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Abstract. The study of symbolic syntactic interpretations has been the corner-
stone of natural language understanding for many years.

Today, modern artificial neural networks are widely searched to assess their
syntactic ability, through several probing tasks.

In this paper, we propose a neural network system that explicitly includes syn-
tactic interpretations: Kernel-inspired Encoder with Recursive Mechanism for
Interpretable Trees Visualizer (KERMITviz ). The most important result is that
KERMITviz allows to visualize how syntax is used in inference. This system can
be used in combination with transformer architectures like BERT, XLNet and
clarifies the use of symbolic syntactic interpretations in specific neural networks
making the black-box neural network neural networks explainable, interpretable
and clear.
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1 Introduction

While systems based on natural language processing (NLP) and neural network (NN)
are achieving extraordinary success, the lack of interpretation and NN transparency
from the representations learned to the underlying decision-making process, is an
important problem to be addressed.

Understanding why a model does not correctly classify test data instances or per-
forms incorrectly is a challenging task. Many works propose techniques such as data
augmentation [15] or analysis of available features [10] to improve results. Despite the
good results that can be obtained on these challenging tasks, usually methodologies do
not consider the investigation of the reasons why the model made wrong predictions.

In fact, when human uses an application, that is based on learning to make criti-
cal decisions, not having the perception of what is going on, it calls into question the
model’s reliability. To address this problem, researchers have introduced many differ-
ent techniques to help interpret what is happening in the NNs. Techniques range from
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(a) Forward pass (b) Interpretation pass

Fig. 1. The KERMIT+Transformer architecture. During the interpretation pass KERMITviz is
used to produce heat parse trees, while a transformer’s activation visualizer is used for the remain-
der of the network.

features important explanations [2,14,16] to prototypes and criticisms [1,3]. Feature
Importance Explanations methods, given input with features, explain model’s decision
by assigning a score to each feature that indicates its contribution in the decision mak-
ing. Prototype methods seek a minimal subset of samples that can use as condensed
view of a data set. In the NLP world, we have word importance explanations. Fea-
ture Importance techniques can be categorized into three categories: perturbation-based
techniques [14], gradient-based techniques [16], and decomposition-based techniques
[2]. However, such techniques are meaningless, specially in the case of NLP, if they
are not surrounded by a good method of visualisation that is simple and comprehen-
sible to humans. Many works use these techniques to generate static images, such as
attention maps [11,19,21] and heat maps [9] for image classification, indicating which
parts of an image are most important for classification. Interaction has also been incor-
porated into the process of understanding the model through visual analytics tools. For
example, ActiVis [9] offers a view of neuron activations and can be used to view inter-
active model interpretations of large heterogeneous data formats such as images and
text. However ActiVis doesn’t support recurrent architectures, a common type of archi-
tecture in natural language tasks. For this extent, Ming et al. [11] and Strobelt et al. [19]
proposed respectively dedicated visualizers for recurrent neural networks (RNNviz) and
long short-term memory networks (LSTMviz) that are able to inspect the dynamic of the
hidden state. These systems are very high performance, provide a very good explana-
tion of what happened and are aimed at both a programmer and an ordinary user, so they
are user-friendly. Both RNNviz and LSTMviz unfortunately do not support specialised
RNN-based models, such as memory networks or attention models.

Recently, with the advent of transformer models [20], a lot of work has been done
in order to interpret activations of attention heads [7,21,22]. All these transformer visu-
alizers allow to view the magnitude of softmax attention heads correlated with input
tokens to interpret model’s decisions. By the way of example we selected BERTviz
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[21] as the representative for this category of Transformer visualizers, it is very diffi-
cult to use and its outputs are quite difficult to interpret if you are not familiar with
the underlying model. A solution to the problem arising from the difficulty of the task
has been proposed by [17,23] that have exploited the basic structure of Transformer
to add symbolic syntactic information. Although the symbolic syntactic information
is clearer and has allowed good results to be obtained in the downstream tasks, it has
not proved useful in terms of explainability. Finally, Embedding Projector [18] is an
interactive tool for visualizing and interpreting embeddings. This tool uses different
dimensionality reduction techniques to map high-dimensional embedding vectors into
low-dimensional output vectors that are easier to visualize. It can be used to analyze the
geometry of words and explore the embedding space, although it can’t be used directly
to explain a neural network model.

In this paper, we present KERMITviz (Kernel-inspired Encoder with Recursive
Mechanism for Interpretable Trees Visualizer), which is integrated into the KERMIT
system [25]. KERMITviz allows researchers to embed symbolic syntactic parse trees
into artificial neural networks and to visualize how syntax is used in inference. We
use the Layer-wise Relevance Propagation (LRP) [2] (Sect. 2), which is a technique
of Feature Importance Explanations. Along the interpretation pass (Fig. 1), using LRP
combined with special visualization algorithms, we provide an easy and user-friendly
tool to see how syntax is used in inference.
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Fig. 2. KERMITviz interpretations over KERMITviz using BERT on two sample sentences
where the word but is correlated or not with the final polarity.

2 System Description

This section introduces our visualizer KERMITviz stemming from KERMIT [25], a
lightweight encoder for universal syntactic interpretations that can be used in com-
bination with transformer-based networks such as BERT [5] (Fig. 1). It follows some
preliminary notations (Sect. 2.1), a presentation of KERMIT model (Sect. 2.2), an intro-
duction to KERMITviz (Sect. 2.3) and an overview of heat parse trees (Sect. 2.4).
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2.1 Preliminary Notation

Parse trees, T , are core representations in our model. Parse subtrees τ are recursively
represented as trees t = (r, [t1, ..., tk]) where r is the label representing the root of the
tree and [t1, ..., tk] is the list of child trees ti. Leaves t are represented as trees t = (r, []).

On parse trees T , our model KERMIT requires the definition of three sets of sub-
trees: N(T ), S(T ) and S(T ). For defining the last two sets we used subtrees defined
in [4]: N(T ) contains all the complete subtrees of T and S(T ) contains all the valid
subtrees of T = (r, [t1, ..., tk]). The set S(T ) is the union of S(t) for all the trees
t ∈ N(T ) and it contains the subtrees used during training and inference.

Finally, to build the untrained KERMIT encoder, we use the properties of random
vectors drawn from a multivariate Gaussian distribution v ∼ N (0, 1√

d
I). We compose

these vectors using the shuffled circular convolution u ⊗ v.
These vectors are drawn from a multivariate Gaussian distribution which guarantees

that (u⊗v)Tu ≈ 0, (u⊗v)Tv ≈ 0 and (u⊗v) �= (v⊗u). This operation is a circular
convolution � (as for Holographic Reduced Representations [13]) with a permutation
matrix Φ: u ⊗ v = u � Φv.

2.2 The Encoder for Exploiting Parse Trees and Sub-network

KERMIT is a neural network that allows to encode and directly use syntactic interpre-
tations in neural networks architectures. The KERMIT neural network has two main
components: the KERMIT encoder, that encodes parse trees T in embedding vectors,
and a multi-layer perceptron (MLP) that exploits these embedding vectors:

y = D(T ) = Wdtx (1)

z = mlp(y) (2)

The KERMIT encoderD in Eq. 1 stems from tree kernels [4] and distributed tree kernels
[24]. It gives the possibility to represent parse trees in vector spacesRd that embed huge
spaces of subtrees Rn.

These encoders may be seen as linear transformations Wdt ∈ R
d×n (similarly to

Transformation in [8]). These linear transformations embed vectors xT ∈ R
n in the

space of tree kernels in smaller vectors yT ∈ R
d:

yT = Wdtx
T (3)

Columns wi of Wdt encode subtree τ (i) and are computed with an encoding function
wi = Υ (τ (i)) as follows:

Υ (t) =
{

r if τ (i) = (r, [])
r ⊗ Υ (τ (i)) ⊗ ... ⊗ Υ (τ (k)) if t = (r, [τ (i)

1 , ..., τ
(i)
k ])

As for tree kernels also for distributed tree encoders, linear transformations Wdt,
vectors xT ∈ R

n are never explicitly produced and encoders are implemented as recur-
sive functions [24].
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2.3 Heat Parse Trees and Activation

Heat parse trees (HPTs), similarly to “heat trees” in biology [6], are heatmaps over
parse trees (see the colored tree in Fig. 1). The underlying representation is an active
tree t, that is a tree where each node t = (r, vr, [t1, ..., tk]) has an activation value
vr ∈ R associated. HPTs are graphical visualizations of active trees t where colors and
sizes of nodes r depend on their activation values vr.

As we will see in Sect. 3, this module is used with the Transformers-models archi-
tecture but we specify that this part is frozen during this pass, because this analysis is
purely syntactic. We compute activation value vr in active tree t by using Layer-wise
Relevance Propagation (LRP) [2].

LRP is a framework to explain the decisions of a generic neural network using local
redistribution rules and is able to explain which input features contributed most to the
final classification.

In our case, is used as a sort of inverted function of the MLP in Eq. 2,

yLRP = mlp−1
LRP (z). (4)

The property in Eq. 1, that enables the activation of each subtree t ∈ T to be com-
puted back by transposing the matrix Wdt , that is:

xLRP = WΥ
TyLRP (5)

To make the computation feasible, Wdt
T is produced on-the-fly for each tree T .

Finally, activation values vr of nodes r ∈ T are computed by summing up values
x
(i)
LRP if r ∈ t(i).

2.4 Visualizing Activation in Heat Parse Trees

KERMITviz give the possibility to visualize the activation of parse trees. To make
the active trees understandable we use heat maps. We use this tool to visualize how
much a subtree affects the final decision of an NN classifier Fig. 2. We define the Heat
parse trees as a graphical visualization of heatmaps over active trees t where colors and
sizes of nodes r depend on their relevance values vr. The module allows us to explain
which nodes have contributed most to the final classification of a model through the
visualization of the Heat parse trees.

3 KERMITviz - System Overview

KERMITviz is a visualizer to inspect how syntax is used in taking final decisions
in specific tasks. We showed that KERMIT can effectively embed different syntactic
information and KERMITviz can explain KERMIT’s decisions. KERMITviz offers
two main features: the visualization tool and a tutorial on how to quickly build and
visualize a sample KERMIT encoder network1.

1 The code is available at https://github.com/ART-Group-it/KERMIT.

https://github.com/ART-Group-it/KERMIT
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Fig. 3. KERMIT’s notebook with integrated KERMITviz is available on google colab.

In this paper, we focus specifically on these two use cases: an example of the advan-
tages provided by the heat parse tree produced by KERMITviz (Fig. 2), and an example
on how to generate an heat parse tree given a sentence (see Fig. 3).

Hereafter, are described these use cases and demonstrate them in Sect. 3.1 and
Sect. 3.2.

3.1 KERMITviz - Example

KERMITviz allows to visualizes activation as heat parse trees to help justify the
choices of the model based on the relevance of the fragments of a sentence, as shown
in Fig. 2. In this figure (Fig. 2), colors and sizes identify the relevance value vr of node
r. The range of values: vr ∈ [0, 1] and colour range goes from black for vr tending to 0
and red for vr tending to 1.
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3.2 KERMITviz - Demo

Interacting and testing KERMITviz is very easy. We produced a jupyter notebook to
explain how to get an heat parse tree given sentence. We also give users the opportu-
nity to try out this system without the need to download and install everything, using
of Google Colaboratory (GC)2. In Fig. 3 are represented some important steps of KER-
MITviz on the GC platform. More precisely, we can observe the encoding of the sen-
tence in the constituent tree, the encoding in vectors introduced in Sect. 2.2, the applica-
tion of the LRP algorithm in Sect. 2.3 and finally the visualisation using the heat parse
trees Sect. 2.4.

4 Conclusion

KERMITviz is a simple visualizer that allows us to explain how syntactic information
is used in classification decisions within networks combining KERMIT and BERT.

KERMITviz has a clear description of the used syntactic subtrees and gives the
possibility of visualizing how syntactic information is exploited during inference, this
opens consequently the possibility of devising models to include explicit syntactic infer-
ence rules in the training process.

Our future goal is to combine KERMITviz with a rule control mechanism of a [12]
neural network in order to have full control over the decisions of a fully explainable
neural network.
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