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3Host Immune Response to Dental 
Implants

Nagihan Bostanci, Angelika Silberiesen, Kai Bao, 
and Ali Gurkan

3.1	 �Host Defense in Dental 
Implant Environments

3.1.1	 �Osseointegration and Host 
Response

Biocompatibility and biostability are the key prop-
erties of dental implants in the “oral environment,” 
in order to optimize their performance before or 
after functional loading. Biomaterials involving 
dental implants should be able to directly interact 
with their oral environment and adapt to the needs 
of the living organ [1]. Clinical biocompatibility 
rather refers not to a generic property of a biomate-
rial, but of a biomaterial-host system [2]. 
Uneventful host defense to dental implant inser-
tion is not necessarily “not at all a response in the 
tissue”; however, it starts with more a favorable 
immune response that promotes wound healing 
around the jawbone and soft mucosal tissue.

Dental implants are placed in the jawbone 
through surgical procedures that create an 

“implant wound” in the bone and soft tissue 
(Fig. 3.1). Attempts to minimize wound area and 
surgical trauma to bone and soft tissues are crucial 
to ultimately reduce the response in peri-implant 
tissues, thus leading to a faster wound healing and 
a more favorable host-biomaterial interaction 
(Fig. 3.2). Soft tissue healing is indicated by the 
formation of a mucosal barrier (biological seal) at 
the soft tissue-transmucosal interface, while a 
direct structural and functional connection 
between the bone and the implant interface is 
defined as “osseointegration,” or has earlier been 
characterized as “functional ankylosis” [3].

Bone tissue healing around dental implants 
includes an initial homeostasis phase, a pro-
inflammatory phase, a cell proliferation phase, 
and a final remodeling phase [4]. In experimental 
animal models, the inflammatory phase is initi-
ated as soon as 2 h following implant placement 
and is characterized by recruitment of leukocytes, 
which is followed by an increased number of 
fibroblasts and presence of osteoclasts in the 
recipient bone, starting from at 4 days to 1 week 
(i.e., proliferative phase) [5]. Polymorphonuclear 
granulocytes are the dominating leukocytes on all 
surfaces followed by monocytes. Stabilization of 
the blood clot to the implant surface and cell 
adhesion are important steps for successful inte-
gration and mediated through protein adsorption 
to the implant surface [6]. Interestingly, in 
humans, there is no obvious osteoclastic activity 
during the proliferative phase. The remodeling 
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phase begins at around 2 weeks by an increased 
number of osteoclasts and may extend to 
12 weeks until most of the woven bone is replaced 
by lamellar bone. Transition to the remodeling 
phase in humans shows more delayed onset at 
least 2 weeks, compared with beagle dogs [7].

Implant wound healing in the jawbone is coor-
dinated by structural and immune cells that inter-
act with each other via growth factors, cytokines, 
chemokines, and matrix proteins [5, 8, 9]. Gene 
expression analysis of peri-implant tissue at early 

stages of tissue healing indicates that the pro-
inflammatory response associated pathways are 
upregulated during the early stages of osseointe-
gration around day 4. Thereafter, around day 14, 
these pathways are replaced with the upregula-
tion of genes associated with osteogenesis-related 
mechanisms [10, 11]. Tissue-resident macro-
phages are an integral part of the osseointegration 
and wound healing process and can release sev-
eral pro-inflammatory cytokines or growth fac-
tors in response to the injury caused by surgery 

a
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Fig. 3.1  Bone wound healing around implants. 
Achievement and maintenance of osseointegration and 
mucosal seal formation depends on establishment of a 
long-term equilibrium between host cells and titanium. 
Early and late host immune reactions to dental implant 
procedures are immune-inflammatory response, angio-
genesis, and osteogenesis. Healing process that starts with 

the stabilization of the blood clot and respective occur-
rence of homeostasis, pro-inflammatory, cell prolifera-
tion, and finally remodeling phases eventually leads to 
osseointegration of the implants. (a) Insertion of four self-
tapping implants to osteotomy sites at edentulous lower 
jaw; (b) surgical site following disconnection of transfer 
pieces; (c) radiographic images at the first-stage surgery

a b c

Fig. 3.2  Peri-implant soft tissue healing around healing 
abutments. (a) Edentulous space of upper left lateral inci-
sor after 8 months of socket preservation and provisional-
ization; (b) healing abutment in place following placement 

of a dental implant via flapless guided surgery; (c) soft 
tissue healing around healing abutment over 3 days after 
immediate restoration with a temporary crown

N. Bostanci et al.
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[12]. Multiple cytokine profiling of peri-implant 
crevicular fluid collected 2, 4, 8, 12, and 24 weeks 
following implant placement in humans showed 
that a vast array of cytokines peaked at week 2 
after implant insertion, before decreasing at week 
4 or week 8, then remaining steady at least until 
week 24, postoperatively [13, 14]. These findings 
highlighted that early weeks following implant 
insertion are crucial time points of successful 
wound healing around implants, and support the 
previously reported histological observations and 
gene expressions data.

This type of immune response during the 
early stages of osseointegration around implants 
can be considered as “sterile inflammation” that 
is resolved if there are no other complications. 
The immune response features of the bone-
implant interface may be affected by several fac-
tors including implant surface characteristics/
design, surgical procedure for implant bed prep-
aration, or implant-abutment interface configu-
ration [15]. Implant surface topography 
modifications may promote osteogenesis by 
osteoblasts, but much less is known about their 
potential effect on immune cell modulation and 
control of inflammation [16–19]. Hotchkiss and 
coworkers. [16] showed that macrophages cul-
tured in vitro on implants with high surface wet-
tability or implants with a combination of 
high-energy and altered surface chemistry pro-
duce an anti-inflammatory host response that 
reduces extended pro-inflammatory factor 
release. A better understanding of the effect of 
implant surface characteristics on a wound-heal-
ing microenvironment may enhance implant 
success and prevent early implant loss, which 
has also been postulated to be associated with a 
provoked foreign body reaction [20, 21]. Several 
other studies also reported foreign body or 
hypersensitivity reactions as a result of the 
implant material itself [22–26]. In healthy indi-
viduals with a maximum of 3 successfully 
restored titanium dental implants, blood levels of 
lactate dehydrogenase (LDH) and total protein 
levels were significantly higher 6  months after 
implant placement compared to baseline [22]. 
However, none of the levels were of clinical rel-

evance. In addition, blood lymphocytes and 
monocytes from healthy individuals, baring or 
not dental implants, were isolated and their cell 
activity and cytokine production capacity to tita-
nium were assessed in vitro [23]. T-cell prolif-
eration was similar in both groups, but IL-1β, 
IL-6, and tumor necrosis factor (TNF)-α produc-
tion was significantly lower in individuals with 
implants. Furthermore, several studies investi-
gated the in vitro effect of blood on titanium and/
or zirconia dental implants [24–26]. For this, 
unused implants were incubated in blood from a 
healthy donor and were harvested after 1, 8 , and 
24  h to assess gene expression of IL-8 to the 
implant material [24, 26]. IL-8 gene expressions 
and IL-1β plasma protein levels were signifi-
cantly increased, compared to baseline, irrespec-
tive of the implant type [24, 25].

On the other hand, dental implant coatings 
may wear off over time, leading to titanium cor-
rosion and titanium particle release [27]. Berbel 
et al. showed that limited access to oxygen in the 
peri-implant defect environment reduces the 
resistance of implants to corrosion [28]. Although 
it is not clear whether such particle release can 
lead to a hypersensitivity reaction, there is evi-
dence that titanium ions can induce inflamma-
some expression by macrophages and activate 
the release of pro-inflammatory cytokines [29]. 
This is in line with findings a greater number of 
macrophages containing titanium particles was 
found in the areas in close contact with the 
implant surface [30].

During wound healing following implant 
installation, bone modeling occurs that may 
result in some reduction of the marginal bone 
level coupled to immunological reactions. Early 
bone loss process can be a result of multifactorial 
factors, including intrinsic and extrinsic ones 
(Fig.  3.3). Among these, less traumatic osteot-
omy modalities for implant bed preparation may 
lead to the reduction of pro-inflammatory 
response at an early stage [31]. Piezoelectric sur-
gery, a minimally invasive technique to prepare 
the implant bed has been shown to modify and 
reduce bone-destructive inflammatory molecules 
during implant osseointegration [13, 14, 32].

3  Host Immune Response to Dental Implants
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3.1.2	 �Peri-Implant Soft Tissue 
Integration and Host 
Response

The formation of a soft tissue barrier at implants 
is the result of a maturation process within the 
connective tissue and epithelial proliferation dur-
ing wound healing. Peri-implant soft tissue heal-
ing is described as a “gingival seal” formation 
[34] (Fig. 3.4). When assessed at the microscopic 
level, the healthy peri-implant mucosa in humans 
can reach up to 3.6 mm height and consists of a 
1.9  mm sulcular and junctional epithelium 
(keratinized and nonkeratinized) and a 1.7  mm 
underlying connective tissue [35]. While the api-
cal part of peri-implant mucosa creates a connec-
tive tissue adhesion zone with limited 
vascularization, the coronal part consists of junc-
tional and sulcular epithelium with some vascu-
larity [12, 36]. Blood supply of peri-implant 
mucosa is provided solely by the supraperiosteal 
blood vessels [37]. Therefore, peri-implant 
mucosa may have an impaired immune response 
compared to gingiva around teeth [38].

Experiments in dogs and humans have docu-
mented the cellular events in the connective tissue 
interface portion of the peri-implant mucosa dur-
ing the early stages of healing [12, 34]. Two hours 
after implant installation, blood coagulum was 
observed in the spaces between the mucosa and 

the implant and between the mucosa and bone. 
Following surgery at 4 days, there was an influx of 
the neutrophil granulocytes into blood cloth that 
degraded the coagulum and created a leukocyte-
infiltrated fibrin network. It was demonstrated that 
macrophages were distributed in the connective 
tissue throughout the entire healing period. Acute 
inflammatory changes at week 1 were reflected as 
an increase in PICF volumes [38]. The PICF con-
tent showed higher expression of specific pro-
inflammatory mediators in implants compared to 
teeth during post-operative healing, revealing a 
more robust response to surgical trauma in peri-
implant compared to periodontal tissues [38, 39]. 
While T and B lymphocytes were densely packed 
in the connective tissue at 2 weeks of healing, then 
their numbers declined from 4 to 8 weeks of heal-
ing in parallel with reduced vascularity [12]. 
Furthermore, the first signs of epithelial prolifera-
tion were observed in specimens representing 
1–2 weeks of healing and a mature junctional epi-
thelium occurred after 6–8 weeks of healing. The 
collagen fibers of the mucosa were organized par-
allel to the implant surface after 4 or 6 weeks of 
healing without insertion into the implant surface. 
Collectively, the soft tissue attachment to implants 
is established after several weeks following sur-
gery and induction and resolution of inflammation 
appear to be a hallmark for the healing process of 
the peri-implant mucosa (Fig. 3.4).

a b c d

Fig. 3.3  Osseointegration and crestal bone levels around 
the implants. Early peri-implant crestal bone loss is a mul-
tifactorial phenomenon including several modifiable or 
avoidable factors related to patients, implant design, surgi-
cal and prosthetic interventions [31, 33]. Current strategies 
target achievement of minimal or no crestal bone loss 
around dental implants. (a) Healed lower molar extraction 

site; (b) healing abutment placed simultaneously immedi-
ately after guided flapless implant surgery; (c) implant was 
immediately restored with provisional crown and non-func-
tionally loaded; (d) osseointegrated implant with definitive 
prosthesis. Note absence of crestal bone loss and mainte-
nance of the successful osseointegration (Surgery Prof Ali 
Gurkan, Prosthetics Prof Bulent Gokce)

N. Bostanci et al.
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3.1.3	 �Immune Responses to Biofilm 
Accumulation Around 
Implants

The nature of the peri-implant mucosa being 
exposed to the external and internal environment 
constitutes a challenge for the immune system to 
keep the homeostasis between oral microbial 
stimuli and an appropriate immune response. The 
lack of the periodontal ligament around implants 
creates a variety of biological disadvantages for 
the implant, compared to the periodontium of 
natural teeth including less physical barrier and 
reduced blood flow. Periodontal ligament pro-
vides the necessary biological niche for the pro-

duction of immune cells and supports alveolar 
bone regeneration possibly via the presence of 
stem-like cells and epithelial cell rests of 
Malassez [40, 41]. Earlier studies in animal mod-
els seem to substantiate this theory that increased 
bone loss and osteoclasts in ligature-induced 
peri-implantitis related to the absence of peri-
odontal ligament but not the cervical cementum 
in cynomolgus monkeys [42].

Biofilm formation in a newly exposed implant 
can happen as quick as 30 min from the existing 
species in the oral cavity [43]. Biofilm seems to 
be confined to the supra-mucosal area with the 
existence of a plaque and cell-free zone [12]. 
Similar to gingival tissue, peri-implant mucosa 

a d
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Fig. 3.4  Peri-implant soft tissue integration and host 
response around implants. During an uneventful wound 
healing period around implants, formation of a mucosal 
seal is characterized with proliferation of epithelium and 
maturation of connective tissue. The soft tissue undergoes 
pivotal changes including shift of the provisional matrix 
to a collagen fiber-dominated one and alterations in vol-
ume, cellular content, organization, and dimension and 

reaches its final characteristics within 6–8 weeks. (a) 
Mid-crestal incision prepared for second-stage surgery in 
order to uncover 2 implants left for submerged healing; 
(b) connection of healing abutments and primary closure 
of the flap; (c) post-op 2 weeks of undisturbed early peri-
implant mucosal healing; (d) buccal view of the site at 
second-stage surgery; and (e) at post-op 2 weeks

3  Host Immune Response to Dental Implants
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harbor various features that help controlling bio-
films including the flushing action of peri-implant 
crevicular fluid, the rapid epithelial turnover, an 
influx of innate immune response cells to the 
peri-implant tissue and the transmigration of neu-
trophils into the peri-implant sulcus [44, 45]. 
Stages of inflammatory events are described 
based on cellular and structural changes occur-
ring during peri-implant mucositis development 
and progression in experimental studies. A pro-
longed exposure of the implant site to dental bio-
films may induce both qualitative and quantitative 
changes of the inflammatory infiltrate around 
peri-implant mucosa, which is reversible upon 
reinstitution of plaque control similar to those in 
experimental gingivitis [46]. This response seems 
to be independent of implant type, at least based 
on experimental animal models [47]. The 
sequence of inflammatory events that take place 
in peri-implant mucositis is similar to those in 
experimental gingivitis, but potentially of inflam-
mation border extends faster toward the alveolar 
bone [48]. In humans, experimental peri-implant 
mucositis lesion at 3 weeks is characterized by 
the presence of an inflammatory cell infiltrate 
within the connective tissue underlying oral epi-
thelium [49]. The size of inflammatory lesion 

around the peri-implant mucosa can reach up to 
0.14 mm2, which is represented by increased pro-
portions of T- and B lymphocytes [50].

The host response patterns in human peri-
implantitis are qualitatively similar, yet more 
extensive, compared to periodontitis, resulting in 
a faster progression of tissue destruction [51, 52]. 
The information available on host-immune char-
acteristics of peri-implantitis is derived from 
comparative studies using biopsy material from 
peri-implant mucosa and gingiva, as well as 
experimental studies in animal models. The 
switch to peri-implantitis from peri-implant 
mucositis is accompanied by a further influx of 
inflammatory cells into the affected area of the 
peri-implant mucosa, that now expands to reach 
the bone tissue [53, 54] (Fig.  3.5). Similar to 
advanced periodontitis lesion, apical migration of 
junctional epithelium, loss of collagen and a 
larger proportion of neutrophils, macrophages, T- 
and B-cells, osteoclasts as well as bone loss are 
the key features of peri-implantitis lesions. When 
quantified, the size of peri-implantitis lesion is 
double in size than periodontitis lesion (3.5 vs. 
1.5  mm2) [55]. Diseased tissue obtained from 
peri-implantitis sites is shown to exhibit higher 
expression of several mediators of inflammation, 

a b c

Fig. 3.5  Clinical and radiographic findings of a peri-
implantitis case. (a) Presence of visual inflammatory 
changes around the peri-implant soft tissue evident by 
redness, swelling, ulceration, and suppuration. (b) 

Presence of bleeding on probing, increased probing depth 
and pus around the implant‐supported prosthetic restora-
tion. (c) Radiographic evidence of bone loss beyond 
crestal bone level around the implant

N. Bostanci et al.
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including pro-inflammatory cytokines interleu-
kin (IL)-6, IL-8, and TNF-α, compared to healthy 
or peri-implant mucositis sites [56, 57]. A global 
gene expression profiling of peri-implant and 
gingival mucosa biopsies indicates that both 
shared and distinct mRNA expression patterns 
between peri-implantitis and periodontitis. 
Another high-throughput gene expression study 
by Liu et al. showed that the cyclooxygenase-2 
pathway is the most upregulated biological pro-
cess in peri-implantitis as compared to periodon-
titis. Their data also suggested that osteoclast 
differentiation-related pathways are compara-
tively more active in peri-implantitis indicated by 
higher receptor activator of NF-κB (RANK) 
ligand (RANKL) and osteoprotegerin ratio [58, 
59].

Although limited animal models are available 
to compare peri-implantitis to periodontitis, it’s 
in parallel condition, ligature models in beagle 
dogs and murine are the most studied ones [60, 
61]. The placement of the ligature on the implants 
of experimental animals results in acute inflam-
matory reactions that involve tissue breakdown 
and bone loss, which resemble peri-implantitis in 
humans [62]. In general, ligatured-induced peri-
implantitis presents with increased infiltration of 
T- and B-cells, neutrophils and macrophages and 
osteoclasts, while decreased the density of alveo-
lar bone without “self-limiting” process [42, 54, 
63–67]. In these models, after the removal of the 
ligatures, if plaque accumulation is allowed, pro-
gression of peri-implantitis occurs resembling 
natural history of periimplantitis in humans [68]. 
The lesions in ligatured-induced peri-implantitis 
appear earlier than they are in periodontitis. By 
placing ligatures in both tooth and implants of 
mice for 1 week, 1 month, or 3 months, Hiyari S 
et al. observed the more intensive bone loss les-
sons on peri-implantitis compared with periodon-
titis sites as early as 1 week, and this trend was 
intensified at later stages [64]. Interestingly, in 
murine ligature models, at 3  months, 20% of 
implants exfoliated due to peri-implantitis, but no 
natural teeth exfoliated in the case of periodonti-
tis [66]. Additionally, removal of ligature leads to 
bone apposition in periodontitis cases whereas 
this is not the case in the peri-implantitis group 

[69]. At the molecular level, increased matrix 
metalloproteinase-8 (MMP-8), and nuclear factor 
kappa-light-chain-enhancer of activated B cells 
(NF-κB) expression seem to follow histopatho-
logical observations [64]. Experimental models 
using knockout mice strains suggested that in 
toll-like receptor (TLR) 2 and TLR4 mediate 
bone loss around implants [65, 70]. Similar 
models were also applied to evaluate the effect of 
implant type and implant surface characteristics 
in mediating immune response. The implants 
with doxycycline-treated surfaces resulted in sig-
nificantly higher bone levels than the control sur-
face in the peri-implantitis mice model, which 
showed this surface attenuated inflammatory 
response and progression [71]. In contrast, 
implant abutments with antibacterial coating or 
surface modification with a monolayer of multi-
phosphonate molecules in beagle dogs do not 
seem to prevent biofilm formation on the implant 
surfaces and do not attenuate host response in the 
adjacent peri-implant mucosa [72, 73].

3.1.4	 �Biological Fluids 
as a Reservoir of Inflammatory 
Mediators for Peri-Implant 
Mucositis and Peri-Implantitis 
and Their Diagnostic Potential

Although histopathologically peri-implant 
lesions are quite well described, the molecular 
determinants of these processes are not yet fully 
described. As indicated by many clinical studies 
that periodontal indices are not reliable diagnos-
tic and prognostic tools for examining dental 
implants and determining treatment needs. 
Although probing clinical pocket depth, clinical 
attachment level and bleeding on probing 
(absence or presence) have been recognized as 
the dentist’s most important tools in diagnosing 
periodontal health and disease, but probing depth 
around the implants is not as meaningful a diag-
nostic tool as the tooth. Regular probing around 
healthy implants could potentially result in 
trauma to the peri-implant soft tissues with con-
sequent induced inflammation. Therefore, in cur-
rent practice, probing around dental implants 

3  Host Immune Response to Dental Implants



38

cannot be performed until osseointegration is 
complete which may take up to 6 months [74]. 
Moreover, probing accuracy is more questionable 
around peri-implant mucosa as penetration seems 
to be more advanced at implants than at teeth [63, 
75].

Presence bleeding in probing (BOP) around 
implants is also a poor indicator of progressive 
peri-implantitis, as BOP is constant both at sites 
with peri-mucositis and peri-implantitis or even 
stable peri-implantitis [76]. Ericsson et  al. also 
reported the presence of BOP for the majority of 
the healthy peri-implant sites [76] potentially 
indicating a state of subclinical chronic 
inflammation in healthy peri-implant tissues. 
Therefore, contemporary, non-invasive diagnos-
tic and prognostic tools based on “measurable 
biological indicators” of peri-implant diseases 
are needed to detect active disease and future dis-
ease progression and facilitate targeted treatment 
on a more rational basis. Peri-implant crevicular 
Fluid (PICF) and saliva are among the proximal 

sources of biomarkers for peri-implant health and 
disease. Both saliva and PICF can be obtained 
non-invasively in less than 5  min (Fig.  3.6). A 
narrative summary of the literature examining 
biomarkers in PICF, saliva, and in serum as 
potential diagnostic/prognostic tools for peri-
implant diseases is provided in the following 
sections.

3.1.5	 �Peri-Implant Crevicular Fluid

The peri-implant crevicular fluid (PICF) is the 
inflammatory exudate of the peri-implant sulcus 
[14, 44]. Similarly, to gingival crevicular fluid 
(GCF), PICF is the outcome of increased perme-
ability of the vessels within the underlying con-
nective tissue, as an inflammatory response to the 
growing biofilm at the implant–tissue interface 
[77]. PICF is enriched with connective tissue 
breakdown products and inflammatory molecules 
[78–81]. Therefore, analysis of the PICF might 

Peri-implantatitis Healthy implant Peri-implant crevicular fluid

Fig. 3.6  Peri-implant crevicular fluid (PICF) collection 
in health and disease. The PICF is collected via paper 
strips after gentle insertion into the crevice for typically 

30 s. Once the PICF is absorbed onto the paper strips, then 
eluted into buffer prior to analysis of the immunological 
content

N. Bostanci et al.
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be suitable to evaluate the inflammatory status of 
peri-implant tissues, in a quantitative manner [45, 
82].

In healthy implant tissues, the flow of PICF is 
minimum. However, in peri-implant mucositis 
and peri-implantitis, its volume is increased at a 
given site in response to biofilm accumulation 
[83, 84]. PICF protein content increases in 
experimentally induced peri-implant mucositis 
by the end of the 3 weeks and more interestingly, 
its volume is higher when compared with that of 
GCF [48]. Since the composition of PICF is 
modified along with the histopathological 
changes during the course of progressive peri-
implant inflammation, its molecular analysis 
may support the early detection of clinically 
undetectable diseases [85]. The levels of pro-
inflammatory cytokines including tumor necro-
sis factor alpha (TNF-α), Interleukin-1alpha, 
IL-1 beta (IL-1β) are increased in PICF collected 
from peri-implantitis-affected sites, compared to 
healthy controls or sites with periodontitis [86–
90]. Further studies also showed that peri-
implantitis treatment reduced the PICF levels of 
IL-1β [91] and TNF-α [92, 93]. Matrix metallo-
proteinases (MMPs) or their tissue inhibitors 
(TIMPs) are also found in high levels in PICF 
from peri-implantitis sites are elevated compared 
to healthy sites, and their enzymatic activity 
increases with disease severity or at sites with 
progressive bone loss risk [89, 94]. The regula-
tion of osteoclastogenesis and osteogenesis-
associated markers has also been studied in PICF 
[95, 96]. Similar to findings in GCF obtained 
from sites with periodontitis, there is increasing 
evidence for the association of the RANKL and 
its inhibitor OPG with the presence and severity 
of peri-implantitis [48, 97–100]. Higher PICF 
levels of cathepsin K, a collagenase that is 
mainly expressed by osteoclasts, have been 
shown to be associated with peri-implantitis [95, 
96, 101]. Although further studies are needed, 
the current evidence suggests that the assess-
ment of pro-inflammatory cytokines, that is, 
IL-1β, TNFα, MMP-8, or alveolar bone turn-
over/resorption molecules, that is, RANKL/OPG 
or Cathepsin-K in the PICF may be of value as 
predictors of peri-implant diseases.

3.1.6	 �Saliva

As an alternative to peri-implant crevicular fluid 
(PICF), saliva might be used to study host 
responses against dental implants. Saliva, a com-
plex biofluid composed of minor and major sali-
vary gland secretions, serum and salivary 
inflammatory mediators and components from 
the oral microflora, has the potential to reflect 
oral and systemic health and diseases and can be 
obtained noninvasively and in large quantities 
[102, 103]. Various pro- and anti-inflammatory 
molecules, proteolytic enzymes involved in tis-
sue breakdown as well as markers for bone 
resorption have been studied in saliva in response 
to dental implants [104–113].

Significantly higher levels of IL-1β, IL-6, 
TNF-α, and procalcitonin were present in the 
saliva of individuals with peri-implantitis com-
pared to healthy controls, and also peri-implant 
mucositis for procalcitonin [105, 107]. In addi-
tion, bleeding on probing positively correlated 
with salivary procalcitonin in peri-implantitis 
patients [6, 107]. On the contrary, levels of 
colony-stimulating factor 1 (CSF-1), IL-34, 
IL-1β, triggering receptor expressed on myeloid 
cells (TREM)-1, peptidoglycan recognition pro-
tein (PGLYRP)-1, MMP-8, tissue inhibitor of 
metalloproteinases (TIMP)-1 and MMP-8/
TIMP1 ratio in saliva did not differ between peri-
implantitis and peri-implant mucositis [9, 12, 
110, 113]. Furthermore, CSF-1  in saliva and 
PICF were positively correlated. Both studies 
also evaluated the effect of concomitant peri-
odontitis, resulting in significantly higher sali-
vary levels of MMP-8 with both diseases present 
compared to peri-implantitis alone, while sali-
vary levels of all other molecules were not 
affected. Furthermore, IL-1β levels in saliva of 
peri-implant mucositis patients with or without a 
previous history of periodontitis did not differ [5, 
106]. However, in peri-implant mucositis patients 
without a previous exposure to periodontitis, sali-
vary IL-1β predicted higher levels of IL-1β levels 
in PICF. Another study investigated peri-implant 
mucositis patients under regular peri-implant and 
periodontal therapy or not (controls) at baseline 
and 5  years after implant placement [108]. 
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Salivary TNF-α was significantly elevated in 
patients without regular maintenance compared 
to patients under regular therapy, while IL-1β, 
IL-10, MMP-2/TIMP-2 complex, Receptor acti-
vator of nuclear factor-κB (RANK), osteoprote-
gerin (OPG), transforming growth factor (TGF)-β 
did not show any differences.

In a proof-of-concept study, a chewing gum 
detector was evaluated for its potential to mea-
sure MMP-8 activity in saliva by a peptide sensor 
which when cleaved releases a bitter substance 
[10, 111]. A significantly higher MMP-8 activity 
was detected in saliva from peri-implantitis and 
peri-implant mucositis patients compared to 
healthy controls. On the contrary, a commercial 
MMP-8 activity assay used as a control assay 
was not able to distinguish between healthy and 
diseased. Furthermore, a pilot study investigated 
pathogenic gene sets in the saliva of individuals 
with implant failure due to severe peri-implantitis 
using a whole-exome sequencing approach [109]. 
Significant enrichments were identified in gene 
sets for cytoskeleton, cell adhesion, and metal ion 
binding. The latter was also identified as a central 
functional group which, if misregulated, could 
interfere with cell morphology and adhesion and 
finally lead to implant failure.

Further studies investigated the host responses 
to restored and functional implants in the pres-
ence and absence of systemic diseases such as 
obesity [104] or type II diabetes [112]. Salivary 
IL-1β and IL-6 levels, as well as mean plaque, 
bleeding on probing, probing depth scores, and 
bone loss were significantly higher in obese than 
nonobese men [104]. The study on type II diabe-
tes used an array-based multiplex assay to assess 
multiple inflammatory molecules at the same 
time, including IL-1b, IL-2, IL-4, IL-6, IL-8, 
IL-10, TNF-α, interferon (INF)-γ, C-reactive 
protein (CRP), macrophage inflammatory protein 
(MIP)-1α, MIP-1β, MMP-1, MMP-2, MMP-8, 
MMP-9, TIMP-1, TIMP-2, OPG, adiponectin, 
and procalcitonin (ProCT) [11, 112]. Salivary 
markers were measured at baseline and 1  year 
after implant placement and did not show big dif-
ferences between the diseased and healthy 
groups. In patients with type II diabetes, IL-4, 
IL-10, and OPG were significantly decreased at 

the 1-year follow-up compared to baseline, while 
in healthy controls OPG was significantly 
increased after 1  year compared to baseline. 
Furthermore, in type II diabetes patients com-
pared to healthy controls, OPG levels were 
already significantly higher at baseline. None of 
the other molecules were significantly affected.

3.1.7	 �Serum

The investigation of health and disease biomark-
ers in the blood is a standard method, but trends 
are turning towards other biofluids than blood 
such as saliva, which can be collected non-
invasively and does not require specially trained 
personnel [103]. However, even though most 
inflammatory molecules in blood also seem to be 
detectable in saliva, the concentration of those 
molecules in the saliva is often substantially 
lower which might be due to the fluctuating sali-
vary flow rate depending on the circadian rhythm 
[102, 103]. Hence, investigating the host response 
to dental implants using whole blood, serum, or 
plasma should not be neglected. Various studies, 
as described above for saliva, have investigated 
inflammatory molecules, proteolytic enzymes, 
and bone resorption markers in the blood in 
response to dental biofilm-driven peri-implantitis 
[112, 114, 115]. A cohort of patients with either 
successfully osseointegrated dental implants or 
with dental implants that failed to osseointegrate 
was investigated for serum IgG to Actinomyces 
viscosus, Bacteroides forsythus, Porphyromonas 
gingivalis, Staphylococcus aureus, and 
Streptococcus intermedius [13]. Patients with 
failed implants presented with significantly lower 
levels of IgG to S. aureus, P. gingivalis, and B. 
forsythus compared to individuals with success-
ful implants. Furthermore, patients with at least 
one failed dental implant due to pain, implant 
movement, or peri-implantitis were tested for 
IL-1 polymorphisms in the blood [115]. Six out 
of the 22 patients tested positive for the IL-1 gen-
otype, but the genotype (IL-1 positive or IL-1 
negative) did not differentially affect implant 
failure. However, in smokers, a positive IL-1 gen-
otype resulted in a significantly higher implant 
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failure rate compared to IL-1 positive non-
smokers. The study mentioned above investigat-
ing the host responses in saliva to functional 
implants in type II diabetes also analyzed the 
same molecules in serum at baseline and 1 year 
after implant placement by using an array-based 
multiplex assay [112]. Among all molecules, dif-
ferences were only seen for serum MMP-1, 
which was significantly higher in healthy con-
trols than type II diabetes patients.
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