMF3 is not in this range, so IMF1
and IMF2 contain more fault characteristics. Similarly, it is found that the cross-
correlation coefficients of IMF1 and IMF2 components are both greater than 0.1, and
the first local minimum cross-correlation coefficient is found at IMF2. Therefore, the
kurtosis and cross-correlation coefficients of IMF1 and IMF2 components conform
to the selection rules, sowe choose IMF1 and IMF2 to reconstruct the signal. Figure 9
shows the envelope spectrum at file number 533 obtained using the method in Part
3.

Comparing Fig. 9. with Fig. 8, in the analysis of the same initial fault, the fault
frequency obtained by the method proposed in this paper is more obvious, and the
twice frequency, three times frequency, and four times frequency can all be clearly
found. The fault diagnosis has a very intuitive judgment function.

Fig. 9 The envelope spectrum at file number 533 based on the improved EEMD
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Table 2 SNR of the two
methods

File number The SNR of traditional
method

The SNR of the method
in this paper

533th file −1.1795 5.7100

540th file −1.3481 6.2237

600th file −1.8977 6.5063

700th file −2.7630 7.9383

800th file −2.0808 6.9007

850th file −6.1887 10.5551

The above analysis shows that the method proposed in this paper has a better
filtering and denoising effect than the band-pass filter, and has more advantages in
the extraction of fault signals. Here we use the signal-to-noise ratio (SNR) [23] to
quantitatively analyze the denoising effect. The calculation expression of SNR is

SN R = 10 lg

[ ∑N−1
n=0 S2n∑N−1

n=0

(
SN − S′

n

)

]
(6)

where Sn is the original signal; S′
n is the signal after noise reduction; N is the number

of sampling points.
Table 2 shows the SNR calculated by the resonance demodulation method using a

fixed frequency band and themethod proposed in this paper after denoising the signal.
Select several sets of data from the early stage to the later stage of the failure for
analysis and calculation. It can be found from the table that the SNR after denoising
the signal using this method has been greatly improved.

5 Conclusion

In this paper, the resonant demodulation method is vulnerable to noise interference
and the parameters of band-pass filter are difficult to determine. In most cases, the
design of band-pass filter depends on experience to select the bandwidth, which has
a great impact on the signal diagnosis. Therefore, this paper proposes an improved
EEMDmethod instead of band-pass filter to remove the noise in the vibration signal.
The measured vibration signal is decomposed by EEMD, and the appropriate IMF
component is selected for reconstruction by combining the cross-correlation coeffi-
cient criterion and kurtosis criterion. Finally, the reconstructed signal is processed
by Hilbert transform and envelope demodulation to get the envelope spectrum. By
observing the envelope spectrum obtained by the two methods and comparing the
SRN of the two methods, it can be seen that the proposed method has greater advan-
tages than the traditional envelope analysis method. This study is supported by
Jiangsu University Senior Talents Research Start-up Fund 4111140012.
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