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Abstract. Delimited control is a powerful mechanism for programming
language extension which has been recently proposed for Prolog (and
implemented in SWI-Prolog). By manipulating the control flow of a pro-
gram from inside the language, it enables the implementation of powerful
features, such as tabling, without modifying the internals of the Prolog
engine. However, its current formulation is inadequate: it does not cap-
ture Prolog’s unique non-deterministic nature which allows multiple ways
to satisfy a goal.

This paper fully embraces Prolog’s non-determinism with a novel
interface for disjunctive delimited control, which gives the programmer
not only control over the sequential (conjunctive) control flow, but also
over the non-deterministic control flow. We provide a meta-interpreter
that conservatively extends Prolog with delimited control and show that
it enables a range of typical Prolog features and extensions, now at the
library level: findall, cut, branch-and-bound optimisation, probabilistic
programming, . . .
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1 Introduction

Delimited control is a powerful programming language mechanism for control
flow manipulation that was developed in the late ’80s in the context of functional
programming [2,5]. Schrijvers et al. [12] have recently ported this mechanism to
Prolog.

Compared to both low-level abstract machine extensions and high-level global
program transformations, delimited control is much more light-weight and robust
for implementing new control-flow and dataflow features. Indeed, the Prolog port
has enabled powerful applications in Prolog, such as high-level implementations
of both tabling [3] and algebraic effects & handlers [8]. Yet, at the same time,
there is much untapped potential, as the port fails to recognise the unique nature
of Prolog when compared to functional and imperative languages that have pre-
viously adopted delimited control.
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Indeed, computations in other languages have only one continuation, i.e., one
way to proceed from the current point to a result. In contrast, at any point in a
Prolog continuation, there may be multiple ways to proceed and obtain a result.
More specifically, we can distinguish 1) the success or conjunctive continuation
which proceeds with the current state of the continuation; and 2) the failure or
disjunctive continuation which bundles the alternative ways to proceed, e.g., if
the conjunctive continuation fails.

The original delimited control only accounts for one continuation, which
Schrijvers et al. have unified with Prolog’s conjunctive continuation. More specif-
ically, for a given subcomputation, they allow to wrest the current conjunctive
continuation from its track, and to resume it at leisure, however many times as
desired. Yet, this entirely ignores the disjunctive continuation, which remains as
and where it is.

In this work, we adapt delimited control to embrace the whole of Prolog and
capture both the conjunctive and the disjunctive continuations. This makes it
possible to manipulate Prolog’s built-in search for custom search strategies and
enables clean implementations of, e.g., findall/3 and branch-and-bound. This
new version of delimited control has an executable specification in the form of
a meta-interpreter (Sect. 3), that can run both the above examples, amongst
others. Appendices to this paper are available in the extended version [18].

2 Overview and Motivation

2.1 Background: Conjunctive Delimited Control

In earlier work, Schrijvers et al. [12] have introduced a Prolog-compatible inter-
face for delimited control that consists of two predicates: reset/3 and shift/1.

Motivation. While library developers and advanced users typically do not build
in new language features in Prolog, they have traditionally been able to add var-
ious language extensions by means of Prolog’s rich meta-programming and pro-
gram transformation facilities. Examples are definite clause grammars (DCGs),
extended DCGs [17], Ciao Prolog’s structured state threading [7] and logical
loops [11]. However, there are several important disadvantages to non-local pro-
gram transformations for defining new language features: A transformation that
combines features can be quite complex and is fragile under language evolution.
Moreover, existing code bases typically need pervasive changes to, e.g., include
DCGs.

Delimited continuations enable new language features at the program level
rather than as program transformations. This makes features based on delimited
continuations more light-weight and more robust with respect to changes, and
it does not require pervasive changes to existing code.

Behavior. The precicate reset(Goal,ShiftTerm,Cont) executes Goal, and, 1.
if Goal fails, reset/3 also fails; 2. if Goal succeeds, then reset/3 also succeeds
and unifies Cont and ShiftTerm with 0; 3. if Goal calls shift(Term), then
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the execution of Goal is suspended and reset/3 succeeds immediately, unifying
ShiftTerm with Term and Cont with the remainder of Goal.

The shift/reset pair resembles the more familiar catch/throw predicates,
with the following differences: shift/1 does not copy its argument (i.e., it does
not refresh the variables), it does not delete choice points, and also communicates
the remainder of Goal to reset/3.

Example 1. Consider Definite Clause Grammars (DCGs), a language extension
to sequentially access the elements of an implicit list. It is conventionally defined
by a program transformation that requires special syntax to mark DCG clauses H
--> B and to mark non-DCG goals {G}. The delimited control approach requires
neither. It introduces two new predicates: c(E) consumes the next element E in
the implicit list, and phrase(G,Lin,Lout) runs goal G with implicit list Lin
and returns unconsumed remainder Lout. For instance, the following predicate
implements the grammar (ab)n and returns n.

ab(0).
ab(N) :- c(a), c(b), ab(M), N is M + 1.

?- phrase(ab(N),[a,b,a,b],[]).
N = 2.

The two DCG primitives are implemented as follows in terms of shift/1
and reset/3.

c(E) :- shift(c(E)).

phrase(Goal,Lin,Lout) :-
reset(Goal,Cont,Term),
( Cont == 0 ->

Lin = Lout
; Term = c(E) ->

Lin = [E|Lmid],
phrase(Cont,Lmid,Lout)

).

In words, phrase/3 executes the given goal within a reset/3 and analyzes the
possible outcomes. If Cont == 0, this means the goal succeeds without consum-
ing any input. Then the remainder Lout is equal to the input list Lin. Alterna-
tively, the execution of the goal has been suspended midway by the invocation
of a shift/1 because it wants to consume an element from the implicit list
with c/1. In that case, Term has been instantiated with a request c(E) for an
element E. This request is satisfied by instantiating E with the first element of
Lin. Finally, the remainder of the suspended goal, Cont (the continuation), is
resumed with the remainder of the list Lmid.

Other examples of language features implemented in terms of delimited con-
trol are co-routines, algebraic effects [8] and tabling [3].
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Obliviousness to Disjunctions. This form of delimited control only captures the
conjunctive continuation. For instance reset((shift(a),G1),Term,Cont) cap-
tures in Cont goal G1 that appears in conjunction to shift(a). In a low-level
operational sense this corresponds to delimited control in other (imperative and
functional) languages where the only possible continuation to capture is the
computation that comes sequentially after the shift. Thus this approach is very
useful for enabling conventional applications of delimited control in Prolog.

In functional and imperative languages delimited control can also be char-
acterised at a more conceptual level as capturing the entire remainder of a
computation. Indeed, in those languages the sequential continuation coincides
with the entire remainder of a computation. Yet, the existing Prolog approach
fails to capture the entire remainder of a goal, as it only captures the con-
junctive continuation and ignores any disjunctions. This can be illustrated by
the reset((shift(a),G1;G2),Term,Cont) which only captures the conjunctive
continuation G1 in Cont and not the disjunctive continuation G2. In other words,
only the conjunctive part of the goal’s remainder is captured.

This is a pity because disjunctions are a key feature of Prolog and many
advanced manipulations of Prolog’s control flow involve manipulating those dis-
junctions in one way or another.

2.2 Delimited Continuations with Disjunction

This paper presents an approach to delimited control for Prolog that is in line
with the conceptual view that the whole remainder of a goal should be captured,
including in particular the disjunctive continuation.

For this purpose we modify the reset/3 interface, where depending on Goal,
reset(Pattern,Goal,Result) has three possible outcomes:

1. If Goal fails, then the reset succeeds and unifies Result with failure. For
instance,

?- reset(_,fail,Result).
Result = failure.

2. If Goal succeeds, then Result is unified with success(PatternCopy,
DisjCont) and the reset succeeds. Here DisjCont is a goal that represents
the disjunctive remainder of Goal. For instance,

?- reset(X,(X = a; X = b),Result).
X = a, Result = success(Y,Y = b).

Observe that, similar to findall/3, the logical variables in DisjCont have
been renamed apart to avoid interference between the branches of the com-
putation. To be able to identify any variables of interest after renaming, we
provide PatternCopy as a likewise renamed-apart copy of Pattern.
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3. If Goal calls shift(Term), then the reset succeeds and Result is uni-
fied with shift(Term,ConjCont,PatternCopy,DisjCont). This contains in
addition to the disjunctive continuation also the conjunctive continuation.
The latter is not renamed apart and can share variables with Pattern and
Term. For instance,

?- reset(X,(shift(t),X = a; X = b),Result).
Result = shift(t,X = a, Y, Y = b).

Note that reset(P,G,R) always succeeds if R is unbound and never leaves choi-
cepoints.

Encoding. findall/3 Sect. 4 presents a few larger applications, but our encoding
of findall/3 with disjunctive delimited control already gives some idea of the
expressive power:

findall(Pattern,Goal,List) :-
reset(Pattern,Goal,Result),
findall_result(Result,Pattern,List).

findall_result(failure,_,[]).
findall_result(success(PatternCopy,DisjCont),Pattern,List) :-

List = [Pattern|Tail],
findall(PatternCopy,DisjCont,Tail).

This encoding is structured around a reset/3 call of the given Goal followed by
a case analysis of the result. Here we assume that shift/1 is not called in Goal,
which is a reasonable assumption for plain findall/3.

Encoding. !/0 Our encoding of the !/0 operator illustrates the use of shift/1:

cut :- shift(cut).

scope(Goal) :-
copy_term(Goal,Copy),
reset(Copy,Copy,Result),
scope_result(Result,Goal,Copy).

scope_result(failure,_,_) :-
fail.

scope_result(success(DisjCopy,DisjGoal),Goal,Copy) :-
Goal = Copy.

scope_result(success(DisjCopy,DisjGoal),Goal,Copy) :-
DisjCopy = Goal,
scope(DisjGoal).

scope_result(shift(cut,ConjGoal,DisjCopy,DisjGoal),Goal,Copy) :-
Copy = Goal,
scope(ConjGoal).
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The encoding provides cut/0 as a substitute for !/0. Where the scope of regular
cut is determined lexically, we use scope/1 here to define it dynamically. For
instance, we encode

p(X,Y) :- q(X), !, r(Y).
p(4,2). as

p(X,Y) :- scope(p_aux(X,Y)).
p_aux(X,Y) :- q(X), cut, r(Y).
p_aux(4,2).

The logic of cut is captured in the definition of scope/1; all the cut/0 pred-
icate does is request the execution of a cut with shift/1.

In scope/1, the Goal is copied to avoid instantiation by any of the branches.
The copied goal is executed inside a reset/3 with the copied goal itself as the
pattern. The scope result/3 predicate handles the result:

– failure propagates with fail;
– success creates a disjunction to either unify the initial goal with the now

instantiated copy to propagate bindings, or to invoke the disjunctive contin-
uation;

– shift(cut) discards the disjunctive continuation and proceeds with the con-
junctive continuation only.

3 Meta-interpreter Semantics

We provide an accessible definition of disjunctive delimited control in the form
of a meta-interpreter. Broadly speaking, it consists of two parts: the core inter-
preter, and a top level predicate to initialise the core and interpret the results.

3.1 Core Interpreter

Figure 1 defines the interpreter’s core predicate, eval(Conj, PatIn, Disj,
PatOut, Result). It captures the behaviour of reset(Pattern,Goal,Result)
where the goal is given in the form of a list of goals, Conj, together with the
alternative branches, Disj. The latter is renamed apart from Conj to avoid con-
flicting instantiations.

The pattern that identifies the variables of interest (similar to findall/3)
is present in three forms. Firstly, PatIn is an input argument that shares the
variables of interest with Conj (but not with Disj). Secondly, PatOut outputs the
instantiated pattern when the goal succeeds or suspends on a shift/1. Thirdly,
the alternative branches Disj are of the form alt(BranchPatIn,BranchGoal)
with their own copy of the pattern.

When the conjunction is empty (1–4), the output pattern is unified with
the input pattern, and success/2 is populated with the information from the
alternative branches.

When the first conjunct is true/0 (5–6), it is dropped and the meta-
interpreter proceeds with the remainder of the conjunction. When it is a compos-
ite conjunction (G1,G2) (7–8), the individual components are added separately
to the list of conjunctions.
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When the first conjunct is fail/0 (9–10), the meta-interpreter backtracks
explicitly by means of auxiliary predicate backtrack/3.

backtrack(Disj,PatOut,Result) :-
( empty_alt(Disj) ->

Result = failure
; Disj = alt(BranchPatIn,BranchGoal) ->

empty_alt(EmptyDisj),
eval([BranchGoal],BranchPatIn,EmptyDisj,PatOut,Result)

).

empty_alt(alt(_,fail)).

If there is no alternative branch, it sets the Result to failure. Otherwise, it
resumes with the alternative branch. Note that by managing its own backtrack-
ing, eval/5 is entirely deterministic with respect to the meta-level Prolog system.

1 eval([],PatIn,Disj,PatOut,Result) :- !,

2 PatOut = PatIn,

3 Disj = alt(BranchPatIn,BranchGoal),

4 Result = success(BranchPatIn,BranchGoal).

5 eval([true|Conj],PatIn,Disj,PatOut,Result) :- !,

6 eval(Conj,PatIn,Disj,PatOut,Result).

7 eval([(G1,G2)|Conj],PatIn,Disj,PatOut,Result) :- !,

8 eval([G1,G2|Conj],PatIn,Disj,PatOut,Result).

9 eval([fail|_Conj],_,Disj,PatOut,Result) :- !,

10 backtrack(Disj,PatOut,Result).

11 eval([(G1;G2)|Conj],PatIn,Disj,PatOut,Result) :- !,

12 copy_term(alt(PatIn,conj([G2|Conj])),Branch),

13 disjoin(Branch,Disj,NewDisj),

14 eval([G1|Conj],PatIn,NewDisj,PatOut,Result).

15 eval([conj(Cs)|Conj],PatIn,Disj,PatOut,Result) :- !,

16 append(Cs,Conj,NewConj),

17 eval(NewConj,PatIn,Disj,PatOut,Result).

18 eval([shift(Term)|Conj],PatIn,Disj,PatOut,Result) :- !,

19 PatOut = PatIn,

20 Disj = alt(BranchPatIn,Branch),

21 Result = shift(Term,conj(Conj),BranchPatIn,Branch).

22 eval([reset(RPattern,RGoal,RResult)|Conj],PatIn,Disj,PatOut,Result):- !,

23 copy_term(RPattern-RGoal,RPatIn-RGoalCopy),

24 empty_alt(RDisj),

25 eval([RGoalCopy],RPatIn,RDisj,RPatOut,RResultFresh),

26 eval([RPattern=RPatOut,RResult=RResultFresh|Conj]

27 ,PatIn,Disj,PatOut,Result).

28 eval([Call|Conj],PatIn,Disj,PatOut,Result) :- !,

29 findall(Call-Body,clause(Call,Body), Clauses),

30 ( Clauses = [] -> backtrack(Disj,PatOut,Result)

31 ; disjoin_clauses(Call,Clauses,ClausesDisj),

32 eval([ClausesDisj|Conj],PatIn,Disj,PatOut,Result)

33 ).

Fig. 1. Meta-interpreter core
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When the first conjunct is a disjunction (G1;G2) (11–14), the meta-
interpreter adds (a renamed apart copy of) (G2,Conj) to the alternative
branches with disjoin/3 and proceeds with [G1|Conj].

disjoin(alt(_,fail),Disjunction,Disjunction) :- !.
disjoin(Disjunction,alt(_,fail),Disjunction) :- !.
disjoin(alt(P1,G1),alt(P2,G2),Disjunction) :-

Disjunction = alt(P3, (P1 = P3, G1 ; P2 = P3, G2)).

Note that we have introduced a custom built-in conj(Conj) that turns a list of
goals into an actual conjunction. It is handled (15–17) by prepending the goals to
the current list of conjuncts, and never actually builds the explicit conjunction.

When the first goal is shift(Term) (18–21), this is handled similarly to an
empty conjunction, except that the result is a shift/4 term which contains Term
and the remainder of the conjunction in addition the branch information.

When the first goal is a reset(RPattern,RGoal,RResult) (22–27), the
meta-interpreter sets up an isolated call to eval/5 for this goal. When the call
returns, the meta-interpreter passes on the results and resumes the current con-
junction Conj. Notice that we are careful that this does not result in meta-level
failure by meta-interpreting the unification.

Finally, when the first goal is a call to a user-defined predicate (28–33), the
meta-interpreter collects the bodies of the predicate’s clauses whose head unifies
with the call. If there are none, it backtracks explicitly. Otherwise, it builds an
explicit disjunction with disjoin clauses, which it pushes on the conjunction
stack.

disjoin_clauses(_G,[],fail) :- !.
disjoin_clauses(G,[GC-Clause],(G=GC,Clause)) :- !.
disjoin_clauses(G,[GC-Clause|Clauses], ((G=GC,Clause) ; Disj)) :-

disjoin_clauses(G,Clauses,Disj).

An example execution trace of the interpreter can be found in [18, Appendix C].

Toplevel. The toplevel(Goal)-predicate initialises the core interpreter with a
conjunction containing only the given goal, the pattern and pattern copy set to
(distinct) copies of the goal, and an empty disjunction. It interprets the result by
non-deterministically producing all the answers to Goal and signalling an error
for any unhandled shift/1.

toplevel(Goal) :-
copy_term(Goal,GoalCopy),
PatIn = GoalCopy,
empty_alt(Disj),
eval([GoalCopy],PatIn,Disj,PatOut,Result),
( Result = success(BranchPatIn,Branch) ->

( Goal = PatOut ; Goal = BranchPatIn, toplevel(Branch))
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; Result = shift(_,_,_,_) ->
write(’toplevel: uncaught shift/1.\n’), fail

; Result = failure ->
fail

).

4 Case Studies

To illustrate the usefulness and practicality of our approach, we present two case
studies that use the new reset/3 and shift/1.

4.1 Branch-and-Bound: Nearest Neighbour Search

Branch-and-bound is a well-known general optimisation strategy, where the solu-
tions in certain areas or branches of the search space are known to be bounded.
Such branches can be pruned, when their bound does not improve upon a pre-
viously found solution, eliminating large swaths of the search space in a single
stroke.

We provide an implementation of branch-and-bound (see Fig. 2) that is
generic, i.e., it is not specialised for any application. In particular it is not spe-
cific to nearest neighbour search, the problem on which we demonstrate the
branch-and-bound approach here.

bound(V) :- shift(V).

bb(Value,Data,Goal,Min) :-

reset(Data,Goal,Result),

bb_result(Result,Value,Data,Min).

bb_result(success(BranchCopy,Branch),Value,Data,Min) :-

( Data @< Value -> bb(Data,BranchCopy,Branch,Min)

; bb(Value,BranchCopy,Branch,Min)

).

bb_result(shift(ShiftTerm,Cont,BranchCopy,Branch),Value,Data,Min) :-

( ShiftTerm @< Value ->

bb(Value,Data,(Cont ; (BranchCopy = Data,Branch)),Min)

; bb(Value,BranchCopy,Branch,Min)

).

bb_result(failure,Value,_Data,Min) :- Value = Min.

Fig. 2. Branch-and-Bound effect handler.
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nn((X,Y),BSP,D-(NX,NY)) :-

( BSP = xsplit((SX,SY),Left,Right) ->

DX is X - SX,

branch((X,Y), (SX,SY), Left, Right, DX, D-(NX,NY))

; BSP = ysplit((SX,SY),Up,Down) ->

DY is Y - SY,

branch((X,Y), (SX,SY), Up, Down, DY, D-(NX,NY))

).

branch((X,Y), (SX,SY), BSP1, BSP2, D, Dist-(NX,NY)) :-

( D < 0 -> % Find out which partition contains (X,Y).

TargetPart = BSP1, OtherPart = BSP2, BoundaryDistance is -D

;

TargetPart = BSP2, OtherPart = BSP1, BoundaryDistance is D

),

( nn((X,Y), TargetPart, Dist-(NX,NY))

; Dist is (X - SX) * (X - SX) + (Y - SY) * (Y - SY),

(NX,NY) = (SX,SY)

; bound(BoundaryDistance-nil),

nn((X,Y), OtherPart,Dist-(NX,NY))

).

run_nn((X0,Y0),BSP,(NX,NY)) :-

toplevel(bb(10-nil,D-(X,Y),nn((X0,Y0),BSP,D-(X,Y)),_-(NX,NY))).

Fig. 3. 2D nearest neighbour search with branch-and-bound.

The framework requires minimal instrumentation: it suffices to begin every
prunable branch with bound(V), where V is a lower bound on the values in the
branch.1

1. If the Goal succeeds normally (i.e., Result is success), then Data contains a
new solution, which is only accepted if it is an improvement over the existing
Value. The handler then tries the next Branch.

2. If the Goal calls bound(V), V is compared to the current best Value:
– if it is less than the current value, then Cont could produce a solution

that improves upon the current value, and thus must be explored. The
alternative Branch is disjoined to Cont, and DataCopy is restored to Data
(ensuring that a future reset/3 copies the right variables);

– if it is larger than or equal to the current value, then Cont can be safely
discarded.

3. Finally, if the goal fails entirely, Min is the current minimum Value.

Nearest Neighbour Search. The code in Fig. 3 shows how the branch and bound
framework efficiently solves the problem of finding the point (in a given set) that
is nearest to a given target point on the Euclidean plane.

1 The framework searches for a minimal solution.
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(1,0.1)
(0,0)

(0.5,0.5)

(-0.5,0.5)

(-0.75,-0.5)

Fig. 4. Nearest-neighbour search using a BSP-tree

The run nn/3 predicate takes a point (X,Y), a Binary Space Partitioning
(BSP)-tree2 that represents the set of points, and returns the point, nearest to
(X,Y). The algorithm implemented by nn/3 recursively descends the BSP-tree.
At each node it first tries the partition to which the target point belongs, then
the point in the node, and finally the other partition. For this final step we can
give an easy lower bound: any point in the other partition must be at least as
far away as the (perpendicular) distance from the given point to the partition
boundary.

As an example, we search for the point nearest to (1, 0.1) in the set {(0.5, 0.5),
(0, 0), (−0.5, 0), (−0.75,−0.5)}. Figure 4 shows a BSP-tree containing these
points, the solid lines demarcate the partitions. The algorithm visits the points
(0.5, 0.5) and (0, 0), in that order. The shaded area is never visited, since the
distance from (1,0.1) to the vertical boundary through (0, 0) is greater than the
distance to (0.5, 0.5) (1 and about 0.64). The corresponding call to run nn/3 is:

?- BSP = xsplit((0,0),
ysplit((-0.5,0),leaf,xsplit((-0.75,-0.5),leaf,leaf)),
ysplit((0.5,0.5),leaf,leaf)),

run_nn((1,0.1),BSP,(NX,NY)).
NX = NY, NY = 0.5.

4.2 Probabilistic Programming

Probabilistic programming languages (PPLs) are programming languages
designed for probabilistic modelling. In a probabilistic model, components
behave in a variety of ways—just like in a non-deterministic model—but do
so with a certain probability.
2 A BSP-tree is a tree that recursively partitions a set of points on the Euclidean plane,

by picking points and alternately splitting the plane along the x- or y-coordinate of
those point. Splitting along the x-coordinate produces an xsplit/3 node, along the
y-coordinate produces a ysplit/3 node.
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Instead of a single deterministic value, the execution of a probabilistic pro-
gram results in a probability distribution of a set of values. This result is pro-
duced by probabilistic inference [6,19], for which there are many strategies and
algorithms, the discussion of which is out of scope here. Here, we focus on one
concrete probabilistic logic programming languages: PRISM [10].

A PRISM program consists of Horn clauses, and in fact, looks just like a
regular Prolog program. However, we distinguish two special predicates:

– values x(Switch,Values,Probabilities) This predicate defines a proba-
bilistic switch Switch, that can assume a value from Values with the prob-
ability that is given at the corresponding position in Probabilities (the
contents of Probabilities should sum to one).

– msw(Switch,Value) This predicate samples a value Value from a switch
Switch. For instance, if the program contains a switch declared as values x(
coin, [h,t], [0.4,0.6]), then msw(coin,V) assigns h (for heads) to V
with probability 0.4, and t (for tails) with probability 0.6. Remark that
each distinct call to msw leads to a different sample from that switch. For
instance, in the query msw(coin,X),msw(coin,Y), the outcome could be
either (h,h),(t,t), (h,t) or (t,h).

Consider the following PRISM program, the running example for this section:

values_x(coin1,[h,t],[0.5,0.5]).
values_x(coin2,[h,t],[0.4,0.6]).
twoheads :- msw(coin1,h),msw(coin2,h).
onehead :- msw(coin1,V), (V = t, msw(coin2,h) ; V = h).

This example defines two predicates: twoheads which is true if both coins are
heads, and onehead which is true if either coin is heads. However, note the spe-
cial structure of onehead: PRISM requires the exclusiveness condition, that is,
branches of a disjunction cannot be both satisfied at the same time. The simpler
goal msw(coin1,heads) ; msw(coin2, heads) violates this assumption.

The code in Fig. 5 interprets this program. Line 1 defines msw/2 as a simple
shift. Lines 6–9 install a reset/3 call over the goal, and analyse the result. The
result is analysed in the remaining lines: A failure never succeeds, and thus
has success probability 0.0 (line 9). Conversely, a successful computation has a
success probability of 1.0 (line 10). Finally, the probability of a switch (lines
11–15) is the sum of the probability of the remainder of the program given each
possible value of the switch multiplied with the probability of that value, and
summed with the probability of the alternative branch.

The predicate msw prob finds the joint probability of all choices. It iterates
over the list of values, and sums the probability of their continuations.

msw_prob(_,_,[],[],Acc,Acc).
msw_prob(V,C,[Value|Values],[Prob|Probs],Acc,ProbOfMsw) :-

prob((V = Value,C),ProbOut),
msw_prob(V,C,Values,Probs,Prob*ProbOut + Acc,ProbOfMsw).
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1 msw(Key,Value) :- shift(msw(Key,Value)).

2 prob(Goal) :-

3 prob(Goal,ProbOut),

4 write(Goal), write(’: ’), write(ProbOut), write(’\n’).

5 prob(Goal,ProbOut) :-

6 copy_term(Goal,GoalCopy),

7 reset(GoalCopy,GoalCopy,Result),

8 analyze_prob(GoalCopy,Result,ProbOut).

9 analyze_prob(_,failure,0.0).

10 analyze_prob(_,success(_,_),1.0).

11 analyze_prob(_,shift(msw(K,V),C,_,Branch),ProbOut) :-

12 values_x(K,Values,Probabilities),

13 msw_prob(V,C,Values,Probabilities,0.0,ProbOfMsw),

14 prob(Branch,BranchProb),

15 ProbOut is ProbOfMsw + BranchProb.

Fig. 5. An implementation of probabilistic programming with delimited control.

Now, we can compute the probabilities of the two predicates above:

?- toplevel(prob(twoheads)).
twoheads: 0.25
?- toplevel(prob(onehead)).
onehead: 0.75

In [18, Appendix B.3] we implement the semantics of a definite, non-looping
fragment of ProbLog [6], another logic PPL, on top of the code in this section.

5 Properties of the Meta-interpreter

In this section we establish two important correctness properties of our meta-
interpreter with respect to standard SLD resolution. Together these establish
that disjunctive delimited control is a conservative extension. This means that
programs that do not use the feature behave the same as before.

The proofs of these properties are in [18, Appendix A]. The first theorem
establishes the soundness of the meta-interpreter, i.e., if a program (not contain-
ing shift/1 or reset/3) evaluates to success, then an SLD-derivation of the
same answer must exist.

Theorem 1 (Soundness). For all lists of goals [A1, . . . , An], terms α, β, γ, ν,
variables P,R conjunctions B1, . . . , Bm; C1, . . . , Ck and substitutions θ, if

? − eval([A1, . . . , An], α, alt(β, (B1, . . . , Bm)), P,R).
P = ν,R = success(γ,C1 , . . . ,Ck ).
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and the program contains neither shift/1 nor reset/3, then SLD-resolution3

finds the following derivation:

← (A1, . . . , An, true); (α = β,B1, . . . , Bm)
...
�

(with solution θ s.t. αθ = ν)

Conversely, we want to argue that the meta-interpreter is complete, i.e., if
SLD-derivation finds a refutation, then meta-interpretation—provided that it
terminates—must find the same answer eventually. The theorem is complicated
somewhat by the fact that the first answer that the meta-interpreter arrives at
might not be the desired one due to the order of the clauses in the program. To
deal with this problem, we use the operator ?-p, which is like ?-, but allows a
different permutation of the program in every step.

Theorem 2 (Completeness). For any goal ← A1, . . . , An, if it has solution
θ, then

?-p eval([A1, . . . , An], α, alt(β, (B1, . . . , Bm)), P,R).
P = success(γ, (C1, . . . , Ck)), R = αθ.

Together, these two theorems show that our meta-interpreter is a conservative
extension of the conventional Prolog semantics.

6 Related Work

Conjunctive Delimited Control. Disjunctive delimited control is the culmination
of a line of research on mechanisms to modify Prolog’s control flow and search,
which started with the hook-based approach of Tor [13] and was followed by
the development of conjunctive delimited control for Prolog [12,14].

The listing below shows that disjunctive delimited control entirely subsumes
conjunctive delimited control. The latter behaviour is recovered by disjoining
the captured disjunctive branch. We believe that Tor is similarly superseded.

nd_reset(Goal,Ball,Cont) :-
copy_term(Goal,GoalCopy),
reset(GoalCopy,GoalCopy,R),
( R = failure -> fail
; R = success(BranchPattern,Branch) ->

( Goal = GoalCopy, Cont = 0
; Goal = BranchPattern, nd_reset(Branch,Ball,Cont))

; R = shift(X,C,BranchPattern,Branch) ->
( Goal = GoalCopy, Ball = X, Cont = C
; Goal = BranchPattern, nd_reset(Branch,Ball,Cont))

).

3 Standard SLD-resolution, augmented with disjunctions and conj/1 goals.
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get(Interactor,Answer) :-

get_engine(Interactor,Engine), % get engine state

run_engine(Engine,NewEngine,Answer), % run up to the next answer

update_engine(Interactor,NewEngine). % store the new engine state

return(X) :- shift(return(X)).

run_engine(engine(Pattern,Goal),NewEngine,Answer) :-

reset(Pattern,Goal,Result),

run_engine_result(Pattern,NewEngine,Answer,Result).

run_engine_result(Pattern,NewEngine,Answer,failure) :-

NewEngine = engine(Pattern,fail),

Answer = no.

run_engine_result(Pattern,NewEngine,Answer,success(BPattern,B)) :-

NewEngine = engine(BPattern,B),

Answer = the(Pattern).

run_engine_result(Pattern,NewEngine,Answer,S) :-

S = shift(return(X),C,BPattern,B)

BPattern = Pattern,

NewEngine = engine(Pattern,(C;B)),

Answer = the(X).

Fig. 6. Interoperable Engines in terms of delimited control.

Abdallah [1] presents a higher-level interface for (conjunctive) delimited con-
trol on top of that of Schrijvers et al. [12]. In particular, it features prompts,
first conceived in a Haskell implementation by Dyvbig et al. [4], which allow
shifts to dynamically specify up to what reset to capture the continuation. We
believe that it is not difficult to add a similar prompt mechanism on top of our
disjunctive version of delimited control.

Interoperable Engines. Tarau and Majumdar’s Interoperable Engines [16] pro-
pose engines as a means for co-operative coroutines in Prolog. An engine is an
independent instance of a Prolog interpreter that provides answers to the main
interpreter on request.

The predicate new engine(Pattern,Goal,Interactor) creates a new
engine with answer pattern Pattern that will execute Goal and is identified
by Interactor. The predicate get(Interactor,Answer) has an engine execute
its goal until it produces an answer (either by proving the Goal, or explicitly
with return/1). After this predicate returns, more answers can be requested,
by calling get/2 again with the same engine identifier. The full interface also
allows bi-directional communication between engines, but that is out of scope
here.

Figure 6 shows that we can implement the get/2 engine interface in terms of
delimited control (the full code is available in [18, Appendix B.2]). The opposite,
implementing disjunctive delimited control with engines, seems impossible as
engines do not provide explicit control over the disjunctive continuation. Indeed,
get/2 can only follow Prolog’s natural left-to-right control flow and thus we can-
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not, e.g., run the disjunctive continuation before the conjunctive continuation,
which is trivial with disjunctive delimited control.

Tabling without Non-bactrackable Variables. Tabling [9,15] is a well-known tech-
nique that eliminates the sensitivity of SLD-resolution to clause and goal order-
ing, allowing a larger class of programs to terminate. As a bonus, it may improve
the run-time performance (at the expense of increased memory consumption).

One way to implement tabling—with minimal engineering impact to the
Prolog engine—is the tabling-as-a-library approach proposed by Desouter et
al. [3]. This approach requires (global) mutable variables that are not erased by
backtracking to store their data structures in a persistent manner. With the new
reset/3 predicate, this is no longer needed, as (non-backtracking) state can be
implemented in directly with disjunctive delimited control.

7 Conclusion and Future Work

We have presented disjunctive delimited control, an extension to delimited control
that takes Prolog’s non-deterministic nature into account. This is a conservative
extension that enables implementing disjunction-related language features and
extensions as a library.

In future work, we plan to explore a WAM-level implementation of disjunc-
tive delimited control, inspired by the stack freezing functionality of tabling
engines, to gain access to the disjunctive continuations efficiently. Similarily, the
use of copy term/2 necessitated by the current API has a detrimental impact on
performance, which might be overcome by a sharing or shallow copying scheme.

Inspired by the impact of conjunctive delimited control, which has brought
tabling to SWI-Prolog, we believe that further development of disjunctive delim-
ited control is worthwhile. Indeed, it has the potential of bringing powerful dis-
junctive control abstractions like branch-and-bound search to a wider range of
Prolog systems.
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