
String Abstract Domains and Their
Combination

Harald Søndergaard(B)

School of Computing and Information Systems, The University of Melbourne,
Melbourne, VIC 3010, Australia

harald@unimelb.edu.au

Abstract. We survey recent developments in string static analysis, with
an emphasis on how string abstract domains can be combined. The paper
has formed the basis for an invited presentation given to LOPSTR 2021
and PPDP 2021.

1 Introduction

String manipulating programs are challenging for static analysis. The primary
problem in static analysis, of finding a good balance between precision and effi-
ciency, is particularly unwieldy for string analysis. For static reasoning about
strings, many facets are of potential relevance, such as string length, shape, and
the set of characters found in a string. Hence abstract interpretations of string
manipulating programs tend to either employ an expressive but overly expensive
abstract domain, or else combine a number of cheaper domains, each designed
to capture a specific aspect of strings.

Much of the interest in the analysis of string manipulation is due to the
fact that web programming and the scripting languages that are supported
by web browsers make heavy use of strings. In the absence of static typing,
strings, because of their flexibility, often end up being used as a kind of uni-
versal data structure. Moreover, scripting languages usually determine object
attributes dynamically, treating an object as a lookup table that can associate
any sort of information with an attribute, that is, with a string. And attributes
may themselves be constructed dynamically. All this contributes to making the
construction of robust, secure programs difficult. Hence much research on string
analysis comes from communities that work with languages such as JavaScript,
PHP and Python. The dynamic nature of these languages calls for combinations
of non-trivial static and dynamic analysis, a continuing challenge.

This survey focuses on abstract interpretation. Much of it is based on Ama-
dini et al. [2,3], from whom we take the concept of a “reference” abstract domain.
We provide a Cook’s Tour of string abstract domains, discuss how to combine
domains, and show how reference domains can help domain combination, in
theory and in practice.

c© Springer Nature Switzerland AG 2022
E. De Angelis and W. Vanhoof (Eds.): LOPSTR 2021, LNCS 13290, pp. 1–15, 2022.
https://doi.org/10.1007/978-3-030-98869-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98869-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-98869-2_1

2 H. Søndergaard

2 Preliminaries

We start by summarising the main mathematical concepts underpinning abstract
interpretation. Readers familiar with abstract interpretation and finite-state
automata can skip this section.

A poset is a set, equipped with a partial order. A binary relation �, defined
on a set D, is a partial order iff it is reflexive, transitive and antisymmetric. Two
elements x, y ∈ D are comparable iff x � y or y � x. A poset D is a chain iff, for
each pair x, y ∈ D, x and y are comparable.

An element x ∈ D is an upper bound for set D′ ⊆ D iff x′ �x for all x′ ∈ D′.
Dually we may define a lower bound for D′. An upper bound x for D′ is the
least upper bound for D′ iff, for every upper bound x′ for D′, x � x′. We denote
it (when it exists) by

⊔
D′. Dually we may define the greatest lower bound and

denote it by
�

D′. We write x � y for
⊔{x, y} and x � y for

�{x, y}.
Let 〈D,�〉 and 〈D′,≤〉 be posets. A function f : D → D′ is isotone iff

∀x, y ∈ D : x � y ⇒ f(x) ≤ f(y). A function f : D → D is idempotent iff
∀x ∈ D : f(f(x)) = f(x). Function f is reductive iff ∀x ∈ D : f(x) � x; it is
extensive iff ∀x ∈ D : x � f(x). A function which is isotone and idempotent is a
closure operator. If it is also reductive, it is called a lower closure operator (lco).
If it is extensive, it is called an upper closure operator (uco).

A poset 〈D,�〉 is a lattice iff every finite subset X ⊆ D has a least upper
bound and a greatest lower bound—written

⊔
X and

�
X, respectively. The

lattice is complete iff the condition applies to every subset, finite or not. It is
bounded iff it has a unique least element (often written ⊥) and a unique greatest
element (often written �). We write the bounded lattice D as 〈D,�,⊥,�,�,�〉.
A complete lattice is necessarily bounded.

Abstract interpretation is a declarative approach to static program analysis.
An analysis is almost completely described by its associated abstract domain: the
set A of abstractions of computation states used by the analysis. The abstract
domain is usually a bounded lattice 〈A,�,⊥,�,�,�〉. In our case, an element
of A will be a string property. Strings are constructed from some unspecified
alphabet Σ. Hence each element (or abstract string) ŝ ∈ A denotes a set
of concrete strings γ(ŝ) ∈ P(Σ∗) via a concretization function γ such that
ŝ � ŝ′ iff γ(ŝ) ⊆ γ(ŝ′). Often γ has an adjoined function α : P(Σ∗) → S, the
abstraction function, that is, we have a Galois connection: α(S) � ŝ iff S ⊆ γ(ŝ).
In this case both α and γ are necessarily isotone, α ◦ γ is an lco, and γ ◦ α is a
uco. Moreover, every concrete operation f : P(Σ∗)k → P(Σ∗) has a unique best
counterpart on S, namely λ(ŝ1, . . . , ŝk) . (α ◦ f)(γ(ŝ1), . . . , γ(ŝk)). Hence we can
essentially identify a program analysis with the abstract domain it uses.

We use standard notation and terminology for automata [24]. A deterministic
finite automaton (DFA) R with alphabet Σ is a quintuple 〈Q,Σ, δ, q0, F 〉, where
Q is the (non-empty) set of states, q0 ∈ Q is the start state, F ⊆ Q is the set
of accept states, and δ : (Q × Σ) → Q is the transition function. The language
recognised by R is written L(R). We use LR(q) to denote the language recognised
by 〈Q,Σ, δ, q, F 〉, that is, by a DFA identical to R, except q is considered the
start state. We let δ∗ : (Q × Σ∗) → Q be the generalised transition function
defined by

String Abstract Domains and Their Combination 3

δ∗(q, ε) = q
δ∗(q, x w) = δ∗(δ(q, x), w)

Let q → q′ stand for ∃x ∈ Σ(δ(q, x) = q′). The DFA 〈Q,Σ, δ, q0, F 〉 is trim iff δ
is a partial deterministic function on Q × Σ, and for all q ∈ Q\{q0}, there is a
q′ ∈ F such that q0 →+ q ∧ q →∗ q′.

3 String Abstract Domains

A string abstract domain approximates concrete domain 〈P(Σ∗),⊆, ∅, Σ∗,∩,∪〉.
Figure 1 shows Hasse diagrams for some example string domains. We discuss
them in Sect. 3.2, but first we look at some simple but general string domains.

3.1 Programming Language Agnostic String Abstract Domains

Exactly which strings a variable may be bound to at a given program point is
an undecidable problem. For a simple program such as

x = "foo"
if (*)

x = "zoo"

it is easy to tell that x, upon exit, will take its value from the set {foo, zoo}.
But in general we have to resort to finite descriptions of (possibly infinite) string
sets, and reason with those. For example, we may approximate a set of strings
by the characters they use. Then

αchars({foo, zoo}) = {f, o, z}
γchars({f, o, z}) = {w ∈ Σ∗ | chars(w) ⊆ {f, o, z}}

Abstraction usually over-approximates; our description {f, o, z} may have been
intended to describe {foo, zoo}, but is applies to an infinity of other strings,
such as zoffo.

Domain γ({foo, zoo})
CI [{o}, {f, o, z}]
SS2 {foo, zoo}
SL [3, 3]
PS 〈ε, oo〉

Let us list some examples of string domains.
CI = {⊥CI} ∪ {[L,U] | L,U ∈ P(Σ), L ⊆ U}
is the Character Inclusion domain. It provides
pairs of character sets, the first of which hold
characters that must be in any string described,
the second characters that may be there. An
example is given in the table on the right.

The String Set domain SSk provides string sets up to cardinality k, rep-
resenting all larger sets as �. The String Length domain SL provides pairs
[lo, hi] of natural numbers that give lower and upper bounds on the length
of strings described, again exemplified in the table. Let us describe the Pre-
fix/Suffix domain PS in some formal detail (for more detailed definitions of the
other domains, see for example [3]).

4 H. Søndergaard

PS = {⊥PS}∪(Σ∗ ×Σ∗). The meaning of an element of form 〈p, s〉 is the set
of strings that have p as prefix and s as (possibly overlapping) suffix. Formally,

γ(⊥PS) = ∅
γ(〈p, s〉) = {p · w | w ∈ Σ∗} ∩ {w · s | w ∈ Σ∗}

The largest element �PS = 〈ε, ε〉 where ε is the empty string. �, � and �
are defined in terms of longest common prefix/suffix operations. Let lcp(S)
and lcs(S) be the longest common prefix (respectively, suffix) of a string
set S. Then 〈p, s〉 �PS 〈p′, s′〉 iff lcp({p, p′}) = p′ ∧ lcs({s, s′}) = s′, and
〈p, s〉 �PS 〈p′, s′〉 = 〈lcp{p, p′}, lcs{s, s′}〉. The meet operation �PS is induced—
for details see Costantini et al. [9]. The abstract catenation operation is par-
ticularly simple in the case of PS: 〈p, s〉 �PS 〈p′, s′〉 = 〈p, s′〉, with ⊥PS as an
annihilator. The abstract version of substring selection (from index i to j) is
defined

〈p, s〉[i..j]PS =

⎧
⎪⎨

⎪⎩

〈p[i..j], p[i..j]〉 if j ≤ |p|
〈p[i..|p|], ε〉 if i ≤ |p| ≤ j

�PS otherwise

Most of these abstract operations have O(|p| + |s|) cost.
Many other, often more sophisticated, string abstract domains have been

proposed. For example, the string hash domain [20] (SH) is a flat domain of hash
values (integers) obtained through application of some string hash function.

3.2 Language Specific String Domains

Aspects of some scripting languages necessitate greater care in string analysis.
For example, it may be important to distinguish strings that are valid represen-
tations of “numerical entities” such as "-42.7" or "NaN". Figures 1(a–c) shows
string abstract domains used by three different analyzers for JavaScript. A string
set such as {foo, NaN} is represented as �, NotSpecial , or NotUnsigned , by the
respective tools, all with different meanings.

Note that it is very difficult for a program analyzer to maintain precision in
the presence of dynamic typing and implicit type conversion. Arceri et al. [4]
retain some agility in their JavaScript analyzer through the use of a tuple of
abstractions for each variable x: (x qua number, x qua string, . . .), so that the
relevant abstraction can be retrieved across conversions.

Amadini et al. [3] performed a comparison of a dozen common string abstract
domains, shown in Fig. 1(d). Figure 1 also identifies the (non-extreme) elements
of some domains not discussed so far, namely NO, NS, UO, and the Constant
String domain CS. The details of these are not essential for this presentation,
except we note that elements of CS are single strings, ⊥CS , or �CS , with the
obvious meanings. The main message to take away is that potentially useful
string domains are legion.

String Abstract Domains and Their Combination 5

�SF

{42, NaN} {foo, zoo}

Number NotNumber

{42} . . . {NaN} {foo} . . .

. . .

...
...

{zoo}

⊥SF

(a)

NO

SSk

�J S

NotSpecial NotNumber

Numeric Other Special

⊥J S

42 . . . NaN foo . . . bar length . . . sort

(b)

NS

CS

�T J

Unsigned NotUnsigned

0 . . . 4294967295 foo NaN. . .

⊥T J

(c)

UO

CS
∅

PS

NO CS

CI SHNSUO SSk

T J J S SF HY

P(Σ∗)

(d)

Fig. 1. String abstract domains used by different tools for JavaScript analysis: (a)
SAFE [19], (b) JSAI [18], (c) TAJS [16]; (d) domains compared experimentally in
Amadini et al. [3] (HY is the “hybrid” domain of Madsen and Andreasen [20])

3.3 Regular Expression-Like Domains

The “Bricks” domain of Costantini et al. [8] captures (sequences of) string sets
with multiplicity. A brick is of form [S]i,j where S is a finite string set. [S]i,j

represents the set
⋃

i≤k≤j{w1 · w2 · · · wk | (w1, w2, . . . , wk) ∈ Sk}. For example,
{ab, c, abab, cab, cc} can be approximated by the brick {ab, c}1,2. Elements of
the Bricks domain are sequences of bricks, with the sequencing representing
language catenation. The “Dashed Strings” of Amadini et al. [1] offer a variant
of this using sequences of blocks [S]i,j which are like bricks, except S is a finite
set of characters.

More expressive fragments of regular expressions are sometimes used [6,21].
For example, Park et al. [21] approximate string sets by “atomic” regular expres-
sions. These are regular expressions generated by the grammar

S → ‘ε’ | ‘Σ∗’ | A S | ‘Σ∗’A S A → a1 | . . . | an
where Σ = {a1, . . . , an} (we use quotes to stress that in this grammar, ε and Σ∗

are terminals, not meta-symbols). The abstract domain used by Choi et al. [6]

6 H. Søndergaard

is less constrained, and one could even contemplate the use of the whole class of
regular languages, as done in the next section.

An example of a string abstract domain designed specifically for the analysis
of C programs is the “M-Strings” domain, proposed by Cortesi et al. [7]. Recall
that C uses the null character \0 to indicate termination of a string. Hence the
sequence of characters zooo\0ba represents a sequence of two strings. A set of
C string sequences such as {zooo\0ba, dooo\0da} is captured by the M-string
〈{0}�{1}o{4}, {5}�{6}a{7}〉. The numbers in braces are string index positions.
The {1}o{4} component, for example, covers all C strings that have ‘ooo’ from
index 1 to 3, inclusive.

3.4 The Class of Regular Languages as an Abstract Domain RL
Perhaps the most natural choice for a string abstract domain is the bounded
lattice 〈Reg ,⊆, ∅, Σ∗,∩,∪〉 of regular languages. A obvious representation for
the elements are (possibly trim) minimal DFAs [4]. The advantages of this choice
are significant: This abstract domain is very expressive and regular languages
and DFA operations are well understood. Unusually, the domain RL is closed
not only under intersection, but also under complement—a rare occurrence. At
least one implementation is publicly available [4].

There are, however, also significant drawbacks: First, to enable containment
tests, automata need to be maintained in deterministic, ideally minimal, form;
this normalisation is very expensive. Second, there is a clear risk of size explosion,
as DFA size is unbounded; for L(R) ∩ L(R′) and L(R) ∪ L(R′) it can be as bad as
|R|·|R′|. Finally there is the termination problem. Unlike other abstract domains
discussed so far, RL has infinite ascending chains, so that Kleene iteration may
not terminate without “widening”.

4 Widening

Where an abstract domain has infinite ascending chains, termination is usually
ensured by defining a widening operator �. This is an upper bound operator
(a� a�b and b� a�b) with the property that, for any sequence {a1, a2, . . .}, the
sequence b1 = a1, bi+1 = bi�ai+1 stabilises in finitely many steps [10].

The design of widening operators is a difficult art. Done well, widening can be
very powerful, but there is usually no single natural design that presents itself.
For highly expressive domains it often becomes hard to balance convergence rate
with preservation of precision.

Bartzis and Bultan [5] pioneered the design of widening for automata. We
will explain their widening with an example—for exact definitions, the reader is
referred to the original papers discussed in this section.

Example 1. Consider this pseudo-code (from [2]) involving a while loop:

x = "aaa"
while (*)

String Abstract Domains and Their Combination 7

A B C D B1
a a a

21 3 4 5 B2
a a a a

B3
a

a

Fig. 2. DFA widening a la Bartzis and Bultan [5]

if (length(x) < 4) x = "a" + x

When the loop is first entered, the variable has the value aaa. After one iteration,
the value is aaaa. Figure 2 shows the (trim, deterministic) automata for these
values, B1 = 〈Q1, Σ, δ1, q01, F1〉 and B2 = 〈Q2, Σ, δ2, q02, F2〉. The idea now is to
weaken B2 by merging some of its states. Which states to merge is determined
by similarity with B1 as follows. Consider the relation

ρ =

⎧
⎨

⎩
(q1, q2) ∈ Q1 × Q2

∣
∣
∣
∣
∣
∣

(a)LB1(q1) = LB2(q2),or
(b)q1 ∈ (Q1 \ F1), q2 ∈ (Q2\F2), and for some

w ∈ Σ∗, q1 = δ∗
1(q01, w) and q2 = δ∗

2(q02, w)

⎫
⎬

⎭

For our example, we have ρ = {(A, 2), (B, 3), (C, 4), (D, 5), (A, 1), (B, 2), (C, 3)}.
Now the idea is to form the reflexive transitive closure of ρ−1 ◦ ρ, to create an
equivalence relation on Q2. The result of widening will be the corresponding
quotient automaton—states of B2 that belong to the same equivalence class
are merged. For our example there are two classes, {1, 2, 3, 4} and {5}, and the
resulting automaton is B3 shown in Fig. 2. ��

Two comments are relevant. First, the automata that result from this type
of widening are usually non-deterministic, and in an implementation, widening
needs to be followed by determinisation. Moreover, as shown by D’Silva [14],
widening is generally sensitive to the shape of the resulting DFA, and for best
results, minimisation is also required. Second, as pointed out by Bartzis and
Bultan [5], the method as described is not strictly a widening, as it does not
guarantee stabilisation in finite time. Bartzis and Bultan mention that a guar-
antee can be secured by dropping the “q1 and q2 are reject states” part of the
condition (b) in the set comprehension above, but the cost is an intolerable loss
of precision; their discussion ([5] page 326) underlines the tension between pre-
cision and convergence. For our example, the automaton that results when the
condition is weakened recognises a∗, rather than the more precise L(B3) = a+.

D’Silva [14] conducted a deeper study of a variety of families of widening for
automata. These generalise the Bartzis-Bultan approach in a number of ways,
including the way relevant state equivalence classes are identified. For example,
in the “k-tails” approach, the relation ρ is determined by considering only strings
of length k or less. Let Lk

R(q) = {w ∈ LR(q) | |w| ≤ k}. Then for automata S1

and S2, (s1, s2) ∈ ρ iff Lk
S1

(s1) = Lk
S2

(s2).

8 H. Søndergaard

A B C D S1
a a a

21 3 4 5 S2
a a a a

S3
a a

a

Fig. 3. 1-tails widening a la D’Silva [14]

A B C D A1
a a a

21 3 4 5 A1 � A2
a a a a

A3
a a a

a

Fig. 4. Widening a la Arceri et al. [4]

Example 2. Consider again Example 1. The automata are shown (renamed) in
Fig. 3. In this case, ρ = {(A, 1), (A, 2), (A, 3), (B, 1), (B, 2), (B, 3), (C, 4), (D, 5)}
and (ρ−1 ◦ ρ)∗ induces three equivalence classes, {1, 2, 3}, {4}, and {5}. Hence
the result of widening is S3, shown in Fig. 3. ��
Again, D’Silva warns that the methods discussed may not always be widenings in
the classical sense, as the convergence guarantees that are on offer are conditional
on a variety of parameters.

D’Silva’s ideas have been adopted for practical string analysis by Arceri,
Mastroeni and Xu [4]. Here the decision about which states to merge is based
on the k-tails principle just exemplified, but Arceri et al. replaces the induced
widening operator �k by � defined by A1�A2 = A1�k (A1 � A2).

Example 3. Figure 4 shows the result for our running example. As comparison is
now against A1�A2, we have ρ = {(A, 1), (A, 2), (B, 1), (B, 2), (C, 3), (D, 5)}, and
(ρ−1 ◦ ρ)∗ induces four equivalence classes, {1, 2}, {3}, {4} and {5}. The result
of widening is A3 in Fig. 4. Once S3 and A3 are determinised and minimised,
they are identical (and more precise than B3). ��

5 Combining Domains

The study by Amadini et al. [3] included combinations of different string abstract
domains, but it focused on direct products of the domains involved.

5.1 Direct Products

Suppose the n abstract domains 〈Ai,�i,⊥i,�i,�i,�i〉 (i = 1, . . . , n) all abstract
a concrete domain C. Their direct product is 〈A,�,⊥,�,�,�, 〉 with:

– A = A1 × · · · × An

– (a1, . . . , an) � (b1, . . . , bn) iff ai �i bi for all i ∈ [1..n]
– ⊥ = (⊥1, . . . ,⊥n) and � = (�1, . . . ,�n)

String Abstract Domains and Their Combination 9

– (a1, . . . , an) � (b1, . . . , bn) = (a1 �1 b1, . . . , an �n bn)
– (a1, . . . , an) � (b1, . . . , bn) = (a1 �1 b1, . . . , an �n bn)
– γ(a1, . . . , an) =

⋂n
i=1 γi(ai) and α(c) = (α1(c), . . . , αn(c))

The direct product generally induces a concretisation function which is not injec-
tive.

Example 4. Consider string analysis using SL × CI. Of the two descrip-
tions ([3, 3], [{a, b, c}, {a, b, c}]) and ([0, 3], [{a, b, c}, {a, b, c, d}]), the former is
strictly smaller than the latter, by the component-wise ordering of the direct
product. But γ([3, 3], [{a, b, c}, {a, b, c}]) = γ([0, 3], [{a, b, c}, {a, b, c, d}]); each
represents the string set {abc, acb, bac, bca, cab, cba}. The components of the
second description are unnecessarily imprecise. ��
In an analysis based on the direct product, no exchange of information happens
between the component domains, often leading to an unwanted loss of precision.

5.2 Reduced Products

The mathematical solution is to force γ to be injective. Consider the equivalence
relation ≡ defined by

(a1, . . . , an) ≡ (b1, . . . , bn) iff γ(a1, . . . , an) = γ(b1, . . . , bn)

The reduced product A′ = A1 ⊗ . . . ⊗ An is the quotient set of ≡:

A1 ⊗ · · · ⊗ An = {[(a1, . . . , an)]≡ | a1 ∈ A1, . . . , an ∈ An}
Define (the injective) γ : A′ → C and α : C → A′ by

γ([(a1, . . . , an)]≡) =
⋂n

i=1 γi(ai)
α(c) = [(α1(c), . . . , αn(c))]≡

If a greatest lower bound exists (say A1, . . . ,An are complete lattices) then
[(a1, . . . , an)]≡ is identified with its minimal representative:

�
([(a1, . . . , an)]≡).

Moreover, if each (γi, αi) is a Galois connection then so is (γ, α).
Reduced products are easy to define but generally hard to realise. Algorithms

for the required operations are far from obvious. Moreover, an incremental app-
roach to analysis where many abstract domains are involved does not appear
possible. To quote Cousot, Cousot and Mauborgne [12], “The implementation of
the most precise reduction (if it exists) can hardly be modular since in general
adding a new abstract domain to increase precision implies that the reduced
product must be completely redesigned”. Section 6 suggests a remedy.

5.3 Paraphrasing: Translating Approximate Information

It is natural to propose some kind of information exchange to translate insight
from one component of a domain product to other components, in order to calcu-
late minimal representatives of equivalence classes. Let us call this improvement
of one component using information from another paraphrasing.

10 H. Søndergaard

As an example, [{a, b, c}, {a, b, c, d}] ∈ CI can be seen as an “SL para-
phraser” λv. v �SL [3,∞] which tightens an SL component appropriately. More
generally, the SL paraphraser corresponding to [L,U] ∈ CI is λv. v �SL [|L|,∞].

Here is another example of a paraphraser. We can view 〈p, s〉 ∈ PS as a CI
paraphraser P CI

PS〈p, s〉 : CI → CI:

P CI
PS〈p, s〉(v) =

⎧
⎨

⎩

[L ∪ X,U] if v = [L,U] and L ∪ X ⊆ U
where X = chars(p) ∪ chars(s)

⊥CI otherwise

Granger [15] proposed an important “local increasing iterations” technique to
improve the precision of abstract interpretation. Granger’s technique can also be
used to improve the direct product of domains—it effectively uses paraphrasing
systematically and repeatedly. Let us call the results Granger products.

However, when many abstract domains are involved, we soon run into a
combinatorial problem. If we have n abstract domains, we can have n(n − 1)
paraphrasers P j

i : Ai → Aj → Aj , so even for small n, a large number of
“translation tools” are needed. The strain of juggling many different kinds of
information, delivered through different abstract domains, becomes prohibitive.
As we have seen, this is typically the situation we are faced in string analysis.
Note that if paraphrasers of type (A1 × · · · × Ak) → Aj → Aj are allowed (for
k > 1), the number of possible paraphrasers is well beyond quadratic.

5.4 One-on-One Paraphrasing

Even if each one-on-one paraphraser P j
i (ai) is an lco, it may have to be applied

repeatedly. The combined effect of paraphrasing until no more tightening is
possible comes down to computing the greatest fixed point of P defined by

P (a1, . . . , an) =

⎛

⎜
⎝

a1 � �
i∈[1..n] P

1
i (ai)(a1)

...
an � �

i∈[1..n] P
n
i (ai)(an)

⎞

⎟
⎠

This is the approach suggested by Granger [15], and further developed by Thakur
and Reps [25].

However, sometimes one-on-one paraphrasing falls short [2]:

Example 5. Let Σ = {a, b, c, d} and consider the combination of abstractions

x = [5, 6] ∈ SL y = [Σ,Σ] ∈ CI z = 〈ab, aba〉 ∈ PS

A system of optimal paraphrasers for this example leads to an equation system
whose solution is simply (x, y, z).

That is, application of P provides no improvement (in this case P acts as
the identity function). To see this, note that the knowledge (in y) that a string s
uses the whole alphabet does not allow us to improve on x, nor on z. Conversely,

String Abstract Domains and Their Combination 11

neither x nor z can improve on y, since y is as precise as CI will allow. And, x
and z clearly cannot improve on each other.

In contrast, in P = SL ⊗ CI ⊗ PS, (x, y, z) denotes ∅, since no string
satisfies all three constraints. To see this, note that the combination of y and z
allows only strings of length 7 or more—strings must have form abΣ∗cΣ∗dΣ∗aba
or abΣ∗dΣ∗cΣ∗aba. ��

The example shows that sometimes no amount of (repeated) one-on-one para-
phrasing will lead to the optimal reduction. Nor is this kind of paraphrasing
enough, in general, to implement optimal transfer functions. Amadini et al. [2]
have suggested an alternative that involves the use of what they call a reference
domain.

6 Reference Abstract Domains

C

R

P = i Ai

A2

A1 An

When a large number of abstract domains
A1, . . . ,An need to be combined, we may
look for a way of obtaining the effect
of a reduced product, while avoiding the
combinatorial explosion of paraphrasing.
Amadini et al. [2] propose the use of an
additional domain that can act as a medi-
ator among the n given domains, a “ref-
erence” domain. This domain should be
as expressive as each Ai. This way it
is, if anything, “closer” to the concrete
domain than the reduced product is. In
the diagram on the right, C is the concrete
semantic domain and P is the reduced
product of the n domains A1 to An. For an abstract domain R to fill the role
of reference domain, it must be located as suggested in the diagram.

We can then achieve the effect of using P by recasting each of the n com-
ponents in RL, taking the greatest lower bound of the results in RL, and
translating that back into the n abstract domains A1, . . . ,An. The combined
effect of this amounts to the application of a “strengthening” function (an lco)
S : (A1 × . . . × An) → (A1 × . . . × An).

The same idea was present already in work on symbolic abstraction by Reps
and Thakur [22], albeit in a rather different form. The authors cast the problem
of symbolic abstraction in logical terms, associating abstract domains with dif-
ferent logic fragments. In that setting, a reference domain is simply a sufficiently
expressive fragment.

Example 6. Take the case of abstract domains for linear arithmetic constraints.
The well-known polyhedral domain [13] is very expressive and also expensive.
Instead we may want to combine two cheaper analyses, namely intervals [11] and
Karr’s domain of affine equations [17]. However, reduced products of numeric

12 H. Søndergaard

abstract domains, while mathematically straightforward, are difficult to imple-
ment. Noting that translations between each cheap domain and the polyhedral
domain are inexpensive, we may choose to use the latter as reference domain.
For example, assume we have

x ∈ [5,∞], z ∈ [1, 10] and 2x − y = 8, x + 2z = 7

We translate each to polyhedral form and calculate the meet there:

(5 ≤ x, 1 ≤ z, z ≤ 10) � (2x − y = 8, x + 2z = 7)

Then we translate the result (x = 5, y = 2, z = 1) back into the interval domain,
as well as into Karr’s domain. Note how each component is strengthened. ��

In the presence of a large number of incomparable abstract domains, a suit-
able reference domain offers several advantages:

– Simplicity of implementation, as its requires 2n translation functions rather
than a quadratic number.

– Modular implementation; incorporating yet another domain An+1 is mostly
straight-forward.

– Potentially lower computational cost at runtime.

Amadini et al. [2] find the idea particularly useful in the context of string abstract
domains, since RL presents itself as a natural candidate for reference domain.

Algorithms for translations to and from RL are given by Amadini et al. [2],
for the string abstract domains CS, SL, CI, and PS. Trim DFAs are used to rep-
resent regular languages, and most translations turn out to be straightforward.
Here we give just one example, namely the translation of an element 〈p, s〉 ∈ PS
into an element of RL, in the form of a trim DFA. Assume the DFA that recog-
nises p is 〈Q,Σ, δ, q0, {qf}〉 and let q∗ be the unique state for which δ(q∗) = qf .
Note that this DFA is very easily built. Let 〈Q′, Σ, δ′, q′

0, {q′
f}〉 be the Knuth-

Morris-Pratt DFA for s (a recogniser of Σ∗s). Again, this DFA is easily built
directly, rather than going via an NFA (see for example [23] page 765). The DFA
for 〈p, s〉 is 〈(Q ∪ Q′)\{qf}, Σ, δ[q∗ �→ δ∗(q′

0, p)] ∪ δ′, q0, {q′
f}〉.

Example 7. Let Σ = {a, b, c} and consider 〈ab, ba〉 ∈ PS (denoting abΣ∗ ∩
Σ∗ba). Figure 5 shows the DFA for ab (left), the KMP DFA for ab (middle),
and their assembly into a DFA for the prefix/suffix description 〈ab, ba〉. ��

Translating back to prefix/suffix form is no harder. Given a trim DFA, one
can extract the longest prefix in O(|Q|) time, by following transitions from the
start state, stopping when an accept state is reached, or when fan-out exceeds
1. Collecting the longest prefix is slightly more complicated [2] and requires
O(|δ||Q|) time.

Example 8. Let us now combine PS, CI, SL and CS analysis, using RL to
provide the precision of a reduced product. In the context of Σ = {a, b, c},
consider the description

〈〈ab, ba〉, [{a, b}, {a, b, c}], [0, 3],�CS〉 ∈ (PS × CI × SL × CS)

String Abstract Domains and Their Combination 13

a

b

a, c

b

b

a

c

a, c

b

a

b

a, c

b

b

a

c

a, c

b

Fig. 5. Constructing a trim DFA for 〈ab, ba〉 ∈ PS

c

a

b

b

a, c

b, c

a

a, b, c

γCI([{a, b}, {a, b, c}])

a, b, c

a, b, c

a, b, c

γSL([0, 3])

a, b, c

γCS(�CS)

a

b

a

Product

Fig. 6. Simpler descriptions as DFAs. The rightmost DFA is the product of the three
on the left, together with the DFA from Fig. 5

The DFA for γPS(〈ab, ba〉) is the one we just calculated (Fig. 5 right). The other
three are shown in Fig. 6, together with the product of all four. This product
automaton recognises {aba}. The refined information is then sent back to the
elementary domains, to yield 〈〈aba, aba〉, [{a, b}, {a, b}], [3, 3], aba〉. Notice the
improved precision, especially for the CS component which has been strength-
ened from Σ∗ to the singleton {aba}. ��

The generated product automata are not, in general, minimal, and we do not
avoid the cost of minimisation. Keeping automata trim pays off by simplifying
some translation operations, and the cost of trimming is low—linear in the size
of a DFA.

Let us finally revisit the example that we started from. Our last example
shows how simple abstract domains, when synchronised through an expressive
reference domain, can yield a precise result. In Sect. 4, the use of widening led
to an imprecise result such as aaa∗ to be produced. Here we avoid widening
altogether.

Example 9. Consider again the while loop from Example 1. Assume analysis uses
the direct product PS×CI×SL, but utilises RL as reference domain. At the first
entry of the loop, the description of the variable is 〈〈aaa, aaa〉, [{a}, {a}], [3, 3]〉.

14 H. Søndergaard

At the end of the loop body it is 〈〈aaaa, aaa〉, [{a}, {a}], [4, 4]〉. Analysis finds
that the join of the two, 〈〈aaa, aaa〉, [{a}, {a}], [3, 4]〉, is a fixed point, that is, an
invariant for the loop entry, and the possible values of the variable at exit are
identified precisely as γ(〈〈aaaa, aaa〉, [{a}, {a}], [4, 4]〉 = {aaaa}. ��

7 Conclusion

From the perspective of abstract interpretation, string analysis is interesting, as
it gives rise to a plethora of natural but very different abstract domains, with
very different degrees of expressiveness. A particular challenge is how to manage
this multitude, that is, how to combine many string abstract domains. We have
discussed some approaches to this, paying special attention to the use of the
class of regular languages as a “reference” domain, used to mediate between
other abstract domains.

There would appear to be considerable scope for improved string analysis.
For highly dynamic programming languages, it is likely that combinations of
static and dynamic analysis will be needed, to help solve the pressing problems
in software reliability and security.

Acknowledgements. I wish to thank my string analysis collaborators: Roberto Ama-
dini, Graeme Gange, François Gauthier, Alexander Jordan, Peter Schachte, Peter
Stuckey and Chenyi Zhang. Part of our work was supported by the Australian Research
Council through Linkage Project LP140100437.

References

1. Amadini, R., Gange, G., Stuckey, P.J.: Dashed strings for string constraint solving.
Artif. Intell. 289, 103368 (2020)

2. Amadini, R., et al.: Reference abstract domains and applications to string analysis.
Fund. Inform. 158, 297–326 (2018). https://doi.org/10.3233/FI-2018-1650

3. Amadini, R., et al.: Combining string abstract domains for JavaScript analysis: an
evaluation. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
41–57. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 3

4. Arceri, V., Mastroeni, I., Xu, S.: Static analysis for ECMAScript string manipula-
tion programs. Appl. Sci. 10, 3525 (2020)

5. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27813-9 25

6. Choi, T.-H., Lee, O., Kim, H., Doh, K.-G.: A practical string analyzer by the
widening approach. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp.
374–388. Springer, Heidelberg (2006). https://doi.org/10.1007/11924661 23

7. Cortesi, A., Lauko, H., Olliaro, M., Ročkai, P.: String abstraction for model check-
ing of C programs. In: Biondi, F., Given-Wilson, T., Legay, A. (eds.) SPIN 2019.
LNCS, vol. 11636, pp. 74–93. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-30923-7 5

8. Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: Qin, S.,
Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 505–521. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24559-6 34

https://doi.org/10.3233/FI-2018-1650
https://doi.org/10.1007/978-3-662-54577-5_3
https://doi.org/10.1007/978-3-540-27813-9_25
https://doi.org/10.1007/11924661_23
https://doi.org/10.1007/978-3-030-30923-7_5
https://doi.org/10.1007/978-3-030-30923-7_5
https://doi.org/10.1007/978-3-642-24559-6_34

String Abstract Domains and Their Combination 15

9. Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for static
analysis of string values. Softw. Pract. Exp. 45(2), 245–287 (2015)

10. Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge (2021)
11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM Publications (1977). https://doi.org/10.1145/512950.512973

12. Cousot, P., Cousot, R., Mauborgne, L.: A framework for combining algebraic and
logical abstract interpretations, September 2010. Working paper https://hal.inria.
fr/inria-00543890

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages, pp. 84–97. ACM Publications (1978). https://doi.org/
10.1145/512760.512770

14. D’Silva, V.: Widening for automata. Diploma thesis, University of Zürich (2006)
15. Granger, P.: Improving the results of static analyses of programs by local decreasing

iterations. In: Shyamasundar, R. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 68–79.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56287-7 95

16. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

17. Karr, M.: Affine relationships among variables of a program. Acta Inform. 6, 133–
151 (1976). https://doi.org/10.1007/BF00268497

18. Kashyap, V., et al.: JSAI: a static analysis platform for JavaScript. In: FSE 2014,
pp. 121–132. ACM Publications (2014). https://doi.org/10.1145/2635868.2635904

19. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: formal specification and imple-
mentation of a scalable analysis framework for ECMAScript. In: FOOL 2012
(2012). https://doi.org/10.1145/2384616.2384661

20. Madsen, M., Andreasen, E.: String analysis for dynamic field access. In: Cohen, A.
(ed.) CC 2014. LNCS, vol. 8409, pp. 197–217. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54807-9 12

21. Park, C., Im, H., Ryu, S.: Precise and scalable static analysis of jQuery using a
regular expression domain. In: DSL 2016, pp. 25–36. ACM Publications (2016).
https://doi.org/10.1145/2989225.2989228

22. Reps, T., Thakur, A.: Automating abstract interpretation. In: Jobstmann, B.,
Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 3–40. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49122-5 1

23. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Pearson Education, London (2011)
24. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Thomson Course

Technology (2012)
25. Thakur, A., Reps, T.: A method for symbolic computation of abstract operations.

In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 174–192.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 17

https://doi.org/10.1145/512950.512973
https://hal.inria.fr/inria-00543890
https://hal.inria.fr/inria-00543890
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/3-540-56287-7_95
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/BF00268497
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1145/2384616.2384661
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1145/2989225.2989228
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1007/978-3-642-31424-7_17

	String Abstract Domains and Their Combination
	1 Introduction
	2 Preliminaries
	3 String Abstract Domains
	3.1 Programming Language Agnostic String Abstract Domains
	3.2 Language Specific String Domains
	3.3 Regular Expression-Like Domains
	3.4 The Class of Regular Languages as an Abstract Domain RL

	4 Widening
	5 Combining Domains
	5.1 Direct Products
	5.2 Reduced Products
	5.3 Paraphrasing: Translating Approximate Information
	5.4 One-on-One Paraphrasing

	6 Reference Abstract Domains
	7 Conclusion
	References

