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Abstract. In this paper we present a new static data type inference
algorithm for logic programming. Without the need for declaring types
for predicates, our algorithm is able to automatically assign types to
predicates which, in most cases, correspond to the data types processed
by their intended meaning. The algorithm is also able to infer types given
data type definitions similar to data definitions in Haskell and, in this
case, the inferred types are more informative, in general. We present the
type inference algorithm, prove it is decidable and sound with respect
to a type system, and, finally, we evaluate our approach on example
programs that deal with different data structures.
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1 Introduction

Types are program annotations that provide information about data usage and
program execution. Ensuring that all types are correct and consistent may be a
daunting task for humans. However, this task can be automatized with the use
of a type inference algorithm which assigns types to programs.

Logic programming implementers have been interested in types from early
on [Zob87,DZ92,Lu01,FSVY91,YFS92,MO84,LR91,SBG08,HJ92,SCWD08].
Most research approached typing as an over-approximation (a superset) of the
program semantics [Zob87,DZ92,YFS92,BJ88,FSVY91]: any programs that suc-
ceed will necessarily be well-typed. Other researchers followed the experience of
functional languages and took a more aggressive approach to typing, where only
well-typed programs are acceptable [MO84,LR91]. Over the course of the last
few years it has become clear that there is a need for a type inference system
that can support Prolog well [SCWD08]. Next, we report on recent progress on
our design, the Y APT type system1. We will introduce the key ideas and then
focus on the practical aspects.

Our approach is motivated by the belief that programs (Prolog or otherwise)
are about manipulating data structures. In Prolog, data structures are denoted
1 This work is partially funded by the portuguese Fundação para a Ciência e a Tec-

nologia and by LIACC (FCT/UID/CEC/0027/2020).
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by terms with a common structure and, being untyped, one cannot naturally
distinguish between failure and results of type erroneous calls. We believe that
to fully use data structures we must be able to discriminate between failure,
error, and success. Thus our starting point was a three-valued semantics that
clearly distinguishes type errors from falsehood [BFC19].

There, we first define the Y APT type system that relates programs with
their types. This defines the notion of well-typed program as a program which is
related to a type by the relation defined by the type system. Here we present the
Y APT type inference algorithm which is able to automatically infer data type
definitions. Finally we show that our type inference algorithm is sound with
respect to the type system, in the sense that the inferred type for a program
makes the program well-typed.

We shall assume that typed Prolog programs operate in a context, e.g., sup-
pose a programming context where the well-known append predicate is expected
to operate on lists:

append([],X,X).
append([X|R],Y,[X|R1]) :- append(R,Y,R1).

This information is not achievable when using type inference as a conservative
approximation of the success set of the predicate. The following figure shows the
output of type inference in this case, where ti is the type of the i-th argument of
append, “+” means type disjunction and “A” and “B” are type variables (Fig.
1):

t1 = [] + [A | t1]

t2 = B

t3 = B + [A | t3]

t1 = [] + [A | t1]

t2 = [] + [A | t2]

t3 = [] + [A | t3]

Fig. 1. (1) Program approximation; (2) Well-typing

Types t2 and t3, for the second and third argument of the left-hand side
(1), do not filter any possible term, since they have a type variable as a member
of the type definition, which can be instantiated with any type. And, in fact,
assuming the specific context of using append as list concatenation, some calls
to append succeed even if unintended2, such as append([],1,1). The solution
we found for these arguably over-general types is the definition of closed types,
that we first presented in [BFSC17], which are types where every occurrence of a
type variable is constrained. We also defined a closure operation, from open types
into closed types, using only information provided by the syntax of the programs
themselves. Applying our type inference algorithm with closure to the append
predicate yields the types on the right-hand side (2), which are the intended
types [Nai92] for the append predicate.

2 Accordingly to a notion of intended meaning first presented in [Nai92].
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Our type inference algorithm3 works for pure Prolog with system predicates
for arithmetic. We assume as base types int, float, string, and atom. There is an
optional definition of type declarations (like data declarations in Haskell) which,
if declared by the programmer, are used by the type inference algorithm to refine
types. We follow a syntax inspired in [SCWD08] to specify type information. One
example of such a declaration is the list datatype

:- type list(A) = [] + [A | list(A)].

In order to simplify further processing our type system and type inference
algorithm assume that predicates are in a simplified form called kernel Prolog
[VR90]. In this representation, each predicate in the program is defined by a
single clause (H :- B), where the head H contains distinct variables as arguments
and the body B is a disjunction (represented by the symbol ;) of queries. The
variables in the head of the clause occur in every query in the body of that
clause. We assume that there are no other common variables between queries,
except for the variables that occur in the head of the clause, without loss of
generality. In this form the scope of variables is not limited to a single clause,
but is extended over the whole predicate definition and thus type inference is
easier to perform. In [VR90] a compilation from full Prolog to kernel Prolog is
defined. Thus, in the rest of the paper, we will assume that predicate definitions
are always in kernel Prolog.

2 Types

Here we define a new class of expressions, which we shall call types. We first
define the notion of type term built from an infinite set of type variables TV ar,
a finite set of base types TBase, an infinite set of constants TCons, an infinite
set of function symbols TFunc, and an infinite set of type symbols, TSymb.
Type terms can be:

– a type variable (α, β, γ, · · · ∈ TV ar)
– a constant (1, [ ], ‘c’, · · · ∈ TCons)
– a base type (int, f loat, · · · ∈ TBase)
– a function symbol f ∈ TFunc associated with an arity n applied to an n-tuple

of type terms (f(int, [ ], g(X)))
– a type symbol σ ∈ TSymb associated with an arity n (n ≥ 0) applied to an

n-tuple of type terms (σ(X, int)).

Type variables, constants and base types are called basic types. A ground
type term is a type variable-free type term. Type symbols can be defined in a
type definition. Type definitions are of the form:

σ(α1, . . . , αk) = τ1 + . . . + τn,

3 Implementation at https://github.com/JoaoLBarbosa/TypeInferenceAlgorithm.

https://github.com/JoaoLBarbosa/TypeInferenceAlgorithm
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where each τi is a type term and σ is the type symbol being defined. In general
these definitions are polymorphic, which means that type variables α1, . . . , αk,
for k ≥ 0, include the type variables occurring in τ1+ . . .+τn, and are called type
parameters. If we instantiate one of those type variables, we can replace it in the
parameters and everywhere it appears on the right-hand side of the definition.
The sum τ1 + . . . + τn is a union type, describing values that may have one of
the types τ1, . . . , τn. The ‘+’ is an idempotent, commutative, and associative
operation. Throughout the paper, to condense notation, we will use the symbol
τ̄ to denote union types. We will also use the notation τ ∈ τ̄ to denote that τ is
a summand in the union type τ̄ .

Note that type definitions may be recursive. A deterministic type definitions
is a type definition where, on the right-hand side, none of τi start with a type
symbol and if τi is a type term starting with a function symbol f , then no other
τj starts with f .

Example 1. Assuming a base type int for the set of all integers, the type list of
integers is defined by the type definition list = [ ] + [int | list]4.

Let −→τ stand for a tuple of types τ1 × · · · × τn. A functional type is a type of
the form −→τ1 → τ2. A predicate type is a functional type from a tuple of the type
terms defining the types of its arguments to bool, i.e. τ1 × . . . × τn → bool. A
type can be a type term, an union type, or a predicate type.

Our type language enables parametric polymorphism through the use of type
schemes. A type scheme is defined as ∀X1 . . . ∀Xn

T , where T is a predicate type
and X1, . . . , Xn are distinct type variables. In logic programming, there have
been several authors that have dealt with polymorphism with type schemes
or in a similar way [PR89,BG92,Hen93,Zob87,FSVY91,GdW94,YFS92,FD92,
Han89]. Type schemes have type variables as generic place-holders for ground
type terms. Parametric polymorphism comes from the fact these type variables
can be instantiated with any type.

Example 2. A polymorphic list is defined by the following type definition:

list(X) = [ ] + [X | list(X)]

Notation. Throughout the rest of the paper, for the sake of readability, we
will omit the universal quantifiers on type schemes and the type parameters as
explicit arguments of type symbols in inferred types. Thus we will assume that
all free type variables on type definitions of inferred types are type parameters
which are universally quantified.

Most type languages in logic programming use tuple distributive closures of
types. The notion of tuple distributivity was given by Mishra [Mis84]. Through-
out this paper, we restrict our type definitions to be deterministic. The types
described this way are tuple distributive.
4 Type definitions will use the user friendly Prolog notation for lists instead of the list

constructor.
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Sometimes, the programmer wants to introduce a new type in a program, so
that it is recognized when performing type inference. It is also a way of having
a more structured and clear program. These declarations act similarly to data
declarations in Haskell.

In our algorithm, types can be declared by the programmer in the follow-
ing way:- type type symbol(type vars) = type term1 + . . . + type termn. One
example would be:

:- type tree(X) = empty + node(X, tree(X), tree(X)).

In the rest of the paper we will assume that all constants and function symbols
that start a summand in a declared type cannot start a summand in a different
one, thus there are no overloaded constants nor function symbols. Note that
there is a similar restriction on data declarations in functional programming
languages.

2.1 Semantics

In [BFC19] we defined a formal semantics for types. Here we just give the main
intuitive ideas behind it:

– The semantics of base types and constant types are predefined sets containing
logic terms, for instance, the base type int is the set of all integers and the
semantics of bool is the set of the values true and false;

– Tuples of types, (τ1, . . . , τn), are sets of tuples of terms such that the seman-
tics of each term belongs to the semantics of the type in the corresponding
position;

– f(τ1, . . . , τn) is the set of all terms with main functor f and arity n applied
to the set of tuples belonging to the semantics of (τ1, . . . , τn);

– The semantics of union types is the disjoint union of the semantics of its
summands;

– The semantics of type symbols is the set of all terms that can be derived from
its definition;

– The semantics of functional types, such as predicate types, is the set of func-
tions that when given terms belonging to the semantics of the input types,
output terms belonging to the semantics of output types. For instance the
semantics of int× float → bool, contains all functions that, given a pair with
an integer and a floating point number, output a boolean.

– The semantics of parametric polymorphic types is the intersection of the
semantics of its instances (this idea was first used by Damas [Dam84] to
define the semantics of type schemes).

In [BFC19] we defined a type system and proved that it is sound with respect
to this semantics of types. Here we define a type inference algorithm and prove
that it is sound with respect to the type system, thus, using these two results,
we can conclude that the type inference algorithm is also sound with respect to
the semantics.
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2.2 Closed Types

Closed types were first defined in [BFSC17]. Informally, they are types where
every occurrence of a type variable is constrained. If a type is not closed, we say
that it is an open type. The restrictions under the definition of closed type can
be compressed in the following three principles:

– Types should denote a set of terms which is strictly smaller than the set of
all terms

– Every use of a variable in a program should be type constrained
– Types are based on self-contained definitions.

The last one is important to create a way to go from open types to closed types.
We defined what is an unconstrained type variable as follows:

Definition 1 (Unconstrained Type Variable). A type variable α is uncon-
strained with respect to a set of type definitions T , notation unconstrained(α, T ),
if and only if it occurs exactly once as a summand in the set of all the right-hand
sides of type definitions in T .

Unconstrained type variables type terms with any type, thus they do not
really provide type information. We now define closed type definition, which are
type definitions without type variables as summands in their definition.

Definition 2 (Closed Type Definitions). A type definition σ = τ̄ is closed,
notation closedTypeDef(σ), if and only if there are no type variables as sum-
mands in τ̄ .

The definition for closed types uses these two previous auxiliary definitions.
Closed types correspond to closed records or data definitions in functional pro-
gramming languages. The definition follows:

Definition 3 (Closed Types). A type definition σ = τ̄ is closed with respect
to a set of type definitions T , notation closed(σ, T ), if and only if the predicate
defined as follows holds:

closed(σ, T ) =
{¬unconstrained(α, T ) if τ̄ = α and α is a type variable

closedTypeDef(σ) otherwise

Example 3. We recall the example in the Introduction, of the following types for
the append predicate, where tn is the type of nth predicate argument:

t1 = [] + [A | t1]
t2 = B
t3 = B + [A | t3]

Type t3, for the third argument of append, is open, because t3 has a type
variable as a summand, thus it does not filter any possible term, since the type
variable can be instantiated with any type. An example of a valid closed type
for append is:
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t1 = [] + [A | t1]
t2 = [] + [A | t2]
t3 = [] + [A | t3]

The next step is to transform open types into closed types. Note that some
inferred types may be already closed. For the ones that are not, we defined a
closure operation, described in detail in [BFSC17]. This closure operation is an
optional post-processing step on our algorithm.

To close types, we calculate what we call the proper variable domain of every
type variable that occurs as a summand in a type definition. The proper variable
domain corresponds to the sum of the proper domains of each type that shares
a type term with the open type we are tying to close. The proper domain of a
type is the sum of all summands that are not type variables in its definition. We
then replace the type variable with its proper variable domain.

We have tested the closure algorithm on several examples and for the exam-
ples we tried, the results seem very promising.

3 Examples

There are some flags in the type inference algorithm that can be turned on or
off:

– basetype (default: on) - when this flag is turned on, we assume that each
constant is typed with a base type, when it is turned off, we type each constant
with a constant type corresponding to itself;

– list (default: off) - this flag adds the data type declaration for polymorphic
lists to the program when turned on;

– closure (default: off) - when this flag is turned on, the closure operation is
applied as a post-processing step on the algorithm.

In the following examples pi is the type symbol for the type of the ith argument
of predicate p and we assume that all free type variables on type definitions
are universally quantified and that the type of arguments of built-in arithmetic
predicates is predefined as int + float.

Example 4. Let us consider the predicate concat, which flattens a list of lists,
where app is the append predicate:

concat(X1,X2) :- X1=[], X2=[];
X1=[X|Xs], X2=List, concat(Xs,NXs), app(X,NXs,List).

app(A,B,C) :- A=[], B=D, C=D;
app(E,F,G), E=H, F=I, G=J, A=[K|H], B=I, C=[K|J].

The types inferred with all the flags off correspond to types inferred in previous
type inference algorithms which view types as an approximation of the success
set of the program:
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concat :: concat1 x concat2
concat1 = [] + [ t | concat1 ]
concat2 = C + [] + [ B | concat2 ]
t = [] + [ B | t ]

app :: app1 x app2 x app3
app1 = [] + [ A | app1 ]
app2 = B
app3 = B + [ A | app3 ]

Now the types inferred when turning on the closure flag are:

concat :: concat1 x concat2
concat1 = [] + [ concat2 | concat1 ]
concat2 = [] + [ B | concat2 ]

app :: app1 x app2 x app3
app1 = [] + [ A | app1 ]
app2 = [] + [ A | app2 ]
app3 = [] + [ A | app3 ]

Note that these types are not inferred by any previous type inference algorithm
for logic programming so far, and they are a step towards the automatic inference
of types for programs used in a specific context, more precisely, a context which
corresponds to how it would be used in a programming language with data type
declarations, such as Curry [Han13] or Haskell.

Example 5. Let rev be the reverse list predicate, defined using the append defi-
nition used in the previous example:

rev(A, B) :- A=[], B=[] ;
rev(C, D), app(D, E, F), E=[G], A=[G|C], B=F.

The inferred types with all flags off is (the types inferred for append are the
same as the one in the previous example):

rev :: rev1 x rev2
rev1 = [] + [ A | rev1 ]
rev2 = [] + [ t | rev2 ]
t = B + A

If we turn on the list flag, which declares the data type for Prolog lists, the type
inference algorithm outputs the same types that would be inferred in Curry or
Haskell with pre-defined built-in lists:

rev :: rev1 x rev2
rev1 = list(A)
rev2 = list(A)

list(X) = [] + [ X | list(X) ]
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We now show an example of the minimum of a tree.

Example 6. Let tree minimum be the predicate defined as follows:

tree_min(A,B) :- A=empty, B=0 ;
A=node(C,D,E), tree_min(D,F), tree_min(E,G),
Y=[C,F,G], minimum(Y,X), X=B.

minimum(A,B) :- A=[I], B=I;
A=[X|Xs], minimum(Xs,C), X=<C, B=C ;
A=[Y|Ys], minimum(Ys,D), D=<Y, B=D.

The inferred types with all flags off, except for the basetype flag, are:

tree_min :: tree_min1 x tree_min2
tree_min1 = atom + node(tree_min2, tree_min1, tree_min1)
tree_min2 = A + int + float

minimum :: minimum1 x minimum2
minimum1 = [ minimum2 | t ]
minimum2 = A + int + float
t2 = [] + [ minimum2 | t2 ]

If we now add a predefined declaration of a tree data type and turn on the
list flag, the algorithm outputs:

tree_minimum :: tree_minimum1 x tree_minimum2
tree_minimum1 = tree(tree_minimum2)
tree_minimum2 = int + float

minimum :: minimum1 x minimum2
minimum1 = list(minimum2)
minimum2 = int + float

tree(X) = empty + node(X, tree(X), tree(X))
list(Y) = [] + [ Y | list(Y) ]

4 Type System

Here we define the notion of well-typed program using a set of rules assigning
types to terms, atoms, queries, sequences of queries, and clauses. This is gener-
ally called a type system and ours follows the definition in [BFC19] with some
differences in the notation for recursive types: here we explicitly add a set of
(possibly recursive) type definitions instead of the fix-point notation for types
used in the paper mentioned above. These small differences do not alter the
soundness of the type system.

We first write the following subtyping relation from [BFC19].
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Definition 4 (Subtyping). Let φ be a substitution of types for type variables.
Let � denote the subtyping relation as a partial order (reflexive, anti-symmetric
and transitive) defined as follows:

– τ � τ ′ if ∃φ.φ(τ ′) = τ (Instance)
– τ � τ̄ iff τ ∈ τ̄ (Subset)
– f(τ1, . . . , τn) � f(τ ′1, . . . , τ ′n) iff τ1 ≤ τ ′1, . . . τn ≤ τ ′n (Complex term con-

struction/destruction)
– δ1 � δ2 iff, assuming δ1 � δ2, we get τ̄1 � τ̄2, where δ1 = τ̄1 and δ2 = τ̄2 are

the type definitions for δ1 and δ2 (Recursive Type Unfolding)
– τ � δ iff τ � τ̄ and δ = τ̄ is the type definition for δ (Right Unfolding)
– δ � τ iff (̄τ) � τ and δ = τ̄ is the type definition for δ (Left Unfolding)
– τ � τ1 + τ2 iff τ � τ1 or τ2 � τ (Addition)
– if τ ′ � τ , then τ → bool � τ ′ → bool (Contravariance)

Subtyping of functional types is contravariant in the argument type, meaning
that the order of subtyping is reversed. This is standard in functional languages
and guarantees that when a function type is a subtype of another it is safe to use
a function of one type in a context that expects a function of a different type.
It is safe to substitute a function f for a function g if f accepts a more general
type of argument than g. For example, predicates of type int+float → bool can
be used wherever an int → bool was expected.

Let us now give some auxiliary definitions: an assumption is a type declara-
tion for a variable, written X : τ , where X is a variable and τ a type. We define a
context Γ as a set of assumptions with distinct variables as subjects (alternatively
contexts can be defined as functions from variables to types, where domain(Γ )
stands for its domain). Since Γ can be seen as a function, we use Γ (X) = τ to
denote (X : τ) ∈ Γ . A set of type definitions, Δ, is a set of type definitions of the
form σ = τ̄ , where each definition has a different type symbol on the left-hand
side. It can also be defined as a function from σ to τ̄ . We will therefore use the
notation Δ(σ) = τ̄ to denote (σ = τ̄) ∈ Δ.

Our type system is defined in Fig. 2 and statically relates well-typed programs
with their types by defining a relation Γ,Δ 
P p : τ , where Γ is a context, Δ
a set of type definitions, p is a term, an atom, a query, a sequence of queries,
or a clause, and τ is a type. This relation should be read as expression p has
type τ , given the context Γ and type definitions Δ, in a program P . We will
write Γ ∪ {X : τ} to represent the context that contains all assumptions in Γ
and the additional assumption X : τ (note that because each variable is unique
as a subject of an assumption in a context, in Γ ∪ {X : τ}, Γ does not contain
assumptions with X as subject). We will write a sequence of variables X1, . . . , Xn

as
−→
X , and a sequence of types as −→τ . We assume that clauses are normalized and,

therefore, every call to a predicate in the body of a clause contains only variables.
Note that we have a different rule for recursive clauses and non-recursive

clauses. Whenever we have a recursive clause, its type is derived assuming every
recursive call has the same type as the head of the clause. This corresponds to
the monomorphic restriction described in [Hen93], where the authors prove that
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V AR Γ ∪ {X : σ}, Δ ∪ {σ = τ1 + . . . + τn P X : τi

CST Γ, Δ P c : τ, where basetype(c) = τ

CPL(a) Γ, Δ P t1 : τ1 . . . Γ, Δ P tn : τn
Γ, Δ P f(t1, . . . , tn) : τ

UNF Γ, Δ P t1 : τ Γ, Δ P t2 : τ
Γ, Δ P t1 = t2 : bool

CLL(b) Γ ∪ {− →
Y : σ̄ , Δ P (p(Y1, . . . , Yn) : −body.) : bool

Γ ∪ {X̄ : σ̄}, Δ ∪ {σ̄ = τ̄ P p(X1, . . . , Xn) : bool
, where ∀i.σi σi

CON Γ, Δ P g1 : bool Γ, Δ P gn : bool
Γ, Δ P g1, . . . , gn : bool

CLS(c) Γ, Δ P b1 : bool . . . Γ, Δ P bm : bool

Γ, Δ P (p(
−→
X) : −b1; . . . ; bm.) : bool

RCLS(d) Γ ∪ {− →
X : − →τ ,

−→
Y1 : − →τ , . . . ,

−−→
Ykn : − →τ }, Δ P p(

− →
X) : −b1; . . . ; bm+n. : bool

Γ ∪ {− →
X : − →τ ,

−→
Y1 : − →τ , . . . ,

−−→
Ykn : − →τ }, Δ P

(p(
− →
X) : −b1; . . . ; bm;

bm+1, p(
− →
Y 11), . . . , p(

− →
Y 1k1);

...
bm+n, p(

− →
Y n1), . . . , p(

− →
Y nkn).) : bool

(a) Where basetype(f) = τ1 . . . × τn τ , and τi τi .
(b) Where the clause defining predicate p is in P .
(c) This rule is for non-recursive predicates only.
(d) This rule is for recursive predicates. Note that all variables in recursive calls in a certain sequence
of goals have the same type as the variables in the head in that clause.

Fig. 2. Type System

if we allow polymorphic recursion, i.e. recursion with different instances of the
same polymorphic type, then inference is not decidable.

Also note that the type for a predicate call is a subtype of the type for the
clause defining it. This captures the fact that we can call a polymorphic predicate
with a type that is an instance of the general type scheme, or if the input type
of the predicate is a union type, we can call it with only some of the summands
of that union.
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5 Type Inference

We have seen how to define the notion of well-typed program using a set of rules
which assign types to programs. Here we will present a type inference algorithm
which, given an untyped logic program, is able to calculate a type which makes
the program well-typed.

Input Program Term Expansion

Constraint
Generation

Type
Declarations/List
and Basetype Flag

Constraint Solving

Closure

Pretty PrinterOutput Types

Inference

Fig. 3. Type Inference Algorithm Flowchart

Our type inference algorithm is composed of several modules, as described
in Fig. 3. On a first step, when consulting programs, we apply term expansion
to transform programs into the internal format that the rest of the algorithm
expects. Secondly, we have the type inference phase itself, where constraint gen-
eration is performed, and a type constraint solver outputs the inferred types for
a given program. There is also a simplification step that is performed during
inference, to assure that the type definitions are always deterministic and sim-
plified. After this, we either directly run a type pretty printer, or go through
closure before printing the types.

Thus the type inference algorithm is composed of four main parts with some
auxiliary steps:

– Term expansion
– Constraint generation
– Constraint solving
– Closure (optional).

Without closure or type declarations our algorithm follows a standard app-
roach of types as approximations of the program semantics. Using our algorithm
to infer well-typings (which filter program behaviour instead of approximating
it) is possible either by using explicit type declarations or by using the closure
step. Using one of the latter approaches, instead of the standard one, yields
better results as can be seen in the example Sect. 3.
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5.1 Stratification

We assume that the input program of our algorithm is stratified. To understand
the meaning of stratified programs, let us define the dependency directed graph
of a program as the graph that has one node representing each predicate in the
program and an edge from q to p for each call from a predicate p to a predicate
q.

Definition 5 (Stratified Program). A stratified program P is such that the
dependency directed graph of P has no cycles of size more than one.

This means that our type inference algorithm deals with predicates defined
by direct recursion but not with mutual recursion. Note that stratified programs
are widely used and characterize a large class of programs which is used in several
database and knowledge base systems [Ull88].

5.2 Constraints and Constraint Generation

The type inference algorithm begins by generating type constraints from a logic
program which are solved by a constraint solver in a second stage of the algo-
rithm. There are two different kinds of type constraints: equality constraints and
subtyping constraints. An equality constraint is of the form τ1 = τ2 and a sub-
typing constraint is of the form τ̄1 ≤ τ̄2. Ultimately we want to determine if a
set of constraints C can be instantiated affirmatively using some substitution S,
that substitutes types for type variables. For this we need to consider a notion
of constraint satisfaction S |= C, in a first order theory with equality [Mah88]
and the extra axioms in Definition 4 for subtyping.

Definition 6 (Constraint satisfaction). Let ≡ mean syntactic type equality
and � the subtyping relation defined in Definition 4. S |= C is defined as follows:

1. S |= τ1 = τ2 if and only if S(τ1) ≡ S(τ2);
2. S |= τ̄1 ≤ τ̄2 if and only if S(τ̄1) � S(τ̄2);
3. S |= C if and only if S |= c for each constraint c ∈ C.

The constraint generation step of the algorithm will output two sets of con-
straints, Eq (a set of equality constraints) and Ineq (a set of subtyping con-
straints), that need to be solved during type inference.

Let us first present two auxiliary functions to combine contexts. Contexts
can be obtained from the disjunction, or conjunction, of other contexts. For this
we define two auxiliary functions, ⊕ and ⊗, to define the result of disjunction, or
conjunction, respectively, of context. These definitions are used by the constraint
generation algorithm. They are defined as follows:

Definition 7. Let Γi be contexts, and Δi be disjoint sets of type definitions
defining the type symbols in Γi, respectively. Let V be the set of variables that
occur in more than one context.
⊕(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)

= (Γ,Δ), where:
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Γ (X) = σ′, where σ′ is a fresh type symbol, for all X ∈ V , and Γ (X) = Γi(X),
for all X /∈ V ∧ X ∈ domain(Γi);
Δ(σ) = Γi1(X) + . . . + Γik(X), for all type symbols σ /∈ Δ1 ∪ · · · ∪ Δn, and
Δ(σ) = Δi(σ), otherwise.

Definition 8. Let Γi be contexts, and Δi be disjoint sets of type definitions
defining the type symbols in Γi, respectively. Let V be the set of variables that
occur in more than one context.
⊗(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)

= (Γ,Δ,Eq), where:
Γ (X) = σ′, where σ′ is a fresh type symbol, for all X ∈ V , and Γ (X) = Γi(X),
for all X /∈ V ∧ X ∈ domain(Γi);
Δ(σ) = α, where α is a fresh type variable, for all type symbols σ /∈ Δ1∪· · ·∪Δn,
and Δ(σ) = Δi(σ), otherwise;
Eq = {α = Δi(Γi(X)), . . . , α = Δj(Γj(X))}, for all fresh α, such that (σ′ =
α) ∈ Δ, Γ (X) = σ′, and X ∈ domain(Γi) ∧ · · · ∧ X ∈ domain(Γj).

Let P be a term, an atom, a query, a sequence of queries, or a clause.
generate(P ) is a function that outputs a tuple of the form (τ, Γ,Eq, Ineq,Δ),
where τ is a type, Γ is an context for variables, Eq is a set of equality constraints,
Ineq is a set of subtyping constraints, and Δ is a set of type definitions. The
function generate, which generates the initial type constraints, is defined case
by case from the program syntax. Its definition follows:

generate(P ) =

– generate(X) = (α, {X : σ}, ∅, ∅, {σ = α}), X is a variable,
where α is a fresh type variable and σ is a fresh type symbol.

– generate(c) = (basetype(c), ∅, ∅, ∅, ∅), c is a constant.
– generate(f(t1, . . . , tn)) = (basetype(f)(τ1, . . . , τn), Γ, Eq, ∅,Δ), f is a func-

tion symbol,
where generate(ti) = (τi, Γi, Eqi, ∅,Δi),
(Γ,Δ,Eq′) = ⊗(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)
, and

Eq = Eq1 ∪ . . . ∪ Eqn ∪ Eq′.
– generate(t1 = t2) = (bool, Γ,Eq, ∅,Δ)

where generate(ti) = (τi, Γi, Eqi, ∅,Δi),
(Γ,Δ,Eq′) = ⊗(

(Γ1, Γ2), (Δ1,Δ2)
)
, and

Eq = Eq1 ∪ Eq2 ∪ {τ1 = τ2} ∪ Eq′.
– generate(p(X1, . . . , Xn)) = (bool, ({X1 : σ1, . . . , Xn : σn}, ∅, {σ1 ≤

τ1, . . . , σn ≤ τn},Δ′), p is a predicate symbol,
where generate(p(Y1, . . . , Yn) : −body) = (bool, Γ,Eq, Ineq,Δ),
{Y1 : τ1, . . . Yn : τn} ∈ Γ
Δ′ = Δ ∪ {σi = αi}, and σi and αi are all fresh.

– generate(c1, . . . , cn) = (bool, Γ,Eq, Ineq1 ∪ . . . ∪ Ineqn,Δ), a query,
where generate(ci) = (bool, Γi, Eqi, Ineqi,Δi),
(Γ,Δ,Eq′) = ⊗(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)
, and

Eq = Eq1 ∪ . . . ∪ Eqn ∪ Eq′.
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– generate(b1; . . . ; bn) = (bool, Γ,Eq1 ∪ . . . ∪ Eqn, Ineq1 ∪ . . . ∪ Ineqn,Δ),
where generate(ci) = (bool, Γi, Eqi, Ineqi,Δi), and
(Γ,Δ) = ⊕(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)
.

– generate(p(X1, . . . , Xn) : −body.) = (bool, Γ,Eq, Ineq,Δ), a non-recursive
clause,
where generate(body) = (bool, Γ,Eq, Ineq,Δ).

– generate(p(X1, . . . , Xn) : −body) = (bool, Γ,Eq, Ineq′,Δ), a recursive clause,
where generate(p(X1, . . . , Xn) : −body′) = (bool, Γ,Eq, Ineq,Δ), such that
body′ is body after removing all recursive calls,
and Ineq′ = Ineq ∪ {−→σ1 ≤ −→τ , . . . ,−→σk ≤ −→τ ,−→τ ≤ −→σ1, . . . ,

−→τ ≤ −→σk}, such that
τ are the types for the variables in the head of the clause in Γ and σi are the
types for the variables in each recursive call.

Example 7. Consider the following predicate:

list(X) :- X = []; X = [Y|YS], list(Ys).

the output of applying the generate function to the predicate is:
generate(list(X) : −X = [ ];X = [Y |Y s], list(Y s)) = {bool, {X : σ1, Y : σ2, Y s :
σ3}, {α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = α + β, σ2 = δ, σ3 = ε}}.

The set {σ3 ≤ σ1, σ1 ≤ σ3} comes from the recursive call to the predicate,
while α = [ ] comes from X = [ ], and β = [δ | ε] comes from X = [Y |Y s]. The
definition σ1 = α + β comes from the application of the ⊕ operation.

5.3 Constraint Solving

Let Eq be a set of equality constraints, Ineq be a set of subtyping constraints, and
Δ a set of type definitions. Function solve(Eq, Ineq,Δ) is a rewriting algorithm
that solves the constraints, outputting a pair of a substitution and a new set of
type definitions. Note that the rewriting rules in the following definitions of the
solver algorithm are assumed to be ordered.

Definition 9. A set of equality constraints is in solved form if:

– all constraints are of the form αi = τi;
– there are no two constraints with the same αi on the left hand side;
– no type variables on the left-hand side of the equations occurs on the right-

hand side of equations.

A set of equality constraints in normal form can be interpreted as a substi-
tution, where each constraint αi = τi corresponds to a substitution for the type
variable αi, [αi �→ τi].

A configuration is either the term fail (representing failure), a pair of a sub-
stitution and a set of type definitions (representing the end of the algorithm), or
a triple of a set of equality constraints Eq, a set of subtyping constraints Ineq,
and a set of type definitions Δ. The following rewriting algorithm consists of the
transformation rules on configurations.
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solve(Eq, Ineq,Δ) =

1. ({τ = τ} ∪ Eq, Ineq,Δ) → (Eq, Ineq,Δ)
2. ({α = τ} ∪ Eq, Ineq,Δ) → ({α = τ} ∪ Eq[α �→ τ ], Ineq[α �→ τ ],Δ[α �→ τ ]),

if type variable α occurs in Eq, Ineq, or Δ
3. ({τ = α} ∪ Eq, Ineq,Δ) → ({α = τ} ∪ Eq, Ineq,Δ), where α is a type

variable and τ is not a type variable
4. ({f(τ1, . . . , τn) = f(τ ′1, . . . , τ ′n)} ∪ Eq, Ineq,Δ → ({τ1 = τ ′1, . . . , τn =

τ ′n} ∪ Eq, Ineq,Δ
5. ({f(τ1, . . . , τn) = g(τ ′1, . . . , τ ′m)} ∪ Eq, Ineq,Δ) → fail
6. (Eq, {τ ≤ τ} ∪ Ineq,Δ) → (Eq, Ineq,Δ)
7. (Eq, {f(τ1, . . . , τn) ≤ f(τ ′1, . . . , τ ′n)} ∪ Ineq,Δ) → (Eq, {τ1 ≤ τ ′1, . . . τn ≤

τ ′n} ∪ Ineq,Δ)
8. (Eq, {α ≤ τ1, . . . , α ≤ τn} ∪ Ineq,Δ) → (Eq ∪ Eq′, {α ≤ τ} ∪ Ineq,Δ′),

where α is a type variable, n ≥ 2, and intersect(τ1, . . . , τn,Δ, I) =
(τ, Eq′,Δ′)

9. (Eq, {α ≤ τ} ∪ Ineq,Δ) → (Eq ∪ {α = τ}, Ineq,Δ),
where α is a type variable and no other constraints exist with α on the
left-hand side

10. (Eq, {τ1 + . . . + τn ≤ τ} ∪ Ineq,Δ) → (Eq, {τ1 ≤ τ, . . . , τn ≤ τ} ∪ Ineq,Δ)
11. (Eq, {σ ≤ τ} ∪ Ineq,Δ) → (Eq, Ineq,Δ),

if (σ,τ) are on the store of pairs of types that have already been compared
12. (Eq, {σ ≤ τ} ∪ Ineq,Δ) → (Eq, {Rhsσ ≤ τ} ∪ Ineq,Δ),

where σ is a type symbol, and σ = Rhsσ ∈ Δ. Also add (σ, τ) to the store
of pairs of types that have been compared

13. (Eq, {τ1 ≤ α, . . . τn ≤ α} ∪ Ineq,Δ) → (Eq ∪ {α = τ1 + . . . + τn}, Ineq,Δ)
14. (Eq, {τ ≤ τ1 + . . . + τn} ∪ Ineq,Δ) → (Eq, {τ ≤ τi} ∪ Ineq,Δ),

where τi is one of the summands
15. (Eq, {τ ≤ σ} ∪ Ineq,Δ) → (Eq, Ineq,Δ),

if (σ,τ) are on the store of pairs of types that have already been compared
16. (Eq, {τ ≤ σ} ∪ Ineq,Δ) → (Eq, {τ ≤ Rhsσ} ∪ Ineq,Δ),

where σ is a type symbol, and σ = Rhsσ ∈ Δ. Also add (σ, τ) to the store
of pairs of types that have been compared

17. (Eq, ∅,Δ) → (Eq,Δ′)
18. otherwise → fail.

Note that an occur check is required in steps 2, 9, and 13. This rewriting
algorithm is based on the one described in [Mah88] for equality constraints, and
an original one for the subtyping constraints. We will now show an example
of the execution of the algorithm on the output of the constraint generation
algorithm, showed in Example 7.

Example 8. Following Example 7, applying solve to the tuple (Eq, Ineq,Δ), cor-
responding to ({X : σ1, Y : σ2, Y s : σ3}, {α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤
σ3}, {σ1 = α + β, σ2 = δ, σ3 = ε}):
({α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = α + β, σ2 = δ, σ3 = ε}) →2

({α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ] + β, σ2 = δ, σ3 = ε}) →2
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({α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ] + [δ | ε], σ2 = δ, σ3 = ε}) →12

({α = [ ], β = [δ | ε]}, {ε ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ] + [δ | ε], σ2 = δ, σ3 = ε}) →9

({α = [ ], β = [δ | ε], ε = σ1}, {σ1 ≤ σ3}, {σ1 = [ ] + [δ | ε], σ2 = δ, σ3 = ε}) →2

({α = [ ], β = [δ | σ1], ε = σ1}, {σ1 ≤ σ3}, {σ1 = [ ]+[δ | σ1], σ2 = δ, σ3 = σ1}) →s

({α = [ ], β = [δ | σ1], ε = σ1}, {σ1 ≤ σ1}, {σ1 = [ ] + [δ | σ1], σ2 = δ}) →6

({α = [ ], β = [δ | σ1], ε = σ1}, ∅, {σ1 = [ ] + [δ | σ1], σ2 = δ})

Note that the resulting set of constraints only contains constraints in solved
form, that can be seen as a substitution. Step →s, stands for the following
simplification step: if two type definitions are equal, we delete one of them and
replace every occurrence of the type symbol by the other. Therefore, the resulting
context Γ is {X : σ1, Y : σ2, Y s : σ1}.

Type intersection is calculated as follows, intersect(τ1, τ2,Δ, I) = (τ, Eq′,Δ′),
where:

– if both τ1 and τ2 are type variables, then τ = τ2,Δ′ = Δ,Eq′ = {τ1 = τ2}.
– if τ1 = τ2, then τ = τ1,Δ′ = Δ,Eq′ = ∅.
– if (τ1, τ2, τ3) ∈ I, then τ = τ3,Δ′ = Δ,Eq′ = ∅.
– if τ1 is a type variable, then τ = τ2,Δ′ = Δ,Eq′ = ∅.
– if τ2 is a type variable, then τ = τ1,Δ′ = Δ,Eq′ = ∅.
– if τ1 = σ1, τ2 = σ2, and (τ̄ , Eq,Δ2) = cpi(τ̄1, τ̄2,Δ, I ∪ {(τ1, τ2, τ3)}), then

τ = τ3,Δ′ = Δ2 ∪ {τ3 = τ̄}, Eq′ = Eq, where σ1 = τ̄1, σ2 = τ̄2 ∈ Δ and τ3 is
fresh.

– if τ1 = σ1, τ2 = f(t1, . . . , tn), and (τ̄ , Eq,Δ2) = cpi(τ̄ , τ2,Δ, I ∪{(τ1, τ2, τ3)}),
then τ = τ3,Δ′ = Δ∪{τ3 = τ̄}, Eq′ = Eq, where σ1 = τ̄1 ∈ Δ and τ3 is fresh.
Same for τ2 = σ1 and τ1 = f(t1, . . . , tn).

– if τ1 = f(τ1, . . . , τn), τ2 = f(τ ′1, . . . , τ ′n), then ∀i.1 ≤ i ≤ n, (τ ′′i, Eqi,Δi) =
intersect(τi, τ ′i,Δ, I), τ = f(τ ′′1, . . . , τ ′′n),Δ′ = Δ1 ∪ . . . ∪ Δn, Eq′ = Eq1 ∪
. . . ∪ Eqn.

– otherwise fail.

cpi(τ̄1, τ̄2,Δ, I) is a function that applies intersect(τ, τ ′,Δ, I) to every pair of
types τ, τ ′, such that τ ∈ τ̄1 and τ ′ ∈ τ̄2, and gathers all results as the output.

This intersection algorithm is based on the one presented in [Zob87], with
a few minor changes. The difference is that our types can be type variables,
which could not happen in Zobel’s algorithm, since intersection was only cal-
culated between ground types. To deal with this extension, in our algorithm
type variables are treated as Zobel’s any type, except when both types are type
variables, in which case we also unify them. Termination and correctness of type
intersection for a tuple distributive version of Zobel’s algorithm was proved pre-
viously in [Lu01] and replacing the any type with type variables maintains the
same properties, because our use of type intersection considers types where type
variables occur only once, thus they can be safely replaced by Zobel’s any type.
Note that we deal with type variables which occur more than once but with calls
to type unification.
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5.4 Decidability

The next theorem shows that both the equality constraint and subtyping con-
straint solvers terminate at every input set of constraints.

Theorem 1 (Termination). solve always terminates, and when solve termi-
nates, it either fails or the output is a pair of a substitution and a new set of
type definitions.

The proof for this theorem follows a usual termination proof approach, where
we show that a carefully chosen metric decreases at every step.

To guarantee that the output set of equality constraints is in normal form,
in order to be interpreted as a substitution, we also prove the lemma below.

Lemma 1. If solve(Eq, Ineq,Δ) →∗ (S,Δ′), then S is in normal form.

5.5 Soundness

Here we prove that the type inference algorithm is sound, in the sense that
inferred types are derivable in the type system, which defines well-typed pro-
grams. For this we need the following auxiliary definitions and lemmas which
are used in the proofs of the main theorems.

The following lemmas state properties of the constraint satisfaction relation
|=, subtyping, and the type intersection operation.

Lemma 2. If we have S such that S |= C ∪ C′, then S |= C and S |= C′.
Lemma 3. If S |= Eq such that (Γ,Δ,Eq) = ⊗((Γ1, . . . , Γn), (Δ1, . . . ,Δn)),
and ∀i.Γi, S(Δi) 
 Mi : S(τi) then ∀i.Γ, S(Δ) 
 Mi : S(τi).

Lemma 4. If we know for all i = 1, . . . , n that Γi, S(Δi) 
 bi : bool and we
know (Γ,Δ) = ⊗((Γ1, . . . , Γn), (Δ1, . . . ,Δn)), then Γ, S(Δ) 
 bi : bool.

Lemma 5. Let τ1, . . . , τn, τ be types such that ∀i.τi � τ . Then τ1 + . . .+τn � τ .

Lemma 6. Let τ1, . . . , τn, τ be types such that ∃i.τ � τi. Then τ � τ1 + . . .+τn.

Lemma 7. If intersect(τ1, τ2, I,Δ) = (τ, Eq,Δ′), then τ � τ1, and τ � τ2.

Proposition 1. If Eq is a set of equality constraints in normal form, then Eq |=
Eq.

Now we have a theorem for the soundness of constraint generation which
states that if one applies a substitution which satisfies the generated constraints
to the type obtained by the constraint generation function, we get a well-typed
program.

Theorem 2 (Soundness of Constraint Generation). For a program, query,
or term P , if generate(P ) = (τ, Γ,Eq, Ineq,Δ), then for any S |= Eq, Ineq,
we have Γ, S(Δ) 
 P : S(τ).
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We also proved the soundness of constraint solving, which basically shows that
the solved form returned by our constraint solver for a set of constrains C
satisfies C.

Theorem 3 (Soundness of Constraint Solving). Let Eq be a set of equality
constraints, Ineq a set of subtyping constraints, and Δ a set of type definitions.
If solve(Eq, Ineq,Δ) →∗ (S,Δ′) then S |= Eq, Ineq.

Finally, using the last two theorems we prove the soundness of the type inference
algorithm. The soundness theorem states that if one applies the substitution
corresponding to the solved form returned by the solver to the type obtained by
the constraint generation function, we get a well-typed program.

Theorem 4 (Soundness of Type Inference). Given P , if generate(P ) =
(τ, Γ,Eq, Ineq,Δ) and solve(Eq, Ineq,Δ) →∗ (S,Δ′), then Γ, S(Δ′) 
 P : S(τ).

6 Related Work

Types have been used before in Prolog systems: relevant works on type systems
and type inference in logic programming include types used in the logic program-
ming systems CIAO Prolog [SG95,VB02], SWI and Yap [SCWD08]. CIAO uses
types as approximations of the success set, while we use types as filters to the
program semantics. There is an option where the programmer gives the types
for the programs in the form of assertions, which is recommended in [PCPH08].
The well-typings given in [SBG08], also have the property that they never fail,
in the sense that every program has a typing, which is not the case in our algo-
rithm, which will fail for some predicates. The previous system of Yap only type
checked predicate clauses with respect to programmer-supplied type signatures.
Here we define a new type inference algorithm for pure Prolog, which is able to
infer data types.

In several other previous works types approximated the success set of a
predicate [Zob87,DZ92,YFS92,BJ88]. This sometimes led to overly broad types,
because the way logic programs are written can be very general and accept more
than what was initially intended. These approaches were different from ours in
the sense that in our work types can filter the success set of a predicate, when-
ever the programmer chooses to do so, using the closure operation, or data type
declarations.

A different approach relied on ideas coming from functional programming lan-
guages [MO84,LR91,HL94,SCWD08]. Other examples of the influence of func-
tional languages on types for logic programming are the type systems used in
several functional logic programming languages [Han13,SHC96]. Along this line
of research, a rather influential type system for logic programs was Mycroft and
O’Keefe type system [MO84], which was later reconstructed by Lakshman and
Reddy [LR91]. This system had types declared for the constants, function sym-
bols and predicate symbols used in a program. Key differences from our work
are: 1) in previous works each clause of a predicate must have the same type.
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We lift this limitation extending the type language with sums of types, where
the type of a predicate is the sum of the types of its clauses; 2) although we may
use type declarations, they are optional and we can use a closure operation to
infer datatype declarations from untyped programs.

Set constraints have also been used by many authors to infer types for
logic programming languages [HJ92,GdW94,TTD97,CP98,DMP00,DMP02].
Although these approaches differ from ours since they follow the line of conserva-
tive approximations to the success set, we were inspired from general techniques
from this area to define our type constraint solvers.

7 Final Remarks

In this paper, we present a sound type inference algorithm for pure Prolog.
Inferred types are semantic approximations by default, but the user may tune
the algorithm, quite easily, to automatically infer types which correspond to the
usual data types used in the program. Moreover, the algorithm may also be tuned
to use predefined (optional) data type declarations to improve the output types.
We proved the soundness of the algorithm, but completeness (meaning that the
inferred types are a finite representation of all types which make the program
well-typed) is an open problem for now. We strongly suspect that the algorithm
is complete without closure, but could not prove it yet. On the implementation
side we are now extending Y APT to deal with full Prolog to be able to apply
it to more elaborated programs. This includes built-ins and mutually recursive
predicates. For this, we will have predefined rules for every built-in predicate
and we are also extending the algorithm to generate constraints not for single
predicates, but for each strongly connected component on the dependency graph
of the program.
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