
Chapter 8
Geospatial Assessment of Turbidity
Along the Ganga River

N. R. Shankar Ram, Anshuman Bhatt, V. M. Chowdary, Khushboo Mirza,
Chandra Shekhar Jha, and Chiranjivi Jayaram

Abstract The Ganga River basin is a lifeline to the millions inhabiting the Indian
subcontinent. Pollution and deteriorating water quality in this ecosystem have been
linked to various anthropogenic activities such as habitation, industrialization, agri-
culture, etc. The estimation and evaluation of water quality levels are essential for
societal and economic development. In recent times, satellite imaging approach is
widely used in diverse environmental applications, including water quality moni-
toring. Turbidity is an indicator of water transparency that is associated with total
suspended sediment concentration and other impurities in the water through the
process of light attenuation. The present study envisaged surface reflectance values
to estimate the water turbidity across the Ganga River system, which is spatially clas-
sified into four different river sections. The Modified Normalized Difference Water
Index (MNDWI) was used to delineate water pixels from the multispectral satel-
lite datasets, while the turbidity was assessed spatially for different river sections
using widely used Turbidity retrieval algorithms. The relative consistency among
the selected algorithms was evaluated using collocated in-situ measurements during
the period 2013–2016. Analysis of turbidity values showed a steady decrease from
upstream to downstream, with turbidity values of >115 NTU and 60–85 NTU in
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the upper and lower sections, respectively. The results indicated that remote sensing
provides a robust alternative for monitoring surface water turbidity.

Keywords Ganga River · Turbidity · Empirical model ·MNDWI · NTU

8.1 Introduction

Climate change has adversely affected the Ganga River basin and its fragile envi-
ronment in the recent decades. Increased rate of glacier melting and accelerated soil
erosion affect the basinwide ecosystem (Ramakrishnan and Rajawat, 2012). Being
one of themainwater resources for the northern plains of the Indian subcontinent, the
GangaRiver faces severe challenges due to climate, anthropogenic and environmental
changes. Further, increasing population exerts a significant demand for fresh water
for consumption and socio-economic development. The key natural factors include
contribution from the hydrological, climatic, and geological domains. Changes to
the natural hydrology of a region such as the draining of wetlands, the establishment
of hydropower units, diversion of river course, etc. disrupt the natural balance in the
ecosystem (Du et al. 2010; Manes et al. 2016). Their adverse effects are severe when
the water quantities available are low and resources are limited. Human intervention
bears serious adversities on the quality of water. In addition to the intensive water
usage, activities such as the discharge of industrial, domestic, urban, or other wastes,
abundant bottom feeders that stir up bottom sediments or algal growth; the chemical
loadings from agricultural lands, either accidental or intentional, result in pollution of
water sources (Dietrich et al. 2014; Das 2011, Guttler et al. 2013; Zhou et al. 2006).
Thus, to check the rampant deterioration, it is crucial to initially assess the levels of
such pollution and further establish a system that monitors its dynamic changes, to
plan mitigation or development activities.

Among the various properties of water, turbidity is an important indicator that
may be used to investigate river water quality. Turbidity, as a factor of water trans-
parency, provides information about the attenuation of light that is associated with
the concentration of total suspended sediments and other impurities present in the
water (Devlin et al. 2008; Mishra and Kumar, 2021; Tian et al. 2009). Turbidity
can also be understood as a presence of different inorganic and organic materials
(particulate or dissolved) in the water. It can also be considered as a measurement of
the relative clarity of water, where higher turbidity levels result in increased murk-
iness of water. Diffusion of light into the water also decreases with the increase of
suspended matter, thereby obstructing the amount of light available for photosyn-
thesis. This decreases the extent of vegetative growth, adversely impacting the food
chain and also resulting in decreased oxygen levels. Increased turbidity levels also
make it difficult for predators that use visual ques to capture their prey (Christian
and Sheng, 2003; Devlin et al. 2008).

The particulatematter that ends up in thewater bodies originates from sources like
soil, plants, animals, industrial effluents, etc. Clay, silt, minute inorganic and organic
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matter, dissolved colored organics, algae, plankton, and other microorganisms are
examples of such substances. Turbidity is an optical characteristic of water and is a
measurement of the quantity of light that is scattered by material in the water when a
light passes through the water sample. It is determined by examining water samples
on-site or in the lab with the in-situ measurements. The higher the intensity of scat-
tered light, the higher the turbidity. It is usuallymeasured in Nephelometric Turbidity
Units (NTU), where the instrument measures scattered light from the sample at an
angle of 90° from the incoming light (Kitchener et al. 2017). Turbiditymeasurements
of rivers involve the understanding the regime of discharge. It is crucial for the inter-
pretation of measurements of water quality, which include various other parameters
viz., flux of contaminants or sediments, suspended sediment, etc. Globally, parame-
ters such as nature of river catchment, its geology, geography as well as climatology
also influence the river discharge. In general, water clarity in the river streams tends
to be clearer during lean flows, resulting in lower turbidity values, usually less than
10 NTU. During a rainstorm, when water levels are high, most rivers become muddy
(brownish) due to suspended sediments from the enhanced terrestrial runoff.

Turbidity is commonlymonitored by field measurements and hydrological station
observations, which are typically time-intensive and are limited to discrete sites.
With the advantage of broad coverage and low cost, remote sensing data provides
an alternative way to monitor turbidity at various spatial and temporal scales. The
integration of remote sensing data and in-situ measurements allows coherent quan-
tification of turbidity changes. Several studies used multispectral and hyper-spectral
remote sensing data for turbidity retrieval (Fraser 1998; Frazier and Page, 2000;
Ritchie et al. 2003; Kuhn et al. 2019). These studies envisaged multiple algorithms
to assess turbidity in riverine waters using different spectral band combinations along
with other variables for turbidity assessment. Liu and Wang (2019) developed a reli-
able turbidity model based on Landsat-8 satellite imagery, while Shen et al. (2021)
carried out regression modeling to derive the turbidity from the Yarlung Zangbo
River, Southern Tibetan Plateau.

Zhou et al. (2021) generated turbidity maps of the Wuhan region in China, and
focused on the turbidity dynamics of this industrial city, for better decision-making
and effective water quality management. The relationships of turbidity and metro-
logical and anthropogenic factors were also examined. The study by Kalele (2019)
focused on the utilization of satellite spectral reflectance measurements for turbidity
retrieval in the Lower Charles River, USA. Similar studies by Allam et al. (2020),
Kapalanga et al. (2021), and Pereira et al. (2018) investigated remote sensing-based
validation of the satellite-derived values with in-situ data over the Ramganga River in
the Ganges Basin, Olushandja Dam, north-central Namibia, and Middle Mississippi
and Lower Missouri Rivers of the USA, respectively. Specifically, Landsat-8 satel-
lite data have been widely used to estimate water quality parameters. These datasets
have been used to examine the spatial and temporal variation of turbidity with the
identification of key issues affecting its patterns in El Guajaro Reservoir, Colombia
(González-Márquez et al. 2018) and depth in Cam Ranh Bay and the Thuy Trieu
Lagoon, Vietnam (Quang et al. 2017). These authors had developed the algorithms
to retrieve the turbidity based on the relationship between in-situ observations and
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the red spectral band of Landsat 8. The study by Surisetty et al. (2018), focused on
utilizing Landsat 8 bands, especially Near Infrared (NIR) and Shortwave Infrared
(SWIR) to derive turbidity values in the Chilika lagoon.

Thus, various studies were conducted globally to measure the turbidity in major
water bodies and river systems using an array of models. The present study compre-
hensively evaluated some of these algorithms available in literature and aims to
identify the most suitable algorithm to effectively retrieve water turbidity across the
river Ganga. The specific objectives of the present study include: (1) Assessment
of turbidity from satellite data using multiple retrieval algorithms (2) Evaluation
of turbidity algorithms using in-situ observations (3) Real-time turbidity mapping
across various stretches of Ganga River.

8.2 Materials and Methods

8.2.1 Study Area

Ganga River Basin (Fig. 8.1) is the largest river basin in India, covering a total area of
861,404 km2, comprising the Ganga River and its tributaries. It is marginally greater

Fig. 8.1 Synoptic view of the study area along with CPCB ground station locations
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than a quarter of the total geographical area of the country. This river, considered
sacred to billions of Indians, runs along the northern part of India and feedsmore than
four hundredmillion people living in the basin area. In total, theGanga basin is spread
in 11 states of the country, namely Bihar, Chhattisgarh, Delhi, Haryana, Himachal
Pradesh, Jharkhand, Madhya Pradesh, Rajasthan, Uttar Pradesh, Uttarakhand, and
West Bengal. The abundance of water resources, fertile soil, and suitable climatic
conditions, across these regions has resulted in an advanced agricultural society with
a total cultivated land area of approximately 44 million hectares and a total irrigated
area of 23.41 million hectares. It has evolved into one of the most densely inhabited
places in theworld. TheGangaRiver has created a basinwith extraordinary variations
in climatic conditions, altitudes, land use, wildlife, culture, and society. The entire
river length was further divided into four river stretches (Fig. 8.1) along the river
basin in this study. These stretches were chosen on the basis of availability of in-situ
datasets and the vicinity of ground station to each other forming a cluster.

8.2.1.1 Climate

The average maximum and minimum temperature across the basin fall in the of
range of 30.3 °C–21.5 °C in summer to 21.1 °C–6.4 °C in winter, respectively. The
pre-monsoon season (March–May) experiences the hottest temperatures in the basin
with an average temperature of ~31.4 °C. The month of January is the coldest across
the whole basin. The annual precipitation across the basin is nearly 1000 mm. The
monsoon season witnesses the highest amount of rainfall (nearly 84% of the annual
total). Of the remainder, 7, 5, and 4% fall during the pre-monsoon, post-monsoon,
and winter seasons with some differences in precipitation between the upper and
lower Ganges basins. Generally, peak flows occur when melting of snow runoff is
reinforced by monsoon rains. The Ganges receives snow-melt from southern flaks
of Tibet as well as the Himalayas from the periods from April, extending till June,
and subsequently, the flow rate of the river commences to decrease when the July
monsoon commences.

8.2.1.2 Topography and Soil Characteristics

The Gangetic plains are generally distributed into the Upper, the Middle, and the
Lower Ganga plains, respectively. Approximately 40% of the total Ganga basin area
falls under the elevation of 50–200 m. It is confined by the mighty Himalayas in the
north, the Vindhyas range and Chotanagpur plateau in the south, the Aravalli range
across the west, and the Brahmaputra ridge in the east. The river basin comprises an
extensive variety of soils.While the highHimalayan soils in the north face continuous
erosion, the Gangetic plain provides a huge depositional platform forming a wide
valley plain, where some soils are highly prone to erosion. The montane and alluvial
soils cover nearly 60% of the total basin area. Of the remaining area, red soils (12%
area) are highly erodible, yellow and red soils, mixed black and red soils (8% area)
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have moderate erodibility, and medium and deep black soils (14% area) have low
erodibility. Lateritic soils and shallow black soils that cover 6% of the basin area
have very low erodibility.

8.2.2 In-Situ and Satellite Datasets Used in the Study

The present study investigated the agreement of satellite-based retrieval of turbidity
with water quality information collected from the Central Pollution Control Board
[CPCB] for the period 2013–2016 (CPCB 2008). A total of 40 ground stations
datasets spanning across the study region, i.e., situated between Indian state of
Uttarakhand (headwaters) to Sundarbans Delta, West Bengal (mouth of the river)
were used in the analysis. The datasets contained turbidity information from in-situ
instruments placed along the banks of the river. In the present analysis, 17 ground
station datasets were selected based on the factors such as concurrent availability
with satellite pass and data quality (Fig. 8.1).

Satellite-based imagery from the Landsat-8 satellite in the Landsat series satel-
lites was used in the present study. The satellite payload has two scientific instru-
ments onboard- the Operational Land Imager (OLI) and the Thermal Infrared Sensor
(TIRS). These sensors deliver periodic coverage of the landmass with a spatial reso-
lution of 30 m across the NIR, SWIR, and visible bands; 100 m across the Thermal
band and 15macross the Panchromatic band (Table 8.1). An inventory of all available
satellite datasets between the year 2013–2016 was generated and concurrent dates

Table 8.1 Spectral bands
and resolutions of Landsat 8

Bands Wavelength (nm) Type Spatial
resolution (m)

1 430–450 Coastal aerosol 30

2 450–510 Blue 30

3 530–590 Green 30

4 640–670 Red 30

5 850–880 Near Infrared
(NIR)

30

6 1570–1650 SWIR 1 30

7 2110–2290 SWIR 2 30

8 500–680 Panchromatic 15

9 1360–1380 Cirrus 30

10 10,600–11,190 Thermal Infrared
(TIRS) 1

100

11 11,500–12,510 Thermal Infrared
(TIRS) 2

100

Source Hansen and Loveland (2012)
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that correspond to CPCB ground station measurement for a satellite overpass were
identified. These datasets have been downloaded from the USGS website (Hansen
and Loveland 2012) and further processed in this study.

8.2.3 Methodology

Landsat-8 images for the four selected stretches were obtained and further processed
by following the methodology as discussed subsequently.

8.2.3.1 Generation of River Mask

The computational intensity to process the satellite datasets was reduced by sub-
setting the datasets into pixels with only the river course. The Modified Normalized
Difference Water Index (MNDWI), which enhances open water features while suffi-
ciently suppressing and removing the built-up land noise as well as soil/vegetation
noise was used in the present study (Xu 2006). The index is derived from the modi-
fication of the Normalized Difference Water Index (NDWI) (Gao 1996; McFeeters,
1996), by substituting the middle infrared band with the Near Infrared (NIR) band
used in the NDWI. The NDWI extracted water area is overestimated as the water
mask obtained from satellite imagery is usually mixed up with built-up land noise.
Hence, MNDWI, helps in contracting and even eliminating the noise of built-up land
and is more suitable for extraction and enhancement of water features with a built-up
dominated land area in background. The formula used to compute the MNDWI can
be computed as follows:

MNDWI = (Green− SWIR)/(Green + SWIR)

Where “Green” is the green band and “SWIR” is the Short Wave Infrared band.
The water pixels are extracted from the generated MNDWI values by applying a
threshold at 0.

8.2.3.2 Extraction of Surface Reflectance for River Mask

The satellite imagery from the four identified river sections was clipped with the
water vector polygon. Pixel values from bands 2, 3, 4, and 5 of the clipped satellite
imageries are converted to surface reflectance values using a multiplicative factor
(0.0000275) as given in the Landsat 8 OLI/TIRS Collection 2 Level 2 Data Format
Control Book (USGS 2020).
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Table 8.2 Turbidity models evaluated across the river stretch

S. No. Retrieval model References

1 T = −74.26 * B2 − 14.84 * B3 +
267.45 * B4 − 126.89 * B5 + 4.21
B2 = Band 2, B3 = Band 3, B4 = Band 4, B5 =
Band 5

Liu and Wang (2019)

2 T = −344.784 * B2 + 398.817 * B3 + 1.045
B2 = Band 2, B3 = Band 3

Kalele (2019)

3 T = −138.2 − 1718 * (B4/B3) + 695.1 *
e(B4/B3)
e = exponential, B3 = Band 3, B4 = Band 4

Pereira et al. (2018)

4 T = 380.32 * (B4) − 1.7826
B4 = Band 4

Quang et al. (2017)

5 Turbidity = 10.26 * (B4 + B5) − 0.18359
B4 = Band 4, B5 = Band 5

González-Márquez et al. (2018)

6 T = 15.31856 − 956.806 * (B2) − 747.376 *
(B3) + 1742.455 * (B4) + 165.173(B5)
B2 = Band 2, B3 = Band 3, B4 = Band 4, B5 =
Band 5

Kapalanga et al. (2021)

7 T = 3.896 − 4.186 * (Band 2/Band 3) Allam et al (2020)

8 T = 23.09 * (r − 0.233/1.28 − r)
r = broadband reflectance ratio of B4/B3

Surisetty et al. (2018)

9 T = (1 − ε) * 2.1170 * (red band) * 2.4880 + ε

* 2.4354 * (NIR) * 2.5673
ε = (NIR band − 0.028)/0.005

Zhou et al. (2021)

10 T = 253.884 + (−558.206 * X) + (0 * X2) +
(399.496 * X3)
X = Band 4/Band 3

Li et al (2015)

8.2.3.3 Turbidity Retrieval Algorithms

Thewidely used strategy to compute turbidity is to establish the relationships between
turbidity and image reflectance based on the calibration of in-situmeasurements from
water samples. In this study, we used multiple models from literature to extract the
best-suited turbidity model for the Ganga River. Table 8.2 catalogs the 10 turbidity
models evaluated in the present study. Each algorithm was implemented over the
river sections and the resulting turbidity values were compiled. The results were
further evaluated for consistency in their range of values in comparison to in-situ
datasets and four models were identified.

8.2.3.4 Performance Evaluation of Turbidity Models

Subsequent to obtaining the outputs of all the algorithms, four algorithms were
shortlisted based on their value ranges for the validation process. The pixel values
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of coordinates falling over the in-situ ground stations and model-based extracted
turbidity datasets were acquired for all four algorithms, following the nearest neigh-
borhood criteria with the in-situ location. The relative performance of these models
is evaluated based on the Root Mean Square Error (RMSE) calculation. RMSE is
the residual’s standard deviation (prediction errors). Residuals measure the distance
of the regression line from the data point, showing the spread. This error metric
is commonly used in climatology, forecasting, and regression analysis to verify
experimental results. The formula to compute RMSE is as follows:

RMSE =
√∑N

i̇=0

(
xi − x̂i

)2
N

N = No. of datasets
xi= in-situ based value
x
∧

i=Model-based value.
Subsequent to the validation of the four shortlisted models of turbidity, the most

suitable algorithm is selected based on the lowest deviation in the values between
in-situ data and observed data.

8.2.3.5 Real-Time Turbidity Mapping Across the Ganga River

Cloud-free satellite datasets across the study area were acquired to compute the
turbidity across the river. These maps may serve as guiding tools to identify turbidity
levels across various stretches of the study area.

8.3 Result and Discussion

Remote sensing and GIS-based technologies were used to retrieve the turbidity of
GangaRiver. Satellite imageryof the studyperiod from2013 to2016wasdownloaded
and the coordinates of the respective ground stations alongwith dataset’s path and row
numbers of the satellite imagery, along with their corresponding dates, are presented
in Table 8.3. The description of various intermediate steps and results that were
carried across these datasets are as described below.

8.3.1 Extraction of Water Pixels and Generation of River
Mask

The MNDWI algorithm was applied onto the Landsat satellite across the identi-
fied river stretches. Figure 8.2a, b, show the False-color composite and the MNDWI
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Table 8.3 Inventory of satellite data availability corresponding to in-situ data with their date of
availability

Year Date Ground
station

Coordinates
(latitude,
longitude)

Path,
row

Landsat 8 Datasets (LC08_L2SP_…)

Section 1

2013 22-May G1 28.2731,
78.3182

145,
41

…145041_20130522_20200913_02_T1

2014 17-Nov G2 28.1897,
78.3959

145,
41

…145041_20141117_20200910_02_T1

Section 2

2014 09-Apr G3 25.4192,
81.9005

143,
42

…143042_20140409_20200911_02_T1

2015 23-Feb G4 25.5023,
81.8554

143,
42

…143042_20150223_20200909_02_T1

G5 25.4192,
81.9005

143,
42

…143042_20150223_20200909_02_T1

2016 01-Jun G6 25.4266,
81.8639

143,
42

…143042_20160601_20200906_02_T1

Section 3

2014 09-Apr G7 25.244,
82.4183

143,
42

…143042_20140409_20200911_02_T1

2016 25-May G8 25.1771,
82.6022

142,
43

…142043_20160525_20200906_02_T1

G9 25.244,
82.4183

142,
43

…142043_20160525_20200906_02_T1

03-Feb G10 25.2894,
83.0064

142,
42

…142042_20160203_20200907_02_T1

G11 25.3199,
83.0366

142,
42

…142042_20160203_20200907_02_T1

Section 4

2014 02-Dec G12 22.4535,
88.1153

138,
44

…138044_20141202_20200910_02_T1

08-May G13 22.4535,
88.1153

138,
44

…138044_20140508_20200911_02_T1

2015 12-May G14 23.4001,
88.3734

138,
44

…138044_20151205_20200908_02_T1

G15 23.0008,
88.4086

138,
44

…138044_20151205_20200908_02_T1

02-Oct G16 22.5497,
88.2961

138,
44

…138044_20151002_20200908_02_T1

2016 07-Dec G17 22.5497,
88.2961

138,
44

…138044_20161207_20200905_02_T1
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Fig. 8.2 Sample section of the river showing a FCC imagery, b modified normalized difference
water index and c river mask

output, respectively across a sample section of the river. Thewater pixels are extracted
by the application of threshold value of 0 onto the MNDWI output. Subsequently,
these pixels were converted to vector polygon so as to generate the river mask
(Fig. 8.2c).

8.3.2 Estimation of Turbidity Using Multiple Turbidity
Retrieval Algorithms

The satellite datasets were clipped and the surface reflectance values were computed
for these datasets across the study region as defined in Sect. 8.2.3. The value ranges
of all these models were computed and four models with their values lying within
the range of values in the in-situ datasets were shortlisted. The algorithms from Liu
and Wang (2019) (Sr. No. 1), Kalele (2019) (Sr. No. 2), Quang et al. (2017) (Sr. No.



192 N. R. Shankar Ram et al.

Table 8.4 Shortlisted models for turbidity extraction

Model No Selected model References

A T = −74.26 * B2 − 14.84 * B3 + 267.45 * B4 − 126.89 *
B5 + 4.21
B2 = Band 2, B3 = Band 3, B4 = Band 4, B5 = Band 5

Liu and Wang (2019)

B T = −344.784 * B2 + 398.817 * B3 + 1.045
B2 = Band 2, B3 = Band 3

Kalele (2019)

C T = 380.32 * (B4) − 1.7826
B4 = Band 4

Quang et al. (2017)

D T = 253.884 + (−558.206 * X) + (0 * X2) + (399.496 *
X3)
X = Band 4/Band 3

Li et al (2015)

4), and Li et al. (2015) (Sr. No.10) were taken as Models A, B, C, and D, respectively
(Table 8.4).

8.3.3 Estimation of Turbidity Across River Sections Using
Different Turbidity Models

The shortlisted turbidity models (Models A, B, C & D) were applied to each section
of the river. The values of turbidity across the models over the river Section 1 are
shown in Fig. 8.3. Here, the computed turbidity values indicated values ranging
from 7 to 39 NTU and 26 NTU to 53 NTU for Model A and Model B, respectively.
Model B showed an average turbidity higher than the Model A estimated value. The
turbidity estimates from Model C are observed from 99 to 181 NTU which is the
highest among all the other algorithms. Although there were only few values greater
than 170 NTU, the average values were well over 120 NTU. Turbidity values from
Model D also indicated high values with NTU ranging from 65 to 171 NTU.

Figure 8.4 depicts the computed turbidity for various models across Sect. 2 of the
study area. The turbidity values ranged from6 to38NTU.Thedistributionof turbidity
was seen to vary with lower values in the upper part of the river and increasing toward
the downstream region. Models A and B showed values between 38 and 49 NTU,
respectively. Model B showed not only higher turbidity in comparison to Model
A, but it also showed greater number of stretches with high values. The output of
Model C and D showed turbidity values from 87 to 170 NTU and from 47 to 187
NTU, respectively. Although Model D had the highest maximum value of computed
turbidity, Model C showed the highest average value. Low to moderate values of
turbidity was observed in the upper part and higher values were computed in the
lower part of the river.

The distribution of turbidity across different turbidity models were shown in
Fig. 8.5. The output ofModel A showed that the turbidity values ranged from 03 to 38
NTU. Few regions where minor tributaries converge showed high turbidity values.
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Fig. 8.3 Spatial distribution of turbidity for Models A, B, C & D across Section 1

The turbidity output of Model B (18 NTU to 48 NTU) showed rather low values
along the upper and middle part of the river section with higher values in the lower
part after the tributaries converge. Model C indicated values ranging from 83 to 149
NTU and 47 NTU to 153 NTU, respectively. They showed the gradual increase in
values toward the downstream regions.

Figure 8.6 depicts the turbidity outputs forModelsA,B,C, andDacross the lowest
section (Section 4) of the study region. The output of Model A depicted values that
ranged from negligible to 42 NTU. The pixels values for turbidity ranged from low
to moderate from the upstream toward downstream regions. The output of Model B
(7–70 NTU), showed patterns of the turbidity to be higher in the middle regions of
the river while moderate toward the upper and lower reaches of the river. Models C
(turbidity between 72 and 248NTU) showed similar patterns. Therewere few regions
of the riverwhich showedvalues that exceeded 200NTU.ModelD (turbidity between
16 and 138 NTU) showed low values in the upstream and downstream regions of the
river and regions in the middle showed moderate to high turbidity values.
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Fig. 8.4 Spatial distribution of turbidity for Models A, B, C & D across Section 2

8.3.4 Evaluation of Turbidity Retrieval Models Using In-Situ
Observations

The model outputs for pixels near the spatial vicinity of in-situ observation sites
were extracted considering the dates and satellite data availability. To extract the
model that most accurately represents the in-situ datasets, the RMSE matric was
computed across various sections of the river. Tables 8.5, 8.6, 8.7 and 8.8 show
the RMSE values across various sections of the study area. It was observed that
Sections 2, 3, and 4 were best represented by Model D (Li et al. 2015) with the
RMSE values of 8.27, 24.18, and 62.65, respectively which indicated that it was a
moderately suitable algorithm among these river sections. On the contrary, Model
B (Kalele 2019) showed the lowest RMSE error (12.1) for Section 1 of the study
area, indicating better performance. In the present study, since Model D depicted the
least RMSE value across three different sections, it was selected as the most suitable
algorithm among all the other algorithms for estimation of turbidity across the Ganga
River.
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Fig. 8.5 Spatial distribution of turbidity for Models A, B, C & D across Section 3

8.3.5 Real-Time Turbidity Mapping Through the Best
Performing Model

Satellite datasets of 13-July-2021 were acquired and the water turbidity across the
study area was computed using the most suitable turbidity retrieval algorithm as
proposed byLi et al. (2015) (ModelD) (Fig. 8.7). The upper reaches of the river exhib-
ited higher turbidity (>115 NTU) values in comparison to the downstream sections
(60-85 NTU) after the confluence with its tributaries. During its passage across the
middle reaches, the river confluences with many of its tributaries, creating turbid
waters. The reduction of turbidity values toward its lower reaches may be attributed
to the widening and slowing down of the course of the river, allowing for the settling
of particulate matter, thereby reducing water turbidity in the downstream sections.
The turbidity values retrieved in the present approach may be operationalized to
continually monitor the water quality across the river.
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Fig. 8.6 Spatial distribution of turbidity for Models A, B, C & D across Section 4

8.4 Conclusions

Water quality is influenced by a wide range of human and natural factors. Turbidity is
an important indicator ofwater quality and the hydrological conditions of rivers.With
the advantage of synoptic coverage and low costs, satellite data and remote sensing
techniques have opened up new avenues and provided alternative ways to monitor
turbidity at various spatial and temporal scales. The present study investigated the
turbidity retrieval from satellite datasets using various retrieval models available
across literature. The study further envisaged to identify the most suitable algorithm,
that best represented the in-situ observations across different sections over the Ganga
River. The study indicated that model proposed by Li et al. (2015), best represented
the turbidity concentration in the river waters of the Ganga. However, the model was
unable to represent the in-situ turbidity values across the upstream sections of the
river satisfactorily. Thus, a single model may not be adequate to completely model
the complete extent of large river systems such as the Ganga. Thus, there is scope
for novel models, which may quantitatively best represent different sections of the
river course, with is varying agro-climatic and morphological characteristics.
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Fig. 8.7 Spatial distribution of turbidity across a) middle (moderate turbidity), b) upper (high
turbidity), c) lower (moderate turbidity) and d) middle (high turbidity) river sections using turbidity
Model D
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