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Abstract

Cancer cell invasion and progression to metastasis have 
been extensively studied. There is not one all-inclusive 
model that encompasses the complete picture of the dif-
ferent conditions and pathways operating in human 
tumors. Application of gene expression signatures is one 
way of mining the complex tumor landscape and has been 
proposed to represent a robust method to reflect the many 
signaling systems.

This chapter gives an update on gene expression signa-
ture studies related to breast cancer progress, with particu-
lar focus on the supporting stroma. Several signature 
studies indicate that a combination of extracellular remod-
eling, activated vascular biology, immune responses, and 
metabolic reprogramming, in part adipocyte-related, takes 
place during breast cancer progression. Stromal alterations 
are likely to be exploited for novel biomarkers and com-

panion treatment targets. Some basic methodological 
aspects and recent developments are highlighted.

 Introduction

And above all, watch with glittering eyes the whole world 
around you because the greatest secrets are always hidden in the 
most unlikely places. Those who don’t believe in magic will 
never find it.—Roald Dahl (1916–1990)

Tumor cell invasion and metastasis are multistep pro-
cesses that are detrimental to the organ in which they occur. 
The route to cancer dissemination is suggested by distinct 
steps; local infiltration, intravasation, and transport of cancer 
cells in the lymphatic or hematogenous systems, followed by 
extravasation of tumor cells from the vessels into the tissue 
parenchyma (or niche) of the new site where micrometasta-
ses may form and grow to macroscopic lesions [1, 2]. The 
English surgeon Stephen Paget postulated “the seed and soil 
hypothesis” in 1889, suggesting that tumor cells (denoted 
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Take-Home Lessons
• Global gene expression data may better reflect the 

complexity of cancer biology as compared to the 
detection of single gene or protein alterations, 

potentially being a powerful resource for identify-
ing markers of the complex biological processes 
taking place in cancer.

• Interactions between vascular processes, immune 
responses, cancer-associated adipocytes, and extracel-
lular remodeling appear to be critically important fea-
tures of tumor subtypes and their associated outcomes, 
as reflected in composite signature biomarkers.

• Identifying genes and proteins with known func-
tions, differentially expressed between subgroups, 
may provide improved understanding of the bio-
logical differences between tumor phenotypes.

• Gene networks analyses, by means of gene set enrich-
ment analyses and mRNA data paralleling protein–
protein interaction analyses, provide increased 
biological understanding of complex large-scale data.
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“seeds”) have affinity for specific tissue environments 
(denoted “soil”) in certain organs [3]. Literally, Paget sedded 
a hypothesis followed by many researchers studying cancer 
invasion and the metastatic process over the next century.

Before setting off on the invasion-metastasis cascade, it is 
crucial that tumor cells fulfill prerequisites such as the ability 
to detach and move from the original colony, with unlimited 
proliferative potential, and a capacity to evade from destruc-
tion [4]. The underlying effectors in the invasion-metastasis 
cascade are suggested to be classified as metastasis initiat-
ing, metastasis progressing and metastasis virulent [5]. 
Metastasis-initiating genes generate a supportive environ-
ment that facilitates tumor infiltration to surrounding tissue. 
Expression of such genes, in the epithelial cells or the micro-
environmental compartments, may promote angiogenesis, 
vascular invasion, epithelial-mesenchymal transition (EMT), 
and evasion from immune destruction with important impli-
cations to the processes involved in cancer metastasis.

The microenvironment is regarded to play a crucial role 
both in embryonic organ development and in cancer inva-
sion, two processes with several similar features [6]. Cellular 
and molecular interactions between the epithelial cells and 
the microenvironment and between elements within the 
microenvironment also take place in functional differentia-
tion of the normal mammary tissue. Exploiting the normal 
microenvironment programs, by a form of “hacking” these 
pathways, is suggested as potential ways of promoting can-
cer invasion [7]. This may be reversely exploited when tar-
geting the metastatic processes in the therapy setting, 
exemplified by a study on a xenograft model of breast can-
cer, identifying neutrophils within the lung microenviron-
ment supporting metastatic initiation and as drivers of 
establishing lung metastases [8]. Thus, inhibiting the enzyme 
Alox5 abolished the pro-metastatic neutrophil activity in the 
lung microenvironment and reduced the occurrence and 
growth of lung metastases.

Genes supporting metastasis progression promote extrav-
asation and survival of the cancer cells outside of their 
 original environment [5]. Cancer cells that have entered the 
circulation may subsequently extravasate and infiltrate dis-
tant organs. When entering such new environment, cancer 
cells are required to adapt rapidly for colonization to occur, 
where the disseminated cancer cells reside in their new 
microenvironment and grow into macro-metastases. Specific 
cancer cell gene expression has been implicated to direct 
organ-specific tropism. One example is the expression of 
IL-11, which facilitates breast cancer metastases to the bone 
[9]. The establishment of a “receptive” environment at the 
future metastatic location before the colonization of tumor 
cells (the pre-metastatic niche) is suggested as a mechanistic 
model explaining metastatic organotropism [10]. Cancer- 
specific factors released from the primary tumor promote 
changes in the future metastatic microenvironment before 

the tumor cells arrive to this location. Also, bone marrow 
cells may migrate to the pre-metastatic niche in response to 
the systemically released factors, facilitating the environ-
ment for the cancer cells to “thrive” [11, 12].

The tumor microenvironment is increasingly focused in 
cancer research, both in pre-invasive lesions, primary tumors, 
pre-metastatic niches, as well as in the metastatic lesions. 
The tumor microenvironment components have been 
regarded as genetically more stable than the tumor cells. This 
is an important factor that renders the stromal components a 
strategic focus when searching targets for cancer therapy.

Since the discovery of cell signaling, researchers have 
debated how to best reflect alterations of pathways and levels 
of pathway activation in different model systems. One major 
trend in cancer research has been to undertake relatively sim-
ple approaches (e.g., measuring one protein or one specific 
mutation) when searching for markers of deregulated path-
ways as prognostic and predictive markers. A simplified 
approach to the complex and unstable cancer biology likely 
contributes to the lack of biomarker and treatment effects 
when translating the research findings to the clinical setting.

Global gene expression data may have a stronger poten-
tial to reflect the complexity of cancer biology as compared 
to the detection of single-gene alterations and may be a pow-
erful platform for identifying markers for the complex bio-
logical processes taking place in the tumors. When taking the 
global expression profiles into account, we somehow com-
pensate for the lack of knowledge regarding “the complete 
picture” of specific signaling pathways and their phenotypic 
consequences, including potential compensatory mecha-
nisms derived from their deregulation.

From the beginning of this century, gene expression 
arrays have been increasingly applied in translational cancer 
research. Some of the first array studies demonstrated that 
gene expression data could identify known and novel cancer 
subclasses, with similarities in terms of biological behavior 
[13, 14]. In addition to identifying molecular phenotypes in 
various cancer types [15–18], transcriptional alterations 
have proven to be powerful tools for creating classifiers pre-
dicting cancer recurrences [19–22], and to identify altera-
tions in functional pathways, suggesting relevant targets for 
therapy [23].

 Improved Understanding of Cancer Biologic 
Processes

Oncogenic and non-oncogenic alterations underlie and sup-
port the cancer biological processes leading to cancer prog-
ress and metastatic disease. High-throughput techniques 
such as DNA microarrays and RNA sequencing measure the 
expression of a multitude of genes in one single experiment. 
This enables multi-faceted views on the phenotypes being 

E. Wik et al.



403

studied and provides information about associations between 
complex gene expression alterations and the phenotypes.

In the era of global gene expression studies, two landmark 
reports in the field introduced the potential of exploring bio-
logical function via studies of gene expression alterations 
[24, 25]. By studying how the gene expression pattern 
changed when altering the conditions from fermentation to 
aerobic metabolism in the yeast Saccharomyces cerevisiae, 
deRisi and colleagues characterized this metabolic repro-
gramming at a functional genetic and biochemical level [24], 
and they were amongst the pioneers in applying large-scale 
gene expression data to biological questions. deRisi also 
demonstrated how gene expression patterns change accord-
ing to deletion or overexpression of specific transcription 
factors, proposing application of DNA gene expression 
microarrays for examination of the “signature pattern” 
accompanying such molecular alterations. deRisi stated: 
“Perhaps the greatest challenge now is to develop efficient 
methods for organizing, distributing, interpreting, and 
extracting insights from the large volumes of data these 
experiments will provide” [24]. And he was right: although 
such “global analyses” have assisted in some of the major 
progresses made in translational cancer research, the issues 
deRisi raised are still major challenges when translating 
“omics” data and analysis output into biological relevant 
information.

Hughes and colleagues published one of the earliest 
reports considering the signaling complexity when relating 
gene expression data to genetic and phenotypic alterations 
[25]. The functions of uncharacterized genes were identified 
through mapping of gene expression alterations induced by 
specific gene deletions to transcriptional profiles of known 
perturbations. A few years later, Huang and colleagues dem-
onstrated that the expression pattern from several genes, 
included in a “metagene,” characterized and predicted the 
neoplasm classes under study [26]. These studies were 
amongst the “precursor studies” to the many reports on gene 
expression signatures that followed the next decade. Several 
studies have since been conducted, supporting the assertion 
that multigene markers better reflect the complexity in the 
signaling of multiple pathways [27–29], as demonstrated by 
Huang et al. for MYC and HRAS pathways [26].

 Gene Expression Signatures as Biomarkers

The Biomarkers Definition Working Group defines a bio-
marker as: “A characteristic that is objectively measured and 
evaluated as an indicator of normal biologic processes, 
pathogenic processes, or pharmacologic responses to a ther-
apeutic intervention.” [30]. D. Hanahan and R.A. Weinberg 
describe in their “Hallmarks of Cancer” reviews, the tumor 

biologic processes and enabling characteristics that are 
essential for tumor initiation and progression to take place 
[31, 32]. Gene expression signatures might reflect such hall-
mark characteristics of a tumor, including specific biological 
processes—and may as such function as biomarkers. Gene 
expression signature studies have assisted in identifying tar-
gets for therapy, suggested as prognostic and predictive 
markers for specific cancer therapies.

Bild and colleagues integrated early on gene expression 
profiles and oncogenic alterations, identifying metagenes—
gene signatures—reflecting activation levels of, for example, 
MYC and RAS signaling pathways [27]. The identified signa-
tures are is associated with patient outcomes, demonstrating 
a prognostic effect of these metagenes. Bild suggested that 
oncogenic signatures may reflect the oncogenic phenotype 
and point to tumor biological processes underlying the phe-
notypic alterations. Moreover, measures of pathway deregu-
lation in this study were linked to therapy response for drugs 
targeting components of the specific pathways. In this man-
ner, Bild suggested a potential for gene expression signatures 
also as markers guiding therapy selection.

Lamb and colleagues defined in one of their Connectivity 
Map papers “the ultimate objective of biomedical research:” 
To connect human diseases with the genes that underlie 
them and drugs that treat them [33]. He regarded this “a 
daunting task” but aimed for a solution. The Connectivity 
Map tool was developed, aiming to reveal functional con-
nections in diseases and linking these to genetic perturba-
tions and drug actions [33]. As part of this endeavor, a 
reference bank of gene expression signatures derived from 
the effects on cultured human cells treated with small mol-
ecules (e.g., approved drugs and other bioactive compounds) 
was established. Bioinformatic analyses were integrated 
into a publicly available (online) tool, making it possible to 
match any other signature (also the “homemade” ones) to 
the drug signatures, thereby enabling researchers to pattern-
match the specific gene expression profiles under study with 
gene expression profiles reflecting effects of the small mol-
ecules tested as part of the Connectivity Map database [33, 
34]. In the primary publication of the Connectivity Map, the 
authors demonstrated this tool as a powerful resource to link 
gene expression patterns to functional effects, bio-physio-
logical processes, and targets for therapy in various dis-
eases. However, the Connectivity Map is suggested as a 
hypothesis- generating tool, and the importance of validat-
ing the findings in other model systems is stressed by the 
authors. In 2017, Subramanian and coworkers published a 
1000-fold expanded Connectivity Map version, assessing 
each perturbation by RNA sequencing of selected 1000 
genes, providing 1.3 million perturbation-linked gene 
expression profiles freely available for the scientific com-
munity (https://clue.io) [35].
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 Gene Expression Signatures in Breast Cancer

Since the gene expression microarray methodology entered 
the cancer research field, many breast cancer gene expres-
sion signatures have been published. Perou, Sørlie and col-
leagues explored global gene expression data in breast cancer 
and identified molecular classes [16]. These were further 
demonstrated with clinical relevance in follow-up studies 
[17, 36]. In the same decade, van’t Veer described a “poor 
prognosis gene expression signature” [20]. Subsequently, 
gene expression signatures like MammaPrint, OncotypeDx, 
PAM50, and the Genomic Grade Index (GGI) have been 
approved by the FDA, and have demonstrated prognostic 
value for breast cancer patients—overall and within sub-
groups (e.g., stage I/II, ER-positive breast cancer in post-
menopausal women, for the Oncotype DX).

These early signatures were primarily derived as part of 
a whole section tissue approach, extracting RNA from bulk 
tumor tissue, with epithelial and stromal cells intermixed. 
Enrichment of the epithelial component of the tissue sam-
ples was promoted, implying lower expression signal from 
the stromal cells as compared to the epithelial component 
[37]. For prognostication, adding data about the specific 
stromal components could add important information. 
Increased knowledge about the microenvironment, its het-
erogeneity between tumor subtypes and the epithelial- 
microenvironmental interactions will likely assist in 
improving personalized diagnostics and treatment strategies 
(Fig. 23.1).

 Gene Expression Signatures Reflecting 
the Tumor Microenvironment

As the role of the tumor stroma became a “hot topic” in dis-
cussions of the mechanisms for cancer progression, research-
ers advanced to some extent from bulk tissue gene expression 
approaches to focusing on specific tumor compartments 
(Fig.  23.2). Gene expression changes related to the tumor 
microenvironment (TME) in cancer have been increasingly 
studied in many types of cancer. Cell-specific alterations 
(e.g., gene expression changes in immune cells, endothelial 
cells, cancer-associated fibroblasts, adipocytes) have been 
described and gene signatures generated, partly as pure prog-
nostic metagenes, partly reflecting cell subsets and cancer 
biologic processes in the tumor compartments. Deconvolution 
of bulk gene expression data, a form of “computational dis-
section,” into information about cell type or compartments, 
and accompanying counts or expression profiles, came into 
play a few years ago [39, 40], adding to the methodological 
approaches applied when deciphering TME data from whole 
tissue gene expression information.

Microenvironmental or stromal signatures might help elu-
cidate biological processes critical for the progression of 
cancer, and may thereby improve the vision of the still quite 
blurred understanding of tumor progression and develop-
ment of metastatic disease. In the following sections of this 
chapter, selected thematic groups of gene expression signa-
tures are elucidated, reflecting biological processes and act-
ing as prognosticators and predictors of therapy response.

Vasculature

Cancer-associated fibroblasts

Extracellular matrix

Cancer-associated adipocytes

?

Immune cells

Fig. 23.1 The figure 
illustrates the networks 
between genes expressed in 
the tumor microenvironment, 
and also how the topics and 
subheadings presented in this 
chapter are connected. Figure 
by Lise M. Ingebriktsen
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Fig. 23.2 The figure illustrates the components of a breast tumor, 
including the normal and tumor epithelial cells, structures, and other 
constituents representing the tumor microenvironment. Their spatial 
relations stimulate the idea of close interactions between the different 

cell populations. BC breast cancer, CAA cancer-associated adipocytes, 
ECM extracellular matrix. With permission, reprinted from C.  Zhao 
et  al. (ref. [38]), J Exp Clin Cancer Res 2020. doi: 10.1186/
s13046-020-01666-z

Allinen and colleagues were among the first to point to 
the “bulk tissue approach” as problematic, when exploring 
stromal tissue features by gene expression analyses [41]. 
They therefore aimed to elucidate cellular interactions along 
with paracrine regulatory modules in breast cancer, reporting 
the transcriptional and genetic alterations in various cell 
types in invasive breast cancer, ductal carcinoma in situ, and 
normal breast tissue. All cell types were purified, and the 
gene expression profiles of the cell types such as the epithe-
lial cells, myoepithelial cells, myofibroblasts, fibroblasts, 
endothelial cells, and leukocytes were described. The identi-
fication of upregulated CXCL14 and CXCL12 specifically in 
tumor myoepithelial cells and myofibroblasts, causing epi-
thelial cell proliferation and invasion via the binding of these 
ligands to their cognate receptors on epithelial tumor cells, 
were among their novel findings [41]. This study uniquely 
examined cell type-specific gene expression programs and 
additionally validated the functional consequences of these 
alterations, proposing novel analysis approaches to study the 
tumor-stroma interactions.

 Gene Expression Signatures Reflecting 
the Bulk Cancer-Associated Stroma

As the cancer stroma is composed of several cellular compo-
nents, examination of general stromal gene expression alter-
ations may bring us into challenges of low specificity 

regarding which cell type the different expression signals 
originate from. However, the literature on general stromal 
signatures demonstrates new information as compared to 
what was derived from the studies on “whole tissue 
approaches,” as elucidated in the following section.

Several gene expression signatures derived from the 
tumor stroma have been published, some of them investi-
gated in relation to disease progress. Two studies explored 
the differences in the tumor stroma by assessing pre-invasive 
ductal carcinoma in situ lesions and invasive breast carcino-
mas. Ma and colleagues assessed the global expression alter-
ations specifically in the stromal and epithelial compartments 
[42], and demonstrated comprehensive gene expression 
changes in the tumor-associated stroma during progression 
from normal to the pre-invasive and invasive states. A gene 
expression signature reflecting histologic tumor grade was 
identified in the stromal compartment. This study embraced 
the hypothesis that tumor-stromal-related changes contribute 
to tumor progression, specifically in the step from pre- 
invasive to invasive disease.

In a similar manner, Roman-Peréz and colleagues com-
pared the expression pattern of tumor-adjacent tissue from 
invasive carcinomas and ductal carcinoma in situ, identify-
ing breast cancer subtypes defined by extratumoral expres-
sion patterns [43]. Two distinct “microenvironmental 
subtypes” were identified, denoted as “Active” and “Inactive” 
types. Tumors with “active signature” shared features of 
claudin-low breast cancer and were associated with TGF-β 
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induced activation score. The “active signature” also corre-
lated with tumor aggressiveness and clinical outcome in 
ER-positive breast cancer.

In supervised analyses of global gene expression data, 
gene expression patterns between different pre-defined 
groups have been examined. What would be the best groups 
to compare when investigating the microenvironmental 
alterations that support or drive tumor progression? Normal 
versus cancer? Normal versus pre-invasive in situ lesions? 
The pre-invasive cases versus cancer? Or simply, although a 
more complex analytical approach, the whole sequence from 
normal through pre-invasive and eventually invasive carcino-
mas? In the following section, studies approaching this chal-
lenge in different ways are summarized.

Troester and colleagues compared global expression pat-
terns of normal breast tissue from reduction mammoplasty 
resections and normal breast tissue adjacent to tumor tissue. 
A 155-gene “cancer adjacent normal tissue” signature was 
derived [44]. Genes reflecting constituents of the extracellu-
lar matrix, and remodeling of this, as well as genes of inflam-
mation were enriched in this signature. Further, some of the 
signature genes were known to be involved in cell adhesion, 
angiogenesis, and re-epithelialization such as keratins. 
Interpreting these transcriptional findings in a functional 
manner, similarities to wound healing were seen, and the sig-
nature was regarded to reflect an in vivo “wound response.” 
Further, the signature is strongly associated with breast can-
cer survival, indicating that tumor-related microenvironmen-
tal responses might be of importance in the progression of 
breast carcinomas.

Finak and colleagues applied laser capture tissue micro-
dissection to assess the gene expression pattern of tumor 
stroma in primary breast cancer. Several gene expression sig-
natures identified in this series are associated with disease 
course. The 26-gene signature denoted “stroma derived 
prognostic predictor” pointed to contrasting immune 
responses and angiogenic and hypoxic responses in different 
tumors [45]. This signature also predicted prognosis, as vali-
dated in multiple breast cancer data sets. Based on clustering 
of the 26-gene signature, the authors suggested 
 stroma- dependent breast cancer subtypes. Also, the stroma 
signature by Finak predicted clinical outcome independent 
of other signatures, which were also associated with progno-
sis, indicating that their stroma-derived prognosticator mir-
rors specific biological processes taking part in directing the 
clinical disease course. In this study, Finak and colleagues 
demonstrated an independent stromal impact within the 
tumor, showing that genes of their stroma-derived prognostic 
marker did not predict prognosis when assessed in the epi-
thelial component. The prediction of metastatic disease 
improved when combining the stroma signatures by Finak 
with other signature scores of prognostic value, indicating an 
improved reflection of the stroma-related processes when 

merging signatures developed by different analytical 
approaches.

How do the stromal and epithelial cells communicate? 
Are we able to reflect the interplay between these two com-
partments by the use of gene expression data? To address 
these questions, Casey and colleagues examined the tran-
scriptomic pattern of epithelial and stromal cells, both in 
normal breast tissue and in invasive breast cancer [46]. Cell 
type-specific interactions were also assessed. A “motile phe-
notype” was identified in the epithelial compartment, and a 
“reactive phenotype” in the stromal compartment, with genes 
reflecting remodeling of the extracellular matrix in a proteo-
lytic manner in the invasive cancer. Also, genes promoting 
epithelial-mesenchymal interaction (EMT), such as FAP 
(fibroblast activated protein alpha) were identified. This 
study interestingly supports a molecular crosstalk between 
the epithelial and stromal cell compartments, suggesting that 
alterations facilitating invasion are one of the features of 
cancer-associated stroma.

By examining global gene expression alterations relating 
to specific tumor microenvironment elements that are micro-
scopically assessable, it might be possible to identify under-
lying alterations of the histopathologic phenotype. Van den 
Eynden examined fibrotic tumor foci and associated gene 
expression patterns [47], and demonstrated Ras signaling 
and HIF1A-pathway activation along with other hypoxia- 
and angiogenesis-related genes in the large fibrotic foci. 
Also, fibrotic foci correlated with an activated wound heal-
ing signature and with earlier development of distant 
metastases.

What would be the model system best fit to capture ongo-
ing microenvironmental processes promoting tumor progres-
sion? Marchini and colleagues examined the transcriptomic 
alterations in A17 mouse mammary carcinoma cells [48]. 
Three gene expression signatures reflecting stroma-related 
features and processes were identified: One “stemness signa-
ture,” one “angiogenesis signature,” and one “signal trans-
duction signature.” These signatures are associated with 
mesenchymal stem cell signatures, ER-negative breast can-
cer, a basal-like phenotype and breast cancer bone metasta-
ses. In post-treatment assessment of breast cancer xenograft 
models, the A17 angiogenesis- and signal transduction sig-
natures were more highly expressed after hormonal therapy. 
This study indicates a linkage between mesenchymal fea-
tures, tumor progression and therapy resistance, directing an 
interpretation of these findings towards EMT, as regarded 
having critical importance in tumor progression. Recent 
studies indicate that epithelial-mesenchymal plasticity con-
tributes to stem-like tumor features and generates cancer 
stem cells [49–51].

Are the tumor microenvironmental changes in cancer pro-
gression common or specific across tumor types? Planche 
and colleagues examined this question by laser microdissect-
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ing stromal cells of invasive breast and prostate carcinoma. 
These two tumor types displayed distinctly different stromal 
gene expression patterns [52]. Gene expression alterations of 
the cancer type-specific stromal genes clustered both breast 
and prostate cancer samples into groups with different dis-
ease courses. Of note, genes of extracellular matrix constitu-
ents and proteolytic enzymes were upregulated in the 
invasive breast cancer stroma, in line with the observations 
done on the tumor histology sections.

In most mRNA expression studies, RNA is extracted from 
tissue that is snap frozen in the surgical theatre, as the RNA 
is best preserved for quantitative analyses in this manner, as 
compared to when extracted from formalin fixed paraffin 
embedded (FFPE) tissue. However, as of the writing of this 
chapter, FFPE patient-derived tissue is widely available, as 
this is stored in pathology archives worldwide. Winslow and 
colleagues made a critical step forward in this field when 
they succeeded in studying gene expression alterations from 
laser dissected tumor epithelial and stromal compartments 
from FFPE invasive breast cancer samples. This study 
showed that stroma-specific gene expression signatures were 
segregated into three major thematic groups; (1) extracellu-
lar matrix and fibroblast-related genes; (2) vascular-related 
genes; and (3) immune cell-related genes. Strikingly, the 
immune-related signature is associated with basal-like breast 
cancer subtype [53]. As the results from this study were in 
line with other similarly designed studies on fresh frozen tis-
sue, the study gave new hope for RNA studies on FFPE 
tissue.

A few studies have related global gene expression data to 
specific molecular microenvironmental alterations. 
Specifically, a relationship between CD10+ stromal cell 
expression and breast cancer progression was previously 
reported [41], and Desmedt and colleagues followed up on 
this by exploring gene expression alterations related to 
CD10+ stromal cells [54]. A “CD10+ stroma signature” of 
12 genes was generated by comparing the gene expression 
patterns of CD10+ cells isolated from breast carcinomas and 
normal breast tissue. In co-culture experiments, the CD10+ 
cells were characterized as specific cell populations: 
 fibroblasts, myoepithelial, and mesenchymal stem cells. As 
seen in many of the stroma- and CAF-derived signatures, the 
CD10+ signature was composed of genes related to matrix 
remodeling. Interestingly, genes related to osteoblast differ-
entiation (e.g., osteopontin) were also upregulated in the 
CD10+ signature. All the different CD10+ cell types contrib-
uted to this stroma-related signature, however, the highest 
CD10+ stroma signature score was found in mesenchymal 
stem cells. Of clinical value, the signature was able to dif-
ferentiate in situ and invasive breast cancer lesions. Also, the 
CD10+ signature demonstrated a potential to predict 
response to chemotherapy, and high CD10+ stroma score 
was associated with reduced survival in HER2 positive breast 

cancer cases. This study is a good example of how to com-
bine in vivo and in vitro studies, specifically with respect to 
validating the functionality of a gene expression signature.

In another study describing gene expression alterations 
reflecting specific molecular alterations, Rajski and col-
leagues identified a signature associated with IGF-I stimu-
lated stromal cells [55]. Amongst the IGF-I signature genes, 
there was enrichment of proliferation-associated genes. This 
signature clustered the cancer samples in two major groups: 
those with upregulated IGF-1 and those without. Cases in the 
cluster with genes upregulated by IGF-I experienced shorter 
survival. An example of a signature related to specific histo-
pathologic tumor features is one necrosis-related signature 
derived from gene expression alterations between endome-
trial carcinomas with and without tumor necrosis [56]. In 
this case, tumor necrosis was found to be associated with 
gene expression programs of hypoxia, angiogenesis, and 
inflammatory responses.

The cancer biology underlying phenotypic features of 
various cancer types may be cancer specific, but also share 
commonalities with other diseases and non-cancerous condi-
tions. West and colleagues exploited the potential of 
approaching the research question from a different angle, 
when postulating that fibroblasts present with different acti-
vation states. In their approach to this question, they distin-
guished fibroblast populations in non-cancerous samples 
[57], demonstrating that solitary fibrous tumors and desmoid- 
type fibromatosis exhibited different expression patterns. In 
particular, the expression of growth factors and extracellular 
matrix genes were differentially expressed. When assessing 
the gene signature separating solitary fibrous tumor from 
desmoid-type fibromatosis in a series of invasive breast can-
cer, two groups of breast carcinomas were identified and 
associated with different survival. The cases with an expres-
sion pattern similar to the desmoid-type fibromatosis showed 
more favorable outcome, while the other group was observed 
with poorer prognosis. These findings supported the hypoth-
esis that tumor stromal response varies among carcinomas of 
different aggressiveness.

After the first breast cancer subtype classification by 
Perou et al. [16], further subgroups of the subtypes are iden-
tified based on molecular alterations, like the Lehman sub-
grouping of triple-negative breast cancer into basal-like, 
immunomodulatory, mesenchymal, mesenchymal-like, and 
luminal androgen receptor subtypes—some of the subtypes 
associated with distinct survival patterns [58]. A recent study 
by Bareche and coworkers aimed to characterize the tumor 
microenvironment of triple-negative breast cancer subtypes, 
elucidating how the microenvironment heterogeneity may 
contribute to the different clinical pictures seen in triple- 
negative subsets [59]. A broad signature approach was 
applied, incorporating gene sets reflecting immune activa-
tion, angiogenesis, hypoxia, cancer-associated fibroblast, 
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and metabolism (e.g., glycolysis, lipid metabolism) in the 
analyses. Distinct TME profiles and specific immune cell 
composition and localization were associated with the differ-
ent triple-negative subgroups—and associated differently 
with clinical outcomes. Next, 16 signatures reflecting innate 
and adaptive immune responses [60] were mapped to the 
triple-negative subtypes, demonstrating enrichment of adap-
tive immune response in the immune modulatory subtype, 
and enriched innate response in the mesenchymal-like sub-
type. The mesenchymal and basal-like subtypes showed poor 
immune responses, both innate and adaptive.

Qian and coworkers described in 2020 a “pan-cancer 
blueprint of the heterogeneous tumor microenvironment”—
adding substantially to our knowledge about heterogenous 
microenvironment by analyzing single-cell RNA and pro-
teins [61]. By profiling 233,591 single cells from lung, 
colorectal, ovary and breast tumors and corresponding 
tumor-free tissue, profiles of 68 stromal cell populations 
were identified, 22 unique and 46 shared between cancer 
types. The stromal cell populations were characterized phe-
notypically by marker genes, metabolic activities, and tissue- 
specific expression differences. Applying the analysis 
approaches to an independent subset of melanoma tumors 
treated with checkpoint immune inhibitors, a naïve CD4+ 
T-cell phenotype predictive of response to checkpoint immu-
notherapy was identified. By applying single cell and signa-
ture analyses approaches, this study replies in interesting 
ways to whether and how the tumor microenvironment het-
erogeneity is present across cancer types, and generates, as 
the authors state, “the first panoramic view on the shared 
complexity of stromal cells in different cancers”—with 
potential for identification of strong prognostic and predic-
tive cancer biomarkers. interactions.

 Gene Expression Signatures Reflecting Cancer- 
Associated Fibroblasts

Most of the studies above have investigated bulk tissue 
stroma and have thereby potentially reflected expression 
contribution from the combination of different stromal cell 
types. Many of the stromal signatures correlate with clinico-
pathologic features and disease course, potentially reflecting 
underlying stroma biology. Still, it is tempting to ask: What 
is the contribution to the signatures from each of the specific 
stromal cell types?

Chang and colleagues were among the first to generate a 
pure fibroblast gene expression signature, where the expres-
sion alterations were generated by fibroblasts being exposed 
to serum [62]. The signature was denoted a “core serum 
response.” Functional analyses revealed involvement of the 
signature genes in myofibroblast activation, matrix remodel-

ing, and cell motility. All these processes contribute to wound 
healing. Based on the expression of this wound healing- 
related signature, breast cancer samples are segregated into 
two groups. The group with activated signature pattern was 
associated with increased risk of metastatic disease and 
death from breast cancer. Further, the signature pattern was 
consistent in paired samples of locally advanced breast car-
cinomas, biopsied before and after chemotherapy, indicating 
stability of the biological program reflected in this signature. 
Interestingly, the basal-like molecular breast cancer subtype 
is significantly associated with the expression pattern of the 
wound healing-related signature, suggesting that the signa-
ture points to intrinsic properties of the basal-like phenotype. 
The signature was also examined in gene expression data 
sets of various tumor types, and the findings were striking: 
The expression pattern of the signature separated the cases 
into two groups, with significantly increased risk of meta-
static disease in the group with the activated signature pat-
tern. Harold F. Dvorak suggested in a review in 1986 that the 
wound is an analog to the stromal processes observed in 
tumors [63]. The gene expression signature by Chang might 
have captured some of the alterations observed by Dvorak.

Tchou and colleagues added information about subtype- 
specific stromal gene expression patterns in breast cancer 
[64]. Their analyses demonstrated distinctly different expres-
sion profiles in CAFs from breast cancer samples of the 
HER2 positive subtype, triple-negative cases and ER-positive 
cases. In particular pathways linked to the cytoskeleton and 
integrin signaling were differentially enriched in the differ-
ent CAF groups. The results from this study add to the argu-
ments of specific stroma-related breast cancer subtypes, 
supporting the hypothesis that fibroblasts participate to the 
disease biology underlying clinically relevant breast cancer 
subtypes.

Two projects exploring transcriptional alterations in 
tumor-associated fibroblasts compared to normal mammary 
fibroblasts, demonstrated an increased expression of genes 
involved in tumor progression in the CAFs. Cytokines, genes 
related to remodeling of the extracellular matrix, and genes 
reflecting paracrine or intracellular signaling, as well as cell- 
matrix interactions, were upregulated in the tumor- associated 
fibroblasts [65, 66]. In the study by Singer, it was noted that 
these gene expression alterations also take place in the iso-
lated cell culture state, in the absence of adjacent malignant 
epithelium [66]. In the study by Bauer, the CAF-associated 
genes were incorporated into a 31-gene signature that was 
validated by qPCR. Some of the genes upregulated in CAFs 
were validated at protein levels by immunohistochemistry, 
with respect to location and quantitation [65]. Taken together, 
the findings from these two studies indicate fibroblastic sub-
populations of the tumor stroma, facilitating tumor 
progress.
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By comparing global gene expression patterns of platelet- 
derived growth factor (PDGF)-stimulated human fibroblasts 
and resting fibroblasts, Frings and colleagues identified a 
113-gene expression signature reflecting PDGF-activated 
fibroblasts [67]. This signature had the potential to identify 
breast cancers with a stroma of PDGF-stimulated fibroblasts. 
The signature correlated with high expression of the PDGF 
receptor β (PDGFRB) and its ligands and was enriched for 
genes related to angiogenesis and regulation of the extracel-
lular matrix. Signature analyses in several breast cancer data 
sets demonstrated associations between the PDGF signature 
score and clinicopathologic features reflecting aggressive 
tumors, such as large tumor size, high histologic grade, 
HER2 positive, and ER-negative tumors. Moreover, signa-
ture activation is correlated with the HER2 positive, basal- 
like and Luminal B subtypes of breast cancer. In line with 
these observations, the signature demonstrated a robust asso-
ciation with survival; a high signature score was associated 
with reduced survival, also in multivariate analyses, when 
adjusted for other stroma signatures and a proliferation 
signature.

Sonnenblick et  al. developed a stromal gene expression 
signature based on reactive breast cancer stroma in HER2 
positive cases, containing increased amounts of reactive 
myofibroblasts surrounding the tumor cell nests [68]. This 
“reactive stroma signature” was associated with trastuzumab 
resistance in estrogen receptor (ER)-negative tumors, but not 
in ER-positive tumors, suggesting the reactive stroma and its 
accompanying signature as a potential predictive marker for 
Trastuzumab in subsets of breast cancer.

Siletz and colleagues assessed transcription factor signa-
tures and activity specific for mammary CAFs versus normal 
mammary fibroblasts [69]. A transcription factor activity sig-
nature included activation of reporters for ELK1, GATA1, 
retinoic acid receptor, serum response factor, and vitamin D 
receptor. An increased activation of reporters for HIF1 and 
several STAT and proliferation-related transcription factors 
was seen after induction of fibroblasts by conditioned 
medium from breast cancer cell lines. These transcription 
factor activity profiles indicate CAF subtype-specific signal-
ing promoting tumor progression through a pro-invasive 
stroma.

In recent years, single-cell RNA sequencing has allowed 
for identification and deep characterization of CAF subpopu-
lations. By defining CAF subpopulations by single-cell RNA 
sequencing of transcriptomes of mesenchymal cells from a 
genetically engineered mouse model of breast cancer, 
Bartoschek and colleagues added knowledge about CAF het-
erogeneity with functional and clinical implications [70]. 
Gene signatures reflecting angiogenesis and vascular devel-
opment, matrix-related genes, cell cycle activation, and 
development and differentiation were enriched in the CAF 

groups that accordingly were annotated vascular, matrix, 
cycling, and developmental CAFs (vCAFs, mCAFs, cCAFs, 
dCAFs). The vCAFs and mCAFs signatures were validated 
by RNA sequencing of bulk breast cancer tissue, demonstrat-
ing biological and clinical relevance (Fig. 23.3).

Wu and colleagues aimed to elucidate stromal heteroge-
neity in triple-negative breast cancer [71]. Two CAF and two 
perivascular-like (PVL) subpopulations were identified in 
the stroma, with distinct spatial relationships and functional 
properties. The gene signatures reflecting inflammatory 
CAFs and differentiated PVL revealed associations with 
cytotoxic T-cell dysfunction in independent cohorts of triple- 
negative breast cancer, pointing to potential candidate bio-
markers for new therapeutic strategies in the treatment of 
triple-negative breast cancer.

Woelfle and colleagues derived a signature of 86 genes 
differentially expressed between primary tumors with and 
without bone marrow metastases [72]. Although the tumor 
microenvironment was not the focus of this study, most of 
the signature genes were related to extracellular matrix 
remodeling, cytoskeleton plasticity and cell adhesion. Also, 
RAS- and HIF1A signaling were enriched in tumors with 
bone marrow metastases. The many similarities between this 
signature and the stroma- and CAF-related signatures 
described above lead to an intriguing perspective on this sig-
nature. In addition to facilitate invasive growth and tumor 
progression, perhaps the tumor stroma is heavily involved in 
directing tumor metastases to different locations? Another 
interesting perspective of this signature was that 77 of the 86 
signature genes were downregulated in primary tumors with 
bone marrow metastases, indicating transcriptional repres-
sion as part of the picture in tumor progressive processes.

A few studies have examined transcriptional alterations 
related specifically to the extracellular matrix in breast can-
cer. Bergamaschi and colleagues set out to classify breast 
carcinomas based on constituents of the extracellular matrix 
(ECM), selecting 278 ECM-related from the literature [73]. 
The ECM-related genes segregated the breast cancer sam-
ples into four ECM classes with different clinical courses. 
The ECM group associated with best survival showed upreg-
ulation of protease inhibitors of the serpin family. The ECM 
group associated with poorest survival presented with over-
expression of integrins and metallopeptidases, and low 
expression of laminin chains. In a follow-up study, Triulzi 
and colleagues demonstrated that one of the ECM groups 
consistently predicted one cluster in several independent 
breast cancer data sets [74]. The 58-gene signature of this 
ECM subset contained 43 genes encoding structural ECM 
proteins. Investigation of gene expression data sets on sepa-
rate cancer epithelial and stromal cells demonstrated that 
genes of this ECM signature were expressed both by the epi-
thelial and stromal compartments. In vitro experiments 
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Fig. 23.3 Unbiased clustering of fibroblast single-cell transcriptomic 
data reveals four populations. (a) Schematic representation of negative 
selection strategy. (b) gating strategy and quantification of flow cytom-
etry for single-cell sequencing. FSC forward scatter, SCC side scatter. 
(c)Violin plot of detected genes in 784 sorted fibroblasts. (d) t-SNE 
layout of CAFs (n = 716) by RPKM-normalized transcriptomic data. 

(e) Expression plots on t-SNE layout. Log2(RPKM+1) levels of CAFs 
marker genes in individual cells. (f) Cell size and granularity as deter-
mined by forward-scattered light (FSC) and side-scattered light (SSC) 
of different CAF populations. With permission, reprinted from 
M.  Bartoschek et  al. (ref. [70]), Nat Commun 2018. doi: 10.1038/
s41467-018-07582-3

showed induction of signature genes, in particular in fibro-
blasts and in ER-negative breast cancer cells. Single genes 
and gene sets reflecting EMT were significantly associated 
with this ECM signature. In another study validating the 
functionality of the identified CAF subsets, Bartoschek and 
colleagues (see above) characterized transcription of genes 
encoding ECM proteins included in the matrisome. Each of 
the CAF populations demonstrated distinct ECM transcrip-
tional signatures, supporting their different biological func-
tions [70].

 Gene Expression Signatures Reflecting 
Vascular Biology

Various measures of histologically verified tumor vascula-
ture (e.g., mean vessel density, vascular proliferation) are 
related to tumor progress and metastatic disease in solid can-
cer types. The vasculature is viewed as a target for therapy, 

as exploited in therapeutic programs in several tumor types. 
Studies on genomic programs measuring the transcriptional 
alterations have a potential to reveal novel aspects of vascu-
lar biology in malignant tumors. With this in mind, Wallgard 
and colleagues sought to elucidate the transcriptome and 
molecular processes specific to endothelial cells [75]. Fifty- 
eight genes specifically linked to microvascular expression 
were identified, many of them not previously described in 
relation to functions of endothelial cells. Wallgard suggested 
several genes and related proteins to be further explored in 
relation to drugs targeting the microvasculature, like Eltd1, 
Gpr116, Ramp2, Rasip1. In a recent study, Cleuren and col-
leagues further characterized the endothelial cell biology by 
facilitating isolation of endothelial cell (EC) ribosome- 
associated transcripts, also known as the translatome [76]. 
By combined endothelial-specific translating ribosome affin-
ity purification (EC-TRAP) and high-throughput RNA 
sequencing analyses, known and new pan EC-enriched gene 
signatures and tissue-specific EC transcripts were identified, 
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Fig. 23.4 Identification of 
enriched transcripts after 
EC-TRAP. (a) GO analysis of 
the 500 top-ranked genes with 
the highest enrichment scores 
after EC-TRAP (FDR < 10%) 
shows overrepresentation of 
transcripts involved in 
vascular-related processes. (b) 
Unsupervised hierarchical 
clustering of EC-enriched 
genes shows distinct, highly 
heterogenous vascular 
bed-specific EC expression 
patterns. (c) Comparison of 
the 500 most enriched genes 
per tissue identifies a group of 
pan-endothelial and subsets of 
tissue-specific EC-enriched 
genes. With permission, 
reprinted from A.C.A. Cleuren 
et al. [76], Proc Natl Acad Sci 
USA 2019. doi: 10.1073/
pnas.1912409116

also demonstrating endothelial cell heterogeneity across tis-
sue types and disease states (Fig.  23.4). Results from this 
study indicated that the transcriptome of a tissue lysate can 
serve as a proxy for the corresponding tissue translatome, 
supporting relevance of the mRNA expression analysis 
approaches applied in previous studies on vascular biology 
in cancer.

The vasculature is regarded as the main route for breast 
cancer metastases. Hu and colleagues compared the global 
transcription pattern of primary tumors and distant metasta-
ses, identifying an in vivo hypoxia signature reflecting VEGF 
activation and predicting poor clinical outcome in breast 
cancer and other tumor types [77]. This 13-gene signature 
was composed of several angiogenesis-related genes. Eight 
of the 13 signature genes contained binding sites for the 
hypoxia-related transcription factor HIF1α and had been 
demonstrated to be regulated by HIF1α.

Pepin and colleagues identified two distinct tumor vascu-
lature types by analyzing global transcription patterns across 
laser capture microdissected tumor-associated and matched 
normal vasculature [78]. The two tumor vasculature types 
demonstrated specific gene expression signatures, whereas 
one related to anti-angiogenic signaling. Samples enriched 

for this signature demonstrated lower mean vessel density as 
compared to the group enriched for the gene signature asso-
ciated with active vascular remodeling and reduced vascular 
shear stress. Reduced vascular shear stress is suggested to 
reflect reduced vessel flow rate and may reflect inappropriate 
tumor perfusion. Significantly, several therapeutic targets 
with potential relevance in anti-angiogenic treatment (e.g., 
MET, PDGFRβ, ITGAV) were differentially expressed 
between the vasculature subtypes.

When studying alterations in vascular gene expression, 
different study designs may reveal different layers of the 
complete picture. Bender and colleagues demonstrated by 
supervised analyses of angiogenesis-related genes that the 
gene expression of the VEGF and semaphorin families was 
altered in pro-angiogenic manners in triple-negative breast 
cancer [79]. Compiling these genes into a composite bio-
marker, the gene expression signature is associated with 
triple- negative breast cancer and reduced survival in non- 
triple- negative subtypes.

Wallace and colleagues approached angiogenesis-related 
biology in a more indirect manner. In an analysis of genes 
and pathways mediating fibroblast contribution in cancer 
progression [80], the authors studied how Ets2 function 
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varied between mammary stromal fibroblasts and epithelial 
cells. In HER2 positive breast cancer mouse models, Ets2 
inactivation in fibroblasts reduced tumor growth. The same 
effects were not seen when inhibiting Ets2 in epithelial cells. 
An Ets2-dependent gene signature was derived, enriched in 
genes related to remodeling of the extracellular matrix, cell 
migration, and angiogenesis. Supportive to these functional 
interpretations, fewer functional blood vessels were found in 
tumors lacking fibroblast Ets2. The Ets2-dependent gene 
expression signature was able to segregate human breast can-
cer stroma and normal stroma and indicated a link between 
Ets2 and the fibroblast-endothelial crosstalk, pointing to a 
contribution of Ets2 in the angiogenic process.

Xiao and colleagues [81] developed in  vitro models 
studying breast cancer-specific endothelial cells, identifying 
multiple subpopulations of tumor-associated endothelial 
cells, each population with distinct gene expression patterns. 
A relationship with tumor-associated endothelial cells had 
not previously been established for several genes. Irx2 and 
Zfp503 were without previously known relevance to vascu-
lar biology, but were found highly upregulated in tumor 
endothelial cells. These genes are known to regulate neuro-
nal patterning and developmental differentiation [82, 83], 
and may point to new information on vascular-related mech-
anisms and co- regulatory circuits in vascular biology.

Mannelqvist and colleagues published an 18-gene expres-
sion signature related to vascular invasion in endometrial 
carcinomas, also relating to features of aggressive disease 
and disease outcome [84]. In a follow-up study on multiple 
breast cancer gene expression data sets, the vascular invasion 
signature was associated with tumor progression and clinical 
course in breast cancer [85]. Also, a high signature score was 
associated with the basal-like phenotype and response to 
neoadjuvant chemotherapy. The signature was composed of 
genes related to angiogenesis, immune responses, and extra-
cellular matrix biology. Further, the signature was correlated 
with other gene expression profiles of vascular biology, 
hypoxia, EMT, immune response, and tumor progression.

The same research group later published a 32-gene signa-
ture reflecting tissue-based vascular proliferation. 
Microvessel proliferation was assessed by dual endothelial 
immunostaining of Factor-VIII/Ki67, and global gene 
expression data as well as copy number information were 
explored in supervised manners [86]. Several genes in the 
signature had previously been linked to processes such as 
neovascularization, endothelial cell migration and adhesion, 
supporting this signature as relevant for tumor angiogenesis. 
Also, amplification of the region 6p21, potentially harboring 
VEGF, is associated with high microvessel proliferation.

Tobin et al. elucidated how gene transcripts representative 
of normal endothelium related to breast cancer progress. A 
composite microvasculature (MV) score was derived from 
expression values of 57 mouse microvasculature transcripts 

[87]. In 993 breast cancer tumors, the MV score did not asso-
ciate with microvessel density, but indicated decreased risk 
of metastasis in endocrine-treated patients. Further, the MV 
score was increased from pre-treatment to post-treatment 
samples in metastatic breast tumors after treatment with 
sunitinib and docetaxel, compared to cases with only 
docetaxel treatment, supporting the concept of vascular nor-
malization following treatment with an angiogenic 
inhibitor.

Physiological angiogenesis is regarded molecularly dif-
ferent from the pathologic angiogenesis, indicating different 
mechanisms involved in the two processes. Guarischi-Sousa 
and colleagues followed up on this idea, identifying a 153- 
gene signature reflecting pathologic angiogenesis from 
oxygen- induced retinopathy [88]. Applying a machine learn-
ing algorithm, a signature of 11 of the 153 genes was com-
piled together with information on age and stage into a 
signature strongly predicting breast cancer survival. The 
authors propose the signature as a potential marker for point-
ing to tumors relevant for angiogenesis-targeted therapies.

Harrell and colleagues sought to determine whether 
tumor-associated vascular properties could identify mecha-
nisms contributing to the different risks of metastatic disease 
across the intrinsic subtypes of breast cancer [89]. They 
found that claudin-low and basal-like tumors were enriched 
for transcriptional programs reflecting vascular quantity, 
vascular proliferation, and a VEGF/Hypoxia signature. 
Incorporating several of the vascular gene signatures 
described above-added information about risk of metastatic 
disease. Furthermore, experimental studies demonstrated 
that claudin-low cells exhibited endothelial-like morphol-
ogy, and claudin-low xenograft tumors were highly perfused 
through intercellular spaces and non-vascular tumor cell 
lined channels. This study combined the transcriptional stud-
ies with experimental validation in an interesting manner, 
demonstrating both endothelial-like characteristics of cancer 
cells, and how the vasculature in conceptually new manners 
may contribute to breast cancer progression. Also, the gene 
expression signatures were suggested as predictive markers 
to anti-angiogenic therapy.

Mendiola and colleagues set out to identify a biomarker 
predicting response to bevacizumab and paclitaxel in meta-
static breast cancer by exploring angiogenesis-related genes 
and clinical markers [90]. An 11-gene signature predicted 
improved progression-free and overall survival in patients on 
bevacizumab–paclitaxel treatment, with added prognostic 
value when combining the signature with five clinical covari-
ates. The value of these composite biomarkers as predictive 
markers to bevacizumab in metastatic breast cancer should 
be tested.

Krüger et al. recently studied predictive markers for com-
bined neoadjuvant bevacizumab and chemotherapy treat-
ment in a randomized trial [91]. Along with tissue-based 
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angiogenesis biomarkers (microvessel density, proliferative 
microvessel density, glomeruloid microvascular prolifera-
tion), the authors explored how an angiogenesis-based 
mRNA signature previously published from the same group 
[86], reflected pathologic complete response. High baseline 
MVD predicted pCR in the bevacizumab-arm, whereas vas-
cular proliferation and a high angiogenesis score were asso-
ciated with the triple-negative and basal-like phenotypes but 
did not predict therapy response.

Inflammation is regarded to promote tumor angiogenesis. 
Pro-inflammatory cytokines work through mediators, 
enhancing or suppressing angiogenesis. Combinations of 
these factors may contribute to the tumor’s vascular invasive 
and metastasizing properties. Pitroda and colleagues 
explored how vascular inflammation influences cancer prog-
nosis [92]. A gene expression signature reflecting inflamma-
tion in tumor-associated endothelial cells was developed. 
The endothelial-derived 6-gene inflammatory signature pre-
dicted reduced overall survival in breast cancer and other 
tumor types. Also, inflammatory pathways activated in endo-
thelial cells are linked to tumor progression in mice, support-
ing a vasculo-immunogenic link contributing to tumor 
progression in breast cancer.

Oshi et  al. aimed to explore relations between intratu-
moral angiogenesis, inflammation, and metastasis in breast 
cancer [93]. They derived an angiogenesis-related signature 
score that did not correlate with clinicopathologic variables 
or survival, nor with breast cancer molecular subtypes. 
However, a high score is associated with a low fraction of 
immune cell infiltrations, both favorable and unfavorable. 
Unfavorable inflammation-related gene sets (IL6, TNFα, 
TGFβ) and metastasis-related gene sets were enriched in 
high-score tumors. Further, a high angiogenesis score was 
significantly associated with metastasis to brain and bone.

 Gene Expression Signatures Reflecting 
Immune-Related Alterations

The immune system is considered to play an important role 
in cancer initiation and progression and is a promising multi- 
faceted target in novel therapeutic strategies [94]. Important 
interactions between the immune cells and other tumor 
microenvironmental elements are brought to discussion [95]. 
How immune system alterations contribute to cancer prog-
ress is not yet well understood. Studies on breast cancer have 
demonstrated survival benefit from immunotherapy, mainly 
in advanced triple-negative and HER2 subtypes [96–100]. 
European Medicine Agency approved in 2020 the PD-L1 
checkpoint inhibitor atezolizumab in combination with che-
motherapy (nab-paclitaxel), to patients with PD-L1 positive, 
unresectable, locally advanced or metastatic triple-negative 
breast cancer [99, 101]. PD-L1 immunohistochemistry is 

approved as a predictive biomarker test for this treatment 
regimen, but study results indicate a need for improved pre-
dictive biomarkers for checkpoint inhibitors. Although the 
field of cancer immunology has been extensively explored 
and exploited for diagnostic and therapeutic purposes, the 
words of Winston Churchill still seem valid: “This is not the 
end. It is not even the beginning of the end. But it is, perhaps, 
the end of the beginning.”

Perou and colleagues touched upon the transcriptional 
heterogeneity of ER-negative breast cancer in their early 
breast cancer classification study [16]. Teschendorff et  al. 
followed up on this, demonstrating transcriptional alterations 
associated with the clinical course of ER-negative breast 
cancer [102]. Distinct subclasses among ER-negative tumors 
were shown based on transcriptional patterns. One of the 
classes consisted of basal-like tumors with upregulation of 
genes related to immune response and complement activa-
tion. This subset of ER-negative samples demonstrated bet-
ter survival pattern as compared to the rest of ER-negative 
tumors. Based on this study, a seven-gene immune response 
signature was derived. Downregulation of this module is 
associated with increased risk of advanced disease. In a later 
study, Rody and colleagues focused on the clinically and 
prognostically heterogenous triple-negative breast cancer 
subtype [103]. The basal-like and claudin-low subtypes were 
described by metagenes reflecting angiogenesis, inflamma-
tion, and non-neoplastic cell types like immune cells, adipo-
cytes, and fibroblasts. High immune cell score is associated 
with improved survival, and high inflammation and angio-
genesis scores are correlated with reduced survival. By 
applying a ratio of the B-cell and IL-8 metagenes, Rody 
identified a subgroup (32%) of triple-negative cases with 
high B-cell and low IL-8 scores, experiencing improved out-
come. Further, two other breast cancer studies have under-
pinned the association between an immune response and 
tumor subsets with milder disease courses [104, 105]. In the 
study by Alexe and colleagues, a HER2-positive subtype 
with low recurrence rate was associated with high expression 
of lymphocyte-associated genes [104]. Also, a prominent 
lymphocytic infiltration was seen by histologic examination 
of these tumor cases. In the study by Schmidt and colleagues, 
a high B-cell metagene score was associated with metastasis- 
free survival in node-negative cases with high proliferation, 
as validated both in high-grade cases and in young breast 
cancer patients [105]. Schmidt and colleagues [106] fol-
lowed up on this study, aiming to identify one single immune 
system marker for cancer progression. Immunoglobulin κC 
(IGKC) demonstrated similarly predictive and prognostic 
value as the entire B-cell metagene [105]. IGKC gene expres-
sion is associated with improved survival across different 
molecular subtypes in node-negative breast cancer. Also, lev-
els of IGKC measured by immunostaining in a series of 
FFPE breast cancer tissues correlated with clinical outcomes. 
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Tumor-infiltrating plasma cells were identified as the source 
of the protein. These findings suggest relevance of further 
exploration of the humoral immune response and its rele-
vance in the therapeutic setting.

One study pointing in this direction, specifically exam-
ined genes related to TH1-mediated adaptive immunity in 
breast cancer [107], and demonstrated that inflammation and 
immune suppression predicted tumor subsets with different 
clinical outcomes. Data sets on various tumor types were 
analyzed, and Hsu showed that upregulation of the TH1- 
mediated adaptive immunity genes correlated with good 
prognosis in young breast cancer patients (<45 years). Two 
other studies demonstrated better survival in cases of high 
immune signature score in breast cancer [108, 109]. 
Bianchini et  al. demonstrated association between high 
expression of a B-cell/plasma cell signature and improved 
survival in ER-positive cases with high proliferation, also 
when adjusting for standard prognostic variables and other 
transcriptional scores [108]. In the study by Nagalla and 
coworkers, a cluster of cases without distant metastases was 
associated with genes related to immunological functions. 
These genes could be clustered into three major “immune 
metagenes,” one cluster reflecting B-cells and/or plasma 
cells, another cluster reflecting T-cells and natural killer 
cells, and a third cluster reflecting monocytes and/or den-
dritic cells [109]. In tumors of high proliferation, high 
immune metagene score was associated with reduced risk of 
metastasis—cases with low immune metagene scores are 
associated with poorer outcome.

A few studies of immune-related signatures have sug-
gested therapy strategies based on their findings. Ascierto 
and colleagues elucidated how immune function networks 
related to tumor-infiltrating immune cells were more highly 
expressed in cases without recurrent disease [110]. The net-
work genes were related to B-cell development, interferon 
signaling, autoimmune reactions, and antigen presentation 
pathways. The results indicated crosstalk between the adap-
tive and innate immune systems. Five B-cell response genes 
predicted relapse-free survival (>85% accuracy), also vali-
dated by qPCR. The authors thus suggested immunotherapy, 
in the neoadjuvant setting, to patients with high risk of recur-
rent disease, potentially by inducing genes of immune 
function.

Iglesia and colleagues aimed to elucidate transcriptional 
alterations related to the cancer immune response of breast 
and ovarian cancers with high lymphocyte infiltration and 
improved survival [111]. RNAseq data and a microarray 
dataset were applied to identify signatures reflecting the 
adaptive immune response. The B-cell signatures predicted 
improved survival in the basal-like and HER2 subtypes. 
Further, analyses of B-cell receptor (BCR) sequences were 
assessed through RNAseq data. It was previously shown that 
a clonal expansion of the B-cells and somatic hypermuta-

tions in B-cell tumor-infiltrating lymphocytes in breast tissue 
represent an antigen-directed response [112–114], and the 
response of antigen-specific B-cell populations actively 
demonstrate features of clonal expansion. A part of the basal- 
like and HER2-enriched cases with shorter survival showed 
upregulation of BCR gene segments with low diversity, indi-
cating lack of B-cell clonal expansion, and were also indica-
tive of an ineffective antigen-directed response in these 
cases, potentially contributing to their poorer prognosis. 
More and varied BCR segments with increased expression 
are associated with improved prognosis. The results indicate 
a limited B-cell antitumor response in a subset of basal-like 
breast cancer. Also, immunomodulatory therapies were sug-
gested, and supporting B-cell responses may be one relevant 
approach in B-cell infiltrated carcinomas.

Perez and coworkers developed a transcriptional signa-
ture of immune-related genes predicting clinical benefit in a 
clinical trial of adjuvant Trastuzumab in combination with 
chemotherapy in HER2 positive breast cancer [115]. 
Signature enrichment is associated with increased recurrence- 
free survival only in the study arms receiving Trastuzumab. 
Cases in the Trastuzumab study arms without immune signa-
ture enrichment did not benefit from Trastuzumab, suggest-
ing interactions between immune-related genes and therapy 
response. Immune-related signatures associate with 
improved survival in several studies. However, when it 
comes to immune responses, the picture is not black and 
white. Rody and colleagues elucidated how the transcrip-
tional changes of immune metagenes related to clinical out-
comes [116]. An IgG metagene, which was found to be a 
marker for B-cells, did not associate with prognosis. 
However, high expression of a T-cell/lymphocyte-specific 
kinase signature is associated with survival in ER-negative 
cases and cases of concurrently ER and HER2 positivity. 
This study also suggests inhibition of the IL-8 pathway as a 
potential therapeutic strategy in breast cancer. Adding to the 
complexity, a link between the EMT program and immune 
evasion seen in cancer has been suggested [117–120].

By unsupervised analysis, identifying co-expressed breast 
cancer transcripts in global gene expression data, Yang and 
coworkers identified two co-expressed gene clusters with 
significant enrichment of gene sets reflecting immune 
responses and cell cycle activity. A condensed 17-gene sig-
nature was derived, correlating well with overall levels of 
tumor-infiltrating lymphocytes in triple-negative breast can-
cer [121]. The immune cell signature demonstrated prognos-
tic value in subtype- and immunity-adjusted risk of distant 
metastasis (iRDM) analysis, as validated by independent 
cohorts.

The immune microenvironment in triple-negative breast 
cancer has been in the spotlight over the last years. The study 
by Zhang and colleagues contributes to our understanding of 
the mechanisms that promote cancer progress in triple- 
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negative breast cancer, exploring the gene expression pro-
files of tumor-infiltrating CD4+T cells, elucidating how they 
contribute to modulating immune cell functions in triple- 
negative breast cancer [122]. The contribution of CD4 + T 
cells to the tumor-promoting biology was examined by 
assessing differentially expressed genes between tumor and 
peripheral blood CD4+T cells from patients with triple- 
negative breast cancer. Expression patterns associated with 
increased levels of T regulatory (Treg) cells and exhausted 
lymphocytes, and decreased effector/memory and cytotoxic 
T-cells were demonstrated in tumor samples. Additionally, 
genes overexpressed in CD4+ TILs contributed to exhaustion 
of lymphocytes and regulation of chemotaxis.

Adding information about spatial gene- and protein rela-
tions is recently increasingly focused on translational cancer 
studies. Considering the risk of losing compartment-specific 
information by studies on bulk tumor, Gruosso et  al. inte-

grated spatial tissue immune response information and gene 
expression profiling data from matched stromal and epithe-
lial tumor compartments, identifying distinct tumor immune 
microenvironment (TIME) profiles in the triple-negative 
subgroup (Fig. 23.5) [123].

Biological processes identified by analyses of gene 
expression data from laser capture microdissected tissue 
from matched stromal and epithelial tumor compartments, 
pointed to distinct TIME subtypes, believed to support the 
development of TIME-dependent targeted therapeutic 
approaches to treat triple-negative breast cancer. Based on 
the high versus low tumor core or margin CD8+ T-cell infil-
tration, with information on stromal and epithelial T-cell 
infiltration, the triple-negative subset was grouped into 
“margin- restricted” (MR), “immune desert” (ID), “fully 
inflamed” (FI), and “stroma-restricted.” The tumor charac-
terization based on CD8+ T-cell localization identified 
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Fig. 23.5 (a) The analysis pipeline from Gruosso et al. [123], demon-
strating discovery and validation of gene expression signatures identi-
fying spatially context-dependent immune cell profiles. The authors 
visualize correlations between the immune cell profiles and pathway 

signaling (b), how signature combinations into meta-signatures stratify 
clinical outcome (c), and propose identification of new tumor pheno-
types (d). With permission, reprinted from Gruosso et al. [123], J Clin 
Invest 2019. doi: 10.1172/JCI96313
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mRNA signatures identify distinct biological processes in 
the different tumor compartments, like enrichment of 
 cholesterol biosynthesis and IL17-related immunosuppres-
sion in restricted stromal tumors. The TIME subtype-specific 
mRNA signatures provided new survival knowledge within 
the group of triple-negative breast cancer.

 Adipocytes and Glycolysis-Related Gene 
Signatures

At the invasive front of breast cancer, we frequently find the 
adipocytes, more specifically the breast cancer-associated 
adipocytes (CAAs). The crosstalk between adipocytes and 
cancer cells results in phenotypical and functional changes 
for both cell types [38, 124]. Ultimately, the interplay 
between CAAs and tumor cells shapes the tumor microenvi-
ronment towards an oncogene-driven state favoring prolifer-
ation, angiogenesis, invasion, and metastasis.

CAAs are proposed as key players in breast cancer pro-
gression, like in the study by Wu and colleagues [124], where 
the authors investigated the adipocyte-cancer cell crosstalk 
to gain insight into tumor biology and uncover novel thera-
peutic targets. Adipocytes are regarded as a giant energy 
storage upon interaction with BC cells, providing high 
energy metabolites. With this in mind, theories discuss that 
tumors may induce reprogramming of metabolic cooperation 
in adipocytes, adjusting to intracellular metabolic processes 
supporting proliferation through interplay and interactions 
between CAAs and breast cancer cells [125, 126]. 
Importantly, dividing cells demand extreme amounts of 
energy, and to meet these requirements, alterations in the 
metabolism of all macromolecules take place in cancer cells. 
Metabolic changes are well known as a hallmark of cancer 
[32], and glucose utilization and uptake are heavily increased 
in order to fuel cell growth and division in multiple cancer 
types. Interestingly, glycolysis is preferred in malignant 
tumors rather than oxidative phosphorylation in mitochon-
dria [38, 127].

Targeting tumor metabolism has become a promising 
therapeutic strategy in cancer treatment. Investigating tumor 
glycolysis was the main objective for Tang and colleagues 
[128], who presented a glycolysis-related gene expression 
signature aiming to predict the prognosis of breast cancer 
patients. A total of 878 patients were included in the analy-
ses, revealing 129 glycolysis-related genes significantly 
associated with breast cancer prognosis. From these, a robust 
four-gene signature was established in a prognostic model, 
separating breast cancer patients into high- and low-risk 
groups. Survival analysis demonstrated significantly better 
prognosis in the low-risk group. Moreover, the glycolysis- 
related gene signature showed excellent prognostic accuracy, 
also when stratified by clinicopathological risk factors. To 

validate the prognostic value of the signature, external vali-
dation sets were applied, demonstrating both statistically sig-
nificant and clinical relevance of the signature.

Accompanying the hunt for glycolysis-related gene sig-
natures in breast cancer, Li and colleagues [129] identified a 
prognosis-associated signature related to energy metabolism 
in triple-negative breast cancer (TNBC). Herein, 1097 cases 
were studied. An 8-gene signature associated with energy 
metabolism were identified, distinguishing patients’ out-
come into low-risk and high-risk groups. The 8-gene signa-
ture is distinctively associated with the patients’ clinical 
characteristics, representing an independent factor in pre-
dicting TNBC patient prognosis. Also, the signature could 
potentially be used as a prognostic marker and for predicting 
response to therapy targeting the energy metabolism.

With similar study design, Zhang and colleagues [130] 
identified a glycolysis-related 11-gene signature for prog-
nostic evaluation of breast cancer patients. In contrast to the 
common workflow applied in most studies working on gene 
expression and gene signature identification, this study 
selected genes mainly by performing gene set enrichment 
analysis (GSEA). The authors argued that as GSEA does not 
require significant differences in gene thresholds and screens 
genes based on overall expression levels, the risk of over-
looking genes with important biological functions decreases. 
This study was the first in line to identify glycolysis-related 
genes with prognostic information in breast cancer. The 
11-gene signature was proposed as a promising prognostic 
marker in breast cancer, and potentially with value as a 
screening tool to identify persons at high risk of developing 
breast cancer.

Regarding the topic of evading risk of overlooking impor-
tant genes, protein–protein interaction network analysis 
(PPI) has become a popular tool when screening for prog-
nostic factors in cancer, appearing to be a more effective 
method due to its ability to compare the relationship between 
candidate genes through network interactions. Moreover, 
interaction networks allow for visualization, which invites 
the human perspective along with computed calculations to 
inspect candidate genes based on their network relations, 
thus minimizing the risk of overlooking potential genes that 
may seem unimportant at first. When mining for key genes, 
protein–protein interaction analyses can be applied to single 
out genes with dense connections and central roles either in 
the network as a whole or in specific sub-clusters.

Studying the gene expression differences in distant and 
tumor-adjacent adipose tissues may reflect distance to the 
tumor, rather than the presence of tumor cells. By gene 
expression analyses on distant and tumor-adjacent adipose 
tissue related to invasive breast cancers and on adipose tissue 
from non-malignant breasts from postmenopausal women, 
Sturtz and colleagues aimed to identify genes supporting 
tumor development and progression [131]. The authors dem-
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onstrated that highly expressed genes in tumor-adjacent 
compared to distant adipose tissue promote tumor growth 
and progression, due to increased cellular proliferation, inva-
sion, migration, metastasis, and angiogenesis.

 Methodological Aspects of Gene Expression 
Signatures

When exploring biological characteristics of the tumor 
microenvironment and the ongoing processes underlying 
cancer development and progression, we may feel like Mr. 
Jones in the song of Bob Dylan (1941–): “… something is 
happening here, but you don’t know what it is. Do you, Mr. 
Jones?” How can we best capture the “something happening 
here” in the microenvironment surrounding the tumor? When 
using global gene expression data, is there a “perfect” way of 
picturing the stromal activities? The statistician George 
E.P. Box (1919–2013) stated that “All models are wrong, but 
some are useful,” indicating that not one single model is able 
to catch the complete picture, and combining different and 
complementary approaches is probably one way out.

In dealing with gene expression analyses as one model, 
we most likely assess relevant information about the pro-
cesses and pathway signaling taking place in the tumor 
microenvironment. The results from these studies are depen-
dent on the input and analysis strategies. Gene expression 
analysis approaches can be divided into unsupervised and 
supervised analyses. The former requires no supplementary 
information to the expression data and provides great explor-
atory potential. The latter is driven by sample characteristics, 
typically in two groups, e.g., “positive” versus “negative” 
molecular phenotype, or high versus low tumor stage.

 Unsupervised Analyses and Class Discovery: 
Unbiased Exploring

By unsupervised analyses, without guidance by additional 
data except for the gene expression information itself, the 
aim is to find patterns in the expression profiles where no 
pre-defined class is presented. Hierarchical clustering is one 
example of unsupervised analysis. This method aims to 
group together objects based on measures of similarity and 
dissimilarities between them [132]. Hierarchical clustering 
requires specification of similarity metrics and linkage. The 
similarity metric describes how similar two samples are, by 
reflecting the distance between them. Additional information 
for the distance between clusters is needed, as reflected by 
the linkage method (single, average, or complete linkage). 
Complete linkage is demonstrated to be superior for cluster-
ing genes, while for clustering of samples, both average and 
complete linkage is proven useful [133]. Validation of the 

identified clusters is crucial, including validation of both bio-
logical and clinical plausibility, and the level of statistical 
evidence.

 Supervised Analyses: Genes Differentially 
Expressed Between Groups

Identifying genes with known functions that are differen-
tially expressed between two groups may provide better 
understanding of biological differences between the pre- 
defined groups [133]. If the genes identified are of unknown 
function, the analyses have the potential to provide novel 
insight into new gene functions. Supervised analyses require 
supplementary information about the groups, such as clini-
copathologic or molecular phenotypic data. An increased 
risk of false-positive findings due to multiple testing occurs 
as we run, e.g., 20,000 tests simultaneously on the same data, 
when searching for genes differentially expressed between 
classes. There are various methods to adjust for multiple test-
ing, all of them with the aim to provide greater certainty that 
the genes in our analysis output are truly differentially 
expressed between the groups we examine, and not listed 
due to chance. Being very strict in the adjustment of the mul-
tiple testing might mask true biological effects. The adjust-
ments will thus be a “trade-off” between too few and too 
many genes correctly identified as differentially expressed 
between classes. It is generally accepted that applying filters 
that results in no false-positive genes in the output is a too 
stringent approach, with a high risk of losing relevant bio-
logical findings in the analysis output. When searching for 
single genes differentially expressed between classes, the 
genes identified should nevertheless be further validated, and 
elimination of false-positive candidate genes or biomarkers 
occurs at these stages. In the search for the optimal cut-off on 
the output lists, it is important to remember that statistical 
significance does not imply biological relevance—and that 
biological relevance will not always provide statistical 
significance.

The number of genes differentially expressed between 
classes might be reduced to a limited number of genes with 
specific biological and/or prognostic information, and may 
be presented as gene expression signatures. Such signatures 
(i.e., gene sets) might be regarded as metagenes with respect 
to expression value, and a signature score is calculated to 
evaluate the metagene expression value [26]. Such signature 
scores have been derived in various ways. One simple 
approach is to generate a “sum score” or “average score” (the 
score value of one sample equals the sum or the average of 
the expression values of the genes in the signature). One 
potential way of better preserving the biological information 
in a signature score is an algorithm where each sample is 
given a score value by subtracting the sum of downregulated 
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genes from the sum of upregulated signature genes. More 
complex algorithms for derivation of gene expression signa-
tures exists [134]. Which algorithm to select depends on how 
the signature gene list is derived, and the question you want 
to reply to by use of the signature.

 Gene Networks Differentially Enriched 
Between Classes

Gaining further insight into biological mechanisms involved 
in a given process is a major challenge when working on 
high-throughput gene expression data. Subramanian et  al. 
pointed to a few of the obstacles in how to interpret the 
single- gene lists into new and/or relevant biological informa-
tion [35]: We may miss information about pathway altera-
tions by single-gene analyses, as the interpretation of these is 
heavily dependent on the researcher’s pre-existing knowl-
edge of the field. Pathway signaling may involve large gene 
networks and thus should not be too focused on “large 
enough” fold changes of single genes in the search for bio-
logical information in our data output. Minor changes in all 
genes known to be involved in a signaling pathway may be 
of higher importance than large fold changes of a few genes.

Gene Set Enrichment Analysis (GSEA) is a method that 
determines whether an a priori defined set of genes shows 
statistically significant differences between two classes (e.g., 
phenotypes). GSEA is an open access tool (www.broadinsti-
tute.org/gsea), incorporating The Molecular Signatures 
Database (MSigDB), a publicly available collection of seven 
major classes of annotated gene sets (www.broadinstitute.
org/gsea/msigdb). The gene expression signatures applied in 
GSEA/MSigDB are generated in various ways, and caution 
needs to be drawn when interpreting the results. To draw 
conclusions on gene set analyses, it is crucial to understand 
how the gene sets and signatures in question are generated, 
evaluating whether the specific gene sets are relevant for the 
current study. As for all large-scale analyses, considering the 
adjustment for multiple testing is required before interpret-
ing the analysis output.

Linking gene expression alterations to network patterns 
of experimentally verified protein–protein interactions (PPI) 
provides improved understanding of the transcriptional pat-
terns underlying the tumor and microenvironmental pheno-
typic characteristics [135, 136]. When analyzing the 
microenvironmental alterations and the interplay between 
the epithelial and microenvironmental compartments in 
tumor progression, integrating multiple levels of data will 
likely add information [137]. Large breast cancer studies 
have aimed at such integrative analyses, although a similar 
“all-level approach” not yet has been done with the microen-
vironment in focus.

 Some Future Perspectives

Over the last decade, RNA sequencing has increasingly 
replaced the gene expression microarray method for global 
gene expression profiling. Analysis approaches have 
advanced, although a lot of the same analysis approaches are 
applied. Assessment of large-scale DNA, RNA, and protein 
single-cell information is one of the later methodological 
adds. Adding spatial information on top of the single-cell 
profiling seems like a promising approach for better elucidat-
ing network biology, intratumor heterogeneity, and the 
accompanying biological and clinical consequences. Imaging 
mass cytometry (IMC) assesses multiple protein-based 
markers with high-dimensional spatial resolution at the 
single- cell level—a promising tool for developing complex 
models of cellular interactions with particular relevance for 
the tumor microenvironment [138]. The method provides 
possibilities for multiplexed detection of up to 40 metal- 
bound proteins, showing promise regarding improved under-
standing of cancer biology, with accompanying development 
of functional biomarkers [139–141]. By applying this 
method, Jackson et  al. recently described novel 
 microenvironment subgroups splitting the classic molecular 
subtypes, informing clinical outcome [139]. More recent 
developments of the IMC method have provided a possibility 
to concurrently detect multiple mRNA and proteins at sin-
gle-cell level, preserving the spatial information. A recent 
study describing this technology demonstrated strong corre-
lation between HER2 mRNA and proteins at the cell popula-
tion level in breast cancer (Fig.  23.6) [142]. Also, other 
platforms provide the possibility to detect concurrent single-
cell co- expression of multiple transcripts and proteins [143, 
144]. Combining mRNA and protein information into multi-
level signatures, pointing to new subclasses in cancer, will 
likely be an approach exploited in future biomarker research.

To understand how metastases are initiated and how they 
progress, Lawson and colleagues aimed to elucidate the prop-
erties of metastasis-initiating cells in human breast cancer. By 
single-cell analyses from early-stage metastatic lesions, 
Lawson demonstrated that cells from these lesions are char-
acterized by a gene expression signature reflecting stemness 
[145]. Strikingly, the gene expression signature patterns in 
metastatic cells from tissues in early and advanced stage met-
astatic disease (patient-derived xenograft models) were dis-
tinctly different. The early-stage metastatic cells demonstrated 
increased expression of stem cell markers, epithelial-to-mes-
enchymal transition, as well as pro-survival and dormancy-
associated genes. The metastatic cells from the advanced 
stage were more heterogeneous and displayed an expression 
pattern like the matched primary tumor. This study adds 
important information about the role of stem-like cells to the 
picture of the early stages of the metastasis process.
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Fig. 23.6 To build 
comprehensive models of 
cellular states and interactions 
in normal and diseased tissue, 
genetic and proteomic 
information must be extracted 
with single-cell and spatial 
resolution. Schulz et al. 
extended imaging mass 
cytometry to enable 
multiplexed detection of 
mRNA and proteins in 
tissues. Three mRNA target 
species were detected by 
RNAscope-based metal in situ 
hybridization with 
simultaneous antibody 
detection of 16 proteins. 
Analysis of 170 breast cancer 
samples showed that HER2 
and CK19 mRNA and protein 
levels are moderately 
correlated on the single-cell 
level, but only HER2, and not 
CK19, has strong mRNA-to- 
protein correlation on the cell 
population level. The 
chemoattractant CXCL10 was 
expressed in stromal cell 
clusters, and the frequency of 
CXCL-expressing cells 
correlated with T-cell 
presence. With permission, 
reprinted from D. Schulz et al. 
[142], Cell Syst 2018. doi: 
10.1016/j.cels.2017.12.001

Two elegantly designed studies, linking information about 
tumor-stroma interactions, pointed at integrin signaling as 
being of major importance in tumor progression and in the 
organotropism of the metastatic lesions. Reuter and col-
leagues profiled gene expression data of both epithelium and 
stroma at specific time points during tumor progression in an 
experimental 3D tumor model [146]. A “core cancer pro-
gression signature” was identified, and data indicated extra-
cellular matrix-interacting network hubs as essential in 
tumor progression. Blocking the β1-integrin hub, inhibited 
tumor development. A study on the role of exosomes in the 
metastatic process demonstrated that tumor-derived exo-
somes prepare the pre-metastatic niche in organ-specific 
cells [147]. Lung and liver metastases were associated with 
specific integrin expression patterns. Targeting these integ-
rins decreased the exosome uptake as well as lung and liver 
metastases, and Hoshino suggested that exosomal integrins 
have a potential role in directing metastatic cells in organo-
tropic manners.

Deconvolution methods, a computational dissection of 
bulk gene expression data, providing cell compartment or 
cell type-specific counts or expression profiles, is a novel 

approach, potentially assisting in decoding complex data, 
with improved understanding of the tumor compartments 
[40, 148–150]. In a recent study by Zhu et al., gene expres-
sion data (by RNAseq) was analyzed from 50 primary breast 
tumors and their matched metastatic tumors [151]. Based on 
gene expression data, deconvolution methods demonstrated 
lower abundance of immune cells in the metastatic lesions, 
except for M2 macrophages, that occurred with higher levels 
in the metastatic lesions compared to primary tumors. 
Validation by immunohistochemistry analyses of tumor tis-
sue confirmed the mRNA results, proposing immune escape 
as a potential mechanism for the lower infiltration of immune 
cells in metastases.

 Concluding Remarks/Summary

Do signature approaches, as outlined in this chapter, seem 
promising when searching to understand the microenviron-
ment biology in cancer? The summarized studies indicate 
that signature analyses are valuable tools in cancer research. 
Capturing gene expression alterations in multigene signatures 
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may better reflect the complex biological programming both 
driving and supporting tumor development and progression. 
Stroma-related alterations are probably exploitable with 
respect to treatment identification. As underlined from many 
of the studies on transcriptional alterations of the tumor-
associated microenvironment, interplay between extracellu-
lar remodeling, vascular biology and immune- related 
signaling appears to be critically important features of tumor 
subtypes and their associated patient outcomes. How to best 
reflect the functional interactions between the compartments 
is a daunting task. Integrating, interpreting, and validating 
results from global gene expression analyses are still major 
challenges, as deRisi stated in the very beginning of the 
“omics” era [24]. Developing new technology and analysis 
approaches, and steadily increasing the detection possibili-
ties and the level of molecular complexity outlined, includ-
ing molecular networks across molecular levels, provide new 
knowledge potentially impacting how we understand tumor 
biology and clinical diseases. Adding context- depending 
spatial information to large-scale single- cell data is proposed 
as a promising way forward—potentially further improving 
our understanding of microenvironment heterogeneity, and 
its biological and clinical consequences. How we embrace 
this methodology, should likely go along the line suggested 
by the mathematician Richard W. Hamming (1915–1998): If 
you believe too much, you will never notice the flaws; if you 
doubt too much you won’t get started. It requires a lovely 
balance.”
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