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Preface

Hebei University of Technology and WorldTech Intelligence, Tianjin, China, organ-
ised The Efficiency and Performance Engineering Network 2021 (TEPEN 2021) and
Sixth International conference on Maintenance Engineering (IncoME-VI) on 20th–
23rd October 2021.

The goal of TEPEN 2021 and IncoME-VI is to provide a common platform by
which professionals, engineers, practitioners and researchers working in the field of
condition monitoring, plant maintenance and reliability can share their experiences.
The scope of the conference covered a broad area with multidisciplinary interests in
the fields of plant maintenance, asset management, reliability, condition monitoring
and related areas, ranging from fundamental research to real-world applications.

In this conference, participations and contributions were involved in both theoret-
ical research and practical applications of all aspects of fault detection, diagnostics,
prognostics in both the operational and manufacturing processes. In the course of
this event, eight keynote speeches and parallel technical sessions were delivered in
accordance with key following topics:

• Vibro-acoustics Monitoring
• Asset Management
• Condition-based Maintenance
• Condition Monitoring and Reengineering
• eMaintenance, Mobile Technology
• Health, Safety and Environment
• Sensors and Instrumentation
• Life Cycle Cost Optimisation
• Machine Health Monitoring
• Machine Lube Oil Analysis and Monitoring
• Artificial intelligence, Machine Learning
• Plant Outage
• Maintenance Auditing
• Prognostics and Health Management
• Maintenance Organisation

v



vi Preface

• Maintenance Performance Measurement
• Non-Destructive Testing
• Manufacturing Process Monitoring
• Reliability, Maintainability and Risk
• Signal and Image Processing Methods

Despite the challenging circumstances of year 2021, this book consists nonethe-
less of 87 peer-reviewed papers. The book offers the state of the art of advances in
asset management and conditionmonitoring and also serves as an excellent reference
work for academic and industrial scientists and graduate students, working in asset
management, condition monitoring and related areas.

The editors would like to acknowledge and thank the following people for help
in book initiation, preparation and completion:

• Ning Hu (China)
• Fulei Chu (China)
• Andrew D. Ball (UK)
• Rongfeng Deng (China)
• Yongjian Ji (China)
• Zuolu Wang (UK)
• Xiaoxia Liang (China)
• Haiyang Li (China)
• Yuandong Xu (UK)
• Xiaoli Tang (UK)
• Yinghui Liu (China)
• Peng Li (China)
• Shaoning Tian (China)
• Yang Chen (China)
• Xiuquan Sun (UK)
• Miaoshuo Li (UK)

Thank you.

Tianjin, China
Tianjin, China
Beijing, China
Huddersfield, UK
Manchester, UK

Dr. Hao Zhang
Dr. Guojin Feng

Prof. Hongjun Wang
Prof. Fengshou Gu
Prof. Jyoti K. Sinha
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An Optical Gyroscope Based Technique
for Calibrating Angular-Measuring
Instrument

Chenpeng Cui, Yuanwei Jiu, Chun Wang, and Fengshou Gu

Abstract This paper analyzes the error model of inductosyn install in an angular-
measuring instrument, and then build up a test error system using the ultra-high
precision Ring Laser Gyroscope to get the error of inductosyn. Compare the tradi-
tional Fourier Function calibrations and the linear interpolation calibrationsmethods;
this paper presents a bit memory based method to calibrate the error of inductosyn
in electrical resolution. As a result, after compensation, the inductosyn error is ±0.8
arcsecond, RMS of the error is less than 0.3 arcsecond.

Keywords Inductosyn · Error model · Ring laser gyroscope · Calibration

1 Introduction

The accuracy requirement of angular measurement is stringent in variety application
occasions, like space image detection, high-precision turntable, scanning measure-
ment. Not only the static angle accuracy is necessary, but also the dynamic angle
measurement ability is needed. The traditional angle sensors are angle encoder,
optical gyroscope, resolver, inductosyn, etc. Encoder (photoelectric rotary encoder)
assemble demand is strict, eccentricity and the tilt in the installation process must
under 3–5um at shaft and plane, optical gyroscope due to shift with time, could not be
used in the motion control in space environment. Resolver accuracy can’t fulfill the
arcsecond requirement due to volume and weight. Inductosyn can get high precision
at same time the installation requirement is not accurate, below 30–50um at shaft
and plane. In order to achieve sub-arcsecond accuracy, there are two way to reduce
errors of inductosyn instrument. One is to improve inductosyn manufacturing craft
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and raising angle solver circuit designs ability. The other one is to calibrate the error
of the exiting angular-measuring instrument with compensation function or method
[1]. In order to improve inductosyn accuracy, the error of inductosyn should be
measured. Due to the dynamic angle standard device and traceability technology [2],
which based on Ring Laser Gyroscope, the error table can be obtained. The RLG is
measured by the national small angle standard and the high precision turntable. The
index and interpolationmeasuring deviationwere distributedwithin±0. 4 arcsecond.
The angular measuring repeatability was less than 0. 2 arcsecond [3, 4].

RLG accuracy is much higher than the inductosyn based angular sensor, but it
is shifting with time, 12 arcsecond per minute, as its principle shows, we must
standardize the zero before using it to eliminating the Earth rotation effect. Beside
the shorts above, the space environment like vacuum, radiation, terminal deflection
restricted the applications of RLG in orbit. In contrast, the inductosyn is not sensitive
to space environments with high stability and reliability. On the other hand, we can
still using RLG on ground to testing the inductosyn error table in a short time (~5 s)
according to the requirements of use.

Using the RLG equipment to get the error of inductosyn, the paper developed a bit
based look up table software algorithm to improve the inductosyn precision. Compare
to the function compensation algorithm, this method can make the inductosyn angle
instrument to sub-arcsecond, error RMS is less than 0.3 arcsecond.

2 Common Mathematical Error Model of the Single-Axis
Induction Synchronizer

The induction synchronizer also known as inductosyn, can be used as an angular
measuring instrument. It is a magic-electrical angle measurement, can achieve high
accuracy with 180 pair poles or more compare to resolver. It can be used in ultra-high
precise position servo systems, especially in space crafts. This paper using inductosyn
sensor as an angular instrument in a scanning mirror mechanism, and the mechanism
is a part of a remote satellite. In order to satisfy the stringent angular measurement
accuracy requirement, the error of inductosyn should be calibrated on ground.

From [1, 5–7], the error of inductosyn mainly consists of two parts, one is zero
position errors and subdivision errors. The manufacturing and the eccentricity and
tilt in the installation process cause zero position errors. The amplitude of induced
voltage and harmonic voltage, along with electrical reasons cause subdivision errors.

Components and derivation of inductosyn error can be show in Table 1.
From [5–10], the commonly zero error mathematical model of inductosyn could

show as “Eq. (1)”.

y(x) = a0 + a1 · sin(x) + a2 · cos(x) (1)

From [1], the subdivision errors and zero error can be modeled based on FFT.
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Table 1 Error components of inductosyn

Cause of error Manifestations Harmonic order

Non-Ideal voltage (Captive
voltage drop, edge voltage,
interference)

Zero position error p, 3p, 5p …

3th, 4th harmonic voltage Subdivision Errors performs as
fourth sine function

4p

The errors of the amplitude of
the induced voltage in sine phase
and cosine phase of stator

Subdivision Errors performs as
secondary sine function

2p,2p ± 1

The eccentricity and the tilt in
the installation process

Zero Position Errors perform as
primary cosine function in 360
degree (mechanical angle)

p

The errors of the amplitude of
the induced potential of the sine
phase and cosine phase of stator
or the rotor conductor

Zero Position Errors perform as
frequency K random form

K and a series harmonic
voltage

p is the number of pairs of poles

FFT technique can transform the error datas. Measure a limited length set of
discrete data y(n) in a fixed sampling period is the basic idea of FFT. We use FFT
to get their expression spectrum coefficients as the N data points are measured on
sampling interval.

Y (k) =
N−1∑

n=0

y(n) · e− j ·k· 2·πN ·n, 0 � k � N − 1 (2)

Then calculate Fourier inverse transformation of the spectrum coefficients, the
linear combination mathematical expressions could be gotten.

y(n) = 1

N

N−1∑

n=0

x(n) · e j ·k· 2·πN ·n =
N−1∑

n=0

x(n) · e j ·k· 2·πN ·n, 0 � k � N − 1 (3)

According to the Eqs. (2) and (3), we can get

ak =
N−1∑

n=0

x(n) · e j ·k· 2·πN ·n, 0 � k � N − 1 (4)

Then analyze amplitude frequency characteristic by taking the measured datas
into the Eq. (4). As a result we get the inductosyn error model according to the actual
datas and the amplitude frequency characteristic.
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Fig. 1 Amplitude-frequency characteristic

y(x) = a0 + a1 · sin(p1 · x) + a2 · cos(p2 · x) + a3 · sin(p3 · x)

+ a4 · cos(p4 · x)+... + an - 1 · sin(pn - 1 · x) + an · cos(pn · x) (5)

Therein,

pn—amplitude frequency characteristic parameters
an—system model parameters

x = 2π i

n
, i = 0, 1, 2 . . . N − 1

Form part 4, we get the error with position of the inductosyn instrument, the FFT
result see Fig. 1. The main errors are 45°, 360°, 720°, 2880°.

The axis is shifting with position as the instrument is holding by two pivots, the
error curve of each 2° present no repeatability. The error curve shift as the eccentricity
and the tilt changed with position, see Fig. 2.

3 Comparision of Different Caliberation Methods

From part 4, the error of inductosyn before compensation can be achieved, then
we use the “cftool” of Matlab to compare the different methods of compensation
angular error. The residual RMS error is 1.033 arcsecond in 1th Fourier equation fit,
0.7484 arcsecond in 4th Fourier equation, 0.5985 arcsecond in 8th Fourier equation.
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Fig. 2 Inductosyn error with position (180 poles)

The inductosyn be used is JGX/360-WND, which has 180 poles, mechanical angle
2°represent electrical angle 360°. See Figs. 3, 4 and 5.

The residual error is 0 uses the linear method, see (Fig. 6). The linear interpolation
method is simple, intuitive and easy to implement in embedded control system.

In the test, the inductosyn was used to measure the single-axis scan mirror motion
relative to the pivot base, the RLG mounted on the pivot were used to measure the

Fig. 3 1th Fourier equation fit
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Fig. 4 4th Fourier equation fit

Fig. 5 8th Fourier equation fit

absolute motion of the scan mirror. After compensating for the pivot base motion
(the motion due to Earth rotation), the difference between the gyro readouts and the
inductosyn readouts representing the inductosyn error are computed and stored. As
the datas are equal interval collection and storage, the calibration data of sequence
i is (xi, yi). So the calibration datas between i and i + 1 can be obtained by linear
interpolation method. Consider the inductosyn out data of one angle is x, the model
of interpolation is

xc = x −
(
yi + x − xi

�x

)
∗ (yi+1 − yi )), xi < x < xi+1 (6)
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Fig. 6 Linear interpolation fit results

xc is calibration value, �x is the spacing of test datas, it determined by the resolu-
tion of the readout circuit and the calibration storage memory chip. In this operation,
the resolution of indutosyn readout circuit is 2° divide by 2ˆ16, 0.1098 arcsecond.
As a result, we define this kind of calibrate method as bit memory based method,
which means the spacing of datas is a bit of memory chip and equal the resolution
of the inductosyn readout circuit.

Then we put the interpolation data in the memory, use look-up table method in
the practice angle compensation.

4 Testing of Inductosyn Angle Measuring Errors

From the principle of optical gyroscope angle measuring instrument, using the
angular measuring deviation mechanism and effectiveness of the scale factor, bias,
and frequency stability etc. to testing the gyrosope. As a result, the Ring Laser
Gyroscope (RLG) index error, segmentation errors (interpolation measuring devia-
tion) were distributed within ±0.24 arcsecond. The angular measuring repeatability
was less than 0.1 arcsecond [3, 5, 11]. Then use RLG (MG033 of AVIC Xi’an
Flight Automatic Control Research Institute) as a angular measuring instrument to
measure the dynamical error of inductosyn is useful, the installation requirements are
not strict. Compare to the move-less measurement instrument, such as Photo-electric
autocollimator (±1000 arcsecond), can measure much more large scale.

The basic idea of testing the inductosyn errors was using an ultra-high precision
Ring Laser Gyroscope (RLG) to build an inductosyn errors test system. The rotor
and stator of inductosyn were installed in parallel on the rotor and stator of the pivot
bearing instrument, as shown in Figs. 7 and 8.
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Fig. 7 Inductosyn errors test system

Fig. 8 Inductosyn instrument and ultra-high precision RLG

Figure 9 shows the lab of inductosyn error test. The inductosyn circuit consist
amplifier and resolver to digit converter. The 360 electrical degree of the inductosyn is
2 mechanical degrees; the circuit converts the 2 mechanical degrees to a 16 bit digital
signal, 1 bit represent 0.1099 arcsecond. The inductosyn circuit send synchronize
signals to RLG circuit to get the angle of the mechanism at the same time. After
storage the angle of inductosyn measurement PC and RLG PC, subtract the two can
get error. Then using linear interpolation method, store the error table in resolution
of 0.1099 arcsecond per bit in the memory of inductosyn circuit. After calibration,
the error of inductosyn Re (Fig. 10), ±0.8 arcsecond. RMS of the error is less than
0.3 arcsecond.
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Fig. 9 Inductosyn error test lab

Fig. 10 Inductosyn error after compensation

5 Conclusion

Because of limitation in installation and electronics shortage, the accuracy of induc-
tosyn is corrupted with errors. Using ultra-high precision RLG to measure the error
of inductosyn, then we can get a high angular instrument after calibrate the error
of inductosyn. Especially the mounting limitation of pivot axis, the repeatability of
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each electrical pole is not similar. Using precision RLG gyroscope as calibration
references can get the full scale dynamic position error.

The error table generated by RLG on ground may not satisfied usage on space
operations as the error characteristics of inductosyn may vary due to terminal envi-
ronments, mounting transmutation and component aging. In the future, the difference
error calibration schemeof ground and space environments should be studied to fulfill
the using range of angular compensation.
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and Deep Learning Models—A Case
Study in a Pulp Paper Industry
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Alexandre Batista Martins, and António Marques Cardoso

Abstract Predictive maintenance is fundamental for modern industries, in order
to improve the physical assets availability, decision making and rationalize costs.
That requires deployment of sensor networks, data storage and development of data
treatment methods that can satisfy the quality required in the forecastingmodels. The
present paper describes a case study where data collected in an industrial pulp paper
press was pre-processed and used to predict future behavior, aiming to anticipate
potential failures, optimize predictive maintenance and physical assets availability.
The data were processed and analyzed, outliers identified and treated. Time series
models were used to predict short-term future behavior. The results show that it is
possible to predict future values up to ten days in advance with good accuracy.

Keywords Data analysis · Autoregressive models · ARIMA · Deep Learning ·
Time series forecasting · Predictive maintenance
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1 Introduction

Life cycle optimization has been a concern for decades; it becomes clear that a
physical asset with an adequate maintenance will have a longer life with a greater
return for the organization [1]. Monitoring industrial equipment is essential to antic-
ipate and avoid potential failures, which can endanger people and assets. Sensors are
deployed and data are collected to facilitate and automate the process. The methods
applied to treat and analyse the data are relevant for improving the fault detection
performance, predictions and decision making. Data cleaning is one of the key chal-
lenges [2, 3], so that excess data or wrong data can be removed out of the analysis
process. Using the data collected and properly treated, machine learning models
can be trained, parameters can be calculated and obtained, so that actions, deci-
sion making, control, supervision and planning can be implemented to optimize
manufacturing plants production processes [4, 5].

One of the biggest challenges is the elimination of duplicate data and noise. Gong
et al. [6] propose a simple binary classifier to separate useful data from bad data with
99% accuracy. Veit et al. [7] propose an approach that consists of combining clean
and noisy data, pre-training a network using a large noisy data set, and then fine-tune
it with the clean data set. Plutowski andWhite in 1993 use a multi-layer feedforward
neural network architecture to find patterns of bad quality data in a dataset [8].

Sensor data recorded along the time can be processed using time series methods.
According to Zhang [9], the classical decomposition method of the time series is,
for example, to decompose a seasonal time series into trend, seasonal, cyclical, and
irregular components. After the components are known, the data can then be used to
adjust or train suitable machine learning models.

Time series predictionmodels such as Autoregressive IntegratedMoving Average
(ARIMA) models, as well as Artificial Neural Networks (ANN) are frequently used
and compared, with mixed conclusions about the superiority in forecasting perfor-
mance [9, 10]. Mateus et al. [11] discuss the disadvantages that the Autoregressive
Moving Average (ARMA) time series model presents to forecast when faced with
oscillatory data (dummy variables). In the case of complex problems that have both
linear and non-linear correlation structures, the combination of ARMAwith ANN is
an effective way to improve forecasting performance. Although ANN are essentially
nonlinear models, they have a capacity of modelling linear processes as well [9].

Deep learning methods are capable of identifying the structure and patterns of
data, such as non-linearity and problems of complexity in time series forecasting
[10]. Backpropagation networks (BP) are good at solving a wide variety of problems,
and are used in time series forecasting [12]. According Hecht-Nielsen (1989), the
standard BP network using a subjective transfer function can learn any measurable
function in a very precise manner when a sufficient number of hidden neurons are
used to [13].

The paper is structured as follows: Section two gives an overview of prediction
problems on maintenance and some problem reviews about the prediction model and
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some solutions; In the third section it is presented Data Characterization and Pre-
processing; In the fourth section a case study, to evaluate and validate the forecasting
models, is presented; Finally, the conclusions of the study are made.

2 Related Work

Machine learning methods are increasingly popular in predictive maintenance.
Jimenez et al. [14] showed that there exists potential in the development of predictive
models for application in predictive maintenance. Rodrigues et al. [15] use neural
networks and principal component analysis to assess diesel engine oil degradation
and determine the optimal point for oil replacement.

Daniyan et al. [16] combine ANN with a dynamic time series model in diag-
nosing failures, to optimize maintenance intervention time in industrial equipment.
Ayvaz and Alpay [17] propose a method to improve maintenance planning to mini-
mize unexpected stops, through the combined use of Ensemble Empirical Mode
Decomposition and Long Short-Term Memory. Huang et al. [18] apply Long Short-
Term Memory (LSTM) neural network approaches to forecast real production data,
obtaining satisfactory results, superior to conventional models.

Using deep networks to carry out stock market forecasting, Nti et al. [19] reach
a fairly satisfactory result of forecasting. They concluded that the efficient fusion of
information from different sample indicators offers greater precision than individual
data. Liu et al. [20], using an elastic mesh algorithm and LSTM to calculate the
remaining bearing life, demonstrate that this algorithm can achieve good stability in
terms of problem prediction. Still et al. [21] used an LSTM network to predict the
current situation of an engine—theirmodel demonstrated good forecasting reliability.

3 Data Characterization and Pre-processing

3.1 Dataset and Framework

Data used in the present work are the result of monitoring an industrial paper press
system. Six sensors are monitoring the functioning of the press, with a sampling
period of 1 min. The variables monitored are: (1) Electrical Current Intensity; (2)
Hydraulic Unit Oil Level; (3) VAT Pressure; (4) Rotation Velocity, (5) Temperature
in the Hydraulic Unit; and (6) Torque.

The dataset contains the sensor readings from1February 2018 to 30October 2020.
There are 1,490,400 samples in the dataset. Figure 1 shows a plot of the values of all
variables in the original dataset. This dataset was loaded in python and processed,
using ScyPy libraries.
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Fig. 1 Plot of the original dataset values. The variables are: C. intensity, Hydraulic unit level, VAT
pressure, velocity, Temperature u. l., and Torque

3.2 Data Characterization and Identification of Discrepant
Data

As Fig. 1 shows, there are some sensor readings which show extreme levels. The very
large values may be reading errors or overloadmoments. The very low values may be
when the press was stopped, malfunctioning, underused, or they may also be reading
errors. Those extremely low or extremely high values provide information about
abnormal functioning of the press. They may negatively impact the performance of
the forecasting algorithms.

Table 1 shows some statistical values of the data, namely the mean, standard
deviation, minimum and maximum values: Fig. 2 shows histograms of the variables’
quartiles.

Figure 3 shows the amplitude of each sample concerning the lower and upper
bounds for each variable. As the figure shows, the distribution of data is skewed for
all variables (Fig. 4).

Table 1 Statistical parameters of the variables: C. intensity, Hydraulic unit level, VAT pressure,
velocity, Temperature u. l., and Torque

C. intensity Hydraulic Torque VAT Velocity Temperature

Mean 30.26 75.90 15.28 18.25 4.59 38.22

Std 1.32 4.54 0.69 2.67 0.977 1.62

Min 26.34 62.93 13.59 9.67 1.27 33.19

25% 29.30 72.86 14.90 17.13 3.92 37.17

50% 30.46 75.53 15.43 18.72 4.57 38.33

75% 31.28 79.52 15.78 19.97 5.28 39.35

Max 34.26 88.97 17.09 26.17 7.87 43.10
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Fig. 2 Histogram of variables showing the number of samples per quartile

Fig. 3 Distribution of data points of all the sensors, with low and high extremes

In order to achieve best performance in training predictive machine learning
models, discrepant data (Ning and You 2017) must be identified and possibly
removed. The method used was the quartile approach, as explained in Formulae
(1) to (5). In the formulae, Q 1

4
is the first quartile, Q 3

4
is the end quartile, n is sample

number and I Q Interquartile Range.

Q 1
4
=1

4
(n + 1) (1)
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Fig. 4 Plot of the dataset variables without extreme values: current intensity, hydraulic unit level,
VAT pressure, rotation velocity, temperature in the hydraulic unit, and torque

Q 3
4
=3

4
(n + 1) (2)

IQ = Q1
4
- Q 3

4
(3)

Downlimit = Q1
4
- k.IQ. (4)

Uplimit = Q3
4
+ k.IQ (5)

Downlimit is the lower bound limit accepted for the variable, calculated by
subtracting of the constant k multiplied I Q to Q1

4
. Uplimit is the upper bound limit

accepted for the variable, calculated by adding the constant k multiplied I Q to Q3
4
,

where k is the variation constant of the limits.
After the application of the quartile method described above, the discrepant

samples are taken out of the dataset. Namely, samples which are not in the interval
Downlimit were removed. As shown in Figs. 4, 5 and 6.

3.3 Study of Correlations

Correlations between variables, as well as autocorrelations, are very important to
have a better insight into the dependence of variables and determine which data
models can be applied with higher probability of success. shows the matrix of corre-
lations between variables. It is possible to verify some strong correlations between
the variables Current intensity and Velocity, among others that are presented in the
graphs below. Most of the correlations, however, are weak.
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Fig. 5 Histogram of variables after removing discrepant data. The variables are Current intensity,
hydraulic unit level, VAT pressure, rotation velocity, temperature in the hydraulic unit, and torque

Fig. 6 Distribution of samples for all the sensors after removal of discrepant data. The variables are:
current intensity, hydraulic unit level, VAT pressure, rotation velocity, temperature in the hydraulic
unit, and torque
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Fig. 7 Correlations among all variables

Figure 7, shows the autocorrelation of each variable. As the figure shows, the
autocorrelations decay very quickly to less than 0.5. The charts show, therefore, that
the correlation and autocorrelation of variables are very weak.

In Autocorrelation there is a decay in the period making the correlation increas-
ingly lower. The graph in Fig. 8, shows only a correlation of up to 200 samples that
also served for the test and for the forecast. Since the number of the samples is very
high (1,490,400), there was a need to down sample the dataset, from a period of
minutes to a period of days, in order to have a forecast in days. That was done by
averaging the samples of each day using the python pandas function “df.resample
(‘D’). Mean ()”.

4 Modelling Using Time Series

4.1 Autoregressive Model

As a first approach to predict future behaviour, an autoregressive model was applied.
Autoregressive models are adequate to model variables that depend mostly on their
previous behavior and a stochastic value, thus satisfying the following equation:
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AR = ∅1Xt−1 + ∅2Xt−2 + ∅p Xt−p+ ∈t (6)

where ∅1, . . . ,∅p are real parameters and ∈t is a white noise process independent
and identically distributed.

4.2 ARIMA and SARIMA Models

Some time series present a seasonal periodic component. A seasonal autoregres-
sive model is characterized by the existence of a significant correlation between
observations spaced by a multiple time interval [22].

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is
a general case of the models proposed by [23] Box And Jenkins at 1976, for the
adjustment of stationary time series. However, when there is a seasonal component
in the data, the model class is called SARIMA (p, d, q) (P, D, Q), given by:

MA = −θ1 ∈t−1 −θ2 ∈t−2 − . . . − θq ∈t−q (7)

where θ1, . . . , θp, are parameters of an order of structures,∈t is white noise with zero
mean.

ARs = �1Xt−1s + �2Xt−2s+, . . . ,+�pXt−P (8)

MAs = −�1 ∈t−1 −�2 ∈t−2 −�Q ∈t−Q (9)

∇D�dXt = AR − MA + ARs + MAs (10)

where (p, d, q) refer to the model orders of the seasonal part: p is trend autoregres-
sion order, d is trend difference order and q is trend moving average order. (P, D,
Q) is the same but with the Seasonal component. The parameters �1, . . . , �p, are
the parameters referring to the seasonal autoregressive part and �1, . . . �Q , are the
parameters of moving averages, and i is an error that cannot be estimated from the
model and D indicates the number of seasonal differences made in the series to park
it. The calculation of the parameters of the models that best fits was made using the
most frequent Akaike Information Criterion (AIC), which is defined by:

AIC = 2log(L · k) + 2(k) (11)

where L · k is the maximized log-likelihood and k is the number of parameters in the
model.
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5 Experiments and Results

5.1 Results of the Autoregressive Model

The model was applied with a 20-day sliding window, thus corresponding to 1440 ×
10 = 14,400 data samples and a forecast window with the same size, thus predicting
the values for the next 10 days.

After eliminating the discrepant data samples, some irregularities in the samples,
which may be momentary or prolonged damage, are still visible in Fig. 9. Nonethe-
less, the autoregressive model shows a good fit to all variables. The prediction errors
between the forecasted values and the actual values are given in Table 2.

Fig. 9 Prediction of the six variables using a retrogressive method, with 20 days lag and 10 days
predict window
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Table 2 Summary of theMAE,MSEandMAPEerrors for the autoregressive andSARIMAmodels
tested

C. intensity Hydraulic
unit level

Torque VAT
pressure

Velocity Temp. at
U.H

AR MAE 3.60 3.06 0.93 2.97 1.15 0.36

MSE 13.08 18.37 1.15 10.54 1.47 0.24

MAPE 12.92 3.76 6.57 16.95 25.17 0.97

SARIMA MAE 0.21 1.05 0.15 0.57 0.25 0.64

MSE 0.07 1.32 0.03 0.59 0.11 0.66

MAPE 0.68 1.40 0.95 2.83 4.50 1.71

5.2 Results of the SARIMA Model

The AIC was used to define the hyperparameters p, d, q, P, D and Q of the SARIMA
model. The seasonal period was fixed at 12 for all-time series.

Figure 10 shows that the SARIMA model gives stable predictions, when using
20 days sliding window and parameters SARIMA (0, 1, 2) (1, 1, 2).

Table 2 shows the results of the forecasting errors in the period referring to the
two models, AR and SARIMA. The table shows the Mean Average Error (MAE),
the Mean Squared Error (MSE) and the Mean Average Percent Error (MAPE).

6 Discussion

Using the two models, (Auto-regressive and SARIMA), it was possible to verify
that both offer acceptable prediction errors, with the data evaluated. The SARIMA
model shows better performance than the AR model, what is expectable since it
encompasses the three different components (autoregressive, moving averages and
seasonal component). However, that implies a cost of an additional processing time.
The SARIMA model takes approximately 15 times more computing time than the
AR model. As the SARIMA model, its processing lasted 40 s and for the AR model
4 s.

For the regressive model prediction, there were no hyperparemeters to optimize.
However, to find the best model, it was necessary to evaluate several models and to
choose the parameters that best fit the data, using the AIC information criterion. It
can be concluded that there is a good capacity of these models to predict based on
data that presents a moderate variation.

For short-term forecasting, the models are satisfactory, emphasizing the need to
clean the discrepant data. According to new studies in this area, they show superiority
in the growth of the use of Neural Networks for those objectives, namely Recurrent
Neural Networks that have greater long-term and short-term forecasting efficiency
due to their Long-Short Term Memory capacity [19, 20, 24]. That is planned as
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Fig. 10 Prediction of variables using the SARIMA (0, 1, 2) (1, 1, 2) method, with 20 days lag and
10 days predict window

future work in the present project, where deep neural models will be designed and
optimized for prediction.
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7 Conclusion

Sensor data is fundamental to monitor industrial equipment and processes. The
present paper describes a case study where six variables were sampled during almost
three years, with a period of one minute. The data were selected and cleaned of
discrepant data samples, analysed and used to forecast future behaviour with time
series models, namely Autoregressive and SARIMA. Data processing and experi-
ments were carried out in Python using ScyPy libraries. The SARIMAmodel showed
smaller errors in the test set, so it is more adequate for the data analysed.

Future work includes experiments withNeural Networks and larger forecast range
predictions.
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Reinforcement Learning Fault Diagnosis
Method Based on Less Tag Data

Kuo Xin, Jianguo Wang, and Wenxing Zhang

Abstract Vibration signals are often used in the fault diagnosis of rotating
machinery. However, due to the influence of complex environment, environmental
noise is often doped, and the diagnostic accuracy is reduced. The traditional deep
self-encoder is used in the noise reduction process of rotating machinery fault diag-
nosis. The pooling model is poor and easy to lead to over-fitting problems, and deep
learning training needs a large number of labeled data. Therefore, this paper proposes
a reinforcement learning fault diagnosis method based on less label data. The random
pooling is used to replace the pooling layer of the original convolutional self-encoder,
and the exponential linear unit (ELU) is used to replace the original activation func-
tion to enhance the convolutional self-encoder. A large number of unlabeled samples
are used for training, and then the deep reinforcement learning is used for network
fine tuning. The experimental results of the sensor data collected by the fault diag-
nosis test bench show that the method used has a good improvement in denoising
ability and feature extraction ability, and the recognition accuracy and stability are
better than traditional convolutional autoencoder and traditional machine learning
methods.

Keywords Reinforcement learning · Stochastic pooling · Convolutional
auto-encoder · Fault diagnosis

1 Introduction

In the era of electromechanical big data, the use of advanced theories and methods to
automatically mine information from the big data of mechanical equipment, replace
diagnostic experts for feature extraction, conduct real-timemonitoring and diagnosis
of basic components such as bearings, and ensure the accuracy and efficiency of fault
diagnosis and prediction has become a hot topic of current research.
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In the field of fault diagnosis, most machine learning algorithms are supervised
learning [1, 2]. These methods require a large number of label data (known fault
types) to extract features for fault classification, and label data requires strong profes-
sional knowledge and a large number of experiments. Yan et al. [3] used deep neural
networks based on Denoising Sparse Auto-encoders to diagnose faults of bearings
and motors. He et al. [4–6] used multi-channel signals to pre-train a set of source
CNNs improved by random pooling and LReLU. A new framework of enhanced
convolution neural network (ECNN) based on small-label infrared thermal image
and convolution self-encoder (CAE) transmission. Zhou et al. [7] proposed a new
deep neural network model, one-dimensional residual convolutional auto-encoder
(1DRCAE). Although these methods have good performance in recognition accu-
racy, there are still the following problems: (1) Supervisory training methods often
require a large number of label data and limit its applicability; (2) The pooling
model has poor adaptability and low feature selection ability, and is easy to lead to
over-fitting problems.

To solve the above problems, random pooling is used to replace the pooling layer
of the original convolutional self-encoder, and the exponential linear unit (ELU) is
used to replace the original activation function to enhance the convolutional self-
encoder. A large number of unlabeled samples are used for training, and then the
deep reinforcement learning is used for network fine tuning. The experimental results
of the sensor data collected by the fault diagnosis test bench show that the method
used has a good improvement in denoising ability and feature extraction ability,
and the recognition accuracy and stability are better than traditional convolutional
autoencoder and traditional machine learning methods.

2 Deep Reinforcement Learning

2.1 Markov Decision Process Modeling

Markov decision process is generally used to describe reinforcement learning tasks.
TheMarkov decision process includes four tuples 〈S, A, p, r〉that themodel is easier.
Markov decision process has Markov attributes: at the current time, the feedback of
the environment only depends on the state and action of the previous time, and there
is no correlation with the earlier time [8]. In the fault identification task in this paper,
state s is one-dimensional fault signal; Action a is the category of mechanical fault:
0, 1, 2, . . . ,Y − 1, where Y is the number of fault categories; Whether the model
identification results are consistentwith the fault sample type is an important criterion
for rewarding r . When the sample type is consistent with the identification results, r
takes+ 1, otherwise r takes− 1. For the state transition probability p, although there
is no correlation between the states, in order to avoid the over-fitting phenomenon
during the network operation, the training data samples will be arbitrarily disrupted
and the number of training data sampleswill be evenly distributed. The state transition
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probability will become p = 1/Y , and s ′ can only be obtained by the probability p
transfer of state s after action a is executed, which is not correlated with the state of
the previous moment, and in line with the Markov property.

2.2 Strategy

The goal of reinforcement learning is to solve the optimal strategy ofMarkov decision
process. The optimal strategy can be obtained by solving the optimal value function
[9]. In short, the solution of reinforcement learning is finally evolved into the optimal
Bellman equation. The mathematical model is:

V (s) = E
[
Rt+1 + γ V (st+1)

]
(1)

where γ is a discount coefficient, which is a constant between [0, 1]. The existence
of γ can ensure that the model is easier to obtain long-term cumulative reward.

The above equation shows the recursive relationship between the current state
value function V (s) and the future state value function V (st+1). Obviously the above
is more concerned with the state, but to know the expected return obtained by using
a policy π using action a under state s, there is a Q function:

Q(s, a) = Ra
s + γ

∑

s ′∈S
Pa
ss ′V

(
s ′) (2)

where Pa
ss ′ is the state transition probability of the current state s moving from action

a to state s ′.

V (s) =
∑

a∈A

π(a|s)Q(s, a) (3)

So the optimal Q function under the optimal strategy is:

Q∗(s, a) = Ra
s + γ

∑

s ′∈S
Pa
ss ′ max

a′ Q∗(s ′, a′) (4)

In this task, our state transition probability Pa
ss ′ is a constant value, which can be

understood as a sampling method, and the following formula can be obtained:

Q(s, a) ≈ ras + γ max
a′ Q

(
s ′, a′)

≈ (1 − α)Q(s, a) + α

[
ras + γ max

a′ Q
(
s ′, a′)

]
(5)
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after processing, the above equation uses the exponential weighted average of α, and
the above equation is the Bellman optimization equation.

In the fault diagnosis task, the number of state space set S is very large, and
the limited space cannot effectively store the Q value of the state action pair. The
strong function generalization ability is a major feature of the deep learning network,
which can be used to fit the Q function, denoted as Q(s, a; θ), where θ is the
unknown parameter of neural network. The Q function of the current state s when
the probability P is transferred to s ′ after the execution of action a is:

y = r + γ max
a′ Q(s ′, a′; θ) (6)

where r denotes the reward received after state s executes action a.
According to the ε-greedy strategy, the actionwith themaximumcurrentQvalue is

selected according to the probability ε, and the action is randomly selected according
to the probability 1 − ε to obtain Q(s, a). Therefore, the loss function is:

L = (y − Q(s, a; θ))2 (7)

The above formula can make the Q function converge to the optimal Q value
function under the minimum mean square error according to the ε-greedy strategy.

2.3 ε-Greedy Strategy

In reinforcement learning tasks, the exploration of the external environment is the
main way to acquire knowledge, so the balance between exploration and utilization
has become a problem to be solved in reinforcement learning. Too much exploration
will affect the convergence speed of the model, and too much use will make the rein-
forcement learning model io local optimum. The commonly used ε-greed strategies
are mostly fixed values. This paper uses a method that changes with the number of
training steps i . Make the model in the early exploration and later use. The setting
method of ε is:

ε = max

{
εmin, 1 − 1 − εmin × i

T

}
(8)

where i is the current step number, T is the total step number.
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3 The Proposed Method

3.1 Stochastic Pooling

Stochastic pooling is a recently developed technique to overcome the constraints of
maximum and average pools [61]. In the random pool, each element is sampled
according to its contribution, and the sampling probability can be calculated as
follows:

pi, j = ai, j∑
(i, j)∈Rs

ai, j
(9)

In each pooling area, the composite elements of the output feature map can be
weighted in an average probability form, defined as:

fi, j =
∑

(i, j)∈Rs

(
pi, j · ai, j

)
(10)

By Eq. (9), it can be seen that stochastic pooling considers all the feature
information and pays more attention to those strong features.

3.2 Exponential Linear Unit (ELU)

Selecting the appropriate activation function is of great significance for the design of
neural network model. Both Sigmoid and Tanh have disadvantages of high compu-
tational cost and vanishing gradient. ReLU can well solve these two problems and
become a priority for many deep learning models. However, when the input is nega-
tive, the ReLU neurons completely stop learning. Sigm and ReLU are currently the
most widely used activation functions in CNNs. Sigm has the problem of gradient
disappearance. When the input is negative, ReLU cannot continue training. Expo-
nential linear unit (ELU) can effectively solve the problems existing in Sigm and
ReLU, and its superiority is proved in some benchmark data. ELU is defined as:

f (x) =
{

x, if x > 0
α(ex − 1), if x ≤ 0

(11)



32 K. Xin et al.

fully connected 
layer

One-dimensional vibration 
signal to two-dimensional 

image

Convolution layer 1
ELU Pooling layer 1 

stochastic pooling

Convolution layer 2
ELU Pooling layer 2

stochastic pooling

Reconstruction of 
One - dimensional 

Signal

deconvolution 
layer up-sampling 

layer
deconvolution 

layer up-sampling 
layer

encoder

decoder

Fig. 1 Enhanced convolution self-encoder

3.3 Enhanced Deep Convolution Self-encoder

As shown in Fig. 1, the enhanced convolution autoencoder first converts one-
dimensional vibration signal into two-dimensional gray image signal by using the
signal stacking method [10], and the two-dimensional signal output by the encoder
and decoder constitutes one-dimensional vibration signal. Among them, in order to
better extract fault features and suppress noise, this paper uses new pooling methods
and activation function random pooling and exponential linear unit (ELU) to replace
the original pooling and activation methods in the encoder, so that it can more
effectively extract features and suppress noise signals.

3.4 Fault Diagnosis Method of Enhanced Convolution
Self-encoder and Reinforcement Learning

The fault diagnosis process of reinforcement learning based on small label data is
shown in Fig. 2. The training process of the model is divided into two steps. The first
step is to input a large number of unlabeled data into the enhanced convolutional
autoencoder to reduce noise and dimension of the data and extract key fault features,
and save the relevant weights of the encoder W , b; In the second step, the encoder
weights W and b are used as the initial weight parameters of reinforcement learning
to fine-tune the network.

The specific process is as follows:
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Fig. 2 Fault diagnosis model for enhanced convolutional autoencoder and reinforcement learning

Step 1: The collected fault test bench data are divided into training samples and
test samples. Most of the training samples are unlabeled and the rest are labeled.
Step 2: The activation function and pooling mode of the original convolutional
autoencoder network are replaced by ELU activation function and stochastic
pooling.
Step 3: The label-free training samples are used to pre-train the enhanced
convolutional self-encoder to obtain W and b.
Step 4: Initialization of reinforcement learning parameters with weightsW , b and
other parameters in trained encoders.
Step5: The reinforcement learningnetwork is trainedbyusing fewer label samples
to further adjust the weights and deviations.
Step6: The test samples are used to test the diagnostic performanceof theproposed
method.

4 Experiment and Verification

In order to verify the effectiveness of the proposed method, the open source bearing
data set of the University of Western Reserve in the United States was used for
verification [11]. The data used are the data of the drive end, and the data contain
four fault states: normal bearing, roller fault, inner ring fault and outer ring fault.
Each fault state contains three fault degrees of 0.07, 0.14 and 0.21 mm, respectively.
Therefore, the data set contains a total of 10 fault types, and each fault type contains
four load data (1, 2, 3, 4hp). The corresponding rotational speeds are 1797, 1772,
1750 and 1730 r / min, respectively. It can be roughly considered as a constant speed,
and the sampling frequency of vibration data is 12 kHz. In 10 fault types, each fault
type contains 940 samples, a total of 9400 samples. Of these, 940 are test samples
and others are training samples.
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Fig. 3 Q function cumulative value change graph

4.1 Feasibility Validation of Reinforcement Learning

Using convolutional neural network [12] to fit the Q-value function, the network
parameters are as follows:

The training parameters of the model are as follows: the number of training steps
per round M = 512, the number of iterations 2000, the learning rate 0.5, and the
probability ε = max

{
εmin, 1 − 1−εmin×i

1000

}
, where i is the number of training steps and

the fault samples are discrete, so the discount coefficient γ is 0.
In each round of training, the number of steps set in each round of this model

is 512. Since the model does not learn anything at the beginning, there is a 1/10
probability to guess at the beginning, that is, the score of the first round should be
between−512 and−456 points. Themodel has trained 2000 rounds, and the average
value of reward and loss is calculated and plotted for each 10 rounds of 2000 rounds of
training. Figure 3 shows the relationship between the cumulative value of Q function
after model training and the number of iterations. It can be observed that the model
is almost linearly increasing, and the final highest score reaches 488 points. The
recognition accuracy of the model can reach 98.87%. Figure 4 shows that the loss
value of the model after each round of training can be maintained at a relatively low
state, indicating that the model has learned something in each round of training. The
above experiments verify the feasibility of this method in fault diagnosis.

4.2 Verify the Effectiveness of Stochastic Pooling and ELU

In order to verify the enhancement effect of stochastic pooling and ELU in convo-
lutional self-encoder, the max pooling + ELU, mean pooling + ELU, stochastic
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Fig. 4 Change of loss value

pooling + ELU and random pooling + rectifier linear function (ReLU) are used for
verification. In order to better verify the enhancement effect of stochastic pooling and
ELU, different noise levels are added to the original vibration signal. The probability
distribution of noise conforms to the probability distribution of mean 0 and variance
1. The noise level is 10, 30, 50, 60, 70, 80, 85, 90, 93, and 95%. The parameters
of each layer are shown in Table 1, where the enhanced convolutional autoencoder
network learning rate is 0.01 and the α in ELU is 0.05.

In the experiment, the fixed activation function is used ELU, and the influence of
different poolingmethods on the reconstruction error of the encoder is compared. The
results are shown in Fig. 5a. It can be seen from the figure that the reconstruction error
of different pooling methods will increase with the increase of noise. However, the
stochastic pooling used in this paper has better performance and lower reconstruction

Table 1 Fitting parameters
of Q function network

Network layer Description of each layer

Input data size 1024 × 1

Reshape 32 × 32

First layer convolution kernel size (5 × 5) × 15

Activation functions of the first and
third layers

ELU

Second layer stochastic pooling (2 × 2) × 15

The third layer convolution kernel
size

(5 × 5) × 20

The fourth layer stochastic pooling (2 × 2) × 20

Fully connected layer 256
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Fig. 5 a Influence of pooling method on reconstruction error and b Influence of activation function
on reconstruction error

error. This is because the stochastic pooling not only considers the largest feature
element in the signal, but also takes into account all the feature elements equally.

Similarly, in order to verify the enhancement effect of the activation function,
stochastic pooling is used in the fixed pooling mode in the experiment, and the
influence of different activation functions on the reconstruction error of the encoder
is compared. The results are shown in Fig. 5b. It can be seen from the figure that the
reconstruction error of different activation functions increases with the increase of
noise, but the ELUused in this paper has better performance and lower reconstruction
error.

The waveform comparison between the reconstructed output and the input signal
is shown in Fig. 5. It can be seen that there is a relatively distinct difference between
the reconstructed signals, indicating that the key characteristics of the signal recon-
structed by the convolution self-encoder of the input signal become more significant,
and the noise effectively eliminated. This shows that the enhanced convolutional
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self-encoder has the ability to filter out the original signal noise, so as to effectively
extract the key fault features (Fig. 6).

In order to avoid the contingency brought by network training, each experiment
was repeated 10 times. The test accuracy of each experiment was shown in Fig. 7. It
can be seen fromFig. 7 that the enhanced convolutional self-codedneural network can
improve the average recognition rate of fault, and the average recognition accuracy
can reach more than 97%, which is higher than that of other pooling methods and
activation methods.
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·
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Fig. 6 Comparison between reconstructed signal and input signal of several types of data

Fig. 7 Diagnostic accuracy of each experiment
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Fig. 8 Proportional diagnostic effect of labeled data and unlabeled data

4.3 Discussion on the Number of Label Samples

Comparedwith labeled samples, making a large number of unlabeled samples will be
easier and faster. Therefore, it is necessary to explore the impact of the relationship
between the number of labeled samples and the number of unlabeled samples on the
recognition accuracy.

Here, the proportion of labeled samples in the number of unlabeled samples is
5%, 10%, 15%, 20%, 25%, 30%, 40%, 60%, 80% and 100%, respectively. It should
be noted that the label-free samples for the training of the enhanced convolution self-
encoder are always a fixed value, and only the number of label-free samples changes.
The diagnostic results of the proposed method in different proportions are shown in
Fig. 8. It can be seen that the average accuracy rate increases with the increase of
the number of labeled samples. When labeled samples account for 25% of unlabeled
samples, the accuracy rate can reach more than 97%.

5 Conclusion

This method effectively combines the enhanced convolution self-encoder with rein-
forcement learning, and can adaptively and unsupervised learn the abstract char-
acteristics of the vibration signal of the sensor, so as to effectively diagnose the
gearbox fault. The main conclusions are as follows. (1) The convolution self-encoder
is enhanced by stochastic pooling and exponential linear unit (ELU), so that it has
better noise reduction and feature extraction effect. (2) Compared with other algo-
rithms, this method does not require a lot of label data, and has more practical value.
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(3) The relationship between the number of labeled samples and unlabeled samples is
discussed. Experiments show that the recognition effect can reach 97%when labeled
samples account for 25% of the number of unlabeled samples.
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Optimization Design and Simulation
Analysis of Miniature Boring Machine
Based on ADAMS

Zhou Yue, Cao Yu, Lu Zhen-hua, Wei Qi-wen, Zhao Xue-mei,
Wang Ye-zhen, Sun Jia-xing, Liu Ying, and Zhong Shan

Abstract In order to improve the processing precision and surface quality of line-
drawing and boring in ship manufacturing process, a virtual prototype of micro-
boring machine was built on the basis of existing portable boring machine, aiming at
the inconvenient boring operation and lowprocessing precision of small andmedium-
sized ships at present. Then it carries on the optimization design to its transmission
mechanism, uses ADAMS to carry on the kinematic simulation analysis to the virtual
prototype; Finally, reasonable simulationdata are obtained to ensure the performance,
accuracy and efficiency of boring, and provide basis for the subsequent optimization
design.

Keywords The ship ·Micro boring machine · Three-dimensional modeling ·
ADAMS ·Motion simulation

In 2019, the number of civil motor vehicles in China reached 121,440, and the total
tonnage of ship’s is increasing. At the same time, the shipbuilding industry is also
developing [1]. The Xiji-ang River is an important part of the Pearl River system,
known as the “golden waterway” and is now gradually becoming a gold corridor that
actively moves closer to advanced productivity and undertakes the transfer of eastern
industries [2], The construction of new land and sea corridors in the western region,
the implementation of national strategies such as the Guangdong-Hong Kong-Macao
Greater Bay Area, and the improvement of grade and the formation of the Pan-Pearl
River Delta and Guangxi Beibu Gulf Economic Zone have made the rapid growth of
the national economy and great demand for ships. Therefore, Guangxi shipbuilding
industry has obtained good market opportunities necessary for development. With
the rapid development of shipbuilding industry, the processing quality requirements
for each process in the shipbuilding process are also increasing, and the upgrading
of processing equipment is imminent [3]. In the shipbuilding process stage, the
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accuracy of the wire drawing boring is very strict. The shafting installation is affected
by many factors such as wire drawing, boring and so on. If the accuracy of the
wire drawing boring is not too close, it will affect the speed of the ship’s shafting
installation and become the bottleneck of shipbuilding speed. The boring accuracy of
the new ship shafting is required to be higher and higher [4], especially the stern shaft,
which is an important part of the ship shafting. The working condition of ship stern
shaft is equivalent to the safety and stability of ship operation [5]. Domestic small
and medium-sized ship shafting mainly adopts the process of clamp alignment and
manual hinged stroke; The large-scale ship shafting basically adopts the clamping
site alignment, and then the f-lange hole is refined by the special key machine.
This process can meet the technical requirements of the installation, but because
the size of the flange hole is not interchangeable, the smoothness is not ideal; In
addition, the high labor intensity and long processing cycle have a great impact on
the integrity of the platform and the cycle of shipbuilding [6], which cannot meet
the production needs of the shipbuilding industry [7]. Therefore, a miniature boring
machine for ships with small size, light weight, simple operation, low cost and high
working efficiency is developed and improved based on the actual problems of hole
processing in china Shipbuilding Guijiang company ltd.

Aiming at the problemsof lowmachining accuracy, large volumeand inconvenient
operation of traditional boringmachine, some problems are solved by replacing parts.
SolidWorks software is used to complete the virtual, and ADAMS software is used
to simulate and analyze it. The feasibility of micro boring machine is tested and
relevant data are obtained.

1 Design of Micro Boring Machine

1.1 Working Principle

The mechanism of the micro boring machine is mainly composed of a power head, a
motor, a handle, a screw rod, a belt, a PLC (Programmable Logic Controller) control
part, a support frame, and a fixture. Place the boring machine at the designated
position and start it with power. Adjust the horizontal position of the boring cutter
through the handle to move the machining center to the position to be processed;
set the motor speed, spindle feed speed, feed rate and other values; servo motor and
step The input motor is energized to run, respectively driving the main shaft (through
a belt drive) and the screw rod to rotate. The precision planetary gear connects the
main shaft and the boring bar. The boring bar is the benchmark for clamping the tool
and transmits power to the tool [8]; The reciprocating motion and the boring tool
rotates to realize the boring action.
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1.2 Optimized Design

1.2.1 Optimal Choice of Prime Mover

The motors of traditional boring machines are mostly three-phase asynchronous AC
motors plus frequency converters, and it is easy to malfunction due to unreasonable
environment settings such as humidity [9]. In addition, the additional copper loss
caused by the skin effect will cause the motor to generate additional heat, resulting in
reduced efficiency and reduced output power [10]; and its mechanical characteristics
are relatively hard, occupying a certain position in volume, and when running There
may also be unstable vibrations. For this, a motor suitable for use on a ship should
be used, and it can make up for the lack of mechanical rigidity and improve work
efficiency. At the same time, the overall volume of the machine is reduced, the
overload capacity is enhanced, and theworkingperformance ismore safe and reliable.
It can be seen that the servo motor can do these tasks. Servo motors not only have
the characteristics of small electromagnet time constant, high linearity, low starting
voltage, etc. but also small size, fast action response, large overload capacity, wide
speed adjustment range, large low-speed torque, small fluctuations, stable operation,
and low noise, High efficiency and other advantages [11]. The motor obtains a lower
processing speed through the frequency converter, and then combineswith a planetary
gear reducer with amedium transmission ratio. The combination of the three not only
increases the output torque, but also meets the processing requirements under the
premise of precise positioning of the servo motor. Adjust the speed between 100 ~
1000 r/min.

1.2.2 Optimal Selection of Transmission Mechanism

In order to ensure high-precision output when the micro boring machine is working,
the Mohs 2 power head is selected as the boring output power head, and it can be
assembled and disassembled freely in assembly. When boring on a ship, the working
environment is mostly at sea, and the impact of irregular waves will cause the ship
to shake. In order to ensure the machining accuracy of the boring under the shaking
environment, the ball screw is selected as the feeding mechanism. The transmission
efficiency of ordinary sliding screws is 0.25–0.50, while the transmission efficiency
of ball screws can reach 0.90. When driving the same large load, using the latter can
obtain higher transmission efficiency, low energy consumption, high precision and
smooth movement, ensuring the reliability and stability in the feeding transmission
process, and realizing high-speed feed and Micro feed motion [12].
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1.2.3 Optimized Design of Control System

Ship shaking is inevitable when working on the water. The system controlled by the
boring machine needs to control the operation efficiency of the motor [13]. Here, the
servo control system is used to accurately control the mechanical position, torque,
and speed [14]. And the system has a frequency analysis function, which can detect
the resonance point of the machine, which is convenient for system adjustment.
While achieving high-precision output, it can also ensure the stability of the work
and high-efficiency responsiveness. In addition, coupled with PLC to achieve closed-
loop control, Using the advantages of PLC, such as strong anti-interference ability,
low cost, fast speed, strong function and small size, the boring machine is easy to
operate, can be controlled, save manpower and time [15].

2 The Mechanical Principle of the Micro Boring Machine

The boring machine is mainly composed of a feed mechanism and a transmission
mechanism. Through the hand wheel control screw transmission mechanism. Then
the plane guide rail is moved to the position of the machining center that is ready for
positioning; Subsequently, the servo control system starts and controls the motor 1
and 3. The servomotor 3 transmits power through the pulley to drive the boring cutter
to rotate for preparation. The feed mechanism controls the ball screw transmission
mechanism through stepping motor 1, and drives the tool head through the feed
slider to move it down to the displacement point and reset, so as to realize the boring
movement. The specific plan layout of this device is shown in Fig. 1.

3 Adams Dynamic Simulation Analysis

The prototype model established by ADAMS kinematic analysis software is as
follows. Through kinematic simulation analysis, the maximum machining stroke
of micro boring machine is analyzed (Fig. 2).

Taking the micro boringmachine model that has completed the three-dimensional
modeling as the research object, the kinematic simulation analysis is carried out in
ADAMS. The maximum stroke analysis of X, Y and Z axes is carried out, and the
velocity and acceleration of Y axis are analyzed. The simulation time is set to 22 s,
and steps are 500 steps.

The function of the maximum moving stroke of boring bar in X axis direction is:

step(time, 0, 0, 5, 60)+ step(time, 5, 0, 10,−70)

The function of the maximum moving stroke of boring bar in Z axis direction is:
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Fig. 1 Structure of micro boring machine. Drawing number identification: 1. Stepper motor; 2.
Ball screw; 3. Servo motor; 4. Leather strap; 5. Fast feed; 6. Belt pulley; 7. Boring rod; 8. Base; 9.
Bottom guide rail; 10. Middle guide rail; 11. Screw rod; 12. Upper guide rail; 13. Hand wheel; 14.
Frame

step(time, 0, 0, 5,−22)+ step(time, 5, 0, 10, 30)

The function of maximum moving stroke of boring bar in Y axis direction is:

step(time, 0, 0, 5,−5)+ step(time, 5, 0, 20, 80)

The resulting data is exported as shown in Fig. 3.
From Fig. 3 and the function, it can be seen that the X, Y, Z three axis curve in the

fifth second to one side of the maximum stroke, X, Z axis in 5-10 s to the other side
of the maximum stroke; The spindle Y axis travels to the other side in 5–20 s. The
maximum travel value of X axis is 130 mm, the maximum travel value of Z axis is
52 mm, and the maximum travel value of the spindle (Y axis) is 85 mm. The travel
value obtained by the three-axis motion simulation in ADAMS is compared with
the displacement range value of the plane guide rail given by the three-dimensional
modeling data, which is consistent with the design value.
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Fig. 2 ADAMS micro boring machine prototype model

Fig. 3 Triaxial displacement travel characteristic curves of X, Y and Z axes

As shown in Fig. 4, the Y-axis curve in 0–22 s to go through a maximum stroke
of the Y-axis at the same time the boring cutter uniformly accelerated motion, accel-
eration unchanged. Transmission is relatively stable in the ideal state, so there will
be no speed curve oscillation phenomenon.
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Fig. 4 Y-axis velocity and acceleration characteristic curve

4 Conclusion

Basde on modeling software SolidWorks and simulation software ADAMS, the
whole process of research direction, design optimization, modeling and simulation of
micro-boring machines is discussed, including the design of boring machine mecha-
nism, 3D modeling process, ADAMSmotion simulation analysis and other concrete
steps. Using SolidWorks to build a three-dimensional model of each part of the
micro boring machine and assemble it, using the parasolid.x_t file format to import
the assembled sample geometry in SolidWorks into ADAMS and add the constraints,
etc., the micro boring machine sample is finally formed.

Using ADAMS to carry out motion simulation analysis of the boring machine
mechanism, the total stroke of the spindle (Y-axis) is consistent with the given
design value, and the maximum displacement value of the spindle is 85 mm, i.e.
the maximum boring depth of the bar is 85 mm, all of which are consistent with the
initial design value. Through the simulation analysis of the displacement of X-axis
and Z-axis, the travel range is 130 mm and 53 mm respectively. The rationality of
the miniature boring machine is analyzed in detail through various performances,
which provides a certain theoretical basis for the optimization design of the various
parts of the miniature boring machine.

Fund Project College Student‘s Innovation and Entrepreneurship Training Project
(201911354136).
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The Stability and Vibration
Characteristic Optimization
of the Pressure Shell of a Buoyancy
Regulator of an Underwater Vehicle

Yonghui Cao, Chiye Yang, Jing Liu, Yu Xie, Shumin Ma, and Yong Cao

Abstract Underwater vehicles (UV) with a deeper operation ability are the impor-
tant research field in themarine industry. In order to obtain a better and safer operation
performance, the strength, stability and vibration characteristics of the pressure shell
of UV should be analyzed. In this paper, a finite element model of the pressure shell
of buoyancy regulator is developed. The influences of the stiffener thickness, width,
position, and shell thickness on the strength, deformation, and load factor of the
pressure shell are studied. In addition, a lighter and safer shell structure is obtained
by using the response surface optimization method. The simulation results show that
the above factors have great influence on the shell characteristics, such as strength,
stability and modal parameters. Moreover, a lighter pressure shell used in the UV
can be helpful for providing a better possibility to carry more equipment.

Keywords Underwater vehicle · Pressure shell · Stability · Vibration characteristic
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1 Introduction

The piston-type buoyancy regulator is generally used in large-scale UVs such as
gliders, which is the key device for adjusting buoyancy. As shown in Fig. 1, when the
piston moves outwards, the drainage volume of the buoyancy regulator increases,
and the buoyancy provided increases accordingly; on the contrary, the buoyancy
provided decreases. When the piston moves to the outermost side, the compartment
where the piston cylinder and the hydraulic block are located; and it will generate
a larger cavity. Due to the effect of water pressure, this is the weakest status of the
whole device. Since the inside is a cavity and the outside are under thewater pressure,
this section of the cavity can be regarded as a pressure shell.

In 2014, the pressure cabin of the “Nereus” submarine developed by the Woods
Hole Institute of Oceanography in the United States [1] ruptured due to the insuf-
ficient strength, which caused the submarine to be lost in the Kermadec Trench in
northeastern New Zealand. Therefore, it is necessary to calculate the strength of the
pressure shell. In addition, it can be known from the critical length formula that
this pressure-resistant shell is a thin wall short cylinder at the external pressure,
and buckling may occur before the strength yields [2]. Therefore, it is also neces-
sary to conduct the stability analysis. Finally, the moving parts such as the motors
inside the device may cause the casing to vibrate during operation. In order to ensure
the normal operation of the device, a better dynamic performance is also a required

Pwater

Pwater

Pwater

Pwater

5 3

21

4

Maximum 
buoyancy

Minimum 
buoyancy

Most 
dangerous 

state6

1.Cylinder (pressure shell), 2. Division plate, 3. Piston, 4. Oil tube  

5.Hydraulic Manifold Block, 6. Hydraulic oil 

Fig. 1 Working principle of piston-type buoyancy regulator
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feature.VasilikisDaniel andKaramanos SpyrosAexamined themechanical response
of thin-walled cylinders surrounded by a rigid or deformable medium, subjected to
uniform external pressure [3]. Rouzbeh Hashemian and Magdi Mohareb developed
a general eigenvalue buckling solution for the buckling analysis of sandwich pipes
with thick cores subjected to internal and external hydrostatic pressure [4]. Raza-
kamiadana andZidi studied buckling and postbuckling of concentric cylindrical tubes
under external pressure by finite element method [5]. Isvandzibaei et al. presented
the energy method for the vibration of thin-walled homogeneous isotropic and mani-
fold layered isotropic cylindrical shells under uniform external lateral pressure [6].
Liu et al. presented an analytical procedure and closed-form vibration solutions with
analytically determined coefficients for orthotropic circular cylindrical shells having
classical boundary conditions [7]. This paper presents a finite element analysis to
simulate the shell to study the strength, stability and vibration characteristics of the
shell.

The organization structure of this article is as follows: Sect. 2 introduces the
finite element model. Section 3 introduces the simulation results. The lightweight
optimization of the shell is completed by the response surface optimization method.
Finally, the modal analysis of the shell before and after the optimization verifies
that the dynamic performance of the optimized shell is also better than that before
the optimization. A conclusion and suggestions for future work will be presented in
Sect. 4.

2 Finite Element Model

Aiming at the most dangerous state of the buoyancy adjusting device as the calcu-
lation condition, the external pressure shell composed of the inner side of the piston
cylinder and the compartment where the hydraulic block is located is taken as the
calculation object, and the work is simulated at a water depth of 2000m. The original
model can be simplified to a cylinder with a wall thickness of 12.5 mm as shown in
Fig. 2. The wall thickness of the piston cylinder is H; the number of stiffeners is n;
the height of the stiffener is h; and the width of the stiffener is w.

For the cylindricalmodel, Shell181 has higher calculation efficiency and accuracy.
Therefore, the calculations in this paper use Shell181 to construct the conceptual
model. A quadrilateral dominant mesh is used, the mesh size is 3.0 mm; and the
number of mesh is 57,749. Since the rigidity of the piston and the end cap is much
greater than that of the cylinder; two ends can be regarded as the fixed constraints;
and a pressure of 20 Mpa is applied to the outer wall of the cylinder to simulate a
water depth of 2000 m. The mesh division and loading conditions are shown with
six stiffeners as shown in Fig. 3.

The response surface optimization method is used to optimize the pressure shell.
The variable range is as follows: The number of stiffeners is set to 2 ≤ n ≤ 6, where
n is an integer; the thickness of the stiffener is 5 ≤ h ≤ 25; the width of the stiffener
is 5 ≤ w ≤ 15; the wall thickness of the piston cylinder is 5 ≤ H ≤ 30, and h, w,
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Fig. 2 Geometric model

(a) Mesh Division Condition (b) Loading Condition

Static Structural
Time:1. s
2021/4/6 9:49

A Pressure:20.Mpa

B Fixed Support

B: Static Structural

Fig. 3 Mesh division and loading conditions

and H are continuous values. The central composite design method (CCD) is used
to produce experimental points for calculation. The genetic aggregation method is
used to generate the response surface for the calculated experimental points.

3 Simulation Results

The sensitivity of each variable to the impact of the shell’s strength, stiffness and
total mass, and the results are shown in Fig. 4. The impact of the shell strength can
be reflected by the maximum stress. The impact on the stiffness can be reflected by
the load factor. It can be seen from the results that the stiffener has little effect on
the strength of the shell, far less than the impact of the thickness of the shell on the
strength; with the increase of the stiffeners, the influence of the thickness of stiffeners



The Stability and Vibration Characteristic Optimization … 53

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

Lo
ca

l S
en

si
tiv

ity
 (%

)

Number of stiffeners

 Thickness of stiffener
 width of stiffener
 thickness of cylinder

1 2 3 4 5 6
0

-20

-40

-60

-80

-100

-120

-140
Lo

ca
l S

en
si

tiv
ity

 (%
)

Number of stiffeners

 Thickness of stiffener
 width of stiffener
 thickness of cylinder

1 2 3 4 5 6
0

20

40

60

80

100

Lo
ca

l S
en

si
tiv

ity
 (%

)

Number of stiffeners

 Thickness of stiffener
 width of stiffener
 thickness of cylinder

(a) Local Sensitivity of Equivalent
            Stress Maximum

(b) Local Sensitivity of Load Factor

(c) Local Sensitivity of Total Mass

Fig. 4 Local sensitivity curve with the number of stiffeners

on the stiffness of the shell and mass of the shell increases gradually. The width of
stiffeners has a small influence on the stiffness. However, the effect of stiffeners on
the stiffness of shell is less than that of the wall thickness of shell. The quickest and
most convenient way to improve the strength and stiffness of the shell is to increase
its wall thickness. The mass of the whole shell will also be greatly increased. The
number and thickness of the stiffeners can be increased appropriately in order to
improve the stiffness of the body without causing a substantial increase in the mass
of the shell.

Then, the parameters of the shell are optimized. The optimization method is
MOCA method, and the boundary conditions and optimization objectives are:
minimum mass, minimum total shape variable, and load factor greater than 3. The
optimization results are: n = 3, H = 9.2975 mm, h = 23.134 mm, w = 7.218 mm.
Keep one decimal place: n = 3, H = 9.3 mm, h = 23.1 mm, w = 7.2 mm. At this
time, the maximum stress of the shell is 478.39 Mpa, which is less than the yield
stress, and the strength is qualified; Since the calculated critical load is often 3 to 5
times larger than the actual critical load [8], the safety factor should not be less than
3, that is, the load factor ≥3. In the result, the shell load factor is 3.0946>3, and the
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stability is qualified; the weight is 10.9 kg, which is 12.5% lighter than before the
optimization, achieving the goal of lightening.

The modal analysis of the shell before and after the optimization is carried out.
The natural frequency and mode shape results of the first six orders are as shown
in Fig. 5 and Table 1. It can be seen from the calculation results that the natural
frequency of the optimized shell has been improved, and its dynamic performance
has also been optimized.

4 Conclusions

In this paper, the main influence factors on the strength and stiffness of the pressure
shell are analyzed by using a finite element analysis method. It seems that the thick-
ness of shell has the greatest influence on the strength, stiffness and total mass of the
shell. With the increase of the number of stiffeners, the influence of the thickness of
stiffeners on the stiffness of the shell increases greatly. Therefore, in order to lighten
the shell, the number and thickness of stiffeners can be increased appropriately. In
addition, the existing shell is optimized, and the optimized shell is analyzed too. The
results show that the weight of the optimized shell is reduced by 12.5% on the basis
of meeting the requirements of strength and stability. Finally, the modal analysis of
the optimized shell shows that the natural frequencies of the optimized shell have
been improved.

This paper only analyzes the uniformly distributed stiffeners, and obtains better
optimization results, which proves that this analysis method is feasible and can be
used in practical engineering in the future. In addition, it can also analyze the non-
uniform distribution of stiffeners and stiffeners with different cross-section shapes,
and find out the best form of stiffeners, and apply it to practical engineering.
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(a) 1st Mode (b) 2nd Mode

(c) 3th Mode (d) 4th Mode

(e) 5th Mode (f) 6th Mode

Fig. 5 The front six modes



56 Y. Cao et al.

Table 1 Comparison of the
first six natural frequencies
before and after optimization

Mode Frequency after
optimization (Hz)

Frequency before
optimization (Hz)

1 1553.8 1513.1

2 1553.8 1513.1

3 1611.6 1768.7

4 1611.6 1768.7

5 2273.5 2044.4

6 2273.6 2044.4

Acknowledgements Supported by the Fundamental Research Funds for Central Universities (No.
3102020HHZY030001).
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Emulational and Experimental Research
on a Sugarcane Field Excitation Device

Hanning Mo, Chen Qiu, Shangping Li, Guiqing He, Bang Zeng,
and Daiyun Yang

Abstract The vibration experiment of the sugarcane harvester is of significant value,
and it is mainly done in the sugarcane field. This method has low efficiency, poor
security and reliability. So, a sugarcane field excitation device is designed in this
paper based on the sugarcane field excitation signal already collected. The dynamic
characteristics of the sugarcane field excitation device are studied by using theoretical
analysis, simulation analysis and experimental research methods. The multi-body
dynamic model is studied by using rigid-flexible coupling simulation technology.
Based on the simulation results, the sugarcanefield excitation device ismanufactured.
The output frequency of the sugarcane field excitation device is calibrated by the
speed calibration method. Finally, based on the experimental optimization results,
the function of the sugarcane field excitation device is verified.

Keywords Excitation device · Sugarcane harvester · Dynamic simulation · Speed
calibration

1 Foreword

Sugarcanes are one of the main economic crops in the South of China. In China,
sugarcanes are mainly planted in hilly areas, but relatively low harvesting mecha-
nization degree is a big problem. It is calculated currently that Guangxi is the leading
sugarcane planting region in China, but its mechanized harvesting area is only about
1% in thewhole planting area [1]. It is difficult to promotemechanized cutting, which
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is affected by many factors such as costs, agricultural technologies, planting condi-
tions and so on. Additionally, another important factor cannot always be neglected,
that is, at present, mechanized sugarcane cutting may lead to a low ratoon cutting
quality. Sugarcane ratoons with a low cutting quality have many shoulders and flaws
in their fracture surfaces,which is easy to cause ratoons to break and affects the ratoon
budding rate of the next year. It is investigated that nowadays in our country, there
are some problems in adopted foreign machines for mechanized sugarcane cutting.
Specifically speaking, the sugarcane ratoon breaking rate is generally about 20% to
30%. Sometimes, the rate may be even to 40%. The poor ratoon cutting quality has
a severely influence on mass promotion of mechanized sugarcane harvesting [2, 3].

Aiming at what are mentioned above, scholars from home and abroad have done
a great amount of basic research. They undertook kinematics analysis on cutters
and did experiment research on the effect of cutting forces [4], cutting energies
and different cutting edge positions on the cutting quality [5–7]. Sugarcane-pressing
rollers, cutters and the interacting model between the cutter installing angle and the
space distance among saw teeth of cutting edgeswere analyzed [8].Meanwhile, anal-
ysis on the effect of penetrating cutting on the cutting quality was also done [9]. In
most of researches mentioned above, the cutting quality was studied from the angle
of kinematics and cutting parameters [10]. Domestic scholars studied broken forms
of sugarcanes suffering from tensions, compressions, bending and torsion loads,
discussed broken forms and kinematics of sugarcanes under plain knives [11, 12]
and explored the cuttingmechanismwith combination of characteristics of the sugar-
cane stem material and mechanical properties of this material [13]. Other scholars
turned to the effect mechanism of field and machine structure factors on the ratoon
breaking rate [14, 15] and devoted their time to the sugarcane cuttingmechanism from
the perspective of establishing structural and kinematic parameters of a especially
designed emulator of the sugarcane-cutter system [16], which provided a theoretical
basis for improving the sugarcane ratoon cutting quality.

Nevertheless, none of these researches were focused on characteristics of sugar-
cane field roughness and how the sugarcane field excitation can be obtained in labs
to avoid the low efficiency, the poor security and the bad reliability during experi-
ments in sugarcane fields. Sugarcane field roughness, cutting forces and the engine
cause vibrations of sugarcane harvesters. Among these three factors, sugarcane field
roughness plays the most major role in causing vibrations of sugarcane harvesters. It
is indicated by experiments and researches underwent by some researchers [17] that
vibrations of sugarcane harvesters have bad effects on the sugarcane cutting quality.
Therefore, it is necessary to study characteristics of sugarcane field roughness and
do simulated sugarcane cutting experiments under the sugarcane field excitation in
labs. After all, experiment conditions in labs are relatively much more controllable
than those in sugarcane fields which are easily affected by environmental factors
such as weathers, temperatures and so on.

The field excitation is transmitted to the frame and cutting system through the tire
when the sugarcane harvester is working on the sugarcane field. Due to laboratory
conditions, a sugarcane field excitation device is designed to analyze the vibration of
the frame caused by field excitation. So, the experiment of the sugarcane harvester
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Fig. 1 Field excitation signal with the sampling frequency at 100 Hz

can be carried out in the laboratory instead of sugarcane field. The field excitation
signal was collected in the sugarcane field in a suburb of Nanning city [18, 19].

The field excitation signal is low-frequency signal, and the frequency band with
the largest contribution is between 0.5 and 1.5Hz. The energy of the road excitation is
most concentrated in the band of 0.5–3.5 Hz where the amplitude of each component
is within 1 mm (as shown in Fig. 1).

2 The 3-Dimensional Model of the Sugarcane Field
Excitation Device

The field excitation is transmitted to the frame and cutting system through the tire
when the sugarcane harvester is working on the sugarcane field. In the laboratory,
the unbalanced forces are produced by the eccentric mass blocks that rotate at high
speed.

The mass of the sugarcane harvester experiment platform is 1 ton, as showed in
Fig. 2. Two simulated sugarcane field excitation devices are placed on the front side
of the experiment platform while two shock absorbers are placed on the back side.
So, the sugarcane field excitation can be simulated in the laboratory.

The sugarcane field excitation device is a vibration isolation systemwhich consists
of multiple parts. The design requirements are as follows: (1) the whole system can
work according to the designed motion, and it can ensure that the motion of each
part will not interfere with each other; (2) the vibration frequency and amplitude of
the sugarcane field excitation device should meet the experiment requirements [20].

According to the analysis results of the field excitation signal, the vibration
frequencies of the sugarcane field excitation device are set as 1, 1.5, 2, 2.5 and
3 Hz. The vibration is produced by the rotation of eccentric mass blocks dragged by
the motor. The virtual prototype is showed in Fig. 3.



60 H. Mo et al.

Fig. 2 Sugarcane harvester experiment platform

Upper springs

Lower springs

Mid-platform

Eccentric mass

Fig. 3 Virtual prototype of the sugarcane field excitation device
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3 The Dynamics Model and the Mathematical Model
of the Self-developed Sugarcane Harvester Test Bed
with the Sugarcane Field Excitation Device

According to Fig. 2, the mechanics model of the self-developed sugarcane harvester
test bed with the simulated sugarcane field exciter can be simplified as a spring-mass
system as is shown in Fig. 4. Moreover, in fact, Fig. 4 is equivalent to one forth of
the self-developed sugarcane harvester test bed with the simulated sugarcane field
exciter in that a sugarcane harvester is symmetric.

In Fig. 4, the m1 rectangle is equivalent to one of the four wheels of a sugar-
cane harvester. The m2 rectangle is equivalent to one fourth of the body frame of a
sugarcane harvester. The m3 rectangle is equivalent to the engine to drive this sugar-
cane harvester. Fs is equivalent to the field excitation force suffered by the wheel.
Fe is equivalent to the periodical force acting on the body frame of this sugarcane
harvester by the engine. Fe

′
is equivalent to the periodical force acting on the engine

by its internal structures. K1 and B1 are respectively regarded as the equivalent stiff-
ness coefficient and the equivalent damping coefficient between the wheel, m1 and
the sugarcane field. K2 and B2 are respectively regarded as the equivalent stiffness
coefficient and the equivalent damping coefficient between the wheel, m1 and the
one fourth of the body frame of this sugarcane harvester, m2. K3, B3, K4 and B4 are
equivalent to stiffness coefficients and damping coefficients respectively of the rear
and front anti-vibration pads of the engine. z1, z2 and z3 are respectively vertical

Fig. 4 The mechanics
model of the self-developed
sugarcane harvester
experiment platform with the
simulated sugarcane field
exciter
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displacements of m1, m2 and m3. According to forces in Fig. 4, there are only linear
displacements without any angular ones along the z axis in that all force are parallel
to the z axis.

According to the second Newton Law, the mathematical model of Fig. 4 is shown
in Eq. (1), in which the three mass blocks were chosen as study objects for force
analysis and zero deformation positions of springs were chosen at the equilibrium
point of this mechanics model under gravities of mass blocks without any external
forces.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1 z̈1 − B2(ż2 − ż1) + B1 ż1 − K2(z2 − z1) + K1z1 = Fs

m2 z̈2 + B2(ż2 − ż1) − B3(ż3 − ż2) − B4(ż3 − ż2) + K2(z2 − z1)

−K3(z3 − z2) − K4(z3 − z2) = Fe

m3 z̈3 + B3(ż3 − ż2) + B4(ż3 − ż2) + K3(z3 − z2) + K4(z3 − z2) = F ′
e

(1)

Make Eq. (1) into a matrix form as shown in Eq. (2), which is actually a second
Newton Law equation.

MZ̈ + B Ż + K Z = F (2)

In Eq. (2),M is the mass matrix of the mechanics model, Fig. 4. Z is the displace-
ment matrix.B is the damping coefficient matrix.K is the stiffness coefficient matrix.
F is the external force matrix. These five matrixes are shown in Eq. (3) in detail.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M =
⎡

⎣
m1

m2

m3

⎤

⎦

Z =
⎡

⎣
z1
z2
z3

⎤

⎦

B =
⎡

⎣
B2 + B1 −B2 0

−B2 B2 + B3 + B4 −B3 − B4

0 −B3 − B4 B3 + B4

⎤

⎦

K =
⎡

⎣
K2 + K1 −K2 0

−K2 K2 + K3 + K4 −K3 − K4

0 −K3 − K4 K3 + K4

⎤

⎦

F =
⎡

⎣
Fs

Fe

F
′
e

⎤

⎦

(3)
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4 Rigid-Flexible Coupling Simulation Based on ADAMS

Import the virtual prototype into the dynamics simulation software MSC.ADAMS,
and set the material properties and quality of each component. Add gravity in the Z
direction, so that the whole system is in the gravity field [21, 22].

According to the actual working condition of the exciter, the eccentric mass and
rotational speed are set as two parameters of the simulation experiment (as listed in
Table 1).

During the dynamics simulation, add aMarker point to the ground and the support
plate with hinge separately, and the twoMarker points are coincident. Then, measure
their amplitudes in the Y and Z directions respectively. Set the simulation time to 5 s
and the simulation step to 50 steps.

The trend of the above picture is basically the same. The springs sway up and
down under the action of alternating force, and the amount of spring compression
changes uniformly with time. The specific deformations of the springs are as shown
in the above figures.

According to the simulation specific data, the results are shown in Table 2:
It is known from the simulation results:

(1) Under no-load condition, the exciter can excite the frame at the frequencies of
1, 1.5, 2, 2.5, and 3 Hz, which can meet the influence of field vibration.

(2) The simulation data indicates that the amplitude of the exciter in the vertical
direction is substantially within 2 mm. But in actual work, except for the
vibration in the vertical direction, the exciter will vibrate in the horizontal

Table 1 Simulation parameters

Eccentric mass (kg) Rotational speed (r/min)

0 60

1 90

2 120

3 150

4 180

Table 2 Simulation results

Rotating speed
(r/min)

Vibration with
4 kg eccentric
mass (mm)

Vibration with
3 kg eccentric
mass (mm)

Vibration with
2 kg eccentric
mass (mm)

Vibration with
1 kg eccentric
mass (mm)

60 2.2198 0.6841 0.5343 0.365

90 1.9361 0.743 0.6008 0.4061

120 1.4261 1.1731 0.9199 0.6553

150 1.1181 1.5592 1.227 0.8497

180 0.8086 1.9286 1.5874 1.0776
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direction. The vibration of the experiment platform will be increased. When
the simulated road surface vibration experiment is carried out, it can meet the
obvious requirements of the vibration of the experiment platform.

5 Experimental Research on the Sugarcane Field
Excitation Device

According to the design results, the sugarcane field excitation device manufactured
is shown in Fig. 5.

The single-factor experiment is carried out to experiment the no-load vibration
performance of the sugarcane field excitation device by changing the eccentric mass
and the eccentric shaft speed [23, 24]. The experiment system is shown in Fig. 6.

Fig. 5 The sugarcane field excitation device

Digital frequency  
converter

M Vibration test 
bed

Data 
acquisition 
instrument

Laser 
velocimeter

Displacement 
sensor

Laser sensor

Fig. 6 Experiment system for vibration
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Table 3 Experiment
arrangement

Sequence Factor

Eccentric mass m (kg) Eccentric shaft speed v
(m/s)

1 0 60

2 1 90

3 2 120

4 3 150

5 4 180

The factors of the vibration experiment are the eccentric mass m and the eccentric
shaft speed v. As shown in Table 3.

In order to fully understand the vibration performance of the sugarcane field
excitation device, the experiments of the vibration in the vertical direction are
arranged.

A laser tachometer is used to measure the eccentric shaft speed in this experi-
ment. By recording the output frequency of the inverter corresponding to the current
display value of the tachometer, the frequency value is used as the standard for speed
adjustment, which is called speed calibration method. The speed calibration Table 4
is as follows.

The amplitudes with 0 kg eccentric mass, 1 kg eccentric mass, 2 kg eccentric
mass, 3 kg eccentric mass, and 4 kg eccentric mass at different speeds are shown in
Fig. 7.

The speed calibration table shows that the excitation frequency of the sugarcane
field excitation device ranges from 1.3 to 4.8, which satisfies the result of the main
energy band of the field excitation of 1–6 Hz.

The experiment results showed that:

Table 4 Speed calibration Output frequency of
the inverter (Hz)

Eccentric shaft
speed (r/min)

Excitation
frequency (Hz)

5 80 1.3

6 112 1.87

7 134 2.23

8 155 2.58

9 170 2.83

10 190 3.16

11 212 3.53

12 230 3.83

13 251 4.18

14 270 4.5

15 289 4.81
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Fig. 7 The vibration invertical direction

In the vertical vibration, the vibration amplitude ranges from 0.075 to 1.3 mm
when the eccentric mass is 4 kg. The vibration amplitude ranges from 0.05 to 1.2 mm
when the eccentric mass is 3 kg. The vibration amplitude ranges from 0.025 to
1.13 mm when the eccentric mass is 2 kg. The vibration amplitude ranges from
0.02 to 0.15 mm when the eccentric mass is 1 kg. The no-load experiment data
initially shows that low-frequency with high-amplitude and high-frequency with
low-amplitude excitation can be achieved by changing themagnitude of the eccentric
mass. The excitation performance satisfies the design requirements.

In summary, the sugarcane field excitation device can satisfy the field excitation
requirements.

6 Conclusions

1. According to the analysis of field excitation signal, the sugarcane field excitation
device was designed.

2. The multi-body dynamic model was studied by using the software
MSC.ADAMS. Simulation results show that the vibration exciter can meet the
experiment requirements. Based on the simulation results, the sugarcane field
excitation device was manufactured.

3. The sugarcane field excitation device was calibrated by speed calibration
method, and the vibration of the z phase of the exciter at no load was recorded.
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The experiment results show that the sugarcanefield excitation device can satisfy
the field excitation requirements well.
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Experimental Research on Influence
Factors of the Sugarcane Ratoon Cutting
Quality Under Vibration Conditions

Chen Qiu, Hanning Mo, Shangping Li, Guiqing He, Bang Zeng,
and Daiyun Yang

Abstract Aimed at improving the sugarcane ratoon cutting quality of sugarcane
harvesters for hilly areas, a sugarcane harvester experiment platform was developed.
During sugarcane cutting experiments, flaws may appear in sugarcane ratoons. The
flaw number, thickness and length were measured. An experiment index, y was
introduced as the comprehensive cutting quality evaluating value of the sugarcane
ratoon cutting quality by the improved entropy method with these three parameters.
A regressive mathematical model was set up by orthogonal experiments and to study
effects of the vibration frequency, the vibration amplitude, the cutter rotating velocity,
the sugarcane feeding velocity and the cutter installing angle on the sugarcane ratoon
cutting quality. It is shown in experiments that there is a strong linear relationship
among y, vibration amplitude and frequency and the amplitude as well as frequency
had great effects on y while the moving velocity, the cutter rotating velocity and the
cutter installing angle had relatively less significant effects on y. According to the
fact whether the effect on y is significant, the significance order is as follows, the
vibration amplitude, frequency, the sugarcane feeding velocity, the cutter rotating
velocity and the cutter installing angle. Interaction between the vibration amplitude
and frequency and that between the amplitude and the cutter rotating velocity also
have effects on y. In details, the greater the vibration amplitude and frequency are, the
greater ywill be, which means the worse the sugarcane ratoon cutting quality will be.
The greater the vibration amplitude and the cutter rotating velocity are, the greater
y will be. This research was done to study the effect mechanism of the sugarcane
ratoon cutting quality and lay the foundation of design and development of sugarcane
harvesters with a high sugarcane ratoon cutting quality for hilly areas.

C. Qiu · H. Mo (B)
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
e-mail: 1433025842@qq.com

School of Mechanical and Material Engineering, Wuzhou University, Wuzhou 543000, China

S. Li
College of Electronic Information, Guangxi University for Nationalities, Nanning 530006, China

G. He · B. Zeng · D. Yang
School of Mechanical Engineering, Guangxi University, Nanning 530004, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_7

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_7&domain=pdf
mailto:1433025842@qq.com
https://doi.org/10.1007/978-3-030-99075-6_7


70 C. Qiu et al.

Keywords Sugarcane ratoon cutting quality · Experimental research · Vibration
amplitude · Vibration frequency · Linear relationship

1 Introduction

Sugarcanes are one of the main economic crops in the South of China. In China,
sugarcanes are mainly planted in hilly areas, but relatively low harvesting mecha-
nization degree is a big problem. It is calculated currently that Guangxi is the leading
sugarcane planting region in China, but its mechanized harvesting area is only about
1% in the whole planting area. It is difficult to promote mechanized cutting, which
is affected by many factors such as costs, agricultural technologies, planting condi-
tions and so on. Additionally, another important factor cannot always be neglected,
that is, at present, mechanized sugarcane cutting may lead to a low ratoon cutting
quality. Sugarcane ratoons with a low cutting quality have many shoulders and flaws
in their fracture surfaces, which is easy to cause ratoons to break and affects the
ratoon budding rate of the next year. It is investigated that nowadays in our country,
there are some problems in adopted foreign machines for mechanized sugarcane
cutting. Specifically speaking, the sugarcane ratoon breaking rate is generally about
20–30%. Sometimes, the rate may be even to 40%. The poor ratoon cutting quality
has a severely influence on mass promotion of mechanized sugarcane harvesting
[1–4].

Aiming at what are mentioned above, scholars from home and abroad have done
a great amount of basic research. They undertook kinematics analysis on cutters and
did experiment research on the effect of cutting forces, cutting energies and different
cutting edge positions on the cutting quality. Sugarcane-pressing rollers, cutters and
the interacting model between the cutter installing angle and the space distance
among saw teeth of cutting edges were analyzed. Meanwhile, analysis on the effect
of penetrating cutting on the cutting quality was also done. In most of researches
mentioned above, the cutting quality was studied from the angle of kinematics and
cutting parameters. Domestic scholars studied broken forms of sugarcanes suffering
from tensions, compressions, bending and torsion loads, discussed broken forms and
kinematics of sugarcanes under plain knives and explored the cutting mechanism
with combination of characteristics of the sugarcane stem material and mechanical
properties of this material. Other scholars turned to the effect mechanism of field
and machine structure factors on the ratoon breaking rate and devoted their time
to the sugarcane cutting mechanism from the perspective of establishing structural
and kinematic parameters of a especially designed emulator of the sugarcane-cutter
system,which provided a theoretical basis for improving the sugarcane ratoon cutting
quality [5, 6]. Nevertheless, none of these researches were focused on the effect of
axial vibrations of cutters on the ratoon cutting quality. In sugarcane fields, it is not
possible to avoid axial vibrations of cutters because of a great number of vibrations
actuating factors. It is indicated by experiments and researches underwent by some
researchers that axial vibrations of cutters are closely connected with the ratoon
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cutting quality. Therefore, it is necessary to do a further research on effects of axial
vibrations of cutters and its relative factors on the sugarcane ratoon cutting quality
[7, 8].

In this paper, a series of sugarcane cutting experiments were conducted through
the experiment platform designed by our research group to study effect principles of
axial vibration amplitudes and frequencies of cutters and relative cutting parameters
on the ratoon cutting quality. On this basis, effects of following parameters on the
sugarcane ratoon cutting qualitywere further studied, such as the vibration amplitude,
frequency, the sugarcane feeding velocity, the cutter installing angle and the cutter
rotating velocity etc. In addition, the quantitative relationship expression of the ratoon
cutting quality, the amplitude, the frequency, the sugarcane feedingvelocity, the cutter
installing angle and the cutter rotating velocity was set up, which is an important
theoretical basis for the innovative design theory of cutter structures of sugarcane
harvesters.

2 The Self-developed Sugarcane Harvester Experiment
Platform

In sugarcane fields, there are many factors which may actuate sugarcane harvesters,
such as force unbalances of cutters, road roughness, vibrations of rotating compo-
nents and so on.Axial cutter vibrationsmay appear,which in factwill lead sugarcanes
to the relative displacement effect between a certain frequency and amplitude in the
axial direction. In order to study this effect on the sugarcane ratoon cutting quality, an
experiment platform was designed to make moving sugarcanes and cutters generate
controllable relative displacements with certain frequencies and amplitudes in the
axial direction. What’s more, this device then made sugarcanes cut down by the
cutters, which is analogous to the practical situation in the field. Plus, breakage situ-
ations of sugarcane ratoons were observed and relative principles were obtained by
the statistical method.

These experiments were conducted through the sugarcane harvester experiment
platform designed by our research group. Its structure sketch and the manufactured
experiment platform are illustrated in Fig. 1. It is mainly composed of the sugarcane-
feeding device, the feeding device, the cutting device and eccentric vibration devices.
Sugarcanes were fixed in the sugarcane-feeding device shown as the No. 1 part in
Fig. 1 by the sugarcane-clamping device shown as the No. 2 part in Fig. 2 and its
stepless velocity controlling and reversing were achieved by a velocity-adjusting
motor with a variable frequency controller and a reducer, which can imitate moving
velocities of a sugarcane harvester. The structure of the sugarcane-clamping device
and themanufactured the sugarcane-clamping device are indicated in Fig. 2. A sugar-
cane was inserted into a socket which is fixed by 8 springs to imitate the tightening
effort of soils. Cutters shown as the No. 4 part in Fig. 1 both consist of 2 disks both
with a 450 mm diameter connected with blades all of an 80 mm length and a 5 mm
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1. The sugarcane-feeding device  2. The sugarcane-clamping device  3. The feeding 
platform  4. The cutting device with double blades  5. The fixed hinged support of the 
platform  6. The cutter holder  7. The hold-down spring  8. The position-limiting device  
9. The eccentric vibrating device  10. The eccentric wheels

Fig. 1 The comprehensive structure sketch of the experiment platform

Fig. 2 The
sugarcane-clamping device

thickness. Cutter installing angles can be adjusted and the cutters were driven by
a stepless velocity-controlling motor. A reverse magnetic value was used to make
the cutters begin and stop running as well as positively and negatively rotating. The
eccentric vibration device shown as the No. 9 part in Fig. 1 was used to make the
feeding platform shown as the No. 3 part in Fig. 1 repeatedly swing around the fixed
hinged support shown as the No. 5 part in Fig. 1, which can obtain vibrations in the
axial direction just in sugarcane cutting points. Amplitudes and frequencies of this
kind of vibrations are dependent on the eccentric distance of eccentric wheels and
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Table 1 Calculating expressions of the sugarcane ratoon cutting quality

x
′
j i = x ji−x j min

x j max−x j min
p j = x

′
j i

∑m
i=1 x

′
j i

e j =
−k

∑m
i=1 p ji ln p ji

gj = 1-ej w j = g j

/∑n
j=1 g j

The comprehensive evaluation index y = ∑ j=3
j=1 x j · w j

xi j is the value of the evaluation index, in which j = 1, 2, 3, respectively corresponding to the
number of cracks and the crack thickness and length, i = 1. m is the number of experiments

the frequency of the motor, which is used to stimulate axial vibrations generated by
cutters and harvesting machines under external excitations in sugarcane fields.

3 Evaluation Indexes

The comprehensive cutting quality evaluating value includes the number of ratoon
cracks, crack thicknesses and lengths. These three indexes all have effects on the
ratoon cutting quality and theywere denoted as xi j during experiment data processes.
However, it is difficult to only use one index to evaluate the cutting quality, so it is
necessary to use a comprehensive one combining all these three indexes. In this paper,
the improved entropy method was used to calculate the comprehensive evaluation
index, y of the cutting quality. y is called the comprehensive cutting quality evaluating
value. The greater y is, the poorer the sugarcane cutting quality will be. Calculating
expressions of y are shown in Table 1.

4 Orthogonal Experiments

In this experiment, No. 20 Guitang sugarcanes just harvested were adopted, which
is shown in Fig. 3. Bodies of these sugarcanes were straight and their leaves as well
as burrs were wiped off. Their average diameter was 28 ± 3 mm. 1000 mm lengths
upward roots were chosen.

During these experiments, a laser displacement-measuring system shown in Fig. 4
was used. It consists of a laser displacement sensor (LK-G150A), a controller (LK-
G3001A), a power transformer (MS2-H50), a laptop and related measuring software
(LK-H1W). This system was used to measure vibration amplitudes of the feeding
device shown as the No. 3 part in Fig. 1 in the axial direction near sugarcane cutting
points.

A laser velocity meter (AR926) was used to measure rotation velocities of the
cutters shown as the No. 4 part and eccentric wheels shown as the No. 10 part in
Fig. 1.

A vernier caliper whose accuracy is 0.02 mm was used to measure crack lengths
and thicknesses of incisions of sugarcane ratoons.
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Fig. 3 No. 20 Guitang
sugarcanes

Fig. 4 Laser displacement
measurement system

Sugarcane cutting experiments were made up with orthogonal experiments. The
clamping device driven by a motor is fixed on the feeding device. Sugarcanes were
inserted in the clamping device. Sugarcane feeding velocities were set up through the
velocity-adjusting device with controlling frequencies to imitate the moving velocity
of harvesting machines. Meanwhile, the laser displacement-measuring system was
used tomeasure amplitudes of the cutters at sugarcane cutting points. Factors relative
with these experiments were amplitudes in the axial direction, vibration frequencies,
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Table 2 Factors and levels of the orthogonal experiment

Factors Levels

1 2

Frequency (x1)/Hz 9 6

Amplitude (x2)/mm 6.5 3.5

The rolling speed of the cutter (x3)/rpm 700 600

The moving speed (x4)/m s−1 0.6 0.4

The installing angle of the cutter (x5)/o 10o 0°

sugarcane feeding velocities which imitate sugarcane harvester moving velocities,
cutter installing angles and cutter rotating velocities.

Purposes were to observe effects of vibration amplitudes, frequencies, sugarcane
feeding velocities, cutter installing angles and rotation velocities of the cutters on the
ratoon cutting quality. Factors and levels of the orthogonal experiment are shown in
Table 2 (5 factors and2 levels).Designon theorthogonal experiment is shown inTable
3. The index of this experiment is the comprehensive evaluation index, y. Results
are indicated in Table 4. Variance analysis on results of orthogonal experiments is
shown in Table 5.

Table 3 Design on the orthogonal experiment

No Factors

x1 (Frequency) x2 (Amplitude) x3 (The rolling
speed of the
cutter)

x4 (The moving
speed)

x5 (The cutter
angle)

1 1 1 1 1 1

2 1 1 1 2 2

3 1 1 2 1 2

4 1 1 2 2 1

5 1 2 1 1 2

6 1 2 1 2 1

7 1 2 2 1 1

8 1 2 2 2 2

9 2 1 1 1 2

10 2 1 1 2 1

11 2 1 2 1 1

12 2 1 2 2 2

13 2 2 1 1 1

14 2 2 1 2 2

15 2 2 2 1 2

16 2 2 2 2 1
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Table 4 Results of orthogonal experiment

No Factors

x1 (Frequency) x2 (Amplitude) x3 (The
rotation
speed of
the cutter)

x4 (The
feeding
speed)

x5 (The
cutter
angle)

y (The
comprehensive
cutting quality)

1 1 1 1 1 1 1

2 1 1 1 2 2 0.7118

3 1 1 2 1 2 0.6981

4 1 1 2 2 1 0.5191

5 1 2 1 1 2 0.0518

6 1 2 1 2 1 0.25

7 1 2 2 1 1 0.4618

8 1 2 2 2 2 0.1037

9 2 1 1 1 2 0.4672

10 2 1 1 2 1 0.34

11 2 1 2 1 1 0.5382

12 2 1 2 2 2 0.2691

13 2 2 1 1 1 0.1418

14 2 2 1 2 2 0

15 2 2 2 1 2 0.3909

16 2 2 2 2 1 0.2309

Table 5 Variance analysis on results of orthogonal experiments

Source Sum of squares Freedom degree Variance F P

Corrected model 0.914 6 0.152 6.353 0.007

Intercept 2.361 1 2.361 98.451 <0.001

Frequency 0.129 1 0.129 5.395 0.045

Amplitude 0.531 1 0.531 22.151 0.001

The rotation speed 0.034 1 0.034 1.414 0.265

The feeding speed 0.114 1 0.114 4.774 0.057

The angle 0.005 1 0.005 0.224 0.647

Error 0.216 9 0.024

Total 3.491 16

Corrected total 1.130 15
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It is shown according to Table 5 that under the experiment condition, there are
results as follow.

(1) When the F value of vibration amplitudes was 22.151, P < 0.01, there was an
extremely significant effect.

(2) When the F value of vibration frequencies was 5.395, P < 0.05, there was a
significant effect.

(3) When the F value of feeding velocities was 4.774, P < 0.1, there was a great
effect.

(4) When F values of cutter installing angles and cutter rotating velocities were
respectively 0.224 and 1.414,P valueswere respectively 0.647 and 0.265which
are both greater than 0.1, there was an insignificant effect.

(5) Influencing degrees of factors of these experiments are as follow, that is, vibra-
tion amplitudes > vibration frequencies > feeding velocities > cutter rotating
velocities > cutter installing angles.

It turns out according to variance analysis on results of these experiments that
when the cutters cut sugarcanes, vibration amplitudes and frequencies will be major
influence factors among all factors influencing the cutting quality if large amplitudes
and frequencies of the cutters exist.

5 Analysis for Interaction Effects on the Experiment Index

Figure 5 is the curve of effects of interaction between the vibration frequency and
amplitude on the comprehensive cutting quality. Other factors should be set to be
in the level of 0 when the curve was drawn. According to Fig. 5, when vibration
frequencies and amplitudes increase at the same time, their interaction effect will

Fig. 5 The simulating calculation results of the interaction effect of the vibration frequency and
amplitude
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Fig. 6 The simulating calculation results of the interaction effect of the vibration amplitude and
cutter rotation speed

make the comprehensive cutting quality evaluating value greater, which means the
worse cutting quality. When vibration frequencies and amplitudes decrease at the
same time, their interaction effect will make the comprehensive cutting quality value
smaller, which means the better cutting quality. With the same vibration frequency,
the greater the vibration amplitude is, the greater the comprehensive cutting quality
evaluating value will be, that is, the worse the cutting quality will be and vice versa.
With the same vibration amplitude, the greater the vibration frequency is, the greater
the comprehensive cutting quality evaluating value will be, that is, the worse the
cutting quality will be and vice versa.

Figure 6 is the graph of the effect of interaction between vibration amplitudes
and cutters rotating velocities by the same handling method. According to Fig. 6,
with a certain cutter rotating velocity, it will cause the comprehensive cutting quality
evaluating value to be greater when the vibration amplitude increases, that is, the
cutting quality will be worse. While with the same vibration amplitude, it will make
the comprehensive cutting quality value smaller when the cutter rotating velocity
increases, that is, the cutting quality will be better. If the two factors increase at the
same time, the comprehensive cutting quality evaluating value will be greater, that
is, the cutting quality will be worse.

6 Conclusions

(1) The improved entropy evaluation method was adopted to take the number of
sugarcane cracks, crack thickness and crack length as single comprehensive
cutting quality evaluating values of the comprehensive cutting quality. Under
experiment conditions, there is a high linear relationship between vibration
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amplitudes or frequencies and the sugarcane cutting quality. Linear coefficients
between vibration amplitudes or frequencies and the sugarcane cutting quality
are respectively 0.997 (in the level of 0) and 0.918 (in the level of 0.05).
The greater the vibration amplitude is, the worse the cutting quality will be.
The greater the vibration frequency is, the worse the cutting quality will be.
In structural design on harvesters, cutter vibrations should be managed to be
decreased.

(2) Effects of vibration amplitudes, vibration frequencies feeding velocities, cutter
rotating velocities and cutter installing angles on the comprehensive cutting
quality evaluating valuewere compared by orthogonal experiments. It is shown
by analysis results that under experiment conditions, among these 5 effect
factors, effects of vibration amplitudes and frequencies are significant while
effects of feeding velocities, cutter rotating velocities and cutter installing
angles are insignificant. Effect degrees of these 5 factors on the comprehen-
sive cutting quality evaluating value are as follow, i.e., vibration amplitudes >
vibration frequencies > feeding velocities > cutter rotating velocities > cutter
installing angles.

(3) Under experiment conditions, there is an interaction effect between vibra-
tion amplitudes and frequencies on the comprehensive cutting quality evalu-
ating value. The effect principle is that the greater the vibration amplitude and
frequency are, the greater the comprehensive cutting quality evaluating value
will be, which means the cutting quality will be worse. The interaction effect
between vibration amplitudes and cutter rotating velocities on the comprehen-
sive cutting quality evaluating value is that if the two factors increase at the
same time, the comprehensive cutting quality evaluating value will be greater,
that is, the cutting quality will be worse.
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in Particle Sizes on Simulation Results
in the Simulation Test Based
on the Discrete Element Method
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Abstract Taking sands as the research object, the influences of changes in particle
sizes on the simulation results were analyzed in the simulation test based on DEM
(Discrete Element Method) using tests and comparative simulation methods, so as
to study the influences of particle changes on simulation results in the simulation
process using DEM. According to the simulation using particles of varied sizes, the
angle of repose is changed marginally with minor errors in the test of the angle of
repose. Also, particle size has insignificant influence on the simulation results in the
test of the angle of repose. That is to say, the simulation test of the angle of repose is
less sensitive to the particle size. However, particle size exerts a remarkable influence
on the simulation result in the vane shear test. Specifically, when the particle size
is changed, then the maximum torque of the vane will be significantly fluctuated,
indicating that the vane shear test is highly sensitive to the particle size. When the
magnification factor m ≤ 4, the variation trend of torque will be consistent with
reality. In that case, the particle magnification should be less than 4 times.
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1 Introduction

The discrete element method (DEM) is a calculation model proposed for the study
of the large-scale gradual movement of the rock system and a numerical calculation
method for solving the non-continuum problem first developed by Cundall, P.A and
Strack, O.D.L in the 1970s [1–3]. Since then, DEM has been extensively applied
in numerical simulations of a variety of fields such as geotechnical engineering,
agricultural engineering, industrial engineering, pharmaceutical engineering, and
automotive engineering [4, 5].

Sand featuring scatterer, heterogeneity, and natural variability, is a three-phase
system consisting of solid particles, water and gas [6]. And the finite element method
(FEM) and DEM are primary methods used for analyzing the simulation of the
sand model. To be concrete, FEM is to calculate the force in accordance with the
continuum-based concept by taking the object as a continuum. Nevertheless, sand is
a non-continuum that is comprised of discrete solid particles. In that case, mechan-
ical properties between sand particles cannot be accurately obtained using FEM. In
consequence, DEM has been increasingly applied in sand simulation and modeling.
YC Zhou, BD Wright, et al. concluded that the rolling friction coefficient between
particles might exert an influence on the value of angle of repose based on the anal-
ysis of influencing factors of the angle of repose in the numerical simulation of sand
accumulation [7]. Liu D. et al. analyzed the influence of varied particle shapes on the
simulation results, and concluded that polyhedral particles can better reflect the real-
istic shape of rock filling than spherical particles, and also realistically simulate the
real strength of the rock filling body in the discrete element numerical simulations on
the rock filling body using polyhedral particles and spherical particles, respectively
[8]. Liu J. et al. simulated the magnified particles in the meso-simulation of discrete
elements based on sands of various grain diameters and revealed that the greater the
particle size, the greater the sliding friction between particles through the simulation
of particle diameter [9]. Dong Y. studied the influence of particle sizes on the simu-
lation results through scaling up in the numerical simulation process of 3D discrete
elements [10]. By summing up previous findings, it is found that most studies have
improved simulation speed by magnifying particles, whereas the theoretical basis
for particle magnification has been rarely proposed, and there is a lack of separate
research on the influence of particle amplification itself on the simulation results.

In response to these deficiencies, this paper first measured the physical properties
such as apparent density,moisture content, average particle size, and shape of the sand
through experiments. Then, the test of angle of repose and the vane shear test were
performed. Next, a simulationmodel conforming to the real test scalewas established
using the EDEM software. After that, the influence of magnified simulation particles
on the simulation results was studied by comparing the test and the simulation result.

The technical roadmap is presented as follows (Fig. 1).
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Fig. 1 Technical roadmap

2 Theoretical Analysis

The basic idea behind DEM is to separate the discontinuum into a collection of rigid
elements before the iterative calculation of the force and position of the particle based
on Newton’s second law equation. And the principle of DEM is the Hertzian-based
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Fig. 2 Vibration model of DEM

normal force contact theory and the tangential force contact theory based on the
research result of Mindlin-Deresiewicz. Since damping components can be found in
normal force and tangential force, the damping coefficient depend on the coefficient
of restitution. Tangential friction conforms to Coulomb’s law of friction, and rolling
friction is achieved together with the contact-independent directional constant torque
model. The normal force and the tangential force between particles can be obtained by
calculating the overlap between particles since rigid contact exists between particles
[11–14] (Figs. 2 and 3).

3 Test and Model Simulation

Sand, a typical free-flowing material that is suitable for test operations, was taken as
the material object of the experimental study. Moreover, sand cannot be simulated
in line with its real distribution of particle size in the field of engineering simulation
because of its small particle size. In that case, sand was selected as the object of
study in this paper.
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Fig. 3 Contact model of
DEM

Table 1 Physical parameters
of sand

Parameters Value Unit

Solid density 2.67 g/cm2

Bulk density 1.694 g/cm2

Moisture content 0.4% –

Average diameter 2.26 mm

Shape Irregular –

3.1 Determination of Physical Properties of Sands

Dry sand was sampled under natural conditions for test in order to determine its
physical properties parameters and provide a basis for selecting an appropriate simu-
lation contact model. Its physical parameters were obtained through a wide range
of soil mechanics tests, including moisture content test, particle analysis test, and
accumulation density test (Table 1, Figs. 4, 5 and 6).

3.2 Establishment of the Sand Particle Simulation Model

EDEM software was used as the discrete element simulation software. Simulation
parameters for the model should be first defined in the simulation process of sand. By
doing so, simulation parameters can be match with the actual parameters. Intrinsic
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Fig. 4 Soil mechanics test. a Bulk density test, b gradation test

parameters, contact parameters and contact model parameters are major parameters
affecting the simulation results.

Among them, intrinsic parameters include particle material density, Poisson’s
ratio, shear modulus, particle shape, and particle size distribution. The intrinsic
parameter of the sand was known based on previous experiments and related litera-
ture. Besides, it should be considered that the actual sand shape cannot be charac-
terized in the simulation process due to the characteristics of the discrete element
software. Rahul Bharadwaj et al. showed that the use of simplified non-spherical
particles in the simulation process has a minor influence on the simulation results for
the materials of irregular shapes in related studies [15]. Hence, a double-spherical
particle model with the single-sphere diameter of d = 2.26 mm and the aspect ratio
of 1.2 was constructed in line with the real average particle size measured in the test
in the first sand modeling process (Fig. 7).

The coefficient of restitution, static friction coefficient, and rolling friction coef-
ficient are contact parameters between sand particles. According to the DEMmodel,
contact parameters that directly reflect mechanical properties at the macro level exert
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Table 2 Contact parameters
of the simulation model

Parameters Value

Coefficient of restitution 0.8

Coefficient of static friction 1.18

Coefficient of rolling fraction 0.25

a direct influence on the simulation results. Contact parameters are determined by
referring to related literature [10, 12–18], as shown in Table 2.

The Hertz-Mindlin (no slip) contact model was selected since the micro force
such as the liquid bridging force between sand particles can be ignored with the
moisture content of sand being 0.4% measured above [19].

3.3 Experiment and Simulation

The test of indoor angle of repose and the vane shear test were conducted for compar-
ison, so as to study the influence of size magnification of simulation particles on the
simulation results. The magnification coefficient of the single sphere size of particles
in the simulation is set to m (when m = 1, no magnification will be performed. It
remains the original particle size) as required, and the aspect ratio of themagnification
coefficient 1 ≤ m ≤ 5 is 1.2 (Fig. 8).

Test and simulation of angle of repose. The test of the indoor angle of repose
was performed by lifting a cylindrical material pipeline made of an acrylic pipe with
a diameter of 50 mm. At first, 500 g of sand was added to the material pipeline.
And then, the material pipeline was lifted at the speed of 1 m/s to make the sand in
the pipeline fall freely. After that, the angle of repose was measured when the sand
accumulation was stable (Fig. 9). To ensure the accuracy of the test results, contours
of the sand accumulation were recorded from two vertical observation directions
using cameras in each test. At last, the angle of repose could be determined with
the help of the image processing software. After repeating the test for four times
(Fig. 10), it can obtain that the average angle of repose of the sand is 27.675° (Table
3).

Fig. 8 Different sizes of simulation particles
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Fig. 9 Angle of repose test

Fig. 10 Angle of repose of sand

Table 3 Result of angle of repose test

Test (a) (b) (c) (d)

Angle of repose 27.10° 28.30° 27.70° 27.60°

Average 27.675°
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Fig. 11 Scheme of simulation of angle of repose test

In the simulation process of the angle of repose test, particles of specified quality
were firstly generated in the material pipeline model. Then the material pipeline
model was lifted at a constant speed upon the stable collection of particles. Next,
particles flew out of thematerial pipelinemodel and accumulated (Fig. 11). The angle
of repose was measured after particles accumulation was stable. Intrinsic parameters
and contact parameters of simulated particles were set as above. Magnification coef-
ficients of particles were set tom= 1, 1.5, 3 and 5, respectively. At the same time, the
lifting speed of the material pipeline and the simulation duration were set to 1 m/s
and 2 s, respectively. The angle of repose was measured using the post-processing
tool of the software after the simulation is completed, as shown in Fig. 12. Results
are shown in Table 4.

In the test of the angle of repose, when the magnification coefficient is within 1 ≤
m ≤ 5, a small error will be observed in the simulation result. The maximum value
is 5.15%. Apparently, magnifying simulation particles within a certain range has a

Fig. 12 Simulation results of angles of repose under different particle sizes (magnification). a 1
time, b 2 times, c 3 times, d 4 times

Table 4 Simulation result of angles of repose under different particle sizes

Particle size (magnification) 1.0× 1.5× 3.0× 5.0×
Simulation value 27.68° 26.80° 26.25° 27.79°

Error (%) 0.02 3.16 5.15 0.42
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Fig. 13 Vane shear apparatus

small influence on the simulation results. Also, the simulation test of the angle of
repose is less sensitive to the diameter of the simulated particle.

Vane shear test. Vane shear test is a test to measure the shear strength of soft
soils. The vane shear apparatus used is shown in Fig. 13. Concretely, the stepping
motor drives the vane equipped with a torque sensor to rotate at a certain speed. And
the torque sensor can measure the real-time torque of the vane and transmits the data
to the data collector for recording with the software.

Before the test, 1500 g of sand samples were loaded into a container. At the
same time, a vane of the specialization of � 38.1mm × h76.2mm was selected; the
rotational speed was set as 0.1°/s; and the test duration was 180 s.

Then, a simulationmodelwas established according to the ratio of 1:1with the real
test. Also,m = 1, 1.5, 3, 4, 4.5 and 5 were considered as amplification coefficients of
simulated particle sizes, respectively. Relevant parameters are the same as above, and
the total mass of particle andmotion parameter settings of components are consistent
with the real test, as shown in Fig. 14.

Simulation results with different magnification coefficients are compared in Table
5 and Figs. 15 and 16. Evidently, the change in particle size has a significant influ-
ence on the simulation results in the simulation of the vane shear test. Besides, the
simulation results are highly sensitive to particle size. When the magnification coef-
ficient is m ≤ 4, the variation trend of the torque curve will be consistent with the
actual test curve. When the magnification coefficient is m > 4, the variation of the
simulation curve will be on the rise as a whole with a sharp increase witnessed at a
certain moment. It is greatly different from the variation trend of the real test curve.

When magnification coefficients arem = 1, 1.5, 3 and 4, the maximum torques of
the vane are 2.41, 0.806, 0.756 and 0.681Nm.Also, themaximum torque is gradually
decreased with the increase of the magnification coefficient. Errors of the simulated
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Fig. 14 Vane shear test and simulation model

Table 5 Simulation result of Vane shear test with different particle diameters

Particle size (magnification) 1.0x 1.5× 3.0× 4.0× 4.5× 5.0×
Maximum torque of the text 2.27 N·m

Value of the simulation (Nm) 2.41 0.806 0.756 0.681 5.98 5.06

Error (%) 6.16 64.5 66.7 70 163.4 122.9

value and the experimental value are 6.16%, 64.5%, 66.7%, and 70% respectively.
The variation curve of the error value is presented in Fig. 17.When the magnification
coefficient is 1≤m ≤ 1.5, the error value will present a fast rate of change. But when
1.5 < m ≤ 4, the rate of changed error value will be slightly on the rise.

4 Conclusions

In this paper, the test of the angle of repose and the vane shear test were performed
on the naturally-dried sand to discuss the influences of particle amplification on the
simulation results, in response to the deficiencies in particle magnification for the
existing discrete element simulation study. Conclusions are made as below:

(1) In the test of the angle of repose, magnifying simulation particle size within a
certain range has aminor influence on the simulation results, and the simulation
particle size is less sensitive to the simulation test of the angle of repose.

(2) In the vane shear test, the change in the simulation particle size has a remarkable
influence on the simulation results. Moreover, the change in particle size exerts
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Fig. 15 Results of the vane shear test and simulation at different particle sizes (magnification). a
1.0×, b 1.5×, c 3.0×, d 4.0×, e 4.5×, f 5.0×

a great impact on the friction and the micro force between particles, directly
affecting the shear strength of the accumulation of simulation particles.

(3) Based on the comparison of simulation tests, when particles should be ampli-
fied to improve simulation efficiency, the magnification coefficient should be
controlled atm ≤ 4. In the meantime, the simulation parameters should be also
re-calibrated using at least two methods. Only by doing so can the simulation
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Fig. 16 Comparison of
simulation result with
different particle sizes

Fig. 17 Error variation
curve

be more consistent with the reality, thus raising the accuracy of the simulation
results.
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Wind Turbine Condition Monitoring
Based on SCADA Data Co-integration
Analysis

Chao Zhang, Guanghan Zhao, and Yue Wu

Abstract Awind turbine conditionmonitoringmethod based on cointegration anal-
ysis is proposed. The co-integration residual obtained by the co-integration process
of the SCADA data of the wind turbine is used for monitoring the operation state of
the wind turbine. Take the experimental data of a 1.5 MW doubly-fed wind turbine
from Jinjie Company in Baotou City, Inner Mongolia, under different environmental
and operating conditions, and conduct experiments on the proposed method. The
method was tested with known failure cases. The results show that this method can
effectively monitor the running status of wind turbines.

Keywords Cointegration analysis · Condition monitoring · Non-stationary · Wind
turbine

1 Introduction

Wind turbines are the core equipment for wind power generation. Since wind farms
are generally located in areas with complex environments, the generators are greatly
affected by the environment during operation. Once they fail, they will cause serious
economic losses. Therefore, it is particularly important to carry out the monitoring
of the operation status of wind turbines. The existing condition monitoring method
is realized by monitoring the mechanical parameters, among which the more widely
used parameters are temperature, oil and so on. The SCADA system, that is, the data
acquisition and monitoring control system, plays an important role in the field of
wind power generation, monitoring parameters includingwind speed, rotation speed,
temperature, electrical energy, and power. Through the analysis of these data, real-
time monitoring and status evaluation of the operating status of the wind turbine can
be carried out. However, due to the complexworking environment of thewind turbine
and the influence of the environment and the operation of the wind turbine itself, the
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reliability of the SCADA data analysis results of the wind turbine is insufficient,
and the fault parameters cannot be accurately found from the data collected by
the SCADA system, which will eventually lead to the failure of the wind farm.
Effectively grasp the operation level and health status of the wind turbine. Therefore,
it is necessary to find a method that can accurately analyze SCADA data to realize
the status monitoring of wind turbines [1].

Cointegration theory originated from econometrics. Engle and Granger proposed
to analyze the relationship between non-stationary economic variables [2]. This is
an effective statistical method to deal with the long-term equilibrium relationship
of non-stationary time series. Nowadays, the theory of cointegration is also applied
in the field of engineering. The measured signals in the engineering field gener-
ally have long-term non-stationary properties, and there may be long-term dynamic
equilibrium relationships between these signals, and the co-integration theory can be
used to describe the long-term dynamic coordination between non-stationary random
processes in the engineering system relationship.

Based on the method research of data trend analysis and process monitoring,
this paper proposes a new method of wind turbine condition monitoring based
on cointegration analysis [3]. The method of vector regression is used to analyze
multiple parameters, and the residuals generated by the nonlinear trend in the data
are quickly removed through cointegration calculation. Whether the cointegration
residuals obtained by the cointegration analysis of SCADA data is stable or not is
used to indicate the operating status of the wind turbine [4]. This method realizes the
transition from the analysis of a single process parameter to the automatic interpre-
tation and analysis of a large number of process parameters. Compared with other
commonly used data processing techniques such as neural network algorithms, this
method has the advantages of simple implementation and small calculation amount
[5, 6].

2 Cointegration Theory

2.1 Auto Regression Model

The autoregressive model is the most basic and widely used model in the analysis
of random process time series [7]. It describes the linear relationship between the
sequence {x} at a certain time t and the previous p time sequence, expressed as.

xt = ϕ1xt−1 + ϕ2xt−2 + · · · + ϕpxt−p + εt (1)

Among them, the random sequence {εt } is a white noise sequence, and the
sequence {εt } and the sequence {xk}(k < t) are not correlated. The model (1) is
called the p-order autoregressive model, which is denoted as AR.
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2.2 Single Whole

In engineering problems, most of the data are non-stationary time series, which
often cannot meet the requirements of stability, and it is necessary to transform
the non-stationary series into a stationary time series. Single integer definition: If a
non-stationary time series {xt } becomes a stationary and reversible stationary time
series after d-order difference, and the sequence is still non-stationary after d − 1
order difference, then the series is said to have a d-order single Integrity, denoted as
xt ∼ I (d).

Therefore, I (0) can represent a stationary sequence, and I (1) can be represented
as a first-order single integer. Generally, in engineering problems, the single integer
order d ≤ 2.

2.3 Cointegration

Cointegration describes the long-term equilibrium relationship of the engineering
system. It describes the equilibrium relationship of two or more non-stationary time
series. Although the mean, variance or covariance of each time series changes with
time, themoments of some linear combinations (equilibrium relations) of these series
are in some It is immutable at all times. Johansen co-integration test is amulti-variable
co-integration testmethod,which is based on themulti-variable unsteadyVARmodel
[8]. The VAR model is established before the test. Its mathematical expression is:

yt = β1yt + β1yt + · · · + β1yt + c + εt , t = 1, 2, . . . , k (2)

Where C-intercept; ε-white noise; β−n × n parameter matrix;yt =
(y1, y2, . . . yn)

T,yt−1 = (y1−1, y2−1, . . . yn−1)
T ,· · · ,yt−p = (

y1−p, y2−p, . . . yn−p
)T
,

Is an n-dimensional non-stationary I vector.p is the lag term. In addition, the
cointegration relationship can be extended to recointegration:
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The residual ξ is obtained as the condition monitoring model.
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Fig. 1 Wind turbine SCADA data

3 Experiment Analysis

3.1 Experimental Data

TheSCADAdata of 1.5MWdoubly-fedwindgenerator fromBaotou JinjieCompany
is selected as the research object. The unit has a rated wind speed of 11 m/s, a cut-in
wind speed of 3.0 m/s, and a cut-out wind speed of 15 m/s. The experiment selects
the average wind speed, theoretical output power, and actual output power of the
wind turbine in normal operation for co-integration analysis, as shown in Fig. 1.

3.2 Cointegration Model Establishment

Using the method described, a co-integration model is established for the data in
Fig. 1, and x1t , x2t , and x3t are the average wind speed, the theoretical output power
and the actual output power. Perform a first-order difference on the selected data, and
then perform ADF inspection on the original data and the data after the first-order
difference. The test results are shown in Table 1.

When the ADF test value in Table 1 is less than the critical value, it means that the
time series is a stationary series. When it is greater than the critical value, it means
that the time series is non-stationary. It is a stationary variable, which conforms to
the definition of single integration, and the cointegration analysis can be continued.
Use the above wind turbine data and ordinary least squares regression to estimate
Eq. (3) to establish a cointegration model:
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Table 1 ADF inspection
result

Parameter ADF inspection 1% threshold Results
evaluation

x1t −1.07 −2.56 Non-stationary

�x1t −37.78 −2.56 Smooth

x2t −1.53 −2.56 Non-stationary

�x2t −37.23 −2.56 Smooth

x3t −2.14 −2.56 Non-stationary

�x3t −24.86 −2.56 Smooth

ξt = x1t − 0.071285 ∗ x2t + 0.047723 ∗ x3t − 2.608122 (4)

Calculate the standard deviation σ = 2.7 from the above experimental data and
the cointegration model Eq. (4). Perform ADF test on the residual. If the test result
is a stationary time series, it means that the theoretical useful power and the co-
integration model established by the motor power generation have a co-integration
relationship. If it is a non-stationary series, it means that the model has failed to
establish and there is no between variables. Cointegration. ADF test is performed on
the residual ξt . Table 2 shows the test results.

The value of residual ξt in Table 2 after the ADF test is less than the critical value,
indicating that residual ξt is a stationary time series and meets the cointegration
condition. Since ξt conforms to the Gaussian distribution, +

−3σ is selected as the
threshold according to the characteristics of high probability events in probability
theory. Figure 2 shows the residual sequence of the wind turbine in a healthy state.

As shown in Fig. 2, the residuals in the healthy state are all within the threshold
range, and the status of the wind turbine is judged according to whether the residuals
are all outside the threshold range.

Table 2 ADF inspection
result

Parameter ADF inspection 1% threshold Results
evaluation

ξt −12.55 −2.57 Smooth

Fig. 2 Cointegration residuals under healthy conditions
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Fig. 3 SCADA data cointegration residual

Fig. 4 Wind turbine failure time

3.3 Cointegration Model Verification

Take the SCADA data of the same wind turbine running for 1147 h with faults to
verify the model (4), and substitute the data into the cointegration model (4) for
verification. The result is shown in Figs. 3, and 4 shows the fault in the wind turbine
detection report. Time of occurrence.

Figure 4 shows the fault occurrence time obtained in the wind turbine inspection
report. A total of 14 faults have occurred. In Fig. 3, the residual error exceeds the
threshold for 14 times, which corresponds to the fault detection report. Among them,
the 229th hour and 711.8th hour were earlier than the time of failure in the failure
report, and the alarm was about 30 min in advance.

4 Conclusion

A wind turbine condition monitoring method based on wind turbine SCADA data
co-integration analysis is proposed. The residual error model is calculated using the
wind turbine SCADA data co-integration process, and a known 1.5 MW doubly-fed
wind turbine fault is used. The data is used to test the residual model. The results
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show that this method can effectively monitor whether the wind turbine operating
state is abnormal through the deviation degree of the residual error. Compared with
other commonly used data processing techniques and neural network algorithms,
this method has the advantages of simple implementation and low cost.
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Improvement and Application
of YOLOv3 for Smartphone Glass Cover
Defect Detection

Yuan Cheng, Jigang Wu, Jun Shaov, and Deqiang Yang

Abstract Smartphone glass covers defects detected by human,which is inefficiency,
high costs, low detection accuracy and labour intensive, while the automatic detec-
tion methods based on traditional machine vision is poor flexibility, low yield and
poor generalisation capability. Therefore, this paper introduces YOLO (You Only
Look Once) v3 to smartphone glass cover defects for the first time. The YOLOv3
algorithm was improved for the actual characteristics and specific requirements of
defect detection. First of all, the channel attention mechanism SENet (Squeeze and
Excitation Networks) was added to the feature extraction network to detect incon-
spicuous defect features. Moreover, a 104 × 104 scale detection layer was added to
the YOLOv3 detection network to solve the problem of multi-scale defects. Finally,
the scaling factor coefficient of the BN (Batch Normalization) layer in the convo-
lutional network is used as the important factor for model pruning to improve the
defect detection speed. The improved YOLOv3 algorithm is applied to smartphone
glass cover defect detection, and a high accuracy and high detection speedmethod for
smartphone glass cover defects is proposed. 15,914 production site images covering
four types of defects, including chipped edges, pits point, soiling and scratches, were
obtained from smartphone glass cover manufacturers, 14,321 were annotated as the
training set and 1593 were used as the test set to compare and analyse the proposed
method and the original YOLOv3 algorithm in this paper. These experiments showed
that the mAP (mean average precision) of the detection was 81.0% and the detection
speed was 43.1 sheets/s. Compared to the original YOLOv3 algorithm, the mAP of
the detection increased by 3% and the detection speed increased by 6.7 frames/s,
which meets the need for high precision and efficient detection of defects in the
industrial production of smartphone glass covers.

Keywords Mobile phone glass covers · YOLOv3 · Channel attention mechanism ·
Model pruning

Y. Cheng (B) · J. Wu · J. Shaov · D. Yang
Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan
University of Science and Technology, Hunan Province, Xiangtan 411201, China
e-mail: chenghnust@163.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_10

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_10&domain=pdf
mailto:chenghnust@163.com
https://doi.org/10.1007/978-3-030-99075-6_10


106 Y. Cheng et al.

1 Introduction

Smartphone screen is the core key component of human–computer interaction, gener-
ally consisting of three parts: display module, touch module and glass covers, the
glass cover is located in the outermost layer of the screen, which is the solid shell
and touch medium of the screen.With the rapid development of artificial intelligence
and the arrival of the 5G era, smartphones have become a necessary tool [1], and
people’s quality requirements for smartphones are getting higher and higher. Smart-
phone glass covers inevitably produce all kinds of defects during the production
process, such as chipped edges, scratches, soiling, pits point and so on. In order to
meet the high quality requirements of users for smartphones, manufacturers must
carry out 100% quality checks on smartphone glass covers to a high standard. At
this stage of mass production, the recognition system depends on a manual inspec-
tion with the aid of such tools as bright lights and magnifying glasses. Restricted by
human subjective awareness and experience, this inspection method is characterized
by inefficiency, high costs, high false detection rates and labour intensive. Therefore,
it is important to study the method of detecting defects in mobile phone glass covers
to replace manual labour.

Smartphone glass cover defect detection puts forward the following requirements
for automatic detection methods: (1) good flexibility of the detection method, which
can adapted to various types of defects; (2) strong generalization ability of the detec-
tion method, which can adapted to the characteristics of defect features such as
inconspicuous andmulti-scale; (3) good real-time detectionmethod, which can adapt
to the beat of mass production; (4) high detection accuracy, which can completely
replace manual detection. Currently, the defect detection of the smartphone cover
glass is investigated with differential image method [2, 3], background elimination
method [4] and threshold segmentation method [5, 6] in machine vision. The tradi-
tional methods generally only detect defects of a certain type or defects with periodic
textures, which cannotmeet the requirements of flexible inspection.At the same time,
these methods are heavily influenced by noise, resulting in poor detection accuracy.
In recent years, deep learning-based target detection algorithms [7–10] have made
significant improvements in detection accuracy and efficiency relative to traditional
methods by building a variety of different network structures, paired with the use
of powerful training algorithms to adaptively learn the representation of high-level
semantic information in images [11]. In the study of surface defect detection, the
YOLOv3 [12] algorithm has shown better detection accuracy and detection speed.
Zhang Guangshi et al. [13] used the YOLOv3 algorithm to detect smear marks and
missing defects in gears. Weigang [14] and others used the YOLOv3 algorithm to
detect defects such as pressed-in iron oxide, patches and cracks on the surface of strip
steel. Hongcai et al. [15] used the YOLOv3 algorithm on pharmaceutical glass bottle
defect detection and was able to effectively detect defects such as tube end residue,
gas lines, bubbles, scratches, stains and stones on glass bottles. Although the YOLO
v3 algorithm can provide flexible detection of surface defects, it requires distinc-
tive defect features and a small scale span, and further improvements are needed in
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terms of real-time detection. There is no research on mobile phone glass cover defect
detection using the YOLOv3 algorithm.

This article introduces YOLOv3 to the defect of the smartphone glass cover for
the first time. In view of the actual characteristics and specific requirements of defect
detection, the YOLOv3 algorithm is improved. The channel attention mechanism
SENet [16] is added to the feature extraction network to solve the problem of unob-
vious defect features, a 104 × 104 scale detection layer was added to the YOLOv3
detection network to solve the problem of multi-scale defects, and the scaling factor
coefficient of the BN (Batch Normalization) layer of the convolutional network is
used as the importance factor for model pruning to improve the defect detection
speed. On this basis, the improved YOLO v3 algorithm is applied to the defects of
the smart phone glass cover, and a high-precision and high-speed detection method
for the defects of the smart phone glass cover is proposed. From the smartphone
glass cover manufacturer, 15,914 pictures of the production site covering 4 types
of defects such as chipping, pits, dirt and scratches were obtained. 14,321 pictures
were marked as training sets and 1593 pictures were used as test sets. The proposed
method and the original YOLOv3 algorithm are compared and analyzed.

2 Introduction of YOLOv3

2.1 YOLOv3 Detection Principle

YOLOv3 was proposed by Redmon in 2018, the algorithm works by dividing the
image containing the detected target into a S × S grid, with the width and height
of the grid noted as cx ,cy . When the centre of the target object falls into a grid cell,
the coordinates of the relative centroid related to the upper left corner of the grid
(σ (tx ), σ (ty)), as well as the relative width tw and relative height th, would be output
by the grid. As a result, the final target prediction frame can be obtained with the
actual position, including width and height of the grid [17], which as shown in Fig. 1.

In the figure, the red box is the actual prediction box and the dashed box is the
priori bounding box. The center point coordinates bx , by), width bw and height bh of
the prediction box can be obtained by the arithmetic of YOLOv3, where:

bx = cx + σ(tx ) (1)

by = cy + σ(ty) (2)

bw = pwe
tw (3)

bh = phe
th (4)
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Fig. 1 Schematic diagram
of the YOLOv3 prediction
box

2.2 YOLOv3 Network Framework

The darknet-53 network is used to the feature extraction network of YOLOv3, and
its network structure is shown in Fig. 2.

During the detection process, three feature maps with different scales would be
generated by YOLOv3, whose sizes are 13 × 13, 26 × 26 and 52 × 52, with each
feature map corresponding to a different field of perception and priori bounding box.
The feature mapwith the size of 13× 13 has a larger field of perception and the priori
bounding box is relatively large, making it suitable for larger objects. The objects of
medium size can be detected by the feature map with the size of 26× 26. The feature
map with the size of 52 × 52 has a smaller field of perception and the corresponding
a priori frame is relatively small, which is suitable for the detection of small objects.

3 Improvements in YOLOv3

3.1 Channel Attention Mechanism SENet

The importance level of each channel is not considered in the feature extraction
process of YOLOv3, which would induce the poor extraction of useful information.
Therefore, the channel attention mechanism SENet is incorporated with a view to
improving the feature extraction network of YOLOv3 algorithm.
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Convolutional

Type Filters Size Intput Output
32 3×3/1 416×416×3 416×416×32Convolutional

64 3×3/2 416×416×32 208×208×64Convolutional
32 1×1/1 208×208×64 208×208×32Convolutional
64 3×3/1 208×208×32 208×208×64Convolutional

64 1×1/1 104×104×128 104×104×64Convolutional
128 3×3/1 104×104×64 104×104×128Convolutional

208×208×64Residual
128 3×3/2 208×208×64 104×104×128Convolutional

104×104×128Residual

128 1×1/1 52×52×256 52×52×128Convolutional
256 3×3/1 52×52×128 52×52×256Convolutional

256 3×3/2 104×104×128 52×52×256Convolutional

52×52×256Residual

128 1×1/1 26×26×512 26×26×128Convolutional
512 3×3/1 26×26×128 26×26×512Convolutional

512 3×3/2 52×52×256 26×26×512Convolutional

26×26×512Residual

512 1×1/1 13×13×1024 13×13×512
1024 3×3/1 13×13×512 13×13×1024Convolutional

1024 3×3/2 26×26×512 13×13×1024Convolutional

26×26×1024Residual

Avgpool Global

Connected 1000

Softmax

Fig. 2 Structure model of the darknet-53 network

The convolutional feature channel interrelationship is adopted by SENet for
modelling, and channel responses in specific layers of the convolutional neural
network are reassigned to enhance the extraction of useful information. Three main
components, namely Squeeze, Excitation and Weight Assignment, are contained in
the module, with the basic structure shown in Fig. 3.

Fig. 3 Basic structure of the SENet



110 Y. Cheng et al.

The channel attentionmechanism initially performs a conversion operation,which
is represented as a convolution operation in practice. In the conversion operation, the
input features are x , the output features are U , and the convolution kernel is V .

Squeeze operation encodes the featuremap,which is obtained from the conversion
operation, compressing the two-dimensional feature map on each channel into a real
number with a global perceptual field. The number, which is obtained from the global
average pooling formula, represents the original weight of the channel, which can
be calculated as follows:

zc = Fsq(uc) = 1

H × W

H∑

i=1

W∑

j=1

uc(i, j) (5)

The obtained channel raw weights can be normalized by the excitation operation
with a multilayer perceptron containing multiple layers, which is composed of a
fully connected layer, ReLU activation function, a fully connected layer and Sigmoid
activation function. The final weights of each channel can be expressed as sc, which
can be calculated as follows:

sc = Fex (z,w) = σ(g(z,w)) = σ(w2δ(w1z)) (6)

where: δ is the ReLU activation function and σ is the Sigmoid activation function.
The weight assignment operation assigns weights sc to each channel in the output

feature map U , after the conversion operation obtains the final output x̃ , which can
be calculated as follows:

x̃ = Fscale(uc, sc) = uc ⊗ sc (7)

⊗ denotes element-by-element multiplication, and SENet enables the assignment
of weights to channels in the above manner.

3.2 Improvement of Feature Detection Network

Smaller defects are generated in the manufacture process of the mobile phone glass
covers. The smallest perceptual field of YOLOv3 corresponds to the feature map
with the size of 52 × 52, which is obtained by downsampling the input image with
a factor of 8. Therefore, YOLOv3 has a poor performance in detecting targets with
pixels within the range of 8 × 8.

In this paper, the detection network of the YOLOv3 algorithm has been upgraded,
so that its ability to detect small targets can be enhanced.The improveddetection layer
is based on the original feature maps and continues to perform 4-fold downsample to
obtain 104× 104 scale of featuremaps. Combinedwith the channel attentionmodule,
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DBL Res Upsample Out= =Conv BN Leaky ReLU DBL DBL Add SE

13×13

26×26

52×52

104×104

Input

1× 2× 8× 8× 4×

Fig. 4 YOLOv3-improve1 detection network

the improved YOLOv3 network can be obtained and denoted as YOLOv3-improve1,
as shown in Fig. 4.

In the figure, Conv as a 5-layers convolutional layer, is composed of 3 × 3 and
1 × 1 convolutional with different convolutional kernel sizes. The solid blue boxes
refer to the feature extraction network of YOLOv3 and the red dashed boxes refer to
the added detection layers. There are 4 dimensional feature maps for the improved
YOLOv3, namely 13 × 13, 26 × 26, 52 × 52 and 104 × 104, each of which is
assigned with 12 anchor boxes in descending order. The feature map 104 × 104
is obtained after the network is improved, which combines the deep information
contained in the 109th layer of the network and the shallow information in the 11th
layer, thereby providing a further improvement in small target detection.

3.3 Model Pruning

In the industrial manufacture, a certain detection speed shall be achieved during the
detection process with the aim of ensuring the balance in the assembly line. The
parameters of YOLOv3 are large and computationally intensive, and the computing
power has been restricted by the computer terminals on industrial sites. Therefore,
the model operations shall be reduced and the detection speed shall be increased with
guaranteed detecting accuracy. In this paper, the layer pruning and channel pruning
methods proposed by Liu [18] et al. have been adopted.

In network channel pruning, the scaling factor coefficient γ of the BN layer in
the convolutional network is regarded as the important factor. When γ is smaller,
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Initial
network

Prune channels 
with small 

scaling factors

Train with 
channel sparsity 
regularization

Fine-tune the 
pruned 
network

Compact 
network

Fig. 5 Diagram of the pruning process of the YOLOv3 model

the corresponding channel is less important and can be pruned. The objective
optimisation function of the algorithm as a whole is as follows:

L =
∑

(x,y)

l( f (x,W ), y) + λ
∑

γ∈�

g(γ ) (8)

where: the first term refers to the model prediction loss and the second term refers to
the canonical term about γ . γ is a hyperparameter used for weighing the two terms,
generally assigned as 1e−4 or 1e−5, g(∗) with the expression g(s) = |s|, and the
L1 paradigm. The overall pruning process is shown in Fig. 5.

4 Experiments and Results Analysis

4.1 Experimental Platform

The experimental platform is Supermicro infreesys server, with operating system:
Ubuntu 18.04LTS,CPU: IntelW2123,memory: 32G, graphics card:NVDIAGeforce
RTX2080Ti× 2, and videomemory: 16 GB× 2. Deep learning framework: Pytorch.

The dataset used in this experiment was shot at the production site, the types of
defects were divided into four categories: chipped, pit point, scratching and soiling,
with the specific defect images shown in Fig. 6.

A total of 15,914 images were collected in this dataset, and they were marked
with labelImg software. The dataset for this study was generated according to the

(a) Chipped edge (b) Pit point (c) Scratching      (d) Soiling

Fig. 6 Defect map of the mobile phone glass covers
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Table 1 Priori bounding boxes sizes for each algorithm

Algorithms The size of priori bounding boxes

YOLOv3 8,11 11,13 9,17 13,12 11,16 15,17 14,21 35,13 39,20

YOLOv3-improve1 8,11 11,13 9,17 13,12 11,16 15,17 14,21 35,13 39,20 16,50 23,39 28,58

YOLOv3-improve2 8,11 11,13 9,17 13,12 11,16 15,17 14,21 35,13 39,20 16,50 23,39 28,58

VOC dataset format required by YOLOv3. The dataset was divided into the training
dataset and the test dataset in the ratio of 9:1, with a total of 14,321 photos in the
training dataset and 1593 photos in the test dataset.

The algorithm obtained by model pruning based on YOLOv3-improve1 is named
YOLOv3-improve2. The dataset was trained and tested with YOLOv3, YOLOv3-
improve1 and YOLOv3-improve2 algorithms. The number of samples per batch was
set to 16 with subdivision = 8. The input image size was set to 416 × 416 × 3,
where 3 was the number of image channels. Besides, the momentum was set to 0.9.
The YOLOv3 algorithm contained 3 detection layers, with each layer assigned with
3 priori bounding boxes, and 9 priori bounding boxes were required. In contrast, the
YOLOv3-improve1 andYOLOv3-improve2 algorithms contained 4 detection layers,
with 3 priori bounding boxes per layer, 12 priori bounding boxes were required,
besides, their priori bounding boxes were equal in size. According to the k-means
clustering algorithm, the relevant of priori bounding box information is clustered as
shown in Table 1.

4.2 Experimental Results

The experimentswere conducted on three algorithmswith training epochs of 500, and
the Adammethod was adopted as the parameter optimization method. The bounding
box loss values, coordinate loss values, classification loss values, and confidence loss
values were included in the trained loss values of the three algorithms, with the total
loss value comparison curves of the three algorithms shown in Fig. 7.

In the above figure, the loss value of the YOLOv3-improve2 algorithm is obtained
during fine-tuning training, so its initial loss values are relatively low compared to
the other two algorithms; while, the trend is similar to the other two algorithms
during the training process. During the training process, it can be seen that the
YOLOv3-improve1 algorithm and the YOLOv3-improve2 algorithm have approxi-
mately similar loss values, and the decline process is gentle, while the YOLOv3 algo-
rithm has an oscillating situation, with large oscillation fluctuations. From the figure,
it can be seen that the YOLOv3-improve1 and YOLOv3-improve2 algorithms have
overall lower loss values than the YOLOv3 algorithm during the training process.
According to the above analysis, it can be concluded that the improved algorithm is
more effective than YOLOv3.
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Fig. 7 Comparison of training loss values

Compare themeanaverage accuracyvaluemAPofYOLOv3,YOLOv3-improve1,
YOLOv3-improve2, and their comparison graphs shown in Fig. 8. Information about
the three algorithms, including the trained mAP values and the detection speed (how
many sheets per second are detected) is shown in Table 2.

From Fig. 8, it can be seen that the YOLOv3-improve1 and YOLOv3-improve2
algorithms have an overall higher train mAP than the YOLOv3 algorithm. As per
contents inTable 2,YOLOv3-improve1 algorithmhas 3.3% increase in itsmAPvalue
than YOLOv3 algorithm. Due to its deeper network model, its detection speed is 6
sheets/s slower than the original algorithm. The YOLOv3-improve2 algorithm has

Fig. 8 Comparison of training mAP values
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Table 2 Comparison of experimental results

Model Feature
detection
layer

Attention
mechanism

Network
pruning

mAP (%) Detection
speed
(sheets/s)

YOLOv3 3 layers No No 78.0 36.4

YOLOv3-improve1 4 layers Yes No 81.3 30.4

YOLOv3-improve2 4 layers Yes Channel crop
60%,
layer crop 12
layers

81.0 43.1

(a) Soiling detection (b)Pit point detection (c) Scratching detection (d) Chipped edge 
detection

Fig. 9 Mobile phone glass covers defect detection effect

a 0.3% decrease in its mAP value than YOLOv3-improve1, but its detection speed
increases by 12.7 sheets/s compared to YOLOv3-improve1, which is a significant
improvement with less loss of accuracy. In addition, YOLOv3-improve2 algorithm
improves detection accuracy by 3% compared to the YOLOv3 algorithm, while the
detection speed also increases by 6.7 sheets/s. This demonstrates that the improved
algorithm in this paper has a better performance in detection.

YOLOv3-improve2 training weights were adopted to detect mobile phone glass
covers defects, with the results shown in Fig. 9.

According to the above figure, it can be seen that the final YOLOv3-improve2
algorithm provides a more accurate detection method of mobile phone glass covers.

5 Conclusion

The detection of smartphone glass cover defects using manual methods, which is
inefficient, costly, low detection accuracy and labour intensive, while the detection
methods using traditional machine vision is poor detection flexibility, low yield and
poor generalisation capability. Therefore, this paper adopts the YOLOv3 algorithm
for defect detection on smartphone glass covers, and improves the YOLOv3 algo-
rithm for the specific requirements and practical characteristics of defect detection.
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The channel attention mechanism SENet is added to the Darkent-53 network to solve
the problem of inconspicuous defect features, a 104 × 104 scale detection layer was
added to the YOLOv3 detection network to solve the problem of multi-scale defects,
and the scaling factor coefficient of the BN layer of the convolutional network is
used as the importance factor for model pruning to improve the detection speed.
A large number of photographs covering chipped edges, scratches, pits and dirty
defects were taken from a smartphone glass cover manufacturing company to make
a training dataset and a validation dataset. The proposed method and the original
YOLOv3 algorithm are compared and analysed, and the results showed that the
algorithm outperforms the original YOLOv3 algorithm in all aspects, not only in
terms of real-time performance, but also in terms of detection accuracy, meeting the
need for high precision and efficient detection of defects in the industrial production
site of smartphone glass covers.
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Optimization and Design of Efficiency
and Quality of a Company Based
on Value Stream Analysis

Guo Jidong, Qiu Zixuan, Huang Zehao, Wu Jiaqi, Zheng Jianxin,
Tan Runjia, Lai Lijuan, and Zhou Dawei

Abstract A company mainly produces varistor (e-var). Through observation and
analysis, the e-var production line of company a has problems such as low produc-
tion efficiency, high rate of defective products, more in-process products, nonstan-
dard operation of production line and long waiting time. This paper explores and
improves the above problems by the methods of value flow chart analysis, 5W1H
method, ECRS principle, standard operation sequence, rapid model change, setting
up control experiment and causal chart. The e-var production line is integrated and
standard work is formulated. The die changing can be realized quickly in the pressing
process, and the quality problems of the products are comprehensively managed.
After improvement, company a has improved production efficiency and the rate of
defective products decreased significantly, reducing production cost.

Keyword Value flow chart · ECRS principle · Rapid mold change · Defective
product rate · Control experiment · Causal char

1 Analysis of Workshop Status of Production Line

In recent years, with the rapid development of global economy, the domestic market
demand for varistor (e-var) is increasing year by year, and the competition among
enterprises in the industry is becoming more and more fierce. How to improve its
competitiveness and become a leading enterprise in the electronic industry is an
urgent problem for a company.

The company is a manufacturing enterprise, its main business is the production
and sales of e-var products, with an intelligent e-var production line, which adopts
pull production mode. There are many problems in the production line, such as long
waiting time, low efficiency, nonstandard operation, large WIP inventory and high
defective product rate.Nowadays, themarket demand for e-var products is increasing.
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In order to better meet the market demand, adapt to market changes, achieve high
quality and high qualified rate of flexible production, effectively improve the quality
of e-var products, improve production efficiency, eliminate waste, and become a
leader in the competitive e-var production industry, it is imperative to improve and
optimize the company [1]. This paper selects the E-VAR production line as the
research object, and uses the innovative method of value flow analysis to make the
current value flow diagram of the product, as shown in Fig. 1.

According to the data reflected in the value flow chart, the following problems
can be found through careful investigation in the corresponding stations:

1. In the layout of the whole production line, there is no reasonable design and
planning. In the production process, it is easy to cause confusion ofWIP, unnec-
essary waste of time and WIP inventory. At the same time, the process distribu-
tion is not balanced, many operations do not conform to the principle of action
economy in production, the workload increases and the production efficiency
is low, so it is necessary to integrate and adjust the process.

2. In the production process of the tablet pressing process, it is observed that the
die changing process needs to be carried outmanually by the staff, and thewhole
process from the disassembly of the die to the formal operation is operated by
one person, and the staff is responsible for the whole process by one person,
and there is no distinction between internal operation and external operation.
All the die changing preparations are carried out after the shutdown, which is
typical waste in traditional die changing. It is necessary to improve the process
of rapid die change [2].

3. The production line lacks unified and standard on-site management. Taking the
glass spraying process as an example, due to the great differences in the loading
and unloading sequence of different employees, the operators are accustomed
to the operation and material placement in the production process. As a result,
the total processing time of different batches of parts is inconsistent, and the
ideal standard operation sequence is lacking [3].

4. It can be found from the current value stream map that after 8/20 test and 2 ms
test, the first pass rate of the product in the film selection post is low, and the
rework rate is high, which indicates that there are problems in the previous
process. It is found that the top four quality problems that lead to e-var product
scrap are crack, deformation, impurity and crack, accounting for 48%, 23%,
12% and 10% respectively.

2 Optimization of Product Efficiency

2.1 Process Improvement

Through the data reflected in the value flow chart and careful investigation in
the corresponding work station, it is found that the vehicles of WIP are changed
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frequently from the decarbonization process to the glass spraying process. Among
them, the waiting time for glass spraying is as long as 6 h, and the quantity is 17640
Pcs. Due to the limited capacity of WIP in the area to be sprayed, the loading limit
is 14112 pcs, so the WIP in the area to be sprayed can only be temporarily stored in
the forklift area (Table 1).

In order to explore the problem of WIP accumulation, the following points can
be found through 5W1H analysis method:

1. The serious accumulation of work in process (WIP) of glass to be sprayed is
due to the long feeding time of employees, the serious waiting waste of glass
spraying equipment and WIP, which has great room for improvement.

2. In order to reduce the waste of time, two employees should be responsible for
unloading sagger and sweeping powder respectively.

3. The powder sweeping station is mainly responsible for cleaning and packing the
WIP. The use of pearl cotton is to prevent the impurities attached to the cleaned
WIP. According to the principle of ECRs, the current process is integrated, and
the integration content is shown in Table 2.

The comparison of the steps from sintering to glass spraying before and after the
improvement is as follows (Figs. 2 and 3).

After the improvement of the process flow, we can see the comparison of the
improvement effect as shown in the table below.

According to Fig. 4, the equilibrium rate of the process can be calculated. Before
improvement, the balance rate was (1.03 + 1.79 + 2.45)/(2.45 * 3) = 71.7%, after
improvement, the balance rate was (0.94 + 1.28 + 0.9)/(1.28 * 3) = 81.3%, and
the process balance rate increased by 9.6%.The single cutting time of employees
decreased by 46.2%, the single feeding time decreased by 74.6%, the processing
time of unit parts decreased by 43.7%, and the process balance rate increased by
9.6%.

Table 1 Vehicle changes in each process

Working procedure Vehicle changes in WIP Operator required

Carbon removal Carbon removal rack No

A sagger Carbon removal rack → sagger Yes

Sinter Sagger No

Unloading saggers Sagger → pearl cotton Yes

Loading Pearl cotton → feeding plate Yes

Spray glass Loading tray No

Cutting Feeding tray → decarbonization rack Yes
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Table 2 ECRS principles process integration table

Before improvement Project After improvement

After sweeping powder, employee B
put the work in process into pearl
cotton and packed it. Then employee
C disassembled the pearl cotton and
took out the work in process with
clean surface to finish feeding

Cancel In order to prevent dust and other
impurities from contacting the work in
process, the work in process finished
by powder sweeping process is packed
and packed with pearl cotton. If the
work in process is powder swept before
feeding by C staff, the use of pearl
cotton can be completely cancelled

After the sagger unloading and
powder sweeping and packing are
completed in the sintering workshop,
the employees transport the products
in process to the glass spraying area
and wait for glass spraying

Merge Let the sagger unloading station,
powder sweeping station and feeding
station be adjacent to each other, and
combine the three steps of sagger
unloading, powder sweeping and
feeding. After employee a completes
sagger unloading, employee B sweeps
powder immediately, and employee B
places the WIP in the transition tray
after powder sweeping, which is
convenient for employee C to feed. It
makes unloading sagger, sweeping
powder and feeding a continuous
process

Employee C needs to move the WIP
to the waiting area and unload the
pearl cotton

Rearrangement Before loading, the loading station
needs to transport the WIP to the
waiting area and unload the pearl
cotton. After the stations were merged,
the work of transporting saggers to the
waiting area and unloading saggers
was handed over to staff a, which
improved the operation efficiency of
the three stations

When employee C is loading or
unloading, only two WIPs can be
taken at the same time with both
hands until the loading tray is full or
empty

Simplify Using the mobile suction cup instead
of manual loading and unloading,
employees can operate the mobile
suction cup to complete the loading or
unloading of 6 WIPs at one time

Fig. 2 Process of WIP from sintering to glass spraying (status quo)

Fig. 3 Process of WIP from sintering to glass spraying (after improvement)
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Fig. 4 Comparison of improvement effect of unit parts processing schedule

2.2 Rapid Die Change in Tablet Pressing Process

The tablet pressing machine in the tablet pressing workshop is pneumatic, and each
tablet pressing machine is operated by one person. There are more than 100 kinds of
pressing molds (upper punching mold, middle punching mold and lower punching
mold).Through observation, it is found that the mold changing process needs to be
carried out manually by employees, and the whole process from the disassembly of
the mold to the formal operation is operated by one person, so there is great room
for improvement.

Use video equipment to record the die change of the pressing process, disassemble
and record the steps, count the time of the main steps, and draw the statistical Table
3 of the die change step time.

Table 3 Time statistics of die changing steps

Serial number Step Time/min Proportion (%)

1 Remove the mold 20 18.5

2 Clean the mold 5.5 5.1

3 Adjustment 11 10.2

4 Prepare the mold 7 6.5

5 Install the mold 35 32.4

6 Finishing mould 6.5 6

7 Commissioning and adjustment 15 13.9

8 Loading 8 7.4

9 Official operation – 0

Total – 108 100
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Fig. 5 Ideal die changing procedure

It can be observed that the employees are responsible for the whole process by one
person, and there is no difference between internal and external operations. All the
preparation for die changing starts after the machine stops, which is typical waste in
traditional die changing. Therefore, this paper distinguishes the internal and external
preparation time, and designs the ideal die changing process of pressing process.
According to the sequence relationship between the pressing steps, the ideal die
changing step diagram can be drawn as follows (Fig. 5).

In practice, all external operations, such as taking the mold, adjusting the mold
width, sorting materials, etc., can be carried out before the mold change, while
cleaning the mold can be carried out after the mold change. There is no conflict
between the steps of adjusting the mold and installing the mold. In order to realize
the ideal die changing step and shorten the die changing time, the method of parallel
operation can be implemented, so that the single person’s pressing process can be
changed into two persons parallel operation [4]. The specific plan is to arrange an
employee y to prepare for die change and arrange materials when employee x is in
the tablet pressing process. When employee x dismantles and installs the mold after
completing the pressing process, employee y will recycle the materials, clean the
used mold and adjust the machine (Fig. 6).

After the rapid die change, part of the internal operation is converted into external
operation. The internal operation time is reduced from 108 to 78min, and the external
operation time is increased to 30 min. finally, the proportion of internal operation
time is reduced by 27.8%. According to the ideal die changing process, a single
die changing can achieve the goal of reducing the internal operation time of die
changing by 30 min. The company’s single die changing machine can change 120
times a month, which can reduce the internal operation time of die changing by
3600 min per month.

Fig. 6 The process diagram of die changing in the ideal pressing process
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2.3 Process Operation Standardization

The glass process is operated by one person. The specific steps are as follows: first,
take down the glass sprayed work in process from the charging tray, move it to
the decarbonization tray, then put the full amount of decarbonization tray into the
decarbonization rack, and then take out the empty decarbonization tray from the
decarbonization rack and move it to the position in front of the charging tray before
feeding. When feeding, you need to take the WIP from the pearl cotton on the left
side, and then take the full amount of the upper material tray to start the machine.
It can be observed that employees have a lot of repetitive actions. The proportion
of staff loading and waiting for machine conveying tray is the largest in the whole
time, which is as high as 47% and 22% respectively, and there is much room for
improvement (Table 4).

According to the field observation, it is found that there are two reasons for the
long time of glass loading and unloading operation.

1. Employees need to take WIP from the pearl cotton on the left side for feeding,
and they can only take 2 WIP at a time until the feeding tray is full. In the
process of feeding, there are a large number of employees turning back and forth,
squatting and standing up, and each machine loading and unloading position is
only operated by one employee, resulting in the action cycle time (CT) in glass
spraying process is the longest in all processes.

2. Employees start up the machine after feeding, wait for the machine to finish
processing and then send the next tray. Each waiting time is as long as 30 s,
there is a serious waste of waiting.

Due to the great difference of loading and unloading sequence of different
employees, the total processing time of different batches of parts is inconsistent,
and the ideal standard operation sequence is lacking. In order to improve production
efficiency and reduce the amount of labor, this paper determines the ideal standard
operation sequence.

Through the observation records, it is found that the decarbonization tray full of
work in process does not affect the staff’s feeding, and there is a lot of waiting waste

Table 4 Comparison of die changing time

Project Before improvement After improvement

External time Internal time External time Internal time

Time/min 0 108 30 78

Proportion (%) 0 100 27.8 72.2

Total duration/min 108

Improvement effect After the improvement, the internal operation time was reduced by
30 min

Increase proportion After improvement, the proportion of internal working time decreased
by 27.8%
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Fig. 7 Standard operation sequence of glass spraying process

Fig. 8 Time lapse diagram of glass spraying process operation steps

after the staff starts themachine. The staff can complete the feeding immediately after
the blanking step, start the machine after the feeding, and use the processing time
of the machine to complete the replacement step of the decarbonization tray, which
saves a lot of waiting time. The efficiency of glass spraying process is improved. The
ideal standard operation sequence is shown in Fig. 7.

According to Fig. 8, after the improvement, the internal time is converted to
the external time, and the waiting waste of the equipment is reduced. Finally, the
processing time per unit part of glass spraying process is reduced from 135 to 119 s,
reducing by 11.9%.

3 Optimization of Product Quality

It can be found from the current value stream map that after 8/20 test and 2 ms test,
the first pass rate of the product in the film selection post is low, and the rework rate
is high, which indicates that there are problems in the previous process. According
to the first pass rate of the value stream diagram, we should pay attention to the
pressing and sintering process. The first pass rate of the pressing process is 86%, and
the first pass rate of the sintering process is 88%. The proportion of scrapped e-var
products due to quality problems is 11%. Statistical analysis of unqualified e-var
products shows that the top four quality problems causing scrapped e-var products
are crack, deformation, impurity and cracking, accounting for 48%, 23%, 12% and
10% respectively.

Combined with the actual field observation, through the 5W1H analysis method,
it is found that the quality problems of e-var products will lead to low product
qualification rate, high rework cost and prolonged production cycle [5]. Among
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them, if the product is mixed with impurities, it will directly lead to unqualified UV
performance; Product deformation will lead to product specification problems; The
problems of crack and cracking will lead to the product cannot bear the voltage, so
it will be scrapped.

3.1 Process Improvement

(1) Setting up experiments to explore the causes of cracks.
A batch of experimental products were obtained, 10 WIPs were randomly taken

out after the pressing process, 10 WIPs were randomly taken out after the decar-
bonization process, 10 WIPs were randomly taken out after the sintering process,
10 WIPs were randomly taken out after the tempering process, and the rest were put
into the semi-finished product warehouse. All the work in process products randomly
taken out were grouped according to the process and Hiwave scanning was carried
out to obtain the experimental images. Figures 9, 10, 11 and 12 are the images of
each experimental group after Hiwave scanning.

Through the experiment, it is found that the crack is a problem existing after
pressing, and it can be judged that the crack is a quality problem produced in the
pressing process. One third of the in-process products with chip selection and rework
have cracks, which leads to the decrease of the first pass rate and rework rate of the
chip selection process.

After the investigation of the production equipment, it is found that the oil pump
of one tablet press has been replaced. The oil pump of the tablet press is used to
observe the pressure, and the amount of oil discharged is used as the display value of
the pressure parameters for employee’s reference. For the requirements of different
batches of products, the displayed parameter values have errors. The reason is that

Fig. 9 Hiwave sound
scanning image after
pressing
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Fig. 10 Hiwave acoustic
scanning image after carbon
removal

Fig. 11 Hiwave scanning
image after sintering

one night the machine broke down. When the maintenance department repaired the
machine, it did not communicate with the engineer effectively and directly replaced
thematching oil pump.However, the same type of oil pump cannotmeet the threshold
requirements of the original matching oil pump. For different batches of products,
even if the machine parameters are adjusted to the maximum, it still cannot meet
the production requirements. The next day, the engineer went to work and did not
realize the problem, which led to the product crack quality problem, and entered the
next process, the product scrap rate increased.

(2) The control group was set up to explore the causes of impurities and
deformation.

A batch of experimental products were obtained and divided into 4 groups on
average. A ZnO plate was placed between the product and the sagger in each group,
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Fig. 12 Hiwave scanning
image after tempering

so that the bottomof the product and the saggerwould not contact each other. Put them
in the same sintering furnace for sintering process. Table 5 is the control experimental
process table to explore the influence of “impurities” and “deformation” on e-var.

Through the control experiment, the experimental data record table can be
obtained, as shown in Table 6.

It can be seen from the control experiment that the mean absolute value of the
difference between the center point and the plane of the sample in group B is the
smallest, that is, the deformation degree of the work in process of the new ZnO pad
is the smallest, while that of group A is the larger. It can be judged that using the new
ZnO plate during sintering can effectively reduce the influence of the deformation
problem on the quality of the work in process. The number of impurities in group
C sample is the least after sintering. It can be judged that a layer of ZnO plate on
the work in process before sintering can effectively isolate the contact between work
in process and impurities, and can effectively reduce the deformation of work in
process.

(3) Explore the causes of cracking.
The cause of e-var product cracking was investigated from five aspects of human,

machine, material, method and environment by using causality diagram. Figure 13
is a cause-and-effect diagram based on field investigation.

During the 3-day investigation, the team found the following problems:

1. There are inexperienced employees and non-compliance with the provisions of
the standard operating manual. According to the standard operation manual,
the saggers in process can only be stacked in 5 layers, while some employees
stack 6 layers in the process of loading saggers, ignoring the provisions of the
standard operation manual.

2. Forklifts or trolleys carrying e-var products vibrate greatly during transportation,
which will lead to the displacement of work in process products and make
work in process products touch the carbon removal disk or sagger wall, and
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Table 5 Comparative experimental process of exploring the influence of impurities and deforma-
tion on e-var

Group Type Experiment content Description of control group
and experimental group

Group A Control group Old ZnO plate is placed
between the product and sagger

ZnO board is recycled, too
many times of use, ZnO board
will appear the phenomenon of
bending deformation

Group B Experience group A new ZnO plate is placed
between the product and the
sagger

This group is to explore the
influence of ZnO plate
deformation on products

Group C Experience group The old ZnO plate is placed
between the product and sagger,
at the same time, a layer of old
ZnO board is also padded on the
products

One more ZnO plate is used to
separate sagger cover from
WIP. Because after
high-temperature sintering, the
powder (impurities) on the
sagger cover will adhere to the
product, which is difficult to
clean through the powder
sweeping process

Group D Experience group The old ZnO plate is padded
between the product and the
sagger, and the product is
turned over at the same time

After tabletting, employees
randomly put the work in
process on the decarbonization
rack. After the work in process
enters the decarbonization
furnace, the surface becomes
smooth, and there will be more
powder on the lower surface. If
the product is not flipped, the
lower surface of the sintering
process will adhere to the
broken powder. The purpose of
product turnover in the
experimental group is to
explore whether the turnover of
the upper and lower surfaces
will affect the product quality

Table 6 Relevant experimental data

Project Group A Group B Group C Group D

Central point 4.657 4.65067 4.65267 4.65033

Plane 4.733 4.646 4.68733 4.735

Absolute value of difference 0.078667 0.022 0.037333 0.084667

Impurity rate (%) 10 6.7 0 6.7



132 G. Jidong et al.

Fig. 13 Cause-and-effect diagram of e-var product quality problem

the collision during transportation will lead to the cracking of work in process
products.

3. The toughness of work in process is poor before sintering. If it is impacted by
a large force, a gap will be formed.

4. In the process of manual installation of carbon removal rack and sagger, due to
negligence, the work in process collides with the plate wall and sagger wall, or
the work in process collides with each other, which will lead to the cracking of
work in process.

5. The workshop is dusty, the SOP is thick and full of dust, and the visibility is
low, which is not conducive for employees to comply with the SOP.

To sum up, “impurity” and “deformation” are produced in sintering process,
“crack” is produced in tablet pressing process, “cracking” is produced in the process
of loading sagger and removing carbon frame.

3.2 Solutions to Product Quality Problems

3.2.1 Replacing Equipment Parts to Solve Crack Problem

In view of the crack problem, the matching oil pump of the original model should be
replaced immediately, and whether the tablet press can meet the production demand
should be detected. Set up a maintenance record form. The maintenance department
shall make detailed records on the form every time the equipment parts are replaced
in the future, and submit feedback to the quality inspection department after main-
tenance. The quality inspection department should first check the contents of the
maintenance record form and confirm the relevant maintenance records when going
to work every day. In daily production, the enterprise should check the machinery
and equipment every six months to know whether the equipment can meet the actual
production demand [6].
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3.2.2 Put in Isolation Board to Solve the Problem of Impurity
and Deformation

In view of the problem of impurities, a layer of ZnO plate should be covered on
the work in process to isolate the work in process and the sagger cover, to prevent
the sagger cover from dropping powder and impurities sticking to the surface of the
work in process.

In view of the deformation problem, if the employees find that the ZnO plate has
bending deformation problem during sagging, they need to replace the new ZnO
plate sagging.

Through the contrast experiment, it can be found that a layer of ZnO plate on the
work in process can effectively reduce the impurities and deformation of the work
in process. Aiming at the problem of using times of ZnO board, this paper obtained
a batch of ZnO experimental products, labeled each piece of ZnO, measured the
deformation of all ZnO boards after each sintering, took the absolute mean value of
the difference between the center point and the plane, and drew the variation diagram
of auxiliary production times and deformation of ZnO board, as shown in Fig. 14.

It can be seen fromFig. 14 that the deformation of ZnOplate increases after several
times of auxiliary production. After the first 16 times of auxiliary production, the
deformation of ZnO did not exceed the deformation index of 0.04. Since the 17th
time, the deformation of ZnO board has exceeded 0.04, so it is required to replace
the ZnO board after 16 times of use. The cost of ZnO is 1312 yuan/week, and the
cost of scrapped WIP due to impurities and deformation is 4527 yuan/week. It can
be concluded that the cost can be saved by 3215 yuan per week.

Fig. 14 Variation diagram of times of auxiliary production and deformation degree of ZnO board
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3.2.3 Solve the Problem of Cracking for Man Machine Material
Method

1. According to Fig. 13, aiming at the problem of inexperienced employees, the
original training program is revised.

➀ Before the newproduction line is put into operation, staff operation training
and assessment shall be carried out, and they are allowed to work after
mastering the production process [7].

➁ The implementation of online teaching, enterprises regularly publish online
courses, popularize the latest code of practice. Employees need to study
as soon as possible and complete relevant course topics. Online course
completion and answer accuracy affect performance to a certain extent
[8].

➂ The production site will be inspected irregularly by the quality inspection
department to check whether the employees consciously comply with the
requirements of the standard manual.

2. In order to solve the problem of large vibration of forklifts or trolleys, employees
are required to carry in the designated channel and control the handling speed.
The sagger layer on the trolley is required to be no more than five layers.

3. Due to the poor toughness of e-var products before sintering, it is easy to produce
the cracking due to collision.

➀ When putting into production, for processes with serious scrap, such as
tablet pressing and sintering process, quality inspection procedures for
work in process should be added.

➁ Collision should be avoided as far as possible in the process of transporta-
tion. In the process of process handover, the employees of the next process
should visually inspect the incoming materials of the work in process of
the previous process, and register and eliminate the work in process with
the problem of cracking during transportation.

4. In view of the environmental problems, dust removal equipment was added to
improve the environment, and employees were arranged to clean the operation
site. The standard operation manual should be placed in front of the operator’s
console to highlight the key contents, facilitate the employees to view the stan-
dard operation manual, and remind the employees to consciously abide by the
requirements of the standard operation manual [9].

3.2.4 Improvement Effect of Quality Optimization

After improvement, the defective product rate decreased from 11 to 0.2%, a decrease
of 10.8%, and the number of defective products per week decreased from 2649 to 49,
a decrease of 98.2%. The proportion of crack, deformation, impurities, and cracking
was reduced by 98.8%, 97.9%, 97.5% and 97.7% respectively (Fig. 15).
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Fig. 15 Variation diagram of times of auxiliary production and deformation degree of ZnO board

4 Conclusion

In the past, the research on the low production efficiency of enterprises is mostly
based on a single theory [10]. This study is based on the lean management thinking
of industrial engineering and combinedwith the actual, anduses the idea of expanding
from local problems to overall improvement. The improved effect is shown in Table
7 and Fig. 16. Using value flow analysis, experimental demonstration, ECRS prin-
ciple and other analysis tools, the innovative method of E-VAR production line

Table 7 Comparison of improvement effect

Project Before
improvement

After improvement Improvement
effect

Product
efficiency
improvement
effect

Total process time 135 s 60 s Reduce
55.6%

Waste of time
waiting for
equipment

105 s 89 s Reduce
15.2%

Waste time of WIP
waiting

6 h 1 h Reduce 5 h

Storage capacity of
OEM area

14112 pcs 40320 pcs Increase
26208 pcs

Daily cost saving of
pearl cotton

491.52 yuan 0 yuan Reduce
491.52 yuan

Process balance rate 71.7% 81.3% Improve 9.6%

Internal and external
classification of
rapid die change

External
time

Internal
time

External
time

Internal
time

\

Internal and external
time of rapid die
change

0 min 108 min 30 min 78 min Internal
operation
time reduced
by 30 min

(continued)



136 G. Jidong et al.

Table 7 (continued)

Project Before
improvement

After improvement Improvement
effect

Internal and external
time proportion of
quick die change

0 100% 27.8% 72.2% Internal
operation
time ratio
reduced by
27.8%

Effect of
product
quality
improvement

Defective product
rate

11% 0.2% Reduce
10.8%

Number of defective
products

2649 49 Reduce
98.2%

Products with crack
problems

1271 15 Reduce
98.8%

Products with
deformation
problems

609 13 Reduce
97.9%

Products with
impurity problem

317 8 Reduce
97.5%

Products with
cracking problems

264 6 Reduce
97.7%

Comparison
of value
stream map
before and
after

Working
procedure

Index \ \ \

Tableting FTT 86% 94% Improve 8%

Sinter FTT 88% 96% Improve 8%

Spray
glass

CT 135 s 60 s Reduce
55.6%

Film
selection

FTT 87.4% 97.2% Improve 9.8%

Rework rate 12.6% 2.8% Reduce 9.8%

Value added time 0.050991% 0.051256% Improve
0.5197%

of A company is studied, to reduce waiting waste, improve production efficiency,
standardize operation standards, and improve product quality.
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Review of Using Operational Modal
Analysis for Condition Monitoring
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Abstract Modal analysis is critical to better understand structural dynamic vibra-
tion characteristics by extracting system’s natural frequencies, damping ratios and
mode shapes. Modal analysis has been widely used to structure optimization in
the design stage, damage detection and structural health monitoring or condition
monitoring. According to whether need artificial exaction, the modal analysis tech-
niques can be categorized as experimental modal analysis and operational modal
analysis. Conventional experimentalmodal analysis has tomeasure the excitation and
corresponding response in the meantime, while operational modal analysis measure
system’s response only during normal operating condition. Therefore, operational
modal analysis also called output-only modal analysis methods, which have devel-
oped dramatically in recent decades because it is promising as means to achieve
structural onlinemonitoring,which is highly desirable for criticalmechanical system,
important buildings and bridges, etc. This paper made a brief review of the devel-
opment of popular operational modal analysis techniques and their applications in
condition monitoring.
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1 Introduction

Operational Modal Analysis (OMA) methods have developed dramatically in recent
decades and could be used for monitoring the condition of mechanical or civil struc-
ture. In particular, OMA is promising as a means to achieve online monitoring,
which is highly desirable for enhancing the reliability, safety and intellectualization
of mechanical system and important buildings. The conventional OMAmethods are
reviewed in this paper.

OMA, also called output-only modal analysis, is used for dynamic system modal
parameter identification. In other word, OMA methods only need responses to
extract the modal parameters when the system is under ambient excitation. OMA is
considered superior to conventional modal analysis techniques: Experimental Modal
Analysis (EMA). Compared with EMA, the main advantages of OMA are [1]:

1. OMA is cheaper and more convenient than EMA since there is no need for
artificial excitation;

2. OMA can obtain the dynamic characteristics of the whole tested system rather
than just a part;

3. OMA can obtain a system’s dynamic features under real operational conditions
but not experimental conditions;

4. OMA is able to identify close modes;
5. OMA has the capability for online CM.

Because of these advantages, numerous OMA methods have been developed,
and these are usually divided into frequency-domain and time-domain methods. The
time-domain techniques can be further classified as two-stage and one-stage. The
framework and processes of the most popular OMAmethods are presented in Fig. 1.
The relevant studies and applications are reviewed below.

2 OMAMethods

2.1 Frequency-Domain Methods

For the frequency-domain methods, Peak-Picking (PP) is the simplest technique to
estimate the modal parameters. PP is named after the key step of the method: picking
the peaks from a spectrum plot as the identified eigenfrequencies [2]. The major
issue with the PP method is the accuracy of the identified results, especially for a
system with close modes.

Frequency Domain Decomposition (FDD) has been proposed based on the PP
method [3]. The FDD technique overcomes the disadvantages of PP by decomposing
the spectral density matrix into a set of Single-Degree of Freedom (SDOF) systems
via Singular Value Decomposition (SVD). The FDD was widely used, and many
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Fig. 1 Framework and processes of popular OMA methods

enhanced methods were proposed based on FDD, such as Enhanced FDD (EFDD)
[4], and Frequency-spatial Domain Decomposition (FSDD) [5].

In 2001, the Least Squares Complex Exponential (LSCE) method, a frequency
domain method, was presented to cope with high system orders and high modal
overlap, and to make the selection of the model order and relevant physical system
poles easier [6]. Moreover, a Poly-reference LSCE method was proposed later to
provide considerably improved pole stabilization [7]. It is worth to note that Poly-
reference LSCE is widely used in commercial modal test systems: LMS Test.Lab
[7].

In 2004, an updated Poly-reference LSCF, called PolyMAX is employed by LMS
system because this method has the capability to identify the closely space modes
and high damping modes compared with other conventional approaches [7]. Such
capability is on the basis of the clear Stabilization Diagram (SD) which contains
frequency, damping and participation information. The SD identified by PolyMAX
is clearer than the ones identified by other approaches. In order to increase the noise
suppression ability, a PolyMAX Plus method was proposed by the same research
team in 2012 [8]. The main development of PolyMAX Plus method is adding some
maximum likelihood estimation features to proper handle the effects of uncertainty
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and estimate the confidence bounce, which can improve the identification results in
case of very noisy data [8].

2.2 Time-Domain Methods

As shown in Fig. 1, time-domain methods can be divided into two groups: two-stage
and one-stage methods. The first stage for the two-stage methods is usually to obtain
the correlation, pulse response or free-response functions, and then the obtained
functions are used to extract modal information in the second stage.

A good example of the two-stage approach is the Ibrahim Time Domain (ITD)
method. The ITD method was first proposed in 1977 based on the Random Decre-
ment Technique (RDT) for modal identification of structures [9], where RDT was
employed in the first stage to obtain a free-response signal for the system under
random excitation.

In 1985, Juang et al. proposed the EigensystemRealization Algorithm (ERA) [10]
which also uses the free-response signal as obtained in the first stage. In 1995, the
Natural Excitation Technique (NExT) was presented as a means of modal testing the
permitted structures to be investigated in their actual environments. NExT, as ERA,
also uses pulse response function obtained in the first stage [11]. The Covariance-
Driven SSI (Cov-SSI) was proposed in 1999 [12]. This is a robust OMA method
employing the correlation function of system response as input.

For the one-stage methods, Data-Driven SSI (DD-SSI) [12] and Autoregressive
Moving Average (ARMA) methods are the two most popular approaches, using the
collected raw data for modal identification.

2.3 Other Methods

Besides the classical time-domain and frequency-domain OMA methods reviewed,
there have been many related techniques developed in recent years. For instance, a
Bayesian approachwas proposed, and appears to be becoming popular, for OMA [13,
14]. The uncertainty of system identification is addressed by the Bayesian approach,
as the Bayesian approach take modal identification as an inference problem where
probability is used as a measure for the relative plausibility of outcomes given both
a model of the system and measured data [13, 15].

In addition, transmissibilitymeasurements forOMAare drawing increasing atten-
tion because of its ability to successfully extract modal parameters in the presence of
harmonics [16–20]. While the poles of transmissibility measurements did not match
with the poles of the measuring system, it was shown that modal parameters could
be extracted by measuring the system’s transmissibility when the system was under
subject to different excitations [16].
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Recently, an output-only damage identification method was presented in [21,
22], which was also developed on the fundamentals of OMA theory. This method
combined with PCA theory can be a baseline-free approach. Its performance has
been proved by numerical and experimental studies to detect and locate a damage
site.

Even though OMA has proved to be effective and robust, we should note that
OMA methods still facing some challenges which have to be solved. The first one is
most of OMA techniques are developed under the assumption of identifying a linear
and time-invariant system. It is apparent that this do not comply with the real engi-
neering situation. Many researchers have made efforts to cope with this challenge.
For instance, a linear approximation of nonlinear and nonstationary systems was
proposed in [23] for correlation-driven OMA in terms of estimated natural frequen-
cies, damping ratios and mode shapes. Similarly, the correlation signal was grouped
and then averaged in subset in [24, 25] for the same purpose of reducing system’s
nonlinear and nonstationary effects. The second challenge is the assumption of white
noise excitation using OMA. Although many approaches have been investigated to
remove the harmonics effects in OMA [26, 27], it is still a hot topic since this problem
is not solved completely.

3 Applications of OMA for CM

As mentioned earlier, OMA has been widely used for CM in different areas and
has been used to estimate the health status of historic buildings [28, 29]. OMA
is popular in the field of civil engineering for monitoring the health of structures,
because it is hard to artificially excite buildings, whereas state-of-the-art OMA can
accurately extract modal parameters. For example, SSI was employed in [12] for
SHM of a steel mast excited by wind and a bridge subject to normal traffic usage.
The condition of an in-service three-span highway bridge was successfully assessed
bySSI combinedwith awireless sensor networks [30].Also the dynamic behaviour of
the Tamar Suspension Bridge have been investigated by SSI which took into account
operational and environmental influences [31]. Generally, a real-time monitoring
system is required for the monitoring of important buildings or bridges, with many
of the monitoring systems based on OMA [32].

Secondly,OMA iswidely usedwithwind turbines as a powerfulmeans ofCM [26,
33–36]. In fact, the NExTwas initially developed to identify the modal parameters of
a parked wind turbine [11]. Moreover, there are many improved OMA algorithms to
make them suitable for wind turbines operating under real conditions, these include
the automated OMA methods presented in [35].

Last but not least,OMA is a powerful technique for theCMofmechanical systems,
and numerous methods have been investigated [10, 24, 25, 27, 37–40]. For example,
the Poly-reference LSCE and SSI were employed to identify the modal characteri-
sation of the rear suspension of a family car during road tests as early as 1999 [37].
Recently, an improved SSI method was successfully applied to identify the dynamic
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characteristics of a car and a railway vehicle suspension systemwith the aim of using
it for CM [24, 25].

Besides, some researches compared the performance between different OMA
approaches by implementing to identify the same structure using the same response.
In [41], SSI, PolyMAX, ERA and FDD were employed to monitor a confederation
bridge using the same datasets. The identification results from these four methods
were compared with the modes calculated by the finite element model of the bridge.
The identified results show a good correlation with the modal properties calculated
by finite element model. Among the four methods, SSI is more consistent in the
estimation of frequency, damping and mode shape. Furthermore, it is worth to high-
light that SSI outperforms PolyMAX method in mode shape estimation. However,
it is noticeable that all four method exhibit higher variance in damping estimation
especially for ERA and FDD. Another comparative study can be found in which
presents similar conclusions.

4 Summary

It can be seen from this short review, OMA is a powerful and robust approach for
validating and updating finite element models, SHM or CM, load estimation of a
system under ambient excitation or operating scenario. The popular OMA techniques
mainly include FDD, SSI, PolyMAX, Bayesian and transmissibility measurements.
Each method has its advantages and disadvantages, so we have to select the proper
approaches according to application scenario. Besides, it is still an open research
area to counter the assumptions of white noise excitation and linear system when
employing OMA.
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Vibration Analysis of the Rudder Drive
System of an Underwater Glider

Liming Guo, Jing Liu, Guang Pan, Baowei Song, Yonghui Cao, Yong Cao,
Yujun Liu, and Hengtai Ni

Abstract Underwater gliders aremainly used tomonitor themarine environment. In
order to reduce the interference of self-vibrations, the rudder drive system of gliders
is analyzed. Firstly, the meshing frequencies of the gears are calculated. Then, the
vibrations of the actuator of rudder drive system are tested; and a finite element
model of the rudder drive system of underwater glider is developed. Finally, the gear
meshing frequencies and the vibration frequencies of the actuator are compared with
the results from the finite element model analysis. The results show that the gear
meshing frequencies and the vibration peak frequencies of the actuator are different
from the natural frequencies of the rudder drive system, the system has no resonance
and the structure design is reasonable one.

Keywords Vibration analysis · Vibration test · Underwater glider · Rudder drive
system

1 Introduction

Underwater gliders are relatively new types of underwater vehicle. It relies on the
change of its own buoyancy to achieve the floating and diving. It can glide forward
through the horizontal component of the lift underwater [1]. Figure 1 shows the
trajectory of the underwater glider.

The research of this paper is based on the flying wing underwater glider platform.
Compared with the cylindrical underwater glider, it has a larger glider wing and
higher lift drag ratio. There is a rotatable rudder blade on the wing, as shown in
Fig. 2. The roll attitude of the glider can be changed by changing the angle of the
rudder blade.
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Fig. 1 Glide trajectory of
underwater glider
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Suppressing methods of the harmful vibrations in different mechanical systems
is an important research field. Ishida and Inoue [2] investigated the internal reso-
nance phenomena of an asymmetrical shaft theoretically and experimentally in the
vicinities of the major critical speed, and twice and three times the major critical
speed. Łuczak [3] studied mechanical resonance in direct drive servo-mechanical
systems by using frequency analysis method. Xiang et al. [4] carried out a compar-
ative study of the rudder transmission vibration characteristics of electric drive and
traditional hydraulic drive. The results indicate that the vibration intensity has a posi-
tive correlation with the rudder blade loading force and angular velocity at the zero
balance position. The electric drive can more effectively reduce the overall vibration
of the rudder transmission.Mansoor andAl-shammari [5] studied the vibration of gas
turbine rotor with the existence of cracks and without them. Huang et al. [6] estab-
lished a simplified lumped-massmodel to investigated coupled torsional-longitudinal
vibrations of a ship’s propeller shaft. It is found that the natural frequencies are unaf-
fected while the maximum acceleration are increased with the rotational speed as
well as the loading.

Because of the long span and thin thickness of the rudder blade, if resonance
occurs during operation, it’s quite easy to cause structural damage and interference
noise. Therefore, this paper analyzes the mode of rudder drive system. The vibration
frequencies of the actuator system are tested, which is used to verify the rationality
of structural design.
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Table 1 Parameters of gearbox

Components Part Gear module Teeth number of
gear

Pressure angle

One-stage gear
drive

Motor gear 0.4 18 20°

One-stage large
gear

0.4 60 20°

Two-stage gear
drive

Two-stage small
gear

0.4 16 20°

Two-stage large
gear

0.4 60 20°

Worm drive Worm 0.8 1 20°

Worm wheel 0.8 40 20°

Table 2 Meshing
frequencies of gears

Components Meshing frequencies (Hz)

One-stage gear drive 3.87

Two-stage gear drive 232

Worm drive 870

2 Calculation of Gear Meshing Frequency of Actuator

The meshing frequencies of the gear of the actuator are analyzed, and the parameters
of the gears are shown in Table 1.

The rotation speed of rudder plate is 5.8 r/min. The meshing frequencies of
gearbox can be calculated as shown in Table 2.

3 Vibration Test and Analysis of Actuator System

In order to study the influences of the vibrations of the actuator system on the rudder
drive system, the vibration frequencies of the actuator system under the working
conditions are tested and analyzed. As shown in Fig. 3, two acceleration sensors
are used to test the two positions of the side and top face of the actuator system.
The test signal is transmitted to the computer through the acquisition card. Then,
the time domain signal is transformed into the frequency domain signal by using the
fast Fourier Transform method. Table 3 shows the peak vibration frequencies of the
actuator system.

In order to avoid the accidental error misleading the experimental results and
analysis in the process of experiment, eight groups of experiments are carried out in
vibration test, one of the experimental data are shown in Fig. 4.
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Acceleration 
sensor(top)

Acceleration 
sensor(side)

Actuator 
system

Fig. 3 Vibration test experiment of the actuator system

Table 3 Vibration frequency of the actuator system

Measuring position Peak vibration frequency of actuator/Hz

Top face 137.5 800 1600 2125 4327.5

Side face 50 800 1600 2125 4327.5
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Fig. 4 Vibration spectrum of the actuator system

As shown in Fig. 4, the peak frequencies of the vibration signals of the top face of
the drive system are larger than those of the side. The main peak frequencies include
50, 137.5, 800, 1600, 2125, and 4327.5 Hz.
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Fig. 5 Vibration model of
the rudder drive system

Cylinder constraint

Cylinder constraint Fixed constraint

4 Simulation Results

In order to study the resonance phenomenon of the rudder drive system of underwater
glider, themode analysis of the rudder drive system is carried out to explore its natural
frequencies.

4.1 A Finite Element Model of Rudder Drive System

The rudder drive system is mainly composed of actuator system, drive shaft and
rudder. The rudder and drive shaft are connected by a coupling. The drive shaft and
rudder are relatively fixed. During operation, the rotating shaft drives the rudder to
rotate through the drive shaft. The finite element method is used for mode analysis
of the rudder drive system. The boundary constraints of the whole system are shown
in Fig. 5.

4.2 Modal Analysis Results of Rudder Drive System

According to the frequency analysis of actuator system in Sect. 3, the frequencies
of large amplitude include 50, 137.5, 800, 1600, 2125, 4327.5 Hz. Therefore, the
mode frequencies of rudder drive system in the range of 0–5000 Hz are analyzed.
The mode frequencies are shown in Table 4.

As shown in Table 4, in the range of 0–200 Hz, mode frequencies of rudder
drive system include 80.604, 186.52, 197.17 Hz; in the range of 700–900 Hz, mode
frequencies of rudder drive system include 727.3, 762.19, 831.11 Hz; in the range
of 1500–1700 Hz, the mode frequencies of rudder drive system include 1647.3 Hz;
in the range of 2000–2200 Hz, the mode frequencies of rudder drive system include
2050.1 Hz, 2056.2 Hz; in the range of 4300–4400Hz, themode frequencies of rudder
drive system include 4360.1, 4378.4, 4380.3 Hz; The mode frequencies of rudder
drive system are different from the peak frequencies of the actuator system, which
indicates that there is no resonance in the whole structure of the rudder drive system,
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Table 4 Mode frequencies of
the rudder drive system

Frequency
range/Hz

Mode Frequency/Hz Actuator vibration
frequency/Hz

0–200 1 80.604 137.5

2 186.52

3 197.17

700–900 11 727.3 800

12 762.19

13 831.11

1500–1700 23 1647.3 1600

2000–2200 27 2050.1 2125

28 2056.2

4300–4400 55 4360.1 4327.5

56 4378.4

57 4380.3

The structure design of rudder drive system is reasonable. The mode shape of each
mode of the rudder drive system is shown in Fig. 6.

5 Conclusions

In this paper, the vibrations of the rudder drive system in an underwater glider are
analyzed. The meshing frequencies of the gears in gearbox of the actuator system are
calculated. The main vibration frequencies test of the actuator system is carried out.
Compare the mode frequencies of the rudder drive system with the peak vibration
frequencies of the actuator system. The result showed that the vibration peak value of
the actuator system does not match the mode frequencies of the rudder drive system.
Therefore, no resonance occurred on the whole structure, the structure is reasonable
designed.
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(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) 11th mode (e) 12th mode (f) 13th mode

(g) 23th mode (h) 27th mode (i) 28th mode

(j) 55th mode (k) 56th mode (l) 57th mode

Fig. 6 Mode shape of each mode of rudder drive system
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Online Method for Assessment
and Tracking of Wear in Kaplan Turbine
Runner Blades Operating Mechanism

Oscar García Peyrano, Daniel Vaccaro, Rodrigo Mayer,
and Matías Marticorena

Abstract Kaplan turbines rely on an operating mechanism inside the runner hub
to control blade angles. Contact surfaces of the moving parts on these mechanisms
are constantly subjected to frictional and contact forces, inflicting wear which can
lead to malfunctioning and performance reduction. In this paper, a novel method
for wear assessment in individual blade joints of the runner operating mechanism
is presented. The technique consists in monitoring blade angles separately during
turbine operation through inductive proximity probes mounted on the discharge ring.
These angles are contrasted with the operatingmechanism positioning data at several
instants and the performance of each joint is evaluated. This technique has been
implemented on a 92 MW Kaplan turbine. In October 2018, excessive clearances
in three blade joints were detected and an inspection was recommended during the
next programmed maintenance. The runner hub was later disassembled and all joints
inspected, which confirmed those joints had been worn down and were replaced.
This result shows that the proposedmethod can effectively assess clearances on blade
joints during operation, providing an early detectionmethod to anticipatemechanism
malfunction and incorporate in theCondition-BasedMaintenance plan for production
optimization.
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Keywords Condition-based maintenance · Kaplan turbine · Operating
mechanism · Machine health monitoring

1 Introduction

Kaplan hydro turbines are widely utilized throughout the world, as they can achieve
efficient performance in high flow, low head applications thanks to their combination
of adjustable runner blades with adjustable wicket gates.

This work focuses on the blade operating mechanism in charge of automatically
adjusting runner blade angles with respect to the direction of water flow so as to
achievemaximum efficiency at a given set of conditions. As any collection ofmoving
parts in a machine, the individual components of this mechanism are prone to wear
[1–3]. Moreover, runner blades are normally subjected to intense fluctuating hydro-
dynamic forces, which are transmitted to these components and therefore increase
mechanical solicitations [4, 5]. These factors have been shown to limit the lifetime
of operating mechanism parts [6–8] and even causing severe damage to the machine,
leading to substantial losses due to unexpected shutdowns, prolonged downtime and
asset replacement [9, 10].

Thus, great effort has been put into failure analysis and lifetime estimation of
runner blades and operating mechanism [6–11]. In contrast, condition monitoring
of these components has received comparatively less attention comparatively. While
various types of instrumentation and diagnosis techniques are commonly imple-
mented on hydraulic turbines, the focus is mainly put into monitoring bearing condi-
tion and behavior [12], structural integrity and on detecting the presence of rubs and
cavitation [13]. The runner blade operating mechanism, on the other hand, poses a
further challenge for online monitoring due to being located inside the runner hub.
Assessment of its condition, therefore, often falls to scheduled maintenance at the
risk of fault development going undetected.

This work presents a novel method for identifying increased clearances in blade
operating mechanism components using previously installed instrumentation on a
Kaplan turbine. In addition to enabling online evaluation of said components and
anticipating failure, this approach provides useful feedback for lifetime estimations
and condition-based maintenance.

2 Methods and Measuring Equipment

The proposed method was implemented on a 92 MW vertical Kaplan turbine with
five runner blades and a runner diameter of 7800 mm. Figure 1 shows a 3D model
of the turbine blade operating mechanism and its components.

Themechanism consists of a hydraulic piston that moves a cylinder body attached
to a crosshead along the axial direction. The crosshead is connected to five fork
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Fig. 1. 3D model of runner blade operating mechanism

heads, each of which is linked to a lever that can pivot around a radial direction. As
the crosshead moves upwards or downwards, each lever will rotate a certain amount
alongside with its corresponding blade. Lever angles β can vary in this way from
−16° (closed runner position) to 14° (opened runner position), as shown in Fig. 2a
and 2b, respectively.

Fig. 2 Blade angle maximum and minimum positions. a Closed runner (βc = −16◦). b Opened
runner (βo = 14◦)
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Fig. 3 Schematic showing blade nomenclature and water-gap sensors positions

2.1 Instrumentation

The turbine is equippedwithmagnetic pickup sensor serving as a 1X reference signal.
Figure 3 shows an upper view schematic of the runner. Between the blade lips and

the discharge ring there is a water gap which must be monitored to ensure it remains
within the range of 2 and 8 mm. Two proximity probes have been installed to that
end and integrated to the machine’s protection system. One of them is located on the
upstream side of the discharge ring and the other, 90° apart from it, on the left bank
side. Runner blades have been labeled from A to E.

Runner opening is inferred from the axial position of the cylinder body and
expressed as percentage of maximum opening at lever angle βo = 14◦ (Fig. 2b).
Data were acquired at 4096 samples/s.

2.2 Blade Angle Estimation

When all mechanism components are in optimal conditions, a smooth transition
between two blade angles should take place, following cylinder body movement.
If a significant amount of clearance exists on one or several mechanism links, an



Online Method for Assessment and Tracking of Wear … 159

uneven transition is expected. This can be caused either by a time delay between
cylinder and lever movement or by hydrodynamic forces acting upon the blade
(whose movement would be relatively unrestrained due to looseness on the linkage).
Therefore, the condition of each linkage could theoretically be assessed by comparing
cylinder position data to blade angle data during mechanism actuation.

In order to estimate individual blade angles, data from the upstream water-gap
sensor was employed. This method takes advantage of the pulse-like time signal
obtained from the proximity probes located on the turbine’s discharge ring every
time one of the blades passes in front of them, as Fig. 4 shows.

Each individual pulse will have an associated pulse width, measured in seconds,
which will depend on blade lip width e, blade angle α and runner angular speed ω,
as illustrated on Fig. 5.

Let D be the runner radius (measured from the center of the shaft to the blade
lip), ω the angular speed and �t the measured pulse width. The length a that the
blade lip will present to the proximity probe, corresponding to the pulse width, can
be expressed as

Fig. 4 Water-gap sensor time signal

Fig. 5 Blade angle
estimation from pulse width
measurement
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a = ω · D · �t = 2π

T
· D · �t (1)

where T is the runner’s rotation period. Given that

sinα = e

a
(2)

Therefore α can be expressed in terms of the measured pulse width as

α = sin−1 e

ω · D · �t
(3)

�t was measured from the instant the signal from the proximity probe decreases
from its base value of 9 mm (sensor maximum range) until the instant it returns to
this value.

The lever angle of each blade is related to α by the expression:

βn = αn + k (4)

where n identifies each blade and k is a known calibration constant. The value of e is
obtained from Eq. (3) by calculating α with Eq. (4) at the appropriate runner opening
percentage.

2.3 Lever Angle Uncertainty

As stated above, data acquisition was performed at 4096 samples/s, which means
there is a 0.2 ms time lapse between measurements. Therefore, pulse width
uncertainty can be calculated as

σ�t = √
2(0.2ms) = 0.28ms (5)

Let σe be the uncertainty of variable e and σω that of ω. At a frequency of f =
1.38Hz the rotation period T = 0.725s. As with�t , the uncertainty of T is given by
the data acquisition sample rate, thus σT = σ�t . Error propagation of Ec. (1) yields:

σω =
√(

2πσ�t

T 2

)2

= 0.003 s−1 (6)

and

σa =
√

(D�tσω)2 + (ωDσ�t )
2 = 9.6mm (7)
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Table 1 Blade lip widths
calculated from pulse widths
�t , measured at 22.1%
runner opening

Blade Pulse width (�t) (ms) Blade width (e) (mm)

A 17.1 65.78

B 16.9 64.71

C 17.0 71.09

D 17.0 68.96

E 17.3 66.73

Table 1 lists the values of e calculated form Eq. (3) using values of �t measured
at a runner opening of 22.1% and blade angles α = 6.57◦ for all blades, according
to Eq. (4).

These values can be used with Eq. (2) to obtain blade width uncertainty σe and
blade angle uncertainty σα:

σe =
√

(sinα · σa)
2 = 1.095mm (8)

σα =

√√√√√√
⎛
⎝ σe

a
√
1 − (

e
a

)2
⎞
⎠

2

+
⎛
⎝ −eσa

a2
√
1 − (

e
a

)2
⎞
⎠

2

= 0.2◦ (9)

Finally, lever angle uncertainty can be expressed from Eq. (4) as:

σβ = σα = 0.2◦ (10)

3 Operating Mechanism Test

A test was performed on October 2018 with the purpose of evaluating the state
of blade operating mechanism joints. It consisted in measuring runner opening
percentage (computed from cylinder position) alongside with blade angles estimated
from pulse widthmeasurements as described above. After reaching steady state oper-
ation at a rotation frequency of f = 1.38Hz, runner opening was slowly decreased
from 22 to 16% by means of the operating mechanism, along a 70 s time period.
Blade angle data were then computed and analyzed looking for signs of mechanism
looseness.

Figures 6, 7, 8 and 9 show percentage of runner opening and estimated lever angle
during the test. The first two minutes were used to reach steady state operation and
do not appear in the graphs.

Blade A shows significant data dispersion on estimated angle throughout the test.
Maximum variation between two adjacent points is 0.2°.
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Fig. 6 Percentage of runner opening and estimated lever angle versus time on blade A
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Fig. 7 Percentage of runner opening and estimated lever angle versus time on blade B
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Fig. 8 Percentage of runner opening and estimated lever angle versus time on blade C
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Fig. 9 Percentage of runner opening and estimated lever angle versus time on blade D

Blade B evidences higher angular data dispersion than A, with variations between
adjacent points up to 0.4°.

Blade C angular data is less dispersed throughout the test, but shows a pronounced
discontinuity between 155 and 159 s, of up to 0.8°.

Blade D also has lower data dispersion than A and B, and a visible discontinuity
at 156 s of 0.2° (Fig. 10).

Finally, blade E shows lower data dispersion previous to runner opening
decreasing and higher dispersion afterwards. A discontinuity in blade angle of 0.3°
can be seen at 155 s, shortly after mechanism actuation begins.
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Fig. 10 Percentage of runner opening and estimated lever angle versus time on blade E



164 O. García Peyrano et al.

4 Joint Condition Assessment

After the above method had been implemented and data from the operating mecha-
nism test was analyzed, the authors recommended the inspection of all blade joints.
This was done during maintenance tasks performed on March 2020, where several
joints were found to have sustained significant wear.

Fork head and lever joints are coated with 0.5 mm self-lubricated Karon V liners.
In order to estimate joint clearances, diameters were measured on every link joint
and its respective pin corresponding to each blade, then liner thickness was assessed.
Clearances where therefore calculated based on the amount of Karon Vmaterial that
had been worn out. If no liner material remained on the joint surface, a clearance of
1 mm was assumed for that component. Total clearances result from adding up all
estimated clearances on a given linkage (fork head joint orifice and pin plus lever
joint orifice and pin).

4.1 Wear Measurement

Results frommaintenance performed on the operating mechanism are listed on Table
2. Blade A showed little signs of wear (0.04 mm total calculated clearance). Blades
B, D and E had sustained greater damage, with at least one of their joint components
completely stripped of liner material (total clearances between 1 mm and 1.5 mm).
Blade C was in the worst condition, with no liner material left on two of its joint
components (2.05 total clearance).

Table 2 Linkage joints analysis performed on March 2020

Blade Joint Fork head Lever Total calculated clearance
(mm)Calculated clearance

(mm)
Calculated clearance
(mm)

A Link 0.02 0.00 0.04

Pin 0.02 0.00

B Link 0.05 0.00 1.01

Pin 0.06 0.90

C Link 1.05 1.00 2.05

Pin 0.00 0.00

D Link 1.05 0.40 1.49

Pin 0.04 0.00

E Link 0.03 0.00 1.05

Pin 1.02 0.00
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5 Discussion

Discontinuities in blade angle transitions found in blades C, D and E result from
an abrupt change in measured pulse width while the operating mechanism is being
actuated, which is in turn considered as indicative of looseness. It is worth noting that,
while C shows the highest angle difference between adjacent data, it also displays the
least dispersion,which implies that both these parameters are influencedby individual
blade behavior and properties (such as blade lip regularity andmechanism looseness)
rather than by factors common to all of them, such as rotor vibration.

Angular data dispersion on all blades is consistent with the angular uncertainty
calculated on Eq. (10). Blade A, displayed little to no signs of mechanism wear
but higher dispersion, which suggests that variations of blade lip geometry could
constitute a source of error in blade angle estimation. The fact that this dispersion
affects some blades but not others, regardless of the amount of clearance found in
their mechanism components, indicates again that other possible sources of error,
such as torsional, lateral or axial vibrations, are not the cause. This also shows that
data dispersion is not a reliable predictor of mechanism wear, as it is lower in blades
C and D, which were in worse condition. Instead, it should be attributed to random
measuring uncertainty.

Maximum angular variation between adjacent data (i.e. discontinuities in blade
angle transitions) proved to be a consistent sign of mechanism looseness, as shown
with blades C, D and E. However, data dispersion in the vicinity has to be taken
into account in order to avoid misdiagnosing joint wear. In case of blade B a certain
amount of mechanism looseness was detected during inspection, but wasn´t evident
in blade angle performance. It should be taken into account that therewas a 18months
interval between performance test and mechanism inspection, during which blade
B linkage elements could have deteriorated. It is therefore advisable to inspect all
blade joints if looseness was detected in at least one of them, such that maintenance
was required.

6 Conclusions

A method for online monitoring and evaluation of the runner blade operating
mechanism of Kaplan turbines has been developed and tested on a 92 MWmachine.

Results show that discontinuities in blade angle transitions constitute a reliable
indicator of excessive clearances in mechanism joints, product of wear. Hence,
continuous monitoring of this type provides a valuable resource for machine health
assessment, early failure detection and condition-based maintenance. Moreover, this
technique utilizes proximity probes installed on the turbine’s discharge ring, thus
avoiding the need for intrusive interventions inside the runner hub.

Acknowledgements Special thanks are due to Pampa Energía SA and personnel of Pichi Picún
Leufu Hydropower Station for their contribution to the experimental activities of this work.



166 O. García Peyrano et al.

References

1. Liu, X., Luo, Y., Wang, Z.: A review on fatigue damage mechanism in hydro turbines. Renew.
Sustain. Energy Rev. 54(1), 1–14 (2016)

2. Luo, Y., Wang, Z., Zeng, J., Lin, J.: Fatigue of piston rod caused by unsteady, unbalanced,
unsynchronized blade torques in a Kaplan turbine. Eng. Fail. Anal. 17(1), 192–199 (2010)

3. Liu, X., Luo, Y., Wang, Z.: Fatigue analysis of the piston rod in a kaplan turbine based on crack
propagation under unsteady hydraulic loads. IOP Conf. Ser.: Earth Environ. Sci. 22(1) (2014)

4. Wang, Z.W., Luo, Y.Y., Zhou, L.J., Xiao, R.F., Peng, G.J.: Computation of dynamic stresses in
piston rods caused by unsteady hydraulic loads. Eng. Fail. Anal. 15, 28–37 (2008)

5. Soltani Dehkharqani, A., Engström, F., Aidanpää, J., Cervantes, M.: An indirect measurement
methodology to identify load fluctuations on axial turbine runner blades. Sensors 20(24), 7220
(2020)

6. Budai, A.M., Campian, V.C., Frunzaverde, D.,Miclosina, C., Pepa, D.: Lifetime Estimations of
the operating mechanism of kaplan turbine runner blades/Procjene trajanja radnog mehanizma
lopatica rotora Kaplan turbine. Tehnicki Vjesnik - Technical Gazette 24(2), 271+ (2017)

7. Larin,O., Trubayev,O.,Vodka,O.: The fatigue life-time propagation of the connection elements
of long-term operated hydro turbines considering material degradation. PNRPUMech. Bullet.
1, 167–193 (2014)

8. Budai, A.M., Campian, V.C., Cojocaru, A., Korka, Z., Dumbrava, C.: Estimation of Lifetime
Duration for a lever pin of runner blade operatingmechanismusing a graphic—analyticmethod.
In: Ann “Eftimie Murgu” University from Resita XXII(2), 67–76 (2015)

9. Zhang, M., Valentín, D., Valero, C., Egusquiza, M., Egusquiza, E.: Failure investigation of a
Kaplan turbine blade. Eng. Fail. Anal. 97(1), 690–700 (2019)

10. Urquiza, G., García, J.C., González, J.G., Castro, L., Rodríguez, J.A., Basurto-Pensado, M.A.,
Mendoza, O.F.: Failure analysis of a hydraulic Kaplan turbine shaft. Eng. Fail. Anal. 41(1),
108–117 (2014)

11. García Peyrano, O., Marticorena, M., Japaz, N., Giraudo, P., Sanchez Sarmiento, G.: Virtual
machine diagnosis: dynamic behavior monitoring of a 92MWKaplan turbine rotor mechanism
during machine production. HydroVision Brazil, Rio de Janeiro, Brazil (2012)

12. Monkova, K., Monka, P., Hric, S., Kozak, D., Katinić, M., Pavlenko, I., Liaposhchenko, O.:
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Bearing Fault Diagnosis Based
on Improved Residual Network

Haofei Du, Chao Zhang, and Jianjun Li

Abstract In the wind power generation system, the bearing plays a very important
role. Whether it can run stably directly determines the quality of the electricity
produced and has a great influence on the efficiency of power generation. Due to
the harsh working environment, the bearing has become one of the most vulnerable
components in the entire wind turbine system. Therefore, bearings of wind turbines
need to be maintained regularly. However, it needs to be shut down every time for
maintenance, which will incur high maintenance cost. So, the fault diagnosis of the
bearing is particularly important. A fault diagnosismethod is proposed based on deep
learning in this paper. This method is based on the residual module to construct a new
ResNet model and embeds the attention mechanism in it to select information that
is more critical to the current task goal from a lot of information. In addition, a long
short-term memory is added to the network to extract the long-term dependence of
the vibration signal and ensure that the information on the time series will not be lost
as the training progresses. The experimental results show that the method proposed
in this paper is very effective for the fault classification of fan bearings.

Keywords Residual network · Attention mechanism · Long short-term memory
network · Fault diagnosis

1 Introduction

In recent years, with the national attention to environmental protection, new energy
power generation has been greatly supported by the state. Compared with traditional
power generation, new energy power generation is more green and environmentally

H. Du · J. Li (B)
School of Information Engineering, Inner Mongolia University of Science and Technology,
Baotou 014010, China
e-mail: xidianjj@163.com

C. Zhang
School of Mechanical Engineering, Inner Mongolia University of Science and Technology,
Baotou 014010, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_15

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_15&domain=pdf
mailto:xidianjj@163.com
https://doi.org/10.1007/978-3-030-99075-6_15


168 H. Du et al.

friendly. Wind energy is a clean and renewable energy, so wind power is promoted
and constructed inmany countries. As amajor carbon emitter, Chinamust vigorously
develop new energy power generation in order to achieve the goal of carbon neutrality
in the future. Therefore, in recent years, more and more wind farms have been built
across the country. With the widespread use of wind turbines, related problems have
also followed. Since wind turbines are mostly installed on the tops of mountains,
deserts or islands, their working environment is relatively harsh. The internal parts
of the turbines may be damaged due to the harsh environment, which affects the
efficiency of power generation. Among wind turbine components, the most easily
damaged are the gearbox. This is because wind turbines had to operate day and night
in strong wind. Data show that more than 70% of gearbox failure are bearing failure.
However, due to the high position of the bearing, this brings a lot of troubles for the
maintenance. Every maintenance needs to be shut down, which increases the main-
tenance costs. Therefore, in order to save costs and improve the operating efficiency
of wind turbines, the fault diagnosis of the bearings is particularly important.

Since the bearing is very important to the stable operation of the entirewind turbine
system, more and more people are devoted to the research of bearing fault diagnosis
and have achieved many results. In the past, fault diagnosis mainly used traditional
feature engineering methods. Traditional feature engineering methods mainly use
signal processing methods to extract features from input signals, and then use a clas-
sifier to classify the extracted features. Signal processing methods mainly include
wavelet transform [1], frequency spectrum analysis [2] and so on. Classification
models mainly include support vector machine [3], hidden Markov model [4] et al.
Although traditional methods have achieved good classification results, it relies too
much on experience in the process of feature extraction and has certain limitations.
In recent years, with the development of deep learning, more and more fields have
begun to use deep learning to solve various problems. Deep learning has been widely
used in computer vision [5], document classification [6], and other fields. Because
deep learning has powerful feature extraction and classification capabilities, bearing
fault features can be extracted without relying on human experience in the process of
fault diagnosis. So many researchers began to use deep learning to solve fault diag-
nosis problems. Zhang et al. [7] proposed a method combines an one-dimensional
convolutional neural network (1DCNN), support vector machine (SVM) classifier.
The extracted features are input into the SVMclassifier, and particle swarm optimiza-
tion (PSO) is used to optimize the SVM classifier. Chen et al. [8] proposed a method
that Transferable Convolutional Neural Network (TCNN). Firstly, construction and
pre-train an one-dimensional convolutional neural network based on a large source
task datasets. Then a transfer learning strategy is adopted to train a deep model on
target tasks by reusing the pre-trained network. This method not only utilizes the
learning power of deep network but also leverages the prior knowledge from the
source task. Yuan et al. [9] proposed an intelligent industrial process monitoring and
fault diagnosis method based on the discrete wavelet transform and deep learning.
First, this method uses the discrete wavelet transform to present the multiscale repre-
sentation of the raw data. Second, using multiple convolution neural network extract
the features at each scale, and then the extracted multiple features are fused by the
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long short-term memory network to further reduce useless information and retain
useful information. Yang et al. [10] proposed an efficient fault diagnosis method
without additional denoising procedures. First, an one-dimensional deep residual
shrinkage network, which directly takes the raw vibration signals contaminated by
noise as input, is developed to realize end-to-end fault diagnosis. Then, to further
enhance the noise immunity of the diagnosis model, the first layer of the model is
set to a wide convolution layer to extract short time features. Besides, an adaptive
batch normalization algorithm is introduced into the diagnosis model to enhance
the adaptability to noise. Li et al. [11] proposed a novel wavelet-driven deep neural
network termed as WaveletKernelNet (WKN), where a continuous wavelet convo-
lutional (CWConv) layer is designed to replace the first convolutional layer of the
standard CNN. This enables the first CWConv layer to discover more meaningful
kernels. Lei et al. [12] proposed a novel fault diagnosis framework based on an
end-to-end Long Short-termMemory (LSTM) model, to learn features directly from
multivariate time-series data and capture long-term dependencies through recur-
rent behavior and gates mechanism of LSTM. Experiments verify that the proposed
model has good robustness. Zhang et al. [13] proposed a method of converting raw
signals into two-dimensional images. This method can extract the features of the
converted two-dimensional images and eliminate the impact of expert’s experience
on the feature extraction process. It follows by proposing an intelligent diagnosis
algorithm based on Convolution Neural Network (CNN), which can automatically
accomplish the process of feature extraction and fault diagnosis. Qian et al. [14]
proposed a new deep transfer learning network based on convolutional auto-encoder
(CAE-DTLN) to implement the mechanical fault diagnosis in target domain without
labeled data. In this method, CAE is used as the feature extractor as it has the ability
of noise removal. Both CORrelation Alignment (CORAL) loss and domain classifi-
cation loss are integrated to enhance the effect of domain confusion. Although the
use of deep learning in the fault diagnosis of wind turbine bearings has achieved high
accuracy, there is still room for improvement.

A method of fault diagnosis is proposed in this article. Our main contributions in
this research are as following:

1. A new ResNet model is constructed based on the residual module. This model
is used to extract the characteristic of rolling bearing vibration signal and can
prevent the gradient from disappearing or exploding during the training process.

2. The attention model is added to the ResNet model to increase the weight
of important feature information and reduce the interference of unimportant
features to improve the operating efficiency of the model.

3. LSTM is added to the network to extract the long-term dependence and ensure
that the characteristic information on the time series will not be lost.

The rest of this article consists of the following. Section 2 introduces the fault
diagnosis method based onResNet, attentionmechanism and LSTM. Section 3 intro-
duces related experimental data and evaluation standards. Section 4 introduces the
experimental results and analysis. In Sect. 5 summary and feature prospects are
introduced.
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2 Methodology

The structure of the model proposed in this paper is shown in Fig. 1. The input of the
model is the vibration signal of the wind turbine bearing, and the output is the clas-
sification result. The model is mainly composed of three parts: the residual network,
attention mechanism and LSTM. The residual network contains convolutional layer,
pooling layer, etc., which are mainly used for feature extraction of input data. The
attention mechanism is used to analyze the extracted features, increasing the weight
of salient features and suppressing insignificant features. Through this method, the
operating efficiency and classification accuracy of themodel can be improved. LSTM
is used to extract long-term dependent features on the time series and ensure that
these features will not be lost as the training progresses. The three parts are described
in detail below.

2.1 2DCNN

Convolutional neural network is a feedforward deep neural network that contains
convolution operations. Because of its characterization learning ability, it can clas-
sify the input information according to the hierarchical structure, so it is widely used
in the fields of classification and recognition. Convolutional neural networks gener-
ally include three layers: convolutional layer, activation layer and pooling layer. In
recent years, due to the rapid development of image recognition, more and more
researchers have begun to apply convolutional neural networks to this field, and have
proposed many classic models based on convolutional neural networks. The classic
neural network models proposed in recent years mainly include: GoogleNet [15],
LeNet [16], VGG [17], ResNet [18], etc. Because most of these classic networks
are proposed in processing pictures, basically two-dimensional convolutional neural
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Fig. 1 Architecture of the proposed model
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networks are used. However, the vibration signal of the wind turbine bearing is one-
dimensional. To apply it to a two-dimensional convolutional neural network. Each
sample needs to be deformed. The basic architecture of 2DCNN will be introduced
in this section.

2.1.1 Convolutional Layer

The convolutional layer is the core of the neural network. Each convolutional layer is
composed of several convolutional units. The parameters of each convolutional layer
are optimized through the back propagation algorithm. In addition, another advantage
of convolutional neural networks is that they can share parameter. It means that in
the process of feature extraction, a model uses the same parameter among multiple
parameters. Doing so can reduce the parameters in the convolutional neural network
and improve the efficiency of model calculations. The purpose of the convolution
operation is to extract different features of the input. The first layer of convolution
mainly extracts some rough features. As the depth of the network increases, more
detailed features can be extracted. In this article, the original wind turbine vibration
signal is sampled tomake a data set. The one-dimensional vector of each sample in the
data set is converted into a two-dimensional matrix and input into the convolutional
neural network to perform the convolution operation. The convolution process is
shown as the Eq. (1).

s(t) = (x ∗ w)(t) (1)

In the convolution formula, the parameter x is the input data, the parameter w is
the kernel function and s(t) is the output.

2.1.2 Active Layer

The function of the activation layer is to map features to high-dimensional nonlinear
intervals for interpretation and solve problems that cannot be solved by linearmodels.
The commonly used functions mainly include: Sigmoid, Relu, TanH, Softmax.
Because the Relu function converges fast and can prevent the gradient from disap-
pearing, the Relu activation function is selected in this article. The formula is shown
as Eq. (2).

f (x) = max(0, x) (2)

In this formula, f (x) is the activation value.
In addition, the model uses the Softmax function as the activation function during

classification. The Softmax function is also called the normalized exponential func-
tion. It can compress a k-dimensional vector z containing any real number into
another k-dimensional vector σ(z). After compression, the value of each element
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is between zero and one and the sum of all elements is 1. The formula is shown as
Eq. (3).

P(zi ) = ezi
∑c

c=1e
zc

(3)

In this formula, zi is the output value of the i-th node, and c is the number of
output nodes which is the number of classification categories.

The Sigmoid function is used in the attention model. This function is used for the
output of hidden layer neurons and can map real numbers to the (0, 1) interval. In
the attention model, the Sigmoid function is placed after the fully connected layer to
calculate the output, so that the output value obtains a normalized weight between 0
and 1. The formula is shown as Eq. (4).

s(x) = 1

1 + e−x
(4)

where x is the output value of the fully connected layer, and s(x) is the calculated
weight.

2.1.3 Pooling Layer

The pooling layer is usually placed after the convolutional layer. The role of the
pooling layer is to reduce the size of the model, compress feature dimensions and
prevent overfitting. After the wind turbine bearing vibration signal is input to the
convolutional layer, the characteristic signal will be extracted. Then the characteristic
signalwill be sent to the pooling layer to reduce redundant features. Pooling generally
has two types: average pooling and maximum pooling. In this study, average pooling
and maximum pooling are used in different locations on the network. The formula
for average pooling and maximum pooling is shown as Eqs. (5) and (6).

z j =

∑

( j − 1)r + 1 ≤ l ≤ jr
( j − 1)r + 1 ≤ h ≤ jr

ylh

r ∗ r
(5)

z j = max
( j − 1)r + 1 ≤ l ≤ jr
( j − 1)r + 1 ≤ h ≤ jr

{ylh} (6)

In this formula, z j represents the output value after pooling operation; ylh repre-
sents the feature value of a point on the extracted feature map; r represents the width
of the pooling area.
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2.2 Residual Network

The essence of convolutional neural network is to fit a function that meets the corre-
sponding target. Therefore, in order to achieve the goal, the researchers began to
deepen the network architecture to infinitely fit the objective function, but the study
found that simply stacking the network would not improve the network performance
too much. This is because as the network deepens, the problem of gradient disap-
pearance begins to occur, so the deep network is difficult to train. In order to solve
the problem of the disappearance of the gradient of the deep network, the residual
network was proposed. The framework of the residual module is shown in Fig. 2.

As can be seen fromFig. 2, comparedwith the traditional neural network architec-
ture, the residual network has added an identity mapping layer. Doing so can prevent
the gradient decay or disappear as the network depth increases. In the figure, F(x)
represents the residual, and F(x) + x is the final mapping output, the final output of
the network can be obtained as H(x) = F(x)+ x . Therefore, the calculation process
of the residual frame can be written as following three formulas.

H1(x) = relu(w1 ∗ x) (7)

H2(x) = relu(w2 ∗ H1(x)) (8)

Fig. 2 Residual framework
module

Weight layer

Weight layer

x

relu identity

relu

F(x)

F(x)+x
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H(x) = H2(x) + x (9)

In the formula, x is the input data, w1 and w2 are the corresponding convolution
operation, H1 is the output of the first layer, H2 is the output of the second layer.

A fault diagnosismodel is built based on the residual networkmodule in this study.
Because the wind turbine bearing vibration signal data set is small, this network only
uses two-layer residual modules. The purpose of using fewer network layers is to
avoid redundant features extracted from too many network layers and interfere with
the classification performance of the model. The experimental results also prove
that too many layers will not improve the classification accuracy of small data set
samples too much and even reduce its classification accuracy. Figure 1 show the
model’s framework. In this model, the first layer of the convolution kernel with a
size of 14× 14. Using a large convolution kernel can obtain a large feature receptive
field and filter out some noise interference.

2.3 Attention Mechanism

Attention mechanism was originally used in the field of machine translation. The
essence of the attention mechanism is similar to the human visual selective attention
mechanism. The core goal is to select the most important information for the task
goal from numerous information. There are two forms of realization of the attention
mechanism, namely spatial attention and channel attention. In this research, the
channel attention model is embedded in the residual module of the residual network
to apply attention weight to different channels, thereby improving the classification
ability of the model. The channel attention model is shown in Fig. 3.

It can be seen from the figure that the features extracted by convolutionwill be sent
to the channel attention model. There are two fully connected layers of the model.
In order to prevent the model from overfitting, dropout is added to the model. The
reduce_mean layer in the figure is used to compress the input data. Shape [−1] is the
number of channels of the input feature. Reduction_ratio is a dimensional change
parameter, which can reduce the input data to a specified dimension. Then return
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Fig. 3 Channel attention mechanism model
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to the original dimension through a fully connected layer to obtain more nonlinear
changes during transformation and reduce the amount of calculation. After two fully
connected layers, the result is input into the sigmoid function to calculate the weight.
Then multiply the weight and the input features to output the result. From the above
figure, the calculation formula can be obtained as showing below.

α = δ(σ (σ (Z))) = [α1, α2, . . . , αL ] (10)

O = Zα (11)

In the formula, σ represents the Relu function; δ represents the Sigmoid; L repre-
sents the number of channels, α represents the weight; O is the result of multiplying
the input and the weight.

2.4 LSTM

Simple RNN cannot remember information seen before many time steps and cannot
learn long-term dependent information. Therefore, when extracting features of long-
term sequence information, information may be lost, which will affect the accuracy
of classification. In order to solve this problem, LSTM was proposed. In this study,
because the fault signal of the bearing has a certain dependence on time, LSTM is
added to the proposed model to better preserve the information on the time series.
Figure 4 shows the LSTM structure.

As can be seen from Fig. 4, LSTM has three gates, namely the forget gate, the
input gate and the output gate. c(t) and h(t) are the long-term state and the short-
term state respectively. The forget gate determines how much information from the
previous moment needs to be retained in the current state. The calculation process is
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Fig. 4 The structure of LSTM
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shown as Eq. (12).

ft = σ(W f
[
h(t−1), x(t)

] + b f ) (12)

The input gate determines how much input the current moment needs to be saved
in the unit. The calculation process is shown in Eqs. (13) and (14).

It = σ(WI
[
h(t−1), x(t)

] + bI ) (13)

gt = tanh(Wg
[
h(t−1), xt

] + bg) (14)

The output gate is used to determine how much of the current unit status is to be
output to the output value. The calculation process is shown in Eqs. (15) and (16).

ot = σ(WO
[
h(t−1), xt

] + bo) (15)

ht = ot ∗ tanh(Ct ) (16)

where σ is the Sigmod function; W is the weight; b is the offset value.
After the convolutional layer, the extracted features are sent to the LSTM network

to further extract the dependency on the time series of the feature information. Finally,
the extracted features are sent to the classifier for classification,whichmakes thewind
turbine bearing fault diagnosis more accurate.

3 Experiment

The simulation platform of this experiment is configured as Intel core i5-1135g7
@2.40 Hz, 16 GB running memory, and the graphics card is NVIDIA mx450. The
simulation model is implemented using the Python deep learning framework Tensor-
flow. The maximum number of iterations of the experiment is 30, and each batch of
training samples is 128.

3.1 The Dataset

Because it is difficult to collect data on bearing faults of wind turbine gearboxes, this
study uses the data set of the bearing data center of CaseWestern Reserve University
(CWRU). CWRU’s data acquisition platform is shown in the Fig. 5.

As shown in Fig. 5, the data acquisition platform consists of a 2 hp motor (left),
a torque encoder (center), and a dynamometer (right). The test bearing supports
the motor shaft. In this study, the data of the bearing drive end was selected as the
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Fig. 5 Data acquisition platform

Table 1 Bearing type
description

Fault labels Fault location Fault diameters (mil)

0 Inner race 7

1 Ball 7

2 Outer race 7

3 Inner race 14

4 Ball 14

5 Outer race 14

6 Inner race 21

7 Ball 21

8 Outer race 21

9 Normal Normal

experimental dataset. The bearing data set mainly has fault data at three locations,
namely outer ring fault, inner ring fault and rolling element fault. The fault diameters
are 7 mils, 14 mils and 21mils (1 mil= 0.001 inches) respectively. In this study, each
fault type at the same speed is divided into a data set. In addition to a set of normal
operating conditions, there are a total of ten types of bearing conditions. CWRU
uses acceleration sensors to collect data. The acceleration sensor is placed on the
drive end to collect vibration signals. The sampling frequency is 12 kHz and 48 kHz
respectively (0, 1, 2, 3, 4, 5, 6, and 7 hp). In this study, bearing vibration signals at
two sampling frequencies were selected for experimentation. Ten bearing types are
shown in Table 1.
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3.2 Experiment Description

3.2.1 Data Preprocessing

The bearing vibration signal collected by the sensor needs to be pre-processed tomeet
the requirements ofmodel training and testing. In this study, 70%of the bearing vibra-
tion signals were divided into the training set; 20% were divided into the verification
set and 10% of the data set were divided into the test set. Since there are ten bearing
types, one thousand samples of each type are generated during the preprocessing.
Each sample is generated by a sliding window with a step size of 28 and a sampling
point of 1024. In addition, the model proposed in this article is a two-dimensional
convolutional neural network, so in order tomeet the input format, each sample needs
to be changed from one-dimensional to two-dimensional.

3.2.2 Parameters of the Model

The fault diagnosis structure of the wind turbine bearing proposed in this paper is
shown as Fig. 1. The parameter settings of each module in the model are shown in
Table 2.

The input layer of the network is the pre-processed wind turbine bearing vibration
signal and the output layer is the result classified by the Softmax classifier. There are
two layers in Table 2 as se_moudel and this module is the attention module. Since
the cross-entropy loss function is simple to derive, the loss is only related to the
probability of the correct category and the convergence speed is faster. Therefore,
the cross-entropy loss function is often used in multi-classification problems and the
formula is shown in Eq. (17).

L = −
9∑

i=0

yi log(pi ) (17)

In the formula, yi is the true label of the wind turbine bearing; i is the number of
bearing types; pi is the network output.

In convolutional neural networks, the choice of optimizer has significant impact
on network performance. Because the Adam optimizer has the advantages of simple
implementation, efficient calculation, and parameter updates are not affected by
gradient scaling transformation. This research chooses Adam optimizer.

4 Result and Analysis

In neural networks, the settings of the learning rate have a significant influence on
the performance of the model. Whether the learning rate is appropriate determines
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Table 2 The layers of the
network

Layer Output shape Parameters

Zero_padding2d (None, 38, 38, 1) 0

Conv2d (None, 25, 25, 64) 12,608

Batch_normalization (None, 25, 25, 64) 256

Max_pooling2d (None, 13, 13, 64) 0

Conv2d_1 (None, 13, 13, 64) 36,928

Batch_normalization_1 (None, 13, 13, 64) 256

Conv2d_2 (None, 13, 13 64) 36,928

Batch_normalization_2 (None, 13, 13, 64) 256

SE_moudel (None, 13, 13, 64) 0

Add (None, 13, 13, 64) 0

Activation (None, 13, 13, 64) 0

Conv2d_3 (None, 13, 13, 64) 36,928

Batch_normalization_3 (None, 13, 13, 64) 256

Conv2d_4 (None, 13, 13, 64) 36,928

Batch_normalization_4 (None, 13, 13, 64) 256

SE_moudel_1 (None, 13, 13, 64) 0

Add_1 (None, 13, 13, 64) 0

Activation_1 (None, 13, 13, 64) 0

Average_pooling2d (None, 6, 6, 64) 0

Flatten (None, 2304) 0

Tf_op_layer_Expandims (None, 1, 2304) 0

Lstm (None, 1, 128) 1,245,696

Flatten_1 (None, 128) 0

Dense (None, 10) 1290

whether the neural network can converge to the global minimum. Therefore, in order
to select the appropriate learning rate, this paper takes the learning rate at 0.01, 0.001,
0.0001 and 0.00001 and uses the same data set to do four sets of experiments. The
training set and validation set loss function values are displayed in the figure below.

The network is trained for a total of 30 rounds. In Fig. 6, the value of the verification
set loss function has been oscillatingwhen the learning rate is 0.01.When the learning
rate is 0.001, although the loss function value of the verification set has a tendency to
converge. There are still several oscillations during the convergence process. When
the learning rate is 0.0001, it can be seen that the value of the verification set loss
function quickly converges to the minimum without large fluctuations. Although the
loss function of the verification set is converging, the convergence speed is too slow,
and it takes a long time to train to reach the optimal when the learning rate is 0.00001.
Therefore, setting the learning rate of the wind turbine bearing fault diagnosis model
to 0.0001 can make the bearing fault diagnosis more accurate and efficient.
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(a) =0.01 (b) =0.001 

(c) =0.0001 (d) =0.00001 

Fig. 6 Graph of loss function for different learning rates

The evaluation indicators are used in this experiment mainly include accuracy,
precision, recall and f1 score. Accuracy is a commonmodel evaluation index. Gener-
ally, the higher the accuracy, the better the performance of themodel. Precision repre-
sents the proportion of samples classified as positive cases that are actually positive
cases. The recall is used to measure how many of all positive cases are predicted as
positive cases. The F1 score is used to measure the overall performance of the model.
The calculation formulas of the four evaluation criteria are as following:

Acc = T P + T N

T P + T N + FP + FN
(18)

Precision = T P

T P + FP
(19)

Recall = T P

T P + FN
(20)

F1score = 2 ∗ P ∗ R

P + R
(21)

In the formula, TP is true positive, which means that a sample is a positive class
and is predicted to be a positive class. FP is false positive, which means that a sample
is negative but is predicted to be positive. FN is the false negative, which means that
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a sample is positive but is predicted to be negative. TN is true negative, which means
that a sample is negative and is predicted to be negative.

At 12 kHz sampling frequency bearing vibration signal, the experiment compared
the Se-Resnext [19] model, CNN-ISVM [20] model, Teod-Mcsdae model [21], and
proposed model. The data set is 2 hp and the result of the four models is shown in
Table 3.

It can be seen fromTable 3 that the classification accuracy of themethod proposed
in this paper is better than Se-Resnext and CNN-ISVM on the 2 hp data set. Both
the Teod-Mcsdae and the model proposed in this paper achieve 100% classification
accuracy, but the Teod-Mcsdae model is complicated in calculation and puts forward
higher requirements on the hardware configuration.

For bearing vibration signals at sampling frequency of 48 kHz, the experiment
compared the 1DCNN-PSO-SVMmodel [5], CNN-LSTMmodel [22], and proposed
model. The data set is 7 hp and the result of the three models is shown in Table 4.

In Table 4, three other evaluation criteria for model performance have been added.
In terms of accuracy, the method proposed in this paper reaches 99.2%, which is
higher than 98.2% of 1DCNN-PSO-SVM and 98.7% of CNN-LSTM. Therefore,
from the perspective of accuracy evaluation indicators, the model proposed in this
article is better than the other two models. Precision represents the probability that
all samples that are predicted to be positive are actually positive samples. In the
Table, the precision of the model proposed in this paper is 1.2% higher than that
of 1DCNN-PSO-SVM, reaching 99.2%. Recall value represents the probability of
being predicted as a positive sample in a sample that is actually positive. In this study,
the proposed method is higher than other methods in recall value. For F1 score, it
can measure the performance of the entire model. From the table, the F1 score of the
method proposed in this article is higher than that of other methods. Among the four
evaluation indicators, the performance of the model proposed in this paper is better
than other models, indicating that the proposed model has strong fault diagnosis
capabilities.

In order to prove the good classification effect of the proposed model, this paper
compared the LSTM model, Resnet18 model, Attention Mechanism-ResNet18-
LSTMmodel, and the proposedmodel. A vibration signal with a sampling frequency

Table 3 Comparison of different models (12 kHz)

Model Se-Resnext CNN-ISVM Teod-Mcsdae Proposed

Acc (%) 99.83 99.83 100.0 100.0

Table 4 Comparison of different models (48 kHz)

Model Acc (%) Precision (%) Recall (%) F1 score (%)

1DCNN-PSO-SVM 98.2 98.0 98.0 98.0

CNN-LSTM 98.7 − − −
The proposed method 99.2 99.2 99.2 99.2
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Table 5 Comparison of different models (6 hp)

Model Acc (%) Precision (%) Recall (%) F1 score (%)

LSTM 78.9 79.4 78.9 78.7

ResNet18 94.1 94.3 94.1 94.0

Attention Mechanism-ResNet18-LSTM 95.2 95.7 95.2 95.1

The proposed method 99.2 99.2 99.2 99.2

of 48 kHz is used as the dataset. The number of neurons in LSTM is set to 128. The
number of training samples in each batch of the experimental model is 128. The
experimental results are shown in Table 5.

Table 5 shows that the model proposed in this paper is better than the other
three models in fault classification performance. The four evaluation indicators of
the LSTM model are all less than 80%, which are much lower than the other three
models. TheResNet18model is superior toLSTMin fault classification performance,
and its four evaluation indicators Acc, Precision, Recall and F1 score all reach 94%.
The Attention Mechanism-ResNet18-LSTM model adds an attention module and a
long and short-termmemory network on the basis of ResNet18, so that the model can
extract more detailed and key features. Therefore, four evaluation indicators of this
model are all higher than the ResNet18 model by more than 1%. The four indicators
of the proposed model reached 99.2%, which is higher than LSTM and ResNet18.
The indicators are also three to four percentage points higher than ResNet18 with
attention module and LSTM. The reason is that the bearing data set used in the
experiment is small, and the number of layers in the ResNet18 network is large. Too
many layers will extract redundant features and affect model performance.

The confusion matrix of the proposed model is shown in Fig. 7. In Fig. 7, the
horizontal axis represents the predicted label, and the vertical axis represents the true
label. The numbers on the coordinate axis represent ten different types of bearings.
Each type has 100 test samples, a total of 1000 test samples. The values on the main
diagonal of the matrix represent the number of correctly classified samples of each
type. The larger the value, the better the classification effect of the model.

5 Conclusion

Energy shortage and environmental protection have contributed to the development
of new energy. In the field of new energy power generation, wind power occupies a
very important position. As more and more wind farms are built and put into use,
their maintenance becomes extremely important.

This research proposes a bearing fault diagnosis method based on ResNet-
Attention Mechanism-LSTM. The one-dimensional bearing signal is pre-processed
into a two-dimensional sample and input the ResNet. The attention model is
embedded in the ResNet to increase the weight of important feature channels and
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Fig. 7 Confusion matrix of the proposed method

reduce the interference of unimportant features. LSTM is added to the network to
extract the long-term dependence on the signal, making the classification feature
richer.

This method is used for bearing fault diagnosis and compared with other methods.
The results show that the method proposed in this paper outperforms other methods
in bearing fault diagnosis and avoid the problem of relying toomuch onmanual expe-
rience in traditional methods. Since the wind turbine vibration signal will inevitably
be mixed with noise during the acquisition process, the next step will be focused on
the removal of noise in the signal.

Acknowledgements Thisworkwas supported by theNationalNature Science Foundation ofChina
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Study on Optimization and Improvement
of Production Line of H Product

Guo Jidong, Liang Yuyan, Ma Zenan, Qiu Zijian, Mo Yuwei, Li Limin,
and Zhou Dawei

Abstract This casemakes full use of the knowledge of IE in various aspects, such as
work research, ergonomics, and other methods to put forward four different improve-
ment proposals, including twowork table design, one fixture design and one operator
man–machine operation design, solving the problem of one company H product has
a large inventory of WIP and so on. After the proposal was put forward, the Flexsim
simulation technology and other methods were used to evaluate the scheme which
is proposed in this case and verify the feasibility of the scheme. The final improve-
ment proposal resulted in a total reduction about 2709 s in appearance inspection
engineering cycles, at the same time the new improved workstation made it easier
for employees to work, to reduce physical injury to employees due to long working
hours; Four employees were reduced in the electrode magnetic coil project, and the
annual wage expenditure was saved by about 198,144 yuan.

Keywords Flexsim simulation technology · Work research · Ergonomics · Fixture
design

1 Introduction

With the further development of social production, the demand for balance of produc-
tion line in modern processing and manufacturing industry is gradually improved.
This paper focuses on the inventory backlog of WIP caused by poor management
and poor spatial layout in the production process of H product of the company, which
will lead to the decline of productivity of the enterprise. Aimed at the problems of
the company, respectively, suit the remedy to the case: firstly, work measurement
and motion analysis was carried out on the appearance inspection engineering, and
industrial engineering and other theory methods for process optimization; secondly,
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Fig. 1 H product diagram

design fixture, optimize and improve the bottleneck process by using image analysis
method, improve productivity of this process and reduce WIP inventory.

2 Production Status and Problem Analysis

2.1 The Introduction of H Product

A company mainly produces electronic products. H product is one of the electronic
products of the company, made of magnetic core and magnetic coil, and its volume is
small, as shown in Fig. 1. There are 4 seed products under H product, and the process
flow of the sub products is the same. Therefore, the optimization and improvement
of 1 seed product in this case is applicable to other sub products.

The general process flow chart of H product is shown in Fig. 2. Plastic product
box is used for transportation and appearance inspection engineering.

2.2 Production Status of H Product

Through field observation, there is a large amount of WIP inventory between the
product changing plate and the appearance inspection engineering. Table 1 shows
the ratio of personnel per unit production line and WIP inventory at a certain time.

To sum up, the appearance inspection process is the bottleneck process of H
product line.
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Fig. 2 General process flow chart

2.3 The Problem Analysis

Based on the bottleneck process and the problem of long idle time of electrode and
magnetic coil employees, this case analyzes the balance ratio and operation ratio.

2.3.1 The Analysis of Capacity Balance Rate of Each Process
in Production Line

The stopwatch analysis method was used to conduct the operation measurement,
calculating the standard time, and summarizing the product process diagram of H,
as shown in Table 2.

The formula for calculating the balance rate of the production line [1] is as follows:
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Table 1 Production status record

No. Engineering Personnel Work in process Headcount Note

1 Electrode
arrangement

1 4 disc-720 pcs 8 Statistical time: 10/6
15:30

2 Magnetic coil
arrangement

3 Electrode
magnetic coil
followed

1 8

4 Magnetic core
forming

1 4 disc-720 pcs 8

5 Magnetic core
magnetic coil
followed

6 Products
molded

1 0 8

7 The laser
marker

0

8 Products in disc 1 0 8

9 Special
inspection

1 0 8

10 Appearance
inspection

6 25 group-5000 pcs 48

η = Totaltimeof eachprocess/(CT ∗ Numberof operations ∗ 100% (1)

CT is the standard time of bottleneck process.
According to the formula (1), the balance rate of H product production line is

34%, which is in line with the reality.

2.3.2 Products in Disc Process—Status Analysis

Through interviews and video analysis, it was found that the operators’ movements
such as straightening their arms and detouring path did not conform to t the action
economy principle [2].

2.3.3 Analysis of the Present Situation of Appearance Inspection
Working Table

Through interview and field investigation, we found that the following problems
existed in the appearance inspection process.
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Table 2 H product flow chart
Job name Statistics
Handler Item Number Times/s

Investigator Operation 8 2401.5 
Start Inspection 2 1330.2 
End Transport 0

Temporary storage or delay 0
Storage 0

NO. Job description time/s

Process series Unit

Operation Inspection Transport 
Temporary 

storage 
or delay

Storage 

1
Electrode  

arrangement 
360 192pcs 

2
Magnetic coil 
arrangement 

300 180pcs 

3
Electrode magnetic 

coil followed
240 180pcs 

4
Magnetic core 

forming 
240 180pcs 

5
Magnetic core 
magnetic coil 

followed
300 180pcs 

6 Products molded 225 180pcs 
7 The laser marker 270 180pcs 
8 Products in disc 466.5 180pcs 
9 Special inspection 227.7 180pcs 

10
Appearance 
inspection 

1102.5 180pcs 

Problem 1: there are some movements in the work, such as feet can’t touch the
ground and pedal high to pick up pieces, etc.

Problem 2: in the appearance inspection process, four people share a work table,
and there is no gap or boundary between the work stations, so there exists a risk of
goods mixing.

Problem 3: when employees share a set of tools, there exist problems that have a
long distance to get the tools and wait in line.

2.3.4 The Analysis of the Current Situation of Fixture

The length, width and height of long suction bars are 195 mm, 36 mm and 9 mm
respectively, while the length, width and height of short suction bars are 85 mm,
30 mm and 6 mm respectively. Through the operation observation, it is found that
taking and putting down the suction bars for many times during the appearance
inspection process, resulting in repeated actions and increasing the workload of
employees. Therefore, it is necessary to improve the current situation of the suction
bars.



190 G. Jidong et al.

Using the mod timing method [3] to record the inspection time of 60 H products,
it was found that in the current method, the mod value of long suction bar was 1436,
and that of short suction bar was 1322. There are many simple repetitive actions in
the process of operation, and there is room for improvement.

2.3.5 Man–machine Operation Status Analysis

Field observation found that there was a long spare time for the staff of the Elec-
trode magnetic coil followed project, so the project was continuously observed and
analyzed.

According to the observation data, the operation analysis of the Electrode
magnetic coil followed engineering operator is carried out:

➀ T he waiting time of employees in the process of operation accounted for 57.9%
of the total time.

➁ Excluding the time of non-cycle work content, the work rate of employees is
24.9%.

In order to eliminate the situation of other people’s assistance in operation, the
operation data of other people in this station is recorded at the same time, and it is
concluded that the number of other people’s assistance in operation is 0, that is, there
is no machine interference.

To sum up, the waiting time is too long and the operation rate is low, so the design
of human–machine operation can be optimized.

2.4 Production Line Analysis Based on Flexsim

Combined with the production status of H product, summarize the data and conduct
Flexsim status analysis and simulation [4]. In order to facilitate the analysis, the
Flexsimmodel is set upwithmultiple simulation premises, and the current production
line model is established (Fig. 3).

In the simulation results, the idle time column of special inspection temporary
storage area is 0%, the empty is 1.02%, the input of special inspection temporary

Fig. 3 Production line status model
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Fig. 4 Improve the front work table

storage area is 460, and the output is 195, so the WIP inventory between special
inspection and appearance inspection process is serious, which is consistent with the
actual situation.

3 H Product Optimization and Improvement Plan

3.1 Improvement Scheme of the Appearance Inspection
Engineering

3.1.1 Products in Disc-Work Desktop Improvement

According to the principle of action economy, the layout of the worktable was
improved, before and after improvement are shown in Figs. 4 and 5.

3.1.2 Design Scheme of Appearance Inspection Table

In this case, according to theworking space designprinciples proposed inErgonomics
Principles of Working System Design [5] and the human body size provided in
Chinese Adult Body Size [6], the appearance inspection table was redesigned.

Design the height of the table top
The design of table top height needs to design the height of the seat first, and then

determine the height of the table top.

➀ The design of the seat height
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Fig. 5 Improved worktable

Since there is no qualitative regulation on gender and age for the job requirement
of this process, the design size of the seat height adopts the data of mediummale and
female figure. Seat height = “calf plus foot height” + correction number of shoes
worn + correction amount of pants worn—thickness of hip [7].

Calculated the comprehensive seat height = (422 mm + 386 mm) /2 = 404 mm.

➁ The design of the desktop height

Desktop height = comprehensive seat height + table and chair height difference
= comprehensive seat height + sitting height /3.

Calculated table height = 697.8 mm≈700 mm, as shown in Fig. 6(unit mm).

Fig. 6 Schematic diagram
of table height size
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Design the layout of the working table.

Based on the fact that the platform is so high that the staff need to press the desk
with their arms to access the work, this case designs the height of the platform which
used to place semi-finished products.

In order to make it easier for more people to work, the height of the platform will
be the same as the height of the employees’ shoulders when they are sitting, and will
be designed in the 5th percentile of the adult female body size.

According to the relevant formula, the relative height of the platform was
calculated to be 220 mm, as shown in Fig. 6 (unit mm).

The layout of the table surface design

Optimization of production site management is the premise and basis for enter-
prise management to achieve overall optimization [8]. Therefore, this case will carry
out plane layout design for the worktable according to 5S principle and the action
economy principle, as shown in Fig. 7. A 10 cm high partition is added to eliminate
the risk of mixed goods. Its layout is shown in Fig. 8. Defect product boxes are
designed to make it more convenient for employees to take out H products, shown
in Fig. 9.

General design drawing of appearance inspection work table
The three-dimensional diagram of the current working table of appearance inspec-

tion process is shown in Fig. 10, and the redesigned working table of appearance
inspection working process is shown in Fig. 11.

Fig. 7 Tool area division
diagram

Fig. 8 Baffle layout
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Fig. 9 Rejects box

Fig. 10 The current work
table

Fig. 11 The redesigned
work table

3.1.3 Design Fixture for Appearance Inspection Process

Design concept
According to Sect. 2.3, the current suction bar operation does not conform to

the principle of action economy, so the ECRS principle is used to redesign the long
suction bar and short suction bar, as shown in Figs. 12 and 13.

Fig. 12 Long suction bar



Study on Optimization and Improvement … 195

Fig. 13 Short suction bar

The newly designed long suction strip tray and short suction strip tray can respec-
tively suck up one and half of the H product at a time for bottom inspection, reducing
the action of multiple fetching and releasing.

3.2 Man–Machine Operation Improvement

According to the man–machine operation analysis in Sect. 2.3.5, this case analyzed
and measured the leisure capacity of employees in electrode magnetic coil engi-
neering, designed a man–machine operation table with one person holding two
machines, and proved its feasibility at the same time.

3.2.1 Analysis of Leisure Sapacity

According to equipment operation observation table and staff operation observation
table in Sect. 2.3, leisure capacity analysis is carried out:

N = M + t

t
(2)

According to Eq. (2), the leisure capacity of the operator can be obtained as
follows:

N = (M + t)

t
= 373 + 204

204
= 2.828 > 2

Therefore, the electrode magnetic coil followed engineering staff can be a person
with two assignments.
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Table 3 Man–machine operation schedule

The work object The job content Time/s Beat/min

Operators Exchange the electrode plate 8 2

Exchange magnetic coil plate 8 4

Semi-finished plate to hardening
machine

10 4

Take empty semi-finished products to
the next machine

6 4

The semi-finished tray trolley is moved
to the cooler

28 24

Electrode magnetic ring to the
machine

The electrode plate operate 2 min

Magnetic coil plate operate 4 min

Intermediate plate output 4 min

3.2.2 Man–Machine Operation Measurement

The electrode magnetic coil followed engineering was followed by the stopwatch
method for engineering equipment, to obtain the time of each work content, as shown
in Table 3.

3.2.3 Man–Machine Operation Cycle Design

According to the operator’s operation and equipment time parameter table, combined
with the man–machine analysis diagram, the operation improvement of one person
holding two machines can be realized. This method is also applicable to other
production lines of H product.

4 Conclusion

Through the improvement of the layout of the work table, the image analysis method
is used to record the standard working time of the staff before and after the improve-
ment of the work table, which changes from 31.1 s to 20.6 s, and the work efficiency
is increased by 33.8%. The additional improvement of the partition on the work table
improves the working efficiency of the staff, reduces the risk of product mixing, and
provides more working areas for the staff.

In the appearance inspection process of the bottleneck process, the fixture was
improved. The MOD value of the process was reduced from 1436 to 1314, and the
time to complete the process was shortened by 15.738 s after the improvement.

Through man–machine operation analysis, the change from one person holding
one device to two, the work efficiency is increased by 100%, the personnel ratio of
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Table 4 Overall operation cycle design

Cycle operation

Operation content Frequency Unit time/s Total
time/sOne

cycle
5 cycles Remain 90s Total

cycle

Spare electrodes,
magnetic coils and
semi-finished plates

2 0 0 2 11 5.5 22

Exchange the
electrode plate

34 17 0 0 170 8 4 1360

Exchange magnetic
ring plate

16 80 0 80 8 4 640

Semi-finished disc
moved to hardening
machine

16 80 0 80 10 5 800

Take empty
semi-finished
products to the next
Machine

16 80 0 80 6 3 480

Ove the
semi-finished plate
to the cooler

2 10 0 10 28 14 280

Total 86 420 0 422 71 35.5 3822

Non-cyclic operation

Operation content Ratio (%) Processing time/s

Contact fault
corresponding

4.5 503.55

Harden fault
corresponding

0.2 22.38

Write summon 3.0 335.7

Collect defective
products

1.0 111.9

Cooler 2.1 234.99

Total 10.8 2417.04

Data aggregation

Total working time of operator/s 5999.04

Total design cycle time/s 11190

Ratio of operator operating 2 equipments/s 53.61%
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the corresponding process can be reduced by 50%, and the annual wage expenditure
is reduced by 198,144 yuan.

The balance rate of the production line was increased from 34 to 38%, an increase
of 4%, and the work efficiency was improved by 33.8%. The time consumed by the
bottleneck process was reduced, the ratio of personnel was reduced, and the labor
cost was reduced. The improvement effect was obvious.
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Towards Data Driven Dynamical System
Discovery for Condition Monitoring
a Reciprocating Compressor Example

Ann Smith and W. T. Lee

Abstract A viable data driven approach for determining dynamical systems
describing engineering processes would be a valuable tool in condition monitoring.
The application of the SINDy algorithm for dynamical system discovery is investi-
gated in the context of a reciprocating compressor. A feasibility study was carried out
in which an attempt was made to recover a model of the compressor from synthetic
data obtained from that model. A simplified model of the compressor with two
degrees of freedom was developed from an existing model. Following the SINDy
approach a parsimonious model was constructed from a large library of functions
using sparse regression. This model has the same structure as and similar coefficients
to the original model thus demonstrating the potential of this approach.

Keywords SINDy · Dynamical systems · Condition monitoring · Reciprocating
compressors · Digital twin

1 Introduction

Condition Monitoring (CM) is concerned with preventing, or at the very least
predicting, impending component failure. Quality management through continuous
monitoring of process outputs aims to detect and identify deviations from normal
operation at onset thus ensuring optimal performance, safety, and productivity [1].
A key problem in condition monitoring is having a quantitative understanding of
the system being monitored. One solution is found in data reduction methods such
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as principal component analysis (PCA). However, the gold standard for this would
be a predictive model of the system implemented as a dynamical system. However,
for many condition monitoring problems deriving such a model from fundamental
electrical or mechanical principles is difficult or impossible.

As machine complexity continues to increase with respect to both individual
components and complete systems, so does the intricacy and cost of predictive
maintenance programmes. Sensors too have become smaller and more affordable,
thus the ability to gather, process and communicate information is growing, Large-
scale industrial processes are monitored by a network of 1000’s of sensors each
capturing data reflecting the process condition. Whilst fault signature analysis of
sensor fault relationships can assist in identifying optimal sensor placement for focus,
detailed holistic analysis of the process utilising complex prognostic models is often
unfeasible.

A recent advance in this area is the development of an alternative data driven
route to the determination of dynamical systems [2]. Preliminary results towards the
applicationof these principles to engineeringplant are reportedhere.An instrumented
reciprocating compressor for which both experimental data and a dynamical system
model are available [3] is taken as an example system. As an initial check of the
feasibility of this approach recovering a simplified model of the compressor from
synthetic experimental data is investigated.

This paper presents original research in the field of dynamical system discovery.
Initial investigations are presented which demonstrate an implementation of the
Sparse Identification of Nonlinear Dynamics (SINDy) methodology [2, 4]. The
SINDy algorithm is utilised to determine the underlying dynamical system of a
component or process. A subset of the dynamical system representing a recipro-
cating compressor model was solved using a Runge-Kutta method with adaptive
time stepping (MATLAB’s ode45). The resulting solution was incorporated into the
SINDy algorithm and the original system recovered. A simplified system of differen-
tial equations representing the cylinder action of a reciprocating compressor formed
the base model under investigation. Subsequently, noise terms were incrementally
added to mimic a typical search for an unknown dynamical system.

2 Theoretical Background

The key challenge in discovering dynamical systems form experimental data is the
large space of possible models that must be systematically investigated. To overcome
this problem Kutz et al. developed the Sparse identification of nonlinear dynamics
(SINDy)methodology [2]. This relies on the use of a library of test functions allowing
linear regression to be used despite the nonlinear nature of the equations—essentially
all nonlinearity is contained in the test functions. As standard linear regression will
generate nonzero coefficients in front of every test functions due to experimental
error a sparse regression procedure must be used to generate a parsimonious model
avoiding the overfitting problem.
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A very encouraging application of the SINDy algorithm in our context is an
application to vortex shedding by a cylinder at moderate Reynolds numbers [4].
In this feasibility study a single (simulated) experimental measurement was used
to determine a human interpretable dynamical system describing the dynamics of
vortex shedding. Furthermore, with the introduction of further data the full fluid
dynamical state of the system can be recovered. The long-term aim of this research
is to see if a similar process is feasible in engineering plant such as the reciprocating
compressor.

3 Methodology

3.1 Mathematical Models

Due to their prevalence and importance in industrial processes there is naturallymuch
interest in the detection and diagnosis of Reciprocating Compressor (RC) faults. RCs
are critical components in many high-pressure processes and their failure can have
a serious impact on both the process operation and its equipment.

A highly simplified model based on a reciprocating compressor focussing on
the mechanics was developed based on the model developed by Elhaj et al. [3]. In
addition to the assumptions introduced by the original modelling process this model
makes the following assumptions.

• Constant drive torque
• Only a single cylinder is considered.
• The pressure in the cylinder is takes as constant.

The result is a two-dimensional set of ordinary differential equations with four
free parameters. Random values of these parameters of order unity were chosen.

Initial conditions were taken to be θ = 0, ω = 0, i.e. simulating a cold start. Note
that simulating the steady state operation of the device might have led to some terms
not appearing in the model determined by fitting as these may only be important in
the dynamics as the device approaches steady state.

3.2 Synthetic Data Set

To generate a synthetic dataset of measurements of theta and omega the differen-
tial equations were solved numerically and then noise was added. A Runge-Kutta
numerical integrator was used to solve these equations. To turn the results of the
simulation into synthetic data artificial noise was added in the form of uniformly
distributed pseudorandom values with zero mean on the interval [−0.5, 0.5].
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The SINDy algorithm also requires dω
dt data. Following Champion et al. [2] this

was obtained by substituting the synthetic data forω and θ into the dynamical system
model.

3.3 RC Models

A reciprocating compressor was chosen as the focus from this study as in addition
to its importance in industrial settings a mathematical model of a Broom Wade TS9
RC rig has been developed from first principles [3]. The TS9 is a two-stage RC
with compression cylinders arranged in V-shape formation. The rig has a maximum
working pressure of 1.379MPa (13.8 bar) and a crank speed of 440 rpm. A simplified
version of this model was developed for this preliminary investigation.

The equation of motion of a crankshaft in a simple model of a reciprocating
compressor with a single cylinder is given by

J
dω

dt
= Pcr2sc

L
cos θ sin θ + Pcrsc sin θ −

(
mpr

2 + mcrr2

2

)
ω2 cos θ sin θ + Tm

(1)

dθ

dt
= ω (2)

where J is the moment of inertia of the power unit, ω the angular velocity of the
crankshaft, Pc the cylinder pressure, r the radius of the crank, sc the cross-sectional
area of the cylinder, L is the length of the connecting rod, mp is the piston mass,
mcr mass of the connecting rod and Tm is the driving torque from the electric motor
respectively.

The SINDy algorithm promotes sparsity by eliminating terms with small coeffi-
cients. In order for the size of coefficients to be meaningful the equations of motion
must bewritten in dimensionless form. In dimensionless form the equations ofmotion
of the crankshaft is given by

dω

dt
= −Dcos θ sin θω2 + C cos θ sin θ + B sin θ + A (3)

dθ

dt
= ω (4)

with coefficients arbitrarily chosen as A = 0.5, B = 0.75, C = 0.75, D = 0.25. For
simplicity the same symbols are used for dimensional and dimensionless variables.
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3.4 SINDy

In order to recover the dynamical system from the synthetic data the SINDy algorithm
was used [2]. From θ (t) and ω(t) data a library of functions of the form cos(mθ )ωn

and sin(mθ )ωn was generated. The dω/dt data was regressed against all members of
this library of functions. To create a parsimonious model, sparsity parameter λ was
introduced and all terms from the function library with a coefficient less than λ were
removed. In this case λ was chosen by hand as the aim of the study was to determine
whether it was possible in principle to recover the original model by this process.
(More generally λ would be determined by a formal sparse regression technique.)
The regression was then carried out against the reduced function library.

4 Results

The synthetic dataset is shown in Figs. 1 and 2. By visual inspection of the results
of the regression it was determined that values of λ in the range 0.0046 < λ <
0.2451 would eliminate terms that were not in the original model. By repeating the
regression with these terms eliminated a model of the same form as the original with
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Fig. 1 Synthetic data: crankshaft angle θ in radians given as a function of dimensionless time.
Time is given in dimensionless units
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Fig. 2 Synthetic data dimensionless angular velocityω of crankshaft as a function of dimensionless
time

coefficients close to the original values was obtained as shown in Table 1. Good
agreement is obtained both qualitatively in which terms should be included in the
model and quantitatively: the values of the coefficients recovered agree closely with
the original coefficients.

Table 1 Comparison of
model coefficients with those
recovered via the SINDy
algorithm

Original model SINDy model

0.5 0.5006

0.75 0.7533

0.75 0.7306

0.25 0.2489

Good agreement is obtained between the sets of coefficients
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5 Conclusions and Further Directions

The ability to use data to determine dynamical systems describing engineering plant
would be an important step forward for condition monitoring. The first step towards
demonstrating the feasibility of this concept is whether existing models of such
systems can be recovered from simulated data generated by the models themselves.
A demonstration that this is possible in the context of a simplifiedmodel of a recipro-
cating compressor is reported here. Future research will extend this first to simulated
data from a complete model of the device and then move to investigating the results
of using this process with experimental data.
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Rolling Bearing Remaining Useful Life
Prediction Based on LSTM-Transformer
Algorithm

Xinglu Tang, Hui Xi, Qianqian Chen, and Tian Ran Lin

Abstract Bearings are the most critical components in modern industrial rotating
machinery. If a bearing is damaged, it can lead to serious consequences such as an
interruption to a production line and financial losses. It is important to monitor
the bearing operation condition and to predict the remaining useful life (RUL)
of bearings so that a scheduled maintenance can be planned ahead. In order to
improve the accuracy of a bearing RUL prediction, a new data-driven RUL prediction
technique based on Long Short-Term Memory (LSTM) network and Transformer
network is proposed. Firstly, a total of 8 degradation characteristics in both time
and frequency domains are extracted from the bearing data to be used as the input
features. After the data preprocessing steps such as normalization and slidingwindow
interception, the degradation characteristic dataset is obtained. Then, the proposed
LSTM-Transformer technique is applied to the characteristic dataset for training and
prediction. The prediction result shows that the proposed technique can effectively
overcomes the information loss of LSTM network caused by the increase distance
between the input and output sequences to produce a more accurate RUL prediction.
The RUL prediction obtained using the proposed technique is compared with those
using existing techniques such as GRU, LSTM and CNN networks for an evaluation
of the effectiveness and efficiency of the proposed technique. It is confirmed that
the proposed technique can yield a more accurate bearing RUL prediction than the
existing techniques.

Keywords Rolling bearing · Data driven · Remaining useful life · LSTM ·
Transformer
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1 Introduction

Rolling element bearings are one of the most critical components in modern indus-
trial rotating machinery [1]. Due to the harsh operating conditions in practical appli-
cations, rolling element bearings are prone to failure which can cause substantial
economic losses and even human casualty [2]. Therefore, it is necessary to carry out
effective preventive maintenance of bearings.

RUL is a key index to predict the potential machine failure in a production line
[3]. RUL prediction techniques can be generally grouped into two categories: phys-
ical model-based techniques and data-driven techniques [4]. Physical model-based
techniques usually require rich professional knowledge and experience to establish
a mathematical model to describe the physical relationship between subsystems in
the analysis of the system degradation process [5]. For example, Liao [6] utilized an
enhanced Paris-Erdogan (PE) model with a state-space model for the RUL predic-
tion of an equipment. El-Tawil and Jaoude [7] developed an analytic prognostic
methodology based on nonlinear damage laws to determine the RUL of a system.
The physical model based techniques can achieve an accurate RUL prediction when
the interrelationship between the system components and the working characteris-
tics of the equipment are well defined. However, due to the increasing complexity of
modern mechanical systems, it becomes harder and harder to establish an accurate
physical model.

On the contrast, data-driven RUL prediction techniques use the performance
degradation data of a system instead of analyzing the degradation process of the
system [8]. With the fast development and expansion of artificial intelligent tech-
niques, several machine learning and deep learning techniques have been success-
fully employed for the RUL prediction of rotating machinery. For example, Jaseena
and Kovoor [9] proposed a decomposition-based hybrid deep Bidirectional Long
Short Term Memory models with skip connections for the wind speed prediction,
and shows that the proposed method can produce a better prediction accuracy than
other models. Vaswani et al. [10] proposed the Transformer technique, based on an
attention mechanism and dispensing with recurrence and convolutions concurrently.
The application of the proposed technique on two machine translation tasks shows
that the model is more parallelizable, requires substantially less time to train.

Aiming to overcome the drawback of LSTM network such as the information loss
problemandparallel computingproblem, this paper combines theLSTMnetwork and
Transformer technique for amore accurate bearingRULprediction. The effectiveness
of the technique is verified using a set of published bearing degradation data.
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2 An Introduction of the Related Techniques

2.1 LSTM Neural Network

LSTM neural network is a special type of recurrent neural network (RNN), which
alleviates the gradient vanishing and gradient explosion problems of traditional RNN
model to a certain extent. Figure 1 shows the basic unit structure of a LSTM.

The basic update formula of LSTM is as follows:

Ft = σ
(
W f xt + U f ht−1 + b f

)
(1)

Nt = σ(Wnxt + Unht−1 + bn) (2)

C̃ t = tanh(Wcxt + Ucht−1 + bc) (3)

Ct = Ft · Ct−1 + Nt · C̃t (4)

Ot = σ(Woxt + Uoht−1 + bo) (5)

ht = Ot · tan h(Ct ) (6)

Fig. 1 An illustration of the LSTM unit structure
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where Ft ,Nt ,Ot denote forgetting gate, input gate and output gate respectively, ht−1

and ht are the output of the previous time and the current time respectively, xt is
the input of the current time, W and U are the weight matrix, b is the deviation
vector, σ() is the sigmoid activation function, C̃t denotes the candidate value vector,
tanh() is the tanh activation function, “·” represents the product of the corresponding
elements of two vectors participating in the operation.

2.2 Transformer Model

A transformermodel is a network architecture based on an attentionmechanism [10].
The transformer model adopts an encoder-decoder architecture. Figure 2 shows the

Fig. 2 An illustration of a transformer unit structure [11]
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internal structure for a pair of encoder and decoder. A description of the algorithm
of the transformer is given below.

A transformer model does not have the capacity to describe the sequence of input
sequences where all inputs are passed into the model at once. In order to deal with
this problem, an additional vector positioning encoding is added to the input of the
encoder layer and the decoder layer to determine the position of the current data.

An encoder consists of two layers, a self-attention layer and a feed-forward neural
network layer. A residual connection is used to connect the two sublayers. In the self-
attention layer, a multi-head attention mechanism is added. Because the Attention
has different distributions in different subspaces, the multi-head attention actually
seeks for the correlation between sequences from different angles and combines the
correlation captured in different subspaces.

The masked multi-head attention layer at the decoder ensures the consistency
between the training stage and the reasoning stage. The rest of the decoder layer is
basically the same as the encoder unit.

Finally, a simple fully connected neural network with softmax layer is used for
the output of the result.

3 The Proposed LSTM-Transformer Technique

In this paper, LSTM network and Transformer network are combined together in the
RUL prediction of roller bearings. A LSTM network is an effective approach in the
modeling of time series, though the hidden layers of the network cannot be calculated
parallelly at the same time leading to low computational efficiency. On the contrast,
a Transformer network does not have such problem since the model input can be fed
into the network at once. In addition, Transformer focuses on the relevance of input
data rather than the distance, which can also alleviate the information loss problem
typically found in a LSTM network. The flow structure of the proposed technique is
shown in Fig. 3.

In this approach, a two-layer LSTM is used to capture the temporal information
of the input of a time series where a Relu activation function is used in each network
to increase the operation speed of LSTM networks, as well as to solve the problem
of gradient disappearance up to a certain extent. The sequential characteristics of the
input time series can be effectively extracted by using the two-layer LSTM network.
The sequential characteristics are then fed into the Transformer network comprising
6 pair-layers of encoders and decoders. Through the self-attention mechanism in
the encoders, the degradation trend information of sequence characteristics can be
captured.Whilst the decoders can link the degradation information with the degrada-
tion stage. Finally, the outputmatrix having the bearing degradation stage information
from the transformer network is used as the input in a dense layer (i.e., a full connec-
tion layer) which converts the output of the Transformer into a one-dimensional RUL
prediction result.
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Fig. 3 A flow chart of the proposed LSTM-transformer technique

4 The Parametric Setting and Result Analysis

4.1 Dataset

The bearing degradation dataset from the published PHM2012 Prognosis Challenge
bearing data is used in the numerical evaluation of the proposed RUL prediction
technique [12]. The Bearing 1-1 and Bearing 1-3 data from the published dataset are
used as the training and the test dataset in this study. The operation conditions (i.e.,
the shaft speed and the external loading) of the bearing degradation test for this two
selected bearing datasets are 1800 RPM and 4000 N.

4.2 The Evaluation Metrics

For sake of convenience in the evaluation and quantification process, the root mean
square error (RMSE), mean absolute error (MAE) and coefficient of determination
(R2) are used as the evaluation indices. The formula used in calculating these indices
are as follows:

RMSE =
√√√
√ 1

m

m∑

i=1

(
yi − yι

∧)2
(7)

MAE = 1

m

m∑

i=1

∣∣yi − yι

∧∣∣ (8)
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R2 = 1−
(

m∑

i=1

(yi − yι)
2/

m∑

i=1

(
yi − yι

∧)2
)

(9)

where m is the number of data points, yi is the forecast data, yι

∧

is the original data,
yι and is the mean value of the forecast data.

RMSE and MAE are two of the most common measures of continuous variables.
A smaller value of these indices indicates a better fitting effect. Whilst the value of
R2 reflects the effectiveness of a regression model, a higher value is expected.

4.3 The Network Parametric Setting

Eight typical characteristics in both time and frequency domain such as peak value,
variance, root mean square, peak-to-peak value, waveform factor, pulse factor, mean
frequency and frequency standard deviation are extracted from the bearing data. In
order to improve the convergence speed and the prediction accuracy of the model,
the prediction output data are normalized between 0 and 1 where 1 represents that
the bearing is in the new condition, and 0 represents that it has reached the end of
life.

During the network training, the maximum number of iterations is set at 200, and
the batch size is set at 32, An Adam optimizer is used in the process where the mean
squared error is used as the loss function. After every 50 iterations, the learning rate
is reduced to 1/5 of the original rate so that a large learning rate can be maintained
at the initial stage of training and the convergence can be accelerated after the initial
stage. When the optimization is approaching the optimal value, a small learning rate
is used for the training to avoid possible crossing of the optimal value.

4.4 Results and Discussion

After the optimization and training of the model, a RUL prediction of the test bearing
dataset (Bearing 1-3) is obtained which is shown in Fig. 4. The straight orange line in
the figure represents the actual degradation life of the bearing, while the blue curvy
line represents the RUL prediction of the bearing using the proposed technique. It
is shown that the RUL prediction using the current technique is in good agreement
with the actual bearing degradation life.

In order to further illustrate the advantage of the RUL prediction technique
proposed in this paper, a comparison study is undertook where the RUL predic-
tion using the proposed technique is compared to those using LSTM, GRU, CNN
networks. Table 1 lists the three evaluation indices from the RUL prediction results
using these networks.
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Fig. 4 LSTM-transformer
predicting results

Table 1 Comparison of
model effects

RMSE MAE R2

GRU 0.093 0.078 0.910

LSTM 0.101 0.084 0.903

CNN 0.104 0.091 0.890

LSTM-transformer 0.088 0.076 0.921

It is shown that the prediction result using the proposed technique has the smallest
RMSE andMAE values within the four network models implying the proposed tech-
nique can producemore accurate RUL prediction than the other networkmodels. The
proposed technique also yields the highest value of R2 indicating that the proposed
is a superior regression model which can effective capture the degradation trend of
the bearing.

5 Conclusion

An effective bearing RUL prediction technique was presented in this paper by
combining two LSTM networks with a Transformer network. The proposed tech-
nique can effectively overcome the information loss of LSTM networks to produce a
more accurate bearing RUL prediction. The comparison study presented in the paper
showed that the proposed technique performs better than three other commonly used
techniques in the bearing RUL prediction.
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Research and Application of Order
Analysis Technology Without
Tachometer Under Variable Speed
Condition

Ruibo Yang and Jianguo Wang

Abstract Under the condition of variable speed, the traditional signal processing
method cannot accurately determine the fault location of motor bearing. This paper
proposes and studies the order analysis method without tachometer. Through the
short-time Fourier transform and speed tracking of the collected fault signal, the
speed signal of the motor fault bearing is obtained indirectly. The extraction process
of the speed signal is completed and the order analysis is carried out to obtain the
bearing fault diagnosis results. The results show that this method can effectively
judge the fault location of motor bearing.

Keywords Data processing · Nonstationary signal · Order ratio analysis ·
Resampling · Speed tracking

1 Introduction

With the increasing innovation of industrial technology, (the development of
machinery in the process of modernization of society is also more and more impor-
tant, and gradually to the direction of precision development). Bearings and gears
are the most vulnerable components in the operation of the machine. Therefore, it is
necessary to detect the status of these devices, predict fault information in advance,
and deal with it in time to the maximum extent, which is the original intention of
troubleshooting. Order ratio tracking is the key to order ratio analysis, its develop-
ment step has been steadily moving forward, it can be divided into the following
processes: the traditional order ratio analysis technology is hardware scale analysis
[1]; The order ratio analysis technology of the tachometer is available [2, 3]; Order
ratio analysis technology without tachometer [4, 5].

Zhile and Bo [6] proposed to window the signal first to solve the vibration signal
under the non-stable operating conditions, and then used the spectral cliff to obtain
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the windowing signal of the complex envelope, and then used the order gravity
sampling to obtain the order ratio spectrum information. Guanqi et al. [7] combines
time–frequency extrusion and order-ratio analysis to diagnose the occurrence of
bearing failure, and verifies it through simulation experiments and example analysis,
and in the absence of a tachometer, the results of this method are also very ideal.
Jianxin et al. [8] proposed that the overall average experience model and order ratio
analysismethod should be combined to analyze the non-stable signal generated under
the condition that the speed is variable and not constant.

2 Order Analysis

In engineering practice, the speed of equipment is generally an unshophonic signal,
in which case the order ratio analysis plays its advantages. The key to order ratio
analysis is to transform an unsmoothed time domain signal into a medium-smooth
angle signal by resampling at an equal angle, which is the essence of the order
ratio analysis. For example, in the course of motor operation, the signal extracted
at a constant speed does not reflect the state of the entire working process, on the
contrary, it is a process of increasing speed, reducing speed, not a state of constant
speed. Order-to-scale analysis does have advantages over other traditional spectrum
and time–frequency analysis methods in the analysis of non-smooth signals because
its results are not affected by changes in speed, whereas other analytical methods are
not.

2.1 Definition of Order Analysis

The rotation of mechanical equipment cannot avoid the change of speed naturally,
and the order ratio analysis because of its own resampling process and dilute the
impact of speed, can show the operation state of mechanical equipment, with this
characteristic, in some large-scale equipment operation status monitoring and fault
characteristics analysis has a more objective understanding. The number of points
sampled in each lap is the same when the order ratio is analyzed, and the position
remains the same, and a data is collected whenever a certain angle is turned, which
is the most essential part of the order ratio analysis. The horizontal coordinate of
the final result of the order ratio analysis is the scale ratio, and the ordinate is the
magnitude intensity. The order ratio is defined as the number of fluctuations per
revolution of the reference axis: order = the number of fluctuations/per revolution,
the relationship between the order ratio and frequency f is:

o = 60 f

n
(1)
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where n-the speed of the reference shaft (r/min); f-represents frequency (Hz). Set the
swing frequency fn = n/60, in turn/second (r/s), then:

f = o ∗ fn (2)

As can be seen from the definition of the above order ratio analysis, the change
of speed has no effect on the results of the order ratio analysis, so it can analyze
the operating state of the equipment well, and is suitable for analyzing the fault
characteristics affected by the change of speed. In general, in the spectrum analysis,
the signal will be divided into equal time segments, that is, every once in a while to
collect a data, so that the final sampling results will change with the original signal
change trend, the original smooth signal result is a smooth signal, the original signal
is variable, non-smooth signal so the final results can be imagined. The difference
between order ratio analysis and its difference is that no matter what the original
signal is, the sample it ends up taking is a smooth angle signal, which is the biggest
difference, so the order ratio analysis is more used to process the complex signal
changeable.

2.2 Second Order Specific Gravity Sampling

Order-specific sampling is the essence of order ratio analysis, a process in which
the vibration signal at the equivalent interval of the synchronously collected speed
pulse signal is resampled at equal angle intervals. Here the speed pulse signal has
two functions, the first is by the speed pulse signal to obtain the speed information of
the device, determine the moment of resampling, the second function is to determine
the frequency of filtering, and then according to the determined point in time to
collect data, and then interpolate, and finally get the result of sampling. Finally, it
is transformed quickly, and the order ratio spectrum is analyzed. Determining the
moment of resampling is a particularly important step in resampling, so its accuracy
is the key to smoothing the signal.

Assuming that the hinge is constant at an angle acceleration motion for a short
period of time, the quadrangle equation of the cumulative angular θ(t) is expressed
as:

θ(t) = b0 + b1t + b2t
2 (3)

Among (b0, b1, b2) is unknown and needs to be solved. Suppose three consecutive
pulse points are reached (t1, t2, t3), The respective corners are (0, �θ, 2�θ)

θ(t1) = 0 θ(t2) = �θ θ(t3) = 2�θ (4)

In order to make the corner increment �θ = 2�π/z, z is the number of pulses
per revolution, the upper incoming type available:
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⎡
⎣

0
�θ

2�θ

⎤
⎦ =

⎡
⎣
1 t1 t21
1 t2 t22
1 t3 t23

⎤
⎦

⎡
⎣
b0
b1
b2

⎤
⎦ (5)

Solve the equation to find the equation coefficient (b0, b1, b2):

⎡
⎣
b0
b1
b2

⎤
⎦ =

⎡
⎣
1 t1 t21
1 t2 t22
1 t3 t23

⎤
⎦

−1⎡
⎣

0
�θ

2�θ

⎤
⎦ (6)

you get to turn any corner θi (θ ∈ [0, 2�θ]) the corresponding point in time is ti :

ti = 1

2b2

[√
b21 + 4b2(θi − b0) − b1

]
(7)

When a pulse arrives at the actual calculation, the calculation is recalculated to
reduce the cumulative error of calculating the resampling time. The pulse moment at
this time is the most t3, the first two pulse moments are the most t1, t2, so that there
will be repeated calculation points. To avoid duplication, only part of the data point
is calculated at each calculation, usually taking the middle part, that is: π ≤ θ ≤ 3π.
Discrete the crucible and replace it with k�θ. The publicity becomes:

ti = 1

2b2

[√
b21 + 4b2(k�θ − b0) − b1

]
(8)

K is the interpolation coefficient, and the value range is:

π

�θ
≤ k ≤ 3π

�θ
(9)

By using the point in time obtained by the formula to interpolate the transmission
vibration signal, we can get the map with the angle as the horizontal coordinate and
the amplitude as the ordinate coordinate, and then complete the resampling process
of the signal, and then use FFT to obtain the order ratio spectrum.

3 Short Time Fourier Transform

The difference between the short-term Fourier transformation and the Fourier trans-
formation is that the short-term Fourier transformation is a segmented Fourier trans-
formation, not an overall one, and its key lies in the segmentation. First of all, to carry
out a short-term Fourier transformation must first select a suitable window function,
the original signal for a series of segments, and then for each small segment of the
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signal obtained Fourier transformation, the results of each segment of the transfor-
mation in the original order stitched together, this is the complete short-term Fourier
transformation process. The formula is:

x(t,ω) =
∞∫

−∞
x(τ )h∗(τ − t)e−jωτdτ (10)

In the form, h∗(τ − t) is the co-choke of window function A(r − r), and window
function h(τ − t) is used to segment intercept the signal h(τ − t). Intercepts the signal
of the t-moment, and after the four-moment transformation, the transient spectrum
reflects the frequency component of the r-moment signal. Therefore, all these collec-
tions of instantaneous spectrums reflect the global time frequency distribution of the
signal. Short-term Fourier transformation in the processing of non-smooth signals
also has certain advantages, because its theoretical process is relatively simple, easy
to understand, has appeared in various fields of research.

4 Research on Variable Speed Fault Diagnosis Method
Without Speed Signal

The data used in this section is a set of data for the motor at the speed reduction is a
vibration signal measured in the gearbox, a set of data is a vibration signal measured
in the motor, because the speed of the motor in the process is not constant, so the
collected data is an impulsive signal, so the use of order ratio analysis of the signal
analysis, sampling rate of 25.6k * 2.56, the fault bearing type is 6215, the parameters
are as follows in Table 1.

4.1 Research Objects

The illustration shows the train wheel gearbox, with an external motor with a faulty
bearing (6215) connected to the motor and a pinion in the gearbox (Figs. 1 and 2).

Table 1 Fault characteristic frequency

Mode Cage Running pulley Outer ring Inner ring

6215 0.145 2.852 4.564 6.436
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Fig. 1 Picture of motor fault bearing

Fig. 2 Structure diagram

4.2 Realization Principle of Order Analysis Without
Tachometer

First of all, the structural diagram analysis: the fault bearing is the bearing of the
motor, it is connectedwith the gearbox coaxial, that is, the speed of the two (frequency
conversion) is the same, the speed signal of the pinion also got the speed signal of
the motor fault bearing, so the following to get the fault bearing speed signal as the
main line analysis experiment, the specific operation process and theoretical part is
as follows (Fig. 3):

Step 1: The use of short-term Fourier transformation process vibration signal, first
of all, the original signal full transformation. Then the vibration signal is intercepted
bywindowfunction, and the result of short-termFourier transformation is obtainedby
constantlymoving thewindow function. (As shown inFig. 4, the relationship between
time and amplitude, Fig. 5 is a three-dimensional diagram after the short-termFourier
transformation.)

Step 2: Make a short-term Fourier transformation top view (Fig. 6), find out the
meshing frequency similar to the plot line in the figure, and speed matching tracking,
the tracking steps are as follows:

1. Delineate an area (Fig. 7), the area is the extent of the track.
2. Fixed time axis, in the same case to find the maximum magnitude point Amax.
3. Calculate the frequency fm corresponding to the Amax.
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Fig. 3 The original waveform

Fig. 4 A three-dimensional
graph of the time frequency
after the transformation of
the short-term Fourier

4. Slide time to find the frequency fmi for each time period ti , n as the number of
window sliding times.

5. The conversion of all short-term vibration data into the entire time period
vibration data is recorded as f.

Step 3: After obtaining the change curve of the speed (Fig. 8), it is necessary to
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Fig. 5 Time frequency map
after short Fourier
transformation (top view)

Fig. 6 Speed tracking
demarcated areas

subduct the relationship between time and angle, and then to sample the same angle,
and finally to analyze the data after the peer angle sampling.

4.3 An Example of Bearing Fault Diagnosis

As shown in the figure, the original signal time domain and frequency domain wave-
form diagram of the gearbox vibration signal are transformed to obtain its three-
dimensional time frequency map for a short period of time, and a top view is made
to find its meshing frequency and speed tracking in the figure.
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Fig. 7 Speed tracking curve
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Fig. 8 Order ratio

Find out the demarcated area of the line similar to the meshing frequency and
carry out the speed matching tracking results as shown in Fig. 6, the speed tracking
completed the meshing frequency of the line, that is, the red line shown in Fig. 7,
using the relationship between the engaged frequency and the frequency to obtain
the frequency, that is, the speed signal of the motor, and then can carry out order
ratio analysis, as shown in Fig. 8.

As can be seen from the order spectrum (Fig. 8), theoretically at 4.564, 9.128, the
order ratio will show obvious performance characteristics and peaks of its octave,
while the actual peak will appear at 4.25, 8.501, the order ratio, due to the human



226 R. B. Yang and J. G. Wang

errorwhen collecting signals and the accuracy error of the installation of experimental
devices and other factors exist, resulting in the theoretical value and the real value
of the error, but still can be judged from this phenomenon in the figure at this time
the rolling bearings have an outer ring fault.

5 Conclusion

In this paper, taking the fault bearing in the motor as the research object, combining
the advantages of short-time Fourier transform, speed matching tracking and order
analysis, a tachometer free order analysis method suitable for variable speed condi-
tion is proposed. The experimental results show that the method can effectively
extract the speed signal of the fault bearing, and the fault location of the bearing can
be detected by reasonable analysis.
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Simulation Analysis of Tooth Surface
Wear Considering Axis Parallelism Error

Ruiliang Zhang and Yandong Shi

Abstract Axis parallelism error cause edge contact and stress concentration, which
lead to uneven load distribution and uneven wear of tooth surface, and seriously
reduce service life. In this paper, a tooth contact analysis (TCA) model and a gear
wear analysis model considering the axis parallelism error were established based
on the basic equation of contact problem and Archard’s wear equation, and the
change of contact characteristics and wear depth were analyzed. The results show
that when the axis parallelism error exists, the tooth load is uneven, and the load
distribution becomes more uneven with the increase of the error, and the uneven
contact is improved with the increase of load. The wear depth decreases in the tooth
width direction, and the wear depth decreases firstly and then increases along the
line of action, and the wear depth of the pitch point is zero. The wear depths reach
their maximum value at the root of the pinion where the stress concentration occurs,
and the maximum wear depth increases non-linearly.

Keywords Axis parallelism error · Gear · Contact analysis · Tooth surface wear

1 Introduction

Gear transmission is one of the transmission forms that play a huge role in modern
mechanical equipment [1], however, the gear system failure caused by gear failure
also seriously affects the service life of mechanical equipment. The assembly error is
inevitable in the assembly process of gear mechanism, especially the axis parallelism
error in the vertical plane has a greater influence on the contact characteristics in
the tooth width direction of the gear [2]. Axis parallelism error will cause contact
line deviation and uneven contact in the tooth width direction, and uneven load
distribution caused by uneven contact will also affect the wear distribution of tooth
surface, all of which have a great impact on the service life of gear. Therefore, it
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is of great significance to study the gear contact characteristics considering the axis
parallelism error and its influence on the wear distribution of the tooth surface.

Yuesheng et al. [3], Xue et al. [4], Shao et al. [5] built the tooth surface equation
considering the assembly error to analyse the influence of the assembly error on the
gear contact path and contact stress. Liu et al. [6], Dalei et al. [7] and Shukun et al.
[8] analyzed the influence of assembly error on tooth surface contact characteristics
based on finite element theory and finite element software. But none of the above
studies considered the influence of assembly error on gear wear. Zhang and Liu
[9] analyzed the gear wear distribution under different meshing deviations, but the
calculation of contact stress was based on finite element software, whose calculation
accuracy and time were greatly related to the number and quality of mesh. Kumar
et al. [10] and Chen and Ji [11] studied the influence of radial clearance and corner
contact on tooth surface wear distribution based on the established gear contact
model, but related studies show that the axis parallelism error in the vertical plane
has a greater influence on tooth contact characteristics [2]. Therefore, it is necessary
to study and analyze the wear distribution of the tooth surface considering the axis
parallelism error in the vertical plane.

In this paper, the axis parallelism error is firstly transformed into the contact
clearance along the line of action, and then the tooth contact analysis (TCA) model
considering the axis parallelism error is established. Finally, the tooth contact anal-
ysis model was combined with Archard’s wear equation to establish a tooth wear
analysis model considering the axis parallelism error, and the change of tooth contact
characteristics andwear depthwere analyzed in the presence of axis parallelism error.

2 Tooth Contact Analysis Model Considering Axis
Parallelism Error

2.1 Contact Clearance

When the axis parallelism error exists, the gears are engaged with each other on one
transverse plane, but separated from each other on the other transverse plane. The
normal distance of the two meshing gears along the line of action on the side where
the separation occurs is defined as the contact line deviation. The axis parallelism
error �F�β will generate contact line deviation �nβ in the meshing plane and �cβ

in the plane perpendicular to the meshing plane.
Literature [2] found that the contact line deviation �cβ can be ignored, and then

the contact line deviation is:

�lβ = �nβ = �F�β cosα (1)

where α is the pressure angle at the contact point. This contact line deviation is the
initial clearance of the gear pair, as shown in Fig. 1.



Simulation Analysis of Tooth Surface Wear Considering Axis … 229

Fig. 1 Schematic diagram
of contact clearance cosF β αΣΔ

2.2 Numerical Calculation Model

In the process of gearmeshing, the effective contactwidth is far less than the curvature
radius of themeshingpoint, so themeshing area canbe treated as an elastic half-space.
Because the gear contact is often simplified to finite line contact, one-dimensional
simplification should also be made of gear contact: the gear is sliced in the tooth
width direction and divided into n strip elements on average. In strip elements j, the
stress is assumed to be uniformly distributed in the tooth width direction, and the
stress is assumed to conform to the Hertz stress distribution in the involute direction,
as shown in Fig. 2. In the figure, Y direction is the tooth width direction, and X
direction is the involute direction.

In addition, the contact stress of strip elements j at any location in the involute
direction is [12]:

p j = p0 j

√
1 − (

x ′

a j
)2 (2)

where p0j is the maximum contact stress at the center of the element j, aj is the semi
contact width. According to the Boussinesq solution of the elasticity theory [13], the
displacement generated by the stress on element j at the center of element i is:

Fig. 2 Assumption of stress
distribution in tooth width
direction
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ωi j = 1

πE ′ Di j p0 j (3)

whereDij is the flexibility coefficient, and E′ is the equivalent elastic modulus. Then
the basic equation of the contact problem is satisfied in the tooth width direction
[14]:

π
∑

a jh j p0 j = Q (4)

1

πE ′
∑

Di j p0 j = δ − zi (yi ), i = 1, 2, . . . , n (5)

where Q is the total load, δ is the total deformation, and zi is the initial contact
clearance of each element. Equations (4) and (5) form a n + 1 order equation set
with total of n + 1 unknowns of p0j and δ. The deformation δ and stress p0j can be
obtained by solve the above equations with numerical solution.

3 Wear Modelling

Archard’s wear equation is widely used in the numerical simulation analysis of tooth
surface wear [15]. Because gear transmission is a dynamic process, and every contact
point’s load and sliding distance is changing, so the gear wear model is simplified
into a discrete quasi-static model. Then, the discrete Archard’s wear equation is as
follows:

h =
s∫

0

kpds (6)

where k is the wear coefficient, p is the contact stress, and s is the relative sliding
distance. Among them, the contact stress p is calculated by the contact analysismodel
of the upper section, but the average contact stress of the meshing point is taken when
calculating the wear depth.

Because the tooth surface wear is a dynamic process, the tooth surface needs to be
reconstructed and updates tooth surface geometry when the wear depth of a meshing
point reaches wear threshold ε. When the wear depth of a meshing point reaches the
maximum allowable wear ε*, the simulation ends. The wear calculation process is
shown in Fig. 3.



Simulation Analysis of Tooth Surface Wear Considering Axis … 231

Fig. 3 Flow chart tooth
surface wear calculation
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4 Results and Discussion

According to the above contents, the numerical simulation was carried out to analyze
the tooth surface contact and wear condition in the case of axis parallelism error. The
gear parameters used in the analysis were shown in Table 1.

4.1 Tooth Contact Analysis Considering Axis Parallelism
Error

The contact stress of the gear surface under different axis parallelism error and the
load is 1000 N m as shown in Fig. 4. It can be seen from the figure, the contact stress
of tooth surface is unevenly distributed in the tooth width direction. This is because

Table 1 Parameters of gear Parameter Value Parameter Value

Module/mm 5 Tip clearance
coefficient

0.25

Tooth number 30/40 Pressure angle/° 20

Tooth width/mm 30 Young’s
modulus/GPa

206

Addendum coefficient 1 Poisson’s ratio 0.3
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(a) 5μm (b) 10μm

(c) 15μm (d) 20μm

Fig. 4 Contact stress under different axis parallelism error

errors cause stress concentration anduneven loaddistributiononone transverse plane,
but lead to the initial contact clearance on other transverse plane, which causes stress
reduction. As the axis parallelism error increases, the contact stress is zero in Fig. 4c
and d, which indicates that the gear contact separation occurs here. The uneven
distribution of load is aggravated with the increase of axis parallelism error.

The contact stress of double-toothmeshing zoneB2C andDB1 is obviously smaller
than single-tooth meshing zone CD along the line of action, and the contact stress
curve of CD is more flat than that of B2C and DB1, which show that the uneven load
distribution is improved. This is becauseCD zone is a single-tooth meshing zone and
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the load is larger than the double-tooth meshing zone B2C and DB1, so the increase
of load can improve the uneven load distribution.

4.2 Wear Analysis Considering Axis Parallelism Error

When the load is 1000 N m and parallelism error is 20 μm, wear depth distribution
of pinion as shown in Fig. 5. It can be seen from the figure that the overall wear
depth increases with the increase of wear cycles. The wear depth decreases firstly
and then increases along the line of action. Because the sliding distance at the pitch

(a) 0.3 million wear cycle              (b) 0.6 million wear cycle

(c) 0.9 million wear cycle                (d) 1.2 million wear cycle

Fig. 5 Tooth surface wear depth distribution of driving wheel
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point is zero due to the pure rolling, the wear depth at the pitch point is zero. The
wear depth at the dedendum of the pinion is greater than the addendum due to larger
sliding distance and contact stress near the dedendum. At the same time, the wear
depth has a sudden change in the alternating position of the single teeth-meshing and
the double teeth-meshing, which is caused by the sudden change of the contact stress
here. When the wear cycle is 0.3 million, 0.6 million, 0.9 million and 1.2 million, the
maximum wear depth is 1.46 μm, 7.74 μm, 9.12 μm and 10.68 μm, respectively.
It shows that the maximum wear depth increases gradually, but the amplitude of
increase decreases gradually, so the increase is nonlinear.

The wear depth of the pinion decreases gradually in the tooth width direction.
This is because when the axis parallelism error exists, the contact stress gradually
decreases in the toothwidth direction, leading to the decrease of thewear depth calcu-
lated accordingly. Some parts have zero wear depth due to the gear contact separation
occurs here. It can also be seen from Fig. 5 that, due to the influence of parallelism
error, the wear amount of the gear on the side where the stress concentration occurs
is far greater than the wear amount at the center of the gear. Therefore, the influence
of parallelism error on the gear should be considered in the wear prediction of the
gear.

5 Conclusions

Based the established tooth contact analysis model and gear wear model considering
the axis parallelism error, this paper carries out numerical simulation analysis on the
tooth contact and gear wear, and obtains the following main conclusions:

1. When the axis parallelism error exists, the load distribution in the tooth width
direction is uneven. The increase of the error will aggravate the uneven load
distribution and the increase of the load will improve the uneven contact.

2. When the axis parallelism error exists, the wear depth decreases gradually in the
tooth width direction. Along the line of action, the wear depth decreases firstly
and then increases, and the wear depth of the pitch point is zero. The wear
depths reach their maximum value at the root of the pinion where the stress
concentration occurs, and the maximum wear depth increases non-linearly. The
wear depth on the side where the stress concentration occurs at the root of the
driving gear increases obviously, so it is necessary to consider the influence of
the parallelism error in the wear prediction.
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A TFG-CNN Fault Diagnosis Method
for Rolling Bearing

Hui Zhang, Shuying Li, and Yunpeng Cao

Abstract It is difficult to obtain enough data to train a robust diagnosis model for
different rolling bearing faults, and the existing intelligent bearing fault diagnosis
algorithms have insufficient generalization ability. Therefore, a rolling bearing fault
detector based on the time–frequency graph and convolution neural network (TFG-
CNN) is introduced to improve the generalization performance of the fault diagnosis
algorithm as much as possible under the condition of considering the diagnosis accu-
racy and sample size. The specific implementationmethod is to use Fast Fourier trans-
form (FFT) to transform the vibration data of rolling bearing into a two-dimensional
network graph, and then use CNN to classify them. Finally, the performance of the
proposed method is analyzed by using the rolling bearing fault datasets of Case
Western Reserve University, and analysis results show that the proposed method can
simultaneously diagnose the fault location and severity of rolling bearing, and has
good cross-domain diagnosis ability and anti-noise performance.

Keywords Rolling bearing · Graph · Convolution neural network · Cross-domain
diagnosis

1 Introduction

Time–frequency analysis is an effective method to extract features of rolling bearing
vibration signals. Such methods include short-time Fourier transform [1], Wigner
Ville Distribution [2], wavelet transforms [3], empirical mode decomposition [4],
local singular value decomposition [5], etc. Then, some intelligent classifier algo-
rithms, such as support vector machine (SVM), Bayesian classification, and random
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forest method, are used to identify the fault type and severity [6–8]. However, the
accuracy of those methods is not sufficient and the generalization ability is poor.

In recent years, deep learning models such as deep belief network [9], deep stack
self-manipulator [10], convolution neural network [11], cyclic neural network [12],
long-term memory neural network [13] are applied to fault diagnosis. While those
presented algorithms rely on a large data set to improve the diagnosis rate, and the
limited samples of the actual rotating equipment are usually ignored. Using standard
data set, When the size of the training set is reduced to 20% of the original size
of the training set, the accuracy of the traditional CNN model is 72.4% [14], the
Adaptive CNN network combined with an adaptive algorithm is 87.9% [15], and
the SN-SSGAN network [16] uses SVM as a classifier is 97.65%. Unfortunately,
when the length of the training set is less than 1% of the data set, the accuracy of the
network plummets. As one of the most successful intelligent algorithms for rolling
bearings, the recognition rate is 82% when the sample size suddenly drops to 10%
[17]. At the same time, the existing neural network models have little research on the
classification performance of data sets with various external factors of Background
noise and change of working conditions. Although there are some breakthroughs
in the research on the adaptability of the model under load changes. However, the
introduction of suchmethods is bound to require extensive data for model correction,
which will directly affect the stability of the model in a limited sample.

In this paper, a bearing fault diagnosis algorithm based on TFG-CNN is estab-
lished. The purpose is to improve the generalization performance of the algorithm
as much as possible under the condition of both diagnosis accuracy and sample size.

The specific work and contributions of this paper are as follows:

1. The TFG is used to fully utilize the bearing spectrum characteristics and pays
more attention to the relationship between different sequences.

2. CNN is used to classify the characteristic diagram of rolling bearing, and the
highest accuracy is 100%.

3. TFG-CNN has excellent performance under the minimum sample, thus solving
the problem of insufficient data in actual operation.

4. Aiming at the problem of insufficient adaptability of the model in variable load
operation of equipment, a specific solution is proposed.

2 Method

2.1 Time–Frequency Graph

It is widely known that FFT can extract the time–frequency information of rolling
bearing quickly and effectively. Consequently, the paper adopts FFT to analyze the
signal of rolling bearing to further discover the difference between different fault
states.
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n=0

x(n)
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cos 2πk

n

N
− j sin 2πk
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N

)
(k = 0, 1, 2 . . . N − 1) (1)

where x(n) is the sampling signal and N is the signal length.
Based on the experience of rolling bearing fault diagnosis and considering the fluc-

tuation caused by roller sliding, the method of setting bandwidth is used to generate
spectrum sequence. In addition, according to the fault characteristic frequency and
rotation frequency information, the characteristic information of rolling bearing can
be recognized effectively by choosing the appropriate bandwidth.

Therefore, this paper proposes to generate m spectrum sequences with N Hz
bandwidth to identify the bearing fault state. The formula is as follows:

Eh = (

n∑

k=1

A2
k)/N (2)

where k = 1, 2, …, n, n represents the number of frequencies contained in each
frequency band, h = 1,2,…, m, m represents the number of frequency bands, Ak is
the amplitude of the kth frequency in the frequency band, Eh is the average energy
in this frequency band. And N is the bandwidth. The Fourier change diagram and
spectrum sequence diagram are shown in Fig. 1.

This paper proposes aTFGmodel as shown inFig. 2which ignores the overall rela-
tionship and turns to consider the relative relationship between different sequences.
Specifically, a one-dimensional array is used to store the data of all vertices in the
graph, on the other hand, a two-dimensional array is used to store the data of the rela-
tionship between vertices. These two aspects of information constitute an adjacency
matrix. In this way, the graph model is established with each frequency segment as

Fig. 1 Fourier transform diagram and spectrum sequence diagram
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Fig. 2 TFG model

the vertex and the average amplitude difference of each frequency segment as the
weight. Ultimately, the spectrum is converted to a fully connected network graph.

2.2 Convolution Neural Network

CNN is a kind of deep feedforward neural network with the characteristics of local
connection and weight sharing. Compared with a feedforward neural network, CNN
has fewer parameters. For this paper, two-dimensional convolution is used to trans-
form the fully connected network graph into a higher level and more abstract repre-
sentation. To enhance the expression ability of the network, dropout is used in each
layer. After convolution, BN is normalized in batches. The basic CNN components
in this paper are as follows.

Convolution layer

The function of the convolution layer is to extract the feature of a local region. Feature
mapping is the feature extracted by convolution of bearing vibration sequence, and
each feature mapping can be regarded as a class of extracted image features. The
output feature map is calculated as follows:

Z P = WP ∗ X + bP (3)

Y P = f
(
Z P

)
(4)

where * is the convolution operator, f (·) is nonlinear activation function, WP is
convolution kernel, bP is scalar offset, and Yp is the feature map and Z P is the net
input of the convolution layer.
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Pooling layer

Thepooling layer can effectively reduce the size of themodel, improve the calculation
speed, and improve the robustness of the extracted features. In this paper, maximum
pooling is used to reduce the convolution sequence, and the maximum value is used
to replace the value of a region of the output feature map. The calculation formula
is as follows:

ydm,n = max(xi ) (5)

where i ∈ Rd
m,n, xi is the activity of each neuron in the region Rd

K .

Fully connected layer

The connection layer plays the role of classifier in the whole convolutional neural
network. The full connection layermaps the learned distributed feature representation
to the sample tag space. When the fully connected layer is used as the output layer,
the activation function is Softmax:

y = so f tmax
(
WT x

) = exp
(
WT x

)
/
(
1TC exp

(
WT x

))
(6)

whereW is a matrix composed of weight vectors of C classes, 1TC is the all-1 vector
ofC dimension, and Y is the vector composed of prediction conditional probabilities
of all categories.

2.3 The Diagnostic Flowchart of TFG-CNN

The flow chart of the TFG-CNN proposed in this paper is shown in Fig. 3, which
mainly includes the following two parts: the production of neural network data set
and the structure of convolution neural network.

Fig. 3 The diagnosis flow chart of the model proposed in this paper
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Step1: data processing

To train CNN neural network, the noise data is normalized. The normalization
formula is as follows:

x = (x − xmin)/(xmax − xmin) (7)

The random sampling method is used to sample the bearing fault sequence.
Compared with overlapping sampling, random sampling reduces the number of
training samples, but it will greatly improve the randomness of the data, and the
generated model can be better generalized to unknown data.

3 Results and Discussion

This paper uses Case Western Reserve University (CWRU) rolling bearing data to
show the performance of the proposed method by contrast with current algorithms.
The experimental platform is shown in Fig. 4.

Thedrive endbearingmodel is SKF6205, and the bearing is a single point damaged
by EDM. In addition, an acceleration sensor is respectively placed above the bearing
pedestal at the fan end and the drive end of the motor to collect the vibration acceler-
ation signal of the faulty bearing. In this paper, the vibration signal with the sampling
frequency of 12k Hz is selected. The geometric dimensions of the drive end bearing
and the failure frequency of each component are listed in Table 1, where the rotation
frequency is f .

To find the difference between different fault states better. Three groups were
randomly selected as the experimental group from the signals. At the same time, the
samples representing different fault types and different fault degrees were selected as
the control group. For a better visual experience, the adjacency matrix is transformed
into a gray image. The TFG-model of vibration signal of rolling bearing is shown in
Fig. 5. It can be getting some meaningful results as followed:

Fig. 4 Experimental setup
of Western Reserve
University
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Table 1 Information of rolling bearing data set

Fault types Data sets Load Fault frequencies Fault diameters Classification

Normal A, B, C, D 0hp, 1hp, 2hp,
3hp

– 0 0

Inter-race A, B, C, D 0hp, 1hp, 2hp,
3hp

5.4152f 0.007 1

A, B, C, D 0hp, 1hp, 2hp,
3hp

0.014 2

A, B, C, D 0hp, 1hp, 2hp,
3hp

0.021 3

Outer-race A, B, C, D 0hp, 1hp, 2hp,
3hp

3.5848f 0.007 4

A, B, C, D 0hp, 1hp, 2hp,
3hp

0.014 5

A, B, C, D 0hp, 1hp, 2hp,
3hp

0.021 6

Ball A, B, C, D 0hp, 1hp, 2hp,
3hp

4.7135f 0.007 7

A, B, C, D 0hp, 1hp, 2hp,
3hp

0.014 8

A, B, C, D 0hp, 1hp, 2hp,
3hp

0.021 9

Fig. 5 The TFG model (first from left) of rolling bearing and display of gray image

1. There is a slight difference between TFGs under the same state.
2. There are great differences between TFGs with different fault locations.
3. There are great differences between TFGs with different fault degrees.
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Table 2 Structural parameters of CNN

Layer name Config. Padding?

Conv1 Conv. 26@3 × 3 Stride = 1 Y

Pooling 26@2 × 2 Stride = 2 N

Conv2 Conv. 52@3 × 3 Stride = 1 Y

Pooling 52@2 × 2 Stride = 2 N

Conv3 Conv. 104@3 × 3 Stride = 1 Y

Pooling 104@2 × 1 Stride = 2 N

Connected layer 100

Softmax 10

Therefore, it is feasible to diagnose the fault state of the rolling bearing by the TFG
model in theory. Python is used to build a convolution neural network in the Tensor-
Flow environment. The parameters of the neural network are shown in the figure,
which includes three convolution layers, three maximum pooling layers, and one full
connection layer. Simultaneously, the network is optimized by Adam optimizer and
dropout is used to prevent over fitting (Table 2).

3.1 Accuracy of the TFG-CNN

The sample size of the training set is 4000, and that of the test set is 1500. Each data
set is trained 20 times to ensure the reliability of the results. The recognition rate of
the convolution neural network is shown in Fig. 6.

The results show that the convolutional neural network can achieve more than
99% accuracy in each data set. In particular, the accuracy is the most stable on the
C data set, and the recognition rate is not less than 99.75%. Therefore, the model
proposed in this paper has high accuracy.

3.2 Effect of Sample Size on TFG-CNN

In the actual operation of rotating machinery, most of the time will be in a healthy
status. This has contributed to the fault data that can be collected is limited. Conse-
quently, fault diagnosis in the case of unbalanced data is a problem to be faced at
present.

To observe the performance of the model under the limit sample, experiments
with different sample sizes were carried out. In the experiments, training samples
with the sizes of 20, 40, 70, 140, 210, 350, 700, 1400 were used to train the model,
and the verification set with the sample size of 700 was used to verify the model. The
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Fig. 6 The accuracy of the model proposed in this paper

test was repeated 20 times. The experimental results are compared with (WDCNN),
the best algorithm at present. The results are shown in Fig. 7. The results show that
the proposed model not only performs well in the case of a small sample size but
also has an excellent performance in the case of limited samples. This provides a
good reference for solving the problem of rolling bearing data imbalance.

Fig. 7 Influence of training set size on accuracy of different models
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3.3 Anti-noise Ability of the TFG-CNN

Because of the complex working environment, huge dynamic load, and continuous
high-speed operation state of rotating machinery, the vibration signals of axle box
bearings are often submerged in strong noise, which makes it difficult to extract the
impact components containing fault information. Therefore, reducing the influence
of environment and system noise, extracting the relevant components from the back-
ground noise for the efficient diagnosis, has become an important step in rolling
bearing fault diagnosis.

To test the anti-noise performance of themodel, the signal of the test set is coupled
with different degrees of white noise to simulate the noise pollution of the industrial
environment. In this experiment, the sample sizes of the training set are 7000, 4000,
and 700 respectively, and the size of the verification set is 1500. The test results are
shown in Table 3.

Compare this model with the DNN model, MLP model, and WDCNN model
in the same way. The comparison results are shown in Fig. 8. It can be found that
the accuracy of TFG-CNN is higher than 80% under different degrees of noise
background, and the anti-noise performance of this model is better than that of
the DNN network and MLP network. In addition, in the weak noise environment,
the diagnosis rate is similar to that of the WDCNN model, but in the strong noise
environment, the diagnosis rate is slightly weaker than that of the WDCNN model.

Table 3 The diagnostic rate of this model under different levels of noise and data volume

Size of the training set Load SNR (dB)

0 (%) 2 (%) 4 (%) 6 (%) 8 (%) 10 (%)

7000 0 82.4 86.6 91.7 93.4 95.1 97.0

1 79.8 88.2 94.7 97.2 98.3 98.6

2 83.2 90.1 95.6 98.4 99.8 99.9

3 83.1 89.7 95.3 99.7 99.9 99.9

4000 0 81.8 86.1 90.6 92.5 94.2 96.6

1 78.5 87.1 93.2 95.5 97.6 98.1

2 81.1 89.5 95.1 97.6 99.5 99.7

3 82.8 89.4 94.5 99.1 99.8 99.9

700 0 73.2 81.4 88.6 92.3 93.4 95.2

1 74.4 79.7 92.3 94.1 97.7 98.5

2 76.2 82.4 90.2 96.5 97.6 99.3

3 78.1 81.6 92.4 97.5 98.3 99.5

Maximum 83.2 90.1 95.6 99.1 99.9 99.9
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Fig. 8 Accuracy comparison of each model in different noise environments

3.4 Variable Load Adaptability of the TFG-CNN

For rotating machinery, load change is very common. When the load changes, the
amplitude, phase, and period information of the vibration signal will change, so it is
very important to verify the cross-domain diagnosis ability of the model under the
condition of variable load.

To verify the cross-domain diagnostic ability of the model. In this paper, all the
data sets following the different proportions of a new data set, and expect to rely on
neural network powerful feature extraction ability to learn common features. There
is, in addition, A, B, C, and D in the table below represent the data of rolling bearing
under different loads. For example, ABC indicates that the training set of the model
is the combination of vibration data of rolling bearing under 0hp, 1HP, and 2HP. The
experimental results are shown in Table 4.

It can be seen that different sample sizes have little effect on accuracy.When using
0hp and 3HP as the training set, the model has strong adaptability to the test set of
other loads, which also shows that the model can extract the feature information of
rolling bearingwell. However, themodel trained by low load vibration signal has poor
adaptability to the high load test signal, and the model trained by high load vibration
signal has strong adaptability to the low load test signal. In addition, the phase and
amplitude of the 3HP load signal are quite different from other loads. This is because
some features of high load vibration signal are more dominant to the model, and
the model gives these features higher weight in the process of learning, but for low
load vibration signal, the information contained in these features will be weakened.
Therefore, it ismore comprehensive to describe the vibration characteristics of rolling
bearings by using the high load vibration signal trainingmodel. In the actual operating
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Table 4 Accuracy of combination of different data sets

Set Sizes A (%) B (%) C (%) D (%) Set A (%) B (%) C (%) D (%)

AB 14,000 98.3 99.5 98.8 45.2 AC 98.6 98.7 99.8 39.2

5600 98.1 98.1 97.3 41.5 96.9 97.5 98.3 38.1

1400 97.4 96.5 95.1 37.8 95.7 95.3 96.4 37.5

AD 14,000 99.7 98.2 96.7 99.5 BC 88.7 99.1 99.6 29.3

5600 98.9 96.1 94.7 99.1 86.1 98.3 98.5 27.8

1400 97.8 93.4 92.1 98.6 83.2 93.4 96.8 25.4

BD 14,000 80.6 99.3 77.1 99.7 CD 78.8 87.2 98.2 99.1

5600 79.2 97.8 76.4 98.1 75.4 93.5 96.4 98.2

1400 76.1 95.4 73.5 96.5 73.1 80.3 93.8 96.2

ABC 14,000 98.3 99.4 99.8 31.2 ABD 97.2 99.1 96.3 99.2

5600 97.2 98.1 97.9 30.5 96.6 97.7 93.6 98.4

1400 94.9 94.7 95.4 28.4 93.9 93.4 91.7 95.8

BCD 14,000 88.1 99.6 99.9 99.1 ABCD 98.2 99.4 99.9 99.6

5600 86.5 98.2 98.5 98.1 97.4 98.2 98.6 98.3

1400 84.7 93.7 96.6 96.7 94.1 92.8 96.7 96.4

conditions of rotating machinery, combined with high and low load data as the
training set, higher accuracy can be obtained.

4 Conclusion

In this work, this paper proposes a rolling bearing fault diagnosis method based on
TFG-CNN and then uses the data of Case Western Reserve University to analyze
its accuracy, sample size adaptability, and cross-domain diagnosis performance to
verify the reliability of the model. The conclusions are as follows:

• The model in this paper is used for bearing fault diagnosis with small parameters,
strong expression ability, and is easy to design. The model has a high recognition
rate in CWRU bearing database.

• Themodel proposed in this paper has a low requirement for the size of the training
set and can have an accuracy rate of 87% under the limit capacity, which provides
a reference for other engineering applications.

• The TFG-CNN has good anti-noise performance, and the accuracy of the model
can reach more than 80% in the environment of SNR= 0. Given the variable load
situation, this paper also gives the corresponding solutions.

In future work, there are two prospects:
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• Using GNN to diagnose and analyze the network composed of adjacency matrix
directly.

• Transfer learning is introduced to further improve the cross-domain diagnosis
ability of the model.
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A Gas Turbine Gas Path Digital Twin
Modeling Method

Junqi Luan, Yun Peng Cao, Shuying Li, and Ran Ao

Abstract Degradation of gas path performance is the focus of gas turbine condition
monitoring. In order to realize gas turbine maintenance cycle performance moni-
toring, diagnosis and prediction, combining mechanism knowledge and data infor-
mation, a gas turbine gas path performance digital twinmodelingmethod is proposed,
and a health monitoring framework of the gas turbine gas path performance digital
twin is constructed. Taking the split-shaft gas turbine as the research object, the
gas turbine performance calculation model is established without relying on compo-
nent characteristic information, the parameter matchingmethod based on differential
evolution is studied, and the gas turbine performance digital twin model is devel-
oped. The simulation test was carried out the results show that the gas turbine gas
path digital twin model realizes the quantitative characterization of the performance
degradation of gas path components during the maintenance period, and provides a
basis for the gas turbine gas path performance fault diagnosis.

Keywords Gas turbine · Digital twin · Gas path diagnosis · Performance
simulation · Differential evolution

1 Introduction

Gas turbines have the advantages of fast start-up, stable operation, high thermal
efficiency, etc., and have become the core power equipment in aviation, shipbuilding,
and electric power industries. However, due to the increase in the use time and the
harsh operating environment, performance degradation will inevitably occur, and in
severe cases, the safetymargin of the gas turbinemay even be reduced [1]. Therefore,
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it is necessary to carry out research on the direction of performance degradation of
gas turbines to ensure its safety and reliable operation.

Establishing an appropriate model is the basis for model-based fault diagnosis of
gas turbines. Thirunavukarasu et al. [2] proposed a gas turbine modeling and simu-
lation method under different conditions in a virtual test-bed environment. Li et al.
[3] proposed a gas turbine dynamic model based on a causal sequence diagram and
simulated a 30 kW gas turbine. Hou et al. proposed an improved fuzzy modeling
method to obtain higher tracking performance and interference suppression capabili-
ties. Hosseinalipour et al. [4] proposed a static and linear dynamicsmodel to simulate
the performance of a micro gas turbine, reducing the amount of calculation and the
complexity of the equation. Xu et al. [5] proposed a new improved hybrid modeling
method based on machine learning, which can effectively improve modeling accu-
racy. Liu and Karimi [6] developed a modeling method based on machine learning
to predict the performance of compressors and turbines, and achieved good results.
In the study of gas turbine performance degradation, Chaobing et al. [7] proposed
a gas turbine performance degradation prediction method based on multiple non-
linear regression models, which quantitatively diagnosed gas turbine performance
degradation. Tülin and Bülent [8] used an artificial neural network (ANN) method
to identify exhaust temperature and developed a neural network with the smallest
prediction error. In order to achieve a condition-based maintenance strategy and a
more reliable assessment of institutional integrity, the US Air Force Research Labo-
ratory has launched the Airframe Digital Twin (ADT) program. It is designed to
help reduce the number and duration of aircraft certification tests, reduce repair and
maintenance costs, and shorten product development cycles [9–11]. The purpose of
the concept is to pass through the virtual entities and subsystems of physical equip-
ment, and this connection is not one-way and static, but is connected throughout
the life cycle of the product. Aiming at the traditional modeling methods that rely
excessively on component characteristics and lack the ability of adaption and param-
eter matching, we first establishes a steady-state model for the gas path performance
calculation of a gas turbine, and then studies themethod of parametermatching based
on the differential evolution. In the Labview environment, a digital twin model for
gas turbine performance is developed. By inputting different parameters, it can simu-
late different operating conditions and status of the gas turbine in different scenarios
online, which provides a basis for gas turbine performance fault diagnosis. Then
the failure factor was implanted on the basis of the gas path performance model to
establish the failure model of the gas turbine. After obtaining the operating data of
the failure, the diagnosis model of the gas turbine was established to diagnose the
performance degradation of the gas turbine.

2 Method

This paper establishes a gas turbine digital twin model, as shown in Fig. 1, to simu-
late the state of the engine under different operating conditions and environments,
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Fig. 1 Digital twin model of gas turbine

and then extract performance degradation characteristics to achieve the degradation
simulation of the full life cycle. The steady-state twin model is used for knowledge
transfer to establish a gas path performance degradation model. After the fault is
implanted, the degradation data of the gas turbine model can be obtained directly,
it is used to reproduce the latent law in the process of gas path performance degra-
dation, and to expand the attributes and quantity of the fault data, which can obtain
data that is difficult to obtain during the experiment. In the inverse problem, various
types of data are twinned with the model, and the model is identified to obtain the
factors that change in the process of gas path performance degradation.

Take the split-shaft gas turbine as an example. Its main components include
compressor, combustion chamber, high-pressure turbine and power turbine. Its
structure is shown in Fig. 2.

Fig. 2 Split-shaft gas turbine structure
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2.1 Nonlinear Steady-State Twin Model of Gas Turbine

The steady-state simulation is to find the steady-state common operating point, so it is
necessary to establish the common operating equation, that is, the balance equation of
the gas turbine. When the balance condition is met, the gas turbine can be considered
to be in a steady state. At this time, the various parameters of the gas turbine can be
considered as the state parameters under the operating conditions. The steady-state
twinning model described in this paper includes four equilibrium equations:

1. Balance equation between compressor outlet flow, fuel flow and high-pressure
turbine inlet flow Gtin

Gtin − Gcout − G f = 0 (1)

where Gtin is the high-pressure turbine outlet flow, G f is the fuel flow.
2. Balance equation between the high-pressure turbine outlet flow rate and the

power turbine inlet flow rate

Gptin − Gtout = 0 (2)

where Gptin is the inlet flow of the power turbine, and Gtout is the outlet flow
of the high-pressure turbine.

3. Power balance equation of compressor and high-pressure turbine

ηmtWt − Wc = 0 (3)

where ηmt is the mechanical efficiency of the gas generator shaft, Wc is the
power consumption of the compressor,Wt is the work done by the high-pressure
turbine.

4. Power balance equation of power turbine load shaft

ηmptWpt − We = 0 (4)

where ηmpt is the mechanical efficiency of the power turbine shaft, We is the
load power, and Wpt is the work done by the power turbine.

error is used to describe the deviation of each balance equation:

⎧
⎪⎪⎨

⎪⎪⎩

error1 = (Gcout + G f )/Gtin − 1
error2 = Gptin/Gtout − 1
error3 = ηmtWt/Wc − 1
error4 = ηmptWpt/We − 1

(5)

error = error21 + error22 + error23 + error24 (6)
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When the sum of squares of each deviation reaches theminimum, it can be consid-
ered that the iterative calculation is over at this time, and the twin model has reached
the equilibrium state. The specific algorithm will be given in the Sect. 2.3.

2.2 Component Characteristics Correction Method

The component characteristics in the thermodynamic model have an important influ-
ence on the accuracy of the model. However, the current mechanismmodeling of gas
turbines faces the difficulty of obtaining component characteristic lines, especially
the compressor characteristic lines. Therefore, it is necessary to find a way to accu-
rately establish a gas turbine component model even when there is only a general
characteristic line. Literature [12] gives a characteristic curve correction method
based on particle swarm algorithm. After the compressor characteristic diagram is
organized into a general relative reduced form, its flow and efficiency characteristic
diagrams are graphs showing the distribution of different relative reduced speed lines.
The correction coefficient of the compressor characteristic line is defined as follows:

Sg = G∗
c,cor/Gc,cor

Sη = η∗
c/ηc (7)

where * represents the modified characteristic parameters.
The commonly used expression of correction coefficient is in the formof quadratic

function, which is defined in this paper as the form of quadratic functionwith rotation
speed as the independent variable. As follows:

S = a + b(1 − ncor,rel) + c(1 − ncor,rel)
2 (8)

where ncor,rel is the relative corrected speed, and a, b, c is the parameter to be
identified.

The corrected characteristic parameters of gas turbine components are

G∗
c,cor = SgGc,cor = Sg f1(ncor/ncor,0, πc/π0)

η∗
c = Sηηc = Sη f2(ncor/ncor,0, πc/π0) (9)

Therefore, the digital twinmodelling becomes a parameter identification problem,
whichmainly affects the overall deviation of the characteristic line, andmainly affects
the shape correction of the characteristic line. In the paper, the parameters that need
to be identified and the parameters that need to be solved in the gas turbine model
are regarded as variables of the optimization function.

Obtain component characteristic data from a gas turbine characteristic diagram,
select 9 speed lines with equivalent relative speeds of 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
0.9, 0.95, 1 respectively, and select a number of relative pressure ratio points for each
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line. After sorting, it is used as the original interpolation table, and then the correc-
tion coefficient is introduced, and the final result is used as the final characteristic
parameter of the compressor.

2.3 Differential Evolution Optimization Algorithm

Differential Evolution (DE) was proposed by Storn and Price in 1995. It was origi-
nally used to solve the Chebyshev polynomial problem. The principle of DE is very
similar to that of a genetic algorithm, but it uses real number coding, and the evolu-
tion process is the same as the genetic algorithm, including mutation, crossover and
selection. The selection strategy in DE algorithm is usually tournament selection,
and the crossover operation method is basically the same as the genetic algorithm,
but the difference strategy is adopted in the mutation operation, that is, the difference
vector between individuals in the population is used to perturb individuals to achieve
individual mutation. The mutation method of DE effectively utilizes the distribu-
tion characteristics of the population, improves the search ability of the algorithm,
and avoids the shortcomings of the mutation method in the genetic algorithm [13].
Compared with other evolutionary algorithms, the DE algorithm has the following
advantages: (1) It exhibits strong robustness in non-convex, multimodal, nonlinear,
and continuous non-differentiable function optimization problems. (2) The conver-
gence speed is faster. (3) Good at solving multi-variable function optimization prob-
lems. (4) Simple operation and easy implementation. The specific process is shown
in Fig. 3. The specific optimization process is as follows:

1. Initialization
Enter the corresponding parameters, population numberM, crossover factor

CR ∈ [0, 1], mutation factor F ∈ [0, 2], DE algorithm generates M real-
valued parameter vector with dimension D in each generation as the population,
and the individuals in the population are expressed as xti (i = 1, 2, . . . , M, t
representing the number of evolution), usually with uniform probability The
random function of the distribution generates an initial population randomly
from a given boundary.

2. Variation
The vector and of two different individuals xtr2 and xtr3 in the population

are subtracted, and the resulting difference vector is weighted and added to
another randomly selected individual vector xtr1 to generate a mutation vector.
The mutation vector generated for each target vector is

vt+1
i = xtr1 + F(xtr2 − xtr3) (10)

where r1, r2, r3 represents three different individuals in the population. The
randomly selected individuals r1, r2, r3 and the current target vector individuals
i are different from each other, so the population size M ≥ 4. F is called the
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Fig. 3 DE algorithm flow chart

variation factor, and its value range is generally [0, 2], and its function is to
control the amplification ratio of the deviation variable in the variation species.

3. Crossover
The variation vector vt+1

i and the target vector individual xti are subjected to a
parameter mixing operation, that is, mutation, to generate a test vector ut+1

i . The
crossover operation can increase the diversity of the vector. Random selection
is used to ensure that at least one parameter ut+1

i is obtained from vt+1
i , so as to

ensure that the target individual xti is evolved. The test vector is

ut+1
i = (ut+1

i1 , ut+1
i2 , . . . , ut+1

i D ) (11)

ut+1
i j =

{
vt+1
i j , rand( j) ≤ CR or j = randn(i)
xt+1
i j , rand( j) > CR and j �= randn(i)

(12)

where rand( j) ∈ [0, 1] represents the random number that generates the
j-th variable, CR is the cross factor, the value range is [0, 1], randn(i) ∈
[1, 2, . . . , D] is the dimension index obtained by random selection, and the
function is to ensure that the test variable ut+1

i obtains at least one parameter
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from the variation vector vt+1
i . The larger CR is, the more vt+1

i contributes to
ut+1
i , which promotes the diversity of the population and facilitates the global

search. In actual use, the value is determined according to multiple experiments.
4. Selection

The DE algorithm compares ut+1
i with xti according to a greedy search

strategy. If ut+1
i has better fitness than xti , it will enter the next generation. This

operation is called selection. The new population generated by this random
disturbance can ensure that the objective function is obtained. Good conver-
gence. Otherwise, xti will enter the next generation. If the objective function is
to be minimized, the selection process is

xt+1
i =

{
ut+1
i , f (ut+1

i ) < f (xti )
xti , f (ut+1

i ) ≥ f (xti )
(13)

The population number M is selected as 50, the crossover factor CR is 0.4,
the variation factor F is set to 0.5, and the objective function is selected as the
sum of the squares of each deviation, namely error, for optimization calculation.

3 Forward Problem Study: Gas Turbine Performance
Simulation

The simulation model in this paper is established under the NI/LabVIEW environ-
ment.

3.1 Construction of the Steady-State Twin Model

The steady-state twin model is divided into two parts, the first part is the steady-
state mechanism model of the split-shaft gas turbine, and the second part is the
optimization model based on the DE optimization algorithm.

We introduce the steady-state mechanism model of the gas turbine and estab-
lish component-level models of the compressor, combustion chamber, high-pressure
turbine, power turbine, and balance equation, and the input and output of eachmodule
in turn connected.

The model needs to call the VI of the mechanism model of the gas turbine, and
set the initial parameters, boundary values, population size, scaling factor (variation
factor), crossover probability (crossover factor), and the maximum number of cycles
and other parameters.
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3.2 Gas Turbine Performance Simulation Process

First, select the variables that need to be solved for the steady-statemodel: compressor
pressure ratio πc, high-pressure turbine expansion ratio πt , and power turbine expan-
sion ratio πpt . Since this paper selects 1.0 operating condition as an example, the
correction coefficients are zero for the first and second terms, therefore, only the
constant term of the correction coefficient is retained, so the compressor and turbine
characteristic line correction coefficient a1, a2, a3, a4, a5, a6 is selected and used as
an array for iterative calculation. These variables need to be given the guess value
and upper and lower boundaries based on experience. The output of the model is
the objective function error. Boundary conditions and speed and other parameters
can also be input into the model as variables, so as to develop a digital twin soft-
ware for gas path performance simulation of split-shaft gas turbines to meet the
simulation process under different working conditions and different environmental
conditions. Provide a basis for subsequent quantification of performance degradation
characteristics and fault diagnosis.

3.3 Simulation Results

The simulation results obtained according to the above method process are shown in
Table 1.

It can be seen from the above table that the error between the simulation value and
the design value is within 1.39%, and the model has a certain degree of credibility.

At this time, the optimized variables are shown in Table 2.

Table 1 Steady-state simulation results under 1.0 working condition

Design value
T /K

Simulation value
T /K

Error/% Design value
P/Pa

Simulation value
P/Pa

Error/%

3 702.77 703.17 0.057 1,743,170 1,734,408 0.503

4 1399 1404 0.358 1,668,213 1,659,825 0.503

5 1049.4 1041.0 0.800 396,175 401,679 1.390

6 777.2 779.9 0.347 101,255 101,255 0

3 represents the compressor exit cross-section parameter, 4 represents the combustor exit cross-
sectional parameter, 5 represents the high-pressure turbine exit cross-sectional parameter, and 6
represents the power turbine exit cross-sectional parameter

Table 2 Variable results after optimization

πc πt πpt a1 a2 a3 a4 a5 a6

17.33 4.11 3.69 1.05 0.98 1.00 0.98 1.00 1.05
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After the model is established, in addition to simulating the state of the gas
turbine under different operating conditions and environments, it can also simulate
the performance degradation of the gas turbine by implanting fault factors.

3.4 Gas Turbine Performance Degradation Model

On the basis of the gas turbine steady-state model established above, model knowl-
edge transfer is carried out, and fault factors are implanted to simulate the state of
the gas turbine after performance degradation. The fault factors are shown in Table
3.

The parameters and correction coefficients of the steady-state model have been
solved in the previous article, and the fault model of the gas turbine is established
based on this. The failure factor K is implanted in the performance parameters of the
gas turbine, for example, K1 represents a 5% decrease in the compressor flow rate.
The measurement parameters and performance parameters of each section obtained
in this way are the parameters in the fault state. Take the compressor flow rate drop
by 5% as an example. Since the flow rate drop has a low impact on the pressure, only
the outlet temperature of the section is given, as shown in Table 4.

It can be seen that when the compressor flow rate decreases, the outlet temperature
of each component changes. Therefore, the exhaust temperature can be used as a
criterion for performance degradation, but a reasonable characterization range needs
to be set for each exhaust temperature, which is more complicated. Here, the failure
factors introduced in the previous article are selected as quantitative features for
diagnosis. Therefore, it is necessary to establish a diagnosis model on the basis of
the mechanism model and the failure model.

Table 3 Gas turbine failure factor implantation

GC GT GPT ηC ηT ηPT

K1 −5% 0 0 0 0 0

K2 0 −5% 0 0 0 0

K3 0 0 −5% 0 0 0

K4 0 0 0 −5% 0 0

K5 0 0 0 0 −5% 0

K6 0 0 0 0 0 −5%

Table 4 Outlet temperature
of each section under fault
condition

T ′
3/K T ′

4/K T ′
5/K T ′

6/K

697.79 1448.00 1074.22 797.86
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4 Inverse Problem Study: Gas Path Diagnosis

4.1 Gas Turbine Diagnostic Model

The difference between the diagnosis model and the mechanism model is that the
parameters that need to be optimized in the mechanism model are all given in the
diagnosis model. Because the system is in a balanced state under the given optimized
parameters, the objective function needs to be reset. The sum of the squares of the
temperature difference between the outlets of each component in the healthy state
and the fault state is selected as the objective function, which is defined as

E = (T3 − T ′
3)

2 + (T4 − T ′
4)

2 + (T5 − T ′
5)

2 + (T6 − T ′
6)

2 (14)

where E represents the objective function, and the superscript ′ represents the
parameters in the fault state.

The objective function is optimized with the fault factor as the optimization vari-
able. When the objective function is the smallest, it indicates that the normal state
and the fault state have been matched. At this time, observe the change of the fault
factor K. Since the optimized result has slight fluctuations, it is performed five times
in total.

4.2 Gas Turbine Diagnostic Results

The diagnosis process is shown in Fig. 4. Simulation experiment to observe the
results, as shown in Fig. 5.

It can be seen from the above figure that the failure factor is all 1 under
normal conditions. When the compressor flow rate drops, the failure factor K1 is
reduced by 5% in the five experiments, while the rest of the failure factors fluctuate
within an acceptable range, which is in line with expectations. Match. Therefore,
it can be considered that it is reasonable to quantify the performance degradation
characteristics by the failure factor.

5 Conclusion

1. This article first established a steady-state model of the gas path performance of
a split-shaft gas turbine in the Labview environment, introduced correction coef-
ficients to correct and fit the general characteristic line, and solved the unknown
variables using the differential evolution algorithm to establish a gas path for the
gas turbine. Compared with the experimental value of the performance digital
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Fig. 4 Twin model reverse
diagnosis process

twin model, the simulation result has a maximum error of 1.39%, which verifies
the accuracy of the model.

2. Implant fault factors, establish the fault model of the split-shaft gas turbine, and
obtain the parameters of each section in the fault state, so as to establish the
diagnosis model of the gas turbine. Taking the compressor flow rate drop by 5%
as an example, five simulation experiments have been carried out. The results
show that under this failure, only K1 dropped by 5%, and the rest of the failure
factors are floating within an acceptable range. Therefore, the change in the
failure factor is used to quantify the gas turbine the performance degradation
characteristics are reasonable.
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Fig. 5 Gas path fault diagnosis results
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Small Sample MKFCNN-LSTM Transfer
Learning Fault Diagnosis Method

Yonglun Guo, Guoxin Wu, and Xiuli Liu

Abstract Aiming at the problem that there are all kinds of noise interference in
the planetary gearbox of wind turbine in the general experimental scene, the vibra-
tion data obtained is less and the fault characteristics are not obvious. A MKFCNN-
LSTMmigration learning algorithm based onmulti-kernel fusion convolution neural
network (MKFCNN) and long and short time memory neural network (LSTM) is
proposed to realize the fault diagnosis of wind turbine planetary gearbox. Firstly,
the MKFCNN is constructed to extract the multi-scale spatial features of the sample
signal, and then it is connected in series with LSTM to extract the corresponding
time information of the sample signal. In view of the associated fault feature infor-
mation between the rolling bearing data set and the planetary gearbox data set, the
rolling bearing vibration signal of the Western Reserve University is input into the
MKFCNN-LSTM as the source domain sample data, and iterative training is used
to update the network weight and offset value. The pre-trained MKFCNN-LSTM
is obtained, and then fine-tuned by inputting the vibration data of the planetary
gearbox with small samples in the target domain, the weight and offset values are
transferred from the source domain to the target domain, and finally the accuracy
of fault recognition based on the number of small samples in the target domain is
improved. The experimental results show that the proposed method can apply the
original fault diagnosis knowledge to the vibration data set of the planetary gearbox
in the laboratory. Compared with stack autoencoders (SAE), support vector machine
(SVM) algorithm, the accuracy of fault identification and classification is improved
to a certain extent.
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1 Preface

Planetary gearbox iswidely used inwind turbines, aviation equipment and other large
and complex mechanical and electrical equipment. It works in a bad environment
and is prone to all kinds of failures. Under the application of various load forces, the
key components are prone to problems [1]. Therefore, fault monitoring and diagnosis
can effectively find and solve the problems in the process of operation.

With the rapid development of science and technology, deep learning with its
complex nonlinear network structure and deep feature extraction ability, more and
more experts and scholars apply it to the field of mechanical and electrical equip-
ment fault diagnosis. Reference [2] combines unsupervised pre-trained deep wavelet
convolutional self-encoderwith supervised trainedLSTMnetwork to identify various
fault types and fault degrees of bearings. In reference [3], the fault diagnosis of gear
transmission chain is realized by using deep belief network (DBN). The reference [4,
5] converts the one-dimensional vibration signal of the planetary gearbox into a two-
dimensional characteristic graph and inputs it into the convolution neural network,
which achieves a better correct rate of fault diagnosis.

Transfer learning refers to applying the features or knowledge learned from one
source domain to other target domains and solving problems in this field, in which
the features that have been learned by the algorithm are called source domains, and
the areas that need to be solved are called target domains. Transfer learning can
associate the source domain sample features with the target domain sample features,
learn cross-domain knowledge with the help of existing knowledge and experience,
and further improve the generalization ability of the model. The transfer learning
method has been put into practice in the field of fault diagnosis in the literature [6,
7], and a good diagnosis result has been obtained.

The above methods have achieved good results. But in the actual scene, the prob-
lems are as follows: (1) Someneed to extract fault featuresmanually, and then transfer
learning for fault diagnosis, and the credibility of the results is affected. (2) The deep
network structure is relatively simple, in the scene of noise interference and insuf-
ficient data, it is difficult to extract comprehensive and effective essential features,
and the final recognition results are also affected.

In view of the above problems, when the vibration data of planetary gearbox
in the target domain contains the influence of noise, the feature is not obvious,
and the amount of data is insufficient, by combining the advantages of multi-scale
feature recognition extraction of MKFCNN network, LSTM’s sensitivity to time
series and the ability of transfer learning method to learn cross-domain knowledge,
a planetary gearbox fault diagnosis method based on MKFCNN-LSTM transfer
learning is proposed.
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2 The Spatial Multi-scale Feature Learning of MKFCNN

MKFCNN network, inspired by Google Inception V1 network [8], is a multi-scale
feature learning framework based on one-dimensional convolution neural network
(1DCNN). It consists of convolution layer, pooling layer, and basic MKFCNN
module. The basicMKFCNNmodule is shown inFig. 1 and consists of four branches:
Branch 1 is a convolution layer with a convolution core of 1 × 1. Branches 2 and
3 are two series convolution layers. Branch 4 is a series of maximum pool layer
and convolution layer with convolution core size of 1 × 1. The MKFCNN network
structure is shown in Fig. 2.

The detailed configuration information of the basic MKFCNN network module
is shown in Table 1. The relevant parameters of the MKFCNN network are shown
in Table 2.

The realization of spatial multi-scale feature extraction mainly depends on the
basic convolution-pooling operation. Given the original vibration data X, and Eq. (1)
shows:

X = {x01 , x12 , . . . , xtN } (1)

Fig. 1 Basic MKFCNN module structure

Fig. 2 MKFCNN network structure
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Table 1 Basic MKFCNN network module parameters

Branches Number of layers Convolution kernel numbers Nuclear size Strides

Branch 1 1 32 1 1

Branch 2 1 16 1 1

2 32 3 1

Branch 3 1 32 1 1

2 64 5 1

Branch 4 1 0 3 1

2 32 1 1

Table 2 MKFCNN network configuration parameters

Number of layers Network layer type Convolution kernel
numbers

Nuclear size Stride

1 Convolution layer 16 6 2

2 Maximum pool layer 0 3 2

3 Convolution layer 32 1 1

4 Maximum pool layer 0 3 2

5 Basic MKFCNN network module

6 Maximum pool layer 0 3 2

7 Convolution layer 32 1 1

xti represents the position of the collected data under time t, and a total of N data
points have been collected. Data X is selected as the input of the first convolution
layer, in which the convolution kernel with window lengthm is used for local feature
extraction, and the convolution operation is completed by moving the convolution
kernel in the whole input area, thus the corresponding feature graph is obtained. For
the calculation of the zi output of i nodes in the feature graph, and Eq. (2) shows:

zi = σ
(
wT yi :i+m−1 + b

)
(2)

w represents the convolution kernel vector, b represents the offset value, yi :i+m−1

represents the intercepted data segment with length m from the i point of the input
data, and σ(·) is the nonlinear activation function. Here the ReLU activation function
is selected to prevent the gradient from disappearing and accelerate the convergence
process of the model.

The output scalar zi in Eq. (2) can be regarded as the activation output of the
convolution check signal. By constantly moving the convolution kernel on the input
data X, and the characteristic graph output of the j convolution kernel is shown in
Eq. (3):

Z j = [
z1, z2, . . . , zL−m+1

]
(3)
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After that, the pooling layer further processes the feature map of the convolution
layer output in order to extract the important and location-invariant features. The
local maximum of the input feature map is calculated by using the maximum pooling
operation with a pooling length of p, and the k-th pooling feature is shown in Eqs. (4),
(5):

hk =
[
h1, h2, . . . , h L−m

p +1

]
(4)

h j = max
(j−1)p+1≤i≤jp

{zi } (5)

3 Time Feature Learning of LSTM

The fault of planetary gearbox of wind turbine is often caused by some long-term
slow and small changes. Therefore, LSTM is used to further mine the time relevance
of vibration data and enrich fault features.

The LSTM network includes a memory unit ct and a hidden unit ht , as shown in
Fig. 3.

Among them, ct is mainly controlled by three gates, including input gate i t , output
gate ot , and amnesia gate f t . Iterative update equations are shown in Eqs. (6), (7),
(8), (9), (10) and (11).

i t = sigmoid(U iht−1 + W i xt + bi ) (6)

f t = sigmoid(U f ht−1 + W f xt + b f ) (7)

ot = sigmoid(Uoht−1 + W oxt + bo) (8)

c̃t = tanh(UCht−1 + WC xt + bc) (9)

ct = f t � ct−1 + i t � c̃t (10)

Fig. 3 LSTM framework
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ht = ot � tanh(ct ) (11)

In the equations: U,W, b are the parameters of network iterative update learning,
and the operator � represents the product operation between variables.

The structure principle of the LSTM unit is shown in Fig. 4. First, the forgetting
gate f t obtains the new input xt and the previous hidden state ht−1. When the
value of the forgetting gate is close to 1, the information of the last memory unit
ct−1 will be retained. Secondly, the new input information and the previous hidden
state information are merged into the input gate, and the input gate updates the
information and generates a new memory unit ct . Finally, Output determines that
part of the information in the memory unit forms a new hidden state ht , and part of
the information is output as a model.

Combining the MKFCNN network with the LSTM network, the combined
MKFCNN-LSTM network is shown in Fig. 5.

Fig. 4 The structure
principle of LSTM unit

Fig. 5 Network structure of
MKFCNN-LSTM
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4 Fault Diagnosis Process of Planetary Gearbox Based
on MKFCNN-LSTM Transfer Learning

The fault diagnosis flow chart of MKFCNN-LSTM transfer learning is shown in
Fig. 6. The specific process is as follows:

Step 1Get the sample and preprocess it. The vibration data sets of five fault types of
rolling bearings in Western Reserve University are collected as the source domain
sample data set, and the self-collected planetary gearbox vibration data set as the
target domain sample data set. The above two data sets are divided into training set
and test set respectively. Add noise with a signal-to-noise ratio of 10 to the source
domain data.

Step 2TheMKFCNN-LSTMnetwork is pre-trained under the source domain sample
data. Initialize the number of layers, the number of neurons, weights and other param-
eters of the network, input the source domain sample data for iterative training, and
finally get the MKFCNN-LSTM pre-training network.

Step 3 Fine-tuning MKFCNN-LSTM Network under small sample data in Target
Domain. Freeze part of the neural network layer of the network, input small sample
data to fine-tune theweights and bias values of the rest of the network layer, update the

Fig. 6 Fault diagnosis process of MKFCNN-LSTM transfer learning
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Fig. 7 Rolling bearing
test-bed of Western Reserve
University

network through the back propagation algorithm, and finally obtain the MKFCNN-
LSTM migration learning model suitable for small sample data in the diagnostic
target domain.

5 Experimental Verification Analysis

5.1 Obtain Rolling Bearing Data of Source Western Reserve
University

The rolling bearing vibration data of the Western Reserve University are obtained
as the source domain sample data, and the experimental platform for collecting the
experimental data is shown in Fig. 7. The sampling frequency is 1797 rpm, the
motor load is 0 HP, and the defect size is 0.007 in., 0.014 in., 0.021 in. and 0.028 in.
respectively. Each defect degree corresponds to a fault type, which is inner ring
damage, rolling body damage, outer ring 6-point direction damage, outer ring 3-
point direction damage, and normal vibration data. The time domain diagram of
vibration signal is shown in Fig. 8.

There are 1420 samples for each type of fault, and each sample contains 512 data
points. The vibration time domain diagram is shown in Fig. 8, and the basic data is
shown in Table 3.

5.2 Obtaining Vibration Data of Planetary Gearbox in Target
Area

The feasibility and effectiveness of the proposed method are verified by collecting
the vibration data of the planetary gearbox. The experimental equipment for fault
diagnosis research is shown in Fig. 9, which is composed of torque meter, motor,
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Fig. 8 Time domain map of vibration data of Western Reserve University

Table 3 Fault types of rolling bearings

Rolling bearing state Damage degree/in. Number of samples Labels

Normal 0 1420 1

Inner ring damage 0.028 1420 2

Rolling body damage 0.021 1420 3

The outer ring is damaged at 6 o’clock 0.014 1420 4

The outer ring is damaged at 3 o’clock 0.007 1420 5

Fig. 9 Planetary gearbox test bench
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Table 4 Basic parameters of
planetary gearbox

Parameter name Numerical value

Number of solar gear teeth 24

Number of planetary gear teeth 24

Number of inner ring teeth 72

Module of planetary gear train/mm 0.6

Pressure angle/(°) 20

Number of bearing rollers 8

magnetic powder brake, planetary gear box, etc., in which the axial load is output
by magnetic powder brake, and the radial load on the input shaft and output shaft of
planetary gearbox is output by torque meter. The basic parameters of the planetary
gearbox are shown in Table 4.

The artificial machining damage of planetary gear and rolling bearing in planetary
gearbox includes: tooth surface wear, tooth root crack, planetary gear tooth fracture
and tooth root crack, planetary gear tooth fracture and rolling body missing. The
sampling frequency is 20.48 kHz, themotor speed is 1980 rpm, and 327,675 vibration
data points are collected in each group. Figure 10 shows the time domain diagram
of the vibration signal. The size of the sliding partition window is 512 data points,
the moving step is 256 data points, the number of samples for each type of fault is
1278, and the data length of each sample is 512. The basic data is shown in Table 5.

Fig. 10 Time domain diagram of vibration signal
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Table 5 Fault type of planetary gearbox

Planetary gearbox status Number of samples Labels

Normal 1278 1

Tooth surface wear 1278 2

Tooth root crack 1278 3

Tooth breakage and root crack of planetary gear 1278 4

Tooth breakage and rolling body loss of planetary gear 1278 5

Fig. 11 The relationship
between the number of small
samples and the performance
of model

5.3 Fault Diagnosis Analysis of Planetary Gearbox in Small
Sample Scene

By inputting 20%, 40%, 60%, 80% and all small samples of vibration data into
MKFCNN-LSTM transfer learning algorithm, the proportion of training set and test
set is 4–5 and 1–5, respectively, to verify the influence of different small sample data
sets on the fault diagnosis accuracy of the model. The classification accuracy of the
training set and the test set is the average of the last five times in each experiment,
and the bar chart is shown in Fig. 11.

As can be seen from Fig. 11 with the increase of the amount of small sample data,
the average fault identification accuracy of M1DCNN-LSTMmodel training set and
test set increases gradually, until it reaches 80% of the small sample fault data, and
the classification results tend to be stable, eliminating the problem of over-fitting.

5.4 Comparative Analysis of Diagnostic Methods

This method is compared with SAE network and SVM method in order to verify
the effectiveness and superiority of this method. The method configuration in SAE
network reference [9] shows that the number of neurons in the two hidden layers is
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Table 6 Comparative
analysis of the effect of
multi-method fault diagnosis

Arithmetic Correct rate of
training/%

Verification
accuracy/%

SAE 99.79 92.94

SVM 95.05 94.13

MKFCNN-LSTM
transfer learning

98.43 98.25

256 and 128 respectively, and the number of iterations is 30. The SVMmethod is set
up by reference [10]. The error penalty factor C is 0.4 and the kernel function radius
γ is 0.2.

The basic experimental results are shown in Table 6, in which the correct rates of
training set and test set of each method are the average of the last five training and
testing rates of their respective methods, respectively.

From the data in the table, it can be concluded that the classification accuracy of
the training set of the SAE network is higher than that of the test set, which leads to
the problem of over-fitting. MKFCNN-LSTM transfer learning exceeds 97% in both
training set diagnosis accuracy and test set diagnosis accuracy, which verifies that
the model has no over-fitting or underfitting problems, and has a high fault diagnosis
accuracy.

5.5 Visual Effect of All Kinds of Fault Diagnosis
by Confusion Matrix

The confusion matrix can show the proportion of various fault recall rates in the
planetary gearbox data set. The above different methods are applied to the vibration
data test set of the planetary gearbox in the target domain, and the display is based
on the obfuscation matrix. The horizontal axis represents the forecast category, the
vertical axis represents the actual category, the diagonal position represents the recall
rate, and the rest is the proportion of prediction errors, and the sum of each row is 1,
as shown in Fig. 12.

It can be seen from the figures that the first two comparison algorithms do not
classify the second, third and fourth types of faults clearly, and about 0.01–0.21% of
them aremistakenly classified into other fault types and normal types, and the normal
types are misjudged as fault types. The recall rate of all kinds of fault diagnosis of the
proposed method is 95% or more, and the second, third and fourth types of faults will
still be misjudged, but the proportion remains in the range of 0.01–0.05. Generally
speaking, the effect of fault classification is good.
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b Visual Analysis in SVM 

c Visual Analysis in MKFCNN-LSTM transfer learning 

a Visual Analysis in SAE 

Fig. 12 Visual fault classification effect of confusion matrix

5.6 Visual Learning Results of Fault Features Based
on T-SNE

T-SNE algorithm is a nonlinear dimensionality reduction algorithm, which mainly
reduces the dimensionality of high-dimensional data to 2-D or 3-D, which is conve-
nient for naked eye observation. The final result of fault identification and classifi-
cation of M1DCNN-LSTMmigration model is visualized as shown in Fig. 13. Each
color in the diagram represents a class of fault categories. It can be clearly seen from
the diagram that all kinds of faults gather together respectively, with a clear boundary
and a small amount of overlap and mixin.

The above experimental results show that M1DCNN-LSTM transfer learning
combines the multi-scale spatial domain feature extraction ability of M1DCNN and
the strong time domain perception ability of LSTM, and carries out fault diagnosis
and recognition based on the pre-training model, which can effectively extract the
deep nonlinear and comprehensive features of fault signals.
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Fig. 13 Visual learning
results of fault features based
on T-SNE

6 Conclusion

In this study, aiming at the diagnosis of slight fault, single fault and compound
fault of planetary gearbox, a MKFCNN-LSTM migration learning algorithm is
proposed. Through practical engineering practice, the superiority and effectiveness
of the method are verified. The experimental results show that:

1. The proposedmethod combines the advantages of extracting fault signal features
in spatial domain with the ability to obtain signal time domain information in
time domain, and further improves the performance of mining comprehensive
and deep fault features.

2. In the proposedmethod, the data distribution is used as a link to transfer different
electromechanical equipment for fault feature learning, and the original fault
diagnosis knowledge is applied to the fault identification of planetary gearbox
by extracting different damage degrees and different types of fault features of
rolling bearings of Western Reserve University in the source region.

3. Compared with SAE network, SVM method, the fault diagnosis accuracy of
the proposed method is improved to a certain extent. How to use the proposed
method to diagnose three or more compound faults of planetary gearbox is the
direction of future research.
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Prediction of Sensor Values in Paper
Pulp Industry Using Neural Networks
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Mateus Mendes, and Ricardo Mateus

Abstract The economic sustainability of any industry is directly linked to the
management and efficiency of its physical assets. The maintenance of these assets is
one of the key elements for the success of a company since it represents a relevant
part of its Capital and Operational Expenses (CAPEX and OPEX). Due to the impor-
tance of maintenance, a lot of research has been done to improve the methodologies
aiming to maximize physical assets’ availability at the most rational costs. The intro-
duction of Artificial Intelligence in the world of maintenance increased the quality of
prediction on equipment failures, namely when associated to continuous equipment
monitoring. This paper presents a case study where a neural network is proposed to
predict the future values of various sensors installed on a paper pulp press. Data from
the following variables is processed: electric current; pressure; temperature; torque;
and speed.
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Keywords Predictive maintenance · Condition monitoring · Neural networks ·
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1 Introduction

Cost reductions along with regulations and concerns for safety and environmental
impacts play a major role in the success of industries [1].

Industries have been looking for and investigating new techniques and equipment
management tools that provide a competitive advantage in the quality or cost of their
products, processes or services. Industrial equipment maintenance is therefore a key
issue [1].

Kumar and theBritish Standards Institute (2015) definemaintenance as the combi-
nation of all technical and administrative activities necessary to keep equipment,
facilities and other physical assets in the desired operational condition or to restore
them to comply with its function with quality [2].

The four main objectives of maintenance are: safety, quality, cost and availability.
There are many different approaches to maintenance. The predictive approach

is one of the most important and effective, aiming to maximize the equipment’s
availability at a minimum cost.

This type of maintenance mainly involves predicting system failures, the main
task of which is to detect the first signs of failure. Taking these signs into account,
predictive maintenance aims to warn when faults are likely to occur and thus to
suggest making scheduled stops on the asset. The advancement of technology and
new techniques in the field of predictive maintenance have been making predictive
maintenance more efficient, applicable and accessible to industries.

Predictive maintenance aims to predict the occurrence of failures before they
happen, using data from consistent and constant monitoring of the conditions and
operation of the target equipment.

Unwanted conditions, such as wear and tear of equipment components, are
observed and/or predicted using forecasting algorithms to optimize when preven-
tive interventions in the asset should be scheduled, thus avoiding breakdowns and
reducing repair costs and production losses, and consequently increasing the asset
availability.

Predictive maintenance has been adopted by various sectors in the manufacturing
and service industries, in order to improve reliability, safety, availability, quality, as
well as promoting environmental sustainability, since predictivemaintenance reduces
production surpluses as well as non-compliant products [3].

Quality measures how well an asset performs its function properly, while relia-
bility measures how that asset maintains its original level of quality steady over time,
under the various operating conditions to which it is exposed.

Predictive maintenance techniques are increasingly associated with sensor tech-
nologies because to make good predictive maintenance decisions it is necessary to
have good quality information regarding the past and current operations of the asset.
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Therefore, it is paramount to calibrate sensors properly and to process the resulting
data in a reliable way [4].

The present paper focus on a predictive maintenance approach aiming to iden-
tify the current equipment state and predict its future operating conditions through
collected past data processed using Artificial Intelligence (AI) algorithms.

Prediction is made for the next 90 days, a timeframe which allows the industry to
adequately prepare and schedule maintenance interventions, thereby avoiding loss of
production and optimizing stopping time. The company’s competitiveness advantage
is achieved by reducing maintenance downtime and increasing production time.

Amulti-layer perceptronArtificialNeuralNetworks (ANN)model is presented for
predicting future data from various variables. The algorithm presented in this paper
is implemented in Python, using the supervised learning model MLP Regressor from
Scikit-learn (Sklearn).

Sklearn is an open-source machine learning library for the Python program-
ming language. If offers numerous functions for processing data, performing opera-
tions such as sorting, regression and grouping algorithms, including Support Vector
Machines (SVM),RandomForest, gradient augmentation and k-means. It is designed
to work with the numerical and scientific Python libraries NumPy and SciPy. Sklearn
is written in Python and uses Numpy extensively for high-performance linear algebra
and array operations.

2 Literature Review

Rodrigues et al. [5] use Feed Forward Neural Networks to classify the level of
degradation of lubricants of Diesel engines. The results show that neural network
models can classify oil conditions, achieving more than 90% precision compared to
the performance of human experts, and thus allowing the process to be automated in
the future [5].

It is important to have continuous and efficient maintenance in order to keep assets
as available as possible and with no accidents. Allah Bukhsh et al. [6] developed
predictive models that used existing data from a railway and produced interpretable
results. Such predictive models were supported by classification techniques based on
Decision Trees, Random Forest and Fault Trees with gradient increase; these tools
allow to predict the need for maintenance on the railway [6].

Hongxiang et al. develop an algorithmusingArtificial Neural Networks to analyze
spectroscopy data from an oil. Results show that the mining of oil spectroscopy data
by ANN methods can be used to classify types of lubricant and distinguish routine
conditions of a Diesel engine from operating conditions [7].

Prediction in maintenance area support making better decisions. Okoh et al.
[8] present an approach to determine when a system needs to undergo mainte-
nance, repair, and overhaul, before a failure occurs. The novelty in this study is
the development of the through-life performance approach [8].
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One of the main maintenance challenges is to increase equipment availability.
Makridis et al. [9] describe that predictive maintenance extends vessel lifetimes in
the maritime sector, while reducing overall maintenance costs as well. The authors
present a machine learning approach for detecting anomalies in the data collected
through sensors installed on the vessels, hence predicting the condition of specific
parts of the vessel’s main engine [9].

Upgrading equipment andmaking it smarter is a common goal formanymanagers
around the world. However, leveraging Artificial Intelligence methods from older
equipment is sometimes extremely difficult, as these assets must be equipped with
technical diagnostic tools and sensors for data collection. Vlasov et al. [10] discuss
methods for maintaining industrial equipment, with a focus on predictive mainte-
nance and the principles for building wireless sensor networks and data transmission
protocols to collect information. The purpose of this study is to demonstrate the
feasibility and reliability of using wireless sensors as technical diagnostic tools and
as decision support tools for prediction. Main advantages include cost reductions
and real-time information and analysis of equipment’s state [10].

The use of Internet of Things (IoT) technologies to allow the exchange of infor-
mation among sensors, machines, servers, and processing units is currently revolu-
tionizing the industrial world, also providing innovation to the maintenance sector.
Fernandes et al. [11] describe a related system for the prediction of failures in a
metallurgical industry. There was no history of failures, so, learning takes place in an
unsupervised way. Failures are predicted throughmoving average models, integrated
in autoregressive models, using data from the sensors installed in the equipment, thus
allowing the monitoring of different machine components and parameters [11].

3 Methods

3.1 Dataset and Data Preprocessing

The present case study focuses on the prediction of target variables on an industrial
paper pulp press. The company in question provided a three-year dataset containing
the history of six variables: Electric Current Intensity (Sensor 1); Pressure (Sensor 2);
Rotation Speed (Sensor 3); Temperature (Sensor 4); Torque (Sensor 5); and Velocity
(Sensor 6). All sensors collected data with a sample frequency of one minute.

The dataset contains several repeated values as well as discrepant samples which
may be due to reading errors: the upper outliers may be the result of errors in the
sensors reading; the lower outliers are a consequence of the same causes previously
mentioned, as well as possibly downtimes programmed or not programmed.

Repeated values were removed using a Python algorithm developed by Mateus
et al. [12]. The lower and upper outlierswere also removed and subsequently replaced
by the average of each variable in question.
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Data was then transformed into histogram bins and predefined statistics computed
from sliding windows. These statistics are the input of the ANN model Network. It
should be noted that all data were normalized using the StandardScaler library from
Sklearn before feeding into the ANN model.

To evaluate the performance of the Neural Network prediction algorithm, two
different evaluation metrics were used: Mean Absolute Percentage Error (MAPE);
and Mean Squared Error (MSE).

3.2 ANN Architecture

For predicting future values, the chosen architecture model was the Multi-Layer
Perceptron (MLP), which is one of the most popular feed forward architectures,
using Sklearn’s MLPRegressor.

MLPRegressor uses various hyper parameters to optimize the generalization
capacity of the network model for prediction. Various combinations of hyper-
parameterswere tested during training tofind the best possible network configuration,
so that the best forecast could be achieved.

To avoid overfitting, MLPRegressor might include a regularization term added to
the loss function to reduce the number of model parameters.

The algorithm chosen for weight optimizationwasAdam solver. TheAdam solver
is an optimizer algorithm based on a stochastic gradient proposed by King-ma,
Diederik and Jimmy Ba. This solver is recommended for large data sets [13].

In order to choose the ideal number of hidden layers, tests were carried out with
one, two, and three hidden layers.

The initial approach for the input vector of the ANN considered only data from
histogram bins of a sliding window, one for each sensor, along with their average
values. However, the prediction results were very irregular. Therefore, it was decided
to introduce additional metrics regarding the variance andmedian in the input vector,
which made the prediction results more stable.

Results from tests carried out with two and three hidden layers were very similar
and better than with one layer only. Hence, a network with two hidden layers (150,
75) was chosen. Figure 1 depicts the chosen architecture.

4 Experiments and Results

This section describes the experiments carried out during the development of this
research study along with some of the best results obtained through several tests.

Tests were carried out with various window sizes applying. Histograms computed
from those sliding windows, along with the respective mean, median, and variance,
compose the input vector (S11, S12, …, S1w, …, Snw, AVG1, … AVGn, M1, … Mn,
V 1, … Vn) of the ANN model. Sij represents the value of sensor i at time j of the
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Fig. 1 Network architecture. The network receives histograms, average, median and variance from
each sensor for a given sliding window, and outputs predictions for that sensor

window of size w. The window started with the first w samples of the time series and
slided to the end of the series, in steps of 1, for an overlapping window, or steps of
w samples for a non-overlapping window. AVGk is the mean value of sensor k in the
window. Mk is the median value of sensor k for the window and Vk is its variance.

Data were resampled to speed up processing. Results shown in Tables 1 and 2
were obtained with a period of 10 samples. The Neural Network performed up to
200 learning epochs in all tests. Table 1 shows the results of the tests developed using
the overlapping window.

It can be seen from Table 1 that the window size of 2440 samples is the one that
obtains the worst loss and MSE results for all variables. In general, the window can

Table 1 Results of the prediction tests with overlapping sliding window

Window
size
(samples)

Oil Current Temperature Torque Pressure Velocity

MSE Loss MSE Loss MSE Loss MSE Loss MSE Loss MSE Loss

2440 10.51 0.70 1.73 0.13 3.26 0.49 0.62 0.06 9.53 1.69 2.14 0.25

1440 7.23 0.48 1.67 0.11 3.67 0.29 0.80 0.06 7.57 1.18 2.84 0.19

720 5.94 0.19 1.56 0.09 3.55 0.19 0.54 0.06 4.74 0.78 1.84 0.14

360 5.22 0.07 1.45 0.07 3.28 0.13 0.56 0.05 5.39 0.51 1.68 0.04

180 5.44 0.13 1.15 0.06 2.59 0.10 0.55 0.04 4.94 0.36 1.43 0.08

144 5.69 0.12 1.15 0.06 2.46 0.09 0.54 0.04 4.62 0.34 1.51 0.08

90 5.02 0.11 1.08 0.05 2.46 0.09 0.56 0.04 4.53 0.31 1.43 0.07

45 5.24 0.20 1.08 0.06 2.23 0.11 0.56 0.03 4.97 0.37 1.46 0.07

24 5.60 0.41 1.14 0.07 2.29 0.19 0.52 0.03 4.96 0.69 1.49 0.08

12 5.76 0.86 1.10 0.11 2.16 0.34 0.53 0.03 4.70 1.25 1.61 0.13
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be reduced to six hours (360 samples) or in some cases up to 12 min (12 samples),
since they all present good prediction results, which indicate that these will be the
best window sizes to use for 10 samples resample rate in this data set.

Figure 2 shows that the learning of the Neural Network is quite fast: in just three
epochs the network has already learned up to a small error.

Fast learning and the low data loss make it possible to achieve a good prediction fit
as shown in Fig. 3. This prediction presents a Mean Squared Error of 1.10 (see Table

Fig. 2 Learning history of current’s intensity, using an overlap window size of 12 samples. The
curve shows that the model learns in the first epochs

Fig. 3 Current’s intensity prediction using an overlapping window size of 12 samples
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Fig. 4 Learning curve of the velocity using a non-overlapping window size of 12 samples

1). Table 2 shows corresponding results for the tests developed with non-overlapping
sliding windows.

Table 2 shows the learning problems resulting from Neural Network when using
large size windows without overlapping. However, window sizes with 24 and 12
samples generate results that are already satisfactory.

In the absence of the overlapping technique, the Neural Network receives much
less input data per epoch, which delays the learning process. This problem is in part
overcome by reducing the window size, for the Network receives more input data
samples per epoch. However, when using smaller windows, it can be more difficult
to catch larger patterns.

Figure 4 illustrates the network learning history for predicting velocity using a
12-sample overlapping window size. A slow slope is evident, demonstrating a slower
learning rate when compared to other variables.

Note though that albeit learning is slow, the Network can learn, presenting a loss
value of 0.09 in the window of 12 samples for the variable in question.

Figure 5 presents the corresponding results of the velocity prediction using a
window size of 12 samples and 200 learning epochs. It should be noted that for the
test shown in this figure the outliers from a programmed stop were not removed.

5 Conclusion

Prediction is very important for better decisions inmaintenance and other areas. Data
resampling can make the prediction process much faster since it reduces the dataset
considerably.

The use of sliding windows over time series is necessary for training. Overlap-
ping windows offer learning in less epochs. Larger windows make it easier to catch
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Fig. 5 Velocity prediction using a non-overlapping window size 12 samples

long trends, but the optimal window size needs to be determined experimentally.
Overlapping windows offer more input data to the Neural Network in each epoch
and thus generating faster learning rates and better prediction results.

Another drawback of non-overlappingwindows is the limitation imposed by small
datasets. Another major disadvantage of this type of sliding windows is the slower
learning rate, especially for small window sizes. Its great advantage though is the
speed of processing when the input vector is created.

Future work includes additional experiments to improve the input vectors and
optimize other neural network hyperparameters.
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YOLOV4-Based Wind Turbine Blade
Crack Defect Detection

Xin Yan, Guoxin Wu, and Yunbo Zuo

Abstract Wind turbine blade is an important component of wind turbine. Wind
turbine blade crack damagewill cause hidden danger to the operation ofwind turbine.
The current wind turbine blade defect detection mainly relies on manual inspection,
and the image detection technology can improve the inspection efficiency and reduce
the unit maintenance cost. In view of the existing wind turbine blade crack defect
detection algorithm with low recognition rate and low accuracy, a YOLOv4-based
wind turbine blade crack detection method is proposed. First establish the wind
turbine blade crack image dataset, then the anchor box parameters in YOLOV4 are
optimized by K-means++ algorithm to make the anchor box parameters match the
crack defect size; BiFPN is used instead of PANet to achieve better feature fusion,
and finally the Focal Loss function is introduced to balance the number of small size
defect samples in the data. The comparison tests show that the AP of the improved
YOLOv4 algorithm reaches 93.49, which is better than the original YOLOv4 and
the other three comparison algorithms, and has better efficiency and practicability.

Keywords Deep learning · Object detection · Blade fault · YOLOv4 · BiFPN ·
Focal loss · K-means++

1 Preface

With the global economic growth, the energy crisis and the environmental degrada-
tion caused by fossil energy are becoming more and more serious, and the active
research and development of new energy sources have become the focus of atten-
tion of countries around the world. Wind energy has many advantages such as huge
reserves, wide distribution, no pollution, and renewable, wind power has gradually
become one of the most mature, most developed and promising power generation
methods in the field of new energy [1]. According to the paper “The Future of
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Wind Energy: Deployment, Investment, Technology, Grid Connection and Socio-
Economic Impact” published by International Renewable Energy Agency (IRENA),
the global installed wind power capacity has reached 564 GW, and will reach
5044 GW by 2050. But due to the blade itself material factors, blade processing
and installation process damage and blade work in the harsh environment and other
reasons. Crack defects often appear on the blade, serious crack defects may lead to
wind turbine out of service. Crack defects reduce the wind energy conversion rate
and lifetime of wind turbine blades as well as wind turbines [2], so the detection of
wind turbine blade defects is necessary.

At present, wind turbine blade defect detection means mainly focus on vibration
detection technology, acoustic emission technology, infrared thermal imaging tech-
nology and machine vision detection technology. Wu Jianzhong used the short-time
Fourier transform to analyze the blade in the health state and different crack damage
state vibration signal change law, which provides a certain theoretical basis and
method for the large wind turbine blade damage diagnosis [3]; however, because the
defect detection based on vibration signal requires additional pickup and other sensor
installation, which increases the complexity of the wiring and electrical system, Tang
et al. used acoustic Tang used acoustic emission monitoring technology to achieve
online monitoring of the structural health of wind turbine blades [4], the drawback
of this method is that acoustic emission is very sensitive to environmental factors,
and noise is difficult to exclude, so it is difficult to quantitatively analyze the defects;
because when the wind turbine blade is subjected to dynamic mechanical load will
generate stress and cause the temperature of the special area to rise, so that the image
obtained by infrared thermal imaging technology in this area has different from the
normal The problem of this method is that the working environment of wind turbine
blades in service can interfere with the infrared thermographic signal [5].

The current wind farm for wind turbine blade defect detection mainly relies on
telescope observation and rope dropping for repair, this manual interpretation of
whether there is a defect method has a greater subjectivity, the disadvantage is time-
consuming, large detection workload, low detection efficiency, subjectivity, is not
conducive to the objective detection and assessment of blade health status.

During the past few years, with the development of deep learning theory and the
improvement of arithmetic power of hardware devices, many representative object
detection algorithms have been proposed and validated on public datasets [6]. The
current mainstream object detection algorithms can be divided into two categories
according to their design principles: two-stage object detection algorithms and one-
stage object detection algorithms. The former first generates a series of bounding
boxes for the detection points in the feature map before classifying the samples by
convolutional neural networks, and common two-stage object detection algorithms
include such as R-CNN [7], Fast R-CNN [8], and Faster-RCNN [9]. One-stage object
detection algorithms do not generate bounding boxes and directly extract features to
predict object types by convolutional neural networks, and common one-stage object
detection algorithms include YOLO [10], YOLO v2 [11], YOLO v3, YOLOv4, SSD.
The above algorithms are proposed and applied to provide a new idea for the defect
detection of wind turbine blades.
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In this paper, we establish a wind turbine blade crack image dataset and expand it
by offline enhancement, and then improve the YOLOv4 object detection algorithm
to achieve efficient and fast detection of wind turbine blade crack defects. For small-
size crack defects in wind turbine blades, we first improve and optimize the anchor
box size in YOLOv4 by K-means++ clustering algorithm, use BiFPN network to
enhance the fusion capability of the algorithm for different feature layers to enhance
the detection capability of themodel for small-size crack defect targets, and use Focal
Loss function to control the ratio of positive and negative samples. The number of
small size defects is enriched by using Mosaic data enhancement to finally achieve
excellent detection capability for small size crack defects of wind turbine blades.
Compared with previous visual inspection methods for wind turbine blades, this
method achieves higher accuracy and recall rate with greatly reduced number of
model parameters and training time.

2 Dataset

At present, there is no open source data set for crack defect images of wind turbine
blades. The main reasons are as follows: firstly, the number of cracked wind turbine
blades is relatively small among in-service wind turbine blades; secondly, the current
wind turbine blade cracks still largely rely on inspection workers to pass the naked
eye. It is difficult to detect the small cracks by the naked eye before the wind turbine
fails. At the same time, due to the harsh working environment of the wind turbine, the
on-site collection of the wind turbine blade image data set requires high collection
equipment and environment. Because the number of images of the crack defects of the
fan blades is very scarce and cannot meet the training of the object inspection model,
it is necessary to simulate the defects of the fan blades in a laboratory environment
and obtain a data set. This paper constructs the BladeFault-VOC-V1 image data
set of fan blade crack defects in VOC format for target detection, and trains and
tests the target detection algorithm based on this data set. The BladeFault-VOC-V1
data set has a total of 320 images, collected and expanded in a well-built laboratory
environment. This data set contains two types of data, the positive sample of the
defective fan blade image and the negative sample of the normal fan blade, in the
form of the defect. It is a crack defect.

2.1 Wind Turbine Blade Defect Marking System

This system mainly consists of wind turbine and defective blade, industrial camera,
image acquisition card, PC and other parts. The industrial camera is selected as
MV-E7000M industrial camera, which has the advantages of high definition, high
precision and good color reproduction and is widely used in the field of artificial
intelligence. The workflow of the labeling system is as follows: firstly, the simulated
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cracked fan blade is photographed under sunlight conditions by the industrial camera,
and the image acquisition system with the camera as the core component acquires
continuous image information on the blade part to be detected; then the A/D signal is
converted by the image acquisition card, and then the converted signal is converted
into digital image information recognizedby the computer, and the image information
is transmitted back to the computer, through LabelImg labeling tool to blade image
of the crack for labeling.

2.2 Build Dataset

The established BladeFault-VOC-V1 data set was collected from a key experiment of
theMinistry of Education of Beijing Information Science and TechnologyUniversity
ofmodernmeasurement and control technology.The image resolution is 3000*4000,
the shooting angle is 90°, 60°, 45°, and the distance from the blade is 0.8 and 0.5 m.
A total of 32 images of leaves with cracks were taken. There are more than 3 crack
defects in each sample image. Considering that the actual inspection process of wind
turbine blades is mainly carried out on sunny days with good light, this article also
carried out under sunshine conditions when the simulated data set was collected.
The image was annotated with the PASCAL VOC format data set using LabelImg
annotation tool. Each image was accurately marked with the location of the crack,
including 116 crack defects in total.

To address the overfitting problem that may be caused by the small sample size
of the dataset, we augment the dataset with data before training including: flipping,
scaling, random cropping, and various filtering operations to expand the dataset by
10 times. The limited data is used to produce the equivalent value of more data, thus
improving the training effect. The final BladeFault-VOC-V1 dataset was obtained
after the expansion. The dataset contains a total of 1160 crack defects with an average
width andheight of 120Pixel and139Pixel, and an average area of 17,528, accounting
for 0.146% of the original map area. The specific defect size distribution diagram is
shown in Fig. 1.

3 Algorithm

As a classical one-stage object detection algorithm, theYOLO(YouOnlyLookOnce)
family of object detection algorithms has received a lot of attention from academia
and industry. Although YOLOv4 does not make revolutionary changes, it adds many
practical techniques to the YOLOv3 algorithm. Compared with YOLOv3, the AP
and FPS of YOLOv4 are improved by 10% and 12% respectively.

The YOLOv4 object detection algorithm can be divided into three parts: the
backbone feature extraction networkCSPDarkNet53, the enhanced feature extraction
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Fig. 1 Defect size scatter
diagram

network SPP+PANet, and YOLO head. Compared with the YOLOv3model, its main
improvement ideas are as follows:

1. Input: some improvement operations were done in the training phase of
the model, mainly including Mosaic data augmentation, Cross mini-Batch
Normalization, Self-Adversarial Training.

2. BackBone: Using CSPDarkNet53, Mish activation function and dropblock.
3. Neck: Adding SPP module and FPN+PAN structure.
4. Head: The main improvement is the loss function GIoU loss during training,

and the NMS filtered by the predicts bounding boxes becomes DIOU NMS.

In order to improve the detection capability of YOLOv4 for small size crack
defects, this paper improves the YOLOv4 algorithm to achieve effective detection
of crack defects in wind turbine blades. The general flow of the improved algorithm
is as follows.

Firstly, K-Means++ [12] clustering algorithm is used to analyze the crack defect
size and get the parameters of suitable bounding boxes, CSPDarkNet53 is selected as
backbone feature extraction network for initial feature extraction, then BiFPN is used
to replace PANet for feature fusion and use Focal Loss to balance the contribution of
positive and negative samples to the algorithm, YoloHead is finally used to predict
and get the detection result. The flow chart of the improved YOLOV4 algorithm is
shown in Fig. 2.

3.1 Clustering Analysis

The YOLOv4 model generates a series of Anchor Boxes for object detection, and
then adjusts the parameters of the Anchor Boxes to generate prediction frames, so
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CSPDarkNet 53
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Fig. 2 Improved YOLOv4 algorithm model

the choice of Anchor Boxes has a great influence on the model prediction box.
The Anchor Box is a more suitable Anchor based on the COCO dataset, but it is
not suitable for the small-sized wind turbine blade crack defects in our BladeFault-
VOC-V1 dataset. Therefore, in this paper, we use K-means++ method to cluster
the small size wind turbine blade crack defect size in BladeFault-VOC-V1 dataset,
get the suitable Anchor size and adjust it to get the suitable Anchor box size for
our dataset. The original K-means clustering method requires artificially setting K
points as preset clustering centers, and different clustering centers may lead to not
completely different clustering results.

The K-means++ clustering algorithm we choose is superior to the K-means algo-
rithm, it does not need to set the initial clustering center artificially, its implementation
process is: first randomly select a point as the first initial class cluster centroid, Then
select the point furthest from the centroid of the first cluster as the center point of the
second cluster, and then select the point furthest from the center points of the first
two clusters among the remaining points as the third cluster centroid. In this way, a
total of K initial cluster centroid is selected. After the centroid of the initial cluster
is selected, clustering is performed according to the K-means algorithm to complete
the implementation of the K-means++ clustering algorithm. The Anchor Box sizes
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obtained after K-means clustering algorithm analysis are: (61, 65) (68, 73) (79, 81)
(93, 235) (108, 431) (110, 244) (139, 101) (142, 439) (168, 187).

3.2 BiFPN

One difficulty in the current object detection field is how to represent and process
multi-scale features. In order to solve this problem, FPN [13], NAS-FPN and PANet
have appeared in recent years. FPN proposed a top-down fusion of multi-scale
features. According to this idea, PANet adds a bottom-up path aggregation network
based on FPN. The recent NAS-FPN uses neural structure search to automati-
cally design Feature network topology, although its performance is excellent, the
exploration process often requires thousands of GPUs.

BiFPN is an enhancedversionofFPN.Comparedwith ordinaryFPN, the construc-
tion of BiFPN is more complicated. First, it removes the nodes that have only one
input edge that contributes little to the fusion of different features, and then adds
an additional edge to the original input and output in the same layer, and adds
an additional edge to the original input and output in the upper and lower layers.
Connected separately, and finally repeat each top-down and bottom-up bidirectional
path to achieve more advanced feature fusion. At the same time, a channel attention
mechanism is set up to balance the weights of different feature layers. The previous
feature fusion methods treat all input features equally, but different input features
have different contributions to output features at different resolutions. For this reason,
BiFPN adds a weight to each input, allowing the network to judge the importance
of different inputs. Finally, BiFPN realizes the feature fusion of different scales and
balances the feature information of different scales through two-way cross-scale
connection and fast normalization fusion. As a specific example, Eqs. (1) and (2) are
the fourth-level feature fusion formulas:

Ptd
4 = Conv

(
ω1 · Pin

4 + ω2 · Resi ze(Pin
5

)
ω1 + ω2 + ε

)
(1)

POut
4 = Conv

(
ω1

′ · Pin
4 + ω2

′ · Ptd
4 + ω3

′ · Resi ze(Pout
3

)
ω1

′ + ω2
′ + ω3

′ + ε

)
(2)

Among them, Ptd
4 is the fourth-level intermediate feature on the top-down path,

and POut
4 is the fourth-level output feature, ω is the weight of each node.

The working principle of BiFPN is shown in Fig. 3.
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Fig. 3 BiFPN working
principle diagram
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3.3 Focal Loss

Focal Loss is a new Loss calculation scheme proposed by He Kaiming. After an
image is input to the network, a large number of candidate frames will be generated,
but only a few of them contain objects. Therefore, the number of positive samples
with objects is often much smaller than the number of negative samples without
objects. At the same time, for the object detector in this article, large-size cracks are
simple samples that are easy to be classified, while small-size cracks are difficult
samples that are difficult to be classified. Their optimization capabilities for the
model are different. Focal Loss reduces the weight of a large number of simple
negative samples in training and solves the problem of the imbalance of the positive
and negative sample ratio in the one-stage object detector. It has two main features:
one is to control the weight of positive and negative samples, and the other is to
control the weight of samples that are easy to classify and difficult to classify. The
mathematical definition of Focal loss is expressed in Eqs. (3), (4).

FL(pt ) = −(1 − pt )
γ log(pt ) (3)

pt =
{
p x = 1
1 − p otherwise

(4)
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4 Experiments and Data Analysis

In order to evaluate the performance of the algorithm in this paper, we design a
comparative test to verify it. The test data set uses the self-built blade fault image
data set BladeFault-VOC-V1. The software and hardware information used by the
training platform is shown in Table 1.

In terms of training parameters, the Batch size is set to 4, and the initial learning
rate is set to 0.001.When the number of iterations reaches 2000 and 5000, the learning
rate is reduced to 0.0001 and 0.00001. The convergence curve of the loss value during
the algorithm training process is shown in Fig. 4.

Table 1 Software and
hardware information

Environment Description

Hardware
environment

Windows10 Operating system

Inter(R) i7-10870H
CPU @2.20 GHz

CPU

RTX 3070 8G GPU

DDR4 16G 3200 MHz Memory

Software
environment

Python3.8.8 Python version

Keras2.4.3 Python library
version

Tensorflow-gpu 2.4.1 Python library
version

Opencv-python 3.4.10 Python library
version

CUDA 11.1 Python library
version

Fig. 4 Training loss graph
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4.1 Algorithm Evaluation Indicators

The evaluation indicators commonly used in object detection algorithm include:
Precision, Recall, Average Precision (AP). Among them, AP is considered to be an
important index for the evaluation of algorithms in the target detection field, so this
paper chooses AP as the evaluation index.

The recall rate represents the proportion of all defective samples that the classifier
considers to be defective samples that are indeed defective samples. The calculation
formula is as Eq. (5):

R = XT P

XT P + XFN
(5)

Accuracy represents the proportion of samples that the classifier considers to be
defective and that are indeed defective samples to account for the proportion of
samples that the classifier considers to be defective. The calculation formula is as
Eq. (6):

P = XT P

XT P + XFP
(6)

Among them: XT P represents the number of defective samples that have been
correctly classified; XFN represents the number of defective samples that have been
misclassified; XFP represents the number of non-defective samples that have been
misclassified.

AP refers to the area under the P–R curve of the defect target, which is used to
measure the average classification accuracy of defects. The calculation formula is as
Eq. (7):

AP =
1∫

0

P(R)dt (7)

4.2 Detection Result of Crack Defects

Select two fan blades cracks defect image, using the original and improved algorithms
YOLOv4 detection algorithm, the detection results are shown in Fig. 5.
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a.Wind turbine blade crack image 1

Original image Original YOLOv4 Improved YOLOv4

b.Wind turbine blade crack image 2

Original image Original YOLOv4 Improved YOLOv4

Fig. 5 Test result comparison

4.3 Comparative Experiment

In order to verify that the algorithm in this paper can effectively detect the small-size
crack defects of the blade, we set up a set of comparative tests. Train and test the
algorithm in this paper with Faster R-CNN, SSD and the original YOLOv4 object
detection algorithm. The data set used is the BladeFault-VOC-V1 data set. Table 2
shows the comparative experimental results of the above detection algorithms.

It can be seen from the table that the AP of Faster R-CNN is only 11.25, which is
not suitable for detecting crack defects. At the same time, due to the characteristics
of the two-stage object detection algorithm, its FPS is only 12, while the one-stage
object detection The FPS of the algorithm is generally higher than that of the two-
stage object detection algorithm. In the one-stage object detection algorithm, the
main difference between SSD-500 and SSD-300 is the resolution of the input image.
The AP of the SSD-500 inputting 500 * 500 * 3 image is compared with the inputting
300 * 300 * 3 SSD. The AP of −300 is 17.59 higher, but its AP value is only 33.88,

Table 2 Experimental results Algorithm AP/% FPS/(f s−1)

Modified-YOLOv4 93.49 51

YOLOv4 90.26 58

SSD-300 16.29 45

SSD-500 33.88 37

Faster R-CNN 11.25 12
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which cannot be applied to actual detection. Compared with the original YOLOv4,
the detection speed of the algorithm in this paper is reduced, but the AP value for
crack defects has increased by 3.23, which is far more than other object detection
algorithms.

5 Conclusion

5.1 A Subsection Sample

Aiming at the problem that the small-size crack defects of fan blades are difficult
to be detected by conventional object detection algorithms, this paper improves the
YOLOv4 object detection algorithm. First, use the K-means++ clustering algorithm
to select a more suitable Anchor Box, then use BiFPN to improve the feature fusion
ability of the algorithm, and finally use the Focal Loss function to balance the positive
and negative samples in the data. Experimental verification shows that the improved
YOLOv4 object detection algorithm can effectively detect small-size crack defects
in fan blades. The AP value reaches 93.49 and the detection speed reaches 45 f s−1.

Although the YOLOv4 object detection algorithm has been improved in this
paper and good experimental results have been obtained, the defects of fan blades
are of various forms, and many defects often appear at the same time in practical
applications. Therefore, in the future, more different types of fan blade defects will
be added and the algorithm will be further improved to enhance the practicality of
the algorithm.

References

1. Bo, L., Zhijia, H., Hao, J.: Current status and development trend of wind power generation. J.
Northeast Electr. Power Univ. 36(02), 7–13 (2016)

2. Gang, L., Hongli, H., Yani, L.: Recent developments inwind turbine blade conditionmonitoring
and fault diagnosis technology. Ind. Instrum. Autom. 05, 16–20+55 (2017)

3. Jianzhong, W., Yi, T.: Crack damage detection of fan blades based on short-time Fourier
transform. Chin. J. Eng. Mach. 12(02), 180–183 (2014)

4. Tang, J., Soua, S., Mares, C., Gan, T.-H.: An experimental study of acoustic emission
methodology for in service condition monitoring of wind turbine blades. Renew. Energy, 99
(2016)

5. Infra-red thermography for condition monitoring of composite wind turbine blades: feasibility
studies using cyclic loading tests. NDT & E Int. 29(6), 395–395 (1996)

6. Shun, Z., Yihong, G., Jinjun, W.: The development of deep convolutional neural networks and
their applications in the field of computer vision. Chin. J. Comput. 42(03), 453–482 (2019)

7. Girshick, R., Donahue, J, Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 580–587 (2014). https://doi.org/10.1109/CVPR.2014.81

8. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169


YOLOV4-Based Wind Turbine Blade Crack Defect Detection 305

9. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with
region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017).
https://doi.org/10.1109/TPAMI.2016.2577031

10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object
detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

11. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017). https://doi.org/10.
1109/CVPR.2017.690

12. Kanungo,T.,Mount,D.M.,Netanyahu,N.S., Piatko,C.D., Silverman,R.,Wu,A.Y.:Anefficient
k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach.
Intell. 24(7), 881–892 (2002). https://doi.org/10.1109/TPAMI.2002.1017616

13. Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks
for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/CVPR.2017.106


State-of-Art of Metal Debris Detection
in Online Oil Monitoring

Dingxin Yang and Xiaorong Liu

Abstract Metal debris detection technology in online oil monitoring has drawn
significant industrial attention recently since it can provide information about wear,
lubrication and friction conditions of friction pairs. In the paper, the principles of
several types of metal debris sensors based on photoelectric or imaging, X-ray lumi-
nescence spectrum, ultrasonic detection and electric impedance measurement are
reviewed. Especially, the inductive debris sensors which gain advantages of simple
structure, complete flow measuring and the ability to distinguish ferromagnetic and
non-ferromagneticmetal particles, have received extensive attention. The developing
progress, detection principle, typical sensor structure, and industrial applications are
presented in detail. We also provided the prototype of debris sensor we developed
and the performance and application in bearing health status evaluation and remain
life prediction. Finally, the main problems confronted and the development trend for
debris sensor using in industrial applications are also proposed.

Keywords Online oil monitoring · Debris detection · Inductive debris sensor

1 Introduction

Online metal debris detection in lubricating oil has received more and more focus
because it is of great significance to get the real-time wear information from metal
debris in lubricating oil. This information can be used in early prediction of catas-
trophic failure for large and complex equipment such as a ship power plant and an
aeroengine.

Support bearing is an important part of aero-engine. It usually works under high
load, high speed and high temperature. According to the statistics of engine bearing
faults, the excessive rolling and erosion faults caused bymetal wear particles account
for 59% of the total faults [1, 2]. Therefore, on-line detection of wear metal particles

D. Yang (B) · X. Liu
Laboratory of Science and Technology on Integrated Logistics Support, National University of
Defense Technology, Changsha 410073, China
e-mail: yangdingxincn@163.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_26

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_26&domain=pdf
mailto:yangdingxincn@163.com
https://doi.org/10.1007/978-3-030-99075-6_26


308 D. Yang and X. Liu

in the oil of aero-engine bearing is of great significance to ensure the normal operation
of the equipment and avoid irreparable damage to the aero-engine.

According to the wear law of mechanical friction pairs, in the normal wear stage,
the size of metal particles is generally less than 20 µm. When the wear process
develops from normal wear stage to sharp wear stage, the particle size increases
to the range of 50–200 µm. According to experimental results, most of the normal
wear metal particle size of F119 engine bearing is less than 100 µm. The size of
abnormal wear metal particles is in the range of 100–150 µm, or even large than
200 µm. Moreover, relevant experiments show that the distribution trend of wear
particle size has no correlation with the size of bearing itself [3]. So wear metal
debris monitoring, especially particles with the size from 50 to 200 µm is of the
key to condition monitoring of engine machines, and friction system. The wear
information can be used for early wear state assessment and fault prediction of key
engine components.

2 Online Metal Debris Detection Technology

2.1 The Main Principles for Online Metal Debris Detection
Technology

The metal wear particles in lubricating oil will change many physical or chemical
properties of the oil, such as the dielectric constant, permeability, conductivity, alka-
linity acidity and optical transmission characteristics etc. The online metal debris
sensor can detect the changes of these parameters in the oil to determine whether
there are wear particles in the oil, and to obtain further information such as size,
shape, ferromagnetic properties and even elementary composition of wear particles.
According to the different detection principles, the metal wear particle sensors can
be divided into optical sensors, electromagnetic sensors, acoustic sensors and other
types of sensors. The principle of these sensors is briefly introduced below.

Photoelectric or imaging based Technology. The light transmission character-
istic of lubricating oil is affected by presence of oil debris. So the optical detection
device can be used tomeasure the optical transmission to detect the particles in the oil.
Light scattering and micro imaging are two types of optical principles. Wear debris
in oil can be quantitatively and qualitatively detected by measuring the attenuated
light density after light has transmitted through an oil sample [2].

Light scattering system usually consists in a laser LED as light source and a
receiving photo diode as light detector. The incident light intensity can be absorbed
and scattered by the wear debris suspending in lubrication oil, so the light inten-
sity changes can represent the debris concentration. The attenuated light density is
detected by the receiving diode, which can be used to calculate the debris size and
concentration in the lubrication oil. The system developed by Wuhan University of
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Technology uses the light scattering characteristics of abrasive particles in oil to
monitor the size of solid particles in oil [4].

In addition to the optical detection sensor based on the principle of light trans-
mission, the optical imaging system can also be used to obtain the size and shape
information of debris directly. Researchers from Xi’an Jiaotong University focused
on the on-line ferrography analyzer. They designed an imaging wear particle detec-
tion sensor system, which consists of a light source, a fluid channel and a CMOS
image sensor [5, 6]. The light source is used to illuminate the fluid channel, and the
CMOS image sensor can take high-speed photos of wear particles passing through
the light source. These images are transmitted to PC and processed by software to
obtain the size and shape information of particles. The debris detection results are
relatively direct and reliable. The system also needs high-performance hardware and
efficient image processing algorithm to accurately distinguish the wear particles.

X-ray Based Photoelectric or Imaging Based Technology. X-ray fluorescence
spectrometry (XRF) analysis is one of the most commonly used oil analysis methods
in the laboratory. Based on the principle that wear particles are excited by X-ray
energy to produce dispersive fluorescence spectrum. The content of metal elements
in wear particles can be detected. This method can provide very reliable and accurate
information about the oil sample.

However, due to the complex structure and operation process, the traditional spec-
tral analysis is only used for off-line analysis of lubricating oil. Later, SpectroAnalyt-
ical Instruments Inc. [7] proposed an XRF system that can monitor wear particles
online. TheX-ray emission source emits X-ray to a fluid chamber.When ametal wear
particle passes through the fluid chamber, the X-ray will be reflected by the particle
and detected by the X-ray detector. This technology allows the user to measure
concentrations of 12 elements and up to six different elements at a time. The advan-
tages of XRF technology are that it is nondestructive, noninvasive and it typically
needs minimal services. But the relatively expensive cost and complex processing
process make it difficult for this technique to be widely used. Another in-line XRF
systemhas also been developed at the PacificNorthwestNational Laboratory (PNNL)
[8].

Ultrasonic Wave Based Technology. Based on the principle that wear particles
in oil can reflect the incident ultrasonic wave, the acoustic detection technology of
wear particles has been developed. The acoustic sensor uses a focused pulse echo
ultrasonic transducer to act as an ultrasonic transmitter and receiver at the same time.

When the incident soundwavemeets thewear particles, itwill produce the acoustic
pulse reflection, and the receiver receives the echo generated by the particles. The
amplitudeof the ultrasonic echo signal is closely related to the size, shape andmaterial
of the wear particles. Then, after a period of time, we will receive the echo from the
back wall. There is always a fixed time interval between the incident pulse and the
reflected pulse, and the reflected signal of particles can be accurately extracted in
this time interval. In addition, because the acoustic reflection coefficient of bubbles
in oil is negative and that of solid metal particles is positive, when the incident pulse
encounters bubbles, the waveform phase will be reversed. Therefore, bubbles and
solid particles can be distinguished according to the pulse phase of reflection [9].
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However, this method can not distinguish the ferromagnetic or non-ferromagnetic
of solid metal particles because the acoustic reflection coefficients of both types of
solid wear particles are very close. Moreover, the selection of ultrasonic frequency
and vibration noise will also affect the detection performance of the sensor.

Electrical Impedance Based Detection Technology. The principle of electric
impedance measurement is widely used in online wear debris detection. The metal
debris in the lubrication oil will lead to the change of oil electric impedance. The
electric parameters of oil include conductivity, dielectric constant and permeability,
which can correspond to the impedance parameters of resistance, capacitance and
inductance respectively. The change of these parameters has a certain relationship
with the size and concentration of particles in the oil. Therefore, if the designed
sensor can measure the change of the corresponding impedance, the information of
particles in the oil will be obtained. The types of sensors include resistance sensor
[10], capacitance sensor [11], electrostatic sensor [12] and inductive sensor.

Among these sensors, the inductive debris sensor can be directly connected to the
oil pipe, and perform full- flow measurement of the oil pipe without bypass. It can
count the metal wear debris in the oil, make a statistics of the debris size range, and
distinguish ferromagnetic and non ferromagnetic metal particles. Therefore, it is one
of the most practical metal debris detection technologies, and has been used widely
in industrial applications. The following focuses on the inductive online metal debris
detection technology.

2.2 State-of-Art of Inductive Metal Debris Sensor

According to the literature, K.W. Chambers designed an inductive wear debris moni-
toring sensor in 1988, and studied the influence of induced current, oil temperature,
viscosity, flow rate and particle size on the output signal [13]. MetalSCAN debris
sensor developed by Gastops Ltd. of Canada is the most widely used online oil
debris sensor [8]. The sensor is directly installed in the oil pipe and connected with
the control unit through the connecting cable. There are three inner coils surrounding
the inside bore of the sensor. Two outer coils are reversely wound and driven by AC
power supply. The magnetic fields generated by them are in opposite directions. The
midpoint between the two coils cancels each other. The sensor coil in the middle
of the core creates magnetic disturbance due to the passing of metal debris. The
amplitude of magnetic field change is converted into voltage value to determine the
particle size. The phase change is used to determine the properties of the particles
(ferromagnetic or non ferromagnetic).

Depending on the type andmagnitude of themagnetic disturbance, the control unit
determines the type of particle and the particle size. MetalSCAN has been claimed
to be the first full flow wear debris sensor. MetalSCAN sensor has been successfully
used in the conditionmonitoring of F22,Apache helicopter, and other power systems.
The latest Metalscan4110 can detect ferromagnetic particles and non ferromagnetic
particles with sizes of more than 100 µm and 305 µm, respectively [14]. The inner
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diameter of the pipe used is 7.6 mm. At the same time, it also provides sensors with
different pipe diameters.

Similar toMetalSCANmetal debris monitoring sensor, there are the TechAlerTM
10 wear debris sensor developed by MACOM technologies of the United States and
the FG online wear particle sensor developed by Kittiwake of the United Kingdom.
TechAlerTM 10 can provide wear particle size distribution and image information
at different failure stages of the machine, and has a patented screening technology to
eliminate false alarms caused by blisters and bubbles. The minimum ferromagnetic
particle size it can detect is 50, 150 µm for non-ferromagnetic particles. However,
the sensor needs to be connected from the lubrication system by-pass when it is
installed [15].

Akron university has designed a high throughput inductive pulse sensor based on
inductive Coulter counting principle for detecting metallic wear debris in lubrication
oil [16]. The sensor is composed of two layers of coils. The oil passes through the
middle of the coil. It is proved that the sensor can monitor and distinguish ferromag-
netic particles and non ferromagnetic particles with high sensitivity. In addition, an
inductive microfluidic monitoring sensor is also designed, and its detection range is
50–125 µm [17]. However, this kind of sensor can only adapt to the situation of low
oil flow rate.

In practical application, the GE90 high bypass ratio turbofan engine used by
Boeing 777 is the first commercial aeroengine equipped with debris monitoring
system. The system can collect and calculate large size ferromagnetic particles in oil.
The practical application shows that under the maximum engine speed, the efficiency
of the debris monitoring system to capture the bearing rotational fatigue debris is as
high as 90%.While the capture rate of the traditional magnetic plug is less than 30%.

Since the 1990s, several universities and research institutions in China have been
carrying out the research work of oil debris monitoring sensor. Central South Univer-
sity has studied the internal magnetic field of the electromagnetic abrasive sensor,
established themathematicalmodel of the internalmagnetic field, verified the correct-
ness of the theoretical model of the output characteristics of the sensor through
the experimental data [18]. Beijing Hangfeng Ltd. has developed an online metal
particles sensor for lubricating oil monitoring. The technical manual shows that the
minimum detectable ferromagnetic particle is 125 µm, non-ferromagnetic particle
size is 450 µm with the pipe diameter of 8 mm [19]. Ren Yijun from University
of Science and Technology of China have studied the optimization method of the
structural parameters of the sensor and developed an ultrasensitive inductive metal
debris sensor. The experiment results show the sensor can successfully detect 134µm
ferromagnetic particles and 230µmnon-ferromagnetic particles in oil tube of 43mm
diameter [20]. There are also many other similar studies, which will not be intro-
duced one by one. We will present our own research work on debris sensor in the
following.
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3 The Debris Detection Sensor We Developed

According to the experimental statistics, the on-line monitoring of metal wear parti-
cles of size of about 100 µm can provide effective data support for the early fault
prediction of complex mechanical systems. In order to effectively detect the ferro-
magnetic metal debris with size equal to or less than 100 µm, our research team has
carried out on-line monitoring technology research on inductive micro metal wear
particle sensor. Firstly, the magnetic field distribution and output characteristics of
the sensor are analyzed theoretically and simulated numerically. On this basis, the
structural parameters of the sensor are optimized based on the heritage algorithm.

When the metal particles equal to or less than 100µmpass through the sensor, the
output characteristic signal is very weak and easy to be disturbed by noise. Aiming
at this problem, the weak characteristic signal enhancement detection methods are
studied. A weak aperiodic signal enhancement transmission algorithm based on
stochastic resonance principle is studied and verified by numerical simulation. The
wavelet method and stochastic resonance method are used to enhance the signal
transmission of small wear particle sensor. The results show that both methods can
enhance the characteristics of aperiodic impact signal of small metal wear particle
when it passes the sensor. The method of stochastic resonance has a better effect to
detect the weak output characteristic signal.

Based on the results of sensor optimization design and themethod ofweak charac-
teristic signal extraction, twokinds ofmetalwear particle detection sensorswith 8mm
diameter and 15 mm diameter were developed. The developed sensors prototypes
are shown in Fig. 1.

Bymakingdifferent size ofmetal particles samples, the sensitivity detection exper-
iment of metal particles was carried out. The experimental results show that themetal
debris sensor with flow hole diameter of 8 mm can effectively detect 70 µm ferro-
magnetic metal particles. While the sensor with 15 mm diameter can detect 150 µm

Fig. 1 The inductive metal debris sensor prototypes we developed (Left: for 8 mm diameter pipe,
Right: for 15 mm diameter pipe)
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Fig. 2 The captured output waveform of the sensor when 100 µm ferromagnetic metal particle is
passing through the sensor

ferromagnetic ones. The output waveform of sensor prototype when the ferromag-
netic particle passing through the sensor is shown in Fig. 2. The experiment results
have proven that the effective detection of 100 µm ferromagnetic metal particles.

Based on the theoretical analysis and numerical simulation of the magnetic field
distribution and output characteristics of the sensor, the structural parameters of the
sensor are optimized, and the principle prototype of themulti-layer spiral tube double
excitation electromagnetic on-line wear particle monitoring sensor is developed. The
adaptive filtering algorithm is designed to filter the output signal, which improves the
sensitivity to small particles. The 10 mm diameter sensor can effectively detect the
diameter of 120 mm µM. Sensor principle prototype and maximum diameter 120 µ
The output signal waveform of the sensor when the ferromagnetic metal particles
passing through is shown in the figure below, which realizes the effective detection
of 100 µm diameter ferromagnetic metal particles.

4 Conclusion

The on-line monitoring technology of oil wear particles is one of the effective
methods of mechanical condition monitoring. Based on the different working prin-
ciples, this paper introduces a variety of on-line oil debris monitoring technologies
and their development status, and analyzes their advantages and disadvantages. At
present, the technology of on-line monitoring system of oil wear particles based on
inductive sensor is mature and has high reliability.

The current development trend of wear particle on-line detection technology can
be summarized as two aspects: First, the new sensing principle and structure design
are adopted to continuously improve the detection ability of metal wear particles in
the size range of 50–100 µm. The second is to improve the ability to distinguish and
identify the types ofwear particles by the fusion of different sensing technologies. For
example, inductive wear particle sensing technology can distinguish ferromagnetic
and non ferromagnetic metal particles, but it can not effectively detect non-metallic
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particles. Ultrasonic abrasive testing technology can detect non-metallic particles
and bubbles, but can not distinguish metal, non-metallic metal particles. Through
the fusion or integration of the above two sensing technologies, the recognition
ability of different types of wear particles can be improved.
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Regression Prediction of Performance
Parameters in Ship Propulsion
Equipment Simulation Model Based
on One-Dimensional Convolutional
Neural Network

Liangyuan Huang and Guoji Shen

Abstract Deep learning methods such as the one using Convolutional Neural
Network (CNN) have made remarkable achievements in computer vision and natural
language processing. Compared with the conventional neural network structures,
CNN features low complexity, fewer parameters, and higher degree of nonlinearity.
As the sizes of sensor signal input are often different from those of image input,
using CNN to monitor the equipment status is a new issue compared with image
recognition. To examine the impacts of various one-dimensional CNN structures on
the regression of performance parameters, this paper conducts a preliminary study
on the application of CNN in equipment status recognition, and utilizes published
simulation datasets of ship propulsion equipment to train and test one-dimensional
CNN models with different structures. The results show that the size of convolution
kernels hinges on the attributes of input features when one-dimensional CNN is used
for data regression prediction. In the case of independent and direct feature input,
the training effect can be effectively improved by using 1 × 1 convolution kernels
and the Network In Network (NIN) structure.

Keywords One-dimensional convolutional neural network · Ship propulsion
equipment simulation model · Performance parameters · Regression prediction

1 Introduction

Based on themeasurable information obtained on equipment, building corresponding
physical or data model to achieve the quantitative real-time monitoring of the equip-
ment running state and identify potential anomalies and faults and implement corre-
sponding operation, can reduce the performance degradation and avoid dangerous
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situations [1], which is of great significance to ensure the reliability and safety of
mechanical equipment system, especially large mechanical equipment. Due to the
complex structure, strong coupling and limited measuring points, compared with
the simple mechanical structure, large mechanical equipment puts forward higher
requirements on the selection of model and measuring points, the feasibility of
implementation scheme and the reduction of maintenance cost. Considering that
it is difficult to construct accurate physical models for large mechanical equipment,
most current researches adopt data-driven modeling methods, i.e., various machine
learning models. ZhiQiang Chen et al. [2] used vibration time-domain signal indica-
tors such as standard deviation and skewness and the RMS of each frequency band
as feature input vectors, and constructed convolutional neural networks (CNN) to
verify the fault diagnosis experiment of gearbox. Chen Lu et al. [3] used sparsity
representation and data destruction in the iterative learning of the stacked denoising
autoencoder method to obtain higher-order features with better robustness. Yaguo
Lei et al. [4] used an unsupervised two-layer neural network as a sparse filter to
directly learn features from mechanical vibration signals and then perform SoftMax
regression. Its effectiveness was verified by the motor bearing data set and the loco-
motive bearing data set. Turker Ince et al. [5] used the motor current signal as the
direct input of a one-dimensional convolutional neural network, which verified the
effectiveness of themethod for real-timemonitoring of themotor state.Wei You et al.
[6] proposed a hybrid model using convolutional neural networks and support vector
machines for feature extraction and multi-classification tasks. Miao He et al. [7] built
a large memory storage retrieval neural network and input the signal spectrummatrix
obtained by short-time Fourier transform for training verification. Compared with
other bearing fault diagnosis methods, it has better diagnostic performance at lower
speeds. Wei Zhang et al. [8] proposed a new fault diagnosis model TICNN, which
directly processes the original vibration signal without denoising preprocessing, and
can still achieve high diagnostic accuracy when workload changing. Haidong Shao
et al. [9] used a variety of autoencoders with different characteristics to build an
integrated deep autoencoder for unsupervised feature learning of vibration signals.
Ruonan Liu et al. [10] built a dislocated time series convolutional neural network
structure by adding a dislocation layer, which can extract relevant features between
signals at different intervals in periodic mechanical signals. Haidong Shao et al.
[11] adopted compressed sensing to reduce the amount of data, and proposed an
improved convolutional deep belief network structure based on compressed sensing
for rolling bearing fault feature learning and fault diagnosis. Feng Jia et al. [12]
proposed a deep normalized convolutional neural network for imbalanced fault clas-
sification of mechanical equipment. Jiedi Sun et al. [13] proposed to use nonlinear
projection to achieve compressed acquisition and build a stacked sparse autoen-
coder network. Long Wen et al. [14] developed a signal-image conversion method
to convert signals into two-dimensional images, and established a Lenet-5 based
convolutional neural network for fault diagnosis, which has high diagnostic accu-
racy onmotor bearing dataset, self-priming centrifugal pump dataset and axial piston
hydraulic pump dataset. Wentao Mao et al. [15] proposed a deep output kernel
learning method for collaborative diagnosis of multiple bearing fault types, which
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improved the accuracy of bearing fault diagnosis and training efficiency. Liang Guo
et al. [16] proposed a deep convolution transfer learning network, which realized
the transfer learning of fault diagnosis through two modules of state recognition
and domain adaptation. Zhuyun Chen et al. [17] proposed a fault diagnosis method
combining convolutional neural network and extreme learning machine. However, at
present, the existing research results mostly focus on the extraction and diagnosis of
fault features of basic mechanical structures such as gears and bearings. Research on
the selection of machine learning indicators and model construction for large-scale
complex equipment is still to be developed.

As a continuation of machine learning, since Geoffrey E. Hinton [18] proposed
the use of deep auto-encoding networks to initialize weights and unveiled the prelude
of deep learning research, deep learning theory represented by Convolutional Neural
Networks (CNN) has achieved considerable development and extensive, which most
of the research on deep learningmethods focuses onmachine vision, natural language
processing and image processing, such as the Alex-Net model proposed by Alex
Krizhevsky et al. [19], the ResNet model proposed by Kaiming He et al. [20], and
the cyclic continuous translation model combining CNN and RNN proposed by Nal
Kalchbrenner et al. [21] Moreover, some researches on applying machine learning
models to condition monitoring and fault diagnosis of mechanical equipment have
also been launched [22]. Considering the strong adaptability and nonlinearity, low
complexity, and good generalization ability of deep convolutional neural networks,
convolutional neural networks are applied to the research of data-driven state moni-
toring and prediction of mechanical equipment. It is of great significance to simplify
the network model structure and improve the calculation efficiency of the model.

Themachine learningmethod provides a relatively simple tool for real-time condi-
tion monitoring and performance degradation prediction of mechanical equipment
[23], without the need to build a physical simulation model of complex equip-
ment, while the method of equipment maintenance has gradually changed from
regular maintenance to preventive maintenance in the past few decades. Traditional
machine learning methods such as backpropagation neural networks and support
vector machines have achieved satisfactory results in previous studies. Despite
the fact that deep learning method represented by Convolutional Neural Network
(CNN) originated from image and language processing, it still be of significance
to study its application in the field of equipment condition monitoring and predic-
tion. This paper uses the ship propulsion simulation model data set disclosed in
the UCI database to construct a one-dimensional CNN with different structures.
By comparing the training effects of different structural models, the experience of
applying one-dimensional CNN to equipment state prediction is analyzed.

1.1 Data Set

The data set is generated by the Simulink simulation model of the diesel electric and
natural gas hybrid propulsion device of the frigate built by Andrea Coraddu et al.
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Table 1 Main simulation
output

Variable Symbol Units

Lever position lp (·)

Ship speed v Knot

Gas turbine shaft torque GTT kN m

Gas turbine rate of revolutions GTn r/min

Gas generator rate of revolutions GGn r/min

Starboard propeller torque Ts kN

Port propeller torque Tp kN

HP turbine exit temperature T48 °C

GT compressor inlet air temperature T1 °C

GT compressor outlet air temperature T2 °C

HP turbine exit pressure P48 bar

GT compressor inlet air pressure P1 bar

GT compressor outlet air pressure P2 bar

GT exhaust gas pressure Pexh bar

Turbine injection control TIC %

Fuel flow mf kg/s

[24]. Three parameters of ship speed, GT Compressor decay state coefficient and
GT Turbine decay state coefficient are used to describe the status of the propulsion
device model.

Ship speed v: This parameter is controlled via the control lever and has a linear
relationship with the position of the control lever.

GTCompressor decay state coefficient kMc: This parameter describes the reduced
value of airflow flow Mc and isentropic efficiency ηc over service hours.

GT Turbine decay state coefficient kMt : This parameter describes the gas flow
rate reduction factor over service hours.

Table 1 lists the main simulation outputs of the model, and the parameters of
these outputs can be obtained through the ship’s automation system in practical
applications. HP and GT are the high pressure and the gas turbine.

Andrea Coraddu et al. describe the state space of the propulsion device through
the form of a triple grid of ship speed and two attenuation coefficients, that is, 16
simulation outputs are obtained by inputting 3 different input parameters:

lpi = i, i ∈ {1, . . . , 9} (1)

kMi
c = 1 − i · 0.001, i ∈ {0, 1, . . . , 50} (2)

kMi
t = 1 − i · 0.001, i ∈ {0, 1, . . . , 50} (3)
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The state space contains 9 · 51 · 26 = 11934 conditions. A data set of 11,934
samples can be obtained after running the simulation model on the Simulink for
each triple [lp, kMc, kMt]i, which each sample contains the 16 characteristic values
in Table 1.

Since the ship speed can be directly obtained in the actual situation, the parameters
that need to be regression fitting are the GT compressor decay state coefficient kMc

and the GT turbine decay state coefficient kMt . Same as the original author of the
data set, we use 16 parameters obtained through simulation as input features and 2
attenuations as model output for machine learning model regression, while we use
CNN network model for training.

1.2 One-Dimensional Convolutional Neural Network

The sensor signals used for asset status monitoring are usually one-dimensional
data. That is to say, when CNN is applied to one-dimensional data, it uses one-
dimensional convolution kernel, usually called one-dimensional CNN. The overall
structure of a one-dimensional CNNusually includes input layer, convolutional layer,
pooling layer, fully connected layer, as well as output layer, which is similar to a
two-dimensional neural network. One dimension here refers to the data whose input
dimension is N × 1 or 1 × N, and its network structure is shown in Fig. 1.

In order to extract local features of an image, a CNN used for image recognition
generally requires a certain size of convolution kernel. However, there is a special
setting of a convolution kernel, that is, a convolution kernel with a size of 1 × 1,
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which was first seen in the Network In Network (NIN) network structure proposed
by Min Lin et al. [25] Aiming at the problem that the convolution operation of
the convolutional layer is a linear operation and cannot extract nonlinear features,
the NIN structure proposes to add a small neural network after each convolutional
layer to improve the nonlinear feature extraction ability of the CNN. It is indicated
that the combination of two sets of convolutional layers with a certain number of 1
× 1 convolution kernels have the characteristics of a small fully connected neural
network, furthermore, it can achieve a deeper network structure with a small amount
of calculation.

2 One-Dimensional Convolutional Neural Network Model
Construction

This paper uses the Deep Learning Toolbox provided by MATLAB to build a one-
dimensional convolutional neural network model.

2.1 Build a Variety of CNN Model Structures

With reference to the basic structure of the CNN, we built a CNN network model
with a

[
c101×3 − p1×2 − c101×3 − p1×2 − f10 − f1

]
structure where c101×3 is convolu-

tional layer with a convolution kernel of 10; p1×2 is pooling layer with a pooling
area of 1 × 2; f 10 and f 1 denote fully connected layers with 10 and 1 neurons,
respectively. On the basis of the originally constructed convolutional neural network
structure, the network structure is modified according to the regression influence of
each network on the compressor decay prediction, which means the CNN model
structure is gradually changed in the research process. The specific results and anal-
ysis will be reported in next chapter. All the constructed CNN structures are shown
in Table 2.

Table 2 All the constructed
CNN structures

Number Structure

1
[
c101×3 − p1×2 − c101×3 − p1×2 − f10 − f1

]

2
[
c101×3 − αReLU − c101×3 − f10 − f1

]

3
[
c101×3 − f10 − αReLU − c101×3 − f10 − f1

]

4
[
c101×1 − f10 − αReLU − c101×1 − f10 − f1

]

5
[
c101×1 − f10 − αReLU − c101×1 − c101×1 − f10 − f1

]
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2.2 Data Preprocessing

Before inputting the 16 eigenvalues into the network, firstly, the maximum and
minimum normalization of the data was carried out and then the constant features
were eliminated, which avoids the influence of the feature value range and constant
features on the regression performance of the model. Correspondingly, the target
values are also normalized to the maximum and minimum.

2.3 Model Training and Verification Parameter Settings

The prediction task is actually a regression task. This article adopts unified training
parameter settings, and the training parameters are shown in Table 3. The validation
set used in the training process is the training set itself.

In the research process of this paper, the CNN structure listed in Table 2 is used to
train the sample set with only the change of GT compressor decay state coefficient.
In this sample set, the GT turbine decay state coefficients are all 1, and the number
of samples is 459. Then the sample set is still used to input the trained CNN model
to test the regression prediction effect of the model.

For the CNN with the best regression prediction effect, the sample set was
uniformly and randomly divided into training set and test set according to the ratio
of 1/2, 1/3, 1/4, 1/5 and 1/8, so as to observe the regression effect when the training
set accounted for different proportions. Likewise, the CNN structure with the best
regression effect was used to train and test the sample set with only changes in the
decay state coefficient of GT turbine.

Eventually the CNN structure is used to train all available samples and simulta-
neously predict the two parameters of GT compressor decay state coefficient and GT
turbine decay state coefficient, according to different training set proportions.

Table 3 Unified training
parameter settings

Training parameter Value

Batch size 32

Initial learning rate 0.01

Verification frequency 50

Validation tolerance 20

The maximum number of iterations 1000
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3 Results and Discussion

3.1 Regression of GT Compressor Decay State Coefficient

The visualization results of regression prediction on the sample set of the compressor
attenuation single parameter change using the CNN structure No. 1 in Table 2 are
shown in Fig. 2.

The performance of regression of attenuation coefficient of GT compressor using
No. 1 CNN structure is not ideal, and the verified RMSE reached by the final training
is 0.1445. The regression results are distinguished according to ship speed, as shown
in Fig. 3, obviously abnormal output exists when ship speed is 3 and 6. In practice,
the network model can be limited to a specific range to reduce the prediction output
error. With this in mind, we excluded the samples with ship speed of 3 and 6, and
the sample number of the sample set was 357.

After improving the CNN model structure several times according to the effect
of each regression, the regression effect has been significantly improved. The results
of the full sample training of the GT compressor attenuation decay state regression
task with different CNN structures are shown in Fig. 4.

Significantly, there are two structures that have significantly improved the regres-
sion effect. Firstly, the pooling layer was cancelled and a nonlinear activation layer
was added in the process of improving structure No. 1 to structure No. 2, reducing
the verification RMSE from 0.1306 to 0.0526. Secondly, the size of the convolution
kernel was changed from 1 × 3 to 1 × 1 in the process of improving structure No. 3
to structure No. 4, verifying that the RMSE was reduced from 0.0297 to 0.0140.

For the two obvious effect improvements, we infer that the reason may be the
contradiction between the nature of the input features and the structure of the CNN
model. The function of the p1×2 pooling layer is to summarize the features inmultiple
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Fig. 2 Performance of No. 1 CNN structure in GT compressor attenuation coefficient regression
task
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Fig. 3 Separate prediction results based on ship speed

1 × 2 regions, which is effective for eliminating noise information in the data. For
the original vibration signal, the characteristics of the signal do not exist in a single
sampling point, but are scattered and hidden in a set of vibration data. Such a situation
of direct correlation between data points can be considered that the distribution of
their characteristics in the original signal is loose, so it is necessary to extract the
features contained in the signal data. However, in this paper, the data set is the
characteristic data of each measuring point generated by the simulation model which
differ from the original vibration signal data. It is the same one-dimensional data
input but the data points are not directly related so can be regarded as a high-level
summary of the characteristics represented. The use of the pooling layer may obscure
adjacent features, resulting in the loss of necessary information after passing through
the pooling layer. Similarly, the use of a 1 × 3 convolution kernel may introduce
the influence of adjacent features during the convolution operation, and relatively
independent functional inputs will be subject to further interference. The 1 × 1
convolution kernel avoids the influence of adjacent parameters in the convolution
operation, and increases the nonlinearity of the structure to adapt to the nonlinear
characteristics in the input data simultaneously.
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Fig. 4 The performance of different CNN structures in the regression task of GT compressor
attenuation coefficient

Table 4 RMSE under different training set ratios in GT compressor decay state coefficient
regression task (average of 5 times)

Proportion of training set 1/2 1/3 1/4 1/5 1/8

Verify RMSE 0.0199 0.0218 0.0255 0.0228 0.0384

Test RMSE 0.0214 0.0263 0.0284 0.0306 0.0549

The sample set is divided into training set and test set randomly according to
different proportions, and multiple regression predictions are performed and the
average results are shown in Table 4.

3.2 Regression of GT Turbine Decay State Coefficient

The number of samples used for the regression task of GT turbine decay state coef-
ficient is 182 after removing the samples with ship speeds of 3 and 6. Table 5 shows
the results of regression prediction of GT turbine decay state coefficient using the
No. 5 structure CNN structure according to different training set ratios.

Due to the small number of training samples, the effect of GT decay regression
prediction ismore likely to be adversely affected by the proportion of smaller training
sets.
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Table 5 RMSE under different training set ratios in GT turbine decay state coefficient regression
task (average of 5 times)

Proportion of training set 1/2 1/3 1/4 1/5 1/8

Verify RMSE 0.0223 0.0573 0.0381 0.0902 0.0459

Test RMSE 0.0255 0.0661 0.0600 0.1558 0.2350

Table 6 RMSE under different training set ratios in GT compressor decay state coefficient and GT
turbine decay state coefficient regression task (average of 5 times)

Proportion of training set 1/2 1/3 1/4 1/5 1/8

Verify RMSE 0.0520 0.0453 0.0502 0.0452 0.0682

Test RMSE 0.0368 0.0320 0.0360 0.0323 0.0488

3.3 Double Decay State Coefficient Regression

In order to meet the needs of the task of double-decay regression prediction using
the No. 5 structure, the final fully connected layer needs to be adjusted, specif-
ically, the number of neurons should be modified to 2. The revised structure is[
c101×1 − f10 − αReLU − c101×1 − c101×1 − f10 − f2

]
. After excluding samples with ship

speeds of 3 and 6, the number of samples is 9282. The regression prediction results
are shown in Table 6.

It can be found that when the sample size ismuch larger than the single attenuation
coefficient regression, there is no significant difference in the effect of the double
attenuation coefficient regression task under the five training set ratios, which corre-
sponds to the practical experience and characteristics of the CNNmodel that depends
on the number of training sets.

3.4 Discussion

In this work, by constructing and improving the CNN model structure, the influence
of different network layer characteristics on the regression task of ship propulsion
model simulation data is studied. The simulation data set of the ship propulsion
equipment used has relatively independent input characteristics.

The results show that when one-dimensional CNN is used for data regression
prediction tasks, whether to use the pooling layer and the size of the convolution
kernel used should depend on the nature of the input features. In contrast to this
paper, when the original vibration signal is directly used as the input, the signal’s
fault characteristics are hidden in the signal data sequence, and the sampling points
are directly related in the time domain, which is an indirect feature input. Regional
feature extraction can be performed through a certain size of convolution kernel to
help identify fault features.
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As to the regression task studied in this paper, the input is standardized param-
eters. In practical applications, the value of the parameter is the value measured by
each sensor. Therefore, the input is a direct feature which means there is no direct
correlation between the parameters. Using convolutional layers and pooling layers
for CNN models of this type of input will have a negative effect. The introduction of
the 1 × 1 convolution kernel not only avoid the influence of adjacent parameters in
the convolution operation, but also increase the nonlinearity of the one-dimensional
CNN structure to adapt to the nonlinear characteristics of the input data.
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Abstract Because the extra-wide slab continuous caster has larger sectional width,
heat emission condition is different between the length and width. Therefore, it is
inevitable that the water distribution is regional separation along the casting slab
width and length. It brings a lot of difficulties to determine process parameters and
control continuous casting process, and causes quality defect. Based on 3250 mm
× 150 mm extra-wide slab casting and production process, the paper established
the finite element model, calculates the temperature distribution and shell thickness
of the slab with different casting speed and superheat, to study influence of process
control parameters of wide slab quality.

Keywords Extra-wide slab · Solidification and heat transfer · Numerical
simulation

1 Technical Characteristics and Related Parameters
of the Casting Machine

The extra-wide slab continuous caster has a straight arc with a radius of 6.67 m. It is
multi-point bending and multi-point straightening. The secondary cooling zone of it
includes foot roller, 9 secondary cooling sections, water distribution in vertical and
horizontal direction, fansement 0–8. Plate mould size: 3450 mm × 950 mm. The
whole process is non-oxidized pouring.
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2 Establishment of Solidification Heat Transfer Model

2.1 Fundamental Assumption

The following assumptions about the model were made [1–3]:
(1) After the casting speed is stable, the heat transfer condition won’t change with

time. (2) The heat transfer conditions of inner arc and outer arc of casting billet are
similar. (3) The heat transfer caused by the temperature gradient along the casting
billet direction is very small, so it can be ignored. (4) Thermal physical properties of
steel are only related to temperature. (5) The radiation heat transfer of the surface of
the second cold casting billet, the contact heat transfer with the support roller and the
cooling heat transfer of the second cold water are considered by the comprehensive
heat transfer coefficient. (6) The effect of vibration on solidification heat transfer
is ignored. According to the assumed conditions, the solidification heat transfer
equation is simplified into a two-dimensional unsteady heat conduction Eq. (1):

ρcp
∂T

∂t
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ qV (1)

in the Eq. (1) ρ: density of liquid steel/kg m−3; cp: heat capacity/J kg K−1; k: thermal
conductivity/W m−1 K−1; qV : internal heat source/J m−3 K−1; T : temperature/°C; t:
time/s.

2.2 Selection of Physical Parameters and Boundary
Conditions

(1) Physical parameters. This paper uses the simulated steel gradeQ460 and calcu-
late liquidus temperature and solid phase temperature according to the empir-
ical formula [4]. The formula λ0 = 69.78− 10.12C− 16.75Mn− 33.73 Si is
used to calculate the thermal conductivity of Q460, and the thermal conduc-
tivity ofQ460 isλ0 = 31.13Wm−1 °C−1; Comprehensive thermal conductivity
λe f f is used in the liquid phase zone from 400 to 1200 °C. When T ≤ TS , λe f f

= λ0;When T ≥ TL , λe f f = 7 λ0; When TS < T < TL 时, λe f f = 5 λ0.

The equivalent specific heat was used to replace the specific heat of steel in the two-
phase region.The specificheat and latent heat of solidificationofQ460which is below
1300 °C are similar to values of 1.5%Mn steel. By extrapolating or interpolating the
obtained data, this paper obtains the data at the liquidus temperature and solid phase
temperature.

CL = 837 J kg−1 ◦C−1
,CS = 715.83 J kg−1 ◦C−1

.
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Table 1 Mold cooling parameters

Right left Inner arc Outer arc

qm 640–55.1
√
t 640–53.7

√
t 640–54.8

√
t 640–54.8

√
t

(2) Boundary condition: value of the average heat flux density of the mold at the
production site is put into the Eq. (2):

qm = (640 − β
√
t) × 4.187 × 103 (2)

t: The corresponding time of the casting billet at a certain position in the mold/s. The
heat flux of this simulation is shown in Table 1. The instantaneous heat flux of the
mold is loaded into the model as the boundary condition.

According to the onsite process situation, this paper calculates the slab area, water
flow rate, water flow density and wide surface heat transfer coefficient of foot roll
area and 0–8 section. Radiative heat transfer in the air-cooled zone is treated as the
third type of boundary condition, and this paper calculates the comprehensive heat
transfer coefficient h = 0.31/kw m−2 k−1.

3 The Results and Analysis of Simulation

Based on the assumption of heat transfer symmetry between inner and outer arcs, a
finite element model was established by taking 1/4 cross section of the casting billet
to simulate the temperature field of the solidification process of the wide slab, and the
model was verified by actual measurement of the surface temperature of the casting
billet.

3.1 Research on Temperature Distribution of Upper Surface
Center of Casting Billet

When the casting speed is 1.10, 1.20, 1.25 and 1.30 mmin−1, and the casting temper-
ature is 1530 °C, the temperature change curve of the center of the upper surface of
the simulated extra-wide slab is shown in Fig. 1. The simulated values and the actual
measured values of the infrared instrument are shown in Table 2.

It can be seen from Table 2 that the error range between the simulated temperature
and themeasured temperature is less than2.20%, indicating that the simulation results
are valid.

According to Fig. 1 and Table 2, it can be seen that: (1) When the casting speed
increases from 1.10 to 1.30 m min−1, the straightening temperature of the upper
surface center will increase from 957 to 1030 °C. And the temperature at the upper
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Fig. 1 Temperature distribution at the center of upper surface of the slab at different casting speeds

Table 2 Temperature distribution at the upper surface of the casting billet at different casting speeds

Casting speed/m min−1 1.10 1.20 1.25 1.30

Straightening temperature/°C Simulation 957 983.4 1005 1030

Actual measurement 942 965 985 1011

Temperature of the billet/°C Simulation 887 931 953 987

Actual measurement / 922 932 /

surface center of the casting billet will increase from 887 to 987 °C, when the billet
is ejected. In other words, for each 0.10 m min−1 increase in the casting speed, the
surface temperature of the casting billet in the straightening section will increase
by about 36.5 °C and the straightening temperature of the upper surface center will
increase by about 50 °C. That means the casting speed has a great effect on the
surface temperature of the billet. (2) Only when the casting speed is greater than
1.20 m min−1, can the straightening temperature be greater than 960 °C and the
occurrence probability of transverse cracks on the surface of the casting billet be
reduced.

It can be concluded that the temperature of casting billet when it was ejected can
be increased obviously by increasing the casting speed. Appropriate increase of the
drawing speed is beneficial to increase the surface temperature of the extra-wide slab
when it be straightened.
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3.2 Simulation of the Temperature Field Distribution

(1) Temperature field distribution at the outlet of mold

The temperature distribution at the outlet of the wide slab mold at different casting
speeds is shown in Fig. 2, and the temperature ofmolten steel is simulated at 1530 °C.
When the casting speed is 1.10, 1.20 and 1.30 m min−1, the temperature distribution
corresponds to (a), (b) and (c) in Fig. 2, and the shell thicknesses corresponds to
16.4 mm, 14.5 mm and 11.6 mm, respectively.

According to Fig. 2, it can be seen that: (1) The shell thickness is reduced, with
the increase of casting speed [5]. (2) The thickness of the billet shell will be reduced
by 2.4 mm on average when the casting speed is increased by 0.1 m min−1.

(2) Temperature field distribution at the straightening section

In the straightening section of the slab at different casting speeds, the temperature
distribution is shown in Fig. 3, and the molten steel temperature is simulated at
1530 °C. When the casting speed is 1.10, 1.25, and 1.30 m min−1, the temperature
distribution corresponds to (a), (b) and (c) in Fig. 3, respectively.

According to Fig. 3, the solidification of the casting billet at the straightening
point is: (a) When the casting speed is 1.10 m min−1, the casting billet is completely
solidified; (b) When the casting speed is 1.25 m min−1, the casting billet is basically
solidified, and there is a small amount of paste area; (c) When the casting speed is
1.30 m min−1, the solidification is not complete, and there is a small liquid core.

Fig. 2 Temperature distribution diagram of mold outlet
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Fig. 3 Temperature distribution of straightening section

3.3 Simulation of Temperature Distribution When the Billet
Speed is 1.20 m min−1

When the casting speed is 1.20 m min−1 and the casting temperature is 1530 °C,
the temperature distribution of the upper surface center and core of the wide slab is
shown in Fig. 4.

According to Fig. 4, when the casting speed is 1.20 m min−1, at the straightening
point, the center temperature of the upper surface of the wide slab is 983.40 °C, the
center temperature is 1446 °C and the casting billet temperature is 931 °C.

3.4 Simulation of Temperature Distribution in the Center
of Casting Billet at Different Casting Speeds

When the casting speed is 1.10, 1.20, 1.25 and 1.30 mmin−1, and the casting temper-
ature is 1530 °C, the temperature distribution curve of the central part of the wide
slab is shown in Fig. 5.

According to Fig. 5, it can be seen that: (1) when the casting speed is 1.10
and1.20 mmin−1, the solidification end point is less than 12.8 m, the straightening is
under full solidified situation, which can avoid cracks inside the casting billet. When
the casting speed is faster than 1.25 m min−1, the solidification end point is greater
than12.8 m, and the liquid core appears when straightened. (2) With the increase
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Fig. 4 Temperature distribution when the casting speed is 1.20 m min−1

Fig. 5 Center temperature distribution at different casting speeds

of the casting speed, the solidification end of the wide slab moves backward, and
the wide slab is changed from full solidification to straightening with liquid core,
which increases the probability of inside cracks and increases the degree of central
segregation [6, 7].
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Fig. 6 Shell thickness distribution at different casting speeds

3.5 Simulation of Thickness Distribution of Billet Shell

When the casting speed is 1.20 and1.30 m min−1, and the casting temperature is
1530 °C, the thickness change curve of the billet shell is shown in Fig. 6.

According to Fig. 6, when the casting speed increases from 1.22 to 1.30 mmin−1,
the length of liquid core will increase from 12.6 to 13.8 m and the thickness of the
billet shell when it’s gets out of the mould will decrease from 14.5 to 11.6 mm. That
means when the casting speed increases by 0.1 m min−1, the length of the liquid
core will increase by 1.2 m and the thickness of the billet shell out of the mould will
decrease by 2.9 m.

3.6 Simulation Results of Different Superheat Degree

When the casting speed is 1.20 m min−1 and the superheat of the molten steel is 10,
15, 20 and 25 °C, the temperature change curve of the upper surface center of the
extra-wide slab is shown in Fig. 7. Change curve of center temperature of casting
billet is shown in Fig. 8.

According to Fig. 7, when the casting speed remains unchanged and the superheat
increases from 10 to 25 °C, the billet temperature of the upper surface center at
the strainghtening point will increase from 996 to 1022 °C. That means the billet
temperature of the upper surface center at the strainghtening point will increase by
1.73 °C for each 1 °C superheat increase. It can be seen that the influence of superheat
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Fig. 7 Distribution of upper surface center of the wide slab

Fig. 8 Distribution of central temperature of the wide slab

change on the surface temperature of the casting billet is much smaller than that of
the casting speed.

According to Fig. 8, it can be seen that: (1)When the casting speed is 1.20mmin−1

and the superheat of molten steel increases from 10 to 25 °C, the length of the liquid
core will increase from 11.95 to 13.57 m, and the way to straighten the casting billet
will change from full solidification to straightening with the liquid core. Every 1 °C
increase in the superheat is equivalent to extending the length of the liquid core by



338 X. Qi et al.

0.11 m. (2) When the casting speed is 1.20 m min−1 and the superheat is 20 °C, the
length of the liquid core will be greater than 12.8 m and the casting billet will be
straightened with the liquid core; When the superheat is 15 °C, the casting billet will
be straightened with the full solidification. (3) With the increase of superheat, the
solidification end will move backward, and the center of the casting billet will be
loose and the center segregation will be aggravated.

4 Conclusion

The simulation results show that:

(1) The process control range of the extra-wide slab continuous caster is very
narrow. When the casting speed ranges from 1.20 to 1.25 m min−1 and the
superheat exceeds 20 °C, the casting billet will be straightened with liquid
core. The internal center segregation and center porosity are serious.

(2) With the increase of the casting speed, the shell of the billet when it’s gets out
of the mould will become thinner, and the thickness of the shell decreases by
2.4 mm for each 0.1 m min−1 increase of the casting speed.

(3) When the drawing speed is 1.10 m min−1 and the superheat is 15 °C, the
straightening temperature of the upper surface of the wide slab will be less
than 950 °C, and the transverse crack will be easy to occur on the surface of
the wide slab.

(4) Considering the surface quality and internal quality of the casting billet,
we suggested that the casting speed of the wide slab continuous caster for
producing microalloy Q460 steel should be 1.20–1.25 mmin−1, and the super-
heat should be less than 20 °C. At this time, the casting billet may still be
straightened with liquid core, and the center segregation and central porosity
may still be serious.

(5) Through the simulation study on the solidification heat transfer of the wide
slab, this paper has found the variation rules of temperature, shell thickness
and core length of wide slab under different conditions of continuous casting
process, and the process measures to improve the quality of wide slab, which
provided a theoretical basis for the determination of the process parameters of
continuous casting.
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Numerical Study of Motor Electrical
Signature for Condition Monitoring
of Gear Tooth Breakage in a Motor-Gear
System

Funso Otuyemi, Xiuquan Sun, Fengshou Gu, and Andrew D. Ball

Abstract Gearboxes are the most significant components of an electromechanical
system. They are often exposed to various abnormal working condition which causes
damage to the gear. These damages can be of any form such as tooth breakage, tooth
wear. Furthermore, this breakage will cause changes in gear tooth mesh stiffness,
thereby reducing the gear dynamics. Recently, several attempts have been performed
for the detection of localized gear tooth faults using electric signatures from induc-
tion motor with promising results. However, the interaction between the motor-gear
dynamics to detect and diagnose this fault has not been fully investigated. Therefore,
this study proposed a 6° of freedom (DOF) electrical motor model integrated with an
18° of freedom (DOF) gear dynamic model to fulfil the detection of gear faults using
motor current signature. In this model, a comparison of electric torque and constant
torque as the input for the gear model has been investigated to study the influence of
electric motor torque on gear dynamic. Furthermore, this study considered different
severities of tooth breakage to demonstrate the performance of motor current in gear
tooth breakage detection and its location. The numerical results show an increase in
amplitudes at the frequency of fs fr1 and fs fr2 as the severity of the fault increases
at different stage of the gearbox which can reflect the presence of tooth breakage.
This proposed numerical analysis does have a good agreement with the experimental
validation.
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Keywords Condition monitoring · Dynamic behaviour · Induction motor ·
Electric torque · Motor current signal analysis · Tooth breakage

1 Introduction

Gearboxes play a critical role in electromechanical systems because they are often
used in the transmission of power and changing the speed of motion. In most elec-
tromechanical systems, gearbox form a part of the mechanical load housing that is
coupled to an electrical drive which usually is an induction motor. However, they
are susceptible to faults thereby causing discontinuity in production schedules in
industries resulting to lower productivity or unscheduled downtime. Failures in gear-
boxes can be tooth-related such as pitting, spalling, crack or broken tooth, which can
take place frequently and lead to a complete failure of the gearbox. One of the
most common causes of gear failure is gear tooth fatigue due to rotational or cyclic
loading. Furthermore, resulting in progressive damage to gear teeth and ultimately
leads to the complete failure of the gear. Hence, the ability for early detection and
diagnosis of gear tooth fatigue crack has always been one of the major technical
challenges. When such faults occur, additional mechanical impacts are generated at
the rotational frequency in the vibration signal. The shape of mechanical impacts
is related to the mechanical structure resonance excited by the tooth localized fault
when the damaged tooth is engaged. This is often caused by inadequate lubrica-
tion and extreme working conditions. However, to improve the current techniques of
gearbox vibration monitoring and diagnosis, many researchers have worked on the
gear dynamic modelling to ascertain the effect of tooth breakage on gears [1].

Bartelmus [2] did a mathematical modelling and computer simulation to gearbox
dynamic examinations. Shao et al. [3] established three-dimensional finite element
models of gears with tooth breakage and investigated the effects of breakage position
and length on the dynamic features. Bai [4] proposed a method to detect and locate
faults in a gear tooth by putting into account the whole tooth width or the whole
tooth thickness which causes a reduction in gear tooth stiffness resulting in a more
significant dynamic impact. Chen and Shao [5] proposed a calculation method of the
mesh stiffness for a gear with tooth breakage, the effects of the tooth breakage on
the gear dynamic response are assessed using two statistical indicator such as RMS
and kurtosis.

Few research has focused on the dynamic mechanism of gear systemwith failures
using a time varying motor electric torque as an input for the gear dynamics for
detection and diagnosis. However, the research on gear tooth breakage and dynamic
models of a gear system in this paper combined with experimental gearbox can
supply a theoretical basis to fault diagnosis of gearbox.

This study proposed 6-DOF induction motor model integrated with 18-DOF gear
dynamic model to investigate the behaviours of the gear system with tooth defects.
Hence, sidebands relating to fault signatures are used in detection. Also, you will
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know which stage of the gearbox there is fault, thereby making detection and diag-
nosis much easier to detect. The robustness and effectiveness of the proposed tech-
nique to detect gearbox faults under different operating conditions are demonstrated
through both model simulations and experiments.

2 Dynamic Model of a Motor-Gear System

In this section, the dynamic characteristics of the electromechanical coupling system
are attained through simulation by using a combined motor and gear model. In this
motor-gear system, the driving torque is applied on the gear system and the power is
transmitted from the motor to the gear system through the shaft as shown in Fig. 2.
Therefore, the rotational and translational displacements of the motor and each of
the gear are chosen as the generalized coordinates in the dynamic model of the
motor-gear system.

2.1 Induction Motor Dynamic Model

In order to model the dynamic of an induction motor, a simple 6-DOF was put
forward. Deriving this model equations can be generated from the dq0 equivalent of
the induction motor. Therefore, all the voltages, currents and flux linkages between
the stationary stator as well as the moving rotor are modelled. According to Aktaibi
and Ratnani [7], the dq0 flux linkage and current equations were implemented and
can be demonstrated below as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dψqs

dt = ωb

[
vqs + ωe

ωb
ψds + Rs

xls
(ψmd − ψds)

]

dψds

dt = ωb

[
vds + ωe

ωb
ψqs + Rs

Xls
(ψmd − ψds)

]

dψ0s

dt = ωb

[
vθs − Rs

Xls
ψθs

]

dψqr

dt = ωb

[
vqr − (ωe−ωr )

ωb
ψdr + Rr

xlr

(
ψmq − ψqr

)]

dψdr

dt = ωb

[
vdr − (ωe−ωr )

ωb
ψqr + Rr

xlr

(
ψmq − ψdr

)]

dψ0r

dt = ωb

[
vθr − Rr

Xlr
ψθr

]

(1)

where subscript d, q, 0 denotes the axis of the resolving magnetic motive force of
the three-phase; subscript s and r represent both stator and rotor reference frame;
ψqsψdsψ0s is the magnetic flux linkage of q-axis, d-axis and 0-axis components of
the stator;ψqrψdrψ0r is themagnetic flux linkage of q-axis, d-axis and 0-axis compo-
nents of the rotor; Rs is the stator resistance; Rr is the rotor resistance; ω represent
the angular speed of the motor; vqsvds denotes the q-axis and d-axis components
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of the stator voltage vector vs ; vqr vdr denotes the q-axis and d-axis components of
the rotor voltage vector vr ; iqs ids is the q-axis and d-axis components of the stator
current vectors is ; iqr idr is the q-axis and d-axis components of the rotor current
vectors ir .

ψmq = Xml

[
ψqs

Xls
+ ψqr

Xlr

]

(2)

ψmd = Xml

[
ψds

Xls
+ ψdr

Xlr

]

(3)

Xml = 1/

(
1

Xm
+ 1

Xls
+ 1

Xlr

)

(4)

In order to find the current, substitute the values of the flux linkages:

iqs = 1

Xls

(
ψqs − ψmq

)
(5)

ids = 1

Xls
(ψds − ψmd) (6)

iqr = 1

Xlr

(
ψqr − ψmq

)
(7)

idr = 1

Xlr
(ψdr − ψmd) (8)

Based on the above equation, the electromagnetic torque equation is developed
from the electric power supplied to the rotor in the dq0 axis. Hence, the torque and
rotor speed can be determined as follows:

Te = 3

2

(
P

2

)
1

ωb

(
ψdsiqs − ψqsids

)
(9)

dωr

dt
= P

2J
(Te − TL) (10)

ωr =
∫

P

2J
(Te − TL) (11)

where Te is electric torque, P is the number of pole pairs of motor.
After deriving the electric torque and rotor speed equations, the dq0 axis trans-

formation should now be applied to the induction motor stator current [7]. However,
this current and torque equations that describe the dynamic behaviour of an induction
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motor are time varying which can be successfully as an input for the gear dynamic
model [6].

The instantaneous values of the stator and rotor currents in three-phase system
are ultimately calculated using the following transformation as:

⎡

⎣
ia
ib
ic

⎤

⎦ = 2

3

⎡

⎢
⎣

1 0

− 1
2

−√
3

2

− 1
2

√
3
2

⎤

⎥
⎦

[
cos θ − sin θ

sin θ cos θ

][
id
iq

]

(12)

Figure 1 illustrates the transformation motor current signal in abc reference frame
to dq0 frame.
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Fig. 1 Transformation of abc axis to dq0 axis

Fig. 2 Dynamic model of motor-gear transmission system
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2.2 Gearbox Dynamic Model

The model developed in this study is based on a two-stage reduction gearbox. There
is a total of 18-DOF in the model and it includes of six inertias, namely induction
motor, load generator, driving and driven gears. The translational motion X, Y, Z of
gears are considered into this model. To study the dynamic responses of the gear
caused by tooth breakage, an integrated motor-gear dynamic model was put forward
as demonstrated in Fig. 2. Furthermore, the damping and stiffness are also taken into
consideration.

The governing equation of the 18-DOF gear dynamic model dynamic can be
expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im θ̈m + (
θm − θg1

)
k1 + (

θ̇m − θ̇g1
)
c1 = Te

Ig1θ̈g1 + (
θg1 − θm

)
k1 + (

θ̇g1 − θ̇m
)
c1 − Fm1rbg1 = 0

mg1 ẍg1 + cbx ẋg1 + kbx xg1 = Fx1

mg1 ÿg1 + cby ẏg1 + kby yg1
mg1 z̈g1 + cbz żg1 + kbzzg1 = Fz1

Ip1θ̈p1 + Fm1rbg1 + k2
(
θp1 − θg2

) + c2
(
θ̇p1 − θ̇g2

) = 0

mp1 ẍ p1 + cbx ẋ p1 + kbx xp1 = −Fx1

mp1 ÿp1 + cby ẏp1 + kby yp1 = −Fy1

mp1 z̈ p1 + cbz ż p1 + kbzz p1 = −Fz1

Ig2θ̈g2 − k2
(
θp1 − θg2

) − c2
(
θ̇p1 − θ̇g2

) − Fm2rbg2 = 0

mg2 ẍg2 + cbx ẋg2 + kbx xg2 = Fx2

mg2 ÿg2 + cby ẏg2 + kby yg2 = Fy2

mg2 z̈g2 + cbz żg2 + kbzzg2 = Fz2n

Ip2θ̈p2 + Fm2rbg2 + k3
(
θp2 − θL

) + c3
(
θ̇p2 − θ̇L

) = 0

mp2 ẍ p2 + cbx ẋ p2 + kbx xp2 = −Fx2

mp2 ÿp2 + cby ẏp2 + kby yp2 = −Fy2

mp2 z̈ p2 + cbz ż p2 + kb2z p2 = −Fz2

IL θ̈L − k3
(
θp2 − θL

) − c3
(
θ̇p2 − θ̇L

) = −TL

(13)

where Ii is the moment of inertia, subscript i =m, p, g, L denotes motor, pinion, gear,
load generator; m is the mass of the gear; subscript m = p, g; θi/θ̇i/θ̈i represents the
angle/velocity/acceleration of rotation; b are for first coupling, second coupling and
bearing; xi , yi and zi denotes the translational displacement; cj and kj respectively
denotes the damping constant and stiffness constant, the subscript j = 1, 2, 3 denotes
the damping and stiffness coefficient; Fm is the meshing force; Te, TL denotes the
torque from the driving motor and the load generator; rbg , rbp are the radius of the
base circle of gear and pinion.
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Gear Mesh Stiffness

Mesh stiffness is one of the core vibrations sources of the gear system when it comes
to tooth fault. Therefore, the accurate modelling of the mesh stiffness is important
for the simulation of other important aspects of the gear teeth in order to investigate
its dynamic behaviour. The gear mesh stiffness model described in this study was
based on the work by Sánchez [13] and can be calculated by using an approximated
normalized pair stiffness as:

km(ξ) ∼= k · cos(b0(ξ − ξm)) (14)

Note, the value of ξm cannot change because function km(ξ) keeps the symmetry
respect to the midpoint of the interval of contact.

Where k is the averaged gear mesh stiffness. However, Eq. (14) remains valid for
describing the tooth-pair stiffness, εα represent constant ratio, but parameters b0 and
ξm should be computed considering the values of the contact ratio and the inner point
of contact parameter corresponding to a standard gear with the same geometry given
as:

b0 =
[
1

2

(
1.11 + εα

2

)2 − 1.17

]

(15)

ξm = ξinn + εα

2
(16)

Also, Sun et al. [12] stated that the average tooth stiffness k depends on the contact
point. However, in order to explain the contact point, the involute profile parameter
ξinn is used and can defined as:

ξinn = z

2π

√
r2c
r2b

− 1 (17)

where z is the number of teeth, rb and rc denotes the base radius and contact radius
respectively.

Gear Meshing Force

As stated in Sanchez et al. [13] the dynamic gear meshing force can be represented
as:

Fm = kmδ + cm δ̇ (18)

where, cm = 2η
√
kmme and cm is the gear mesh damping coefficient, me is the

equivalent mass of gear and pinion; δ is the gear relative displacement which can be
illustrated as:
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δ = (
yg + rbgθg

) − (
yp + rbpθp

)
(19)

where rbg , rbp are the radius of the base circle of gear and pinion.

2.3 Coupling Between Motor Model and Gearbox Model

This proposed 6° of freedom (DOF) electrical motor model integrated with an 18° of
freedom (DOF) gear dynamic model with electric torque from the induction motor,
coupled together via simple torsional stiffness km and damping coefficient cm . As a
result, the equation of motion for the motor-gear system becomes:

ωr = θ̇m (20)

Tin = Te (21)

where ωr is the rotor speed of the motor model which is equal to θ̇m used as an input
in the gear model. Te denotes the electric torque of the motor model which is equal
to Tin used an input to the gear model.

2.4 Numerical Solutions of the Model

The numerical solution for the proposed 6-DOF of the induction motor model inte-
grated with an 18-DOF of the gear dynamic model has been illustrated in the flow
chart diagram as shown in Fig. 3. Firstly, t = 0 represents the starting time, and the
initial condition of the combined model was set as:ψ[1 : 6] = 0, y[1 : 18] = 0. The
motor rotor speed ωr equals the input speed of the gear model yt [1]. Afterwards, the
flux linkagewas obtained by solving the different equations of themotormodel. Then
the motor current in dq0 frame can be calculated using this flux linkage. Secondly, in
the gear model, the relative displacement, the gear mesh stiffness and the mesh force
were calculated according to the real-time displacement yt [1 : 18]. These calculated
parameters were used to solve the 18-DOF of the gear dynamic model using ODE
solver inMatlab. Besides, the electric torque derived frommotor model was the input
for the gear dynamic model to achieve the coupling effect.

After solving this 18-DOF gear dynamicmodel, the output yt was obtained.When
t≤ T, the output will be used as an input to repeatedly solve the 6-variable parameter
for the flux linkage of the induction motor model and 18-variable parameter of the
dynamic of the gear model. But when t > T, the output will be derived as the final
results, and this end the calculation (Fig. 3).
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Fig. 3 The flowchart of the main program of numerical motor-gear model

3 Effect of Electric Dynamics on System Responses

To study the effect of electric dynamics on the motor-gear dynamic, the following
comparison between constant torque and electric torque in Fig. 4 are both extracted
for better diagnosis. The reason for this comparison is to show the behavioural effect
of this torques on the system and their response.
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3.1 Torque Differences

In order to have a more distinctive indication about how the electric dynamics influ-
ence the gear dynamics, the amplitude of the constant torque and electric torque
were extracted from the spectra shown in Fig. 4a. The variations of the amplitude
were shown in Fig. 4b, c. The amplitude of the mean motor torque under elec-
tric torque is higher than the constant torque thereby causing a fluctuation in the
electric torque However, for better and more distinctive indication, the RMS motor
torque was extracted, and it reflects the deviation of the signal under electric torque.
High RMS represents more modification effect between the shaft frequency and
supply frequency, which can benefit the condition monitoring of faults occurred in
the gear-motor system.

Figure 5 shows the difference in motor torque. However, amplitude of their side-
bands was extracted. It can be seen that the amplitude of the motor torque under
electric torque is slightly higher than the constant torque. This indicates that electric
torque can reflect the fluctuation of gear or motor rotation motionmore clearly which

0 20 40 60 80 100

Frequency  (Hz)

10-6

10-4

10-2

100

102

A
m

pl
itu

de
  (

db
)

(a) Logarithm spectrum of Torque Te

fs

fs-fr1 fs+fr1
fs-fr2 fs+fr2

fs-fr3fs+fr3

Constant Torque
Electric Torque

(b) Sidebands amplitude of fs

fs-
fr1

fs+
fr1

fs-
fr2

fs+
fr2

fs-
fr3

fs+
fr3

0

0.01

0.02

0.03

0.04

0.05

0.06

A
m

pl
itu

de
  (

A
)

Constant Torque
Electric Torque

Fig. 5 Motor torque difference with their sideband
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enhances the modification effect of the sidebands around the supply frequency for
easy detection.

3.2 Speed Differences

For more distinctive indication on how the electric dynamics influence the gear
dynamics, Fig. 6 illustrates the time variation change in the motor speed between
constant torque and electric torque with their respective amplitudes. It can be seen
that the amplitude of motor speed under electric torque is slightly less than that under
the constant torque. This is as a result of the fluctuation in the shaft which causes
the fluctuation in motor speed. However, in Fig. 6c the amplitude of the RMS motor
speed under electric torque is slightly higher than constant torque which indicates
that electric torque is more sensitive to the fluctuation of motor speed and the gear
rotation that is why we can get more fault frequency features.

3.3 Gear Torsional Responses

Wang et al. [14] studied the gear torsional stiffness response which depends on the
torsional stiffness of the shaft and is also one of the main parameters for a nonlinear
dynamic of a gear system. Thus, the study of the influence torsional stiffness has on
the dynamic characteristics of a gear is necessary.

As can be seen in Fig. 7b, c, the mean and RMS value of middle shaft speed
were extracted, and the amplitude of the RMS value of the shaft speed under electric
torque is slightly higher than the constant torque. This indicates that electric torque
is more sensitive to the fluctuation of the motor speed which makes it easier for more
fault frequency features to be detected.
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4 Simulation of Tooth Breakage

In order to verify the performance of the electric current signature for condition
monitoring for detection, gear tooth breakage was chosen as the simulated fault for
this study. This is because gear tooth breakage is one of the most common faults
often found in gears. Furthermore, to simulate this fault, the schematic diagram of a
gearbox has to be studied and this can be shown in Fig. 8.

In order to simulate this tooth breakage for investigation, a piecewise function
of index was put forward to describe the reduction in gear mesh stiffness when the
broken tooth come into mesh, which can be illustrated as:

χred(ξ) =
⎧
⎨

⎩

0,
(
0 ≤ mod(ξ, 2π) < ziαp

)

pper ,
(
ziαp ≤ mod(ξ, 2π) ≤ ziαp + εαp

)

0,
(
ziαp + εαp < mod(ξ, 2π) ≤ 2π

)
(22)

Fig. 8 Schematic diagram
of a gearbox
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where, pper is the percentage of tooth breakage of one tooth, which can equal the value
located in the range of [0 1], zi denotes the number of broken teeth, αp represents
the pitch angle, ε represents the contact ratio. The gear mesh stiffness considering
tooth breakage can be described as:

km(ξ) ∼= k · [cos(b0(ξ − ξm))(1 − χred(ξ))] (23)

In this study, pper was selected as 0.2, 0.4, 0.6 which represents the percentage of
tooth breakage as 20%, 40%, 60% respectively.

Figure 9 depicts the time-varying mesh stiffness which varies periodically due to
the continuous engagement of the teeth pair when it comes into contact with each
other. It can also be noticed that the mesh stiffness displays a decreasing trend with
the growth of the tooth breakage, which mainly occurs due to the reduction in gear
tooth contact [12].

4.1 Tooth Breakage in the First Stage of Gearbox

In order to have a more distinctive indication on how gear tooth breakage influence
the motor current, the amplitude sidebands surrounding the fundamental frequency
were extracted from the spectra as shown in Fig. 10b–d respectively. The amplitude
sideband fs fr1 shows a significant gradual increasewith the fault severity. This is due
to the fault in the first stage of the gearbox which is on the first shaft thereby giving
a significant change in the motor current. Furthermore, the amplitude of sideband
fs fr2 shows a slight increase because the second shaft is a bit far away from the
motor comparedwith the first shaft, and the influence induced by the second shaftwill
cause more attenuation. However, the amplitude sideband fs fr3 remains constant
throughout because the third shaft was not affected by the tooth breakage in the first
stage.
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4.2 Tooth Breakage in the Second Stage of Gearbox

To get a more distinguishable indication on how gear tooth breakage impacts the
motor current, the amplitude sidebands around the supply frequency were extracted
from the spectra as shown in Fig. 11b–d respectively. The amplitude sideband fs fr1
around the supply frequency doesn’t give a significant indication. This is because the
fault is in the second stage of the gearbox However, fs fr2 shows a gradual increase
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both stage of the gearbox

with the fault severity. This is as a result of the fault simulation in the second stage
which is related to the second shaft, thereby giving a significant change in the motor
current. Furthermore, the amplitude sideband fs fr3 shows a slight increase because
of the influence induced by the third shaft will be attenuated more.

4.3 Tooth Breakage in Both Stage of Gearbox

In order to have a more robust indication about how gear tooth breakage affects the
motor current signature, the amplitude sidebands around the supply frequency were
extracted from the spectra as shown in Fig. 12b–d correspondingly. The amplitude
sidebands fs fr1 and fs fr2 increases gradually with an increase in the fault severity.
This is due to the fault in the first and second stage of the gearbox which is on
the first and second shaft thereby giving a significant change in the motor current.
However, the amplitudes sideband fs fr3 does not give that much of a significant
increase because of the influence induced by the third shaft therefore resulting into
more attenuation.

5 Experimental Validation

In order to verify and validate the simulated results obtained from the numerical
analysis, an experimental test was carried out to investigate the electric dynamic
responses with the simulation of gear tooth breakage as shown in Fig. 13. Figure 14a
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Fig. 13 Gearbox test rig
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Fig. 14 Change in amplitude of the motor current under different severity of gear tooth defects

illustrates the motor current spectrum with the amplitude sidebands relating to the
shaft frequencies in this study. Hence, the amplitudes of the sidebands surrounding
the fundamental frequency were extracted from the spectra as shown in Fig. 13b, c.
The amplitude sideband fs fr1 relating to the first shaft with the gear tooth breakage
increases with fault severity when the gear comes into contact. With this amplitude
increase, there is a good consistency with the numerical result.

6 Conclusion

This study investigates the performance of electric motor current in detecting gear
tooth breakage. In order to achieve this goal, a 6 DOFmotor model combined with 18
DOF gear model was put forward. Electric torque is preferred in the model because
it can enhance the modification effect. Furthermore, a simulation work and experi-
mental work with tooth breakage occurred in different stages in gearbox had been
carried out, several conclusions can be drawn as:
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(1) Through the comparison of the electric torque and constant torque, it can be
found that the electric torque can effectively reflect the modification effect
induced by the fluctuation of the shaft, which can be beneficial to the condition
monitoring of faults occurred in the motor-gear system.

(2) Through the study of the tooth breakage, it can be seen that the tooth breakage
causes a continual increase in the amplitude of the corresponding sidebands
around the supply frequency with the increase in fault severity, which can
reflect the occurrence of tooth breakage. Besides, the change in the amplitude
of the sidebands can be used to localise or identify the position of the broken
tooth in the gearbox. For example, clear increase in fs fr1 and slight increase
in fs fr2 reflect the tooth breakage in the first stage, and clear increase in fs fr2
and slight increase in fs fr3 reflect the tooth breakage in the second stage.

(3) The experimental results do have a good agreement with the numerical results
indicating that the numericalmodel can give a reliable and robust predication of
motor-gear dynamics. Also, it provides a reliable theoretical basis for condition
monitoring and accurate fault diagnosis of gear tooth breakage using motor
current signature.
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Abstract Multiple faults diagnosis is a critical problem in mechanical fault diag-
nosis. Fault behavior analysis aims to find out the response characteristics of oper-
ating parameters under different faults and is the most primitive task for multiple
faults diagnosis. This paper proposes a bond graph-based approach to analyse the
mechanical fault behavior for diagnosis. The analytical model of an engineering
system is firstly established via bond graph. The temporal causal graph is derived
from the bond graph model to depict the analytic relationships system variables. The
operating parameters response characteristics under different faults are then derived
by representing the faults with abnormal change of system variables. The approach
is illustrated via an engine lubrication system. The presented approach avoids time-
consuming formula transformation which is necessary in mathematical model-based
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1 Introduction

A complex mechanical system will inevitably suffer from various failures during its
service cycle. Condition monitoring and fault diagnosis (CMFD) technique aims to
pinpoint the origin of an abnormality timely if it presents, which provides an effec-
tive means to ensure the safe and high-efficient operation of a complex mechanical
system.

The diagnosis of multiple faults diagnosis is a crucial task in CMFD [1–4]. It can
be divided into 4 different steps: fault behavior analysis, fault description and feature
selection, fault detection, and fault isolation. Fault behavior analysis aims to find out
the fault propagation path and the response characteristics of operating parameters
under different faults, which is the most primitive task among the 4 tasks.

Correlation analysis and fault tree are two primary approaches for fault behavior
analysis. Correlation analysis takes advantage of mathematical statistics theory to
deal with the sample data of two state variables, and investigates the correlation
of variables according to the data distribution regularities. This approach has been
successfully used to study the causal relationships ofmechanical faults and symptoms
for some equipment [5, 6]. However, a large number of typical fault sample data is
the prerequisite for this method. In practice, high-quality data is not always available
for different machines, which limits this method to being widely used in real-world.

Fault tree is another method for fault behavior analysis [7–9]. Different from
correlation analysis, this method takes the most undesired fault as Top Event, and
then describes the propagation path of the target fault via an inverted tree structure.
The causal relationships of faults and symptoms are therefore derived by exploring
this tree. Fault tree gets rid of the dependency on sample data, however, the fault
propagation path are actually modeled according to experts’ subjective experience.
Thus, different experts may give different diagnostic results. Besides, a fault tree
for multiple fault diagnosis often requires a very complete expert knowledge base,
which is usually difficult to obtain in practice.

Some researchers also use the commercial software to investigate the mechanical
fault behavior [10], e.g. AMESim for hydraulic valve leakage, GT-Power for engine
misfire. Although this approach provides an efficient way for fault behavior analysis,
the fault type that commercial software can deal with limited by the component
libraries the software can provide. Thus, commercial software-based approach is
found limited in some cases.

Mathematical model-based approach is an alternative way to pursue the causal
relationships of faults and symptoms for diagnosis. This approach firstly describes
the working process of a mechanical system via a series of analytical redundancy
relations (ARRs), and then introduces the interested fault by changing the state
variable, the operating parameters response characteristics under different faults can
be got accordingly. Despite this approach gets rid of the dependency on sample
data, and avoids the influence of experts’ subjective experience at the same time,
mathematical model-based approach suffers severely from the enormous cost of
modeling and calculation. Take a diesel engine as an example, up to 1640 ARRs can
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be generated from the 39 differential equations and algebraic equations (required to
model the dynamic behaviors of the engine) to depict the dependency among the
variables [11–13].

Bondgraph is a graphicalmodelingmethodology. Itmodels an engineering system
by considering the energy flows between the components. Different bond elements
are used to describe the storage, release, transfer and conversion of the energy. A
complete model of an engineering system is constructed via combining the various
bond elements according to the connection of components. Bond graph is a domain-
independent modeling method (it can describe the system from different domains,
e.g. electrical, mechanical, hydraulic, in the same way), therefore it is a powerful
tool formodeling engineering systemswhen different physical domains are involved.
Besides, not constructing the ARRs directly, bond graph firstly takes use of graphical
elements to represent the interaction of systemcomponents and then derives themath-
ematical analytical equation from the graphical model. Compare with the conven-
tional mathematical model-based approach, bond graph simplifies the construction
of ARRs and therefore provides an effective way for fault behavior analysis.

This paper presents a bond graph-based approach to analyse the mechanical fault
behavior for diagnosis. The analytical model of an engineering system is firstly
established via bond graph. The temporal causal graph is derived from the bond graph
model to depict the analytic relationships system variables. The operating parameters
response characteristics under different faults are then derived by representing the
faults with abnormal change of system variables. The approach is illustrated via an
engine lubrication system. The rest of this paper is organized as follows. Section 2
introduces the structure andworking principle of engine lubrication system. Section 3
describes the presented approach and illustrated using an engine lubrication system.
The model and the presented approach are verified in Sect. 4. Finally, Sect. 11
summaries the paper.

2 Example: Engine Lubrication System

Lubrication system is one of themost crucial systems in diesel engine, which supplies
enough oil to the engine friction pair to guarantee the safe and reliable operation of a
diesel engine. Fault diagnosis is a vital task to guarantee the safe operation of engine
lubrication system.

A schematic diagramof a typicalmarine diesel engine lubrication system is shown
as Fig. 1. The gear pump is driven by crankshaft through a transmission gear or a belt.
A relief valve is usually installed after the oil pump to prevent the damage caused by
excessive oil pressure. The lubricating oil then enters the oil cooler to keep a certain
temperature. The oil cooler is usually connected in parallel with a thermostatic valve
to control the oil temperature. The cooled lubricating oil enters the filter. Each filter
is connected in parallel with a bypass valve to prevent the engine lubrication failure
caused by filter clogging. The main oil gallery is usually installed with a pressure
relief valve to adjust the pressure of the lubricating oil. Besides lubricating the friction
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1-relief valve of gear pump, 2-gear pump, 3-oil cooler, 4- thermostatic valve, 5-oil filter, 

6-bypass valve, 7-pressure regulating valve, 8-supercharger, 9-oil pressure gauge, 10-piston, 

11-air valve, 12-rocker arm, 13-camshaft, 14-fuel injection pump, 15-main oil gallery, 

16-crankshaft, 17- oil sump 

Fig. 1 A typical marine diesel engine lubrication system

pair, the lubricating oil can also take heat away from the engine body to make the
pistons, crankshafts and other components working at a certain temperature.

3 Fault Behavior Analysis Using Bond Graph-Based
Approach

3.1 Modeling the System Dynamic Behavior Based on Bond
Graph

3.1.1 Bond Graph Theory

In bond graph, four generalized variables: effort e(t), flow f (t), momentum p(t)
and displacement q(t) are defined to represent the energy flow in any systems. The
effort e(t), flow f (t) are two basic variables, where the power of the instantaneous
energy flow is product of these two variables, see Eq. (1).

Power(t) = e(t) · f (t) (1)

Momentum p(t) and displacement q(t) are defined as
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⎧
⎪⎨

⎪⎩

dp(t)

dt
= e(t)

dq(t)

dt
= f (t)

(2)

Six basic elements are defined tomodel the components in real systems, see Fig. 2.
Figure 2a shows the effort source Se and flow source S f , which often used to describe
the energy source with a specific effort/flow level. Figure 2b shows the three passive
elements: R-element, C-element and I-element. R-element is used to describe the
components which dissipate energy, e.g. dampers, frictions and electric resistors in
real-life systems. C-element and I-element are used to represent the components
which store all kinds of energy. Specifically, in C-element, the energy is stored by
accumulating the net flow, and in I-element, the energy is stored by accumulating
the net effort.

Figure 2c, d show the two-port elements: transformer and gyrator respectively,
which are usually used to represent the energy conversion both in same energy form
and different energy form. Variables m and r are called transformer module and
gyrator ratio respectively.

Figure 2e, f are two junctions, which are used to represent the conservation of
energy. The 0-junction is also named common effort junction, which is used to
connect the elements with equal efforts. The 1-junction is also named common flow
junction, which is used to connect the elements with equal flows.

Although bond graph had been successfully applied in electrical, mechanical,
hydraulic domains, it was found limited in thermodynamics domain. To solve this

Fig. 2 Basic elements of
bond graph

a Sources         b Passive elements 

c Transformer           d Gyrator 

e 0-Junction          f 1-Junction 

eS 1e
1f

fS 2e
2f

R3e
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C4e
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I5e
5f

TF
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6e
6f

7e
7f

GY
r

8e
8f

9e
9f

010e
10f

12e
12f
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113e
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15e
15f

14e 14f
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Fig. 3 The 2-port R-element
representing convection in
pseudo bond graphs

R

Q

inT outT

inE outE

problem, Karnopp proposed pseudo bond graphs [14]. Different from classical bond
graph (or power bond graph), temperature T and heat flow rate Ė are chosen as effort
source Se and flow source S f in pseudo bond graphs (Ė is already a power term).
The convection of heat is therefore represented via a two-port R-element, see Fig. 3.
The variables Tin and Ėin represent the inlet temperature and heat flow rate, while
Tout and Ėout represent the outlet temperature and heat flow rate. The differential
equation can be written as Eq. (3). The thermodynamic equations derived by this way
match the Euler method very well, which makes pseudo bond graphs being widely
used in thermodynamics domain.

if Q > 0, Ėin = Ėout = ρcQTin

if Q < 0, Ėin = Ėout = ρcQTout (3)

3.1.2 Mechanical Domain

We model the dynamic behavior of engine lubrication system based on bond graph
theory. The working of engine lubrication system involves three domains: mechan-
ical, hydraulic and thermodynamic. We model the mechanical domains first. The
crankshaft is modeled by a flow source S f . The gear pump is connected with
crankshaft via a set of transmission gear or a belt. The transmission is modeled
via a transformer TE where the transformer module i represents the transmission
ratio. Parameter Ref f ic describes the energy loss while transmission. Since the pump
has a certain mass, it will consume some energy while working. We describe this
process via Ipump. The bond graph model of mechanical domains can be seen as
Fig. 4.

3.1.3 Hydraulic Domain

The pump converts the mechanical energy into hydraulic energy, which can be
modeled via a transformer TE. Rpleak represents the leakage of oil pump. The oil
flow through the cooler is governed by the parameters Rcooler and Ccooler , which
represent the fluidic resistor and hydraulic volume respectively. The thermostatic
valve presents a narrow opening and is modeled via a resistance Rthermo, which is
also connect in parallel with cooler. The filter and bypass valve has similar physical
effect with cooler and thermostatic valve, so that they have Similar model structure.
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Fig. 4 The bond graph model of engine lubrication system

We regard the engine body as a resistor for oil flow, therefore it is represented via
Rblock . Rmrelie f describes the fluidic resistor of pressure regulating valve.

3.1.4 Thermal Domain

The working engine can be seen as a heat source which is therefore represented as
S f . The components of engine is modeled asCTgallery .CTsump is the heat of oil sump.
The oil in sump will dissipation to air, we model the heat dissipation via RTsump.
The temperature of environment is thought as constant, so it is modeled as Se. The
oil flows into cooler under the working of pump. We model the heat capacity of
cooler as CTcooler . The dissipated heat is represented by MS f . The model of oil filter
is similar with cooler. The transmitted heat is not only related to temperature, but
also to mass flow. So the thermodynamic model is connected with hydraulic part via
two-port R-element.

The bond graph model of engine lubrication system is shown as Fig. 4. Rleak

represents the leak oil through oil pipe, and it is quantize by Qleak .
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3.2 Analysing the Parameters Response Characteristics
Using Temporal Causal Graph

Although we can derive the analytical redundancy relations and analyse the fault
behavior through the ARRs, this work is thought to be time-consuming and error-
prone. Temporal Causal Graph (TCG) is a signal flow diagram, in which the
variables are represented as vertices and the relations between the variables as
directed edges, and the relations type are described via a set of labels L =
{1,−1,=, λ, 1/λ, λdt, λ/λdt}. Specifically, 1, λ and 1/λ describe the positive corre-
lation, inwhich the coefficients of association are 1,λ and 1/λ respectively;−1 repre-
sents the negative correlation;=means two variables are equationual in number; λdt
and 1/λdt represent the integral relationships in which the parent nodes are the time
derivatives of child nodes. The TCG can be derived directly from the bond graph
model, see [15].

The TCG model of engine lubrication system derived from the bond graph is
shown as Fig. 5. Since the TCG describes the functional relationships of variables
intuitively, it can conveniently be used to analyse the parameters response character-
istics under different faults. Taking filter blocking as an example, the fault behavior
can be shown as Fig. 6. The loop in TCG represents the negative feedback, e.g. the
filter blocking will decrease the Q27, as for loop Q27 → p27 → p25 → Q25, we
have Q27 ↓→ p′

27 ↓→ p′
25 ↓→ Q′

25 ↓→ Q′
27 ↑. The first order derivative of

Q27 increases, therefore Q27 will finally reach a constant value. We investigate 11
faults of engine lubrication system and the response of 8 working parameters, see
Tables 1 and 2. The fault behavior is shown as Table 3, in which +1 represents the
occurrence of fault would increase the parameter (also marked with red), and −1 is
present otherwise (also marked with blue).

4 Experimental Validation

In this section, we introduce some faults (in total 7 faults) shown in Table 1 and
the working parameters in Table 2 are detected accordingly. The engine is an in-line
2 cylinders water-cooled marine engine, see Fig. 7. The engine is connected with a
reduction gear box. The propeller is installed in a pipe loop which is filled with water.
A flow adjusting valve is set at the middle of the pipe loop to give an adjustable load.

The experiments are carried out at 2000 r/min and 25%, 50%, 75% load
respectively. The parameters at 75% load are presented as Table 4.

It can be seen from Table 4 that the working parameters present abnormal changes
under different faults, and the abnormal changes got from experiment data meet well
with Table 3. Take filter blocking as an example, Table 4 shows that lubrication oil
pressure after pump and the pressure before filter increase 0.1 bar compared with
the one at engine normal condition (+1 in Table 3). On the contrary, the pressure
after filter and pressure before engine decrease 1.5 bar (−1 in Table 3). As for the
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Fig. 5 Temporal causal graph of diesel engine lubrication system
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Fig. 6 Failure behavior analysis of filter blocking

Table 1 Common faults of a
diesel engine lubrication
system

Symbols Faults Symbols Faults

f1 filter blocking f7 Cooler fouling

f2 Pipe leakage f8 Relief valve of
pump leakage

f3 Thermostatic valve
stuck

f9 Relief valve of
pump stuck

f4 Lubrication oil
shortage

f10 Main oil gallery
blockage

f5 Bypass valve
leakage

f11 Main oil gallery
leakage

f6 Thermostatic valve
leakage

temperature, the temperature at different position all increase compared with normal
values (+1 in Table 3). The results show that the fault behavior can be got using bond
graph combining with TCG.
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Table 2 Observable
parameters of an engine
lubrication system

Symbols Working parameters Variables in TCG

s1 Lubrication oil pressure after
pump

p8

s2 Lubrication oil pressure
before filter

p20

s3 Lubrication oil pressure after
filter

p27

s4 Lubrication oil pressure
before engine

p28

s5 Lubrication oil temperature
after pump

T34

s6 Lubrication oil temperature
after cooler

T41

s7 Lubrication oil temperature
after filter

T45

s8 Lubrication oil temperature
before engine

T30

Table 3 Fault-symptom causal relationship of engine lubrication system

Num Faults Simulation Working parameters

s1 s2 s3 s4 s5 s6 s7 s8

1 f1 R f ilter ↑ +1 +1 −1 −1 +1 +1 +1 +1

2 f2 Rleak : +∞ → R −1 −1 −1 −1 +1 +1 +1 +1

3 f3 Rthermo ↑ +1 −1 −1 −1 −1 −1 −1 −1

4 f4 Q7 ↓ QTsumn ↓ −1 −1 −1 −1 +1 +1 +1 +1

5 f5 Rby pass : +∞ → R

R f ilter → +∞
−1 −1 +1 +1 −1 −1 −1 −1

6 f6 Rthermo ↓ −1 +1 +1 +1 +1 +1 +1 +1

7 f7 Rcooler ↑ +1 −1 −1 −1 +1 +1 +1 +1

8 f8 Rprelie f ↓ −1 −1 −1 −1 +1 +1 +1 +1

9 f9 Rprelie f ↑ +1 +1 +1 +1 −1 −1 −1 −1

10 f10 Rblock ↑ +1 +1 +1 +1 +1 +1 +1 +1

11 f11 Rblock ↓ −1 −1 −1 −1 −1 −1 −1 −1

5 Conclusions

In this paper, we present a bond graph-based approach to analyse the fault behavior
for diagnosis. The approach is demonstrated via an engine lubrication system.Results
show that the presented approach can exactly derive the response characteristics of
operating parameters under different faults. This approach avoids time-consuming
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Beta 14 marine 
engine

TMC40P gear box

Pipe loop

Flow valve

Inlet pipe
Outlet pipe

Propeller

Fig. 7 Test cell of a Beta 14 marine engine

Table 4 Working parameters of a Beta 14 diesel engine lubrication system

Num Condition s1/bar s2/bar s3/bar s4/bar s5/oC s6/oC s7/oC s8/oC

1 Normal 4.03 3.86 3.68 3.53 87.40 79.58 81.45 80.26

2 f1 4.15 4.03 3.17 3.04 90.16 82.59 84.58 83.62

3 f2 3.62 3.48 3.32 3.18 91.85 83.98 85.98 85.88

4 f3 4.08 3.80 3.61 3.48 81.91 76.79 78.51 74.88

5 f4 3.78 3.64 3.47 3.35 94.19 86.63 88.40 86.50

6 f5 3.88 3.78 3.76 3.61 81.44 73.37 75.76 74.17

7 f6 3.99 3.93 3.74 3.60 93.06 86.97 88.33 85.89

8 f7 4.12 3.78 3.62 3.48 89.58 83.19 84.03 82.70

formula transformation which is necessary in mathematical model-based approach,
and therefore provides an efficient for fault behavior analysis.
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Dynamic Responses of Clearance
Induced Impacts in Big End Bearing
Condition Monitoring of Diesel Engines

Solomon Okhionkpamwonyi, Fengshou Gu, and Andrew D. Ball

Abstract Enlarged clearance in connecting rod big end bearing is known to be a
typical fault in internal Combustion (IC) engines such as diesel engines. Enlarged
clearance causes inefficient operation that leads to reducedperformanceof the engine.
In this work, the influence of enlarged clearances in big end bearing on the vibra-
tion of the system is studied. The kinematics and dynamics of the big end bearing
were explored using numerical simulation to investigate the effect of the clearance
on the associated response of acceleration signals obtained by multiply the simu-
lated bearing forces with frequency response function (FRF). Different clearance
and engine speed conditions were simulated for analysis of various degree of bearing
clearance fault. Results obtained for these cases are evaluated for vibration analysis
which shows that simulationmodel developed is able to simulate the vibration signals
issuing from the dynamics of engine system with various clearance phenomenon.

Keywords Diesel engine · Vibration analysis · Big-end bearing · Enlarged bearing
clearance · Journal bearings simulation

1 Introduction

In internal combustion engines, the mechanism which consist of the piston,
connecting rod and crankshaft is employed to convert the reciprocating motion of
piston to angular rotation of the crankshaft though the transmission of combus-
tion force. The mechanism which is mostly referred to as slider-crank mechanism,
requires the clearances at the links between the components to ensure movement
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and functionality [1]. In the slider-crank mechanism, these links are formed between
the piston and connecting rod, connecting rod and crankshaft with adequate clear-
ance. Journal-bearing component pair is a typical example of a revolute joint with
clearance that allows relative motion between the coupled parts. In order to ensure a
functional and durable journal-bearing coupling, relative motion must be permitted
to avoid contact between surfaces that could lead to excessive vibration, friction and
wear and ultimately bearing damage [2–4].

Due to the rotating and reciprocating dynamic loads imposed on journal bearings
used in internal combustion engines, these engine bearings aremore complex. Partic-
ularly, the connecting rod big end bearing which is more exposed in comparison to
other engine bearings such as the crankshaft main bearings. The variation in speed
and load is consequential in big end bearings behaviour as it leads to changes to
the lubrication regime from boundary lubrication experienced at engine start-up and
shutdown, to oil film separation whilst in operation [3]. In the advent of impulsive
loading, the oil film become thinner with less capability to separate both surfaces.
The resulting effect induces the enlargement of the clearance between the journal
and bearings shells leaving the components vulnerable to wear as the impact between
them increases and continuously advances the severity of wear damage to possibly
failure. Vibration analysis in the way of measured signals ensuing from engine body
can be implemented for the corresponding bearing fault diagnosis.

Several research have been aimed at study of the dynamic behaviour ofmechanical
systems with revolute joint and clearance [2, 4–12]. Majority of these investigations
are exclusive to analysis of the dynamic response of the slider crank mechanism
using the reaction forces in the clearance joint, velocities, and accelerations of the
slider under various models in simulation of clearance revolute joints. Earlier studies
in this field have studied the impact forces in clearance using dry contact models
that excludes the effect of friction and lubrication [5, 8]. Bai and Zhao, adopted the
slider crank mechanism to study the effect of clearance on dynamic response of the
system using an improved hybrid contact forcemodel and friction forcemodel. Using
improved nonlinear stiffness and damping coefficients unrestricted by coefficient of
restitution and size of clearance, they compared experimental and simulation results
to analyse the systems dynamic behaviour with different clearance [12]. Subsequent
works in this area took into consideration inclusion of lubrication in dynamic anal-
ysis of the performance of revolute joint with clearance [1, 9, 11]. Schwab, Meijaard
and Meijers presented a comparative study of three clearance models including a
contact force model and hydrodynamic lubrication model to investigate the effect of
joint clearance in dynamic response of the slider crank mechanism [8]. Similarly,
Flores et al. also presented a simulation methodology using dry contact with and
without friction and a lubricated model to study the influence of the clearances in
the responses from these models through analysis of reaction forces and moments
[1]. Daniel and Cavalca included the hydrodynamic lubrication in dynamic analysis
of the slider-crank mechanism using two combined model; equation of motion and
Lagrange method respectively for practical results of the system interaction with the
bearing lubrication [11]. Majority of the above research have exclusively focused on
slider-connecting rod-crankmechanism and have provided an in-depth study into the
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dynamic behaviour of the system but only a limited number have considered vibra-
tion analysis for condition monitoring of bearing clearance faults particularly in IC
engine connecting rod big end bearing. Fault diagnosis and detection in IC engines
are quite challenging because of the complex operation of the engine systems and
their associated transient and non-stationary signals [13]. Vibrations ensuing from
engine operation are also weak and nonstationary owing to the variable load and
sliding speed during operation. However, vibration signals measured from the engine
are second order cyclostationary signals which contain information associated with
various engine impacts such as those due to clearance in bearings, piston slap and
engine valves opening and closures etc. Therefore, analysis of method for condition
monitoring and diagnosis of bearing clearance to implement an effective monitoring
strategy and obtain bearing operation information from vibration signals, an in depth
understanding of the dynamic behaviour is necessary. In this work, the basis of
diagnostics is the inclusion of vibration analysis in clarifying the influences of clear-
ance in big end bearing on vibration responses using amplitudes of impacts and
corresponding angular position. The impact forces of different enlarged clearance
were simulated and after which the accelerations were obtained from the measured
frequency transfer functions (FRFs) from the big end journal and the engine body.

2 Dynamics and Kinematics of Piston-Connecting
Rod—Crank Assembly

IC engine connecting rodmodelled as a slider-crankmechanism transform the piston
translation motion to crank rotation motion. Due to higher operating speeds of IC
engines, the dynamic effects play a key part in the kinematic and dynamic character-
istics of the system mechanism. When considering the simulation of wear induced
enlarged clearances in big end bearing, the system can be modelled as two separate
subsystems involving the piston and connecting as one part and the other being the
crank. The kinematic analysis of the piston connecting rod system requires calcu-
lation of the position of mass centre of the joint motion and subsequently their
associated velocities and accelerations. These can be derived from the schematic
representation of the engine kinematic mechanism shown in Fig. 1.

Where r is the crank radius, l is connecting rod length and ϕ is the angular position
of connecting rod. The connecting rod angular speed and angular acceleration can
be determined by speed of crank journal. The increase of ϕ is negative relative to the
X–Y coordinated system attached to engine body, it can be expressed as;

sin(ϕ) = l + r − l cos(ϕ) − r cos(θ) (1)

sin(ϕ) = −r/ l sin(θ) (2)
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Fig. 1 Schematic representation of engine kinematics a; expanded view showing forces of big end
bearing b

The angular velocity and acceleration of connecting rod can be derived from
the displacement of the connecting rod in y and x directions, respectively. The
displacement is given as

r sin(θ) = −l sin(ϕ) and cos(ϕ) = 1

l

√
l2 − (r sin(θ))2 (3)

r cos(θ)θ̇ = l cos(ϕ)ϕ̇ (4)

The angular velocity and acceleration of connecting rod denoted by ϕ̇ and ϕ̈ are
given as

ϕ̇ = −r θ̇ cos(θ)

l cos(ϕ)
= −r θ̇ cos(θ)√

l2 − (r sin(θ))2
(5)
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ϕ̈ = −r

l

cos(ϕ)[cos(θ)θ̈ − sin(θ)θ̇2] + θ̇ ϕ̇ cos(θ) sin(ϕ)

cos2(ϕ)

= −r

l

[
cos2(ϕ)[cos(θ)θ̈ − sin(θ)θ̇2]

cos3(ϕ)
+

r
l θ̇

2 cos2(θ) sin(ϕ)

cos3(ϕ)

]

= r

l cos3(ϕ)

{
cos2(ϕ) sin(θ)θ̇2 − cos2(ϕ) cos(θ)θ̈ + r

l
θ̇2 cos2(θ) sin(ϕ)

}
(6)

In the kinematics of the journal, themotion can be described by the angularmotion
of the crankshaft. The moment balance equation on the journal can be given as;

Jcθ̈ = r Fcxsin(θ) + r Fcycos(θ) − Tl (7)

where Jc is the moment of inertia of the crank, Fcx and Fcy are the resultant forces in
the vertical (x) and horizontal (y) directions, Tl is the driving torque and the friction
torque is neglected.

The connecting rod motion in vertical x and horizontal y direction is given as;

Jcϕ̈ − Fcxl sin(ϕ) + Fcyl cos(ϕ) = 0 (8)

mcacx + Fcx − Fpx = 0 and mcacy + Fcy − Fpy = 0 (9)

As piston moves downward in X direction.

mpapx − Fg + Fpx = 0 (10)

From the above equations, mc and mp denotes the mass of connecting rod and
piston, respectively. Fg is the combustion force.

Fpx = Fg − mpapx (11)

The resultant force at the crank journal and bearing in vertical direction is
expressed as:

Fcx = Fg − mpapx − mcacx (12)

The bearing force pair in Y direction can be obtained from Eq. 7 as;

Fcy = Fcxl sin(ϕ) − Jcϕ̈

l cos(ϕ)
(13)
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Fig. 2 Illustration of joint force and bearing clearance model

2.1 Vibro-Impact Analysis of the Big End Bearing Clearance
Model

To observe the impact behaviour between the crank journal and big end bearing, a
vibro-impact bearing model is used, in the presence of clearance between the journal
and the bearing as shown in Fig. 2. The joint forces ensuing from the inertial effects
of the joints can be obtained by dynamic force analysis. In the event of contact
between the journal and bearing, creates an impact force and the direction of the
force coincides with the normal contact force denoted in Fig. 2 as n. The model
assumes a continuous contact between the bearing and journal. The resultant forces
Fcx and Fcy at the crank-rod joint both make up the overlying effects of the applied
torque and the associated inertial.

2.2 Methodology of Numerical Simulation

The bearing impacts was simulated numerically by solving the kinematic equations
from the dynamic model using MATLAB ode45 solver. The differential equations
were solved by integration using initial conditions in fixed time step mode. The
entire output simulation was sampled at 13 kHz The simulation was run for different
clearance of 0.1, 0.25 and 0.5 mm to simulate enlarged bearing clearance. Three
different engine speeds of 1000, 1400 and 1800 rpmwere selected typical to medium
speed heavy duty engine. The selected output loads of the engine are 40, 80 and
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Table 1 Parameter for
dynamic simulation of
bearing impacts

Parameters Value Units

Stroke 0.132 m

Bore 0.103 m

Crank radius (r) 0.066 m

Connecting rod length (l) 0.205 m

Mass of connecting (mc) 2.5 kg

Moment of inertial of connecting rod (Jc) 0.041 Kg m

Mass of piston + piston pin (mp) 2.3 kg

160 Nm. The measured cylinder pressure in the simulation was created using a
hybrid pressure model. A MATLAB polynomial curve fitting for averaged cylinder
pressure as a function of crank angle was used on cylinder pressure measured from
experiment. The obtained cylinder pressure is subsequently applied in computation
of system indicated torque and total torque resulting from combustion/gas pressure at
different speed and load conditions. The equations of motions are solved numerically
with the indicated torque as input to the system. The simulation continued with the
calculation of the displacement of the bearing and journal using system parameters
show in Table 1. The main output of the simulation is the resultant bearing forces
and the simulation was run for all three operating parameter of varying speed, load
and clearance to study their effect on the resulting bearing force.

3 Results and Discussion

3.1 Effect of Torque on Bearing Performance

The influence of the external torque applied to the system is studied, which is refer-
enced to the cylinder pressure or combustion forces that drives the piston and hence
the connecting rod in the slider motion. The external load linearly affects the cylinder
pressure during combustion and consequently all related forces. The effect of the
torque on the bearing forces was considered in bearing performance analysis via
selection of varying torques of 40, 80 and 160 Nm under constant speed and radial
clearance of 1400 rpm and 0.1 mm, respectively. Figure 3 shows the bearing forces
in both vertical and horizontal directions and the effect of cylinder pressure with
variable load increment. As a result of the increasing cylinder pressure, the associ-
ated combustion peaks at 360° is seen to increase with higher load. The variation in
bearing forces due to the load increase appears only around the combustion event
and outside this, the result indicates that the external torques have non-existent or
very subtle effect on the bearing forces. The main reason being that the bearing
force is predominantly associated with the inertia forces of the slider-crank system
components i.e., piston and conrod rather than the combustion forces. This isolated
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Fig. 3 Connecting rod bearing force in vertical (x) and Horizontal (y) directions at different loads

variation of bearing forces observed in the combustion region might be because of
the effect of generated combustion forces on the journal motion which may abruptly
shift via the clearance.

3.2 Effect of Speed on the Bearing Performance

Contrarily to the subtle effect of load variation on the bearing forces, the variation
of engine speed have more noticeable influence on the bearing force. Figure 4a,
b shows the effect of different speeds 1000, 1400 and 1800 rpm on the bearing
performance under constant load of 80 Nm, and radial clearance of 0.1 mm. Under
the effect of speed, the amount of occurrence where the forces change with direction
is largely influenced by the varying engine speed. However, this speed variation is
not so obvious in the combustion region. This is as expected, as the main force in
the other three strokes, intake, compression, and exhaust are attributed to the inertial
force which is solely dependent on the speed of engine. The reaction force (Fig. 4b)
is the bearing force in the horizontal direction and is also regarded as the side-thrust
force of the connecting rod.
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Fig. 4 Connecting rod bearing force vertical (x) and Horizontal (y) directions at different engine
speeds

3.3 Effect of Radial Clearance on Bearing Performance

The impact forces in the vertical X and Horizontal Y directions (Fig. 5) were simu-
lated to study their behaviour under various oversized clearance conditions, 0.1,
0.25 and 0.5 mm. These clearances apply to the connecting rod big end bearing
and crank journal. An obvious increase in impact frequency is noticed when the
clearance is increase to 10 times the normal or minimum clearance. The increase in
impacts with increasing clearance appears more under observation of the horizontal
impacts which clearly is related to the inertia forces that are associated with bearing
impacts. In Fig. 5a the impact between 180 and 270 is hardly noticed but becomes
apparent in the horizontal impacts around this same crank position. This very subtle
impact noticed in the vertical impact is due to the vertical combustion forces acting
in opposition to the inertial forces.

3.4 Simulated Vibration Signal Analysis Using FRF

As the scope of this work is concerned with condition monitoring of engine bearing
operation, vibration analysis was included to study bearing impacts using simulated
bearing forces. The Frequency response function (FRF) tool was employed to aid the
vibration analysis. This was used in obtaining the natural frequencies of the structural
test engine similar to the simulated one. Following simulation of the bearing forces
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Fig. 5 Velocity of vertical and horizontal bearing impacts at various bearing clearance

in the vertical (x) direction and horizontal (y) directions, their accelerations were
calculated by multiplying the bearing forces and measured FRF in the frequency
domain. An inverse Fourier transform was subsequently used to produce the acceler-
ations in time domain. Three magnetic pick-up accelerometers were mounted on the
crankshaft end, the surface of big end bearing and the engine body, respectively. Exci-
tation force was applied on the big end bearing and journal using hammer hitting test
method and the corresponding acceleration was measured from these three points.
The vibrations for the bearing forces of increasing clearance are given in Figs. 6 and
7 these are shown with corresponding responses measured from the three accelerom-
eters pick up point (Crankshaft, Big end bearing and Engine body). Slightly higher
vibration amplitudes are obtained from accelerometer mounted on the engine bed
compared to other measurement points. When the clearance increases from 0.1 to
0.5 mm for simulation case of 1800 rpm engine speed at 80 Nm, the vibration, and
amplitudes for the case with higher clearance is shown to slightly increase. The
vibration characteristic signals appears to be periodic which may give an indication
of reoccurring contact between the journal and bearing with increased clearance.
In addition, under the case of increased clearance, the noise level associated with
vibration is higher compared to the normal clearance condition.
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Fig. 6 Bearing impact vibrations for 0.5 mm clearance at 1800 rpm engine speed/80 Nm load.
(Plot a) Summed responses from measurements points. (Plot b) Responses from different points,
Crankshaft (csn), Big end bearing (Beb) and Engine body (Eby)

Fig. 7 Bearing impact vibrations for 0.1 mm clearance at 1800 rpm engine speed/80 Nm load.
(Plot a) Summed responses from measurements points. (Plot b) Responses from different points,
Crankshaft (csn), Big end bearing (Beb) and Engine body (Eby)
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4 Conclusion

The primary focus of this work is to study the influence of enlarged clearances in
the dynamic response of IC engine bearing operation for condition monitoring of
bearingperformance and associated faults in heavydutydiesel engines usingdynamic
simulation of the bearing impact forces. The model adopted is applied to connecting
rod big end bearing with clearance between the bearing and the crank journal. The
results presented shows that there are higher effect in the reaction force or forces in
Y directions of the bearing force pair which consequently leads to vibrations of the
system. The increase of clearance between the bearing and journal can influence the
dynamic response of the engine system and vibration analysis to some extent can
capture the various effects observed in the dynamics of the system.
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Impeller Wear Diagnosis in Centrifugal
Pumps Under Different Flow Rate Based
on Acoustic Signal Analysis

Alsadak Daraz, Fengshou Gu, and Andrew D. Ball

Abstract Centrifugal pumps are commonly used in pipelines with moderate head
and discharge requirements for hydraulic transportation of liquids and solids over
long distances. The performance characteristics of the pump and erosion wear are
the most significant design and selection parameters. Mechanical wear can cause
considerable damage to the impeller in the pump, reducing the pump’s lifetime and
efficiency. This paper investigates the impeller wear of a centrifugal pump using an
acoustic mechanism at different flow rates. As the peripheral velocity or circling
radius at the impeller surface increases, a small amount of wear in the impeller inlet
region rapidly develops. The uniform corrosive wear area is defined as the portion of
the impeller where the impact velocity is less than the critical value, and it expands
as the impeller velocity increases. In fact, wear mechanisms differ from one region
to the next; when the tangential portion of the impact velocity is high, the impeller
wears out faster. Because of the high capability of noise reduction when modulating
the signals, modulated signal bispectrum (MSB) analysis is used for extracting the
incipient fault signature. The experimental results show that the diagnostic features
produced by modulated signal bispectrum allow for early detection of the initial
impeller wear fault. Furthermore, the MSB study of acoustic signals demonstrates
the efficacy of airborne sound-based monitoring. It offers a strong attestation of
complete distinction between safe and defective conditions at various flow rates.
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1 Introduction

In order to follow the progress of technology, the centrifugal has become a significant
fluid machine in modern industries such as petroleum, chemicals, metallurgy, and
aerospace [1, 2]. In themeantime, centrifugal compressors are becoming increasingly
large-scale, high-speed, and remotely controlled [3]. Centrifugal pumps condition
monitoring (CM) is critical for avoiding unanticipated failure, lowering disruption
expense and improving the availability of the machinery [4].

Numerous academics have devised various methods for detecting centrifugal
pumps faults [5, 6]. The vibration signature analysis methodology for detecting
and diagnosing defects in machine components is the most common and commonly
utilised methodology for CM [5, 7]. The existing monitoring methods such as simple
vibration analysis are insufficient for identifying potential pump failures and prevent
periodic breakdowns and service interruptions that cause large pumps to shut down.
Machine vibrations because of the flow excitation and structure-borne sound in roller
bearings are used to track the conditions of the parts such as impellers, bearings, shafts
of the pump, and drive pieces. Process variables such as water flow, pressure (suction,
discharge), velocity, motor speed, temperatures, bearings, and leakage measurement
are also examined. The machine receives condition details automatically [8].

Theblade loss, on the other hand, is a commonoccurrence.The impeller is themost
critical component since it converts kinetic energy into pressure energy. However, the
impeller is subjected to centrifugal forces, friction forces, and gas pressure, both of
which can cause cracks. As stated by statistics, the blades are responsible for 65% of
centrifugal compressor failures. Furthermore, 40% of blade fatigue failures are still
unknown [9]. Blade fatigue failures are also caused by fluid-induced vibration, which
is evident in acoustic resonance, unsteady flow, revolving stalls, and flutter [10, 11].
High local pressures are produced when cavitation bubbles implode on the impeller
or other pump components, which can exceed the material’s fatigue strength, yield
point, or ultimate strength. If this happens, the material will pit, a process known
as cavitation erosion. With more corrosive media, material degradation accelerates
[12]. Bross andAddie [13] constructed a computational model to investigate impeller
suction sealing wear behaviour as a function of impeller design factors. They found
that the impeller suction sealing area experiences the most wear. When the leakage
flow rate increases, the intensity of localwear for the nose sealing gap grows, reducing
the pump’s life and efficiency. Walker and Bodkin [14] found that using the weight
loss approach to quantify the wear in the field did not accurately anticipate the
localised wear pattern. They measured the maximum depth of material loss to assess
side liner erosion wear. They also evaluated the performance of side liner impellers
with three different designs, finding that the wear rate of a high-efficiency impeller
is proportional to the square of the particle size. The influence of particle size on
standard and decreased eye diameter impellers is negligible.

Furthermore, some wear occurs at the place where the impeller and casing toler-
ances almost come into touch regularly. The erosion induced by liquid leaking
through this little clearance causes this form of wear. Furthermore, a tiny particle
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that is not apparent to the naked eye might induce impeller wear and erosion. Again,
bigger particles such as sand, rust, and boiler scale and dissolved minerals in hard
water can all contribute to the formation of these types of faults. The two issues
will necessitate a substantial quantity of real-time data analysis and a sophisticated
network of acquisition and interpretation software. In contrast, the first three prob-
lems are primarily reliant on hardware quality and performance. Kim et al. [15,
16] demonstrate how a single microphone combined with a low-profile monaural
construction can be used to locate the sound source.

The measurement of vibration, acoustic, temperature, speed, wear, pressure, and
torque characteristics has improved fault identification and diagnosis methodologies
for CM. Vibration and acoustic techniques are intrinsic to the measuring operation,
and they provide multiple benefits in terms of non-intrusive signal measurement,
rich information from many sources of signals, and high jumps in computational
power in the arena of advanced signal approaches [17]. The most challenging aspect
of the vibration procedure is trying to locate and implementing the accelerometer in
the correct location for CM. Airborne sound, on the other hand, has the attractive
advantage of being a non-contact approach that does not require direct access to the
equipment. Furthermore, in comparison to accelerometers, the microphone, which
can cover a large variety of comprehensive information on mechanical parts and
requires a small number of sensor channels [18, 19].

This study focuses on the study of using acoustic signals of diagnostic impeller
faults in centrifugal pumps. In particular, the MSB analysis will be the main signal
process tools for suppressing random contents of acoustic signals due to turbulent
flows and background noise and thereby enhancing the deterministic modulations
due to periodic interaction between impeller and low stream. The acoustic sauces
and its signal behaviours are overviewed analytically under common impeller fault
conditions. The monitoring performances is then evaluated based a dataset from a
laboratory test system.

2 Sources of Hydraulic and Mechanical Noise

Mechanical Noise sources are including pump surfaces or vibrating parts generated
by pressure changes in fluid or air. The impeller, seal rubs, volute casing, faulty rota-
tors, unbalanced rotors or stators and vibrating pipe, or bearings walls are samples
of mechanical noise causes [20, 21]. The inappropriate assembly of coupling often
causes mechanical noise when the speed of the pumping is doubled. The high vibra-
tion resulting friction from the movement of the impeller, bearing or seals is caused
when the pumping speed is almost close to the high speed. The high-pitched noise
is a signal of recognition if frictional action occurs [21].

Fluid noise sources are the pressure vibrations caused by the fluid’s unstable flow.
The impellers rotating in a guided volute case contains centrifuge pumps. The fluid
movement within a pump Like turbulent as well as three-dimensional [20, 22]. Due
to this turbulent fluid behaviour, pressure fluctuations are generated. Resulting, the
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flow-induced noise that is passed through the pipes will therefore be produced. The
pulses might produce wideband frequency or discrete frequency. The broadband
energy is mostly driven by a high flow velocity and the pump impeller is the reason
for discrete energy. Due to turbulence, pulsation of pressure, a water hammer, and
cavitation, as well as the interaction between impellers and cut wear, flux-induced
noise can emerge [20, 22].

A hydraulic pumping system generates audible noise due to a combination of
hydrodynamic and mechanical forces. The two types of background noise are trans-
ported to the surrounding air as airborne noise through the system through its liquid
and structure. Because the pump is the essential participant, it is critical to recognise
the pump’s contribution to the noise produced [23, 24]. Pump noise is determined by
the type of pump, its geometry (structure and size), and operating conditions (load
and speed). The interactions between the pump’s impeller edge and diffuser vanes
are the main sources of noise in a centrifugal pump. Blade passage frequency (BPF),
pressure variations due to turbulence, flow friction, flow separation, and vortices
in the axial and radial clearances, notably between open or semi-open rotors and
the fixed component of the casing, are all key sources of noise. Depending on the
pump head being produced and the distance the site of operation is from the BEP,
the magnitude and frequency of background noise varies from one pump to another,
even across two seemingly identical pumps [23, 24].

The pressure pulsation produced in an operating pump cavity is strongly related
to its vibration as well as noise levels due to a present trend in rising rotating speed
and power; its ability to be separated into hydrodynamic phenomena in the pump’s
operating cavities have been categorized into [25, 26].

2.1 Hydrodynamic Relationships Between Impeller Flow
and Volute

Because the fluid interacts with the impeller’s vanes as well as stationary volute
chambers, the fluid’s pressure pulsates predominantly with the impeller’s structure.
As a result, in particular, the vane number will be linked to the pulsation rate [27].

At this point, the flow velocity is equal to the vane angle, resulting in less flow
contact with the impeller. Any BEP activities can cause a misalignment of the liquid
velocity and the impeller’s vane angle. As a result, additional friction and vibrations
will occur [26].

To help impeller defect identification, appropriate features can be designed based
on these properties. The frequency with which the blade passes frequency (BPF)
characteristic is presented in the Equation:

BPF = kz fr (1)
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where k denotes the number of harmonics and z is the blade number, and fr is
the speed of pump rotor. While the centrifugal pump is operating at its maximum
capacity, the amplitude of pressure pulsation is also kept to a minimum (BEP) [28].

2.2 The Circulation of a Vortex

Due to the high flow speed, the fluid flow becomes unstable and generates a local
vortex when the flow cross-section mutation occurs. While turbulent flow and vortex
are present, vibration is caused by water particle action, mutual effect, engaging with
the pump, valve body wall, pipeline, or other interactions [25, 28]. Such vortex can
also produce vortex shedding and result in an oscillating flow at the vortex shedding
frequency calculated by

V SF = SnV/D

where D denotes dimension of obstruction, V is flow velocity and Sn is Strouhal
number with a value range between 0.213 and 0.533. As the flow field in impeller
passages varies greatly, the VSF oscillations can be in a wide frequency range and
often exhibit unsteady behaviours.

2.3 Cavitation

Whenever a centrifugal vibration is clear over background noise, it is often observed
that cavitation is a problem [29]. Cavitation occurs when the pressure is less than the
local vapour pressure in a location in a liquid. It is regarded as a natural event when
local pressure lowers due to external influences, which lead to fluid vaporisation and
then a sudden collapse of the bubbles. The quick collapse and uneven disintegration
of these bubbles leads to surface damage because of the high concentration of the
generated energy [30]. In the design of equipment such as pumps, hydrofoils and
turbines [31] this phenomenon has to be guarded against. The implementation and
productivity of the pump would be adversely affected if cavitation appears. The
presence of cavitation specifically affects pump productivity and can result in erotic,
vibrative, hydraulic and pumping performance impairment [32, 33].

2.4 Wear by Fluid Velocity

Because of internal fluctuations, turbulence andwall friction, the fluid velocitywithin
the volute is not constant. These are the prime causes why fluid noise is produced
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in centrifugal pumps. Hence the fluid-induced noise and the fluid’s unstable flux
conduct in a centrifuge pump [20]. Small impellers with high motor speeds may
create the necessary pump pressure. As a result, large fluid velocities are produced,
which raises the wear on pump parts beyond what is ideal. Furthermore, the impeller
is subjected to rapid wear as a result of the high tip fluid velocity. Moreover, high-
velocity fluid is responsible for approximately 95% of the time for abrasive wear in
pump parts [34].

2.5 Pressure Pulsations

Pressure pulsations are produced byordinary pumping systems and are causedmainly
by unsteady flow and fluid turbulence which caused by rapid rotor movement within
the pump [22]. The magnitude of these pulses depends on the distance between rotor
blade tips the volute lips [20]. Moreover, a large number of parameters allowing for
a pressure pulse to be generated. Even when the pump working at highest efficiency
point (BEP), and its functioning nominally (NPSH etc.), turbulence at the impeller
tips and high flow velocity still allows to produce pulsations. When the operating
condition varies, however, due to different sources, such as cavitation, secondary flow
(recirculation) and unsteady flow etc., pulsations may emerge in the signal [20, 22].

3 Fault Simulation

Themain causes of impeller loss are solid–fluid interactions, which result inwear and
corrosion on thematerial’s surface. Twodefectswere simulated in this study: impeller
inlet vane wear with two severity levels: low and high in a closed type impeller of
a centrifugal pump. By eliminating a few of the materials in the impeller’s side, an
imbalance was introduced into the exterior diffuser vanes, as seen in Fig. 1.

The approach for fault identification based on airborne sound signal analysis is
explained in this study. The structure shown in Fig. 2 has three stages: the first shows
the simulate impeller defect, which is inlet vane wear; the second displays the way
of analysis, which is dependent on popular spectrum analysis andMSB analysis; and
the third step compares these approaches. The final stage of the proposed method is
fault detection.

4 Test Procedure

The test rig was designed to assess the monitoring of a pump system’s output using
various measures such as vibration and acoustic signals. The goal was to see how
impeller wear influenced the centrifugal pump’s efficiency. The experimental data
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Fig. 1 Framework of the procedure for impeller fault detection

Fig. 2 Wear initial vane fault simulation of impeller

was obtained from impeller wear in the form of airborne sound. The test-rig shown
in Fig. 3 was used in this experiment.

As shown in Fig. 3, a test rig for acoustic monitoring consists of a centrifugal
pump, pips, water tank, suction valve, two pressure transducers, hydrophone, and
flow metre. The experimental datasets were gathered from two test cases, both of
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Fig. 3 Schematic diagram of the test-rig

which were free of impeller wear. The calculated data was collected using a data
acquisition method (DAS). DAS was linked to seven networks. With a sampling
rate of 96 k and a fixed motor speed of 2900 rpm, datasets of 40 s were collected.
Under 10 bar of pressure, the pump will produce 250 L/min of water flow. This
study looked at the efficiency of a pump at nine different flow rates (0, 50, 100,
150, 200, and up to 450) l/min. In both the suction and discharge lines, two pressure
sensors were mounted. An accelerometer was also mounted vertically on the pump
casing to measure vibration. On the discharge line, the hydrophone was mounted.
The vibration and sound of pump components was measured using a microphone
placed 50 mm away from the pump body. Furthermore, a flow sensor was mounted
on the discharge line to calculate the volume of liquid flow rate. The rotational speed
of the centrifugal pump was measured using an encoder mounted on the motor shaft.

5 Results and Discussion

5.1 Impact Impeller Wear on Performance Carve

The efficiency of a centrifugal pump against a head as a function of flow rate in both
healthy and faulty cases. Figure 4 depicts the impeller wear of a centrifugal pump
at various flow speeds and under various conditions. Since the pump head and flow
rate are directly proportional to the pump’s efficiency, the flow rate curve of impeller
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Fig. 4 Pump impeller wear on performance curve

wear fault is steadily declining at low flow rates. However, the pump curve is clarified
by the degradation in pump output due to impeller wear defect.

5.2 Time Domain of Acoustic Signals

Figure 5 depicts the airborne sound signals of impeller wear in the time domain in
both the safe and defective cases at various flow speeds. The disparity between the
amplitude of healthy and defective cases can be observed, with the amplitude of
the faulty case being higher than baseline at various flow rates, which may indicate
a system failure. In addition, the acoustic signal generated by the sliding surface’s
deformation. Because of the waveform’s high randomness, it’s difficult to pinpoint
the source of the abnormality.

5.3 Spectrum of Acoustic Signals

Figure 6 depicts the frequency domain of the airborne signal in both healthy and
defective impeller wear fault cases at various flow rates. The typical fault frequencies
the shaft rotatong frequency f0 (48.3 Hz) and blade or vane passing frequency vpf
(338.3 Hz), as well as their associated harmonics, are clearly visible and substantially
higher than the baseline levels. As a result, the acoustic signal’s spectrum reveals
the existence of an impeller wear fault. These frequency peaks, like the vibration
signal, may be polluted by noise produced by fluid flow or other device components.
However, background noise from fluid and other pump components can contaminate
and influence the fault frequencies.
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Fig. 5 Acoustic signal in the time domain

5.4 Impeller Inlet Vane Defect Detection Based MSB
Analysis

This part intends to examine the detection of impeller wear under different flow rats
based on MSB.

(1) Impeller Wear Fault Detection and Diagnosis by MSB Analysis

MSB analysis applied for impeller failure under various conditions to improve fault
diagnosis and identification. Figure 7 indicates the magnitude and coherence of the
MSB of the acoustic signals at a flow rate of 450 l/m. The MSB’s merits use its
superiority to eliminate random wideband noise, so it is able to boost the discrete
components as corresponding MSB coherences, the prominent peaks matching to
the fundamental frequency of 48.3 Hz and its harmonics, as well as the vane passing
frequency of 338.3 Hz, are particularly noteworthy. Where the baseline magnitude
is less noise than the defective one suggesting the existence of impeller fault. In
addition, as in Fig. 8, the higher pulses are seen due to mechanical and hydraulic
effect. Therefore, the consequence of MSB coherence obtained from the average of
the two components was achieved. The findings show that the impeller wear fault
tends to be simple peaks relative to the frequency of the fault, while in the case of
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Fig. 6 Acoustic signal in the spectrum domain

baseline, no peaks exist. Furthermore, the outcome of the magnitude and coherence
of MSB indicates the distinctive difference between good and deficient cases, thus
lower peaks of coherence of MSB. In addition, the higher peaks and pulses triggered
by high hydraulic asymmetry and mechanical pulses suggest that the impeller wear
fault is present.

(2) Comparison of Fault Detection of Impeller Wear Based on Spectrum and
MSB Analysis

Figure 9 plots the magnitudes of the first five harmonics of the drive shaft’s rota-
tional frequency of 48.3 Hz as a function of flow rate for the baseline and two
seeded faults. The first harmonic separates the baseline and the defective conditions
in a clear and meaningful way, but it does not effectively distinguish the two fault
conditions. The second harmonics display a consistent distinction between base-
line and defective conditions as well, but the difference is much smaller than the
first harmonic. The second harmonic can’t tell the difference between the two fault
conditions either. However, the baseline signal produces a higher amplitude peak
than any fault condition for the 3rd, 4th, and 5th harmonics.
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Fig. 7 MSB magnitude and coherence of acoustic signals for at flow rate 433 l/min

Fig. 8 MSB magnitude and coherence of acoustic signals for at flow rate 150 l/min
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Fig. 9 Acoustic power spectrum plots for the first five harmonics of 48.3 Hz with flow rate

The magnitudes of the MSB peaks for the first five harmonics of the shaft drive
frequency (48.3 Hz) derived from the baseline and two seeded faults are shown
in Fig. 10. Furthermore, compared to a spectrum study under various flow speeds,
the MSB result of impeller wear provides useful data and a good carve pattern for
separating all harmonics in both safe and defective circumstances. There is a strong
separation between baseline and fault conditions for the first, particularly the fifth
harmonics (except at a flow rate of 350 l/min for the first harmonic). However, there
is no consistent separation of the two faults. At a flow rate of 350 l/min, the 2nd, 3rd,
and 4th harmonics display no noticeable separation of the minor fault and baseline
and only distinguish the baseline and large fault.



398 A. Daraz et al.

100 150 200 250 300 350 400 450
Flow rate(l/m)

0

5

A
m

pl
itu

de
(p

a) 10-9 Acoustic MSB 1st Harmonics

Baseline Impeller Wear small Impeller Wear large

100 150 200 250 300 350 400 450
Flow rate(l/m)

0

0.5

1

A
m

pl
itu

de
(p

a) 10-9 Acoustic MSB 2nd Harmonics

100 150 200 250 300 350 400 450
Flow rate(l/m)

0

5

A
m

pl
itu

de
(p

a) 10-10 Acoustic MSB 3rd Harmonics

100 150 200 250 300 350 400 450
Flow rate(l/m)

0

0.5

1

A
m

pl
itu

de
(p

a) 10-9 Acoustic MSB 4th Harmonics

100 150 200 250 300 350 400 450
Flow rate(l/m)

0

1

2

A
m

pl
itu

de
(p

a) 10-9 Acoustic MSB 5th Harmonics

Fig. 10 The MSB of the first five harmonics of 48.3 Hz in the acoustic signals with flow rate

The MSB performs better at low frequencies for all flow rates due to its ability to
eliminate wideband, low-frequency noise. As the flow pressure drops, the vibration
amplitude for the large impulses of the impeller wear fault of the pump increases.
As a result, it demonstrates that MSB analysis can extract characteristic modulations
indicative of impeller wear by largely removing noise effects on signals.

Figure 11 compares the power spectrum and MSB examination of the acoustic
signals for the baseline and two seeded wear faults at the vane passing frequency
(338.3 Hz). There is a clear distinction between baseline and impeller wear defects
for both the power spectrum and MSB plots. The findings in Fig. 11b show a more
thorough separation and a good distinct distinction between the health and two plots
of impeller faults. TheMSB results indicate a strong separation between the baseline
and faults for all flow speeds, but not between the two-seeded defects. Despite the
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(a)

(b)

Fig. 11 a Power spectrum and b MSB for the vane passing frequency (338.3 Hz) of the acoustic
signal

fact that the sound signals were distorted by background noise, it demonstrated the
ability to extract modulation characteristics of impeller wear faults. The results of
the experiment show that the acoustic signal outperforms vibration analysis, whether
analysed using MSB analysis or the power spectrum.

6 Conclusion

The experimental analysis of airborne sound signals linked to impeller small and large
inlet vane wear was discovered in this study. Furthermore, fault identification and
diagnosis approaches were carried out separately using common spectrum analysis
and advancedMSB analysis. At the fundamental shaft frequency and their harmonics
as well as the blade passing frequency. The BMS produces better results than the
spectrum. It also provides a good separation between all harmonics at different flow
rates, which is useful for online monitoring. As a result, the proposed approach
will successfully identify and diagnose the impeller wear fault, which is triggered
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artificially by the test pump. Furthermore, MSB’s unique ability to reduce noise and
demodulate nonlinearity allows for this high diagnostic performance quality. As a
result, a good distinction of impeller wear defects can be achieved by averagingMSB
peaks in the low-frequency range. Furthermore, the impeller defect caused by fluid
flow interaction through the inlet vane suggests more definite changes due to the
wear fault, which causes a significant decrease in the flow rate curve.
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Fault Diagnosis for Gas Turbine Rotor
Using MOMEDA-VNCMD

Yingjie Cui, Hongjun Wang, and Xinghe Wang

Abstract It is important rotating machinery for gas turbines in aviation, ship-
building, and other industries. Given the high failure rate of the gas turbine rotor
system, fault diagnosis of the rotor system is completely vital. Aiming at the fault
diagnosis of the gas turbine rotor, we adopt a method based on Multipoint Optimal
Minimum Entropy Deconvolution Adjusted (MOMEDA)—Variational Nonlinear
Chirp Mode Decomposition (VNCMD) in this paper. For the gas turbine rotor test
rig data, the original data is first analyzed for effective value, the fault signal is
extracted, the fault signal is filtered by MOMEDA, the processed filtered signal is
subjected to VNCMD decomposition, and the signal is reconstructed according to
the magnitude of spectral kurtosis, and passed Envelope analysis to extract fault
characteristics. This paper analyzes the data of the gas turbine rotor test bench, and
the results show that the proposed method has achieved excellent results in the fault
diagnosis of the gas turbine rotor.

Keywords Gas turbine rotor · Variational nonlinear chirp mode decomposition ·
Multipoint optimal minimum entropy deconvolution adjusted · Fault diagnosis

Y. Cui · H. Wang (B) · X. Wang
School of Mechanical and Electrical Engineering, Beijing Information Science and Technology
University, Beijing 100192, China
e-mail: wanghongjun@bistu.edu.cn

Y. Cui
e-mail: Cyingjie123@163.com

Beijing International Science Cooperation Base of High-end Equipment Intelligent Perception
and Control, Beijing 100192, China

H. Wang
Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing
100192, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_33

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_33&domain=pdf
mailto:wanghongjun@bistu.edu.cn
mailto:Cyingjie123@163.com
https://doi.org/10.1007/978-3-030-99075-6_33


404 Y. Cui et al.

1 Introduction

Gas turbine is very important in industrial production. It has a complicated structure
and a special working environment [1], and it runs continuously for a long time.
During the operation of gas turbines, rapid start and stop and rapid change of working
conditions often occur.When the working conditions change rapidly, that is, the rotor
speed changes rapidly, the torque that the rotor bears will increase greatly. Under the
impact of alternating stress for a long time, Gas turbine rotors are prone to failure.
Therefore, it is very important to analyze rotor vibration signals and perform state
monitoring and fault diagnosis on the rotor system.

With the development of signal processing technology, people have higher and
higher requirements for fault diagnosis technology. In recent years, a variety of
fault diagnosis methods have emerged at home and abroad, including time series
analysis, empirical decomposition, wavelet analysis, neural network, etc. For non-
stationary and noisy signals, one of the more commonly used methods is the Empir-
ical Mode Decomposition (EMD) [2]. Empirical mode decomposition is an adaptive
algorithm, suitable for analyzing non-stationary and nonlinear phenomena because
it can adaptively decompose the signal into intrinsic mode functions and then use
Hilbert transform to select appropriate internal mode functions to construct the Enve-
lope spectrum. However, empirical mode decomposition has the problem of modal
aliasing. In order to overcome this problem, Ensemble Empirical Mode Decomposi-
tion (EEMD) [3] is proposed, and it is widely used in fault diagnosis. Although EMD
has been improved inmany versions, there are alwaysmodal aliasing and end effects.
Recently, Peng Zhike’s team proposed a Variational Nonlinear Chirp Mode Decom-
position (VNCMD) [4] method, which is based onVariationalModal Decomposition
(VMD) [5], which can characterize the signal as multiple FM and AM component
phases. Overlay, use bandwidth variational constraints to simultaneously filter out
target components, thereby avoiding backward errors caused by traditional recursive
filtering, and is widely used in fault diagnosis of rotating machinery. Guo et al. [6]
used bearing fault diagnosis under variable speed conditions to accurately locate the
type of bearing defect; Niu et al. [7] used it in the lathe cutting process to effectively
identify the existence and degree of cutting chatter; Chen et al. [8] Used in early fault
detection and multi-feature extraction for rotor rubbing.

In the acquisition of the gas turbine rotor signal, since the sensor is installed
outside the casing, the measured signal is the signal attenuated by the system, and it
is difficult to extract the feature. Sun et al. [9] usedMinimumEntropy Deconvolution
(MED) and envelope cepstrum methods to extract early fault feature frequencies.
Recently,McDonald et al. [10] proposed a newMED algorithm-Multipoint Optimal
Minimum Entropy Deconvolution Adjusted (MOMEDA) in Optimized Minimum
Entropy Deconvolution (OMED). This method takes the maximum D norm as the
goal, and constructs the target vector according to the pre-estimated fault frequency,
and does not use the iterative method to find the coefficients of the optimal filter
for understanding the convolution. Zhang et al. [11] used the combination of the
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EMD method and the MOMEDA method to detect parallel shaft gearbox failure,
and verified that this method is superior to the traditional method.

This article combines the MOMEDA method with the VNCMD method.
According to the gas turbine rotor vibration signal, the fault signal is processed
by MOMEDA filtering, and then VNCMD is used to decompose and reconstruct the
fault signal, and the fault signal is analyzed through the envelope spectrum.

2 Methods

2.1 A Brief Introduction of MOMEDA

Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is a
deconvolution algorithm proposed by Geoff L to extract periodic pulses. It mainly
solves the optimal filter through a non-iterativemethod to extract continuous periodic
pulses. The main process of the algorithm is:

Vibration signal y(x) collected by the sensor:

y(s) = h(s)x(s) + n(s) (1)

In Eq. (1), n(s) is noise, x(s) is the impact sequence, h(s) is the transfer function,
and the purpose of MOMEDA is to find an FIR filter to restore the output result y(s)
as much as possible. Impact signal.

In order to obtain continuous shock pulses, MOMEDA is a deconvolution algo-
rithm for multi-pulse target recognition at a certain position. The concept of MDN
is introduced as Eq. (2), and the maximum value is MOMEDA, as Eq. (3):

MDN
(�y, �t) = 1

∥∥�t∥∥ · �t T �y
‖�y‖ (2)

MOMEDA : maxMDN
(�y, �t) = max

�f

�t T �y
‖�y‖ (3)

Among them, �t is to determine the target vector of the shock pulse position d,
and normalize the optimal target obtained by the solution. The target solution will
change as the sampling frequency changes, and pulses of different periods can be
extracted at the same sampling frequency. At the same time, the target vector �t can
distinguish the impact component and noise component of the original signal.

The extreme value of Eq. (3) can be obtained by taking the derivative of the filter

coefficients
( �f = f1, f2, . . . , fL

)
and simplifying it:

t1
−→
M1 + t2

−→
M2 + · · · + tN−L

−−−→
MN−L = X0�t (4)
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Set Eq. (4) equal to zero, it will become:

‖�y‖−1X0�t − ‖�y‖−3�t T �yX0 �y = �0, that is : �t T �y
‖�y‖2 X0 �y = X0�t (5)

Since �y = X0 �f and assuming that
(
X0XT

0

)−1
exists:

�t T �y
‖�y‖2

�f = (
X0X

T
0

)−1
X0�t (6)

The MOMEDA filter and output solution can be simply summarized as Eqs. (7),
(8) and (9):

�f = (
X0X

T
0

)−1
X0�t (7)

X0 =

⎡

⎢⎢⎢
⎢⎢
⎣

XL XL+1 XL+2 · · · XN

XL−1 XL XL+1 · · · XN−1

XL−2 XL−1 XL · · · XN−2

· · · · · · · · · . . . · · ·
X1 X2 X3 · · · XN−L+1

⎤

⎥⎥⎥
⎥⎥
⎦

L by N−L+1

(8)

�y = XT
0

�f (9)

Therefore, the multiple of Eq. (7) is the solution of the MOMEDA filter coeffi-
cients, and then the convolution is performed according to the obtained coefficients,
which avoids the influence of iteration on the solution of its coefficients. Since the
filter can effectively extract periodic connected pulses, it avoids the influence of not
being an integer when selecting periodic parameters.

2.2 A Brief Introduction of VNCMD

The VNCMD method characterizes the signal as the superposition of multiple
frequency and amplitude modulation components. For a multi-component broad-
band modulation signal, the original broadband modulation signal is converted into
a narrowband signal through demodulation technology, which can be characterized
as:

x(t) =
L∑

i=1

{ai (t) cos
(
2π

t∫
0
f̃i (s)ds

)
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+ bi (t)sin

(
2π

t∫
0
f̃i (s)ds

)
} + n(t) (10)

It is composed of L modes, and n(t) is the background noise component.
Where f̃i (t) and fi (t) represent the estimated instantaneous frequency and actual
instantaneous frequency of the i-th mode, respectively, ai (t) and bi (t) are the two
demodulation components:

ai (t) = Ai (t) cos

(
2π

t∫
0

(
fi (s) − f̃i (s)

)
ds + φi

)
(11)

bi (t) = −Ai (t) cos

(
2π

t∫
0

(
fi (s) − f̃i (s)

)
ds + φi

)
(12)

According to Eqs. (11) and (12), if the estimated instantaneous frequency is equal
to the actual instantaneous frequency, f̃i (t) = fi (t), the bandwidth of the demodu-
lated component is the smallest, so a constraint model is constructed to evaluate the
bandwidth of the demodulated signal:

min
{ai }{bi }

{
f̃i
}

{
L∑

i=1

∥∥a′′
i

∥∥2
2 + ∥∥b′′

i

∥∥2
2

}

s.t.

∥∥
∥∥∥
x(t) −

L∑

i=1

(ai (t) cos

(
2π

t∫
0
f̃i (s)ds

)
+ bi (t)sin

(
2π

t∫
0
f̃i (s)ds

)
)

∥∥
∥∥∥
2

≤ ε (13)

In order to solve the constrained optimization problem, Lagrangian multipliers
and quadratic penalty terms are introduced to optimize the reconstruction problem.
The discrete form is:

L({ai }{bi }{ fi }, ω, λ) =
L∑

i=1

(‖�ai‖22 + ‖�bi‖22)

+ λT

(

ω +
L∑

i=1

(Ciai + Dibi ) − x

)

+ α

2

∥∥∥∥∥
ω +

L∑

i=1

(Ciai + Dibi ) − x

∥∥∥∥∥

2

2

(14)

Among them, ϕi (t) = 2π
t∫
0
f̃i (s)ds, � is the second-order difference operator,

λ and α are the Lagrange multiplier operator and the second-order penalty term
parameters, respectively, ω is the error term.

Use the alternating direction multiplier optimization algorithm to optimize
the instantaneous frequency and solve the modal components, and update the



408 Y. Cui et al.

demodulation components:

aL+1
i =

(
2

α
�T� + CT

i Ci

)−1

CT
i

⎛

⎝x −
∑

m �=i

Cmam −
∑

m

Dmbm − ω − 1

α
λ

⎞

⎠ (15)

bL+1
i =

(
2

α
�T� + DT

i Di

)−1

DT
i

⎛

⎝x −
∑

m

Cmam −
∑

m �=i

Dmbm − ω − 1

α
λ

⎞

⎠

(16)

Firstly, the ai (t) and bi (t) can be calculated by the two demodulation components
of Eqs. (15) and (16) to calculate the instantaneous frequency increment of themodal,
and update the instantaneous frequency f̃i (t):


 f̃ L+1
i (t) = − 1

2π

d

dt

(

arctan

(
bL+1
i (t)

aL+1
i (t)

))

= bL+1
i (t) · (

aL+1
i (t)

)′ − aL+1
i (t) · (

bL+1
i (t)

)′

2π
((
aL+1
i (t)

)2 + (
bL+1
i (t)

)2) (17)

f L+1
i = f Li + γ · 
 f L+1

i (18)

Among them, γ is the penalty parameter, and 0 < γ < 1 is the proportional
parameter used to stabilize the algorithm.

Finally update the Lagrange multiplier:

λL+1 = λL + α

(

ωL+1 +
L∑

i=1

x L+1
i − x

)

(19)

The above iterative decomposition process is repeated until the iterative stop
condition is satisfied, and L broadband eigenmode components are obtained.

2.3 Fault Diagnosis Based on MOMEDA-VNCMD Method

In this paper, a certain type of gas turbine rotor system is studied, and the fault
diagnosis of the gas turbine rotor system is realized by the method of combining
VNCMD and MOMEDA. First obtain the experimental data through the test bench,
perform effective value analysis on the obtained experimental data, extract the fault
time period through the effective value analysis, and extract the fault data; first
perform the MOMEDA filter processing on the extracted fault data; The signal
undergoes short-time Fourier transform, extracts the high-energy frequencies inside,
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and performs VNCMD decomposition according to these high-energy frequencies
to obtain multiple modal components; then calculates the spectral kurtosis value
of each modal component, and extracts the largest three. The modal component
corresponding to the spectral kurtosis is reconstructed, the reconstructed signal is
enveloped, and the fault feature is extracted from the envelope spectrum for fault
diagnosis. The flowchart of this method is shown in Fig. 1.

Fig. 1 MOMEDA-VNCMD flow chart
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3 Data Analysis and Verification

3.1 Data Acquisition of Gas Turbine Rotor Failure

In order to verify the effectiveness and practicability of the method proposed in
this article, data from a gas turbine rotor test bench of a certain company is used
for analysis. Before leaving the factory, the gas turbine will be tested on the test
bench to test the vibration characteristics of the gas turbine under various working
conditions to detect whether there are manufacturing problems and whether the
performance quality meets the requirements. Due to the installation of sensors at
different positions and different angles, the measured values vary greatly. After years
of experimentation, the company has determined the installation position of the
sensor. As shown in Fig. 2, a speed sensor is installed at the radial position of the
front end of the low-pressure compressor casing. As the front measuring point, a
speed sensor is installed at the radial position of the casing between the high-pressure
compressor and the combustion chamber as a rear measuring point, and a sensor for
measuring the speed of the high-pressure rotor is installed inside the gas engine.

For a certain type of dual-rotor gas turbine of the company, the vibration data
during the test on the test bench was collected. The sampling frequency is 6000 Hz,
and the experiment time is 2–3 h. When the gas turbine is tested on the test bench,
due to the relatively long experiment time and the large amount of data, the vibration
limit set by the company is an effective value of 8 mm/s. Based on an analysis of
experimental data, the high-pressure rotor speed changes continuously undermultiple
working conditions, the sampling frequency is 6000 Hz, and the experimental time
lasts 8000 s. The effective value analysis of the obtained data is shown in Fig. 3. The
dotted line is the change of the high-voltage rotor frequency, the dashed line is the

Fig. 2 Schematic diagram of gas turbine vibration test
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Fig. 3 Gas turbine sensor effective value diagram

vibration limit value, the solid line is the effective value of the vibration data at the
previous measurement point, and the dotted line is the post measurement point. The
effective value of the vibration data. It can be found from the gas turbine sensor data
effective value analysis graph that the rotational speed changes in various working
conditions during the experiment. The effective value of the vibration of the front
measuring point and the effective value of the vibration of the rear measuring point
are changing with the working condition, and the effective value of the vibration
of the front measuring point is Vibration exceeding the limit occurred in several
working conditions, and there was no excessive vibration at the rear point.

3.2 Analysis of VNCMD-MOMEDA Method

Since the vibration exceeds the limit at the front point, we use the filtered data of the
front point for the next analysis. First, we extract the data that exceeds the limit in the
first segment of the front-side point filtering, and we resample the original fault data.
Figure 4 is the time domain signal diagram after we extract the resampled fault data.
The accuracy of VNCMD mainly depends on the choice of the initial instantaneous
frequency caused by noise and other aspects. Therefore, we first use the MOMEDA
filtering method to preprocess the original signal to reduce the impact of noise. The
most important thing in the use of the MOMEDA algorithm is the selection of the
filter length. Here we have obtained through experiments the filter length selection
710 is a better value. Figure 5 is a time-domain diagram after we MOMEDA the
fault signal.
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Fig. 4 Time domain diagram of fault signal

Fig. 5 Time domain image after MOMEDA filtering

We perform time–frequency analysis on the filtered data and do a short-time
Fourier transform to obtain a time–frequencygraph. The transformed time–frequency
graph is shown in Fig. 6. The energy of the signal increases from low frequency
to high frequency first and then attenuates gradually. Several mid-frequency high-
energy curves can be found in the time–frequency image. The intermediate frequency
fluctuates with the speed. The higher the frequency, the greater the fluctuation and
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Fig. 6 Time–frequency diagram of fault signal

the smaller the energy. From the time–frequency diagram, we can see that the energy
of the instantaneous frequency is concentrated in 50–150 Hz (here, 50 and 150 are
just a fuzzy concept). The next step is VNCMD decomposition. VNCMD decom-
position needs to set the initial instantaneous frequency. The setting of the initial
instantaneous frequency will affect our subsequent analysis, so we need to extract
multiple high-energy fault frequencies. According to the actual situation and through
many experiments and analyses, the effect of extracting 6 fault frequencies is better
than other effects, so here we extract 6 fault frequencies. The choice of these 6
fault frequencies is mainly selected from the energy concentrated in the instanta-
neous frequency. We choose four instantaneous frequencies from 50 to 150 Hz, one
for each below 50 Hz and one above 150 Hz. Here, the estimated instantaneous
frequency of VNCMD is set to these 6 high-energy frequencies, and then the signal
is subjected to variational nonlinear modal decomposition to obtain 6 components,
and the time domain and frequency domain diagrams of the 6 components are drawn
separately. The drawing result is shown in Fig. 7.

Next, we calculate the kurtosis value of each signal decomposed, and the kurtosis
value is shown in Table 1. According to the value of kurtosis, through multiple
experiments, we select the first, third, and fifth components for reconstruction.

The time–frequency diagramof the reconstructed signal is shown in Fig. 8, and the
envelope spectrum is shown inFig. 9. FromFig. 9,we can see the frequencymultiplier
component of the signal. We combine the effective value map of the original data
and do the same analysis on the following fault signals. The abnormal vibration is
mainly caused by the low-pressure rotor. This gas turbine has a rotor. Temporary
bending, which is the same as the predicted result. Since the experimental data is
the data on the test bench, it is less affected by the noise effect. If it is in practical
application, the effect on noise reduction will be better.
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Fig. 7 VNCMD component decomposition

Table 1 The kurtosis value of each component

Portion IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Kurtosis 1.9525 1.5034 1.6398 1.5409 2.7322 1.6046

Fig. 8 Reconstruct the time domain diagram
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Fig. 9 Reconstructed signal envelope spectrum

4 Conclusion

A fault diagnosis method for gas turbine rotor is based on MOMEDA-VNCMD.
Firstly perform effective value analysis on the original signal to extract the fault
signal; then resample the fault signal and perform MOMEDA filtering; perform
short-time Fourier transform from the filtered signal to extract the instantaneous
with large energy Frequency, then VNCMD decomposition and reconstruction, and
envelope analysis. VNCMD has good applicability for processing data with high
speed, effectively avoiding the limitation of time–frequency resolution in traditional
time–frequency analysis, and overcoming the narrow-band constraint of adaptive
decomposition. When a gas turbine fails, this method can be used for analysis and
verification.
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of Bearing Fault Based on SDP-CNN

Wang Xing-he, Wang Hong-jun, Cui Ying-jie, and Liu Ze-rui

Abstract In view of the problems that the signal features are difficult to extract
when a fault occurs in a rolling bearing, and the time domain image of the original
vibration signal cannot obviously show the feature differences of different faults, and
the direct deep feature learning and recognitionwill have a large impact on the system
performance, etc., a bearing fault classification and recognition method based on
symmetry dot pattern-convolutional neural network (SDP-CNN) is proposed. First,
the SDP method is used to analyze the vibration signals of different faults, and the
signal SDP images obtained can clearly show the feature differences of different
faults; then, the SDP images are input into the CNN network for feature learning and
state recognition; finally, Validation was performed using the Case Western Reserve
University (CWRU) bearing dataset. The results show that the recognition accuracy
of this method is 97.5%, which further verifies that the deep learning algorithm can
adaptively extract the features of the SDP image and effectively identify bearing
faults.

Keywords Symmetry dot pattern (SDP) · Convolutional neural network (CNN) ·
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1 Introduction

Technology has been advancing in recent years, the industrial level has continued to
improve, the integration of CNCmachine tools has become better and better, and the
manufacturing process has become more automated. However, in order to meet the
requirements of industrial production, machine tools need to operate continuously.
Long-term operation of the equipment will definitely cause damage or evenmalfunc-
tion [1]. Even a small failure will affect the working performance of the machine
tool, and then affect the processing quality of the product, causing economic losses
[2]. Rolling bearings are one of the most important parts in CNC machine tools,
and its fault identification is of far-reaching significance for maintaining the working
performance of the machine tools and improving the quality of product processing
[3]. Fault identification of the rolling bearings of CNC machine tools can ensure the
processing quality of the product and the work efficiency of the CNC machine tools,
and avoid the development of small faults into major faults that affect the work of
CNC machine tools due to failure to discover in time.

In [4, 5], an SDP method was proposed and applied to fault visual diagnosis.
It transforms a one-dimensional time series into a snowflake pattern composed of
mirrored symmetric points in polar coordinates, and reflects the changes in the ampli-
tude and frequency of the sound signal or vibration signal through the difference of
the patterns, which can more intuitively reflect the status of each fault.

The deep learning neural network simulates the brain nervous system with a rich
hierarchical structure, and extracts the features of the network input step by step
to form an abstract high-level feature representation [6]. It is called deep learning
because the deep learning network can learn the essential characteristics of massive
data through the layer-by-layer feature extraction method. At the same time, this
method organically combines feature extraction and feature recognition, and adap-
tively extracts and learns features [7]. CNN is a true multilayer structural learning
algorithm in deep learning, which consists of multiple convolutional layers alter-
nating with downsampling layers, and then connects one or more fully connected
layers and the output layer to obtain the classification result of (image) features in
the output layer [8]. The core idea is to reduce the free parameters of the network,
reduce the complexity of the network, and improve the execution efficiency of the
network through the sharing of local receptive fields and neuron weights.

Since the original 1D vibration signals and time domain images cannot obviously
show the feature differences between each fault, the direct deep feature learning and
recognition of vibration signals will have a large impact on the system performance.
In order to show the signal features, it is convenient for the CNN model to perform
feature learning on the signal. Therefore, this paper proposes a bearing fault classifi-
cation and recognition method based on SDP-CNN. First, the SDPmethod is used to
analyze the vibration signals of different faults, and the signal SDP images obtained
can clearly show the feature differences of different faults; then, the SDP images are
input into the CNN network for feature learning and state recognition; finally, the
bearing data of Case Western Reserve University (CWRU) was verified.
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2 Symmetry Dot Pattern (SDP)

SDP analysis method is a new technology that combines signal processing and image
analysis [9]. Compared with other methods, the SDP method is simple to calculate
and can intuitively show the difference of different vibration states. At the same time,
this method can convert the time-domain vibration signal into polar coordinates and
turn it into an SDP graph, and then intuitively reflect the difference in the graph.
The characteristics of the fault status information [10]. For time domain vibration
signals: X = {x1, x2, . . . , xi , . . . , xn}, transform it into a point in polar coordinate
space by SDP method S[r(i), θ(i), φ(i)] (see Fig. 1).

Among them, r(i) represents the radius of polar coordinates, θ(i) represents the
angle of counterclockwise deflection along the mirror plane in polar coordinates,
and φ(i) represents the angle of clockwise deflection along the mirror plane in polar
coordinates. The calculation formulas for the three are as follows.

r(i) = xi − xmin

xmax − xmin
(1)

θ(i) = θs + xi+l − xmin

xmax − xmin
ξ (2)

φ(i) = θs − xi+l − xmin

xmax − xmin
ξ (3)

In the formula, xmax is the maximum amplitude of signal X , xmin is the minimum
amplitude of signal X , l is the time interval parameter, θ is the rotation angle of
the mirror symmetry plane, and ξ is the amplification factor (ξ ≤ θ ) [11, 12]. θs =
360 s/n, where s = 1, 2, . . . , n, where n is the number of mirror-symmetrical planes.

The SDP analysis method converts the time-domain waveform of the signal into
an image in polar coordinates, and displays the characteristics of the vibration signal
through the image. Compared with other image analysis methods, SDP can show the
difference of different vibration forms more clearly, and at the same time has a better
processing effect on noise signals.

Fig. 1 Schematic diagram
of SDP algorithm analysis
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3 Convolutional Neural Network (CNN)

The CNNmodel is a deep learning method with image recognition as the core of the
application. The information transfer direction within the model flows unidirection-
ally from input to output. Therefore, it is also called a feedforward neural network
and has been widely used in many fields [13]. The CNNmodel structure is composed
of input layer, convolution layer, pooling layer, full link layer and output layer. The
model is shown in Fig. 2. Among them, the model structure can be expanded by
expanding the convolutional layer, the pooling layer, and the fully connected layer.
The basic working principle of the CNN model is as follows: First, the input image
is subjected to the convolution kernel sliding operation to extract the features, the
convolutional layer and the pooling layer alternately extract the features, and then
the features are integrated and input into the fully connected layer for feature fusion,
and finally Discriminate the classification output result.

(1) Input layer: It is to input the data signal into the network composed of two-
dimensional plane, so that the convolutional layer can perform feature learning
afterwards.

(2) Convolutional layer: It is an important functional level of the CNN model,
which mainly performs convolution operations on input data to achieve feature
extraction. The image data feature extraction process requires the participa-
tion of convolution kernels, training weights, and activation functions. Among
them, the convolution kernel can be understood as the feature extractor of
the input image data. The convolution operation means the non-linear feature
representation of the input data. The convolution kernel slides according to the
set step size to realize the continuous convolution operation of the input data
to obtain brand new Feature map. The formula for convolution operation is as
follows.

yi = f (ci ∗ xi ) (4)

Fig. 2 Convolutional neural network model
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where: yi—the eigenvalues obtained by convolution operation; ci—convo-
lution kernel involved in the operation; xi—input data involved in the operation;
f (∗)—non-linear activation function.

(3) Pooling layer: Also known as the down-sampling layer, the pooling layer
reduces the size of the feature map obtained by the convolution operation
to complete the secondary feature extraction of the feature map. The pooling
operation needs to select a square small area in the feature map, and combine
the feature values in the area to complete the pooling operation to obtain a
brand new feature map.

(4) Fully connected layer: Splice all the feature maps of two-dimensional planes
into one-dimensional features as the input of the fully connected network, and
obtain the output of this layer by weighted summation of the inputs and the
response of the activation function.

(5) Output layer: Classify and recognize the feature vectors finally extracted from
the CNN model. Generally, the Softmax classifier is used to implement the
classification method.

4 Fault Classification Model

The fault classification model based on SDP-CNN is shown in Fig. 3. First, the
collected vibration signals are divided into multiple signals of a certain length; then
the vibration signals are converted into SDP images by the SDPmethod, and they are
randomly divided into training samples and test samples. From the SDP map of each
type of signal, 80% is randomly selected as the training sample, and the rest are used
as the test sample, which is input into the deep learning convolutional neural network
for training. The deep learning convolutional neural network model is a two-layer
convolution pooling: the number of convolutions in the first layer is 6, and the size
of the convolution kernel is 5 × 5; the number of convolutions in the second layer
is 12, and the size of the convolution kernel is 5 × 5; The size of the sampling pool
core is 2 × 2 in each layer; the network output is a 4 × 1 feature vector.

5 Case Analysis

In order to verify the effect of the convolutional neural model on bearing fault diag-
nosis, this paper selects the rolling bearing public data of Case Western Reserve
University (CWRU) for experimental verification. The CWRU bearing data acqui-
sition system is shown in Fig. 4. The system uses acceleration sensors to collect the
vibration signals of the motor drive end and the fan end. Since the signal collected
by the drive end is more comprehensive and stable, this experiment selects the drive
end signal with a sampling frequency of 12 kHz as the experimental data.
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Fig. 3 Fault classification model

Fig. 4 CWRU bearing data acquisition system
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In the CWRU data set, the fault types of bearings are divided into ball faults,
inner ring faults and outer ring faults. The fault diameters are divided into four
sizes: 0.007, 0.014, 0.021, and 0.028 inch. Therefore, in the experiment, for the three
types of faults: ball fault, inner ring fault and outer ring fault, the fault data directly
corresponding to the 0.007 inch fault is selected as the experimental data. Including
normal bearing data, the data set constructed in the experiment contains a total of
four categories. In addition, the CWRU data set contains four types of data collected
at speeds of 1797, 1772, 1750, and 1730 rpm. The experimental data selected in this
experiment are all bearing signal data collected at a speed of 1730 rpm. There are 200
fault types for each type. For the sample, the experiment selected a bearing signal
with a length of 32 × 32 as the input of the neural network, and the training set and
the test set were divided according to the ratio of 8:2.

The time domain diagram of the different states of the bearing is shown in Fig. 5.

(a) normal (b) Inner ring failure 

(c) Rolling elemen t failure (d) Outer ring failure 

Fig. 5 Time domain diagram of different states
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Since the SDPmethod has the same shape of the symmetry plane at each position,
only one symmetry plane in one position needs to be extracted to display different
signal characteristics. It can be seen from Fig. 6 that SDP analysis can fully display
the bearing vibration signal characteristics under different fault conditions. The main
difference between the SDP images of different fault conditions is the concentra-
tion and shape characteristics of the points around the mirror plane, which can be
more obvious through the SDP diagram. The earth shows the difference of different
vibration states, and then distinguishes them.

After the SDP image is generated, it is used as the input of the convolutional
neural network. After the training is completed, the test set is input for analysis and
diagnosis. The diagnosis results are shown in Table 1.

Using the traditional BP neural network and comparing with the method in this
paper, introducing the fault diagnosis rate evaluation index, the formula is as follows,
and the calculation result is shown in Table 2.

Fig. 6 SDP images in different states
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Table 1 Diagnosis results

Actual/diagnostic Normal Inner circle Rolling element Outer ring

Normal 40 0 0 0

Inner circle 2 38 0 0

Rolling element 1 0 39 0

Outer ring 1 0 0 39

Table 2 Different methods
of diagnosis

Fault diagnosis method DR (%)

BP 88.5

CNN 97.5

DR = T N

T N + FP
(5)

In the formula, T N means that the fault state is diagnosed as a fault state, and
FP means that the fault state is diagnosed as a normal state.

6 Conclusion

This research proposes a fault diagnosismethod based on symmetry point pattern and
convolutional neural network. Using SDP diagrams canmore clearly show the differ-
ence between different vibration states, and then distinguish them; CNN can directly
learn from low-level to high-level intelligent learning to get a good feature repre-
sentation, avoiding the extraction and selection of artificial features, and enhances.
The intelligence of the recognition process. Finally, CNN is used for SDP image
recognition, which finally realizes the recognition of bearing faults.
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Spindle Health Assessment Based
on Rotor Perception

Zhuangzhuang Zhang, Hongjun Wang, Jishou Xing, Fengshou Gu,
and Xinghe Wang

Abstract Due to the complex structure of the spindle and many influencing factors,
the failure analysis of the spindle has always been a focus. Use Soildwoks to model
the Dalian machine tool VDL600 machine tool spindle, analyze the modalities of the
spindle andmain components through theANSYSWorkbench platform, and analyze
the possible resonance frequencies. Taking the data measured by Lion’s gyration
accuracy tester as a reference, the MEMS acceleration sensor is used to obtain the
vibration signal of the spindle, and the modulation signal bispectrum (MSB) analysis
method is used to obtain the characteristic frequency of the vibration signal. By
comparing and analyzing the characteristic frequency of the vibration signal and the
modal analysis result, it can be proved that theMSBmethod can extract the resonance
frequency of the spindle well.

Keywords MSB · Rotation accuracy · Modal · ANSYS workbench

1 Preface

The machine tool plays an important role in the modernization of the national
economy, and the spindle plays a very important role in the accuracy of the machine
tool. Therefore, a large number of scholars at home and abroad analyze the failure of
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the spindle from different aspects. Deng Sanpeng et al. [1] used acoustic sensors to
collect the noise signal of the machine tool spindle, and obtained fault frequency
information through wavelet packet and envelope spectrum analysis to monitor
spindle faults. Sun Wei et al. [2] analyzed the dynamic characteristics of the spindle
at high speed, low speed and static state by establishing a finite element model. Li
Zhenyu et al. [3] proposed amethod based onBP neural network and error calibration
fitting to predict the axis trajectory error of the machine tool spindle to reflect and
predict the operating state of the spindle. Li Mengmei et al. [4] proposed an algo-
rithm for spindle mechanical identification and fault diagnosis to detect the shaft
misalignment at the front end of the spindle. Memanshi et al. [5] used the holo-
graphic spectrum theory to analyze the vibration characteristics of the spindle, and
found out the reasons for the deterioration of the rotation accuracy of the spindle as
the speed increased. Hu Teng et al. [6] studied the influence of centrifugal force and
gyro torque on the ‘spindle-bearing’ system at high speeds. This article attempts to
explain the cause of the failure of the spindle through the dynamic analysis of the
spindle and the vibration signal.

2 Spindle Dynamics Modeling

2.1 Build a Three-Dimensional Model

In the article, the main axis of Dalian machine tool VDL600 is taken as the analysis
object. The main axis of the machine tool is shown in Fig. 1a, and the machine tool
is a vertical machine tool. The structure of the main axis is shown in Fig. 1b. Use
Soilworks to model the spindle as shown in Fig. 1c. The spindle is mainly composed
of a housing, a spindle, a bearing, a broach mechanism and a BT40 tool holder. The

(a) machine        (b) Spindle structure diagram  (c) spindle model 

Fig. 1 Three-dimensional model of the spindle
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bearings are all angular contact ball bearings, and the front bearing model of the
spindle is 7014C TYN DBD LP4 (NSK), the spindle rear bearing model is 7012C
TYN DBD LP4 (NSK).

2.2 ANSYS Workbench Modal Analysis

Modal analysis theory

Since the bearing is a continuous solid structure in the form of a component, it can be
approximately equivalent to a discrete system with N degrees of freedom according
to the dynamic modeling theory. The motion equation of the spindle system is:

Mü + Cu̇ + Ku = F (1)

In the formula, M is the system mass matrix; the system damping matrix C =
Cs − �Gb − �Gd , Cs is the structural damping; the system stiffness matrix K =
Kb + Kb

p − �2Mb
c is the axial load The additional stiffness matrix caused by; Gd is

the turntable rotation matrix.
When the system is freely vibrating, F= 0, and ignoring the influence of damping

on the modal characteristics, the differential equation of undamped free vibration of
the bearing system is established, namely

Mü + ku = 0 (2)

where: M is the mass matrix; ü is the acceleration vector; K is the stiffness matrix;
u is the displacement vector.

Spindle modal analysis

When the spindle system rotates at a high speed, the centrifugal force changes the
deformation of the contact area between the inner raceway and the outer raceway of
the angular contact ball bearing, so that the radial support stiffness of the bearing
gradually decreases with the increase of the angular velocity, and the softening of the
bearing stiffness occurs. The spindle will also produce shafting centrifugal force and
gyro torque under high-speed operation. The dynamic characteristics of the spindle
system under high-speed operation will be significantly different from those under
static or low-speed conditions. The centrifugal force effect and the bearing softening
effect will have a greater impact on the natural frequency of the system. According
to the experimental rules provided by Cao Hongrui and others, analyze the natural
frequency of the spindle under the first-order mode at static speed, 600, 1000, 5000,
10,000, and 15,000 r/min. As shown in Fig. 2, it can be seen from the figure that
the first-order mode of the spindle only decreases slightly when the speed exceeds
1000 r/min, that is, the softening phenomenon of the bearing will affect the mode of
the spindle at a higher speed. There is almost no drop in the spindle mode and static
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Fig. 2 Natural frequency change in the first-order mode

state at low speed. Since the spindle speed in this analysis is lower than 600 r/min,
it is a low speed, so this study will ignore the influence of bearing softening on the
spindle mode.

Due to the complex structure of the spindle, if the finite element analysis is directly
performed on the spindle model, the existence of the bearing will greatly increase the
amount of calculation of the model, so here we will simplify the bearing as follows
[8]:

(1) Replace the bearing with a spring unit, the axial position is the midpoint of the
contact line of each pair of bearings, and it is considered that the simplified
spring only has radial stiffness without considering its angular stiffness;

(2) Regardless of the stiffness change caused by the bearing load, only the bearing
stiffness is regarded as a fixed constant value. Each pair of bearings is simplified
to 4 springs, and the angle between adjacent springs is 90°;

According to the bearingmodel, the axial preload of the bearing can be found. The
calculation formula for the radial stiffness of a single angular contact ball bearing
after preload is:

Kr = 17.7236 3
√
Z2Db

cos2 α
3
√
sin α

3
√
Fα0

In the formula, Db—rolling element diameter; Z—bearing rolling element
number; α—contact angle; Fα0—axial preload. According to the above formula,
the radial stiffness of the front and rear bearings can be calculated to be about 3.48
✕ 108 N/m.

According to the actual situation, a fixed constraint is imposed on the main shaft
shell, and the mode of the main shaft can be obtained as shown in Fig. 3 and the
values of the first six modes are shown in Table 1.
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Fig. 3 Spindle mode

Table 1 The first six modes of the spindle

Mode One Two Three Four Five Six

Value (Hz) 1141.6 1150.3 1475.3 1495.7 1609.8 1630.8

Table 2 7–12 modes of each part of the spindle

Model Seven Eight Nine Ten Eleven Twelve

Value (Hz) 7012C bearing 1151 1831 1844 1938.8 2649.4 2879.7

7014C bearing 1826.3 1834.1 2544.5 2545.2 4621.8 4639

BT40 knife handle 4938.4 4954.5 7312.9 7360.3 9906.6 11,363

Broach mechanism 504.18 504.19 1299.1 1299.2 2290.4 2308.7

Spindle 1546.1 1546.1 3489.1 3783.8 3783.8 5765.6

Spindle housing 3454.8 3454.9 3895.2 3895.3 4375.7 4376

In order to judge the relationship between the mode of each component and the
mode of the spindle, the free mode value of each component is obtained separately.
Since the first six-order mode value of the freemode is zero, the 7-of each component
is listed. The12-ordermodal values are shown inTable 2, and the seventh-ordermodal
(fundamental frequency) vibration shape of each component is shown in Fig. 4.

From the data in Table 2, it can be seen that the seventh-order mode of the 7012C
bearing is very similar to the ninth-order and tenth-order frequencies of the pneumatic
device and is close to the first-order modal value of the spindle in Table 1, which is
1141.6 Hz, so at this frequency Resonance may affect the accuracy of the machine
tool.

3 Vibration Signal Acquisition and Signal Processing

3.1 Signal Acquisition

Because the spindle tool holder is closely connected with the spindle and rotates
with the spindle, the vibration state of the spindle can be well sensed at the spindle
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(a) Spindle housing (b) BT40 Knife handle 

(c) Broach mechanism     (d) Spindle 

(e) 7012CBearing (f) 7014CBearing

Fig. 4 The seventh-order formation of each part of the main axis

tool holder. Therefore, the MEMS acceleration sensor can be installed at the tool
holder when collecting the vibration signal of the spindle. As shown in Fig. 6, the
sensor installation method is shown in Fig. 5. The sensor is closely matched with
the cylinder on the BT40 tool holder, and the upper end of the sensor is attached to
the surface of the tool holder to ensure the parallelism between the sensor device
and the spindle, and the sensor is evenly distributed around the circumference There
are 6 threaded holes, and 6 screws are used to fasten the sensor on the tool holder
to ensure that the sensor and tool holder rotate with the spindle. MEMS sensors
have the functions of self-powered and wireless data transmission. Axial, radial and
torsional vibration signals with high signal-to-noise ratio can be collected to obtain
the low-frequency operating characteristics and high-frequency characteristics of the
spindle.

Due to the installation position of the sensor, the acceleration data measured by
the sensor is not only caused by the vibration of the spindle but also the centrifugal



Spindle Health Assessment Based on Rotor Perception 433

Fig. 5 Sensor installation
method and test diagram

Fig. 6 Experimental layout

Spindle

MEMS sensor 

BT40 Knife handle

force generated when the spindle rotates. This will cause the sensor to exceed the
range at high speed, so this experiment will collect the spindle. The vibration signal
of the spindle idling at the speed of 100, 200, 300, 400, 500, and 600 r/min. The time
domain diagram of the X, Y, and Z directions transmitted to the mobile terminal APP
via Bluetooth is shown in the figure. Due to the sensor installation position, the Z
axis of the sensor is the X axis direction of the machine tool, and we are concerned
about the radial direction of the spindle Direction of the vibration signal, so we select
the collected Z-axis signal for analysis (Fig. 7).

3.2 Using MSB Method for Signal Processing

Signal processing

After processing the signal collected in Sect. 3.1, import it into the MSB algorithm
and analyze it to get the spectrogram as shown in Fig. 8.

In Fig. 8 we can see that when the spindle is working at speeds of 100, 200,
300, 500, and 600 r/min, the frequency of larger amplitudes is less than 700 Hz. But
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Fig. 7 XYZ time domain
diagram collected by MEMS
sensor

when the rotation speed is 400 r/min, there is a larger amplitude at a frequency of
1081 Hz, and the frequency here is very close to the first-order mode of the spindle
we analyzed earlier, 1141.6 Hz, so it is likely that the spindle speed will be 400 here.
The spindle resonates at r/min, which causes the accuracy of the spindle to decrease.

4 Spindle Rotation Accuracy Test

Rotation accuracy test is an important means to evaluate the accuracy of machine
tools. Therefore, we will use the spindle rotation error analyzer of American Lion
Company to test the rotation accuracy of the spindle. In order to compare with the
analysis results above, we will also use 100, 200, 300, 400, 500 and 600 r/min are
used in the experiment. In order to reduce the influence of other factors, MEMS
sensors are used to collect data and test the rotation accuracy in Sect. 3.1. The data
collected by the instrument is carried out at the same time, and the workbench layout
is shown in Fig. 9.

The results of the rotation accuracy test are shown in Fig. 10, Due to limited space,
we only show the results when the speed are 100 and 400 r/min. The error values at
each speed are shown in Table 3.

From the data in Table 3, it can be seen that the rotation error suddenly increases
when the spindle speed is 400 r/min, and when the speed exceeds 400 r/min, the
rotation error suddenly decreases. This also verifies our previous conclusions, when
the spindle speed reaches 400 r/min. At min, themain shaft resonates and the rotation
error of the main shaft increases suddenly.
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(a) 100 r/min                         (b) 200 r/min 

(c) 300 r/min                         (d) 400 r/min 

(e) 500 r/min                        (f) 600 r/min 

Fig. 8 Spectrum diagram of spindle 100–600 r/min



436 Z. Zhang et al.

Fig. 9 Rotation accuracy
sensor and MEMS sensor
layout diagram

MEMS sensor 

Standard rod 

Motion detector

(a)100 r/min                      (b) 400 r/min 

Fig. 10 Spindle 100–600 rad/min rotation accuracy test results

Table 3 Rotation accuracy error of each speed

Rotating speed (r/min) 100 200 300 400 500 600

Rotation error (μm) 1.25 1.36 0.98 4.44 1.34 1.51

5 Conclusion

This paper takes the main shaft of Dalian machine tool VDL600 as the research
object, establishes a corresponding three-dimensional model, analyzes the mode
of the main shaft and its parts, and judges the possible resonance frequency. A
comparative analysis of the data collected by the MEMS sensor and the rotation
accuracy test results of lion found that the spindle will excite the first-order mode of
the spindle at a speed of 400 r/min and cause resonance, which leads to an increase
in the rotation error of the spindle and decrease of spindle machining accuracy.

Acknowledgements This research is supported by Beijing Science and Technology Planning
Project (Grant No. Z201100008320004).
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Fault Diagnosis of Rolling Bearing Based
on Wavelet Packet Decomposition
and SVM-LMNN Algorithm

Zhengbo Wang, Hongjun Wang, and Yingjie Cui

Abstract Aiming at the effective identification of failure modes of rolling bearings,
a support vector machine (SVM) and Levenberg–Marquardt (LM algorithm) fault
diagnosis method for rolling bearings is proposed. First, use wavelet packet decom-
position to obtain sub-bands, reconstruct the decomposition coefficients, and expand
the decomposed sub-band signals to the original signal length; then, use SVM to
classify the fault state; finally, input the feature vector into LMNN (LM algorithm
Neural network) to realize failure mode recognition. The method is verified by the
rolling bearing fault diagnosis experiment. The results show that the SVM-LMNN
based on wavelet packet decomposition has a rolling bearing fault diagnosis accu-
racy rate of up to 99.456%. The method proposed in the study is compared with
the instantaneous energy method of the VMD component of the kurtosis criterion
and the enveloping spectrum solution diagnosis method, and the higher accuracy is
obviously obtained, which proves the feasibility and effectiveness of the proposed
method.
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1 Introduction

As an important part of various types of equipment, rolling bearings must be reliable
and stable. Therefore, the fault diagnosis of rolling bearings is highly valued by
researchers [1]. The diagnosis of rolling bearing faults has become a research hotspot.

Wavelet can adjust the sampling of different frequencies in the time domain.
Its multi-resolution analysis divides the signal according to a certain scale. The
signals of different frequencies are divided into different frequency bands, and then
each sub-frequency band is reconstructed. So as to separate the various harmonics
[2]. Therefore, wavelet packet decomposition has better time–frequency window
characteristics than other filters. In recent years, some scholars have done a lot of
research on wavelet packets. Wang et al. [3] proposed an improved genetic algorithm
based on wavelet packet decomposition to optimize the BP neural network, and
established a more accurate rolling bearing IGA-BP state prediction model. The
results show that the model converges faster and the prediction accuracy rate is
higher. Xia et al. [4] based on the bearing fault diagnosis method based on the
combination of wavelet packet and gradient boosting decision tree, and the results
showed that the accuracy of the diagnosis using wavelet packet was improved by
11% compared with directly using the time series feature. Wen [5] integrated the
early fault monitoring and diagnosis of rolling bearings. Research shows that the
wavelet packet decomposition method is more superior than the comparison method
in the early fault monitoring and early fault diagnosis of bearings.

For the fault diagnosis of rolling bearings, algorithms in the field of artificial
intelligence represented by support vectormachines (SVM) aremainly used. Support
vectormachine is a classificationmethod based on statistics. It uses differentmethods
to find multi-dimensional hyperplanes to achieve multi-dimensional nonlinear data
classification and prediction tasks. In addition, support vector machines are easy
to operate, self-learning, and relatively strong generalization capabilities. There are
many applications in mechanical fault diagnosis, and a wealth of research results
have also been accumulated. Fang et al. [6] proposed a particle swarm improved
support vector machine algorithm for data classification and trend prediction. The
classification experiment for rolling bearing failures achieved good results; Hu et al.
[7] improved the support vector machine algorithm by genetic algorithm for rolling
bearing analysis Fault diagnosis is shorter and more accurate than SVM. But genetic
algorithm is easy to fall into the problem of premature and low search efficiency
when solving the scale calculation problem, particle swarm algorithm is easy to fall
into the local optimum and prematurely converge so that it cannot find the global
optimum solution [8–10].



Fault Diagnosis of Rolling Bearing Based … 441

2 Method

2.1 Wavelet Packet Decomposition

2.1.1 Deduction of Wavelet Decomposition Mechanism

In 1989 Mallat S proposed the concept of multi-resolution decomposition, unifying
the previous methods of constructing wavelets. Multi-resolution decomposition uses
wavelet function and scale function to decompose the low-frequency overview part of
the signal, without considering the high-frequency details [9, 10]. Multi-resolution
decomposition is in the function space L2(R), and the function f is represented
as a series Approximate the limits of the function, each approximation is a smooth
version of the function f , and is more andmore refined approximation function, these
approximations are obtained on different scales. Let N be the arbitrary scale to be
decomposed, then the complete reconstruction formula of f (t) at the decomposition
level of N is

f (t) =
N∑

j=1

∞∑

k=−∞
d j,kϕ j,k(t) +

∞∑

k=−∞
cN ,kϕN ,k(t) (1)

where: j is the scale; k is the translation factor; d j,k = 〈
f (t), ϕN ,k(t)

〉
is the wavelet

expansion coefficient; cN ,k = 〈
f (t), ϕN ,k(t)

〉
is the scale expansion coefficient;

ϕ j,k(t) is the wavelet function; ϕN ,k(t) is the scaling function; the first term is the
decomposition weight The detailed sequence obtained by the structure; the second
item is the overview sequence. In order to improve the resolution [11, 12], the
wavelet subspace frequency is further subdivided. The scale space Vj and thewavelet
subspace Wj are unified to form a new space Un

j as shown in Eq. (2).

{
U 0

j = Vj

U 1
j = Wj

j ∈ Z (2)

The orthogonal decomposition of the Hilbert space Vj+1 = Vj ⊕Wj is uniformly
expressed by Un

j as U
0
j+1 = U 0

j ⊕U 1
j , j ∈ Z .

The definition subspaceUn
j is the closure space of the functionUn(t), andU 2n

j is
the closure space of the function U2n(t), which satisfies the following equations:

{
u2n(t) = √

2
∑

k∈Z h(k)un(2t − k)
u2n+1(t) = √

2
∑

k∈Z g(k)un(2t − k)
(3)

In the formula: g(k) = (−1)kh(1 − k), when n = 0, the formula is
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{
u0(t) = ∑

k∈Z hkun(2t − k)
u1(t) = ∑

k∈Z gkun(2t − k)
(4)

Meet the two-scale equation in multi-resolution analysis:

{
φ(t) = ∑

k∈Z hkφ(2t − k), {hk}k∈Z ∈ l2

ψ(t) = ∑
k∈Z gkψ(2t − k), {gk}k∈Z ∈ l2

(5)

Comparing the above formulas, u0(t) and u1(t) are the degenerate scaling function
φ(t) and wavelet basis function ψ(t), respectively. The function set {un(t)} is called
an orthogonal wavelet packet determined by the basis function u0(t) = φ(t).

2.1.2 Wavelet Decomposition Layer Selection

In wavelet decomposition, the larger the number of decomposition layers, the more
obvious the different characteristics of noise and signal performance, which is more
conducive to the separation of the two; but on the other hand, the greater the number
of decomposition layers, the distortion of the reconstructed signal will also be The
larger it is, it will affect the final denoising effect to a certain extent. By traversing the
influence of the number of decomposition layers on the diagnosis result, the number
of decomposition layers is weighed to 11 layers.

2.1.3 Wavelet Decomposition Threshold Selection

In the wavelet domain, the coefficient corresponding to the effective signal is large,
and the coefficient corresponding to the noise is small. The coefficients corresponding
to the noise in the wavelet domain still satisfy the Gaussian white noise distribution.

The threshold selection rule is based on the model

y = f (t) + e (6)

where e is Gaussian white noise N (0, 1). Therefore, the wavelet coefficients or the
original signal can be used to evaluate the threshold that can eliminate noise in the
wavelet domain.

The threshold selection method used in the study is fixed threshold estimation,
and the function expression is shown in the formula:

λ = √
2 log(N ) (7)

Compared with extreme threshold estimation and unbiased likelihood estimation
methods, fixed threshold estimation is more effective in denoising.
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3 The Establishment of SVM Bearing Fault Classification
Model

3.1 Rolling Bearing Fault Classifier Selection

SVM is a machine learning method based on statistical learning theory. It shows
excellent performance in small sample situations. It is currentlywidely used in pattern
recognition, function regression, fault diagnosis, etc. [13]. Since rolling bearings have
to distinguish different types of faults, the classifier must be selected first. There are
two typical methods for establishing SVM: The first is the “one-to-one” strategy,
which, as the name suggests, is to compare classifications one to one. This is also the
original idea of SVM. The second is the “one-to-many” strategy, because there are
multiple categories, so multiple one-to-one processes need to be repeated. Therefore,
this method is to complete the classification of multiple categories by designing an
SVM model between every two types of samples, so it is necessary to construct
multiple one-to-one SVM classifiers. Assuming that there are m sample categories,
a total of desig mm(m − 1)/2 SVM classifiers [14]. In the test, because the identified
categories have different degrees of failures of the outer ring, inner ring and stick,
this article chooses to use the “one-to-many” strategy to study the identification of
different types of failures.

The specific application steps of the SVM model for rolling bearing fault
identification are as follows:

1. The vibration signal of rolling bearing is normalized to eliminate the influence
of dimension;

2. Select the appropriate kernel function for SVM according to the problem of
bearing fault classification;

3. Solve high-dimensional optimization equations to obtain support vectors and
corresponding Lagrange operators;

4. Calculate the optimal classification surface equation;
5. Using the obtained bearing fault classification model, the input unknown fault

bearing samples can be used to identify different fault types.

3.2 Selection of Kernel Function for Bearing Fault Diagnosis
Classification

The kernel function is a function that calculates the inner product of two vectors in
the implicitly mapped space. The kernel function first does the inner product of the
eigenvectors, and then uses the function to transform, which helps avoid direct calcu-
lation in high-dimensional space, greatly simplifying the problem solving, and this
is equivalent to doing the kernel mapping on the vector first and then doing the inner
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Product [15]. There are four commonly used kernel functions: linear kernel func-
tion, radial basis function kernel function, polynomial kernel function, and Sigmoid
neuron activation kernel function. Their expressions are as follows [16]:

Linear kernel function:

K
(
xi, xj

) = xTi xj (8)

Among them, xi , x j is a feature vector, and the inner product of two input feature
vectors is obtained.

RBF kernel function:

K
(
xi, xj

) = exp

(
−

∥∥xi − xj
∥∥2

2σ 2

)
(9)

Among them, xi , x j is an eigenvector, σ is the root variance, represents the width
parameter of the function, and controls the radial range of the function.

Polynomial kernel function:

K
(
xi, xj

) = [
1 + (

xi, xj
)]d

(10)

Among them, xi , x j as above, d represents the order of the polynomial.
Sigmoid kernel function:

K
(
xi, xj

) = tanh
[
y
(
xi, xj

) + c
]

(11)

Among them, xi , x j as above, the gamma displacement parameter in the formula
c represents the control threshold range.

In order to compare the accuracy of the four kernel functions, this paper designs
an optimal kernel function based on MATLAB calling the libSVM function model.
Apply the c-svc algorithm to traverse each kernel function and the parameters under
the kernel function.

3.2.1 L-M Algorithm Combined with SVM Method Construction

With the rise of artificial intelligence, many scholars directly predict the type of
bearing failure based on artificial intelligence training on samples. This type of
method is fast and the model is easy to build, but often requires a large number of
samples, and it is also prone to problems of non-convergence and over-fitting, and it
is lacking in robustness.

Therefore, this article considers the use of less sample size,more robust algorithm.
The Levenberg–Marquardt (L-M) algorithm was proposed by K. Levenberg in the
twentieth century and developed and improved by scholars such as D. Marquardt. It
has become increasingly mature. Yan et al. [17] proved that at the beginning of the
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iteration, the L-M algorithm has a large damping factor, has the characteristics of
large initial decline, rapid iteration, and robustness, which reduces the dependence
on the initial value. At the end of the iteration, the damping factor is close to 0, and
the L-M algorithm has the second-order convergence of the Newton method, which
avoids the zigzag oscillation of the steepest descent method. And by introducing an
adaptive damping factor, the L-M algorithm can change the search direction and step
length at the same time in the iterative process, which is easier to converge than the
optimal multiplier method.

In 2003, Pan [18] proposed an L-M method based on trust region techniques,
which takes iterative parameters μk = αk‖Fk‖, among which the factors αk are
modified using trust region techniques.

In the k-th iteration, define the function

f(x) = 1

2
‖F(x)‖2 (12)

The actual reduction Aredk and the estimated reduction Predk are:

Aredk = ‖Fk‖2 − ‖F(xk + dk)‖2 (13)

Predk = ‖Fk‖2 − ‖F(xk + Jkdk)‖2 (14)

Its ratio is

rk = Aredk
Predk

(15)

rk is used to decide whether to accept the step size dk and adjust the size of the factor
αk in the iteration process. Generally speaking, the larger, the more the objective
function drops, and the longer dk+1 the next time can be made, so it can be reduced
αk . On the contrary, the smaller rk the value, it can be rejected dk , increase αk . The
specific operations are as follows:

xk+1 =
{
xk + dk, i f rk ≥ h0,
xk, otherwise,

(16)

αk+1 =
⎧
⎨

⎩

a1αk, i f rk < h1,
αk, i f h1 ≤ rk ≤ h2,
max{a2αk, αmin}, otherwise,

(17)

Among them, 0 < a2 < 1 < a1, 0 < h0 < h1 < h2 < 1, 0 < αmin ≤ α0.
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Fig. 1 SVM-LMNN algorithm bearing fault diagnosis network architecture

3.3 Fault Diagnosis Model of Rolling Bearing Based
on SVM-LMNN Algorithm

The SVM-LMNN algorithm is used to construct the fault diagnosis model of rolling
bearing, and the network architecture is shown in Fig. 1.

Specific steps are as follows:

1. First, perform wavelet packet decomposition on the bearing fault vibration
signal, select the appropriate wavelet function and the number of decomposition
layers, and obtain the decomposition coefficient of each node.

2. Reconstruct wavelet packet decomposition coefficients, expand each subband
signal to the original signal length, and construct 10 120× n fault feature vector
matrices.

3. Input the fault feature vector of the training sample into the SVM, perform grid
training, divide the fault into 10 types and test the accuracy.

4. Finally, input the test samples into the trained LMNN for further fault
identification

4 Results

4.1 Experimental Verification and Simulation Analysis

4.1.1 Data Collection Experiment

In order to verify the effectiveness of the proposed method, this paper selects the
bearing fault data published by CaseWestern Reserve University in the United States
to analyze the bearing inner ring data plus background noise. The rolling bearing
model is 6205-2RS JEM SKF, and the motor load is 0. The fault point is artificially
manufactured with electric sparks. The diameter of the fault point is 0.007 in and
the depth is 0.011 mm. Using the acceleration data of the bearing drive end, the
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Fig. 2 Rolling bearing vibration signal acquisition test bench

signal sampling frequency is 12 kHz, and the spindle speed is 1772 r/min (rotation
frequency is 29.53 Hz).

The test bench shown in Fig. 2 is a modular system that can generate the measure-
ment data required for the corresponding characteristics and damage characteristics
obtained by analyzing the motor current signal. The basic structure of the test bench
is composed of a drive motor (permanent magnet synchronous motor) that acts as a
sensor, a torque measuring shaft, a test module and a load motor (synchronous servo
motor).

4.1.2 Comparison Results of Different Kernel Functions

The test is based on the bearing failure data published byWestern Reserve University
as the training sample, and 100 sets of test data are drawn, of which 80 sets of data
are used for training and 20 sets of data are tested. The schematic diagram of the test
process is shown in Fig. 3.

During the training process, for the same training set, different kernel functions
are used in the SVM to compare. The test results show that the training degree of

Fig. 3 Flow chart of SVM
kernel function selection



448 Z. Wang et al.

Table 1 Comparison of
SVM fault classification
results

Kernel function Timing/s Accuracy
(training/testing)

Linear kernel function 0.306 1.0/0.97

RBF radial basis kernel
function

0.295 1.0/1.0

Polynomial kernel
function

0.353 1.0/0.98

Sigmoid function 0.333 1.0/0.93

the RBF radial basis kernel function is closest to the actual result. The classification
effect is the best, so the radial basis kernel function is used in the test. For the radial
basis kernel function, the smaller the gamma value, the higher the training accuracy.
The grid search method is used to select two parameters: the parameter that adjusts
the penalty for the wrongly distinguished sample and the parameter gamma of the
radial basis kernel function. Experiment selection, gamma = 0.01, see Table 1.

This paper takes the inner ring of a rolling bearing as an example, and extracts
part of the data as the fault data of the bearing. The extracted signal time domain
diagram, frequency domain diagram and segmented frequency domain diagram are
shown in Fig. 4.

Choose haar wavelet, decompose the number of layers to 11, set the threshold
k = 100, and the wavelet detail coefficients and approximate coefficients obtained
after Hilbert transform are shown in Fig. 5a, b.

The selection of the threshold in this step is the key to denoising, which directly
affects the quality of the reconstructed signal. After decomposing the noisy signal,
the approximation coefficient is simplified as the number of layers increases, and

Fig. 4 Time domain
diagram, frequency domain
diagram and segmented
frequency domain diagram
of the inner circle fault signal
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(a) (b)

Fig. 5 1–11 layer wavelet packet decomposition fault signal

the smoothness of the reconstructed signal is improved, which can effectively over-
come the “Gibbs” phenomenon, which proves that the currently selected threshold
is effective.

After using SVM to classify bearing faults, the classification results are shown in
Fig. 6a, and the classification accuracy rate reaches 95%. Compared with the 93.5%
accuracy result obtained after envelope spectrum demodulation, as shown in Fig. 6b,
it proves that the classification accuracy after wavelet decomposition is significantly
higher than the envelope spectrum demodulation result.

The signal is input into the rolling bearing fault diagnosis framework of the SVM-
LMNN algorithm. The diagnosis accuracy is shown in Fig. 7. The training accuracy
is 99.938%, and the test accuracy is 99.456%. Compared with the instantaneous
energy method that selects the VMD component through the kurtosis criterion, The
accuracy rate is significantly improved.

(a) (b)

Fig. 6 Comparison of SVM classification accuracy and envelope spectrum demodulation accuracy
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Fig. 7 SVM-LMNN algorithm diagnosis accuracy rate

5 Discussion

5.1 Conclusion

According to the reflection of the characteristic frequency of the rolling bearing fault
on the fault type, a method of rolling bearing fault diagnosis based on the support
vectormachine (SVM) andLevenberg–Marquardt (LMalgorithm) is proposed. First,
perform wavelet packet decomposition on the rolling bearing measurement signal,
adjust the appropriate filter threshold through the obtained detail coefficients and
approximate coefficients; use SVM to multi-classify the fault state of the noise-
reduced signal; finally, input the feature vector into LMNN (LM algorithm Neural
network) to realize failuremode recognition and comparewith existingmethods. The
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results show that this method can effectively extract the fault features of rolling bear-
ings, and it is verified by comparison with existing methods. It has higher reliability
and can be applied to fault diagnosis of rolling bearings.
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Fine-Tuning and Efficient VGG16
Transfer Learning Fault Diagnosis
Method for Rolling Bearing

Jinglei Su and Hongjun Wang

Abstract Nowadays, neural network become popular in modeling. However, the
model training needs a lot of data, long training time and high hardware conditions.
It is inefficient for ordinary computing devices to be used in training models. In this
paper, VGG16 model was modified to fit ten labels and used as feature extractor. The
default image size of model was 224 × 224 pixels. Then the images were reduced
into low resolution as 112 × 112, 75 × 75, 56 × 56, 45 × 45, 32 × 32 pixels,
which were 1/2, 1/3, 1/4, 1/5 of default side length and the minimum size. Next
these images were sent to model for training. The training results illustrated that the
images of 112 × 112, 75 × 75, 56 × 56 groups can still be adequate for modified
VGG16 to classified and achieve high accuracy and meanwhile significantly reduce
the training time. However, when the size dropped to 45 × 45, 32 × 32, overfitting
appears and the training accuracy significantly dropped. Thus, it is recommended
that set a target accuracy first and begin training from a small size. If the accuracy
was not high enough, enlarge the size and train again.

Keywords Fault diagnosis · Bearings · Transfer learning · VGG16 · Fine-tuning

1 Introduction

Bearing is widely used in life, any bearing fault may affect production efficiency
and life security. It could cause shutdown maintenance, safety accidents and even
endanger personal safety. So timely and accurate bearing fault diagnosis can improve
the safety and reliability of mechanical equipment, ensure personnel safety, timely
maintenance and reduce costs.
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Generally, the method of bearing fault diagnosis is to collect bearing vibration
signals, find the characteristics of bearing fault signals, and analyze and identify them.
With the development of artificial intelligence technology, signal processing mode
has gradually changed to intelligent analysis. Intelligent analysis methods include k-
nearest neighbor algorithm, support vectormachine, artificial neural network, etc. [1].
For example, in paper [2], the convolution neural networkwas used to predict the fault
diagnosis of multi-sensor bearings; In paper [3], the multi-objective convolutional
neural network was used to diagnose the fault and analyze the vibration signal; paper
[4] proposed a stochastic convolutional neural network for the health detection of
internal combustion engines; In paper [5] the data and model were combined to
predict the remaining service life of bearings.

Furthermore, more scholars applied transfer learning method to the field of fault
diagnosis, and there were many kinds of transfer methods. For example, the multi-
scale convolution transfer neural network proposed in paper [6] was applied to vari-
able condition bearing fault diagnosis, and good results have been achieved; In paper
[7], rolling bearing migration fault diagnosis method based on manifold embedding
and distribution alignment was proposed; paper [8] used deep adversarial transfer
learning to generate data to solve the problem of insufficient data; paper [9] deals
with multi-conditions problems based on feature transfer learning method; In paper
[10], deep belief network transfer learning was used to predict planetary gearbox
faults.

In the aspect of fault signal preprocessing, in paper [11], RGB images were gener-
ated by continuouswavelet analysis,wavelet packet time–frequency analysis,Wigner
Ville distribution and spectral kurtosis, and then sent to VGG19 model; In paper
[12], the pre-trained ResNet18 was used as the feature extractor. However, general
methods require plenty data and time to train and distinguish the fault information,
the training efficiencywas low, the hardware equipment requires high conditions, and
the ordinary computing equipment was inefficient to be used in the training model,
so whether there was a way to improve the training efficiency and reduce the training
time without losing too much accuracy. This paper has experimentally reduced the
image size and according to the results, the features information carried by the image
were enough for model to classified and significantly reduced time consuming.

2 VGGNet Basic Principles

VGG network was proposed by visual geometry group of Oxford University. The
typical networks were VGG16 and VGG19. VGG16, as shown in Fig. 1 and Table
1, was the basic network in the first place of positioning task and the second place of
classification task of ImageNet competition in 2014 and it has a total of 138,357,544
parameters. It was widely used in fine-tuning transfer learning. VGG19 was based
on VGG16. It adds three layers of convolution layer based on VGG16. It has a total
of 143,667,240 parameters.
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Fig. 1 VGG16 structure

Table 1 VGG16 and VGG19 structure
ConvNet Configuration

VGG16 VGG19

16 weight layers 19 weight layers

maxpool

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512
maxpool

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

input(224×224 RGB image)

conv3-64

conv3-64

conv3-64

conv3-64

conv3-128

conv3-128

conv3-128

conv3-128

maxpool

maxpool

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

3 Model and Preprocessing

3.1 Fine-Tuning Model

The modified VGG16 model is shown in Fig. 2. The weights of VGG16 network
trained from ImageNet were retained. The weights of the first three sections of the
network model were frozen. The weights of the fourth and fifth sections of the
network were set as trainable. The full connection layer was reset in the last section.
The source domain of transfer learning was the image trained on ImageNet, and the
target domain was the gray image converted from the time domain signals.
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Fig. 2 VGG16 modified model

The training flow chart is shown in Fig. 3. First, the bearing fault vibration signal
is obtained. Second, import the VGG16model with the training weight of ImageNet.
Third, modify model layers. Fourth, convert signals to gray images. Five, set a target
accuracy and a small size of image (1/4 of default size is recommended). Then, train

Fig. 3 Flow chart
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the model and check the test accuracy if it achieves the target. If negative, enlarge the
size of images and train again and so on. If positive, the weight of model is enough
to be used.

3.2 Bearing Database

The data sets used in the experiment was the bearing data sets of Kaiser Western
Reserve University. The experimental platform is shown in Fig. 4.

Platform composition: a 1.5 kW (2 HP) motor (left side of the figure); One torque
sensor/decoder (middle connection of Figure); A power tester (right side of the
figure); Electronic controller.

According to the fault location and fault diameter, the data set was classified into
9 kinds of faults and 1 kind of normal, with a total of 10 kinds of data labels, as
shown in Table 2. Each kind of fault data also includes acceleration data collected
frommulti-sensor at different positions of the drive end, fan end and base, and multi-
conditions data of 0, 1, 2 and 3 HP, which are classified as one kind of fault. The
training set, validation set and test set were selected from this data pool.

Fig. 4 Kaiser Western
Reserve University
experiment platform

Table 2 Datasets labels Fault diameter Inner race Ball Outer race

0.007′′ IR007 B007 OR007

0.014′′ IR014 B014 OR014

0.021′′ IR021 B021 OR021
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3.3 Data Preprocessing

The preprocessingmethod proposed byZhao et al. [13]was used as the preprocessing
method of this experiment. Firstly, the vibration time-domain image was obtained
from the acceleration sensor, and the maximum and minimum values of vibration
amplitude were recorded. Each value was mapped into the (0, 255) interval and
rounded

Pi = round(
Vi − min

max−min
× 255) (1)

The default input image size of general model was no more than 224 × 224, and
the image size can be adjusted, so first set 224 × 224 as the initial image size, a total
of 50,176 pixels, in order to obtain the most features.

As shown in Fig. 5, 224 continuous vibration signal segments with 224 values in
length were randomly selected, and the 224 groups mapped values are arranged into
a square matrix, and then converted into a gray image. According to this method,
multi segment signals were randomly selected to obtain the second gray image. Put
back sampling, and then randomly took 224 groups of fragments to form a matrix
again, turn them into gray images, and so on to create data sets.

The default size of modified VGG16 is 224 × 224 which will be converted to 112
× 112, 75× 75, 56× 56, 45× 45, 32× 32 those are 1/2, 1/3, 1/4, 1/5 of the original
side length and the minimum size of model. Original image and reduced images are
shown in Fig. 6

Fig. 5 Data preprocessing
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Fig. 6 Same grey picture with different size

4 Experiment and Results

The experiment used modified VGG16 network to test whether it is adequate for
classifying images and count how much time it consumes.

4.1 Different Size Images Training

Firstly, the bearing vibration time domain image was transformed into square gray
image dataset according to the above method, and then sent to modified VGG16
model for training.

As shown in Fig. 7a, b and c and Table 3, after decreasing the side length and
resolution, the test accuracy did not decrease significantly at the beginning until the
side length reaches 45 × 45, Which was one fifth of the original side length, the
accuracy of the validation set begins to decline in Fig. 7d, indicating that there was a
certain overfitting phenomenon.With the further reduction of the size, the overfitting

(a) 224×224 (b) 112×112 (c) 75×75 

Fig. 7 Different size training graphs
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Table 3 Test accuracy and
time consuming of different
size

Size (pixels) Test accuracy (%) Time consuming

224 × 224 100 100

112 × 112 99.9 31.0

75 × 75 99.1 20.8

56 × 56 97.5 14.0

45 × 45 91.6 12.8

32 × 32 88.1 10.2

phenomenon was more obvious in Fig. 7e and f, and the test accuracy of 32 × 32
group has dropped to 88.1%.

Test accuracy did not decrease linearly as sizes decrease as Table 3 shown. The
grey images still held enough information for modified VGG16 to classify. It only
sightly decreased until the side length was one fifth of the original length.

The default input of modified model is 224× 224. The training time of group 224
is the longest, and with decrease of size, the training time is significantly shortened.
The dataset 224 with the longest time consuming was set to be 100, the comparison
and proportion of the time consuming of other groups were also shown in Table 3.

It can be seen that the time consuming of 112 data set was obviously reduced,
only 31% of the 224 dataset and the time consuming of 45 dataset is only 12.8% of
224 dataset. Although the time consuming of size of 32 × 32 had shorten to 10.2%
of the default size, the test accuracy had dropped to 88.1%.

5 Discussion

From results, when the grey images were reduced, the feature information the images
carried was still adequate for modifiedVGG16 to extract and achieved a good predic-
tion. The reduced image can still highly maintain the original data features. The
accuracy can still reach 99.9% without serious overfitting and significantly shorten
the time consuming even when if half the default size.Moreover, further reducing the
image size can shorten the time consuming even more. Thus, when the training time
was too long, it should set a target accuracy and train the one fourth of its default size
dataset first. If the test accuracy was not enough, train size of one third dataset and
so on. But beware that if the image size was too small, at one fifth or the minimum
size of model, it would result in overfitting and test accuracy declining.

This is a trial that test if themodifiedVGG16 can extract the features from reduced
images and check how much time it consumes. It has not tested every tiny decrease
of pixels. It could draw a more smoothly line indicating the relation of extracting
ability and image pixels in the future.

Acknowledgements This research is supported by The National Natural Science Foundation of
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An Investigation of Unsupervised
Data-Driven Models for Internal
Combustion Engine Condition
Monitoring

Xiaoxia Liang, Chao Fu, Xiuquan Sun, Fang Duan, David Mba,
Fengshou Gu, and Andrew D. Ball

Abstract Internal combustion (IC) engines are widely employed in power systems
such as marine ships, small power stations and vehicles. However, due to its
complex working conditions and sophisticated degradation mechanisms, IC engines
commonly suffer various types of malfunctioning and faults, which affects their
performance in power delivery. Therefore, it is important to monitor the condition of
IC engines and detect faults occurred in time. In this paper, two unsupervised data-
driven models using machine learning techniques are employed and investigated
for the purpose of online condition monitoring and fault isolation of IC engines.
A misfire and a lubrication system filter blocking faults are experimentally studied
on a purposely built marine engine test rig. The performance of the two models
and their contribution maps are discussed, which provides guidance for using such
unsupervised models for the condition monitoring and fault detection of IC engines.

Keywords IC engine · Fault detection · Unsupervised machine learning ·Misfire ·
Lubrication system filter blocking

1 Introduction

IC engines are crucial components of many reciprocating machinery and play a
vital role in their performance, hence they affect seriously the reliable operation
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of the power system equipped in ships, vehicles and generators. Upon this fact,
effective condition monitoring and fault isolation of such power system are useful in
practical engineering. However, due to their complicated nature and variableworking
conditions, it is a very clumsy work to do online diagnosis. Currently, data-driven
machine learning methods emerge in the health monitoring of engines, which take
advantages of modern development of facilities and provide an effective alternative
to traditional approaches.

Modern industrial facilities are heavily automated and instrumented; consequently
there is a lot of process data available which can be used to monitor the condition of
the system.

For modern industrial facilities, there are a lot of process data available which can
be used to monitor the condition of the system, but not all facilities are equipped with
vibration sensors, as it usually has a high cost of sensor installation, data storage,
and data analysis software/services. Therefore, we plan to use common multivariate
process data, with no additional condition monitoring data assisted, to detect and
isolate faults in IC engine systems.

Machine learning algorithms can either be supervised or unsupervised [1]. In
industrial applications, supervised ones are not proper when there were missing
labels in the historical data. Considering the unlabeled data are easier to obtain in
practice, this paper applies two unsupervised machine learning models in condition
monitoring and fault isolation of IC engine systems. Two case studies are carried
out, and relevant results are discussed in detail. The performance and improvement
required are highlighted as well.

The highlight of this paper is to applied the reconstruction based fault detection
scheme fromour previouswork in reference [10] on an IC engine system.The training
data in this paper is a combination of 13 different working conditions, which is more
complex than that in [10], in which training data and test data were under the same
working condition. Two-dimensional Q statistic contributionmaps and residualmaps
are introduced for fault analysis.

Themain contribution is to achieve automatic fault detection through the proposed
method. In practical applications, the proposed method could give real-time alerts
when anomalies detected via the online monitoring data. Meanwhile, the Q statistic
contribution map and residual map can assist operators in inferring the possible fault
type and planning the necessary inspection/maintenance activities.

2 Literature Review on Machine Learning Algorithms

Machine learning algorithms can be categorized into supervised and unsupervised
methods [1]. The difference between these twomain categories is whether there exist
labels in the training dataset. Supervised algorithms usewell-labelled data to perform
analysis tasks, and then construct contingent functions to map new instances of
attributes. The algorithms require pre-specifications (labeled datasets) for maximum
settings to obtain the desired results or performance levels [1], which is often not
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accessible in most condition monitoring scenarios. Wang et al. [2] utilized Bayesian
networks for fault isolation and applied it on a diesel fuel injection system. As a
supervised method, the prior probability of multiple faults was assigned according
to experts’ knowledge. Key parameters for fault isolation included injection starting
pressure, peak injection pressure, injection duration, and peak factor. In contrast,
unsupervised learning algorithms involves pattern recognition without the involve-
ment of a target attribute. Due to the advantage of performing clustering without any
labels, the unsupervised methods are more feasible for anomaly detection (namely
one-class classification) area.

Among the unsupervised methods, the principal component analysis (PCA) and
sparse autoencoder (SAE) are proved effective in anomaly detection. The PCA
projects high dimensional data to a lower-dimensional subspace to better distinguish
“normal” data from “abnormal” one. Jafarian et al. [3] applied PCAon vibration anal-
ysis based on Fourier transform and discrete wavelet transformation to detect and
categorize faults that appeared due to poppet valve clearance and incomplete combus-
tion (misfiring) in an internal combustion engine. Mathew and Zhang [4] developed
a fault detection and classification method based on PCA and Bayesian optimiza-
tion, using acoustic signals captured from cylinder heads of a Ford EcoBoost engine,
to classify three faulty conditions, which are engine misfire, ignition timing varia-
tion and air-fuel ratio variation. After signal decomposition, relevant time-frequency
information was extracted and used as inputs for fault classification. Wang et al.
[5] developed a nonlinear PCA anomaly detection method for a Volkswagen 1.9-L
turbocharged diesel engine. The autoencoder is a special type of neural networks,
which outputs are reconstructions of inputs. The SAE is a variant from autoen-
coder by putting a sparsity constraint on the hidden units to deal with the overfitting
problem [6]. The application of autoencoder fault detection methods can be found
mainly in aircraft engines. Fu et al. [7] proposed a grouped convolutional denoising
autoencoder model for aircraft engine fault detection. A supervisedmachine learning
method, support vector machine (SVM), was used as a comparison. They found that
the SVM achieved the best fault detection results on training data, but the worst
results on test data; the hybrid method, which combines denoising autoencoder and
SVM, obtained better results; and their proposed method had the best performance.
The autoencoder method applied in aircraft engines using vibration data can be found
in [8], and that using multivariate data can be found in [9].

3 Unsupervised Data-Driven Models for Online Fault
Detection

A similar approach for fault detection, as proposed in [10], is employed in this work.
Two unsupervised fault detection methods, PCA and SAE, are adopted. The Maha-
lanobis distance (MD) calculates the statistical difference between themonitored data
and the reconstructed outputs estimated by PCA or SAE. Fault detection is based
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on the comparison of MD calculated in the monitoring stage with the one calculated
under healthy stage. Thereafter, the MD is used as a system-wide health indicator
for fault detection.

3.1 Principle Component Analysis

Principal component analysis (PCA) is an effective unsupervised method for dimen-
sionality reduction and feature extraction. By calculating the eigenvectors of the
covariance matrix of the original input data, PCA linearly transforms a high-
dimensional input vector into a low-dimensional with efficient features extracted
[11]. The key equation is Eq. (1).

X = s1 p
T
1 + s2 p

T
2 + · · · + sN p

T
N + ε ≈ SPT (1)

where P = [p1, . . . , pN ] represents the loading or principal vector matrix, which is
the eigenvector of the covariance matrix X. S = [s1, . . . , sN ] is the score matrix of
the principal components and ε represents a residual error matrix.

3.2 Sparse Autoencoder

The sparse autoencoders (SAE) is a special unsupervised feedforward neural
network. It converts the input data x = (x1, . . . , xD) to efficient internal repre-
sentations, and then decoding to a number of outputs x̃ = (x̃1, . . . , x̃D) which looks
very close to inputs. A representative structure of SAE is presented in Fig. 1.

As shown in Fig. 1, the SAE network includes two parts, i.e., encoder and decoder.
The encoder connects the input layer to the hidden layer, with the weight matrix and
the bias of this part being represented by W (1) and b(1), respectively. The decoder
connects the hidden layer to the output layer, with the corresponding weight matrix
W (2) and bias b(2).

The network tries to reconstruct the input vector in the output layer, as is shown
in Eq. (2).

x̃ = HW,b(x) ≈ x (2)

where x is the input variables, and x̃ represents the output variables. HW,b(x) is the
nonlinear function of SAE, that predicts output x̃ based on input x, using parameters
W and b. More detailed theoretical background can be found in [10].
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Fig. 1 Sparse autoencoder model structure [10]

3.3 Fault Detection Health Indicator Based on Mahalanobis
Distance (MD)

TheMDwas proposed by Indian statisticianMahalanobis to represent the covariance
distance of the data. Unlike the Euclidean distance, the MD is a unitless distance
measurement, and takes into account the correlations among variables. The MD
provides a univariate distance value for multivariate data, and therefore, was applied
in the anomaly detection models.

MD for the training data in this paper was calculated by Eq. (3).

MDi =
√((

Yi − Y i
) − μ̂

)
S−1

((
Yi − Y i

) − μ̂
)T

(3)

where Yi is the i-th features in a machine learning model Y i is the reconstructed
values of Yi .

(
Yi − Y i

)
denotes the residual between the reconstructed and the orig-

inal values. μ̂ and S are the sample mean and covariance of the reference samples,
respectively.

4 Experimental Setup

An engine test rig, as shown in Fig. 2, is developed. The engine is connected to a
gearbox and provides power to the propeller. The load can be adjusted via a valve
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Fig. 2 Marine engine experiment test rig

installed in the middle of the pipe loop. The test rig can simulate faults occurred
in the engine oil supply system, lubrication system, cooling circulation system, and
power transmission system. In this paper, two types of faults are introduced, which
are the misfire and the lubrication system philtre blocking fault. The misfire fault was
simulated by only providing engine oil to one of the cylinders; and the lubrication
system filter blocking fault was simulated by reducing the size of the filter inlet,
which can result in the reduction of flow.

For process data acquisition, 20 variables are measured (see Table 1) to monitor
the condition of lubrication, combustion and cooling systems. In this paper, we
applied the proposed fault detection methods for detecting the misfire of a cylinder
and lubrication system filter blocking. Themultivariate process data set was obtained
from an in-line two cylinderswater-cooledmarine engine. Thesemultivariate process
data were recorded every second.
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Table 1 Measured variables of the in-line two cylinders water-cooled marine engine

ID Variable names Description

1 Pressure intake air Engine intake pressure

2 Pressure coolant in Inlet pressure of the internal circulating water

3 Pressure Cy1 exhaust Engine cylinder 1 exhaust pressure

4 Pressure Cy2 exhaust Engine cylinder 2 exhaust pressure

5 Pressure fuel supply Pressure of engine oil supply system

6 Temperature gearbox Temperature of the gearbox housing

7 Temperature ExWater out Outlet temperature of the external circulating water

8 Temperature Cy2 exhaust Engine cylinder 2 exhaust temperature

9 Temperature bushing Bearing (connected to the propeller) oil temperature

10 Temperature coolant in Inlet temperature of the internal circulating water

11 Temperature coolant out Outlet temperature of the internal circulating water

12 Temperature Cy1 exhaust Engine cylinder 1 exhaust temperature

13 Temperature ExWater in Inlet temperature of the external circulating water

14 Pressure ExWater out Outlet pressure of the external circulating water

15 Pressure ExWater in Inlet pressure of the external circulating water

16 Pressure coolant out Outlet pressure of the internal circulating water

17 Temperature lub oil Lubrication oil temperature

18 Pressure lub oil Lubrication oil pressure

19 Engine speed RPM Engine shaft average speed

20 Pressure water tank Load level

5 Case Study and Discussion

5.1 Misfire Detection and Diagnosis

Misfire, which is a common engine fault that occurs in an IC engine, may be caused
by faulty spark plug, cracked distributor cap, blown head gasket, too high temperature
resulting in engine pinging, lean fuel/airmixture, lack of compression or even exhaust
gas recirculation issues like the valve sticking closed or open causing too much
flow [12]. When the engine suffered from misfire, it will produce consequences like
exhaust temperature change, reduced fuel efficiency, increased power loss, and create
unique patterns in the vibration domain [12].

In this case study, the PCA and SAE anomaly detection models were trained on
the data taken under various health operation conditions. The results of the training
process using unsupervised machine learning methods, namely PCA and SAE, are
presented in Fig. 3. In the figure, the calculated health indicator is MD; the blue
points that below the fault detection threshold, represent normal data; and the red
points, which exceeded the threshold, are regarded as anomalies. This is because
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Fig. 3 Training process by two unsupervised machine learning methods, a PCA, b SAE. (blue
dots: data points which were assumed as healthy in the training data, magenta line: fault detection
threshold with confidence interval set at 99%, red points: anomalies in training data)

the training data may include some outliers even after data pre-processing. Here we
assume 99% of the training data is normal and the left 1% of the training data is
viewed as outliers or anomalies.

In this case, fault detection for Cylinder 1 misfire fault by PCA and SAE based
methods are shown in Fig. 4. The fault detection thresholds were applied from the
training process. The figure clearly shows that, the values of the health indicators are

Fig. 4 Fault detection for cylinder 1 misfire fault by two unsupervised machine learning methods,
a PCA, b SAE. (Blue dots: data points which were assumed as healthy in the training data, magenta
line: fault detection threshold with confidence interval set at 99%, red points: anomalies in training
data)
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Fig. 5 Fault analysis for cylinder 1 misfire fault using PCA-based fault detection method a Q-
statistic plot of all variables, b Average residuals

much higher than the defined thresholds, therefore, the misfire fault was successfully
detected by both methods.

To have a clear understanding on which variables that contribute the most to
the detection of the fault, the Q-statistic [10] is calculated in time series. The time
series Q-statistic plot of all variables using PCA-based fault detection method is
demonstrated in Fig. 5a. It clearly shows that, it is the exhaust cylinder 1 and 2’s
temperatures that contribute the most to the misfire fault.

Furthermore, the average residuals for all input variables using PCA-based fault
detection method can be found in Fig. 5b. As can be seen, under the misfire fault
condition, the reconstructed exhaust cylinder 1’s temperature is lower than normal,
while the reconstructed exhaust cylinder 2’s temperature is higher than normal. In
theory, the cylinder 1’s temperatures should drop due to its misfire, and the cylinder
2’s temperatures should increase. The average residuals plot is as expected.

The time series Q-statistic plot of all variables using SAE-based fault detection
method is demonstrated in Fig. 6a. As can be seen that, the top 2 variables that
have the most contribution to the misfire fault, are the exhaust cylinder 1 and 2’s
temperatures. Besides, the outlet pressure of the internal circulating cooling water in
the engine and the temperature of the gearbox housing also show a high contribution
to the fault.

The average residuals for all input variables using SAE-based fault detection
method can be found in Fig. 6b. It shows that, under the cylinder 1 misfire condition,
the cylinder 1’s exhaust temperature is lower than normal, while the cylinder 2’s
exhaust temperature is higher than normal. This result is consistent with the failure
mechanism of cylinder 1 misfire.

In this case, both the PCA and SAE based methods can detect and isolate the
misfire fault.
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Fig. 6 Fault analysis for cylinder 1 misfire fault using SAE-based fault detection method a Q-
statistic plot of all variables b Average residuals

5.2 Lubrication System Filter Blocking Detection
and Diagnosis

In the diesel engine lubrication system, the function of the filter is to filter out the
impurities in the lubricating oil, to keep the oil clean and therefore extend the service
life of the diesel engine. Filter blocking can cause insufficient lubrication oil supply,
and increase the failure rate of the diesel engine.

In this case study, the PCA and SAE were applied to detect the lubrication system
filter blocking issue. The same training data and parameters were applied as in the
case of detecting the misfire. Therefore, the results of the training process using PCA
and SAE can be found in Fig. 3.

The fault detection process of detecting the diesel engine lubrication system filter
blocking can be found in Fig. 7. It clearly shows that, this type of fault can be
effectively detected as well, because the values of the health indicators (in MDs) are
much higher than the defined thresholds.

The time series Q-statistic map and average residual plot of all variables using
PCA-based fault detection method are demonstrated in Fig. 8a, b, respectively. As
can be seen that, instead of measurements related to lubrication oil, the abnormity
in shaft speed has the main contribution to the filter blocking fault. Therefore, the
Q-statistic map and average residual plot are not as expected.

As a contrast, the Q-statistic plot of all variables using SAE-based fault detection
method is shown in Fig. 9a, and the residual plot can be found in Fig. 9b. Both figures
clearly show that it is the decreasing of the lubrication oil pressure that mainly caused
the fault.

In this case, the SAE out performed PCA method in the isolation of lubrication
oil system filter blocking fault.
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Fig. 7 Fault detection for lubrication system filter blocking by two unsupervised machine learning
methods, a PCA, b SAE. (Blue dots: data points which were assumed as healthy in the training data,
magenta line: fault detection threshold with confidence interval set at 99%, red points: anomalies
in training data)

Fig. 8 Fault analysis for lubrication system filter blocking using PCA-based fault detectionmethod
a Q-statistic plot of all variables, b Average residuals

5.3 Discussion

As a comparison, the training data used in reference [10] is under similar operating
condition to the test data. Different faults, including a pump system misalignment
fault in the 1st case and a misalignment fault and a bearing fault in the 2nd case, were
successfully detected via PCA and SAEmethods. The contribution maps of SAE for
the two cases were as expected. The performance of PCA was not as good as SAE,
but some variables in the contribution maps were as expected.
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Fig. 9 Fault analysis for lubrication system filter blocking using SAE-based fault detectionmethod
a Q- statistic plot of all variables, b Average residuals

However, in this paper, the training data was collected under more than 13 oper-
ating conditions, which makes the training process for the unsupervised machine
learning methods much more complicated than that in reference [10]. In this study,
both the misfire fault and the lubrication system filter blocking fault are success-
fully detected by PCA and SAE, however, in the detection of the lubrication oil
filter blocking fault, the Q statistic and residual figures of PCA are not as expected.
In contrast, the contribution map and residual plot of SAE are as expected in both
cases.

In industrial applications, the IC engine could have various types of faults. Many
faults are difficult to distinguish, because some faults could have similar sensitive
parameters and therefore have a similar contribution map.

Therefore, future work could be: (1) test the SAE fault detection method using
more testing datawithmore types of faults; (2) apply additional parameters or features
such as vibration features to achieve more accurate diagnostics.

6 Conclusions

In this paper, two unsupervised data-driven methods are employed for condition
monitoring for an IC engine. Experimental results show that both of the unsupervised
learning fault detection methods, PCA and SAE, can successfully detect the cylinder
misfire fault and the lubrication system filter blocking fault. The Q statistic and
residual plots of PCA in the detection of the lubrication system filter blocking fault
are not consistent with the fault’s nature. In contrast, the SAE has better performance
than PCA in both cases, with both the contribution maps and residual plots of SAE
being as expected. In summary, the unsupervised machine learning methods, PCA
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and SAE, are effective in fault detection, while the SAE has better performance than
PCA in fault isolation.
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Online Pipe Leakage Detection Using
the Vibration-Based Wireless Sensing
System

Xiaoli Tang, Yu Jia, Guojin Feng, Yuandong Xu, Fengshou Gu,
and Andrew D. Ball

Abstract Piping systems are widely utilized in industry and home. Leakage of
piping systems induced by prolonged corrosion, severe weather, or man-made
damage will lead to serious consequences like explosion disasters, severe damage
to industrial equipment, unforeseeable waste of resources and even threaten human
life. WSNs significantly attract attentions in Industry 4.0 in recent years due to their
advantages of wide distribution, remote controllability, convenient portability, easy
programming, and economy.Meanwhile, as a non-intrusive measurement technique,
vibration manifests a great potential for leakage detection of piping systems. In this
paper, a vibration-based wireless sensing system is developed to remotely monitor
the condition of piping systems in real time. According to the analytical results of
vibration signals at two different positions on the piping system, the effective statis-
tical features are extracted at the wireless sensor node to detect the leakage and its
severity of the piping system. Furthermore, it can reduce the amount of data trans-
mitted to reduce the power consumption then prolong the service life of the designed
wireless sensing system. The diagnostic result can be conveniently observed on the
mobile device in real time.

Keywords Piping system · Leakage detection ·Wireless vibration sensing
system · Condition monitoring

X. Tang · Y. Jia (B)
School of Engineering and Technology, Aston University, Birmingham B4 7ET, UK
e-mail: y.jia1@aston.ac.uk

X. Tang
e-mail: x.tang4@aston.ac.uk

G. Feng · F. Gu (B) · A. D. Ball
Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield H1
3DH, UK
e-mail: f.gu@hud.ac.uk

G. Feng
e-mail: Guojin.Feng@outlook.com

Y. Xu
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_39

477

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_39&domain=pdf
mailto:y.jia1@aston.ac.uk
mailto:x.tang4@aston.ac.uk
mailto:f.gu@hud.ac.uk
mailto:Guojin.Feng@outlook.com
https://doi.org/10.1007/978-3-030-99075-6_39


478 X. Tang et al.

1 Introduction

The leakage of the piping system induced by corrosion, weather, or man-made
damage will bring potential safety hazard to human life in the industry and daily
life, and it will also cause waste of resources and pollution of the environment. For
example, 62 people were killed, and 136 people were injured after a leaking oil
pipeline caught fire and explosion in Qingdao in November 2013, which also results
in the economic loss of up to 80 million pounds. The traditional pipeline leakage
monitoring technologies [1, 2] are primarily according to ultrasonic, acoustic emis-
sion, optic and fiber optic [3], flow and pressure detection [4], and soil monitoring.
The equipment used for these technologies may be expensive or require intrusion
and damage the pipeline. Vibrationmeasurement is a non-intrusive detectionmethod,
which shows great advantages in detecting leakage in the piping system, especially
the exposed pipes above the ground applied in industry or our daily life.

The piping system has complicated vibration sources due to its complex structures
with various valves, corners, clamps, etc. at different locations. From themicroscopic
view, when the fluid passes through the pipeline, fluid molecules randomly collide
against the pipe wall with most of them moving towards the same direction with
the fluid flow. In this process, most of kinetic energy is converted into pressure
oscillation energy which will provide dynamic forces from the inner wall of the
pipe [5]. Simultaneously, little kinetic energy will be converted into heat energy and
dissipates in the environment because of thermal effects. According to the kinetic
analysis, the faster the fluid flows, the greater the force of the fluid molecules hitting
the pipe wall, which results in a greater deformation of the pipe wall, as well as larger
vibration amplitude. From a macro perspective, the laminar can be destroyed by the
small whirlpool and generate turbulence [6] when the flow rate suddenly increases
because of disordered and irregular fluid motion at the corner or around the valve.
Randomness of fluid movements is the fundamental characteristic of turbulence.
As a result, the vibration of the pipeline caused by turbulence is also complex and
random. Another cause of pipe wall vibration is the internal friction [7] generated
by the relative motion of the fluid to the pipe wall. The frictional effects of fluid
motion are the results of momentum transfer and cohesion function between the
molecules. All these behaviors are the source of pipe wall vibration. As the fluid
flow generates a wide range of excitation, it will cause larger vibration amplitudes
at the natural frequencies [8] of the piping system. Therefore, the excitations around
natural frequencies will lead to enlarged vibration amplitude to show more distinct
features for the leakage detection of the piping system.

Some researchers have investigated lots of leakage detection methods of piping
systems based on vibration measurements. For example, Qu et al. [9] proposed a
SVM-based pipeline leakage detection method with the distributed vibration sensors
to recognize and locate the leakage in real time. Dinardo et al. [10] investigated
that the first harmonic amplitude of the vibration signal has the linear relationship
with the flow rate, which is very useful to improve the measurement of fluid flow
rates according to the vibration. Shukla and Piratla [11] proposed to exploit a deep
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learning algorithm to process the vibration signals to fill the gap due to the lack
of a comprehensive understanding of the structural dynamics of the piping system
and the correlation of leak detection. Additionally, some researchers achieved the
leakage detection with the low-cost and low-power WSNs [12–14]. However, most
of researchers developed the WSNs for leakage detection of pipelines according to
the pressure, temperature, strain, acoustic signals, etc. [15, 16]. In this paper, a smart
wireless vibration sensing system, including a vibration-based wireless sensor node
and remote real-timemonitoring application, was designed and validated to remotely
detect the leakage severity of the piping system. Meanwhile, an optimal installation
locationwas selected via comparison and analysis of the statistical vibration features.
Furthermore, the design employs data compression which can effectively detect the
leakage and its severity level and reduce the number of transmitted data to prolong
the service life of the hardware.

The rest of this paper is arranged as follows. Section 2develops awireless vibration
sensing system with the low-cost MEMS components, which includes the wireless
vibration sensing node and remote monitoring application design. Then, a water
leakage test rig was set up with the domestic pipeline in Sect. 3. Different leakage
severity levelswere simulatedwith the open of the tap to validate the effectiveness and
efficiency of the designed wireless vibration sensing system for online pipe leakage
detection. In Sect. 4, vibration measurements captured with the designed wireless
vibration sensing system are analyzed through feature extraction for the selection
of the optimal sensor installation position and leakage detection. Furthermore, the
selected sensor installation position is validated with the online and remote water
leakage monitoring in real time. Finally, a conclusion is drawn according to the
previous analysis and validation.

2 Design of Wireless Vibration Sensing System

2.1 Wireless Vibration Sensing Node Design

Compared with the traditional data acquisition system, wireless sensor nodes have
the characteristics of tiny dimension, low cost, integrability and flexibility. They
commonly consist of four units: sensing unit, processing unit, communication unit
and power unit. Figure 1 shows the architecture of a wireless sensor node. The
wireless sensor node can be powered by an external battery. Moreover, the battery
can be supported by the energy harvested from the ambient resources to achieve self-
powered WSNs [17]. The collected raw data or extracted features will be directly
transmitted to the portable devices or the Cloud via various wireless communication
methods like Bluetooth and WiFi.

In our research, the sensing unit should be a 3-axis MEMS accelerator for
capturing the vibration response of the pipes. ADXL345 from Analog Devices
company is selected because of its characteristics of high data rate (3200 Hz), high
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Fig. 1 Architecture of a wireless sensor node

resolution (13 bits), high sensitivity and wide range (±16 g), as well as its low cost
and low power cost.

According to the processing and communication units, the Adafruit Feather M0
Bluefruit LE board is very suitable for our research. It integrates ARM Cortex-
M0 and the nRF51822 chipset from Nordic. This processing unit includes both the
memory and the microcontroller to implement the primary functions of storage and
computation.Additionally, themicrocontroller is also responsible for communicating
with othermodules. Then, the collected vibration signal is transmitted to the designed
mobile application throughBluetoothLowEnergy (BLE4.2). The transmission speed
can be up to 1 Mbps. To power these units, a charging module is integrated on the
Adafruit Feather M0 Bluefruit LE board, which can recharge the Li-ion battery to
extend the service life of the sensing node. As a result, a 3.7 V rechargeable Li-Ion
battery is applied to provide all the power required by the sensing node.Moreover, the
sensing node can be powered by the energy harvested from the ambient environment
or monitored system [17].

Furthermore, to minimize the vibration loss in the process of transmission, the
selected material of the sensor base is same as the object to be installed. Since the
accelerometer was applied for the leakage condition of the standard copper water
pipes, the sensor base was designed with copper which was tightly attached to the
surface of the pipe by the clips within silicon between them to increase the contact
area. The base thickness is only 2 mm to reduce the vibration damping. The whole
vibration sensing node was covered with a white box as shown in Fig. 2.

2.2 Monitoring Application Design

To achieve remote and real-time condition monitoring with the designed wireless
vibration sensing node, an Android mobile application named “Leak Detector” was
designed with Android Studio as displayed in Fig. 3.
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(a) (b)

Fig. 2 Wireless vibration sensing node: a inside, and b outside

(a) (b) (c)

Fig. 3 Designedmobile application interfaces: a line chart display interface,b calibration interface,
and c process bar display interface

The wireless vibration sensing node can be discovered by the mobile Bluetooth
once the node is powered. After successful connection, the real-time vibration signal
is transmitted and drawn with circles and blue lines as shown in Fig. 3a. At the same
time, the real-time RMS value of vibration signals is displayed above the line chart.
Additionally, there is a saving function to store the collected datasets in the mobile
internal memory for further analysis. For accurate condition monitoring, the switch
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button can change the display interface from the line chart to the calibration panel,
i.e., from Fig. 3a–b. The calibration panel can set thresholds of small, medium, and
largewater leakage. Another switch button can convert the line chart to the process
bar which aims to differentiate the level of the wake leakage amount according to
the thresholds. Similarly, the switch button can switch the interface from the line
chart back to the process bar chart. With this mobile application, the condition of
water pipes can be remotely monitored in real time.

3 Leakage Detection of Domestic Water Piping Systems

To validate the availability of the designed wireless vibration sensing system, some
experiments were carried out on the domestic water piping systems with the copper
pipe diameter of 15 mm in the laboratory. The pipes have a complicated structure
at the corners and valves, and it is easier to generate turbulences leading to large
vibration amplitudes of pipe walls. In addition, long straight pipes are more prone
to resonance. As a result, two detection positions, P1 (closing to Tap 1 at the corner)
and P2 (at the middle of the long straight pipe and with the distance of 3.6 m to Tap
2) were typically selected to compare the influence of the vibration mechanism and
select the optimal position for remote online water leakage detection. The designed
wireless vibration sensing node was installed on the surface of the pipe wall at these
two locations. The different sizes of leaks were simulated by independently opening
Tap 1 or Tap 2 with different angles, respectively. The structure of the domestic
piping test rig is displayed in Fig. 4.

P1

P2

Tap1

Tap2

Flow direction

Fig. 4 Structure of the domestic piping test rig
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Table 1 Flowrates at
different leakage conditions

Conditions Flow rate (L/min)

Zero flow 0

Small flow 0.51, 0.83, 0.94

Medium flow 1.07, 1.46, 1.57

Large flow 2.14, 2.68, 3.23, 4.63, 5.87

Table 2 Parameters of the
wireless vibration sensing
node

Parameters Values

Range ±16 g

Sensitivity 256 LSB/g

Resolution 13 bits

Data rate 3200 Hz

Bandwidth 0.1–1600 Hz

Collection period 20 s

To diagnose the severity of the leak, four different leak conditions, including
zero, small, medium and large flows, were simulated with the Taps 1 and 2 closed
or opened with different rotating angles in this experiment. The flow rates caused by
leakage were measured using a flow transducer and presented in Table 1.

To acquire a broad range of the vibration frequencies, the maximum sampling
rate of 3200 Hz was set for the wireless vibration sensing node. Three repetitive tests
for each sizes of leaks at Tap 1 and Tap 2 were carried out with 20 s of data recorded
for further analysis. The other parameters are listed in Table 2 in detail.

4 Results and Discussion

In this section, 17 tests with different flow rates were carried out to simulate four
different conditions, that is zero leakage, small leakage, medium leakage and large
leakage, respectively. The experimental results at P1 and P2 will be compared and
discussed to select the optimal position of the piping system to install the wireless
vibration sensing node.

4.1 Results at Position 1 (P1)

P1 is the position close to the tap and the pipe corner. To eliminate the influence of
ambient noise, a high-pass filter with 100 Hz as the low threshold was utilized in
vibration waveforms. Figure 5 illustrates the three-axis RMS values of vibration
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Fig. 5 RMS values of vibration at different flow rates at P1

waveforms at different flow rates (leaks) measured at P1. Additionally, a three-
axis acceleration fused RMS values are calculated and plotted for different flow
rates (leaks) with the magenta dotted line. From the perspective of change, it is
clear that RMS value of zero leakage is the smallest. It increases as the rise of the
leakage amount in the small leakage range, then goes to a significantly high value of
1.046 m/s2 when the leakage is heavier to the medium level. The increasing trend of
acceleration is caused by the resonance of the piping system widely excited by the
more apparent force of water molecules acting on the pipe wall. However, it starts
to descend rapidly after reaching its peak, no matter how severe the leak is, which
manifests that vibrational RMS values have nonlinear correlations with the severity
of the leak. This phenomenon may be because as the water amount increases and the
water level rises in the water pipe, the turbulence and friction effects gradually calm
down.

Furthermore, RMS values of 0.4 m/s2 and 0.6 m/s2 can be considered as the
thresholds to distinguish between small and medium leakage, and medium and large
leakage, respectively. Unfortunately, it is impossible to recognize the small and large
leakage with these two thresholds. Moreover, considering the complexity of the
piping system structure at P1, the vibration caused by turbulence will be unstable.
Meanwhile, the installation of the wireless vibration sensing node is inconvenient
and complicated at the corner and tap position. Consequently, P1 is not very suitable
for leakage detection with the vibration-based wireless sensor node.
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4.2 Results at Position 2 (P2)

P2 locates in the middle of the long straight pipes. The tests with same flow rates
(leaks) as P1 were carried out and measured at P2. Figure 6 also displays the RMS
values of the high-pass (100 Hz as the low threshold) filtered vibration at 17 different
flow rates (leaks) at P2. The RMS values of vibration in X and Y axes dramatically
increase approximately with the rising of the flow rates when the leakage quantity
is at the small level. But it only gently rises at the Z direction, which represents the
force of water molecules in this direction is relatively small. When the flow rates
continue to increase, the RMS values decrease but not as significant as the results at
P1, which illustrates that friction effects may contribute more than turbulence. From
the analytical results of these three axes, RMS values at the Y or X directions are
more appropriate as the efficient indicator for conditionmonitoring of piping systems
than the Z direction because of their high amplitudes. However, the installation
of the wireless sensor node requires high requirement on the installation direction
and position. Therefore, the RMS value of the acceleration fused all three axes is
more suitable for pipe leakage detection and diagnosis. As a result, the acceleration
RMS values fused all three axes at the long straight pipe can be considered as the
position to monitor condition of the piping system. As the water pipe structure in
different positions is completely different, it may require the customer to perform
non-professional calibration by controlling the tap after the wireless sensor node is
installed on the surface of the pipes.

Fig. 6 RMS values of vibration at different flow rates at P2
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4.3 Evaluation of the Designed Remote CM System

According to the experimental results analyzed in the previous sub-sections, the
vibration-based wireless sensor node was installed on the pipe outer wall at a long
straight pipe. The raw vibration signals were primarily captured and filtered by
the sensor. Then, RMS values were calculated as the compressed and extracted
statistical to transmit to the remote devices for further leakage diagnostic of the
piping system in the real time. This pre-processing process can not only reduce the
power consumption of the wireless sensor node, but also guarantee the effective
transmission of characteristic signals [17].

An online field test was performed with the designed wireless sensor node located
at about 6–7 m far from the leak position and the monitoring location. The test
results can be remotely observed at the portable device in real time. Figures 7 and
8 display the monitoring interface with line graphs and bar process charts at four
different leakage levels, respectively. In Fig. 7, the acceleration RMS values are
about 0.194, 0.209, 0.307, and 1.902 m/s2 for these four different cases, which can
clearly distinguishwhether there is a leak or not, and even can effectivelymeasure the
amount of the leak. Simultaneously, the condition of the pipe can be also intuitively
observed with the bar process charts as shown in Fig. 8. When the leakage amount

(a) (b)

(c) (d)

Fig. 7 Real-time leakage monitoring interface with line graphs: a no leakage, b small leakage, c
medium leakage, and d large leakage
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(a) (b)

(c) (d)

Fig. 8 Real-time leakage monitoring interface with bar process charts: a no leakage, b small
leakage, c medium leakage, and d large leakage

is higher than 2 L/min, the vibration-based wireless sensing system will issue a red
alert as displayed in Fig. 8d.

This real-time test demonstrates that the designed wireless vibration sensing
system is effective and efficient for the leakage detection and severity diagnosis
of piping systems with the statistical RMS values of the vibration of triaxial fusion.

5 Conclusions

A smart wireless sensing system was designed and validated to remotely detect the
leakage severity of the piping system in real time according to its vibrationmechanism
in this paper. Two representative positions on the pipeline were selected to compare
the influence of turbulence and friction effects of fluid. It seems that resonance of
the pipe wall at the long straight pipe is more prone to the excitation. The diagnostic
results can be explicitly observed with the portable device from both the line graphs
and bar process charts. Moreover, the design of the wireless vibration sensing system
relies on statistical features, which can not only effectively detect the leakage faults
of piping systems, but also greatly reduce the amount of transmitted data. Therefore,
it will reduce the power consumption of the node to prolong its service life, which
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supplies the potential to achieve maintenance-free pipeline leakage detection system
with the assist of energy harvesting in future.
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Meta-Learning Guided Few-Shot
Learning Method for Gearbox Fault
Diagnosis Under Limited Data
Conditions

Ming Zhang , Duo Wang , and Yuchun Xu

Abstract Recently, intelligent fault diagnosis technology based on deep learning
has been extensively researched and applied in large industrial equipment system
for ensuring safe and stable production. However, these deep models only effective
when enough data for each observed failure category are available in the training
durations. Otherwise, the performance of these models will notably decrease. As the
critical component in large machinery, the gearbox often changes the speed and load
along with the production demand in the practical application, which caused few
data samples to be collected at certain conditions. This phenomenon introduces the
few-shot fault diagnosis, and its goal is to identify the fault types with extremely
limited data samples. To address this problem, a Meta-learning guided Few-shot
Fault Diagnosis method, named MFFD, is proposed for gearbox fault diagnosis
under limited data conditions. The results verify the effectiveness of our MFFD
method at one-shot and five-shot fault diagnosis tasks under different speed and load
conditions.

Keywords Meta-learning · Few-shot learning · Fault diagnosis · Gearbox ·
Limited data samples

1 Introduction

As the critical technology of Prognostic and Health Management (PHM), fault diag-
nosis aims at identifying failure attribution accurately, thus decide on actions to
prevent their occurrence in preventive maintenance. Since the machinery equipment
is developed toward high-speed and complexity in recent years, meanwhile, it also
needs to meet the needs of health, stable and long-term running, fault diagnosis
has become an indispensable technology in most industrial complex systems. With
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the rapid development of information technology and sensor technology, the industry
has become a data-rich environment, which provides opportunities for developing the
data-driven fault diagnosis method to substitute time-consuming knowledge-based
and rule-based methods, thus enhance efficiency and applicability of fault diagnosis.
In recent years, the fault diagnosis methods based on deep learning have been well
studied and applied in large industrial system [1–6].

However, the effectiveness of the advancedmodels canbeguaranteedonly existing
enough data samples into themodel during the training period. The capability of these
deepmodelsmay be degraded dramaticallywhen this assumption can not be satisfied.
Unfortunately, in the real-world application, the gearbox needs to switch speed and
load frequently according to the production demand. Usually, the machine would not
run at high speed and load unless there is an emergency need, and it could not work
with worrying fault. For this reason, the data coming from the heavy condition and
sudden serious failure should be hard to collect, while the normal data are sufficient.
This phenomenon is referred to as a few-shot fault diagnosis, in which training a
model can generalize well only used one or a few data samples.

Recently, some researchers in the fault diagnosis field have paid attention to the
few-shot fault diagnosis problem and proposed advanced methods to overcome the
overfitting problem by training with limited data samples [7–9]. Although these
methods are effective for the few-shot fault diagnosis tasks to a certain degree, they
did not utilize the feature information of related diagnosis tasks as support for helping
the current few-shot learning task. We try to deal with the few-shot fault diagnosis
problem in the meta-learning perspective, which could with the help of the transfer-
able knowledge learning from the source domain to address the few-shot diagnosis
issue in the target domain.

In this paper, aMeta-learning guided Few-shot Fault Diagnosis framework, called
MFFD, is presented for the gearbox fault diagnosis under different limited data
conditions. The preliminaries is detailed in Sect. 2, and the theoretical framework
is described in Sect. 3. Section4 shows detailed experients and analysis results. The
conclusions has been made in Sect. 5.

2 Preliminaries

2.1 Problem Definition

Figure1c shows the few-shot fault diagnosis, the training and test data draw from
the different domain, the target domain is the few-shot fault diagnosis task which
has limited labeled samples, while the source domain owns sufficient data which is
annotated but totally different with the target domain. Themeta-learningmethod is to
exploit the transferable knowledge by utilizing the episodic training mechanism for
facilitating the model in a few-shot condition [10–12]. The target domain of few-shot
fault diagnosis is defined as T T which has a CT -way, K -shot, M-test task. In this
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task, there are an annotated support data set ST : (xTSa, y
T
Sa)

NT
S

a=1 and an unannotated

query data set QT : (xTQa)
NT
Q

a=1. In our work, K is equal to 1 or 5, while M set to 25,
x is the vibration signal sample and y is the label. Samples of auxiliary set in source
domain are defined as XS = (x S

a , ySa )N
S

a=1. The source domain has totally different
failure categories CS .

2.2 Metric-Based Meta-Learning

The metric-based meta-learning aims at addressing the few-shot learning problem
with the set-to-set approach [11, 13],which canpredict the labels for the unobservable
categories without making any changes to the trainedmodel. Specifically, the metric-
based model is a probability distribution mapping P(ŷ|x̂, S) from the input samples
x̂ to the output labels ŷ, while the S = {(xi , yi )}ki=1 is a support set of K labeled
samples. When a new few-shot support set S′ coming, the model will be directly
use to output the label ŷ for each test sample x̂ : P(ŷ|x̂, S′). The metric-based meta-
learning model is defined in general as follows:

ŷ =
k∑

i=1

α(x̂, xi )yi , (1)

where xi , yi draw from the support set S = {(xi , yi )}ki=1, and a is the metric-based
attention kernel. Unlike the typical supervise learning model, the metric-based meta-
learning is a non-parametric method and quickly adapts to any new support set.

Matching NetworksAs the initial method of metric-based meta-learning, Matching
Networks [10] define a conditional classification model with the support set, which
explicitly chooses the softmax over the cosine distance as the similarity function
α for the few-shot test sample x̂ and the support sample xi . The similarity kernel
function is expressed as follows:

α(x̂, xi ; θ) = exp[d( f (x̂), f (xi ))]∑k
j=1 exp[d( f (x̂), f (x j ))]

(2)

where the f is an appropriate neural network with parameter θ as the embedding
function; d is a cosine distance function.

Prototypical Networks Prototypical Network [14] performance better than Match-
ing Networks for solving the few-shot problem in the image classification field,
which benefit from the idea that there should exist a single prototype representation
for each class in the points cluster. The prototype representation is the mean vector
of its belonging category, which can be calculated as follows:
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ck = 1

|Sk |
∑

x j ,yi∈Sk
f (xi ), (3)

where Sk denotes the set of examples labeled with class k in the given supporting
set. With the changes in the Prototypical Networks, the similarity kernel will turn to

α(x̂, ck; θ) = exp[d( f (x̂), ck)]∑k
j=1 exp[d( f (x̂), ck)]

, (4)

where d denotes the Euclidean distance in such a method. Similar to the Matching
Networks, the training process also aims at minimizing the negative log-probability
J (θ) = − log(P(y|x, S; θ)) through stochastic gradient descent (SGD).

3 Theoretical Framework

The framework of our proposed MFFD method is shown in Fig. 1a, which consists
of three-part, including few-shot tasks sampling, embedding mapping, and matching
classification. The data samples of the source domain are reformed to generate few-
shot tasks for episode training. Then the support set Si and the query set Qi are
input to embedding mapping, while the embedding mapping is optimized by the
metric loss function Lm , which is defined in Eq. (9). After the training procedure,
the embedding mapping is directly used to identify the test few-shot tasks from the
unseen target domain.

3.1 Embedding Mapping

For the fault diagnosis tasks, the vibration wave is the main signal to be processed,
which is a typical one-dimensional signal. The embeddingmapping is the critical term
of our proposedmethod,which consist of several one-dimensional convolution layers
and a fully connected layer. More specifically, the one-dimensional convolutional
layer is defined as follows:

Cl
i j = φ(k j

n×1 ∗ xii :i+n + bi j ) (5)

where k j
n×1 is the j th kernel which belong to the kernels Kl

j size n × 1 × j of the l-th
convolution layer; xii :i+n is the i th input segment; bi j is corresponding to the bias; φ
is the activation function; Cl

i j is the i-th feature point of the j-th kernel in the l-th
convolution layer.
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3.2 Episodic Learning Procedure

The metric embedding mapping is defined as fM(·) with parameters θM . For imple-
menting the episodic training, the data sampled of source domain will be randomly
sampled to generate a range for few-shot learning tasks of fault diagnosis T S , in each
of which there has CS-way, K -shot, M-test and CS don’t need to equal CT of T T

in the target domain. The support set and the query set of source domain are defined

as S S = (x S
Sa, y

S
Sa)

NS
S

a=1 and QS = (x S
Qa, y

S
Qa)

NS
Q

a=1, respectively, where NS
S equals to

CT × K and NS
Q equals to M .

The core of our MFFD is to learn the transferable feature of embedding mapping
from the source domain and directly use it to solve the few-shot fault diagnosis in the
target domain. Therefore, after processing the data samples of the source domain,
the classification performance of the query set by matching the feature of embedding
mapping to the support set should be conducted. The one-dimensional raw fault
signal x as the input for the embedding mapping, the prediction is calculated by the
weighted sumof support labels, which is defined as follows (note that the superscripts
S are omitted for simplicity):

ŷQn =
NS∑

a=1

w[ fM(xQn), fM(xSa)] · ySa (6)

where the w is the softmax normalization of distance, which is calculated by the
distance between the feature of the query set and each support set:

w[ fM(bQn), fM(bSa)] = exp(−τ ∗ d[ fM(bQn), fM(bSa)])∑NS
j=1 exp(−τ ∗ d[ fM(bQn), fM(bS j )])

(7)

where τ is a hyper-parameter to control the convergence of training. The kernel
function d[·] is defined as:

d[xi , x j ] = xi · xTj
|xi ||x j | (8)

Finally, the objective for optimizing metric embedding mapping with parameter θM
is defined as follows:

LM(θM) =
∑

T S

LM(T S; θM) =
∑

T S

[− 1

NS
Q

NS
Q∑

n=1

CS∑

i=1

I[yQn = i] · log(ŷQn(i))] (9)

The above learning process is described following the Matching Network (MN). As
the alternative way of Matching Network, Prototypical Network (PN) in our MFFD
framework is defined as follows:
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ŷQn =
CS∑

a=1

w[ fM(bQn), P
S
a ] · ya (10)

where PS
a is the mean vector of embedding features of the ath category:

PS
a = 1

K

∑

j∈a
fM(bS j ) (11)

The calculation of weights and distance and training objective are similar to Eqs. (7),
(8) and (9). In our MFFD, MN and PN versions are compared and analyzed.

3.3 The Workflow

In this section, Theworkflowof training strategy for ourmethod is detailed as follows:

1. Data Processing: Reform the data samples of source domain XS as the few-shot
learning tasks {S S

i ,QS
i }ni=1;

2. Initialization: Initialize parameters of embedding mapping θM ;
3. Training: Input the few-shot tasks of source domain {S S

i ,QS
i }ni=1 to train the

embedding mapping with the objective LM , which can be expressed as:

θM ← θM − αLM ; (12)

4. Test: Input the query set QT of the target domain to embedding mapping with
trained parameters θM and limited labeled support set ST .

4 Experiment

4.1 Data Preparation

A gearbox fault diagnosis dataset [15, 16] is utilized to testify our proposed method.
The test rig is shown in Fig. 1b, an accelerometer is installed on the gearbox body
closing to the drive shaft for collecting the 1D vibration signal. As shown in Table1,
there are six categories of gear failure: Normal, Chipped Tooth (CT), and Missing
Tooth (MT), Bent Shaft (BS), Rotor Imbalance (RI), and Mixed fault with BS and
MT. Each type has 500 samples of different speeds (30, 35, 40, 45 and 50Hz) and
different loads (Low and High). The sampling frequency is 66.67 kHz and every
input data has 6600 points.
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Table 1 Description of gearbox dataset

Fault location Normal CT MT BS RI Mix Speed
(Hz)

Load

Category labels 0 1 2 3 4 5

Dataset 30L no. 500 500 500 500 500 500 30 Low

Dataset 30H no. 500 500 500 500 500 500 30 High

Dataset 35L no. 500 500 500 500 500 500 35 Low

Dataset 35H no. 500 500 500 500 500 500 35 High

Dataset 40L no. 500 500 500 500 500 500 40 Low

Dataset 40H no. 500 500 500 500 500 500 40 High

Dataset 45L no. 500 500 500 500 500 500 45 Low

Dataset 45H no. 500 500 500 500 500 500 45 High

Dataset 50L no. 500 500 500 500 500 500 50 Low

Dataset 50H no. 500 500 500 500 500 500 50 High

4.2 Experimental Setup

Few-Shot Setup forFaultDiagnosis In the few-shot fault diagnosis experiments, the
source domain has enough labeled dataset Ds = {xsi , ysi }nsi=1, and the target domain
is part of Support dataset St = {xtk, ytk}Kk=1 and the test task dataset Dt = {xtj }ntj=1.
It is for sure that the fault types of the supporting dataset would not be seen in the
source domain, and the task dataset is unlabeled. One-shot means only 1 sample of
each category in the support set, while five-shot denote 5 samples in the support set.

In this work, wemainly evaluate ourmodel in the following two scenarios: (1) The
source and target domain draw from the different working conditions for 1-shot and
5-shot learning fault diagnosis situations; (2) The source and target domain from the
different categories under the same working condition for 1-shot and 5-shot learning
fault diagnosis situations.

ComparedMethodsAll the few-shot tasks is compared with several few-shot learn-
ing methods for comparing with our proposed method, which is detailed as follow:

1. Finetune Last
2. Fintune Whole
3. Feature KNN
4. Feature KNN Proto
5. MFFD-MN
6. MFFD-PN

(1)–(3) are based on pre-training the embedding mapping and the last classifier
with source domain datawith supervised learning. (1) and (2) are designed to finetune
the classifier or thewholemodel by utilizing the few-shot data from the target domain;
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Table 2 Details of network architecture

Components Layer type Kernel Stride Channels Padding

Embedding
mapping

Convolution 1
ReLU 1

64 × 1 16 × 1 16 No

Max Pooling 1 2 × 1 2 × 1 16 No

Convolution 2
ReLU 2

3 × 1 1 × 1 32 Yes

Max Pooling 2 2 × 1 2 × 1 32 No

Convolution 3
ReLU 3

3 × 1 1 × 1 64 Yes

Max Pooling 3 2 × 1 2 × 1 64 No

Convolution 4
ReLU 4

3 × 1 1 × 1 64 Yes

Max Pooling 4 2 × 1 2 × 1 64 No

Convolution 5
ReLU 5

3 × 1 1 × 1 64 Yes

(3) and (4) compare the abstracted features with those of support samples by few-
shot data of target domain; (5) and (6) are the Matching Network and Prototypical
Network model with embedding mapping as the backbone in raw data space.

Implementation Details The detail of network architecture is shown in Table2.
Adam optimization is used to train, and all models are trained for the labeled source
domain is close 100% before used for the target domain. The number of iterations is
100 and the learning rate is 0.001 in FinetuneLast andWholemodels. Cosine distance
is utilized in theKNNmodel. Inmeta-learningmethods, the number of query samples
is 25, the maximum training epochs is 100. The query samples generally decided
on the capacity of GPU memory, but it suggests to large than the number of support
samples. All the experiments had been tested on the computer with GPU of Nvidia
GeForce GTX 2060 6GB and CPU of Intel Core i7-10750H of 2.60GHz.

4.3 Result and Analysis

The few-shot fault diagnosis between different speed and load conditions including
one-shot and five-shot learning tasks have been carried out, the experimental results
are shown in Table3. These results illustrate that our MFFD method performs best
compared with other advanced baseline methods for all the few-shot tasks. Results
of five-shot tasks generally better than the one-shot tasks mean that increasing the
number of data samples will notably improve the performance of our model. MFFD
with PN is better than MFFD with MN in most cases, but the number of samples
for every category of support set is a more critical determinant. Limited by the PN
mechanism, the PN based method only tested on five-shot situations.
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Table 3 Accuracy (%) on one-shot and five-shot learning tasks for gearbox fault diagnosis with
different working conditions

30L→35H 30L→40H 30L→50L

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Finetune
last

40.77 45.53 36.27 36.82 32.24 34.18

Fintune
whole

44.43 51.87 39.33 46.34 37.50 43.29

Feature
KNN

61.21 69.20 49.40 52.93 44.67 50.76

MFFD-MN 85.48 87.63 84.23 89.25 84.87 86.64

Feature
KNN Proto

∗ 67.58 ∗ 58.99 ∗ 58.04

MFFD-PN ∗ 87.51 ∗ 90.22 ∗ 88.49

40L→45L 40L→50L 40L→45H

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Finetune
last

50.06 52.73 49.53 52.61 50.06 52.73

Fintune
whole

50.08 61.05 51.03 62.65 50.08 61.05

Feature
KNN

61.49 66.80 68.76 75.87 61.49 66.80

MFFD-MN 65.33 72.04 83.94 89.23 65.32 70.04

Feature
KNN Proto

∗ 58.80 ∗ 63.91 ∗ 58.80

MFFD-PN ∗ 75.85 ∗ 80.20 ∗ 75.85

Then, we test different methods on one-shot and five-shot learning tasks under
different categories of the same conditions. In this case, there are two kinds of fault
type as the few-shot tasks of the target domain, CT and MT, respectively. In CT,
we assume that the chipped tooth and normal data samples are limited, while the
missing tooth and normal data are limited in MT. Therefore, in this part of gearbox
experiments, all the few-shot fault diagnosis tasks have 5 categories in the source
domain in terms of training and 2 categories in the target domain waiting for testing.
The results are shown in Table4, the MFFD performs best at the majority of cases,
and an interesting phenomenon is revealed which is that all the accuracies of MT
are higher than the CT. We believe that the training data of the source domain in
MT is more difficult to identify than the task in CT, then the embedding network
will be learned much better, therefore, it can offer more transferable information for
supporting the target few-shot learning tasks.

In summary, comparing with other state-of-the-art methods, our MFFD model
performs best on all one-shot and five-shot tasks for the gearbox fault diagnosis
under multiple limited data conditions. The PN-based MFFD is verified better than
the MN-based MFFD in certain circumstances.
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Table 4 Accuracy (%) on one-shot and five-shot learning tasks for gearbox fault with different
categories under same conditions

30L 30H 40L

CT MT CT MT CT MT

One-shot

Finetune
last

88.46 93.96 64.38 93.12 97.16 91.58

Finetune
whole

77.98 90.96 64.22 95.82 76.02 93.54

Feature
KNN

91.7 100.00 71.38 100.00 99.66 100.00

MFFD-MN 85.08 100.00 65.84 100.00 99.84 100.00

Five-shot

Finetune
last

87.80 99.36 75.60 93.88 98.98 92.18

Finetune
whole

89.12 96.62 79.30 99.36 90.22 96.36

Feature
KNN

90.52 100.00 82.74 100.00 99.70 100.00

MFFD-MN 90.64 100.00 90.22 100.00 99.80 100.00

Feature
KNN Proto

84.18 100.00 78.02 100.00 99.78 100.00

MFFD-PN 86.90 100.00 92.06 100.00 99.94 100.00

40H 50L 50H

CT MT CT MT CT MT

One-shot

Finetune
last

89.04 95.78 94.92 80.3 87.68 89.68

Finetune
whole

80.82 97.00 79.26 74.92 72.46 96.74

Feature
KNN

93.68 100.00 99.76 100.00 94.10 100.00

MFFD-MN 99.22 100.00 100.00 100.00 97.80 100.00

Five-shot

Finetune
last

96.02 97.06 98.76 86.22 94.04 90.90

Finetune
whole

93.38 99.60 93.08 90.30 84.86 99.72

Feature
KNN

95.24 100.00 99.98 100.00 96.84 100.00

MFFD-MN 96.90 100.00 100.00 100.00 99.14 100.00

Feature
KNN Proto

96.88 100.00 100.00 100.00 99.14 100.00

MFFD-PN 97.20 100.00 100.00 100.00 94.92 100.00



502 M. Zhang et al.

(a) (b) (c) (d) (e) (f)

Fig. 2 t-SNE visualization of gearbox data features embedding derived from the MFFD. a–c
denote results of MFFD-MN 1-shot, MFFD-MN 5-shot and MFFD-PN 5-shot respectively for the
30L→40H task. d–f denote results of MFFD-MN 1-shot, MFFD-MN 5-shot andMFFD-PN 5-shot
respectively for the chipped tooth (CT) fault task under the condition 30Hz low load. For each sub-
figure, the up figure denotes the data feature from the source domain and the down figure denotes
the data feature from the target domain

4.4 Visualization Analysis

The t-SNE [17] has been used to visualize the embedding mapping for analyzing
the results of our MFFD method. The visualization of two-dimensional results are
displayed in Fig. 2, different colour denotes different failure categories. The results
of MFFD demonstrate that the embedding feature of the same category is placed
at the closed area and the feature from different fault types is clearly distinguished
in the source domain, which means that the model is trained well in the source
domain. However, some fault types in the target domain are interacted with different
type, while most of the fault is notably separable. These results verify that ourMFFD
method can really utilize the transferable knowledge learning from the source domain
to deal with the few-shot learning tasks in the target domain. All in all, we can confirm
that our MFFDmethod has very remarkably effective to overcome the few-shot fault
diagnosis problem for gearbox under various limited data conditions.

5 Conclusion

In this work, a novel Meta-Learning guided Few-shot Fault Diagnosis framework,
named MFFD, to address the few-shot learning problem for gearbox fault diagnosis
under various limited data conditions has been proposed and verified. The essence
of our work is to learn the transferable knowledge from the source domain, then
making the trained model with a support set able to directly identify the fault types
in the target domain. Experimental and Visualized results on one-shot and five-shot
tasks of the gearbox fault diagnosis indicate that MFFD performs better than other
advanced methods.
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Investigation into LSTM Deep Learning
for Induction Motor Fault Diagnosis

Xiaoyu Zhao, Ibrahim Alqatawneh, Mark Lane, Haiyang Li, Yongrui Qin,
Fengshou Gu, and Andrew D. Ball

Abstract As motor faults could lead to unwanted loss in industry, it is important to
find out the motor faults in time. Currently, with the popularity and mature applica-
tion of deep learning, researchers in the field of electrical machine health assessment
have begun to focus on deep learning methods. It is hoped that motor fault detection
can be achieved with the help of deep learning methods. This paper presents to adopt
deep learning methods represented by LSTM neural network for motor fault diag-
nosis and evaluates on our own experimental platform.Considering two typicalmotor
faults with two different degrees of severity, the results show that the proposed LSTM
approach has a high accuracy (98.81%) on motor fault classification. The results also
confirm that: (1) adequate effort of preprocessing, including sample length selection
in the time domain and frequency band selection in the frequency domain, can signif-
icantly improve accuracy and computational efficiency; (2) different faults can be
separated through the information in frequency band of 100–1000 Hz, which has not
been fully modelled analytically before.

Keywords Deep learning · LSTM · Motor fault diagnosis

1 Introduction

Owing to the importance of induction motors to the industry, research related to
induction motors have received much attention, and fault diagnosis of induction
motors is one of them. The increasing demand for high reliability of motors and
people’s increasing awareness of safe production, have promoted the development
of motor fault diagnosis technique. In addition, the complex environment in which
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the motor works has also increased the possibility of multiple faults occurred, which
makes motor fault diagnosis imperative.

As introduced in [1], current motor fault diagnosis methods can be categorized to
three types: model-based, signal-based or knowledge-based methods. Model-based
method builds an effectivemathematicalmodel using the parameters in real system to
obtain a predicted value, and to compare the consistency between the prediction value
and practical value from the real system [2, 3]. While the signal-based methods use
the practical output signal to capture useful information and perform fault diagnosis
on information without depending on a model. For a signal-based method, it knows
the patterns of motor’s healthy working condition, and does fault diagnosis through
checking the consistencybetween themeasuredvalue and the healthyvalue [4].As for
the knowledge-based method, it requires a large amount of historical data. Through
applying artificial intelligent approaches to implicitly extract features from historical
data, it obtains the knowledge base. Then, through checking the consistency between
the measured value in the real system and the knowledge base, a fault diagnosis
decision can be made using classifier [4]. One of the well-known knowledge-based
methods is deep learning (DL). DL methods are good at learning the patterns or
features from raw data, and can find the correlation automatically. They have been
considered as a good choice to deal with the fault diagnosis problems which usually
have complex and variable data. The earliest DL applications inmotor fault diagnosis
can be traces back to 2016 [5, 6] by Sun et al., and have gradually become popular
these years with the advent and development of multiple neural network toolkits
(TensorFlow, 2015 [7]; Keras, 2015 [8]; MATLAB deep learning Toolbox, 2019
[9]), which brings convenience to researchers to apply DL neural network into their
own data set without deeply studying and constructing its complex network structure.
Several DL methods have been investigated for automated fault diagnosis of motor,
including Convolutional Neural Network (CNN) [10], Recurrent Neural Network
(RNN) [11, 12], and Deep Belief Network (DBN) [13]. The mentioned DL-based
studies all train their models using acquired dataset, spontaneously learning features
in data set, and draw diagnosis conclusions. However, some methods claim that
it can feed their dataset into the DL based model without preprocessing and only
use raw data can achieve good classification results. Also, some methods feed all the
frequency data or time domain data directly, which brings large amount of calculation
and increases requirements for computing equipment. Therefore, somemodels in this
paper are proposed to address the mentioned issues, hoping to verify the necessity
of performing preprocessing on motor data and to find a good solution in order to
reduce the size of data set.

This paper adopts Long Short-Term Memory neural network (LSTM) [14], a
widely used and improved variant of RNN, for building models in induction motor
fault diagnosis. It takes time domain signal and frequency domain signal in different
frequency distribution of motor current signal as data set for model training. As a
result, the RNN method represented by LSTM is evaluated for its ability to process
various types of data, and the amount of information contained in various data for
motor fault diagnosis is verified. Also, it is found that some essential preprocessing
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methods are critical to LSTMnetwork, and it has huge impact on improving accuracy
for motor current fault diagnosis.

We organize the rest of this paper as follows. Section 2 briefly reviews the theory
of adopted LSTMmethodology. Section 3 introduces the testing scenes setup proce-
dure and shows the characteristics of motor dataset. Section 4 presents our data
preprocessing techniques, which are applied before data fed into the LSTM network
and provides detailed analysis of the results. Finally, the paper is concluded in Sect. 5
with discussions of future work.

2 Methodology

2.1 LSTM Theory

Long Short-Term memory (LSTM) network is a type of RNN developed by Hochre-
iter and Schmidhuber [14] to overcome the exploding and vanishing gradient prob-
lems in RNN. As shown in Fig. 1, the structure of an LSTM unit consists of a cell and
three gates, the cell is the memory part of the LSTM unit; gates are used to control
the flow of information inside the LSTM unit, including forget gate ft , input gate it
and output gate ot . Each gate in the LSTM cell receives the current input data vector
xt , the previous hidden state b ht−i , and the previous cell state ct−1.

As shown in Fig. 1, the Forget gate ft determines the internal information needs
to be removed from the previous cell state ct−1, and it can be calculated as follows
[15]:

Fig. 1 LSTM structure
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ft = sigmoid
(
wx f xt + wh f ht−i + b f

)
(1)

Input gate it determines the new information will be stored in the current cell
state ct , and it can be calculated as follows [16]:

it = sigmoid(wxi xt + whi ht−i + bi ) (2)

ct = tan h(wxcxt + whcht−i + bc) (3)

Output gate ot determines which information will be passed through the gate
and get into the rest of the network, and it can be calculated as follows [17]:

ct = ft ⊗ ct−1 + it ⊗ ct (4)

ot = sigmoid(wxoxt + whoht−i + bo) (5)

ht = ot ⊗ tan h(ct ) (6)

where: (1) xt is the input of the memory cell, ht is the current hidden state, (2) ft , it ,
ot are the output of forget gate, input gate and output gate, respectively, (3) ct is the
current cell state, (4) ct−1 is the previous cell state, (5) ht−i is the previous hidden
state, (6) wx f , wh f , wxi , whi , wxc, whc, wxo, and who represent the corresponding
weight matrix, (7) b f , bi , bc, and bo are the bias vectors.

2.2 Adopted LSTM Structure

Figure 2 shows the LSTM network architecture used in this study. It consists of six
layers. Input layer, LSTM layer, dropout layer, fully connected layer, softmax layer
and finally the classification layer.

The first layer is a sequence input layer, inputting sequence data to adopted
network. Followed by a LSTM layer, LSTM layer is used to learn the long-time
dependences in the time series and sequence data as described in the above section.
A dropout layer is placed after the LSTM layer, and is used to reduce the possi-
bilities of overfitting by randomly setting input elements from LSTM layer to zero
with a given probability of 0.4. A fully connected layer multiplies the input elements
obtained from dropout layer by a weight matrix and then adds a bias vector, it often
follows LSTM layers and is used for outputting a prediction. In this case, the output
size in the fully connected layer is the number of motor working states. The softmax
layer is used before the classification layer to normalize the output of the fully
connected layer of K values into a probability distribution in the range of [0,1], with
the target class having the highest probability among K probabilities. Cross-entropy
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Fig. 2 Adopted LSTM
neural network structure
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loss function is employed at the end of the architecture for performing multi-class
classification task. It is used to measure the error between the estimated softmax
output probability distribution and the target class.

3 Test Scenes Setup and Generated Datasets

3.1 Test Scenes Setup

Theworkingmechanism of themotor test rig is shown in Fig. 3. It mainly includes an
induction motor, a host PC for collecting signal through the data acquisition system
and a generator which is mechanically coupled with the motor to provide various
loads and speeds. In addition, a generator controller is used to control the generator
to simulate multiple operating conditions. See Figs. 4 and 5 for the test rig layout

Fig. 3 Diagram of testing
platform

Fig. 4 Induction motor test rig



Investigation into LSTM Deep Learning … 511

Fig. 5 Data acquisition system (left) and generator controller (Right)

and other equipment used in our motor data acquisition experiment, more detail can
be found in [18].

3.2 Generated Datasets

The test rig is used in our experiment to produce the broken bar faults and horizontal
misalignment faults with two different degrees of severity, see Table 1. Except for
healthy working condition (healthy motor working in healthy working condition
misalignment ≤ 0.07 mm), a total of five different motor working conditions have
been generated. In order to better explain, we use N, B1, B2, M1, M2 to represent
the 5 different conditions, in which N is used to indicate healthy condition, other
representations can be found Table 1. The broken bar fault is achieved by installing
three motors in different degree of fault. The horizontal fault misalignment is made
by adjusting the position of the flexible coupler throughmoving a different imbalance
degree.

In the motor fault data acquisition tests, we monitor and collect motor current
signal from host PC in the data acquisition system. In order to obtain a reliable
dataset, we keep the motor running for 5 min in each working condition, and begin
to sample after running 3 min, sampling for 60 s with a sample rate of 96 kHz.
Eventually, we obtain a time sequence in a total of 5,760,000 sampling points for

Table 1 Fault categories and
groups

Fault category Fault degree of severity

Broken bar fault Motor with half
broken bar (B1)

Motor with one
broken bar (B2)

Horizontal
misalignment fault

Misalignment =
0.7 mm (M1)

Misalignment =
1.1 mm (M2)
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each motor working condition, obtaining a dataset in 5 different working conditions,
which are healthy working condition (N), working in broken bar fault: motor with
half broken bar (B1) and motor with one broken bar (B2), working in horizontal
misalignment fault: misalignment = 0.7 mm (M1), misalignment = 1.1 mm (M2).

4 LSTM Data Modelling and Results Analysis

4.1 Dataset Preparation

As introduced in Sect. 3, we obtain a 60-s raw signal data in the time domain for each
working state. Here, we divide the raw time sequence to 84 samples using partial
overlap method and each sample has a time sequence of 131,073, for the purpose of
making datasets. Therefore, the adopted LSTM neural network can have sufficient
samples in the datasets for model training and test.

For Model_T, we take the separated samples as dataset. For the other models,
written as Model_F, we convert samples from time domain to frequency domain
through performing Fast Fourier Transform (FFT), and choose data in different
frequency ranges as datasets in order to identify the most useful information in
various frequency bands for fault diagnosis. Table 2 describes the different samples
composition used in our models. Here, we not only selected the data near the power
frequency (0–100 Hz) that is commonly used for fault analysis, but also creatively
proposed and selected other higher frequency bands such as 100–1000 Hz and 2500–
3500 Hz for modeling. In this way, we can test the importance of preprocessing
methods in motor fault diagnosis.

Table 2 Model description using different datasets

Model Data size in each sample Description

Model_T 32,768 Samples in time domain

Model_F(0–100 Hz) 274 Samples in frequency domain with
frequency range of 0–100 Hz

Model_F(0–100 Hz)_R 264 Same as Model_F (0–100 Hz) but
excluding samples in the 48–52 Hz band

Model_F(100–1000 Hz) 2457 Samples in frequency domain with
frequency range of 100–1000 Hz

Model_F(2500–3500 Hz) 2731 Samples in frequency domain with
frequency range of 2500–3500 Hz

Model_F(0–100 Hz)_S 101 A non-overlapping supplementary model.
It uses a time sequence of 10,000, and
separates into 57 samples in frequency
domain with frequency range of 0–100 Hz
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Fig. 6 Flowchart for the proposed method

We assign labels to datasets according to the corresponding working conditions
for supervised learning and shuffle the datasets. In order to building our models, we
divide the datasets to training sets and test sets according to the ratio of 8:2 in view of
limited samples, so each time we use 80% data in data set for model training and use
20% data for model verifying. The flow chart in Fig. 6 displays the whole process of
our LSTM Dataset Modelling.

4.2 Results and Analysis

The fault diagnosis is performed in a laptop with Intel Core i5-9300H 2.4 GHz
and 8 GB RAM. The operating system is 64bit. The LSTM neural network is built
with the help of Deep Learning Toolbox in MATLAB R2021a. The model accuracy
performance is listed in Table 3.

Model_T takes 66 min for the training, as the amount of raw data in time domain
is quite large. However, the classification accuracy is low, due to the complex infor-
mation components and inadequate percentage of useful information, which is only
43.66%. According to the fault diagnosis performance on Model_F(0–100 Hz) and
Model_F(0–100 Hz)_R, we find the power frequency band around 50 Hz (48–52 Hz)
has a huge impact on LSTM-based neuron network as after removing the data in this
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Table 3 Model accuracy
performance on
N-B1-B2-M1-M2 five classes
fault classification

Model Accuracy performance (%)

Model_T 43.66

Model_F(0–100 Hz) 35.07

Model_F(0–100 Hz)_R 90.48

Model_F(100–1000 Hz) 98.81

Model_F(2500–3500 Hz) 21.43

Fig. 7 Confusion matrix for
Model_F(0–100 Hz)_R

power frequency range, the accuracy has increased from 35.07 to 90.48%. Further-
more, from the confusionmatrix forModel_F(0–100 Hz)_R in Fig. 7, we can see this
model achieves better fault diagnosis performance in broken bar faults thanmisalign-
ment faults. To be specific, this model obtains 100% accuracy in classifications of all
broken bar faults,while it only achieves 85.19%accuracy in classifyingmisalignment
faults. Model_F(100–1000 Hz) achieves a highest classification accuracy among all
the models, which is 98.81%, with only 1 sample misclassified between fault M1 and
M2 (See Fig. 8). Furthermore, Model_F(100–1000 Hz) shows the best overall classi-
fication performance on misalignment failure. Because of Model_F(100–1000) that
performs well in higher frequency bands, we also consider the performance of higher
frequency band. Nevertheless, Model_F(2500–3500 Hz) provides the worst perfor-
mance, where the adopted LSTM network could not find much useful information
from its input data.

In addition to the above models, we develop a supplementary Model_F(0–
100 Hz)_S (the detail of this model is shown in Table 2), which is used for fast
broken bar faults diagnosis, hoping to adopt a model with smaller size in samples
to decrease model training time, while retaining good classification performance as
shown in Model_F(0–100)_R. However, this model does not perform as good as we
expected, having a good fault diagnosis performance though it uses frequency domain
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Fig. 8 Confusion matrix for
Model_F(100–1000 Hz)

data in 0–100 Hz as well. The decreased size in each sample slightly does accelerate
the trainingprocess ofLSTMnetwork,while performspoor in classification accuracy.
This is because the non-overlapping way of making data into 57 samples deceases
the sampling time in each sample, leading to reduction of resolution. Therefore, the
sideband fault feature cannot be found due to the narrow bandwidth, which results
in fault feature cannot be kept in data set and causes the bad diagnosis performance.

From the five Models, we can arrive at some findings.

• The processing capacity of neural network for raw data in time domain is
limited.

Model_T uses the unprocessed time domain current signal samples as input
for the LSTM network. The data size for each sample in Model_T is quite
large compared to other samples (see Table 3), which brings a huge compu-
tational burden both on extra memory footprint and increasing training time.
Nevertheless, the Model_T obtains an undesirable result due to complex infor-
mation components in time domain and the background noise caused by system
disturbance.

• The LSTM method can successfully learn sideband features near the power
frequency in the broken bar faults scenarios, but it needs to remove the huge
interference caused by the power amplitude.

The performance of Model_F(0–100)_R is in line with prior knowledge that it
has obvious features that can be used to detect the broken bar faults on both sides
of the power frequency as shown in Fig. 9. The sidebands on both sides can be
clearly seen, which leads to the occurrence of broken bar failure being quickly
and accurately determined. However, comparing the performance onModel_F(0–
100) andModel_F(0–100)_R, the motor power frequency has a lot of interference
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Fig. 9 The amplitude
spectrum for broken bar
dataset

on fault diagnosis. This is because the huge amplitude in power frequency reduces
the influence of sidebands on our LSTM model.

• The information in the frequency range of 100–1000 Hz is found to be useful
for motor fault diagnosis.

Except for the frequency band information near the motor power frequency
that is usually used for analyzing motor fault, the low frequency band of 100–
1000 Hz has also been found carrying useful information for fault diagnosis
through Model_F(100–1000). It is mainly because this frequency band contains
important harmonic components of power frequency.

• The higher frequency band of 2500–3500 Hz is not useful through the LSTM
model for motor fault diagnosis.

Model_F(2500–3500) verifies that LSTM approach does not find sufficient
information that can be used to detect motor faults in the higher frequency band of
2500–3500 Hz. Therefore, the selection of frequency bands in frequency domain
greatly influences the diagnosis accuracy.

• The sample length selection in the time domain is significant, and inappro-
priate frequency resolution would lead to the loss of fault feature.

The poor performance in Model_F(0–100)_S is because the non-overlapping
way of data preprocessing deceases the sampling time in each sample, and leads
to sideband fault feature cannot be collected in to the data set, which shows the
significance of sample length selection in time domain.

5 Conclusion

Considering two typical motor faults, and faults in different degrees of severity, we
demonstrate the superiority of the deep learning algorithm represented by LSTM
neural network, and verify the feasibility of deep neural network in motor fault
diagnosis. Through the models we adopted, it confirms that the LSTM algorithm can
achieve a high accuracy rate for identifying the type of motor faults. In this process,
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preprocessing for the raw data plays a critical role, which needs to be carefully
planned and dealt with before feeding into the network. In addition, by using different
frequency bands based on LSTM network modeling, the 100–1000 Hz band is found
having useful information for fault classification, which has not been fully considered
before.

In future, we plan to optimize the adopted LSTM model and add other features
such as components of motor vibration signal into our work for further improving
the accuracy of our fault detection models. In addition, we prepare to carry on exper-
iments using different motors, then use collected data to evaluate the generalization
of LSTM-based model.
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Degradation Trend Construction
of Aircraft Engine Using Complex
Network Model

Yongsheng Huang, Yongbo Li, Khandaker Noman, and Shun Wang

Abstract Health condition monitoring (HCM) of an aircraft engine is crucial to
enhance its reliability running. In this paper, a novel method is proposed using the
complex model to monitor its degradation trend. With the help of the data collected
by multi-sensors, a complex dynamic model is built using the data-driven approach,
which aims to achieve the purpose of HCM of aircraft engine. First, the Gath-Geva
fuzzy clusteringmethod is utilized for health condition division. Second, the network
model based on correlation analysis is conducted. Finally, the dynamic improved
logistic model is developed to describe the changes of sensors data of aircraft engine
degradation trend. To verify the effectiveness of the proposed method, simulated
aircraft gas turbofan engine data is utilized for validation. The results demonstrate
that our method is effective to track its degradation process of aircraft gas turbofan
engine.

Keywords Complex network · Health condition monitoring · Aircraft engine ·
Correlation analysis

1 Introduction

An aircraft engine produces thrust to propel an aeroplane, which is the main source
of energy of an airplane. However, during the actual operations, the key components
of engine such as gear, bearing and rotor are particularly prone to damage due to
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heavy dynamic load, highly rough and harsh operating environments. Any abnormal
behaviors in engine are very likely to decrease the overall performance of an aircraft
and cause economic losses in real applications. Therefore, the health conditions
of aircraft engines directly influence the safety and operation of the whole aircraft
system [1].

In order to monitor the health condition of an aircraft engine, multiple sensors
of varying types are embedded or deployed, which create a sensors network [2].
Methods using monitoring sensors data to predict the future health and estimates the
remaining useful life has attracted increasing attention from academic researchers
and industrial operators.

Sensor networks have been widely used to monitor the health condition of aircraft
engines for predicting or isolating the serious abrupt faults [3]. In summary, aircraft
engines health conditionmonitoring (HCM)methods can be classified into twomajor
categories: the model-based method and the data-driven method [4]. For the model-
basedmethod, enough priori knowledge and stochasticmodel are required to identify
the practical the accurate model, which is difficult. The data-driven method is based
onmodern signal processing techniques,which extracts the fault informationbyusing
the data collected from sensor networks, such as time domain features, frequency
domain features, entropy. Moreover, classifiers such as neural network and support
vector machine are employed to accomplish the fault pattern recognition and the
monitoring of health conditions [5]. However, thesemachine learning-basedmethods
mostly focus on specific components and do not analyze the mutual interaction of
the parts of an aircraft engine. As a consequence, lots of information among the
components of an aircraft engine is ignored.

In recent years, complex network theory is attracting increasing attentions inmany
interdisciplinary areas including sociology, biology, electricity, economics, commu-
nication, social network, etc. [6, 7]. Complex network can be used to describe the
topological structure of various systems and reveal the internal law and evolution
process of network, which can dig out the hidden information among the nodes of the
network.Therefore the applicationof complexnetworkmethods for equipment health
monitoring should be exploited. However, few scholars have done some research on
complex network for machine HCM and fault diagnosis. Zhang proposed frequency
complex network and build a new complex network structure feature named subnet-
work average degree for rolling bearing fault diagnosis and degradation state recog-
nition [8]. Zhang proposed an agglomerative cluster method and extracted diagnosis
rules to fault diagnosis for the marine engine system [9]. In paper, a new HCM
method for aircraft gas turbofan engine is proposed based on the complex network.
Moreover, an experiment is conducted to prove its effectiveness.

The remaining part of the paper is organized as follows: Sect. 2 describes the
HCM method for aircraft gas turbofan engine. An experiment base on the data from
Prognostics and Health Management (PHM) challenge data in 2008 is used to prove
the effectiveness of the proposed method. Finally, Sect. 4 concludes this paper.
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2 Method

In thisworkwe propose amethod based on complex network tomonitor the condition
of an aircraft gas turbofan engine: (1) all the sensors of the aircraft gas turbofan engine
as the nodes of the complex network, (2) the Pearson correlation coefficient among
the sensor data are use as the weight of the network edge, (3) a connected weighted
complex network is constructed using sensors data, (4) a dynamic model is built to
help monitor the health condition of the aircraft gas turbofan engine. The flowchart
for the proposed method is shown in Fig. 1.

2.1 Degradation Condition Division

The turbofan engine will undergo a gradual degeneration process from beginning
operation to complete failure. Timely and accurately recognizing current perfor-
mance degradation of turbofan engine can be important to improve the reliability of
the whole mechanical turbofan engine. The data are normalized from zero to one.

Aiming at solving the problem of degradation condition recognition of bear-
ings and other mechanical equipment, Wang Bing proposed the Gath-Geva (GG)
fuzzy clustering method [10]. The method adds the original time series into the
feature vector, considering the continuity of the bearing degradation state at the time
scale. The dimensional eigenvector are constructed including all the sensors data
(or the feature extracted) and the time series, and the GG fuzzy clustering method
is used to divide the different states of the performance degradation conditions and

Sensor data collection

Feature extraction

Number of sensors 
less than 10

Degradation condition division

Number of 
sensors more 

than 10

Complex network 
modeling

Dynamic 
modeling

Degradation condition recognition

Fig. 1 The flowchart of the method for degradation condition recognition
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Fig. 2 Degradation condition recognition flow by GG fuzzy clustering

realize bearing degradation recognition. The Degradation condition recognition flow
is shown in Fig. 2.

2.2 Complex Network Modeling

By using sensor network data, a complex network is built. The complex network
should have a certain number of nodes and connected lines to present many different
characteristics. Moreover with degradation of turbofan engines, the connected lines
between the nodes appear or disappears evidently. The nodes of the sensor network
can be the nodes of the complex network. The complex network model is based on
Pearson correlation coefficient. The signs of the correlation coefficient indicate the
positive and negative correlation between the two nodes: the positive sign indicates
they are positively correlated; the negative sign indicates they are negatively corre-
lated. The value of Pearson correlation coefficient can indicate the strong and weak
relationship among the sensors [11]. Equation (1) defines the Pearson correlation
coefficient.

R =
∑n

i=1

(
Xi − X

)(
Yi − Y

)

√
∑n

i=1

(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2
(1)

Here, a threshold value is set to definewhether the data collected from twodifferent
sensors should be correlated, in other words, whether the two nodes in the complex
network should be connected with a line. The threshold should not be too low for the
very weak correlations are considered. It should be neither high because few lines
would be left and it is not conducive to complex network modeling. For example the
threshold value is set at 0.3 in the experiment in Sect. 3.

There are many concepts and methods to describe the statistical characteristics of
complex network structures [12]. Average degree is used in our work. Equation (2)
defines average degree.
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K = 1

N

N∑

i=1

ki (2)

Average degree means averaged number of other adjacent to graph nodes. In
Eq. (2), N means the number of nodes; ki represents the ith nodes.

2.3 Dynamic Modeling

Because of time varying nature of node states, node sets may belong to nonlinear
dynamic systems. At present, the state of complex network is judged by observing the
network structure during application, which lacks quantitative evaluation basis, and
the result may lead to misjudgment, and the efficiency is low. So, a dynamic model
based on data-driven method is built, and the model is interpretable. The dynamic
model of every node can be expressed as follow:

dxi
dt

= F(xi ) + α

k∑

j=1

ABxmi x
n
j − β

k∑

j=1

AB
′
xmi x

n
j (3)

In Eq. (3), k is the number of the sensors, xi is the sensor parameters to be solved,
and x j is the sensor parameters with predefined value. Equation (1) can be divided
into three parts.

F(xi ) (4)

α

k∑

j=1

ABxmi x
n
j (5)

β

k∑

j=1

AB
′
xmi x

n
j (6)

Equation (4) shows the influence of the current value of xi on the trend of its
change; Eq. (5) shows the positive influence of the other sensor parameters (x j ) on
the trend of its (xi ) change; Eq. (6) shows the negative influence of the other sensor
parameters (x j ) on the trend of its (xi ) change.

To fit Eq. (4), the selected logic growth model and improve it. Equation (8) shows
the differential equation of logic growth model.

dxi
dt

= r xi (1 − xi
k

) (7)
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In Eq. (7), r is the maximum value that x can be achieve; k shows the growth
potential [13]. We improve the logic growth model to fit the actual situation of
condition monitoring as Eq. (8).

dxi
dt

= −xi (1 − xi
2

) (8)

In Eq. (8), assign r to one and k to two. The value 1 means the best condition, for
that the data were normalized and r cannot be more than one. In the actual turbofan
engine failure degradation it always starts slowly and then speeds up. So we assign
k to two so that the value decreases slowly at one and then accelerate to fit the actual
situation. Besides, in order to facilitate degradation condition recognition, we adjust
the trend of change of all parameters with time to decrease.

3 Experiment

The sensor data sets that are utilized to carry out the evaluation are provided by
National Aeronautics and Space Administration (NASA) Ames Research Center
and have been used as Prognostics and Health Management (PHM) challenge data
in 2008 [14]. We used the first group of the common test data set. The data for each
cycle of each unit include the unit ID, cycle index, 3 values for the operational settings
and 21 values for 21 sensor measurements. The sensor data are contaminated with
noise. The data can accurately reflect the degradation characteristics of aircraft gas
turbofan engines under different fault modes. Each group of the data is composed of
24 dimensional time series, of which 3 dimensional is the operation parameters and
21 dimensional is themeasured value of the simulation sensor. There are one hundred
data sets. The number of the sample for each simulation is around two hundred to
four hundred. Each group of simulation data can be viewed as obtained from the
sensor channel. The data contain complete aircraft gas turbofan engines life data.
Some sensor channel data is sensitive to the fault of aircraft gas turbofan engine and
has obvious degradation tendency, but some not.We remain the former and eliminate
the latter.

We consider the process of degradation to be divided into six stages. After normal-
ization of the data, we use the GG fuzzy clustering method to divide the process of
degradation into six stages for each data set. A two-dimensional contour clustering
result diagram is shown in Fig. 3.

In Fig. 3, the red dots mean the clustering centers, and the lines in different
colors are the clustering contours, which can be regard as the boundary for different
health condition. And we fused the data of the same health condition in one hundred
clustering results to increase the number of samples. We set the threshold value at
0.3 to make the nodes connected have at least moderate correlation [15], and built
the network model in six stages including the whole network, the positive network
and the negative network.
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Figure 4 shows the changes of the complex network in six degradation stages.
The red lines mean the connected two nodes have negative correlation; the gray lines
mean the connected two nodes have positive correlation Fig. 4a shows the change of
the whole network; Fig. 4b shows the change of the positive network; Fig. 4c shows
the change of the negative network. The two statistical characteristics are shown in
Table 1.

Seen from Fig. 4 and Table 1, it can be observed as follows: (1) there are few
connected lines in the network at first (low average degree); (2) the number the
connected lines decreases in the second stage and the third stage, and there are even
no lines left (the average degree is zero) in the third stage; (3) for the fourth stage, the
number of lines increases, and finally there are many lines in the network (average
degree increases). It is noticed that the more degenerate, the greater the number of
lines. It can be concluded that, when the lines in the complex network increase,
the fault have occurred in an aircraft gas turbofan engine, because with degradation
of turbofan engines, the damage propagates from one component to others, which
makes the number of nodes have correlation increases.

The genetic algorithm (GA) is used to find the best four parameters in Eq. (1),
which helps to build the dynamic model of complex network. Here, the clustering
center is considered as the most stable part in the degenerate stages, where the value
hardly changes near it.

Figure 5 shows the built dynamic model based on improved logistic equation. It
can approximate the variation of one sensor parameter in the process of degradation.
If the current sensors parameters data are known, the health condition of engines can
be easily judged. It provides decision basis for health condition monitoring.
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The third stage

The first stage The second stage The third stage

The fourth stageThe fifth stageThe sixth stage

The first stage The second stage

The fourth stageThe fifth stageThe sixth stage

(b) 

The first stage The second stage The third stage

The fourth stageThe fifth stageThe sixth stage

(c) 

(a) 

Fig. 4 The complex network model in the six stages: a the whole network, b the positive network,
c the negative network
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Table 1 Average degree in six stages

Stages number The whole average
degree

The positive average
degree

The negative average
degree

Stage 1 0.2308 0.0769 0.1538

Stage 2 0.0769 0 0.0769

Stage 3 0 0 0

Stage 4 0.2308 0.0769 0.1538

Stage 5 1 0.6923 0.3077

Stage 6 2.6154 1.4615 1.1538

Stage1 Stage2 Stage3 Stage4 Stage5 Stage6

Fig. 5 Dynamic model of simulation

4 Conclusions

In the paper, we proposed a new health condition monitoring method based on the
complex network and an experiment is used to prove its effectiveness. It can be
concluded that the value of the average degree (No matter which kind of average
degree) is related to the degree of degradation.With the increase of averagedegree, the
health condition of aircraft turbofan engines deteriorates. Specially, when the average
degree increases dramatically, the aircraft gas turbofan engine may fail. The multi-
sensor network can provide a novel way to monitor the health condition monitoring
of aircraft gas turbofan engine. The complex network-based approaches need nearly
no prior knowledge about the aircraft gas turbofan engine, solve the problem of
HCM for aircraft gas turbofan engines. Though it provides a new way of thinking for
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aircraft gas turbofan engine health condition monitoring, the proposed method is not
perfect. In future work, more highly interpretable indicators and dynamic model will
be utilized to improve the complex network flowchart for engine health condition
monitoring.
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Research on the Influence of Mesh
Stiffness of Fixed Gearbox with Chipping
Fault

Jiacong Zhang, Yongbo Li, Shun Wang, and Khandaker Noman

Abstract Gearbox is a key component in rotating machinery and prone to chipping
fault due to poor working environment. Hence, it is necessary to carry out research
on chipping fault. Time-varying mesh stiffness is a periodic function caused by the
change in the number of contact tooth pairs and the contact positions of the gear teeth.
Time-varyingmesh stiffness of is one of the main sources of vibration of a gear trans-
mission system. Time-varying meshing stiffness provides the important information
about the health status of the gear system. When a chip happens in one gear, mesh
stiffness will decrease and consequently the vibration properties of the gear system
will change. The vibration change can be characterized through gearbox dynamic
modelling approach. In order to comprehensively understand the vibration properties
of a gear set, it is essential to evaluate the time-varying mesh stiffness effectively. In
this paper, the potential energy method is applied to analytically evaluate the time-
varying mesh stiffness of a gear set. A modified cantilever beam model is used to
represent the external gear tooth and analytical equations are derived without any
modification of the gear tooth involute curve. A chip model is developed and the
mesh stiffness reduction is quantified when chipping fault occurs in the pinion or the
gear.

Keywords Mesh stiffness · Potential energy method · Gear set · Chip modeling
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1 Introduction

Since the gearbox signal is faintness, its fault signal is difficult to identify when
coupling with the gearbox signal in the transmission system. Together with large
noise signal interference, fault diagnosis for gearbox is prone to make mistake judge.
Therefore, it is necessary to study the coupled vibration characteristics of trans-
mission systemic caused by fault in coupling signal. Time-varying mesh stiffness,
caused by the change of tooth contact number and contact position, is one of the
main sources of vibration of a gear transmission system. Hence, in order to compre-
hensively understand the vibration properties of a gear set, it is necessary to evaluate
the mesh stiffness effectively.

When a pair of standard involute spur gear meshes, the tooth contact number and
the tooth mesh position change during meshing. It leads to a periodic variation in
the gear mesh stiffness. When a chip takes place, the gear mesh stiffness will reduce
and consequently the vibration characteristics of the gear system will change. If
the stiffness reduction can be quantified for different chip levels, the corresponding
vibration signal can be obtained through dynamic simulation. The vibration signal
can be processed further for chip detection and prognosis.

In this paper, external-external gears are used to denote a meshing gear pair
which contains two external gears. Many researchers have applied the analytical
method to evaluate the mesh stiffness of a pair of fixed shaft external-external gears.
The potential energy method [1] is used to evaluate the mesh stiffness of a pair of
fixed-shaft external-external gearswith the consideration ofHertzian energy, bending
energy, shear energy and axial compressive energy. Meanwhile, we model the gear
teethmore rigorously by considering the gear tooth starting from the base circle when
all teeth are perfect. The analytical equations for the Hertzian stiffness, the bending
stiffness, shear stiffness and axial compressive stiffness are derived. The overall
mesh stiffness is represented as a function of the rotation angular displacement of
the driven gear named time-varying mesh stiffness.

The remaining parts of this paper are as follows.
Calculation method of time-varying meshing stiffness of standard involute spur

gear with both healthy tooth and chipping fault is presented in Sects. 2 and 3. Then
simulation and discussion are carried out in Sect. 4. Finally, conclusion is drawn in
Sect. 5.

2 Time-Varying Mesh Stiffness Calculation of Healthy
Tooth

2.1 Mesh Stiffness Calculation

In this paper, it is assumed that the gear system is perfect since that themanufacturing
and transmission error is ignored and the gear body is treated as solid. We will
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Fig. 1 The geometry of a
gear tooth

consider the lubrication condition is perfect such that the friction is ignored. For the
purpose of simplification in calculating the mesh stiffness, only the stiffness of the
meshing gears is considered. All other system components are considered rigid. The
error in the mesh stiffness due to this simplification can be ignored since what we
are concerned about is the difference between the faulty case and the perfect case.

In the potential energy method, we consider that the total potential energy stored
in the meshing gear system included four components [2, 3]: the Hertzian energy,
the bending energy, the shear energy and the axial compressive energy, which can
be used for the calculations of the Hertzian contact stiffness, the bending stiffness,
the shear stiffness and the axial compressive stiffness, respectively. According to
material mechanics and elastic mechanical, the Hertzian energy, the bending energy,
the shear energy and the axial compressive energy can be expressed (Fig. 1).

According to the properties of the involute curve, the action line of two meshing
gears is always tangent to the gear base circle and normal to the tooth involute
profile. The action force F which is along the action line, can be decomposed into
two orthogonal forces Fa and Fb, the expression is as follows:

Fa = F sin α1 (1)

Fb = F cosα1 (2)

In this study, the tooth on the gear is modeled as a cantilevered beam. It is assumed
that the base of the beam (at the root of the tooth) does not experience any deflection.
According to potential energy method, the Hertzian energy, the bending energy, the
shear energy and the axial compressive energy stored in a tooth can be expressed as
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follows [2]:

Uh = F2

2kh
(3)

Ub = F2

2kb
=

d∫

0

[Fb(d − x) − Fah]2
2E Ix

dx (4)

Us = F2

2ks
=
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0

1.2F2
b

2GAx
dx (5)

Ua = F2

2ka
=
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0

F2
a

2E Ax
dx (6)

From the result derived by Yang and Sun, the Hertzian contact stiffness, kh for
a pair of external-external gears, is linearized to a constant along the entire line of
action independent of both the position of contact and the depth of interpenetration
[4].

kh = πEL

4(1 − ν2)
(7)

Correspondingly, the bending energy, the shear energy and the axial compressive
energy, there are the reciprocal of the bending stiffness, the shear stiffness [5] and
the axial compressive stiffness, respectively as follows:

1

kb
=

d∫

0

[cosα1(d − x) − sin α1h]
2

E Ix
dx (8)

1

ks
=

d∫

0

2.4(1 + ν2) cos2 α1

E Ax
dx (9)

1

ka
=

d∫

0

sin2 α1

E Ax
dx (10)

where kb, ks and ka denote the bending, shear and axial compressive stiffness, respec-
tively, E and G represent Young’s modulus and shear modulus [6], respectively, h
shows the distance between the gear contact point and the tooth central line, d is the
distance from the contact point to the gear root, Ax and Ix indicate the area and the
area moment of inertia of the section where the distance to the tooth root is x.
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h = Rb[(α1 + α2) cosα1 − sin α1] (11)

hx = Rb[(α2+α) cosα − sin α] (12)

d = Rb[cosα1+(α2+α1) sin α1 − cosα2] (13)

Ix = 1

12
(2hx)

3L = 2

3
h3x L (14)

Ax = 2hx L (15)

G = E

2(1 + ν)
(16)

where Rb and L denote the base circle radius and tooth width of the external gear,
respectively, hx is the height of the section where the distance to the tooth root is x,
α2 represents the half tooth angle on the base circle [7].

α2 = π

2N
+ tan α0 − α0 (17)

where N is the tooth number of the external gear and α0 is the pressure angle.
Substituting Eqs. (11)–(15) into Eq. (8), the bending stiffness of the external gear

can be expressed as [8]:

1

kb
=

α2∫

−α1

3{1+ cosα1[(α2 − α) sin α − cosα]}2
2E[(α2 − α) cosα+ sin α]3L { (α2 − α) cosα} dα (18)

Substituting Eqs. (12) and (15) into Eq. (9), the shear stiffness of the external gear
is given as:

1

ks
=

α2∫

−α1

1.2(1 + ν) cos2 α1

EL[(α2 − α) cosα + sin α]{ (α2 − α) cosα} dα (19)

Substituting Eqs. (12) and (15) into Eq. (10), the axial compressive stiffness of
the external gear can be obtained:

1

ka
=

α2∫

−α1

sin2 α1

2EL[(α2 − α) cosα + sin α]{ (α2 − α) cosα} dα (20)
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2.2 The Angular Displacements Relation of the Meshing
Gears

α2 and α′
2 are the half tooth angles on the base circles of the pinion and the gear,

respectively, which are constants for a given gear pair and can be calculated as
Eqs. (21) and (22), respectively.

α2 = π

2N1
+ invα0 (21)

α′
2 = π

2N2
+ invα0 (22)

where N1 and N2 are the numbers of teeth of the pinion and the gear, respectively.
Consider the initial meshing point of the first pair ofmeshing teeth as the reference

point. At this point, the angular displacements of the meshing gears, θ1 and θ2, are
both zero. Equations are derived of the angles α0

1,1 (corresponding to the angle α1 of
the pinion) and α0′

1,1 (corresponding to the angle α1 of the gear). The corresponding
angle for the first pair of meshing teeth can be expressed as:

α0
1,1 = tan(arccos

N1 cosα0√
(N2 + 2)2 + (N1 + N2)2 − 2(N2 + 2)(N1 + N2) cos(arccos

N2 cosα0
N2+2 − α0)

)

− π

2N1
− invα0 (23)

α0′
1,1 = tan(arccos

N2 cosα0

N2 + 2
) − π

2N2
− invα0 (24)

When the angular displacement of the pinion is θ1, relation between the angular
displacements of the pinion and the gear, θ1 and θ2 are consider. The initial reference
displacement point is selected as the point where the double-tooth-pair mesh duration
begins.The angular velocities of the pinion and thegear,ω1 andω2, have the following
relationship:

ω2=N1

N2
ω1 (25)

We can get the relationship of θ1 and θ2:

θ2=N1

N2
θ1 (26)

Therefore we can get the equations of the angles α1,1 (corresponding to the
angle α1 of the pinion) and α′

1,1 (corresponding to the angle α1 of the gear), which
corresponding to the angular displacement of the pinion is θ1:
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α1,1 = α0
1,1+θ1 = θ1 − π

2N1
− invα0

+ tan(arccos
N1 cosα0√

(N2 + 2)2 + (N1 + N2)2 − 2(N2 + 2)(N1 + N2) cos(arccos
N2 cosα0
N2+2 − α0)

) (27)

α′
1,1 = α0′

1,1 − θ2 = tan(arccos
N2 cosα0

N2 + 2
) − π

2N2
− invα0 − θ2

= tan(arccos
N2 cosα0

N2 + 2
) − π

2N2
− invα0 − N1

N2
θ1 (28)

For the second pair of meshing teeth, there are corresponding angles α1,2 and α′
1,2.

The difference between the angle α1,2 and α1,1 is 2π
N1
, and the difference between the

angle α′
1,1 and α′

1,2 is
2π
N2

with negative. Thus, they can be expressed as:

α1,2=α1,1+ 2π

N1
= θ1+ 3π

2N1
− invα0

+ tan(arccos
N1 cosα0√

(N2 + 2)2 + (N1 + N2)2 − 2(N2 + 2)(N1 + N2) cos(arccos
N2 cosα0
N2+2 − α0)

) (29)

α′
1,2=α′

1,1 − 2π

N2
= tan(arccos

N2 cosα0

N2 + 2
) − 5π

2N2
− invα0 − θ2

= tan(arccos
N2 cosα0

N2 + 2
) − 5π

2N2
− invα0 − N1

N2
θ1 (30)

2.3 Relation of Mesh Stiffness and Angular Displacement

For a pair of meshing gears whose contact ratio varies between 1 and 2, gear meshing
includes single tooth meshing and double tooth meshing in one meshing period.
The length of the duration of Double/Single-tooth-pair Meshing need calculated
primarily, and then the calculation expressions of mesh stiffness under any angular
displacement of the shaft can be calculated.

According to Ref. [8], the length of duration of double-tooth-pair meshing as
following description:

θd = tan(arccos
N1 cosα0

N1 + 2
) − 2π

N1

− tan(arccos
N1 cosα0√

(N2 + 2)2 + (N1 + N2)2 − 2(N2 + 2)(N1 + N2) cos(arccos
N2 cosα0
N2+2 − α0)

) (31)

The length of duration of single-tooth-pair meshing as following description:

θs = 2π

N1
− θd (32)
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Double-tooth-pair Meshing Range of Duration [9]:

θ ∈ [(n − 1)
2π

N1
, θd + (n − 1)

2π

N1
](n = 1, 2, . . .) (33)

Single-tooth-pair Meshing Range of Duration:

θ ∈ [(n − 1)
2π

N1
+ θd , n

2π

N1
](n = 1, 2, . . .) (34)

For the single-tooth-pair meshing duration, the total effective mesh stiffness can
be calculated as:

kt = 1
1

kh,1
+ 1

kb1,1
+ 1

ks1,1
+ 1

ka1,1
+ 1

kb2,1
+ 1

ks2,1
+ 1

ka2,1

(35)

where subscripts 1 and 2 represent the driving gear and the driven gear, respectively.
For the double-tooth-pair meshing duration, there are two pairs of gears meshing

at the same time. The total effective mesh stiffness can be obtained as:

kt = kt1 + kt2 =
2∑

i=1

1
1
kh,i

+ 1
kb1,i

+ 1
ks1,i

+ 1
ka1,i

+ 1
kb2,i

+ 1
ks2,i

+ 1
ka2,i

(36)

where i = 1 for the first pair and i = 2 for the second pair of meshing teeth.

3 Time-Varying Mesh Stiffness Calculation of Pinion
with a Chipped Tooth

3.1 Mesh Stiffness Calculation of Pinion with a Chipped
Tooth

It is assumed that there exists a chipped tooth in the pinion as shown in Fig. 2, where
the shade area is the chipped part. It is assume that the chip is so thin compared
with the thickness of the tooth, that the change of the tooth thickness of the chipped
part can be neglected when considering the bending stiffnesses, shear stiffnesses and
axial compressive stiffnesses [10]. Therefore the bending stiffnesses, shear and axial
compressive stiffnesses in this case can be approximately considered the same as
those in perfect case. In the healthy condition, the width along the tooth curve is
constant. In the chipped case as shown in Fig. 2, however, the width of the effective
work surface will change as the contact position moves along the tooth curve. The
effective work width at the roof of this tooth has the minimal value L − z. Then, the
width will increase along the tooth curve from the tooth roof toward the root. The
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Fig. 2 The geometry of a
chipped tooth
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width will change back to the normal width L at the position where the distance from
the tooth roof is equal to b. It is assumed that the edge of the shade area satisfies
the hyperbolic equation with an expression as A = L(dh − b) = Ldc = dh(L − z),
Thereafter, the width will stay at the constant L. The formula for the change in width
can be expressed as follows:

Lc=
{
L 0 ≤ d ≤ dc
A
d dc ≤ d ≤ dh

(37)

where dh is the tooth height (the distance between the roof and the root of the tooth).
dc and A can be expressed as:

dc = Rb1[(α2+αc) sin αc + cosαc − cosα2] (38)

Correspondingly, the Hertzian stiffness will proportionally vary as well. It can be
calculated as:

khc = πELc

4(1 − ν2)
(39)

It is assumed that the chip occurs at the tooth that has a reference point and
αc (corresponding to dc) small than α0

1,1, therefore the kh just changes during the
double-tooth-pair meshing range of duration. Substituting Eq. (37) into Eq. (39), the
Hertzian contact stiffness of the external gear with a chipped tooth can be obtained:



538 J. Zhang et al.

khc =
{

πEL
4(1−ν2)

other
πE

4(1−ν2)
( dh(L−z)
Rb1[(α2+α) sin α+cosα−cosα2] ) αc ≤ α ≤ 2π

N1+θd
(40)

3.2 Mesh Stiffness Calculation of Pinion with a Chipped
Tooth

The relationship of the angular displacements of the meshing gears which contains a
pinionwith a chipped tooth is the sameas in the healthy state. Similarly,mesh stiffness
of double/single-tooth-pair meshing duration with a chipped tooth has the identical
expression compared to in the healthy condition. Time-varying mesh stiffness of
chipped condition changes because Mesh stiffness of pinion with a chipped tooth
changes. Time-varying mesh stiffness of chipped tooth will be discussed as follows:

Similarly as healthy condition, for the single-tooth-pair meshing duration, the
total effective mesh stiffness can be calculated as:

kt = 1
1

kh,1
+ 1

kb1,1
+ 1

ks1,1
+ 1

ka1,1
+ 1

kb2,1
+ 1

ks2,1
+ 1

ka2,1

(41)

where subscripts 1 and 2 represent the driving gear and the driven gear, respectively.
Corresponding, for the double-tooth-pair meshing duration, there are two pairs

of gears meshing at the same time. Assuming that the chipped tooth is the first pair
mesh teeth, the total effective mesh stiffness can be obtained as:

kt = kt1 + kt2 =
2∑

i=1

1
1

khc,i
+ 1

kb1,i
+ 1

ks1,i
+ 1

ka1,i
+ 1

kb2,i
+ 1

ks2,i
+ 1

ka2,i

(42)

where kt1 for the first pair and kt2 for the second pair of meshing teeth.

4 Mesh Stiffness of Fixed-Shaft External-Internal Gears

Table 1 gives the parameters of a gear set. Both of the gears are standard involute
spur teeth. The Time-varying mesh Stiffness of the external-external gear pair can
be evaluated using the method developed in Ref. [8]. The result is shown in Fig. 3.

In this paper, assumed that the chip is z = 8 mm, b = 2 mm (as shown in Fig. 2).
According to these parameters, the effective work contact width of the mating teeth
can be obtained according to Eq. (37). The Hertzian contact stiffness kh can be
calculated by Eq. (40). The result of the Hertzian contact stiffness of a perfect gear
and a gear with a chipped tooth is shown in Fig. 4. Point A corresponds to the initial
contact position of the chipped part, which corresponds to the angular displacement
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Table 1 Physical parameters
of the gear set

Parameters The driver gear The driven gear

Gear type Standard involute
spur teeth

Standard involute
spur teeth

Material Steel Steel

Number of teeth 19 31

Module (mm) 3.2 3.2

Pressure angle 20o 20o

Face width (m) 0.0381 0.0381

Young’s modulus 2.068 × 1011 2.068 × 1011

Poisson’s ratio 0.3 0.3
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Fig. 3 The time-varying mesh stiffness of the external-external gear pair

of the driver αc. From point A to point B, the Hertzian stiffness decreases with the
decrease of the effective contact width Lc. Point C correspond to the transition point
from double-tooth-pair mesh to single-tooth-pair mesh.

The corresponding change of time-varying mesh stiffness of a perfect gear and
a gear with a chipped tooth is shown in Fig. 5. Instead of curve DE

∧

(which corre-
sponding to the time-varying mesh stiffness of a perfect gear), the mesh stiffness will
change as DF

∧

(which corresponding to the time-varying mesh stiffness of a gear with
a chipped tooth) during teeth mating in the chipped part, which reflects the severity
of the chipped part.
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Fig. 4 The Hertzian contact stiffness of a perfect gear and with a chipped tooth
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Fig. 5 Time-varying mesh stiffness of a perfect gear and a gear with a chipped tooth
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5 Conclusions

This paper presents an analytical method for analyzing the effects of chipping fault
on mesh stiffness of fixed gearbox. The time-varying mesh stiffness is represented as
a function of the angular displacement of the gear, which is easy to use. In this study,
Hertzian contact stiffness, bending stiffness, shear stiffness and axial compressive
stiffness are considered. This study can be used to determine the quantitative relation-
ship between mesh stiffness and gears with chipping fault. In future, the vibration
signals of a gear set will be obtained for different chipping levels and chipping
positions through dynamic simulation. Chipping severity and the chipping position
indicators can be generated by analyzing the vibration signals.
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Damage Diagnosis of Railway Vehicle
Car Body Based on Strain Modes

Hui Cao, Gangjun Li, and Fengshou Gu

Abstract In the rail vehicle structure design, the key of the strength design and
fatigue life estimation is to analyse the stress state of the structure under the dynamic
load. As the stress cannot be measured directly, the displacement response model
of the body structure is established by the displacement mode analysis method,
and the strain response of the car body is obtained by the relationship between
displacement and strain, thus the stress state is obtained. Since displacement to
strain is a differential process, the variation of displacement will be magnified and
the error will be generated. Strain mode theory and its property are derived from
displacement mode theory. The results show that it is more sensitive for strain mode
than displacement mode through the simulation analysis of the car body equivalent
vertical model calculation. Strain mode difference curve can determine the structural
damage location. The vehicle FE model verifies this result. The strain and stress
versus time history of car body can be obtained by the mode superposition method,
which provides basis for fatigue life prediction and load spectrum research.

Keywords Railway Vehicle · Car body · Damage diagnosis · Strain mode ·
Strength

1 Introduction

In order to ensure the safety and reliability of high-speed Electrical Multiple Units
(EMU), the structure strength analysis and fatigue life prediction are the important
contents in structural design and health monitoring. Strength design and fatigue life
prediction are related to structure stress status. The structure stress cannot be obtained

H. Cao · G. Li
College of Intelligent Manufacturing, Chengdu Technological University, Chengdu 611830, China
e-mail: ch_hello@163.com

F. Gu (B)
Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield
HD1 3DH, UK
e-mail: F.Gu@hud.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_44

543

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_44&domain=pdf
mailto:ch_hello@163.com
mailto:F.Gu@hud.ac.uk
https://doi.org/10.1007/978-3-030-99075-6_44


544 H. Cao et al.

directly throughmeasurement but indirectly through displacement or strainmeasure-
ment because there are the relationship between stress, strain and displacement.
The displacement mode analysis method can be used to establish the displacement
response model of EMU structure and analyze the structural vibration response. And
then, the strain mode of vehicle response is obtained by displacement-strain calcu-
lation. However, it is a differential process from displacement to strain, and the error
of displacement will be amplified [1].

Therefore, many scholars have studied to apply the displacement mode method
to the strain mode, and obtain the structural strain mode. Hillary et al. measured the
force-strain transfer function with resistance strain gauge and proposed the concept
of strain mode [2]. Li [3], Bernasconi [4] and Yam et al. [5] used the differential
operationmethod of displacementmode to deduce and discuss the strainmode theory.
Tsang [6], Li et al. [7] used the finite element method to verify the strainmode theory,
and compared it with the calculation simulation and experimental test. Li et al. [7–9]
also demonstrated the orthogonality of the strain mode. These studies are focused
on the construction of strain mode theory, but it is rarely applied to the damage
identification and fault diagnosis of complex structures.

In this paper, the equivalent vertical model of a type of EMU is used to simulate
and compare the displacement mode and strain mode. So the local damage or fatigue
position of the structure is determined, and the fatigue crack size is determined
according to the damage degree. With the strain mode of the car body structure,
the strain of all structure, such as the strain near the window, can be studied, which
provides the basis for the study of structural stress concentration, the influence of
local structural improvement on the vicinity of the changing region, and the health
detection of car body structure.

2 Strain Mode Theory

In the three-dimensional coordinate system, a displacement vector is set as,

x = (u, v,w)T (1)

where x is the displacement vector, u,v,w is the displace vector in u,v,w directions.
The ith displacement mode is

ϕi=(ϕu
i , ϕ

v
i , ϕ

w
i )T (2)

the displacement response can be expressed through the superposition of vibration
modes and mode coordinates of each order, namely,

x = (u, v,w)T =
n∑

i=1

qi (ϕ
u
i , ϕ

v
i , ϕ

w
i )T = �q (3)
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where � is the displacement mode shape, q is the mode coordinates. Assuming the
strain vector is

E = (εx, εy, εz)
T (4)

The ith strain mode is

ψε
i =(ψu

i , ψv
i , ψw

i )T (5)

Among them,

εx = ∂u

∂x
= ∂

∂x

n∑

i=1

ϕi (x)qi (6)

Because qi is a function related to time and its partial derivative to position x is
0, the above equation can be written as

εx =
n∑

i=1

qi
∂ϕi (x)

∂x
=

n∑

i=1

qiψ
ε
i (x) (7)

The formula ψε
i (x) = ∂ϕi (x)

∂x is called strain mode. Writing the above formula as
a discrete form and getting the following result,

εx =
n∑

i=1

qiψ
ε
i (x) =

n∑

i=1

ψε
i ϕ

T
i

ki − ω2mi + jωci
Fe jωt (8)

Similarly, the strain mode expression in other directions can be obtained, which is
the same as formula (8). According to the superposition principle, the strain response
can be written as

E = (εx, εy, εz)
T=

n∑

i=1

qi (ψ
u
i , ψv

i , ψw
i )T=

n∑

i=1

ψε
i qi (9)

From foumula (8), the strain mode response matrix is

Hε=
n∑

i=1

ψε
i ϕ

T
i

ki − ω2mi + jωci
(10)

It canbe seen from the above formula that the characteristics of the strain frequency
response function matrix are as follows.

(1) because of Hi j �= H j i , the strain frequency response function matrix is an
asymmetric matrix.
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(2) Each element in the matrix contains ci ,mi , ki information.
(3) Each row of the matrix contains all information of the displacement mode, and

each column of the matrix contains all information of the strain mode. There-
fore, for the strain mode analysis, if you want to get all the mode parameters
of the displacement mode and the strain mode, you must measure one line and
one column of Hε.

The ultimate goal of obtaining the structural strain mode is to carry out stress
analysis. After obtaining the strain mode, the mode stress can be obtained according
to Hooke’s law, and the stress response can be calculated by mode superposition
method. According to the stress-strain relationship of elastic mechanics

σx = λθ + 2Gεx , τxy = Gγxy

σy = λθ + 2Gεy, τxy = Gγyz

σz = λθ + 2Gεz, τzx = Gγzx

(11)

where, θ—volume strain, λ—lame constant, G—Shear modulus.
Using the strain mode superposition method,

θ = εx + εy + εz =
n∑

i=1

qi (ψ
εx
i + ψ

εy
i + ψ

εz
i ) =

n∑

i=1

qi�i (12)

The above formula is brought into formula (11), obtained

σx = λ

n∑

i=1

qi�i + G
n∑

i=1

qiψ
εx
i =

n∑

i=1

qi (λ�i + Gψ
εx
i ) =

n∑

i=1

qi�
x
i (13)

where, �x
i —x direction stress mode of the ith, qi—the ith mode coordinates,

Similarly, y, z direction stress modes can be obtained.

3 Strain Mode Analysis of EMU Car Body

The car body structure is welded by large and light hollow aluminum alloy. In order
to meet the needs of the structural design, the windows, doors and other structures be
installed. Therefore, these locations are prone to stress concentration and structural
fatigue. Because the strain mode is more sensitive to the stress change and local
damage causedby local structural changes than the displacementmode, the numerical
simulation method is used to analyze this.

According to the structural parameters of an EMU car body, just considering the
vertical equivalent section stiffness andmode, according to the principle of equivalent
of vertical stiffness and mode frequency, the car body is equivalent to an equal
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section free homogeneous Euler-Bernoulli beam with rectangular section. After the
equivalent treatment of the car body, the section size is as follows, the width of the
beam is 0.32 m, the height is 1.25 m, and the length is 24.5 m. The basic properties
of car body material are as follows, Elastic modulus, Poisson’s ratio and density are
69 GPa, 0.3, 2700 kg/m3, respectively.

The numerical simulation results of displacement mode and strain mode are
obtained when the structure has no damage and middle positions of the equivalent
beam has damage respectively. The damage treatment process of the model beam is
as follows, assuming that defect groove on the upper surface of the model beam is
equaled to the width of the model, the length of the defect groove is 5 mm, and the
depth of the defect groove is 5%, 10%, 15%, 20% and 0% of the height of the model
beam respectively, as shown in Fig. 1.

The 8-node solid, 185 elementmodel is used to establish finite element byANSYS
software. The width mesh number of the beam is 4, the vertical mesh number is 13,
and the longitudinal is divided into 245 elements. The finite element model of the
beam is shown in Fig. 2, which is divided into 17,220 nodes and 12,740 elements.
Through the finite element post-process, the mode displacement and mode strain of

Fig. 1 Diagram of the
damage of car body structure

Fig. 2 Finite element analysis model
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Table 1 The mode frequency comparison of car body model

order Mode frequency
without
damaging

Mode frequency
with 10%
damage

Frequency ratio Mode frequency
with 30%
damage

Frequency ratio
(%)

1 10.755 10.695 99.44% 10.185 94.7

2 29.159 29.159 1 29.157 99.9

3 55.858 55.627 99.6% 53.786 96.8

each node of the model beam can be extracted, and the displacement mode and strain
mode of the model beam can be obtained.

The frequency is the inherent characteristic of the structure. The first three mode
frequency of the equivalent model of the car body is as shown in Table 1. From Table
1, the mode frequency changes little before and after the damage, so the frequency
can’t be used as the index of damage diagnosis, and the damage location can’t be
determined by the frequency.

Therefore, in the case of the first three displacementmodes and strainmodes under
the damage amount of 0, 5, 10, 15, 20 and 30% are extracted, as shown in Figs. 3
and 4. It can be seen from the figure that the mode shapes of displacement modes
are basically unchanged in the case of intact and damaged, that is, the sensitivity of
displacement modes to damage is low. Therefore, the damage of location and degree
cannot be determined by the displacement vibration mode. In the case of intact and
damaged strain mode, the change of vibration mode shape is obvious, especially the
first-order and third-order mode shape is significant. The second-order strain mode
change is not obvious because the second-order mode node is in the middle position.
So, the strain mode is sensitive to damage, but if the damage position is the mode
node, the sensitivity will decrease.

In order to obtain the damage location, the variation curve of strain mode change
rate can be obtained by applying the derivative, and the damage location can be
determined from the strain mode change rate curve. Because the strain mode curve
is not smooth, the differencemethod in numerical calculation is amethod to calculate
the rate of change of discrete value.

Using numerical difference calculationmethod of the strainmode curve, the strain
mode difference curve is shown in Fig. 5. It can be seen from the figure that the strain
mode curves of no damage structure change continuously, and the difference curve
is also the same. But in damaged structure, the strain mode curve will have a sudden
change at the damage position, and the difference curve will change drastically at
the damage position. For the damage at the mode nodes, the strain mode difference
curves will also change sharply. The difference curves for each damage amount
almost intersect at the same point, which is the damage point. So the strain mode
difference value can be used as a judgment index for damage location.

The simulation analysis results using the equivalent model of the car body show
that the strain mode and its differential curve can be used as an effective method
for car body structure strength calculation and damage location diagnosis. However,
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Fig. 3 Mode shape of
displacement mode
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Fig. 4 Strain mode shape

-5 0 5 10 15 20 25 30 35 40 45 50 55-3.0x10-5

0.0

3.0x10-5

6.0x10-5

st
ra

in
 m

od
e

computational node

 no damage
 5% damage
 10% damage
 15% damage
 20% damage
 30% damage

0 5 10 15 20 25 30 35 40 45 50
-2.0x10-4
-1.5x10-4
-1.0x10-4
-5.0x10-5

0.0

5.0x10-5
1.0x10-4
1.5x10-4
2.0x10-4

st
ra

in
 m

od
e

computational node

 no damage
 5% damage
 10% damage
 15% damage
 20% damage
 30% damage

0 5 10 15 20 25 30 35 40 45 50-4.0x10-4

-3.0x10-4

-2.0x10-4

-1.0x10-4

0.0

1.0x10-4

2.0x10-4

3.0x10-4

4.0x10-4

st
ra

in
 m

od
e

computational node

 no damage
 5% damage
 10% damage
 15% damage
 20% damage
 30% damage

the car body is actually a complex welded structure, and its strength calculation
and damage location diagnosis are more complicated than the equivalent model.
Therefore, the finite element model of the car body structure is used to extract the
displacement mode and strain mode, and the strain mode method is used to analyze
the strength of the car body structure.
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Fig. 5 Differential curve of
the strain mode
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The car body of high-speed train is mainly welded by large hollow and wide
aluminumalloy. It consists of the under frame, roof, endwalls and sidewalls. Figure 6
is a finite element model of a certain type of EMU car body. The mesh of the model
is divided into 49,503 nodes and 82,527 elements.
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Fig. 6 Car body finite
element model
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Extracting the first-order vertical bending displacement mode and strain mode is
extracted, which is shown in Fig. 7. It can be seen from the figure that the displace-
ment mode curve continuously changes without obvious change, indicating that the
displacement mode of the car body structure is not sensitive to structural changes
such as windows, and the structural strength calculated by the displacement mode
is not reflect the influence of the window structure of the car body. However, the
strain mode curve at the position of the window has changed, indicating that the
window structure has a great influence on the strain of the car body structure. The

Fig. 7 The first-order
vertical bending
displacement mode and
strain mode of car body
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strain changes alternately in the length direction of the car body. It can be seen from
formula (13) that the car body will have stress changes at this position, and structural
defects such as stress concentration and insufficient strength will easily occur, the
attention should be paid to the structural design.

4 Conclusion

Using the equivalent model and the finite elementmodel of the car body, the displace-
ment mode and strain mode of the car body are analyzed, and the application of the
strain mode in strain and stress acquisition is studied. The main conclusions of body
strength design and damage diagnosis are as follows,

(1) Strain mode and displacement mode are twomanifestations of the same energy
balance state. Strain mode can also be solved by superposition of strain mode
shape and mode coordinate.

(2) Compared with the displacement mode, the strain mode is more sensitive to
structural damage. This conclusion is verified by the car body equivalent model
and the finite element model. The strain mode difference curve can assist in
determining the location of structural damage.

(3) For complex structures such as car bodies, the strength design is an important
part of the structural design. The strain and stress calculation methods of the
car body based on the strain mode have certain applicability and feasibility,
which can be used for car body fatigue strength analysis and load spectrum
research.
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A Chip Defect Detection System Based
on Machine Vision

Xindan Qiao, Ting Chen, Wanjing Zhuang, and Jinyi Wu

Abstract For chip testing, in the process of the actual chip manufacturing since
most of the chip size is very small, so the artificial extremely difficult to discern
defect signals, such as lack of pin, pin bending, surface defects such as scratches,
lack of the shape signal, thus easy to cause the yield is not ideal, therefore in the
process of actual production introduction of machine vision. Chip defect detection
system based on machine vision is a kind of machine vision, chip bearing platform,
automatic rotating disc, etc., on the basis of combining computer terminal to control
the whole test system, in view of the chip pins, surface, shape features such as visual
algorithm analysis, finally through the man–machine interface technology of motion
control system and chip testing results show that the Finally, the system is made and
the best detection state is debugged. It can improve the yield of products and improve
the production efficiency in the actual manufacturing process.

Keywords Machine vision · HALCON · Defect detection · Chip detection · The
man–machine interface

1 Introduction

Because the chip has been developed into the economic lifeline to maintain informa-
tion security in our country, and chip detection is a process of chip design and manu-
facturing, occupies a pivotal important position, and because the image processing
technology is increasingly perfect and the production process requires a more effec-
tive,more accurate andmore high-speed detectionmeans. Therefore, wewill conduct
research on chip defect detection based on machine vision.
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There are three main methods for chip appearance detection: traditional artificial
vision is one-to-one detection method; The method of detecting the appearance of
the chip by laser measurement technology and returning the measurement results of
the chip; Automatic detection method based on machine vision.

This study designed a machine vision technology to replace the chip produc-
tion and application of human eye measurement and detection process, and has the
advantages of high efficiency, rapidity, accuracy and high reliability; At the same
time, the design of the system structure is simple and easy to maintain, practicability
and usability is very strong; Do not directly contact the chip workpiece, with the
advantages of non-contact and flexibility; Finally, a stable result is achieved after
many experiments. It is a practical, mechanized and intelligent chip defect detection
system with high layers.

2 Related Technology Introduction

2.1 Machine Vision Stand

The mechanical vision frame is divided into four parts: the base, the light source
frame device, the CCD frame device and the connecting device. The bottom plate
part is composed of a base cover, a bottom plate and a long rod. The long rod and the
base shell is fixed, the long rod is connected by a hand screw-cross fixing clamp on
the rod, the long rod and the base shell is fixed, the long rod is connected by a hand
screw-cross fixing clamp on the rod; The light source frame device is composed of
the light source frame, the light source frame side frame and the rod, the light source
frame is connected with the rod, the light source frame side frame is connected by
the fixing block and the light source frame long frame; The CCD frame device is
composed of a CCD frame, a CCD frame rubber clip block, a CCD frame long bolt
and a CCD frame nut. CCD frame long bolt is connected with the CCD cross frame,
the bolt ends are connected with the nut and rubber clamp block, by adjusting the
spacing to clamp the camera; The connecting device is composed of a hand twist
cross fixing clip, a hand twist cross fixing clip short bolt and a hand twist cross fixing
clip short bolt cap. The hand twist cross fixing clip is connected with a long rod and
a rod, which can adjust the height and expansion length of the camera and the light
source. The bolt cap and the short bolt can adjust the tightness of the hand twist
cross fixing clamp, and play the role of moving and clamping the bar. The explosion
diagram of the machine vision frame is shown in Fig. 1.
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Fig. 1 Visual frame explosion

2.2 HALCON

HALCON is designed by a German company is very widely used in the world of a set
of machine vision software, integrated with a very perfect development environment,
is a standard comprehensive standard software library.

It has a set of image processing library, by more than one thousand independent
operators, as well as the underlying data management core; It includes all kinds of
filtering, color analysis and geometry, mathematical change, morphological calcu-
lation and analysis, correction, classification, identification, shape search and other
basic geometry and image computing functions [1].

2.3 Template Matching

Template matching is a basic method, and the algorithm has its own technical limi-
tations. It can only carry out a parallel rotation of the target itself. If the target in
the original image cannot undergo these changes, the matching algorithm will be
ineffective.
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Since the camera is fixed in this design and the chip bearing platform drives the
chip to move in the same plane, the shape defect of the chip can be detected by
template matching.

2.4 Blob Analysis

Themethod of BLOB image analysis is to extract and analyze a connected domain of
a two-dimensional numerical waveform image separated from the foreground/image
and background region. A BLOB that marks each goal you want to accomplish can
represent a new vision related goal [2].

2.5 Man–Machine Interface Development

The user interface or the user interface is called the man–machine interface, which is
themedium of information exchange and transmission between human and computer
[3, 4]. The interaction between human and a machine containing a computer is called
human–computer interaction, and the part visible to users is called human–computer
interaction interface [5]. Human–machine interaction interface is an important part
of computer system often used in industrial production.

3 The System Design

3.1 Overview of Overall System Design

The whole system consists of three parts: image acquisition unit, optical system,
image processing unit and motion control unit.

The image acquisition unit includes an optical system and a visual system. The
visual system includes a light source, a light source controller, a lens and an industrial
camera, etc. The optical system consists of different types of light sources, lenses
and cameras. The image processing unit uses Halcon software for image processing
and Visual Studio software for man–machine interface development to process the
collected images. Themotion control unit mainly includes the control computer (PC)
and the transmission device automatic rotation plate and so on. The overall scheme
design diagram of the system is shown in Fig. 2.

In this project, our group uses Haikang gigabit network port industrial array
camera as the image acquisition tool. A chip bearing platform suitable for various
types of chips is designed. The motor is used as the power unit to control the rotation
of the chip bearing platform. The industrial camera collects the chip in the process of
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Fig. 2 Overall scheme design

Fig. 3 System work flow

rotation. After the pictures are collected by the industrial camera, the machine vision
algorithm is calculated by Halcon, and then displayed by the human–computer inter-
action interface. Finally, the chip measurement and detection effect are realized. The
working process of the system is shown in Fig. 3.

3.2 The Principle and Flow Chart of Chip Defect Detection

Chip defect detection based on HALCON process, first to imaging of objects or areas
of interest, then according to the image information with image processing software
for processing, automatic judgment according to the results of the treatment location,
size, appearance of object detection, and based on artificial pre-set standards for
qualified or not judgment, output the judgment information to the actuator.
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Fig. 4 Flow chart of chip defect detection

Machine vision inspection system USES the camera will be the object of infor-
mation into image signal, and send it to the dedicated image processing system,
according to the pixel distribution and brightness, color and other information, into a
digital signal, image processing system then these signals are all kinds of operation
to extract the characteristics of the object, such as size, number, location, length,
Then output results according to preset values and other conditions, including size,
Angle, number, qualified/unqualified, yes/no, etc., to achieve automatic identification
function [6].

The chip defect detection flow chart is shown in Fig. 4. The chip defect detection is
gradually realized. It can be divided into the following parts: image reading, prepro-
cessing, image segmentation, defect detection and finally obtaining the detection
results.

3.3 The Realization of Chip Surface Scratch Defect
Detection.

Each step of the Halcon based chip surface scratch defect detection is also performed
bya large number of operators providedbyHalcon internally,whichgreatly simplifies
the time required for the detection.

In the design process, Blob analysis method and feature method are used to detect
the surface scratch defect of the chip. The detection process is shown in Fig. 5.

Fig. 5 Surface scratch test process
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Fig. 6 Surface scratch results

After the image is read, the image is preprocessed. The preprocessing process
includes four steps: (1) Threshold segmentation. By threshold segmentation of the
image, the chip region is preliminarily selected; (2) The edge of the system is filled
to fill the inside of the chip; (3) To calibrate the chip region, select the region with the
largest area through the discrete region, that is, the chip region, and then calculate
the smallest outer rectangle of the chip region to calibrate the chip region; (4) Select
the chip area in the box.

On the basis of preprocessing, the average filtering of the image can smooth the
image and remove the influence of characters, and then the original image and the
filtered image are differentiated to segment the scratch area. Finally, after filling the
scratch cavity area, the number of scratches is calculated to determine whether there
are scratches. If there are scratches, the position of the scratches will be marked and
the words “Pin defects: Yes” will be displayed. Otherwise, the words “Pin defects:
No” will be displayed. Figure 6 shows theSurface scratch results.

3.4 The Realization of Chip Pin Defect Detection

The design process of chip pin defect detection algorithm based on Halcon adopts a
combination of measurement and fitting method to detect the flaw of chip pin. The
detection process is shown in Fig. 7.

Compared with the detection process of chip surface scratch defects, the detection
of pin defects requires the calibration of the area where the chip pin is located, that is,
after the calibration of the chip position is completed, an external rectangle including
the chip pin is added, and the difference between the two rectangles is obtained to
get the area of the chip pin, and the calibration of the pin area is carried out.

After the pin region was calibrated, the pin regions on both sides were calibrated
as two regions (a) and (b) respectively. First, region (a) was selected and image
segmentation was performed on this region to obtain the specific location of the chip
pin. The same processing was performed on region (b). After finding the specific
position of pins, the number of pins can be calculated, and then the threshold value is
fixed. Whether the pins are bent or not can be determined by the difference between
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Fig. 7 Pin defect detection process

the threshold value of bent feet and that of normal feet. Finally, by judging whether
the number of pins is qualified and whether the pins are bent to determine whether
the chip has pin defects. If there are defects, the words “Pin defects: Yes” will be
displayed; otherwise, the words “Pin defects: No” will be displayed.

3.5 The Realization of Chip Shape Defect Detection

Halcon based chip shape defect detection in the design process using the template
matching method to detect the chip shape. The detection process is shown in Fig. 8.

On chip shape defect detection in the process of the need for image segmentation,
just the chip area of the calibration and the actual chip area difference (i.e., the chip
area filling), through the difference of value are to judgewhether the shape of the chip

Fig. 8 Profile defect detection process
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is missing, if there is a missing form is displayed “Shape defects: Yes” the words,
the opposite shows “Shape defects: No”.

4 System Implementation

The realization of the whole system needs hardware and software. The hardware
includes industrial camera, industrial lens, light source and light source controller,
etc. The software includes SolidWorks software to build the three-dimensionalmodel
of the system, Visual Studio software to develop the man–machine display interface,
MVS client software to debug the industrial camera and Halcon software algorithm
processing, etc. The combination of software and hardware is able to detect the
unqualified parts of the chip intelligently, automatically and efficiently. Figure 9
shows the structure diagram of the system.

4.1 Hardware Platform Implementation

The industrial camera and lens are fixed on the machine vision frame, and the
computer (PC) end and display are installed. The industrial camera and computer
communicate with each other using gigabit network cable and the MVS client of the
industrial camera. See Fig. 10.

Fig. 9 Structure diagram of the system
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Fig. 10 System hardware platform

4.2 The Realization of Software System

The realization of human–computer interaction interface

Based on Visual Studio software, C# language and Winform function are used to
design the overall systemman–machine interface. The designed man–machine inter-
face of the chip detection system is shown in Fig. 11. In the figure, the detection of a

Fig. 11 System machine vision control
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chip surface scratches unqualified chip, through the detection interface can be seen
the detection of unqualified items, pass rate and log and other specific conditions.

The realization of image acquisition module

The image acquisition module uses the data interface provided by Halcon to open
the camera, process the image and detect the chip in real time. Halcon provides the
universal dynamic link library halcondotnet.dll. Based on this, the dynamic dynamic
link library is called to open the camera in real time, process the pictures of the camera
chip in real time and display the processing results. As shown in Fig. 12, it specifi-
cally includes turning on the camera, collecting and displaying, stopping the preview
and closing the camera, etc., as well as the functions of collecting and processing
images by directly calling the processing and displaying function of images on the PC
end. The processed pictures are displayed in the window detected by HWindowCon-
trol chip in real time through button controls corresponding to different processing
algorithm events.

The realization of defect detection module

The realization of the detection module of the man–machine interface is shown in
Fig. 13, which is divided into three parts: setting the standard parameters of the chip,
testing results of the chip parameters, and saving the log.

Fig. 12 System Image acquisition module
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Fig. 13 System vision calibration module

The parameters of the chip standard in the first part are output variable results after
processing by the Halcon algorithm, including the maximum and minimum values
of the number of chips and the spacing of pins.

The second part of the test results, bymeasuring the number and spacing of pins in
the project to determine whether there is a pin defect. At the same time, through the
number of pins in defect detection and chip surface two data, to judge whether there
are surface defects and shape defects. Finally through the normal total, abnormal
total and pass rate to display the test results.

The third part of the log record, save the test results to TXT, you can pass the test
rate and test results saved in TXT file saved to the computer.

5 System Application Display

The system overcomes the influence of uncertain factors such as the chip deformation
caused by manual contact, reduces the interference and protects the integrity of the
chip; The man–machine interface of the system is intelligent, and the data of the
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system is easy to collect, which greatly improves the efficiency and reduces the labor
cost; The system image photo processing real-time, staff can observe the status of
the chip in real time, the software will process the algorithm and display the test
results, in the human–computer interface to obtain the chip detection information,
judge whether the chip is qualified. The system implementation display in Fig. 14

The system has been tested continuously for a long time and the test results are
obtained. As shown in Fig. 15, the standard value is 0.995, and the system test results
are all between 0.9965 and 0.9945; the measurement data is relatively stable.

Fig. 14 System implementation display

Fig. 15 Stability of chip defect detection system
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6 Conclusion

The design team members respectively through the machine vision, image
processing, mechanical structure design, circuit connection, human–machine inter-
face construction and other knowledge of learning integration, combined with the
current situation of chip defect detection, designed a can load different chips; Can
accurately detect three kinds of chip defects; The hardware part can accurately coor-
dinate the motor, industrial camera, LED light source, motor encoder, chip bearing
table, sensor, automatic turntable parts work flexibly; Realized the mechanical
hardware part and the software part can match smoothly.

This system has developed a set of simple structure, high precision, fast detection
speed, strong practicability and high reliability of chip detection system. In daily
industrial production, machine vision is introduced to detect the chip, and the qual-
ified rate of the chip is analyzed. It greatly improves the working efficiency and is
more practical in practical application.

References

1. Yuan, C.: Research on key technologies of on-line detection of semiconductor chip surface
defects based on machine vision. Southeast University (2017)

2. Hui, Z: Research on moving object detection and tracking algorithm based on blob. Harbin
Institute of technology (2016)

3. Mechanical design manual compiled by Editorial Board of mechanical design manual. Beijing,
China Machine Press (2005)

4. Hui, K: Research on SMT pin detection based on machine vision. Guangdong University of
technology (2006)

5. Min, X.: Research on wafer positioning system based on machine vision. Shanghai Jiaotong
University (2013)

6. Yangfen, Z., Dongping, Y., Shunzhang, Z., Haiwen, W., Wei, Z.: Development and application
of machine vision in automotive industry. Automot Pract Technol 2017000(022):8–11



A Bayesian Probabilistic Score Matrix
Based Collaborative Filtering
Recommendation System for Rolling
Bearing Fault Identification

Yinghang He, Guangbin Wang, Fengshou Gu, and Andrew D. Ball

Abstract As the amount of data generated by monitoring the condition of rolling
bearings is increasing, matrix factorization-based collaborative filtering can effec-
tively dig out valuable fault information from it. However, in practice, the amount of
data generated by the normal state of the bearing is much larger than the amount of
data of the bearing fault. As the total amount of data increases, this imbalance will
become more and more and more severe, bearing fault information is often over-
whelmed in it. In response to this problem, this paper starts from the perspective of
mathematical statistics, a method of mean conjugate prior is proposed for the bearing
normal condition data of bearing score matrix, from which the prior distribution of
the probability distribution parameters of the bearing fault data is obtained. Then
combined with the Bayesian method, we get the posterior distribution. According to
the distribution, the random number is used to construct the Bayesian probabilistic
scoring matrix (BPSM). Relying on BPSM, the collaborative filtering recommenda-
tion algorithm is used to identify different types of faults in rolling bearings. Under
unbalanced data, comparing with the identification under a conventional joint score
matrix (CJSM), the model built based on BPSM has a better identification effect on
bearing fault state.

Keywords Fault identification · Bayesian method · Recommendation system ·
Collaborative filtering
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1 Introduction

The amount of data generated by monitoring the condition of rolling bearing condi-
tions is increasing, and the information overload problem of these data is gradually
highlighted. In the era of Internet, collaborative filtering recommendation technology
is an effective solution to solve information overload problems [1, 2]. Therefore, in
recent years, some scholars have gradually used the collaborative filtering recom-
mendation technology to deal with the information overload problem of mechanical
equipmentmonitoring data. Paper [3] applies collaborative filtering theory in the fault
diagnosis field of civil aircrafts. Similarities between faults in the theory are calcu-
lated by the Pearson method and vector cosine method. By analysing the defects
of the collaborative filtering method, the concept of met similarity and weight is
applied to solve these problems. Paper [4] makes failure recommendation for online
electric multiple units by using collaborative filtering algorithms based on the real-
time status data and further provides the accessible scheme for failure by solution
knowledge base. But the above methods all belong to memory-based collaborative
filtering. This method relies on the calculation of the similarity of faults. Moreover,
the sparseness of fault data often leads to inaccurate similarity calculation, and it
is impossible to identify more universal conditions and more general faults. Matrix
factorization-based collaborative filtering has excellent performance in dealing with
the sparse problem of fault data. Paper [5] obtains the bearing featurematrix based on
the wavelet frequency band energy and then design a scoring matrix that accurately
describes the bearing state; finally, we design a joint scoring matrix for bearing state
identification by combining the matrix of these two different characteristics. After
that, a collaborative filtering recommendation system for bearing state identification
is proposed based on matrix factorization-based collaborative filtering and gradient
descent algorithm. This method has achieved a good identification effect on rolling
bearing faults.

However, in the practice bearing state monitoring, a large number of bearing
normal state data are often obtained, and in comparison, the bearing fault state data
is much less. For supervised learning, this creates a class imbalance problem. In
simple terms, the number of samples of a class is significantly larger than the other
class [6–8]. From a learning perspective, a few classes often contain more impor-
tant classification information, and the cost of misclassification of minority samples
is higher [9]. The collaborative filtering algorithm proposed by paper [5] for rolling
bearing fault identification only considers the balanced training set, andmay generate
an unsatisfactory classification model when faced with unbalanced data, some infor-
mation of bearing fault state is often submerged in a large number of bearing normal
state data. Aiming at the problem of unbalanced data that is widely used in prac-
tical applications, relevant researchers have proposed a series of solutions, which
can be mainly divided into internal methods and external methods [7]. Among them,
the external method reduces the influence of class imbalance on the classification by
pre-processing the data [10, 11]. This method directly changes the unbalanced distri-
bution of the data, and the effect is obvious and the adaptability is wide. Therefore,
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the research results are more. In addition, Bayesian statistics has unique advantages
in digging out data information. Bayesian schools attach importance to the collection,
mining and processing of prior information, quantify them, form a priori distribution,
participate in statistical inference, and improve statistical inference quality [12].

This paper starts from the perspective ofmathematical statistics, amethod ofmean
conjugate prior is proposed for the bearing normal operation data of bearing scoring
matrix, from which the prior distribution of the probability distribution parameters
of the bearing fault data is obtained. Then combined with the Bayesian method, the
posterior distribution of the bearing feature score table is obtained. According to
the distribution, the random number is used to form the feature score of Bayesian
probabilistic scoring matrix. Relying on the feature scoring matrix, the collaborative
filtering recommendation algorithm is used to identify different types of faults in
rolling bearings. Compared with the identification with the normal scoring matrix,
the new method allows for mining the fault information submerged in noise and
achieving a higher identification rate.

2 Collaborative Filtering Recommendation Algorithm
Based on Joint Score Matrix for Bearing Fault
Identification

A conventional joint score matrix C is the basis of the collaborative filtering recom-
mendation system for bearing state identification. It is constructed by two parts: the
bearing feature score matrix A and the state score matrix B [5].

For u sets of vibration signals S(1), . . . , S(h), S(h+1), . . . , S(u) the training data of
the former h subset signals can be taken as training data, and the latter u − h + 1 is
the test data. To highlight useful information for detection and diagnosis, the signals
usually prepressed with different methods such as wavelet transforms. In doing so,
the i-th subset signal can be decomposed into levels by wavelet packet transform,
resulting in decomposed inguinal in b = 2a − 1 sub-bands. So, the total signal S(i)

can be expressed as follows [13]:

S(i) = S
(i)
a0 + S(i)

a2 + · · · + S(i)
ab (1)

Let S(i)
aw(w = 0, 1, . . . , b) correspond to the energy E (i)

aw, and then

E (i)
aw

∫
|S(i)

aw(t)|2dt (2)

The total energy of the signal is:

E (i) =
b∑

w=0

E (i)
aw (3)
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Normalized feature vector T (i) of energy is constructed as follow:

T (i) = [e(i)
a0 , e

(i)
a1 , . . . , e

(i)
ab] (4)

where e(i)
aw = E (i)

aw/E (i) and e(i)
aw ∈ (0, 1).

The bearing feature scorematrix A ∈ R(b+1)×u is obtained according to the energy
feature vector T (i):

A = (Atr Ate) =

⎛
⎜⎜⎜⎝

e(1)
a0 · · · e(h)

a0

e(1)
a1 · · · e(h)

a1

e(h+1)
a0 · · · e(u)

a0

e(h+1)
a1 · · · e(u)

a1
...

. . .
...

e(1)
ab · · · e(h)

ab

...
. . .

...

e(h+1)
ab · · · e(u)

ab

⎞
⎟⎟⎟⎠ (5)

where AtrεRb×h represents the training data set, AteεRb×(u−h) represents the test
data set.

Assume that there are v states Z1, Z2 . . . Zv to be identified for rolling bearing
health conditions. For the training data S(1), S(2), . . . , S(h), its corresponding state
score is defined to be unitary value 1, while the non-existent state score is given
to be a small value ε(≤ 1/10000), and it constructs as BεεRv×h . For test data
S(i ′)(i ′ = h + 1, . . . , u

)
, its score for state Zt (t = 1, . . . , v) is unknown but set with

a value of 0, denoted as P(i ′)
t , and it constructs as BpεRv×(u−h). The bearing state

score matrix BεRv×u is obtained:

B = (
BεBp

) =

⎛
⎜⎜⎜⎝

1 · · · ε

ε · · · ε

p(h+1)
1 · · · p(u)

1

p(h+1)
2 · · · p(u)

2
... · · · ...

ε · · · 1
...

. . .
...

p(h+1)
v · · · p(u)

v

⎞
⎟⎟⎟⎠ (6)

Finally, the joint score matrix CCJ SM is constructed as:

CCJ SM =
(
Atr Ate

Bε Bp

)
=

(
A
B

)
(7)

where CCJ SM ∈ Rd×u and d = b + 1 + v.
As joint score matrix C is low-rank sparse matrix, it can be factorized into the

product of two characteristic matrices: ΘεRu×k and XεRd×k to solve p(
i ′)

t in the
matrix, namely C = XΘT :
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e(1)
a0 · · · e(h)

a0
...

. . .
...

e(1)
ab · · · e(1)

ab

e(h+1)
a0 · · · e(u)

a0
...

. . .
...

e(h+1)
ab · · · e(u)

ab

1 · · · ε
...

. . .
...

ε · · · 1

p(h+1)
1 · · · p(1)

1
...

. . .
...

p(h+1)
v · · · p(u)

v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼=

⎛
⎜⎝

x (1)
1 · · · x (1)

k
...

. . .
...

x (d)
1 · · · x (d)

k

⎞
⎟⎠.

⎛
⎜⎝

θ̃
(1)
1 · · · θ̃

(1)
k

...
. . .

...

θ̃
(u)
1 · · · θ̃

(u)
k

⎞
⎟⎠ (8)

To find the optimal parameters Θ and X, a minimisation is implemented based
on the overall cost function L(Θ,X,C):

(θ, X) = arg minL
(
(�,X,C) + λ

(‖θ‖2 + ‖X‖2)) (9)

where λ is the regularization coefficient.
Finally, the gradient descent method is used to optimize the parameters, and then

the predicted score p(
i ′)

t of the test data S(i ′) for the state Zt is obtained:

Then, the state Zt corresponding to the highest score maxp(
i ′)

t , that is, the state
of the identification test data S(i ′) is obtained.

3 Bayesian Probabilistic Scoring Matrix

Because of random noise influences, measured vibration datasets include a great
degree of uncertainties and noise. Even with advanced noise suppression pre-
processing, the feature parameters can still have certain degree of randomness. In this

sense, the energy feature score e(
i ′′)

aw

(
i ′′ = 1, . . . , h

)
in matrix Atr can be regarded

as a realization from a random variable.
Assume that in the fault state Zt , there are αt sets of training data: e(1)

aw, . . . , e(αt )
aw .

For the very slow change in states during bearing service period, it can be assumed
that scores obtained by different time instants for same bearing state satisfy the
independent and identical distribution conditions. According to the central limit
theorem, the uncertain measurements and environment effects usually follows a
Gaussian distribution [16]. It means that that the randomness of energy feature score
Ẽ (t)
aw of state Zt can be analysed based on a Gaussian distribution which consists

of two parameters: a mean of θ(t)
aw and a variance of (θ (t)

aw)
2
, denoted as Ẽ (t)

aw ∼
Nt (θ

(t)
aw, (θ(t)

aw)
2
) for brevity.

Figure 1 shows typical probability density curves established according to [14,
15], which is for the experimental data in Sect. 4 (bearing outer ring crack, current
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Fig. 1 Probability density curve based on the 9th energy feature score (e58). a normal; b outer ring
crack; c outer ring current’ damage; d outer ring pitting

damage, pitting and normal based on the 9th energy feature score (e58)). It can be
observed that these curves exhibit near Gaussian characteristics.

For Ẽ (t)
aw ∼ Nt (θ

(t)
aw, (θ(t)

aw)
2
), comparing the probability density curves of each

energy segment’s bearing normal state and fault state, we find that the influence of
(θ (t)

aw)
2
is relatively small and can be regarded as a known amount, estimated by the

principle of maximum likelihood:

(σ
∧(t)
aw)

2 = 1

αt − 1

αt∑
i=1

e(i)
aw − 1

αt

αt∑
j=1

e( j)
aw (10)

According to the Bayesian framework, we have a certain knowledge of θ(t)
aw before

we get the bearing fault status data, called prior knowledge, and the prior knowledge
can be expressed by a certain probability distribution, called prior distribution [16].
In CJSM of the second section, we find that the energy feature scores of the different
bearing fault state comparingwith the bearing normal state tend to have a large differ-
ence in some sub-bands, while the other sub-bands have little difference relatively.
Based on the experimental data in Sect. 3, Fig. 2 shows the probability density curves
of the bearing normal state and outer ring pitting in different energy sub-band.
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Fig. 2 Probability density curve based on different energy feature score in bearing normal state
and outer ring pitting

Therefore, this paper believes that in the actual monitoring, a large number of
bearing normal state data contain some “prior knowledge” of mean parameter θ(t)

aw

of bearing fault state data: some sub-band score of the bearing normal state which is
not much different from the bearing fault data. How to obtain the prior distribution
of the “prior knowledge” is a major problem. For the training set data, this paper
proposes a method that can combine the prior information of the bearing normal
state score to obtain the posterior distribution of the bearing fault state score, and
then obtain the Bayesian probability feature score matrix. In this way, it is possible
to reduce the influence of a large number of bearing normal state data and fully dig
out the effective information therein, which is encountered in the common scenario
for model-based diagnostic which involves model of training and learning.

According to the Bayesian statistical prior distribution characteristics, we believe
that the prior distribution of the mean parameter θ(t)

aw is given by a conjugate prior
N

(
µaw,µ2

aw

)
. In this paper, the conjugate prior is related to the bearing normal

state data. It is assumed that the energy feature score of the normal bearing in the w
sub-band is Yaw ∈ R1×(n×m):

Yaw =
⎛
⎝

m︷ ︸︸ ︷
y(1)
aw . . . y(m)

aw ),

m︷ ︸︸ ︷
y(m+1)
aw . . . y(2m)

aw ), . . . ,

m︷ ︸︸ ︷
y(
)
aw . . . y(n×m)

aw

⎞
⎠ (11)

where 
 = (n − 1) × m + 1.
Divide Yaw into m groups and calculate the mean values to get Y aw:
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Y aw =
(
1

m

m∑
i=1

y(i)
aw,

1

m

2m∑
i=m+1

y(i)
aw, . . . ,

1

m

n×m∑
i=


y(i)
aw

)
=

(
Y

(1)
aw,Y

(2)
aw, . . . ,Y

(n)

aw

)

(12)

Mean µaw and variance τ 2
aw in the prior distribution N (uaw, τ 2

aw) estimated using
Y aw, it can be estimated by the principle of maximum likelihood:

µ̂aw = 1

n

n∑
i=1

Y
(i)
aw (13)

τ̂ 2
aw = 1

n − 1

n∑
i=1

(
Y

(i)
aw − µ̂aw

)2
(14)

Therefore, the probability density function of the prior distribution:

π
(
θ(t)
aw

) = 1

τaw

√
2π

exp

{
−

(
θ(t)
aw − µaw

)2
2τ 2

aw

}
(15)

The energy feature score e(1)
aw, . . . , e(αt )

aw , is a set of sample observations from

Nt (θ
(t)
aw, (θ(t)

aw)
2
), where (θ (t)

aw)
2
is known, then the likelihood function of these samples

is:

l(eaw|θ(t)
aw) =

(
1

θ
(t)
aw

√
2π

)αt

exp

{
− 1

2(θ (t)
aw)2

αt∑
i=1

(e(i)
aw − θ(t)

aw)2

}
(16)

Let eaw = 1
αt

∑αt
i=1 e

(i)
aw, σ 2

0 = (σ
(t)
aw)

2

αt
, A∗ = 1

σ 2
0

+ 1
τ 2
aw
, B∗ = eaw

σ 2
0

+ μaw

τ 2
aw

and

C∗ = 1

(σ
(t)
aw)

2

∑αt
i=1 (e(i)

aw)
2 + μ2

aw

τ 2
aw

The joint probability density function of sample eaw and the mean parameter θ(t)
aw

is

h
(
eaw, θ(t)

aw

) = l
(
eaw|θ(t)

aw

) · π
(
θ(t)
aw

) = k exp

{
−

(
θ(t)
aw − B∗/A∗)2

2/A∗

}
(17)

where k = (2π)−(α+1)/2 · τ−1
aw · (

σ (t)
aw

)−h · exp{−(
C∗ − (B∗)2/A∗)/2}.

The edge probability density of eaw can be calculated:

m(eaw) =
∫ +∞

−∞
h(eaw, θ(t)

aw)dθ(t)
aw = k(

2π

A∗ )
1/2

(18)

Therefore, the posterior distribution of θ(t)
aw is:
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π
(
θ(t)
aw|eaw

) = h
(
eaw, θ(t)

aw

)
/m(eaw)

=
(
2π

A

)− 1
2

· exp
{

−
(
θ(t)
aw − B∗/A∗)2

2/A∗

}
(19)

Namely, π
(
θ(t)
aw|eaw

) ∼ N
(
μ′
aw, τ ′2

aw

)
.

where μ′
aw = B∗

A∗ = eawσ−2
0 +μawτ−2

aw

σ−2
0 +τ−2

aw
, τ ′2

aw = σ 2
0 ·τ 2

aw

σ 2
0 +τ 2

aw

.

According to the generalized maximum likelihood estimation principle [17], take
μ′
aw as the estimated value of θ(t)

aw:

θ̂ (t)
aw = μ′

aw (20)

Therefore, Ẽ (t)
aw ∼ Nt (θ

(t)
aw, (σ (t)

aw)
2
).

For every Ẽ (t)
aw(t = 1, . . . , v;w = 0, . . . , b), we generate a random number based

on the distribution Nt (θ
(t)
aw, (σ (t)

aw)
2
) to replace the energy feature score of bearing fault

state in Atr , and construct a new matrix ABPSM
tr . The Bayesian probabilistic scoring

matrix is constructed as:

CBPSM =
(
ABPSM
tr Ate

Bε Bp

)
(21)

4 Performance Verification

To verify the performance of BPSM proposed, the collaborative filtering recom-
mendation technology is implemented for bearing fault identification. It identifies
bearing health conditions with different types of bearing outer ring faults. As shown
in Fig. 3, there are three common faults including outrace pitting, outer ring crack,
and outer ring current damage as depicted in Fig. 3a, b and c respectively which
are on three popular 6205EKA deep groove ball bearings. By operating the bearing

(a) (b) (c)

Fig. 3 a Outer ring pitting; b outer ring crack; c outer ring current damage



578 Y. He et al.

Fig. 4 a Bearing test bench ➀ electric motor; ➁ insulated coupling; ➂ principal axis; ➃ supporting
bearing pedestal; ➄ current loading device; ➅ test bearing’s bearing pedestal; ➆ vibration
acceleration sensor; ➇ insulated bearing; ➈ base; ➉ current simulator

test bench shown in Fig. 4 at three motor speeds 600, 1200 and 1800 rpm, each
under three radial loads of 500, 1000 and 1500 N, we have obtained several vibration
accelerations signals of the bearings in the four states with the sampling frequency of
16,384 Hz. Then, we divide these signals into small segments, which are 512 sets of
outer ring pitting corrosion, 540 sets of outer ring crack, 656 sets of current damage,
and 2880 sets of normal, and total 4588 sets of samples.

For implementing the approach, 4588data are divided into three subsets randomly:
training set (2753 sets), cross-validation set (918 sets), and test set (917 sets).

The data of the training set includes 1736 bearing normal state data, 316 outer ring
crack state data, 404 outer ring current damage state and 297 outer ring pitting state.
With these datasets, the BPSM is constructed to be 36 × 3671 with cross-validation
set. For comparison, a CJSM is also formulated to have the same size as BPSM but
with difference of sub-matrix as detailed, and the same cross-validation set and test
set are used to determine the model parameters and verify the generalization ability,
as shown in Fig. 5.

Using different regularization coefficients λ and feature number k, relying on the
training set learning model, the cross-validation set is used for state identification,
and the identification rate is obtained, as shown in Fig. 6. It can be seen that the
BPSM result in a higher identification rate for the cross-validation set, the highest
rate being 91.61% for BPSM when λ = 0.0016 and k = 10, and 89.32% for CJSM
when λ = 0.002 and k = 10.

Select λ = 0.0016, k = 10 for BPSM and λ = 0.002, k = 10 for CJSM to evaluate
the performance of the model on the test set.

Figure 7 shows the specific identification result of the BPSM model for different
bearing states. The overall identification rate is as high as 91.2%. Comparatively,
CJSM can only have a correct rate of 85.9%. It is proved that the model has good
generalization ability under this parameter, and the effect is better when usingBPSM.
Especially, CJSM model takes almost all the crack fault data (99.1% of crack fault
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Fig. 5 CJSM and BPSM constructed by training set and cross-validation set

Fig. 6 Identification rate of cross-validation sets under two methods

data) into the normal state. This is mainly due to the influences of large amount
normal datasets. In comparison, 71.3% of the crack fault data are identified correctly
by BPSM.

5 Conclusions

Face the problem of unbalanced scoring matrix for the imbalance of data sets in
practice, this paper starts from the perspective of mathematical statistics, a method
of mean conjugate prior is proposed for the bearing normal operation data of bearing
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Fig. 7 Identification rate for test datasets

score matrix, from which the prior distribution of the probability distribution param-
eters of the bearing fault data is obtained. Then combined with the Bayesian method,
the posterior distribution of the bearing feature score table is obtained. According
to the distribution, the random number is used to form the feature score of Bayesian
probabilistic score matrix. Relying on the feature score matrix, the collaborative
filtering recommendation algorithm is used to identify different types of faults in
rolling bearings.

Experiments were carried out on the normal bearings and bearings of pitting,
crack, and current damage on the outer ring of the rolling bearing, and the vibration
signal data were obtained. The data of the bearing normal state in the data accounts
for more than half of the total data, which highlights the imbalance of the data set.We
use the proposed method to obtain the BPSM of the training set to train the model.
For comparison, CJSM is also used as a training set to train the model, and the same
cross-validation set and test set are used to determine the model parameters and
verify the generalization ability, and the identification effect of the two is compared.
It shows that the BPSM model has a higher identification rate than CJSM overall
when they are under the same model parameters. Moreover, crack fault information
is submerged in the unbalanced data set. The model trained under the CJSM has a
poor effect on crack fault state identification, while the model trained by the BPSM
can identify the crack fault state to a certain extent.

References

1. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40, 56–58 (1997)
2. Zenebe, A., Norcio, A.F.: Representation, similarity measures and aggregation methods using

fuzzy sets for content-based recommender systems. Fuzzy Sets Syst. 160, 76–94 (2009)



A Bayesian Probabilistic Score Matrix Based Collaborative … 581

3. Xu, P.: Research on fault diagnosis method of civil aircraft based on collaborative filtering
theory. J. Civil Aviation University of China 32, 23–26 (2014)

4. Guo, M.L.: Research and realization of EMU’s operation and maintenance decision-making
recommended techniques based on knowledge base. M.E. thesis, Beijing Jiaotong University,
Beijing, China (2015)

5. Wang, G.B., He, Y.H., Peng, Y.F., Li, H.J.: Bearing fault identification method based on
collaborative filtering recommendation technology. Shock and Vibration (2019)

6. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced
data sets. ACM SIGKDD Explorations Newsl 6, 1–6 (2004)

7. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with
imbalanced data: empirical results and current trends on using data intrinsic characteristics.
Inf. Sci. 250, 113–141 (2013)

8. He, H., Garcia, E.A.: Learning from imbalanced data. Knowledge and Data Eng. IEEE Trans.
on 21, 1263–1284 (2009)

9. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the International Joint
Conference on Artificial Intelligence (2001)

10. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.A.: study of the behavior of several methods for
balancing machine learning training data. ACM SIGKDD Explorations Newsl 6, 20–29 (2004)

11. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from
imbalanced data sets. Comput. Intell. 20, 18–36 (2004)

12. Mao, S.S., Tang, Y.C.: Bayesian Statistics, 2nd edn. China Statistics Press, Beijing, China
(2012)

13. Zhang, D.F.: MATLAB Wavelet Analysis. China Machine Press, Beijing, China (2010)
14. Hill, P.D.: Kernel estimation of a distribution function. Commun. Statist.-Theory Methods 14,

605–620 (1985)
15. Jones, M.C.: Simple boundary correction for kernel density estimation. Stat. Comput. 3, 135–

146 (1993)
16. Chen, X.R.: Probability Theory and Mathematical Statistics, 1st edn. Press of University of

Science and Technology of China, Hefei, China (2009)
17. Chen, X.R., Ni, G.X.: Mathematical Statistics Course, 1st edn. Press of University of Science

and Technology of China, Hefei, China (2009)



On-Line Monitoring of the Dimensional
Error in Turning of a Slender Shaft

Pengyu Lu, Kaibo Lu, Yipei Liu, Bing Li, Xin Wang, Meixia Tian,
and Fengshou Gu

Abstract Bending deformation is easy to occur when turning a long slender work-
piece due to its low stiffness, which seriously affects the machining dimensional
accuracy. Currently, the dimension of the part is generally measured off-line after
the completion of the operation. The purpose of this paper is to explore an on-line
monitoring method for the dimensional error of slender shaft in turning processes.
First the deformation of thewholeworkpiece in the process ofmachining is analyzed.
The deformation correlation at the measuring point and that at the cutting point is
deduced. Then an on-line monitoring approach to radial dimension is proposed using
a single fixed displacement sensor and Wavelet Transform. Finally, the reliability
of the monitoring method is verified by machining experiments. The experimental
results show that the presented on-line monitoring model enables to predict the
dimensional error of the machined workpiece effectively.
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1 Introduction

A shaft with the length to diameter ratio greater than 20 is usually called the slender
beam. Turning slender shafts is prone to deformation as well as chatter vibra-
tions under the cutting force due to their low stiffness, which seriously affects the
machining accuracy and productivity [1, 2]. The adverse influence, therefore, makes
the monitoring or prediction of the dimensional deviation an indispensable activity
to pursue intelligent manufacturing processes [3–5].

The deformation of the machined workpiece is affected by cutting force and
structural stiffness, so it is of great significance to derive accurate cutting force and
stiffness for monitoring the dimensional error. The stiffness at each position along
the workpiece is associated with the clamping conditions. Wang presented a finite
element method to analyze the machining deformation under different clamping
ways and obtained the optimal clamping ways to reduce the deformation [6]. Lu
et al. analyzed the stiffness distribution at different positions of the slender shaft
by analytical method and finite element method, discussed the influence of spindle
support bearing and chuck on the workpiece chatter, and obtained an accurate chatter
monitoring model [7, 8]. Gong used an improved artificial bee colony algorithm
to optimize cutting parameters with cutting stability and surface roughness taken
into account [9]. Guo carried out numerical simulation of the turning process based
on Rayleigh beam theory, and determined the dynamic response of the rotating
workpiece under the action of cutting force. The error compensation was carried out
according to the deformation,which has guiding significance for the actualmachining
[10]. Wu used the finite element method to compare the two kinds of turning forms,
and stated that the reverse turning was more beneficial to deformation reduction
[11]. Yang developed a flexible hydraulic tool rest and elastic tail rest to lower the
dimensional error duringmachining, and effectively improved the radial dimensional
accuracy and surface roughness [12].Also, a self-made following framewas designed
to improve the stiffness of slender shaft and obtained better machining quality [13].

In summary, research on slender shaft machining mainly is focused on updating
the clamping approaches of the flexible workpiece to be machined to improve its
structural stiffness. And on-linemonitoring of turning processes ismainly focused on
machining chatter or surface roughness.Relatively, literature concerningdimensional
deviation monitoring in cutting of the slender workpiece is sparse. In this paper, we
introduce an analyticalmethod for dimensional error prediction in turning of a slender
shaft. The correlation between the deformation at the measuring point and that at the
cutting point is deduced. Then an on-line monitoring approach to radial dimension
is proposed using a single fixed displacement sensor. Finally, the reliability of the
monitoring method is verified by machining experiments.
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2 Dimensional Error Model

It is known that the cutting force can be decomposed into three components, that is,
the tangential force, radial force, and axial force. Since the workpiece deformation
in the radial direction mainly affects the depth of cut, resulting in radial dimension
error after processing. Comparatively, the effect of the deformation caused by the
tangential force and the axial force on the depth of cut can be ignored. Thus, the
influence of the bending deformation generated by the radial cutting force on the
final diameter of the machined wokepiece is only considered in this study.

Figure 1 shows the deflection of the workpiece subjected to the radial cutting
force. Obviously, the actual depth of cut will decrease due to deformation of the
workpiece during turning. The actual depth of cut ape is

ape = ap − ω(c) (1)

where ap is the nominal depth of cut and ω(c) is the deflection of workpiece caused
by the radial cutting force at the current cutting point. Then, the actual diameter de
of workpiece after cutting is

de = d − 2ape (2)

where d is the diameter of workpiece before a turning operation.
Therefore, the key issue for the dimensional deviation monitoring is to determine

the deflection of workpiece along its length. To this end, the natural thought is to
measure the deflection at the cutting point directly. But it could be impractical mainly

Fig.1 Radial dimensional
error model of a slender
workpiece in turning
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due to the interference of cutting chips and fluid in operation. As a result, a strategy
for indirect measurement of ω(c) is needed. An analytical method for dimensional
error prediction in turning of a slender shaft will be explored in the following.

3 Method for the Radial Deformation In-Process
Monitoring

In the present study, we are focused on the case of a uniform slender shaft, which is
clampedbya chuck at one end and simply supportedby a live center at the other endon
a horizontal turning lathe. For simplicity, the workpiece here is modeled as propped
cantilever beam model. Obviously, this model is a statically indeterminate beam,
as shown in Fig. 2. The support of the chuck and tailstock is generally idealized or
simplified as fixed and joint constraints, respectively. The point C denotes the current
cutting position along the workpiece, and the pointM denotes themeasurement point
of a displacement sensor.

3.1 Equation of the Workpiece Deflection

According to the basic theory of material mechanics, the reaction force at the simply
supported point A can be known as:

FA = Fb2

2l3
(3l − b) (3)

Furthermore, the bending moment equation on the section at a distance x(0 <

x < a) from the A end is

M(x) = FAx (4)

Fig. 2 Simplified model of a slender beam in turning
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Then, the approximate differential equation of the torsion curve y(x) is expressed
as

y′′(x) = d2y

d2x
= M(x)

E I
(5)

where E is Young’smodulus and I is themoment of inertia of the beam cross section.

E I y′′(x) = Fb2

2l3
(3l − b)x (6)

The general solution of Eq. (6) is obtained as

y(x) = 1

E I
[1
6
FAx

3 + c1x + d1] (7)

For a < x < l, there is the following solution,

M(x) = FAx − F(x − a) (8)

y(x) = 1

E I
[1
6
FAx

3 − F
(x − a)3

6
+ c2x + d2] (9)

With boundary conditions idealization, for a fixed end, the deflection and slope
are zero; for a simply supported end, the bending moment and deflection are zero.
Substituting the boundary conditions in Eqs. (7) and (9) yields:

c1 = c2 = −1/2(FAl
2 − Fb2), d1 = d2 = 0 (10)

Finally, the equation of the deflection of the workpiece can be obtained as:

ω(x) = F
6E I (

b2

2l3 (3l − b)(x3 − 3l2x) + 3xb2) 0 < x < a

ω(x) = F
6E I (

b2

2l3 (3l − b)(x3 − 3l2x) + 3xb2 − (x − a)3) a < x < l
(11)

The deformation at the cutting position is:

ω(c) = F

6E I
(
b2

2l3
(3l − b)(a3 − 3l2a) + 3ab2) (12)
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3.2 Correlation Between Deformation at Measuring Point
and Cutting Point

By dividing Eqs. (11) by (12), the relationship between the deformation at the
measuring point and the cutting point can be obtained as:

ω(c) = ω(x)
( b2

2l3
(3l−b)(a3−3l2a)+3ab2)

b2

2l3
(3l−b)(x3−3l2x)+3xb2

0 < x < a

ω(c) = ω(x)
( b2

2l3
(3l−b)(a3−3l2a)+3ab2)

b2

2l3
(3l−b)(x3−3l2x)+3xb2−(x−a)3

a < x < l

(13)

4 Experimentation and Discussion

4.1 Experimental Setup

This section presents the verification of the proposed monitoring approach through
turning tests. The experimental setup is shown in Fig. 3. Experimentswere performed
on a CA6140 conventional horizontal lathe with the power of 7.5 kW. All the test
bars with the length 400 mm and the initial diameter 25 mm were made of 1045
steel. The material has the Young modulus 2.06× 105 MPa and density 7850 kg/m3.
The rhombic insert was used for dry cutting, which has the nose angle 55°, nose

Fig. 3 Experimental setup
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Table 1 Cutting parameters Cutting pass Spindle
rotation
speed/rpm

Depth of cut
/mm

Feed rate
/(mm/rev)

1st 1120 0.5 0.1

2nd 1120 1.2 0.1

radius 0.4 mm, and clearance angle 7°, respectively. The data acquisition system of
CoCo-80 was applied to record the measured signals.

In the machining tests, one proximity sensor was fixed on the slide-way to acquire
the displacement of the workpiece. The signal was sampled at the rate of 10.24 kHz.
Table1 shows the machining parameters in the experiments.

4.2 Results and Discussion

Wavelet transform is to project the signal onto the orthogonalwavelet base and expand
the signal on different scales, so that the relevant features can be extracted within
different frequency bands. In addition, the time-domain features of the signal in each
frequency band can be retained. Wavelet transform can only decompose the approx-
imate signal feature, which can deal with the low frequency signal well. Wavelet
decomposition technology has powerful denoising functions. Thus, the processing
method for displacement signals based on the wavelet technology is applied for
feature extraction.

Figure 4 shows the detail coefficients of each order after 12th order decompo-
sition of the original displacement signal using the Symlet4 wavelet, in which the
reconstruction of low-frequency signal is selected as the desired deformation data.
The original signal and the reconstructed signal related to workpiece deflection are
compared in Fig. 5.

After turning, the workpiece was measured by a micrometer with an accuracy of
0.001 mm. Figure 6 shows the radial dimension of the workpiece along its axis. It
can be seen that the maximum deformation normally occurs near the midpoint of the
workpiece during turning operations because the position holds the lowest stiffness.

Through inputting the reconstructed deformation data at the measuring point into
the on-line monitoring model of Eq. (13), the radial dimension of the workpiece can
be predicted. Figure 7 shows the comparison of the on-line monitoring results with
the off-line measurements. Overall, the predicted and measured values of the dimen-
sional deviation distribution along the workpiece have the similar trends, which
basically verified the proposed monitoring method. Also, it can be seen that the
predictive geometric dimensions are generally lower than the practical measure-
ments, indicating that the monitoring model is stiffer than the physical machining
system.
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Fig. 4 Wavelet Transform of the displacement signal

5 Conclusions

This paper introduces an online monitoring method for the dimensional deviation of
the compliant clamped-simply supported workpiece in turning operations. The radial
dimension of the workpiece both in the on-line monitoring models and the off-line
test results increases firstly and then decreases, like a Chinese ‘waist drum’ shape. It
can be found that the maximum deformation position is about 0.414 l, located around
the mid-point of the length of workpiece. The monitoring results are relatively lower
than the practical measurements, since the boundary conditions are simplified in
modelling which leads to a certain error. The range of error is between 3 and 40 µm,
indicating that this monitoring method is feasible. The future work will focus on
updating boundary conditions to explore more accurate monitoring models.
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Fig. 5 Workpiece displacement signals during a cutting pass
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Fig. 6 Radial dimension along the length of the workpiece
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Fig. 7 Comparison of on-line monitoring model and experimental results
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Research on Feature Extraction
and Recognition of Dongba Hieroglyphs

Hao Huang, Guoxin Wu, and Xiaoli Xu

Abstract The Naxi people in Lijiang, China, have created a pictograph that repre-
sents the Dongba culture. The ancient books written with this script are one of the
three world heritages in Lijiang, and are known as “the only living ancient script in
the world” (Likun in Dongba ancient books and documents of Naxi nationality 2021
[1]). Dongba hieroglyphs are written by different Dongba elders. Different writing
habits lead to the phenomenon of variant characters in multiple versions of the same
character, as well as the complex structure, different forms, complex background
and image noise of Dongba text, this paper puts forward two parts to realize feature
extraction and image recognition, topological characteristics and characteristics of
grid, Input of neural network training, and combining the neural network usingmulti-
level identification model, template matching and through experiment verification,
this algorithm is 9.92% higher than that of the recognition rate of template matching
algorithm, and the algorithm of recognition is got improved significantly, the results
show that the method to achieve accurate and efficient implementation of Dongba
hieroglyphics identification purposes.

Keywords Topological characteristics · Network characteristics · Template
matching · The neural network

1 Introduction

It is written by a unique hieroglyphic created in ancient times by the ancestors of
Naxi people in China. Dongba script is a kind of hieroglyphic which is very original
and expressed in the form of pattern. The local Naxi people call it “senzhuolujo”,
which means “the imprint left on the stone and wood” [2]. This hieroglyphic is the
only hieroglyphic still in use in the world, It is a cultural treasure of great academic
value [3, 4]. In 2003, Dongba classic ancient books of Naxi nationality in China
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were listed as “World Memory Heritage” by UNESCO [5]. The book written by this
hieroglyph is called Dongba Scripture. Its valuable information records the devel-
opment and changes of typical community culture in the history of human culture,
and accumulates the changes of ancient Chinese culture. There are more than 1800
Dongba hieroglyphs. It is a primitive hieroglyphic symbol system which belongs to
the middle development stage of picture and ideograph. Its morphological structure
is complex. It is a kind of character symbol between picture and ideograph. In order
to recognize Dongba characters, the first step is to extract the characters’ features.
The extracted features should be comprehensive and different from other characters.
However, Dongba hieroglyphs have many pictorial features, such as complex struc-
ture and different strokes, whichmakes feature extractionmore important. In the past
few decades, a large number of scientific research has formed a variety of character
feature extraction and recognition methods. It includes statistical method, structural
method and neural network method [6, 7]. This paper aims to study the character
symbol feature extraction and character recognition according to the characteristics
of Naxi Dongba characters on the basis of other character feature extractionmethods.

2 Recognition System of Dongba Pictograph

Described in this article, Dongba hieroglyphics recognition system is first in Dongba
ancient Dongba script for the digital collection, then given the Dongba script itself
exists di phenomenon, complicated structure, and the records of the Dongba script
Dongba paper itself exists texture feature may cause interference for identifying the
Dongba script, so the image information preprocessing operations, Then the noise
information in the image is removed and the image ismore conducive to the extraction
of feature information. Finally, the Dongba text in the image is recognized by the
combination of template matching and neural network.

2.1 The Principle of Dongba Pictograph Recognition

The recognition of Dongba hieroglyphs is mainly divided into two parts: feature
extraction and image recognition. Feature extraction is to obtain digital image infor-
mation through CCD image acquisition system [8], and then store and convert the
JPEG format image collected by CCD into bmp format file that can be processed
underWindows system for image preprocessing operation, including de drying, bina-
rization, edge detection, text segmentation, thinning and normalization, which is
convenient for feature extraction of Dongba characters [9–11], As shown in Fig. 1,
the block diagram of Dongba character recognition system preprocesses the prepro-
cessed Dongba character data by extracting the topological features [12–14] and grid
features ofDongba character, and then inputting them into neural network for training
to get theweight file ofDongba character recognition.Aiming at the phenomenon that
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Fig. 1 Block diagram of Dongba character recognition system

the recognition speed of neural network is slower than that of template matching, this
paper combines the advantages of the two methods and adopts a multi-level recog-
nition method. The first level uses template matching with high recognition speed
[15–17], and the second level uses neural network with higher recognition efficiency
to recognize [18, 19], so as to realize the purpose of recognizing Dongba characters.

3 Feature Extraction of Dongba Pictograph

After preprocessing, the image information has a very clear Dongba text individual,
which improves the accuracy of the combination of topological features and grid
features. In view of the influence of different features, deformation and artificial
writing on the same Dongba text, this paper proposes the topology and grid feature
extraction to unify the features and strictly classify them,To achieve the text feature
extraction and more comprehensive distinction from other types of text.
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3.1 Topological Feature Extraction

In view of the influence of different changing features, deformation and artificial
writing on the characters of the same Dongba document, a method of topological and
grid feature extraction is proposed to achieve the acquisition of feature information
by unifying features (1) Endpoint: in graph theory, the vertex with degree 1 refers to
the position where strokes disappear in Dongba hieroglyphs, that is, there is a black
pixel in the pixel 8 near point P, which is the endpoint.

(2) Cross point: the vertex with degree greater than 2, that is, the intersection of
lines, including Trident point and Quad point.

(3) Block: the connected part of graph theory;
(4) Hole: internal hole in graph theory.
As shown in Fig. 2, it is 3 with P as the center pixel × According to this

neighborhood, the variable n is defined as:

n = P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 (1)

If the following conditions are satisfied: ➀ num = 1, ➁ P = 1, then the point is
the endpoint;If the following conditions are satisfied: (1) n = 3 or 4, and (2) P = 1,
then the point is a trigeminal point or a quad point.

In the notation in Fig. 3,© represents the endpoint,➪ represents the block, and�
represents the fork,×Representing holes, the extraction result in the figure is divided
into 16 cross points, 2 blocks, 7 holes and8 endpoints. Through the topological feature
extraction of Dongba characters, the simple features of most Dongba characters can
be extracted and classified.

Fig. 2 3’3 neighborhood

Fig. 3 Schematic diagram
of topological structure
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3.2 Grid Feature Extraction

Considering the characteristics of Dongba characters express ed in picture form, it is
still necessary to extract grid features after topological feature extraction. According
to whether the size and position of the mesh are fixed, it can be divided into static
mesh feature extraction and dynamic mesh feature extraction.

(1) Static mesh feature extraction

Static grid feature extraction is mainly used to distinguish and extract the
features of Dongba characters which have the same composition but have
black pixels.

Some Dongba hieroglyphs have the same structural features, but the filling
degree of black pixels in some areas is different, as shown in the three groups
of Dongba hieroglyphs in Fig. 4.

The process of feature extraction is as follows.

➀ Let the character lattice be n´n. Divide the text image into N parts´N grids;

➁ The effective pixels in each grid are calculated and represented by P11, p12,…,
p1n, p21, P22,…, Pnn;

➂ Calculate the total effective pixels of text: P = P11 + p12 + … + p1n + p21 +
P22 + … + Pnn;

➃ Calculate the proportion of the number of black pixels in each grid to the black
pixels of the whole text: PIJ = PIJ * 100 / p;

The feature vector p = (P11, p12,…, p1n, p21, P22,…, Pnn) is the grid feature of the
text.

(2) Dynamic grid feature is to distribute the size, stroke form and partially
deformed characters of the same type of characters written by old Dongba
hands with different writing habits. It plays a good role in solving this kind
of phenomenon.For the comprehensive consideration of feature extraction, the
black pixels of Dongba hieroglyphic are extracted from four directions [14]

➀ Horizontal component: P1 and P5 are black pixels;
➁ Vertical component: P3 and P7 are black pixels;
➂ Skimming component: P2 and P6 are black pixels;
➃ Na component: P4 and P8 are black pixels.

Fig. 4 Dongba characters distinguishable by black pixels
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Fig. 5 Decomposition result
of Dongba script

Figure 5 shows the decomposition result of Dongba hieroglyphic.
Figure 5a shows the original Dongba image; Fig. 5b is a refined Dongba image;

Fig. 5c is a transverse component image; Figure 5d is a vertical component image;
Fig. 5e is a skim component image; Fig. 5f is a component image.

From the following two formulas, the horizontal and vertical non-uniform grid
lines II and ij can be obtained respectively, where N1 is the number of grids in the
horizontal direction and N2 is the number of grids in the vertical direction.

4 Recognition of Character Symbol

After feature extraction of character symbols by the above method, the combination
of template matching and neural network recognition is used to recognize, so as to
increase the accuracy and speed of recognition.

4.1 Template Matching

Templatematching needs to establish a text template library, and import all the digital
information of Dongba characters in Naxi hieroglyphic spectrum into font creator
program through true type technology to build Dongba character template.As shown
in Fig. 6, it is the schematic diagram of template matching design.

For the character strokes that are easy to recognize, the template matching is used
to recognize the character symbols, which can be classified and recognized by the
features of endpoint, cross point, block and hole. The character to be recognized is
matched with the part of the template symbol library that has the same topological
features [15]. This is a rough classification. The error value of the character to be
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Fig. 6 Template matching design principle

tested and the template character features is calculated by the error method, Set the
error to ± 1.5,That is to say, In other words the threshold of E(i, j). If it is less than
3, we further discuss the uniqueness of the matched Dongba charactersIf E(i, j) is
greater than 3, the next stage of template matching will be started.

In view of the complex characteristics of Dongba characters, such as diverse
structure, different strokes and so on, after rough classification, the remaining parts
of the characters can achieve relatively high accuracy through template matching
and feature region recognition.

In this step, the similarity value between the above grid features and the sample
features is calculated by the similarity method to realize the further recognition of
Dongba characters

R =
∑m−1

i=0

∑n−1
j=0

[
S(i, j) − S

][
T (i, j) − T

]

√∑m−1
i=0

∑n−1
j=0

[
S(i, j) − S

]2 ∑m−1
i=0

∑n−1
j=0

[
T (i, j) − T

]2
(2)

Among them:S(m, n) is the sample eigenvector, T (m, n) is the feature vector to
be identified, S,T are the average value of the corresponding response vector of the
module, As shown in Eqs. 3 and 4

S = 1

mn

m−1∑

i=0

n−1∑

j=0

S(i, j), (3)

T = 1

mn

m−1∑

i=0

n−1∑

j=0

T (i, j), (4)
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Fig. 7 Neural network
structure and symbol
conventions

R is the correlation value.When the R calculated by the traversal search algorithm
is the maximum, the recognition is completed.

Through the above two-step recognition method, the unrecognized characters are
verified by experiments to be Dongba characters with different structural features.
In view of this kind of similar problem, the application of feature region matching
method can achieve the purpose of recognition.

4.2 Neural Network Identification

Neural network recognition is to reduce the mean square error of the maximum
prediction output and the expected output, input the sample characters to the hidden
layer output through the forward step, and then reverse verify the error of the two,
modify the weight of the output layer by the error and replace it to the node of the
second layer, and so on to improve the weight of each layer. The structure of the
neural network is shown in Fig. 7.

(1) Theminimum random number is used to initialize the weights, and the training
time t = 0.

(2) A total of 1000 iterations are used to achieve stability. First, a training sample
is obtained in the training set x = [x1, x2, . . . , xn]T ∈ Rn . The expected output
is D = [D1, D2, . . . , Dm]T ∈ Rm .

(3) Output of neural network with X as input

yr = f

⎛

⎝
nL−2∑

s=1

ωl=L−1
sr . . . f

⎛

⎝
n1∑

j=1

ωl=2
jk f

(
n∑

i=1

ωl=1
i j xi

)⎞

⎠

⎞

⎠, r = 1, . . . ,m (5)

f(.) is a sigmoid function, ωl
ij This figure represents the weight of node I of

layer 1–1 connected to node j of layer 1,It is shown in formula 6

f (a) = 1

1 + e−α
(6)
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(4) Theweights are adjusted from the output layer (summation layer) and corrected
by formula 7

ωl
i j (t + 1) = ωl

i j (t) + �ωl
i j (t) , j = 1, . . . , nl , i = 1, . . . , nl−1 (7)

�ωl
i j (t) = ηδlj x

l−1
i (8)

�ωl
ij(t) is the weight correction term.

η is learning step size.
(5) After correcting the weights of all layers, calculate and output again, sort out

the error to be less than the set threshold, otherwise set t = t + 1, and return to
step (2).

5 Experimental Results

In this experiment, 1000 commonly usedDongba hieroglyphs are selected as samples
to train the neural network until the parameters of the neural network are stable
and all samples can be identified accurately. A total of 2056 Dongba characters in
Dongba classic books are randomly selected for the experiment. In the experiment,
template matching, neural network and the combination of template matching and
neural network are used to recognize the Dongba characters. The recognition effect
is shown in Fig. 8.

It can be clearly seen from Fig. 8 that the algorithm in this paper can clearly
recognize Dongba characters from Dongba Scripture images. At the same time, the
algorithm also accurately corresponds the corresponding Dongba characters with the
Unicode codes in the template library and marks them below Dongba characters.

Through the data collection and analysis of the experimental results.
From the experimental results of different recognition algorithms, the number of

experimental words, the number of recognition words, recognition rate, recognition
time for data collection, get Table 1, as shown in the figure below.

Fig. 8 Recognition effect of Dongba characters
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Table 1 Comparison experiment of recognition methods

Recognition
methods

Number of
experimental
words

Number of
recognized words

Recognition rate
(%)

10 Dongba time
(s)

Template
matching

2056 1689 82.15 0.3

Neural network 2056 1897 92.27 0.8

Combination of
template
matching and
neural network

2056 1893 92.07 Generally 0.3 ~
0.5
Maximum 0.8

6 Conclusion

In view of the problems of low accuracy and slow speed of Dongba character recog-
nition caused by the background noise and different forms of Dongba characters
in the images of Dongba ancient books, this paper can comprehensively collect the
features of Dongba character symbols and distinguish them from other characters
by extracting the topological features and grid features of Dongba characters. The
recognition of Dongba characters is realized by combining template matching with
neural network. Compared with the previous research method, it has the advan-
tages of short recognition time, high accuracy, higher stability, and through a large
number ofDongba character recognition training and experimental results, it is found
that the system has achieved the practical application purpose of Dongba character
recognition, which lays the foundation for the next Dongba culture research.
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Study on Feature Extraction of Gearbox
Vibration Signal for Wind Turbines

Jinang Guo, Guoxin Wu, Xiwei Zhao, Hao Huang, and Xiaoli Xu

Abstract Asa clean energy, the development ofwindpower has attractedwide atten-
tion. In view of the characteristics of non-linear and non-stationary mixed signals in
the vibration state ofwind turbines, the separation of noise is the key problemof infor-
mation feature extraction. In this study, sensors are utilized to collect blind source
signals and mixed matrix information in order to retrieve source signals and extract
features from information. This paper integratesEMD(EmpiricalModelDecomposi-
tion) with ICA (Independent Component Analysis) with the aim of extracting feature
signals from the wind turbine generator system (WTGS). By analyzing signals with
obvious fault characteristics, this approach considerably increases the accuracy in
extracting feature signals from the WTGS transmission system.

Keywords Wind turbine · Fault diagnosis · ICA · EMD

1 Introduction

In recent years, the rapid consumption of fossil fuels forces the world’s energy
needs to turn to the direction of low-carbon consumption, circular development,
green environmental protection and renewable new energy. In China, wind power
equipment is developing rapidly, and plays an important role in the global wind
power industry [1].

Wind turbines often need to be built in areas with sufficient wind energy, such as
mountains, grasslands, hills, coastal areas, where there are low temperature, sand-
storm, lightning strike, vibration and other adverse weather conditions. Under the
direct impact of the working environment, wind turbines are prone to failure, which
will lead to increased maintenance costs and operating costs, and seriously affect the
production efficiency of wind farms, and the maintenance is difficult, even causing
unnecessary safety accidents such as cabin oil fire, endangering personal safety [2].
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Fault diagnosis of wind turbine is an important means to ensure its safe service.
ICA signal processing has the function of recovering the source signal from themixed
signal [3], which can separate the interference and noise signal from the original
vibration detection information, and achieve the purpose of feature extraction.

2 Principle of ICA Analysis

ICA analysis is called independent component analysis (ICA) in signal processing,
which is a calculation method for separation of multiple components [4]. In the
practical application of wind turbine fault diagnosis feature extraction engineering,
ICA method, neural network, wavelet analysis and other methods are generally used
to separate the source signal from the acquired signal, so as to solve the problem of
mixing other interference and noise signals in the signal [5–7].

Firstly, the mathematical formula of obtaining blind source signal by using
independent component is as follows

x(t) = F(A◦s(t)) + n(t) (1)

One of them is the observation signal obtained by the channel sensor, that is, the
mixed signal, s(t) = [s1(t), s2(t), . . . sn(t)]

T It needs to decompose themixed signal
to obtain the vibration source signal. In order to simulate the actual situation more
realistically and satisfy the conditions, the mixed matrix represented by matrix and
the nonlinear function represented by function are both unknown quantities.

Basic assumptions required [8]:

(1) If the probability distribution function of the signal is; Then it satisfies the
following probability distribution:

p(s) =
n∏

i=1

pi (si ) (2)

(2) The number of mechanical equipment sources that generate signals m should
be less than or equal to the number of sensor channels, that is, the number of
observed signals n;

(3) If the mixed matrix has full column rank, there is an inverse matrix;
(4) Only one Gaussian signal can exist in the source signal; And the noise is statis-

tically independent from each source signal, and it is additive white Gaussian
noise.

x(t) = As(t) +
N∑

j=1

a j

c j
c j s j (3)
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According to the above formula, it is easy to find that the difference between
the amplitude of the separated signal and the source signal will not affect the time
domain characteristics.

3 Application of Fault Feature Extraction Method Based
on EMD and ICA

At present, the common fault feature extraction methods are ICA method, neural
network [5–7], empirical mode decomposition (EMD), wavelet analysis and many
other signal processing methods (Fig. 1).

3.1 The Principle of the Method Combined with ICA
and EMD

Tomake up for the defects of both, we propose a signal processingmethod combining
EMD-ICA [10]. The process is as follows:

(1) EMD method is used to analyze the signal from the sensor channel, and the
IMF component is obtained;

(2) The virtual noise channel signal is composed of IMF components with larger
correlation coefficients;

(3) Fast ICA process signal and noise channels, separate the source signal
components, and then analyze the diagnosis. The process is shown in Fig. 2

3.2 Simulation Analysis and Experimental Verification
of EMD and ICA

(1) Simulation application and analysis of joint method

Three simple sine base signals are set. The frequencies are respectively: 10, 20,
50 Hz, and 0 phase difference. Set the amplitudes of the three signals to be 1, 2,
and 0.5 mm respectively. The time domain and frequency domain waveforms
of the mixed signal generated by the source signal and the mixing matrix are
shown in Fig. 3.

EMD algorithm is used to decompose the mixed signal to get IMF component, as
shown in Fig. 4.

Therefore, we use ICA method to recover the feature information lost after EMD
decomposition and restore the inherent characteristics of the signal.
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Fig. 3 Time domain diagram and frequency domain diagram

Fig. 4 IFM component mixed signal

Through the correlation coefficient processing, the correlation value between each
IMF component and each mixed signal is obtained. As shown in Table 1.

Because the threshold is fixed and the removal coefficient is small, the components
with large coefficients are added together with their respective mixed signals as the
input matrix of ICA, and the fast ICA method is used to obtain the time domain and
frequency domain diagrams, as shown in Fig. 5.
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Table 1 Correlation coefficient of simulation data

Z1(1) Z1(2) Z1(3) Z1(4)

X(1,:) 0.9748 0.3314 0.0044 0.0072

X(2,:) 0.8365 0.0018 0.0713 −0.0520

X(3,:) 0.9930 0.0092 0.0315 −0.0716

Fig. 5 Time–frequency diagram of Fast ICA decomposition frequency of 10, 20, 50 Hz

The results show that: after EMD-ICAseparation, the time-domain and frequency-
domain diagrams are basically consistent with the base signal, and the lost feature
information and the inherent characteristics of each signal after EMD decomposition
are restored.

(2) Experimental verification

Through the vibration test-bed of wind turbine drive system, the actual bearing
fault is simulated, and the normal operation and fault signal of the equipment are
analyzed. The bearing model is nsk6025zz. The running speed of the faulty rotor
is 1750r / min, the sampling frequency is 12 kHz, and 2048 sampling points are
selected. The feature frequency of each component is different. By calculating the
fault frequency of each part, the fault frequencies of outer ring, inner ring and rolling
element are 104.57, 157.94 and 137.48 Hz respectively. Real data are detected in the
experiment, and their time domain data and IMF components separated from EMD
are shown in Fig. 6.

The correlation coefficient is obtained by operation, as shown in Table 2. At the
same time, the time domain and frequency domain are transformed by fast ICA, as
shown in Fig. 7.

After calculation, the characteristic frequency of rolling bearing fault is fs =
157.2Hz,which corresponds to the results obtained byEMD-ICA combinedmethod.
Through the data simulation and the actual verification of the experimental platform,
it is found that this method can extract the characteristics of each IMF component,
solve the aliasing and loss of EMD components, and overcome the condition that the
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Fig. 6 Time-domain plot
and decomposition IMF
component plot

Table 2 Correlation coefficients of experimental data

Z1(1) Z1(2) Z1(3) Z1(4) Z1(5) Z1(6)

0.7348 0.6082 0.3013 0.0919 0.0344 0.0000

Fig. 7 Time and frequency domain diagram of fast ICA transform

detected signal of ICA is larger than the source signal, and can complete the analysis
and extraction of fault characteristics of wind turbine bearing vibration signal.
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4 Conclusions

By studying the basic principle, advantages and disadvantages of EMD method,
combinedwith the processing ofmixed simulation signal, the ability of EMDmethod
to decompose nonlinear and non-stationary signal is verified. Taking advantage of
the advantages and disadvantages of ICA and EMD signal processing methods, a
method combining EMD-ICA is adopted to extract fault features of vibration signal
of wind turbine gearbox. Data analysis shows that the joint processing method can
achieve the same signal characteristics.
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Condition Monitoring of a Reciprocating
Air Compressor Using Vibro-Acoustic
Measurements

Debanjan Mondal, Fengshou Gu, and Andrew D. Ball

Abstract Fault diagnosis in reciprocating compressor (RC) requires time-
consuming feature-extraction processes due to the complexity of the compressor
operation and fluid–solid interaction. This causes the useful information to be
corrupted and difficulty in accurately diagnosing the faults with traditional methods.
The aerodynamic phenomenon has a large impact on acoustics signal compared to
the vibration. Thus, this paper presents analytical modelling of compressor sound
highlighting the important sound sources and their generation. The additional contri-
bution of this paper is the application of a state-of-the-art signal processing technique:
Modulation Signal Bispectrum (MSB) which overcomes the challenges by showing
good noise suppression capability and characterising the modulating components
present in the signal, thereby resulting in stable modulation components for accurate
diagnostics. The result reveals that the fault diagnosis based on airborne acoustics
using MSB method outperformed the vibration-based method.

Keywords Vibro-acoustic analysis · Sound source analysis · MSB analysis ·
Reciprocating compressor · Fault diagnosis

1 Introduction

The condition monitoring (CM) of the reciprocating compressor is not an easy task
because of its complicated dynamic coupling of its operational physics. Different
strategies have been developed to detect and diagnose the compressor components
based on different sensing methods that include visual inspection, vibration analysis
[1–7], motor current signature analysis [8–11], acoustic emission measurement [12–
14], airborne acoustic analysis (noise analysis) [15–19], temperature and thermal
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image [20] etc. These strategies are important to implement so that the maintenance
actions can be taken in a more accurate and reliable way before a fatal damage
occurred to its components. An extensive literature review has shown that majority of
the study is focused on the vibration-based diagnosis method with a vast application
of various signal processing techniques often combined with artificial intelligence
techniques such as artificial neural network [5, 6, 21, 22], support vector machine
[23], decision tree [24], etc.

Acoustic signals can be advantageous in the context due to its non-intrusive
[25] measurements. Moreover, its capability of gathering information from multiple
sources with fewer sensors make the CMmethod easier and less expensive to imple-
ment [25]. Furthermore, technological advancement in the form of MEMS micro-
phones [26] makes it possible to install those in on-board system. The typical advan-
tage of using acoustic method is that it can cover a wide range of frequencies using a
singlemicrophone. A drawback of using acoustic signal is that it can be contaminated
with huge background noise [27] from unwanted noise sources and thus making
the post processing methods very much important. Due to that reason, a limited
number of studies based on acoustics have been performed on RC. The main diffi-
culty of implementation of this strategy comes in two points: (1) choosing a proper
signal processing method based on the types of the signals and types of the machine
components, (2) developing a feature extraction method that will allow to detect the
abnormalities present and their possible causes.

The novel contribution of this paper lies on two aspects: (1) Analytical modelling
of RC vibro-acoustic sources and (2) Effectiveness of using MSB for airborne
acoustic signal in diagnosis of compressor faults for characterising the typical modu-
lating components and suppressing the noise. Section 2 discusses about the vibroa-
coustic of RC highlighting the possible sound sources and their relationship with
the vibration for normal operating condition and with the presence of faults. It also
addresses the challenges of using traditional signal processing methods and specify
the need for using MSB. Section 3 highlights the capability of MSB in extracting the
features from airborne sound signal of the compressor with the presence of faults.
The concluding remark can be found in Sect. 4 which also paves the path for future
study.

2 Key Properties of Vibroacoustic in RC

According to the working process and structure of a typical RC, illustrated in Fig. 1,
its vibroacoustic stems from of many different sources, but they can be largely cate-
gorised into mechanical, aerodynamic, and electromechanical sources. In this way,
various sources and their interactions can be examined with sufficient details so
that their amplitude, phase, and frequency behaviours can be understood with great
details, providing fundamentals for processing measured signals, and developing
accurate and reliable diagnostic tools.
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Fig. 1 Basic vibroacoustic
sources of a reciprocating
compressor operation

2.1 Vibration Characteristics of Healthy RC

According to research works [28] vibration signal from a RC cylinder head is
composed of flow-induced and impact induced excitations. The flow-induced excita-
tions are caused by air interactions with valves resulting in periodic flow oscillations,
while impact induced excitations are caused by the effects of the valve plate hitting
the seat when opening and closing. The working process of RC is illustrated in Fig. 1.

The reciprocatingmotions of piston, torsional oscillation of cranks, belt radial and
longitudinal oscillations and various impacts between cylinders and pistons, valve
plate landing, bearing clearances contributes to the high-level vibration. Moreover,
high pressure oscillation inside pipe and cylinders also excites the structure vibra-
tions. In electric motor, the electromagnetic forces create air gap between stator
and rotor which leads to the generation of radial forces. These radial forces cause
unbalance which contributes to the vibration of rotor–stator module. The flow of
gas through the discharge chamber and piping system of the RC are unsteady and
contains time varying pulses superimposed on the steady (average) flow. This causes
the pressure pulsation through the valves of theRC cylinder head during the compres-
sion process within its cycles. These pulses are made-up of the geometrical, physical
and mechanical characteristics of the compressor [29].

This pressure pulsation is generally too weak to cause any problem. However, it
may be amplified due to coincidencewith an acoustic natural frequency of the piping.
The resulting resonance can induce severe piping vibration and/or malfunction of
instruments, compromising plant operation. Pressure pulsations in piping induce
excitation forces. Large vibration occurs when the pressure pulsation frequency
matches the mechanical frequency of the piping. Figure 2 shows the typical one
compression cycle of time domain waveform for vibration and two cycles for
acoustics at the discharge pressure of 120 psi under healthy condition.
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Fig. 2 Vibration signal of healthy RC at 120 psi

Figure 2 shows theSignificant impacts are observed and theyoccur at the discharge
valve closing (DVC) time for the second-stage cylinder. The black colour curve
represents the vibration signal and the curve in purple colour represents the in-
cylinder pressure. The high amplitude impacts result from high pressure air acting
as a resistant force in the discharge plenum of the cylinder causing the valve to
close harshly. Furthermore, the overall vibration amplitudes from the second-stage
cylinder head are greater than those from the first-stage RC cylinder head, because
the second-stage cylinder compresses gas at a higher pressure. From the figure, the
transient response in the vibration signal signifies the opening and closing of the
valves with impacts, more details can be found in the previous study [16].

If Z denotes the input impedance of piston of mass Mp with velocity V0 then after
impact, the piston moves with a velocity v1 formulated as [32]:

v1 = V0e
−t/τ (1)

where τ = Mp/Z
Therefore, after applying Fourier transform to Eq. 1, the vibration velocity

spectrum can be written as,

|V (ωv)| = (V0τ/π)
[
1 + (ωv τ )∧2

]−1/2
(2)

where symbol ωv denotes the circular vibration frequency.

2.2 Acoustics Characteristics of Healthy RC

The sound can come from (1) vibrating surface radiation, (2) the aero-acoustic
response of the system to air motions and (3) electromechanical force from the AC
motor. An aerodynamic source could be defined as a source of sound caused by air
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perturbation: phenomena within the discharge and intake valves, pipe can be consid-
ered as aerodynamic sources. A mechanical source generates sound by vibrating
structures mentioned earlier. The interactions between these physical sources are
complicated but can be largely examined according to the flow diagram in Fig. 3.

This vibration due to electromechanical force from three phase induction motor
contributes to the pressure variations in air and perceived as sound of periodical char-
acteristics. The motor sound can also be classified in three categories: (a) electro-
magnetic sound: magnetic force and variation of flux density, (b) mechanical sound:
bearings, unbalance, and mechanical resonances, (c) aerodynamic sound: rotor slots.
The sound generated from electrical motor is mainly of non-stationary, broadband
noise.

The mechanical sound of the compressor has three significant sources: (1) sound
from belt drive, (2) valve impact sound and (3) sound due to impacts on piston
kinematic chain. If the belt is worn, it may cause slippage while accelerating, which
in terms contributes to the squealing sound. Moreover, the valve impacts on their
seats make a periodic impulse noise during their usual opening and closing. It is
possible that the amplitude of this sound gets further amplified with the mechanical
resonance. Apart from that, the non-linearity effect of the valve fluttering can also be
seen in the sound signal as a form of harmonics. In broad sense, the characteristics
of sound sources is harmonic due to the periodic nature of the compression process.
The impacts on the piston kinematic chain are also a source of compressor body
vibration which eventually leads to the generation of mechanical sound.

The radiated sound power W [31] is equal to:

W = Sp2

ρc
cos θ = ρcSσ 〈v〉2 (3)

where
ρ = density of the air, σ = radiation ratio (0 ~ 1), c = speed of sound.
S = surface area, p = sound pressure, 〈v〉 = surface-averaged vibration velocity,

Fig. 3 Generation of vibration and noise
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Fig. 4 Acoustic signal of healthy RC at 120 psi

θ = angle between the direction of propagation of the sound and the normal to
the surface.

ρ, c are constant and the value of σ is very small, hence the sound pressure P is
equivalent to surface-averaged vibration velocity v.

The vibration velocity can be estimated from the vibration acceleration as follows:

|v| = |a|
iω

(4)

|a| is the vibration acceleration, i = √−1, and ω is the circular frequency.
The air flow inside the cylinder also generates sound in terms of pressure wave.

The aerodynamic sound has a large impact on acoustic signals obtained from RC
shown in Fig. 4.

The sound pressure p for an air discharge as a sound source can be written as
[30]:

p = ρc

A
q(t) (5)

where ρ is the density of air, c is the speed of sound, A is the cross-sectional
area and q(t) is the difference between the total flow volume velocity and the flow
DC-component.

From Fig. 4 it can be observed that the acoustic signal not only shows the valve
impacts or mechanical sound source, but it also reflects the air flow sound, aero-
dynamic sound sources which can be useful for determining the compressor prop-
erties under different RC conditions considering the physical phenomenon of the
compression process.

2.3 Vibro-Acoustics of RC for Faulty Conditions

Three common faults: intercooler leakage (ICL), discharge valve leakage (DVL) and
filter blockage (FB) [16] have been simulated which largely affect the vibro-acoustic
signature of RC. The intercooler pipe is a section where pressure pulsation signal
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is very much dominated. The leakage in the pipe not only reduces the compressor
efficiency but also effect the vibroacoustic phenomenon contributing to the airborne
sound. The leakage in discharge valve is very common in industries. With the pres-
ence of this fault irregular intake-exhaust takes place that also affects the opening
and closing of the cylinder valves. Hence the valve-sitting impact and aerodynamic
property are very much affected. Similarly, a clogged filter reduces the quantity of
airflow to the RC, creating a vacuum condition inside which also greatly affects
the vibro-acoustic phenomenon of RC. Figure 5 shows the vibroacoustic signals
recorded for different compressor conditions under a particular discharge pressure.

When the intercooler leakage occurs the pressure inside the first stage cylinder is
lower than the baseline one. This causes a reduction of force to keep the first stage
discharge valve closed. Thus, the discharge valve opens earlier in first stage cylinder
with intercooler leakage fault, whereas in second stage, the intercooler leakage causes
a small change in the cylinder pressure; the pressure inside the cylinder is lower than
in healthy operation.

This will result in reduction in discharge efficiency. The drop in the cylinder
pressure causes a delay in the opening of both suction and discharge valves. The
discharge valve leakage leads to a slight but significant increase in the pressure of
the first stage cylinder. This increase in the cylinder pressure causes the first stage
suction and discharge valves to open early due to the higher pressure in the cylinder.

Fig. 5 Vibration and acoustic signals of RC for different conditions at 120 psi
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The second stage discharge valve leakage causes both valves open and close earlier
than for the healthy operation. The discharge valve leakage fault causes the second
stage cylinder pressure to build-up earlier than the healthy operation; thus, the process
of discharge occurs earlier.

Moreover, due to the presence of faults, the aerodynamic phenomenon has a large
impact on the acoustic signals adding some more components to the signal due to
the turbulence thus making it more difficult to extract the submerged information.

Malfunctional of reciprocatingmachine components results in excessive vibration
and noise subsequently. The multiphysics application consists of heat transfer, fluid
flow, mechanical motions, electrical to mechanical input, fluid-flow interaction make
the reciprocating compressor a complex machine and thus condition monitoring of
such machines are highly challenging. The non-stationary behaviour, non-linearity
of the compressor valve motions, structural/acoustic resonance, pulsation make it
even more difficult for applying a proper signal processing technique of interest. In
a nutshell, the vibro-acoustic signal of RC is periodic, impulsive, non-linear, non-
stationary, noisy and has a modulating characteristic due to the presence of structural
resonance. Because of the abovementioned reason, state of the art signal processing
technique like MSB [10] is required for the analysis of these type of signals as it uses
quadratic phase coupling (QPC) to handle the non-linearity, highlights the effective
modulating components considering the both sidebands around center frequency and
has ability to suppress the noise shown in previous study [33].

3 Result and Discussion

Placement of the sensors in right place is very important to get the useful signals that
reflect the fault characteristics of the respected machine. The accelerometers should
be put on a surface where it can generate signal output that is characteristic of major
events that are responsible for compressor vibration such as, opening and closing
of valve, fluid–solid interaction, flow through valve etc. As present of any faults in
reciprocating compressor affect the compression process and the valve movements,
the vibration signals will have different signatures. For this reason, accelerometers
were put on the two cylinders heads of high-pressure cylinder and low-pressure
cylinder to acquire vibration signals that can monitor the performances of the valves,
piston-cylinder arrangement.Amicrophonewas placed at 60 cm from the compressor
body at the side opposite to the flywheel minimising the effect of reverberation
property of the sound [34]. The vibration signal was acquired simultaneously with
the acoustic signal under a broad range of discharge pressure between 40 and 120
psi.
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3.1 Vibration Based Diagnosis

Figure 6 shows the MSB amplitude of the vibration signal for different compressor
conditions at two different discharge pressures of 60 and 110 psi within which the
compressor normally operates.

The reason for choosing higher frequency range for theMSB calculation of vibra-
tion signal can be explained as valve excitation can be seen clearly in the time domain
waveform, these impulses are of high frequency. The impulsive nature of the vibra-
tion signal has the characteristic frequencies in high frequency zone. Apart from that
higherMSB coherence values help to identify the signal components very effectively
from the signal in particular frequency range that implies the frequency zone is very
much influenced by the modulating components and side bands. Hence the particular
band 3200–5600 Hz is selected for the MSB magnitude calculation [16].

From Fig. 6, we can see there are three frequency regions where MSB amplitudes
are dominant typically in the range of 3200–4000, 4000–4800 and 4800–5600 Hz.
It is also noticeable that the MSB peaks are higher for faulty conditions and depends
on the discharge pressure as the vibration energy is also high for higher discharge
pressure.

Subsequently, a new three-dimensional feature parameter can be presented depen-
dent on the averaged peak amplitudes of the MSB for certain frequency bands under
various pressure conditions to differentiate diversemachine conditions. To get a char-
acteristic feature vector, three frequency bands are selected: F1 = 3200–4000 Hz,

Fig. 6 MSB amplitudes of the vibration signals for different conditions.at 60 and 80 psi
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F2 = 4000–4800, F3 = 4800–5600 Hz. Figure shows the averaged MSB amplitudes
for different frequency bands under a broad range of discharge pressures. Finally, a
three-dimensional feature vector is obtained combining F1, F2 and F3 and has been
shown in Fig. 7.

Each figure was obtained by sufficient amount of averaging (187 times) to guar-
antee the steady results. First the frequencies along with f 1 are averaged. Then they
are further averaged along f 2 for a particular frequency band.

In high frequency zone the MSB analysis can face some challenges as the higher
order harmonics and their sidebands can be far away from each other making it diffi-
cult for identification and easily can be mixed with the other harmonic components.
Therefore, choosing a low frequency range is always better while analysing MSB.
In the case of compressor vibration signals the characteristic properties are visible
in higher frequency range and hence high frequency range was selected for the MSB
analysis. The analysis results show that process based on MSB cannot differentiate
the compressor conditions accurately since carrier frequencies of the higher order
harmonics are mixed with the other frequency components and hence difficult to
represent them.

Fig. 7 Average MSB (vibration signals) for different compressor conditions under a broad range
of pressures
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3.2 Acoustics Based Diagnosis

Figure 8 shows the MSB magnitudes of the acoustic signals for different conditions
at the discharge pressure of 60 psi and 110 psi for frequency range of 100–530 Hz
as the structure borne sound has low frequency components.

From the analysis result shown in Fig. 8, the higher MSB amplitudes are
distributed over a broad range of frequency. From the analysis results, it can be
found that the MSB presents the distinctive peak patterns in presence of faults across
the carrier frequency, and this is often due to the abrupt change of the air flow,
fluttering of valves during the time of suction and discharge processes.

To get a characteristic feature vector, three frequency bands are selected: F1 =
100–200 Hz, F2 = 240–300, F3 = 400–530 Hz. Figure shows the averaged MSB
amplitudes for different frequency bands under a broad range of discharge pressures.
Finally, a three-dimensional feature vector is obtained combining F1, F2 and F3 and
has been shown in Fig. 9.

In the case of compressor acoustic signal, the characteristic properties are visible
in lower frequency range and hence low frequency range was selected for the MSB

Fig. 8 MSB amplitudes of the acoustic signals for different conditions.at 60 and 80 psi
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Fig. 9 Average MSB (acoustic signals) for different compressor conditions under a broad range of
pressures

analysis which gives excellent result in terms of separating different compressor
conditions from each other as a form of clusters.

The effective determination of the compressor condition based on the acoustic
analysis was accomplished by utilizing the MSB method. The proposed method can
separate the compressor conditions under a broad range of discharge pressure.

4 Conclusion

The vibro-acoustic measurement of the compressor shows the comparative study
of the compressor sound signal with the vibration. The aerodynamic phenomenon
and fluid–solid interaction have major effect on the acoustic signals compared to the
vibration. The traditional signal processing methods are not enough to identify faults
as the nature of the compressor signal is very complex. MSB has been proved to be
an effective tool to differentiate the compressor conditions. The key contributions of
the study include the successful identification of vibro-acoustic sources by analytical
modelling and their generation which will pave the path for dynamic modelling of
RC in the next study and most importantly MSB shows the promising result in terms
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of noise suppression by multiple averaging, highlighting the relevant modulating
components and differentiating the various RC conditions.
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Application of Combined Normalized
Least Mean Square and Ensemble
Empirical Mode Decomposition
Denoising Method in Fault Diagnosis
of Rolling Bearings
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and Fengshou Gu

Abstract Rolling bearings are widely used in modern machinery and equipment,
and the toughworking environment is easy to cause their failure. To solve the problem
of extracting fault signals of rolling bearings in a strong noise environment, a method
based on Normalized Least Mean Square(NLMS) adaptive filtering and Ensemble
EmpiricalModeDecomposition(EEMD)noise reductionmethod is proposed. Firstly,
NLMS is used to filter the signal, which is used for primary noise reduction. Then
the signal is decomposed into a series of Intrinsic Mode Functions(IMFs) by EEMD,
and the kurtosis value, root mean square value and sample entropy value of each
IMF are calculated respectively. The appropriate one is selected according to the
comprehensive index. Finally, the signal is reconstructed and the Hilbert transform
is performed on the reconstructed signal to obtain the envelope spectrum, and the
fault characteristic frequency is extracted. Simulation and experimental results show
that the method can effectively reduce noise and successfully extract fault features.
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1 Introduction

Rolling bearings are an important part of rotating machinery and equipment, which
has the functions of bearing load, damping, reducing friction and so on. In complex
operating conditions and tough working environments, rolling bearings are partic-
ularly vulnerable to damage, which affects the normal operation of the equipment
and causes economic losses [1]. Therefore, timely and accurate detection of rolling
bearing faults is of great significance to the normal operation of the equipment and
safe production.

Periodic impact signals will be generated after rolling bearing failure, but these
signals are easily submerged in strong background noise and difficult to extract [2,
4]. Nowadays, mechanical equipment fault diagnosis has been widely concerned by
researchers, and many advanced signal processing methods have been developed,
such as wavelet transform (WT), empirical mode decomposition (EMD), local mean
decomposition (LMD), intrinsic time-scale decomposition (ITD) and variational
modal decomposition (VMD). Thesemethods have achieved good diagnostic results,
but they also have many limitations. For example, WT can process non-stationary
signals, but it lacks the adaptability of local features [3]; EMDcan decompose signals
adaptively, but its decomposition results have some defects such as boundary effects
and modes mixing [1]; LMD is a new adaptive time–frequency analysis method, but
its calculation process is complicated and the calculation efficiency is low [5]; The
ITD improves the computational efficiency, but its decomposition results are distorted
[6]; VMD has a high decomposition accuracy, but it is difficult to determine its
parameters [7]. When in a strong noise environment, the above methods can achieve
a certain noise reduction effect, but the stability is poor, and the fault signal cannot
be effectively extracted. Therefore, a method for extracting the fault characteristics
of rolling bearings in a strong noise environment needs to be developed.

Normalized least mean square (NLMS) is an adaptive filtering method. It is the
result of step size normalization based on the Least mean square algorithm. It has the
advantages of simple calculation and strong stability [8, 9]. NLMS can automatically
adjust the filter parameters to filter out noise from the actual signal to achieve optimal
filtering. Ensemble empirical mode decomposition (EEMD) is an improvement of
EMD, which can effectively solve the defect of EMD modal mixing [11]. EEMD
can decompose signals into a series of intrinsic mode functions (IMFs), and each
IMF may contain fault signals. Therefore, the selection of IMFs is the key to fault
diagnosis. At present, there are manymethods for selecting IMFs, such as correlation
coefficient [13], permutation entropy [14] and kurtosis. These methods are selected
based on a single index and are easily affected by various factors. To improve the
reliability of the selected IMFs, this paper uses a comprehensive index composed of
kurtosis, root mean square and sample entropy to select IMFs.

Therefore, this paper proposes a new method which is used to extract the char-
acteristic frequency of the fault signal in a strong noise environment. Firstly, NLMS
is used to filter the signal. Then, EEMD is used to decompose the filtered signal.
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The appropriate IMFs are selected to reconstruct the signal through the compre-
hensive index. Finally, the Hilbert transform is used to analyze the envelope of the
reconstructed signal and extract fault features. The rest of the article is organized as
follows: Sect. 2 introduces the related theories; Sect. 3 introduces the process of the
proposed method; Sects. 4 and 5 carry out simulation and experimental verification
respectively, and Sect. 6 gives some conclusions.

2 Basic Theories

2.1 Normalized Least Mean Square

Normalized least mean square adaptive filtering is an improvement of the Least
lean square adaptive filtering. The basic principle of NLMS is to normalize the step
size factor of the LMS algorithm, and it se a variable step-size method to shorten
the adaptive convergence process, thereby solving the problem of the gradient noise
amplification causedby theLMSalgorithmwhen the input signal is large and improve
the convergence speed of the algorithm. The specific steps of the NLMS algorithm
are as follows [10]:

(1) Initialization parameters. Determine the step size factor μ and the order M of
the adaptive filter.

(2) Determine the initial condition of weight w(0) based on prior knowledge.
(3) Calculate the output value. The input signal of the filter at time n is x(n), and

the output signal is calculated:

y(n) = wT (n)x(n) (1)

(4) Calculate the error. The ideal signal is d(n), then the output error e(n) of the
filter is:

e(n) = d(n) − y(n) (2)

(5) Normalize the step size factor.

μ(n) = μ

‖X (n)‖2 (3)

(6) Weight coefficient update:

w(n + 1) = w(n) + 2
μ

‖X (n)‖2 + γ
e(n)x(n) (4)

where γ is a constant(0 < γ < 1).
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(7) Add 1 to time n, return to step (2), repeat the above steps, and get the final
filtered signal.

2.2 Ensemble Empirical Mode Decomposition

Ensemble empirical mode decomposition is an improvement of EMD, Its essence is
to add the Gaussian white noise to the original signal, and use the characteristic of
zero white noise to eliminate the modal aliasing phenomenon that appears in EMD.
The decomposition results of the original signal are averaged many times to cancel
the noise, so as to eliminate the influence of noise on the original signal. The specific
decomposition steps of EEMD are as follows[12]:

(1) Set the average processing times m. Initial I = 1,2,…m.
(2) Add Gaussian white noise ni(t) to the original signal x(t) to obtain a set of new

signals yi(t).

yi (t) = x(t) + ni (t) (5)

(3) Perform EMD on the new signal yi(t) to obtain a series of IMFs.

yi (t) =
n∑

j=1

ci, j (t) + ri,n(t) (6)

where n is the number of IMFs, ci,j(t) are the IMFs, and ri,n(t) are the residual
components.

(4) Repeat steps (2) and (3) m times, adding Gaussian white noise of different
amplitude each time, and get a series of IMFs through EMD decomposition.

c1, j (t), c2, j (t), · · · , cm, j (t) (7)

(5) All the obtained IMFs are averaged to obtain the IMF component cn(t)
decomposed by EEMD.

cn(t) = 1

m

m∑

i=1

ci,n(t) (8)
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Fig. 1 The algorithm flow
chart of NLMS-EEMD
method

Onginal vibration 
signals

Filter the signal by NLMS
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3 Application of Combined NLMS and EEMD Denoising
Method

To solve the problem of extracting fault signals of rolling bearings in a strong noise
environment, amethod based onNLMS adaptive filtering and EEMDnoise reduction
method is proposed. The process of this method is shown in Fig. 1, and the specific
steps are as follows:

(1) NLMS adaptive filtering is used to denoise the original signal for the first time,
and the filtered signal with a high signal-to-noise ratio is obtained.

(2) The signal is decomposed into a series of IMFs by EEMD.
(3) Calculate the kurtosis, mean square error and sample entropy of each IMF,

normalize these indicators and sum them to obtain comprehensive indica-
tors, and select appropriate IMFs through the comprehensive indicators to
reconstruct the signal to obtain the reconstructed signal.

(4) The reconstructed signal is transformed into Hilbert transform and its envelope
is solved, the characteristic frequency of the fault is extracted, and the fault
diagnosis is performed.

4 The Simulation Analysis

In order to verify the effectiveness of the proposed method in the fault diagnosis of
rolling bearings, the simulation signal is defined as[4]:

{
x(t) = e−αt1 sin

(
2π fgt1

) × (sin(2π fr t) + 3) + n(t)
t1 = mod(t, 0.98/ fm)

(9)
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where α = 1000 represents the decay factor, f r=30 Hz is the rotating frequency,
f g=2000 Hz is the resonant frequency, and f m=76 Hz indicates the fault frequency.
n(t) is Gaussian white noise with a SNR of −15.44 dB. The sampling point is 6000
and the sampling frequency is 12,000 Hz.

Figure 2a shows the original waveform of the impact signal, and Fig. 2b shows
the time waveform of mixed-signal x(t). Figure 2c shows the spectrum of signal x(t),
and Fig. 2d is the Hilbert envelope spectrum of signal x(t). The red arrow in the
figure indicates the characteristic frequency of the fault. It can be clearly seen from
the figure that the periodic impact signal generated by the rolling bearing fault is
completely submerged in the noise, and the fault characteristic frequency cannot be
extracted from its spectrum and the Hilbert envelope spectrum.

To extract the fault characteristics of rolling bearings in a strong noise envi-
ronment, the NLMS-EEMD method proposed in this paper is used to process the
simulation signal. For the NLMS adaptive filtering algorithm, the step factor μ is set
to 0.05, the orderM of the filter is set to 2, and the constant γ is set to 10–4. Figure 3
shows the signal with noise filtered by NLMS. It can be seen that noise and other
interference components have been significantly reduced, but there is still a lot of

Fig. 2 The simulation signal: a the original waveform of impact signal; b the time waveform of
mixed signal x(t); c the spectrum of signal x(t); d Hilbert envelop spectrum of signal x(t)

Fig. 3 The signal with noise
filtered by NLMS
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Fig. 4 The IMFs decomposed by EEMD: a IMF1–IMF6; b IMF7–IMF11 and the residual
components

noise. Then the filtered signal is decomposed by EEMD to obtain 11 IMFs and a
residual component. The result of EEMD decomposition is shown in Fig. 4.

Wang et al. [15] proposed a comprehensive evaluation method for IMFs using
multiple indexes, and good results were obtained through verification. Inspired by it,
this paper uses a comprehensive indexmethod to select appropriate IMFs. Kurtosis is
very sensitive to impact signals, and it is suitable for detecting fault signals. The root
mean square can reflect the degree of dispersion of the signal. The sample entropy
represents the complexity of the signal, the larger the sample entropy, the more
information it contains. Therefore, this paper chooses kurtosis, root mean square and
sample entropy as comprehensive index to improve the accuracy of selecting IMFs.
To avoid the differences caused by the different dimensions of every index, each
index is normalized and summed to get the comprehensive index f . The calculation
formula is as follows:

f =
k∑

t=1

fte
max( ft )

(10)

where, f te is the index value of the e-th IMFunder the t-th index, t = 1,2,3 respectively
represents the kurtosis value, root mean square value and sample entropy value (The
calculation formula of the three indexes can refer to [14] and [15]). Calculate the
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kurtosis, mean square error, and sample entropy of each IMF, and normalize and sum
these single indicators to obtain a comprehensive index. The calculation result of the
comprehensive index is shown in Fig. 5.

It can be concluded from Fig. 5 that the comprehensive index of IMF1 and IMF2
is relatively large, which can well reflect the state and information of the signal.
Therefore, IMF1 and IMF2 are selected to reconstruct the signal to obtain a recon-
structed signal. Finally, the reconstructed signal is transformed by Hilbert transform
and analyzed by envelope analysis. Figure 6a shows the Hilbert envelope spectrum
of the reconstructed signal. From Fig. 6a, the fault characteristic frequency f m and its

Fig. 5 The comprehensive
index of each IMF

Fig. 6 Envelope analysis results of three methods
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Table 1 The SNR of
NLMS-EEMD, NLMS and
EEMD after noise reduction

Signal SNR/dB

NLMS noise reduction signal 2.1569

EEMD noise reduction signal 0.4187

NLMS-EEMD noise reduction signal 11.9401

Table 2 The main parameters of the test bearings and fault frequency

Bearing type Ball diameter d
(mm)

Pitch diameter
Dm (mm)

Ball number
z

Contact angle α Fault frequency
f o(Hz)

6206ZZ 9.53 46.4 9 0° 89.33

harmonics can be clearly seen. In order to illustrate the noise reduction advantages of
NLMS-EEMD, NLMS noise reduction and EEMD noise reduction are performed on
the noisy signal respectively. Figure 6b shows the envelope spectrum of the NLMS
filtered signal, in which the fault frequency is not obvious and there is a strong back-
ground noise and interference frequencies. Figure 6c shows the envelope spectrum of
the EEMD filtered signal. The frequency in the figure is very chaotic, indicating that
EEMD cannot effectively reduce background noise in a strong noise environment.

To evaluate the effect of noise reduction, the signal-to-noise ratios of NLMS-
EEMD, NLMS and EEMD after noise reduction were calculated, and the results
are shown in Table 1. It can be seen from Table 2 that the signal-to-noise ratio of
NLMS-EEMD is the largest, indicating the superiority of the method proposed in
this paper.

5 Experiment Verification

For verify the effectiveness of the NLMS-EEMD noise reduction method proposed
in this paper, the outer ring fault of the induction motor bearing was analyzed.
The rolling bearing test bench is shown in Fig. 7. The test platform consists of
an AC motor, a flexible coupling, a dynamic brake, a shaft generator, a piezoelectric
accelerometer sensor and two supporting bearings. The accelerometer is installed in
the vertical direction of the bearing seat of the drive end of the motor to collect the
vibration signal of the supporting bearing. The fault type of the supporting bearing
is set as outer ring fault. The main parameters and fault characteristic frequency of
the faulty bearing are shown in Table 2.

Figure 8 shows the time waveform, frequency spectrum and Hilbert envelope
spectrum of the fault signal of the supporting bearing outer ring. It can be seen
from the figure that the waveform of the fault signal is very chaotic and has been
completely overwhelmed by background noise and interference components. From
the envelope spectrum of Fig. 8c, the fault characteristic frequency and its multiplier
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Fig. 7 Rolling element bearing test platform

Fig. 8 The supporting bearing outer ring signal: a the time waveform of the signal; b the spectrum
of the signal; c Hilbert envelop spectrum of the signal

of the bearing outer ring can be roughly found, but it contains a lot of noise and inter-
ference frequency, which can easily be masked and the fault characteristic frequency
cannot be extracted.

To extract the fault characteristic frequency from the noise accurately, the
proposed NLMS-EEMD denoising method is used to process the vibration signal
of the supporting bearing outer ring fault. Firstly, NLMS adaptive filtering is used
to filter the fault signal for the first time. Set the initial parameters according to the
actual working environment, the step factor μ is set to 0.05, the orderM of the filter
is set to 2, and the constant γ is set to 10–4. Then, the filtered signal is decomposed
into 12 IMFs and one residual component by EEMD. Calculate the kurtosis, root
mean square and sample entropy of each IMF and calculate the comprehensive index
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Fig. 9 The comprehensive
index of each IMF

according to Eq. (10). The comprehensive index calculation results of each IMFs are
shown in Fig. 9.

It can be seen from Fig. 9 that the comprehensive index of IMF1 and IMF2
are larger than other components, indicating that these two components contain the
complete information of the original signal, so IMF1 and IMF2 are selected for signal
reconstruction. Finally, perform theHilbert transform on the reconstructed signal and
find its envelope. The analysis result is shown in Fig. 10a. From the figure, it can
clearly see the characteristic frequency f o of the supporting bearing outer ring fault
and itsmultiplier. Themethod proposed in this paper can accurately diagnose bearing
faults. To illustrate the effectiveness and advantages of the method, the analysis of
NLMS noise reduction and EEMD noise reduction was carried out on the supporting
bearing fault signal, and the envelope analysis of the results of the two methods was
carried out. The results are shown in Fig. 10b and c, it is obvious that the envelope
spectrum of these two noise reduction methods contains a lot of noise and harmonic
interference, and the amplitude of the fault frequency is not prominent, and the fault
characteristic frequency cannot be accurately identified.

To evaluate the noise reduction effect of the method proposed in this paper, the
signal-to-noise ratio of the signal after noise reduction by threemethods is calculated,
and the results are shown in Table 3. The NLMS-EEMD noise reduction method has
the highest signal-to-noise ratio, indicating that its noise reduction effect is the best.

6 Conclusion

This paper proposes a joint noise reduction method of NLMS and EEMD, which
is used to extract the fault characteristics of rolling bearings in a strong noise
environment. The main conclusions are as follows:
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Fig. 10 Envelope analysis results of three methods

Table 3 The characteristic
parameters of each IMF

Signal SNR/dB

NLMS noise reduction signal 0.0331

EEMD noise reduction signal 1.1308

NLMS-EEMD noise reduction signal 4.5945

(1) The Combined NLMS and EEMD denoising method can effectively reduce
the background noise and provide a good condition for rolling bearing fault
diagnosis.

(2) Using the comprehensive index to select the appropriate IMFs can ensure
the integrity of the information, so that the reconstructed signal contains the
complete information of the original signal.

(3) The simulation and experimental results show that the proposed method has
certain advantages, and this method can effectively extract the fault features of
rolling bearing in strong noise environment and carry out fault diagnosis.
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Rolling Bearing Fault Diagnosis Based
on Weighted Variational Mode
Decomposition and Cyclic Spectrum
Slice Energy

Dongkai Li, Xiaoang Liu, Yue You, Dong Zhen, Wei Hu, Kuihua Lu,
and Fengshou Gu

Abstract As the main parts of rotating machinery, rolling bearing is prone to
failure due to its harsh working environment. Aiming at the problem that the early
fault features of a rolling bearing are easily submerged by noise and difficult to
extract, a fault diagnosis method based on weighted variational mode decomposi-
tion (WVMD) and cyclic spectrum slice energy (CSSE) is proposed. Firstly, the
signal is decomposed into intrinsic mode functions (IMFs) by VMD and the spar-
sity is used to measure the amount of information contained in each IMF, and all
IMFs are weighted and reconstructed to suppress the noise interference components
in the signal. Secondly, the advantage of the CSSE which can accurately mediate
the fault information is used to analyze the reconstructed signal, and then the fault
characteristic frequency of the reconstructed signal is extracted. Finally, the bearing
simulation signal and outer ring fault signal are used to verify that the proposed
diagnosis method can effectively extract the early fault features of rolling bearing.
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1 Introduction

Rolling bearing is widely used in kinds of large rotating machinery and electrical
equipment. The running state of the rolling bearing directly affects the normal opera-
tion of the machine [1]. Monitoring its running state, especially early fault diagnosis,
is of great significance for the operation and maintenance of mechanical equipment.
Therefore, the early fault diagnosis of rolling bearing has become a research hotspot.

The early fault signal of rolling bearing is nonlinear and nonstationary. The fault
signal is weak and easy to be submerged in the background noise [2]. These factors
make it difficult to extract the early fault features of rolling bearing. In recent years,
many scholars use time–frequency analysis methods to deal with fault signals. The
main time–frequency analysis methods include short-time Fourier transform (STFT)
[3], wavelet transform (WT) [4], Wigner–Ville distribution (WVD), empirical mode
decomposition (EMD) [5] and so on. These methods have been successfully applied
to fault signal analysis, but they also have limitations.

Variational mode decomposition (VMD) is a new adaptive time–frequency anal-
ysis method proposed by Dragomiretskiy [6]. At present, most VMD algorithms use
some indexes to select the optimal mode for reconstruction, so as to reduce the influ-
ence of Gaussian noise. For example, Ali et al. [7] proposed the envelope spectrum
weighted kurtosis index to select the sensitive mode, Xu et al. [8] used the average
kurtosis to select some IMF whose kurtosis value is greater than the average kurtosis
value to reconstruct the new signal. Yan et al. [9] selected the IMFs containing the
main fault feature information through the single failure feature amplitude energy
ratio, and used it for subsequent analysis. However, the information contained in
other modal components is ignored when selecting the optimal mode reconstruction,
which makes the reconstructed signal lack some effective information contained in
the original signal. Chen et al. [10] used sparsity as an index to select effective
components of EEMD, and explained the relationship between signal sparsity and
energy. In view of the advantage of sparsity, this paper constructs a weight coefficient
by sparsity to measure the amount of useful information contained in different modal
components and then reconstructs all modal components by weighting.

Because of the periodicity of the motion, the statistics of the early fault signals
of rolling bearings are periodic time-varying and show the stability of the cycle. The
cyclic spectrum (CS) analysis is a powerful tool to deal with the cyclic stationary
signal [11, 12]. And the cyclic spectrum slice energy (CSSE) is a unary function
of cyclic frequency, which is more conducive to display fault characteristics, Wang
et al. [13] used the CSSE to diagnose the bearing fault, and pointed out that it can
make up the defect of envelope demodulation analysis. So CSSE is used to reveal the
fault information contained in WVMD filtered signal in this study. To sum up, this
paper proposes a rolling bearing fault diagnosis method based on the combination
of weighted variational mode decomposition and cyclic spectrum slice energy. The
rest of the article is organized as follows: Sect. 2 investigates basic theories, Sect. 3
introduces the process of the proposed method, Sects. 4 and 5 verify the proposed
method by simulation and experiment and the conclusions are drawn in Sect. 6.
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2 Basic Theories

2.1 Variational Mode Decomposition

VMD can adaptively decompose a complex signal into a series of IMFs. The center
frequency and bandwidth of each IMF are determined by iteratively searching the
optimal solution of the variational model. In the frequency domain, the decomposed
IMFs are sparse, which can separate the intrinsic mode functions effectively. The
basic idea of VMD algorithm is to construct and solve the variational problem to
decompose the complex signal into k IMFs [9].

{
min{uk },{ωk }

{∑
k

∥∥∂t
[
(δ(t) + j/π t) ∗ uk(t)

]
e−jωk t

∥∥2
2

}
s.t.

∑
k uk = f

(1)

In order to solve the above variational problem, VMD transforms the constrained
variational problem into an unconstrained variational problem by introducing the
quadratic penalty factor and Lagrange operator. The augmented Lagrange function
is:

L({uk(t)}, {ωk(t)}, λ) = α

K∑
k=1

∥∥∂t [(δ(t) + j/π t)uk(t)]e
− jωk t

∥∥2

2

+
∥∥∥∥∥ f (t) −

K∑
k=1

uk(t)

∥∥∥∥∥
2

2

+
〈
λ, f (t) −

K∑
k=1

uk(t)

〉 (2)

where α is the penalty factor, λ is Lagrange operator; < · > is convolution. The
alternating direction method of multipliers (ADMM) algorithm is used to solve the
saddle point of the augmented Lagrange function.

2.2 Wighted Reconstruction of IMFs

Most of the early faults of a rolling bearing are localized pitting defects of the outer
ring, inner ring and rolling element [14]. In the fault signal of rolling bearing, the
local pitting often appears as a periodic pulse, which makes the fault signal sparse.
Sparsity is a statistic that characterizes the sparsity of time-domain signals, For signal,
x(n) the expression formula of sparsity [10] is as Eq. (3). this paper uses sparsity to
construct the weight coefficients of each mode.



646 D. Li et al.

S =
√√√√ 1

N

N∑
n=1

xi (n)2/
1

N

N∑
n=1

|xi (n)| (3)

When there are fewer Gaussian noise components and more impact components
in the signal, the energy of the signal is concentrated in the pulse, and the amplitude
of the signal has obvious multiple bulges. The signal shows strong sparsity, and
the sparsity of the signal is larger. On the contrary, when the signal contains more
Gaussian noise components, the energy of the signal is dispersed into the interference
components, the amplitude distribution of the signal is more uniform, the sparsity of
the signal is weaker, and its sparsity is smaller. Therefore, this paper uses sparsity to
construct the weight coefficients of each mode. The signal is decomposed by VMD
to get k IMFs, The weight coefficient of IMF is defined as Eq. (4).

c(k) = S(k)/
∑
k

S(k) (4)

where S(k) represents the sparsity of the kth IMF. The expression of weighted
reconstructed signal is:

x
∧ =

∑
k

c(k)uk (5)

2.3 Spectral Correlation Density Slice Energy

As a special case of non-stationary signal, the statistical characteristics of cyclo-
stationary signals change periodically. According to the order of periodic statistical
characteristics, cyclostationary signals can be divided into first-order cyclostationary
signals, second-order cyclostationary signals and high-order cyclostationary signals.
The second-order cyclostationary signal is a non-stationary signal whose autocorre-
lation function changes periodically. The early fault signals of rolling bearings show
amplitude modulation characteristics, its autocorrelation function is periodically
time-varying and belongs to second-order cyclostationary signal. For the second-
order cyclostationary signal, the Eq. (6) of time-varying autocorrelation function is
obtained by the statistical average of the signal’s time-delay quadratic transformation.

Rx (t, τ ) = E
{
x∗(t − τ

2
)x(t + τ

2
)
}

(6)

where E is mathematical expectation; (*) represents a conjugate operation. Since
the time-varying autocorrelation function Rx (t, τ ) is a periodic function, it can be



Rolling Bearing Fault Diagnosis Based on Weighted Variational Mode … 647

expanded into Eq. (7) by Fourier series.

Rx (t, τ ) =
∑

α

Rα
x (τ )e j2παt (7)

where α = n/T0 is the cycle frequency. The cyclic spectral density (CSD) Rα
x (τ )

can be obtained by Fourier transform (FT) of cyclic autocorrelation function (CAF)
as follows:

Sα
x ( f ) =

∫ ∞

−∞
Rα
x (τ )e− j2π f τdτ (8)

The CSD is a double spectrum diagram composed of cyclic frequency and spec-
trum frequency. In order to analyze the fault types of rolling bearings by using the
cyclic frequency, the CSD is sliced along the direction perpendicular to the cycle
frequency axis at each cycle frequency. The cyclic spectrum slice energy (CSSE) is
defined as:

E(α)=
∫ ∞

−∞

∣∣Sα
x ( f )

∣∣2d f (9)

3 Algorithm Flow of Weighted Variational Mode
Decomposition and Cyclic Spectrum Slice Energy

In this paper, a rolling bearing fault diagnosis method based on weighted variational
mode decomposition and cyclic spectrum slice energy is proposed. The specific
diagnosis process is as follows: firstly, the number of IMFs in the variational mode
decomposition is determined, and the original signal is decomposed to obtain IMFs;
Then, the sparsity of each modal component is calculated, and IMFs are weighted
by the sparsity; Finally, the cyclic spectrum density of the reconstructed signal is
calculated, and the cyclic spectrum slice energy is obtained. The cyclic spectrum
slice energy is used to analyze the reconstructed signal and extract the characteristic
frequency of the fault signal. The diagnosis flow chart of the proposed algorithm is
shown in Fig. 1.

4 Simulation Verification

When the rolling bearing has a local pitting fault, there will be an impact on other
parts in contact with the local pitting. With the rotation of the rolling bearing, the
periodic pulse will be generated in the bearing fault signal, and there will be small
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Fig. 1 The flowchart of the WVMD-CSSE method

sliding between the rolling element and the raceway. Therefore, the fault simulation
signal of rolling bearing is as follows:

x(t) =
∑
i

A0h(t − iT − τi ) + n(t)

h(t) = e−βt sin(2π fnt) (10)

where A0 represents the amplitude and is set to 1, T denotes the interval of fault
pulse, set to 1/120 s, τi is the random slip caused by the i-th impact, it’s related to T ,
β represents the attenuation coefficient, equal to 800, fs stands the sampling period,
set to 10 000 Hz, t is the sampling time and is set to 1 s, fo denotes the bearing
failure frequency, equal to 120 Hz, fn stands the resonant frequency, set to 1 000 Hz.
Considering that the rolling bearing works in harsh environment, Gaussian noise is
added to the simulation signal and SNR = −7 dB.

The time domain waveform and frequency spectrum of the simulation signals are
shown in Fig. 2b and c. The fault signal is submerged by noise, so it is difficult to find
fault feature information in Fig. 2b and c can not effectively reflect the fault frequency.
In order to extract the fault characteristic frequency, WVMD-CSSE is applied to the
simulation signal. Firstly, the simulation signal is decomposed into seven IMFs by
using VMD, and the number of IMFs is determined by center frequency observation
method. In this method, the number of IMFs is preset as 2, 3, ..., 8, and decomposed
respectively to observe the center frequency of adjacent IMF. When the number of
modes is 8, the center frequency distance of adjacent modes is too small, resulting in
over decomposition; When the number of modes is 6, under decomposition occurs,
so the number of modes is 7. The result of VMD is shown in Fig. 3. Considering
the different amounts of useful information contained in each IMF and the suppres-
sion of noise components, the weighted IMFs are formed by calculating the modal
weight coefficients composed of sparsity, and the reconstructed signal is obtained by
adding all the weighted IMFs. The weight coefficient of IMF and the spectrum of
weighted reconstruction signal are shown in Figs. 4 and 5. It can be found that the
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Fig. 2 Rolling bearing simulation signal. a Pure signal. b Noisy signal. c Spectrum

Fig. 3 Decomposed modes

Fig. 4 IMF weighting
coefficient
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Fig. 5 Weighted
reconstruction signal
spectrum

Fig. 6 Applying
WVMD-CSSE to simulation
signal

noise component of the original signal is obviously suppressed in Fig. 5, however,
the fault characteristics are still not obvious. Then CSSE is applied to analyze the
reconstructed signal and identify the fault components in the signal. The CSSE
of the reconstructed signal is shown in Fig. 6, which can clearly display the fault
characteristic frequency fo and its frequency doubling components (2 fo, 3 fo and
4 fo).

5 Experimental Analysis

In order to further prove that the WVMD-CSSE algorithm can effectively carry out
the early failure of rolling bearing, experimental research of rolling bearing is carried
out. The rolling bearing test bench mainly includes an AC motor, dynamometer, two
rolling bearings of 6206ZZ, flexible coupling, vibration sensor and shaft encode. The
bearing test bench is shown in Fig. 7. The vibration sensor is installed on the bearing
seat of the drive end of the AC motor, and the speed of the motor is 1500 r/min. The
length of bearing data of outer ring fault collected in rolling bearing test is 1,920,000,
and the sampling frequency is 96 kHz. fc is the theoretical characteristic frequency
of outer ring fault, fo = 89.33 Hz. The specific parameters of bearing in the test are
shown in Table 1.

The time domain waveform and frequency spectrum of the outer ring fault rolling
bearing obtained from the test are shown in Fig. 8. Affected by the background noise,
the periodic fault impact of the signal is submerged by the noise, and it is difficult
to extract the fault features from the frequency spectrum. Applying the WVMD-
CSSE diagnosis algorithm proposed in this paper, firstly, VMD is performed on
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Fig. 7 Rolling bearing test bench

Table 1 Structural parameters of test bearing

Bearing model Rolling body diameter
(mm)

Pitch diameter (mm) Ball number Contact angle

6206ZZ 9.53 46.4 9 0◦

Fig. 8 Outer ring fault
rolling bearing test signal. a
time domain waveform. b
frequency spectrum

the experimental signal„and the number of IMFs is determined as k = 5 by center
frequency observation method. The modes of VMD are shown in Fig. 9. Then, the
sparsity and weight coefficient of IMF are calculated, and all IMFs are weighted and
reconstructed. The results of weight coefficient and reconstructed signal are shown
in Figs. 10 and 11, compared with Figs. 8b and 11, it can be seen that the noise
interference on the reconstructed signal spectrum is obviously reduced in Fig. 11.
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Fig. 9 Applying
WVMD-CSSE to test signal

Fig. 10 IMF weighting
coefficient

Fig. 11 Weighted
reconstructed signal
spectrum

Finally, CSSE is applied to demodulate the reconstructed signal, as shown in
Fig. 12a. In order to compare the advantages of CSSE in extracting bearing fault
characteristic frequency, envelope demodulation is performed on the reconstructed
signal, as shown in Fig. 12b. Not only the fault characteristic frequency of the bearing
is proposed successfully, but also the frequency doubling component has a very
obvious peak value inFig. 12a, but there aremany interference frequency components
in Fig. 12b. In order to further illustrate that using the weight coefficient composed of
sparsity to reconstruct all IMFs can retain complete fault information and suppress
noise, VMD-CSSE is applied to the original signal, as shown in Fig. 12c, it can be
found that WVMD-CSSE has better signal processing effect than VMD-CSSE.
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Fig. 12 Analysis results. a
WVMD-CSSE. b Envelope
demodulation. c VMD-CSSE

6 Conclusion

Aiming at the problem that the early fault features of a rolling bearing are easily
disturbed by noise and difficult to extract, the WVMD-CSSE method is proposed in
this paper, the main conclusions are as follows:

(1) The weight coefficient constructed by sparsity can measure the fault informa-
tion contained in each mode, suppress the noise interference component of the
original signal and improve the SNR.

(2) CSSE is used to processWVMD filtering signal, so as to remove periodic fault
impulse contained in filtering signal and identify characteristic frequency.

(3) CSSE has a stronger demodulation ability than envelope analysis and is
easier to extract bearing fault information. By comparing WVMD-CSSE with
VMD-CSSE, it is proved that WVMD-CSSE can get more accurate and clear
characteristic frequency.
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Abstract Planetary gear systems often work under severe working conditions,
causing gear failures to occur frequently. When the gear fails, the dynamic char-
acteristics of the system will be altered with the excitation of nonlinear parame-
ters. To study the dynamic response of the planetary gear system with gear fault, a
nonlinear dynamic model for both health system and faulty system containing the
backlash, time-varying mesh stiffness and manufacturing error is put forward. Then,
the backlash and rotation frequency are taken as the excitation parameters to study
the nonlinear characteristics of the faulty and healthy system through the global
bifurcation diagram. At the same time, the local characteristics of the two systems
are analyzed via the Poincaré maps and phase diagrams. The analysis results show
that the faulty system has a more complex movement as the excitation parameters
variation. This research can provide a reference for the dynamic design of planetary
gear systems.

Keywords Planetary gear system · Tooth backlash · Bifurcation · Phase diagram ·
Poincaré map
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1 Introduction

The planetary gear system has many advantages, such as compact structure, large
transmission ratio, etc. Hence, they have various applications inmechanical transmis-
sion equipment [1]. For the convenience of lubrication, tooth backlash is necessary
for the gear transmission system. However, as a strong nonlinear factor, the backlash
will affect the dynamic characteristics of the system, especially the faulty system.
Therefore, for benefitting the fault diagnosis and dynamic design of gear systems,
there needs to be a good master of the dynamic characteristics.

For the modeling and analysis of the gear system, a large number of scholars
have conducted research. In 1994, Kahraman [2] put up with a dynamic model of
planetary gear system. Later, the modes of the system are analyzed [3]. And the
influence of the installation error of the carrier on the dynamic characteristics of
the planetary gear system are analyzed [4]. Mo [5] proposed a calculation model of
load distribution coefficient with considering various errors. Later, Li [6] analyzed
the effects of static errors on transmission error and load sharing coefficient. By
introducing the geometric eccentricity error, Zhao [7] analyzed the variation law
of the contact state of the gear teeth. Then, Park [8] analyzed the influence of the
gear initial position within backlash on the dynamic characteristics. Wang [9] estab-
lished a three-degree-of-freedom torsional vibration model, revealing the nonlinear
phenomena of the system. Considering the factors of backlash, mesh stiffness and
transmission error, Wang [10] proposed a bending-torsion coupling dynamic model
and analyzed the periodic and chaotic characteristics of the system. Yang [11] estab-
lished a nonlinear dynamic model to analyze the frequency response characteristics
of the spur gear transmission system. And then the influence of bearing clearance
[12] and gear surface modification [13] on the dynamic characteristics of the plane-
tary gear system is analyzed. Huang [14] established the torsional dynamics model
considering the fractal tooth backlash and analyzed the chaos and bifurcation of the
spur gear systemwith the rotation speed and initial backlash as variables. Combining
bearing clearance and tooth backlash, Wang [15] analyzed the vibration response of
the gear system with gear crack failure.

At present, there are limited researches on the chaos and bifurcation characteris-
tics of the faulty planetary gear systems. Therefore, this study proposed a new pure-
torsional dynamic model of planetary gear system considering time-varying mesh
stiffness, backlash and manufacturing error. Meanwhile, the backlash and rotation
frequency are selected as the excitation parameters to reveal the response characteris-
tics of the system.The other sections are organized as follows. In Sect. 2, the planetary
gear dynamics model is proposed. Section 3 analyzes the dynamic characteristics of
the system. At last, Sect. 4 gives some conclusions.
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2 Dynamic Model of the Planetary Gear System

In this model, the planetary gear system includes a sun gear, a ring gear, a planet
carrier and three planet gears, as shown in Fig. 1. Among them, the carrier is selected
as the input element, the sun gear as the output element, and the ring gear is fixed.
All components are regarded as rigid and have only rotational degrees of freedom.

2.1 Parameters Definition

In the gear system, the meshing frequency is related to the rotation speed and the
number of gear teeth, which can be expressed as [16]:

ωm = ωczr (1)

where ωc is the angular frequency of the carrier, and zr is the tooth number of the
ring gear.

The time-varying mesh stiffness ksp and krp of the gear pairs can be simplified
into rectangular waveform, which can be expanded into Fourier series with meshing
frequency ωm as the fundamental frequency. Taking the fundamental frequency part,
the mesh stiffness can be expressed as [16]:

ksp = kmsp + kasp cos
(
ωmt + φspn

)
(2a)

Fig. 1 The dynamic model
of planetary gear system
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Fig. 2 Time varying mesh stiffness

krp = kmrp + karp cos
(
ωmt + φrpn

)
(2b)

herein kmsp and kmrp are the average mesh stiffness of external-external mesh and
external-internal mesh respectively; kasp and karp are the variation amplitude of the
mesh stiffness. φspn and φrpn are the initial phases.

In a planetary gear system, the sun gear rotates at a higher speed. Therefore,
sun gear failures often occur. When the gear failure occurs, the mesh stiffness will
attenuate, just like Fig. 2, which can be expressed as:

ksp =
{
km f sp + ka f sp cos

(
ωmt + φ f spn

)
, 2πm − ϕ0 < mod

(
ωmt, 2π z p

)
< 2πm

kmsp + kasp cos
(
ωmt + φspn

)
, others

(3)

where km f sp represents the average mesh stiffness of the fault tooth pair, ka f sp is the
variation amplitude of the mesh stiffness, and m is the sequence of the fault tooth.

For the simplification of the model, the gear teeth are assumed to be the same.
At this moment, the static transmission error is a period, which can be written in the
form of a triangular series with the meshing frequency as the fundamental frequency,
as shown below [16]:

esp = easp sin
(
ωmt + ψspn

)
(4a)

erp = ersp sin
(
ωmt + ψrpn

)
(4b)

where easp and ersp are the amplitudes of the external and internal mesh errors,
respectively. ψspn and ψrpn are the initial phases.

The meshing damping between the internal and external meshes can be expressed
as [16]:

csp = 2ξsp

√
kmsp

1
ms

+ 1
mp

(5a)

crp = 2ξrp

√
kmrp

1
mr

+ 1
mp

(5b)
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Fig. 3 Diagram of
sun-planet mesh

wherein ξsp and ξrp are the damping ratios of external and internal mesh respectively.
I j ( j = s, ce, r, p) is the moment of inertia and m j ( j = s, c, r, p) is the equivalent
mass that can be calculated by follows [17]:

Ice = Ic + Nmpr
2
c , ms = Is

r2s
, mc = Ice

r2c
, mp = Ip

r2p
(5b)

As shown in Fig. 3, the backlash can be expressed as a piecewise linear function
[17]:

f
(
δsp

) =
⎧
⎨

⎩

δsp − bsp, δsp > bsp
0,

∣∣δsp
∣∣ ≤ bsp

δsp + bsp, δsp < −bsp

(7a)

f
(
δrpn

) =
⎧
⎨

⎩

δrp − brp, δrp > brp
0,

∣∣δrp
∣∣ ≤ brp

δrp + brp, δrp < −brp

(7b)

where δsp and δrp are dynamic transmission errors, and bsp and brp are the initial
backlash.

2.2 Dynamic Differential Equations

The dynamic differential equations of torsional vibration can be listed out according
to the Lagrangian equation:
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⎧
⎨

⎩

Is θ̈s + ∑N
n=1 rs

(
csp δ̇sp + ksp f

(
δsp

)) = Tout
Ip θ̈p − rp

(
csp δ̇sp + ksp f

(
δsp

)) + rp
(
crp δ̇rp + krp f

(
δrp

)) = 0
Iceθ̈c − ∑N

n=1 rc
(
csp δ̇sp + ksp f

(
δsp

)) − ∑N
n=1 rc

(
crp δ̇rp + krp f

(
δrp

)) = −Tin
(8)

where Tout and Tin represent the output torque and the input torque respectively.
During operation, considering themanufacturing error and the elastic deformation

of the gear teeth, the dynamic transmission error can be expressed as [17]:

δsp = rsθs − rpθp − rcθc − esp (9a)

δrp = rpθp − rrθr − rcθc − erp (9b)

To facilitate the solution, a dimensionless treatment is carried out. By introducing
the time scale ωn and displacement scale bc, the dimensionless parameters can be
obtained. The dimensionless time displacement, velocity and acceleration can be
expressed as:

τ = ωn∗t, δ̄sp = δsp

bc
, ˙̄δsp = δsp

bcωn
, ¨̄δsp =

¨̄δsp
bcω2

n

, δ̄rp = δrp

bc

˙̄δrp = δrp

bcωn
, ¨̄δrp = δ̈rp

bcω2
n

, ωn =
√

kmrp
1
ms

+ 1
mc

(10)

ksp = kmsp

kmrp
+ kasp

kmrp
cos

(
ωm

ωn
t + φspn

)
(11a)

krp = 1 + karp
kmrp

cos

(
ωm

ωn
t + φrpn

)
(11b)

esp = easp
bc

sin

(
ωm

ωn
t + ψspn

)
(12a)

erp = ersp
bc

sin

(
ωm

ωn
t + ψspn

)
(12b)

f
(
δ̄sp

) =
⎧
⎨

⎩

δ̄sp − bsp/bc, δ̄sp > bsp/bc
0,

∣∣δ̄sp
∣∣ ≤ bsp/bc

δ̄sp + bsp/bc, δ̄sp < −bsp/bc

(13a)

f
(
δ̄rpn

) =
⎧
⎨

⎩

δ̄rp − brp/bc, δ̄rp > brp/bc
0,

∣
∣δ̄rp

∣
∣ ≤ brp/bc

δ̄rp + brp/bc, δ̄rp < −brp/bc

(13b)
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Then, substituting the dimensionless quantity into the dynamic Eq. (8) and
simplifying it can be obtained:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̈sp +
(

1
ms

+ 1
mc

)
1
ωn

N∑

n=1
csp δ̇sp +

(
1
ms

+ 1
mc

)
1
ω2
n

N∑

n=1
ksp f

(
δsp

)

+ 1
mp

1
ω2
n
kspn f

(
δsp

) + 1
mp

1
ωn
csp δ̇sp − 1

mp

1
ωn
crp δ̇rp

− 1
mp

1
ω2
n
krp f

(
δrp

) + 1
mc

1
ωn

N∑

n=1
crp δ̇rp

+ 1
mc

1
ω2
n

N∑

n=1
krp f

(
δrp

) = Tout rs
Isbcω2

n
+ Tinrc

Icbcω2
n
+ emsp

bc

(
ωm
ωn

)2
sin

(
ωm
ωn
t + ψspn

)

δ̈rp − 1
mp

1
ωn
csp δ̇sp − 1

mp

1
ω2
n
ksp f

(
δsp

) + 1
mp

1
ωn
crp δ̇rp + 1

mp

1
ω2
n
krp f

(
δrp

)

+ 1
mc

1
ωn

N∑

n=1
csp δ̇sp + 1

mc

1
ω2
n

N∑

n=1
ksp f

(
δsp

) + 1
mc

1
ωn
crp δ̇rp+

1
mc

1
ω2
n

N∑

n=1
krp f

(
δrp

) = Tinrc
Icbcω2

n
− emrp

bc

(
ωm
ωn

)2
sin

(
ωm
ωn
t + ψspn

)

(14)

3 Numerical Simulation and Result Analysis

In this model, the meshing between the three planetary gears and the sun gear has
the same dynamic characteristics. Hence, the dimensionless dynamic transmission
error between the first planetary gear and the sun gear is selected as the example to
analyze the dynamic characteristics of the system. The dynamic equations are solved
by the fourth-order Runge–Kutta method. The basic parameters of components and
meshing are displayed in Tables 1 and 2, respectively. The scale of displacement
bc is assigned 1e-5 m. The input torque is set as 100 Nm. In order to eliminate the
influence of transient response, the first 500 response cycles are discarded.

Table 1 Parameters of components

Parameter name Sun gear Ring gear Planet gear The carrier

Teeth number 10 62 26 –

Mass (kg) 0.28 3.64 0.34 2

Inertia moment (kg·mˆ2) 2.10E-04 5.05E-04 2.90E-04 4.93E-03

Module (mm) 2.25 2.25 2.25 –

Pressure angle (°) 20 20 20 –
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Table 2 Parameters of
meshing

Parameter name Sun-planet Ring-planet

Average mesh stiffness(N/m) 4.5e8 5e8

Stiffness variation amplitude(N/m) 3.6e8 4e8

Damping ratio 0.07 0.07

Error amplitude(mm) 1e-5 1e-5

3.1 Response Characteristics of the Systems with Excitation
Frequency

As an excitation parameter, the system motion state will change with the variation
of the rotation frequency. Hence, the dimensionless rotation frequency Ω is selected
as the excitation parameter to study the dynamic characteristics of the systems.
Meanwhile, the dimensionless backlash b is assigned 2. The bifurcation diagrams
of the two systems are shown in Figs. 4 and 5. It can be seen from the figures
that as the excitation frequency increases, both systems exhibit complex bifurcation

Fig. 4 Bifurcation diagram for the healthy system with dimensionless rotation frequency

Fig. 5 Bifurcation diagram for faulty system with dimensionless rotation frequency
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and chaotic characteristics. For the healthy system, as Ω varies in the range of
0–0.47, the system exhibits a single-period motion; And when it varies in 0.48–
0.78, the system changes from paroxysmal chaos to periodic motion at beginning,
and then as the excitation frequency increases, it undergoes a brief period-doubling
bifurcation to evolve into chaotic motion with a small amplitude; In the interval of
0.79–1.03, the movement state of the system is single-period motion and 2-period
motion alternately; When Ω changes in the range of 1.04–1.81, the motion of the
system is more complicated, mainly showing chaotic motion, but there are multiple
periodic windows alternately interspersed in the middle, and then it enters a 4-period
motion through inverse period-doubling bifurcation; In the 1.82–2.16 interval, the
system exhibits periodic motion and chaotic motion alternately and finally enters a
5-period motion; Afterwards, it undergoes inverse period-doubling bifurcation and
enters chaotic motion with the periodic motion interspersed in the middle in the
range of 2.17–2.68; In the interval of 2.69–3, the system finally enters a 2-period
motion from a small amplitude chaotic motion. The dynamic characteristics of the
faulty system is similar to the healthy system, but when the healthy system presents
the periodic movement, the faulty system shows quasi-periodic motion. And in the
excitation frequency range of the chaotic motion of the healthy system, the chaotic
amplitude of the faulty system becomes larger, and the excitation frequency range
corresponding to the chaotic motion of the faulty system is wider than that of the
healthy system.

The bifurcation diagrams show the global characteristics of the system. Then, the
local characteristics are depicted through the phase diagrams and the Poincaré maps.
With various dimensionless excitation frequencies, the Poincaré maps and phase
diagrams of the systems are displayed in Figs. 6, 7, 8 and 9. As can be seen from

Fig. 6 a Healthy system at
� = 0.3. b Faulty system at
� = 0.3

Fig. 7 a Healthy system at
� = 1.2. b Faulty system at
� = 1.2
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Fig. 8 a Healthy system at
� = 2.1. b Faulty system at
� = 2.1

Fig. 9 a Healthy system at
� = 2.38. b Faulty system at
� = 2.38

Fig. 6 that the healthy system presents a single-period motion at Ω = 0.3, while the
faulty system exhibits a two-period motion; When Ω is 1.2, as shown Fig. 7, the
healthy system enters a single-period motion from chaotic motion, the faulty system
enters a quasi-periodic motion from chaotic motion nevertheless; When Ω is 2.1, as
shown in Fig. 8, the healthy system exhibits five-period motions respectively, while
the faulty system presents quasi-periodic motions. At Ω = 2.38, as shown in Fig. 9,
both systems are in chaotic motion, but the amplitude of the faulty system is larger.
Hence, when the healthy system exhibits periodic motion, the faulty system exhibits
multi-period or pseudo-periodic motion at the corresponding excitation frequency
and has a greater amplitude of motion.

3.2 Response Characteristics of the Systems with Backlash

As a nonlinear excitation, the tooth backlash has an important influence on the
response characteristics of the system. To analyze the impact of backlash, Ω is
assigned 0.6 and the dynamic responseswith the initial backlash are shown in Figs. 10
and 11. As can be seen that the amplitude of the system motion expands with the
increase of the backlash. For the healthy system, when the dimensionless backlash b
varies between 0–0.6, the system exhibits a single period motion;When the backlash
is between 0.48–0.97, the system enters the paroxysmal chaotic state after a short
period-doubling bifurcation, and then enters the chaotic motion after the period of
motion; When the backlash is in the interval of 0.98–3, the system enters chaotic
motion from periodic motion, and finally enters chaotic motion through inverse
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Fig. 10 Bifurcation diagram of healthy system with dimensionless backlash

Fig. 11 Bifurcation diagram of faulty system with dimensionless backlash

period-doubling bifurcation and period-doubling bifurcation, and as the backlash
increases, the amplitude of chaotic motion also increases. There is a similarity of
the motion state between the faulty system and healthy system, but when the healthy
system exhibits a single-period motion, the faulty system presents an obvious quasi-
periodic motion. And when the backlash is 0.39 and 0.71, the system motion state
occurs jump variation. The backlash interval corresponding to the chaotic motion of
the faulty system is wider than that of the healthy system.

Then the Poincaré maps and phase diagrams are adopted to reveal local character-
istics of the system. FromFigs. 12, 13, 14 and 15, it can be seen that the healthy system
exhibits a single-period motion at b = 0.6 and a quasi-periodic motion at b = 0.61,
while the faulty system directly enters chaotic motion from quasi-periodic motion.
When the dimensionless backlash is 0.72, the healthy system enters a single-period
motion from chaotic motion, as shown in Fig. 14a. Nevertheless, the faulty system
maintains a quasi-periodic movement consistently, as shown in Fig. 14b. When the
backlash is 0.98, as shown in Fig. 15, the healthy system exhibits quasi-periodic
motion, while the faulty system exhibits chaotic motion, indicating that the backlash
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Fig. 12 a Healthy system at
b = 0.6. b Faulty system at
b = 0.6

Fig. 13 a Healthy system at
b = 0.61. b Faulty system at
b = 0.61

Fig. 14 a Healthy system at
b = 0.72. b Faulty system at
b = 0.72

Fig. 15 a Healthy system at
b = 0.98. b Faulty system at
b = 0.98

bandwidth corresponding to the chaotic motion of the faulty system is wider than
that of the healthy system.
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4 Conclusions

In this study, a pure torsional dynamic model of planetary gear system with sun
gear failure was established, which contains time-varying meshing stiffness, manu-
facturing error, and tooth backlash. Meanwhile, the dynamic characteristics of the
healthy and faulty system with the variation of different nonlinear excitation are
compared.Byanalyzing thenonlinear characteristics of the system, someconclusions
can be obtained as follows:

(1) Both the healthy and faulty system exhibit complicated nonlinear character-
istics with the change of excitation frequency, and the multiple periods and
quasi-period windows mix in the chaotic motion;

(2) The motion state experienced by the faulty system is more complex than that
of the healthy system. In the excitation frequency interval corresponding to
the periodic motion state of the healthy system, the faulty system shows quasi-
periodic motion, while in the chaotic motion interval of the healthy system,
the faulty system has a larger chaotic motion amplitude and wider excitation
frequency interval.

(3) With the increase of the tooth backlash, the motion amplitude of both healthy
and faulty systems increases.

(4) In the dimensionless tooth backlash interval corresponding to the periodic
motion of the healthy system, the faulty system shows quasi-periodic motion
and appears to jump variation. The backlash interval corresponding to the
chaotic motion of the faulty system is wider than that of the healthy system.
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A Fault Diagnosis Method for Rolling
Bearings Based on Improved EEMD
and Resonance Demodulation Analysis

Wei Zhang, Xiange Tian, Guohai Liu, and Hui Liu

Abstract Rolling bearing is a kind of easily damaged mechanical equipment. The
quality of rolling bearing is related to the normal operation of the equipment. Because
the resonance demodulation method is susceptible to noise interference, and the
band-pass filter parameters are largely dependent on personal experience selection.
This paper proposes an analysis method based on the combination of Ensemble
Empirical Mode Decomposition (EEMD) and the selection criterion of kurtosis-
cross-correlation coefficient. Firstly, the vibration signal is decomposed by EEMD to
get intrinsic mode functions (IMFs); Secondly, since the decomposed IMF compo-
nents will produce mode aliasing, two criteria of cross-correlation coefficient and
kurtosis are introduced to extract effective IMF components for signal reconstruc-
tion; Finally, the reconstructed signal is subjected to Hilbert transform and envelope
analysis. Compared with the resonance demodulation analysis method, the EEMD
decomposition method is selected to replace the band-pass filter to reduce the noise
of the signal, which enhances signal to noise ratio and makes the fault characteris-
tics more obvious. The experimental signal analysis results of rolling bearing faults
show that a refinement ofmethodology presented in this article can effectively extract
the fault characteristics of rolling bearing, and has more advantages than traditional
envelope analysis methods.
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1 Introduction

The rolling bearing is in each kind of revolving machinery applies one of most
widespread general machine parts. The normal running state of rolling bearing
often directly affects the performance of the whole device, so fault diagnosis is
very important [1].

The fault diagnosis of rolling bearing includes four steps: vibration signal acqui-
sition, signal preprocessing, fault feature extraction and pattern recognition. Because
there will be interference factors such as noise when the signal is collected, signal
preprocessing is an indispensable part of the fault diagnosis process [2]. The signal
processing method can be performed in the time domain, frequency domain, and
time–frequency domain. Time domain analysis is widely applied in the breakdown
diagnosis domain due to their intuitive, easy-to-understand, easy-to-calculate, and
high-efficiency advantages [3]. In the time domain index, kurtosis is extremely sensi-
tive to impact characteristics and plays the vital role in the bearing partial expiration
[4]. Compared with the time domain analysis, the frequency range analysis mainly
separates or the strengthened breakdown characteristic frequency component. When
the rolling bearing fails, a modulation component will appear in the collected signal.
Envelope spectrum analysis is a powerful tool for processing modulated signals [5].
In these methods, envelope spectrum analysis based on Hilbert transform is the most
widely applied. However, the frequency domain analysis method is based on Fast
Fourier Transform (FFT). FFT lacks local information for the analysis of non-smooth
signals, and is not appropriate for analyzing non-smooth signals [6, 7].

The actual vibration signal is usually unstable. The analysis of nonstationary signal
has been studied by many people in the field of signal processing. Empirical mode
decomposition (EMD) is a method of analyzing non-stationary signals proposed by
Huang [8], and its essence is to process non-stationary signals. EMD is equivalent to
an adaptive filter. It can decompose non-smooth signals into a series of IntrinsicMode
Function (IMF). Each IMF component has its physical meaning, and the adaptive
and noise reduction characteristics of EMD make it more and more widely used
in rolling bearings [9–11]. Literature [12] proposed EMD to reduce the noise of
rolling bearing vibration signals, and realizes fault diagnosis of rolling bearing with
envelope spectrum analysis. However, the EMD method still has many defects such
asmodal aliasing, end effect, over-envelope and under-envelope phenomena. In order
to improve the modal aliasing phenomenon of EMD, Ref. [13] proposed the total
integrated empirical mode decomposition method (EEMD). EEMD through many
times joins thewhite noise to the primary signal in,may suppress themodality aliasing
effectively. In Ref. [14], the author used the decomposition method of EEMD and
compared it with the EMDdecomposition results. Finally, it is concluded that EEMD
decomposition has more advantages.

Because the traditional resonance demodulation method needs to select a reso-
nance high frequency band to design a bandpass filter based on personal experience
and knowledge reserves. In order to improve this shortcoming, this paper uses EEMD
decomposition to replace the filtering method of the band-pass filter, and selects the



A Fault Diagnosis Method for Rolling Bearings Based … 671

IMF component of the reconstructed signal through the cross-correlation coeffi-
cient and kurtosis. Then Hilbert transform and envelope analysis are performed on
the reconstructed signal, and finally the fault features are extracted. The method
proposed in this paper can effectively avoid the interference of artificial selection
of bandwidth factors on fault analysis, and the correctness of fault diagnosis and
analysis is enormously enhanced.

2 Methodology

2.1 Resonance Demodulation Algorithm

Resonance demodulation technology uses band-pass filter to extract the high
frequency resonance signal of low frequency fault pulsemodulation, and then obtains
the low frequency signal spectrum through envelope demodulation. The fault type
is determined by comparing the actual characteristic frequency with the theoretical
fault characteristic frequency. The diagnosis effect mainly depends on the parameter
selection of band-pass filter: center frequency and bandwidth. Appropriate band-
pass filter can effectively filter noise and other interference factors, and improve
the accuracy of fault feature frequency extraction [15]. The specific algorithm is as
follows:

(1) The signal is transformed by fast Fourier transform to get the spectrum;
(2) Observe the frequency band where the modulation phenomenon is more

obvious from the spectrogram, and select this frequency band as the bandwidth
of the band-pass filter;

(3) After determining the bandwidth, design a band-pass filter to filter the signal;
(4) PerformHilbert transform and envelope analysis on the filtered signal to obtain

its envelope spectrum;
(5) Observe the envelope spectrum, extract the characteristic frequency of the fault,

and compare it with the theoretical value to judge the fault type.

In the fault diagnosis of rolling bearing, resonance demodulation is the most
widely used method, but because the information generated by early small faults of
bearing is often disturbed by background noise, the application of resonance demod-
ulation method in improving signal-to-noise ratio is limited, and the diagnosis effect
is not obvious. In recent years, some new denoising methods have been developed
rapidly.Wavelet denoising has the advantage of multi-resolution. However, the effect
of wavelet denoising largely depends on the selection of basis function and threshold,
so designers need to have rich experience. EMD is a new signal processing method,
which is very suitable for processing nonlinear and non-stationary signals. However,
the EMD decomposition is prone to mode aliasing. In order to solve this problem,
some scholars put forward the EEMD method based on the research of white noise
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EMD decomposition. This method effectively overcomes the shortcoming of mode
aliasing in EMD method.

2.2 Ensemble Empirical Model Decomposition

EMD can adaptively process nonlinear and non-stationary signals, but this method
has problems and shortcomings, mainly the phenomenon of modal aliasing. The
EEMD method adds multiple groups of different white noises to the original signal
and then performs EMD decomposition, and then uses the random characteristic of
zero white noise to average the IMF components obtained from all EMD decomposi-
tions as the components of theEEMDdecomposition IMF to eliminate thewhite noise
[16].At the same time, the problemofmodal aliasing is solved.EEMDdecomposition
steps are as follows:

(1) Select the total average number of decomposition M;
(2) A white noise ni (t) with normal distribution is added to the original vibration

signal x(t) to form a new signal:

xi (t) = x(t) + ni (t) (1)

where ni (t) represents the ith additive white noise sequence, and xi (t)
represents the additional noise signal of the ith experiment, i = 1,2……M;

(3) The new signal xi (t) is decomposed by EMD to get the respective IMF:

xi (t) =
J∑

j=1

ci, j (t) + ri, j (t) (2)

where ci, j (t) is the jth IMF decomposed after adding white noise for the ith
time,ri, j (t) is the residual function, which represents the average trend of the
signal, and J is the number of IMF;

(4) Repeat steps (2) and (3) forM times, and add white noise signals with different
amplitudes each time to get the set of IMF:

c1, j (t)c2, j (t)......cM, j (t), j = 1, 2, 3.....J

(5) Based on the principle that the statistical mean value of uncorrelated sequence
is 0. The final IMF component can be obtained by calculating the above IMF
components, namely:

c j (t) = 1

M

M∑

i=1

ci, j (t) (3)
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where c j (t) is the jth IMF decomposed by EEMD, i = 1,2……M; j = 1,2……J.
In the EEMD decomposition method, two parameters are needed: the number of

average M and the amplitude of white noise. The amplitude of white noise is usually
characterized by the ratio of the standard deviation of white noise amplitude to the
standard deviation of original signal amplitude [17].

The EEMD algorithm is an effective method to deal with non-linear and non-
stationary signals. It solves the mode aliasing in the process of signal decomposition,
but it also has some disadvantages, such as residual white noise in the process of
signal decomposition. The choice of an effective IMFdepends entirely on experience.
All these affect the accuracy of EEMD decomposition and reconstruction. For this
reason, two criteria, cross-correlation coefficient and kurtosis, are introduced to select
and reconstruct IMF components.

2.3 Kurtosis and Cross-Correlation Coefficient

Kurtosis is a measure of how much the distribution of a set of random variables
deviates from the Gaussian distribution. The signal of normal rolling bearing is close
to Gaussian distribution, and its kurtosis value is about 0. When the rolling bearing
fails, its kurtosis value is greater than 0, and the impact component of the fault signal
is prominent. The magnitude of the kurtosis value reflects the degree of impact of
the impact component, and a value between 3 and 8 has a significant effect on the
extraction of weak faults.

The cross-correlation coefficient indicates the degree of correlation between two
signals. The greater the correlation coefficient between two random signals, the
stronger the correlation degree [18]. Generally, the correlation coefficient should be
greater than 0.1. Equation (4) is the definition of the correlation coefficient in this
article:

R(x, im f ) =
∑N

i=1 [x(t) − x]
[
im f (t) − im f

]
√∑N

i=1 [x(t) − x]2
√∑N

i=1

[
im f (t) − im f

]2 (4)

where N is the number of sampling points; x(t) is the original vibration signal;
im fi (t) is the ith IMF component, and x = 1

N

∑N
i=1 x(t).

From the cross-correlation coefficient between each IMF component and the orig-
inal signal, we can find the first im fk with the local minimum value of the cross-
correlation coefficient and the im fk+1 is considered to be the modal aliasing compo-
nent. Then the first k IMF components are highly correlated with the original signal
and contain more fault information. In addition, since the IMF component is from
high frequency to low frequency, the high frequency part contains more fault infor-
mation, so we give priority to the high frequency part. The remaining components
can be directly eliminated, and then the selected components can be accumulated
and reconstructed to obtain the denoised signal [19, 20].
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3 Improved EEMD Decomposition Algorithm

Due to the modal aliasing phenomenon in the IMF components decomposed by the
EMD method, and the end effect affects the decomposition effect. In order to avoid
such problems in the experiment, this paper chooses to improve the EMD method,
that is, the EEMD method, which effectively solves the above problems. Because
the spectrum of white noise is evenly distributed, when we add white noise to the
signal to be analyzed, it will be automatically distributed to the appropriate location.
Because the mean value of noise is 0, the influence of white noise can be eliminated
after several average calculations. The final result can be obtained by integrating
and averaging each IMF. Therefore, the shortcomings of EMD decomposition are
improved. The signal is decomposed byEEMD to get IMF component. Generally, the
first component will be selected as the next signal to be studied, which will lose some
fault information. Here, we make a little improvement: by calculating the kurtosis
of IMF component and the cross-correlation coefficient between IMF component
and original signal, we select the component reconstruction signal according to the
selection criteria in Sect. 2.3. The steps of the improved EEMD algorithm are as
follows:

(1) EEMD decomposition of the vibration signal will result in a number of IMF
components;

(2) Compute the kurtosis of IMF and the cross-correlation coefficient between
IMF and signal;

(3) According to the selection criteria proposed earlier in the thesis, compare
the correlation values and kurtosis values, and select the appropriate IMF
component to reconstitute the signal;

(4) Perform Hilbert transform on the reconstructed signal, and perform envelope
demodulation analysis to obtain an envelope spectrogram;

(5) Observe the envelope spectrum, look for the characteristic frequency of the
fault, and compare it with the theoretical value to judge the fault type.

EEMDdecomposition can effectively denoise the signal. The selection component
is improved slightly. In the next analysis, it is used to replace the band-pass filter,
which avoids the shortcomings of choosing the band-pass filter parameters according
to personal experience. This paper considers the shortcomings of traditionalmethods,
and uses an improved EEMD method instead of a band-pass filter to analyze the
signal. Figure 1 shows the algorithmflowof the traditionalHilbert envelope spectrum,
and Fig. 2 shows the algorithm flow of the Hilbert envelope spectrum based on the
improved EEMD method.
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Fig. 1 Flow chart of resonance demodulation method based on fixed bandwidth
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Fig. 2 Flow chart of resonance demodulation method based on improved EEMD

4 Experiment and Analysis

4.1 Data Sources

The data used in this paper are from the life cycle bearing data provided by the
University of Cincinnati [21]. Figure 3 shows the physical picture of the bearing in
the experiment and the simulation picture which is easy to watch. The experimental
equipment consists of an AC motor, four bearings (Rexnord za-2115 double row
bearings) and a vibration sensor. In this experiment, the number of rolling elements
is 16 (z = 16), and the pitch diameter of bearing raceway is 2.815 inches (D = 2.815
in); The diameter of rolling element is 0.331 inch (d = 0.331 in); The contact angle
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is 15.17°(α = 15.17°). The rotation speed of the bearing is 2000 rpm ( fr = 33.33 Hz)
and the sampling rate is 20 kHz. The vibration signal is collected every ten minutes.
Each file in the dataset consists of 20,480 points. NI DAQ 6062E was used to collect
data in the experiment.

The formula for outer ring fault frequency [22] is

fo = N

2

(
1 − D

d
cosα

)
f (5)

According to Eq. (5), the outer ring fault frequency is 236.4 Hz.

4.2 Data Analysis Based on Fixed Bandwidth

Firstly, we select four time-domain indicators of RMS, absolute average, variance
and kurtosis to make a preliminary analysis and judgment on the signal. Figure 4
shows the waveforms of the four indicators of this signal. RMS is the reflection of
signal impulse characteristics. The absolute average reflects the energy of the signal.
Variance reflects the degree of signal dispersion. From the change trend of the four
indicators in Fig. 4, we can determine that the bearing must have a fault in the later
stage.

According to the changing trends of the four indicators, the failure of the entire
cycle initially occurred near Document 500. Next, we use the content of Sect. 2.1 to
analyze the vibration signal. Because the traditional resonance demodulationmethod
needs to rely on experience to select the bandwidth of the band-pass filter. In order
to better select the bandwidth, here we select the data collected without failure (file
number 30), the data collected at the initial stage of the failure (file number 533),
and the data collected after the failure (file number 800) for analysis. Figure 5 shows

Fig. 4 Four time-domain indicators of vibration signals: a RMS. b Absolute mean. c Variance. d
Kurtosis
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Fig. 5 Resonance frequency band: a [600, 1400 Hz]; b [1600, 2400 Hz]; c [3000, 3800 Hz]; d
[4000, 5000 Hz]; e [5500, 6500 Hz]

the selection of resonance frequency band in the spectrum of the three files. It can be
found from the figure that when the center frequency is 1000, 2000, 3400, 4500 and
6000, the resonance frequency band is more prominent. Based on this, the bandwidth
of the band-pass filter is designed to be [600, 1400 Hz], [1600, 2400 Hz], [3000,
3800 Hz], [4000, 5000 Hz], [5500, 6500 Hz] to band-pass filter the signal. Choose
different bandwidths to design the band-pass filter, and then analyze the signals
separately according to Sect. 2.1. Finally, it is found that the envelope spectrum
obtained by [4000, 5000 Hz] has the most obvious fault characteristics. Figure 6
shows the envelope spectrum at file numbers 30, 500, and 800, with a bandwidth of
[4000, 5000 Hz].

It is obvious from the Fig. 6 that the fault has occurred in the later stage of the
signal, and the characteristic frequency is 230.5 Hz, which is very close to the result

Fig. 6 Envelope spectrum obtained with a bandwidth of [4000, 5000 Hz] at file number 30 500
and 800
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Fig. 7 Trend chart of fault characteristic frequency: aWhole cycle; b Partially enlarged trend graph

Fig. 8 Envelope spectrogram at file number 532 and 533

calculated byEq. (5) of 236.4Hz, and it also can find that the twice fault characteristic
frequency. Based on this, it can be judged that the actual fault characteristic frequency
is 230.5 Hz.

In order to know the time of the initial failure of the fault more accurately, we
know the fault characteristic frequency of the bearing through the above analysis.
Figure 7 shows the trend diagram of the extracted fault feature frequency and its
partial enlarged diagram.

It can be found from Fig. 7b that the rolling bearing failure at file number 533
began to occur. Then the file number 532 and 533 are analyzed by the resonance
demodulation method to obtain the envelope spectrum. Figure 8 shows the envelope
spectrogram obtained after the resonance demodulation method at file number 532
and 533. We can find that no clear fault characteristic frequency can be found in
the envelope spectrum at file number 532. The fault characteristic frequency and its
twice fault characteristic frequency can be found at file number 533. Therefore, it
can be known that the bearing started to fail at file number 533.

4.3 Data Analysis Based on Improved EEMD

Through the analysis of the traditional resonance demodulation method, we know
that the initial fault location is at file number 533, and then use the improved method
proposed in this paper for this set of data. The signal is decomposed by EEMD, and
then each IMF component can be obtained. The kurtosis of each component and the
cross-correlation coefficient between each IMF component and the original signal
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Table 1 Cross-correlation
coefficients and Kurtosis

IMF Cross-correlation coefficients Kurtosis

IMF1 0.7614 3.7983

IMF2 0.4543 3.6152

IMF3 0.4630 2.4166

IMF4 0.2171 3.1758

IMF5 0.1393 3.3171

IMF6 0.1061 2.8522

IMF7 0.1643 3.0198

IMF8 0.1287 2.3135

IMF9 0.0256 2.7608

IMF10 0.0070 3.7430

IMF11 0.0020 3.2776

are calculated. Table 1. shows the cross-correlation number and kurtosis of each IMF
component.

Because the resonance caused by the fault is mostly obvious in the high frequency
part, and the IMF component is from high frequency to low frequency. Therefore, we
prefer to choose the kurtosis and cross-correlation coefficients of the first few IMF
components to observe and compare. According to the selection rules described in
Sect. 2.3, from Table 1, we can find that the kurtosis of IMF1 and IMF2 components
are between 3 and 8, while the kurtosis of IMF3 is not in this range, so IMF1
and IMF2 contain more fault characteristics. Similarly, it is found that the cross-
correlation coefficients of IMF1 and IMF2 components are both greater than 0.1, and
the first local minimum cross-correlation coefficient is found at IMF2. Therefore, the
kurtosis and cross-correlation coefficients of IMF1 and IMF2 components conform
to the selection rules, sowe choose IMF1 and IMF2 to reconstruct the signal. Figure 9
shows the envelope spectrum at file number 533 obtained using the method in Part
3.

Comparing Fig. 9. with Fig. 8, in the analysis of the same initial fault, the fault
frequency obtained by the method proposed in this paper is more obvious, and the
twice frequency, three times frequency, and four times frequency can all be clearly
found. The fault diagnosis has a very intuitive judgment function.

Fig. 9 The envelope spectrum at file number 533 based on the improved EEMD
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Table 2 SNR of the two
methods

File number The SNR of traditional
method

The SNR of the method
in this paper

533th file −1.1795 5.7100

540th file −1.3481 6.2237

600th file −1.8977 6.5063

700th file −2.7630 7.9383

800th file −2.0808 6.9007

850th file −6.1887 10.5551

The above analysis shows that the method proposed in this paper has a better
filtering and denoising effect than the band-pass filter, and has more advantages in
the extraction of fault signals. Here we use the signal-to-noise ratio (SNR) [23] to
quantitatively analyze the denoising effect. The calculation expression of SNR is

SN R = 10 lg

[ ∑N−1
n=0 S2n∑N−1

n=0

(
SN − S′

n

)

]
(6)

where Sn is the original signal; S′
n is the signal after noise reduction; N is the number

of sampling points.
Table 2 shows the SNR calculated by the resonance demodulation method using a

fixed frequency band and themethod proposed in this paper after denoising the signal.
Select several sets of data from the early stage to the later stage of the failure for
analysis and calculation. It can be found from the table that the SNR after denoising
the signal using this method has been greatly improved.

5 Conclusion

In this paper, the resonant demodulation method is vulnerable to noise interference
and the parameters of band-pass filter are difficult to determine. In most cases, the
design of band-pass filter depends on experience to select the bandwidth, which has
a great impact on the signal diagnosis. Therefore, this paper proposes an improved
EEMDmethod instead of band-pass filter to remove the noise in the vibration signal.
The measured vibration signal is decomposed by EEMD, and the appropriate IMF
component is selected for reconstruction by combining the cross-correlation coeffi-
cient criterion and kurtosis criterion. Finally, the reconstructed signal is processed
by Hilbert transform and envelope demodulation to get the envelope spectrum. By
observing the envelope spectrum obtained by the two methods and comparing the
SRN of the two methods, it can be seen that the proposed method has greater advan-
tages than the traditional envelope analysis method. This study is supported by
Jiangsu University Senior Talents Research Start-up Fund 4111140012.
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A Study on the Contact Characteristics
of a Planetary Centrifugal Vari-Speed
Drive

Jin Li, Jing Liu, Chaojie Zhong, Wujun Zou, and Ruikun Pang

Abstract The vari-speed drive, which transmits motion and torque through plane-
tary gear and centrifugal rotor, plays an important role in mechanical transmission
system. It is mainly used in ships, rolling mills, automobiles and other fields. The
vari-speed drive can improve the dynamic performance and economy of the vehicle
through the continuous change of transmission ratio. In this paper, an innovative plan-
etary centrifugal vari-speed drive is presented. The structure and working principle
of the device are introduced. The multi-body dynamics modeling of the vari-speed
drive is established to obtain the working characteristics and vibration characteris-
tics of the mechanism under different working conditions. A compression spring is
installed between the centrifugal rotors, and the influence of spring on the system
performance is analyzed. This paper can provide a theoretical basis for the design of
planetary stepless transmission.
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transmission
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1 Introduction

The vari-speed drive is a form of transmission system. Compared with the step speed
change, vari-speed drive can realize the speed of the stepless adjustment, to achieve
the input and output in any range of changes. In recent years, many researchers
have investigated mechanical vari-speed drive. Lagonravov et al. [1] considered the
vibration of the internal components of the stepless mechanical transmission. They
described the principle of automatic control of the transmission according to the
vibration amplitude of the internal components. Dai et al. [2] introduced a new
satellite star type gear (SSG) stepless transmission system based on the pulse stepless
transmission. They described the basicmechanical structure and kinematics principle
of the whole mechanism. They also carried out kinematics simulation, and obtained
the kinematics characteristic curve. Milazzo et al. [3] proposed a new self-adjusting
annular variable speed transmission, which has the function of passive control of
speed ratio. By deducing themathematical model of the system including dry friction
dissipation, Lazarek et al. [4] proposed a new type of constantly variable transmission
(CVT) designed for a new tuned mass damper. The motion of the CVT is oscillating,
and the test is carried out under actualworking conditions. Li et al. [5] proposed a non-
circular gear design method for CVT based on a modified high-order elliptical pitch
curve. They studied the power loss assessment of non-circular gear pairs. Ferguson
et al. [6] discussed severalmethods for improving the efficiencyofCVTbycombining
non-circular gears. The test results of a prototype transmission are reported. Liu et al.
[7, 8] established a planetary gear system considered the flexibility of ring gear. They
studied the impact of planet bearing fault and the support stiffness on the planetary
gear system. Li et al. [9] established amulti-body dynamic (MBD)model of a healthy
planetary gear system considering the flexible foundation of the ring gear. Hu and
Wei et al. [10, 11] adopted the principle of least beat system to design the speed
ratio tracking control algorithm. They achieved a better control effect of stepless
transmission. Zhu et al. [12] designed an N-class infinitesimal transmission (IVT)
that could provide a continuous outport-input ratio from zero to a certain value by
using a pair of non-circular gears and a directional control system using planetary
gear sets. Hoeijmakers et al. [13] proposed an electromechanical converter with
two mechanical ports and one electrical port that could be used as a continuously
variable transmission between the mechanical ports. The device replaces the clutch,
gearbox, generator and starter motor in the automobile. Xiong et al. [14] proposed a
planetary bevel gear CVT considering the state of elastohydrodynamic lubrication.
They analyzed the oil film thickness of each elliptical contact surface.

In this paper, a planetary gear stepless transmission device is presented. The roller
contacting with the orbit is made of rubber material. The input torque of the input
shaft is transferred between the input shaft and the output shaft through the centrifugal
rotor and the roller. The transfer efficiency is related to the contact force between the
roller and the track disc, so the contact force of the roller is analyzed. The influences
of springs installed between the centrifugal rotors on the roller contact force are
analyzed in time domain and frequency domain.
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2 Dynamic Modeling

Figure 1 plots the structure diagramof the planetary centrifugal stepless transmission.
The model includes four planetary gears and a sun gear. The output shaft is fixedly
connected to the frame. The planetary gear is composed of a planetary gear and a
planetary gear shaft. The planetary gear shaft is connected with the prismatic guide
groove drive disk through the special design. The rotate of the planetary wheel
drives the rotate of the centrifugal rotor. The rollers are attached to and rotate around
the rotors. The outer end of the planetary gear shaft is provided with a prismatic
guide groove drive disk for driving the centrifugal rotor to rotate. The centrifugal
rotor, under the constraint of planetary gear drive and orbit, makes a compound
curve motion of rotating and moving. The centrifugal force of the centrifugal rotor
contacts the curve orbit in the frame and produces a force to push the frame to rotate
and produces the output torque. The dynamic performance and accuracy of the vari-
speed drive are affected by the contact force between the centrifugal rotors and frame.
The geometric parameters of the gears of Planetary centrifugal stepless transmission
are listed in Table 1.

Although the vari-speed drive does not include the ring gear, the motion state of
the main parts is still consistent with the characteristics of the planetary gear system
in the whole motion process. Thus, it satisfies the following equation

ωp = (ωs − ωc)
Zs

Z p
(1)

where ωp represents the angular velocity of the planetary gears, which is the angular
velocity of the rotors;ωs represents the angular velocity of the sun gear;ωc represents
the angular velocity of the carrier; Zs represents the tooth number of the sun gear,
and Zp represents the tooth number of the planetary gears.

Fig. 1 Planetary centrifugal
stepless transmission
structure diagram
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Table 1 Gear parameters of
the vari-speed drive

Parameters Sun gear Planetary gear

Gear type Spur gear Spur gear

Material Steel Steel

Modulus of elasticity, E 210 Gpa 210 Gpa

Poisson’s ratio, v 0.32 0.32

Face width 0.015 m 0.020 m

Module 2 mm 2 mm

Number of teeth 19 48

Pressure angle 20° 20°

Theoretical contact ratio 1.59 1.59

Theoretical angle of meshing cycle 24.912 24.912

Addendum 1.00 m 1.00 m

Dedendum 1.25 m 1.25 m

The governing equation of each parts of the vari-speed drive model can be written
as

mq̈ + (cs + cc)q̇ + (ks + kc)q = T + F (2)

where m is the mass of the parts of the vari-speed drive. ks and kc are the structure
stiffness and the contact stiffness for the vari-speed drive. cs and cc are the structure
damping and the contact damping for parts of the vari-speed drive, respectively. q
is the displacement. T is the internal and external. F is the internal excitation force
including the contact force of the rollers. These parameters are integrated over the
individual vectors of each parts of the vari-speed model.

The centrifugal rotor is composed of two centrifugal rotor bodies and rollers.
There is a line contact between the roller and the frame. While the vari-speed drive
is working, the roller and the inner curve track contact, which is used to achieve
force conduction. The contact between the roller and the elliptical track disc of the
frame is shown in Fig. 2. The contact stiffness between the cylindrical roller and the
elliptical track disk is the Hertz contact stiffness. The contact form is Hertz elastic
contact with a very small contact area. In order to simplify the model, the influence
of the contact friction between the roller and the frame is ignored. The algorithm of
contact stiffness is shown in Eqs. (1)–(9) [15–18].

b is the width size of the contact surface, which is given by [8]:

b=
[

4Q

πl
∑

ρ

(
(1 − 1/m2

1)

E1
+ (1 − 1/m2

2)

E2

)] 1
3

(3)

∑
ρ = ρ1 + ρ2
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Fig. 2 The contact between
the roller and the elliptical
track disc of the frame

ρ1 and ρ2 are the densities of rollers and orbitals respectively.
The maximum contact stress σmax is [8]:

σmax = 2Q

πlb
(4)

whereQ represents the radial load acting on the roller. E1 and E2 represent the elastic
modulus (MPa) of roller and frame. 1/m1 and 1/m2 represent the Poisson’s ratio of
roller and track disc. l is the equivalent contact length of rollers.

The contact deformation of ideal line contact δ is [8]:

δ=2Q
(
1 − 1/m2

)
πEl

ln

[
πEl2

Q
(
1 − 1/m2

)
(1 ∓ γ )

]
(5)

where γ represents the ratio of rotor diameter d to track diameter D, where the inner
contact is—and the outer contact is+ . The empirical formula of contact deformation
is as follows [8]:

δ= 1.36
(ηQ)0.9

l0.8
(6)

According to Eq. (5), Q can be expressed as
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Q=0.71
l8/9

η
δ10/9 (7)

According to Hertz contact theory, two contact objects will bear the load, and δ

is [8]:

δ=3Q(	1 + 	2)

8πa
K (8)

	=4(1 − 1/m2)

E
(9)

Based on the above two formulas, it can be known that the contact stiffness
between the roller and the elliptical orbit can be expressed as [8]:

K= 0.71
l8/9

η
(N/mm10/9) (10)

η = 1 − 1/m2
1

E1
+ 1 − 1/m2

2

E2
(11)

The multi-body dynamics model of vari-speed drive was established by ADAMS,
which is shown in Fig. 3.

Fig. 3 The multi-body
dynamics model of the
vari-speed drive

Fig. 4 The Step function
curve of input rotate speed
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The input shaft is driven. The output shaft rotates at a uniform speed. Using the
STEP function to prevent excessive instantaneous contact force caused by sudden
change of input speed. The expression of the STEP function is as follows

STEP(time, t0, n0, t1, n1) (12)

where t0 is the moment when the initial time of the shaft rotating speed. n0 is the
initial velocity, which is usually zero. t1 is the moment when the shaft reaches the
final rotate speed and rotates at the final rotate speed. n1 is the final rotate speed
(Fig. 4).

In this paper, t0 is set to be 0.05 s, t1 is 0.1 s. n1 is from 0 to 4000 r/min. The
input shaft and output shaft are respectively applied in the same direction of rotate
speed. The final speed of the input shaft and output shaft are 3000 and 500 r/min. The
two cases of adding spring and not adding spring between the rotors are simulated.
The stiffness of the spring is 15 N/mm. The initial length is 20 mm. The spring is
subjected to the axial pressure, which has an axial preload of 150 N.

As can be seen from the Fig. 5, when the vari-speed drive is working, the two
rotors will move in the opposite directions due to the influence of centrifugal force,
the rollers contact with the elliptical orbit of the frame. The peak contact force occurs
at different times due to the different angles of the rotor’s initial position, However,
due to the influence of the elasticity of the rollers and the frame, the contact force will
appear zero value in the process of motion. At this time, the rollers will be separated
from the frame and the output torque cannot be generated. If a compression spring
is installed between the two rotors of the same planetary gear shaft, under the action
of spring pressure, the contact force between the eight rollers and the frame always
exists during the operation of the vari-speed drive. The separation between the rollers
and the frame does not occur and the torque is continuously transmitted. When the
compression spring is installed, the maximum contact force and the fluctuation range
of contact force is reduced, and the transfer efficiency is improved.

3 Results and Discussions

Based on the model of the stepless transmission device and the dynamic analysis
method, the model was simulated and analyzed. In order to obtain the relationship
between the input rotate speed, the input torque and the output torque, the input rotate
speed of the input shaft is set from 500, 1000, 1500, 2000, 2500, 3000, 3500 and
4000 r/min. The output speed is 500 r/min. The spring with the stiffness of 15 N/mm
and the preload of 150 N are installed between the centrifugal rotors. The influence
of the input rotate speed on the output torque is compared, the maximum (MAX),
minimum (MIN), average (MEAN) and mean square values (RMS) of the output
torque are calculated at different speeds.

Figure 6 shows the time-domain variation curve of input torque and output torque
when the input rotate speed of vari-speed drive is from 500 to 4000 r/min. The
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Fig. 5 Contact force between the roller and the elliptical orbit of the framewhen Install compression
springs between rotors or not. a–h are the contact forces for the 8 rollers

changes of torque present periodicity, and when the input speed is larger, the torque
period is shorter, the frequency of change is faster, and the impact is more severe.
The peak values of output torque and input torque increase with the increase of input
speed.

As shown in Figs. 7 and 8, with the increase of the input speed, the MAX, MIN,
MEAN and RMS of the input torque and the output torque all show an upward trend.
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Fig. 6 Time domain variation of input torque and output torque when input rotate speed is 500–
4000 r/min and output rotate speed is 500 r/min. a 500 r/min, b 1000 r/min, c 1500 r/min, d 2000
r/min, e 2500 r/min, f 3000 r/min, g 3500 r/min, h 4000 r/min

The increases of the MAX and MIN values are obviously greater than the MEAN
and RMS, which indicates that the higher the input speed can cause the greater the
increase of the contact force between the rollers and the frame; With the increase of
the input speed, under the condition that the overall mass remains unchanged, the
kinetic energy of the system increases, and the work done by the torque per unit time
increases, so the input torque increases and amore obvious impact will be caused too.
It is not conducive to the improvement of the transfer efficiency. The compression
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Fig. 7 The statistical
parameters of the input
torque change with the input
speed

Fig. 8 The statistical
parameters of the output
torque change with the input
speed

spring with the greater stiffness can be replaced when the input rotating speed is
higher. At the same input rotate speed, the input torque is less than the output torque.

4 Conclusions

This paper presents a new type of stepless transmission device. According to the
structure of the device, the output speed and torque of the planetary mechanism can
be controlled; and the self-adaptive stepless change of the transmission device can
be realized in principle. A spring is added into the stepless transmission device to
make the rollers and the track always contact. Through the simulation analysis of the
model, the following conclusions are obtained:

(1) During the working process of the vari-speed drive, the roller contacts with the
frame due to the influence of the centrifugal force. When the contact force is 0,
the roller is separated from the frame. An appropriate spring installed between
the centrifugal rotor can reduce the impact between the frame and the roller,
which makes it constantly be in contact.
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(2) With the increase of input rotate speed, both the output torque and input torque
have a tendency to increase. The increases of maximum and minimum values
are greater than those of average and mean square values. It indicates that the
higher the speed can cause the greater impact.

Funding This study was funded by the National Natural Science Foundation of China (No.
51975068 and 52175120) and the Fundamental Research Funds for the Central Universities (No.
3102020HHZY030001).
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The Fatigue Failure Prediction
of a Vari-Speed Drive with Different
Rollers

Jing Liu, Ximing Zhang, Jingtao Shang, Jin Li, and Shizhao Ding

Abstract The track is the main failure part of vari-speed drive. The failure damage
of the track disc will generate huge vibrations. The fatigue fracture became a problem
during the normal working process of these machines. However, the steel roller has a
higher deformation resistance capacity. The large contact stress of the steel roller will
generate larger amplitude of cyclic stress and decrease the life of vari-speed drive. In
order to improve the reliability of the vari-speed drive and increase the fatigue life, the
rubber roller is used to replace the steel roller. A 3D model of the vari-speed drive is
established by using Solidworks. The contact analysis of track is calculated by using
Adams. The dynamic stress is analyzed by using the rain-flow counting method,
which can determine the amplitudes and mean values of counted cycles. According
to the assumption of a linear Palmgren–Miner hypothesis of damage accumulation
and typical fatigue characteristics of the material, the fatigue failure life of the roller
is calculated. The results show that the contact force of the steel roller is more than
that of the rubber roller. The contact stress of the steel roller is much larger than the
rubber roller. The fatigue life of the steel roller is less than that of the rubber roller.
This paper presents a new method for solving the fatigue failure of the vari-speed
drive.
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1 Introduction

The track is the main failure part of vari-speed drive. The time-varying contact force
will generate the time-varying contact stress, which can result in the fatigue failure
of the track during the working processing of vari-speed drive. Although the vari-
speed drive is generally designed with a high safety margin in order to avoid the
unacceptable fatigue strength of the material, the large number and high amplitude
cyclic loading and local stress concentrations allow cracks to grow even when the
fatigue strength exceeds the average load value.

A significant amount of researchworks has been published on the vari-speed drive.
Guo et al. [1] et al. established a simulation model of a hydraulic machinery step-less
transmission based on the AMESim. They studied the effects of major parameters
on the hydraulic machinery step-less transmission. Li and Wei [2] studied the power
machine step-less transmission on the electric vehicle. Xia and Sun [3] proposed a
new continuously variable transmission system. Li and Zhu [4] proposed a novel
noncircular gear design method based on a modified high-order elliptical pitch curve
for an infinitely variable transmission and power loss evaluation of a noncircular
gear pair is investigated. Li et al. [5] proposed a novel configuration factor table
method for the configuration synthesis of basic no-spin traction continuously variable
transmission mechanisms. Olyaei et al. [6] presented a new ratcheting continuously
variable transmission mechanism. Qian andWang [7] analyzed the fatigue life of the
vehicle body according to the Miner damage theory. Shinde et al. [8] et al. proposed
a newMicrosoft excel-based algorithm for the modified graphical rain-flow counting
method. Ding and Chen et al. [9] presented nonlinear fatigue damage for existing
lifting equipment.

Most research works on the fatigue failure of vari-speed drives were limited to
simulation analysis and structural design. The deformation of rubber roller is larger
than steel roller, which can decrease the cvalue of contact stress. The steel roller with
large contact stress can be replaced by rubber roller. This paper is focused on using
the rubber roller instead of the steel roller to decrease the time-varying contact stress
and increase the fatigue life of vari-speed drive. A 3Dmodel of the vari-speed drive is
established by using Solidworks. The contact analysis of track is calculated by using
Adams. The dynamic stress is analyzed by using the rain-flow counting method,
which can determine the amplitudes and mean values of counted cycles. According
to the assumption of a linear Palmgren–Miner hypothesis of damage accumulation
and typical fatigue characteristics of the material, the fatigue failure life of the rollers
is calculated. This paper presents a new method for increasing the fatigue failure of
vari-speed drive.
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Fig. 1 Structure diagram of
the track Track

2 Failure Description of Vari-Speed Drive

The motion and torque of vari-speed drive are transmitted by the planetary axle and
rotor. The vari-speed drive is important for the machine-driven system, which is
used in rolling mills, ships, etc. The gearing inputs the torque by the input axis. The
torque between the input axis and output axis is transmitted by the rotor and roller.
The transmission efficiency relates to the time-varying contact force between the
roller and track. Hence, the changes of time-varying contact force greatly affect the
fatigue life of vari-speed drive. In reality, the fracture position of vari-speed drive is
given in Fig. 1, which can be considered as the failure type of high cyclic stress.

3 Simulation Method Descriptions

3.1 A 3D Model

The structural diagram of stepless transmission is given in Fig. 2. According to
the structural diagram, A 3D model of the vari-speed drive is established by using
Solidworks and the contact analysis of track is calculated by using the Adams.

Fig. 2 Structural diagram of
vari-speed drive

Input shaft and sun 
gear

Planetary gear

Output shaft and frame

Centrifugal rotor
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3.2 Contact Stress

The non-idea Hertzian contact calculation program is given in Fig. 3, in which a0j is
initial the half contact width; n is the total number of elements in the contact area as
given in Fig. 3; Q1 is the applied load; and ε is the calculation accuracy.

In this method, the maximal stress of the contact area is given as

pmax = √
E ′Q(LπRz) (1)

The equivalent radius is described as

Rz = 1
1
R1

+ 1
R2

(2)

The equivalent elastic module is defined as

Fig. 3 The non-idea Hertzian contact calculation program
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E ′ = 1/

(
1 − v2

1

E1
+ 1 − v2

2

E2

)
(3)

where R1 and R2 is the contact body radius; E1 and E2 is the contact body elastic
modulus; ν1 and ν2 is the Poisson’s ratio; and the half contact width is described as

a = √
4RzQ(LπE ′) (4)

where L is length of roller. The contact stress of an arbitrary point in the width of the
contact area (−b < x < b) is defined as

p = pmax

√

1 −
( x
a

)2
(5)

Then, the calculated load Q is given as

4
m×n∑

j=1

a jb j p j = Q (6)

1

πE ′

m×n∑

j=1

Di j p j = δC − zi (xi , yi ) i = 1, 2, · · · , n (7)

where, Dij is integral of flexibility coefficient. The contact stress distributed in the x
direction is given as

p j=poj
√
1 − (x ′/a j )2 (8)

where poj is the maximal contact stress. Moreover, its half contact width is described
as

a j=2Rz poj/E
′ (9)

The displacement generated by the stress of element j along the center of element
i is defined as

wi j = p0 j
πE ′

a j∫

−a j

x j+h j∫

x j−h j

√
1 − (x ′/a j )2√

x ′2 + (yi − x j − y′)2
= p0 j

πE ′ Di j (10)

where the flexibility coefficient Dij is given as
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Di j=
a j∫

−a j

x j+h j∫

x j−h j

√
1 − (x ′/a j )2√

x ′2 + (yi − x j − y′)2
dx ′dy′ (11)

The integral of flexibility coefficient Dij in the y’ direction is described as

Di j=
a j∫

−a j

√
1 − (x ′/a j )2 ln

(∣∣yi − y j
∣∣ + h j + √

x ′2 + (yi − y j + h j )2∣∣yi − y j
∣∣ − h j + √

x ′2 + (yi − y j − h j )2

)

dx ′ (12)

where h is width of slice. Then, more simplifications for Eqs. (6) and (7) are given
as

4
m×n∑

j=1

a jb j poj = Q (13)

1

πE ′

m×n∑

j=1

Di j poj = δC − zi (yi ) i = 1, 2, ..., n (14)

Because the contact stress cannot be negative, the nonnegative condition should
be

poj ≥ 0 j = 1, 2, ...n (15)

3.3 Result Analysis

According to the 3D model in Sect. 3.1, the initial load is 50 N. The contact force
between the steel roller/rubber roller and the rollaway nest is calculated. Then, the
contact stress between the steel roller/rubber roller and the rollaway nest is calculated.
Figures 4 and 5 are the contact force/stress of the steel/rubber roller distribution
diagram. The results show that when the operation is stable, the contact force of the
rubber roller has a lot of volatility, which is periodic. The contact force of steel has a
lot of volatility. The maximum value of the contact force of the steel roller is greater
than that of the rubber roller. The deformation of the rubber roller is more than that
of the steel roller. Thus, the contact stress of steel roller is more than rubber roller.
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Fig. 4 The contact force and
contact stress of the rubber
roller. a Contact force, and b
Contact stress

Fig. 5 The contact force and
contact stress of steel roller.
a Contact force, and b
Contact stress

4 Fatigue Life Prediction

Based on the assumption of a linear Palmgren–Miner hypothesis of damage accu-
mulation, by using typical fatigue characteristics of the material and contact force,
the fatigue life of the roller will be calculated.
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4.1 Rain Flow Counting Method

The time-varying contact stress of track of vari-speed drive is analyzed by using
the rain flow counting method [10], which can be used to determine the amplitudes
and mean values of counted cycles. The rain-flow matrices determined for the stress
histories of the track are shown in Figs. 6 and 7. The results show that the stress distri-
bution of the rubber roller likes normal distribution. Most of the stress is distributed
between 0 and 200 Mpa.

Fig. 6 The rain-flow matrices of the rubber roller. a The rain-flow stress matrices, and b The stress
cycle
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Fig. 7 The rain-flow matrices of rubber roller. a The rain-flow stress matrices, and b The stress
cycle

4.2 Fatigue Life

UsingMiner’s theory, the particular values of damageDi for each cycle or half-cycle
are defined as [11–14]

Di = ni
Ni

f or i = 1, 2, 3, ..., k (16)

where ni is equal to 1 for a cycle and 0.5 for a half-cycle, N i the number of cycles to
material failure computed from a uniaxial fatigue characteristic, and k is the number
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of cycles and half-cycles determined from the history using cycle a counting algo-
rithm. When the mean value is considered, the fatigue failure life can be calculated
using the Morrow stress-life characteristic.

Ni = 0.5 ∗ (
σai

σ ′
f − σmi

)
1
b (17)

where σ ai the cycle amplitude determined from the stress history on the housing using
the rain-flow algorithm, σmi the cycle means value determined from the stress history
of the housing using the rain-flow algorithm, σ ′

f is the fatigue strength coefficient,
and b is the fatigue strength exponent. According to the Palmgen–Miner hypothesis,
the total damage can be expressed as the sum of all the particular damage caused by
distinct individual cycles [15]. It is given as

D =
k∑

i=1

Di (18)

where k is the number of cycles determined from the stress history using the cycle-
counting algorithm. Then the expected fatigue life of the housing, T can be calculated
from the accumulated damage, D caused by each distinct cycle in the time interval
T 0 of the stress history.

T = T0
D

(19)

The fatigue life of the track is calculated according to the Morrow stress-life
characteristic and the hypothesis of fatigue damage accumulation. The results show
that the fatigue life of the rubber roller is more than that of the steel roller (Tables 1
and 2).

5 Conclusions

In order to improve the reliability of vari-speed drive and increase life, the rubber
roller is used to replace the steel roller. A 3D model of the vari-speed drive is estab-
lished by using Solidworks. The contact analysis of track is calculated by using
Adams. The dynamic stress is analyzed by using the rain-flow counting method.
According to the assumption of a linear Palmgren–Miner hypothesis of damage
accumulation, the fatigue failure life was calculated. When the operation is stable,
the contact force of rubber roller has a lot of volatility, which is periodic. The contact
force of steel has a lot of volatility. The maximum value of contact force of steel
roller is greater than that of the rubber roller. The deformation of rubber roller is
more than that of the steel roller. Thus, the contact stress of steel roller is more than
rubber roller. The stress distribution of rubber roller likes normal distribution. Most
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Table 1 The major
parameter of steel roller and
rubber roller

Type of roller

Parameter Steel roller Rubber roller

Fatigue strength coefficient (Mpa) 450 100

Fatigue strength exponent −0.14 −0.32

Table 2 The comparison of
life between steel roller and
rubber roller

Type of roller

Life Steel roller Rubber roller

Time(h) 161 488

of the stress is distributed between 0 and 200 Mpa. The fatigue life of rubber roller
is more than that of the steel roller.

Funding This study was funded by the National Natural Science Foundation of China
(No. 51975068) and the Fundamental Research Funds for the Central Universities (No.
3102020HHZY030001).
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Data: A Machine Learning Method
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Abstract Accurate state of health (SOH) estimation of the lithium-ion battery plays
an important role in ensuring the reliability and safety of the battery management
system (BMS). The data-drivenmethod based on the selection of degradation features
can be effectively applied to SOHestimation. In practice, lithium batteries oftenwork
in complex discharge conditions, but they are charged under constant current (CC)
conditions. Therefore, the suitable degradation features of the battery are extracted in
thiswork for accurate SOHestimation. First, the degradation features are summarized
and extracted from the CC charging data. Second, the Pearson correlation coefficient
is utilized to quantify the relationship between the extracted degradation features and
the battery SOH, thus determining the most influential degradation feature. Finally,
the long short term memory (LSTM) is used for model training and SOH estimation
based on the selected feature. The results show that LSTM model can give reliable
and accurate SOH estimation with R2 of 1 and lower mean absolute error (MAE)
and maximum error (MAX).
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1 Introduction

Lithium-ion batteries have been the important energy source of electric vehicles
(EVs) and energy storage systems owing to their advantages in terms of high effi-
ciency, high energy density, and long-life cycle [1]. However, their performance
gradually deteriorates with the increase of cycling. This degradation is a gradual
process, which can reduce the operating efficiency of the electrical systems and
potentially cause catastrophic failures [2]. Moreover, the battery is a dynamic and
nonlinear electrochemical system, which makes the state of health (SOH) estima-
tion more difficult in practice. Therefore, it is a demanding and challenging task
to develop a reliable SOH estimation technique for the battery management system
(BMS) to monitor the real-time performance of the battery during the operation.

Many methods have been proposed for the SOH estimation of the lithium-ion
battery and they can be generally divided into three categories, including direct
measurement methods, model-based methods, and data-driven methods [3]. The
direct measurement method can be easily applied to practice based on the measure-
ment of some degradation features such as degraded capacity and internal resistance
[4]. However, this kind of method is more suitable for off-line monitoring to check
the remaining useful life. And the errors from the measurement systems can lead to
the inaccurate SOH estimation. The model-based methods include empirical model
[5], electrochemical model [6], and electrical circuit model [7]. The empirical model
is developed based on the mathematical statistics so that it only gives a rough esti-
mation of the battery life. And the methods based on the electrochemical model and
the electrical circuit model need to consider the electrochemical mechanism of the
battery. Although these models can be applied to the real-time SOH estimation of
the battery, they present higher complexity, and the estimation accuracy is prone to
the model accuracy. In contrast, the data-driven method has high data processing
capabilities and therefore has been a research hotpot for battery SOH estimation
[8]. In addition, it does not need to consider the complex degradation mechanism of
the battery and can effectively learn and map the nonlinear relationship between the
degradation features and the battery SOH. In recent years, many data-drivenmethods
have been proposed for the lithium-ion battery SOH estimation and the degradation
features are mainly extracted from two processes, including the discharging process
and charging process.

Based on the discharging process, Pan et al. [9] used the extreme learningmachine
(ELM) tomap the relationship between the battery SOHand a series of health features
including terminal voltage, current, temperature, ohmic resistance and polarization
resistance. The maximum error and the mean absolute error (MAE) of the SOH
estimation are 0.0581 and 0.0238, respectively. In [10], a novel metabolic extreme
learning machine (MELM) was proposed for the battery SOH estimation using the
incremental values of the ohmic internal resistance, polarized internal resistance, and
degradation capacity. The results show that the MAE of the SOH estimation ranges
from 0.38 to 0.6%. On the other hand, the degradation features can be extracted
in the process of the charging phase. Zhang et al. [11] conducted the battery SOH
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prediction based on the ANN model. In this method, five training features were
extracted from different voltage regions in dQ/dV curves. However, the obtained
MAE of the predicted results are much larger, ranging from 2.79 to 3.52. In [4], a new
degradation feature was reconstructed based on the model parameter identification
of the selected first-order RC model in the constant voltage charging stage. The
MAE of the method ranges from 0.0088 to 0.0146. Based on the Oxford Battery
Degradation dataset, Fan et al. [12] proposed the gate recurrent unit-convolutional
neural network (GRU-CNN) for battery SOH estimation and the charging voltages
in the CC charging mode are selected as the training features. However, it is revealed
that the prediction error is high, for example, the overall MAE value of this method
is 0.62.

Although the above data-driven methods have achieved excellent SOH estima-
tion of the battery, a large number of features are used for model training and SOH
prediction can increase the computational burden. It is still a challenging task to
select the effective and few degradation features for reducing the computational
complexity and ensuing the estimation accuracy. On the one hand, the degrada-
tion feature extraction based on the model parameter identification can increase the
computational complexity of BMS. Also, the estimation results are easily affected by
the inaccurate model parameter identification. Furthermore, the lithium-ion battery
often works under the complex discharging conditions, while it is charged under CC
charging mode. Therefore, the battery SOH estimation based on the selection of the
degradation features from the charging data can facilitate the practical applications.

This paper summarizes and investigates the degradation features from the CC
charging voltage profiles based on the Oxford Degradation dataset [13]. Subse-
quently, the Pearson correlation coefficient is used to evaluate the correlation between
battery capacity and the degradation features, thus selecting themost effective feature
for model training. Finally, long short-term memory (LSTM) is used for model
training and SOH prediction based on the selected degradation features as it has the
advantage of processing the sequence data. It is showed that the estimation values
present a good agreement with the measured SOH with the R2 close to 1.

This paper is organized as follows. Section 2 presents the dataset and the degra-
dation feature extraction. In Sect. 3, the LSTM-based model and three benchmarks
are illustrated. The predicted results and discussions are given in Sect. 4. Finally, the
conclusions of the whole work are drawn in Sect. 5.

2 Dataset and Degradation Feature Extraction

2.1 Dataset

The data used in this study is the Oxford Degradation dataset [13] that is supported
by the battery intelligence lab at the University of Oxford. It involves the degradation
tests of 8 Kokam 740 mAh lithium-ion pouch cells (SLPB533459H4). In the process
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of the degradation test, all the batteries are placed in a thermal chamber of 40 °C and
charged in 1C CC mode until the terminal voltage reaches the nominal voltage of
4.2 V. To be specific, the charging data including voltage, current, cell temperature,
and capacity are collected every 100 cycles. Here the 8 tested cells are named Cell1,
Cell2, Cell3, Cell4, Cell5, Cell6, Cell7, and Cell8, in which the dataset from Cell1,
Cell2, Cell3, Cell5, Cell6, and Cell7 are used for model training and the other two
cells (Cell4 and Cell8) are used for model validation.

2.2 Degradation Feature Extraction

In this section, the degradation features are summarized and extracted from the
OxfordDegradation dataset. The charging voltages are specifically studied for degra-
dation feature extraction as the charging current and temperature are constant during
the test. Figure 1 illustrates the charging voltages and SOH profiles of Cell1 under
different cycles. It can be found the charging voltage exhibits differences at different
life stages. As the battery degrades, the terminal voltage of the battery increases more
slowly, therefore, it requires a longer charging time. TakeCell1 as an example, several
degradation features are studied and compared based on the Pearson correlation
coefficient to select the most effective one for model training.

The Mean Voltage. The first type of feature extracted from the charging data
denotes the calculated mean voltage when the battery charges at the start voltage V1
and stops charging at the end voltage V2. As can be seen from Fig. 2, the charging
voltage rises slower with the battery degrades. In different degradation stages, the
mean voltage calculated in the range of V1-V2 is different. To extract this feature, the
end voltage V2 is set as 2.8 V and the start voltage V1 is set as the different values.
Table 1 illustrates the correlation coefficients between the mean voltage calculated
using the different V1 and the battery SOH according to the Pearson correlation
coefficient. It is noted that the mean voltage has a high correlation with the battery
SOH, especially when the V1 is 2.8 V.

The Reached Voltage When Charging for the Same Duration. The second
type of degradation feature denotes the reached voltage when the battery charges for

Fig. 1 a Charging voltage. b SOH profiles with time
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Fig. 2 The charging voltage
under different levels of
degradation for the
extraction of the first feature
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Table 1 The correlation
coefficient between the mean
voltage from V1 to V2 and
SOH

Range for discharge stage (V1–V2) Correlation coefficient

2.8–4.2 −0.9950

3.0–4.2 −0.9880

3.2–4.2 −0.9880

3.4–4.2 −0.9882

3.6–4.2 −0.9520

3.8–4.2 −0.9898

4.0–4.2 0.0254

the same duration T from the start voltage V1. Figure 3 shows the charging voltage
profiles under the different levels of degradation. It can be seen the battery reaches the
different terminal voltage such as V3 and V4 when charging for the same time from
the start voltage V1. Here the start voltage V1 is set as 2.8 V considering the small
timedifferences under different charging cycles.According to thePearson correlation
coefficient, Table 2 shows the correlation coefficients between the charging duration
and the batterySOH. It is found that this typeof feature also presents a high correlation
with the battery SOH.

Fig. 3 The charging voltage
under different levels of
degradation for the extraction
of the second feature
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Table 2 The correlation
coefficient between the
reached voltage when battery
charging for same duration
from 2.8 V and SOH

Charge duration T (s) Correlation coefficient

130 −0.9863

260 −0.9835

520 −0.9844

780 −0.9693

1040 −0.9870

1300 −0.9799

1560 −0.9899

1820 −0.9932

2080 −0.9925

The Required Charging Time. The third type of degradation feature is the
required charging time from the start voltage V1 to the end voltage V2. As shown
in Fig. 4, the battery requires different charging times (e.g., 0-t1 and 0-t2) to reach
from V1 to V2 under different SOHs. Here, the start voltage V1 is respectively set
as 2.8, 3.0, 3.2, 3.4, 3.6, 3.8 and 4.0 V and V2 is set as the cut-off voltage (4.2 V) of
the battery. Similarly, Table 3 lists the calculated correlation coefficients between the
required charging time in different ranges of charging voltages and the battery SOH.

Fig. 4 The charging voltage
under different levels of
degradation for the
extraction of the third feature

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

Vo
lta

ge
 (V

)

3

3.5

4
V2

V1

t2t1

Table 3 The correlation
coefficient between the
required charging time from
V1 to V2 and SOH

Range for charge phase (V1-V2) Correlation coefficient

2.8–4.2 −0.9999

3.0–4.2 −0.9999

3.2–4.2 −0.9999

3.4–4.2 −0.9998

3.6–4.2 −0.9881

3.8–4.2 −0.9971

4.0–4.2 −0.9084
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Compared to the previous two types of degradation features mentioned above, this
degradation feature presents a higher correlation with the battery SOH. The correla-
tion coefficients are close to −1 when the V1 ranges from 2.8 to 3.2 V. Specifically,
these degradation features extracted from the charging stages of 2.8–4.2 V, 3.0–4.2 V,
and 3.2–4.2 V are described as f 1, f 2, and f 3.

Considering the higher correlation of these three indicators extracted from the
third type of degradation feature, every health feature is separately used for model
learning to compare their performance for the battery SOH prediction.

3 Methodology

3.1 Long Short Term Memory

LSTM is an improved version of the traditional recurrent neural network (RNN)
model, and it addresses the long-term dependence problem caused by the gradient
vanishing and has the advantage of dealing with the time sequence learning task
[14]. As result, it is used for SOH estimation in this work. As shown in Fig. 5, the
LSTM neural network consists of an output gate, a forget gate, an input gate and
some connections among these gates. These gates work together to retain useful
information and ignore unimportant information [15]. The learning process can be
expressed as the following equations:

ik = σ
(
Wi,x xk + Wi,hhk−1 + bi

)
(1)

σ σ tanh σ

tanh

hk-1

ck-1 ck

hk

hk

xk

fk ik
okc'k

Fig. 5 The structure of the LSTM network
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Fig. 6 SOH estimation results and errors of Cell4 based on feature f 1 and LSSVR model

fk = σ
(
W f,x xk + W f,hhk−1 + b f

)
(2)

ok = σ
(
Wo,x xk + Wo,hhk−1 + bo

)
(3)

c′
k = tanh

(
Wc,x xk + Wc,xhk−1 + bc

)
(4)

ck = fk ⊗ ck−1 + ik ⊗ c′
k (5)

hk = ok ⊗ tanh(ck) (6)

where hk and ik present the output and the input at the time k, respectively. ik , fk , ok ,
and ck denote the input gate, forget gate, output gate, and memory cell of the LSTM
neural network. c′

k is the intermediate calculation. And W and b correspondingly
represents the weights and biases of the gates. During the training stage, the weights
and bias can be automatically adjusted based on the backpropagation and gradient
descent optimization method [16]. The sigmoid activation function σ and hyperbolic
tangent activation function tanh are expressed as follows:

σ(x) = 1

1 + e−x
(7)

tanh(x) = ex − e−x

ex + e−x
(8)

where the output value of the sigmoid activation function is located between 0 and
1, and the output range of the hyperbolic tangent activation function is between -1
and 1.
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3.2 Evaluation Metrics

In this paper, the Pearson correlation coefficient is used to evaluate the correlation
between the extracted features and the battery SOH, and it is calculated as:

ρxi =
∑

(xi − xi )(y − y)
√∑

(xi − xi )
2 ∑

(y − y)2
(9)

where xi and xi stand for the measured value and the mean of the measured value,
respectively. y and y are the output value and the mean of the output value. Addi-
tionally, three evaluation metrics, including R2, mean absolute error (MAE), and
maximum error (MAX), are applied to assess the performance of the LSTM model
for SOH estimation of the battery based on the selected degradation features.

R2 = 1 −
∑n

i=1(yi − xi )
2

∑n
i=1(xi − xi )

2 (10)

MAE = 1

n

n∑

i=1

|xi − yi | (11)

MAX = max|yi − xi | (12)

where n and yi denote the total number of the input data and the estimated value,
respectively.

4 Results and Discussions

In this section, the data of six cells from the dataset is used for model training and
Cell4 and Cell8 are used to validate the effectiveness of the extracted degradation
features for the battery SOH estimation. Based on the extracted degradation feature
f 1, Figs. 6, 7, 8, 9, 10 and 11 compare the SOH estimation results of two cells using
least squares support vector regression (LSSVR), feedforwardneural network (FNN),
and LSTMmodels. The absolute error is utilized in the evaluation to the accuracy of
the prediction models. By contrast, the LSTM model provides more accurate SOH
estimation according to the absolute errors.Moreover, Table 4 exhibits the estimation
results of three models using different degradation features. It can be seen that the
degradation features f 2 and f 3 can achieve a more accurate SOH estimation of the
battery, especially for the feature f 3. Compared to FNN and LSSVR models, the
R2 obtained by LSTM model is closer to 1 and the MAE and MAX of the SOH
estimation are lower. For example, it achieved 1.4 × 10–5 in MAE, 5.1 × 10–3 in
MAX, and 0.9997 in R2 for the Cell4 when using the degradation feature f 3.
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Table 4 MAE, MAX, and R2 of SOH estimation

Model Metrics Test cell

Cell4 Cell8

f 1 f 2 f 3 f 1 f 2 f 3

LSSVR MAE 5.2 × 10–4 8.4 × 10–5 6.9 × 10–4 1.8 × 10–3 1.8 × 10–3 1.6 ×
10–3

MAX 1.5 × 10–2 8.9 × 10–3 2.3 × 10–3 1.6 × 10–2 1.2 × 10–2 8.0 ×
10–3

R2 0.9986 0.9995 0.9996 0.9740 0.9748 0.9795

FNN MAE 2.4 × 10–4 3.6 × 10–4 2.6 × 10–3 1.0 × 10–3 6.1 × 10–3 1.4 ×
10–3

MAX 3.7 × 10–2 9.0 × 10–3 9.6 × 10–3 2.6 × 10–2 1.0 × 10–2 2.9 ×
10–2

R2 0.9594 0.9956 0.9697 0.9881 0.9813 0.9902

LSTM MAE 4.0 × 10–5 1.5 × 10–5 1.4 × 10–5 2.2 × 10–5 3.3 × 10–6 1.6 ×
10–6

MAX 1.2 × 10–2 5.5 × 10–3 5.1 × 10–3 1.2 × 10–2 4.4 × 10–3 3.50 ×
10–3

R2 0.9990 0.9996 0.9997 0.9995 0.9998 0.9998

Table 5 MAE and MAX of SOH estimation based on the training features of charge voltages [12]

Test cell Feature GPR GRU-CNN

MAE MAX MAE MAX

Cell4 Charge voltages 2.12 5.83 0.61 1.60

Cell8 2.65 4.13 0.65 1.62

Furthermore, Table 5 presents the SOH estimation results obtained by GPR and
GRU-CNN models based on this dataset, while the selected training features are the
charging voltages [12]. It does not consider the extraction of the degradation features,
thus obtaining the relatively tough estimationwith largeMAEandMAX.By contrast,
the LSTM model combined with the extracted degradation features in this work can
offer higher SOH estimation accuracy, which also validates the effectiveness of the
extracted degradation features for SOH estimation. Meanwhile, the single training
feature can effectively reduce the computational complexity of the SOH estimation
than using multiple features.

5 Conclusions

In this paper, we extracted and summarized the effective degradation features from
the CC charging voltage data for the battery SOH estimation based on the machine
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Fig. 7 SOH estimation results and errors of Cell8 based on feature f 1 and LSSVR model

Fig. 8 SOH estimation results and errors of Cell4 based on feature f 1 and FNN model

Fig. 9 SOH estimation results and errors of Cell8 based on feature f 1 and FNN model
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Fig. 10 SOH estimation results and errors of Cell4 based on feature f 1 and LSTM model

Fig. 11 SOH estimation results and errors of Cell8 based on feature f 1 and LSTM model

learning methods. Three types of features are extracted and compared based on the
Pearson correlation coefficient. It is found that the required charging time in the
charging ranges of 2.8–4.2 V, 3.0–4.2 V, and 3.2–4.2 V are strongly correlated with
the battery SOH. Especially for the range of 3.2–4.2 V, the extracted degradation
feature can provide a more accurate SOH estimation. Compared to LSSVR and FNN
models, the LSTM model can achieve higher estimation accuracy with R2 close to
1 and lower MAE and MAX. It is important to mention that the estimated accuracy
is higher than the previous study based on the training features of charge voltages.
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Harmonic Response Analysis
of a Dual-Rotor System with Mass
Unbalance

Yubin Yue and Hongjun Wang

Abstract The finite element model of a dual-rotor system (coaxial structure) was
established by Ansys entity model. The inner rotor is supported by three bearings
while the outer rotor is supported by two bearings. The outer rotor connects the inner
rotor by an intermediary bearing. The critical speed Characteristic of the dual-rotor
system was calculated by selecting the inner rotor and outer rotor separately as the
main excitation source. The harmonic response analysis of the dual-rotor systemwith
mass unbalance were analyzed in order to study the influence of mass unbalance of
the rotor system. The results indicate that the outer rotor with mass unbalance is
more likely to cause resonance than the inner rotor with mass unbalance, but the
resonance amplitude is relatively small. It is possible to reduce the harmonic reso-
nance frequency in the dual-rotor system by improving the design of the outer rotor.
Harmonic resonance amplitude gradually increases with the increase of excitation
frequency.
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Fig. 1 Structural diagram of a dual-rotor system

1 Introduction

Modern aero-engine and gas turbine usually adopt the structure of dual-rotor suit. The
rotor includes the Disk, blade and shaft of compressor and turbine, and is connected
to the casing through rolling bearing and support system.Due to the double frequency
excitation, airflow disturbance, structural nonlinearity and other factors of the high-
and low-pressure rotors, the vibration of the high- and low-pressure rotors will be
transmitted through the support and the intermediate bearing, and then the vibration
between the rotors will be coupled. At the same time, the intermediate bearing has
clearance and Hertzian contact nonlinearity, which increases the difficulty of rotor
dynamics analysis and design [1–3].

The critical speed of the dual-rotor systemwith intermediate bearing ismuchmore
complex than that of the single rotor system. Themain reason is that the critical speed
needs to be divided into the critical speed mainly excited by the low-pressure shaft
and the critical speed mainly excited by the high-pressure shaft. The high and low
rotors can rotate in the same direction and in the opposite direction, and the critical
speed under the same and opposite rotation is also different, which increases the
complexity of the solution.

Scholars at home and abroad have carried out a lot of research work on unbalance
fault of rotor system, including critical speed solution of dual-rotor system, unbalance
force fault mechanism, numerical simulation analysis, experimental verification and
unbalance fault identification and diagnosis [4–10].

Based on the general finite element software ANSYS, with the help of its natural
mode solution module, the critical speed solution method of dual-rotor system under
unbalanced excitation is given, and the influence of unbalanced excitation on the
spectrum characteristics of dual-rotor system is studied.
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2 Finite Element Model Construction of Dual-Rotor
System

2.1 Physical Model

As shown in Fig. 1, the model consists of an inner (low-pressure) rotor and an outer
(high-pressure) rotor system. The shaft of the inner rotor is solid and the shaft of
the outer rotor is hollow. The inner rotor is supported by bearing1, bearing2 and
bearing5, and the outer rotor is supported by bearing3 intermediate bearing and
bearing4 support bearing. The two rotors are connected by bearing3 intermediate
bearings. Disk1, Disk2, Disk3 and Disk4 represent low pressure compressor, high
pressure compressor, high pressure turbine and low-pressure turbine respectively.
The dimension parameters of inner and outer rotor shafts are shown in Tables 1 and
2. The position and setting parameters of the bearing are shown in Tables 3 and 4.
The speed curves of inner and outer rotors are shown in Table 5.

Table 1 Size of the shafts
(length/diameter)

Parameters L1/D1 L2/D2 (in), D2 (out)

Values (m) 1.73/0.04 0.7/0.062, 0.08

Table 2 Disk properties for
the rotor system

Parameters Diameter (m) Thickness (m) Density (kg/m3)

Values (m) 0.3 0.03 7850

Table 3 Component location
for the rotor system

Component Position

1 Bearing1 0.0755

2 Disk1 0.4885

3 Bearing2 0.807

4 Bearing3 0.895

5 Disk2 1.1275

6 Bearing4 1.351

7 Disk3 1.483

8 Disk4 1.565

9 Bearing5 1.670
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Table 4 Bearing properties
for the rotor system

K11 (MN/m) K22 (MN/m)

Bearing1 8.1 8.1

Bearing2 10.5 10.5

Bearing3 8.1 8.0

Bearing4 10.5 10.5

Bearing5 10.5 10.5

Table 5 Speed curve of the
rotor system

Inner rotor (rad/s) Outer rotor (rad/s)

1 0 0

2 105 314

3 209 419

4 314 523

5 419 628

6 523 733

7 628 837

8 733 942

9 837 1047

2.2 Finite Element Model of the Dual-Rotor System

The dynamic model of the dual rotor system was established by using finite element
method. The shaft end is modeled by a beam, and the disk is regarded as a rigid
body. The rotational inertia of the shaft end and the disk are considered in the model
[11–13].

2.2.1 Rigid Disk Model

Take the displacement x ,y and the angle of the transverse vibration of the rigid disk
θx , θy is the generalized coordinate, which is shown in Fig. 2. After obtaining the
kinetic energy of the disk, the Lagrange equation of motion is substituted to obtain
the differential equation of motion of the rigid disk:

{
Md q̈1d + �J q̇2d = F1d
Md q̈2d − �J q̇1d = F2d

(1)

where Md =
[
m

Jd

]
, q1d =

[
x
θx

]
, q2d =

[
y
θy

]
, J =

[
m

Jp

]
. Md represents

the mass matrix of the disk. m represents the mass of the disk. Jd represents the
diameter moment of inertia. � represents the angular velocity of disk rotation. Gd
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Fig. 2 Schematic diagram
of the coordinate system of
disk element

= �J represents the rotation matrix of the disk, and Jp represents the polar moment
of inertia. F1d and F2d represent the corresponding generalized forces, including
unbalance force, rubbing force, binding force at the support, forces between adjacent
elements and moments, etc.

2.2.2 Flexible Shaft Element Model

Take the generalized displacements at points A and B of the two ends of the flexible

shaft element q1s and q2s, which is shown in Fig. 3, where q1s =
[
xA θx A xB θx B

]T
,

q2s =
[
yA θyA yB θyB

]T
.

The differential equation of motion of flexible shaft element can be obtained by
substituting Lagrange equation of motion:

{
MSq̈1S + �JS q̇2S + Ke

sq1s = F1S
MSq̈2S − �JS q̇1S + Ke

sq2s = F2S
(2)

Timoshenko beam-shaft model is adopted. Where KS,MS, Js represent the stiff-
ness matrix, mass matrix and polar moment of inertia matrix of the shaft element
respectively. F1s and F2s represent the corresponding generalized forces.

Fig. 3 Schematic diagram
of the coordinate system of
shaft element
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2.2.3 Intermediary Bearing Model

The motion differential equation of the intermediate bearing and the supporting
assembly can be expressed as:

−Cbq̇b − Kbqb = Fb (3)

where Cb represents the bearing damping matrix. Kb represents the bearing stiffness
matrix. qb represents the bearing displacement, and Fb marks the bearing external

force.Cb and Kb can be written as Cb =
[
cxx cxy
cyx cyy

]
,Kb =

[
kxx kxy
kyx kyy

]
, cxx = cyy , kxx

= kyy ,cxy = cyx = 0, kxy = kyx = 0.

2.2.4 Dynamic Modeling of the Dual-Rotor System

The independent differential equations of the double rotor system are divided into
the differential equations of the low-pressure rotor and the high-pressure rotor.

Differential equation of motion of low-pressure rotor system:

{
MLq̈1L + �L JL q̇2L + KLq1L = F1L

MLq̈2L − �L JL q̇1L + KLq2L = F2L
(4)

where q1L = [
x1, θx1, x2, θx2, . . . xM , θxM

]T
, q2L =[

y1, θy1, y2, θy2, . . . yM , θyM
]T
.

Differential equation of motion of high-pressure rotor system:

{
MHq̈1H + �H JH q̇2H + KHq1H = F1H

MHq̈2H − �H JH q̇1H + KHq2H = F2H
(5)

where q1H = [
xM+1, θx(M+1), xM+2, θx(M+2), . . . xM+N , θx(M+N )

]T
,

q2H = [
yM+1, θy(M+1), yM+2, θy(M+2), . . . yM+N , θy(M+N )

]T
.

ML and MH are the integrated mass matrices of the low-pressure rotor system
and the high-pressure rotor system. Ω L J L , and ΩH J H are the integrated rotation
matrices of the low-pressure rotor system and the high-pressure rotor system. KL
andKH are the integrated stiffness matrices of the low-pressure rotor system and the
high-pressure rotor system. F1L, F2L, F1H and F2H are external excitation.M and N
are the total number of nodes of the low-pressure rotor system and the high-pressure
rotor system respectively.

Considering all the damping, stiffness and mass matrices of the shaft, disc and
bearing, the general dynamic equation of the double-rotor system is:

Mq̈ + (C + �LGL − �HGH )q̇ + Kq = Fu + Fg (6)
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Fig. 4 Unbalance excitation of a dual-rotor system

where M, C and K are the mass matrix, damping matrix and stiffness matrix of
the double-rotor system respectively. q is the displacement vector. �L and �H are
respectively the speed of the low-pressure rotor and the high-pressure rotor. GL and
GH are the rotation matrices of the low rotor and the high rotor respectively. Fu is
the unbalance excitation vector of the rotor system. Fg is the gravity vector.

2.3 Unbalanced Excitation

As shown in Fig. 4, the rotation direction of the inner and outer rotors is positive
while the unbalance occurs on Disk1 of the inner rotor and Disk2 of the outer rotor.
The unbalance excitation is added to the outer diameter of the Disk (point A and
point B), and the unbalance is 0.15 kg mm. By simulating the actual monitoring,
the vibration monitoring points are arranged at the front face a of low-pressure
compressor Disk1, the rear face b of low-pressure turbine Disk4 and the front face c
of high-pressure compressor Disk2. We studied the influence of the single unbalance
and coupling unbalance of Disk1 and Disk2 on the spectrum characteristics of the
dual rotor system.

3 Simulation

3.1 Calculation of Critical Speed Characteristic
of Dual-Rotor System

By solving the critical speed of the outer rotor when the inner rotor is the main
excitation and the critical speed of the inner rotor when the outer rotor is the main
excitation respectively, the critical speed spectrum of the double-rotor system is
drawn according to the obtained results, as shown in Fig. 5. The abscissa is the
inner rotor speed, while the vertical axis is the outer rotor speed. The oblique line
L represents the speed curve of the rotor system, and the intersection point of the
modified line and the critical speed spectrum is the critical speed point of the dual-
rotor system. Specific critical speed values are shown in Tables 6 and 7.
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Fig. 5 Critical speed
spectrum of a dual-rotor
system

Table 6 The critical speed of
the inner rotor (main
excitation)

d e g

Critical speed (rad/s) 482.6 522.9 796.4

Table 7 The critical speed of the outer rotor (main excitation)

a b c f

Critical speed (rad/s) 402.0 469.3 512.7 735.7

3.2 Harmonic Resonance

As shown in Figs. 6, 7 and 8, when Disk1 alone is unbalanced, resonance occurs at
64, 79 and 120 Hz. When Disk2 is unbalanced alone, resonance occurs at 64, 79,

Fig. 6 Harmonic response
of Disk1 alone with mass
unbalance
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Fig. 7 Harmonic response
of Disk2 alone with mass
unbalance

Fig. 8 Harmonic response
of Disk1 and Disk2 with
mass unbalance

83 and 120 Hz, and an 83 Hz resonance point is added relative to Disk when Disk
is unbalanced alone. It can be judged here that due to the existence of intermediate
bearings, Disk2 is more likely to cause resonance, but the amplitude is much smaller
than the resonance induced by Disk1 unbalanced fault. Therefore, the resonance at
this time is also easier to suppress.When Disk1 and Disk2 add unbalanced excitation
at the same time, the 83 Hz resonance point that appears before disappears, which
may be because the introduction of Disk1 unbalance inhibitions the generation of
resonance, but also leads to the increase of resonance amplitude.

As shown in Fig. 9, comparative analysis of the harmonic response amplitude of
the unbalanced excitation was made. Obviously, when Disk1 and Disk2 are simul-
taneously unbalanced excitation, the vibration amplitude of face a and face c of the
two end faces of the inner and outer rotor is larger, especially the face c section of
the outer rotor. With the increase of the excitation frequency, the vibration amplitude
gradually increases.
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Fig. 9 The amplitude of the
harmonic response varies
with mass unbalance

4 Conclusions and Discussions

A finite element model of unbalance fault of a double-rotor system is established, the
critical speedCharacteristic of the dual-rotor systemwas calculated and the harmonic
response of the system under unbalance excitation is studied. Some conclusions
drawn from the study can be summarized as follows.

(1) Under the excitation of unbalanced force, the outer rotor is more likely to cause
resonance than the inner rotor, but the resonance amplitude is relatively small;

(2) It is possible to reduce the resonant frequency in the dual-rotor system by
improving the design of the outer rotor;

(3) Under the excitation of unbalanced force, the resonance amplitude gradually
increases with the increase of excitation frequency;

In the future, we hope tomake further study about the dynamics of unbalance force
in the double-rotor system. The transfer matrix method will be used for analysis, the
unbalance force will be loaded to other Disks for further analysis to verify the above
conclusion.
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A Novel Method for Stacking
Optimization of Aeroengine Multi-stage
Rotors Based on 3D Deviation Prediction
Model

Jia Kang, Jun He, Zhisheng Peng, Haizhou Huang, and Shixi Yang

Abstract The assembly precision of high pressure compressor (HPC) multi-stage
rotors is critical to the healthy and high-performance operation of aeroengine. The
traditional trial assemblymethod usually requiresmultiple disassembly and assembly
of rotors to ensure assembly precision, which is cumbersome and may cause damage
to parts. It is important to predict and optimize the stacking precision of multi-stage
rotors to improve the assembly quality and reduce aeroengine operational failure.
This paper proposes a novel method for stacking optimization of aeroengine multi-
stage rotors based on 3D deviation prediction model. First, the three-dimensional
deviation propagation and accumulation process in the stacking process of a four-
stage rotor is deduced using the coordinate transformation method, and the 3D devi-
ation prediction model is established to derive the concentricity and perpendicularity
of rotors under different bolt hole phase combinations; Second, the Gaussian distri-
bution is used to simulate the radial and axial runout data of the upper end surface of
each stage of rotor, and the center and unit normal vector of the upper end surface of
rotors are obtained by the least squares method, then the predicted values of concen-
tricity and perpendicularity of rotors under different bolt hole phase combinations
are calculated through the 3D deviation prediction model; Third, a dual-objective
integer optimization function is established, and the optimal installation phase and
the corresponding predicted values of concentricity and perpendicularity of rotors are
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obtained. The proposed method can predict the concentricity and perpendicularity of
rotors and optimize the stacking phase accurately, so as to achieve the target stacking
precision requirements through a single assembly, which can provide theoretical
guidance for the actual stacking process of aeroengine multi-stage rotors.

Keywords Stacking optimization · Multi-stage rotors · 3D deviation prediction
model · Concentricity · Perpendicularity

1 Introduction

Assembly is one of the most crucial technique links in the field of aeroengine manu-
facturing. The stacking precision of core-engine HPC has a huge influence on the
aeroengine performance [1]. Due to the manufacture error and leverage effect, the
geometry deviation of aeroengine multi-stage rotors will propagate and accumulate,
which may lead to severe vibration and even failure of aeroengine [2]. Concentricity
and perpendicularity are set as the key parameters to evaluate and control the stacking
quality of aeroenginemulti-stage rotors,which should satisfy the requirements simul-
taneously [3]. Therefore, reasonable deviation propagation prediction and stacking
optimization method of rotors should be developed to ensure the stacking precision
and simplify the assembly process.

Lots of studies have been carried out to analyze the deviation propagation process
and optimize the assembly precision. Hussian et al. [4] proposed the “straight-build
assembly” and minimize eccentricity of two-dimensional rotating machines stage-
by-stage. Lafond et al. [5] introduced Jacobian matrix into mechanical assembly
deviation propagation, and use virtual joints to simulate the three degrees of freedom
of translation and three rotation directions. Desrochers et al. proposed the Torsor
model to describe the assembly of multi-stage rotors and combined the Jacobian
matrix and Torsor model to analyze and calculate the geometric variations in three-
dimension space [6–8]. Chen et al. [9] introduced four major 3D tolerance anal-
ysis model, T-Map, Matrix, Unified Jacobian-Torsor and DLM, and compared the
characteristics in different aspects.

Many geometry deviation modeling methods are used to analyze the deviation
propagation of aeroenginemulti-stage rotors assembly, and some research also devel-
oped methods to control the geometry deviation and imbalance of assembly [10,
11]. Yang et al. [12] proposed a variation propagation control method for straight-
build assembly by controlling the rotor eccentricity and calculated the probability of
exceeding a particular value with Monte Carlo simulation. Kang et al. [13] analyzed
the transmission of deviations of the rigid-compliant bolted connected aeroengine
shell during the assembly process with Jacobian-Torsor matrix. Chen et al. [14]
used the genetic algorithm to optimize the coaxiality and unbalance to improve
the assembly quality, and proposed a new assembly optimization strategy. Zhang
et al. [15] predicted the eccentricity of aeroengine rotors with the method of image
identification and machine learning.
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The stacking optimization of multi-stage rotors is actually integer and multi-
objective optimization, and the establishment of reasonable deviation prediction
model needs to consider dimensions, objectives and computational complexity, etc.
Researches above ignored some of listed aspects or assumed the phase adjustment
as continuous, which may affect the accuracy of stacking prediction and optimiza-
tion of rotors. Therefore, the deviation propagation modeling and the multi-objective
integer optimization of aeroengine multi-stage rotors awaits further study.

The paper proposed a novel optimizationmethod for aeroenginemulti-stage rotors
stacking based on 3D deviation prediction model, which was established with the
coordinate transformation method under the rigid body assumption and can predict
the concentricity and perpendicularity of rotors in different bolt hole phase combi-
nations. Furthermore, a dual-objective integer optimization method was presented to
optimize the stacking phase.

The rest of the paper is organized as follows: Sect. 2 used the coordinate transfor-
mation to analyze the deviation propagation process and established the 3D deviation
predictionmodel. Section 3 analyzed the predicted values with simulated runout data
of rotors and optimized the stacking phase. The conclusion is presented in Sect. 4.

2 3D Deviation Prediction Model

2.1 Establishment of Coordinate Systems

The structure of multi-stage rotors assembly of aeroengine HPC is shown in Fig. 1,
which is stacked by single-stage rotors. Each stage of rotor is positioned radially
and axially in the way of interference fit, and connected through bolt holes evenly
distributed on the rabbet joint surface.

The establishment of the coordinate system is the premise for the aeroenginemulti-
stage rotors stacking prediction by the coordinate transformation method. This paper
takes the stacking process of four-stage aeroengine rotors as an example, each stage
of which has 32 bolt holes in the rabbet joint surface.

Rotation Axis

Fig. 1 Structure of aeroengine HPC multi-stage rotors
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Fig. 2 Single-stage rotor
and the coordinate system

First, the radial and axial runout data of the upper and lower surfaces of each stage
of the rotor by measuring instruments or simulation method. Then the least square
method is used to fit the radial and axial runout data to obtain the center and unit
normal vector of the joint surface of the rotor.

As shown in Fig. 2, take the lower end surface of the first-stage rotor as the
reference plane and establish a global coordinate system {A0} = O0α0β0γ 0, in
which γ 0 is the unit normal vector of the lower end surface of the first-stage rotor.
The axis that passes through the center of the lower end surface O0 and coincides
with γ 0 is set as the reference axis during the rotors stacking process. α0 and β0 are
orthogonal unit vectors in the reference plane that perpendicular to γ 0.

In the global coordinate system {A0}, O∗
1 is the center of the upper end surface

of the first-stage rotor and γ ∗
1 is the upward normal vector of the surface that pass

through O∗
1 . The unit vector α∗

1 is defined along the direction of the connection of
O∗

1 and one of the bolt holes centers, then the unit vector β∗
1 can also be determined,

thereby established the local coordinate system
{
A∗
1

} = O∗
1α

∗
1β

∗
1γ

∗
1. Since each stage

of rotor have similar characteristics as the rotating body, the local coordinate system
of the upper end surface of the second and third stage rotor, i.e.

{
A∗
2

} = O∗
2α

∗
2β

∗
2γ

∗
2

and
{
A∗
3

} = O∗
3α

∗
3β

∗
3γ

∗
3, are established in the same way.

This paper assumed rotor as a rigid body, thus the deformation of rotors during
the stacking process is ignored, and it should be noted that the upper end surface
of the lower stage rotor is aligned with the bolt holes in the lower end surface of
the higher stage rotor, and the center of the two surfaces coincides with the normal
vector over the center, so the coordinate systems corresponding to the two surfaces
can be regarded as the same coordinate system. Besides,rotor1 is used to represent
the first stage of rotor, and rotor2 represents the second stage of rotor, and so forth.

2.2 Coordinate Transformation of Rotors

In order to describe the deviation propagation in the stacking process and predict
the concentricity and perpendicularity of the rotors at each stage, the transforma-
tion relationship between the coordinate systems needs to be established, and local
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Fig. 3 Coordinate
transformation

coordinates of the center and the normal vector of the upper end surface of rotors
need to be transformed into the coordinates in the global coordinate system {A0}.
As shown in Fig. 3, the transformation between coordinate systems is realized by
translation and rotation. Translation is represented by the movement of the origin of
the coordinate system from O0 to O1, and rotation is represented by the rotation of
the coordinate axis.

The rotation transformation of the orthogonal bases of the two coordinate systems
is completed by the transition matrix. As shown in Eqs. (1) and (2), The orthonormal
basis of coordinate system {A0} can be transformed into orthonormal basis coordinate
system

{
A∗
1

}
uniquely based on the transitionmatrix C1

0, and other orthonormal basis
coordinate system are transformed in the same way.

⎧
⎨

⎩

α∗
1 = c11 · α0 + c21 · β0 + c31 · γ 0

β∗
1 = c12 · α0 + c22 · β0 + c32 · γ 0

γ ∗
1 = c13 · α0 + c23 · β0 + c33 · γ 0

(1)

[
α∗
1, β∗

1, γ ∗
1

] = [
α0, β0, γ 0

] · C1
0 (2)

As shown in Eq. (3) and Fig. 4, according to the correspondence between the
coordinates of the points and the coordinate system in coordinate transformation, the
coordinates of the center of the upper end surface of the rotor2 in the local coordinate
system

{
A∗
1

}
, O∗

2 = (
x∗
2 , y

∗
2 , z

∗
2

)
, can be transform into the coordinates in the global

coordinate system {A0}, O2 = (x2, y2, z2).

O2 = C1
0 · O∗

2 + O∗
1 (3)

As shown in Eqs. (4) and (5), through the coordinate transformation method and
transition matrix, the global coordinate of centers and unit normal vectors of upper
surfaces of rotors can be obtained.
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Fig. 4 Local and global
coordinate systems of
stacking rotors

⎧
⎪⎪⎨

⎪⎪⎩

O1 = O∗
1

O2 = C1
0 · O∗

2 + O1 = C1
0 · O∗

2 + O∗
1

O3 = C2
0 · O∗

3 + O2 = C1
0 · C2

1 · O∗
3 + C1

0 · O∗
2 + O∗

1

O4 = C3
0 · O∗

4 + O3 = C1
0 · C2

1 · C3
2 · O∗

4 + C1
0 · C2

1 · O∗
3 + C1

0 · O∗
2 + O∗

1

(4)

⎧
⎪⎪⎨

⎪⎪⎩

γ 1= γ ∗
1

γ 2= C1
0 · γ ∗

2

γ 3= C1
0 · C2

1 · γ ∗
3

γ 4= C1
0 · C2

1 · C3
2 · γ ∗

4

(5)

2.3 3D Deviation Prediction Model with Phase Adjustment

The stacking optimization process of the rotor is actually a process of adjusting
the bolt holes installation phase of rotors at all stages to obtain optimal stacking
precision, the deviation propagation and phase adjustment process of two-stage rotors
are shown in Fig. 4. First, rotor1 is placed on the installation platform, and the global
coordinate system and reference axis of the rotor during the stacking process are
determined by the lower end surface of rotor1.When rotor1 and rotor2 are stacked,
the center and unit normal vector of the joint surfaces of two rotors coincide. During
the phase adjustment, rotor2 rotates along the unit normal vector which cross the
center in the joint surface until bolt holes are aligned. As shown in Fig. 4, along with
rotation during phase adjustment, the center and unit normal vector of upper end
surface of rotor2 formed center trajectory and vector trajectory, and are scattered in
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corresponding bolt holes phase. The inverted cone in Fig. 4 is used to represent the
center trajectory and unit normal vector trajectory of the upper end surface of the
rotor when the installation phase changes.

The phase adjustment process between rotors of stage i and i+1 canbe represented
by the rotation matrix R(θi ), and θi is the rotation angle relative to initial phase. The
rotor of stage i + 1 rotates along the γ ∗

i in the local coordinate system
{
A∗
i

}
, so the

form of R(θi ) is shown in Eq. (6).

R(θi ) =
⎡

⎣
cos θi − sin θi 0
sin θi cos θi 0
0 0 1

⎤

⎦; i = 1, 2, 3, 4 (6)

Considering the influence of the rotation matrix R(θi ), the transition matrix Ci+1
i

is transformed into Ci+1
i ·R(θi ), thereby the global coordinates of Oi and γ i of rotors

are shown in Eqs. (7) and (8).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O1 = O∗
1

O2 = C1
0 · R(θ1) · O∗

2 + O∗
1

O3 = C1
0 · R(θ1) · C2

1 · R(θ2) · O∗
3 + C1

0 · R(θ1) · O∗
2 + O∗

1

O4 = C1
0 · R(θ1) · C2

1 · R(θ2) · C3
2 · R(θ3) · O∗

4 + C1
0 · R(θ1) · C2

1 · R(θ2) · O∗
3

(7)
⎧
⎪⎪⎨

⎪⎪⎩

γ 1= γ ∗
1

γ 2= C1
0 · R(θ1) · γ ∗

2

γ 3= C1
0 · R(θ1) · C2

1 · R(θ2) · γ ∗
3

γ 4= C1
0 · R(θ1) · C2

1 · R(θ2) · C3
2 · R(θ3) · γ ∗

4

(8)

According to the coordinates of Oi of each stage after phase adjustment, the
concentricity of the rotors relative to the reference axis can be calculated by Eq. (9).

ei =
√
O2

i x + O2
iy; i = 1, 2, 3, 4 (9)

The global coordinates of γ i is
{
γi x , γiy, γi z

}
, while coordinates of γ 0 that coin-

cides with the reference axis is {0, 0, 1}. The angle between γ i and γ 0 satisfy the
Eq. (10), and Ri is radius of the upper surface of rotors, so the perpendicularity pi
of the upper end surface of rotors relative to the reference axis can be calculated
through Eq. (11).

cos
〈
γ i, γ 0

〉 = γ i · γ 0∣∣γ i

∣∣ · ∣∣γ 0

∣∣ = γi z√
γ 2
i x + γ 2

iy + γ 2
i z

; i = 1, 2, 3, 4 (10)
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Fig. 5 Rotors and
coordinate systems under
different bolt hole phases

pi = 2 · Ri · tan
〈
γ i ,γ 0

〉 = 2 · Ri ·
√

γ 2
i x + γ 2

iy

γi z
; i = 1, 2, 3, 4 (11)

Through the above process, the 3D deviation prediction model of concentricity
and perpendicularity of rotors with phase adjustment is established. As shown in
Fig. 5, different local coordinate systems are formed when the bolt holes installation
phase is adjusted, and the global coordinates of the center and unit normal vector
of the upper end face of rotors in the global coordinate system change accordingly,
whichwill affect the concentricity and perpendicularity of stacking rotors. Therefore,
the bolt hole phase combination can be optimized to improve the stacking precision.

3 Stacking Optimization Method

3.1 Simulation and Fitting of Runout Data

Considering confidentiality requirements, the Gaussian distribution function is
adapted to simulate the radial and axial runout data based on the structure size and
the runout range of rabbet joint of rotors, and the least square method is used to fit
the simulated runout data. The stacking results are obtained through the 3D deviation
prediction model in Sect. 2 and the bolt holes phases are optimized.
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Table 1 Four-stage rotors structure size and rabbet joint runout zone

Rotor Height
(mm)

R of radial
(mm)

run-out zone
(mm)

R of axial
(mm)

Run-out zone
(mm)

1 200 113 0.05 90 0.05

2 180 131 0.05 98 0.05

3 200 152 0.05 114 0.05

4 150 146 0.05 108 0.05

Refer to the structure size and runout requirements of the HPC rotors of a certain
type of aeroengine, the radial size, axial size, height size and runout range of the
four-stage rotors are listed in Table 1.

As shown in Eq. (12), the Gaussian distribution function is used to simulate the
runout data of rotors. For the radial runout data of rotors, the radial radius of the
upper rabbet of each stage of rotor is used as the mean valueμ, and 1/6 of the runout
range is used as the standard deviation σ through the 3σ method. The 1000 simulated
runout points of rotor1 are shown in Fig. 6.

f (x) = 1√
2πσ

exp

(
− (x − μ)2

2σ 2

)
(12)

The least square method is used to fit the center and radius of the radial runout
circle, and the fitted circle center is used as the center of the upper surface of rotor.
The radial runout fitting circle and the center of four rotors are shown in the Fig. 7,
where the deviation between the fitting center of rotors and the theoretical center
exists and will propagate and cumulative during the stacking process.

The axial runout data are simulated and fitted in similar way, while the height of
each rotor is used as the mean value of Gaussian distribution function. As shown
in Fig. 8, the fitting plane passes through the axial runout data and the upward unit

Fig. 6 Distribution of
simulated radial runout data
of rotor1

Runout data (mm)
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Radial runout

Fitting center

Fitting circle

Fig. 7 Fitting centers and circles of four rotors

Fig. 8 The axial runout data
and fitting plane of rotor4

normal vector of which is set as the unit normal vector of the upper surface of each
stage of rotor. The local coordinates of fitted center and unit normal vector of the
upper surface of each stage of rotor are shown in Table 2. The parameters listed
represent the geometric characteristics of the upper end surface of rotors in the local
coordinate system and can be used for deviation prediction and phase optimization
of rotors.
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Table 2 Local coordinates of fitted geometric parameters of upper end surface of rotors

Rotor Center (O∗
i ) (mm) Unit normal vector (γ ∗

i ) (mm)

1 (−1.1768 × 10−4, −3.8595 × 10−4, 200) {1.4058 × 10−6, −3.2838 × 10−6,
1.0000}

2 (−6.9692 × 10−4, 1.2300 × 10−4, 180) {−2.6770 × 10−6, −1.4257 × 10−6,
1.0000}

3 (−2.6772 × 10−4, −3.6326 × 10−4, 200) {3.6291 × 10−6, −1.7286 × 10−6,
1.0000}

4 (−5.4805 × 10−4, −6.0428 × 10−5, 150) {1.5865 × 10−6, −1.4076 × 10−6,
1.0000}

3.2 Stacking Prediction of a Four-Stage Rotor

According to the aeroengine multi-stage rotors 3D deviation prediction model in
Sect. 2 and the simulated and fitted data in Sect. 3.1, the concentricity and perpen-
dicularity of each stage of rotors under different bolt hole phase combinations are
predicted. The predicted concentricity and perpendicularity of rotor1 is 0.4035 and
0.6787 μm, and the result will not change with phase adjustment.

There are 32 adjustable bolt hole phases between rotor1 and rotor2, and the
concentricity and perpendicularity of rotor2 under different phases are obtained
through the stacking prediction model. As shown in Fig. 9, the concentricity of
rotor2 is scattered in range [2.8664 × 10−4, 0.0017] mm, and presents an approxi-
mate sinusoidal change trend with phase, which corresponds to the inclined center
trajectory of upper surface of rotor2 in Fig. 4. The perpendicularity of rotor2 is in
range [5.8233 × 10−4, 0.0048] mm.

Accordingly, rotor3 has 1024 adjustable bolt hole phases, and the concentricity
and perpendicularity of rotor3 are show in Fig. 10. Different from the change trend
of rotor2, the concentricity of rotor3 is approximately a cluster of sine curves with

Fig. 9 The stacking
prediction values of rotor2
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Fig. 10 The stacking
prediction values of rotor3

different initial phases and amplitudes but the same period, and the change range of
concentricity is [2.6057×10−5,0.0034] mm. As shown in Eq. (11), when calculating
the perpendicularity of rotor, it needs to be multiplied by the diameter of the upper
end surface of the rotor. Therefore, due to the leverage effect and vector composition,
the perpendicularity of rotor3 changes more greatly with the phase of the bolt hole,
and the change range of perpendicularity is [6.0895 × 10−4,0.0378] mm.

The statistical results of predicted concentricity and perpendicularity of rotor4
are shown in Fig. 11, of which have 32,768 kinds of phase combination. And the
change range of concentricity and perpendicularity is [1.5982 × 10−5,0.0047] and
[8.4276×10−5,0.0664] mm. The stacking prediction results of the concentricity and
verticality of the four-stage rotors indicate that if the aeroengine rotor is assembled by
the trial assembly method, the concentricity and perpendicularity of the intermediate
or final stage of rotor are likely to be out of tolerance.

Concentricity (mm) Perpendicularity (mm)

N
u

m
b

er

N
u

m
b

er

Fig. 11 Statistical results of predicted concentricity and perpendicularity of rotor4
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3.3 Dual-Objective Integer Stacking Optimization

During the stacking process, if themeasured concentricity and perpendicularity of the
rotor are out of tolerance, it requiresmultiple disassembly and assembly to achieve the
required stacking accuracy. This process is cumbersome and may affect the stacking
quality of the rotor and the aeroengine, so it is important to predict and optimize the
stacking precision of multi-stage rotors before assembly.

Since the bolt holes are uniformly distributed on the rabbet joint surface of
the aeroengine rotor, the multi-stage rotor stacking optimization belongs to integer
optimization. Additionally, the multi-stage rotor stacking optimization is also dual-
objective optimization that contain concentricity and perpendicularity. Given that
rotor4 is most likely to be out of tolerance due to the influence of the lever effect,
the optimization target T is set as the weighted sum of the concentricity and perpen-
dicularity of rotor4, meanwhile the intermediate stage of rotor should not be out of
tolerance. The optimization objective function is established as shown in Eq. (13),
and the weighting factor u is set to 2 considering the assembly requirements and the
importance of two values.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T =min{u · e4(b1, b2, b3) + p4(b1, b2, b3)}
s.t. es(b1, · · · , bs−1) ≤ ε0

ps(b1, · · · , bs−1) ≤ t0
0 ≤ bm ≤ 31

1 ≤ m ≤ 3

1 ≤ s ≤ 3

bm,m, s ∈ I

(13)

The total phase combination of aeroengine multi-stage rotor stacking increases
exponentially with the number of rotor stages. Therefore, the branch and bound
method is used to prune the bolt hole phase combinations that do not meet the restric-
tion conditions, thereby reducing the amount of calculation for stacking prediction,
which is conducive to focus on the feasible phases and search for the optimal solution.
The restriction conditions ε0 and t0 are set to 1.5 and 20 μm.

After pruning the bolt hole phase combinations, the predicted concentricity and
perpendicularity prediction results of rotor4 are shown as Fig. 12. Compared with the
results in Fig. 11, the search bolt hole phase combination is reduced from 32,768 to
2400 according to the calculation result and the ultimate feasible phase combination
is 514, and the optimal results of the dual-objective integer optimization function
and corresponding bolt hole phases are shown in Table 3.
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Fig. 12 Statistical results of predicted values of rotor4 after pruning

Table 3 The optimization
phase and corresponding
prediction values

Concentricity (µm) Perpendicularity (µm)

Rotor 1 0.4035 0.6787

Rotor 2 0.4806 0.5823

Rotor 3 1.0808 4.7621

Rotor 4 0.7155 0.2321

T 1.6631

Bolt hole phase (1, 14, 31)

4 Conclusion

This paper proposes a novel method for stacking optimization of aeroengine multi-
stage rotors assembly based on 3D deviation prediction model. The prediction model
is established by analyzing the 3D deviation propagation process and predicting
the concentricity and perpendicularity of rotors at each stage under different bolt
hole phase combinations. The predicted values of rotors are calculated through the
prediction model and show different distribution characteristic with the change of
phase. Finally, the dual-objective integer optimization function of a four-stage rotor
is established and the bolt hole phases are optimized. The proposed 3D deviation
predictionmodel and stacking optimizationmethod can provide theoretical guidance
for the actual stacking process of aeroengine multi-stage rotors.
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A Sensor Fault Identification Method
Based on Adaptive Particle Swarm
Optimization Support Vector Machine

Xuezhen Cheng, Dafei Wang, Chuannuo Xu, and Jiming Li

Abstract Accurate identification of fault types is an important part of sensor fault
diagnosis. Therefore, a sensor faults identificationmethod based onAdaptive Particle
Swarm Optimization Support Vector Machine (APSO-SVM) is proposed in this
paper. Firstly, the appropriate Time-domain parameters are extracted from the fault
data to realize feature extraction and dimension reduction. Then the Particle Swarm
Optimization (PSO) algorithm is improved by adjusting the particle velocity with
weight and introducing mutated particles, so as to improve the optimization ability
of the algorithm and to optimize the parameters of Support Vector Machine (SVM).
Finally, the optimized model is used to identify the sensor faults, and compared with
other advanced algorithms, the results show that the proposed method can identify
the sensor faults more accurately.

Keywords Sensor fault diagnosis · Time-DOMAIN parameters · Particle swarm
optimization (PSO) · Support vector machine (SVM) · APSO-SVM

1 Introduction

As a basic data acquisition device, the sensor is pivotal to ensure the safe and reliable
operation of the monitoring system [1]. Because of the working environment of the
sensor is often bad, it is easy to fail in the process of operation, so the fault diagnosis
of the sensor is very necessary. As an important part of sensor fault diagnosis, fault
pattern recognition is pivotal to improve the reliability of diagnosis, so it is necessary
to improve the accuracy of fault mode classification.

There aremanymethods of sensor fault diagnosis at domestic and overseas. Tradi-
tional diagnosis methods mainly include model-based method, knowledge-based
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method and data-driven method [2]. Model-based method requires the establishment
of accurate mathematical model for the research object, but modeling of complex
system is usually more difficult. The knowledge-based method relies on expert expe-
rience and prior knowledgewhich lacks certain adaptability.With the development of
artificial intelligence, data-driven intelligent diagnosis methods have attracted exten-
sive attention to researchers [3]. The data of sensor is relatively easy to obtain, Due
to fault data onto the sensor contains a lot of miscellany information, and similar
characteristics from part of the fault data, it is difficult to directly use the fault data,
so it is necessary to choose an appropriate method for feature extraction of the fault
data. Time-domain parameters can reflect different characteristics of faults and are
often used as reference indexes in the field of fault diagnosis [4].

Machine learning algorithms, such as Neural Network (NN) and Support Vector
Machine (SVM), usually show excellent performance while process the data.
However, NN needs a large number of training samples, otherwise its performance
will be limited. SVM is suitable for processing small samples and nonlinear data,
and the selection of appropriate hyper parameters can get better performance. PSO
algorithm as a heuristic optimization algorithm, its basic algorithm and improved
algorithm have been extended to many fields, which is suitable for parameter opti-
mization of SVM. However, the basic PSO has some shortcomings in the search
step size, global optimization and local optimization mechanisms, which affect its
search ability. Zheng [5] proposes an improved adaptive particle swarm optimization
(PSO) algorithm by adding weight to the initial velocity of particles, improved the
adaptability of search step size in the iterative process, which is used to search the
maximum target at the minimum cost. Wang [6] proposes a PSO algorithm with
inertia factor to solve the local optimal solution problem, and for inversion of fault
parameters. Cheng [7] proposes comprehensive learning particle swarmoptimization
(CPSO) algorithm, establishing the connection between the global optimal solution
and the local optimal solution, so the search ability of the algorithm is improved.
However, the ability of the CPSO algorithm still needs to be improved.

To solve these problems, a sensor faults identification method based on APSO-
SVM is proposed to this paper. Firstly, several Time-domain parameters are extracted
from the sensor fault data, and the combination of Time-domain parameters which
could accurately reflect the fault characteristics is obtained through many experi-
ments. Then, the PSO algorithm is improved. On the basis of adjusting the initial
velocity of particles by weight, individual mutation particles are introduced to
improve the optimization ability of the algorithm, and the improved algorithm is used
to optimize the parameters of SVM. Finally, the samples composed of Time-domain
parameters, are input to the classifiers such as Probabilistic Neural Network (PNN),
Decision Tree (DT), CPSO-SVM and APSO-SVM, for the purpose of training
and testing. The effectiveness of the proposed method is verified by compare the
classification results and analyzing the performance.
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2 An Improved Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) algorithm has been widely used for its advan-
tages of simple calculation and high calculation accuracy. In the PSO, inertia weight
ω of initial velocity determines the initial searching speed of the particle, gbest
reflects the global searching ability of the particle, while pbest determines the local
searching ability of the particle.However, the initial velocity of the traditional particle
swarm optimization algorithm is fixed, so it is difficult to guarantee the search step
size is appropriate in the whole iteration process. Besides, with the reduction of
search space, individual particles are easy to fall into the optimal solution, which
will also affect the search ability of the algorithm. So this paper makes the following
improvements:

Suppose a space n with a D particle dimension, the position of the i particle in
space is xi = (xi1, xi2, ..., xiD), and the velocity of the particle, which xi will be
substituted into the fitness function f (xi ) to obtain the fitness value. At this time, the
optimal position passed by the individual i is pbesti = (pi1, pi2, ..., piD), and the
optimal position experienced by the population is gbest = (g1, g2, ..., gD). On the
basis of these two optimal values, the speed and position are continuously updated
based on the Eq. (1):

vk
i =ωvk−1

i + c × r(gbesti − pbest)

xki =xk−1
i + vk−1

i (1)

where the current position of particles is xi , vk
i is the velocity vector of particles i after

k iterations; c is the weight factor, which is used to adjust the step size of updating.
r is the random number in [0, 1], through which the randomness of the search can
be adjusted appropriately, ω is the inertia weight, which can be used weighted the
initial velocity as following in Eq. (2):

ω=0.5+0.5 · (Tmax − Ti)/Tmax (2)

And then introduce mutated individual particles to solve the problem of local
optimal solution, assuming that K ∈ [0, 2], when r > 0.5, if K = 1, as following in
Eq. (3);

pop( j, k) = (N − 1) · rand + 1 (3)

where pop( j, k) is the current particle size, N is themaximumparticle size. If K = 2,
as following in Eq. (4):

pop( j, k) = (
Pgmax − Pgmin

) · rand + Pgmin (4)

where Pgmax is the maximum g parameter, Pgmin is the minimum g parameter.
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3 Fault Identification Method Based on APSO-SVM

3.1 Establishment of APSO-SVM Model

The establishment method of mathematical model of multi-classification support
vector machine is actually a convex quadratic programming problem. It is of
great significance to select appropriate hyper parameters to improve classification
accuracy.

The objective function of convex quadratic programming is constructed in Eq. (5):

min Q(α) = 1

2

N∑

i,j=1

αiαjyiyiK
(
Xi,Xj

) −
N∑

i=1

αi

S.t.
N∑

i,j=1

αiyi = 0

0 ≤ αi ≤ C,i = 1, 2, ...,N (5)

where αi is the Lagrange multiplier, Xi , X j is the input vector, yi is the category
label, and K

(
Xi , X j

)
is the kernel function. In fact, not all data is completely linearly

separable, hence the Hinge loss is adopted in Eq. (6):

min
ω,b,ξi

1

2
‖ω‖2 + C

m∑

i=1

ξi

s.t. yi (ω × xi + b) ≥ 1 − ξi

ξi ≥ 0, i = 1, 2, ..., N (6)

where ω is the normal plane vector, ξi is the relaxation variable, and each sample
corresponds to one ξi , represents the degree to which the sample does not satisfy the
constraint, and C is the penalty factor. The corresponding classification function is
shown in Eq. (7):

f(x) = sgn

{
N∑

i = 1

α∗
i yiK(x,xi) + b∗

}

(7)

where b∗ is the bias constant. Introduce kernel function can enhance the processing
ability of support vector machine for nonlinear problems. In this paper, Gaussian
kernel function with superior performance is selected in Eq. (8):

K (x, z) = exp(γ ‖x − z‖) (8)
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where γ is the kernel function coefficient. It can be seen from the above equations,
the key to establishing SVM model is the selection of C and γ parameters.

3.2 APSO Algorithm Optimization of SVM

When APSO algorithm is used to optimize SVM parameters, the search range of
kernel function is set as [0, 0.01], and the search range of penalty factor is set as [1,
100]. The specific optimization is as follows:

Step 1: Set particle size, maximum number of iterations, search dimension, and
initialize particle position;
Step 2: Initialize the parameters (C, γ ) of support vector machine and search
range;
Step 3: Calculate the classification error of SVM under the current parameters to
update the position of particles;
Step 4: Take the minimum classification error of SVM as the fitness value, and
update the position of particles according to the Eq. (1);
Step 5: Compare with the fitness value of the last iteration. If it is lower than the
original fitness value, no update will be made; otherwise, update the fitness value;
Step 6: Calculate the cycle until it reaches the maximum number of cycles, output
the optimal parameters (C, γ ), take it as the optimal parameter and according to
the Eqs. (5–8) establish the SVM model;

Figure 1 shows the fitness curve of CPSO and APSO. After 20 iterations of
CPSO algorithm, the fitness reaches 99 while APSO reach 99.5 after 10 iterations.
Besides, it can be seen from the fitness that the APSO algorithm performs better

Fig. 1 Optimized flow chart
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in each iteration, indicating that the improved algorithm has a better capability of
optimization.

4 Experimental Analysis

4.1 Comparison of Classification Results of Different
Classifiers

The data in this paper are from the sensor data set [8] published by Intel Lab, and the
required experimental data samples are obtained by fault injection [9] according to
the existing methods. 300 groups of samples are selected, of which 200 groups are
used as the training set and 100 groups as the test set. The four classifiers all used
the same samples for training and testing. Samples distribution is shown in Table 1.

Table 1 Distribution of
samples data

Fault type Training set Testing set

Spike fault 46 groups 20 groups

Drift fault 13 groups 10 groups

Bias fault 23 groups 15 groups

Random fault 12 groups 10 groups

Stuck fault 38 groups 15 groups

Erratic fault 20 groups 10 groups

Data loss fault 18 groups 10 groups

Fig. 2 Diagnosis results for
the CPSO-SVM
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It can be seen from the Figs. 2 and 3, the CPSO-SVM has misclassified multiple
types of faults, suggesting the lowest ability to identify the faults. The APSO-SVM
makes lower errors, and the performance is better than the CPSO-SVM.

More detailed diagnostic results can be seen from Table 2 and Fig. 4, PNN has
the largest number of wrong classification groups, with an accuracy rate of only
87%. DT and CPSO-SVM have the same number of error classification groups,
and have high classification accuracy rate. APSO-SVM has the least number of
error classification groups, and the classification accuracy rate is 94%, which fully
demonstrates the effectiveness of the proposed method in sensor fault identification.
However, it can also be seen from the table that the performance of the classifier
cannot be comprehensively evaluated by the accuracy rate. Therefore, some complete
performance evaluation indexes Precision and Kappa coefficient are added.

4.2 Performance Comparison of Classifiers

In dealing with unbalanced samples of multiple classifications, the Precision and
Kappa coefficient can be used to evaluate the performance of the classifier more
comprehensively [10]. Precision reflects the classifier’s ability to correctly classify

Fig. 3 Diagnosis results for
the APSO-SVM

Table 2 Comparison of
classification results

Classifier Misclassification Accuracy (%)

PNN 13 groups 87

DT 9 groups 91

CPSO-SVM 9 groups 91

APSO-SVM 6 groups 94
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Fig. 4 Comparison of
accuracy rate

each fault. The greater value shows the stronger ability to identify different faults.
The Kappa coefficient reflects the classifier’s overall ability to classify faults. The
larger value shows the better classification performance. Themathematical equations
for the Precision and Kappa coefficient are as follows:

Precision: Calculate the accuracy for each fault label separately, and then take the
unweighted average.

P = TP

TP + FP
(9)

where, TP is the number of positive classes predicted to be positive, and FP is the
number of negative classes predicted to be positive.

Kappa coefficient:

K = P0 − Pe
1 − Pe

Pe =
∑

(a1 · b1 + a2 · b2+... + ac · bc)
n2

(10)

where P0 is the classification Precision of all samples, ac is the actual number of
class samples, bc is the number of class c samples recognized by the classifier, and
n is the total number of all samples.

As shown in Table 3 and Figs. 5 and 6, Precision of PNN is 85.63%, and Kappa
coefficient is 85.43%. The Precision of DT is 91.11% and Kappa coefficient is
88.79%. Precision of CPSO-SVM is 89.79%, and the Kappa coefficient is 89.91%.
The Precision of APSO-SVM is 93.54%, and the Kappa coefficient is 93.27%.
analyzing the performance of the classifier from the Precision and Kappa coeffi-
cient, it can be seen that DT is better than CPSO-SVM in identifying different faults,
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Table 3 Comparison of
precision and kappa
coefficient

Classifier Precision (%) Kappa coefficient (%)

PNN 85.63 85.43

DT 91.11 88.79

CPSO-SVM 89.79 89.91

APSO-SVM 93.54 93.27

Fig. 5 Comparison of
precision

Fig. 6 Comparison of kappa
coefficient

while CPSO-SVM is better than DT in overall classification performance. From the
above performance analysis, it can be seen that APSO-SVM’s ability to identify
different faults and overall classification performance have been greatly improved,
which fully proves the effectiveness of the method proposed in this paper.
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5 Conclusion

Accurate identification of fault types is an important link to improve the reliability of
sensor fault diagnosis. The main contributions of sensor fault identification methods
proposed in this paper are summarized as follows:

• In order to improve the accuracy of sensor fault pattern recognition, a data-driven
intelligent diagnosis algorithm is proposed in this paper. The experimental results
show that this method can accurately identify multiple fault types of sensors and
improve the reliability of diagnosis.

• In order to obtain the effective information from the sensor fault data, several
time-domain parameters are selected. The experimental results show that the time-
domain parameter method can effectively extract the useful information from the
fault data, so as to improve the accuracy of fault classification.

• An APSO algorithm is proposed to optimize the parameters of SVM. This algo-
rithm sets the weight of the initial velocity of particles and introduces individual
mutation particles. Compared with the novel particle swarm optimization algo-
rithm, the improved algorithm has better optimization ability. The performance
analysis of several classifiers shows that the proposed method has better ability
of fault identification.
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Correlation Analysis of Sensor Fault
Based on Fuzzy Petri Net and Apriori
Algorithm

Chuannuo Xu, Shenglei Zhao, Haitao Hao, Yandong Zhang, Jiming Li,
and Xuezhen Cheng

Abstract Due to the complex internal structure of the sensor, the corresponding
fault causes are also diverse. Once a fault occurs, the cause of the fault is difficult to
determine. This paper proposes a sensor fault correlation analysis method combining
fuzzy Petri net (FPN) and Apriori algorithm. First, obtain the typical fault type
waveform of the sensor according to themethod of fault simulation, calculate its fault
waveform characteristics, find out the residual between it and the normal waveform
characteristics, and normalize the residual; then, use the modeling method of FPN
to establish the correlation analysis model between fault types, fault characteristic
indicators and fault modes; finally, the establishment of model weights and transition
threshold parameters is achieved through the Apriori algorithm based on association
rules. The maintainer can analyze the fault correlation of the sensor through the
abnormal waveform of the sensor to preliminarily judge the fault cause, to achieve
the purpose of improving the efficiency of maintenance.

Keywords Sensor · Fault causes · Fuzzy petri net · Apriori algorithm · Correlation
analysis

1 Introduction

As the degree of integration of sensors becomes higher and higher, the potential
factors that cause malfunctions during sensor operation also increase. According
to statistics, 60% of industrial accidents are caused by sensor failures [1]. If the
sensor’s abnormal signal can be used to preliminarily determine the cause of the
sensor’s failure, this will play an important role in the stable operation of the sensor
[2].
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The Petri net model not only contains rigorous mathematical formulas, but also
symbolic and visual expressions. It can be used as a modeling method for distributed
concurrent systems and is widely used in formal modeling and system decision-
making and fault diagnosis. Xie [3] et al. gave a model based on Petri net and
visualized the results of generalized association rule mining. To effectively iden-
tify incomplete and uncertain protection and circuit breaker operation information,
the article [4] studies an improved fuzzy Petri net (FPN) fault diagnosis model that
takes into account the logical correlation of alarm information. The article [5] estab-
lishes a complex system fault diagnosis method through the mapping and fusion
of maintenance metadata, fault-related itemsets, and system structure relationships,
and combining with the dynamic fault reasoning of FPN. Li [6] et al. proposed a
conditional state FPN based on association rules. The association rule method of
data mining was used to extract the fuzzy rules and confidence of the FPN and used
it for industrial process fault reasoning and diagnosis.

However, the confidence, credibility, and other parameters of the FPN model rely
on prior experience, which may lead to inaccurate reasoning and misjudgment of
faults [7, 8]. Apriori algorithm is one of the most influential data mining algorithms
for mining frequent itemsets of Boolean association rules. It is widely used in various
fields such as business, network security, andmobile communications [9]. Zhang [10]
et al. uses the Apriori association rule algorithm to mine the big data of high-speed
EMUs and obtain information related to failures. The article [11] takes the fault
characteristic quantity as the front item and the fault type as the back item sets the
minimum support andminimum confidence and uses the classic algorithm of Apriori
data mining to dig out the association rules between transformer faults and key state
variables. Jin [12] et al. established a motor fault correlation analysis model based
on the Apriori algorithm and improved the search mode in the algorithm, which
effectively improved the computational efficiency of mining strong association rules
between fault elements.

The parameter settings of traditional FPN mostly rely on prior experience, there
are relatively few studies on sensor fault correlation analysis. This paper proposes
a sensor fault correlation analysis method that combines the FPN with the Apriori
algorithm. Firstly, the five typical fault types of the sensor are simulated, and the fault
correlation analysis model is established by combining the characteristic indicators
and the cause of the fault. Then use the Apriori algorithm to mine the confidence
parameters of the model, and finally build an experimental platform to verify the
validity of the proposed method.
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2 Fuzzy Petri Net

2.1 Definition of Fuzzy Petri Net

Fuzzy Petri Net (FPN) is proposed by combining the original Petri Net and fuzzy
theory. It can effectively express and analyze the inaccurate fault information in the
model. According to different application backgrounds, the FPNmodel can set corre-
sponding transition thresholds, weights, and transition trigger conditions, thereby
constraining the state transition of the network to achieve the purpose of precise
deduction, reasoning, and analysis.

Definition 1 The FPN is an 8-tuple:

∑
= (P, T, D, I, O, α, f, β) (1)

(1) P = {P1, P2, P3, ..., Pn} represents a finite set of places;
(2) T = {T1, T2, T3, ..., Tm} represents a finite set of transitions;
(3) D = {d1, d2, d3, ..., dn} is the set of propositions. P ∩ T ∩ D = ∅, |P| = |D|;
(4) I : P × T → N is the input function. N = {0, 1, 2...} is a set of non-

negative integers, representing the mapping from the place to the transition. If
I (P, T ) = 1, it means there is a connection between P and T , at this time,
P is the input place of T ; if I (P, T ) = 0, it means there is no connection
between P and T , at this time, P is not the input place of T ;

(5) O : T × P → N is the output function. N = {0, 1, 2...} is a set of non-
negative integers, representing the mapping from the place to the transition. If
O(P, T ) = 1, it means there is a connection between P and T , at this time,
P is the output place of T ; if O(P, T ) = 0, it means there is no connection
between P and T , at this time, P is not the output place of T ;

(6) α : P → [0, 1] assigns a credibility CF to each place, denoted by θi ;
(7) f : T → [0, 1] assigns a confidence CF to each place, denoted by μi ;
(8) β : T → D is themapping between the place of each node and the proposition.

Definition 2 The rules of occurrence of FPN:
Under the system identification m1, for the transition Ti : if ∀Pj ∈ I (Ti ) :

m1(Pj ) = 1 ∧ α(Pj ) = θi is the number of tokens in Pj under the system identi-
fication m1, it is called Ti enabled, and the enabled Ti is fired, and the new system
identification m2 is obtained;

(1) ∀Pj ∈ I (Ti ) : m2(Pj ) = m1(Pj ) − 1
(2) ∀Pk ∈ O(Ti ) : m2(Pk) = m1(Pk) + 1 ∧ α(Pj ) = θi × μi
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2.2 Fuzzy Petri Net Representation of Production Rules

The fault diagnosis method based on FPN has strong parallel reasoning ability.
However, there is not only a simple mapping relationship between sensor fault signal
characteristic value indicators, fault types, and fault causes but may involve multiple,
non-linear and uncertain mapping relationships. This article combines fuzzy produc-
tion rules with FPN, which can more accurately describe the relationship between
fault signal characteristic value indicators, fault types and fault causes, and the trans-
mitted fault information. As shown in Fig. 1, this paper defines fuzzy production rules
for the following four forms, which are used to express the conditions for judging
the fault type.

(1) Correspondence rules between single-cause and single-effect form and fuzzy
production:

i f pi then pi (C = μR) i, j = 1, 2, ..., n

According to Table 1, under the currentmarkM , after the transition t occurs,

Fig. 1 Four production rules of fuzzy Petri net

Table 1 The mapping
relationship between fuzzy
Petri net and fuzzy production
rules

FPN Fuzzy production rules

Place Premise and conclusion of the
rule

Transition Rule

Place mark Truth degree of premise and
conclusion

Transition threshold Rule credibility

Transition fired The credibility of the rules is
higher than the support

Fuzzy Petri net model Rule base

Weights between places and
transitions

Proposition support
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θ2 =
{

w1 × θ1 × w1/λ, p ∈ t ·
θ1, p /∈ t · (2)

(2) Correspondence rules between multi-cause single-effect form and fuzzy
production:

i f p1 ∧ p2 ∧ ... ∧ pn−1 then pn (C = μR)

According to Table 1, under the currentmarkM , after the transition t occurs,

θn−1 =
{

w11 × min(θ1 × w1, θ2 × w2, ..., θn × wn)/λ, p ∈ t ·
θi , (i = 1, 2, ..., n), p /∈ t · (3)

(3) Correspondence rules of fuzzy production with single cause and multiple
effects:

i f p1 then p2 ∧ p3 ∧ ... ∧ pn (C = μR)

According to Table 1, under the currentmarkM , after the transition t occurs,

θi (i = 2, 3, ..., n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w1 × θ1 × w11/λ1, p2 ∈ t ·
w1 × θ1 × w12/λ1, p3 ∈ t ·
. . .

w1 × θ1 × w1n/λ, pn ∈ t ·
θ1, pn /∈ t · (i = 2, 3, ..., n)

(4)

(4) Correspondence rules of competition form and fuzzy production:

i f p1 ∨ p2 ∨ ... ∨ pn−1 then pn(C = μR)

According to Table 1, under the current mark M , after the transition t occurs,

θn+1 =

⎧
⎪⎨

⎪⎩

max(w1 × θ1 × w11/λ1, w2 × θ2 × w21/λ2, ..., wn × θn × wn1)/λn,

pn+1 ∈ t ·, (i = 1, 2, ..., n)

θi , p /∈ t ·, pn+1 ∈ t ·, (i = 1, 2, ..., n)

(5)

In Eqs. (2)–(5), p1, p2, ..., pn is the place, which is also the name of the fuzzy
rule, t1, t2, ..., tn is the transition, which is also the fuzzy rule, w1, w2, ..., wn is the
weight and the support of the fuzzy rule, θ1, θ2, ..., θn is the mark, and λ1, λ2, ..., λn

is the transition corresponds to the threshold.
As shown inTable 1, themapping relationship between fuzzy production andFPN.

Assuming that the precondition of the fuzzy production rule reaches the prescribed
lower limit, that is, the transition threshold, the transition in the FPN model is fired,
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and the truth degree of the conclusion place can be obtained. Based on the article
[2] and expert experience, this paper establishes the FPN sensor fault correlation
analysis model, as shown in Fig. 4 in the appendix, and the semantic explanation is
shown in Table 5.

3 Data Acquisition

3.1 Raw Data Acquisition

This paper selects digital temperature sensors for research. By collecting and
recording the raw time-domain data of 54 temperature sensors deployed in the Intel
Berkeley Research lab from February 28 to April 5, 2004, this paper selects the data
collected for five consecutive days. research. The fault waveforms of offset faults,
drift faults, spike faults, precision drop faults, and stuck faults obtained by themethod
of fault simulation are shown in Fig. 2.

Fig. 2 Simulated normal and fault waveforms (bias fault, drift fault, spike fault, erratic fault, and
stuck fault)
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Table 2 Residuals of time-domain characteristic indicators after normalization

Fault type Peak value Crest factor Skewness coefficient Kurtosis coefficient

Bias fault 0.9365 0 0 0

Drift fault 0.9889 0.0503 0.0336 0.0718

Spike fault 0.8819 0.0656 0.1748 0.1937

Erratic fault 0.3803 0.0196 0.0105 0.0587

Stuck fault 0.3246 0.0028 0.1536 0.8019

Normal 0 0 0 0

3.2 Feature Extraction and Residual Calculation

This paper extracts the characteristic values of each group of fault data and normal
data, in turn, calculates the characteristic residuals and normalizes them. The charac-
teristic indicators include peak value, crest factor, skewness coefficient, and kurtosis
coefficient. The calculation results are shown in Table 2.

The residual calculation of fault and normal waveform characteristic indicators:

δ = d − �d (6)

Normalize the residuals of the fault characteristic indicators:

d ′ = 0.7 · arctan |δ| (7)

4 Fault Correlation Analysis

4.1 Association Rules

Sensing systems usually have a high degree of integration, and the network connec-
tivity of structure and function is complex. There may be multiple, non-linear, and
uncertain associations between fault characteristics and fault causes, which often
involve more than simple mapping relationships.

Definition 3 The association rule R can express the constructive formula, that is,
the implicit formula,

R : A ⇒ B, where, A ⊂ I , B ⊂ I , and A ∩ B=∅.
Definition 4 The degree of support of the association rule R,

support (A ⇒ B) = count (A ∪ B)

|D| = P(A ∪ B) (8)
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Definition 5 The confidence level in the association rule R,

con f idence(A ⇒ B) = support (A ∪ B)

support (A)
= P(B|A) (9)

The confidence in the association rule R is the situation that B occurs under
the criterion of A, that is, the conditional probability, and it is also the confidence
in the fuzzy rule. As shown in Fig. 1 and Table 1, according to the corresponding
relationship between fuzzy production rules and FPN, the characteristic indicators
of a large number of sensor data collected can be associated with the cause of the
fault.

4.2 Apriori Data Mining Algorithm

TheApriori algorithmbelongs to the support-confidence framework standard system.
As a traditional algorithm for mining frequent itemsets of association rules from big
data, it is suitable for mining association rules of discrete data. The core of the
algorithm is to carry out traversal search and layer-by-layer iteration for the two-
stage frequent itemsets. First, all frequent itemsets in the database are traversed, and
then the frequent itemsets are obtained and the association relationship between each
item set is mined, as shown in Tables 3 and 4.

Table 3 Mined rules and corresponding confidence (a)

Rule Confidence Rule Confidence Rule Confidence

Pa → Pe 0.1622 Pa → Pg 0.1081 Pd → Pi 0.3793

Pb → Pe 0.3529 Pc → Pg 0.1111 Pa, Pb, Pc, Pd → Pe 1

Pc → Pe 0.1667 Pa → Ph 0.3243 Pa, Pc → Pf 0.6

Pd → Pe 0.2069 Pd → Ph 0.4138 Pa, Pc → Pg 0.16

Pa → Pf 0.4054 Pb → Pi 0.6471 Pa, Pd → Ph 1

Pc → Pf 0.4167 Pc → Pi 0.3056 Pb, Pc, Pd → Pi 0.6471

Table 4 Mined rules and corresponding confidence (b)

Rule Confidence

Pa, Pb, Pc, Pd , Pe → P1/P2/P3/P4/P21/P22 0.1667

Pa, Pc, Pf → P1/P4/P5/P6/P7/P8/P9/P10/P11/P12/P16/P17/P18/P21/P22 0.0667

Pa, Pc, Pg → P2/P3/P21/P22 0.25

Pa, Pd , Ph → P2/P3/P11/P12/P13/P14/P15/P16/P17/P18/P19/P20 0.0833

Pb, Pc, Pd , Pi → P2/P3/P7/P8/P9/P10/P12/P17/P18/P19/P20 0.0909
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Fig. 3 Confidence comparison between simulation and experiment

4.3 Experimental Platform Verifications

In this paper, the Jingchuang brand RC-4 digital temperature sensor is used for
experimental research. According to the characteristics of five typical fault types,
this paper simulates the waveforms of the fault types and collects, and the waveform
image is drawn.The sampling timeof each fault sample is set to 24h, and the sampling
time of indoor temperature and outdoor temperature each account for 50%. The
normal indoor temperature and outdoor temperature are combined as the standard
normal temperature, and the fault type of the sensor is simulated during indoor data
collection.

This paper takes the drift fault when the induction circuit fails as an example. As
shown in Fig. 3, the experiment and simulation data are basically consistent. Covari-
ance is used as a method to measure the total error of two variables in probability
theory and statistics, as shown in Eq. (10), The calculated covariance of the two sets
of vectors at this time is 0.0227, which is in line with the expected result.

cov(
n∑

i=1

Xi

m∑

j=1

Y j ) =
n∑

i=1

m∑

j=1

cov(Xi ,Y j ) (10)

5 Conclusion

Due to the traditional FPN parameter setting mostly relies on expert experience,
this article takes the temperature sensor as an example, and introduces the Apriori
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algorithm based on association rules, establishes an FPNmodel including fault char-
acteristic indicators, fault types and causes, and obtains the early fault reason of
the sensor through data mining algorithm. Experimental simulations and covariance
calculations of the data demonstrate the feasibility and effectiveness of the proposed
method.

Appendix

See (Fig. 4; Table 5).

Fig. 4 FPN sensor fault correlation analysis model

Table 5 Semantics of FPN sensor fault correlation analysis model

Place Semantics Place Semantics Place Semantics

Pa Peak value P3 Open circuit P14 Insufficient high level

Pb Crest factor P4 Electrical performance
failure

P15 Insufficient low level

Pc Skewness coefficient P5 Parameter
hyperparameter

P16 Mechanical failure

Pd Kurtosis coefficient P8 Overvoltage stress P17 Lightly doped drain is
too high

Pe Bias fault P7 Improper rise time P18 Function failure

Pf Drift fault P8 Switching time failure P19 Metal defect

Pg Spike fault P9 No output P20 Out of rating

Ph Erratic fault P10 Energy loss P21 Decreased output
capacity

Pi Stuck fault P11 Assembly defect P22 Discontinuous work

P1 Low gain P12 Leakage

P2 Short circuit P13 Superposition failure
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Review on Simulation and Optimization
of Vehicle Ride Comfort Based
on Suspension Model

Tang Jianghu, Xiong Qing, Zhu Yingmou, and He Zhuoyu

Abstract At present, commercial software of the multi-body dynamics is widely
used in the research of vehicle ride comfort simulation and optimization. This paper
reviews some literatures on vehicle ride comfort optimization based onADAMS, and
focuses on the research based on suspension models. The suspension rigid-flexible
coupling models and the simulation research about optimizing suspension model
parameters to achieve multi-objective optimization are the main areas of concern.
Finally, the paper is summarized and the future trend of ADAMS applied to the
simulation and optimization of vehicle ride comfort is prospected.

Keywords Ride comfort · Suspension models ·Multi-body dynamics · ADAMS

1 Introduction

Ride comfort is mainly to keep the vibration and impact on the occupant’s comfort
within a certain range while the car is moving [1]. Suspension is one of the important
parts of modern automobile, and plays a key role in ensuring vehicle ride comfort [2].
It connects the vehicle frame and the axle, transfer the force and torque between the
wheel and the frame, and buffer the impact force transferred from the uneven road to
the frame or body. Analyzing the dynamic characteristics of suspension system can
improve its transmission characteristics and reduce vibration and impact. The effect
of suspension characteristics on vehicle ride comfort can be studied quickly and
effectively by using mature multi-body dynamics software, because it can shorten
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the research and development cycle and save related costs [3]. Many studies have
been carried out on vehicle ride comfort simulation at home and abroad, and multi-
body dynamics simulation has been proved to be an effective method for vehicle ride
comfort research [4–6].

The main structure of the automobile suspension is a multi-bar system, which is
connected with the body by various hinges. This kind of structure can be modeled
by means of computational multi-body dynamics. With the maturity of multi-body
dynamics theory, a series of multi-body commercialized software have been succes-
sively developed, which provides an effective way to suspension kinematics and
dynamics calculation and design [7]. In all the commercial software of the multi-
body dynamics, ADAMS is the most authoritative one with the highest share, the
largest number of applied industries in the field of CAE [8]. It can quickly establish
complex suspension and vehicle virtual prototype models, and accurately simulate
the driving conditions of the car in different road conditions according to the real
working conditions. Moreover, it can analyze and compare various design strategies
to ultimately improve the vehicle ride comfort. In recent years, in order to simulate
the ride comfort of the whole vehicle, many scholars used ADAMS to model and
solve the suspension system [9–11].

2 Rigid and Rigid-Flexible Coupling Suspension Models

In the early stage, multi-body suspension models were mainly rigid models. The
dynamic frequency range expressed by this method is relatively low, and only the
low frequency mode can be studied. With the development of multi-flexible body
dynamics, the theories and methods based on rigid-flexible coupling analysis are
becoming more and more mature [12]. Suspension modeling is changed to more
complex rigid-flexible coupling modeling. Generally, it is necessary to build a finite
element model for some elastic parts, generate the elastic characteristic files, and
then insert them into the multi-body software to build the rigid-flexible coupling
multi-body model [13].

2.1 Rigid Suspension Models

The components of the rigid suspensionmodels are all rigid bodies, and the influence
of flexible deformation of key parts of the suspension is not considered.

Jiang [14] used ADAMS/Car to build a car model with double wishbone suspen-
sion as front suspension and a car model with McPherson independent suspension
as front suspension, respectively. Ride comfort simulations were carried out at 60
and 100 km/h on B-class road surface, respectively, and root mean square (RMS) of
total weighted acceleration was taken as the evaluation index. The results showed
that the model with double wishbone suspension has good ride comfort at low speed
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and high speed, RMS of total weighted acceleration both were less than 0.315 m/s2.
While the model with McPherson suspension has poor ride comfort, because the
RMS of weighted acceleration was greater than 0.315 m/s2 at high speed. Jiang [15]
established the equal arm balance suspension model and vehicle dynamics model of
the rear axle of a heavy-duty van in ADAMS/View. The RMS obtained from simula-
tion and experiments are compared when driving on B-class road at different speeds,
and the deviation between simulation and the experimental value was less than 11%.
Chen [16] also established the ADAMS model based on balanced suspension. The
RMS values of the vehicle’s vertical acceleration when the balanced suspension on
was 15.75% lower than that of the vehicle with the balanced suspension off. It has
been proved that the balanced suspension can improve the vehicle ride comfort by
as much as 15.9%. Li [17] established the simplified 1/4 vehicle model in ADAMS,
and set up the passive suspension model and air suspension model, respectively. The
results indicated that compared to the traditional passive suspension, air suspension
working space was reduced 17.14%, vehicle ride comfort and road friendliness of
comprehensive performance improvement of 9.26%.

However, the influence of flexible bodies were not considered in the above
research, the simulation accuracy of the rigid suspension models may not reflect the
real working conditions of the suspension, and the accuracy of vehicle ride comfort
simulation need to be improved.

2.2 Rigid-Flexible Coupling Suspension Models

To solve the above problems, many scholars introduced more flexible bodies into
the dynamic simulation of suspension to form the rigid-flexible coupling model of
vehicle, so as to improve the accuracy of ride comfort simulation.

Wu [18] used Adams/Car to establish a multi-rigid body model of the vehicle and
a rigid-flexible coupling model, respectively. Then, the total values of the weighted
RMS acceleration for the two models at different speeds under the B-class road
were compared. It found that the rigid-flexible coupling model had smaller total
weighted RMS values which ranged from 0.315 to 0.63 m/s2, relative difference
at 2.09 to 8.00%. However, the model only considered the flexibility of the rear
suspension. Therefore, Ou [19] further increased the flexibility of key components in
the suspension, considered the lower arm of the front suspension, the lateral stabilizer
bar and the torsion beam of the rear suspension as flexible bodies, and established
the rigid-flexible coupling vehicle model. ADAMS/Car was used to compare the
vertical, lateral and longitudinal vibrations of the driver’s position simulated under
the B-class road, and the total weighted acceleration RMS of vibration was taken as
the ride comfort evaluation parameter. Under the same working conditions, the total
weighted RMS values of rigid-flexible coupling model and rigid coupling model
were 0.342 and 0.653 m/s2, respectively, and the difference between them increased
as speed increased. Duan [20] took advantage of ADAMS/Car to flexibility the lower
arm and lateral stabilizer bar of the front and rear suspension, and combined with
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other subsystems to build a rigid-flexible coupling model of a micro electric vehicle.
By comparing the vertical acceleration curves obtained from the simulation and the
real vehicle experiment, it can be seen that the trend of the two curves is basically
the same, which reflects the correctness of the model and further proves that the
horizontal stabilizer bar can prevent the problem of low vertical stiffness caused by
improving the vehicle ride comfort. Zhang [21] implemented flexible operation of the
front suspension, rear suspension and frame of the vehicle, established the rigid body,
rigid-flexible coupling model and the simulation road surface of an off-road vehicle,
respectively, and carried out the ride comfort simulation in ADAMS/Car. Compared
with the real vehicle road tests, it was found that the deformation of suspension and
frame in the rigid-flexible coupling model reduced the fluctuation between the peaks
of the vibration acceleration curve on pulse road, while the attenuation of the rigid-
body model was greater. On the C-class road, the weighted acceleration RMS of
the rigid-flexible coupling model was larger than that of the rigid model, which was
closer to the road test value. Wang [22] compared the rigid model, the rigid-flexible
coupling model and the real vehicle experiment, and found that the acceleration
curve amplitude and peak power spectral density (PSD) of the rigid-flexible coupling
model were reduced, as well as the simulation accuracy was higher. Moreover, the
Insight module of ADAMS was used to optimize and match the spring stiffness
and shock absorber damping of the front and rear suspension, and the weighted
acceleration RMSwas took as the ride comfort optimization objective to compare the
results before and after optimization. The results show that the evaluation index after
optimization was obviously reduced, from 0.216 to 0.201 m/s2 at 40 and 0.341 m/s2

to 0.316 m/s2 at 80 km/h. Obviously, the ride comfort of the car was improved.
These studies prove that the rigid-flexible coupling multi-body model based on

the suspension model can improve the simulation accuracy of ride comfort, and
provide a direction for the refined study of ride comfort. However, it is far from suffi-
cient to improve vehicle ride comfort through rigid model or rigid-flexible coupling
model, and appropriate optimization algorithm should be combined to optimize
model parameters in order to obtain better vehicle ride comfort (Table 1).

3 Multi-objective Optimization Based on Suspension
Models

Suspension optimization is a typical multi-objective problem. The main problem is
the contradiction between handling stability and ride comfort. In order to reconcile
this contradiction, many scholars have paid key attention to this aspect.
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Table 1 Ride comfort simulation based on rigid-flexible coupling models

References Flexible
component

Simulation of
condition

Evaluating indicator Conclusion

[18] Rear suspension ISO 2631–1,
Class B road

Acceleration RMS
at seat and floor

Comparing the
RMSs of the total
acceleration at
40–80 km/h speed,
the percentage
decrease is 2.09,
2.73, 4.11, 5.19 and
8.00% respectively

[19] Lower arm of
front suspension,
horizontal
stabilizer bar, rear
suspension torsion
beam

GB/T4970-2009,
Class B road

RMS of total
weighted
acceleration

Comparing the
RMSs of the total
weighted
acceleration at
40–70 km/h, the
decreasing
percentages are
2.8, 4.4, 4.11, 5.0
and 6.8%
respectively

[20] Lower arm,
horizontal
stabilizer bar of
front and rear
suspensions

Sinusoidal
excitation
experiment of
single excitation
for front and rear
wheels

Vertical
acceleration at
driver’s seat

The acceleration
curve is in good
agreement with the
real vehicle test.
The lateral
stabilizer bar can
effectively improve
the vehicle roll
performance and
ensure good ride
comfort

[21] Upper and lower
swing arm and
torsion bar spring
of front
suspension, leaf
spring of rear
suspension

GB/T4970-2009,
Class C road

RMS of center
weighted
acceleration of seat
floor

The vertical
acceleration
response curve of
the rigid flexible
coupling model is
smoother than that
of the rigid model
when passing
through the pulse
road at 60 km/h,
and the peak value
of RMS of
weighted
acceleration is
smaller

(continued)



778 T. Jianghu et al.

Table 1 (continued)

References Flexible
component

Simulation of
condition

Evaluating indicator Conclusion

[22] Lower arm of
front suspension,
horizontal
stabilizer bar, rear
suspension torsion
beam, body

GB/T4970-2009,
Class B road

RMS of total
weighted
acceleration

Compared with the
RMS of total
weighted
acceleration, it
decreased by
6.95% at 40 km/h,
17.6% at 60 km / h
and 13.45% at
80 km / h

3.1 Multi-objective Optimization Using NSGA-II Algorithm

The fast non-dominated sorting genetic algorithm based on elite strategy (NSGA-II)
was first proposed byDeb [23].With the advantages of lowcomputational complexity
and no need to specify the shared radius, it is one of the commonly used algorithms
to realize multi-objective optimization of suspensions [24–26].

Wang [27] established a vehicle model in ADAMS, and selected stiffness of front
and rear suspensions, damping coefficient of shock absorber and torsional stiffness
of stabilizer bar as optimization variables. In order to optimize the vehicle handling
stability and ride comfort, a Kriging model was established which responded to
the change of weighted RMS of body acceleration with design variables. NSGA-II
algorithm was used for multi-objective optimization of suspension system to obtain
Pareto optimal solution set, and an optimal solution was selected for ADAMS simu-
lation verification. As a result, the maximum roll angle of the vehicle was reduced
by 12.9% and the weighted RMS value of acceleration was decreased by 5.4%.
Therefore, the vehicle ride comfort and handling stability had been improved. Simi-
larly, Chen [28] established a Kriging model to describe the relationship between
the evaluation indexes of vehicle ride comfort and suspension parameters. NSGA-
II algorithm was used for optimization in the model, weighted acceleration, wheel
dynamic load and suspension deflection were taken as the evaluation indexes of
ride comfort. At 60 km/h, the largest reduction value for the optimized RMS of the
overall body acceleration was 0.017 m/s2 and corresponding relative change was
8.15%, the largest reduction value for the optimized RMS of the suspension deflec-
tion was 0.80 mm and corresponding relative change was 16.14%. Du [29] set up
a vehicle model based on ADAMS/Car and took suspension stiffness and shock
absorber damping as design variables. NSGA-II genetic algorithm was used to opti-
mize the characteristic parameters of spring and shock absorber. After optimization,
the deficient turning increased, the RMS of vertical acceleration decreased from
0.322 to 0.308 m/s2, and pitch angle and roll angle decreased from 2.13 to 1.84°,
1.04 to 0.98°, respectively. Zhang [30] took a heavy-duty vehicle as an example to
optimize the suspension parameters that affect its dynamic performance, and took the
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weighted RMS of acceleration as the evaluation index. By using NSGA-II algorithm,
the multi-objective optimization of vehicle ride comfort, stability and road friendli-
ness were realized, and the RMS value of vertical acceleration decreased by about
7%, which provided a reference for parameters design of heavy-duty vehicle. These
studies verified the effectiveness of NSGA-II algorithm in solving multi-objective
optimization problems of suspension system.

3.2 Multi-objective Optimization Using Other Algorithms

In addition to theNSGA-II genetic algorithm, some new algorithmswere also applied
to the suspension optimization to improve the ride comfort and other performance
of the vehicles. Tey [31] used ADAMS/Car to model a car, the distributed multi-
objective estimation algorithm based on regular model (RM-MEDA) was used to
optimize the design variables of the vehicle suspension system, and the optimization
objectives were RMS of weighted acceleration and average suspension working
space. Five groups of optimized vehicle characteristics were selected and compared
with the target values of the original vehicle design. It proved that the algorithm
could provide a compromise between ride comfort and handling performance.

And beyond that, He [32] built commercial vehicle’s a dynamic model in
ADAMS/Car and a nonlinear damping model based on MATLAB/Simulink, respec-
tively. Moreover, the particle swarm optimization (PSO) algorithm was used to opti-
mize the ride comfort model based on nonlinear damping. Results showed that the
frequency-weighted RMS of driver seat acceleration, RMS values of the suspension
working space of the front and rear axles, and RMS values of the dynamic tyre load
of front and rear wheels were decreased by an average of 27.4, 21.6, 25.0, 19.3 and
22.3%, respectively. Mahmoodi [33] used ADAMS to establish a double wishbone
suspension, and used genetic algorithm (GA) in geometric design to improvemaneu-
verability, stability and ride comfort. Pang [34] used ADAMS/View to establish a
8 × 4 truck model, the acceleration response characteristics of B-class road spec-
trum as excitation under full load were simulated and analyzed. Sequential quadratic
programming algorithm (OPTDES-SQP)was used to optimize themaximumvalue of
power spectrum density curve of vertical vibration. The optimization results showed
that the power spectral density of the vertical acceleration at the center of mass was
lower 5.28% than before optimization, and the ride comfort was improved.

On the other hand, the optimization effect comparison between algorithms is
also a key point. Shi [35] used ADAMS/Car to establish an A0 vehicle model
with a Macpherson suspension as the front suspension, and used the double-loop
multi-objective particle swarm optimization particle swarm optimization algorithm
(DL-MOPSO), PSO and GA for comparison. The results showed that despite an
increased in the variation range of the caster angle by 9.24–10.69% using the DL-
MOPSO algorithm, the variation ranges of the toe angle, camber angle, and kingpin
inclination angle were observed to be reduced by 50.45–79.39%, 1.84–4.24%, and
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Table 2 Ride comfort simulation after the parameter optimization

References Optimization
algorithm

Vehicle simulation
test

Evaluation
parameters

Conclusion

[27] NSGA-II 80 km/h hunting test,
and random road test
of Class B road

Weighted RMS of
body vertical
acceleration

The maximum roll
angle of the car body
is reduced by 12.9%,
the weighted RMS of
the vertical
acceleration of the car
body is reduced by
5.4%, and the
handling stability and
ride comfort of the
whole car are
improved

[28] NSGA-II Driving at different
speeds on class B
roads

RMS of acceleration,
Wheel dynamic load,
Suspension working
space

The maximum
reduction of wheel
dynamic load is
191.54 N, the
maximum reduction
of body acceleration
RMS is 0.017 m/s2,
and the maximum
reduction of
suspension working
space is 0.8 mm,
which improves the
ride comfort

[29] NSGA-II Steady static circular,
Emergency braking
input, Ride comfort
pulse input

Vertical acceleration
at driver’s seat

The vertical
acceleration decreases
by 4.25%, the vehicle
pitch angle decreases
by 13.62%, and the
body roll angle
decreases by 5.77%.
The ride comfort and
handling stability of
the vehicle are
improved

(continued)

2.11–2.96%, respectively. Accordingly, the DL-MOPSO optimized model had the
best ride comfort simulation and improved handling stability (Table 2).

4 Conclusions and Prospect

The above research summarize about simulation and optimization of vehicle ride
comfort based on ADAMS suspension model. Mainly in that established the rigid
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Table 2 (continued)

References Optimization
algorithm

Vehicle simulation
test

Evaluation
parameters

Conclusion

[30] NSGA-II speed of 30 km/h
B-class curved road
with a turning radius
of 50 m

RMS of vertical
weighted
acceleration at the
seat

RMS of vertical
weighted acceleration
at the seat is reduced
by about 7%, the
stability factors of the
inner and side tires
are increased by about
4.78% and 4.31%,
respectively, and the
combined force of the
fourth power of 95
percentile of the road
friendliness index is
reduced by about
12.6%

[31] RM-MEDA ISO8608: 1995,
Class C road, speed
80 km/h

RMS of weighted
acceleration, RMS of
dynamic travel of
front and rear
suspension

Compared with the
results of five groups
of optimization, the
fourth group of data is
obtained, which can
improve the ride
comfort and handling
stability at the same
time

[32] PSO GB/T4970-2009,
Class C road, speed
30–100 km/h

Weighted RMS of
vibration frequency
at the seat

The frequency
weighted RMS of the
driver’s seat
acceleration, front
and rear suspension
dynamic travel and
front and rear wheel
dynamic load are
reduced by 27.4%,
21.6%, 25.0%, 19.3%
and 22.3%
respectively, and the
ride comfort is
improved

[34] OPTDES-SQP Class B road, Speed
30–60 km/h

RMS of weighted
acceleration

The maximum value
of the power spectral
density curve of
vertical vibration of
the center of mass of
the container
decreases by 5.28%,
RMS of acceleration
is 0.6338 m/s2, the
ride comfort is
improved

(continued)
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Table 2 (continued)

References Optimization
algorithm

Vehicle simulation
test

Evaluation
parameters

Conclusion

[35] DL-MOPSO,
PSO, GA

GB/T4970-2009,
Class A road, speed
60/80/100 km/h

RMS of vertical
acceleration at seat
bottom

DL-MOPSO
outperforms PSO and
GA in handling
stability and ride
comfort

model and rigid-flexible coupling model of different suspension, and realized the
multi-objective optimization of the key parameters of vehicle ride comfort by using
NSGA-II algorithm, RM-MEDA, PSO algorithm and so on. It can be seen that
ADAMS can easily model and accurately solve the suspension system, and is an
important tool for scholars to study the vehicle ride comfort.

It is still a key attention to accuracy of the models for scholars. Both rigid-flexible
coupling and parameter optimization are aimed at making the simulation model
reflect the real working conditions more accurately. With the development of various
modeling theory and the improvement of computational efficiency, ADAMS will
more comprehensively consider the system structure factors, working conditions
factors and environmental factors, as well as the system modeling method in the
case of multi-factor coupling. In the future, vehicle ride comfort modeling should
consider various uncertain factors. In practical engineering, there are many uncertain
factors such as system parameters, boundary conditions and external loads due to
manufacturing error and measurement error. The traditional deterministic model
will not be able to reflect the influence of the randomness of the system on the ride
comfort. How to consider various uncertain factors and evaluate the influence of
system uncertainty on vehicle ride comfort has become an unavoidable problem in
vehicle ride comfort research.
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The Application of ADAMS Software
to Vehicle Handling Stability: A Review

Li Yixuan, Xiong Qing, Zhu Yingmou, and He Zhuoyu

Abstract Vehicle handling stability is one of the most important performance of
automobile. At present, ADAMS software is widely used in the study of vehicle
handling stability. Taking suspension as research objects, this paper reviews the
progress of ADAMS software in the study of vehicle handling stability, introduces
what evaluation indexes scholars have selected and what simulation tests have been
carried out to study the vehicle handling stability. The results of simulation experi-
ments of handling stability under different working conditions are summarized, and
the contribution of these methods to improving handling stability is analyzed, which
provides a useful reference for scholars in related research. Finally, the paper is
summarized, and the future trend of ADAMS software applied to the simulation of
vehicle handling and stability is prospected.

Keywords Handling stability · Vehicle · Suspension · ADAMS software

1 Introduction

Under the condition that the driver does not feel nervous or tired, the vehicle can
follow the direction given by the driver, and can maintain stable driving in the case of
external interference, which is called the vehicle handling stability [1]. The quality
of the handling and stability performance not only directly affects the driver’s driving
experience, but also relates to the safety and stability of the vehicle at high speed
[2], so it is particularly important to study it. The direct method to evaluate vehicle
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handling stability is actual vehicle test, but repeated testwork is costly and exhausting.
Moreover, it is difficult to unify the evaluation results, which leads to errors and
prolongs the development cycle of automobiles [3]. ADAMS software can automat-
ically establish and quickly solve the equation of motion of vehicle system and its
components, so it has been widely used in the study of vehicle handling stability [4].

Suspension is the general term for all the connecting devices between the wheel
and the body. Its main role is to transfer the force and torque used between the
wheel and the body, so as to ensure the vehicle has good handling stability [5]. So
optimization of suspension is the main method for many scholars to improve vehicle
handling stability. In this paper, we take suspension as the research objects, review
and summarize the literature on vehicle handling stability research using ADAMS
software, mainly focusing on the structural design and parameter optimization of
suspension.

2 Research on Handling Stability Based on Suspension
Structure Design

Spring, as an important part in the design of suspension, has a certain influence
on handling stability. Literature [6–9] studied the influence of suspension spring
stiffness on the handling stability. Zhang [6] established the vehicle multi-rigid body
system dynamics model by using ADAMS/Car. The simulation tests of steering
wheel angle step input, steering angle pulse input and single shifter are carried out.
The results show that appropriately increasing the front suspension spring stiffness
can reduce the amplitude of yaw rate, lateral acceleration and roll angle, so as to
improve the vehicle handling stability. Sert [7] and Dong [8] established the whole
vehicle dynamics model of a bus in ADAMS/Car, studied the influence of suspension
stiffness on handling stability of medium and mini buses, respectively. Liu [9] took
FSAE (Formula Society of Automotive Engineers) racing car as the research object,
built an interconnected double-wattarm independent suspension in ADAMS, the
suspension model is shown in Fig. 1. And studied the influence of adding the third
spring on the vehicle performance, took the roll angle as the evaluation index. The
step steering andfish-hook simulation tests proved that the third spring can effectively

Fig. 1 Front double
wishbone independent
suspensions model with the
third springs [9]
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restrain acceleration head and braking nod in the process of acceleration and braking,
and improve the handling stability of the racing car.

The antiroll bar can improve the roll stiffness of the suspension, reduce the roll
angle of the vehicle body, improve the understeering characteristics and the roll char-
acteristics of the vehicle body, so as to improve the vehicle handling stability [1].
The influence of antiroll bar on handling stability was studied in literature [10–12].
Xia [10] used ADAMS software to carry out virtual prototype model of suspen-
sion guide mechanism and steering bar system for FSAE racing car. Taking side
acceleration and lateral acceleration as evaluation indexes, he carried out circular
dynamic simulation in ADAMS, and analyzed the influence of antiroll bar with
different moment arm lengths on the turning characteristics of racing car, and finally
improved the handling stability in the process of car running. Qiu [11] carried out a
complete vehicle modeling for a passenger car in ADAMS. Taking the roll angle as
the evaluation index, he carried out the simulation test of middle position steering
and steady rotation. The simulation results show that with the increase of the stiffness
of the antiroll bar, the angle of the frame decreases non-linearly, thus improving the
handling stability of the vehicle. Wang [12] established a complete vehicle model of
Roewe750FCV in ADAMS. Taking roll angle, lateral acceleration and yaw rate as
evaluation indexes, he analyzed the influence of two lightweight antiroll bar schemes
on the vehicle performance through angle pulse and angle step input steering condi-
tions. As a result, the antiroll bar of the hollow pipe can reduce the weight and ensure
the handling stability of the original vehicle.

Torsion beam is the most important component of torsional suspension, mainly to
meet the vehicle roll, vertical and longitudinal movement of the suspension can get
the expected stiffness value, to ensure the vehicle handling stability [13]. Wu [14]
and Gao [15] established the torsional beam suspension with ADAMS and carried
out simulation. Figure 2 shows the suspension model they built, with the torsional
beam in red. It turns out that when the opening of the torsion beam is downward
about 75°, the understeering characteristic of the vehicle is larger, the roll angle of
the center of mass is smaller, and the vehicle’s handling stability is better.

The above literature improves the handling stability of the vehicle by changing
the suspension structure, and Table 1 summarizes them. They built the virtual vehicle
model by using ADAMS, carried out the simulation tests of steering reorientation,
steady rotation, steering wheel step input, steering wheel pulse input and single

Fig. 2 Torsional beam
suspension model [15]
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Table 1 Study on handling stability based on suspension structure design

Literature Models Structure
design

Evaluation
index

Test method Conclusion

[6] Suspension
spring
stiffness

Lateral
acceleration,
yaw rate,
roll angle

Steering
wheel angle
step input,
pulse input

The lateral acceleration,
yaw rate and roll angle
amplitude can be reduced by
increasing the front
suspension spring stiffness

[7] Medium
sized bus

Leaf spring
stiffness

Roll angle Fishing-hook
and turning
condition

The critical value of roll
angle can be increased by
using larger leaf spring
stiffness

[8] FSAE car The third
spring

Roll angle Step steering
and fishing
hooks

The third spring can
increase the vertical line
stiffness, can effectively
suppress the acceleration of
head and brake nod

[10] FSAE car Antiroll bar Side
acceleration,
lateral
acceleration

Loop
dynamic
simulation

The influence of different
moment arm lengths on the
steering characteristics of
the racing car was analyzed,
which improved the steering
stability of the racing car

[11] A
passenger
car

Antiroll bar Roll angle The middle
position
turns, steady
turn

With the increase of the
stiffness of the antiroll bar,
the frame roll angle
decreases non-linearly

[12] Roewe
750
FCV
sedan

Antiroll bar Roll angle,
lateral
acceleration,
yaw rate

Angle pulse,
angle step
input steering

The antiroll bar of the
hollow pipe can reduce the
weight and ensure the
handling stability of the
original car

[14] Torsion
beam

Roll angle
gradient,
yaw rate

angle step,
angle pulse
of vehicle

When the opening direction
of the torsion beam is
downward, the yaw rate
response time and peak
response time decrease

[15] Torsion
beam

Under
steering,
sideslip
angle of
center of
mass, yaw
rate, lateral
acceleration

Steady-state
radius
rotation,
steering
wheel sweep
input

When the opening of the
torsion beam is downward
about 75°, the understeering
characteristic of the whole
vehicle is larger, and the
sideslip angle, transient yaw
rate and lateral acceleration
of the center of mass are
smaller
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shifter vehicle, and evaluated the handling stability of the vehicle with the yaw rate,
roll angle, side acceleration or lateral acceleration as evaluation indexes, and finally
obtained the expected simulation results. However, it is not enough to comprehen-
sively improve the vehicle’s handling stability only by increasing the stiffness of the
suspension spring, installing the transverse antiroll bar and changing the opening
direction of the torsion beam. If the geometric parameters of the suspension are
optimized with the appropriate control algorithm, it is expected that better handling
stability can be obtained.

3 Research on Handling Stability Based on Optimization
of Suspension Parameters

Wheel toe-in angle can eliminate tire sideslip caused by camber angle and ensure
vehicle handling stability [16]. In literature [17, 18], the suspension was optimized
with the toe-in angle as the optimization objective. Wu [17] and Mao [18] estab-
lished the front McPherson suspension model and the multi-link rear suspension
model by using ADAMS/Car, respectively, and optimized the angle of toe-in with
ADAMS/Insight. After optimization, the yaw rate of the vehicle decreases obviously,
the response time of the diagonal step input decreases, and the vehicle handling
stability improved obviously. In addition, the inclination angle can reduce steering
control force, improve rebound and deviation, and ensure the stability of the vehicle
in a straight line [16]. In ADAMS/Car, Huang [19] established an accurate dual-
widearm front suspension model, and optimized the kingpin inclination angle of the
suspension with a certain pickup truck as the research object. With the yaw rate, roll
angle of front and rear axles, lateral acceleration as the evaluation indexes, the steering
wheel angle step input and steady turning simulation experiment were conducted.
The results show that the optimization improves the response characteristics of the
steeringwheel’s angular step input and steady-state rotation, and improves the vehicle
handling stability and steady-state response characteristics. However, there are many
geometrical parameters that affect the performance of suspension, and only one of
them is optimized in the above literature. If a suitable method is used for multi-
objective optimization of several key parameters, it is expected that better handling
stability can be obtained.

At present, multi-objective optimization design of suspension is mainly based on
optimization method, and computer simulation and optimization software are used
as tools [20]. ADAMS/Insight (Test Design and Analysis Module) is widely used
in the optimization of vehicle handling and stability. Many scholars have used it to
carry out multi-objective optimization of the geometric parameters of suspension. In
literature [21–23], the dual-wheel coaxial excitation condition was used to analyze
the suspension, Chen [21] took a mini pure electric vehicle as the research object and
established a simulationmodel ofMcPherson suspension inADAMS.Taking the root
mean square value of kingpin inclination angle as the optimization objective, they
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optimized the frontwheel positioning parameters of the designedMcPherson suspen-
sion based on ADAMS/Insight. The optimization results show that the proper reduc-
tion of the kingpin inclination can make the vehicle have better handling stability.
Yu [22] and Zhang [23] optimized the hard point coordinates of the suspension with
the full factor and response surface method in the ADAMS/Insight. The optimized
results are shown in Figs. 3 and 4, It can be seen that the yaw rate is reduced after
optimization, and the vehicle handling stability is significantly improved. In litera-
ture [24–27], scholars established McPherson suspension simulation model through
ADAMS/Car, carried out multi-objective optimization on the wheel camber angle,
front wheel toe-in angle, kingpin caster angle and kingpin inclination angle, respec-
tively. The results show that the steady-state rotation performance of the vehicle
model is stable after the suspension optimization, which is beneficial to improve the

Fig. 3 The changing curve
of average yaw rate with the
speed [23]
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handling stability. Dhurai [28] took an off-road vehicle as the research object, estab-
lished a virtual simulation model of front suspension in ADAMS/Car, and carried
out multi-objective optimization through the ADAMS/ Insight, such as the camber
angle, toe-in angle, kingpin inclination angle and kingpin caster angle, and finally
improved the vehicle handling stability.

To sum up, the optimization based on ADAMS/Insight can comprehensively
analyze the parameters of the suspension, accurately select the parameters that have
a greater impact on the vehicle handling stability, and make the vehicle handling
stability optimization more convenient and efficient.

In literature [29–35], genetic algorithm was used to carry out multi-objective
optimization of geometric parameters of suspension. Zhang [29] established a simu-
lation model of the McPherson front suspension of a car in ADAMS, and optimized
the design of the minimum change of the toe-in angle and the minimum change of
the camber angle based on the multi-island genetic algorithm. After optimization,
the changes of toe-in angle and camber angle are reduced, the steering portability
is improved, and the vehicle handling stability is enhanced. Shi [30] established a
virtual model of a light bus in ADAMS/Car, and optimized the roll angle stiffness
relationship of the front and rear antiroll bars by using the improved genetic algorithm
NSGA-II. Using maximum lateral acceleration, average yaw rate and average roll
angle as evaluation indexes, the simulation of central steering test and steady static
circular test were carried out, and the results show that the optimization improves the
steering stability of light bus when they are running at high speed. Mahmoodi [31]
built a model for the double-wattarm suspension system in ADAMS, and optimized
the geometric parameters of the suspension affecting the change of camber angle
by using genetic algorithm. Taking yaw rate and lateral acceleration as evaluation
indexes, the simulation test of J-shaped turn and lane change was carried out. The
optimized suspension system reduces the change of camber angle, so that the change
of tire force is reduced and the vehicle handling stability is improved. In reference
[32–34], hubmotor driven vehicles were taken as the research object, and NSGA-II
algorithm was used to conduct multi-objective optimization on the variation of front
beamAngle, CAMAngle andwheel base. Through optimization, tirewear and lateral
deviation were reduced and the handling stability of the vehicle was improved. Li
[35] established the multi-body dynamics model of suspension in ADAMS/Car, and
used NSGA-II algorithm to carry out multi-objective optimization on the gradient
of wheel spacing variation, kingpin caster angle and kingpin inclination angle. The
optimization results show that the variation range of kingpin caster angle, kingpin
inclination angle and the tire wear were reduced, while the steering performance and
the vehicle handling stability were improved.

To sum up, genetic algorithm and its improved algorithm are not only widely used
in the study of vehicle handling stability, but also have good effects. In particular, the
improved non-dominated sorting genetic algorithm can avoid the loss of individuals,
and improves the search speed of the optimal solution and the robustness of the
algorithm.

Literature [17–35] improves vehicle handling stability through optimization of
suspension parameters, which are summarized in Table 2. They took the kingpin
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Table 2 Research on handling stability based on suspension parameter optimization

Literature Optimization
goal

Optimization
method

Evaluation
index

Test
method

Conclusion

[17] Wheel toe-in
angle

ADAMS/Insight Yaw rate Steering
wheel
angular
step input

The yaw rate of the
vehicle decreases
obviously, and the
response time of the
diagonal step input
decreases

[18] Toe-in angle ADAMS/Insight Toe-in angle,
camber
angle

Parallel
wheel
jump,
reverse
wheel
jump

After optimization,
the change gradient
of the front toe-in
angle decreased
significantly

[19] Kingpin
inclination
angle

ADAMS/Insight Yaw rate,
side
acceleration,
sideslip
angle

Steering
wheel
angular
step input,
steady
rotation

Optimized steering
wheel angular step
input response
characteristics and
steady-state rotation
response
characteristics

[22] Toe-in angle,
camber
angle, wheel
lateral
displacement

ADAMS/Insight Yaw rate,
vehicle roll
angle

Steering
back,
steady
turning,
light
steering

After optimization,
yaw rate, steering
wheel maximum
rotation force and
average friction force
are all reduced

[23] Camber
angle,
kingpin
caster angle,
inclination
angle

ADAMS/Insight Yaw rate,
steering
wheel angle

Steering
wheel
angle step
input

The optimized
vehicle yaw rate and
steering wheel angle
are reduced

[24] Camber
angle, toe-in
angle,
kingpin
caster angle,
inclination
angle

ADAMS/Insight sideslip
angle

The steady
state
turning

After suspension
optimization, the
steady-state rotation
performance of the
vehicle model is
stable, and the
vehicle model has
understeering
characteristics

(continued)
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Table 2 (continued)

Literature Optimization
goal

Optimization
method

Evaluation
index

Test
method

Conclusion

[30] Roll angle
stiffness

NSGA-II Lateral
acceleration,
yaw rate,
sideslip
angle

Central
steering
test, steady
static
circular
test

Optimized and
improved the
handling stability of
light passenger cars
at high speed

[31] Genetic
algorithm

Yaw rate,
lateral
acceleration

J-turns,
lane
changes

When the camber
angle is reduced, the
tire force changes are
reduced

[32] toe-in angle,
camber angle

NSGA-II Lateral
acceleration,
roll angle

Serpentine
test and
two-lane
change test

Both the maximum
lateral acceleration
and the maximum
roll angle are reduced

positioning parameters, camber angle, toe-in angle and wheelbase variation as the
optimization objectives, and yaw rate and lateral acceleration as evaluation indexes
to carry out simulation tests such as steering angle step test, steering angle pulse test,
snaking test and steering reorientation test. Finally, ADAMSwas used to evaluate the
handling stability of the optimized suspension model, and relatively accurate results
were obtained.

4 Summary and Outlook

In this paper, the suspension is taken as the research object, and the evaluation and
research on handling stability by ADAMS software at home and abroad in recent
years are summarized. The vehicle handling stability is improved mainly through
structural design of suspension (increase of suspension spring stiffness, install of
lateral stabilizer bar, change of torsional beam structure) and parameter optimization
(kingpin positioning parameters, wheel camber angle, toe-in angle and wheelbase
variation). Themain optimizationmethods are Adams/Insight and genetic algorithm.

With the continuous development of computer technology and virtual prototyping
technology, ADAMS software is bound to develop in the direction of high preci-
sion, high stability and high efficiency. In particular, in recent years, more and more
new composite materials have been used in automobiles to ensure the automobile
lightweight. However, the use of composite materials can lead to geometric and
material nonlinearity of the system. How to establish geometric and material nonlin-
earity models in ADAMS software and carry out efficient and accurate simulation
of handling stability has become a difficult problem in the future automotive field.
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Analysis and Decompose of Nine Degrees
of Freedom Motion Simulator Relative
Positional Precision

Bo Li, Huadong He, Yinjun Lian, Xia Wu, Tongling Fu, Weiling Zhao,
and Huibo Zhang

Abstract Nine Degrees of Freedom Motion Simulator (9-DOF-MS) is the key
equipment for calibration of Camera-type Rendezvous & Docking Sensor (CRDS)
in spacecraft space rendezvous & docking Guidance Navigation and Control (GNC)
sub-system, and it must be high with relative position precision. For meeting this
demand, the components of errors impacting this system’s integral indexes are
analyzed systemically in this paper. At first, the relationship and interactions among
the components of system errors are analyzed. Then the error model is built. By
decomposing and redistributing the systematic precision index, 9-DOF-MS designed
fulfils the precision requirements.

Keywords Nine degrees of freedom · Motion simulator · Relative position
precision · Error analysis · Index decomposition

1 Introduction

Camera-type Rendezvous & Docking Sensor (CRDS) is composed of the camera
installed on the tracking aircraft and the target marker on the target aircraft. Its
performance is the key to the success of the rendezvous and docking [1, 2]. Normally,
the ground calibration and verification of CRDS is realized by Nine Degrees of
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Freedom Motion Simulator (9-DOF-MS). Therefore, the 9-DOF-MS is one of the
key ground support equipment for spacecraft rendezvous and docking. Our original
“6 + 3” 9-DOF-MS is mainly used for the test verification of the GNC subsystem
level of rendezvous and docking [3], which does not require high relative position
accuracy of the simulator. The 9-DOF-MS described in this article is a product-
level calibration device for CRDS. Furthermore, the 9-DOF-MS puts forward higher
requirements on system accuracy. For example, the overall position error of the full
stroke is smaller than 0.5 mm. At the same time, due to cost and development cycle
factors, the traditional “6 + 3” type of motion simulator is difficult to meet the needs
of the project. Therefore, a new “5 + 4” form of free distribution is adopted.

With reference to the previous research and development experience, the influ-
encing factors of the full-stroke comprehensive position errormainly include straight-
ness, disjointness, non-perpendicularity, and positioning accuracy of straight line and
rotation. Therefore, establishing a mathematical model of the system’s comprehen-
sive position error and each sub-error, analyzing the influence of the latter on the
former, taking into account the feasibility of the project, and decomposing the indi-
cators of each sub-error is an important basis for project implementation, and it has
significant meaning.

In this paper, the error components that affect the comprehensive position accuracy
of the system are identified firstly. Secondly, the correlation model between the
component ring error and the closed ring error is established by referring to the
calculation method of dimensional chain. Furthermore, the error accuracy of each
component ring is calculated according to the error of the closed ring. Finally, the
index decomposition of relative position accuracy is realized by using the iterative
method.

2 The Simulator

Nine degrees of freedom motion simulator is shown in Fig. 1, consisting of two
largemechanical subsystems: the high precision turntable system (tracking turntable,
target turntable), the linear motion subsystem (x direction motion sub-system, y
direction motion sub-system, and z direction motion sub-system system). Among
them, the two turntables are all three-axis turntables, from the outside to the inside in
turn are the yaw axis, the pitch axis and the rolling axis. In the initial state, the yaw
axis is the vertical axis, besides the pitch axis and the rolling axis are the horizontal
axis.

3 Analysis of Influencing Factors

In view of the fact that the relative position error of the 9-DOF-MS has many influ-
encing factors, if the overall analysis method is adopted, the calculation process
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Target turntable

Z-direction motion subsystem

Tracking turntable Y-direction motion subsystem

X-direction motion subsystem

Fig. 1 Constitute of 9 degrees of freedom motion simulation system

will be cumbersome, which is not conducive to highlighting the main influencing
factors, and even makes the analysis impossible [4, 5]. Therefore, it is necessary to
separate the influencing factors into the rotary position error source of the turntable
and the linear system position error source. After the separation, the calculation is
performed separately, and the obtained results are superimposed to obtain the overall
relative position error [6, 7]. Identify of error constituents affecting relative positional
precision is shown in Table 1.

Table 1 Identify of error constituents affecting relative positional precision

Comprehensive index analysis
item

Components Error source

relative position error analysis Position error introduced by
turntable rotation

Disjoint degree

non-verticality degree

control precision

Geometric error of three-way
linear system

Position control error

Verticality error

The straightness of guide rail
and the corresponding derived
error source
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4 Comprehensive Position Index Influence Analysis

4.1 Turntable Disjoint Degree

In order to analyze the influence of the disjoint degree of the turntable on the relative
position error of the two simulators, the process analysis diagram is shown in Fig. 2.
Considering the error source of the three-axis disjoint degree of the turntable, the
mathematical model is established, as shown in Fig. 3 [8], where r is the distance
between the load plate and the three-axis center.

In the general, the vector coordinate of rOM with respect to the o0 − x0 y0z0
coordinate system is

rOM =
⎡
⎣
r · cosϕ2 · sinϕ1

r · sinϕ2

r · cosϕ2 · cosϕ1

⎤
⎦ (1)

Considering the influence of disjoint degree, the vector coordinate of rOM ′ relative
to o0 − x0 y0z0 coordinate system is

rOM ′ =
⎡
⎣

(r · cosϕ2 ± � · sinϕ2)sinϕ1 ± � · cosϕ1

r · sinϕ2 ± �cosϕ2

(r · cosϕ2 ± � · sinϕ2)cosϕ1 ± � · sinϕ1

⎤
⎦ (2)

The vector coordinate of the position error rMM ′ relative to the o0 − x0 y0z0
coordinate system is

rMM ′ =
⎡
⎣

±� · sinϕ1 · sinϕ2 ± � · cosϕ1

±� · cosϕ2

±� · cosϕ1 · sinϕ2 ± � · sinϕ1

⎤
⎦ (3)

The yaw angle and the pitch angle are two relatively independent quantities, such
as ϕ1 ∈ (−50˚, 50˚), ϕ2 ∈ (−32.5˚, 32.5˚), Disjoint degree � ∈ (0, 0.35). Therefore,
by bringing in the maximum value of each component of rMM ′ (not the maximum
value at the same time), the three-dimensional components are as follows:

Establish a geometric 
model of the disjoint 

degree of the turntable

Obtain the vector 
coordinates of the center 
position of the load plate 

of the turntable at any 
position relative to the 

absolute coordinate system

Compare the vector 
coordinates of the center 
position of the load plate 
relative to the absolute 

coordinate system under 
the same attitude of the 

ideal turntable

Get position 
deviation

Fig. 2 Analysis procedure of turntable disjointness error affect
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Fig. 3 Disjointness error model for three axis turntable

i = (±� · sinϕ1 · sinϕ2 ± � · cosϕ1)max = 0.369, (4)

j = (±� · cosϕ2)max = 0.35, (5)

k = (±� · cosϕ1 · sinϕ2 ± � · sinϕ1)max = 0.389. (6)

Through the above calculation, it can be seen that the three-dimensional compo-
nent value is more significant, but the disjointness of the turntable is a steady-state
error. After processing and assembly, the disjointness values have been determined
and can be detected by correspondingmeans. For themost effective to avoid the posi-
tion error introduced by the disjoint degree, the measurement result can be used to
set it as a part of the oretical model. Finally the corresponding position compensation
is performed through motion control.
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4.2 Non-Verticality of the Turntable

In order to analyze the influence of the non-verticality of the turntable on the relative
position error of the two simulators, the analysis is carried out according to the process
shown in Fig. 4, considering the error source of the three-axis non-verticality of the
turntable.

The basic assumptions are as follows [9]:

(1) The three axes of the turntable are not perpendicular, but the three axes intersect
at a point.

(2) The non-verticality of the turntable only occurs between two adjacent axes,
such as the yaw axis (axis III) and the pitch axis (axis II), the pitch axis (axis
II) and the rolling axis (axis I). The rotation axis and the yaw axis are disjoint.

(3) The non-perpendicular angle ε between the axis I and the axis II should be
inside the plane formed by the two intersecting lines of the axis II and the
Z axis, as shown in Fig. 5a. For the convenience of calculation, the angle
between axis II-Z axis plane and the XOZ plane is extremely small, which can
be approximately regarded as in the XOY plane, and the angle between axis
III and X axis is ε, as shown in Fig. 5b.

A sphere with radius r is established in the Cartesian coordinate system, where r
is the distance between the center of the load plate and the intersection of the three
axes. The 3 axes of the turntable are in this sphere. The three axes of the turntable
intersect at a point, which is at the center of the sphere. The axis I is in the XOZ
plane, the axis II is in the YOZ plane, and the axis III coincides with the Y axis. Due

Put forward basic 
assumptions and 

simplify theoretical 
models

In order to draw the 
motion trajectory, the 

geometric model of the 
non-perpendicularity of 
the turntable is placed 

in a sphere

Consider the 
calibration process 

before actual use and 
ignore the calibration 

error

Compare with the ideal 
turntable to get the 

actual deviation

Fig. 4 Analysis procedure of turntable vertical error affect

Fig. 5 The approximate principle for three axis vertical error
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to the non-perpendicularity factor, there is an angle ε between the axis II and the
Y axis. Due to the non-perpendicularity factor, there is an angle ε between the axis
I and the Z axis. These situations are shown in Fig. 6a.

Since the turntable system has to be calibrated in the normal direction of the load
plate after the assembly is completed, the axis I and the Z axis coincide, which is
achieved by the rotation axis III at the ε angle. After the yaw axis rotates, the position
of the axis II changes, and the new state is shown in the Fig. 6b. In this state, only the
movement of axis II may introduce the position error of the load plate. The center
position of the load plate forms a trajectory EF on the spherical surface during the
90° rotation of axis II, as shown in the Fig. 6b.

After the axis II rotates at an angle ψ , the coordinate of the position N ′ of the
center point in the load plate on the trajectory EF

∧

is (x0, y0, z0), and the relationship
is as follows:

N ′ on the sphere : x20 + y20 + z20 = r2 (7)

EN ′ is perpendicular to axis II : x0 + y0ε − (z0 − r)ε = 0 (8)

Angle between OE and ON ′ : cosθ = z0/r (9)

Another point F(0,−2εr, r) is on the trajectory. Through the combination of the
above conditions, the calculated coordinate relationship of the N ′ point is as follows:

x0 = (1 − cosθ + sinθ)ε · r, (10)

y0 = r · sinθ, (11)

z0 = r · cosθ. (12)

Fig. 6 Vertical error model for three axis turntable
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When considering the non-verticality model of the turntable, after the turntable is
adjusted and calibrated to the ideal position, only the rotation of axis II produces an
X-axis error component. When the maximum angular stroke of rotation is 32.5°, the
X-axis error component is the largest with a magnitude of 0.01 mm. This deviation is
mainly caused by the eccentricity of the rolling bearing. Although there is a certain
periodicity, it is not a steady-state error and cannot be compensated.

4.3 Three-Dimensional Linear Motion

In order to analyze the influence of the linear system error on the relative position
error of the two simulators, the analysis is carried out according to the process shown
in Fig. 7.

The 9-DOF-MS space model (excluding the three-axis turntable part) is estab-
lished, as shown in Fig. 8. The coordinate system is established at the intersection
of the Z-direction and X-direction rails. The reference coordinate system Z-axis and
Z-direction rail fitting straight line coincides. The X axis of the reference coordinate
system is on the horizontal plane and orthogonal to the Z axis. The direction of Y
axis is determined by the right-hand rule.

The main factors affecting the position accuracy of the target are as follows [10]:
θ1 is the pitch angle of the target caused by the level change of the Z-direction

guide rail in the direction of movement, as shown in Fig. 9.

Establish geometric 
model of linear system

Consider the factors 
that affect the position 
accuracy of the target 

and calculate the 
position offset of the 

target

Consider the factors 
that affect the position 
accuracy of the tracker,

and calculate the 
position offset of the 

tracker

Obtain the deviation of 
relative position by 

vector method

Fig. 7 Analysis procedure of linear system error

Fig. 8 The error model for 9
degrees of freedom motion
simulator’s linear system
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Fig. 9 Pitching angle error
due to nonlinearity of the rail

θ2 is the roll angle to the target simulator due to the height deviation of the
Z-direction double guide rails, as shown in Fig. 10.

�z is the position control error of the target device in the Z direction, as shown
in Fig. 11.

W 1
z is the height runout of the Z-direction guide rail, as shown in Fig. 12.

W 2
z is the lateral runout of the Z-direction guide rail, as shown in Fig. 13.

The coordinates of the nominal position coordinate point of the target in the
reference coordinate system can be expressed asA (0, h,−Lz), while the coordinates
of the actual position coordinate point of the target are expressed as A’ (±h · θ2 ±
W 2

Z , h ± W 1
Z ,−LZ ± �Z ± h · θ1). The vector radius between A and B is expressed

as follows:

r A′A =
⎡
⎣

±h · θ2 ± W 2
Z

±W 1
Z

±�Z ± h · θ

⎤
⎦ (13)

The main factors affecting the position accuracy of tracker are as follows:
α is the degree of non-perpendicularity between the X-direction guide rail and

the Z-direction guide rail (rad).
θ3 is the pitch angle of the target caused by the level change of the X-direction

guide rail in the direction of movement (rad).
θ4 is the roll angle to the target simulator due to the height deviation of the

X-direction double rail (rad).
�x is the X-direction position control error of the target (mm).
�y is the Y-direction position control error of the target (mm).

Fig. 10 Rolling angle error
due to variance between two
rails

Fig. 11 Absolute position
control error region
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Fig. 12 Sketch diagram of
rail vertical fluctuate

Fig. 13 Sketch diagram of
rail lateral fluctuate

W 1
x is the height runout of the X-direction guide rail (mm).

W 2
x is the lateral runout of the X-direction guide rail (mm).

W 1
y is the height runout of the Y-direction guide rail (mm).

W 2
y is the lateral runout of the Y-direction guide rail (mm).

The nominal position coordinate point B of the tracker in the reference coordinate
system is

(
Lx , Ly, 0

)
, while the actual position coordinate point B’ of the target

device is (xB ′ , yB ′ , zB ′), where

xB ′ = Lx ± �x ± (Ly ± �y) · θ3 ± W 2
y , (14)

yB ′ = Ly ± �y ± W 1
x , (15)

zB ′ ± (Ly ± �y) · θ4 ± (Lx ± �x ) · α ± W 2
x ± W 1

y . (16)

The r BB ′ vector expression is:

r BB ′ =
⎡
⎢⎣

±�x ± (Ly ± �y) · θ3 ± W 2
y

±�y ± W 1
x

±(Ly ± �y) · θ4 ± (Lx ± �x ) · α ± W 2
x ± W 1

y

⎤
⎥⎦. (17)

The relative position error should be the difference between the actual position
vector r A′B ′ and the theoretical position vector r AB of the tracker and the target.
Because of r A′B ′ + r B ′B + r BA + r AA′ = 0, thus

r A′B ′ − r AB = r A′A − r B ′B . (18)

By calculating the above expression, it can be expressed as:

r A′B ′ − r AB =⎡
⎢⎣

±h · θ2 ± W 2
z ± �x ± (Ly ± �y) · θ3 ± W 2

y

±W 1
z ± �y ± W 1

x

±�z ± h · θ1 ± (Ly ± �y) · θ4 ± (Lx ± �x ) · α ± W 2
x ± W 1

y

⎤
⎥⎦.

(19)
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After expanding various equations, accumulating all errors, and removing the
second-order small quantities that have little effect on the system error, the
X-direction component of themaximumrelative position error is obtained, as follows:

i = h · θ2 + W 2
z + �x + Ly · θ3 + W 2

y . (20)

The Y component of the maximum relative position error is expressed as follows:

j = W 1
z + �y + W 1

x . (21)

The Z component of the maximum relative position error is expressed as follows:

k = �z + hθ1 + Lyθ4 + Lxα + W 2
x + W 1

y . (22)

By using the probability method to calculate the superposition of each component
ring, Eqs. (20), (21), and (22) are converted into Eqs. (23), (24), and (25), as follows:

i =
√

(h · θ2)2 + (W 2
z )2 + (�x )2 + (Ly · θ3)2 + (W 2

y )
2, (23)

j =
√

(W 1
z )2 + (�y)2 + (W 1

x )2, (24)

k =
√

(�z)2 + (h · θ1)2 + (Ly · θ4)2 + (Lx · α)2 + (W 2
x )2 + (W 1

y )
2. (25)

After the initial values of the error components of each component of the linear
system are substituted into the above-mentioned dimensional chain, the requirements
cannot be met. Considering the feasibility, the error component is iterated until the
relative position error reaches about 60% of the required value. And the final result is
the superimposed components of each component index that affect the comprehen-
sive index are shown in Table 2. It can be seen from the table that the comprehensive
position deviation is estimated to reach 0.271 mm, leaving a margin for unestimable
measurement and compensation errors.

Table 2 Integral relative positional errors of whole range

straight
line

Turntable
(disjoint)

Turntable
(not vertical)

Turntable
(control)

Sum

i /mm 0.171 Steady-state
error,
Compensation
elimination

0.01 × √
2 0.017 × √

2 0.209

j /mm 0.066 0 0.017 × √
2 0.09

k/mm 0.147 0 0 0.147√
i2 + j2 + k2/mm 0.257 0.014 0.034 0.271
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4.4 Index Decomposition

The initial comprehensive position error is calculated by substituting the initial value
into the dimensional chain. There is a certain deviation from the expected index
requirement. Therefore, each sub-error index needs to be corrected again. After
several rounds of repeated calculations, the appropriate sub-error is obtained. The
sub- error results of the last iteration are analyzed and compared with the initial
value to form Table 3. In the table, the data of the project realization value is combed
and compared. It can be seen that the implementation and control of the project are
strictly based on the decomposition index.

5 Conclusions

In this paper, the disjoint degree, non-verticality degree and linear system error
models of the turntable system are established, and the action forms and processing
methods of various errors are analyzed. The more economical error values of each
sub-error can be obtained through the probability calculation of the dimensional
chain. In the entire distribution process, the realizability of each system is strictly
considered, and problems that cannot be realized by engineering are avoided. The
implementation process of this project is strictly controlled according to the results
of this article. Currently, 45 positions of the target and 34 positions of the tracker
have been measured. There are total of 1530 arrangement results, and the compre-
hensive position accuracy meets the 0.5 mm requirement. This index analysis and
decomposition method has relatively general adaptability, and has reference value
for the index realization analysis of other complex and high-precision mechanical
systems.
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Table 3 Initial values and validated values of linear system error components

Number Sub-error Initial value Definite value Project realization
value

1 X-axis position control
error �x(mm)

0.06 0.03 0.018

2 Y-axis position control
error �y(mm)

0.05 0.03 0.022

3 Z-axis position control
error �z(mm)

0.1 0.03 0.030

4 Level fluctuation error
of Z-axis movement
direction θ1(rad)

0.01 × (π/180) 0.002 × (π/180) 0.002 × (π/180)

5 Z-axis lateral levelness
fluctuation error
θ2(rad)

0.005 × (π/180) 0.002 × (π/180) 0.0018 × (π/180)

6 X-axis movement
direction levelness
fluctuation error
θ3(rad)

0.01 × (π/180) 0.002 × (π/180) 0.0015 × (π/180)

7 X-axis lateral levelness
fluctuation error
θ4(rad)

0.005 × (π/180) 0.002 × (π/180) 0.0013 × (π/180)

8 Non-verticality error
of Z-direction and
X-direction guide rail
α(rad)

0.01 × (π/180) 0.002 × (π/180) 0.0019 × (π/180)

9 X-direction rail height

run-out error W 1
x (mm)

0.05 0.03 0.024

10 X-direction guide rail
lateral runout error
W 2

x (mm)

0.05 0.03 0.012

11 Y-direction rail height

runout error W 1
y (mm)

0.05 0.03 0.018

12 Y-direction guide rail
lateral runout error
W 2

y (mm)

0.05 0.03 0.010

13 Z-direction rail height

run-out error W 1
z (mm)

0.1 0.03 0.021

14 Z-direction guide rail
lateral runout error
W 2

z (mm)

0.1 0.03 0.019
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A Study on Vibration Response
in the Baseplate of a Delta 3D Printer
for Condition Monitoring

Xinfeng Zou, Zhen Li, Fengshou Gu, and Andrew D. Ball

Abstract In recent years, the necessity of implementing sensor-based process condi-
tion monitoring (CM) in additive manufacturing (AM) has attracted the attention of
many foreign governments and academic institutions. To verify the feasibility of the
condition monitoring on additive manufacturing, an experiment is carried out. The
experiment focuses on the abnormal status of the 3D printer to explore the relation-
ship between the printing signals and the printing quality. There are two methods
are used to process the experimental data. One method is the Short-Time Fourier
Transform (STFT), which is used frequently used in this report. Its processing result
indicates that the signal changes in both the time domain and the frequency domain.
The other method is the Mean function. By the comparison of the two methods,
the mean function turns out to be better than STFT at presenting the differences in
detail and proving the consistency of the signals and the 3D printer features. This
experiment lays a firm foundation and points out the directions for future research,
such as mathematical simulation, etc.

Keywords Condition monitoring · Additive manufacturing · Vibration signals ·
STFT

1 Introduction

Currently, 3D printing technology has a wide range of applications in personal and
industrial consumption fields such as medicine, mold making, automobile manufac-
turing, cultural creativity, aerospace, and construction [1]. Fused depositionmodeling
(FDM) technology, one of the additive manufacturing methods, has the advantages
of simple structure, easy to use and low cost, it has become one of the most popular
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and widely used technologies in kinds of additive manufacturing technologies. It has
been used in many fields such as academic research, education, and industrial design
in many applications.

However, most of the 3D printing equipment currently on the market are not
equipped with a relevant process monitoring system, and it is impossible to know
the various defects or failure status information that may occur during the printing
process, and take corresponding remedial measures in time, and the quality of the
printed products is consistent, dimensional accuracy and comprehensive performance
can’t meet the requirements of application in the professional engineering field.
Therefore, the application of many 3D printing products is still limited to model
making or design verification, and to a certain extent, 3D printing technology and its
products are restricted with further promotion [2].

2 Literature Review

At present, the stability of the FDM processing process, the overall quality and
consistency of the product, etc. still can’t meet the needs of industrial applications. It
limits the further expansion of the application scenarios of FDM additive manufac-
turing technology. It is necessary to study the corresponding monitoring technology
to achieve the real-time identification and prevention of typical defects or abnormal
printing conditions in FDM.There are several faults or defects of the quality problems
occur in FDM process during printing a 3D model, such as too large surface rough-
ness, low precision, and low strength. When these faults or defects occur, due to the
changes in the internal structure of thematerial, especially the shrinkage deformation
process caused by the temperature field and the uneven stress caused by the melting
phase transition of the material, it will have characteristics that can be distinguished
from the normal signals. In order to ensure and improve the overall quality of additive
manufacturing printed products, many researchers have investigated into modeling
the process, feedback control, printing route scheduling, printing process param-
eter optimization, material performance analysis [3–6]. Melvin and others have used
a video microscopy system in powder bed fusion (PBF) to monitor its processing
process to study the material powder forming characteristics in the laser sintering
process [7]. Rao et al. first studied the multi-sensor fusion monitoring technology for
FDM printing conditions [8]. Zou et. al investigated the probability of the condition
monitoring on FDM printing process based on multi-signals [9–11].

3 Experiment Methodologies

To investigate if condition monitoring (CM) could be applied in additive manufac-
turing, there are several experiments have been done. In this chapter, two sections
are illustrated as below.
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3.1 Experimental Cases Analysis

From above, it is well known that the printing model is formed by the accumulation
layer by layer based on a printing baseplate, as a result, leveling the baseplate of
the delta 3D printer for the accumulation operation is one of the important setting
before printing. This paper focuses on a delta 3D printer which has a complicated and
precisely movement system. The leveling baseplate method of the delta 3D printer is
according to three points positioning principles. Hence, how to evaluate the leveling
status of each positioning point is key operation to leveling the baseplate. As shown
in Table 1, there are several experiment cases should be followed based on mixed
combination.

According to Table 1, there are three kinds of parameter groups are described. SC,
the signal channel, includes four channels namedBaseplate channel, Nozzle channel,
Column channel and Sound channel, independently. LS represents the status of the
delta 3D printer, including LS− N , LS− A1, LS− A2 and LS− A3. For example,
LS−N means the normal status of the delta 3D printer, i.e., the three levelling points
of the baseplate are normal status, as shown in Table 2.

Phase is the third parameter group, including P − Su, P − So and P − Ho
respectively. The different parameter groups combination can reflect different exper-
iment results. As a consequence, the data analysis will be based on the three kinds
of parameter groups as follow.

f (experimentcases) =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

SC − B
SC − N
SC − C
SC − S

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

LS − N
LS − A1
LS − A2
LS − A3

⎤
⎥⎥⎦,

⎡
⎣

P − Su
P − So
P − Ho

⎤
⎦

⎞
⎟⎟⎠

Table 1 The experiment cases combination table

Parameter group 1
Signal channel (SC)

Parameter group 2
Leveling Status of the delta 3D printer (LS)

Parameter group 3
Phase (P)

Channel-baseplate
(SC-B)

Normal-3 points are good
(LS-N)

Support phase
(P-Su)

Channel-nozzle
(SC-N)

Abnormal-one-point faults
(LS-A1)

Solid phase
(P-So)

Channel-column
(SC-C)

Abnormal-two-points faults
(LS-A2)

Hollow phase
(P-Ho)

Channel-sound
(SC-S)

Abnormal-Three-points faults
(LS-A3)
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Table 2 The four kinds of baseplate leveling cases

LS-N (Normal status) LS-A1 (Only one point inclination 0.3mm)

LS-A2 (Two points inclinations 0.3mm)
LS-A3 (All of the points (three points) 

inclinations 0.3mm)

3.2 Experimental Preparation

As shown in Fig. 1, there is a delta 3D printer which is regarded as the experiment
platform. All the CM experiment will focus on the printer. The model of the Delta
printer is MOOZ-3, produced by DOBOT. There are three vibration sensors are
equipped with the delta 3D printer, including on the baseplate, neighbor to nozzle
and on the column, respectively. Moreover, there is a sound sensor is set close to the
printer. All of the sensors are produced by YMC Piezotronics, Inc.

On the other hand, there is a data collector which has four channels, to obtain the
dynamic data in-real time. The purpose, equipped with three vibration sensors and

Column---Vibration sensor

Nozzle---Vibration sensor

Sound sensor

Baseplate---Vibration sensor

Data collector

Fig. 1 Delta 3D printer equipped with several sensors
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one sound sensor, is to investigate the relationships between the tiny vibrations and
the status of the printer when the printer is working. The reasons to locations of the
vibration sensors on the baseplate and nozzle, because they are the two important
parameters of the delta printer, and these two parameters would cause some poor
printing qualities with the printing model.

4 Data Analysis

According to f (experimentcases), there are kinds of experiment results have been
proposed. As we known that f (experimentcases) has three group parameters, if all
the parameters are proposed to compare each other simultaneously, it would cause
a fuzzy experiment result. As a result, in this chapter, two parameters should be
fixed and only one parameter can be changed, hence, the experiments results can be
analyzed precisely as shown in Fig. 2. Consequently, there are two experiment cases
have been investigated.

4.1 Different Phases with the Same Case

To reveal the frequency comparison on the same case with different phase, the
f (experimentcases) are described as below.

f (experimentcases) =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

SC − B
SC − N
SC − C
SC − S

⎤
⎥⎥⎦, [LS − N ],

[
P − So
P − Ho

]
⎞
⎟⎟⎠

SC − B to SC − S means the data signal from different signal channels should
have a comparison, at the same time, LS− N remains as the normal levelling points

3D Model

STL format

G-code

3D Delta 

Printer

Data Analysis

Vibration Sensors

&

Sound Sensors

3D model 

printing finished

Different phases with the same case

Same phase with different cases within 

three detail points

3D model printing Quality

Signal Indication

Physics phenomenon

Same phase with the different cases

Fig. 2 The f (experimentcases) analysis framework
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Fig. 3 The frequency comparison on the same case with different phases

status of the delta printer baseplate, moreover, two phases including printing the solid
phase and printing the hollow phase with a same printing leveling status.

As shown in Fig. 3, the frequency comparison between P− So and P−Ho based
on the same LS− N (the normal status of the baseplate of the 3D delta printer) with
four channels respectively. The blue line is the frequency of P − So and the red line
is the frequency of P − Ho. It is obviously to obtained that the amplitude of P − So
is stronger than P − So, especially around 180–1200 Hz, and 1500–3700 Hz.

On the other hand, the frequency around 180 Hz is obviously obtained in SC−N ,
SC − B and SC − C , except SC − S. The result demonstrates that there is a vibra-
tion around 180 Hz occurred during the 3D delta printer is working. Furthermore,
this vibration energy exists in the 3D printer including the baseplate, nozzle and
column, and has no transmission to the sound sensor. Meanwhile, the frequencies
around 1800 Hz are strong enough that the phenomenon occurred from SC − N to
SC − S reveals the vibration around 1800 Hz doesn’t disappear during the vibration
transmission, i.e., the frequency around 1800 Hz may be caused by printing process.

4.2 Same Phase with Two Different Cases

According to the conclusion above, there is another cases study has been proposed.
Since 3D printing process is a non-liner system, the signals with two different phases
(P − So and P − Ho) can be analyzed by STFT method and Mean functions based
on the signal from LS-N. Moreover, the investigation frequency zone can be shorted
within 2000–3700 Hz to get more detail information.
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As shown in Fig. 4, the STFT processing results on P − So with LS − N and
LS − A3 have been demonstrated, independently. The upper photos of Fig. 4a,
b are the entire STFT processing including P − So and P − Ho, and the lower
photos of Fig. 4a, b are the STFT processing only including P-So characteristics with
alignment, meanwhile, all of the frequency windows are set from 2000 to 3700 Hz.
Nevertheless, the different between the two signals are hard to get by the STFT
method consequently.

To investigate the different of the signals between LS − N and LS − A3, mean
function method has been proposed and the result are described as Fig. 5. There

(a) STFT processing from LS-N 

(b) STFT processing from LS-A3

Fig. 4 STFT processing from LS − N and LS − A3, independently
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Fig. 5 Mean function processing result comparison between the signal LS − N and LS − A3

are three comparison results are described. The left figure demonstrates the average
result with P− So and P−Ho, and it is clearly to observe the amplitude of LS− N
is stronger than LS − A3, in addition, the comparison result in P − So is more
clearly than P − Ho. As a consequence, the printing process with P − So is more
effectively transmit the vibration power from the nozzle to baseplate around 3000Hz.
On the other hand, compare with the STFTmethod, the mean function method seems
more effectively since the processing result is more obviously in this experiment case
study.

After demonstrating the different signals from P− So and P−Howith the same
LS, the signal of P−So ismore obviously. Hence, there are comparisonswith signals
of P − So from different LS. Figure 6a reveals that there is an obviously different
comparison when the printer is printing the solid phase between 2000 to 3700 Hz.
However, the comparison curve fromFig. 6b, c and d are very familiar, Consequently,
baseplate can reflect more effectively with the printing process than others. Further-
more, the amplitude value from nozzle is stronger than others’ location, but with a
high coincidence result between the two curves.

4.3 Same Phase with Different Cases Within Three Detail
Points

Based on the data analysis results above, the high frequency is more likely produced
during the printing process, and the frequency zone from 2000 to 3700 Hz maybe
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Fig. 6 The signals of printing P-So in LS-N with different SC

Table 3 The three kinds of baseplate leveling cases

LS-A1-point NO.1 LS-A1-point NO.2 LS-A1-point NO.3

describe the leveling status more clearly, furthermore, the signal of P-So from base-
plate is more obviously than others. According to f (experimentcases) illustrates,
the signals of the same phase with different cases within three detail points would
be investigated in this section.

f (experimentcases) =
⎛
⎝[SC − B],

⎡
⎣

LS − A1− point No.1
LS − A1− point No.2
LS − A1− point No.3

⎤
⎦,

[
P − So
P − Ho

]⎞
⎠
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Fig. 7 The same phase with different cases within three detail points

LS − A1-point NO.1, from f (experimentcases), means leveling status with
only one abnormal point, and the point is named NO.1, as shown in Table 3. NO.1,
NO.2 and NO.3 are three independent point.

Based on Fig. 7, there are two indications can be proposed. Firstly, the different
of the three signals from (a)–(d) shows that (a) and (b) are more obviously than (c)
and (d), i.e., the different of the three signals are easy to be detected on the baseplate
and nozzle during the printer is printing the solid characteristic. On the other hand,
no matter which signal cases and channels, the different of the three signals when
printer is printing the hollow characteristic is no clearly.

In addition, the vibration signals of SD2-01 and SD2-02 are very closely, but
very different with vibration signals of SD2-03. At the same time, vibration signals
of SD2-03 is the lowest amplitude than the other two point’s. This kinds of the
phenomenon also reveals that the distance between nozzle and baseplate, the long
distance is, the weak vibration signal transmission is. Furthermore, according to
Fig. 6, the experiment result interpreted that SD2-03 point already belongs to the
abnormal status at the beginning of the experiment.

5 Conclusion

The experiment conducted above is mainly to investigate the vibration responses in
a 3D printing process and printing quality for online condition monitoring based on
the data-driven method. The author collected the vibration signal of the baseplate,
the nozzle and the column and analyzed the time and frequency information through
STFT data processing. Furthermore, to investigate the printing quality, the author
focuses on the factor of leveling baseplate, then,mean functionmethod is utilized into
the data process. There are three conclusions can be deducted from this investigation:
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(1) Compared with STFT method, mean function or RMS method are more effec-
tively in this case. Because mean function or RMS method can conduct a tiny
difference from the original signals during the printing features are very similar.

(2) Since there are vibration signals occurred during the printing process, some
of the vibration signals could be caused by the physics 3D printer framework,
and the vibration could be transmitted from nozzle to baseplate, such as the
frequency around 180 Hz. In addition, some of the vibration may be caused
by printing process, this kind of vibration can be detected by acoustic, such as
the frequency around 1800 Hz.

(3) The more distance between nozzle and baseplate, the lower amplitude of
the signal with high frequency during the printing process, moreover, the
probability of the warping phenomenon with the printing 3D model are
increasing.
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Analysis of Metamaterials-Based
Acoustic Sensing Enhancement

Shiqing Huang, Yubin Lin, Lichang Gu, Rongfeng Deng, Fengshou Gu,
and Andrew D. Ball

Abstract Acoustic sensing is a non-destructive technology that plays an essen-
tial role in condition monitoring. For high-quality data collection, condition moni-
toring relies on various sensing methods that further complicate the wiring of the
system. Moreover, weak signals such as evanescent waves carrying valuable infor-
mation are usually hard to capture. With the emerging field of metamaterials, such
issues could be optimized and solved. This paper presents a metamaterial that is
designed by two kinds of typical unicells, purely geometrically, with the aim to
enhance the acoustic signal without any external power source. As a result of trans-
mission through the designedmetamaterials, the acoustic pressure level at a particular
range of frequency is efficiently enhanced. Furthermore, the frequency shift of the
enhancement is achieved by altering specific structural parameters, which demon-
strates its tunable characteristics. This study intends to provide ideas for the design of
acoustic metamaterials for applications such as remote sound measurement, energy
harvesting, fault diagnosis, etc.

Keywords Metamaterials · Sensing · Sound enhancement · Acoustics

1 Introduction

Acoustic sensing has a significant position in engineering and has demonstrated the
technical feasibility and effectiveness of using sound signals for condition moni-
toring. The advantages of acoustic sensing for condition monitoring are obvious,
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non-invasive detection, economical, and online testability of sound signals, so it has
been widely used [1–3]. Nevertheless, Acoustic sensing also has its limitations, such
as sound signals tend to mix with background noise and reflect waves, affecting the
quality of the acquitted data. When it comes to acoustic sensors arrays, fabrication
and installation of which could be arduous. Meanwhile, the placement of acoustic
sensors requires to set in the same way during the monitoring process.

In the last thirty years, the emergence of acoustic metamaterials has provided
us with novel ideas to solve the existing challenges in acoustic sensing, and enable
various extraordinary effects, such as subwavelength imaging, negative refraction,
invisible cloaking, etc. Liu et al. proposed wrapping the lead-ball in soft material
and using epoxy resin as the base structure to achieve ultra-low frequency acoustic
bandgap [4]. Subsequently, Z. Yang et al. applied this design idea to two-dimensional
structures by embedding a mass block in the center of the elastic film, the effective
density of the compositematerial was found to be negative at the resonance frequency
of the system [5]. Zlong Liang et al. proposed a acoustic metamaterials-surface and
observed in both mass density and bulk modulus being negative simultaneously
[6]. The studies mentioned above indicate that such unique properties of metamate-
rials have tremendous potential engineering applications. More importantly in this
study, as a propagational medium for sound; acoustic metamaterials are commonly
designed without electrical power components, which reduces the intricacy of the
wiring sensors systems.

2 Methodology

Coiling space structure [7–10] was firstly proposed by Liang et al. in 2012, it has
obtained various exotic characteristics such as zero, negative refractive index at
different frequencies, showing that the design can be flexible and the properties can
be further extended for certain scenarios. Coiling space refers to a material with
a particular refractive index through a multi-folded acoustic air duct that increases
the path of sound waves in specific directions in which reduces the equivalent sound
velocityThis studyuses two type of coiling space unicells to assemble ametamaterial,
which is designed to achieve acoustic magnification.

2.1 Metamaterials Unicell Design

A three-dimensional unicell structure is shown in the Fig. 1a. The geometrical param-
eters of this unit are l in length andw in width, and it has interlaced internal structures,
where the blue part represents the frame of the design, and it is placed in the air as
the propagation medium. This unit has a Z-shape channel for sound transmission.

The path has the same width d, the number of coiling paves is N. The number
of curls N refers to the number of times the sound wave turns back and forth as it
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Fig. 1 a Space coiling
unicell in 3D. b Geometric
parameters and wave
propagate direction

(a) (b) 

transmits through the Z-shape channel. As a result, the effective refractive index of
this unit can be calculation by the following equation.

nef f = N × √
(w − d)2 + (k + t)2

l

where nef f is the effective refractive index, N is the wave path number (in Fig. 1 the
this number is 2.5). w, d, k, t , l, are the structural geometrical parameters in Fig. 1b.
When the frequency is below the cutoff frequency, the sound waves travel from the
entrance to the exit of the unit structure in Z-shape path rather than in a straight line.
Shown in Fig. 2.

In this process, the transmission length of the acousticwave is increased by several
times, leading to a high relative equivalent refractive index of the unit structure, and
the value of the refractive index depends on the ratio of the total transmission length
of the acoustic wave to the length of the unit.

Fig. 2 a Equivalent medium
of coiling space. bWithout
coiling space equivalent
model

(a) (b) 
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(a) (b) 

Fig. 3 a Unicell with gradient. b Equivalent model unicell with gradient

2.2 Gradient Unicell Design

Until now, coiling spacemetamaterials have been configured so that the Z-shape path
width (k in Fig. 1b) is the same throughout its entire length. By applying this design
methodology, it is demonstrated that an internal limit is placed on the amplitude of
an acoustic signal, irrespective of cell size or operating frequency, another unicell is
proposed, the gradient coiling space structure, in which the metamaterials’ acoustic
impedance changes relatively gradually as the channel width changes. It is possible
to realize the change in path width in many different ways. However, for the purposes
of this study we will examine a single case in which the channel width progresses
in a specific way, which is the width (k in Fig. 3a) varies with gradient. A constant
common ratio is used to control the width of the channel over its entire length rather
than having a constant width throughout.

2.3 Periodic Structure Design

Tomagnify the sound signals, the unicellsmentioned above are being assembled peri-
odically to a metamaterial, as Fig. 4 shows, each unicells are isolated from the path of

(a) (b)

Fig. 4 Two types Metamaterial in 3D view. a Homogenous path metamaterials. b Gradient path
metamaterials
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other adjacent units, forming an array in the direction of x and y. Two distinct charac-
teristics are realized by such designs [5]: the first one is the resonance modes, which
ensure complete acoustic transmission with high selectivity, and another being the
increased path length, which effectively increases the refractive index. As indepen-
dent properties, they are not fascinating, but when these characteristics are combined,
they exhibit exotic characteristics. In previous research [5], structure analogous with
Fig. 4a have been prove that they are capable of enhancing sound emission in form
of double-plate, and the sound source has to be place between these to plates so that
the sound signal can be magnified.

Sincemost of the sound sources come from the external field, in order to better deal
with these applications, the above structure is further adjusted in this research. The
second unicell design focuses on a particular structure of geometric gradual variation
of channel width, which is similar a shape of the speaker as Fig. 3b shows. Hence, A
gradient coiling space structure is designed in which the gradual variation of channel
width results in the acoustic impedance variation of the metamaterials. When sound
signal propagates from external field, it transmits through the metamaterials then
sound wave are being focused due to the gradient effective refractive index both in
x and z direction, thus acoustic signal has been enhanced.

3 Numerical Simulation Analysis

In this study, Finite elements analysis is carried out to analyze the characteristics
of the designed metastructrues, to theoretically predict the sound magnification of
the metamaterial, numerical calculations are performed using COMSOL, a finite
element analysis and solver software package. In this analysis, the metamaterial is
set to be sound-hard-walls using pressure-acoustics-frequency-domain, air as the
medium, and incident plane waves in the normal direction as the sound source with
sound pressure amplitude 1 Pa.

3.1 Gradient Metamaterial Acoustic Signals Magnification

Firstly, the metamaterial with gradient has been analyzed in 2D as the Fig. 5a shows.
It demonstrates that acoustic signal can be enhanced at the center above after propa-
gating the designed structure, due to the gradient design of a unicell and the overall
arrangement of the unicells, the high refractive index is achieved so that the acoustics
signals has been focused above the metamaterial. A tested point is set to the sound
focus region (shown in Fig. 5b) to plot out the acoustic pressure response to the
frequency range under 1500 Hz. It shows that the sound sources generated at the exit
of each cell (upper side)will interferewith each other in the far-field and then produce
a focusing region, the amplitude distribution of the sound pressure field obtained by
numerical simulation is shown in Fig. 5c. It demonstrates that the designed gradient
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(a)                 (b) 

(c) 

Fig. 5 a Gradient metamaterials acoustic enhancement. b Equivalent 3D simulation sketch. c
Schematic of comparison

metamaterial enhances the pressure in the range around 1000 Hz. As the plane wave
propagates through the metamaterials, it is clearly visible in the upper side of the
metamaterial, and the sound signal is confined to a narrow region, indicating the
metamaterials can manipulate the plane wave to achieve strong directivity efficiently
hence the sound can be amplified.

3.2 Combined Metamaterials Acoustic Signals Magnification

With the structure designed above in 2.3 (Fig. 4a), in this section it is combined with
the gradient structure, and carried out in the same scenario as Fig. 5b. Sound pressure
level can be further enhanced in this particular arrangement. As the Fig. 6 shows,
the characteristic of the second metamaterial is fully utilized to focus the acoustics
signal, after that, the first metamaterial acts as a Fabry–Perot (FP) resonance, sound
signal is enhanced between the two plates due to the high reflective. As Fig. 6b shows,
comparing to the previous test (Fig. 5c), acoustic pressure at the frequency around
1900 Hz can be further magnified approximately by 25%, and with higher selectivity
as results.
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(a) 

(b) 

Fig. 6 a Two kinds of metamaterials. b Schematic of comparison

4 Conclusion

This paper presents a metamaterial that is designed by two kinds of typical unicells-
coiling space with high refractive index. The simulation results indicate that it is
capable of acoustics wave magnification: the metamaterials with gradient mani-
fests characteristic of sound focusing thus sound signal can be magnified; Based on
this gradient metamaterial, on which two plates of structures without gradient are
combinedly applied, the result shows that sound signals can further be enhanced
within this structure. In contrast to the conventional sound signal enhancement, the
proposed metamaterials can operate without any electrical components but a signif-
icant improved magnification, and thus may facilitate potential applications. It is
the intention of this paper to provide ideas for the design of acoustic metamaterials
for applications such as remote sound measurement, energy harvesting, and fault
diagnosis, etc.
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A Novel Cylindrical Mechanical
Metastructure for Drone Vibration
Isolation

Yubin Lin, Shiqing Huang, Lichang Gu, Rongfeng Deng,
Solomon Okhionkpamwonyi, Qingbo He, Fengshou Gu, and Andrew D. Ball

Abstract Drone technologies are widely used for various purposes in many fields.
However, the onboard imaging platform is severely compromised by low-frequency
vibration during flight, which cannot be suppressed by a general vibration isola-
tion method, leading to poor image quality and failure to fly. In this paper, a novel
cylindrical mechanical metastructures (CMMS) vibration isolator was proposed to
overcome the drawback of general vibration isolators based on the vibration of the
drone imaging platform. By using additive manufacturing, a prototype of the CMMS
was fabricated, and experiments were carried out to verify the mechanical properties.
In research results, the CMMS isolator has been observed to suppress the full-band
frequency vibration of the drone, enabling the imaging platform to operate in a stable
environment.

Keywords Vibration isolation ·Mechanical metastructure · Drone system ·
Imaging platform

1 Introduction

Drones are used frequently in the military, industry, and academics due to their
excellent efficiency and flexibility. There are several types of aerial surveillance
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systems used in the following applications: search and rescue [1, 2], engineering
mapping [3], patrol inspection to health monitoring of civil facilities [4–6]. The
majority of these uses are typically performed by drones equipped with the proper
imaging platform, for example, cameras or thermal imaging devices for collecting
relevant image data. Nevertheless, the imaging platform is seriously affected by
different frequencies and amplitudes of airborne vibrations, leading to reduced image
quality and even information loss [7]. Since drone technology is developing at an
exponential rate, increased demands are placed on drone vibration suppression and
isolation.

In general, by using passive vibration isolation, rubber isolators are installed
between the imaging platform and the drone (see Fig. 1) [8–10]. Despite the fact that
passive vibration isolation systems with elastic materials can effectively dampen
high-frequency vibration on imaging platforms, the natural frequency of the system
will increase, resulting in insufficient low-frequency vibration reduction. Addition-
ally, low-frequency vibrations are typically associated with large amplitudes. As
a result, many scholars suggest using active control to isolate vibrations [11–14].
Vibration isolation with active means has better isolation performance, and it is
more robust. It is also more stable compared with other passive vibration isola-
tion methods. Vibration isolation systems can be complex due to their structure.
Controllers and precise feedback systems are additional devices that are required for
the drone, which undoubtedly increase its workload, increase the operating cost, and
reduce its endurance. Therefore, improving the performance of imaging platforms
through passive vibration isolation is of great significance for drone applications.

In the last decade, a great deal has been learned about metastructures, which are
artificial materials designed for unique mechanical properties [15–17]. Metastruc-
tures with nonlinear mechanical properties are used extensively in energy capture
and vibration isolation, such as negative stiffness mechanical metastructures [18–
20], multi-stable mechanical metastructures [21], quasi-zero stiffness mechanical

Fig. 1 Industrial drone with imaging platform
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metastructures [22, 23], etc. The exotic mechanical properties of the mechanical
metastructure can be enhanced with the growth and improvement of additive manu-
facturing technology. Research shows that lightweight mechanical metastructures
have a significant vibration isolation effect and are able to isolate low-frequency
vibrations in micro-mechanisms, which opens up a new solution for the stabilization
of drone imaging platforms.

A novel cylindrical mechanical metastructure (CMMS) vibration isolator is
proposed in this study using the vibration characteristics of the drone, and the
mechanical properties of the CMMS are experimentally investigated. Secondly, the
mechanical properties of an isolator for general rubber and an isolator for recombi-
nation structures were compared. Finally, the vibration isolation performance of the
CMMS is then confirmed on the drone.

2 Vibration Characteristics of Drone System

Typically, drone systems are composed of multiple rotatingmotor-propeller systems,
their rotation will be the primary excitation source [24]. Similarly, the rotating
mechanical system of the drone will be similar to its frame. As a result, along
with the fundamental frequency of the motor’s rotation, the frequency multiplier
of that rotation frequency should also be considered. This is because it may produce
a considerable amount of vibration at high frequency.

To obtain the vibration of the drone frame accurately, the hover mode, generally
used during the drone’s working operation, is selected for vibration signal analysis.
Considering the limitations of traditional acceleration sensors and the need to record
high-frequency vibration signals from rotating machinery, a wireless acceleration
sensor with high sampling frequency provides a viable solution for the condition
monitoring of rotating machinery [25]. As the intensity of vibration is highest in the
vertical direction, the sensor is installed at the connection position of the imaging
platform to continuously collect the vibration data in the vertical direction two times
in different environments. In the spectrum of the signal (see Fig. 2), it can be seen
that the impact frequency of vibration is mainly concentrated at 65 Hz, as well as a
small vibration impact between 2 and 6 harmonics of the 1st order, which makes it
important to isolate the vibration at these frequencies to improve the drone platform
stability.
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Fig. 2 Spectrum in hover
flight mode

3 Metastructure and Fabrication

3.1 Structural and Design Parameters

The design process of the novel CMMS vibration isolator proposed in this study
shows in Fig. 3. The unit of the CMMS (see Fig. 3a) is based on a “frame-spring-
frame” system in which a pre-deformed ring generates the “spring” effect. When
the ring is compressed radially, it shows high nonlinear stiffness, which signifi-
cantly improves vibration isolation efficiency [26]. As shown in Fig. 3b, the one-
dimensional (1D) structure will be connected by a pre-deformed ring unit with the
same parameters and convoluted to form a CMMS (see Fig. 3c). The geometrical

Fig. 3 Structural and design parameter (a) units cell; (b) 1D metastructure isolator; (c) cylindrical
metastructure isolator
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parameters are depicted as follow: the pre-deformed ring long shaft is a, the short
shaft is b, its thickness is t, the height of the upper and lower frame connecting the ring
is h, the overall width of the 1D metastructure is w, and the number of pre-deformed
rings in the CMMS is n.

3.2 Fabrication via Additive Manufacturing Technology

Due to the complexity of three-dimensional (3D) CMMS, it cannot be fabricated
by traditional manufacturing methods. However, the possibility of manufacturing
complex metastructures is rapidly increasing as additive manufacturing technology
matures. This study utilized a 3D printer based on Fused Deposition Modeling
(FDM) to fabricate a CMMS vibration isolator prototype using TPU-95A, a thermo-
plastic polyurethane material with high toughness. Table 1 provides details about the
prototype parameters, only 9.5 g of CMMS are measured as weight.

4 Experiments

To obtain dynamic mechanical properties, CMMS vibration isolators are subjected
to frequency response function (FRF) testing via exciter sweep excitation. As seen in
Fig. 4 on the exciter output, the CMMS isolator is connected. To avoid other factors
influencing the results of the imaging platform, it was replaced by a mass equal to the
quality of the imaging platform, such as the bending mode of the imaging platform.
For further analysis, two accelerometers measure both the input excitation signal and
the vibration output signal of the mass, and then the FRF is obtained.

Furthermore, to test the vibration isolation effect of the CMMS isolation system
when it is driven by the main vibration frequency of the drone, the acceleration
signals of the accelerometer are recorded, and the corresponding transmissibility is
calculated as T = 20log|AccOut/AccIn|.

Table 1 Metastructure
parameters

Parameters Value (mm) Parameters Value

a 22 h 4.5 mm

b 18 w 5.0 mm

t 1.5 n 6
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Fig. 4 Experimental setting

5 Data Analysis and Discussion

5.1 Mechanical Properties of the CMMS

According to Fig. 5(a), CMMS isolation is measured by experiment. CMMS’s
isolator provides excellent low frequency vibration isolation compared to the general
rubber isolator.After 28.72Hz, there is a vibration isolation effect,which is 30percent
lower than rubber isolators in general. A transmissibility measurement in Fig. 5(b)
confirms a satisfactory low-frequency vibration isolation effect. CMMS isolators are
inferior to general rubber isolators at high frequencies, caused by their high damping
coefficient and second-order natural frequencies.

To enhance vibration isolation effects further, the dual-layer CMMS isolator will
be studied further, and the performance differences between the double layer CMMS
isolator and the composite isolator will be compared. According to the FRF, a
composite isolator with rubber and CMMS is able to further reduce the effective
vibration isolation frequency. However, this may also reduce the second natural
frequency and worsen vibration isolation around 195 Hz. Composite isolators with
dual-layer CMMS are capable of improving low-frequency vibration isolation, as
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Fig. 5 Cylindrical isolator with different combination. a Frequency response function. b Experi-
mental transmission

well as improvements in high-frequency vibration isolation. In comparison with a
general rubber isolator, this vibration isolation is exceptional.

5.2 Vibration Isolation Performance of the CMMS
with Different Combinations

For testing, the vibration isolator was installed on a drone imaging platform to verify
the performance of the CMMS isolator in practical work. Figure 6 displays the time-
domain signals of a drone imaging platform using different combinations of vibra-
tion isolators. Clearly, the single-layer CMMS isolator is able to eliminate vibration
impacts better than general rubber isolation, especially when the composite isolator
employs dual-layer CMMS.

Figure 7 shows the vibration spectrum after various vibration isolators are tested,
showing the vibration isolation effect that corresponds to the test environment. In
comparison to the general rubber isolator, CMMSs is 97.5%more vibration-isolating
in the vertical direction, while dual-layer CMMS is 119.4%.

6 Conclusions

This paper analyzes the vibration characteristics of drones and determines the effect
of the drone on the vertical translational vibration of the imaging platform to solve
the problem of the unstable drone imaging platform.

An improved vibration isolation device, called CMMS vibration isolation device,
is proposed to replace general ones. In experimental research, experimental prop-
erties of CMMS were examined and fabricated using additive manufacturing. By
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Fig. 6 Time-domain vibration signals of different isolators on drone. (a) General rubber isolator;
(b) CMMS isolator; (c) CMMS with rubber isolator; (d) Dual-layer CMMS isolator

Fig. 7 The spectrum of different isolators on drone

using the single-layer CMMS isolator, low-frequency vibrations of the drone can be
effectively suppressed. Dual-layer CMMS composite vibration isolators will help
further improve the vibration isolation performance and ensure that drones capture
images of high quality.

In the future, the influence factors of CMMS isolator structure parameters on
mechanical properties will be discussed in detail, and other nonlinear mechanical
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factors will be introduced for modeling and analysis so that the proposed CMMS
isolator is not only limited to specific drone use but also potential in other application
scenarios.
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Design and Simulation of Broadband
Piezoelectric Energy Harvester
with Multi-Cantilever

Weiqiang Mo, Shiqing Huang, and Na Liu

Abstract Piezoelectric bimorph cantilever is a typical collecting structure for vibra-
tion energy, however it can not adapt to the low frequency and random of vibra-
tion excitation in natural environment. In this paper, the physical model of linear
vibration system of piezoelectric bimorph cantilever is analyzed, where the piezo-
electric energy harvester with multi-cantilever is designed for it’s disadvantages.
By increasing the cantilever beam with different natural frequencies, the energy
harvester has the characteristics of broadband. By measuring the dynamic strain
under sweep excitation in the simulation of Comsol, Compare the output voltage and
working bandwidth between the piezoelectric bimorph cantilever and the piezoelec-
tric energy harvester with multi-cantilever, verify the broadband characteristics of
the latter. This paper also designs the rectifier circuit, to convert alternating current
from the energy harvester into direct current.

Keywords Piezoelectric · Cantilever · Vibration · Natural frequency · Broadband

1 Introduction

With the continuous development of the Internet of Things (IoT) and the gradual
construction of smart cities, many small electric devices around us, such as smart
wearable devices and monitoring devices, can realize information exchange and
sharing through the Internet. But these small devices or distributed sensors need to be
powered by a separate power source, If we can harness energy from the environment
to self-energized the low-power electronics, This will be a very big boost for the
development of IoT technology and smart cities [1].

Vibration is a common natural phenomenon and contains a lot of energy. Using
vibration energy harvesting technology, which collects vibration energy and uses it
in low-power electronic devices. Piezoelectric bimorph cantilever beam is one of the
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Fig. 1 Piezoelectric
bimorph cantilever

typical vibration energy harvesting structures, which is shown in Fig. 1. The structure
is simple and low production cost.Whenworking, the free end of the cantilever beam
generates inertia force under the external; vibrational excitation, which makes the
cantilever beam reciprocating deformation. The piezoelectric element pasted on the
cantilever beam outputs voltage under the action of alternating stress, thus realizing
the conversion of mechanical energy to electric energy. The piezoelectric bimorph
cantilever is designed based on the resonance principle [2]. Only when the resonant
frequency of the structure is close to or match with the vibration frequency of the
environment, it can have higher output voltage and output power. However, vibration
in the natural environment is usually characterized by low frequency and random-
ness, especially in the key working areas of piezoelectric energy harvester, such as
highways, bridges, machine tools, etc., with a wide range of vibration frequency.
Therefore, it is required that the design of vibration energy harvester must have
a wide working frequency band in the frequency range, so that it can effectively
respond to the frequency of the vibration source in the environment [3].

According to the principle of piezoelectric bimorph cantilever and the physical
model of its linear system, a broadband piezoelectric energy harvester structure with
multi-cantilever is proposed in this paper, the finite element analysis and relevant
verification is carried out according to the obtained data.

2 Structure and Analysis of Piezoelectric Cantilever

2.1 Theoretical Analysis of Cantilever Structure

Piezoelectric bimorph cantilever is the most representative and simple energy
harvester, which is shown in Fig. 1. The upper and lower layers of the piezoelectric
material are the main part of the power generation. For higher output voltage, the
two piezoelectric layers are connected in series in the circuit. The piezoelectric layer
is made of PZT-5H, and the intermediate layer can be made of copper. In order to
improve the energy conversion efficiency and adjust the resonant frequency of the
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Fig. 2 Piezoelectric
bimorph cantilever with mass

energy harvester, a mass is usually added at the end of the cantilever as shown in
Fig. 2 [4].

Piezoelectric bimorph cantilever is a linear vibration system, the equivalent mass
of the energy harvester is assumed to bemi , the equivalent damping is ci , the equiva-
lent stiffness is ki , the vibrational displacement of base is z f , the vibrational displace-
ment of the mass on the free end of the cantilever i to the base is assumed to be zi ,
then the dynamic equation of the cantilever i can be expressed as,

mi z̈i + ci żi + ki zi = −mi z̈ f (1)

Both sides of the equal sign divide by mi , the equation can be written as,

z̈i + 2ζiωni żi + ω2
ni zi = −z̈ f (2)

ωni = √
ki/mi represents the undamped natural frequency of the cantilever, ζi =

ci/2
√
kimi represents the damping ratio of the cantilever. According to the dynamics

equation, when the vibration element is a cantilever, the response vibration is related
to the natural frequency and damping ratio of the system.

2.2 Finite Element Simulation Analysis

Comsol software is a large general finite element analysis software integrating struc-
ture, fluid, electric field, magnetic field and sound field analysis, it has the function
of realizing multi-physical field and multi-field coupling analysis. In this paper, the
piezoelectric analysis module in the software is used to carry out the multi-physical
field coupling analysis of solid mechanics and electrostatic field on the piezoelectric
bimorph cantilever, research on the change rule between frequency and structure
on the piezoelectric bimorph cantilever [5]. According to the schematic diagram
of energy harvester in Figs. 1 and 2, the physical model of piezoelectric bimorph
cantilever is constructed in the simulation software, as shown in Fig. 3. The structure
of the two cantilevers is consistent, except the model shown in Fig. 3b adds a mass.
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(a) (b)

Fig. 3 a simulation model without mass, b simulation model with mass

The natural frequency of themodel shown in Fig. 3 was analyzed. The dimensions
of the model are: 24.53 mm long, 6.4 mm wide and 0.67 mm high. The thickness of
piezoelectric layer is 0.265 mm. The mass block is a square with a size of 0.6 mm.
It is found that the first natural frequency of the simulation model without mass is
545 Hz, when the mass is added, the first natural frequency is 540 Hz. Therefore,
the natural frequency of the cantilever can be changed effectively by adding mass.
By scanning the above two models in frequency domain, when the frequency of
vibrational excitation approaches or matches the natural frequency of the model, the
output voltage has a significant increase, as shown in Fig. 4. Moreover, the output

Fig. 4 Influence of mass on frequency and output voltage
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voltage can be as high as 210 Vwhen the mass is added, which is higher than without
mass. Therefore, adding mass can improve the efficiency of energy conversion.

3 Energy Harvester with Multi-Cantilever

3.1 Structure of Energy Harvester

According to the above analysis, although a single piezoelectric bimorph cantilever
can achieve collecting vibrational energy, it has a high requirement on the frequency
of the excitation vibration source. The natural frequency and energy conversion
efficiency of the cantilever can be changed by adding mass. In this paper, the energy
harvester with multi-cantilever is designed base on linear multi-frequency resonance
method, that is, the working frequency band is widened by increasing the number of
resonant peaks in the frequency range [6].

Figure 5 shows the piezoelectric energy harvesting structure of four cantilevers.
The structure of the no.1 cantilever is consistent with the ordinary bimorph cantilever.
Small(size of 0.6 mm), medium(size of 0.8 mm) and large(size of 1mm)mass blocks
are fixed at the free ends of no. 2, 3 and 4 cantilevers respectively, so as to realize
the different natural frequencies of each cantilevers.

The analysis shows that each cantilever is an independent vibration element in
the energy harvester. According to expression (2), the motion equation of the whole
multi-frequency system can be expressed as,

z̈ + 2ζωn ż + ω2
n z = −z̈ f (3)

Fig. 5 Energy harvester
with multi-cantilever
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z = [z1, z2, z3, z4]T is the displacement vector for the entire multifrequency
system, so z f = z f [1, 1, 1, 1]T [1, 1, 1, 1]T .

Given by Thomson and Dahleh [7], the damping ratio matrix is as follows,

ζ =

⎡

⎢⎢
⎣

ζ1

ζ2

ζ3

ζ4

⎤

⎥⎥
⎦ (4)

The natural frequency matrix is as follows,

ωn =

⎡

⎢⎢
⎣

ωn1

ωn2

ωn3

ωn4

⎤

⎥⎥
⎦ (5)

For the whole energy harvester, under the same external vibration excitation, the
vibrational response of each cantilever is only related to their own natural frequency
and damping ratio, and the displacements of different cantilever have no influence
on each other, they move independently [8].

3.2 Broadband Characteristics of Energy Harvester
with Multi-Cantilever

In order to research the broadband characteristics of the multi-cantilever energy
harvester structure, the amplitudefrequency characteristics of the structure are
analyzed. According to the dynamic equation in expression (2), the amplification
factor of the cantilever beam as follow,

βi (ω) = Ai (ω)

B
= (ω/ωni )

2

√[
1 − (ω/ωni )

2
] + (2ζω/ωni )

2
(6)

Ai (ω) represents the amplitude of the vibrational displacement z of the free end
relative to the fixed end of the cantilever. B is the amplitude of external excitation,
that is, the amplitude of the vibration displacement z f of the base. The vibration
angular frequency of the base is ω = 2π f , f is the vibrational frequency of the base.
The damping ratio ζi is 0.1. Natural frequency analysis by Comsol software shows
that the natural frequency of the whole multi-cantilever structure is 546, 544, 540
and 535 Hz. Under the excitation of the same vibration source, the output voltage of
no. 1–4 cantilever is shown in Fig. 6.
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Fig. 6 Output voltage of no. 1–4 cantilever beam

The four curves in the Fig. 6 are the frequency—voltage response curves of four
cantilevers with different natural frequencies. Because different vibration elements
in a multi-frequency system have different natural frequencies, the resonant peaks of
multiple frequency response curves are in different frequency bands, and the peaks
do not overlap [9]. Therefore, it can be seen that the total working bandwidth of
the multi-frequency system is equal to the sum of the bandwidth of each working
frequency band, and the total working bandwidth of the multi-frequency system
is greatly expanded, thus presenting broadband characteristics. By connecting the
output voltage of each vibration unit in series, the total output voltage of the energy
harvester with multi-cantilever can be obtained. Figure 7 shows the total working
bandwidth is 534–547 Hz.

Through the natural frequency analysis by Comsol software, it can be seen that
the high-order natural frequencies of the multi-cantilever structure are 3288, 3274,
3256 and 3230 Hz, and the excitation frequency range of the vibration source is set
to 3200–3350 Hz. The output characteristics of high-order natural frequencies of
the multi-cantilever energy harvester are shown in Fig. 8. In the figure, the output
voltage is reduced and the maximum value is only close to 9 V, but it still shows the
characteristics of broadband. The total working bandwidth is 3220–3300 Hz.

Although the total operating frequency band of multi-frequency system can be
effectively widened by the accumulation of resonant frequency bands in different
vibration elements, the response amplitudes of different vibration elements are not
accumulative. For example,when the vibrational excitation frequency reaches around
540 Hz, the output voltage of no. 3 cantilever in Fig. 6 will increase significantly, but
the response amplitude of other cantilever is still small due to the mismatch between
the resonant frequency and the vibrational excitation frequency. It means that under
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Fig. 7 Output voltage of energy harvester with multi-cantilever

Fig. 8 High-order output characteristics of energy harvester
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Fig. 9 Bridge rectifier
circuit

the vibration excitation of any particular frequency, at most one vibration unit in
the multi-frequency system will be in effective working state, and the vibration unit
in the non-resonant state will not work effectively. This is also the reason for the
low utilization rate of space structure in existing multi-frequency vibration energy
harvester.

4 Energy Harvesting Circuit

4.1 Circuit Design

Usually, the microelectronic equipment uses dc power supply, and the energy
harvester generates alternating current, so the rectifier circuit needs to convert the ac
electrical signal into the direct current signal suitable for the use of electronic equip-
ment. Given by Elie Lefeuvre et al. [10], a simple and common energy harvesting
circuit is a bridge rectifier circuit, as shown in Fig. 9.

On the basis of the bridge rectifier circuit, the energy harvester circuit as shown in
Fig. 10 is improved. The circuit consists of an energy harvester, a capacitor (energy
storage device), two inductors, six diodes and a load.

4.2 Circuit Analysis

When the piezoelectric device is in the first half of the vibrational cycle, the terminal
A of energy harvester output positive voltage, the current through diode D2, inductor
L1, energy storage device capacitor C1, diode D4 back to the terminal B of energy
harvester, inductor L1 and capacitor C1 are on charge. When the positive output
voltage of terminal A is equal to or less than the voltage of capacitor C1, inductor
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Fig. 10 Energy harvesting circuit

L1 is in the state of negative voltage. At this time, diode D1 is on state, capacitor
C1, inductor L1 and diode D1 form a loop, and inductor L1 charges energy storage
device C1.

When the piezoelectric device is in the second half of the vibrational cycle, the
terminal B of energy harvester output positive voltage, the current through diode D5,
inductor L2, energy storage device capacitor C1, diode D3 back to the terminal A
of energy harvester, inductor L2 and capacitor C1 are on charge. When the positive
output voltage of terminal B is equal to or less than the voltage of capacitor C1,
inductor L2 is in the state of negative voltage. At this time, diode D6 is on state,
capacitor C1, inductor L2 and diode D6 form a loop, and inductor L2 charges energy
storage device C1.

5 Conclusion

In this paper, the theoretical model of piezoelectric bimorph cantilever is analyzed,
compared to the structure with mass. And the simulation is carried out by Comsol
software, which verifies that the piezoelectric cantilever must work in a specific
frequency band. Adding mass can change the working frequency band of cantilever
and improve the conversion efficiency of vibration energy.

In view of the limitation of single cantilever on energy collecting, this paper
designs energy harvester with multi-cantilever. Through simulation analysis, it is
verified that this structure can superimpose the working frequency bands of multiple
vibration units, and achieve the purpose of expanding the total working frequency
band of multi-frequency system. Compared with a single piezoelectric cantilever
structure, energy harvester with multi-cantilever can collect energy under multiple
frequency vibration excitation sources, and the energy collection efficiency is higher.

At the same time, the shortcomings of the device: under the vibration excitation
of a specific frequency, only one vibration unit is in the working state, resulting in
the low utilization rate of the space, which affects the further improvement of energy
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conversion efficiency. In view of the existing problems, the research will continue in
the subsequent design.
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AMobile Pipeline Leak Monitoring
Robot Based on Power Spectrum
Correlation Analysis and Sound Pressure
Location

Weijie Tang, Rongfeng Deng, Baoshan Huang, Fengshou Gu,
and Andrew D. Ball

Abstract Pipes, like blood vessels, play an important role in industry and people’s
life. Once a pipeline leak occurs, it will bring huge economic losses and even cause
serious accidents. Usually, pipeline leak monitoring is carried out by manual inspec-
tion or the installation of many sensors, which have great limitations. In this paper, an
intelligent mobile robot is proposed for more effectively monitoring the large-scale
pipeline systems. Equipped with microphone the robot can be set with the inspection
paths, realize the monitoring of leakage anomaly by power spectrum and correlation
analysis of sound signal according to the collected real-time data, and pinpoint the
location of leakage by calculating the sound pressure. The experimental results show
that this method is convenient and effective in a typical industrial environment.

Keywords Pipeline leak · Condition monitoring robot · Correlation analysis ·
Sound pressure positioning

1 Introduction

Pipeline transportation has the advantages of less economic investment, low energy
consumption, high transportation efficiency and easy to realize automatic manage-
ment. Therefore, pipeline has been widely used in many scenes in production and
life. Pipelines are used in many ways and may leak due to corrosion, wear, or third-
party damage during their use. Pipeline leakage accidents can cause economic losses
and even casualties. Pipeline leakage can be realized through manual inspection.
The staff can judge whether there is leakage by monitoring the leakage noise on the
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pipeline. This will cost a lot of manpower and material resources, and it depends
on the experience of workers. This can also be done by installing many sensors, but
this will greatly increase production costs and make monitoring difficult due to the
uncertainty of the location of the leak.

With the development of robot technology, all kinds of robots appear in people’s
vision. Intelligent inspection robot has incomparable advantages overmanual inspec-
tion in timely detection of safety hazards. Mobile inspection robot equipped with a
variety of sensors, along the set inspection path. Generally, acoustic analysis tech-
nology is used to detect pipe leakage, which is very convenient and effective [1–3].
The robot collects environmental data and processes it in real time. When abnor-
malities are found, it can be further analyzed and prompt management personnel
for processing and scheduling in the first time. There is no doubt that intelligent
inspection robot will play a very important role in the future intelligent factory.

Due to the difference of fluid properties, operating conditions, pipeline materials
and shapes, pipeline leakage rules are different. So far, there is no model that can be
fully applicable to all leakage situations. This paper discusses the problem of leakage
monitoring and positioning of compressed air in plastic pipelines.

Correlation analysis refers to the analysis of two ormore variableswith correlation
to measure the degree of correlation between them. Correlation analysis has strong
anti-jamming ability and is also the most direct method to judge signal similarity.
Correlation analysis is a very effective data analysis method, which can be applied
not only in pipeline leakage fault diagnosis, but also in other fault diagnosis analysis
[4–10].

In this paper, the formation mechanism of pipeline leakage noise is studied, and
a method based on correlation analysis of power spectrum is proposed to identify
whether there is leakage, because power spectrum can more reflect the internal char-
acteristics of signals comparedwith time domain.Once the leakage situation is found,
the patrol inspection robot is guided to find the location of the leakage sound source
according to the relationship between sound pressure and distance. Compared with
themethod of sensor array, thismethod cannot accurately locate the sound source, but
it makes full use of the mobile robot’s flexible motion characteristics and can find the
approximate location of the sound source by using a sensor and a simple algorithm.
The method of leakage detection and location is very convenient and effective.

2 Characteristics of Leakage Noise

Compressed air pipeline leakage can be regarded as jet flow process. The rapid
mixing of the high-speed airflows from the leakage outlet with the surrounding air
will cause the local fluid to produce strong pulsating turbulence, thereby produce
loud sounds.

In the early 1950s, themathematicalmodel of jet noisewas establishedbyLighthill
based on his similarity, which has played a great role in the study of jet noise.
According to Lighthill’s theory, the aerodynamic flow generated by turbulence is
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regarded as the radiation of the quadrupole sound source, and the sound power of
the jet noise is proportional to the eighth power of the jet velocity [11, 12], which is
the famous eighth power law.

PT = K ρ2
a ·D2

ρ0·C5
0
v8 (1)

where K as Lighthill constant, usually value is 3 × 10–5 ~ 1.8 × 10–4, D is the
diameter of the leakage hole, ρ0 is the density of the surrounding air, ρa is the jet
density, C0 is the speed of the sound, v is the leakage velocity.

The leakage hole is a uniform circular hole, and the wave front can be regarded
as a spherical wave, and its sound intensity is:

I = P2
m

2ρ0C0
(2)

The sound power of leakage is:

W = I S = P2
m

2ρ0C0
· 4πr2 (3)

where Pm is the maximum sound pressure, r is the radius of the sphere.
According to Eqs. (1) and (2), the maximum sound pressure of the leakage sound

field is:

Pm =
√

K
2π · ρa Dv4

rC2
0

(4)

It can be seen from the above equation that the sound pressure is proportional
to the diameter of the leakage hole and the fourth power of the leakage velocity.
Inversely proportional to the distance from the source.

3 Experimental Scene

The experimental scene as Fig. 1. A condition monitoring robot is patrolling in the
laboratory according to the set path as Fig. 2. A sampling point is set next to the
equipment to be monitored. When the robot moves to the sampling point, it stops
moving and collects audio data for 5 s.

Diameters of the leakage holes are set as 0.4mm, 0.6mmand 0.8mm respectively,
as shown in Fig. 3. The pressure of the pipeline is 0.6 MPa, as shown in Fig. 4.

The Turtlebot2 mobile robot is equipped with a PC and can move to different
sampling points. For each aperture size, 5 s of audio data are collected at four points
A, B, C, and D.
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Condition monitoring robot

Acoustic sensor

Leak point

Fig. 1 The experimental scene

Fig. 2 The sampling points

4 Power Spectrum Correlation Analysis to Identify
Leakage

The cross-correlation function between two continuous functions x(t) and y(t) are
defined as:
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Fig. 3 Size of leak hole

Fig. 4 The pressure of the
pipeline

Rxy(τ ) =
∞∑

n=−∞
x(t)y(t + τ) = lim

T→∞
1
T

T∫
0
x(t)y(t + τ)dt (5)

Suppose signal 1 is described as:

A(t) = a(t) + s(t) (6)

Here, a(t) is the selected fault signal, and s(t) is the noise.
Suppose signal 2 is described as:

B(t) = b(t) + v(t) (7)
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Here, b(t) is the selected fault signal, and v(t) is the noise.

RAB(τ ) = lim
T→∞

1

T

T∫
0
A(t)B(t + τ)dt

= lim
T→∞

1

T

T∫
0
[a(t) + s(t)][b(t + τ) + v(t + τ)]dt

= lim
T→∞

1

T

T∫
0
a(t)b(t + τ)dt + lim

T→∞
1

T

T∫
0
a(t)v(t + τ)dt

+ lim
T→∞

1

T

T∫
0
s(t)b(t + τ)dt + lim

T→∞
1

T

T∫
0
s(t)v(t + τ)dt

= Rab(τ ) + Rav(τ ) + Rsb(τ ) + Rsv(τ )

In general, there is no correlation between noise and signal.

Rav(τ ) ≈ 0, Rsb(τ ) ≈ 0

There is little correlation between the noises.

Rsv(τ ) ≈ 0

So

RAB(τ ) ≈ Rab(τ )

This indicates that the cross-correlation analysis has a strong noise suppression
function.

Different from the time domain signal, the power spectrum represents the change
of the signal power with the frequency, that is, the distribution of the signal power in
the frequency domain, and the power spectrum reflects the internal characteristics of
the signal. As can be seen from Eq. (1), the leakage sound power is closely related
to the size of the leakage aperture and the leakage velocity, so it is very meaningful
to use the power spectrum to conduct correlation analysis.

When there is no leakage, the power spectrum of audio signals collected at four
points A, B, C and D is shown in Fig. 5.

The power spectrum of the audio signal collected at four points A, B, C and D
with the leakage aperture of 0.4, 0.6 and 0.8 mm is shown in Fig. 6.

Correlation analysis (at zero lag) is carried out directly without considering signal
delay. Taking the leak-free audio collected at point D as the benchmark, the correla-
tion analysis of the power spectrum of the audio signals collected at points A, B and
C is made, as shown in Table 1.
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Fig. 5 The power spectrum of the signal collected at four points A, B, C and D when there are no
leaks

Fig. 6 The power spectrum of leakage signals of different sizes collected at different points

Table 1 The power spectrum correlation calculation results of the audio collected by A, B, C and
D without leakage

No leak no leak A B C D

D 0.8883 0.8695 0.8831 1

In the case of leakage, with aperture of 0.4, 0.6 and 0.8 mm, the correlation
analysis of power spectrum between the audio signals collected at point A, point B,
point C and point D and the audio signals collected at point D without leakage is
carried out in the frequency band above 500 Hz, as shown in Tables 2, 3 and 4.
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Table 2 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.8 mm and no leak

Leak (0.4 mm) no leak A B C D

D 0.3676 0.4130 0.5605 0.1686

Table 3 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.6 mm and no leak

Leak (0.6 mm) no leak A B C D

D 0.1537 0.1530 0.1684 0.1227

Table 4 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.4 mm and no leak

Leak (0.8 mm) no leak A B C D

D 0.1426 0.1361 0.1385 0.1222

By comparing the data in Tables 1, 2, 3 and 4, through the correlation analysis of
power spectrum, obvious differences can be found, and abnormal situations occur.

The next step is to explore whether the detected anomalies are the result of leaks.
Human voice and knocking sound are introduced, and their power spectra are shown
in Fig. 7. Correlation analysis of power spectrum between leakage conditions of
different sizes and human voice and knocking sound is conducted, as shown in
Tables 5, 6 and 7.

It can be seen from the above results that the correlation between the leakage signal
and the human voice and the tapping sound is very low. In the case of leakage, the

Fig. 7 The power spectrum
of the human voice and
knock sound
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Table 5 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.4 mm and human voice and knock sound

Leak (0.4 mm) sound type A B C D

Human voice 0.2676 0.2972 0.3572 0.1083

Knock sound 0.2324 0.2751 0.4385 0.0629

Table 6 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.6 mm and human voice and knock sound

Leak (0.6 mm) sound type A B C D

Human voice 0.1169 0.1359 0.1375 0.0878

Knock sound 0.0400 0.0330 0.0504 0.0180

Table 7 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.8 mm and human voice and knock sound

Leak (0.8 mm) sound type A B C D

Human voice 0.1163 0.1196 0.1083 0.0891

Knock sound 0.0301 0.0201 0.0264 0.0162

correlation analysis of the power spectrum of the data collected at different aperture
and sampling points is carried out, as shown in Tables 8, 9, 10, 11, 12 and 13.

From the above analysis, the correlation coefficient between the leakage signal
collected at different aperture and different position and the non-leakage, human

Table 8 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.4 mm

Leak (0.4 mm) leak (0.4 mm) A B C D

A 1 0.9131 0.8963 0.8274

B 0.9131 1 0.9145 0.7822

C 0.8963 0.9145 1 0.7186

D 0.8274 0.7822 0.7186 1

Table 9 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.6 mm

Leak (0.6 mm) leak (0.6 mm) A B C D

A 1 0.8930 0.8665 0.8680

B 0.8930 1 0.9038 0.8478

C 0.8665 0.9038 1 0.8342

D 0.8680 0.8478 0.8342 1
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Table 10 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.8 mm

Leak (0.8 mm) leak (0.8 mm) A B C D

A 1 0.8909 0.8959 0.8763

B 0.8909 1 0.9010 0.8506

C 0.8959 0.9010 1 0.8544

D 0.8763 0.8506 0.8544 1

Table 11 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.4 and 0.6 mm

Leak (0.6 mm) leak (0.4 mm) A B C D

A 0.9158 0.8803 0.8812 0.8523

B 0.8457 0.8964 0.8659 0.7924

C 0.7785 0.8038 0.8307 0.7266

D 0.8228 0.7948 0.8240 0.8754

Table 12 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.4 and 0.8 mm

Leak (0.8 mm) leak (0.4 mm) A B C D

A 0.9162 0.8613 0.8780 0.8576

B 0.8542 0.8807 0.8448 0.8027

C 0.7811 0.7897 0.8006 0.7197

D 0.8360 0.8315 0.8364 0.8865

Table 13 The correlation calculation results of the power spectrum of the leakage audio under the
aperture of 0.6 and 0.8 mm

Leak (0.8 mm) leak (0.6 mm) A B C D

A 0.9415 0.8665 0.8814 0.8815

B 0.9012 0.9479 0.9037 0.8474

C 0.8764 0.9073 0.9492 0.8389

D 0.8799 0.8553 0.8396 0.9469

voice and percussion sound is very small, while the correlation coefficient of the
leakage signal is very large. The cross-correlation analysis of power spectrum can
be used to determine whether there is leakage, but because the correlation coeffi-
cient between the leakage signals of different aperture is very close, it is difficult to
distinguish which aperture leakage belongs to.
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5 Sound Pressure Location of Leakage Source

In the fourth part, the inspection robot detects whether there is a leak using the
correlation analysis of power spectrum. According to Eq. (4), sound pressure is
proportional to the fourth power of the diameter of the leakage hole and the leakage
velocity. Inversely proportional to the distance from the source. The sound pressure
is then used to guide the robot to locate the source of the leak.

It can be clearly found from Fig. 8 that the measured sound pressure increases
when the leak aperture becomes larger. The robot’s patrol path moves from point A
to point C. After analyzing the data collected at points A, B and C, it is found that
point B is closer to the sound source, so the robot returns to point B. After reaching
point B, the robot was still unable to locate the sound source. Therefore, the robot
rotates counterclockwise along the forward direction at point B and collects audio
data from four angles of 0°, 90°, 180° and 270°, as shown in Fig. 9.

During the experiment, the data collected with an aperture of 0.4 mm were used
for comparative analysis again, as shown in Fig. 10.

According to the data comparison and analysis in Fig. 10, when the robot rotates
to 90°, the measured sound pressure value is the largest, indicating that the sound
source is close to this direction. In fact, the microphone is facing the direction of
the leakage sound source currently to guide the robot to move in this direction. In
the experiment, the robot moved to point D, collected data again, and compared the
collected results with points A, B and C for verification, as shown in Fig. 11.

It can be clearly seen from Fig. 11 that point D is closest to the sound source and
has the largest value. Point B is farther away from the sound source, and its value
is smaller than that of Point D. Point A and point C are further away, so they are
smaller. As can be seen from the above experiments, this method takes advantage
of the qualitative relationship among distance, direction, and sound pressure as well
as the flexibility of robot movement. It does not need to increase the number of

Fig. 8 The relation between
the power value of the sound
aperture and different
position source at different
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Fig. 9 The robot collects
audio data in different
directions

Fig. 10 Comparison of data
collected from four
directions of 0°, 90°, 180°
and 270°

additional sensors, but only needs one sensor to guide the inspection robot to find
the leak point.

6 Conclusion

The leakage noise of pipeline compressed air is discussed in this paper. The relation-
ship between the sound pressure and the leakage aperture and the distance from the
sound source is obtained by using Lighthill equation. A power spectrum containing
more characteristic information is proposed to carry out correlation analysis. The
patrol robot can judge whether there is abnormal leakage. After determining the
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Fig. 11 Comparison of data
collected at four positions A,
B, C and D

existence of leakage, the sound pressure is used to guide the robot to find the loca-
tion of the leakage source. This method is convenient, fast, economical, and efficient,
and easy to be deployed on the inspection robot. However, it also has some defects,
which should be improved in the future research. For example, it is impossible to
distinguish which size of leakage hole is generated, and the location of sound source
is not very accurate.
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A Review of Acoustic Emission
Monitoring on Additive Manufacturing

Zhen Li, Xinfeng Zou, Fanbiao Bao, Fengshou Gu, and Andrew D. Ball

Abstract Additive manufacturing has the characteristics of gradual accumulation
of materials in the manufacturing process. It is often superimposed layer by layer in
the process of material physical shape change, which may be accompanied by hot
melting, liquid material solidification, particle sintering and other processes. Due to
the influence of physical environment, machine state, manufacturing principle and
other factors in the whole process, performance defects of parts may occur. The
traditional monitoring methods such as vision, optics and CT tomography have limi-
tations, or can only observe the defects on the outer surface, or it is difficult to find the
defects in time in the processing process, or the micro defect identification accuracy
is not enough. A series of research on acoustic emission detection technology, due
to the high sensitivity to high-frequency signals, can observe various phenomena of
the machine itself in the processing procedure, and monitor the spatial micro faults
of the whole part in the process of parts made of additive materials.
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1 Introduction and Application Trend of Additive
Manufacturing

Different from the material removal method in traditional NC machining, AM uses
the method of accumulation to process parts. Generally, the materials usually include
liquid, powder andwire [1], has obvious digital characteristics, integrating newmate-
rials, computer software, control technology and other technologies. It includes two
parts: first, in the data processing stage, the computer-aided designmodel is hierarchi-
cally and analyzed into the operation procedures of the corresponding machine tool;
The second is layered manufacturing. According to the analyzed machine operation
procedures, materials are superimposed from bottom to top [2, 3, 4].

AM is suitable for rapid manufacturing of complex structures. It is generally used
for personalized customization, especially formanufacturing special parts [5, 6]. AM
is often used for prototype verification and small batch trial production in the process
of product R&D.With the maturity of technology, the scope of application is little by
little expanded from manufacturing prototype and model to direct manufacturing of
working parts [7]. AM is progressively applied to manufacturing parts with special
and difficult structures [8]. The development of AM technologies has solved the limi-
tation that it is difficult to manufacture parts with complex graphics and structure
through computer model. The key point and main difficulty of AM technologies is
that the mechanical characteristics of the manufactured parts are not high compared
with the material reduction method [9, 10]. In customization requirements and some
special application scenarios, such as medical printing dentures and various human
implants, there is an increasing demand for performance. There have been studies on
using composites as construction materials to improve hardness [11], promoting the
performance of parts is the direction of future efforts [12]. There are many reasons
for the low mechanical properties. Complex geometry, unreasonable process param-
eters or changes in the properties of raw materials may cause product defects [13].
There are many methods to evaluate the quality of completed parts, such as optical
backscatter reflection (OBR) [14]. X-ray computed tomography (CT) internal voids
[15, 16]. Thevisual evaluationof surface roughness is transformed into the problemof
visual image texture roughness recognition [17]. AEmonitoring technology can also
be used for quality monitoring of AM [18]. The goal of reducing the processing cost
can be achieved by finding the defects and problems of parts in-situ of manufacturing
rather than after the parts are processed [19].

2 Principle, Development and Application of Acoustic
Emission

At present, AE technology has developed into a mature nondestructive testing
method, which is applied in many industries and fields for all kinds of testing and
monitoring [20, 21]. It mainly includes the following aspects:
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Fig. 1 The distribution of AE hit rate corresponding to printing failure [18]

Detection of damage point of closed container [22]. Welding point quality moni-
toring [23]. Various load and failure tests [24]. Deterioration detection of masonry
infrastructure [25]. State detection of NC cutting tools [26]. Bearing residual life
prediction [27]. Grinding wheel condition monitoring in grinding process [28].
In the process of AM, AE will occur during the processing of workpieces [18].
Typical faults, such as warpage and deformation, can be effectively monitored by
the time-domain distribution of AE hits (see Fig. 1).

3 Acoustic Emission Phenomenon in Additive
Manufacturing

3.1 Melting Phase Transformation Process

AE phenomena in the process of material phase change, such as the melting process
of water from solid ice to liquid. AE during the melting of homogeneous liquid can
be detected. Therefore, AE is a suitable technology to monitor the phase transition
process [29].

Vorontsov researched the phase transformation process of high-purity aluminum.
The change of melt structure is reflected by AE. Experiments (see Fig. 2) show that
the AE can reflect the information of a melting process of substances with crystal
structure [30].

In the process of laser welding, there is also AE in the process of material phase
transformation. L. Schmidt studied AEmonitoring in this process, it shows that using
AE technology for process monitoring has a good effect [31]. Plastic products have
structural complexity and defects in production. In Florian Muller’s research, a fresh
AEmonitoring productionmethod is adopted, which is comparedwith the traditional
monitoring methods of injection mold cavity pressure and workpiece temperature
[32]. The monitoring method of acoustic emission provides a unused idea.
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Fig. 2 AE signal of aluminum at 840 °C and frequency domain distribution [30]

Some processes and construction processes of AM, along with the melting
process, have been studied by using AE to monitor parts in the process of mate-
rial phase transformation. F. Li proposed a real-time monitoring method based on
AE [33].

J. Nam established a framework for health monitoring and diagnosis during melt
deposition modeling (see Fig. 3). Acceleration, acoustic emission and thermocouple
are used to collect data. The health monitoring and diagnosis model of FDM process
is established by using multiple groups of data [34].

Fig. 3 AE signal in two states of health and fault during FDM modeling [34]
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Fig. 4 AE distribution of parts in different construction directions in tensile test [39]

3.2 Pressure and Tensile Test

In order to judge the internal defects of product made by AM, such as filament falling
off [35], the AE phenomenon in the experiment can be collected through pressure
and tension experiments, and the defects of parts can be judged through the signals
of materials in the process of pressure or tension loading [36]. This method can
be used as an effective mechanical property detection method [37]. The fracture
process of FDM wire feeding mechanism is studied by Z. Yang. A framework based
on instantaneous line break detection is proposed, and the original AE waveform is
analyzed [38].

Barile first used a selective laser melting technique from different structural direc-
tions (see Fig. 4). Evaluate the AE signals of parts under tensile load. The results
show that AE technology can effectively monitor the damage in the tensile process
[39].

3.3 Stereo Lithography Appearance Process

Resin 3D printing is a relatively early 3D printing technology. In dental research, the
use of resin light curing in tooth filling technology is a verymature technology, and its
mechanism and construction process are similar to resin light curing 3D printing. N.
Choi proved the AE phenomenon in the light curing process through dental research.
The curing was monitored by AE technology (Fig. 5). Practice has proven that AE
technology can be used as an evaluation index of edge disintegration fracture [40].
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Fig. 5 Schematic diagram of UV curing experiment monitored by AE [40]

3.4 Stacking Process: Warpage, Deformation, Fracture,
Shrinkage

AE technology can detect small signals. As a kind of AM, FDM has curled and
relaxation defects. F. Li proposed a real-time monitoring method of part deforma-
tion based on acoustic emission. Defects are identified by sensing and digital signal
processing techniques [33]. Collect and identify acoustic emission signals in normal,
loose and curled states [41]. Other materials can also use AE technology. The frac-
ture strain and service life of magnesium alloy were evaluated by tensile test [42].
The application of glass/carbon fiber reinforced plastics (GFRP/CFRP) in AM has
attracted more and more attention. However, the residual stress generated in the
manufacturing process of parts and assemblies will lead to warpage and affect the
mechanical properties of the composite structure [43].

4 Application of Acoustic Emission in Additive
Manufacturing

AE technology iswidely used in amprocessmonitoring and part performance testing,
due to the high adoption rate. The application of acoustic emission signal analysis
will face the challenge of massive data.
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Fig. 6 Identify FDM machine fault according to AE hit

4.1 Machine Condition Monitoring

The reliability of desktop FDM printer may affect the product quality during opera-
tion. In order to improve the final printing effect, the monitoring of machine status
and the analysis of multi factor influence in the printing process can provide effec-
tive guidance for the last printing quality. H. Wu research proposed a method of
monitoring FDM machine by using AE technology [44].

H. In Wu’s experiment, the AE sensor was installed at the nozzle of 3D printer
(see Fig. 6). According to the collected AE hits, machine learning was used to
distinguish between normal and abnormal states of the machine [45]. J. Liu used
acoustic emission sensors to diagnose faults during material extrusion of FDM [46].

4.2 Fault Classification and Degree Evaluation

There are different types and degrees of part faults and quality defects in the process
of AM. Judging the type or degree of fault by signal is conducive to accurately
monitoring the whole process [47, 48]. AE hit is the data intercepted from waveform
signals through threshold setting. It is a data suitable for fault classification using
deep learning method.

S.A. Shevchik’s research proves thatAE signals can be used for fault classification
in selective laser melting technology (SLM). By adjusting the process parameters
of the machine to simulate the faults in manufacturing processes, holes of different
sizes and densities are formed in the parts. Define poor, medium and high part quality
standards, can be classified by AE signal [49].

In the laser powder layer fusion (LPLF) process, the part density is used as the stan-
dard to measure the part performance (see Fig. 7). The density measurement method
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Fig.7 Density is used to mark AE signal [50]

is used to calibrate the AE data. Through supervised learning, data are classified
according to density measurements [50].

4.3 Fault Location

The application in AM process is affected by specific experimental conditions and
physical media, so it is difficult to locate. K. Ito monitors micro defects in SLM
process in real time. The time and location of AE events were compared with the
specimen cross section observed by X-ray computed tomography (CT) (see Fig. 8).
It proves the feasibility of AE monitoring technology for monitoring the time and
location of AE events in the process of SLM [51].

5 Conclusion

It is considered that AE can effectively detect the quality of parts and monitor the
manufacturing process. It is worth pointing out that AE technology hasmore research
in metal printing. AE technology is more and more studied in AM and applied
to machines with different mechanisms. It is also of reference value to refer to
processing processes similar to AM process mechanism, such as welding process,
injectionmolding, 3D printing, building laminatedmanufacturing, etc. Summarizing
the research contents in recent years, we can know the following applicationmodes of
AE technology in AM: Monitoring the machine state; Location of defects; Evaluate
the degree of manufacturing defects; Classify manufacturing defects.
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Fig. 8 CT scanning tomography corresponds to the AE signal [51]
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Modelling and Vibration Signal Analysis
for Condition Monitoring of Industrial
Robots

Huanqing Han, Dawei Shi, Lichang Gu, Nasha Wei, and Fengshou Gu

Abstract Industrial robots are widely used in modern factories. Robot faults and
abnormal working state will lead to the shutdown of the production line inevitably.
Robot condition monitoring can improve production capacity. However, due to the
changes of robot in dynamic working state, this is a challenge. This paper presents
a methodology of condition monitoring for industrial robots using vibration signals.
The main purpose of this paper is to identify the occurrence of the fault and its
different degrees. Experimentswas performedon a6-dof industrial robot (IR). Firstly,
the Frequency Response Function of the IR was obtained by using the Experimental
Modal Analysis method. And the characteristic frequency in each axis was found.
Then, based on the Short-time Fourier Transform analysis method, the vibration data
under normal conditions and different degrees of abnormal working conditions were
analysed. In some characteristic frequency bands, the amplitude will increase with
the increase of the binding force at the joint. Finally, this trend was further verified by
the calculation of RMS value. The results show that the proposed frequency domain
and model analysis method can monitor the operating condition of industrial robots.
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1 Introduction

Industrial robots have become one of the most critical manufacturing equipment in
modern factories, and have been widely used in many fields, such as automobile,
electronic equipment and aerospace. In 2021, the number of online industrial robot
has reached 630,000, with an average annual growth rate of 14% [1]. In order to
improve work efficiency and product quality, more and more industrial robots are
used in automatic and intelligent production lines. Therefore, once the industrial robot
fails or some abnormal operating condition occurred, it may increase the downtime of
the production process and lead to incalculable economic losses [2]. Therefore, aim
to reduce the shutdown loss, the condition monitoring and fault diagnosis technology
of industrial robots has been widely studied recently.

For the sake of monitoring the operating condition of IR, it is essential to under-
stand its vibration mode. However, the Frequency Response Function (FRF) of a 6-
DOF IR varies with arm parameters (or posture) [3]. Focus on determine the FRF of
a 6-DOF IR, off-line methods (such as Experimental Modal Analysis, EMA) usually
been selected. The impact hammer experiment is carried out on the robot structure,
and the FRF is determined by the corresponding excitation force and the vibration
response of the structure. Nguyen et al. [4] have used the data-driven method to
model the 6-DOF IR, and carried out modal analysis combined with the application
of industrial robot in milling. Wu et al. [5] also used EMA in their research that
the low-order dynamic behavior prediction method of 5-DOF hybrid robot based
on the minimum generalized coordinate set. In addition, mathematical modeling is
also a common method. Wang et al. [6] proposed a novel method to simplify the
dynamic model of industrial robot based on interval method. Ding et al. [7] proposed
a complete system for mechanical parameter identification of mechanical manual
based on artificial bee colony algorithm.

At present, there aremanymethods tomonitor the operating condition of IR. Ferrar
et al. [8] used visual monitoring method, but the accuracy was insufficient. Hecke
et al. [9] analyzed Acoustic Emission (AE) signals, but the cost of sensor is too high.
Saixuan Chen et al. [10] used current signals for monitoring, but current signals need
to use IR internal signal. Algburi et al. [11] used encoder signal, which also needs
to use internal signal or external structure. The most commonly method is vibration
analysis, which has low cost and convenient signal acquisition. Jaber et al. [12] used
vibration signals for conditionmonitoring of industrial robots.While vibration signal
is analyzed, the selection of analysis method is also very important. Because analysis
method determines whether useful information can be obtained from the signal that
full of noise. Sun et al. [13] used the traditional frequency domain analysis method
to study the health status of IR gears. Jaber et al. [14] combined the wavelet and
neural network algorithms to realize the black corrosion fault monitoring of internal
mechanical structures. Yang et al. [15] studied the fault diagnosis method in dynamic
process based on modeling and data-driven methods.

In this research, vibration signals were used for the condition monitoring of IR.
And the feasibility verification has been carried out in the early study [16]. This
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paper took a further discusses on experimental verification combined with the model
analysis. The vibration characteristics of industrial robot were analyzed based on
EMA method. And Short-time Fourier Transform (STFT) method was used on the
vibration signal process and analysis. Finally, the signal processing results were
comprehensively analyzed through the characteristics at the characteristic frequency
and model. The main purpose of this research is to identify the occurrence of the
fault and its different degrees.

The rest of this paper is organized as follows. Section 2 describes the theoretical
backgrounds of IR and accelerometer. Section 3 presents the modelling of industrial
robot using EMA and the behavior of FRF. Section 4 describes the experiment facili-
ties of condition monitoring on IR. Section 5 presents the result and discussion about
this research. And finally, Sect. 6 addresses the main conclusion and future work.

2 Background: The Industrial Robot and Accelerometer

2.1 The Industrial Robot

Industrial robots are composed of links and joints that, allow the robot to generate
complex motions. [17] Every joint is mainly composed of motor, reducer and other
mechanical links. The number of degree-of-freedom (DOF) is the same as the number
of joints, which named J1, J2, J3, J4, J5, J6, separately. Typical industrial robots have
6DOFs, which allows them to realize translational and rotational motion. The typical
configuration of an industrial robot is shown in Fig. 1.

In order to enable the industrial robot to complete the specified task, IR needs the
rotation of each joint and transfer themotion through the links. And finally synthesize
the working path at the working point of the hand. The action of each joint requires
the motor as the actuator and the reducer as the transmission system. So that each
joint can produce the corresponding torque. The simplified model of single joint can
be seen in Fig. 2.

Where, u is armature voltage, θ1 is the motor shaft angle, θ2 is the rotation angle
of load shaft and n is the reduction ratio of reducer.

As seen in Fig. 2, the rotation angle of load shaft θ2 is mainly determined by the
parameters of motor and reducer. If the mathematical model of each joint is known
and the conversion conditions between joints are known, the overall mathematical
model of industrial robot can be obtained. However, the mechanical parts of the robot
are complex. And the mechanical parts may bend due to load. So, the joints may have
small effects that are difficult to calculate, such as elasticity and mechanical friction.
These small effects are generally ignored in the actual modeling. Meanwhile, if each
joint is regarded as a separate part and the whole IR is regarded as amultiple-degrees-
of-freedom (MDOF) system composed of multiple joints connected in series. Then
the simple model of industrial robot can be described in the way of lumped-mass
model.
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Fig. 1 6-DOF industrial
robot

Fig. 2 Single joint
motor-gear-load model

The free body diagram of six masses as shown in Fig. 3. Based on D’Alembert’s
principle, the equations of motion are written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

m1Ü1 + (c1 + c2)U̇1 − c2U̇2 + (k1 + k2)U1 − k2U2 = 0
m2Ü2 − c2U̇1 + (c2 + c3)U̇2 − c3U̇3 − k2U1 + (k2 + k3)U2 − k3U3 = 0
m3Ü3 − c3U̇2 + (c3 + c4)U̇3 − c4U̇4 − k3U2 + (k3 + k4)U3 − k4U4 = 0
m4Ü4 − c4U̇3 + (c4 + c5)U̇4 − c5U̇5 − k4U3 + (k4 + k5)U4 − k5U5 = 0
m5Ü5 − c5U̇4 + (c5 + c6)U̇5 − c6U̇6 − k5U4 + (k5 + k6)U5 − k6U6 = 0

m6Ü6 − c6U̇5 + c6U̇6 − k6U5 + k6U6 = 0

(1)
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Fig. 3 The lumped-mass model of a 6-DOF industrial robot

Or writing in simply matrix form we get

[m]
{
Ü

} + [c]
{
U̇

} + [k]{U } = {0} (2)

In Eq. (2), [m] is mass matrix which includes lumped mass and consistent mass.
[c] is damping matrix which often been ignored or obtained experimentally. [k] is
stiffness matrix which will be formed by assembling all the elements together to
form a structure. The size of [m], [c] and [k] are same as the DOF of IR. Therefore,
the equation of motion for an undamped vibration of the IR system can be written as

[m]
{
Ü

} + [k]{U } = {0} (3)

And then FRF can be calculated based on differential equation.

2.2 Three-Axis Accelerometer

In order to get the vibration data during the operation of industrial robot, a wire-
less acquisition system named On Rotor Sensing (ORS) was produced. The role of
ORS system is to measure the acceleration in three axes and transmit the data to
the mobile phone through Bluetooth, including power module, acceleration sensor
module, Bluetooth module and processor module. Its structure is shown in Fig. 4,

Fig. 4 Three-axis accelerometer based on ADXL345
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Table 1 Parameter details of
the three-axis accelerometer

Module name Parameter details

Power module Rechargeable lithium battery

Accelerometer ADXL345 (Frequency Range: 1600 Hz,
dynamic range16g)

BLE module BLE 5.0 wireless transmission

Processor nRF52840 (Cortex-M4F based
microcontroller)

and the parameters of each module are shown in Table 1. The function of the accel-
eration sensor module is to collect the vibration data generated by the machine in
the working process. The signals collected by the sensor can be used as the data for
evaluating the health status of the machine, such as IR.

3 EMA Experiments and FRF Behaviour

The vibration response of the robot was measured by a three-axis accelerometer
mounted at the hand of IR. Experiment was performed on the 6-dof industrial robot
as Fig. 1 shown. To excite the robot structure, an impact hammer was used to apply
an impulse excitation [18]. Then the FRF of robot in X, Y and Z directions can
be calculated, with the assume that the cross coupling of robot vibration response
can be ignored [19]. During the experiment, the three-axis acceleration sensor was
installed on the end flange (hand) of the IR. The motion path of the hand is shown
in Fig. 5, that reciprocating at point 1 and point 2. During the reciprocating, three
times impacts were applied to J3 and J4 joints respectively to calculate the FRFwhen
knocking the two joints. The magnitudes of the FRFs calculated from modal impact
hammer tests performed in the X, Y, and Z directions are shown in Fig. 6.

The results show that the FRF in three directions shows nonlinearity. In addition,
there are several vibration characteristic frequencies in each direction, that 25, 105
and 170 Hz in the X direction, 37, 67, 170 and 225 Hz in the Y direction and 37,
67, 170 and 225 Hz in the Z direction. And the amplitude in the Y direction is the
largest under this motion, which is more suitable for analyzing. Therefore, in the
subsequent vibration analysis, this paper will take the data in the Y direction as the
analysis object.

4 Experiment Facilities of Condition Monitoring on IR

The experiment has been performed on the 6-dof industrial robot as Fig. 1 shown.
Accelerometer was installed on the hand of industrial robot, see Fig. 7. In addition,
the acceleration sensor is installed on the base as a group of comparative tests, which
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Fig. 5 Robot work path during experiments

Fig. 6 Robot FRF magnitudes determined from EMA experiment along the X, Y and Z direction
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Fig. 7 Sensor installation position

can observe whether the obtained laws are the same. The abnormal working condi-
tion simulated in this paper is different degrees of joint binding force. The different
tightness of stainless-steel clasp (see Fig. 8) is used to simulate the different degrees

Fig. 8 Fault position
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of binding force. Three different degrees of binding force were set, namely: “Nor-
mal”—without stainless steel clasp, “Force”—moderate binding force and “Strength
Force”—large binding force. The purpose is to monitor the occurrence and degree of
abnormal working conditions or faults. In addition, in order to eliminate the contin-
gency caused by different fault locations. Two groups of comparative tests were
carried out in J3 and J4 respectively. During the experiment, the motion path of the
hand is the same as the EMA experiments that reciprocating at point1 and point2
(see Fig. 5).

In summary, 4 groups of experimental data were obtained in the experiments.
When the sensor is installed on the hand, 2 groups data were obtained, that one on J3
and one on J4 under abnormal working conditions. And each group of data contains
vibration data of three different degrees of binding force, which is the same when
installed on the base.

5 Results and Discussion

After obtaining time-domain signals, the vibration signals can be processed based
on the signal processing method. The signal processing method used in this paper
is STFT. The time-domain vibration signals of different binding forces are shown
in Fig. 9 which as an example when the sensor installed on the hand and the fault
simulation in J3 joint. When the IR moves under the simple path planned in this

Fig. 9 Time domain vibration signal (Sensor on hand and Faults on J3)
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paper, the amplitude will change in all three axes. As mentioned in Sect. 3, onected
for processing in the analysis to explore the effectiveness of vibration signal in
industrial robot condition monitoring.

After STFT processing of four groups time domain signals, the results shown in
Fig. 10 were obtained. It can be seen that the frequency domain data shows different
characteristics under different degrees of binding force. As shown in Fig. 10a, b,
when the sensor was installed on the hand, the data under different binding forces
will show an obvious peak near 37, 175 and 228 Hz, which is consistent with the
characteristic frequency obtained by the model analysis in Sect. 3. And different
amplitudes will be generated at these characteristic frequencies when IR working
under different degrees of binding forces. As can be seen from Fig. 10c, d, when the
sensor was installed on the base, it also has a similar law. It can be seen from the
contour figure that the amplitude variation trend at these characteristic frequencies
increases with the increase of the binding force at the joint.

In addition, in order to compare the calculations and set up trends that could
be analyzed with the goal to find some pattern. The total rout mean square (RMS)
value of amplitude date was calculated and plotted in Fig. 11. It also presents an
upward trend with the increase of binding force. Therefore, it is feasible to monitor
the occurrence and degree of abnormal working conditions of IR using vibration
analysis.

In the kinematic model of the industrial robot, damping, like the binding force
in this research, is also an item that cannot be ignored. Although damping matrix
often been ignored, the accuracy of model will increase if damping matrix can be
determined. The reason for the amplitude rise needs to be analyzed in combination
with the single joint model (see Fig. 2). On the premise that the load shaft outputs the
same angle, the greater themechanical damping at the joint, in order to overcome this
resistance, the motor must output greater torque, which will further lead to greater
joint vibration.

This study only demonstrates the feasibility of industrial robot condition moni-
toring through simplemodeling and experimentalmethods. But themodelingmethod
is still simple and the factors considered are not comprehensive, resulting in the lack
of model accuracy. In addition, because the industrial robot is a complex nonlinear
system, it is difficult to analyze the whole IR. So, the next step of the fault diagnosis
method will start from key parts of IR, such as the reducer in the joint.

6 Conclusion

In this study, a monitoring method was proposed to identify the occurrence of the
fault and its different degrees of IR based on vibration signal and analyzed combined
with the model. The proposed method only uses a three-axis acceleration sensor to
monitor the condition of the IR. In the proposed method, firstly, the mathematical
modeling and EMA methods were used to establish the model of the 6-DOF IR
and its FRF was obtained. The characteristic frequencies were determined base on
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Fig. 10 The STFT result of different conditions (0 ~ 300 Hz)
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Fig. 11 RMS value under different conditions

FRF. Then, the three-axis acceleration sensor, named ORS, was used to collect the
vibration data under different working conditions at the same joint. In order to elim-
inate the influence of different sensor installation position and fault position, three
groups of comparative experimentswere set up. Then, the time-domain vibration data
were processed by STFT method, and the time–frequency diagrams under different
conditions were obtained. Through the analysis of the vibration characteristics at
three characteristic frequencies (37, 175 and 228 Hz) corresponding to the FRF in
the time–frequency diagram, it is concluded that the amplitude will increase with
the increase of the binding force at the joint. The internal reason is that the damping
matrix in the model changes, which further enhances the oscillation of the system.
In order to further present the law at the data level, the RMS value was calculated.
The results show that it also presents an upward trend under different situation with
the increase of binding force. Therefore, the proposed method is feasible. And still
needs to be further studied in modeling and analysis methods in the future.
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Study on Fault Mode of Hybrid Electric
Vehicle

Guibo Liao, Fanbiao Bao, and Baoshan Huang

Abstract Vehicle reliability, battery life, and increased costs due to increased system
complexity will hinder the marketization of hybrid electric vehicles. Improving
vehicle reliability is the basis for improving product safety and performance. The
dissertation studies the failure modes and failure laws of hybrid electric vehicles, and
uses hybrid electric buses of electric vehicle demonstration operation companies as
test objects to conduct road assessment tests to verify the matching and optimization
of the entire vehicle and improve its performance and reliability. Develop a fault
monitoring and acquisition analysis system for electric vehicle battery systems and
power switching systems, and establish a mathematical model of the failure mode to
summarize the rules for themaintenance and use of electric vehicles and the operation
of electric vehicles.

Keywords Hybrid electric vehicle · Failure mode · Parameter estimation · Law of
distribution

1 Significance of the Study on Fault Mode and Fault Law
of Electric Vehicles

Automobile reliability is an important index to measure vehicle safety quality and
fatigue life. For automobile products, reliability is closely related to personal safety
and economic benefits. A car is made up of many assemblies, parts and compo-
nents. In particular, compared with the traditional fuel vehicles, electric vehicles
add batteries, motors and other systems with high failure rate, and many electronic
systems and components constitute the control system. If a part is damaged, a compo-
nent fails, it may cause an accident, causing serious consequences [1]. Improving
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the reliability of automobiles is the basis of improving the safety and performance
of products. The improvement of reliability requires the continuous accumulation of
experience and technical achievements, which requires long-term reliability research
and test, summarizing experience and finding out the deficiencies, so as to improve
and optimize the products.

2 Research Methods and Technical Routes Adopted

2.1 Assessment and Evaluation of Automobile Reliability

The measurement of reliability is mainly based on mathematical statistics. The
measurement used in this study to evaluate the reliability of complete electric vehi-
cles is as follows (note: since the operating mileage L is the basic data unit of the
research object, the definition here is defined as mileage L: In reliability studies, the
fault distribution function F(L) is usually taken as the main research object. Since
the size of F(L) directly reflects the probability of fault occurrence, the cumulative
fault in mileage L, and the functional relationship between fault and mileage L, it is
also called F(L) as cumulative fault probability. From the definitions of reliability
and unreliability, we can know that R(L) and F(L) are the probability of whether
the car will fail, and the value range is:

0 < R(L) ≤ 1

0 < F(L) ≤ 1

R(L) + F(L) = 1

The relationship between probability density function and fault distribution
function F(L) is as follows:

If F(L) is continuously differentiable, then, Fault probability density f (L):

f (L) = dF(L)

dL
(1)

Mean fault intervalmileageL(m) (MTBF): Life characteristics ofMTBFproducts:
rated life L(0.9), median life L(0.5), characteristic life L(0.368).
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2.2 Fault Statistics and Pattern Identification

From the perspective of automotive reliability engineering, the primary goal is to
eliminate or effectively reduce the hazard of the fault, followed by vigorously reduce
the failure frequency [2]. Generally speaking, vehicle state, fault cause and result are
three elements of fault analysis. The main steps of fault analysis are as follows:

1. Investigation.
2. Mode identification.
3. Of fault mechanism.
4. Measures.

2.3 Fault Mode Analysis Method

1. Mode influence and hazard analysis (FMEACA).
2. Tree analysis (FTA).
3. Analysis graph.
4. System analysis.

2.4 Commonly Used Vehicle Fault Theory Distribution

As can be seen from the bathtub curve shown in Fig. 1, when the product is in the
accidental failure period, the exponential distribution is observed [3], and the failure
rate is a constant, that is:

λ = λ(L) (2)

1. distribution

Fig. 1 Distribution function
and probability density
function curve of
exponential distribution
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If the normal distribution of random variable L is N (μ, σ2), then its
probability density function f (L) is:

f (L) = 1

σ
√
2π

e
−(L−μ)2

2σ2 (3)

where μ is the Average Value, σ is the Standard Deviation.
Distribution function F(L) is:

F(L) = 1

σ
√
2π

L∫
−∞

e
−(l−μ)2

2σ2 dl (4)

If the fault mileage of the product is a random variable with normal
distribution, its characteristic values are as follows:

Lm = μ, L0.5 = μ

In order to facilitate the calculation of distribution function F (L), it is gener-
ally necessary to convert normal distribution N

(
μ, σ 2

)
to standard normal

distribution N (0,1) in practical engineering application.
Set L~z = L−μ

σ
, set:

z = L − μ

σ
(5)

Then, the probability density function f (Z) of Z~N (0,1) is:

φ(z) = 1√
2π

e
−z2

2 (6)

The distribution function ∅(z) of z is:

φ(z) = 1√
2π

z∫
−∞

e
−z2

2 (7)

If we know the z value, we can get φ(z) by looking it up in the standard
normal distribution function table.

F(L) = φ

(
L − μ

σ

)
(8)

2. Lognormal distribution
The probability density function f(L) and distribution function f(L) of

lognormal distribution are as follows:
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f (L) = 1

Lσ
√
2π

e
−(lnL−μ)2

2σ2 (9)

F(L) = 1

σ
√
2π

L∫
0

1

l
e

−(lnL−μ)2

2σ2 (10)

3. Weibull distribution

f (L) = m

t0
(
L − r

t0
)m−1e

−
(

L−r
t0

)m

(11)

f (L) = 1 − e
−

(
L−r
t0

)m

(12)

λ(L) = f (L)

R(L)
= m

t0
(
L − r

t0
)m−1 (13)

Three-parameter Weibull distribution (m, t0, r).
(m—Shape parameter t0—Scale parameter r—Positional arguments).
When m < 1, it reflects the process characteristics of the early failure period of

the product—as time goes by, the failure decreases [4].
When m = 1, the failure rate is constant, which reflects the process characteristic

of accidental failure period of the product—failure rate.Under this condition,Weibull
distribution is approximately an exponential distribution.

When m >1, it reflects the product’s wear out fault phase process characteristic—
failure over time Increase sharply;

Where, whenm= 3~4,Weibull distribution is approximately normal distribution,
and in actual engineering, the shape parameters encountered are generally within the
range of 0.5–5.0.

3 Fault Collection and Analysis of Hybrid Electric Vehicle
in Demonstration Operation

3.1 Operating Status and Configuration of Operating
Vehicles

A total of 67 hybrid buses have been operated by the demonstration operation
company. According to the mode of city bus, the hybrid electric bus demonstra-
tion runs in the city [5]. The 67 hybrid electric buses in the demonstration run all use
theDongfeng EQ6110HEV, it has experienced four generations of functional sample
vehicles, performance sample vehicles, industrial commodity sample vehicles and
commercial vehicles.
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3.2 The Acquisition Scheme of Fault Data

The fault management subsystem of hybrid electric vehicle collects and manages
fault information from three categories: vehicle fault, motor fault and battery fault
[6].

3.3 Failure Data Analysis of Operating Vehicles

3.3.1 Relevant Statistics of Fault Occurrence Mileage

The data of fault occurrence mileage listed in Table 1 were collected and counted,
and the histogram of fault occurrence mileage and frequency it was shown in Fig. 2.

Table 1 Fault mileage record table

i Li i Li i Li i Li i Li

1 67 22 1216 43 1776 64 2499 85 5798

2 380 23 1256 44 1789 65 2567 86 5902

3 397 24 1279 45 1867 66 2589 87 6600

4 430 25 1293 46 1897 67 2597 88 6821

5 450 26 1298 47 1912 68 2634 89 6934

6 740 27 1341 48 1925 69 2867 90 7035

7 751 28 1387 49 1945 70 2903 91 8132

8 933 29 1394 50 1948 71 3031 92 8356

9 938 30 1398 51 2098 72 3097 93 8860

10 1023 31 1423 52 2112 73 3687 94 8923

11 1055 32 1438 53 2301 74 3698 95 9102

12 1079 33 1458 54 2310 75 3778 96 9204

13 1089 34 1483 55 2329 76 3987 97 9531

14 1110 35 1490 56 2378 77 4012 98 9567

15 1121 36 1523 57 2397 78 4110 99 9725

16 1129 37 1596 58 2420 79 4206 100 9767

17 1133 38 1630 59 2436 80 4309 101 9857

18 1140 39 1678 60 2457 81 4850 102 9886

19 1155 40 1697 61 2433 82 4899 103 9914

20 1187 41 1705 62 2451 83 4970 104 9943

21 1208 42 1721 63 2486 84 5035 105 9985

Note i represent the serial number of the fault; Li represents the mileage km at the time of failure
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Fig. 2 Diagram of frequency of fault occurrence

Vehicle characteristic life (i.e. characteristic trouble-free working mileage) is in
the range of 3000–4000 km, and the median life (i.e. median trouble-free working
mileage) is in the range of 1000–4000 km.

3.3.2 Parameter Estimation of Theoretical Distribution

The probability density function of Weibull distribution ω(m, t0) 、f (L)
、Distribution function F(L) and the failure rate function λ(L):

f (L) = m

t0

(
L

t0

)m−1

e
−

(
L
t0

)m

(14)

FL = 1 − e−( L
t0

)m (15)

λ(L) = m

t0
(
L

t0
)m−1 (16)

1. Linear regression

The relation between reliability R(L) and unreliability F(L):

R(L) + F(L) = 1 (17)

It is concluded that:

R(L) = e
−

(
L
t0

)m

(18)

Formula 3–5 is linearized, and the logarithms of both sides are taken twice in
succession to obtain:

lnln
1

R(L)
= mlnL − mlnt0 (19)
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set y = ln ln
1

R(L)
, x = lnL , A = −m ln t0

Linear function:

y = mx + A (20)

By linear regression of the original function 3–5, the parameter estimation of the
original function is transformed into the estimation of the parameters m and A of the
linear function 3–8.

2. Parameter estimation

Through the sequence xi, yi, the least square method is adopted to carry out linear
fitting of the function relation 3–7, that is, the parameter values m and a can be
obtained.

In reliability function engineering, the median rank is the approximate value of
the distribution function F(L) of unreliability, and the approximate formula of the
median rank is:

Hi = i − 0.3

n + 0.4
(i = 1, 2, 3 . . . n = 105) (21)

From formula 3–6 and L values of each fault mileage point in Table 1 xi and yi
can be obtained, where n = 1, 2, 3… 105. That is, 105 sequences xi, yi are obtained,
and linear fitting is performed by MATLAB software. The fitting curve is shown in
Fig. 3.

The fitting parameters: m = 1.257, A = 1.362, plug in formula 6–7 and you get
t0 = 0.392.

Fig. 3 Fitting curve
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Where, whenm= 3~4,Weibull distribution is approximately normal distribution,
and in actual engineering, the shape parameters encountered are generally within the
range of 0.5–5.0.

3.3.3 Hypothesis Testing of Theoretical Distributions

In order to evaluate the degree to which the data points conform to the fitting line,
goodness of fit γ 2 is defined. The expression is as follows:

γ 2 = m2
(∑n

i=1 x
2
i − nx−2

)

(
∑n

i=1 y
2
i − ny−2

≤ 1 (22)

x = 1

n

n∑

i=1

xi (23)

y = 1

n

n∑

i=1

yi (24)

where i = 1, 2, 3…n, n is equal to 105, x and y have the same meaning, tn−2,1− a
2
i s

used to determine the critical goodness of fit γ 2
c , and the inequality is verified:

γ 2 > γ 2
c (25)

To determine whether there is A linear relationship between y and x, y = mx+A.
In practical applications, critical goodness of fit is generally taken.

It is calculated that:

γ 2 = 0.9 γ 2 = 0.95 > 0.9

If the test requirements are met, the linear relationship between y and x can be
determined to be reliable, that is, the fault range data studied can be determined to
be from the whole subject to Weibull distribution.

3.3.4 The General Trend of Electric Vehicle Malfunctions

Fault Distribution Trend Analysis

The distribution parameters are known, and the corresponding reliability function
R(L) and fault distribution function F(L) can be obtained.

RL = e−( L
0.392 )

1.275

(26)
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Fig. 4 Fault distribution
function and reliability
function diagram

FL = 1 − e−( L
0.392 )

1.275

(27)

Failure Probability Density Trend Analysis

Fault probability density function f (L) is:

f (L) = 1.257

0.392

(
L

0.392

)0.257

e−( L
0.392 )

1.275

(28)

Failure Rate Trend Analysis

Failure rate function λ(L) is:

λ(L) = 1.257

0.392

(
L

0.392

)0.257

(29)

Comprehensive Study on the Overall Trend of Fault Occurrence

According to Figs. 4, 5 and 6 and the trend analysis of each function curve, it is
consistent with the observation conclusion of automobile operation fault data [7].

Fault Reliability Characteristic Quantity Analysis and Evaluation

See Table 2.
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Fig. 5 Failure probability
density function diagram

Fig. 6 Failure rate function
diagram

Table 2 Estimate of
reliability characteristics of
hybrid electric vehicles

Feature amount Estimated value (km)

Mean time between failures (MTBF) 3740

Characteristic life 3660

Median life 2760

Rated life 697

According to GB/T 19750-2005, the MBTF limit of hybrid electric city bus is
3000 km. Based on this limit, the MBTF (3740 km) of electric vehicle in demonstra-
tion operation basically meets the limit requirements and meets the reliability index
requirements.
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4 Conclusion

Hybrid electric vehicle demonstration operation management in the development
stage, in order to make the industrialization and marketization of electric vehicles
can be further, must improve the electric car reliability ordinary consumers in order
to achieve the requirements of normal use, through the demonstration operation of
hybrid electric vehicle research and analysis of fault rule, suggested that the next
step of hybrid perfect improvement can focus on the following aspects:

1. The active anti-electromagnetic interference capability of each control system
(master controller, batterymanagement system,motor controller, etc.) and CAN
bus. In the overall arrangement of vehicles, the installation position of electro-
magnetic interference sources such as motors and frequency converters should
be carefully arranged, so that they do not cause electromagnetic interference to
the control system and CAN bus.

2. The relevant protocols of each control system of the vehicle should have unified
standards, and the algorithm procedures of the control strategy should be metic-
ulous, precise and perfect. The instructions and operations of the control system
should bemore user-friendly throughmultiple debugging tests, so that the driver
can have more buffer time in thinking and operation.

3. The dynamic matching research can not only meet the basic requirement of
the dynamic performance of the vehicle, but also need to further carry out the
vibration modal analysis of the vehicle. Vibration is an important reason that
affects the life of battery, motor and other key components, and also causes
some safety problems in operation [8].

4. The processing quality and assembly quality of conventional mechanical parts
need to be further improved. New energy vehicles are improved on the basis
of traditional vehicles. While carrying out technological innovation on energy
storage devices, power devices and transmission devices, more attention should
be paid to the process quality and assembly quality of traditional mechanical
components.
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A New Two-Dimensional
Condition-Based Maintenance Model
by Using Copulas

Hanyang Wang, Ming Luo, and Fengshou Gu

Abstract This paper introduces a new two-dimensional condition-based mainte-
nancemodel for complex and repairable machining systems like computer numerical
control machining tools. A joint distribution of condition and reliability indicators
is constructed by using copula. The maintenance threshold is set on the cumula-
tive hazard rate conditioning on intensity of work. A numeric example with assumed
settings is provide to demonstrate the relationship between themaintenance threshold
and expected cost rate. This is the first model jointly considering condition and reli-
ability indicators in maintenance area; and being benefited by the features of copula,
this model can be easily extended to model dependences among multiple indicators
in practice.

Keywords Condition-based maintenance · Two-dimensional maintenance ·
Copula · Conditional hazard rate · Expected cost rate · Data-driven maintenance ·
CNC

1 Introduction

Maintenance of machines plays an important role in manufacturing operation, and
maintenance cost, the cost incurred by the user or owner to keep themachines in good
working condition, contributes to a considerable proportion of the total expense of
manufacturing enterprise. In practice, there are two main categories of maintenance
actions, preventive maintenance (PM) and corrective maintenance. Conventionally,
PM is implemented in the form of system overhaul or component replacement based
on a predetermined time schedule to prevent malfunction; while corrective main-
tenance is conducted on the failures of system to restore the system. PM is called
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time-based maintenance (TBM) in come literatures due to the nature of its schedule
[1]. In recent year, Condition-basedMaintenance (CBM) has receivedmore attention
from the researchers. CBM is amaintenance approach that emphasizes on combining
data-driven reliability models with sensor data collected from monitored operating
systems to develop strategies for conditionmonitoring andmaintenance [2]. In recent
years, CBM practice is facilitated by advanced condition monitoring technology,
which can dynamically reflect the health status and deterioration process ofmachines.

Nowadays, computer numerical control (CNC) machine tools are the cornerstone
of modern manufacturing industry and are widely used in various industries. CNC
machine tools are generally composed of numerical control system, spindle, feed
shaft, knife library and other components. Due to the complexity of CNC tools mech-
anism, processing conditions load change, spindles, tools and other key components
wear leading to its performance deterioration, seriously affecting the quality of parts
processing. A well-designed CBM strategy of CNC tools can ensure product quality
and improve the competitiveness of enterprises.

The advanced monitoring technologies, such as computer-based or IoT-based
(internet of things) sensors, facilitate continuous monitoring, which can constantly
monitor the system condition and trigger an alarm when a maintenance is required.
In terms of condition monitoring of CNC tools, the mainstream methods are indirect
monitoring, which is conducted through collecting the vibration, current, power,
cutting force, torque, temperature and other data in the processing process, and
establishing the mapping relationship between signal and tool state [3–11]. Huang
et al. [12] proposed a tool wear prediction method based on the fusion of deep
convolutional neural network multi-domain characteristics. Xie [13] analyzed the
intelligent monitoring algorithm of tool wear and presented the architecture of digital
twin system for monitoring of tool conditions based on cloud computing. According
to a large number of cutting force signals obtained through cutting experiments, the
researcher found characteristic vectors in cutting force signals could be reflected in
cutting force signals by multi-resolution wavelet analysis, and the state recognition
of tool wear was realized by neural network technology [14].

Currently, CBM research heavily relies on the stochastic degradation models. The
degradation, which can be viewed as damage to a system, accumulates over time
and eventually leads to a product failure when the accumulated damage reaches a
failure threshold [15]. The data collected through continuous monitoring can reflect
the health conditions of CNC tools, because the failures of most machine system
are found attributed to some underlying degradation mechanism, such as wear of a
mechanical component, resistance of an electronic component, capacity of a battery.
To prevent the failure occurring or to extend the residual useful life of the machine,
maintenance actions should be implemented when the degradation metric reaches a
maintenance threshold before failure.

The degradation models are well developed in literatures. A well-known example
is the Wiener degradation process. By this model, the first-passage-time or first-
hitting-time, i.e. the time of the degradation first reaching a fixed threshold, follows
an inverse Gaussian distribution. This property can assist us in scheduling mainte-
nance effectively. Stochastic processes like Wiener process are dominating in this
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research area, because they performwell inmodelling the randomness in degradation
processes caused by inherent randomness and environmental factors, even though
complexity makes them not really handy to use for engineers [16]. Considering the
richness of operating data collected throughmonitoring themachines like CNC tools,
a data-driven CBM strategy model should be construct with incorporating multiple
condition indicators of CNC.

Regarding the reliability modeling of CNC, one of the key reliability concepts
is the time between failures (TBF) which is normally assumed independently and
identically distributed (i.i.d.). The common types of random distribution used to
model TBF include Weibull [17], Log-normal [18], Exponential [19], Gamma [20],
and Inverse Gaussian [21] distributions. However, in practice, the i.i.d. assumption of
TBF is not always held. To model the reliability of CNC machine tools, Wang et al.
(2011) [22] proposed a three-parameter Weibull mixture model with a case study.

As a complex and repairable system, multiple failures could occur during the life
time of CNC. The failure arrival process can be modelled by Poisson process [23],
non-homogeneous Poisson process [24, 25], renewal process [26], etc. Guofa Li
et al. 2019 [27] proposed a reliability evaluation method based on mixture variable
parameter power law model (MVPPLM) with considered the influence of working
condition difference in the traditional reliability modeling of numerical control (NC)
machine tools. In metal cutting (i.e., machining) processes, tool wear was shown
to be a main source of quality variation [28]. Li Hao et al. (2017) [29] propose an
interaction model that utilizes a linear model to represent the impact of tool wear
on quality degradation and a stochastic differential equation model to capture the
impact of quality degradation on the instantaneous rate of tool wear.

By reviewing the literatures in CBM, CNCmonitoring, degradation research, and
reliability modeling areas, we can see that developing optimal CBM policies for
complex CNCs is desirable and valuable in both academia and industry; however,
CNCs are monitored on multiple dimensions in practice, and one or a few variables
may not represent the condition of machine appropriately. Meanwhile, the majority
of CBM studies are focusing on single random degradation process, which models
inherent and environment-driven randomness well, but complexity makes them not
really handy to use, especially when various factors are considered. In this paper, a
copula-based method of constructing two-dimensional CBM models is introduced,
which allows further expansion to consider more factors, and the parameters could
be estimated stepwisely in practice.

2 The Joint Distribution of Condition Indicator
and Reliability Index

In CBM research and practice, the condition of amachine is monitored andmeasured
based on various metrics, such as vibration, temperature, contaminants, wear, noise,
etc. [16]. Some of them are non-cumulative which can reflect the condition at a
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specific moment, e.g. noise; meanwhile, some other metrics can indicate the degra-
dation increment and present the degradation process of component or system, e.g.
wear.

From the engineering point of view, the degradation increment can be treated
as a superposition of many small effects in operation. As a combination of these
effects, the behaviour of degradation increment can be approximated by a proba-
bility distribution. If the increment is considered normally distributed, and the incre-
ments in non-overlapping time intervals are believed independent, this process can
be modelled by a basic Wiener process [15]. A basic Wiener degradation process
{X(t), t ≥ 0} is expressed as:

X(t) = μ�(t) + σ B(�(t)) (1)

where μ is the drift parameter indicating the rate of degradation, σ is the volatility
parameter, B(·) is the standard Brownian Motion, and �(·) is a monotone increasing
function. X(t) is used to represent the transformed system degradation in some
scenarios. For example, X(t) could be the logarithm of the degradation when the
degradation value is required non-negative, then the degradation follows aGeometric
Brownian motion (GBM), see Fig. 1.

Various metrics are monitored while various stochastic processes are used to
model them in research. However, considering the simplicity of model construction
and usability of models in practice, it is necessary to develop a data-driven model
which can easily incorporate or be compatible to multiple condition indicators. In

Fig. 1 Simulation of a GBM degradation
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this research, the tool wear is selected as the only condition indicator to demonstrate
the modelling strategy.

Tool wear in the machining process is a common phenomenon, and the deteriora-
tion of tool performance caused by wear is the main factor affecting product quality
[1]. In operation, the tool wear is influenced by various factors, such as surface finish
quality, ambient temperature, abrasive particles in the environment, lubrication char-
acteristics, load, running distance or running time, material characteristics, etc. The
wear should be treated as a degradation process with non-negative increments; in
the related area, Gamma process is widely used to model this type of degradation
[30]. However, in practice, when a machine fails or its system degradation reaches a
given threshold, we can observe the values of multiple condition indicators and time;
for instance, we can have a pair of wear level and time at the failure or threshold.
After observing the machine for multiple operation circles, we can have a set of wear
level values. The wear level could be treated as a continuous random variable and
assumed following a Gamma distribution,W ∼ �(α, β), where α is shape parameter,
and β is rate parameter. Actually, �(α, β) is the distribution of the sum of α i.i.d.
exponentially distributed variables. The probability density function (PDF) is

fW (w) = βα

�(α)
xα−1e−βx , (2)

and the cumulative distribution function (CDF) is

P(W ≤ w) = FW (w) = w∫
0
fW (x)dx . (3)

where, �(α) is the Gamma function. W can be named as wear to failure (WTF) in
this research.

The reliability of CNC tool can be modelled by the reliability function, FT (t),
which is the CDF of a non-negative random variable T and gives the probability that
a machine fails or its degradation indicator hits a given threshold before or at time
t . Then, the argument of FT (t) could be time to failure (TTF) or first passage time
(FPT). By the similar means, we have the survival function

S(t) = P{T > t} = 1 − FT (t) (4)

which gives the probability that a machine will survive beyond time t , i.e. does not
fail before or at time t . The survival density function is s(t) = − fT (t). Based on the
reliability function and survival function, the hazard rate is defined as

λt (t) = lim
�t→0

P(t ≤ T < t + �t)

�t · S(t)
= fT (t)

S(t)
(5)
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which gives the conditional rate that a machine has survived for t but will not survive
for an additional time �t . If T follows an exponential distribution, λt (t) = λ is a
constant and λ is the rate parameter of this exponential distribution.

The distribution of wear to failure, FW (w), and the distribution of TTF, FT (t)
could be dependent, for example, using a machine heavily can lead to high wear
level and early failure. Therefore, the joint distribution ofW and T is constructed by
incorporating a bivariate copula. The joint distribution of W and T is

F(t, w) = C(FT (t), FW (w)) = C(u, v) (6)

where C(·) is a bivariate copula, FT (t) = u ∈ [0, 1], and FW (w) = v ∈ [0, 1]. The
density of this joint distribution is

f (t, w) = c(FT (t), FW (w)) · fT (t) · FW (w) = c(u, v) · fT (t) · fW (w) (7)

where, c(·) is the copula density.
This joint distribution function can reflect reliability on T − W plane. F(t, w)

gives the probability that the machine fails before wear reaching w and age reaching
t . Then the two-dimensional survival function is

S(t, w) = 1 − F(t,+∞) − F(+∞, w) + F(t, w)

= 1 − C(u, 1) − C(1, v) + C(u, v)

= 1 − u − v + C(u, v). (8)

The value given by S(t, w) is the probability that the machine does not fail before
age reaching t and wear reaching w. This two-dimensional survival function can be
represented through survival copula as well:

S(t, w) = 	

C(1 − u · 1 − v), (9)

where
	

C is the survival copula of C.
In practice, the joint distribution can be easily estimated by estimating marginal

distribution and copula separately. Several families of copulas are well explored
by research communities, for example, the widely used Gaussian copula and
Archimedean copulas. The various dependence structures between random vari-
ables can be approximately modelled by selecting proper copula according. Nested
bivariate copulas and multivariate copulas can be used to construct multivariate joint
distributions when needed.
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3 Conditional Based Maintenance

According to the joint distribution introduced above, the conditional PDF of TTF
given the occurrence of W = w is

fT |W (t |w) = f (t, w)

fW (w)

= c(u, v) · fT (t) · fW (w)

fW (w)

= c(u, v) · fT (t). (10)

The conditional CDF of T given the occurrence of W = w is

FT |W (t |w) = t∫
0
c(u, v) · fT (x)dx

= ∂C(u, v)

∂v
. (11)

The conditional hazard rate given the occurrence of W = w is

λT |W (t) = fT |W (t)

ST |W (t)
= c(u, v) · fT (t)

1 − ∂C(u,v)

∂v

(12)

The conditional hazard function, i.e. conditional cumulative hazard rate is

�T |W (t) = ∫ λT |W (t) (13)

As we know λT |W (t) = fT |W (t)
ST |W (t) = − sT |W (t)

ST |W (t) , then

�T |W (t) = ∫ λT |W (t) = −∫ sT |W (t)

ST |W (t)
= −lnST |W (t). (14)

If sufficient historical data were collected from the same machine or the machine
in the same type under the same working condition, the conditional hazard rate could
be a condition indicator of the machine. It gives the rate that the machine survived
for t but will not survive for an additional infinitesimal time conditioning on the wear
w. It may show, for example, working intensity can influence the remaining useful
life of a machine. Therefore, the maintenance threshold can be set on λT |W (t) as λM ;
however, because λT |W (t) is not essentially monotonic, the maintenance threshold
can be set on �T |W (t) as �M when needed. This means a maintenance should be
conducted at time TM , when λT |W (TM) = λM or �T |W (TM) = �M .

According to Eqs. (6), (7), (12), and (14), when λM (or �M ) is given, the value
of TM is determined by a function of wear w, g(w|�M). Then the expected value of
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TM , i.e. the expected time to maintenance, is

E(TM) = ∫ g(w|λM) fW (w)dw. (15)

Assume the maintenances are perfect, which means the machine will be restored
as good as new after each maintenance. Then, the expected number of maintenances
for time t is

N (t) = t

E(TM)
(16)

The cost of each maintenance can be varying due to some random factors associ-
ated, but the expected cost of a maintenance, CM , could be estimated by experts or
according to empirical data. The expected total cost of maintenance for time t is

TC = CMN (t) = CMt

E(TM)
. (17)

However, in practice, the total useful life of a machine is influenced by many
factors, and some of them are beyond the machine itself, for example, a new gener-
ation of machine is introduced to the market. Then, the expected cost rate is more
important than total maintenance cost from the perspective of management. The
expected cost rate, Cr , is

Cr = TC

t
= CM

E(TM)
. (18)

The optimal CBM policy can be determined by finding the optimal mainte-
nance threshold which can minimize the expected cost rate. It means the following
optimization problem needs to be solved:

Min Cr = CM

E(TM)

Subject to E(TM) ≥ TO
0 < �M < �O

(19)

where TO and �O are set according to operating needs.

4 Numeric Example

To demonstrate themodel, the Clayton copula is used in this research, but the actually
form of copula in practice should be determined according to the data collected or
experts’ experience. The Clayton copula is:
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C(u, v) = (
u−θ + v−θ − 1

)− 1
θ (20)

where θ ∈ [−1, 0) ∪ (0,∞) is the parameter. The probability density of the Clayton
copula is:

c(u, v) = (1 + θ)(uv)−(1+θ)
(
u−θ + v−θ − 1

)− 2θ+1
θ (21)

The survival copula associated to the Clayton copula is:

	

C
(

	

u,
	

v
)

=
(

	

u
1−θ + 	

v
1−θ − 1

)− 1
θ−1

(22)

where,
	

u = 1 − u and
	

v = 1 − v.
According to Eqs. (12), (20), and (21), we have

λT |W (t) = c(u, v) · fT (t)

1 − ∂C(u,v)

∂v

= (1 + θ)(uv)−(1+θ)
(
u−θ + v−θ − 1

)− 2θ+1
θ · u′

1 − (
u−θ + v−θ − 1

)− 1
θ
−1

v−θ−1
. (23)

where u′ = fT (t). According to Eqs. (4), (11), (14) and (20), we have

�T |W (t) = −lnST |W (t)

= − ln

(
1 − ∂C(u, v)

∂v

)

= − ln
(
1 − (

u−θ + v−θ − 1
)− 1

θ
−1

v−θ−1
)
. (24)

Obviously, Eq. (24) is much simpler than Eq. (23), to demonstrate the model, we
set the maintenance threshold as �T |W (t) = �M . Then, we have

− ln
(
1 − (

u−θ + v−θ − 1
)− 1

θ
−1

v−θ−1
)

= �M

→ (
u−θ + v−θ − 1

)− 1
θ
−1 = (

1 − e−�M
) · vθ+1

→ u−θ =
[(
1 − e−�M

)− θ
1+θ − 1

]
· v−θ + 1. (25)
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Fig. 2 Surface of conditional hazard rate λT |W (t)

Assume W ∼ �(α = 3, β = 1), T ∼ Exp(λ = 0.5), and θ = 1; the maintenance
threshold is set as �M = 6. According to Eq. (23), the surface of conditional hazard
rate λT |W (t) is plotted in Fig. 2.

On Fig. 2 we can see the conditional hazard rate decreases dramatically when
wear and time grow. It means the proposed assumption of marginal distributions and
copula might only reflect the early stage reliability of machine, as the Clayton copula
has more probability concentrated in the lower tail (u → 0, v → 0), i.e. it has strong
lower tail dependence. The early stage refers to the initial wear phase of tool, inwhich
the tool wears quickly due to the roughness of the sharpened cutting-edge surface. It
has a small actual contact area with the machining surface, allowing the stress on the
cutting edge and the machining surface to concentrate, so a narrow surface is quickly
ground on the rear tool face, allowing the contact pressure between the cutting edge
and the machining surface to decrease and the tool wear rate to gradually decrease
and stabilize until the end of the initial wear phase.

In practice, the marginal distributions and copula should be estimated based on
real data whichmay require more complicate models to reflect the actual dependence
structures. For instance, the Gumbel copula could be applied on the final stage of
machine life, and a combined or stepwise copula could be used to model the whole
lifecycle.
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Fig. 3 The surface of conditional cumulative hazard rate and the relationship between TM and W
when �M = 6

Then, according toEqs. (24) and (25), the surface of conditional cumulative hazard
rate�T |W (t) is shown by Fig. 3, and the relationship between TM andW on the plane
�M = 6 is marked.

The function TM = g(w|�M) is determined byEq. (25), the curves of this function
with different values of �M are plotted in Fig. 4.

The expected value of TM is calculated associated with the distribution of which
is shown by Eq. (15), E(TM |�M = 3) = 60.57826, E(TM |�M = 6) = 124.5343,
and E(TM |�M = 9) = 189.9809. We can see the expected value of TM is increasing
with the maintenance threshold �M .

By the same means, the relationship between the expected cost rate Cr = CM
E(TM )

and the maintenance threshold �M can be plotted after more simulations. Set the
expectedmaintenance costCM = 100, the relationship betweenCr and�M is shown
by Fig. 5.

According to Fig. 5, the function Cr = h(�M) is monotonically decreasing.
Therefore, the optimization problem stated by Eq. (19) can be solved at �M = �O

if. This result means, if the assumptions could reflect the early stage of amachine, the
user should conduct maintenance as late as they could or should not do maintenance
in the early stage.
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Fig. 4 The relationships
between TM and W when
�M = 3, 6 and 9

Fig. 5 Expected cost rate
versus maintenance
threshold

5 Conclusion

This paper has introduced an easy-to-use and extensible framework which allows to
incorporate multiple monitored factors in condition-based maintenance scheduling;
even though, the assumptions of this study are too simple to reflect the details in prac-
tice. However, a data-driven model, it is easy-to-use by fitting to the data collected
in operation, and benefited by the properties of copula, the model could be extended
to higher dimension by constructing multivariate copulas. In the future research, the
model could to be improved by further studies with considering the following, but
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not limited to, issues: models of the different stages of machine operation, multidi-
mensional copula selection and construction, time-varying dependence, the effects
of uptime and downtime, the cost of monitoring and preventive maintenance, etc.
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Rotary Valve to Improve the Problem
of Big End and Needle Glue Overflow
in Contact Dispensing Process

Gaolian Huang, Shifei Zhang, Zhiguo Liu, Gaobo Xiao, Chucheng Chen,
and Fanbiao Bao

Abstract Since the discovery of the piezoelectric effect, the application of piezo-
electric technology has been increasing. The rotary valve has precise and controllable
characteristics for the contact dispensing process, and has become an indispensable
part of the dispensing industry. For a long time, the working mode of piezoelectric
ceramic valve controller is relatively single. The traditional point mode, line mode
and single channel can no longer adapt to the development of industrial automation.
With the increasing complexity of dispensers, customers have put forward more
and more customized requirements. In order to better adapt to the development of
dispensers, reduce the difficulty of control, and shorten the development cycle, a
more flexible and convenient controller system is needed.

Keywords Piezoelectric ceramic valve · Dispensing process · Air pressure control

1 Introduction

With the continuous update and enrichment of electronic products, people’s require-
ments for products are developing in the direction of being smaller, lighter, thinner
and more stable. At the same time, the application of dispensing technology in elec-
tronic products has become more and more extensive, such as mobile phones and
cameras, and the process requirements are becoming more and more stringent.

The traditional double-sided adhesive bonding method or the simple dispensing
bonding method is gradually replaced. The performance requirements of the product
require the dispensing process to ensure good bonding performance during the
assembly process, while ensuring other more process performances, such as water-
proof, air tightness, drop test, electrical conductivity, thermal conductivity and

G. Huang · S. Zhang · Z. Liu · G. Xiao · C. Chen
Zhuhai Bojay Electronics Co., Ltd., Zhuhai, Guangdong Province, China

F. Bao (B)
Beijing Institute of Technology, Zhuhai, Guangdong Province, China
e-mail: 83667425@qq.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_74

921

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_74&domain=pdf
mailto:83667425@qq.com
https://doi.org/10.1007/978-3-030-99075-6_74


922 G. Huang et al.

other requirements. The application of dispensing technology in electronic prod-
ucts is becoming more and more extensive, such as mobile phones, cameras, LEDs,
smart wearable devices, new energy, SMT industries, etc. Process requirements are
becoming more and more stringent, more refined and specific, such as glue height,
glue width, glue amount, appearance requirements (big end problem of the start and
end points, wire drawing, splash, scattered spots, glue overflow, bubbles) [1].

In order to solve the process problem of large end point and glue overflow after
closing glue in contact dispensing, we designed this rotary dispensing valve. By using
the rotary dispensing valve body in the contact dispensing process, the problem of
large end-point glue volume during the dispensing process and glue overflow of the
needle after closing the glue can be well solved. It is verified by testing that the
improvement effect is good, the operation is simple and convenient during the use
process, and it has better dispensing effect and stability for the application ofmedium
and low viscosity fluid contact dispensing as well.

2 Problems with Traditional Dispensing Methods

For the contact dispensing process, the selected valve types are syringe air pressure,
striker valve, and screw valve. In the daily test and use process, the usual problems
encountered are the amount of glue at the end point and the problem of glue overflow
after closing the glue.

2.1 Syringe Air Pressure

1. Operating principle
The syringe air pressure is a relatively simple way to dispense glue. The
dispensing needle is directly connected to the glue outlet of the syringe. The
dispensing controller controls the air pressure at the upper end of the syringe to
dispense and adjust the amount of glue [2].

2. Process problem
During the dispensing process, due to the influence of the residual pressure of
the air pressure, it is easy to cause the needle to overflow after the glue is turned
off, as shown in Fig. 1.

2.2 Striker Valve

1. Operating principle
The pressure controller controls the lift of the valve body striker to switch on
and off the glue. As shown in Fig. 2 [3].
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Fig. 1 Syringe air pressure

Fig. 2 Striker valve

2. Process problem
The strength of the striker is not easy to control during the lifting process, and
it is easy to have too much glue at the end, as shown in Fig. 3.
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Fig. 3 Exploded view of
Striker valve

2.3 Screw Valve

1. Operating principle
The feed pressure is adjusted by the air pressure controller, the glue is supplied
into the screw cavity, and the glue is squeezed out from the needle by the rotation
of the rotor in the cavity, as shown in Fig. 4 [4].

2. Process problem

Fig. 4 Screw valve
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Fig. 5 Big head problem of the end point

Fig. 6 The problem of
needle overflow after closing
the glue

The rotor and the stator are not completely airtight. After the glue is turned off,
under the influence of the residual pressure of the air pressure, there will still be
glue hanging at the needle, and the response speed of the on–off valve is slow,
as shown in Figs. 5 and 6 [5].

3 Introduction of Rotary Dispensing Valve

3.1 Rotary Valve

Figures 7, 8, 9 and Table 1 show the structure and parts required for the design of
the rotary dispensing valve [6].



926 G. Huang et al.

Fig. 7 Dimensions of the
rotary valve

Fig. 8 Exploded view of
rotary valve
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Fig. 9 Dimensions of the air pressure controller

Table 1 Parts required for
rotary valve

1 Syringe holder 8 Rotary spool fixing fixture

2 Electromagnetic valve 9 Enclosure mounting

3 Backplane fixture 10 Side panel

4 Air outlet 11 Sealing ring

5 Air inlet 12 Locking components

6 O-ring 13 Needle fixing nut

7 Rotary valve 14 Needle

3.2 Operating Principle

The air pressure controller OUT1 is the normal air pressure and is connected to the
air inlet of the solenoid valve. The solenoid valve signal line and the air pressure
controller signal line are connected to the external machine (dispenser). The air
pressure controller OUT2 is the on–off air pressure, which is connected to the adapter
tube at the upper end of the glue cylinder to provide the glue supply air pressure when
dispensing glue, and the air pressure is disconnected when the glue is not being
dispensed to reduce the influence of residual pressure. When opening the glue, the
dispensing controller OUT2 provides the supply air pressure, the external machine
provides the solenoid valve 24 V signal, and the solenoid valve A work position is
turned on tomake the rotary valve rotate 90°. The cavity hole in themiddle of the rotor
in the rotary valve communicates with the glue cylinder and the needle, and the glue
passes through the cavity hole of the rotor under the action of the feeding pressure,
and the glue is dispensed through the needle.When closed, the air pressure controller
OUT2 closes the supply air pressure, the external machine closes the solenoid valve
24 V signal, and the solenoid valve B work position is turned on to make the rotary
valve rotor rotate back to 0°. At this time, the glue in the cavity hole is cut off, and
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the air pressure controller OUT2 turns off the air pressure to complete the glue off
action.

3.3 The Characteristics of Rotary Valve

1. With good airtightness, water is used as the medium, and the feed pressure is
0.5Mpa, no dripping.

2. Adopting direct-acting solenoid valve, the response speed of switch glue is fast,
and there is no glue overflow after the glue is closed.

3. Adopt the air pressure controller to supply the material normally, no need to
suck back, and the glue volume is stable.

4. Applicable glue has a wide range of viscosity, especially suitable for glues
without filler and reacting with metal particles.

5. It can be used with tapered needle to achieve better process effect.

3.4 Process Parameters

Design the rotary valve through various process parameters, as shown in Table 2.

Table 2 Various process
parameters

Products Parameters Unit

Minimum dispensing
volume

0.0005 Ml

Minimum dispensing
diameter

200 µm

Minimum operating
frequency

400 Times/minute

Maximum feeding
pressure

0.6 Mpa

Max flux 1.8 L/min

Suitable for glue
viscosity

5000~150,000 Cps

Drive material Aluminum alloy /

Accuracy deviation ±5%(W >0.005 ml) /

Dimensions 45*81.5*153.2 Mm

Weight 1.8 KG
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Fig. 10 Dispensing process

3.5 Dispensing Process Effect

The effect of the dispensing process is shown in Fig. 10.

4 Conclusion

In the application of dispensing process, although new non-contact dispensing
methods are used more frequently, due to the characteristics of certain fluids and
the needs of customers’ specific applications, contact dispensing methods are still
indispensable. It has been verified through testing that the rotary dispensing valve
can better improve the problem of needle overflow caused by residual pressure and
excessive instantaneous amount of glue when the valve is closed. In addition, it has
greater advantages and better dispensing effects compared to other types of valve
bodies in low-viscosity fluid applications, with good air-tight characteristics.
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The Positioning Accuracy Measurement
of the Dispenser and Compensation
Method

Xiong Huang, Gaobo Xiao, Zhiguo Liu, Shifei Zhang, Qiwen Wu,
and Fanbiao Bao

Abstract This article describes a method for measuring the positioning accuracy
of dispenser and the compensation method. This method uses customized high-
precision calibration boards, CCD imaging technology and vision algorithms to
measure the XY two-dimensional positioning accuracy of the machine, and compen-
sate the measured error results to the motion system to improve the positioning accu-
racy of the machine. Since the deviation is calculated by visually grabbing the Mark
points on the calibration board, it is lower in cost, easier to operate, and more effi-
cient than the traditional laser interferometer measurement method. Furthermore, the
traditional laser interferometer can only perform single-axis compensation, while the
calibration plate method can compensate XY at the same time, which truly improves
the positioning accuracy.

Keywords Dispenser · Positioning accuracy · Two-dimensional compensation

1 Introduction

1.1 Purpose and Significance of the Study

Nowadays, with the widespread use of electronic products, the market demand for
dispensers is also expanding. However, domestic dispensers generally have low accu-
racy and insufficient glue dispensing, while the electronic products are becoming
lighter and smaller, with higher requirements for accuracy. Consequently, many
manufacturers in the purchase of dispensers can only reluctantly look for world
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brands. Therefore, in the high-precision area, continuous efforts of equipment manu-
facturers are expected. There is no doubt that only quality and service can make the
manufacturers stand out when the market competition becomes fierce.

Due to various reasons such as processing and assembly, the positioning accu-
racy of the dispenser equipment is difficult to be guaranteed. Taking a dispenser
equipment of our company as an example, within the range of 400 mm × 400 mm,
after the equipment is assembled, the positioning deviation of the machine with good
performance can be up to 0.04 mm, while the positioning deviation of the machine
with poor performance can exceed 0.1 mm.

As a result, a simple and low-cost method is needed to improve the positioning
accuracy.

1.2 Main Content

1. Design and manufacture the calibration board: design a suitable calibration
board according to the XY stroke of the equipment, the camera field of view
of the equipment, and the accuracy requirements. The Mark of the calibration
board should form a checkerboard, and ensure that the range of the Mark can
cover the range of the main dispensing stroke. Meanwhile, the algorithm should
capture the Mark to calculate the deviation.

2. Write the positioning photography process: program the positioning photog-
raphy process, to make XY move according to the specified distance, and to
ensure that the camera can accurately shoot each Mark point.

3. Write the Mark grasping algorithm: after each Mark is shot, the vision needs to
calculate the deviation and save it to form a compensation file.

4. Write the motion compensation algorithm: the program loads the compensa-
tion file. When motion positioning, interpolation compensation is performed
according to the grid interval of the calibration plate where the positioning
point falls.

This method is designed for an on-line automatic dispenser of our company, but
it is also suitable for other types of dispensers or similar equipment. Customizing
the calibration board of different sizes to realize the compensation of positioning
accuracy. For the convenience of description in the paper, the subsequent names of
the equipment will be referred to as the dispenser [1].
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1.3 Reasons for Poor Positioning Accuracy

1.3.1 Possible Reasons

1. The perpendicularity of x-axis and y-axis assembly of the equipment cannot
reach absolute 90°.

2. The unevenness of optical grating ruler leads to the scaling of moving distance.
3. The deformation of beam or guide rail.
4. The parallelism between Y-axis spindle and support rail is not enough, resulting

in extrusion during movement.

1.3.2 Impacts

1. Poor dispensing accuracy leads to deviation of dispensing position or deforma-
tion of dispensing shape.

2. There will be deviation when reusing different machine programs, and when
the dispensing track is moved to other machines, there will be deviation.

2 Design of Calibration Board

The maximum effective stroke of XY of the dispensers is 400 mm × 400 mm. The
origin of the device is defined as the lower left corner, theX-axis coordinate is positive
to the right, and the Y coordinate is positive to the front. The positioning camera is
a 130 W pixel CCD with a minimum field of view of 4 mm, as shown in Fig. 1.

According to these information, the calibration plate is designed, which is 420mm
long and 420 mm wide, and the range of internal dots is 400 mm × 400 mm. The
diameter of the circle is 2 mm, and the center distance between two adjacent circles
is 4 mm. There are 101 circles in the transverse direction and 101 circles in the
longitudinal direction, as shown in Fig. 2.

In order to ensure accuracy, a glass calibration plate is selected with an accuracy
of ± 2 um. It can be customized by a qualified calibration board supplier, as shown
in Fig. 3 [2].



934 X. Huang et al.

Fig. 1 Equipment picture

Fig. 2 Schematic diagram
of calibration board design
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Fig. 3 Physical image of
calibration board

3 Process of Positioning Accuracy Error Measurement

3.1 Fixing of Calibration Board

Lay the calibration board flat on the dispensing track, try to make the edge of the
calibration board parallel to the X-axis, reduce the error caused by the simultaneous
movement of X and Y, and also reduce the error introduced by the angle calculation.

Use the altimeter on the machine to measure the height of the four corners of the
calibration board to ensure the levelness of the calibration board.

Use clamps to fix the calibration board to prevent shaking as shown in Fig. 4.

3.2 Camera Focus and Calibration

3.2.1 Camera Focus

Move the camera to the top of a dot on the calibration board and adjust the Z axis to
ensure that there is only one complete dot in the camera field of view. If the field of
vision is not suitable, it can be adjusted by increasing or decreasing the circle.

Fine adjust the focal length of the camera to ensure that the edge of the dot in the
image is clear, as shown in Fig. 5 [3].
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Fig. 4 Calibration board
placement diagram

Fig. 5 Dot imaging diagram
of calibration plate
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3.2.2 Camera Calibration

Use the visual nine-point calibration method that comes with the dispenser system
for calibration. Get the ratio of pixels to motion. For example, 0.006 mm/pix.

3.3 Mark Point Photograph

3.3.1 Photographing Path Design

In order to conveniently set the photographing order and range of the Mark points
of the calibration board, and also to correct the parallelism between the calibration
board and the X-axis, we have written an interface to input the coordinates of the first
dot on the calibration board and the last dot on the first line, as well as the number
of rows and columns, and the dot interval, automatically generating photo spots.

The coordinate of the first dot, that is, the starting point of the angle line in the
figure below, is the X, Y motion coordinates when the center of the first dot on the
indicator board is at the center of the field of view [4].

The coordinates of the last dot in the first row, that is, the end point of the angle
line in the figure below, are the X, Y motion coordinates when the center of the last
dot in the first row of the indicator board is at the center of the field of view, as shown
in Fig. 6.

Fig. 6 Setting diagram of photo spot
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Fig. 7 Schematic diagram
of the photo path

The generated coordinate points are separated by 4 mm, and automatically cut to
the beginning of another line when the end of the line is reached.

During operation, start from the first point at the lower left corner of the calibration
board, take photos point by point according to the line, move to the first point of the
next line after taking one line, take photos point by point according to the line, and
the combined distance of X and Y of the motion axis is 4 mm, as shown in Fig. 7.

3.3.2 Precautions for Photographing

To ensure accuracy, the moving speed should not be too fast and should not exceed
50 mm/s. After the moving, take a picture with a delay of 50 ms to ensure that the
motion stops steadily.

3.4 Deviation Calculation and Storage

Image algorithm is used to capture the center of the circle and get the deviation
value (unit pixel) of the center of the circle from the center of the field of view.
Then, according to the number of MM corresponding to each pixel calibrated before,
convert it into mm unit.

Write the photographing coordinates, X offset and Y offset into the configuration
file.

After all the mark points are taken, the positioning deviation table, that is, the
two-dimensional compensation table, can be obtained, as shown in Fig. 8.

The abscissa indicates the number of points, and the ordinate indicates the devi-
ation. X offset refers to the deviation in the X direction from the first dot to the last
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Fig. 8 Deviation value
before compensation data



940 X. Huang et al.

Fig. 9 Deviation value before compensation

dot in each row, and Y offset refers to the deviation in the Y direction from the first
dot to the last dot in no column [4].

The upper part of Fig. 9 is the deviation data of a single row or single column;
the lower part is the deviation data of all rows or columns.

4 Compensation and Verification

4.1 Compensation Principle

The first two data in the table are the photographing points (x, y), the latter two data
are the deviation values (dx, dy), and the corrected points (x′, y′) can be obtained
according to the deviation values [5].

The calibration board can be seen as a bunch of dense small rectangles. Take
the photographing coordinates of the dots at the 4 corners of each small rectangle
and perform affine transformation with the corrected 4 points to obtain 100*100
transformation matrices, as shown in Fig. 10.

4.2 Transformation Function

As a formula 1:
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Fig. 10 Transformation
matrix

(1)

(2)

4.3 Transformation Matrix

As a formula 2:

(3)

When issuing amotion instruction, determine which cell themotion point belongs
to, perform the corresponding transformation, obtain the compensated coordinate,
and then issue the compensated motion coordinate to the motion system.

4.4 Verification Method

Based on the center of the first dot of the calibration plate, a series of points are
generated along the direction of the calibration plate, 4 mm horizontally and 4 mm
vertically.

Go to each point to take a picture and calculate the deviation value. As shown in
Fig. 11.

From the data, the positioning accuracy is greatly improved after compensa-
tion. The positioning accuracy before compensation is about 0.05, while after
compensation is about 0.01 mm.
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Fig. 11 Deviation value
after compensation

5 Factors Affecting Compensation Accuracy

5.1 Camera Accuracy

At present, the pixel accuracy of the camera equippedwith the dispenser is 0.006mm.
If a higher-precision compensation effect is expected, you need to replace a higher-
resolution camera.

5.2 Calibration Board Accuracy

The calibration board is customized by a professional manufacturer with an accuracy
of ± 0.002 mm. If a higher-precision compensation effect is expected, you need to
make a higher-precision calibration board.

5.3 Fixing of Calibration Board

When the calibration board is fixed, the levelness must be ensured. Insufficient level-
ness will result in deviations in the photographing calculation. Moreover, it must be
firm and will not deviate. During the shooting of motion, any shaking will introduce
errors.
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5.4 Machine Stability

The machine must be placed on the ground steadily, without shaking during move-
ment. Therefore, during the measurement process of the calibration board, the
movement speed should not be too fast, and it needs to be stopped steadily before
photographing.

6 Conclusion

1. Due to various reasons, the positioning accuracy of the dispenser is difficult to
meet the needs of high-end customers.

2. Using laser interferometer and other methods to compensate, the cost is too
high, the operation is complicated, and the time-consuming is long.

3. This compensation method is simple, efficient and low-cost. After compensa-
tion, the positioning accuracy can basically meet customer needs.
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X/Y/Z High-Speed and High-Precision
Operation Platform Design

Jun Guo, Gaobo Xiao, Zhen Xing, Zhiguo Liu, Shifei Zhang, and Yongqi Wu

Abstract This papermainly describes the structure design of a high-speed and high-
precision operation platform in the automatic dispenser industry. Firstly, through the
analysis of the development of domestic automatic dispenser and the mechanism
of automatic dispenser, the importance of X/Y/Z high-speed and high-precision
operation platform is summarized. Referring to the relevant information, this paper
analyzes and compares the existing automatic dispenser mechanisms in the market,
describes their advantages and disadvantages, andmakes its own improvement on the
basis of these mechanisms. This design mainly includes the design of x-axis module,
Y-axis module and z-axis module, which mainly involves the material comparison
and parameter design of casting base, selection of linear motor, linear guide rail,
servo motor, precision grinding screw rod, grating ruler and photoelectric sensor,
design parameter check, material comparison of x-axis beam and tolerance anal-
ysis of important parts. Furthermore, this design chooses to use SolidWorks three-
dimensionalmodeling software to complete theX\Y\Zhigh-speed andhigh-precision
operating platform structure design, 2D assembly drawing and drawing of its main
parts.

Keywords X/Y/Z high-speed and high-precision operating platform design ·
Linear motor · Linear guide · Precision screw rod · Bearing pedestal
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1 Introduction

1.1 Research Background and Significance of Automatic
Dispenser

The self-developed glue dispenser has a low degree of automation and requires
manual control of the glue head to the designated position. After reaching the desig-
nated position, manual squeezing of glue results in a high defect rate of traditional
manual dispensing products. Gradually, companies began to use dispensing equip-
ment for industrial production dispensing. Its advantage is that workers can control
the amount of glue that is operated by the dispensing equipment, and the dispensing
is relatively uniform. The disadvantage is that the manual operation of dispensing is
low in automation, accuracy and production efficiency, which makes it less compet-
itive compared with foreign products. Therefore, domestic small and medium-sized
enterprises must purchase high-precision and highly automated dispensing equip-
ment in order to improve their market competitiveness. Facing the current situation,
the X\Y\Z high-speed and high-precision operation platform structure of the auto-
matic dispensing machine is studied in this project. Design a X\Y axis composed of
linear motor and linear guide rail, with a Z-axis composed of servo motor, screw and
guide rail, to develop a three-axis automatic dispensing machine that can operate in
a three-dimensional space at high speed and high precision. In this way, the compet-
itiveness of the domestic electronics market as well as industrial automation can be
improved [1].

1.2 The Development of Automatic Dispenser

The development and production applications of various emerging industries have
made the dispenser industry an indispensable role. Dispensing machines can be
seen in the fields of food, medical equipment, PCB single-chip microcomputers,
production and textiles, and laser welding. It is expected that in the upcoming new
industry chain, there will still be many potential markets for dispensers, and the
development of dispenserswill alsomove toward higher automation and intelligence.

For simple dispensing equipment, although the control of motion feed has been
improved through domestic research and innovation, enabling it to produce some
complicated anddifficult graphics, there are still somedefects such as poor dispensing
accuracy, insufficientmotion sensitivity, high noise, short life ofmoving parts such as
lead screws, and low automation. Therefore, the development and upgrade direction
of domestic dispensers is still high-precision feed motion control, high-automation,
and high-quality.
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1.3 The Main Content of the Design

The main content is to design an X/Y/Z high-speed and high-precision operation
platform based on the traditional manual dispenser. It is required to use linear motors
and linear guides in the X and Y directions to achieve high-speed, high-precision,
and high-stability operation. Using servo motors, lead screws, and linear guides, the
Z-axis can achieve a speed of 250 mm/s and a load of ≤3 kg to stably run to the
specified position [2].

2 Main Design Parameters of X/Y/Z High-Speed Operation
Platform

The X/Y/Z high-speed operating platform is shown in Fig. 1.

2.1 Main Functions and Scope of Application

The X/Y/Z high-speed operation platform is suitable for the precise movement of
the dispenser in the X, Y, and Z directions [3].

Fig. 1 X/Y/Z high-speed operating platform
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2.2 Description of Main Technical Parameters

The X/Y/Z high-speed operating platform is shown in Fig. 2.

1. Material of pedestal: HT250 (grey cast iron)
2. Processing technology of pedestal: casting
3. Dimensions: 960(L) * 700(W) * 477(H) mm
4. Working size: 520(L) * 394(W) * 70(H) mm
5. Main functional components:
6. X direction − linear motor + linear guide + grating ruler
7. Y direction − linear motor + linear guide + grating ruler
8. Z direction − servo motor + screw + guide rail
9. High speed: speed can reach 1.0 m/s, and acceleration can reach 1.0G
10. High precision (repeat positioning accuracy): X/Y can reach ± 10 μm, and Z

can reach ± 20 μm
11. High resolution: using 0.5 μm grating ruler, high resolution can be achieved

3 X/Y/Z High-Speed Operation Platform Module
Composition

TheX/Y/Z high-speed operating platformmodule is composed of the following three
components. The installation sequence and accuracy guarantee are all based on the
Y-axis pedestal. In addition to the strict control of the processing accuracy of the key
parts of each component, the assembly accuracy of the components also has strict
requirements, so as to achieve the requirements of high precision, high speed, and
high stability [4].

Fig. 2 Positioning of X/Y/Z
high-speed operation
platform
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4 X/Y/Z High-Speed Operation Platform Module Design
Principle

4.1 Introduction of Y-axis Module

The Y-axis module is mainly composed of a pedestal, a motor, a linear guide, a
photoelectric sensor, a grating ruler, and a limit block module, as shown in Fig. 3.

4.1.1 Casting Base Design

The casting pedestal is an open-mold casting made of HT250. This material and
processing method have characteristics of: high strength, wear resistance, heat
resistance, and good shock absorption, and the tensile strength can reach 250 MPa.

Pedestal size: 960 * 700 * 198. The design principle is determined based on the
industry product size and the dispensing range of the equipment itself, as shown in
Fig. 4.

Pedestal weight: 166.92 kg. This automated dispenser requires high precision
and high speed operation, so the platform needs to be strong and stable, especially
using casting technology. In addition, the mold casting process has good processing
consistency, and also has great advantages in price and quality, which is convenient
for cost and quality control.

Fig. 3 Y-axis module
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Fig. 4 Casting pedestal

4.1.2 Linear Motor Selection

The linearmotor has the characteristics of simple structure, highpositioning accuracy,
fast acceleration and high efficiency.

According to the Y-axis load and stroke, the appropriate linear motor model we
need can be calculated.

4.1.3 Linear Guide Selection

Due to the load and high precision requirements, we use THK’s preloaded ball linear
guide, as shown in Fig. 5.

4.1.4 Photoelectric Sensor Selection

The photoelectric sensor has the advantages of high response frequency, high detec-
tion accuracy, non-contact detection, and long service life. It is used for limit position
detection on X/Y/Z-axis [5].

The output signal type is NPN, the maximum working voltage is 24 Vdc, the
working current is 50 mA, the wiring length is 1 m, the detection distance is 5 mm,
and the outline size is L37 * W18 * H18 mm.



X/Y/Z High-Speed and High-Precision Operation Platform Design 951

Fig. 5 Ball linear guide

4.1.5 Grating Ruler Selection

Grating ruler (grating ruler displacement sensor) is a measurement feedback device
that uses the optical principle of grating.

The size of the grating ruler is W6 * T0.2 mm, the grating pitch is 20 um, the
linear accuracy can reach ± 3 μm/m, the installation method is surface mount, and
the sensor is adapted.

4.2 Introduction of X-axis Module

4.2.1 X-axis Beam Design Principle

It spans 2 Y-axis guide rails and carries the weight of X-axis motor and Z-axis. At
the same time, it needs to ensure high-speed and high-precision operation, so stable
hardware support is necessary.

The size of the beam we designed is 713.5 * 361*28 mm, the material is AL6061,
the natural color is matt anodized, and the ultrasonic cooling method removes the
stress. At the same time, there is a notch designed to reduce weight and reduce Y-axis
load.

4.2.2 Other Standard Parts Selection

The linear motor, linear guide, photoelectric sensor, grating ruler, and limit block
module are the same as theY-axis design principle, because the stroke, load, accuracy
and other conditions are not used, the selection is slightly different [6].



952 J. Guo et al.

4.3 Z-axis Module Composition

It is mainly composed of Z-axis sliding table, servo motor, ball screw, linear guide,
photoelectric sensor, coupling, bearing pedestal, and limit post, as shown in Fig. 6.

4.3.1 Z-axis Module Power Mechanism

It is composed of servo motor, coupling, ground ball screw, linear guide and bearing
pedestal.

The upper and lower limit position adopts EE-SX951-R photoelectric sensor: the
output signal type is NPN, the maximum working voltage is 24Vdc, the working
current is 50 mA, the wiring length is 1 m, the detection distance is 5 mm, and the
external dimension is L37 * W18 * H18 mm.

4.3.2 Servo Motor Selection Calculation Principle

The module is controlled by a servo motor, as shown in Fig. 7 [7].
It can be obtained that:
Motor speed, such as formula 1.

NM = V/P (1)

Fig. 6 Axis module
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Fig. 7 Servo motor

Load torque calculation:
Axial load, such as formula 2.

F = FA + mg sin a + μ cos a (2)

Load torque, such as formula 3.

TL = FPB

2πη
(3)

Starting torque calculation:
Linear motion platform and load inertia, such as formula 4.

JL = m

(
PB

2π

)2

(4)

Ball screw inertia, such as formula 5.

JB = π

32
ρLBD

4
B (5)

Coupling inertia, such as formula 6.

JC = 1

8
mD2

C (6)

Total load inertia, such as formula 7.
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Fig. 8 Precision ground
screw

JL = JL + JB + JC (7)

Starting torque, such as formula 8.

TS = 2πNM JL
60t1

(8)

According to the above selection calculation, it can be determined that the
following motors can meet the functional requirements of the Z-axis.

4.3.3 Precision Grinding Screw Selection

According to the comprehensive calculation of load, stroke, speed, accuracy, space,
etc., we choose 0805 specially customized precision grinding screw.

Due to the selection of standard parts, the supporting bearing pedestal is too
large, we use the form of bearing + machined parts, and design the bearing pedestal
according to the size of the space, so that the Z-axis as a whole is more compact and
lighter, and it can also increase the dispensing range in the Y-axis direction.

As shown in Fig. 8, angular contact bearings mainly bear larger unidirectional
axial loads and can work at higher speeds. The greater the contact angle, the greater
the load capacity. The Z-axis only need to bear axial load, therefore, angular contact
bearings are used here.

4.3.4 Coupling Selection Principle

The coupling has the ability to compensate for the offset (including axial offset,
radial offset, angular offset or comprehensive offset) between the two shafts due to
incorrect manufacturing and installation, deformation or thermal expansion caused
by work, reducing the shock and vibration.
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Fig. 9 Coupling selection

As shown in Fig. 9, because the servo motor shaft is ϕ8 and the screw rod is ϕ5,
the coupling is DBM01-D19-d5-e8.

4.3.5 Buffer Column Material Selection

The buffer column is used at the upper limit of the Z-axis. When the stroke exceeds
the sensor, the slider connector will hit the buffer column to protect it. Therefore,
the material of the buffer column should not be too soft, as too soft would hardly
provide protection; nor too hard or metal, which will damage the parts and cause a
loud impact.

4.3.6 Design Principle of Main Processing Parts

Z-axis sliding table: It is mainly connected to the X-axis linear guide, which is the
benchmark for guaranteeing the accuracy of all Z-axis components. To be able to
carry all the load weight of the Z-axis, and to ensure the basis of high-speed and
high-precision operation, but not to increase the load and affect the X-axis load, we
choose AL6061 material with anodized surface. Therefore, it is necessary to have a
high machining accuracy on the assembly surface.

Z-axis connecting plate: It is mainly connected with X-axis linear motor and Z-
axis sliding table. It is the basic part of Z-axis components and the basis of assembly.
In order to ensure the accuracy of the assembled Z-axis relative to the X/Y axis,
the surface needs to have good flatness and parallelism requirements. Especially
the height difference and flatness of the motor fixing pedestal and the screw fixing
pedestal and the linear guide surface will directly affect the smoothness of the screw
operation.

Othermachined parts: The entire Z-axis needs to ensure the accuracy requirements
after assembly. In addition to the above two basic parts, the thickness, flatness,
dimension reference and tolerance requirements of other parts related to the screw
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Fig. 10 Z-axis sliding pedestal

rod also require special attention. These may cause the screw rod to jam and affect
the smoothness, thereby affecting the accuracy and service life [8].

Sensor bracket: The lower limit adopts the method of long holes and multi-
holes reserved, and the limit sensing position can be adjusted according to the
thickness/height of different products, as shown in Fig. 10.

5 Conclusion

The paper completed this time is the design of the X\Y\Z high-speed operating
platform. The following are some conclusions of this completed design paper:

5.1 The Overall Structural Design Background

Thedesign principle ofX\Y\Zhigh-speed operation platform ismainly that according
to different industries, the product size, weight, accuracy and speed requirements
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are different. There will also be different sizes of mechanism frames and power
parts selection and matching. High-precision online dispensers have a wide range
of application prospects: FPC, consumer electronics, automotive, medical, semicon-
ductor packaging, precision assembly LED, LCD industry application requirements.
Based on the verification data of different customers and different products, we have
comprehensively determined that the design of this X\Y\Z high-speed operating
platform is designed based on the dispensing area of 360 * 380 mm.

5.2 Single Module Frame Design

1. Z-axismodule production: According to the requirements of speed, stroke, load,
accuracy, etc., standard parts such as servomotor, screw rod, guide rail, coupling,
etc. are selected and assembled with Solid works software.
According to theweight of these standard parts and parts, plus other accessories,
estimate the weight of the entire Z-axis for the selection of the X-axis linear
motor.

2. X-axis module production: According to the weight of the Z-axis and the
dispensing area, select the power of the linear motor and the model of the
linear guide (preload, accuracy, length…).
According to the load and stroke, use the Solid works software to draw the
X-axis measurement bracket, assemble the selection standard room, and design
the limit sensor as well as the hard limit.

3. Y-axis design: Production of casting base—First, determine the maximum
product size and height according to the dispensing area to determine the size
of the base’s inlet and outlet gaps.
According to the X and Z-axis load, and the effective dispensing area, select the
Y axis linear motor and linear guide (high precision, medium preload, stroke...).
Selection of grating ruler and selection of installation reference.

5.3 X\Y\Z Matching Design

First of all, according to the size of the dispensing area, we can draw the simulated
DUT in solids work, the size is 400 * 400 * 5 mm;

Then, match the X\Y\Z axis modules together with DUT-3D for inspection.

5.4 Detailed Design

According to the assembled modules, adjust and refine some details such as hole
positions, sizes, positions, tolerances, etc., and sort out a complete 2/3D drawing.
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Differentiable Architecture Searched
Network with Tree-Structured Parzen
Estimators for Rotating Machinery Fault
Diagnosis

Jingkang Liang, Yixiao Liao, and Weihua Li

Abstract Deep learning is widely used in the field of rotating machinery fault diag-
nosis. However, manually designing the neural network structure and adjusting the
hyperparameters for specific fault diagnosis task are complex and requires a lot of
expert knowledge. Aiming at these problems, Differentiable Architecture Searched
Network with Tree-Structured Parzen Estimators (DASNT) is proposed for fault
diagnosis. Differentiable Architecture Search (DARTS) is utilized to automatically
search network structure for specific fault diagnosis task. Tree-Structured Parzen
Estimators (TPE) is utilized to optimize the hyperparameters of the network searched
by DARTS, which can further improve the fault diagnosis accuracy. The results of
comparison experiments indicate that the network architecture and hyperparameters
optimized by DASNT can achieve superior fault diagnosis performance.

Keywords Fault diagnosis · Neural architecture search · Hyperparameter
optimization

1 Introduction

Modern electromechanical equipment tends to be complicated, sophisticated, high-
speed, and intelligent. As an important part of electromechanical equipment, the
failure of rotatingmachinerywill cause serious security risk and economic loss. Fault
diagnosis is utilized to diagnose the fault type, location, and cause of the equipment.
By analyzing the signal of rotating machinery through the fault diagnosis algorithm,

J. Liang · Y. Liao
School of Mechanical and Automotive Engineering, South China University of Technology,
Guangzhou 510641, China

W. Li (B)
Shine-Ming Wu School of Intelligent Engineering, South China University of Technology,
Guangzhou 511442, China
e-mail: whlee@scut.edu.cn

Guangdong Artificial Intelligent and Digital Economy Laboratory (Guangzhou), Guangzhou
510335, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Zhang et al. (eds.), Proceedings of IncoME-VI and TEPEN 2021,
Mechanisms and Machine Science 117,
https://doi.org/10.1007/978-3-030-99075-6_77

959

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99075-6_77&domain=pdf
mailto:whlee@scut.edu.cn
https://doi.org/10.1007/978-3-030-99075-6_77


960 J. Liang et al.

the potential fault can be recognized in time, so that the management personnel can
timely maintain the equipment that may fail, so as to ensure the reliable operation of
the equipment and achieve greater economic benefits. Therefore, the fault diagnosis
of rotating machinery has great significance.

Nowadays, many researches about deep learning for fault diagnosis are carried
out. Zhang et al. [1] proposed Deep Convolutional Neural Network with Wide First-
layer Kernel (WDCNN), which extracted short-time features through the first layer
large convolutional kernel and achieved a high accuracy on the CWRU bearing
data set. Guo et al. [2] proposed an adaptive deep convolutional neural network for
fault diagnosis of rotating machinery. Fault types were classified through the first
convolutional neural network, and then the fault degree was classified according to
different fault types. Jing et al. [3] proposed to use one-dimensional convolutional
neural network to classify the frequency spectrum of vibration signals, so as to realize
fault diagnosis of gearbox. Wang et al. [4] proposed a wavelet-based convolution
neural network for machinery fault diagnosis, the vibration signal is processed by
wavelet transform into a multi-scale spectrogram image as the input of convolutional
neural network, and ReLU activation function and dropout technique had been used
to enhance the network performance.

Deep learning can automatically extract the features of the signal, avoiding the
artificial feature engineering. A good hand-designed neural network can be used for
fault diagnosis and achieve high accuracy. For specific fault diagnosis task such as
fault diagnosis for bearing or fault diagnosis for bevel gear, however, the design
process of the neural network structure is complex, and heavily relies on expert
knowledge. In addition, there are many hyperparameters in the model that need to be
set. To obtain an appropriate hyperparameters set needs constant trial and error,which
takes a lot of time. What’s more, a network that is efficient for one fault diagnosis
task might perform less efficient or even bad for another fault diagnosis task due to
the difference between the two data sets. Therefore, a method that can automatically
optimize network structure and hyperparameters based on different fault diagnosis
task is necessary.

Neural architecture search (NAS) can automatically search appropriate neural
network structures by defining search spaces, search strategies and evaluation
criteria, which can achieve comparable performancewith those ofmanually designed
network by experts. Common NAS methods such as reinforcement learning (RL)
[5] and evolutionary algorithms (EA) [6] search in discrete and non-differentiable
search space, which cost a large amount of computing resources. Unlike those non-
differentiable NAS methods based on RL and EA, DARTS is a gradient based NAS
method, which is more efficient. In the field of fault diagnosis, NAS has also been
applied. Wang et al. [7] proposed a NAS method based on reinforcement learning
for fault diagnosis of rolling bearings. Zhou et al. [8] proposed a gradient based
method called differentiable architecture search (DARTS) for aeroengine fault diag-
nosis. Zhang et al. [9] proposed a DARTS-based method considering searching cost,
performance and complexity at the same time, which makes NAS task for fault diag-
nosis more efficient. Although these automatically searched neural networks can get
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good results, their hyperparameters are still manually determined, which may not be
the optimal one.

Aiming at the problem of hyperparameter adjustment in neural network, hyper-
parameter optimization (HPO) can automatically search for better hyperparameter
and save time for the designer. The common HPO methods include grid search,
random search [10] andBayesian optimization. Grid search traverses all possibilities,
which is easy to use, but consumes a lot of computing resources. Random search
is simple and efficient, but not as good as Bayesian optimization methods. Tree-
Structured Parzen Estimators (TPE) [11] is a commonly used HPOmethod based on
Bayesian optimization, which is widely used in the tuning of neural networks. TPE
chooses hyperparameters based on all the previous results, and skips the choices that
are likely to perform bad, which is more efficient than grid search and random search.
Yoo et al. [12] proposed to use TPE to optimize the depth of VGG network and obtain
better results than Grid Search. Bergestra et al. [13] used TPE to optimize the neural
network for image classification tasks, which outperformed random search in both
optimization efficiency and accuracy. In the field of fault diagnosis, Nguyen et al.
[14] proposed aLongShort-TermMemory (LSTM)neural network for nuclear power
plant fault prognostics and used TPE for hyperparameters optimization. However,
generally, HPO can only optimize the hyperparameters when the neural network
architecture is fixed, while the hyperparameters that determine the structure of the
neural network can hardly be optimized due to too complex computation.

In summary, the current fault diagnosis methods present the following problems:

1. In order to get good results for specific fault diagnosis tasks, specific neural
network architectures need to be designed manually, which requires expert
knowledge and takes a lot of time.

2. A large number of hyperparameters need to be adjusted in the neural network,
and different hyperparameters sets will affect the testing results. Manually
adjusting hyperparameters also heavily relies on expert knowledge and is time
consuming.

This paper proposes a method combining NAS and HPO to realize automated
neural architecture search and automated hyperparameter optimization for fault diag-
nosis. In this method, DARTS is used to search specific neural network structures
for fault diagnosis tasks, while TPE is used to optimize the hyperparameters of the
network searched by DARTS, so as to obtain optimal performance for specific fault
diagnosis task. To be specific, the contributions of this paper are summarized as
follows.

1. This paper proposes a Differentiable Architecture Searched Network with
Tree-Structured Parzen Estimator (DASNT) to automatically generate optimal
network structure and hyperparameters for specific fault diagnosis task, which
is more automatic and less dependent on expert knowledge while compared to
other manual methods.

2. This paper verifies that the combination of DARTS and TPE can achieve state of
the art (SOTA) fault diagnosis accuracy. The proposed method performs well on
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CWRUbearing fault diagnosis and transmission fault diagnosis tasks, especially
under a noisy environment.

The rest of this paper is organized as follows. Section 2 introduces the proposed
methods. In Sect. 3, comparison experiments are conducted to verify the performance
of the proposedmethodwithCWRUdata set and transmission fault data set. Section 4
is the summary of the whole paper.

2 Methodology

Differentiable Architecture Searched Network with Tree-Structured Parzen Esti-
mator (DASNT)will be introduced in detail in this section. The proposedDASNT for
rotating machinery is described in Fig. 1. It can be divided into four steps: (1) Data
acquisition and preprocessing (2) using DARTS to search an optimal neural network
for target fault diagnosis task; (3) using TPE to optimize the hyperparameters of the
DARTS network, so as to better train the network. (4) Finally, a trained network is
obtained for fault diagnosis task. In this section, we will focus on DARTS and TPE
algorithms.

2.1 DARTS

DARTS is a gradient based NAS method. It maps the search space to a continuous
space with Softmax’s approach, and then the network architecture can be optimized
by gradient descent, which is more efficient than the non-differentiable approach.

Figure 2 is the schematic illustration of DARTS algorithm. The objective of
DARTS is to search operations in the search space to form a cell, and to form a larger

Fig. 1 An overview of DASNT
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Fig. 2 Illustration of DARTS algorithm

neural network by stacking cells. A cell consists of nodes, and the node represents
the feature map. Each node is connected to all its predecessors, forming a directed
acyclic graph (DAG). So the problem can be thought of finding a subgraph from a
hypergraph. The connecting edge between each node in the hypergraph contains all
considered operations, and the operations with the largest architecture weights α are
chosen to constitutes the cell of the subgraph. For instance, as shown in Fig. 2, the
cell consists of 5 nodes and 9 edges, where NI and NO are input and output nodes,
N1, N2, N3 are the intermediate nodes, E1, E2, E3, E4, E5, E6 are the connecting
edges which contains all the candidate operations, C1, C2, C3 are connecting edges,
output node NO is depth-wise concatenation of all the intermediate nodes. There are
3 candidate operations in the search space, represented in red, yellow and green.
After the update, the architecture weights of the three operations between N1 and
N3 are 0.2, 0.7 and 0.1, and the operation with the largest architecture weight is
remained, which is α5

2=0.7. Each edge selects the operations with the largest archi-
tecture weights to form the cell. There are two types of cells, the normal cell and
the reduction cell. Normal cell doesn’t change the dimension of the input, while the
reduction cell reduces the feature size by half and doubles the number of channels.
By adding a convolutional layer in front of the first cell, stacking the cells and then
follow with a classifier, the searched neural network is formed.

The forward calculation of the hyper DAG can be regarded as the inner product
between the architecture weights matrix and the search space:

fcell(x) =

⎡
⎢⎢⎣

α1
1 · · · α1

M
...

. . .
...

α
N (N+1)

2
1 · · · α

N (N+1)
2

M

⎤
⎥⎥⎦

︸ ︷︷ ︸
architectureweights matri x

⊗
⎡
⎢⎣

OP1(x)
...

OPM(x)

⎤
⎥⎦

︸ ︷︷ ︸
Search space

(1)
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Fig. 3 Illustration of TPE algorithm

where OPi represents the i-th operation of the search space. α
j
i represents the archi-

tecture weight of the i-th operation on the j-th edge. N represents the number of
nodes. The i-th node has i edges connecting with its i predecessors, so a cell with N
nodes has N (N+1)

2 edges in total.
The optimizing process can be regarded as a bilevel optimization problem, and

the equation is shown as follows:

α∗ = argmin
α

Lval(ω ∗ (α), α)

s.t. ω ∗ (α) = argmin
ω

Ltrain(ω, α)
(2)

where ω∗ is the model weights under fixed α, which is optimized in the train set,
and α∗ is the optimized architecture weights, which is optimized in the validation
set. Both ω and α are optimized with gradient decent alternately, and the best neural
architecture is searched after certain times of iterations.

In the experiment of this paper, there are 8 candidate operations in the search
space of DARTS, which is shown in Table 1. Each cell has 4 intermediate nodes.

2.2 TPE

In DASNT, TPE is applied to search the optimal hyperparameters set, so as to further
improve the network accuracy. Figure 3 is the schematic illustration of TPE algo-
rithm. A series of hyperparameters sets are used to train the DARTS network, and
the corresponding accuracy on validation set is obtained as the evaluation value.
Hyperparameters sets are divided into good and bad samples based on the evaluation
values. After that, the TPE defines the models of likelihood probability for each of
the two groups as follows:
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Table 1 Candidate
operations in the search space
of DARTS

Operation Description

None Zero operation

Skip_connect Identity mapping

Max_pool Max pooling

Avg_pool Average pooling

Sep_conv_3 Separable convolutions, kernel size = 3

Sep_conv_5 Separable convolutions, kernel size = 5

Dil_conv_3 Dilated separable convolutions, kernel size = 3

Dil_conv_5 Dilated separable convolutions, kernel size = 5

p(x |y) =
{
l(x), y > y∗
g(x), y ≤ y∗ (3)

where y* is the threshold value of accuracy, which is usually set to 75% of the
historical highest accuracy of validation set. l(x) means the probabilities that the
hyperparameter x will achieve a accuracy higher than y*, while g(x)means the prob-
abilities that the hyperparameter x will achieve a accuracy lower than y*. Then the
new hyperparameters set is chosen based on the expected improvement (EI) formula,
which can be defined as follows:

E I (x) = l(x)

g(x)
(4)

At each iteration, the objective is to find the hyperparameter set x* that maximizes
the EI value:

x∗ = argmax
x

l(x)

g(x)
(5)

The formula indicates to find x* which has a higher probability in the good group
and less likely in the bad group. After the new hyperparameters set is found, it is
regarded as historical experience for the later iterations and to update l(x) and g(x).
The process will end in certain times of iterations, and the hyperparameters set with
the best historical accuracy will be chosen as the TPE search results.

3 Experimental Study

CWRU bearing fault diagnosis and transmission fault diagnosis cases are utilized
for the verification of the proposed method. The hand-designed network WDCNN,
which is a state of the art (SOTA) method for fault diagnosis, is carried out as the
baseline. WDCNN with TPE (WDCNN-TPE) and DARTS [8] are also carried out
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Table 2 Hyperparameters search space

Hyper-parameter Optional value Description

Batch_size 16/32/64/128/256/512 Batch size

First_kernel size 16/24/32/40/48/56/64/72/80/88/96/106/112/120/128 The kernel size of
the first
convolutional layer

Resize 4/8/16/32 The ratio of the
input to output
dimensions of the
first convolutional
layer

Normalization True/False Whether to
normalize the data
or not

Enc_step 0/14/28/56/92 The step size of
data enhancement

Lr 0.1/0.01/0.001/0.0001 Learning rate

Lr_scheduler True/False Whether to use
cosine annealing
learning rate
scheduler or not

Optimizer SGD/Adam Stochastic gradient
descent optimizer
and Adam
optimizer

Epochs 10/15/20/25 Training epochs

as comparison experiments. All the experiments are conducted on the GTX 960
graphics card.

In the DARTS phase of the proposed method, the parameters of the first convo-
lutional layer and the number of cells in DARTS network are pre-determined hyper-
parameters. The number of cells is 2, the first-layer convolution kernel size is 64,
and the stride is 8 as the parameters of DARTS network. DARTS will be run for 50
epochs.

In the TPE phase of the proposed method, there are a number of hyperparameters
to be optimized, and each hyperparameter has a number of possible options. The
details of the hyperparameters are shown in Table 2. There are 230,400 combinations
of hyperparameters and we will run TPE for 100 iterations.

3.1 Data Description

The first case is CWRU bearing fault diagnosis. The signal type is acceleration signal
and the sample length is 2048. According to different damage degree of inner ring,
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Table 3 The CWRU data set

Damage position Inner ring Ball Outer ring None

Damage diameter (×10−3 inch) 7 14 21 7 14 21 7 14 21 0

Load 0/1/2/3HP

Label 0 1 2 3 4 5 6 7 8 9

Table 4 The transmission data set

State of bearing Inner ring 0.2 mm Inner ring
2 mm

Inner ring normal

State of gear BT M MD N MD BT BT M MD N

Rotating speed 500/750/1000/1250 rpm

Label 0 1 2 3 4 5 6 7 8 9

ball and outer ring, there are ten types of faults. In order to enable the neural network
to learn the characteristics of the same damage state under different loads at the same
time, each state was operated at four working conditions. There are 1000 pieces of
data for each label, and the train set, validation set and test set are divided according
to the ratio of 4:4:2 in the DARTS phase and 6:2:2 in the TPE phase. Details are
shown in Table 3.

The second case is transmission fault diagnosis. The signal type is acceleration
signal and the sample length is 2048. Broken teeth (BT), mild wear (M), moderate
wear (MD), and normal (N) are the four states of gears. The inner ring has three
health states. Therefore, there are totally 10 different fault types, which is composed
of different bearing states and gear states. Each state was operated at four working
conditions. There are 1000 pieces of data for each label, and the train set, validation
set and test set are divided according to the ratio of 4:4:2 in the DARTS phase and
6:2:2 in the TPE phase. Details are shown in Table 4.

3.2 Results and Discussion

The experimental results of DASNT on the CWRU data set and transmission data
set are shown in Table 5 and Figs. 4, 5. Experiments are conducted under different
signal to noise ratio (SNR). All the experiments results are average by five trials to
reduce randomness. The following observations and conclusions can be drawn:

1. In all fault diagnosis tasks, the accuracy of WDCNN-TPE is higher than that of
WDCNN, DASNT is higher than that of DARTS, which indicates that the TPE
is useful for finding the optimal hyperparameters set so as to achieve a higher
accuracy.

2. In all fault diagnosis tasks, the accuracy of DARTS is higher than that of
WDCNN, which indicates that DARTS performs better than WDCNN.



968 J. Liang et al.

Table 5 The experimental results

Tasks WDCNN WDCNN-TPE DARTS DASNT

CWRU −10 SNR 49.55 ± 0.63 50.74 ± 0.70 53.57 ± 0.61 56.34 ± 0.70

CWRU −5 SNR 72.23 ± 0.80 74.43 ± 1.29 75.56 ± 0.97 79.49 ± 0.41

CWRU 0 SNR 91.44 ± 0.66 92.84 ± 0.70 94.47 ± 0.30 95.33 ± 0.57

CWRU 5 SNR 97.88 ± 0.30 98.88 ± 0.32 99.07 ± 0.35 99.62 ± 0.10

CWRU 10 SNR 99.28 ± 0.10 99.57 ± 0.09 99.52 ± 0.13 99.88 ± 0.07

CWRU noise free 99.43 ± 0.08 99.92 ± 0.07 99.66 ± 0.13 99.98 ± 0.04

Transmission −4 SNR 52.09 ± 1.86 52.33 ± 2.77 65.65 ± 0.64 67.91 ± 1.12

Transmission −2 SNR 63.54 ± 1.89 63.71 ± 0.96 72.30 ± 1.24 79.67 ± 0.18

Transmission 0 SNR 70.59 ± 3.21 73.72 ± 3.05 81.03 ± 0.55 84.76 ± 0.60

Transmission 2 SNR 80.13 ± 0.44 82.51 ± 0.88 87.11 ± 0.78 88.67 ± 0.59

Transmission 4 SNR 85.13 ± 1.64 90.07 ± 0.77 89.68 ± 0.83 94.31 ± 0.43

Transmission noise free 95.94 ± 1.20 99.65 ± 0.05 97.97 ± 0.55 99.87 ± 0.12
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Fig. 4 CWRU bearing fault diagnosis results
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Fig. 5 Transmission fault diagnosis results
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3. On both CWRU and transmission fault diagnosis cases, DASNT outperforms
all other methods under different SNR level. Especially in noisy environment,
e.g.,−10/−5 SNR on CWRU data set, −4/−2 SNR on transmission data set,
the accuracy of DASNT is significantly higher than that of WDCNN-TPE. This
result shows that DASNT has better noise resistance than WDCNN-TPE.

4. In CWRU noise free task, the accuracy of the four methods is above 99%, which
proves that the fault diagnosis task of CWRU data set is relatively easy. In trans-
missionnoise free task, the accuracyofWDCNNis significantly lower thanother
methods, because WDCNN is customized for CWRU bearing fault diagnosis
case and cannot get good results if it’s directly used in other fault diagnosis
task without any modification. DASNT doesn’t have this drawback because it
can automatically search the optimal network structure and hyperparameters for
every specific fault diagnosis task.

5. By comparing CWRU 0 SNR task with transmission 0 SNR task, it can be
found that in CWRU 0 SNR task, the accuracy of WDCNN-TPE is slightly
lower than that of DASNT (92.84%–95.33%), while in transmission 0 SNR
task, the accuracy of WDCNN-TPE is significantly lower than that of DASNT
(73.72%–84.76%). This result indicates thatWDCNN is customized for CWRU
bearing case, even the hyperparameters have been optimized, it cannot reach a
good result for other fault diagnosis task because it’s network architecture is not
the optimal one.

In conclusion, on both CWRU and transmission fault diagnosis cases, DASNT
outperforms the hand-designed baseline WDCNN and comparison methods such
as WDCNN-TPE and DARTS, which proves that DASNT can effectively search
the optimal neural network architecture and the corresponding hyperparameters set
for specific fault diagnosis task. Moreover, the experiments shows that DASNT has
strong generalization ability and noise resistance for different fault diagnosis tasks.

4 Conclusion

This paper proposed a differentiable architecture searched network with TPE
(DASNT) for rotating machinery fault diagnosis, which combines the advantages
of DARTS and TPE to search network structure and hyperparameters automatically.
On both CWRU and transmission fault diagnosis cases, DASNT outperforms other
SOTAmethods includinghand-designedWDCNNandWDCNN-TPE, and agradient
based NASmethod called DARTS, which proves that DASNT is more effective than
manual network designing and manual hyperparameters tuning. Furthermore, for
different fault diagnosis tasks, DASNT performs strong generalization ability and
noise resistance.
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A Review of Fault Diagnosis Methods
for Marine Electric Propulsion System

Dongqin Li, Rongfeng Deng, Zhexiang Zou, Baoshan Huang,
and Fengshou Gu

Abstract With the rapid development of power electronics technology and the
proposal of intelligent ships, electric propulsion systems on ships are becoming
more and more widespread. As the power source for ship navigation, timely and
accurate diagnosis and prediction of faults of electric propulsion system play a vital
role in the operation safety of ships. This paper summarises the common faults of
electric propulsion systems, reviews the latest developments and applications of fault
diagnosis techniques based on fault signal analysis in electric propulsion system fault
diagnosis, and discusses the advantages and disadvantages of typical methods in the
light of the latest literature and current research problems. The paper concludes by
proposing future trends in fault diagnosis and prediction for ship electric propulsion
systems.

Keywords Marine electric propulsion system · Fault diagnosis · Signal analysis

1 Introduction

1.1 Marine Electric Propulsion System

Marine electric propulsion systems have the advantages of energy-saving, environ-
mental protection, mobility and flexibility, less space required and less propulsion
noise and vibration than traditional ones using internal combustion engines. The
development of intelligent ships has also led to an expansion of their applications. An
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a. Open water applications         b. Icebreaking             c. DP thruster 

Fig. 1 The common pod propulsion systems [2]

increasing number of manufacturers are also opting for electric propulsion systems
driven by electric motors when building ship propulsion systems [1]. Figure 1 shows
several common types of pod propulsion systems [2].

The electric propulsion system consists mainly of motor, drive system and
propeller. The two ends of the driveline are connected to the motor and the propeller,
respectively. When the motor is running, the motor’s power is transmitted to the
propeller through the drive system, which drives the propeller to rotate and thus
propel the ship forward [3]. Figure 2 shows the structure of a ship’s electric propulsion
system.

Fig. 2 Marine propulsion system structure diagram [4]
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1.2 Common Types of Failures in Electric Propulsion System

During a ship’s voyage, any breakdown can cause a major safety incident and seri-
ously threaten the lives of all personnel on board [5, 6]. According to statistics, the
electric propulsion system is one part of the ship that is most likely to fail [7]. There-
fore, the stability of the electric propulsion system is very crucial to the ship. It is a
vital task to find out the faults of the electric propulsion system in time and accurately
to avoid accidents.

1.2.1 Motor Faults

The motors commonly used in the propulsion system include induction motors,
synchronous motors, permanent magnet motors, etc. [8]. In recent years, AC motors
are far more widely used than DC motors in electric propulsion systems [9].

1. Induction Motor (IM) fault

Compared to other motors, IMs have low cost, simple construction, reliability
and high efficiency. The faults of AC induction motors consist of twomain cate-
gories: electrical faults and mechanical faults. Electrical faults mainly include
broken rotor bars, stator winding faults, etc. Mechanical faults mostly include
bearing faults, rotor shaft eccentricity, etc. [10–13].

2. Permanent magnet synchronous motor (PM) fault

PMs have the advantages of low weight, low noise, high efficiency and
low heat generation. It outperforms other types of motors in applications
where high-speed operation and precise torque control are required. Faults in
PM synchronous motors consist of three main components: electrical faults,
mechanical faults and demagnetisation faults [14]. Electrical faults are mainly
stator winding faults and stator winding failures. Mechanical faults are mainly
bearing faults and eccentric faults [15].

1.2.2 Driveline Failure

The drivelines is mainly used to transmit power and consists of a gearbox or drive
shaft system.

1. Gearbox failure

Thegearbox ismainly used to change the speed and transmit power and ismainly
composed of gears, shafts, bearings and other parts. Common faults include gear
wear, gear broken teeth, shaft and gear misalignment, bearing failure (Fig. 3)
and so on [16, 17].
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a. Front b. Side

Fig. 3 Fatigue fracture of reducer shaft [18]

Fig. 4 Stern tube bearing
wear [21]

2. Driveshaft system failure

Common faults of the transmission shaft system include stern bearing failure
(Fig. 4), stern shaft oil leakage, stern shaft high temperature, propulsion shaft
fatigue, etc. [19, 20].

1.2.3 Propeller Failure

Ships may run aground or strike hard objects while underway, and propellers may
become entangled in underwater ropes, fishing nets and other debris. These may lead
to propeller blade curling, blade deformation, and even blade breakage [22]. Also, as
the propeller is always underwater, the propeller is prone to scaling, causing the rotor
to run unbalanced. Propellers can also generate new cyclically varying centrifugal
and hydrodynamic forces during operation due to failure, which can further lead to
shaft system and main engine failure. Figure 5 shows the propeller and tail shaft seal
section entangled in the fishing net.
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Fig. 5 The propeller and
stern seal parts are entangled
by the fishing nets [23]

2 Motor Fault Diagnosis Methods

2.1 Analysis Based on Vibration Signal

All operating equipment, whether or not there is a fault, will produce vibration
signals.We can determinewhether the equipment is faulty by analyzing the difference
between the vibration signal with and without fault. Among the diagnosis methods
of mechanical faults, the diagnosis method based on vibration signal is generally
considered to be the most effective. The vibration signal can be obtained through
the speed and accelerometer, and then the vibration amount is transformed into
electrical signals through the supporting circuit, which is also the most commonly
used vibration signal measurement method. When the motor is running normally, a
small vibration signal will be generated, and when the motor fails, a larger vibration
pulse signal will be generated. Therefore, the vibration signal can be used to identify
the motor failure. Zhen et al. [24] used weighted average ensemble empirical mode
decomposition (WAEEMD) to construct the eigenmode functions derived from the
vibration signal decomposition into new signals. Then modulation signal bispectrum
(MSB) was used to extract the fault features of the new signals, thus realising the
fault diagnosis of rolling bearings. Medoued et al. [25] used the diagnosis method
based on axial vibration analytical signal (AVAS) to complete the fault diagnosis
and analysis of the asynchronous motor. Considering the difficulty of fault data
acquisition during the operation of rotating machinery, Zhao et al. [26] proposed an
intelligent fault diagnosis method for rotating machinery based on an unsupervised
deep learning network. This method automatically extracts fault information from
the original vibration signals and realised fault diagnosis for rolling motor bearings.
Wang et al. [27] used the end-to-end fault diagnosis model based on a convolutional
neural network (CNN) to complete the fault detection of bearings and gearboxes. This
method does not need to extract fault features manually and has a high diagnosis rate.
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2.2 Analysis Based on Current Signal

Motor Current Signature Analysis (MCSA) method is the lowest cost, non-invasive
electrical fault detection technology. The main principle is that when the motor gear
is worn or the tooth is broken, the rotor is broken, or the shaft is eccentric, the system
will generate additional fluctuating torque. The motor will generate a corresponding
electromagnetic torque to balance this torque, resulting in a non-linear current signal
in the stator current [28]. The feature extraction methods of motor current signal
mainly include Fourier transform and its special transform, wavelet transform and
its special transform,Hilbert spectrumanalysis,modulation signal bispectrum (MSB)
and so on [29].

Dehina et al. [30] carried out Fast Fourier transform (FFT) on the motor’s stator
current and vibration signals. They analysed the spectrum information of the two
signals under the static eccentricity fault of the motor, respectively. And the two
kinds of signal analysis methods are compared. The conclusion is that compared
with the motor vibration signal, the analysis of the motor stator current is easier to
reflect the fault. Glowacz et al. [31] performed continuous wavelet transform (CWT)
on the current signal of the squirrel cage asynchronous motor. By analysing the
frequency spectrum of the current signal, the fault characteristics of the broken bar of
themotor are extracted, and the broken bar fault of themotor under no-load operation
is detected. Rangel-Magdaleno et al. [32] proposed a rotor initial broken bar detec-
tion method based on Hilbert spectrum analysis. Through the current signal acqui-
sition, empirical mode decomposition, Hilbert spectrum analysis and other steps,
the detection of motor broken bar in the early stage were realised. Systems et al.
[33] compared the performance of the conventional bispectrum (CB) method and
the modulation signal bispectrum (MSB) method in the analysis of induction motor
rotor faults (including rotor bar breaking, gearbox wear, etc.). Experiments show
that MSB has a significantly better diagnostic effect than the CB method due to its
unique non-linear modulation detection and random noise suppression capabilities.

2.3 Analysis Based on Sound Signal

Suppose the vibration noise of the permanent magnet synchronousmotor is too large.
In that case, it may affect other modules and even make the hull unable to operate
normally by analysing the frequency spectrum characteristics of the vibration noise
by detectingwhether the permanentmagnet synchronousmotor is operating normally
[34]. Sangeetha et al. [35] used the Rational-dilation Wavelet Transform (RADWT)
method to extract fault features from the acoustic signals generated by three-phase
asynchronous motors. They then used the multiple regression method to estimate the
feature signals’ torque and feature signals’ torque and finally accurately judge the
fault location of the asynchronous motors. Delgado-Arredondo et al. [36] proposed
A fault diagnosis method based on acoustic and vibration signals. In the experiment,



A Review of Fault Diagnosis Methods … 977

the sound and vibration signals were extracted and analysed respectively to diagnose
bearing fault, rotor broken bar, and mechanical imbalance.

3 Driveline Fault Diagnosis Methods

3.1 Analysis Based on Vibration Signal

Currently, feature extraction methods used for vibration analysis mainly include
time-domain analysis (such as reference [37]), frequency-domain analysis (such as
reference [38]), time–frequency analysis (such as reference [39]) and so on.

The gearbox vibration of the Marine propulsion system is a non-linear mixed
vibration composed of different vibration sources. It is challenging to identify all
the fault types effectively using traditional vibration analysis methods. Li et al. [40]
proposed a non-linear blind source separation (BSS) analysis technique for gearbox
hybrid fault detection under variable speed conditions. Using this method, the decou-
pled fault components are obtained, and then the indexes of the fault components are
compared with the benchmark to realise the identification of mixed faults. Exper-
imental results show that this method can detect the mixed faults of the Marine
propulsion gearbox with large speed variation. Similarly, for the fault diagnosis of
gears and bearings in planetary gearboxes, Xiao et al. [41] proposed a fault detection
method based on vibrational resonance (VR) to realise the diagnosis of weak faults
by resonating weak fault signals.

In actual navigation, the vibration of the ship propulsion shaft is coupled by
transverse vibration, longitudinal vibration and torsional vibration. When there is
an unbalanced force on the propulsion shaft, strong coupling vibration is prone
to occur, which will cause the fatigue fracture of the shaft system [42, 43]. The
dual-frequency laser Doppler torsional vibration measuring instrument can be used
to obtain the torsional vibration information of the ship’s propulsion system shaft
system. The acquisition of vibration signals enables the acquisition of the shaft
system’s rotational and longitudinal vibration information characteristics [44]. Han
and Lee [38] designed a test device that can simulate the high torsional vibration
of the ship’s propulsion shaft. And through the FFT transformation of the vibration
torque and related signals, it is verified that the fracture of the propulsion shaft of
a ship is caused by the high torsional vibration caused by the transverse-torsional
coupled vibration. Li et al. [39] used the wavelet transform algorithm to carry out
time–frequency conversion for the collected fault vibration signals and then input
the converted data into the deep convolution neural network (DCNN) model for
fault diagnosis of bearing running state. Experiments verify the effectiveness of the
method. Grządziela et al. [37] analysed the vibration signal of the propeller system
of a minesweeper in the time domain, and through the analysis of a series of signal
characteristics, developed and verified the method of the non-coaxial detection of
the main engine shafting.
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3.2 Analysis Based on Oil Conditions

The mechanism of the oil analysis method [45–48] is that when two surfaces in
relative motion are in abnormal wear condition, the wear rate will be relatively high,
and corresponding abrasive particles will be generated according to different wear
failure forms. By judging the concentration and composition of the abrasive particles
in the oil, the wear of the equipment can be analysed, or whether the stern shaft oil
leakage.

Li et al. [49] used the spectral element analysis method to analyse the content of
related elements in oil; used infrared spectrum analysis method to compare new oil,
in-use oil and biological oil; and used ferrospectrum wear particle analysis method
to analyse the size of wear particles in the oil. Finally, the cause of abnormal heat
in the stern tube of a ship is found out: the oil purity is not enough to lead to the
deterioration of lubricating oil performance, making the bearing bush serious wear,
and then cause abnormal heat in the stern tube. Zhao [50] realised the monitoring
of oil lubrication state, the supervision of the Marine gear box’s running state and
wear condition, and the detection of the gear box’s waterproof sealing condition by
analysing oil. It also provides a way to change oil scientifically.

3.3 Analysis Based on Acoustic Emission Signal

The propeller shaft of a ship may crack due to intense vibration during its rotation.
In response to this situation, acoustic emission technology can diagnose faults on
the drive shaft. Arifianto et al. [51] used acoustic emission technology [52–55] to
collect the mixed sound signal when rotating the drive shaft. By performing time–
frequency blind source separation of the mixed sound signal, the crack position of
the ship’s propulsion system transmission shaft is judged. Elasha et al. [56] used
acoustic emission technology to detect bearing defects in a planetary gearbox. Also,
they found through experiments that acoustic emission can identify bearing defects
faster than vibration analysis.

4 Propeller Fault Diagnosis Methods

4.1 Analysis Based on Hydrodynamic Performance

When a propeller blade fails, the corresponding position of the blade changes the
hydrodynamic performance [57–60]. Hu et al. [61] used hydrodynamic analysis to
obtain the pulse pressure maps of the monitoring points under different propeller
failures. They used FFT to extract the characteristic parameters for propeller failure
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detection. Wang et al. used CFD to calculate the pressure values of each moni-
toring point on the propeller surface to achieve fault diagnosis and prediction of the
propeller.

4.2 Analysis Based on Vibration Signal

As propellers work underwater in a harsh working environment, which makes detec-
tion very inconvenient, it is often necessary to borrow indirect detection methods
to achieve this. When a propeller blade is damaged, the fault signal is displayed in
a vibration signal through the drive shaft. By analysing the time domain and spec-
trograms of the analogue signals generated by the rotational vibrations of the shaft
system, the fault parameters in the case of a broken propeller blade can be obtained
[62]. Ngui et al. [63] used continuous wavelet transform (CWT) to extract features of
turbine vibration signals and then input the extracted feature signals into an artificial
neural network (ANN) model for blade fault diagnosis. Experimental results show
that themethod has a high accuracy rate for fault diagnosis of turbomachinery blades.

4.3 Analysis Based on Current Signal

When a propeller fails, it causes a change in torque, which causes a change in motor
flux. The current signal can reflect these changes. Huang et al. [64] carried out a
spectrum analysis of the propulsion motor stator current signal through simulation
experiments to diagnose propeller fault. The dynamic blades of a tidal stream turbine
(TST) are prone to biofouling and, consequently, unbalanced the turbine rotor due
to a long time on the seabed. Lofisedi et al. [65] proposed a conventional bispectrum
(CB) diagnostic method to analyse and diagnose the situation. Bispectral analysis
of a permanent magnet synchronous generator (PMSG) can identify the frequencies
associated with biofouling imbalance.

5 Conclusion

This articlemainly focuses on introducing the failures of each component of the ship’s
electric propulsion system and each component’s failure signal analysis methods.
The advantages and disadvantages of common signal analysis methods are shown
in Table 1. Compared with electric motors and drivelines, there are relatively few
literatures on the analysis of ship propulsion propeller failures. However, it is very
important and necessary to conduct fault analysis and research on the ship’s electric
propulsion system, and it is also the trend of ship development.
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Table 1 Comparison of the advantages and disadvantages of common signal analysis methods

Methods Advantages Disadvantages

Vibration signal The measurement method is
relatively simple, and the
theory is relatively mature
The detection effect of common
gear faults is better

For precision mechanical
structures, the sensor is not
easy to install
Sensitivity is affected by the
position of the sensor
Easy to be interfered by
mechanical resonance

Sound signal Non-invasive detection method,
flexible and convenient
installation location
It is more sensitive to early gear
and bearing failure than the
vibration analysis method

The diagnostic effect is
affected by the sensor
installation position and other
background noise

Oil analysis Can be applied to places with
the harsh working environment
High detection efficiency, high
information integration,
accurate and reliable diagnosis
results, and early fault
prediction

Difficult to extract wear
particles online for analysis,
and offline analysis is relatively
lagging
No unified monitoring
standards

Hydrodynamic performance Important means of fluid
analysis

Susceptible to interference
from turbulence and biological
fouling
There is an error between the
theoretical analysis method and
the real situation

Current signal Non-invasive detection method,
easy to obtain the current signal
and will not interfere with the
original system

It strongly depends on the
current loop bandwidth, low
signal-to-noise ratio, and is not
sensitive enough for
applications under certain
conditions

With the development of artificial intelligence, the fault diagnosis technology of
marine electric propulsion system will develop to more valuable fault prediction
technology. Considering the complexity of the ship’s electric propulsion system and
the need for real-time monitoring of the overall status during navigation, more and
more researchers have also proposed many intelligent fault diagnosis methods based
on artificial neural networks, support vector machines, expert systems, etc. It is used
for fault diagnosis of ship’s electric propulsion system. Due to the complexity of
the actual system, it is difficult to collect enough data from the corresponding fault
location to train an accurate detection model, and there are relatively few relevant
reference materials. Therefore, most intelligent fault diagnosis methods have corre-
sponding deficiencies. The intelligent fault diagnosis methods in many references
also use simulation methods to generate data and verify the fault diagnosis effect.
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Therefore, it is still necessary to carry out research in combination with practice to
achieve more accurate and comprehensive fault diagnosis.

References

1. Bjørum, L.O.: Development of a digital twin for condition monitoring, focusing on electrical
propulsion systems for marine application. no. June, p. 107 (2019)

2. Jan, B.,Hansen, F.,Wendt, F.: History and state of the art in commercial electric ship propulsion,
integrated power systems, and future trend. pp. 1–14 (2015)

3. Li, H.H.C., Liu, N., Su, J.: Vibro-acoustic responses of a coupled propeller-shaft-hull system
due to propeller forces. Ocean Eng. 173, 460–468 (2019)

4. Vizentin, G., Vukelić, G., Srok, M.: Common failures of ship propulsion shafts. Pomorstvo
31(2), 85–90 (2017). https://doi.org/10.31217/p.31.2.1

5. He, J., Li, Y., Cao, J., Li, Y., Jiang, Y., An, L.: An improved particle filter propeller fault
prediction method based on grey prediction for underwater vehicles. Trans. Inst. Meas. Control
42(11), 1946–1959 (2020). https://doi.org/10.1177/0142331219901202

6. Zhang, S.K., Fan, L., Gao, J., Pu, J., Xu, K.: Fault diagnosis of underwater vehicle and design
of intelligent self-rescue system. J. Coast. Res. 83, 872–875 (2019)

7. Li, Z., Peng, Z.: A new non-linear blind source separation method with chaos indicators
for decoupling diagnosis of hybrid failures: a marine propulsion gearbox case with a large
speed variation. Chaos Solitons Fractals 89, 27–39 (2016). https://doi.org/10.1016/j.chaos.
2015.09.023

8. Dimitrov, L., Kanturska, S.: Features in the selection and operation of AC motors for electric
propulsion system in ship. In: 2017 15th International Conference on Electrical Machines,
Drives and Power Systems ELMA 2017—Proceeding. pp. 228–232 (2017). https://doi.org/10.
1109/ELMA.2017.7955438

9. Cardoso, A.J.M.: Evolution and Development Prospects of Electric Propulsion Systems of
Large Sea Ships. pp. 296–303 (2020)

10. Jain, J.K., Ghosh, S., Maity, S.: Concurrent PI controller design for indirect vector controlled
induction motor. Asian J. Control 22(1), 130–142 (2020). https://doi.org/10.1002/asjc.1911

11. Glowacz, A., et al.: Detection of deterioration of three-phase induction motor using vibration
signals. Meas. Sci. Rev. 19(6), 241–249 (2019). https://doi.org/10.2478/msr-2019-0031

12. Ciabattoni, L., Ferracuti, F., Freddi, A., Monteriu, A.: Statistical spectral analysis for fault
diagnosis of rotating machines. IEEE Trans. Ind. Electron. 65(5), 4301–4310 (2018). https://
doi.org/10.1109/TIE.2017.2762623

13. Faiz, J., Takbash, A.M., Mazaheri-Tehrani, E.: A review of application of signal processing
techniques for fault diagnosis of induction motors—part I. AUT J. Electr. Eng. 49(2), 109–122
(2017). https://doi.org/10.22060/eej.2017.13219.5142

14. Wang, Z., Yang, J., Ye, H., Zhou, W.: A review of permanent magnet synchronous motor fault
diagnosis. In: 2014—Conference ProceedingTransportation ElectrificationAsia-Pacific (ITEC
Asia-Pacific). IEEE, (2014). https://doi.org/10.1109/ITEC-AP.2014.6940870

15. Abdelli, R., Bouzida, A., Touhami, O., Ouadah, M.: Static eccentricity fault modeling in
permanent—magnet synchronousmotors. In: 2016 8th International Conference onModelling,
Identification and Control, vol. 1, pp. 364–368 (2016)

16. Wu, J., Wu, C., Cao, S., Or, S.W., Deng, C., Shao, X.: Degradation data-driven time-to-failure
prognostics approach for rolling element bearings in electrical machines. IEEE Trans. Ind.
Electron. 66(1), 529–539 (2019). https://doi.org/10.1109/TIE.2018.2811366

17. Wu, J., Su, Y., Cheng, Y., Shao, X., Deng, C., Liu, C.: Multi-sensor information fusion for
remaining useful life prediction of machining tools by adaptive network based fuzzy inference
system. Appl. Soft Comput. J. 68, 13–23 (2018). https://doi.org/10.1016/j.asoc.2018.03.043

https://doi.org/10.31217/p.31.2.1
https://doi.org/10.1177/0142331219901202
https://doi.org/10.1016/j.chaos.2015.09.023
https://doi.org/10.1109/ELMA.2017.7955438
https://doi.org/10.1002/asjc.1911
https://doi.org/10.2478/msr-2019-0031
https://doi.org/10.1109/TIE.2017.2762623
https://doi.org/10.22060/eej.2017.13219.5142
https://doi.org/10.1109/ITEC-AP.2014.6940870
https://doi.org/10.1109/TIE.2018.2811366
https://doi.org/10.1016/j.asoc.2018.03.043


982 D. Li et al.

18. Han, H.S., Lee, K.H.: Experimental verification for lateral-torsional coupled vibration of the
propulsion shaft system in a ship. Eng. Fail. Anal. 104(January), 758–771 (2019). https://doi.
org/10.1016/j.engfailanal.2019.06.059

19. Shin, S.H.: Effects of propeller forces on the propeller shaft bearing during going straight and
turning of ship. J. Soc. Naval Architects Korea 52(1), 61–69 (2015)

20. Shubao, W.: Analysis of propulsion shafting high temperature failure on a large container ship
and countermeasures. J. Shanghai Sh. Shipp. Res. Inst. 42(3), 46–50 (2019)

21. Lee, J.U.:Application of strain gaugemethod for investigating influence of ship shaftmovement
by hydrodynamic propeller forces on shaft alignment. Measur. J. Int. Measur. Confed. 121(July
2017), 261–275 (2018). https://doi.org/10.1016/j.measurement.2018.02.067

22. Ali, M., Shaikh, S.: Data acquisition system & real time monitoring of the parameters of
induction motor via wireless communication. no. IEEC, pp. 5–9 (2020)

23. Qiongjun, L.X.X., Peiliang,M.A.: Structure and maintenance of propeller shaft sealing device
for large and medium-sized ships. Sh. Eng. 41, 196–198 (2019)

24. Zhen, D., Guo, J., Xu, Y., Zhang, H., Gu, F.: A novel fault detection method for rolling bearings
based on non-stationary vibration signature analysis. Sensors (Basel) 19 (2019)

25. Medoued, A., Mordjaoui, M., Soufi, Y., Sayad, D.: Induction machine bearing fault diagnosis
based on the axial vibration analytic signal. Int. J. Hydrogen Energy 41(29), 12688–12695
(2016). https://doi.org/10.1016/j.ijhydene.2016.02.116

26. Zhao, X., Jia, M.: A novel unsupervised deep learning network for intelligent fault diagnosis
of rotating machinery. Struct. Heal. Monit. 19(6), 1745–1763 (2020). https://doi.org/10.1177/
1475921719897317

27. Wang, Y., Zhou, J., Zheng, L., Gogu, C.: An end-to-end fault diagnostics method based on
convolutional neural network for rotatingmachinerywithmultiple case studies. J. Intell.Manuf.
(2020). https://doi.org/10.1007/s10845-020-01671-1

28. Chen, Z., Wang, T., Gu, F., Haram, M., Ball, A.: Gear transmission fault diagnosis based on the
bispectrum analysis of induction motor current signatures. Jixie Gongcheng Xuebao/J. Mech.
Eng. 48(21), 84–90 (2012). https://doi.org/10.3901/JME.2012.21.084

29. Ali, M.Z., Liang,X.: Induction motor fault diagnosis using discrete wavelet transform. In:
2019 IEEE Canadian Conference of Electrical and Computer Engineering CCECE 2019, no.
c, pp. 1–4 (2019). https://doi.org/10.1109/CCECE.2019.8861923

30. Dehina, W., Boumehraz, M., Kratz, F., Fantini, J.: Diagnosis and comparison between stator
current analysis and vibration analysis of static eccentricity faults in the induction motor. In:
Proceedings—2019 4th International Conference on Power Electronics and Their Applications
ICPEA 2019, vol. 1, no. September, pp. 1–4 (2019). https://doi.org/10.1109/ICPEA1.2019.891
1193

31. Granda, D., Aguilar, W.G., Arcos-Aviles, D., Sotomayor, D.: Broken bar diagnosis for squirrel
cage induction motors using frequency analysis based on mcsa and continuous wavelet
transform. Math. Comput. Appl. 22(2), 30 (2018). https://doi.org/10.3390/mca22020030

32. Rangel-magdaleno, J., Peregrina-barreto, H., Ramirez-cortes, J., Cruz-vega, I.: Hilbert spec-
trum analysis of inductionmotors for the detection of incipient broken rotor bars. Measurement
109, 247–255 (2017). https://doi.org/10.1016/j.measurement.2017.05.070

33. Huang, B., Feng, G., Tang, X., Gu, J.X., Xu, G.: A performance evaluation of two bispectrum
analysis methods applied to electrical current. Energies 12, 1438 (2019)

34. Qiu, L., et al.: Analysis of electromagnetic force and deformation behavior in electromagnetic
tube expansionwith concave coil basedonfinite elementmethod. IEEETrans.Appl. Supercond.
28(3), 1–5 (2018). https://doi.org/10.1109/TASC.2017.2789287

35. Sangeetha, P.B., Hemamalini, S.: Rational-dilation wavelet transform based torque estimation
from acoustic signals for fault diagnosis in a three-phase induction motor. IEEE Trans. Ind.
Inf. 15(6), 3492–3501 (2019). https://doi.org/10.1109/TII.2018.2874463

36. Delgado-Arredondo, P.A., Morinigo-Sotelo, D., Osornio-Rios, R.A., Avina-Cervantes, J.G.,
Rostro-Gonzalez, H., de Romero-Troncoso, R.J.: Methodology for fault detection in induction
motors via sound and vibration signals.Mech. Syst. Signal Process. 83, 568–589 (2017). https://
doi.org/10.1016/j.ymssp.2016.06.032

https://doi.org/10.1016/j.engfailanal.2019.06.059
https://doi.org/10.1016/j.measurement.2018.02.067
https://doi.org/10.1016/j.ijhydene.2016.02.116
https://doi.org/10.1177/1475921719897317
https://doi.org/10.1007/s10845-020-01671-1
https://doi.org/10.3901/JME.2012.21.084
https://doi.org/10.1109/CCECE.2019.8861923
https://doi.org/10.1109/ICPEA1.2019.8911193
https://doi.org/10.3390/mca22020030
https://doi.org/10.1016/j.measurement.2017.05.070
https://doi.org/10.1109/TASC.2017.2789287
https://doi.org/10.1109/TII.2018.2874463
https://doi.org/10.1016/j.ymssp.2016.06.032


A Review of Fault Diagnosis Methods … 983
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Abstract As one of the core components of the gas turbine compressor, the blades
are prone to cracks and even breakages when working in harsh environments such as
high pressure, high speed, and alternating heavy loads. The generation and propaga-
tion of cracks will change the natural vibration characteristics of blades. Therefore,
it is necessary to research the influence of different types of crack faults on the
natural vibration characteristics of blades, which can provide a theoretical reference
for the blade crack fault diagnosis. Firstly, the finite element model of the healthy gas
turbine compressor blade was established, and the modal parameters were analyzed;
secondly, in order to verify the accuracy of the finite element model, the blade modal
experiment platformwas built to carry out the modal experiment of the healthy blade
based on the moving hammer method, and the influence of different sensor installa-
tion methods on the modal test results was analyzed; finally, the modal parameters
of the blade with different types of crack faults were analyzed based on the finite
element model, and themapping relationship between the crack faults and the natural
vibration characteristics of the blade was established. The results show that crack
type variation would affect the natural vibration characteristics of the blade, which
will lead to modal coupling and modal shape switching characteristics. As a result,
the same order vibration mode of blade has different mode shapes at different crack
positions and shapes. The results of this paper may serve as a theoretical basis for
the diagnosis of compressor blade crack faults based on vibration characteristics.
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1 Introduction

As one of the core components of the gas turbine compressor, the blades are prone
to cracks and even breakages when working in harsh environments such as high
pressure, high speed, and alternating heavy loads for a long time. Not only cracks
during work affect the performance of the engine, but also the broken blades that
detach at high speed pose a serious threat to the safety of other components [1, 2]. The
generation and propagation of cracks will change the natural vibration characteristics
of blades, accompanied by coupled vibrationwith frequency veering andmode shape
switching as the main characteristics. Therefore, in order to diagnose blade fracture
failure in time, it is necessary to study the effect of cracks on the vibration frequency
of the blade.

Currently, many researchers have conducted a lot of research on the influence
of cracks on vibration characteristics. Based on fracture mechanics and plane stress
theory, Cai [3] proposed a calculation method of cross-sectional equivalent bending
stiffness of the cracked blade using a beam model. In order to obtain the crack
parameters, a method based on measurement of natural frequencies presented for
detection of the location and size of a crack in a cantilever beam was proposed by
Maiti [4] and Nandwana [5]. Kuang [6] used Galerkin’s method to study the effect
of crack position and depth on blade vibration mode. After that, the finite element
method was introduced. Tsai [7] calculated the rotational vibration characteristics of
the blade by the finite elementmethod.Orhan [8] studied the free and forced vibration
characteristics of a cracked cantilever beam via the finite element method. Witek [9]
verified that vibration is the main cause of blade failure through a combination of
finite element and test methods, but did not give a specific relationship between the
two. Ding [10] and Ge [11] studied the effects of crack shape, depth, and position on
the natural frequency of blades based on the finite element method analysis. Zhang
[12] studied the effects of crack parameters on the natural vibration and forced
vibration characteristics of the blade, and discussed the frequency and vibration
mode changes in the vicinity of the frequency veering zone. Free and fixed plate
blade root states were simulated with finite element analysis to reveal the crack
effect on the natural vibration frequency of the blade by Li [13]. Vibration based
damage detection technique has been used by various researchers [14–18] in various
applications fromwind turbine to composite structures.However, somefinite element
studies have been conducted on the variation regulation of blade natural frequencies
with different crack parameters, most of which have not verified the accuracy of the
finite element model.

In this paper, the influence of crack parameters on the natural frequency of blades
is revealed by studying the natural frequency of 12Cr12Mo stainless steel blades.
The influence of how the sensor is installed is considered. The finite element model is
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modifiedwith the experimental data of themoving hammermethod, and themodified
model is used to analyze the influence of different crack lengths and positions on
the natural vibration of the blade, which provides theoretical guidance for predicting
crack location or crack length by vibration frequency change to diagnose the blade
crack fault.

This paper is organized as follows. In Sect. 2, the blade vibration problem is
introduced. In Sect. 3, the influence of different sensor installation methods on the
modal experiment results is analyzed, and the finite element model is modified with
the experimental data. In Sect. 4, the modified model is used to analyze the influence
of different crack lengths and positions on the natural vibration of the blade. Finally,
conclusions are summarized in Sect. 5.

2 Modal Analysis Theory

Modes are the natural vibration characteristics of mechanical structures. Each mode
has a specific natural frequency, damping ratio, and mode shape. The process of
obtaining each mode by theoretical calculation or experimental analysis is called
modal analysis, which is an important method for structural dynamic design and
fault diagnosis for equipment and the basis of various dynamic analyses.

For amulti-degree-of-freedom vibration system, the dynamics of the elastic struc-
ture can be solved according to the D’Alembert principle to derive the dynamic
balance equation, which can be written as

Mü + Cu + Ku = F (1)

where ü, u, and u are the nodal acceleration vector, velocity vector, and displacement
vector, respectively, M, C, and K denote the mass, damping matrix, and stiffness
matrices, while F is the external force of the system.

When the system vibrates freely, the external force is zero and the damping of
the system can be neglected. Then, the above linear differential equation can be
simplified to the following homogeneous equation:

Mü + Ku = 0 (2)

For a linear system, the form of the above solution is

u = ϕ · sin(ωt + θ) (3)

where ϕ is the mode shape eigenvector, ω is the natural frequency (unit: rad/s), t is
time (unit: s).

The available characteristic equation is as follows:

(K − ω2M)ϕ = 0 (4)
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By solving the eigenvalue problem, the natural frequency and mode shape of the
blade can be obtained.

3 Modal Analysis for Normal Blades

3.1 Experimental Modal Analysis

Taking the first stage moving blade of a certain compressor as the research object,
the modal test is carried out by using the moving hammer method. Namely, the
acceleration sensor is fixed at a certain point on the blade, and the vibration state of
each point on the blade is obtained by changing the striking position of the hammer,
as shown in Fig. 1. According to the structural characteristics of the tested blade, the
blade is divided into eight rectangular grids evenly and equally, the grid size is about
30 mm × 30 mm, and the positions of 15 tapping points are determined. The grid
division and tapping sequence are shown in Fig. 2. The model of the sensor used is
DYTRAN 3035B, and the weight is 3 g. Furthermore, in order to compare the effects
of different sensor installation methods on the experimental results, this experiment
carried out a single-sensor modal experiment and a dual-sensor modal experiment.
In the single-sensor modal experiment, a single sensor was pasted on the 15# test
point, while two sensors were pasted on the front and back of the 15# test point in
the dual-sensor modal experiment. The vibration modes are shown in Figs. 3 and 4.

Fig. 1 Modal analysis test of compressor blade
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Fig. 2 Testing point
distribution figure

Fig. 3 The first three modes in single sensor experiment: a 1st mode, b 2nd mode, and c 3rd mode

3.2 Finite Element Analysis

ModalAnalysis is carried out for the compressor blade throughFEM-based technique
using ANSYS Workbench2019 R3 software. The blade height is 164 mm, the root
chord length is 78 mm, and the weight is 0.87 kg. The material model is 12Cr12Mo
stainless steel with elastic modulus E = 219 GPa, density ρ = 7750 kg/m3, and
Poisson’s ratio μ = 0.31. The SOLID187 element is selected to mesh the blades, as
shown in Fig. 5.

The blade is in the free state, and the vibration shapes obtained after the solution
are shown in Fig. 6.
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Fig. 4 The first three modes in dual sensor experiment: a 1st mode, b 2nd mode, and c 3rd mode

Fig. 5 The finite element
model of the blade

3.3 Comparison of Experimental Modal Analysis and Finite
Element Analysis

It shows that the first three modes obtained by finite element analysis are consis-
tent with those obtained by experimental analysis, which verifies the validity of the
ANSYS finite element model. As shown in Table 1, the finite element analysis results
are consistent with the experimental results, and the natural frequency values of each
order are roughly the same. Although there is a certain error, the error is within the
acceptable range, which can explain the effectiveness of the finite element model. In
addition, the results obtained by the single sensor and dual sensor tests are almost
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Fig. 6 The first three modes obtained by finite element analysis: a 1st mode, b 2nd mode, and c
3rd mode

Table 1 Comparison of finite element analysis and experimental modal analysis results in free
state

Mode Natural frequency Relative error
(%)

Natural frequency Relative error
(%)Single sensor ANSYS Dual sensor ANSYS

1 884.73 877.31 0.84 883.77 877.31 0.73

2 1667.26 1649.50 1.07 1665.45 1649.50 0.95

3 2364.17 2345.30 0.80 2352.03 2345.30 0.29

the same. The reason is that the mass of the sensor is much smaller than the blade,
so the sensor has little effect on the result.

4 Influence of Crack Parameters on Blade Mode

Crack parameters mainly include crack length and crack position. This paper studies
the influence of crack length and position on the natural vibration of the blade. The
finite element analysis model of the cracked blade is constructed on the basis of the
blade model, as shown in Fig. 7. l is the length of the crack, L is the chord length
of the blade root, h is the distance between the crack and the blade root, and H is
the height of the blade. Define the ratio of crack length to blade width (l/L) as the
crack length ratio (Lc), which represents the relative length of the crack; Define the
ratio of crack height to blade height (h/H ) as the crack height ratio (Hc), which
represents the relative crack height position. The blades in the actual compressor can
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Fig. 7 Blade crack analysis
model

be approximated as fixed blade root. The finite element model of the cracked blade
can be solved for the natural frequency of different crack lengths and different crack
positions under the constraint of the fixed blade root. The curves of first three-order
natural vibration frequency varying with crack length and crack height are drawn in
Figs. 8 and 9, whose variables refers to [19]. As can be seen in Fig. 8, when the crack
propagates at the same location, the natural vibration frequency decreases gradually.
The results show that the longer the crack, the greater the impact on the stiffness of
the blade, and the greater the impact on the natural frequency of the blade. As can
be seen in Fig. 9, the closer the crack is to the leaf root, the greater the effect on the
natural vibration frequency.

Figure 10 shows the first twelve natural frequencies where the crack height ratio
was fixed at Hc = 0.4, and the crack length was varied as 0 ≤ Lc ≤ 0.9. It is worth
noting that the blade exhibits characteristics such as frequency veering with the crack
length (circled in Fig. 10). Frequency veering refers to the phenomenon that the
trajectory of the system characteristic value converges with some system character-
istic parameters but does not cross and then separates [20]. The essence of frequency
veering is vibration coupling and mode shape switching between modes. Besides,
keep the crack length ratio fixed at Lc = 0.5 while the crack height varied. The
results are shown in Fig. 11. When the crack is longer, the change of the crack posi-
tion will also cause frequency veering, modal coupling, and mode shape switching
characteristics. When the crack length is small, the variation of the crack position
has little effect on the frequency.
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Fig. 8 Curve of natural vibration frequency with crack length in root fixed state: a 1st mode, b 2nd
mode, and c 3rd mode

In order to observe the veering regions and the variations in the mode shapes more
clearly, representative cases are analyzed. As shown in Fig. 12, when the crack length
ratio increases in the veering region, the modes 9 and 10 start to mix and then switch.
Figure 13 shows the veering region caused by the variation of crack position. In the
5th and 6th modes, the frequency veering and mode shape switching is completed
between the two modes as the crack position increases.

5 Conclusion

This paper studies the influence of the length and position of the crack on the
natural vibration characteristics of the first stage moving blade of the Gas Turbine
compressor, and the conclusions are as follows:
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Fig. 9 Curve of natural vibration frequency with crack height in root fixed state: a 1st mode, b 2nd
mode, and c 3rd mode

Fig. 10 Crack length
compared with natural
frequency
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Fig. 11 Natural frequency
varying with crack location

Fig. 12 Frequency veering
and mode shape of 9 and 10
mode varying with crack
length

(1) The maximum relative error between the natural frequency of the blade solved
by ANSYS finite element analysis and the one based on the moving hammer
method test is 1.07%, which confirms the accuracy of the finite element model.

(2) Cracks can reduce the blade stiffness and affect its natural frequency. The
longer the crack is, the greater the change in stiffness matrix, and the greater
the impact on the natural frequency of the blade; when the crack position tends
to the free end, the impact of the crack on the natural frequency of the system
gradually decreases.

(3) The length and location of the crack both affect the natural frequency of the
blade. The increase of the crack length and the change of the position can
lead to the frequency veering and mode shape switching characteristics, which
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Fig. 13 Frequency veering
and mode shape of 5 and 6
mode varying with crack
height

explains why mode shapes alter with the variation of crack length and location
in the same order of vibration mode.

Acknowledgements The authors acknowledge the support from the National Natural Science
Foundation of China (Grant No. U1809219) and the Key Research and Development Project of
Zhejiang Province (Grant No. 2020C01088).

References

1. Li, S.H., Cai, L.M.: Fan blade crack fault diagnosis based on the analysis of pneumatic signals.
J. Vib. Shock 36(19), 227–231 (2017)

2. Zhang, Y.G.: Key technology research on non-contact onlinemonitoring for fume turbine blade
vibration. Tianjin University (2008)

3. Cai, W.H.: Equivalent bending stiffness calculation for rotating blade crack section. J. Jilin
Univ. 32(3), 41–44 (2002)

4. Maiti, S.K., Lele, S.P.: Modeling of transverse vibration of short beams for crack detection and
measurement of crack extension. J. Sound Vib. 257(3), 559–583 (2002)

5. Nandwana, B.P., Maiti, S.K.: Detection of the location and size of a crack in stepped cantilever
beam based on measurement of natural frequencies. J. Sound Vib. 203(3), 435–446 (1997)

6. Kuang, J.H., Huang, B.W.: The effect of blade crack on mode localization in rotating bladed
disks. J. Sound Vib. 227(1), 85–103 (1999)

7. Tsai, G.C.: Rotating vibration behavior of the turbine blades with different groups of blades.
J. Sound Vib. 271(3–5), 547–575 (2004)

8. Orhan, S.: Analysis of free and forced vibration of a cracked cantilever beam. NDT & E Int.
40(6), 443–450 (2007)

9. Witek, L.: Experimental crack propagation and failure analysis of the first stage compressor
blade subjected to vibration. Eng. Fail. Anal. 16(7), 2163–2170 (2009)

10. Ding, Z.J., Ji, G.Y.: Blade crack diagnosis based on finite element method. J. Power Equip.
29(10), 1385–1388, 1392 (2010)

11. Ge, Y.Q., An, L.S.: Study of the influence of crack parameters on the blade natural frequencies.
J. Power Eng. 28(4), 519–522 (2008)



Research on the Influence of Crack Parameters on the Vibration … 997

12. Zhang, J.H., Yang, S., et al.: Influence of crack parameters on frequency veering characteristic
of aero engine blade. J. Vib. Shock 33(20), 7–11 (2014)

13. Li, C.W., Li, J., Fang, Y.W.: Simulation of the crack geometry effect on the natural vibration
frequency of a plate blade. Strength Mater. 54(4), 97–102 (2020)

14. Krawczuk, M., Ostachowicz, W., Zak, A.: Dynamics of cracked composite material structures.
Comput. Mech. 20(1), 79–83 (1997)

15. Ghoshal, A., Sundaresan, M.J., et al.: Structural health monitoring techniques for wind turbine
blades. J. Wind Eng. Ind. Aerodyn. 85, 309–324 (2000)

16. Ge, M., Lui, E.M.: Structural damage identification using system dynamic properties. Comput.
Struct. (2005)

17. Rucka, M., Wilde, K.: Application of continuous wavelet transform in vibration based damage
detection method for beams and plates. J. Sound Vib. 297(3–5), 536–550 (2006)

18. Rolfes, R., Gerasch, W., et al.: Early damage detection system for towers and rotor blades of
offshore wind turbines. In: Proceedings of the 3rd European Workshop on Structural Health
Monitoring, Granada, Spain, pp. 5–7, June 2006

19. Saito, A., Castanier, M.P., Pierre, C.: Estimation and veering analysis of nonlinear resonant
frequencies of cracked plates. J. Sound Vib. 326(3–5), 725–739 (2009)

20. Ren, X.M., Nan, G.F., et al.: Studying frequency veering characteristics of aircraft engine blade
with beam function combination method. J. Northwest. Polytechnical Univ. 27(2), 269–273
(2009)



Research on Vibration Characteristics
of Last Stage Blade Based on Blade
Tip-Timing Technology

Xinyu Hu, Daming Zhuang, Jun He, Haizhou Huang, and Shixi Yang

Abstract As the key component of the steam turbine, the steam turbine blade needs
towork in a complex and rigorous operating environment, which easily leads to blade
cracks or even fractures and other faults. Excessive vibration is one of themain causes
of blade failure, which may affect the safe and stable operation of the equipment.
Therefore, it is significant to detect and analyze blade vibration characteristics. Blade
tip-timing (BTT) technology has the advantages of non-contact and simple installa-
tion, which is widely used in online blade vibrationmonitoring of turbomachinery. In
this paper, the research of using BTT technology to measure the vibration character-
istic parameters of the last stagemoving blade of a steam turbine with integral shroud
and snubber is carried out. Firstly, a finite element model of the last stage blade is
built, the stress distribution and mode shape of the blade are obtained through simu-
lation analysis. Secondly, the blade vibration measuring experiment is accomplished
on a dynamic balancing test-bed, and the synchronous vibration parameters such
as resonance speed are calculated correctly under lowing speed working condition
based on BTT technology. Furthermore, the strain gauge method is used simultane-
ously to verify the accuracy of the measurement results. The resonance frequency
and engine order of the blade are measured successfully. The analysis results show
that parameters such as resonance speed identified by BTT method are consistent
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with that measured by strain gauge method. The research results prove the effective-
ness of BTT technology in measuring the vibration parameters of the last stage blade
with integral shroud and snubber, which can provide reference for design rationality
verification and vibration characteristics detection of the steam turbine blade.

Keywords Blade tip-timing · Finite element method · Steam turbine blade ·
Vibration characteristic · Strain gauge

1 Introduction

With the development of thermal power technology and the adjustment of energy
structure policies, the steam turbine is developing towards high parameters and large
capacity, which puts forward higher requirements for the efficiency, reliability and
operation range of steam turbine. As the key component of the steam turbine, the
steam turbine blade needs towork in the complex and rigorous operating environment
of high temperature, high pressure, and high speed, which easily leads to fatigue
damage and other faults. In particular, due to its longer length and greater centrifugal
force, the last stage blade is susceptible to unstable airflow impacts and is easier lead to
blade cracks or even fractures.According to statistics, 70–80%[1] of forced shutdown
accidents of steam turbines are caused by blade damage. Excessive blade vibration
is one of the main causes of blade failure. Related investigations show that 60–70%
[2] of blade damage is caused by vibration. Therefore, vibration measurement and
analysis of steam turbine blade is of great significance to ensure safe and reliable
operation of the steam turbine.

Rotating blade vibration detection technology has been widely researched by
scholars in China and abroad. According to the measurement method, it is mainly
divided into contacting methods and non-contacting methods. Traditional contacting
measurement methods need to mount strain gauges [3, 4] on the blade surface and
measure the vibration frequency and dynamic stress of the blade by monitoring
the strain change. Wang et al. [5] built the turbine blade dynamic stress measure-
ment system and completed dynamic stress measurement of turbine blades under
high temperature and high-speed conditions. Lu et al. [6] investigated the vibration
characteristics of compressor blades through finite element analysis, natural mode
experiments and dynamic stress tests, and evaluated the dynamic performance of
the blades. The strain gauge will interfere with the dynamic properties of blades. In
addition, due to its complicated installation process and the limited number of moni-
toring blades, the strain gauge measurement method has gradually been used for
experimental comparison and verification. Alternatively, non-contacting measure-
ment methods overcome the above defects. In particular, BTT [7] is well-known
because of its simple structure and wide monitoring range. Wang et al. [8] intro-
duced a key phase interpolation method to solve the larger error caused by acceler-
ation, deceleration or speed fluctuation with once-per revolution probe. Due to the
high under sampling characteristics of blade tip timing data, Wu et al. [9] proposed a
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blade parameter identification technology based on enhancing sparse decomposition,
and the effectiveness of the algorithm has been verified. Guo et al. [10] put forward a
new method to identify the parameters of synchronous resonance vibration without
once-per revolution sensor, which makes it more generally applicable special condi-
tion Guru et al. [11] used BTT method for pre-emptive prediction of rotor blade
damage through carefully monitoring blade natural frequencies in conjunction with
the blade tip position during an engine test. Du Toit et al. [12] put forward a hybrid
approach, comprising a stochastic FiniteElementModel (FEM)basedmodal analysis
and Bayesian Linear Regression based BTT technique, to identify and classify the
blade damage. BTT technology is mainly used for vibration measurement, condition
monitoring, and crack identification of aeroengine and gas turbine blades without
shroud and snubber. Due to the limitation of the shroud in the last stage blade of the
steam turbine, it is difficult to obtain the tip timing signal by traditional tip timing
method. Therefore, BTT technology is rarely applied to the study of the vibration
characteristics of the last stage blade of the steam turbine.

In this paper, BTTvibrationmeasurement technology is used tomeasure the vibra-
tion characteristic parameters of the last stage moving blade of a steam turbine with
integral shroud and snubber. This study mainly focused on the following contents:
(1) A finite element model of the last stage blade is built, and stress distribution and
mode shape of the blade are obtained through simulation analysis. (2) According to
the structural characteristics of the last stage blade of the steam turbine, the layout
of the BTT sensor is optimized. BTT sensor is installed opposite to the blade trailing
edge near blade tip, and the center line of the sensor is parallel to the rotor axis. Then,
the blade vibration measuring experiment is accomplished on a dynamic balancing
test-bed using BTT technology. (3) The strain gauge method is used simultaneously
for comparative analysis. Comparing the BTT and the strain gauge measurement
results, the reliability of the BTT measurement result is verified. The comparison
results show that BTT can accurately identify the resonance speed, which can provide
reference for design rationality verification and vibration characteristics detection of
the steam turbine blade.

2 FEMModel Analysis

2.1 Modelling

The last stage moving blade of the steam turbine with integral shroud and snubber
is studied in this paper.

There are more than 80 moving blades with torsion curved surface and fir-tree
root, the material is 17-4PH, the density is 7810 kg/m3, the elastic modulus is 206.1
GPa, and the Poisson’s ratio is 0.3.
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The last stage blade is analyzed by ANSYS Workbench2019 R3 software. Hexa-
hedron and tetrahedron meshes were set up, and the mesh size is controlled appro-
priately. Considering that the entire last stage blade has a cyclic symmetric structure,
only a single blade is analyzed using a cyclic symmetrymethod to simplify the calcu-
lation. The blade root is fully constrained, and contact pairs are set between shrouds
and snubbers. At the same time, the centrifugal load is applied to the blade. Stress
distribution and mode shape of the blade were obtained through simulation analysis.

2.2 Simulation Results Analysis

The stress distribution of the blade in the working state is analyzed through static
simulation. Since the air force is much smaller than the centrifugal force, only the
centrifugal force is considered in the simulation. Figures 1 and 2 show the vonMises
stress distribution of the blade and the third intensity theoretical stress distribution
near the measuring point of blade root at the design rotating speed respectively. It
shows that the stress near the root of the blade is relatively large. Therefore, the strain
gauge should be pasted near this position.

According to the theory of modal analysis, we should pay more attention to the
low-order modes of the blade. With the increase of rotor speed, the vibration of
adjacent blades in the last stage will be coupled with each other, and the nodal
diameter vibration will appear. Based on the study of the vibration characteristics
of a single blade, this paper conducts modal analysis of the last stage blade. The
first-order fourth-nodal diameter mode shape of the last stage blade at design speed

Fig. 1 Von Mises stress distribution
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Fig. 2 The third intensity theoretical stress distribution

is in Fig. 3. As shown in Fig. 3, the blade vibration amplitude changes periodically,
and the largest vibration amplitude appears at the blade tip. This is the main reason
for installing the BTT sensor close to the blade tip.

Fig. 3 First-order fourth-nodal diameter mode shape
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3 Experimental Investigation

3.1 BTT Experiment

Traditional BTT technology uses tip timing sensors mounted radially on the turbine
casing to measure the Times of arrivals (TOAs) of the passing blade tip. However,
limited by the shroud of the last stage interlocked blade of the steam turbine, the
traditional radially installed tip timing sensors cannot measure TOAs accurately.

This paper improves the traditional tip timing method to prove the effectiveness
of BTT technology in measuring the vibration parameters of the last stage blade
despite the limitation of the shroud ring. As shown in Fig. 4, to obtain the TOAs
effectively, BTT sensor is installed opposite to the blade trailing edge near blade tip,
and the center line of the sensor is parallel to the rotor axis. Based on the single
degree of freedom hypothesis, if the blade vibrates in the direction of rotation, the
blade trailing edge will arrive in “advance” or “delay” time compared to the non-
vibrating state. According to this time difference sequence, the blade vibration ampli-
tude signal sequence can be obtained. In this paper, the speed-vector-end-tracking
method [13, 14] is used to scan the entire working area through the change of the
rotating speed. When passing through the resonance region, the vibration ampli-
tude increases significantly. The maximum value minus the minimum value of the
vibration amplitude-frequency curve is the maximum blade resonance amplitude. At
this time, the scanning frequency is also the blade resonance frequency. Combining
the natural frequency and the Campbell diagram, the blade vibration order and the
accurate frequency of the resonance can be further obtained.

Fig. 4 Improved blade tip timing system
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The blade vibration measuring experiment is accomplished on a dynamic
balancing test-bed using BTT technology. The eddy current sensors are selected
to acquire blade tip timing signals. As shown in Fig. 5, four eddy current sensors
are installed on the bracket at equal intervals of 10°. During the experiment, the
compressed gas with stable pressure and flow rate is continuously ejected from the
nozzle shown in Fig. 6 to excite the blade vibration.

The blade will hardly vibrate at a low rotating speed. Therefore, the installation
angle of the tip timing sensor is calibrated in advance at 1000 rpm to obtain the
theoretical arrival timeof the blade.During the experiment, the synchronous vibration
of the last stage blade is measured by the variable speed sweep method. The rotor
accelerates from 1000 rpm to the maximum speed steadily. After a period of stable
operation, the rotor decelerates from the maximum test speed to 1000 rpm. The four
blade tip timing sensorsmeasure the arrival information of each blade synchronously.

Fig. 5 Tip timing sensors

Fig. 6 Compressed air
supply nozzles
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Fig. 7 Strain rosette

Fig. 8 Surface wiring

3.2 Strain Gauge Experiment

In order to verify the accuracy of the measurement results, the strain gauge method
is used simultaneously. According to the stress distribution of the blade at 3000 rpm
in Sect. 2.2, and considering the reliability of the strain gauge position, the strain
gauges are pasted at a distance of 30 mm from the blade root. Figure 7 shows the
strain rosette attached to the blade. As shown in Fig. 8, given the influence of dynamic
balance and monitoring the number of blades, eight strain gauges are symmetrically
pasted on the blades, including uniaxial strain gauges and rosettes.

4 Results and Discussion

4.1 BTT Analysis

The raw key phase signal is shown in Fig. 9, and each pulse represents one revolution
of the rotor. The rotating speed calculated from key phase signal is drawn in Fig. 10.
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Fig. 9 Key phase signal

Fig. 10 Rotating speed
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Fig. 11 Blade tip timing signal

In this paper, the data collected during the deceleration process from the maximum
experimental speed to 1000 rpm is selected for analysis.

Figure 11 shows the pulse signal at the arrival time of blades in one circle. Due
to the errors in blade manufacturing and experimental installation, the amplitude of
each pulse which represents the TOA of each blade is not quite similar. Based on the
speed-vector-end-tracking method in Sect. 3.1, the blade vibration displacement is
calculated correctly under lowing speed working condition. From Fig. 12, there are
two synchronous resonance regions in the process of deceleration. Through param-
eter identification, the resonance speeds are 1850 rpm and 2500 rpm respectively.
Furthermore, combined with the Campbell diagram, the amplitude and frequency
information could be obtained using the classical least square fitting method.

4.2 Stress Gauge Analysis

In order to clarify the relationship between the amplitude-frequency characteristics
of the blade strain and the rotating speed during the lowing speed process, the strain
data is transformed by the fast Fourier transform (FFT) for every 1 rpm reduction of
the rotation speed. According to the blade vibration waterfall chart drawn in Fig. 13,
there are two obvious resonance regions in the speed range of 1800–2000 rpm and
2300–2500 rpm. The above two resonance regions correspond to the 5th and 4th
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Fig. 12 Vibration displacement change

Fig. 13 Waterfall chart
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vibration orders respectively, and the 4th and the 5th order analysis diagrams are
obtained by waterfall chart. As shown in Fig. 14a, b, when the blade vibration
amplitude reaches to the maximum, the resonance speed of the 4th and 5th engine
order are 2379 rpm and 1869 rpm respectively. There is no triple point resonance
vibration in the design rotation speed range of the last stage blade, which meets the
dynamic frequency control requirements.

Fig. 14 a Order analysis—4th order, b order analysis—5th order
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Table 1 Comparison of resonance speed measured by BTT and strain gauge methods

Engine order BTT (resonance speed/rpm) Strain gauge (resonance
speed/rpm)

Relative error (%)

4 2832 2379 0.13

5 1880 1869 0.59

4.3 Comparison of BTT and Strain Gauge Methods

As shown inTable 1, the first resonance speedmeasured byBTTand strainmethod are
1880 rpm and 1869 rpm respectively, and the second resonance speed are 2832 rpm
and 2379 rpm respectively. Taking the measurement result of the strain gaugemethod
as a reference, the errors of the first resonance speed and the second resonance speed
measured by the BTT method are 0.59% and 0.13% respectively. The resonance
speeds measured by BTT and strain gauge are roughly the same. The above analysis
results show that the BTT measurement results are accurate and reliable, and the
BTT technology can be applied to measure the vibration parameters of the last stage
blades of the steam turbine.

5 Conclusion

This paper proposes an improvedBTTmethod tomeasure the vibration characteristic
parameters of the last stage moving blade of a steam turbine with integral shroud and
snubber. Different from the traditional tip timing method using tip timing sensors
mounted radially on the turbine casing to measure the TOAs of the passing blade
tip, in this paper, TOAs are measured accurately by sensing the blade trailing edge,
which can get rid of the limitation of shroud ring. In addition, the strain gauge
method is used simultaneously to verify the accuracy of the measurement results.
The analysis results show that parameters of resonance speed identified by the BTT
method are consistent with strain gauge method. The results prove the effectiveness
of BTT technology in measuring the vibration parameters of the last stage moving
blade with integral shroud and snubber, which can provide reference for the design
rationality verification and vibration characteristics detection of the steam turbine
blade.
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A Simulation Study of an Energy
Harvester Operating on a Vertical Rotor
System
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Zhixia Wang, Qishan Chen, Fengshou Gu, and Andrew D. Ball

Abstract The paper presents a novel magnetic coupled piezoelectric energy
harvester for supplying an on-rotor sensing (ORS) IoT device. It operates based
on a rotating piezoelectric beam and a fixed permanent magnet placed remotely.
When the free end of the beam rotates passing through the magnet fixed on stators,
an impulsive magnetic force will excite the beam to vibrate and produce electricity.
A lumped electromechanical model is calibrated by fixed beam tests and subse-
quently used to competently evaluate the basic configuration and performance of the
harvester. Simulations has verified that the harvester can performs outstandingly not
only in the resonance frequency band of the beam but also the frequency range lower
than half of the resonance frequency, thanks to the impulsive excitations produced
by the when the beam tip passing the fixed magnet. Simulation studies also shows
that this harvester can operates for both horizontal and vertical rotor systems.

Keywords Energy harvesting · Vibration · Magnet-piezoelectric beam · On-rotor
sensing
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1 Introduction

In recent years an on-rotor sensing (ORS) approach has been actively studied as it
allows the dynamic behaviour of a rotor systems to be acquired directly and provides
more accurate information for condition monitoring [1]. An ORS device consists
typically of a vibration sensor, amicroprocessor, wirelessmodule and a power supply
unit. Such an ORS node can be mounted on either shaft surface of shaft end so
that lateral and axial vibrations of the complicated rotors such as that of gears [2],
machining spindles [3], robots [4], wheelsets and so on can be measured with high
signal-to-noise ratio (SNR) and transmittedwirelessly to host devices such asmobiles
and fog commuting devices, thereby for more accurate remote monitoring.

Currently, ORS nodes are powered by battery or power capacitance units. These
power supply units need frequent recharging or replacement of the batteries, leading
to additional system service costs. This takes out the outstanding merits of services-
free and high reliability with using wireless measurement systems and thus limited
the wide applications of such systems. To overcome this bottleneck a large volumes
of research works have been carried out in recent years, which are comprehensively
overviewed in a number of successive survey works which include [5] overviewing
different types of possible harvesting sources for wireless IoT devices, [6] examining
different micro/small-scale energy storage systems to assess the integrated design’s
overall efficiency. Alex [7] reviewing the current state of energy harvesting progress
in harvesting methods, energy storage technologies, and harvesting system archi-
tectures for self-sustaining wireless sensor networks, and [8] summarising different
configuration between magnet and piezoelectric beams. Amongst many numerous
harvesting approaches, piezoelectric energy harvesting (PEH) methods are the most
popular one due to its merits of high energy density, easy miniaturization, simple
structure, and easy miniaturisation, which are also particular requirements for ORS
applications.

According to the sources of driving harvesters based piezoelectric beams, the
research progresses can be reviewed based three main categories: gravitational,
centripetal, and magnetic forces. Gravitational and centripetal force can be easily
formalised in a rotating object, it is natural to design harvesting mechanisms based
such forces. Tzern et al. [9] in 2008 proposed a gravity counterweight-based harvester
in which a downward gravity force by an offset mass produces the gravity torque
that intends to stop the rotations of the generator rotor associated with the mass and
thus, the relevant rotations between generator and host rotor to generate electricity by
magnetic induction. In 2010, Wang et al. [10] investigated using three well-designed
weights to help pendulum to adjust its natural frequency to meet the wheel rotation
frequency. In 2012, Wang et al. [11] proposed an electromagnetic generator system
with a weighted pendulum-type pivots at a centre off the rotor centre. It oscillates due
to periodic change of the tangential component of gravitational force, can match up
with the rotational frequency for a large angle and angular velocity so as to generate
more power. In 2021, Z.Wang et al. [12] made a comprehensive model and optimised
the gravity counterweigh and all-in-one DC generator for train wheelset monitoring.
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Guan et al. in 2016 [13] proposed the piezoelectric beam-based harvester, in which a
mass on the tip of a piezoelectric beam is set close to the rotating centre to reduce the
influences of centripetal force on system balances. Deng et al. in 2020 [14] designed
a variable cross-section piezoelectric beam mechanisms in that the length of the
beam is adjusted with rotational speed to tune the resonance frequency so that the
operating speed can match with the frequency as close as possible for more effective
energy harvesting.

External magnetic forces are investigated by many scholars to overcome the
strength limitation of gravity effects. Zhou et al. in 2013 [15] proposed a piezoelectric
energy harvester excited by the magnetic force by altering the angular orientation
of its external magnets for enhanced broadband frequency response. Zou et al. in
2017 [16] suggested two piezoelectric cantilever beams whose free ends point to
the rotating shaft, both the gravity force and centrifugal force are used to excite the
vibrations of the piezoelectric beams. Wu et al. in 2018 [17] studied a piezoelec-
tric energy harvester excited by the magnetic force. The non-contact magnetic force
was employed for exciting the piezoelectric cantilever vibration to produce electric
output. Multiple magnets on rotational plate with piezoelectric fixed were exponen-
tially investigated for more effective harvesting. To enhance the power generation
capability over a wider bandwidth, Fu et al. in 2019 [18] used two fixed magnets one
below and the other above the tip magnet on the piezoelectric beam. When the low
side magnet rotates through the tip magnet on the fixed piezoelectric beam and the
magnet above, the tip magnet exhibits bistable vibration behaviours, thus widening
the effective bands. More recently, Wang et al. [19] in 2021 studied to use piezo-
electric beams arranged perpendicularly for achieving wideband harvesting. The
tip magnet on the primary piezoelectric interact with magnets on a rotor in radial
direction so that the beam system exhibit multi modal characteristics.

Specifically, a number of prototype harvesters proposed for monitoring vehicle
wheels and tyres are particularly interested as such scenarios are very closer to ORS
applications, in which all the harvesters rotate with rotors. In 2016, Zhang et al. [20]
studied a harvester with a piezoelectric beam with tip magnetic mass rotates around
an off-centre of with the vehicle wheel. The rotation centre of the beam is offsite
the centre of the wheel. Bothe gravitational and magnetic forces are as the excitation
to dive the beam for electricity generation. used for monitoring rotating wheels.
In 2019, Rui et al. [21] used the same beam configuration as [20] but excited by
gravitational force only. It avoids the drawback of magnet attracting metallic debris
on road that may cause influences on the monitoring system. The beam stiffening by
the centrifugal force is investigated increasing with rotational speed.

Previous studies have made significant progress in using piezoelectric beams for
energy harvesting. However, they all focused on horizontal rotors systems i.e., the
axis of rotation is more or less parallel to the Earth’s surface, which exclusively need
the assistances of gravitational effects. As such, it is not workable for vertical rotors
where ORS systems frequency operates. To fill up this gap, this study proposes a new
magnet- piezoelectric beam harvester workable in both horizontal and vertical rotors.
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ORS on vertical rotor ORS on horizontal rotor

Fig. 1 A typical scenario of ORS applications

Following sections of the paper resents the prototype configuration, lumped parame-
ters models and simulation analysis of the harvester, in which construct features and
output performances are investigated.

2 Harvester Configuration and Operation Principle

2.1 ORS Operation Setups

A typical scenario of ORS applications is monitoring helicopters, as illustrated in
Fig. 1. ORS units can be installed at the end of the rotors to monitor blades and
their associated transmission systems. In addition to desired performance of vibra-
tion acquisition, transmission, and compactness, the supply units will operate with
different inclinations as helicopters operates with different manoeuvres. This means
that the harvesting devices should be workable in different rotor pitch angles. i.e.,
gravity effect based harvesters [16, 17] probably are not fully effective as the gravity
effect will disappear or reduce significantly. This means that amore generic harvester
must be developed to meet different rotor configurations.

2.2 Prototype Configuration Based on Magnet-Piezoelectric
Beams

Based on the great efforts and advances carried out for powering wheel monitoring
sensor systems [20] and different configuration between magnet and piezoelectric
beams [8], a prototype harvester for ORS applications is proposed as shown in
Fig. 2 to accommodate to the ORS device. It consists of mainly multiple piezo-
electric cantilever beams with tip magnets and one externally fixed magnet with
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Fig. 2 A prototype of magnetic piezoelectric beam harvester

magnetisation in radial direction i.e. The beam rotates alone with the ORS device
comprised of a vibration sensor, a microcontroller (MCU), a wireless transmission
(WT) and power management module (PMM). As the magnet at the beam end pass
through the fixed magnet, a non-contact impulsive excitation is produced by the
magnets and drives the beam to vibration and generate electric output to power all
ORS devices straightforward. This beam configuration operates based onmonostable
vibrations, thereby thus avoiding complicated designs and potential instability of
nonlinear based ones. Therefore, it can be easily integrated with other ORS modules
to construct a compacted system, being reliable for operation, simpler in construction
and more convenient for size minimisation and application. Moreover, the harvester
can operate in different rotor inclinations, therefore meeting the requirements for
different operating scenarios of ORS system.

3 Modelling for a Magnet-Piezoelectric Beam Harvester
(MPBH)

To gain an understanding of harvester output performances, a dynamic model for a
single magnet-piezoelectric beam harvester is developed, which will be the basis for
multiple beam analysis.Many differentmodels have been developed for such a piezo-
electric beam-based harvesters. The distributed models based finite element analysis
(FEA) provide more accurate analysis. However, it takes considerable computing
time and may be inconvenient for paramedic analysis as it needs large volumes
of calculations. In addition, uncertainties in parameter values such as flux density



1018 L. Gu et al.

and piezoelectric constants can impact the calculation accuracy. Therefore, this
study adopted a lumped electromechanical model to efficiently analyse the vibration
behaviour of the beam and the electric output performances.

3.1 Lumped Electromechanical Models
for a Magnet-Piezoelectric Beam

As shown in Fig. 3a, there is an impulsive force generated when the two magnets
are close to each other. It will then cause the beam to vibrate. Considering the small
vibration displacement of tip mass mt and low stiffness beam k, the vibration of the
tip mass can be simplified to be a single degree freedom (SOF) system, as shown in
Fig. 3b including the coupling effect of electricity generation.

According to simplified mode, vibration motion y and electric output v(t) can be
related by refereeing to the models used in [23] as:

mÿ + cẏ + ky + εpv(t) = Fwcos(θ) + Ft (1)

in which the gravitational forces Fw by tip mass mt :

Fw = mtg cos(tωr ) (2)

and the electric voltage v(t) output can be predicted by

Cpv̇(t) + v(t)

R
= εp ẏ(t) (3)

where the equivalent mass is m = mp + mt , which is the combination of the beam
and the tip mass. εp is a linear electromechanical coupling coefficient; Cp is the

Fig. 3 Vibration model for the magnet-piezoelectric beam harvester
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capacitance of the piezoelectric element; R is load resistance and θ is pitch angle of
rotor systems, which is angle between the rotor axis and the earth’s surface, being 0
for horizontal rotors and 90° for vertical rotors.

Ft i.e., Fy are the noncontact magnetic forces in the lateral direction perpendicular
to the magnetization direction of two cuboidal magnets. This force is the primary
one to induce the lateral vibration of the beam in y-direction. For two magnets of
dimensions: 2A × 2B × 2C and 2a × 2b × 2c respectively, magnetic forces Fx , Fy

and Fz can be calculated according to [22].

Fx,y,z = B1B2

4πμ0

1∑

i=0

1∑

j=0

1∑

k=0

1∑

l=0

1∑

p=0

1∑

q=0

(−1)i+ j+k+l+p+q

∅x,y,z
(
Ui j , Vkl ,Wpq , Rm

)
(4)
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and Fz respectively:
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)
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)
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(
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)

−Ui jWpq tan
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∅z = −Ui jWpqln
(
Rm −Ui j

) − VklWpqln(Rm − Vkl)

−Ui j Vkl tan
−1 Ui j Vkl

RmWpq
− RmWpq (7)

where Ui j = dx + (−1) j A − (−1)i a, Vkl = dy + (−1)l B − (−1)kb, Wpq = dz +
(−1)qC − (−1)pc; Rm =

√
U 2

i j + V 2
kl + W 2

pq .

In which dx , dy and dz are the distances from the co-centre of two magnets in x-,
y- and z-axis respectively. For the coordinate system set in Fig. 3, they vary with the
angular displacement, in particular, dy and dz are functions of rotation speed ωr and
vibrations y(t) and z(t) at y-axis and z-axis respectively.

dx = dx0 + x(t) (8)

dy = Lb sin(ωr t + α0) + dy0 + y(t) (9)



1020 L. Gu et al.

Fig. 4 Magnet force variation with distances and rotor positions when magnetization in z-axis

dz = dz0 + [Lb − Lb cos(ωr t + α0)] + z(t) (10)

Figure 4 shows those three forces varying with distances and rotor positions when
the magnetization direction of two cuboidal magnets aligns in z-axis. Owing to the
superposition of magnetic fields, the magnetic forces exhibit two typical impulses in
the direction of both x-axis and y-axis: a positive impulse and a negative impulse.
On the other hand, only one negative impulse is generated in z-axis. Moreover, the
closer the two magnets between two magnets in z-axis, the stronger of the pulses. In
addition, the repulsive force in z-direction Ft has higher amplitude. These impulsive
behaviours will result in different vibration behaviours and thus obtain different
electric outputs.

3.2 Simulation Implementation

To gain quantitative understandings of the characteristics of vibration and electric
outputs of the beam, a numerical analysis was conducted by solving the differential
equations of Eqs. (1) and (3) using the Runge–Kutta method in MATLAB. It allows
the time-varying impulse Ft (x, d) and linear coupling εp to be analysed effectively.
To be in accordance with the test setup for the piezoelectric beams available, main
parameters are setup based on Table 1 for simulation studies, aiming at achieving in-
depth understanding the effect ofmain operating parameters such asmagnet sizes and
the distance between tow magnets. The load resistance is in the range of effective
power harvesting and the outputs can be recorded by common measurement and
data acquisition systems. Coupling coefficient εp was determined by measuring the
attenuation rate of voltage output records through an offline, which is based on the
damping effect of coupling as shown in Eqs. (1) and (3).

In addition, both the stiffening and the softening effect due to beam axil forces:
centrifugal force Fc = (

r + Lbmω2
)
andmagnet Fz for axially loaded beams is taken
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Table 1 Key system parameters

Symbol and units Values Model

Magnet (w × h × l) mm3 10 × 10 × 10 N35 neodymium

Piezoelectric beam (L × W × b) mm3 60 × 30 × 0.3 PIEZOELECTRIC5

Lb rotating radius of beam (mm) 115

εp Coupling coefficient (N/V) 0.0005 Calibrated by fixed PIEZOELECTRIC
beam tests

Bi magnetic flux density (Tesla) 1.17 Calibrated by fixed PIEZOELECTRIC
beam tests

Cp capacitance of piezoelectric −8.5 × 105 Calibrated by fixed PIEZOELECTRIC
beam tests

R Electric load (k�) 44.7 Calibrated by fixed PIEZOELECTRIC
beam tests

into account based on the change in the natural frequency of a rotating cantilever [1,
24], which is estimated by referring to

ω0r = ω0

√(
1 + 5(Fc − Fz)L2

b

14E I

)
(11)

where the natural frequency of a cantilever without axial force is ω0 = β2
0

√
E I
mL4

b
.

3.3 Test Evaluation

As a number of parameters such as magnetic flux density and piezoelectric constants
have high uncertainties and cannot be accurately specified by suppliers, experiments
were carried out to tune these parameters. The experiments were based on a test
setup where the piezoelectric beam with tip magnet is vertically fixed and a rotor
a cubic magnet rotates to excite the piezoelectric beam to vibrate and the electric
voltage generated by the vibrating beam was recorded by a YMC9004 ADC system
at 6.250 kHz with 24 bit resolution. The system is detailed in Fig. 5. In this setup, the
beam is only excited by the magnetic force induced by the rotating magnet on the
rotational plate, avoiding the influence from the other sources such as gravitational
forces of tip mass, unsteady speed, twists of the beam, wind turbulences and so on
when piezoelectric beam is spinning. In addition, the output voltage can be captured
by the stationary ADC devices for more accurate analysis. Currently ORS nodes are
able to operate with data resolutions from 12 to 16 bits, much lower than that of 24
bits of the stationary ADC in use, being unable to capture the details of impulsive
responses with high dynamic ranges.
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Fig. 5 Layout of a fixed PIEZOELECTRIC beam test system

Figure 6 presents typical voltage waveforms captured at two different magnet
distances when the rotor spins at 9 Hz. Two successive oscillating profiles can be
observed in the figure. The spikier one with shorter duration corresponds to the
effect of magnetic repulsion as the magnet on rotor moves though the beam, and the
smoother one with wider duration corresponds to free attenuation responses of the

Spiker Smoother 

Fig. 6 Measured voltage waveforms at different magnet distances
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Fig. 7 Predicted voltage waveforms at different magnet distances

beam when the magnet moves away. The magnetic repositions are stronger when
the distance between two magnet is smaller, as shown in Fig. 6a, Consequently, it
can excite up more high modes of piezoelectric beam and thus present free atten-
uation oscillations in voltage waveforms. In contrast, when the distance is larger,
the repulsive impulse is smaller, and thus less modes are induced, showing smaller
attenuation responses, as shown in Fig. 6b.

Comparing with predicted one shown in Fig. 7 has found that predicted and
measured waveforms are in good agreement. The spiker one with short duration
in the predicted waveforms are more observable and so does the smoother one. In
addition, the amplitudes also agreeable in that the closer the magnets the higher the
amplitudes. However, the predictions do not show responses at higher-order beam
modes as the model in Eq. (1) only takes into account the 1st mode of the beam.
Nevertheless, this simplified model is sufficiently good for promptly analysing the
dynamic responses and designing the prototype harvester.

More experiments and analysis were carried out based on the fixed piezoelectric
beam test setup the beam damping coefficient cwas firstly determined from the atten-
uating vibration displacement measured by a non-contact high speed camera. Then
electromechanical coupling coefficient εp is identified by finding the difference of
the displacement attenuations between electricity generation and free vibration case.
Moreover, experiments for successive rotor speed increases show that the impulsive
magnetic forces enable to excite the 1st modes at the lower rotation frequencies. As
shown in Fig. 8, the spectrum peaks around resonant 12.5 Hz show higher magni-
tudes for low speed operations (below 6 Hz), showing this impulse based harvester
can have a good low frequency performance.



1024 L. Gu et al.

Fig. 8 Voltage spectra of measured voltages

Fig. 9 RMS voltage values at different magnetic distances and rotation speeds

For more accurate analysis, voltage RMS values were calculated fromwaveforms
and presented in Fig. 9. It can be seen that the harvester can also produce high
voltages in the speed range below 6 Hz, or half of the 1st resonance at 12.5 Hz.
These low frequency outputs are comparable to that at the resonances where most
harvester mechanisms operating in. With these harvesting characteristics it is easier
to configure other beams on the rotor with different resonances to obtain an even
wider band xharvester (Fig. 10).

4 Simulation Studies

Having confirmed the correctness of models and associated programs solving the
governing equation inMATLAB, subsequence simulation studies were carried out to
evaluate the performance of the impulse-based harvester. Considering conveniences
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Fig. 10 Predicted outputs for different rotation speeds with different magnet distances

for setting up the fixed magnets in ORS applications, the simulation studies in this
study focus on the influence of magnet distances and sizes. These two factors are
critical as rotating machines often has limited spaces to accommodate the external
magnet. Moreover, the output performances of the harvester element are also exam-
ined for not only the scenarios of vertical spinning rotators but also the horizontal
ones, which will demonstrate the suitability of generic applications.

4.1 Outputs on Vertical Rotor Systems

For different magnet distances, both the electric voltage outputs and vibration
displacements exhibit wideband performances, as shown in Fig. 10. The electric
power, which is calculated based on a 44.7 k� load resistor, also presents similar
wideband characteristics. However, when magnet is too close to the beam tip such as
for the distances at 20 and 40 mm, vibration amplitudes in the low frequency range
have very high peaks. Such extremes may cause certain damages to the beams and
should be avoided. It means that the magnet should be placed with a good distance
such as 60 mm away for more steady and prolonged operation. In addition, this
distance can be safer and less intrusive as it is sufficiently far from the rotor.

For the magnetic distance at 60 mm, magnetic size is increased to improve output
performance. Figure 11 are the output comparison between the sizes of fixedmagnets
increased by 20% and 40% respectively. By doing so, it not only leverages total
magnetic flux density but also widen angular range of repulsive excitations. It can
be seen that the outputs because relatively smooth across different frequency bands.
This means that increase the size is a better way to improve output performance. In
particular, it suggests that a largemagnet is preferred for a large angular range of exci-
tation, rather than use high increase the flux intensity by using high quality magnet,
which can smoothen low frequency magnitudes for better lifetime of piezoelectric
beams.
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Fig. 11 Predicted outputs for different rotation speeds under different magnet sizes

4.2 Outputs on Horizontal Rotors

When the harvester attached to horizontal rotors, the gravitational force of tip mass
will also excite the beam to vibrate periodically and produce electric outputs. It
shows in Fig. 12 that gravitational forces can produce good outputs only around the
resonant frequency at 12.5 Hz because of its stationarity of sinusoidal excitations,
shown in Eq. (2).

When both gravitation and magnetic forces coexist, the harvester produces
enhanced results. As shown in Fig. 13c, the power output becomes flatter across
the full frequency band, which is more acceptable in terms of widening frequency
bands for more effective energy harvesting.

Fig. 12 Predicted outputs for different rotation speeds under gravitational force alone
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Fig. 13 Predicted outputs for different rotation speeds under both gravitation and magnetic forces

5 Conclusion

The novel prototype energy harvester has been proposed for accommodating ORS
applications. Its dynamic responses and electric outputs are studied numerically
using a validated lumped parameter model. Analysing the simulation results has led
to main findings as follows:

• In addition to the expected high outputs at resonances, the proposed structures
can also have higher output performance in low frequency range—about 50% of
the 1st resonant frequency owing to the impulsive inputs.

• Large size of magnets with weak magnetic strength are a more effective approach
to reducing low frequency vibrations while widening the frequency bands for
effective harvesting. In contrast, placing stronger magnet close to the beam may
lead too high dynamic responses of the beam, which can cause damages to the
piezoelectric beam.

• In addition, the harvester can also operate in horizontal rotators with enhanced
output at resonances due to gravitational effect.
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Image-Based 3D Shape Estimation
of Wind Turbine from Multiple Views

Minghao Huang, Mingrui Zhao, Yan Bai, Renjie Gao, Rongfeng Deng,
and Hui Zhang

Abstract This paper addresses the problem of reconstructing depth and silhou-
ette images of wind turbine from its photos of multiple views using deep learning
approaches, which aims for wind turbine blade fault diagnosis. Some previous multi-
view based methods have extracted each photo’s silhouette and combined them into
separate channels as the input of convolution; others use LSTM to combine a series
of views for reconstruction. These approaches inevitably need a fixed number of
views and the output result is divergent if the order of the input views is changed.
So, we refer to a network, SiDeNet (Wiles and Zisserman, Learning to predict 3d
surfaces of sculptures from single and multiple views. Int J Comp Vision, 2018),
which has a flexible number of input views and will not be affected by the input
order. It integrates both viewpoint and image information from each view to learn a
latent 3D shape representation and use it to predict the depth of wind turbine at input
views.Also, this representation could generalize to the silhouette of unseen views.We
make the following contributions to SiDeNet: improving the resolution of predicted
images by deepening network structure, adopting 6D camera pose to increase the
degrees of freedom of viewpoint to capture a wider range of views, optimizing the
loss function of silhouette by applying weights on edge points, and implementing
silhouette refinement with point-wise optimizing. Additionally, we conduct a set
of prediction experiments and prove the network’s generalization ability to unseen
views. Evaluating predicted results on a realistic wind turbine dataset confirms the
high performance of the network on both given views and unseen views.
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1 Introduction

Wind energy is one of the most technologically mature and widely used renewable
energy sources in the world. The number and usage of wind turbines has increased
rapidly, and the frequency of accidents has also increased. At the same time, blade
failures is the most expensive core component in wind turbines, accounting for more
than20%of the total number of failures. In order to reduce the economic losses caused
by this, new and effective wind turbine blade monitoring methods have become
extremely important. Generally, sensors are installed on the wind turbine blade for
fault diagnosis [1]. Due to the limitations and deficiencies of the sensor, the quality
of the detection results mainly depends on the sensor itself and the use of the sensor,
and the results often conflict. Therefore, the computer vision technology that does
not need to use the sensor has received more attention. In order to obtain the 3D
data of the wind turbine blade, researchers stick many markers on the wind turbine
blade [2]. However, this method always takes a lot of time and requires higher image
resolution and acquisition speed. Meanwhile, in order to diagnose the shape and
status of wind turbine blades, we need to reconstruct it from a single or multiple
photos.

Thiswork proposeswind turbine blade (WTB) fault diagnosis based on a real-time
3D reconstruction system. In order to implement this system, a series of continuous
views of the wind turbine must be generated to form a global 3D reconstruction of
the wind turbine. Therefore, our task is to predict depth images of wind turbines from
distinct perspectives. Due to the lack of prior knowledge, it is difficult to infer the
concavities of the unseen views on the basis of single or multi view reconstruction.
An alternative way to predict new unseen views is to use silhouette. Inspired by the
deep learning network SiDeNet, we can use a variable number of views as input
to predict the depth of a given view and the contour of a new view. The network
can learn 3D information from single or multiple views in order to infer 3D shapes
by combining the information of each view into global information. On this basis,
SiDeNet can also be extended to new invisible shapes.

We also notice that a higher resolution of predicted images can increase the clarity
of details. And by incorporating camera pose as 6 degree of freedom parameters, the
method can be more universality applied. As our real dataset consists of several
frames captured in a fixed camera viewpoint, rather than multiple-view data, single-
view data, or data that focuses on only a small range of viewpoints is collected,
we conducted experiments related to the number of views, and revealed the impor-
tance of the rich viewpoints in training data to compensate for the small number of
views that we actually collect. Finally, in order to improve the edge accuracy of the
predicted silhouette, we apply an improved silhouette weighted loss, and implement
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an optimized silhouette edge prediction method according to PointRend [3]. Then, a
system that can generate a series of wind turbine views is well trained and evaluated.

Our work has the following contributions: (1) The encoder-decoder architecture
and its loss function in SiDeNet are refined for learning 3D shapes and predicting
depth and silhouette. (2) A dataset of complex wind turbine is synthesized, which
shows that the learned 3D representation is sufficient for newview synthesis of a set of
unseen objects with complex shapes and even textures. (3) By incorporating camera
pose as 6° of freedom parameters, the method can be more universality applied.

This paper is organized as follows. Section 2 introduces basic knowledge of
existing methods of several issues related to image-based reconstruction. Section 3
presents the main framework of SiDeNet and our improvements. Section 4 gives the
description and analysis of proposed dataset. The results of conducted experiments
are shown and evaluated in Sect. 5 which is followed by conclusions in Sect. 6.

2 Related Works

2.1 Sensors and Markers

The fault detection of fan blades mainly relied on the use of sensors [4] and markers
[5]. For the sensor, the detection technology was mainly based on vibration signals
[30]. However, under complex operating conditions, the signal is not sensitive to
surface fault detection and is susceptible to environmental factors. Another detection
technology based on acoustic emission technology requires densely arranged sensors
on the surface of the blade [6]. This method is often limited by the acoustic emission
sensor, and its orientation often affects the quality of the detection results.

Today’s machine vision-based wind turbine blade detection can avoid the use of
sensors, for example, Corten and Sabel [7] tried to use photogrammetry technology
[8] to measure blades by presetting markers on wind turbine blades and towers.
Ozbek [9] uses a system that includes 4 CCD cameras and a high-power flashlight
to measure the working status of the fan through marked points. Poozesh [10] adds
markers on the surface of the blade and uses a bunch of stereo cameras to capture its
geometry. Moreno [11] uses a vision-based deep learning method to automatically
monitor each part of the blade surface using a camera installed on a robotic system
to detect damage. Combining the above methods and the existing literature, in the
blade structure failure detection method, markers are added on the blade surface.
However, thesemethods often have long detection cycles, high costs, and high camera
resolution requirements.
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2.2 3D Reconstruction with Multi-images

The single image method needs to apply a priori as a constraint to reconstruct 3D
information, because the 3D shape of the model cannot be inferred from the feature
correspondence between multiple images. For example, the prior may be class-based
modeling for deviation from the average shape. This method was first proposed by
Blanz and Vetter [12]. Another application is to use texture or lighting priors to
recover various complex 3D shapes [13]. But this method that requires additional
information as a priori is not suitable for our project.

The self-occlusion problem can be overcome by providing multiple viewpoints.
Several methods to integrate information from different angles are proposed. A
classic method is that given multiple views of an object, a 3D shape can be generated
by combining the characteristic points of these views using structure-from-motion
[14]. Our framework based on Wiles and Zisserman’s SiDeNet [15] is optimized,
using max-pooling to combine feature vectors extracted from multiple views into
latent feature encoding, which can be used for the depth and silhouette prediction of
each view.

2.3 Silhouette

The initial method [16] used a series of silhouette images with known camera extrin-
sics to predict the visual hull, whichwas achieved by using voxels in the 3D represen-
tation. This is an improvement over other traditional methods that take into account
reconstruction shapeswith certain geometric and photometric constraints [17].When
testing constraints on shapes, they requiremultiple views and cannot infer an invisible
view of the object. In our work, we construct a latent 3D representation by combining
the encoding of multiple views. Given the input of the viewpoint information, the
representation can be generalized to the silhouettes of the invisible part of the object.

2.4 Depth

The traditional depth estimationmethod has the problem ofmatching errors in scenes
with drastic changes in lighting conditions [18]. Yao [19] proposed an end-to-end
depth estimation framework based on deep learning, which improves the accuracy of
depth estimation by restoring the dense structure of scenes frommultiple perspectives
with a certain degree of overlap. Chen [20] used the predicted depth information
combined with ground truth to form a three-dimensional point cloud, and then used
the 3D point cloud algorithm to optimize the depth regression. However, since the
generation of 3D point clouds requires a lot of resources, we adopt a more efficient
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method, which is based on U-Net [21] and Pix2Pix [22] using 2D images for depth
recovery.

3 Proposed Method

Inspired by the architecture of SideNet, we use a framework includes two branches,
i.e., silhouette prediction and depth prediction at given viewpoints. The 6D pose [23]
of the wind turbine refers to the translation and rotation of the camera coordinate
system relative to the world coordinate system, including the three rotation angles
of the three camera directions and the camera position vector (t = [x, y, z]).

3.1 Main Architecture

The overall network structure is Encoder-Decoder, which is classical in U-Net, as
shown in Fig. 1. The encoder is implemented using convolutional layers. The layer
parameters and design are based on the encoder of the pix2pix architecture [22] and
the U-Net architecture [21]. Given a set of images from each viewpoint, the encoder
takes these images Ii and the corresponding viewpoint parameters, including trans-
lation and spatial rotation (Ii , ti , Ri ) as input, and then encodes them and broadcast
over the feature channels. After convolution, the feature vector of each viewpoint is
combined into a single latent vector x. x incorporates features from each viewpoint,

Fig. 1 The architecture of the network.Weights are shared across encoders. The blue arrows denote
concatenation (over the feature channels). The feature vectors are combined to form a feature
encoding (indicated by pink blocks)
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including image and viewpoint parameters. Then through max pooling, x repre-
sents the most “confident” features of each viewpoint, and can be used for depth
and silhouette prediction using the decoder. The decoder of each viewpoint depth
prediction takes x as an input to recover the surface concavities of the object with
depth d1 . . . dN in each given viewpoint, by using a transposed convolution and up-
sampling layer with skip connections (taken from the corresponding input branch
for feature reuse). The layer parameters also come from the pix2pix and U-Net.
Similarly, the silhouette decoder uses x as input to predict the silhouette S at a new
viewpoint (ti , Ri ), with a feature channel broadcasting of new viewpoint informa-
tion. The layers in the silhouette decoder are the same as those in the depth decoder
without skip connections.

In order to have a more flexible depth estimation, we set the convolution encoder
with camera pose parameters with 6 degrees of freedom into two full-connect layers
[24]. The broadcasting operation is the same as before. Specifically, we first calculate
the sin and cos of the 3 camera rotation angles, combine themwith the camera position
vector (t), and pass them through two full-connect layers. The output is concatenated
to each image encoder. These two layers can help reduce noise in camera poses
and encourage the network to work well on each view. By incorporating the camera
pose into the feature channel of the image encoder, we enable the network to learn
information about the features of the wind turbine from specific views.

3.2 Silhouette Refinement

Silhouette estimation is always one of the most difficult steps in image segmentation.
In order to obtain a good silhouette prediction, we adopt the method of PointRend
[3], which effectively improves the accuracy of the silhouette. Basically, PointRend
performs point-based segmentation prediction at adaptively selected locations based
on an iterative subdivision algorithm.

In Fig. 2, we add a coarse-to-fine rendering module between the last up-sampling
layer and the output result on selected feature points, while original up-sampling
remains unchanged. The module selects a set of points (red dots) from the output
feature map according to the adaptive subdivision algorithm and makes prediction
for each point independently with a small MLP [25] and then inserts these predicted
results to the corresponding points of the output silhouette image. The result in Fig. 3
shows the improvement in silhouette edge clarity.

3.3 Loss Functions

This section introduces the use of multi-task loss functions, using binary cross-
entropy loss to predict silhouettes and MSE loss to predict depth.
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Fig. 2 The coarse-to-fine renderingmodule of PointRend is a sub-branch between the last layer and
output image where the corresponding points are refined and inserted. This achieves a point-wise
refinement of uncertain feature points and improves the silhouette

(a) (b)

Fig. 3 Improvement of predicted silhouette. a Silhouette without point-wise refinement. b
Silhouette with point-wise refinement. The result shows that the accuracy has improved

Depth Loss. The mean value of the difference between the target depth and
the predicted depth is simply the absolute difference of all pixels of the target and
predicted depth divided by the number of pixels. This operation allows the model no
longer guess the absolute position of the object. It reduces ambiguity [15].

Ldepth =
N∑

i=1

∣∣di − digt
∣∣ (1)

where d is the predicted depth, dgt is the ground truth of depth, N is the pixel
number.

Silhouette Loss. Silhouette is a binary mask, i.e., 0 or 1. The binary cross-entropy
is used to represent the average error of all pixels, which is also called the error
prediction rate of all pixels. We use an improved loss: the use of parameter can
weight more on the edge of silhouette, so that the silhouette edge can be predicted
more accurately [15].
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Lsil =
∑

i, j

wi, j

(
Sgti, j log

(
Si, j

) +
(
1 − Sgti, j

)
log

(
1 − Si, j

))
(2)

wi, j =
{
disti, j , i f disti, j ≤ T

c, otherwise

where S is predicted silhouette, Sgt is ground truth of silhouette, i, j are position of
pixel, c is default constant weight, T is default threshold of distance.

3.4 Interpretability

First, in the Encoder structure, the image is input to the convolutional layer of each
encoder. In a certain layer, the corresponding viewpoint information composed of
the 6D camera extrinsic is encoded and broadcast over the feature channels of each
input convoluted image. Then through the convolutional layer, the broadcast feature
channel of the viewpoint information is integrated into the original feature channels
of the image. At the end of each encoder, a 512 × 1 × 1 feature vector is generated.
All these feature vectors are concatenated into 512 × N × 1 feature maps (N is the
number of input viewpoints). Then through max pooling, the largest one is selected
among the 512mappings of size N× 1, and the output is a 512× 1× 1 feature vector
x. x incorporates the largest of the N elements of each feature map, which means that
it contains some viewpoint and image information. Among them, each viewpoint of
the 512 features is the most important, and contains the most confident features of
each viewpoint. Therefore, x can encode the properties of 3D shapes useful for both
depth prediction and silhouette prediction in new views.

Then for the decoder of depth branch, skip connections and up-sampling layers
with transposed convolution are used for depth reconstruction. Up-sampling helps to
restore the resolution and pixels of the image, and skip connections help to reuse the
features of the image in the encoder and recover its information. For the silhouette
branch, x is input together with a feature channel broadcasting of new viewpoint
information, and starting from noise, the cost function is minimized by using binary
cross-entropy loss. When input to the network, the reconstructed silhouette should
give a feature vector x’ that is the same as x. This is because among the viewpoint-
dependent features in x, those who are confident in the viewpoints close to the new
viewpoint will be given a larger weight, and then the parameters of these related
units will be updated through back propagation, and the most prominent features in
the new poses will be introduced slowly, and finally a reconstructed silhouette will
be obtained.
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Fig. 4 Example images rendered from the dataset. (a, b) The wind turbine dataset. (c) The wind
turbine blade dataset. These examples show various wind turbine models with rich shapes and
textures, which helps the network generalize to real datasets

4 Dataset

Our work uses a series of wind turbine models to manually generate a data set, shown
in Fig. 4. These models accurately simulate real wind turbines with realistic textures,
including images and their corresponding pose information. Specifically, we align the
center of the gravity and orientation of wind turbine itself with the world coordinate
system ((0,0,0) represent the center coordinates), and then randomly select target
points on the surface of a sphere with a radius of 2 centered at (0,0,0). Then images
are generated with corresponding pose parameters.

As for rendering, the wind turbine model is normalized to a uniform size and
5~10 images of each wind turbine model are rendered from viewpoints uniformly
and randomly selected within a specific range determined by the camera rotation
angles and position vector, as the wind turbine is rotated about horizontal axis or
vertical axis and has a variable distance from camera. In particular, the image sets
of each model as data samples can cover the full-view of the wind turbine. These
characteristics of our dataset help the network fully extract the information of various
real turbine models from almost all possible views, and combine them to generate
new views. In other words, the network parameters have been fitted to a wide range
of views during training, so new views that may be close to the views already seen
in training can be successfully generated in the test.

The dataset of wind turbine is divided into training set, validation set, and test set
at the turbine level, and the proportions are 70%, 10%, and 20%, respectively. For
each iteration, wind turbines are randomly selected, from which a subset of the 5–10
rendered views are selected.

5 Experimental Results

5.1 Improvement of Resolution

The result of depth/silhouette prediction is shown in Table 2. The prediction error of
the results of different architectures of SiDeNet is shown in Table 1. The prediction
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Table 1 The performance of different architectures

Model Input/output
size

Improved loss Degree of
freedom

Depth error Silhouette
error

SiDeNet
2561dof

256 × 256 × 1 0.078 0.101

SiDeNet
2561dof

256 × 256
√

1 0.077 0.096

SiDeNet
2566dof

256 × 256
√

6 0.072 0.093

SiDeNet
10241dof

1024 × 1024
√

1 0.061 0.065

SiDeNet
10246dof

1024 × 1024
√

6 0.063 0.064

accuracy is high enough because compared with the ground truth, the loss of both
depth and silhouette accurately lies in the range from 0.05 to 0.1, which is low
enough for L1 loss and binary cross entropy loss, as explained with Eqs. (1) and (2).
Therefore, the predicted images of depth/silhouette in Table. 2 show that with the
loss smaller than 0.1, the depth will have very little error on each pixel’s depth value
compared with ground truth, and also silhouette will have a clear visual hull that is
nearly the same as the one in ground truth because even though a few edge points
are wrong predicted, they were refined with PointRend introduced in Sect. 3.

Table 1 compares the performance of SiDeNet 256 and SiDeNet 1024 with 1 or
6 degrees of freedom, as well as using an improved loss on silhouette prediction.
This shows that although the difference in results driven by the increased degree of
freedom is minimal, the converging speed during training is much faster because
we have more feature variables related to the viewpoint, which helps the network
encode the feature maps of multiple views more efficiently and perfectly. This helps
to improve the robustness and compatibility of our multiple-view reconstruction
task. In addition, along with the PointRend refinement, our weighted loss function
improves performance. In SiDeNet 1024, we increase the resolution of the input
image from 256 to 1024. This can improve the resolution of predicted result. As a
result, the accuracy of both depth and silhouette is increased.

5.2 The Effect of the Number of Views

Training with more views can predict better than training with fewer views, and since
the network sees more viewpoints during training, this can improve the prediction
of those unseen views which are far from the range of predictable new views from
input viewpoints. On this basis, when testing with a smaller number of views, the
network canmake use of information learned from the additional views. It shows that
using fewer views than trainingwill have certain negative impacts on the silhouette of
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Table 2 Predicted images of
all available views (0°~180°)
of a wind turbine model

Viewpoint Input views Depth/Silhouette

0°

45° Nil

60°

80° Nil

120°

150°

180° Nil

For “Input views”, “Nil” means it is a new unseen viewpoint for
silhouette prediction, otherwise there is an RGB image of the input
view and this viewpoint is for depth prediction
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Fig. 5 a The effect of view number in testing on performance. b The performance of different
viewpoint choices

unseen newviews, and have no effect on the depth of input views.Given the limitation
of view number in real data set, we have to find the reduced number of views that
will not greatly affect the prediction performance of silhouette. We completed this
experiment by reducing the number of views in testing (6 views in initial training).
The result is shown in Fig. 5a. Therefore, we know that an acceptable silhouette
accuracy is 0.084 which is with 4 views (2 views reduced).

5.3 The Effect of Viewpoint Choice of Generating New Views

In order to test the viewpoint-encoding and generalization ability of SiDeNet, we
control the viewpoint range of dataset by adjusting 6 degrees of freedom: only the
horizontal rotation angle is changed in a range from 0° to 120°, and the other 5°
of freedom are fixed. The experimental results of silhouette prediction of different
viewpoint choices are shown in Fig. 5b. It shows that the network is able to generate
newviewswith high accuracywhen the newviewpoint is selected near the viewpoints
used in training (Viewpoints from 100°to 140°). This infers that we have to broaden
the range of views and increase the number of views during training, so that we can
train a network with stronger generalization ability.

5.4 Predict Results

Based on the above experiment, we test the trained network using a data sample that
contains 4 input views (0°, 60°, 120°, 150°) and predict the depth images at these 4
given views as well as the silhouette images at new unseen views (45°, 80°, 180°)
as shown in Table 2, which reveals that adding more views to the training will more
accurately generate new views close to the given view.
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6 Conclusions

This paper introduces a multi-view 3D shape reconstruction system for wind turbine
blade fault diagnosis. We make improvements on SiDeNet, in which the view-
dependent encoders and feature combiner stimulates the network to integrate image
information from all the input views. Therefore, the network can learn global feature
that include the 3D shape features of all views, thereby being able to predict the depth
of input views and generalize to the silhouette of unseen views. After verifying the
prediction results, we obtain the following conclusions. Firstly, the increase in the
degree of freedom of the viewpoint allows the network to take images of a wider
viewpoint range as input, so that the shape information from more viewpoints can
be learned, and the generalization ability of unseen views is improved. Secondly, the
resolution increase makes the depth and silhouette images with more details. Third,
the effectiveness of PointRend’s adaptive points selection and point-wise refinement
is remarkable. In addition, experiments have been conducted to prove that usingmore
views in training, the network can use fewer views during testing andguarantee higher
prediction performance. The experiments have also proved that the network more
accurately predicts the silhouette of a new view that is close to the viewpoint of the
views in training. These reflect the correlation and continuity between the image
features of continuous viewpoints that the network can learn, which prove the gener-
alization ability of the network to predict continuous views of the turbine. Finally, a
series of consecutive views can be generated in high definition and combined into a
reconstructed model.
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Health Status Assessment of Marine
Diesel Engine Based on Testability Model

Ru Xiao, Guojun Qin, Zeyun Zhou, and Min Wang

Abstract To solve the problem of maintenance lag caused by long-term ocean
voyage, a health assessment method is proposed based on the testability model for
diesel engine. Firstly, the testability model is applied to generate the “fault-test”
correlation matrix and accurately describe the interaction of each module and the
fault signal propagation in the system structure; Then, the current health state corre-
sponding to the bottom fault mode can be quickly deduced by using themodel to infer
the test information entropy; Finally, the health status of the whole diesel engine is
evaluated by mapping to the health status of the upper structure through the support
vector machine algorithm. The method can be used to determine the maintenance
requirements in advance and improve the accuracy of fault prediction.

Keyword Diesel engine · Health assessment · Testability model · Correlation
matrix · Support vector machine

Due to long-time sea voyage and operation, the maintenance lag of ocean-going
ships is inevitable, which brings great security risks. As the core of marine power
plant, diesel engine’s health assessment is of great value for fault early warning and
reducing the probability of failure.

In equipment health assessment, the “fault-test” correlation matrix, as the basis of
fault reasoning, is mainly used to describe the interaction between various modules
and the propagation relationship of fault signals. To establish correlation matrix, a
testability model must be given firstly. At present, multi-signal flow graph method is
usually adopted in testability modeling mostly [1, 2]. In this method, “test” data are
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usually sampled from actual measurement points or sensors, and faults are detected
and isolated by describing the logical relationship between fault and test. Most of
the faults isolated by this method just belonged to the bottom layer fault units [3,
4]. Although this method has been widely used in electronical equipment [5, 6],
the bottom layer fault modes based on fault-test information contained in existing
testability models are not enough to estimate the health status of whole system due
to the small quantity of test points for complex mechatronical systems. Therefore, a
health state assessment method based on testability model is proposed in this paper.
The health state of the system is obtained by reasoning based on hierarchical state
model and input test data. The method is also verified and applied in marine diesel
engine.

1 Testability Model Construction

To construct testability model, multi-signal flow graph method is used firstly, which
mainly includes the establishment of system structure, fault mode, test, signal and
directed edge. Then a data model of state relationship between different levels is
established. As shown in Fig. 1, the system structure tree is constructed in a top-
down way. Each node in the tree represents a module, and the hierarchy of each
module is marked by hierarchy labels such as system, subsystem, LRU and failure
mode. In the realization by software, the same module node can be used as a page,
and its sub module nodes are linked with its parent page in a directed edge way. Each
test has many properties, such as method, type, output (result), cost, steps, etc. The
test output has two states of “pass” or “fail”.

Fig. 1 Testability model construction
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On this basis, the signals representing the characteristic, state or attribute set
parameters [7] of the system or its constituent units can be attached to each module
and test to realize the quantitative description of the object parameters or the quali-
tative description of the functional state. In the process of modeling, the same signal
which is transmitted between different unit modules must be the same name, so as
to avoid the error of signal transmission relationship and dependency relationship;
Signals must be independent on each other, so as to ensure the simple and correct
modeling process.

2 Entropy-Based Fault Reasoning

Based on the testability model, the correlation matrix can be calculated first, and
then the information entropy method can be used to infer the state of the bottom fault
mode.

2.1 Calculation of Correlation Matrix

Correlation matrix can be calculated by reachability algorithm, in which the search
is begined with a failure mode. Firstly, along the flow direction of directed edge, it
searched the past paths, and recorded the measuring points it passed, until it cannot
flow, the traversal ends or returns to the node it has passed. Then, a correlation matrix
FT [8] (as shown in Eq. (1)) is generated by comparing whether the failure mode and
the tested signal have dependency relationship.

FTMN =
⎡
⎢⎣

ft11 · · · ft1N
...

. . .
...

ftM1 · · · ftMN

⎤
⎥⎦ (1)

Where, the row represents the failure mode f1, . . . , fM, column is the test t1 . . . tN.
In the FT matrix, if test tj is caused by fault fi, this means fij = 1, otherwise fij = 0.
The row vector Fi = [fti1, fti2 . . . ftiN] represents the performance of each test when
fi occurs. The column vector Tj = [

ft1j, ft2j . . . ftMj
]T

represents the possible fault
mode when tj occurs. In application, one fault has multiple tests, and the one test may
be caused by the multiple fault modes. For failure mode fi, all tests can be written as
T(fi) = {

tj|tj ∈ T, ftij = 1
}
.
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2.2 Bottom Fault State Reasoning

Taking correlation matrix as discrete information source, each object is regarded as
a group of random objects, and the information entropy of information source is
analyzed by adding failure rate. After the test is added into the information source
matrix, the change of its information entropy can indicate the change of the system
state, so as to judge whether there is a fault. Assume that for the discrete information
source D = d, The information quantity defined by Shannon’s information entropy
is

I(di) = − P(di)log2P(di) (2)

where di represents the occurrence of failure mode fi, while the probability of di
appearing in D

P(di) = 1

N
fri

N∑
j=1

ftij (3)

To distinguish the health status, the correlation matrix element ftij is changed:
when the correlation is 1, fij = 1, otherwise fij = −1. N represents the number of
tests, and fri represents the failure rate of the i failure mode.

The Shannon information entropy of the discrete information source can be
obtained by

H(D) = −
N∑
i=1

P(di)log2P(di) (4)

The information entropy training of the discrete information source is as follows:
Firstly, the information table of the information source is reorganized and the infor-
mation entropy A is calculated under the condition of failure training of fault mode.
Secondly, under the normal condition, the information table of the information source
is reorganized and the information entropy B is calculated.

The information entropy is calculated after the test set is added into the information
table. If the information entropy is A and basically unchanged, the fault mode is
failure state; If the information entropy is B, it is in normal state; If the information
entropy is between (−A/2,B/2) and is not zero, the fault mode state is suspect; In
other cases, the state of the fault mode is unknown. So, It is Fault state reasoning
from tests to bottom fault modes.
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3 System Health Assessment Based on Support Vector
Machine

After the initialization of the health state of the bottom fault mode, the state mapping
from the bottom fault mode is carried out layer by layer through the support vector
machine algorithm to the top system node, so as to obtain the health state of the
whole system.

Support vector machine (SVM) algorithm [9, 10] can maximize the classification
interval between two samples of different categories by constructing an optimal
classification surface. Multi-classification support vector machines [11, 13] can first
construct several binary classification support vector machines and then combine
them to solve the existence of multi-classification problems.

Suppose there are n classes of data training samples:

{
m1

1, . . . ,m
1
t1 , . . . ,m

k
1, . . .m

k
tk , . . . ,m

n
1, . . .m

n
tn

}
(5)

where k = 1…n is label for category, tk represents the number of training samples of
class k data. The total number of data training samples is t1 + t2 + . . . tn; In addition,
Assume f(·) is a discriminant function on the sample space Rd, then the steps of
constructing the n class (assuming n = 4) SVM classifier are as follows:

(1) Training of classifier

Firstly, the samples belonging to category 1 are regarded as positive samples, and
the rest are negative samples, and the two classes SVM classifier f1(·) is trained;
Then, according to the same method, the samples belonging to category 2 are taken
as positive samples, and the rest of the samples are taken as negative samples to train
the two class classifier f2(·). And so on, using the same method to train the second
class classifier f3(·); The combination of the three two class classifiers can form a
four class classifier.

(2) Application of classifier

In the application, first of all, the actual data sample mi is substituted into the second
class SVM classifier fk(·), and get its output fk(mi). Then, find the category y corre-
sponding to the maximum value in the function fk(m), k = 1, 2, . . . , n. The category
y is corresponding to mi:

y = argmax{f1(mi), f2(mi), . . . , fn(mi)} (6)

Considering that there are four kinds of system health states in this paper: “fault”,
“normal”, “suspected” and “unknown”, amulti-state classifier is constructed by using
one to manymethod. The health state of the lower structure is imported into the multi
fault classifier for calculation. If y=1, 2, 3, or 4, the health status of the upper structure
corresponds to “fault”, “normal”, “suspected” and “unknown” respectively.



1050 R. Xiao et al.

Fig. 2 Diesel engine system structure

4 Application of Marine Diesel Engine Health Assessment

4.1 Testability Modelling of Marine Diesel Engine

According to the structure of marine diesel engine (as shown in Fig. 2), the model
of the system is constructed from top to bottom, and all modules are divided hierar-
chically according to system, subsystem, LRU and fault mode. As the only system
layer, diesel engine is regarded as the root node of modeling, while nine subsystems
are taken as the first level sub nodes, and he subsystems are divided step by step.
For example, the cooling system is divided to many secondary sub-nodes, such as
seawater pump LRU, fresh water pump LRU, heat exchanger LRU, thermostat LRU,
etc. while thermostat LRU includes two failure modes: thermostat stuck and thermo-
stat installed in the wrong direction. At the same time, each functionmodule contains
corresponding attributes, such as failure rate, maintenance cost, working time, port,
additional signal, etc.

On the basis of hierarchical division, corresponding tests can be added at appro-
priate positions, such as oil pressure, starting detection, runaway, speed fluctuation,
power detection, exhaust color, exhaust temperature, etc. Each test itself includes
test type, method, cost, level, additional signal and other attributes. By connecting
modules and between modules and tests with directed edges, the signal flow path
can be formed, and the testability model can be constructed (as shown in Fig. 3).

4.2 Bottom Fault Mode Reasoning

The correlationmatrix generated on the basis of the test itemmodel is shown in Table
1. The row in the table represents the failure mode, the column represents the test,
and the second column is the failure rate.

Firstly, the information entropy of each failure mode corresponding to different
health states (failure, normal, suspected, unknown) is trained, and then the experi-
mental test set (normal test and abnormal test) are input. On the basis of the above
correlation matrix, the information entropy algorithm is applied to fault reasoning,
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Table 1 Correlation matrix

Fault mode FR
(1/h)

Abrupt
stop

Start-up
detection

Flying
run

Speed
fluctuation

Power
sensing

Exhaust
color

Belt 1e-06 0 1 0 0 0 0

Crankshaft 1e-06 0 0 0 0 1 0

Thermostat 1e-06 1 0 0 0 0 0

Regulating
valve

1e-06 0 0 1 0 0 0

Seawater
pump

1e-06 0 0 0 1 0 1

Wire way 1e-06 0 0 0 0 0 0

Brownout 1e-06 0 1 0 0 0 0

Valve
leakage

1e-06 1 0 0 0 1 0

Low intake
pressure

1e-06 0 0 0 0 0 0

Flying
hammer

1e-06 0 0 0 1 0 0

and the fault occurrence status (fault, normal, suspected and unknown) of the fault
mode can be obtained (as shown in Fig. 4).

Fig. 4 Fault reasoning
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4.3 Health Status Assessment of Marine Diesel Engine
System

Taking the diesel engine system and its lower 9 subsystems as an example, the
configured training matrix is shown as Fig. 5. In this figure, the first column of the
lower table represents the health status of the diesel engine system, and the last nine
columns represent the health status of the nine subsystems in the lower layer. Each
row corresponds to a set of sample data, and the multi-dimensional sample data sets
are trained to the mapping model of this layer by SVM algorithm. And so on, from
the diesel engine system to the subsystem, to the LRU, and finally to the failure
mode, all matrix training is carried out. After the training, the health state model is
generated and saved.

Figure 6 shows the simulation results of health evaluation of actual diesel engine
faults. The health status estimates for each level of the entire diesel system are
shown on the left of level tree and the right side of health level chart, where red repre-
sents failure, green represents normal, yellow represents suspect, and gray represents
unknown.

Fig. 5 Health state modeling based on SVM
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Fig. 6 Health status assessment of marine diesel engine system

5 Conclusion

At present, the commonly used testability models are mostly applied for the diag-
nosis of the bottom layer fault modes, and cannot obtain the health status of the whole
system. Actually, bottom layer fault modes often have a direct impact on the health
status of the upper components. In this paper, based on the testability modeling,
information entropy of the bottom fault modes are firstly trained, and then the state
mappingmodels of each level are trained by the support vector machinemethod from
top to bottom. Finally, the overall health state model of the system is formed. The
application of health assessment on Marine diesel engines shows that this method
can better identify and predict the health status of complex mechanical and elec-
trical equipment, which is expected to provide important reference information for
maintenance decisions, so as to better control the potential failure risk.

Acknowledgements This paper is supported by the Key Research and Development Program from
Hunan Province (No. 2018GK2073) and the Scientific Research Project from Hunan Education
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Modelling the Dynamics of a CNC
Spindle for Tool Condition Identification
Based on On-Rotor Sensing

Chun Li, Dawei Shi, Bing Li, Hongjun Wang, Guojin Feng, Fengshou Gu,
and Andrew D. Ball

Abstract Cutting tool plays an important role in modern manufacturing industry,
however, tool wear is unavoidable during machining which could reduce the effi-
ciency. Aiming at studying an appropriate and efficient tool condition monitoring
method to improve the accuracy of finished parts, the roughness of the turned
surface, a novel On-Rotor Sensing (ORS) is installed on the rotating workpiece to
obtain vibration signals. To get an in-depth understand of the vibration data, a multi-
degree-of-freedom (MDOF) system consisted of spindle, chuck and workpiece is
established and its multi-mode natural frequency is obtained by finite element model
(FEM) method. It is found that the dynamic response of the spindle rotor determines
machining accuracy in the turning process and shows that the first several modes in
the frequency range within 2000 Hz are the main responses of the system, which
can be effectively captured by the ORS. Especially, the spring stiffness is calibrated
based on the FEM results and the accuracy of the dynamic modal responses of this
model are verified when the mass of the workpiece decreases during the turning
process. According to the results, two frequency bands are advocated for ORS based
online monitoring of tool wear conditions.
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Keywords Vibration · Tool wear condition · Finite element model · On-Rotor
Sensing · Dynamic characteristics of spindle

1 Introduction

The spindle rotor system is the core component of the CNC machine tool and the
related parts including supporting bearings, chuck and workpiece are also the key
components and their dynamic behavior play a decisive role in the machining quality
and cutting ability. It is pointed that the information such as vibration, cutting force
and tool wear, could be identified by properly characterizing the spindle dynamic
conditions [1]. An in-depth understanding of the dynamic characteristics of the
spindle rotor system is essential to get the most use of the machine, achieve high
performance quality and conduct effective condition monitoring and diagnosis [2].

Lots of researches have been conducted on the dynamic characteristics of the
machine tool through modal analysis method for complex system [3]. Vibration
mode of the spindle of CK6130 CNC lathe was analyzed though the finite element
model (FEM) carried out by ANSYSWorkbench [4]. Paper [5] gave a understanding
of thematerial selection and preliminary design of the lathe spindle also by FEM. It is
pointed out that themain factors that affect the spindle dynamics are the reassemblies
of bearings and preload force in axial direction [6]. Considering vibration behavior
during the cutting process, T. Schmitz studied a combination system of machine-
spindle-holder-tool and showed that the holder-toolmodes interact with themachine-
spindle modes [7]. In addition, Jie et al. [4] established the coupling system of the
inner and outer rotors of the spindle and calculated the critical speed and vibration
modes. Through the co-simulation of ANSYS and ADAMS, the influence of cutting
torque on spindle vibration was studied [8].

Furthermore, tool wear often gives rise to small but significant vibration ampli-
tudes that affect the form and finish of machine products [9]. Moreover, even a small
stochastic excitation can lead to stochastic resonance in the CNC machine system
[10], which will lead to instability of machining process and even cause serious
damage. Therefore, it is necessary to establish a coupled spindle rotor model and
comprehensively study the dynamic response characteristics under different tool
wear conditions.

Although significant development works has been completed about the effect of
operation conditions [11] on spindle, such as the bearing [12–14], machine structures
[15], cutting parameters [16, 17] and tool setting [18], relatively less effort has been
expended to study the dynamic characteristic of the coupled spindle rotor system
considering the effect of workpiece mass during the turning process.

Based on the description above, firstly, the FEM of a MDOF system consisted of
spindle, chuck and workpiece is established and especially the effect of the reduce of
workpiece mass on the natural frequency response of the coupled system is analyzed
in Sect. 2. Secondly, the bearing stiffness and damping is calculated according to the
empirical formula and adjusted through FEM results to meet the impact test results.
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In Sect. 3, an experiment about the tool wear condition identification is set up in a
CNC lathe system and two band-pass filters are designed to extract the vibration data
obtained by a novel On-Rotor Sensing (ORS) installed on the rotating workpiece
according to the FEM and test results. Finally, the tool wear states recognition are
experimentally verified and some conclusions are stated.

2 FEM Analysis

2.1 Establishment of Finite Element Model

It is known that each component such as holders, tool, and spindle is coupled with
each other in the spindle rotor system [7, 19]. To get a comprehensive understanding
of the dynamic characteristics of the rotating system, a multi-degree-of-freedom
(MDOF) system consisted of spindle, chuck and workpiece is established in this
paper shown in Fig. 1.

Figure 1 shows that the spindle rotor system is supported by two main groups of
angular contact ball bearings (ACBB) respectively, the front bearing group (work-
piece clamping end), which ismade up of three DBB-mountedNSK 7220A bearings.
The rear bearing group (pulley end) is made up of two DB-mounted NSK 7218A
bearing. The main parameters of the bearings are shown in Table 1. The two bearings
at the front end are simplified into one since they are close to each other. Therefore,
the front and rear bearings are simplified to two pairs of elastic supports respectively.

In general, the spindle, chuck and workpiece are usually modeled as rigid Timo-
shenko beams, whereas, the bearings assumed to contribute the flexibility and
damping to the system [20]. However, the typical researches usually simplify ACBB
to radial linear bearings and damping and ignore that in the axial direction [19–22].
Actually, ACBB not only provide the radial support but also the axial support. Taking
this into consideration, 16 springs and damping in radial direction and 8 springs and
damping in axial direction respectively are established for the FEM of CNC lathe
spindle rotor system. One bearing is simplified into 4 radially distributed support

Spindle

Chuck

Workpiece

Tool

Front BearingsRear Bearings
ORS

Pulley

Fig. 1 The FEM of spindle rotor system
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Table 1 Main parameters of bearing

Bearing
model

Installation
mode

Inner
diameter
d/mm

Outside
diameter
D/mm

Width/mm Circular
diameter
of roller
Dmp/mm

Ball
diameter
DW /mm

Number
of balls
(Z)

Cr/N

NSK
7218A

Back-to-Back
(DB)

90 160 30 125 18.26 21 1.18e3

NSK
7220A

Series
connection
and
Back-to-Back
(DBB)

100 180 34 140 20.64 21 1.44e3

springs and damping respectively and the axial support is represented by 4 axially
supported springs and damping at each end of the support position as shown in Fig. 2.

As shown in Fig. 1, this system is basically axially symmetric, so the struc-
ture parameters in X and Z direction are assumed to be the same. Therefore, the
corresponding dynamic equation of MDOF system excited by cutting force can be
expressed as follow [23]:

mẍ(t) + cẋ(t) + kx(t) = KcF(t) + Fσ (t) (1)

where, m is the mass of the system, c is the structural damping coefficient and
k is the stiffness coefficient. F(t) is the periodic total cutting force and Kc is the
coefficient related to the workpiece’s material, heat treatment, cutting angles, depth
of cut (DOC). Fσ (t) is stochastic cutting force and could excite stochastic resonance
in the machine system. The corresponding natural frequency is ωn = √

k/m and the
damping ratio is ζ = c/2(2mωn), Eq. (1) can be normalized by the expression:

P1

P2

P3

P4

P1'

P2'

P3'

P4'

P6 (P7)P6' (P7')

P3

P3'

P1

P1'

P8

P5

P8'

P5'

(a) Springs and damping in radial direc-
tion

(b) Springs and damping in l direction

Fig. 2 Simplified bearing supports
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ẍ(t) + 2ωnζ ẋ(t) + ω2
nx(t) = Kc

m
F(t) + 1

m
Fσ (t) (2)

2.2 Bearing Stiffness and Damping Calculation

As for the stiffness of paired bearings cannot be determined simply by superimposing
the stiffness of a single bearing, but requires consideration of the mounting combi-
nation. The axial stiffness and radial stiffness of a parallel paired bearing could be
calculated by Eq. (3) [24] and the recalculation results are shown in Table 2.

Kr = 1.7164 × 104 × cos2 a

(
z2DbFa
sin a

)1/3

(N/mm)

Ka = 6.866 × 104 × (FaDbz
2 sin5 a)1/3 (N/mm) (3)

where, Fa0 is the bearing preload; Z is the number of balls in a bearing; α is the
contact angle and Dw is the bearing ball diameter. For lightly preloaded bearings, the
preload forces of the front and rear bearings are taken as 100N and 370N respectively
according to the instructionmanual of NSK [25]. Substituting the bearing parameters
in Table 1 and preload forces into Eq. (3), the axial and radial stiffnesses could be
calculated respectively as shown in Table 2.

Due to the complex dynamic properties of bearings, which are inevitably affected
by vibration, thermal deformation and mating accuracy between the bearing and the
spindle during operation [26], the bearing damping cannot yet be derived entirely
by calculation. A widely used method is to obtain the bearing damping based on a
correction of empirical values which is experimental result for certain bearing sizes
and operating conditions. According to experimental measurements, the damping of
a bearing with an inner diameter of 60 mm and an outer diameter of 95 mm is 3000
Ns/m for a lightly loaded interference fit. Other bearing needs to be multiplied by
the dimension factor αη defined in Eq. (4):

aη =
(
D2 + d2
D1 + d1

)1.3 (
D1 − d1
D2 − d2

)1.9 (
d2
d1

)2.3

(4)

Table 2 Stiffness of
combination bearing

Bearing Radial
stiffness
(N/mm)

Axial stiffness
(N/mm)

Damping
(N.s/m)

7218A (DB) 8.474 ×
105

6.712 × 105 3.812 ×
103

7220A (DBB) 13.653 ×
105

10.813 × 105 4.356 ×
103
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where, d1, D1 is the inner diameter and outside diameter of the reference bearing
and d2, D2 is the inner diameter and outside diameter of the actual spindle bearing.
And then the bearing damping could be obtained and shown in Table 2.

2.3 Modal Analysis of Spindle Rotor System

The bearing stiffness and damping can be calculated from the above description.
However, lots of factors such as installation preload, heat and vibration [27] gener-
ated during high-speed rotation in the cutting process will have significant effect
on the bearing contact angle, so that the theoretical bearing stiffness obtained from
the calculation will deviate from the actual value. Therefore, three different sets of
bearing stiffness are set in this paper, as show in Table 3.

Furthermore, the workpiece material is continuously removed and thus its mass
is reduced during the cutting process. To study the influence of the workpiece mass
on the natural frequency of the spindle system, four different diameters, lengths and
masses of workpieces are mounted on a three-jaw chuck and subjected to FEM and
FRF experiments shown in Table 4. As can be seen that their diameters, lengths and
masses are all different, with the mass and length of the workpiece Mass 4 being
much greater than that of the other three workpiece, and as its mass is already large,
which will have a greater effect on the spindle rotor’s natural frequency induce from
Eq. (2).

The natural frequencies obtained through FEM are draw in Figs. 3 and 4. It can be
seen from Fig. 3 that for the Stiffness 1, the first 10 orders of the natural frequency
withMass1/Mass2/Mass3/Mas4 are almost the same, especially for that withMass1,
Mass2 andMass3, where themaximum difference is less than 20Hz. It can be further

Table 3 Different bearing stiffness sets

Front bearing
radial stiffness
(N/mm)

Front bearing axial
stiffness (N/mm)

Rear radial bearing
stiffness (N/mm)

Rear axial bearing
stiffness (N/mm)

Stiffness 1 13.653 × 104 10.813 × 104 8.474 × 104 6.712 × 104

Stiffness 2 13.653 × 105 10.813 × 105 8.474 × 105 6.712 × 105

Stiffness 3 13.653 × 106 10.813 × 106 8.474 × 106 6.712 × 106

Table 4 Workpiece parameters

Workpiece name Diameter (mm) Length (mm) Mass (kg) Material

Mass 1 22 37 0.2 #45 steel

Mass 2 28 144.5 1.2 #45 steel

Mass 3 65.5 97 5.6 #45 steel

Mass 4 45.5 735 19.2 #45 steel



Modelling the Dynamics of a CNC Spindle … 1063

Fig. 3 Natural frequency of spindle system with different workpiece masses

deduced that for the lower bearing stiffness of Stiffness 1, the effect of workpiece
mass could be negligible. However, as the stiffness of the bearing support increases,
the effect of the workpiece mass on the system frequency becomes more and more
significant. The modal behavior of the spindle system differs significantly between
clamping the workpiece with the highest Mass 4 and the other three workpieces.
Whereas, the modal behavior is basically consistent when clamping workpieces of
Mass1, Mass2 and Mass3 at the same stiffness.

Figure 4 shows the effect of bearing stiffness on the natural frequency of a spindle
rotor systemwith the sameworkpiece. It shows that it varieswith different stiffnesses,
in particular, the variation of Stiffness 3 differs significantly from that of Stiffness
1 and Stiffness 2, while the latter two have almost identical curves. For the first 10
orders, the natural frequency of Stiffness 2 is higher than that of Stiffness 1. However,
the effect of bearing stiffness on the higher order is significantly reduced, especially
for Stiffness 1 and Stiffness 2.

Furthermore, the torsional frequency for the same workpiece is exactly the same,
only the location where it occurs is different, from which could be inferred that it is
not related to the stiffness of the bearing, but rather to the mass of the workpiece.
For example, for Mass 1, the 1st torsional frequency is 995.85 Hz at 9th vibration
order of the system for Stiffness 1, also 995.85 Hz at 7th for Stiffness 2 and the
same 995.85 Hz at 6th for Stiffness 3. As for Mass 4, the 1st torsional frequency
is 986.5 Hz for all the three stiffnesses, which shows that the torsional vibration
frequency of the spindle system is independent of the bearing stiffness and is only
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Fig. 4 Natural frequency of spindle system with different bearing stiffnesses

related to the mass of the workpiece, which increases slightly as the mass of the
workpiece decreases. On the contrary, bearing stiffness has a greater influence on
the other vibration modals.

2.4 Frequency Response Analysis

The dynamic behavior of a spindle can be most quickly obtained by measuring its
frequency response function (FRF) [3]. To verify the simulation results of FEM, an
impact hammer test is carried out and its frequency response is shown in Fig. 5. It can
be seen that the variation of natural frequency with the decrease of workpiece mass
is consistent with the results of FEM. Furthermore, there are four main resonance
frequencies bandswithin 2000Hz in this system,which are 244–440Hz, 709–732Hz,
1013–1056 Hz and 1465–2045 Hz respectively.

Bearing stiffness is a typical non-linear problem, its groove contact deformation,
installation preload, spindle speed, heat, etc. will be the factors affecting the bearing
stiffness [28]. Consequently, the bearing stiffness calculated by the empirical formula
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Fig. 5 Impact test results

has a certain discrepancy with the measured value, and it is difficult to measure
once the spindle rotor has been installed. Therefore, the bearing stiffness is adjusted
according to the impact test results in Fig. 5 and the adjusted stiffness and damping
are shown in Table 5.

Table 5 Adjusted bearing
stiffness and damping values

Bearing Radial stiffness
(N/mm)

Axial stiffness
(N/mm)

Damping
(N.s/m)

7218A 10.40 × 105 6.72 × 105 3.812 ×
103

7220A 18.40 × 105 7.12 × 105 4.356 ×
103
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Table 6 The main natural frequencies of the spindle rotor system

Order Natural frequency modal Mass 1 Mass 2 Mass 3 Mass 4

1st 1st Rigid torsional 1.77e-02 2.46e-02 1.75e-02 1.68e-02

2nd, 3rd, 1st Front-end transverse vibration 432.59 417.38 391 354.91

4th, 5th, 1st Back-end transverse vibration 547.91 547.99 547.98 547.98

6th 1st Longitudinal vibration 739.83 735.86 723.88 677.66

7th 1st Torsional vibration 995.85 992.71 988.6 986.45

8th, 9th 1st Transverse vibration of whole system 1543 1547 1520.7 1557.4

10th, 11th 2nd Back-end transverse vibration 2085.3 2094.5 1956.3 2067.6

From FEM model, it could be inferred that there is only a rotation freedom (the
1st mode) in the system. And the spindle rotor is basically central symmetric, conse-
quently, the natural frequencies of transverse bending vibration are the same in the
XOY and YOZ plane and only the vibration modal are different in directions. The 6th
and 7th results are single roots, and such these modes are longitudinal vibration and
torsional vibration respectively [29]. It is pointed out that the fundamental modal
frequencies of the machine system are basically within 2000 Hz [9], so only the
frequency below 2000 Hz is concerned in this paper.

Based on the adjusted bearing stiffness, the natural frequency of the spindle rotor
system with different mass workpieces is recalculated through FEM, and the first 11
orders (excluding the natural frequency of the workpiece) are shown in Table 6. It
can be seen that there are mainly five vibration modes, namely transverse vibration at
the front end (the clamping workpiece end), transverse vibration at the back end (the
pulley end), longitudinal vibration, torsional vibration and transverse vibration of the
whole system.The front-end transverse vibration frequency increases considerably as
themass of theworkpiece decreases, which is consistent with the theoretical analysis,
so as the torsional vibration. In contrast, the back-end transverse vibration frequency
does not vary with the mass of the workpiece and the other modal frequencies do
not change appreciably too. Consequently, when it needs to study the variation of
the dynamic characteristic of the spindle rotor system during the cutting process, it
is better to focus on the transverse vibration at the workpiece end.

Furthermore, the frequency below 2000 Hz of interest, with the four frequency
bands of 354–433 Hz, 677–739 Hz, 986–995 Hz and 1520–1557 Hz respectively,
which are basically consistent with the four main resonance frequencies bands of the
FRF experimental results. The smaller differences are due to the errors of the FEM
of the spindle rotor. The results show that theMDOF system established in this paper
consisted of the workpiece, chuck and spindle is validated as an accurate FEM and
could be used for further dynamic characteristic analysis in the machine tool.
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On-Rotor Sensing

ToolWorkpeice

Fig. 6 Tool wear condition identification experiment rig

3 Experimental Verification

3.1 Experimental System Description

The turning experiments conducted on a CAK3665di CNC lathe shown in Fig. 6.
The motor power is 4 kW, feed rate is 0.15 mm/r and spindle speed are set to 1000
r/min. The original diameter of the workpiece is 34 mm and cutting it to 28 mm. Two
different depths of cut (DOC) are set, respectively 0.5 mm and 1.0 mm.

3.2 Tool Wear Condition Identification

Before the cutting experiment, the tool wear on the flank face is measured by an
optical microscope at 29.2 times of magnification. The severity of wear on the
flank wear width is denoted by VB amplitudes [30]. Figure 7a–c show the measure-
ment results of the break-in wear insert, steady wear insert, and failure wear insert
respectively.

3.3 Vibration Signal Characteristics from ORS

As shown in Fig. 1 that an On-Rotor Sensing (ORS) is mounted directly on the
rotating workpiece to obtain the vibration signal during the turning process and such
installation way is more sensitive to the dynamic characteristic of the spindle rotor
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(a) Beak-in wear tool (b) Steady wear tool (c) Failure tool

VB=0.103m VB= 0.246mm VB= 0.412mm

Fig. 7 Tool wear conditions

system [31]. According to the analysis results in Sect. 2, the acceleration signals
from the ORS in X and Z directions represent tangential (torsional) vibration and
transverse vibration respectively and both signals are related to the fluctuation of
cutting force [32]. Therefore, only the data in X direction is extracted and shown in
Fig. 8. Figure 8a shows the vibration data when the DOC is 0.5 mm and the cutting
workpiece diameter is 34 mm. Figure 8b shows the vibration data when cutting the
workpiece to the diameter of 28 mm with DOC of 0.5 mm. It can be seen that the
greater the DOC, the greater vibration amplitude. And the vibration amplitude of
failure tool is slightly larger than that of the other two tool states.

Figure 8 shows that there are four resonances frequency bands occurred within
2000 Hz for all the tool wear conditions. These resonances frequency bands are
around 350–550 Hz, 600–900 Hz, 900–1100 Hz and 1100–1400 Hz, and are consis-
tent with the both results of FEM and FRF. Furthermore, as processing goes on, the
mass of the workpiece decreases with the removal of the material, and consequently
the four main resonant frequencies increase, which is basically the same with the
previous analysis results. Therefore, the resonance frequency bands of 350–550 Hz,
600–900 Hz could be chosen as band-pass filter for further data processing.

(a) DOC of 0.5mm and diameter of 34mm (b) DOC of 1.0mm and diameter of 28mm

Fig. 8 Vibration signal in X direction obtained by ORS
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4 Conclusions

Aiming at tool wear conditions identification, this paper investigated the dynamics of
CNCspindle rotor coupledwithworkpieces. Based onFEMmethod, the influences of
workpieces mass and bearing stiffness on vibration modes are quantitively analyzed
and corrected. It is then found that the 2nd, 3rdmode of front-end transverse vibration
and the 6th mode of longitudinal vibration are more correlated with the turning
process. Both offline FRF tests and online tuning process have confirmed the model
analysis results.

Moreover, it is suggested that the two frequency bands of 350–550 Hz and 600–
900Hzwith 2000Hz aremore sensitive formonitoring tool conditions, especially the
transverse vibration at the front end (the clamping workpiece end) of 350–550 Hz.
In the future, the effect of different tool wear on dynamic characteristics of system
modes will be focused on for more accurate online monitoring.
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Real-Time Condition Monitoring
and Health Assessment of Equipment
Power Transmission Device Based
on Wireless Sensor Network

Cheng Zhe, Jiang Wei, Hu Niaoqing, Zhang Hao, and Zhen Dong

Abstract The high requirements on the integrity and operational reliability of the
equipment in the process of carrying out tasks is required by the ships and othermajor
equipment. To ensure the long-term safe and healthy operation of their power trans-
mission devices is one of the key links to achieve this requirement. In response to this
urgent need, the real-time monitoring and health assessment method of equipment
power transmission based on wireless sensor network is researched, and the related
software and hardware prototype systems is constructed, after that, the system testing
and use verification in actual tasks of ships are carried out. The verification results
show that the prototype system can complete the online collection and analysis of
vibration and temperature data of the key parts of the ship’s power transmission
device, and the real-time monitoring and health assessment of the power transmis-
sion device condition is effective. As a result of that, the maintenance workload is
reduced effectively while work efficiency is improving.
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1 Introduction

When the large ships perform long-distance voyage tasks, they are often far away
from the rear support and maintenance base for a long time. For this reason, it is
necessary to focus on solving an important problem: whether the integrity and reli-
ability of the ship’s key subsystems and devices can meet the mission requirements
at any time during the voyage. Online testing and data analysis of the key measuring
points of the equipment core equipment through the condition monitoring and health
assessment system, and the overall health assessment based on the condition informa-
tion are the effective means to dynamically grasp the condition integrity and mission
reliability of the key subsystems in real time. The similar system has been initially
applied in major engineering equipments such as aviation, aerospace, electric power,
rail transit, etc. [1–5].

One of the difficulties in carrying out condition monitoring and health assessment
for ships in active service is to carry out system deployment without changing the
basic structure of the power and transmission device and its auxiliary power supply
system, so as to avoid affecting the normal operation of the daily maintenance of the
ship’s power cabin. Wireless multi-function sensors provide an option to achieve this
goal. Not only can they sense multiple condition information of the equipment in real
time, but also do not need to reconsider the complicated pipeline layout problems
in the power cabin. In view of this, this paper constructs a real-time monitoring and
health assessment system for the equipment power transmission devices based on
wireless sensor networks, and carries out tests and verifications on a certain type of
ship equipment.

2 Real-Time Monitoring and Health Assessment System

2.1 Architecture of the System

The equipment monitoring system is mainly composed of some wireless multifunc-
tion sensors and a wireless gateway, as shown in Fig. 1. The wireless multifunction
sensors can be directly glued to the equipment to measure and wirelessly transmit the
vibration and the temperature signal of the ship equipment, including the vertical,
horizontal, and axial speed RMS, the true peak value of acceleration, and the effec-
tive peak value of acceleration, and the surface temperature data of the equipment.
The wireless transmission distance can reach about 100 m in the cabin. The collected
data sets are sent to the wireless gateway through the wireless network. The gateway
is placed in the cabin with a display screen for the crew to directly observe and read
the real-time data. At the same time, the gateway is equipped with a download port
to facilitate data export.
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Fig. 1 Schematic diagram of the system’s functions

2.2 Wireless Multi-function Sensor

The wireless sensors selected by this system are a new type of multifunctional data
acquisition system, as shown in Fig. 2. This type of sensor not only has the ability
to synchronously collect the temperature and the three-way vibration data of the
monitored equipment in real time, but also can perform data preprocessing and
analysis, extract feature vectors that reflect the health of the equipment, and be

Fig. 2 Wireless
multi-function sensor
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selective to the host computer at specified intervals to send raw data or characteristic
parameters wirelessly.

The wireless data transmission is based on the BeeLPW-T protocol, which can
self-organize to forma star network topology. Thewireless digital signal transmission
method eliminates the noise interference caused by long cable transmission, and the
entire measurement system has extremely high measurement accuracy and anti-
interference ability. Wireless sensor nodes can form a huge wireless sensor network,
which supports simultaneous testing of hundreds of measuring points. The node
structure is compact, small in size, and easy to install.

2.3 Wireless Gateway System

The wireless gateway selected by this system is a gateway with complete interfaces
and comprehensive functions. It can directly use the existingwired network resources
through the LAN port to connect the data collected by the sensor to the network and
transmit it back to the data center. It can not only be used for remote monitoring, but
also be used for short-distance big data transmission (via LAN port). It can form a
wireless sensor network through a wireless radio frequency module with indicators
for operation, power supply, and failure. The data is displayed on a 10-inch display.

2.4 Software System

The software system of this system has 4 functions, named as follows:

(1) Real-time display of monitoring data. It mainly includes functions such as
historical data curve drawing and display, collection and sending interval
setting, data management and preliminary analysis, and automatic setting of
alarm values.

(2) Equipment condition monitoring. The condition monitoring of the equipment
is calculated based on all the data of all sensors at eachmeasuring point, and the
health condition of the equipment can be judged in real time through multiple
dynamic thresholds.

(3) Analysis of health trends. The system performs health trend analysis and status
prediction on key subsystems based on the accumulated historical data.

(4) Big data processing and management. This system uses a deep learning model
to systematically analyze, process and manage a large amount of accumulated
historical data to realize the management and prediction of the health status of
equipment.



Real-Time Condition Monitoring and Health Assessment of Equipment … 1077

3 System Testing and Verification

3.1 Brief Introduction

Aiming at the problem of abnormal detection of power system equipment during
the execution of the ship’s mission, the real-time monitoring and health assessment
system developed by the research institute was installed in the ship’s power cabin.
In order for the real-time monitoring system to be truly effective, the ship’s staff
has formulated an equipment inspection system. Each maintenance staff observes
the equipment status displayed by the monitoring system every hour, and records
the monitoring system data twice a day, with a total of more than 1,000 monitoring
equipment, A total of more than 50,000 groups.

According to the feedback from the ship’s staff, the system played a significant
role in monitoring the status of the ship’s main propulsion diesel engine and power
station diesel engine during the execution of the task, and provided good hardware
support for the use and management of the main and auxiliary engine equipment.
Through the health indicator on the display panel, the maintenance staffs can quickly
grasp the current health status of the equipment, and can find abnormal situations
in time, which reduces the workload and work intensity of the on-duty personnel
using the handheld vibration monitoring equipment to measure the status data. At
the same time, when abnormal vibration data occurs, it can be measured in a targeted
manner, so that manual measurement data has reference data that can be compared
horizontally.

3.2 Data Analysis

Through a comprehensive analysis of the data of all sensor nodes, not only the
operating status of the monitoring system and the operating status of the monitored
power and transmission system can be effectively understood, and possible hidden
dangers can be eliminated, but also maintenance suggestions and decisions can be
provided for similar tasks in the future support.

Figures 3 and 4 show the time history diagram and health history diagram of
the vibration of the ship’s power engines. From the above data analysis results, the
following conclusions can be drawn: In the process of system monitoring, there are
many cases of engines vibration exceeding the warning line No. 1, and occasionally
exceeding the warning line No. 2. Overall, the health of the equipment is basically
above 80 points, and the equipment is operating well.
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Fig. 3 Vibration history diagram

Fig. 4 Health history chart

3.3 Typical Case Verification

According to the information fed back by the maintenance staffs of ship power
equipment, the system accurately diagnosed a gearbox failure during the long-term
use of the product during the mission, and provided accurate warnings, providing
decision-making suggestions for the maintenance personnel to take maintenance
measures in a timely manner. The following is an analysis of this failure warning
case.

After investigation, the gearbox fault is an oil leakage fault, and the data analysis
results are shown in Figs. 5 and 6. The output end of the right shaft of the gearbox
vibrates at the corresponding parts due to lack of oil lubrication, and the health of
the equipment is significantly reduced; after repairing the faulty part and adding
lubricating oil, after a period of observation, the health value immediately returns to
the normal range.
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Fig. 5 Vibration analysis in fault diagnosis cases

Fig. 6 Health analysis in fault diagnosis cases

4 Conclusion

Through testing and verification of the real-time monitoring and health assessment
system developed in this article, the following conclusions can be drawn:

(1) The system is based on a wireless sensor network to monitor power equipment,
which is generally practical and feasible.
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(2) The development of automatic data collection and intelligent state assessment
systems has practical application value for reducing the crew’s work intensity
and increasing the comparability of information;

(3) Through the state assessment technology based on the analysis and evaluation
of the overall health of the equipment, it can warn of hidden troubles and has
practical application value for the use and maintenance of ships.

(4) The existing system needs to be further improved in terms of signal monitoring
range, comprehensive status evaluation and fault detection performance, relia-
bility, safety,maintainability, and supportability to fully adapt to the application
requirements of the mission site.
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Research on Fault Detection Method
for Special Equipment Under
the Condition of Sample Missing

Lei Wei, Zhe Cheng, Niaoqing Hu, Junsheng Cheng, and Guoji Shen

Abstract In the fault diagnosismethod of data-drivenmethod, it is difficult to obtain
fault data andhigh cost of experiment due to the particularity of special equipment and
health condition for a long time at the beginning of operation. Based on the analysis of
slow-changing parameters such as temperature and pressure collected under normal
operation, this paper establishes signal prediction models under different conditions
and puts forward a historical view. The dynamic threshold method of measuring
data eliminates the false alarm and improves the ability of early fault detection at the
initial stage of equipment operation, and provides a new idea for fault detection under
the condition of only normal samples. It provides scientific and accurate support
for fault early warning theory and method of special equipment and realizes the
direction of special equipment from regularmaintenance and preventivemaintenance
to condition-based maintenance change.

Keywords Special equipment · Normal sample · Slow variation parameters · Fault
detection · Dynamic threshold

1 Introduction

Special equipment is a kind of special equipment widely used in military, aerospace,
medical, nuclear power, fire protection and other fields. Due to the extremely harsh
environment often encountered in the actual operation process, the parts of special
equipment deteriorate until they fail, which leads to serious failure of equipment
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and major economic losses. Therefore, if effective detection can be carried out in
the early stage of failure and maintenance can be carried out in time before serious
failure, on the one hand, the safety of equipment and personnel can be protected to
the greatest extent, on the other hand, themode change from regular maintenance and
preventive maintenance to condition-based maintenance can be realized in the health
management of special equipment, greatly reducing the economic cost of equipment
use [1].

At present, the fault diagnosis technologies applied to equipment are mainly
divided into four categories: methods based on physical model, methods based on
data, methods based on reliability model and methods based on empirical model
[2]. Due to the complexity of the actual structure of large-scale equipment, it is
often extremely difficult or even impossible to establish its highly accurate physical
model. A fault diagnosis technology without involving accurate physical model is
more suitable for complex systems. Therefore, data-driven fault diagnosis method
has become the mainstream method for fault diagnosis and health management of
large-scale special equipment.

Unfortunately, among many fault diagnosis methods based on in-depth learning,
there is a common problem that requires a balance between the large number of
training data samples and the number of normal samples and the number of fault
samples [3]. In [4], the predictive results of different artificial neural network models
are multi-level fused, and a wear fault fusion diagnosis model of machine is estab-
lished, which overcomes the disadvantages of low diagnostic accuracy of a single
model. However, this diagnosis method requires a lot of historical data to ensure
robust diagnostic accuracy, and the set fault threshold is fixed. In [5], the measured
current curve of the ramp under normal operation is used to calculate the similarity
with the current curve under fault, and the dynamic fault threshold is set according
to different stages. Although the fault diagnosis model of the ramp mechanism can
be established only with normal data samples, the dynamic threshold established by
the model can not be updated with the change of historical data, and the dynamic
threshold of this model can not be updated with the change of historical data. It is
discrete in value, only on the basis of static threshold value, different increments
of threshold value are increased with the selection of ramp mechanism in different
operation stages.

2 Fault Detection Technology with Missing Fault Samples

2.1 Fault Detection Principle

When the system or equipment fails, it often cannot reach the specified performance
index, so it shows that at least one monitoring parameter obviously deviates from the
normal level externally. In the data-driven fault diagnosis method, the normal oper-
ation state of a complex system is described by establishing a mathematical model,
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Fig. 1 Fault detection flow chart

and the implicit relationship of relevant measurement variables in the system is
established by using multivariate statistical method and machine learning algorithm.
When a fault occurs, it will inevitably lead to the change of the implicit relation-
ship of relevant measurement variables in the system. This characteristic is used to
evaluate the difference between the system state and the actual state of the current
system under normal model parameters. The residual value obtained by difference
operation is compared with the set threshold to judge whether a fault has occurred
[6]. Under the condition that only a small number of normal samples are obtained,
the data-driven fault detection process can be divided into the following processes:
training data, establishment of normal system state model, generation of residual
between actual value and predicted value of normal system state model, evaluation
and decision-making of residual. The flow chart of fault detection is shown in Fig. 1.

2.2 Data Interpolation Method Under the Condition
of Missing Samples

In the process of data acquisition of special equipment monitoring system, data loss
is common due to random packet loss, different sampling rates of sensors and sensor
failures. Itwill not only cause differentmultivariate data to be input into trainingmode
models at the same time because of their different dimensions. Moreover, the fault
detection model established by using the data with missing values can not effectively
detect the actual faults or cause misdiagnosis. Therefore, the missing data interpola-
tion operation in the data preprocessing stage is of great significance to improve the
accuracy of the diagnosismodel [7]. At present, according to the number of substitute
values to replace missing data, the commonly used data interpolation methods can be
divided into single value interpolation methods and multiple interpolation methods
[8].

(1) Single Value Interpolation Method
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Themethod of using a single estimated value to interpolatemissing data to obtain a
complete data set is called single value interpolation method. According to different
interpolation methods, single value interpolation methods can be further divided
into single value interpolation methods such as mean interpolation method, KNN
interpolation method and regression interpolation method.

(2) Multiple Interpolation Method

The core idea of themultiple interpolationmethod is to use some single value inter-
polation algorithms to estimate the missing values for many times, obtain multiple
estimation results, construct a complete data set, and perform the same operation
on all complete data sets to obtain multiple complete estimates, The next step is to
comprehensively analyze these estimates to obtain the final value. Multiple interpo-
lation method is used to adopt the idea of multiple estimation, which improves the
interpolation accuracy to a certain extent, but inevitably increases the computational
complexity.

2.3 Establishment of Fault Detection Model

The essence of equipment fault detection model is a pattern recognition problem. It
is easy to realize the fault detection function under the condition of obtaining normal
samples and fault samples. In practice, it is usually difficult to obtain fault samples.
For only normal samples, it is not applicable to the establishment of two classifiers.
Therefore, the class I model recognition method trained with normal data is more
applicable, and the fault detection is transformed into a class I classification problem.
The principle is to treat the health state data obtained from equipment operation
as positive samples, train a class of classifier, and input the data to be tested into
the trained class of classifier to obtain the classification results. A classical class
of classifiers are: one-class support vector machine, LOF (Local Outlier Factor),
isolated forest, principal component analysis and so on.

On the vast majority of equipment, the slowly varying parameters represented by
temperature often change with different working conditions. Under non-stationary
working conditions, the measured values of slowly varying parameters will be
different. Therefore, even under the healthy operation state, it may be determined as
a fault state by a class of classifiers. However, it is easy to establish corresponding
mathematical expressions for the physical model of the sub components constituting
large equipment. If the implicit relationship of measurable parameters during normal
operation can be analyzed in combinationwith its operationmechanism in equipment
fault detection, the influence of external factors such as temperature and working
conditions can be integrated into the fault detection model to further improve the
detection accuracy [9].

When the equipment has only one output variable and multiple input variables,
the inherent implicit relationship between parameters in the system model is:
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y = f (x1, x2, . . . , xm) (1)

where: y is the output variable, xm is the input variable, f (·) is the implicit
function, m ∈ R.

In the pattern recognition algorithm, the detection results obtained by fusing
multiple fault detection models are often more accurate than those obtained by a
single fault detectionmodel. Therefore, an implicit model array fault detectionmodel
composed of multiple single implicit relationships in the system is proposed to fuse
and determine the detection results of multiple single fault detection models, Under
the condition of only a small amount of normal operation data, further improve the
fault detection accuracy of the equipment, and realize more sensitive, robust and
better fault detection. For an equipment with M input parameters x1, x2, ..., xM and
N output parameters y1, y2, ..., yN , implicit model arrays composed of parameter
implicit models in the system are established. Among the N implicit models, each
implicit model uses one of the N output parameters y1, y2, ..., yN as the output vari-
able, and the other N-1 output parameters and input parameters as the input variables
of the implicit model. The mathematical expression of this implicit model is shown
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

y1 = f1(x1, x2, ...., xM , y2, y3, ..., yN )

y2 = f2(x1, x2, ...., xM , y1, y3, ..., yN )

...

yN = fN (x1, x2, ...., xM , y1, y2, ..., yN−1)

(2)

where: yN is the output variable, xM is the input variable, fN (·) is the implicit
function, M and N ∈ R.

The detailed schematic diagram of the system implicit relationship array repre-
sented by Eq. (2) is shown in Fig. 2.

2.4 Dynamic Threshold Detection Strategy

In engineering, the fixed threshold fault detection methods represented by Pauta
criterion, Shovinat criterion and Grubbs criterion are widely used in equipment fault
detection. The fixed threshold detection method does not change the fault detection
threshold during the service period of the equipment. This method is not applicable
to the equipment under variable working conditions and variable load. It is easy to
cause false alarm and missing alarm.

The threshold of fault detection is generally obtained according to the data statis-
tics of historical operation of equipment under normal state. The advantage of
dynamic threshold method over fixed threshold method is that it can automatically
update the threshold of fault detection according to the real-time operating condi-
tions of equipment, so as to improve the accuracy and robustness of fault detection. In
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Fig. 2 Schematic diagram of implicit model array

order to improve the updating ability of the newlymonitored data to the threshold and
improve the sensitivity of fault detection, the sliding window method is usually used
to update the dynamic threshold of fault detection to make statistics on the data, that
is, the data positions participating in the threshold update are continuously moved
with the increase of time, and the samples participating in the threshold update are
repeatable. In order to eliminate the influence of false alarm caused by accidental
abnormal data, the method of abnormal rate is used to solve this problem. Abnormal
rate monitoring refers to the ratio of the number of points regarded as fault data in a
sliding window to the number of points of total data in the window [10]. When the
number of points in a sliding window is greater than the set ratio, it is determined
that there is a fault in this section of sample, otherwise it is determined as normal
operation state, and the Eq. (3) describes the abnormal rate:

η=Na

N
(3)

where: η is the abnormal rate, Na is the number of abnormal data points in the
window, N is the total data points in the window.

When the slowly varying parameters such as temperature and pressure are taken
as the monitoring objects, due to the inertia in the change of the slowly varying
parameters, the slowly varying parameters cannot change in timewhen the equipment
fails. The fault can be detected only after the fault has accumulated for a period of
time, and there is no sudden change point in the slowly varying parameters when the
sensor fault is eliminated. Therefore, the dynamic threshold setting steps based on
the slowly varying parameters are as follows [11]:
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Fig. 3 Schematic diagram
of subset selection

(1) Set sliding window size: The minimum feature subset of the original data set
is selected according to the K-S test principle, that is, the size of the sliding
window. When the result of K-S test is greater than 0.05, it means that the
selected subset has the same distribution law as the original data set (parent
set). The selection strategy is shown in Fig. 3. Randomly select a small section
of data samples as a subset, and then conduct K-S similarity test with the parent
set, so as to expand the subset range and know that the similarity test result
is valid. At this time, write down the minimum sliding window size. Subset
selection is shown in Fig. 3.

(2) Set failure threshold: In order tomake full use of the state index change trend of
the previous sliding window, select the sliding window data obtained in step 1,
and calculate the fault detection threshold in the window according to Eq. (4):

Ti =
∑i

k=i−N Rk

N
+ Rth (4)

where: Ti is the exception rate in the window, Rk is the status indicator at
a certain time, is the distribution characteristics of equipment operation state
indexes are analyzed by nuclear density estimationmethod and set based on the
principle of small probability events, N is the total data points in the window
and N ∈ R, i is the location index in total sample data.

(3) Move the sliding window step by step and update the threshold according to
step 2.

(4) Repeat step 3 until the thresholds of all sliding windows are updated, and the
dynamic threshold curve is obtained by connecting the thresholds.

3 Example

In this paper, 17,420 oil temperature data of a certain type of transformer from July
1, 2016 to June 26, 2018 are selected as the research object. The data acquisition
frequency is to collect one data per hour. The data structure is that six input variables
determine one output variable. Some data are shown in Table 1:

In order to improve the number of data points, aiming at the problem that the
interval between collecting data once an hour and storing data is too large, the
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Table 1 Transformer measurable data

date HUFL HULL MUFL MULL LUFL LULL Oil temperature/°C

2016/7/1 0:00 5.827 2.009 1.598 0.462 4.203 1.340 30.531

2016/7/1 1:00 5.692 2.075 1.491 0.425 4.142 1.371 27.787

… … … … … … … …

2018/6/26 19:00:00 10.114 3.549 6.183 1.564 3.716 1.462 9.567

Notes: HUFL represents high useful load, HULL represents high useless load, MUFL represents
middle useful load, MULL represents middle useless load, LUFL represents low useful load, LULL
represents low useless load

regression interpolation method is used to interpolate the data, and one data point is
collected every hour to one data point every 15 min. The data interpolation results
of a certain day are shown in Fig. 4.

In this paper, XGBOOST (eXtreme Gradient Boosting) algorithm is selected
to extract the implicit model between the data, selects the monitoring data of the
transformer from July 1, 2016 to July 10, 2016 as the training data, and selects the
health state from July 11, 2016 to August 11, 2016 as the prediction data, calculates
the upper and lower limits of the fault detection dynamic threshold from the residual
between the real value and the predicted value, and takes the size of the sliding
window, The calculation results are shown in Fig. 5. According to the calculation
results, if the abnormal rate in each window is higher than 0.35, the transformer
fault alarm will be carried out, and if the abnormal rate is lower than 0.15, it will be
regarded as normal operation.

Continue to select the data from August 12, 2016 to September 12, 2016 for
analysis. The transformer used static threshold to detect the fault. By checking the
records, it was found that the residual error between the predicted value and the real
value was too large due to the increase of current load, resulting in a false alarm,

Fig. 4 The comparison
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while the residual error caused by arc discharge fault under normal load was not
detected. The use of dynamic threshold fault detection successfully eliminates the
false alarm and can not detect theweak temperature change caused by some electrical
faults. As shown in Fig. 6, area A is the false alarm of static threshold method and
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Fig. 6 Comparison of static threshold and dynamic threshold fault detection methods



1090 L. Wei et al.

area B is the missed diagnosis of static threshold method. Because of signal noise
and measurement error, some measured temperature values will inevitably exceed
the dynamic threshold, but if the abnormal rate does not exceed 0.15 in a sliding
window, it is regarded as normal operation.

4 Conclusions

This paper studies the method of equipment fault detection with only a small number
of normal samples, excavates the implicit model between variables, establishes the
fault detection model based on this, and uses the dynamic threshold method to deter-
mine the residual between the predicted value and the actual value. Experiments
verify the effectiveness of the scheme and solve the problems of false alarm and
missed diagnosis, It has practical significance for equipment health management
and fault diagnosis.

On the basis of fault detection for equipment, the fault type can be judged from
the curve variation law of measured parameters by using expert knowledge and
other techniques, and the maintenance and maintenance efficiency of maintenance
managers can be further improved.
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Research on Dynamic Impact Force
Calculation for Spline Coupling Teeth
and Its Suppression

Wenchao Pan, Hai Lan, Zhiyong Han, Lantao Yang, Liming Wang,
and Yimin Shao

Abstract Due to the high bearing capacity and good alignment advantagements,
splines are widely used in variousmechanical equipment. However, alternating stress
can be easily observed in meshing of spline coupling, which leads to fatigue failure
of spline pairs such as cracks. The underlying mechanism and suppression method
of impact force of spline pair are seldom studied. In order to settle this problem,
this paper proposed a new two-mass nonlinear impact dynamic model of spline pair,
and studies the generation mechanism, influence law and suppression method of
dynamic impact force of spline pair. Based on Hertzian contact theory, this paper
establishes the calculation model of dynamic impact force of spline pair firstly,
both the coupling relationship between pressure angle, backlash and eccentricity
and impact force are taken into consideration. Then, the calculation and suppression
method of impact force of spline pair are investigated and discussed. The results
show that the impact force gradually increases with the growth of backlash and
eccentricity, and local extremum appears. This paper presents a new model to study
and suppress the dynamic impact force of spline teeth, it is found that the root mean
square (RMS) value of impact force reaches to the smallest when pressure angle is
set as 25.

Keywords Spline coupling · Impact force · Suppression method

1 Introduction

Due to the characteristics of high bearing capacity, good alignment, good guid-
ance and strong interchangeability, involute spline pair is widely used in mechanical
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transmission systems of aircraft, automobiles, large-tonnage land-based platforms,
machine tool manufacturing, agricultural machinery and other fields [1].

However, due to the factors such as heavy load and high impact frequency of
splines, the meshing alternating stress of spline pair is easy to cause fatigue frac-
ture and wear failure of spline teeth [2]. Many scholars have studied the anti-fatigue
methods of spline pairs. For example, Kahraman et al. [3] deduced the backlash
of involute spline pair under pure torsion, and presented its detailed mathematical
model. Robins et al. [4] analyzed the influence of backlash on the load and meshing
stiffness of involute splines through theory and experiment, and pointed out the
meshing sequence of splines under load and that only 25–50% of splines partici-
pated in meshing. Cura et al. [5] mainly studied the parallel offset misalignment load
distribution of involute spline pairs, and proposed a theoretical method based on non-
finite element method. Li et al. [6] investigated the dynamic influence of backlash
and load eccentricity on gear meshing force, and found that the backlash can lead to
the dynamic change of gear meshing force under the external unsteady disturbance
torque. Zhao et al. [7] calculated the reaction force ofmisaligned spline pairmisalign-
ment through the analysis of meshing force, and derived the dynamic equation of
misaligned spline pair and the numerical calculation expression of meshing force
of key teeth under misalignment condition, and then obtained the influence char-
acteristics of misalignment on its dynamic characteristics by using finite element
method. Meanwhile, Zhao et al. [8, 9] also discussed the meshing force and torsional
stiffness of involute spline pair rotor system with radial misalignment, and analyzed
the dynamic characteristics and stability of spline rotor system, which provided a
reliable theoretical basis for the optimization design of involute spline pair [10].
In addition, they established an analytical model of transverse meshing stiffness of
spline pair, and discussed the nonlinear relationship between meshing stiffness and
torque or meshing force under large deformation [11]. Zhou et al. [12] carried out
friction contact analysis on the transmission shaft spline pair of high-speedEMUwith
bearing both torque and bending moment, and obtained the distribution of contact
stress on the bearing tooth surface. The above analyses show that the spline fault
and fatigue failure of the spline pair is mainly caused by its impact force, therefore,
it is necessary to study the dynamic impact force of spline pair and its suppression
methods.

In this paper, based on Hertzian contact theory, a two-mass dynamic model for
calculating the impact force of involute spline pair is established considering the
backlash, eccentricity and pressure angle of involute spline pair. Then the dynamic
equation is solved and the distributions of impact force of spline pair under various
working conditions are investigated and discussed.Moreover, the influences of back-
lash, eccentricity and pressure angle of the involute spline pair on the impact force
response are analyzed. Finally, some conclusions are summarized at the end of the
paper.
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2 Two-Mass Impact Model of Involute Spline

Similar to involute gear, involute spline has basic parameters such as modulus, tooth
number and pressure angle. Compared with involute gear, involute spline has smaller
crest height, larger backlash and pressure angle. The physical structure model of
involute spline pair is shown in Fig. 1.

When the spline load is small or even zero, the two tooth surfaces where the
external spline and the internal spline are in contact with each other produce instan-
taneous impact. The driven wheel will accelerate instantaneously and separate from
the driving wheel, when the driving wheel gives an impact force to the driven wheel
under the small load, which will make it difficult for the driving wheel and the driven
wheel to keep in contact, and thus forming a periodic process.

Hertzian contact mechanics model is usually used to describe the elastic interac-
tion between contact surfaces [13]. Based on Hertzian contact theory, the nonlinear
contact force is calculated as:

F = K δn + λδn δ̇ (1)

where K δn denotes the elastic contact force part. λδn δ̇ represents the impact
damping force, and δ, δ̇ are the normal relative deformation and the relative contact
speed of the contact surface of the spline pair, respectively. n is a nonlinear index
[14]. λ means hysteresis damping coefficient, and its value is related to viscous
damping coefficient, shear and volume deformation. K denotes Hertzian stiffness,
which depends on material characteristics and curvature radius, and its formula can

Fig. 1 The physical
structure model of involute
spline pair

Internal  Spline

 External Spline
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be expressed as:

K = 4

3
ER1/2 (2)

E = E1E2

E1
(
1 − ν2

2

) + E2
(
1 − ν2

1

) (3)

R= r1r2
r1 + r2

(4)

where E denotes integrated modulus of elasticity. E1 and E2 are elastic modulus
of internal and external splines, respectively, and v1 and v2 represent Poisson’s ratio
of internal and external splines, respectively. R means the comprehensive radius
of curvature. r1 and r2 are the pitch circle radii of internal and external splines,
respectively. Due to the fact that the involute spline pair is internally engaged, the
pitch circle diameters of the driving wheel and the driven wheel are equal. Therefore,
the comprehensive radius of curvature R can be deduced as:

R = r1
2

= rb tan(αk)

2
(5)

The relationship between the damping coefficient λ and the velocity before and
after impact can be determined by the energy relationship. Based on the nonlinear
damping coefficient model proposed by Lankarani and Nikravesh [15], the energy
loss equation is:

�T = 1

2
mδ̇20

(
1 − e2

)
(6)

m = m1m2

m1 + m2
(7)

where, �T , m, δ̇0, e denotes the lost kinetic energy, equivalent mass, relative
velocity before impact and recovery coefficient, respectively.

The energy loss caused by collision can also be obtained by integrating along the
hysteresis loop:

�T =
∮

λδn δ̇dδ ≈ 2
∫ δm

0
λδn δ̇dδ = 2

3

λ

K
mδ̇30 (8)

The hysteresis damping coefficient under this model can be denoted as:

λ=3K
(
1 − e2

)

4δ̇0
(9)

The equation of impact force can be written as:
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F = K δn

[

1 + 3
(
1 − e2

)

4

δ̇

δ̇0

]

(10)

In this paper, two running states of spline pair are discussed as follows:

(1) Normal operating condition

The normal operation condition is shown in Fig. 2, and the internal and external
splines are coaxial. Set the rotational angular displacement of the external spline as
θ1 and the rotational angular displacement of the internal spline as θ2.

Rotational speed fluctuation of external spline is caused by torsional vibration.
According to torsional characteristics, rotational speed fluctuation can be expressed
by sinusoidal function:

w = w0 + A sin(2π f t) (11)

where w, w0, A, f represent the input speed of external spline, the constant speed,
the speed fluctuation amplitude and the speed fluctuation frequency, respectively.

The impact moment produced by the impact between the external spline and the
internal spline makes the internal spline rotating, while the external spline is driven
by the input rotational speed, which is less affected by the impact moment. The
dynamic differential equations of external spline and internal spline are as follows:

θ̈1 = 2π f A cos(2π f t) (12)

Fig. 2 Simplified schematic
diagram of normal operating
condition of spline pair
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θ̈2 = (NFRr − c2θ̇2)/J2 (13)

where, F is the impact force, N means the meshing number of gear teeth, Rr

refers to the distance from the impact force to the center, and c2 denotes the damping
coefficient.

Therefore, Eq. (10) can be rewritten as:

F = K

(
|θ1 − θ2|Rr − d

2

)3/2
[

1 + 3
(
1 − e2

)

4

|θ̇1 − θ̇2|
θ̇1,0

]

(14)

where, d represents tooth clearance and θ̇1,0 means angular velocity of external
spline before impact. Hertzian stiffness K can be expressed as:

K = 4

3
ER1/2=2Erb tan(αk)

3
(15)

(2) Axle center offset condition.
The axis offset state is displayed in Fig. 3. The centers of inner and outer splines are

parallel, a denotes the eccentricity of inner and outer splines, x1e refers to the trans-
lation displacement of external spline, x2e represents the translation displacement of
internal splines. The eccentricity a can be expressed as:

a =
√
x21e + x22e (16)

Fig. 3 Simplified schematic
diagram of axle center offset
condition of spline pair
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Equation (14) can be rewritten as:

F = K

(
|θ1 − θ2|Rr + a − d

2

)3/2
[

1 + 3
(
1 − e2

)

4

|θ̇1 − θ̇2|
θ̇1,0

]

(17)

Due to the existence of eccentricity a, Hertzian stiffness K can be denoted as:

K = 4

3
ER1/2=4

3
E

{
rb tan〈arccos [2rb/(2rb/ cosαk − a)]〉/2 }1/2 (18)

According to the theoretical derivation process of the two-mass dynamic model
of spline pair tooth impact shown above, it can be found that the main parameters
that affect the spline pair tooth impact include: spline geometry parameters, material
parameters, tooth impact recovery coefficient, tooth impact relative speed and relative
displacement, tooth side clearance, number of teeth participating in contact, and
fluctuation amplitude and frequency of external spline rotational speed.

3 Simulation Calculation and Analysis of Spline Impact
Force

The external spline input speed is defined as n1 = 1700 r/min, fluctuation frequency
f = 33 Hz, load torque T = 0, and correlation parameters are presented in Table 1.

In order to study the influences of the backlash, eccentricity and pressure angle
on the impact force of spline pair, different parameters of backlash, eccentricity and
pressure angle are adopted to jointly simulate this influences, which are displayed in
Table 2. The values of the three variables are combined respectively, and a total of
1331 working conditions are obtained.

Figure 4 illustrates the solution result when the eccentricity is 0 mm, the backlash
is 0.65 mm, and the pressure angle is 30°. Figure 4a shows the time domain spectrum
of impact force. It can be seen that the impact force is distributed periodically, and the
meshing of gear teeth has experienced a process of ‘forward collision’ and ‘reverse
collision’, and the phenomenonof ‘chasing collision’ appears. The impact forcewhen
‘chasing collision’ occurs is obviously lower than that when ‘chasing collision’ does
not occur, which is due to the fact that the multiple collisions disperse the collision
energy. The frequency domain spectrum of impact force is shown in Fig. 4b. When

Table 1 Spline pair parameters

Name Module (mm) Tooth number Modulus (GPa) Poisson ratio Moment of
inertia (kg·m2)

External spline 4.0 59 210 0.3 23

Internal spline 4.0 59 210 0.3 0.24



1100 W. Pan et al.

Table 2 Joint simulation
parameters

Backlash (mm) Eccentricity (mm) pressure angle (°)

0.25 0 20

0.30 0.02 22.5

0.35 0.04 25

0.40 0.06 27.5

0.45 0.08 30

0.50 0.10 32.5

0.55 0.12 35

0.60 0.14 37.5

0.65 0.16 40

0.70 0.18 42.5

0.75 0.20 45

(a) Time domain (b) Frequency domain (c) Angular velocity

Fig. 4 The calculation results of impact force when eccentricity is 0 mm, backlash is 0.65 mm and
pressure angle is 30

the frequency is 35 Hz, the maximum impact force yields 5.87 kN, which is close
to the fluctuation frequency of 33 Hz. The angular velocity of the spline is shown in
Fig. 4c.

Figure 5 shows the simulation diagramof peak-to-peak impact of spline pair under
different backlash, eccentricity and pressure angle. It can be seen from the figure that
with the increase of backlash and eccentricity, the peak-to-peak value of impact force
gradually rises, and local extreme value appears. When the eccentricity is too large
and the backlash is too small, the spline pair will interfere, which will be set zero in
the lower right corner in the figure.

As demonstrated in Fig. 6a, themaximum curve of impact force increases with the
increase of pressure angle, and the trend is slow at first and then sharp. The forward
maximum and reverse maximum of impact force increase in sawtooth shape with the
increase of pressure angle. Figure 6b shows the RMS value of impact force under
different pressure angles, and the RMS value of impact force is the smallest when
the pressure angle is 25°, which indicates that the dispersion degree of impact force
is the smallest under this working condition. The two curves displayed in Fig. 6c are
the mean value and absolute mean value of impact force.
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Fig. 5 Impact force peak-to-peak simulation diagram

(a) Maximum value.               (b) RMS value.            (c) Mean value.

Fig. 6 Relationship between impact force and pressure angle

4 Conclusions

In this paper, based on Hertzian contact theory, a two-mass dynamic model of impact
force of involute spline pair is established. Considering different backlash, eccen-
tricity and pressure angle of involute spline pair, the dynamic equation is solved,
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and the distribution of impact force of the involute spline pair under various oper-
ating conditions is obtained. The results show that with the increase of backlash and
eccentricity, the impact force gradually increases, and the local extremum appears.
The maximum curve of impact force increases with the raising of pressure angle,
and the trend keeps slow at first and then becomes sharp. The forward maximum
and reverse maximum of impact force increase in sawtooth shape with the increase
of pressure angle. When the pressure angle is 25°, the RMS value of impact force is
the smallest.
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