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Chapter 5
Investigation of TGA (2): Neuroimaging

Abstract  This chapter examines the investigation of TGA using neuroimaging 
techniques, (neuropsychological and neurophysiological investigations are consid-
ered in Chap. 4). Diffusion-weighted magnetic resonance imaging may show focal 
areas of signal change within the hippocampus, often in the CA1 subfield, in the 
first few days after the TGA episode. These changes may contribute to the diagnosis 
of TGA, although they are not currently included in diagnostic criteria and their 
pathogenesis remains uncertain. More sophisticated neuroimaging techniques may 
contribute to further understanding of the pathophysiology of TGA.
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The investigation of TGA may be contemplated as two different scenarios: the more 
common occurrence is when the patient presents to medical attention at some time 
after the resolution of the attack of TGA and the much less common situation when 
the patient is seen during the attack itself. If a confident clinical diagnosis of pure 
TGA, based on diagnostic criteria, can be made, then no further investigation may 
be required, and management should then focus on reassurance.

Of the various investigations available, many different neuroimaging modalities, 
both structural and functional, have been applied to patients with TGA, including 
X-ray computed tomography (CT), magnetic resonance (MR) imaging, single-
photon emission computed tomography (SPECT) and positron emission tomogra-
phy (PET). Of these, diffusion-weighted magnetic resonance imaging has proved to 
be the most diagnostically informative, often showing transient abnormalities con-
fined to the hippocampus.
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5.1  �Structural Neuroimaging

5.1.1  �Computed Tomography (CT)

Historically, computed tomography (CT) was the first neuroimaging modality to be 
widely used in TGA, beginning in the 1970s and 1980s (note that prior to this time 
the term “brain scanning” often referred to isotope scans, for example, using tech-
netium pertechnetate [1]).

Although some early studies reported a high prevalence of CT abnormalities, 
including infarction in specific vascular territories, these series may have been con-
taminated by non-TGA cases, prior to the definition of diagnostic criteria in 1990 
[2]. In his review published in 1985, Caplan reviewed the reported CT changes in 
TGA and concluded that there were insufficient data to reach general conclusions 
[3]. Hodges and Warlow detected small deep white matter and basal ganglia lacunar 
infarcts and periventricular lucencies in around 10% of their cases, but these changes 
were thought to be incidental, since they did not involve memory eloquent brain 
structures [2]. Hence, in his monograph, Hodges concluded that CT scanning in 
TGA was nearly always normal ([4], p.31).

Various CT lesions have been reported on occasion in TGA patients, including 
cerebrovascular disease (infarction, haemorrhage; Tables 3.4 and 3.5) and mass 
lesions (Table 7.4). Although in some cases these might be instances of “symptom-
atic TGA” (Sect. 2.2.2 and 2.2.3), more likely the changes seen are incidental to 
TGA, albeit they may have implications for patient management independent of the 
TGA episode.

5.1.2  �Magnetic Resonance (MR) Imaging

The increased resolution of magnetic resonance (MR) imaging compared to CT 
might have been anticipated to generate many more neuroimaging findings in TGA 
cases (including incidental changes, as in other MR imaging applications in neurol-
ogy [5]). Although some negative studies were reported initially (e.g. [6, 7]), the 
particular value of diffusion-weighted imaging MR sequences (MR-DWI) soon 
became apparent, showing focal areas of high signal, or hyperintensity, within the 
medial temporal lobe and specifically within the hippocampal formation (e.g. [8–
24]). Several large series of TGA patients examined with MR-DWI have subse-
quently been reported (e.g. [25–30]), and, at time of writing, one systematic review 
and meta-analysis has been presented including 22 original articles with 1732 par-
ticipants [31], plus one other systematic review [32].

These studies have established MR-DWI as the neuroimaging modality of 
choice, if available and required, in TGA diagnosis (Fig. 5.1). A number of conclu-
sions may be drawn from these various studies with respect to issues such as clinical 
phenotype, lesion location and size, and optimal timing and technical MR imaging 
factors.

5  Investigation of TGA (2): Neuroimaging

https://doi.org/10.1007/978-3-030-98939-2_3#Tab4
https://doi.org/10.1007/978-3-030-98939-2_3#Tab5
https://doi.org/10.1007/978-3-030-98939-2_7#Tab4
https://doi.org/10.1007/978-3-030-98939-2_2#Sec9
https://doi.org/10.1007/978-3-030-98939-2_2#Sec10


83

5.1.2.1  �Clinical Phenotype Vs. MR-DWI Changes

TGA patients with MR-DWI lesions (DWI+) have been reported to show similar 
clinical characteristics to those without imaging changes (DWI−), with no signifi-
cant differences in age, sex, vascular risk factors, precipitating factors or clinical 
presentation between the DWI+ and DWI− groups [25, 26, 33].

A small study (n = 27) found that patients with recurrent (i.e. a second attack of) 
TGA had a significantly higher association with reversible MR-DWI abnormality 
[34] (see Sect. 6.2.2).

5.1.2.2  �Lesion Location, Number and Size

Bartsch et al. reported that most MR-DWI lesions in TGA patients were found in 
the CA1 (or Sommer) sector of the hippocampus (following the nomenclature of 
hippocampal anatomy derived from Rafael Lorente de Nó [35]), changes which 
gradually resolved between 3 and 10 days post-event [10, 11]. Lee et al. noted that 
MR-DWI lesions associated with TGA were localised exclusively to the lateral por-
tion of the hippocampus, corresponding to the CA1 region [36]. Other studies also 
found the majority of TGA patients showed typical MR-DWI lesions in the CA1 
region [37, 38]. However, hippocampal regions other than CA1 may be involved. 
For example, Kim et al. found that 23, 36 and 8 patients (= 29%, 47% and 10%) 
exhibited a single lesion in the hippocampal head, body and tail, respectively [27]. 

Fig. 5.1  MR brain imaging in TGA: diffusion-weighted imaging (left) and apparent diffusion 
coefficient map (right), 48 h after onset of TGA, showing respectively bilateral medial temporal 
lobe high signal and restricted diffusion (adapted from [22] with permission)
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The systematic review of Lim et al. found figures of 12.6%, 64.4% and 23% for 
head, body and tail, respectively [31].

Whilst it may be the case that “[t]ypically lesions outside CA1 or outside the 
hippocampus are not detected in TGA” ([39], p.746), extrahippocampal hyperin-
tense lesions have also been described in association with the typical TGA clinical 
phenotype on occasion [40], for example, in the splenium of the corpus callosum [9] 
or the cerebellum (junction of superior cerebellum and vermis) [41]. Ganeshan et al. 
found acute MR-DWI lesions in cortical regions other than the hippocampus in 11% 
of their series of TGA patients (n = 126), all presenting with typical TGA without 
any additional symptoms [42]. In a case series and literature review, Piffer et al. 
reported 26 patients with typical clinical TGA and extrahippocampal punctate dif-
fuse lesions on MR imaging. These extrahippocampal lesions may occur with or 
without the typical hippocampal lesions. A classification taking these changes into 
account has been suggested [43]. It is possible that some of the “TGA–stroke” 
patients previously reported (Table 3.4) in fact have acute extrahippocampal lesions, 
indicative of acute focal metabolic stress but not necessarily of ischaemic origin.

Hippocampal lesions are usually single but may be multiple and may be unilat-
eral or bilateral. Lim et al. reported the incidence of left, right and bilateral lesions 
to be 42%, 37% and 25%, respectively [31]. Lesion size ranged from 1 to 15.1 mm, 
mean 2.8–10.2 mm [31].

5.1.2.3  �Timing of MR-DWI Changes

Higher MR-DWI lesion detection rates occurring after rather than during the hyper-
acute event have been noted by many authors (e.g. [19, 21]). Ahn et al. performed 
MR-DWI in 203 TGA episodes and found hippocampal lesions (= DWI+) in 16. 
The median time interval from amnesia to imaging was significantly longer in the 
DWI+ group (9 h) than in the DWI- group (5 h), indicating that MR-DWI had a low 
diagnostic yield (this term was not defined in the text, hence is presumably used 
qualitatively) if performed early in the course of TGA [25]. Ryoo et al. found an 
increase in the lesion detection rate with time lapse after symptom onset (0–6 h: 
34%; 6–12 h: 62%; 12–24 h: 67%; day 3: 75%) [28]. Higashida et al. found that 
detection rate increased linearly 24 h after onset, reached a plateau by 84 h and then 
decreased rapidly [26]. These findings were confirmed in the systematic review by 
Lim et al. [31] who reported a higher diagnostic yield when DWI was performed 
between 24 and 96 h after symptom onset than before 24 h or after 96 h.

These data may therefore explain in part the negative findings of some of the 
early MR studies: Gass et al. performed DWI in the active phase in two patients and 
1–8 h after cessation of symptoms in six patients [6], whilst in the series of Huber 
the average imaging delay was 18 h [7].

Lesions gradually resolve and disappear between 3 and 10 days post-event [10, 
11, 44]. Follow-up MR imaging studies of TGA using very high field strength (7 T) 
showed no visible sequelae [45].

5  Investigation of TGA (2): Neuroimaging
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5.1.2.4  �MR Field Strength, Slice Thickness and T2-Weighting

Higher lesion detection rates have been noted in some studies dependent upon cer-
tain technical MR imaging factors, such as the use of higher MR field strength [28, 
46], thinner slice thickness [29, 47] and higher resolution imaging [47]. Lim et al., 
in their systematic review, found no difference in diagnostic yield using 3 T vs 1.5 T 
field strength but higher yield using slice thickness ≤3  mm vs. >3  mm [31]. 
Considering the size range of punctate lesions, down to 1 mm and with a mean of 
2.8 mm in some studies (Sect. 5.1.2.2), then clearly slice thickness of >3 mm could 
miss these changes. No added benefit was observed using T2-weighted MR imaging 
[31] (see also Sect. 5.1.2.7).

5.1.2.5  �Diagnostic Value of MR-DWI Changes

Lim et al. calculated the diagnostic yield of MR imaging as the ratio of the number 
of patients with small hyperintense MR-DWI lesions suggestive of TGA to the total 
number of patients with TGA [31], a ratio which equates to test sensitivity (i.e. ratio 
of true positives to sum of true positives and false negatives [48]). The pooled diag-
nostic yield thus defined was 39%, although there was marked heterogeneity 
between studies included in this systematic review (range 0–92%). Whilst this over-
all sensitivity is low, suggesting that there are many false negatives, yield may be 
improved by factors such as optimal timing of imaging (24–96 h post-TGA) and 
MR slice thickness (≤3 mm) [31].

Wong et al. attempted to quantitate the sensitivity of MR-DWI in TGA as a func-
tion of time from symptom onset by means of a systematic review encompassing 23 
papers and 1688 patients. Pooled sensitivity was reported to be 15.6% between 0 
and 12  h from symptom onset, 23.1% at 0–24  h, 72.8% at 12–24  h, 68.8% at 
24–36 h, 72.4% at 36–48 h, 82.8% at 46–60 h, 66.9% at 60–72 h and 72.0% at 
72–96 h [32].

Dot-like hippocampal lesions, including punctate CA1 hippocampal hyperinten-
sities, may be seen in other clinical circumstances, such as ischaemia, encephalitis, 
status epilepticus [49, 50], acute headache (with features different from migraine) 
[51] and even incidentally [52]. Förster et al. claimed that it is not possible on neu-
roimaging grounds alone to differentiate isolated hippocampal infarction from TGA 
[50]. Hence, any suggestion that MR-DWI changes are specific to TGA is incorrect, 
in that false-positive instances are possible, which will reduce specificity (and posi-
tive predictive value, since false-positives feature in the denominators of both these 
metrics [48].) The current evidence suggests that CA1 lesions are neither necessary 
nor sufficient for a diagnosis of TGA.

To my knowledge, a dedicated diagnostic test accuracy study of MR-DWI 
changes in TGA has yet to be reported. Such a study would ideally, as per other 
pragmatic diagnostic test accuracy studies in cognitive disorders [53], have to image 
all patients presenting with suspected TGA according to a predetermined imaging 
protocol, with diagnosis of TGA made on clinical (criterial) grounds, blind to the 
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neuroimaging findings. Such a study would likely include patients with other condi-
tions falling within the differential diagnosis of TGA (Chap. 3). Meantime, pending 
such a study or studies, the recommendation that MR-DWI may be used in the 
appropriate clinical setting to support the diagnosis of TGA [30] stands, allowing 
for the possibility of both false-negative and false-positive findings on neuroimag-
ing. (The current widely used diagnostic criteria for TGA are exclusively clinical 
and do not require imaging findings [2]; Sect. 2.2.2).

5.1.2.6  �Pathogenesis of MR-DWI Changes

What is the pathogenesis of the punctate lesions seen on MR-DWI in TGA patients? 
Many early studies interpreted the appearances as indicative of ischaemia (e.g. [10, 
11, 15, 23]), but their time course is not that of a classic ischaemic lesion nor do they 
resemble venous congestion or infarcts.

As discussed (Sect. 5.1.2.5), the typical MR-DWI appearances seen in TGA are 
not specific for ischaemia, although very occasional cases of acute stroke may 
mimic the phenotype of TGA (Sect. 3.1.2; Table 3.4). Certainly, the CA1 region of 
the hippocampus is known to be particularly vulnerable to hypoxia and selective 
injury may be associated with amnesia (e.g. [54–56]). Other investigational modali-
ties (MRS; Sect. 5.2.4) suggest that some form of acute metabolic stress occurs 
[57], but the exact pathogenesis currently remains uncertain (see Sect. 9.7.5 and 
9.7.6 for further discussion).

Although finding MR-DWI changes may be helpful in differential diagnosis 
(Chap. 3) in the appropriate clinical circumstances [30], the suggestion that these 
changes indicate that TGA is a disease process localised or in some way restricted 
to CA1 may be challenged, both empirically and conceptually. Empirically, CA1 
lesions may not be seen in some TGA cases, and extrahippocampal lesions without 
CA1 involvement may occur (Sect. 5.1.2.2); moreover, the imaging changes become 
increasingly apparent with time after the clinical event (Sect. 5.1.2.3) suggesting 
they are downstream events. Conceptually, damage to a specific area associated 
with a specific functional consequence does not necessarily indicate that that par-
ticular location is responsible for that particular function. Whilst the method of 
lesion observation may assist in clinico-anatomical or clinico-radiological correla-
tion, the observed lesion may have simply interrupted fibres of passage, abolished 
tonic “permissive” inputs or interfered with blood supply to tissue elsewhere (tran-
sient diaschisis) ([58], p.15–16).

Thus, to describe TGA as a “natural lesion model of hippocampal CA1 neurons” 
([39], p.737) appears to be an oversimplification, and data interpretation which 
“critically relies on the selectivity of CA1 lesions” ([39], p.745) must be vulnerable 
to critique. Attempts to model TGA pathogenesis should rightly be predicated on 
hippocampal anatomy but need to take account of more than simply CA1 (Sect. 9.7).
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5.1.2.7  �Other MR Findings

A study using high-resolution T2-reversed MR imaging in 15 patients who had 
recovered from TGA found hippocampal cavities in all patients, bilateral in eight, of 
frequency and size greater than in normal controls [59]. The rounded shape of these 
cavities was said to resemble the appearances seen in specimens of hypoxia-related 
hippocampal CA1 necrosis, prompting the view that the changes seen in TGA 
patients might represent neuronal loss within the hippocampal CA1 area, an obser-
vation which might have prognostic implications. However, Bartsch et  al. [10] 
argued that these cavities were in the hippocampal sulcus, outside the CA1 region. 
Uttner et al. found no difference in cognitive performance in TGA patients with and 
without hippocampal cavities or in comparison to healthy controls (tested a median 
of >3 years post-TGA), although they confirmed the increased incidence of hippo-
campal cavities in TGA patients [60], as did Park et al. [33].

Functional MR imaging has also been used to assess patients with TGA 
(Sect. 5.2.6).

5.1.3  �Voxel-Based Morphometry (VBM) and Diffusion Tensor 
Imaging (DTI)

Advanced structural imaging techniques such as voxel-based morphometry (VBM) 
and diffusion tensor imaging (DTI) are research tools which permit assessment of 
indices such as cortical thickness and structural connectivity. DTI can be used to 
assess white matter microstructure in terms of its fractional anisotropy and mean 
diffusivity.

VBM showed significant differences in limbic structures including the hippo-
campus between patients with TGA and controls, changes which were thought pos-
sibly to contribute to the vulnerability of memory pathways [33].

Using DTI, Moon et al. initially reported evidence suggesting disrupted neuronal 
integrity of cingulum bundle fibres in TGA [61] but subsequently reported no dis-
ruptions in the structural connectivity of the memory pathway in patients with 
recurrent TGA, suggesting no effect of recurrent events on brain microstructure [62].

Park et al. undertook DTI in recovered TGA patients and found no global differ-
ences with healthy controls and no differences in fractional anisotropy and mean 
diffusivity but did find reorganisation of network hubs [63]. These findings sug-
gested the possibility that developmentally defined alterations in brain networks 
might predispose to TGA. Hodel et al. used DTI to show decreased structural con-
nectivity in the limbic system in TGA patients with associated lower cortical thick-
ness, at both acute (mean 44 h post-onset) and recovery (mean 35 days) stages [64]. 
Regional changes in cortical thickness and cortical volumes in TGA patients were 
also reported by Kim et al. [65]
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Wang et al. found reduced fractional anisotropy in the hippocampus 3 months 
after recovery from TGA, but not at 2 weeks, suggesting the possibility of micro-
structural changes in hippocampus [66].

Lee et al. performed volumetric analysis and structural covariance network anal-
ysis in TGA patients and found no significant differences with healthy controls in 
global structural covariance network. However, the subgroup of patients with recur-
rent TGA did show significant alterations in this network, as well as in an intrahip-
pocampal circuit which was also affected in single episode TGA patients. The 
authors suggested that these changes in connectivity could be relevant to TGA 
pathogenesis [67]. The same group of investigators also reported significant differ-
ences in functional networks in several brain regions according to TGA recur-
rence [68].

5.2  �Functional Neuroimaging

5.2.1  �Single-Photon Emission Computed 
Tomography (SPECT)

Of the various functional imaging modalities, single-photon emission computed 
tomography using 99mTechnetium hexamethylpropylene amine oxime (99mTc 
HMPAO-SPECT) to assess cerebral perfusion has generally been the most widely 
available resource and hence the most likely to be deployed in cases of TGA. The 
low spatial resolution of SPECT imaging compares unfavourably to MR imaging.

SPECT studies have generally shown decreased perfusion, in temporal lobe(s), 
frontal regions and parietotemporal regions, during attacks of TGA, with recovered 
perfusion seen in delayed imaging (e.g. [69–78]).

However, reports have also appeared of thalamic hypoperfusion [74, 75, 79–81] 
and global cerebral hypoperfusion [82]. Other reports have presented findings of 
hyperperfusion, of medial temporal lobe [83] and right parahippocampal gyrus 
([84], case 1).

Lampl et al. found that SPECT remained abnormal at 3 and 12 months in three 
patients with recurrent TGA, whereas perfusion abnormalities resolved in patients 
with a first episode of TGA [73], observations which may be relevant to the progno-
sis of TGA (Sect. 6.2).

SPECT with 99mTc-ethyl cysteinate dimer (ECD) has also shown significant 
hypoperfusion acutely in left hippocampus, left thalamus and bilateral cerebellum, 
with restoration of perfusion in follow-up scans [85].

Examining MR and SPECT imaging in a series of TGA patients, Park et  al. 
found that those with more anterior MR-DWI changes (especially hippocampal 
head) had associated SPECT hypoperfusion in the anterior frontal and temporal 
areas, whereas those with posterior MR-DWI changes (especially hippocampal tail) 
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were associated with SPECT hypoperfusion in the posterior temporal, parietal, 
occipital and cerebellar areas, consistent with two parallel pathways between hip-
pocampus and neocortex [86]. This observation, if corroborated, might explain 
some of the heterogeneity previously observed in SPECT imaging in TGA.

SPECT imaging in TGA has been superseded by MR imaging for a number of 
reasons: the low resolution and non-diagnostic nature of SPECT images and the 
now near ubiquity of access to acute MR imaging.

5.2.2  �Positron Emission Tomography (PET)

Positron emission tomography (PET) may be used to assess cerebral blood flow and 
metabolism. The earliest PET studies in TGA were those of Oghino et al. [87] and 
Fujii et al. [88], undertaken several days to weeks after the attack.

A case study of a patient in the “acute (early recovery)” phase of TGA found a 
matched reduction in cerebral blood flow and oxygen consumption over the entire 
right lateral frontal cortex with an associated, less significant, reduction in ipsilat-
eral thalamic and lentiform nucleus metabolism, but with sparing of the hippocam-
pal area. Changes had resolved by the time of a follow-up scan 3 months later [89]. 
Further PET studies from this research group included a 59-year-old woman whose 
imaging showed reduced cerebral metabolic rate for oxygen and oxygen extraction 
fraction over the left cortical convexity, with metabolic rate particularly reduced in 
the left frontal and temporal regions, as well as over the left lenticular nucleus, but 
the hippocampal area appeared unremarkable. Findings were thought to indicate 
flow-metabolism uncoupling [90]. Two further patients examined with PET during 
TGA attacks showed significant changes in the amygdala (right or left) and left 
posterior hippocampus [91]. The findings suggested vascular disturbance during 
TGA attacks. Gonzalez-Martinez et al. reported left hippocampal hypometabolism 
following a tracer injection 2 h after onset of TGA [92].

PET studies conducted after TGA episodes have suggested better preservation of 
cerebral blood flow and oxygen metabolism compared with TIA patients [88]. Jia 
et al. reported “low metabolism in local areas related to memory in 2 of 3 patients” 
examined with PET at “different periods during recovery” [93].

5.2.3  �CT Perfusion (CTP) Imaging

CT perfusion (CTP) imaging may be used for the early diagnosis of acute ischaemic 
stroke and TIA. In a single-centre study of CTP in 30 TGA patients, all had normal 
findings with respect to the hippocampi [94].

5.2  Functional Neuroimaging
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5.2.4  �MR Spectroscopy (MRS)

Proton MR spectroscopy (1H-MRS) is a form of functional imaging which permits 
analysis of metabolites such as creatine (Cr), lactate, N-acetyl aspartate (NAA; a 
neuronal marker) and myoinositol (a marker of glial cells). One single patient study 
showed no changes in these markers [95]. However, Bartsch et al. performed focal 
MR spectroscopy of hippocampal CA1 lesions. In 4 of 7 TGA patients studied, the 
typical MR-DWI changes in the CA1 sector of the hippocampus were seen. MRS of 
diffusion lesions showed a lactate peak, a marker of anaerobic glycolysis, in three 
of four patients, but not in patients without a diffusion lesion. The NAA/Cr ratio was 
normal, suggesting no neuronal loss. The changes were thought to indicate acute 
metabolic stress of CA1 neurones [57].

5.2.5  �Perfusion-Weighted MR Imaging

Perfusion-weighted MR imaging (dynamic susceptibility contrast perfusion-
weighted MRI) may be used to assess cerebral perfusion in TGA, although this has 
more usually been assessed using SPECT and PET imaging (Sect. 5.2.1 and 5.2.2 
respectively). No perfusion alterations were observed by visual inspection of 
perfusion-weighted MR imaging in five TGA patients, but group differences were 
found versus controls, with lower blood flow values bilaterally in the hippocampus, 
in the left thalamus and globus pallidus, as well as bilaterally in the putamen and the 
left caudate nucleus [96].

Shimizu et al. investigated TGA patients with conventional MR imaging as well 
as neurite orientation dispersion and density imaging (NODDI) and arterial spin 
labelling (ASL). They found no obvious microstructural or perfusion abnormalities 
in the hippocampus in DWI+ TGA patients, suggesting that neither destructive 
damage nor perfusion abnormalities were related to diffusion-restricted lesions 
[97]. Kim et al. found no differences in cerebral blood flow between single episode 
and recurrent TGA using MR-ASL [98].

5.2.6  �Functional MRI (fMRI)

LaBar et al. used functional MRI (fMRI) to assess the integrity of temporal lobe 
activity during and after an episode of TGA using a visual scene encoding task. The 
findings were of deficits in a temporo-limbic circuit which recovered with time. 
During the amnesic state, the precentral gyrus and posterior parietal cortex were 
utilised more than after recovery from TGA. The authors suggested that frontopari-
etal areas recruited during the amnesic state may indicate a compensatory strategy 
using visuospatial or working memory capabilities. A reduction in responses in 
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extrastriate cortex with repeated testing suggested the possibility of intact visual 
priming in TGA [99].

A similar fMRI study reported by Westmacott et al. showed no medial temporal 
activation associated with encoding of new scenes or recognition of old scenes dur-
ing the amnesic period. However, there was strong hippocampal activation during 
attempted recognition despite unsuccessful retrieval. These changes had normalised 
at 3-month follow-up [100].

Peer et al. used resting-state fMRI in the acute phase of TGA in 12 patients to 
demonstrate a significant reduction in the functional connectivity of the episodic 
memory network, not just the hippocampus, which was reversible on recovery [101].

Zidda et al. showed reduced functional connectivity in executive network and 
hippocampus using fMRI in acute TGA compared to controls and recovered TGA 
patients, the latter two groups showing no significant differences [102].

Kim et al. [68] reported transiently greater functional connectivity in the salience 
network in TGA patients undergoing resting-state fMRI and lower functional con-
nectivity in the default mode network, with preserved connectivity in the central 
executive network. The changes normalised by 3 months post-event.

5.3  �Summary and Recommendations

Since TGA is a clinical diagnosis, no specific neuroimaging investigations are indi-
cated. However, if there is diagnostic uncertainty, then investigations may be 
required to explore and refine the differential diagnosis. Neuroimaging may be 
required if there is a clinical suspicion of stroke. Of these investigations, diffusion-
weighted magnetic resonance imaging is currently the most helpful. Focal punctate 
areas of signal change may be seen in the hippocampus, most often in the CA1 
region, with the detection rate increasing between 1 and 4 days post-TGA and when 
using thin slice imaging. Whether or not these imaging changes leave long-term 
sequelae that might impact the prognosis of TGA, examined in the next chapter, 
remains uncertain, although some intriguing evidence to suggest altered network 
connectivity in recurrent TGA has emerged.
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